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A SCIENTIFIC AND ARCHAEOLOGICAL INVESTIGATION OF 

PREHISTORIC GLASSES FROM ITALY. 

 

ABSTRACT: 

keywords: Ancient glass, Italy, Final Bronze Age, Proto-Villanovan, Early 
Iron Age, Etruscan, X-ray fluorescence, electron microprobe, 
scanning electron microscope 

 
Ancient glasses are invariably complex materials, in which the specific chemical 
composition and microstructure capture aspects of their technologies. The 
chemical characterisation of glasses in specific archaeological contexts has given 
useful insight into the peculiarities of diverse glass-making technologies. In 
addition such studies generate more general information upon an important range 
of phenomenon, including the pyrotechnological milieu, empirical knowledge of 
sophisticated chemistry, organisation of production, access to significant raw 
materials and long-distance trade. This study examines a wide selection of glass 
artefacts recovered from archaeological contexts in Northern and Central Italy 
from approximately 1200 BC to 200 BC. The earliest material is from the Final 
Bronze Age, and extends the characterisation of an established glass type, which 
is unique to Europe and distinct from the contemporary technologies of the 
Eastern Mediterranean. Using a combination of X-ray fluorescence analysis, 
electron microprobe and scanning electron microscopy glass artefacts from a 
thousand-year period from the same region are investigated. The shifting 
technologies permit the discussion of localised production and importation of 
glass from elsewhere. The chemical analysis reveals a complex picture of glass 
production, which defies the expected pattern, and there is evidence for new 
compositional types, which may yet prove to be diagnostic of highly localised 
production. The changing compositions are discussed in relation to the broader 
archaeological context. 
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CHAPTER 1: INTRODUCTION 

 

This thesis is concerned with the chemical characterisation of glass from 

Prehistoric Northern and Central Italy, from approximately 1200 BC to 200 BC. 

The shifting compositions of glasses are identified and explained in terms of the 

technologies employed and the implications for understanding the archaeological 

context. 

 

1.1 Project Origins 

This project originated in a Nottingham University-funded Graduate Teaching 

Assistantship, initiated in October 1996. The project proposal drawn up by the 

Dept. of Archaeology was the investigation and characterisation of the Etruscan 

glass industry employing X-ray fluorescence (XRF) and Scanning Electron 

Microscope (SEM) analysis. The acquisition of samples is discussed in further 

detail in below (section 1.2), and the adoption of suitable analytical techniques is 

detailed in Chapter 4. 

 

1.2 Sample Collection 

The initial starting point of this study was a closer examination of evidence for the 

existence of an Etruscan or Iron Age North Italian glass industry independent of 

production in the Eastern Mediterranean region. The existence of such an 

industry, suggested by a number of authors (e.g. Haevernick 1959, Harden 1968) 

has been posited on the basis of typological studies, which identified several 

artefact types that were distinct in terms of form and distribution. These artefact 
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types were: two kinds of core-formed glass vessels (the stachelflaschen, and trail-

decorated aryballos) and brooch decoration. 

 

The primary aim of the project was to investigate the chemical composition of 

these artefact types in order to test the hypothesis of a distinct technical tradition. 

Additional analyses of contemporary glass beads was regarded as a necessary 

adjunct to the distinct types: whilst bead forms are often less diagnostic, they 

would undoubtedly represent the wider glassmaking technology outside of the 

special forms. 

 

Given that a number of the stachelflaschen are held in collections in England, the 

initial focus was upon this artefact type and soon widened to include the aryballos 

and brooch sliders. Institutions and individuals in the UK, Italy and the US were 

approached and visited in an attempt to establish the location and sampling access 

to as many of these artefacts as possible. Considerable effort and resources were 

expended in tracing suitable artefacts for sampling, with mixed results. Some of 

the artefacts are held in private collections, and the small number of each extant in 

museum collections ensures they are regarded as extremely precious. 

Unfortunately only a limited number were available for sampling from the 

stachelflaschen group and the brooch sliders and none of the trail decorated 

aryballos.  

 

A comprehensive list of all the samples and the institutions holding the original 

artefacts can be found in in Appendix 1. Attempts to gain access to contemporary 

prehistoric beads were more successful than the other glass forms, largely due to 
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the assistance of Dr Chris Chippendale and the Beck Collection from the Museum 

of Archaeology and Anthropology, University of Cambridge. However, some of 

the items amongst the collection were not well provenienced, and it was felt that 

additional material was needed. Finally, the intervention of Dr Armando De Guio, 

from the Dept of Archaeology, University of Padua proved critical. Dr De Guio, 

with longstanding research links with Nottingham University, negotiated access to 

several museum collections in the Veneto through the Superintendent of 

Archaeology for the region, Dott. Luigi Malnati. Within the framework of a joint 

research project, permission was granted to sample material selected with the 

assistance of Dott. Giovanna Gambacurta and Dott. Simonetta Bonomi. As a 

consequence two sampling trips were undertaken: in December 1998 and in 

January 2000. 

 

 

Samples were taken from artefacts held by the following institutions: 

 Museum of Archaeology and Anthropology, Cambridge University 

 Bristol City Museum 

 Lincoln City Museum 

 National Museums and Galleries on Merseyside 

 National Archaeological Museum of Adria 

 Rovigo Museum 

 Montagnana Museum 

 National Archaeological Museum of Este  

 

The samples originated from, or have been assigned the following provenance: 
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site date 
Frattesina 1200-900 BC 
Mariconda di Malera 1200-900 BC 
Montagnana (“Borgo San Zeno”) 1200-900 BC 
“Etruscan”  800-500 BC 
Pozzouli 700-600 BC 
Cumae 700-600 BC 
Co’Garizoni 300-200 BC 
Canale Bianco 500-200 BC 
Ca’Cima 600-500 BC 
Casa di Muletti Prosdocimi 525-450 BC 
Benvenuti 900-350 BC 
Casa  di Recovero. 900-600 BC 
Casa di Alfonsi 525-450 BC  
“Faliscan” Falerii 700-500 BC 
Rebato 700-600 BC 

 

Table 1.1 Archaeological sites from which the sampled artefacts originate. 

 

Individual samples and the original artefacts are described in greater detail in a 

Catalogue in Appendix 1. Further information on individual sites is given in 

Chapter 5.  

 

The development of access to material inevitably led to a shift in the focus of the 

project. Since few samples were available for the distinctive core-formed glass 

vessels and brooch sliders, these products could no longer be entirely central to 

the thesis (although there is still sufficient analytical data from a handful of 

samples for some discussion on the issues surrounding these artefacts). Instead, 

the opportunity to sample Final Bronze Age through to Early Roman material 

from the Po Valley, alongside material from a slightly larger geographical area of 
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Figures 1.1 and 1.2 Location of key sites from which sampled artefacts originated 
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Central and Northern Italy from British-held collections meant that a broader 

range of issues could be addressed. 

 

1.3 Selection of analytical techniques 

Initially the principle analytical technique to be employed was X-ray fluorescence 

analysis, using a machine recently acquired by the Dept of Archaeology at 

Nottingham. A substantial effort was expended in defining ideal operating 

conditions for the analysis and quantification of ancient glasses using this piece of 

equipment. However, when samples were finally obtained, the demands of sample 

preparation meant that it was not the ideal technique for many of the artefacts 

examined. At that time SEM analysis was not available in Nottingham and access 

was arranged by Professor Julian Henderson and Dr Norman Charnley to an 

electron microprobe at the Dept of Earth Sciences, University of Oxford. 

Subsequent investigations using a SEM with semi-quantitative EDS analysis were 

undertaken using a machine at the Conservation Science and Research laboratory 

at the Conservation Centre in Liverpool, with the assistance of Dr Siobhan Watts. 

All analyses were undertaken by the author. 

 

1.4 The investigation of glass technology. 

The compositional analysis of ancient glass has been a cornerstone of 

archaeological science since the investigations of Klaproth in the late 18th Century 

(Caley 1949): indeed the first studies were the earliest materials science based 

research into any archaeological artefacts. Whilst such studies have never simply 

been empirical in nature, there is an increasing awareness amongst archaeological 

scientists that their investigations and explanation of patterning in their data 

 6



should attempt to address wider questions than simple functionalist descriptions of 

ancient technologies (Sillar and Tite 2000).  

 

The chemical characterisation of glasses, alongside an examination of 

microstructure and typology permits the reconstruction of the technologies 

involved in the primary manufacture. The existence of a large body of analytical 

data on glasses and the raw materials employed in glass manufacture enables 

archaeological scientists to define chronological and temporally specific 

technologies, and increasingly the culturally-determined technological choices 

involved in the industries.   

 

This study represents an opportunity to discuss the kinds of theoretical 

assumptions, which underpin chemical characterisation studies, and these ideas 

are further explored in Chapter 2. 

 

1.5 Technological aspects of glass beads. 

Glass beads constitute the largest single form of artefact examined in this study, 

although a wide range of other artefacts are also sampled (including pendants, 

core-formed glass vessels, spindle whorls, brooch decorations, ingots, working 

waste and crucible residues). Beads represent a highly suitable type of object for 

analysis: in one material or another they are an almost ubiquitous artefact type in 

the archaeological record. Glass beads have a long history, the earliest having 

been recovered from the early third millennium BC onwards, initially in Syria 

(Tell Judeideh) and other sites in Mesopotamia, before their appearance along 

with amulets in Egypt during the Fifth Dynasty (2465-2323 BC) (Moorey 1985, p 
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194 – 200, Shortland and Tite, 2000, p 142, also see section 3.5). Glass (and 

faience) beads are found in West European contexts from the Late 3rd Millennium 

BC onwards (Azémar et al. 2000 p 75). Writers on the early development of glass 

technology (for example Peltenburg 1992) often regard the establishment of the 

core-formed glass vessel industries in Mesopotamia and Egypt in the Mid second 

Millennium BC as the most significant stage in the adoption of this material. 

However, this particular view ignores the widespread and sophisticated early use 

of glass technology represented by the manufacture and distribution of glass 

beads. Glass beads, with the infinite variety of forms, offer a sensitive and useful 

indicator of glassmaking technology. Clearly there are complicating factors, such 

as the well documented long distance trade in beads obscuring provenience (also 

see section 2.3), but nonetheless beads are an excellent resource for tracing change 

in ancient glass technology. 

 

1.6 Objectives of the project. 

This project seeks to address a number of clearly defined issues by chemically 

characterising glasses from archaeological contexts from Northern and Central 

Italy from circa 1200 to 200 BC. 

 

The starting point is the further characterisation of the technology of glasses from 

Final Bronze Age Proto-Villanovan  sites from the Po valley. Earlier studies have 

identified a mixed-alkali glass type unique to European Bronze age contexts. To 

date the Italian examples analysed are derived from a single site: Frattesina. With 

evidence for glassworking at several nearby contemporary sites, it will be useful 
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to define the glass(es) worked there and be able to make a statement on the 

distribution and control of the technologies involved. 

 

With the definition of the Final Bronze Age glass types, and the possibility of 

local production, this project aims to investigate the longevity of the technology in 

the region. To this end a range of glass artefacts, including regionally and 

temporally specific forms, from Early Iron Age Northern Italy were analysed to 

examine the evidence for localised production of the glass used in their 

manufacture.  

 

The presence of glass forms unique to Etruscan contexts has been used to argue 

for a local glass industry. The analysis of these forms alongside contemporary 

beads is undertaken to test this hypothesis, in which the technology of “Etruscan” 

glasses is compared with earlier possibly local production and contemporary 

material from the Eastern Mediterranean. 

 

By reconstructing the glass technology for this one region over a thousand year 

period, it is possible to construct a framework for changing technical choices, 

which is reviewed within the more general archaeological context. 

 9



CHAPTER 2: THE EVIDENCE FOR GLASS PRODUCTION IN 

PREHISTORIC NORTHERN ITALY, AND ASSUMPTIONS 

UNDERPINNING ITS STUDY. 

 

2.1 Evidence for early glass production in prehistoric Italy: the Middle to 

Final Bronze Age. 

Glass and faience have been fundamental to the study of Bronze and Iron Age 

Europe, initially for the purposes of contributing to the construction of 

chronologies before the advent of 14C (Newton and Renfrew 1970, p 199). Studies 

discussing the possibility of independent faience production in Bronze Age 

Europe however, were undertaken before the development of 14C (Beck and Stone 

1936). Analytical work and the ensuing data analysis have been a key component 

in establishing the manufacture of faience in Bronze Age Europe (Beck and Stone 

1936, Stone and Thomas 1956, Newton and Renfrew 1970, Harding 1971, 

Aspinall et al. 1972, McKerrell, H. 1972, Harding and Warren 1973).  

 

Faience and glass beads have long been noted amongst material recovered from 

Bronze Age contexts from Central and Northern Italy: the earliest are segmented 

faience beads from the Early Bronze Age sites (Bergonzi and Cardarelli 1992, p 

218), but both faience and glass are common finds from Middle Bronze Age 

excavations, and are frequently discovered in funerary contexts from then 

onwards (Bellintani and Biavati 1997, Bellintani forthcoming: Gastaldi 1876, 

Montelius 1895, Casi et al. 1993). The range of forms of glassy materials from 

Bronze Age contexts is quite varied, and includes forms common to the European 

and the Mediterranean regions (also see figure 2.1 for examples of these forms: 
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annular monochrome beads: A, eye-decorated beads: B), parallels to the Aegean 

(radial wheel: C), Alpine region (spirally decorated cylinder shaped beads: D) and 

a form apparently unique to Central and Northern Italy (cone-shaped beads: E) 

(Henderson 1988a, 1990, 1993b, Venclová 1990, Barfield 1978, Bellintani and 

Biavati 1997, Bellintani et al. 1998, Bellintani forthcoming, Santopadre and Verità 

2000). 

 

As acknowledged by a number of authors (for example Harding 1971) the 

independent production of an artefact may be indicated by a number of 

characteristics: typological difference marked by specific chronological and 

geographic distribution with chemically distinct composition. Despite the valuable 

contribution of chemical analysis to the definition of European faience production, 

there has been no systematic programme of analysis of the earliest glass objects 

from European contexts, even though distinct characterisation in terms of 

typology and distribution from Eastern Mediterranean material has taken place 

(Harding 1971). The limited chemical characterisation of a specific Middle and 

Late European Bronze Age glass has enabled archaeologists to trace the 

development of a distinct technology, with the possibility of locating its 

development out of faience technology: mixed-alkali glass (also known as low 

magnesia, high potash glass- LMHK (Henderson 1988a). 
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Fig 2.1 Examples of Bronze Age glass forms recovered from Central and 

Northern Italy, scale 1:1, after Henderson 1988a, 1990, 1993b, Venclová 1990, 

Barfield 1978, Bellintani and Biavati 1997, Bellintani et al. 1998, Bellintani 

forthcoming, Santopadre and Verità 2000. 

 

The first qualitative and quantitative compositional analysis of a European Bronze 

Age mixed-alkali glass artefact was published by Biavati (1983), closely followed 

by Guido et al. (1984). The former paper examined material from Frattesina, 

Northern Italy, and the latter from Wilsford, Southern England. Both of these 

papers discussed the role of vegetable ashes as the source of the alkali 

components, and distinguished the respective compositions from contemporary 

glass production in the Eastern Mediterranean. However, it was not until a larger 

number of Bronze Age European glasses had been analysed that the mixed-alkali 

composition was identified as a specifically European Bronze Age phenomenon 

(Henderson 1988a, p 439). This hypothesis has been underpinned by additional 
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analyses of Bronze Age glasses, and there is now a body of compositional data on 

mixed-alkali glasses from Britain and Ireland (Henderson 1988a), France 

(Guilaine et al. 1991, Gratuze et al.1998), Switzerland (Henderson 1988a, 1993b), 

Germany (Hartman et al. 1997), Greece (Henderson 1994) and Italy (Biavati 

1983, Verità and Biavati 1989, Brill 1992, Santropadre and Verità 1993, 2000, 

Bellintani and Biavati 1997, Bellintani et al. 1998 and  Bietti Sestieri, Henderson 

and Ponting forthcoming . Frattesina plays a pivotal role in the identification of 

this separate industry: not only was it amongst the first to be published, but the 

sheer quantity of material, the range of glassworking debris (and association with 

other manufacturing industries) have established it as a major glassworking site (if 

not glassmaking) in the Final Bronze Age (1200 – 900 BC). All of the other 

published Bronze Age compositional data is from completed artefacts and is not 

associated with evidence for glassworking or making.  

 

Only a few authors have addressed the question of the Europe-wide chronology of 

the mixed-alkali glasses (Guilaine et al. 1991, Gratuze et al. 1998, Bellintani and 

Biavati 1997, and Bellintani et al. 1998). It is of interest to identify when this 

glass type was first developed, and to explore any antecedents. Guilaine et al. 

(1991) and Gratuze et al. (1998) have suggested that the mixed-alkali glass has 

been recovered from deposits in France as early as the Chalcolithic (2895 – 2420 

BC, Guilaine et al. 1991, p 259). A faience bead from the Tumulus of Run-ar-

Justicou (Gratuze et al. 1998, sample 73088), is dated from the Early Bronze Age 

to the beginning of the Middle Bronze Age on the basis of comparison to an 

assemblage from another cave site in Brittany (how this was dated is not 

specified) (Gratuze et al. 1998 p 11). The excavation was undertaken in 1881, and 
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the possibility of artefact contamination cannot be excluded: other beads from this 

study were assigned later dates following compositional analysis (for example 

faceted bead 87391-52/7 from La Grotte de Rancogne). A similar bead to the 

faience bead 73088 from the Chalcolithic site of Le Peyere is cited as a parallel, 

unfortunately this too has had to be re-dated (see note on page 23 of Gratuze et al. 

1998). 

 

This faience bead does remain a very important artefact, since it offers a bridge 

between the faience and glassmaking technologies, with its mixed-alkali 

composition substantiating the hypothesis of the independent development of 

mixed-alkali glass in Europe. The separate trajectory of faience to glass, 

independent of the Eastern Mediterranean vitreous technologies is a significant 

contribution to the discussion of high temperature industries. The relationship 

between glass, faience and glassy faience are discussed at greater length in 

Chapter 3 (3.4). Clearly the dating of individual glass (and faience) artefacts is 

fundamental to any debate on this issue. 

 

All of the other mixed-alkali glasses except two analysed in the Gratuze paper 

(Gratuze et al. 1998) date to the Final Bronze Age, with the two exceptions being 

from Le Fort-Harrouard, Sorel Moussel, which are given a Middle Bronze Age 

date (Gratuze et al. 1998, p 14). The authors of the paper recognise that the 

presence of glass beads in archaeological deposits peaks during the Final Bronze 

Age, but trace their presence in French deposits back to the Chalcolithic period. 

Although not referenced at this point, it seems likely that the earlier paper 

(Guilaine et al. 1991) is being considered here by Gratuze et al.(1998). Of the 
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three examples assigned Chalcolithic dates: one, Le Peyere has been rejected as of 

such an early date (its high tin content suggesting it is coloured using a copper-tin 

alloy); and another, from Dolmen de Peirieres has a typical natron based 

composition which is not otherwise known before the 8th C. BC. This leaves a 

single bead dated to before the Middle Bronze Age: a fragment of a blue glass 

bead from Gord, Compeigne, Oise. A calibrated 14 C date has been assigned to the 

context of its discovery (2895 – 2420 BP) (Guilaine et al. 1991, p 259). This early 

date has since been rescinded by the original authors (Henderson pers. comm.). In 

their 1991 paper, however, other glass beads from Early Bronze Age deposits 

(Grotte au Collier) were discussed, but these are high magnesia, soda-lime-silica 

glasses typical of the Eastern Mediterranean region, and are likely to be imports. 

The next earliest identified mixed-alkali glasses from France are from the Middle 

Bronze Age site of Grotte de Bringairet, Armisson, Aude (Guilaine et al. 1991, p 

259 and 263). 

 

The recent discussion of cone-shaped beads from Central and Northern Italy 

(Bellintani forthcoming, Bellintani et al. 1998, Bellintani and Biavati 1997) 

integrate analysis of typology, chronology, distribution and chemical analysis. 

These studies locate the manufacture of the beads in the beginning of the Middle 

Bronze Age, with the possibility of localised variation in form out of a regionally 

distinct glass type (i.e. the mixed-alkali glass).  

 

It would appear that a consensus is emerging for the existence of the mixed-alkali 

glass in the Middle Bronze Age (and therefore before the development of the site 

of Frattesina). The presence of mixed-alkali glass in French contexts from the 
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Middle Bronze Age would confirm the widespread adoption of the material at this 

point in time. It would seem most likely that Frattesina represents the continuity of 

this particular industrial tradition into the Final Bronze Age (as described in 

Bellintani forthcoming). The origins of this glass industry have not been 

established in 3rd Millenium BC France: two of the three examples from the 

Chalcolithic have been re-dated on the basis of their chemistry and the remaining 

mixed-alkali faience bead has recently had its early date revoked by Gratuze 

(Henderson pers. comm.). However, the existence of mixed-alkali faience 

suggests that it might be possible to trace the development of the mixed-alkali 

tradition between these two technologies. 

 

A series of questions remain to be answered: since settlements contemporary to 

the Final Bronze Age site of Frattesina in the Po valley also have evidence for 

glassworking (i.e. Montagnana and Mariconda di Malera), it would be useful to 

identify the glass types being employed there. Is there a single tradition in the Po 

valley at this time, or a range of technologies? Recently published studies of glass 

and “glassy faience” from Middle Bronze Age sites in Italy (Prato di Frabulino, 

Poviglio and Trinitapoli) and an Iron Age site (Chiaromonte) suggest that the 

mixed-alkali technology might be more diverse and long-lived than previously 

thought (Santopadre and Verità 2000). 

 

Given the strong evidence for regional glass manufacture from the beginning of 

the Middle Bronze Age to the Final Bronze Age, it would be useful to establish if 

there is any evidence for continuity for this glass making tradition into the Iron 

Age in Northern and Central Italy. The mixed-alkali glasses and glass-working 
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debris, recovered from Rathgall in Ireland (Henderson 1988b) are dated to the 9th-

7th Centuries BC, suggesting that elsewhere in Europe this glass type continues in 

use. 

 

2.2 Characteristic glass forms from prehistoric Italy: The Early Iron Age and 

Etruscan periods. 

 

Leech-shaped brooch decoration. 

A series of brooch decorations made from glass have been noted as peculiar to 

Early Iron Age and Etruscan contexts in Central and Northern Italy (Montelius 

1895: Serie A plate 7 and Serie B plates: 90, 94, 195, 219, 307, 318, 349, Grenier 

1912 p 294-305, von Bissing 1942 144-168, Dohan 1942 Plate 19, Figure 40, 

Plate 22, Figure 61, Sundwall 1943, p 193, Figure 311, p 208, Figure 333, Harden 

1968, p 59, Goldstein 1979, p 122-123, Grose 1989 p 70, 81-82, 87,Tatton-Brown 

1995 p 321, Dobiat 1987, p 27-29, figure 17, plate 1). Their full distribution 

however, extends from Central Italy northwards as far as Poland, but is 

concentrated around the Northern Adriatic (Dobiat 1987, p 27-29, figure 17, plate 

1, Map 13). These decorations take the form of a leech-shaped agglomeration of 

glass formed on a rod, which has then been decorated with the addition of trails of 

differently coloured glass wrapped around the glass matrix. These trails of glass 

are marvered flush with the surface of the main body of glass before being 

combed in alternate directions to create a feathered or chevron design. Often the 

combing action leaves a ribbed finish on the object, which has not been removed 

by further marvering. The colours used include blue, yellow, white and red 

opaque glasses, although they may often be difficult to discern because of surface 
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degradation. Whilst the chevron design is a common decorative motif in glass 

vessels from the Eastern Mediterranean region from the 14th Century BC onwards 

(e.g. Stern and Schlick-Nolte 1994, p 150-151), its use on brooch decoration 

(sometimes referred to as brooch sliders) is more restricted. Beads with a similar 

decoration have been noted from Northern Italy to Greece (Tatton-Brown 1995, p 

321, Grose 1989, p 81, Dobiat 1987 plate 3), and whilst these may originate in the 

same production as the brooch sliders, they may simply represent the noted 

widespread adoption of this decorative form. Rod-formed bracelets of similar 

design have also been recovered from Central and Northern Italy (Grose 1989, p 

81). 

 

 

 

Figure 2.2 Leech-shaped brooch decoration from Rebato, grave 100, 675-575 BC. 

After Dobiat 1987, Figure 17, scale 1:2, also see sample 373 this study. 

 

There has been no previous attempt to chemically characterise the glasses 

employed to make these artefacts. It has been assumed that they were produced in 

Central and Northern Italy on the basis of their distribution. It was considered 

useful to establish the nature of the glass technology employed, to discover if it 

can be correlated with the earlier mixed-alkali tradition in the region, and how it 

compares with contemporary Mediterranean glasses. 
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The stachelflaschen. 

Previously, the earliest core-formed glass vessels found in Italy were certainly 

exotic imports: cups recovered from Etruscan contexts dated to the last quarter of 

the 8th Century BC and probably having a Phoenician or Assyrian origin (Giuntoli 

1996, p 14, Tatton-Brown 1995, p 321-325) (n.b. see sample 236, this study). 

However, there is a series of vessels which appear to be a class of artefact limited 

to Etruscan contexts from c. 650-550 BC: the stachelflaschen. This category of 

artefacts was first defined by Haevernick in 1959, who recognised these core-

formed glass vessels as a uniquely Etruscan phenomenon (Haevernick 1959, 

1961). The vessels were produced using the conventional core-formed technique 

of applying hot glass to a friable core on a rod, which was subsequently removed 

after the finished vessel had been annealed and cooled (for a detailed description 

of the technique see Stern and Schlick-Nolte 1994, p 28-44, Gudenrath 1995, p 

214-215). The decoration is what distinguishes these vessels from contemporary 

products from Egypt, Rhodes and Mesopotamia. The vessels have a raised scale 

decoration, consisting of either applied knops of glass, or drawn from the body of 

the object. Depending upon the underlying vessel form, a foot, base, neck, collar 

and handle may be added. Although a number of different coloured glasses have 

been used to make this form (amber, green and blue) all are monochrome (and 

mostly blue, both turquoise and dark blue opaque coloured). The decoration has 

been compared with that on a series of brooch decorations, which are 

contemporary, but are distributed outside the Etruscan zone from Este in Northern 

Italy to Yugoslavia and Slovenia (Haevenick 1959, p 62, Sternini 1995, p 22-23). 
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Since Haevernick’s initial study identifying the type and listing 12 known 

examples, additional work by other authors have extended the number to over 100 

(Haevernick 1959, 1961, Bizzarri, 1965, Harden 1968, p 46-72, 1981, p 138-141, 

Harden et al. 1968, Fremersdorf 1975, p 28, Goldstein 1979, p 122, Grose 1989, p 

81-82, Capecchi 1993, p 129-134, Martelli 1994: the latter with the most 

comprehensive catelogue of 48 artefacts, Tatton-Brown 1995, p 321-322, Sternini 

1995 p 22-23, Giuntoli 1996). 72 have known provenance’s (see Capecchi 1993, p 

131, Figure 2, after Giuntoli). The most common form is the oinochoe (see figure 

2.3 below), but examples are also known in the forms of alabastron, pyx, lagynos 

and aryballos. These forms can be related to Greek and Eastern Mediterranean 

models in ceramic and metal, but given the widespread adoption of these shapes 

around the Mediterranean, the forms themselves do not indicate origin, although 

the slightly elongated oinochoe form has parallels in Etruscan-produced ceramics 

(Haevernick 1959, p 63). Haevernick initially suggested a 4th Century BC date on 

the basis on general form, which was soon amended, to the late 7th Century BC in 

the face of contextual data (Haevernick 1959, 1961). Harden (1981, p 139) argues 

for a long chronology for these vessels on the basis of art-historical discussion of 

the underlying form, and suggests a period from the late 7th Century to the early 

3rd Century BC. Giuntoli, however rejects this, and after close examination of the 

few well- provenienced examples suggests a date of 650-550 for the entire group 

on the basis of archaeological context (Capecchi 1993, Giuntoli 1996 and Giuntoli 

pers. comm.). The decoration on the vessels may have parallels with early 7th 

Century BC Etruscan ceramic vases (Tatton-Brown 1995, p 321). 
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Figure 2.3 stachelflaschen: core formed glass vessel with decoration unique to  

Etruscan contexts. After Tatton-Brown and Andrews 1995, p 41, figure 43. Height 

= 6.5 cm, held by the British Museum: 1848.8-3.69, unknown provenance, full 

description in Harden 1981, p 139 and Figure 10. 

 

As yet there is no direct evidence for glass working or making from Etruscan 

contexts (Giuntoli 1996, p 13), and these vessels have been assumed to be 

manufactured in Etruria on the basis of their distinct decoration and limited 

distribution. Many of the known examples are of unknown provenance, and are 

scattered amongst collections around the world. 

 

No previous compositional analysis has been performed upon this group of 

artefacts, and it was therefore considered a matter of some interest to investigate 

whether or not the chemistry of these glasses reflects a distinct technological 
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tradition. Since glassmaking has been strongly suggested for the Final Bronze Age 

in Northern Italy, it was therefore thought to be useful to determine if there is any 

evidence for technical continuity from the Protovillanovan koine of Frattesina to 

the Etruscan societies of 7th-6th Century BC Central Italy. An examination of glass 

beads from contemporary Etruscan contexts placed the glass chemistry of the 

stachelflaschen in their technological context. A survey of Etruscan glass objects 

was undertaken to illuminate the technologies involved, and address the question: 

is there a single tradition consistent with either well controlled domestic 

production or limited-source importation, or a diverse range of different traditions 

reflecting a fragmented and variable production? 

 

2.3 Theoretical assumptions underpinning the research. 

As a work of archaeological science, this study embodies a number of theoretical 

assumptions concerning the manner in which ancient materials are studied and 

interpreted. The theoretical understanding of X-ray techniques and their practical 

application to archaeological samples are discussed at some length in Chapter 4. 

Here the concepts underpinning the application of analytical techniques to the 

study of archaeological material are briefly considered. In this context the term 

“archaeological science” is simply used as a term to describe the application of 

methodologies developed by the physical sciences to ancient materials, rather than 

to lay claim to “scientific” status for the elaboration of wider inferences 

concerning the societies using the materials (Trigger 1988, p 1 and 1989, p 373-

374). 
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The chemical analysis of ancient glass dates back to the late 18th and early 19th 

Centuries (Caley 1949, 1962, p 13 – 15, 1967, p 120), with the curiosity of early 

chemists driven, in part at least, to understand the technologies of the classical 

world to facilitate the production of contemporary materials. Amongst the 

justification for the investigation of “the nature and composition” of a range of 

pigments and vitreous materials from Pompeii, Humphrey Davy suggested to his 

audience  

“I shall be able to give some information not without interest to scientific 

men as well as to artists, and not wholly devoid of practical applications” 

(Davy 1815, p 99-100). 

 

 It is interesting to note Davy’s ethical approach to the sampling of the materials: 

“When preservation of a work of art was concerned, I made my researches 

upon mere atoms of the colour, taken from a place where the loss was 

imperceptible: and without having injured any of the precious remains of 

antiquity” (Davy 1815, p 100). 

 

It wasn’t until later in the 19th Century that an explicit statement of the value of 

chemical analysis for the resolution of specifically archaeological questions was 

made. In the preface to the 1879 edition of his book (Manufacturing Arts in 

Ancient Times, with special reference to Bible History), James Napier discussed 

the origin of the dead and their grave goods from excavations at Mycenae: 

“I think it probable that if chemistry was called in as evidence in such 

enquiries, it would at least, yield much valuable circumstantial, if not 

positive evidence as to whether the articles found alongside the bodies 
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were of Grecian or Scandinavian manufacture…and I think that nations so 

far apart as the north of Europe and Greece may, and in all probability had, 

different methods of compounding their alloys; so that, were this the case, 

strict analyses of the different articles found would approximately 

determine whether they were made in Greece or northern Europe. … With 

the knowledge which archaeologists have attained in respect to form and 

other characteristics of ancient works, I believe that, were analyses added 

to this knowledge, the archaeologist would soon come to determine not 

only the age, but the locality where the different articles were made.”  

 

Napier concluded his preface with a call to arms for archaeological scientists: 

“As yet I think archaeologists have not put that value upon chemical 

investigation that it deserves, and hope that this volume will help to 

stimulate to such an enquiry.” (Napier 1879 p II-IV). 

 

In the brief passage quoted above, Napier identifies a number of the key concerns 

of the chemical characterisation of ancient materials: identifying technological 

processes, technological traditions, the relationship to form, dating and 

provenance. 

 

The application of natural sciences to archaeological research has expanded 

hugely since Napier’s day, and extends to include such diverse areas as 

environmental reconstruction, paleopathology, biological evolution, dating, 

prospection and conservation science: nonetheless the compositional and 

structural analysis of artefacts remains at the heart of archaeological science (for a 
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brief history of the development of archaeological science see Pollard and Heron 

1996, p 1-19, and also: Caley 1951, 1962 and 1967, Brothwell and Higgs 1969, p 

23-34, Harbottle 1982, Ciliberto 2000, and Brothwell and Pollard 2001b, p xvii-

xx). 

 

The value of an archaeological scientific investigation into any body of material is 

dependent on two key issues: the construction of a suitable archaeological 

question and the selection and application of the appropriate analytical 

technique(s) to the resolution of the question (the latter is considered in Chapter 

4). 

 

Clearly several assumptions are implicit in the chemical characterisation of a 

group of artefacts: 

 technological processes 

 technological tradition 

grouping/association – difference 

 provenance 

 

It is useful to consider the limitations of these concepts for the purpose of this 

study. The manner in which glass artefacts may be studied is examined in greater 

detail in Chapter 3, but it is important to question the usefulness of certain 

objectives to interpretation. The chemical and structural examination of glass 

artefacts permits the detailed reconstruction of an object’s life history (or chaine 

operatoire –Tite 2000, xv-xvi, Tite 2001, p 443, Dobres and Hoffman 1994, p 

237-239). Sufficient knowledge has been collectively accumulated by 
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archaeological scientists to infer distinct raw materials, temperature regimes, 

oxidation states, forming activities, use, re-use and depositional environments for 

glass artefacts. Whilst an understanding of these processes is a worthy end in 

itself, and not a new objective for archaeologists, it is the interpretative value 

placed upon technology which varies between archaeologists. 

 

The examination of a glass artefact (or group of artefacts) permits its relation to 

the larger body of compositional and structural data: a large number of regional 

and temporally specific traditions have already been defined. Clearly, the quantity 

(and quality) of data in existence for a region and period determines the capacity 

for defining new analyses. For any particular period the categorisation improves 

with additional data, as the groupings become better defined (or redefined), for 

example the five glass compositional groups defined by Sayre and Smith in 1961 

for Europe, Western asia and Africa from 1500 BC until 1200 AD has been 

greatly extended (Sayre and Smith 1961, p 1824). 

 

The grouping of artefacts, and differentiation on the basis of shared traits is also a 

long established archaeological practise, since Thomson’s seriation in 1819 led to 

the definition of the Stone, Bronze and Iron Ages in European Prehistory (and 

their internal differentiation: Trigger 1988, p 1-2). The assumption that differences 

must exist between data sets from artefacts which are distinguished on other, 

archaeological grounds (such as form, association, context or date) is an eminently 

testable proposition in each case, using statistical techniques (e.g. Glascock 1992). 

The imposition of difference, using sophisticated statistical methodology is not 
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difficult, but groupings still need to be explained in terms of their technology, and 

related to their archaeological significance. 

 

Provenance studies based on chemical characterisation of some archaeological 

materials have been very successful, with unequivocal identification of the 

geological source for certain types of artefact (for example obsidian: Henderson 

2000, p 305-314, Pollard and Heron 1996, p 81-103, Wilson and Pollard 2001). 

Similarly ceramics have been successfully characterised and related to specific 

geological sources of clay (Pollard and Heron 1996, p 104-148). Glass however, 

represents a more fundamental re-working of quite diverse raw components, 

which makes the establishment of a relationship between the finished product and 

specific geological sources difficult if not impossible. An individual glass artefact 

might contain components with separate and distant geological origins (for 

example exotic colourants in locally-produced glass, also see 3.7 below). Glass as 

a material does not readily lend itself to provenancing, in the manner of stone or 

ceramic. The well-documented and archaeologically attested phenomenon of 

geographically distinct manufacture, colouring, working, and recycling of glass 

renders the concept of provenance redundant (Wilson and Pollard 2001, p 512-

513). However, the definition of technological tradition is in many ways more 

useful, for this can distinguish characteristics which might have a geologically 

specific aspect (such as a high-alumina cobalt colourant), alongside traits which 

are associated with raw component-selection which are less geographically 

dependant. The consideration of technical tradition also more readily permits the 

acknowledgement of culturally determined choice.  
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2.4 The relationship between technology and society 

The elaboration of the technology represented in an artefact is not an isolated 

activity, in which the objective empirical truth of an object gives rise to useful 

knowledge. There are two fundamental areas of concern in this discussion.  

 

The first is the recognition of technology and its components as a significant 

sphere of inquiry. The questions posed, and to a certain extent answers gained by 

any archaeologist are a consequence of his/her context: archaeology, like any 

other activity, past or present is socially embedded (for a discussion of the socially 

specific nature of scientific enquiry, see Gould 1981). This self-critical position 

has arisen with the rejection of a more general positivist approach in the “New 

Archaeology” of the late 1960’s and early 1970’s (e.g. Clarke 1968, 1973 and 

Binford 1962). The development of the “posties” (i.e. post-processualism, post-

structuralism and more generally in academia, post-modernism), has in some 

cases led to the development of relativist perspectives upon archaeological 

interpretation (Miller and Tilley 1984, p 151, Shanks and Tilley 1992, Trigger 

1986, p 11, 1990, p 379-382, Callinicos 1996). Without doubt, increasingly 

theory-literate archaeologists can make more confident inferences concerning past 

behaviours (Shanks and Tilley 1992, p 245): extreme relativism however reduces 

archaeological interpretations into competing stories about the past, which cannot 

be evaluated in terms other than their internal coherence. The recognition of the 

existence of a single, genuine past is a crucial starting point for effective 

archaeological enquiry (“the past is knowable” Bintliff 1988, p 2). The efficacy of 

interpretative schemes to approach that past is the arena in which ideas can be 

tested, this can only be achieved by drawing up paradigms that define “useful” 
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data for collection and bridge the gap from data to the meta-narrative of particular 

world views. These paradigms constitute Binford’s “middle-range” theory, and 

are particularly useful for drawing up cross-cultural generalisations concerning the 

constraints on human behaviour placed by ecological or technological 

circumstances.  

 

Having recognised that the selection of technology, its meaning and constituent 

threads of enquiry are choices reflecting contemporary concerns, the activity of 

employing these concepts to generate archaeological data should be undertaken 

with an awareness of what types of inferences may be drawn as a consequence. 

An understanding of technical processes permits inferences on: technical skills, 

tools, organisation of labour, procurement of raw materials, parallels between 

technological concepts and ideologies (for the latter see Trigger 1988, p 6, and for 

glass, the rituals associated with manufacture: Oppenheim et al. 1988, p 32-33). 

 

The second important consideration for the discussion of ancient technology is 

how it is related to the wider society under consideration (i.e. on the basis of 

investigation of technologies, what forms of inference may be made). In his broad 

discussion of the role of artefacts in the reconstruction of technologies, Gordon 

(1993) suggests a useful (for historical periods,) series of principles for 

interpreting artefacts: beyond archaeometry, the components of the context are 

critical to realising the potential of an object. Gordon groups these as “backward-

linkage” and “forward-linkage” components. The backward-linkage components 

consist of the boundaries established by the physical and chemical investigation of 

an object: the types of materials and processes involved in manufacture, which 
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may be supplemented by experimental reconstruction work. The forward-linkage 

components are the observations of how objects have been used, and by whom, 

and how the form of an object relates to its function. Clearly these principles are 

well suited to functionalist interpretations concerning technology, but offers little 

assistance in the reconstruction of the associated social structures, which Gordon 

concedes are difficult to identify without the help of documents or oral histories 

(Gordon 1993, p 80-81). Fortunately archaeologists have long been developing 

intellectual tools which enable them to move from the analysis of material culture 

to social organisation (Wright 1993, p 243-244). Pfaffenburger (1992) illustrates 

the socially embedded nature of technology, and usefully challenges the 

functionalist framework of many studies of ancient technologies, suggesting the 

adoption (by anthropologists and archaeologists) of the concept of the 

“sociotechnical system” which links technology, material culture and the social 

coordination of labour. The question remains however, how far can observations 

made on technology be used to generate insights into the social formations, in 

which artefacts were conceived, used and deposited? 

 

A session at the World Archaeology Congress in Cape Town in 1999 

(Technological choices in ceramic production) addressed the problems of 

understanding ancient technologies in their wider contexts. The publication of 

these papers (Livingstone Smith 2000, Sillar 2000, Pool 2000) with a commentary 

(Sillar and Tite 2000) and subsequent reactions (Cumberpatch, Griffiths, Kolb, 

Neff, Roux, Stilborg, Sillar, Livingstone Smith, and Pool, 2001) constitute a 

significant discussion of a particular framework for studying ancient technology: 

“technological choices”. Whilst the particular focus of the papers is rooted in the 
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examination of ceramic production, the authors acknowledge the wider 

application of this approach to materials science – based studies in archaeology. 

Despite some differences a number of key concepts are recognised as being 

useful. 

 

• By undertaking material science based studies of ancient technological 

practices, it is possible to identify the junctures at which technological choices 

were being made in the past. To locate choices in technical activities (all 

actions impacting on material culture?), Sillar and Tite identify the important 

stages and relationships involved in pottery production. This kind of work is 

the principal strength of archaeological (and material) scientists. Sillar and 

Tite draw particular attention for the need (also recognised elsewhere) to 

integrate concepts from social sciences into the explanation of the choices 

made to avoid functional interpretations (Sillar and Tite 2000, p 2, p 15).  

 

• The distinction between technology and cultural context is recognised as a 

false one, and that there is a reflexive relationship between the activities of 

ancient peoples and the structures of their societies. Technological activities 

are not simply a reflection of the mental templates possessed by people in the 

past. 

 

• Technology can be fundamental to the social reproduction of societies- the act 

of doing and the transmission of knowledge and skills are powerful formative 

processes in the structuring of human relations. 
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None of these ideas are particularly new, but perhaps the significance of the 

papers (as noted by Cumberpatch, 2001, p 269) is the location of the discussion in 

Archaeometry, and therefore reaches an audience of archaeological scientists who 

might be less familiar with these concepts derived from the social sciences. 

 

The deliberate structuring of processes and relationships influencing technical 

choices in pottery production (and use) is a useful and concrete example of how it 

is possible to begin to establish the manner in which culture (the sum of human 

relations) relates to technology. 

 

Perhaps the weakness in the approach is the lack of an overall organisational 

principal: how should one delineate between the different identifiable 

relationships between the social context and technological choices? For example, 

in any given high-temperature industry it may be possible to identify technical 

selections which may have been based upon the constraints of access to raw 

materials, fuel, limitations of furnace technology, conservative craft tradition, 

ideology or technical knowledge. Structuring the competing influences cannot 

simply be subject to the specifics of a given situation, although choosing between 

the different influences might not be subject to a universal formulation (Sillar and 

Tite 2000, p 11). This was the territory over which several of the commentators 

battled, to appropriate the “technical choices” approach for their own specific 

theoretical position: “evolutionary archaeology” (Neff 2001) and “ceramic 

ecology” (Kolb 2001). 

 

 32



Interestingly, there was no mention in any of the original papers or commentaries 

of the significant body of social theory which explicitly addresses these issues, 

and attempts to structure the different social processes and their relationships with 

the material world. The single reference to Childe (Sillar and Tite 2000, p 9) is the 

closest any of the writers came to acknowledging the existence of Marxist 

Archaeology or Historical Materialism in general. Marxist analyses of history 

(and human evolution: see Engels 1876, Harman 1994) place human agency at the 

centre of understanding the development of human societies (e.g. Harman 1999, 

Callinicos 1995). Historical Materialism makes a claim for the primacy of certain 

kinds of social structures in the explanation of social systems (Callinicos 1995, p 

41). The role of labour in the relationship between individual humans, groups of 

humans and the material world is central to this way of understanding the world. 

The dynamic relationship between the means of production (i.e. the technology) 

and the mode of production (i.e. the social organisation of labour) is seen as the 

motor behind human history (this is explained quite lucidly in Harman 1999 p 22-

28). The concept of human consciousness is identified as a key factor in shaping 

human relations and includes the useful knowledge derived from performing tasks 

in the material world. 

 

Marxist Archaeologists and historians have long discussed the role of technology 

in society, for example Childe 1936 p 20-36, 1942, p 7-24, 1957, Trigger 1980 p 

136-143, 1986, Tringham 1983, Wailes 1996, Spriggs 1984. Indeed, there have 

even been specifically Marxist interpretations of pottery production, for example: 

Saunders 1996. The development of empirical knowledge whilst engaged in 

technology represents the increasing consciousness of individuals. A practical 
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example of this would be the understanding of the role of different colourants in 

glassmaking: despite the obfuscation of ideology, such as the 7th Century BC 

documented rituals associated with glass furnace construction (Oppenheim et al. 

1988, p 32-33), glassworkers were able to effect a wide range of colours in glass 

using colourants, sometimes constituting less than 1 % of the glass batch.  

 

Marxist narratives have been accused of being reductive and mechanistic: a legacy 

of the Second International and Stalinism (Saunders 1996 p 125), in which 

simplistic readings of Marx by Plekanhov and Kautsky led to the inflexible 

orthodoxy of History as an inevitable sequence of developing modes of 

production. A crude critique of Historical Materialism has grown out of these 

readings in which Marxist analysis is written off as technologically deterministic 

and employing an evolutionary scheme. This superficial criticism of Marxism is at 

the heart of Post-modernist rejections of the Marxist intellectual tradition 

(Saunders 1996, p 126). It is important to note that many of the insights into social 

practise employed in the Archaeometry papers discussed above are derived from 

Marxist or Marxist-inspired sociology from the 1960’s and 1970’s which 

attempted to understand the influence of different forces, environmental, 

ideological, economic and social on human behaviour. The vulgar criticisms of 

Historical Materialism are ably answered elsewhere (e.g. Callinicos 1995 and 

1996). 

 

The elaboration of a methodology to examine the technological choices made in 

past activities, and a call for the use of sociological explanations ought to at least 

acknowledge the historic contribution of Marxist thought to the development of 
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this position. The explicit use of Marxist theory may aid the integration of the 

processes influencing the technical choices. The construction of a universal model 

applicable to all situations is probably not possible given the particularist nature of 

the archaeological record, but the application of general principles probably is 

useful. 

 

Nonetheless, the Archaeometry discussion is a welcome airing of the issues within 

the context of archaeological science. It is possible to construct a similar summary 

of factors effecting technical choices involved in glass production (see figure 2.4), 

which serves as a useful reminder when interpreting the results of analyses. 

 

The chemical analysis of ancient glasses, comparative analyses of raw materials 

and experimental work have identified culturally specific variability in the 

manufacture of glass (see Chapter 3 for more details). The assembly of bodies of 

compositional data from the Eastern Mediterranean and Mesopotamian regions 

(e.g. Sayre and Smith 1961) enables the definition of groupings reflecting distinct 

technological traditions. The subsequent explanation of the compositional 

variation in terms of raw components leads directly to inferences concerning the 

selection and procurement of raw materials used in the primary manufacture:  
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mineral or plant ash alkali sources, silica sources, colourants. The identification of 

regionally and chronologically distinct glass types, such as the Bronze Age mixed-

alkali glass by Henderson (1988a) sheds new light on the technical capacity of a 

particular group. In this instance, where once before a group was assumed to be 

merely consumers of glass produced elsewhere, they are seen in a new light as 

sophisticated technologists producing their own glass. The homogeneity of glass 

compositions (or lack thereof) may suggest the degree of central control over 

production. The relationship of a glass object’s chemistry to a specific tradition 

(such as the Ulu Burun ingots to Levantine production: Henderson 1989a, p 33-

36, also see 3.7.20) can give rise to identification of long distance exchange in 

prestige items when they are found outside their homeland. 

 

2.5 Summary 

The glass samples analysed in this study are derived from Museum collections 

held in Italy and England, and originate in archaeological contexts from Northern 

and Central Italy from the Final Bronze Age to the early Roman period. The 

chemical analysis of these samples from does not simply represent an exercise in 

empiricism, in which an idealised Truth speaks out (Shanks and Tilley 1992, p 

251): but the deliberate and self-conscious application of techniques drawn from 

the natural sciences to generate compositional data. It is considered useful to 

generate that data because it is assumed that: 

1. ancient glass chemistry is variable (and verifiable) 

2. the compositions and structure reflect the raw components and processes used 

in their manufacture 

3. to some extent these components and practices may be reconstructed 
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4. the compositional variability reflect culturally specific practises (“technical 

choices”) 

5. the reconstruction of glass technology for a region and period is inherently 

interesting 

6. an understanding of glass technology permits inference upon a number of 

different issues, including: technical skills, tools, organisation of labour, 

procurement of raw materials, parallels between technological concepts and 

ideologies, exchange systems. 

 

It is on the basis of these assumptions that useful statements on the technology and 

cultural context of the glasses can be made. The specific questions are laid out in 

Chapter 1 (1.6). Clearly, many of these assumptions have been verified by earlier 

workers studying ancient glass (although not explicitly): studies based upon the 

sorts of ideas laid out by Napier (see 2.3 above). The success of compositional 

analysis could easily lead to the routine application of analytical chemistry 

without the explicit elaboration of the underlying concepts, nonetheless this brief 

consideration suggests that the theoretical framework for this study is secure. 
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CHAPTER 3: THE ARCHAEOMETRY OF ANCIENT GLASS 

 

3.1 Introduction. 

This chapter considers ancient glass from the perspective of the archaeological 

scientist, and discusses the nature of glass and related materials as well as the 

various sources of information on glass chemistry. This is followed by a detailed 

description of the chemical components of glass in order to inform the 

interpretation of compositional analysis of ancient glasses. 

 

3.2 Physical and Chemical Properties of Glass 

It is useful to briefly outline the contemporary scientific concepts of the chemical 

structure of glass, since further discussion of components relies upon these 

models. 

 

Glass can be considered as an additional state to solid, liquid and gas (e.g. Pollard 

and Heron 1996 p150). The glassy or vitreous state is achieved when a liquid is 

cooled, and transformed into a solid without the formation of a crystalline 

structure: glasses are sometimes referred to as non-crystalline solids. 

 

This transformation, from liquid to non-crystalline solid is reliant upon the process 

taking place sufficiently quickly that the molecules in the liquid are unable to 

attain the long-range order necessary for the formation of crystal lattice structure. 

The transition can be seen in terms of the temperature and specific volume of the 

material.  
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When the liquid is cooled slowly and fails to achieve the long range order 

necessary to become crystalline, following the dashed line in Figure 3.1, then the 

material demonstrates no clear discontinuity between being a liquid and solid. If 

the liquid were to cool slowly and become crystalline, following the solid line in 

Figure 3.1, then a sharp drop in specific volume would be observed as the  

phase transition to crystalline solid took place. At temperatures below Tm the 

glass is metastable, it is too viscous to permit the rearrangement of its component 

molecules into crystals. TG on the diagram is known as the glass transition 

temperature, and is dependent on the composition of the melt and the cooling rate.  

 

 

 

 

Figure 3.1 Specific volume against temperature for liquid, glassy and solid states 

(after Anderson et al. 1990, p 296, Figure 11.3) 

 

Historically, there have been two competing models of the chemical structure of 

glasses, that of Zachariasen (1930) and Lebedev (dating to 1921). These models 
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are described in detail elsewhere (Pollard and Heron 1996, p 152-163 discuss the 

models which are further detailed in Porai-Koshits, 1990). A number of features 

of both models are useful in this consideration of glass chemistry. In summary, the 

Zachariasen model (otherwise referred to as the continuous random network 

theory) has a number of features: 

• Crystalline and glass forms of a material have similar mechanical properties, 

suggesting they have similar bonding 

• Glasses do not have the long-range order which defines crystalline structures 

• The structure of glasses is not entirely random because the intermolecular 

distances are consistent. 

 

These observations lead to a number of inferences: 

• The optical isotropy of glass is a consequence of the random atomic 

arrangement 

• A random network gives rise to variability in bond energies which explains 

why thermal breakdown takes place over a long temperature range, rather than 

at a characteristic temperature as for crystals. 

• Glass compositions are mixtures, not compounds. 

• There are no crystal cleavage plains in glass, hence the concoidal fractures 

seen at breaks. 

• On the basis of molecular geometry, that a glass-forming oxide must have a 

tetrahedral co-ordination with four oxygen atoms arranged around a metal 

atom. 
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In this model oxygen atoms are linked to not more than two other atoms, oxygen 

polyhedra share only corners, and to form a three dimensional structure at least 

three corners must be shared. 

 

Further work by Warren (1937) and Warren and Biscoe (1938) have supported 

this model by establishing the average inter-atomic distances between silicon and 

oxygen, and oxygen and oxygen atoms in vitreous silica and soda-silica glass, 

suggesting a tetrahedral structure. In the case of the soda-silica glass, the sodium 

atoms were suggested as being located interstitially in the network. Discrete 

molecules of soda and sodium silicates could not exist within the glass structure 

on the basis of arguments concerning co-ordination numbers. Crucially, Warren 

calculated the maximum size of any crystalline structure within a soda-silica glass 

based on diffraction patterns as 7 Å (1Å =10-10m), which is approximately the size 

of a single silica crystal. This would therefore defy description as a crystalline 

structure, given the limited order involved. 

 

The alternative model developed by Lebedev is the crystallite theory, in which 

glass is seen as being made up of small crystalline regions, which vary in size 

from 10 Å to 300 Å.  This picture of a series of highly ordered crystallite domains 

clearly contradicts the random network theory, and yet the two models are 

currently seen as complementary. The two models can be integrated because the 

random network theory is based on an average perception of the structure, and 

assumes homogeneity. Structural inhomogeneity has been repeatedly observed in 

glasses: scanning electron microscopy and subsequent analysis have demonstrated 
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phase-separation in many glasses. The combination of the two models has given 

rise to several useful insights: 

 

• Single component glasses have homogenous structures, which are adequately 

understood using the random network theory. 

• Multicomponent glasses whose overall composition is between two stable 

compounds exhibit phase separation. 

• Additional components such as colorants are not distributed evenly throughout 

the structure, but are responsive to localised variation in ionic charge. 

 

Glass-forming oxides have subsequently been classified as network formers, 

network modifiers and intermediates. Network formers are those oxides capable 

of forming glasses alone, without the addition of other material (such as SiO2, 

B2O3 and P2O5). Network modifiers are those oxides whose cations disrupt the 

continuity of the network (for example Na2O, K2O, CaO and MgO). Intermediates 

are those oxides which can act as either network former or modifier, but cannot be 

a network former in the absence of other oxides (this group includes Al2O3, TiO2 

and ZrO2). 

 

Conventionally the random network theory structure is illustrated in two-

dimensional form to contrast with a regular crystalline structure of similar 

composition (for example see Pollard and Heron 1996, Figure 5.4, p 157, Brill 

1962, Figures 2 – 6 p 133-135, and Figure 3.2 below). In many ways it is an 

inaccurate expression of the random network structure, since it is difficult to 

demonstrate the tetrahedral arrangement of the oxygen atoms around silicon atoms 

 43



in two-dimensions. However, such illustrations remain useful to show difference 

from crystalline structures and to suggest how modifiers and intermediates sit 

within the glass matrix. 

 

 

 

Figure 3.2 Illustration of the molecular structure of a glass (left) and (crystalline) 

quartz (right) according to the random network theory. Oxygen atoms are 

represented by empty circles, silicon by small black circles, and modifiers shown 

sitting interstitially by large black circles. After Hodges 1989, Figure 4, p 43. 

 

3.3 Why are glasses complex materials? 

Glasses, particularly ancient glasses are not produced from laboratory pure 

ingredients, but fashioned from a range of (often-) modified naturally occurring 

materials. As a consequence they are complex mixtures of both deliberate and 

accidental components arising from the raw materials, the tools used in their 

production and the environments in which they were produced. These conditions 

embedded in a glass artefact’s chemistry are further complicated by the impact of 
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the environment in which the glass has been held since manufacture, whether 

mechanical alteration, the effect of pollution or the depositional environment, all 

of which can greatly alter a glass artefact’s chemistry. It is also important to note 

that glass technologists in the past have not been working within a post-

enlightenment “scientific” intellectual framework, and although most studies of 

ancient glasses testify to a sophisticated understanding of the behaviour of 

different glass components, this knowledge will have been located in a different 

context. Inevitably such a different context may give rise to practices which 

introduce components for which modern glass technologists cannot readily 

identify functionalist explanations. We should not uncritically assume similar 

procedures in the past by analogy to modern practices, based upon scientific 

models of glass chemistry. 

 

3.4 Related Materials. 

Glass has similarities with other vitreous materials used in antiquity: faience, slag 

and glazes. These are briefly described.  

 

3.4.1 Faience. 

Faience is the term used for the material which has (or had) a glassy surface fused 

to a partially fused core.  It was first used in Iran or Northern Mesopotamia during 

the Ubaid period (4500 BC) and was soon developed or diffused into Egypt and 

India, where it gradually replaced the glazing of stone (Moorey 1985, p 137, 141, 

231). The core consists of finely ground quartz grains cemented together by 

having been sintered, i.e. having partially, but not entirely been fused by heating. 

The glassy surface is a layer of true glass adhering to the core. The creation of the 
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surface layer can be achieved by several methods. Application of a glaze slurry 

containing the raw components (silica, calcium-rich material and alkali) to the 

porous core, which is allowed to dry before firing which forms the vitreous 

surface. Efflorescence is the process in which water-soluble alkaline salts are 

mixed in with the core material, after forming the desired shape, the object dries 

slowly and the alkaline salts migrate to the surface as the mixture dries. Upon 

firing a vitreous layer is formed on the surface. The cementation method involves 

the heating of a quartz-rich core in a powdered mixture of lime and alkali, which 

permits the formation of a vitreous layer on the surface of the core (Moorey, 1985 

p 133, 159-162, Nicholson 1993, p 9-14, Wulff et al. 1968, Liu 2000, p 56). 

Faience production pre-dates the manufacture of true glasses, and has continued to 

the present day (Peltenburg 1992, p 10). Peltenburg’s useful examination of the 

relationship between the earlier use of faience and the development of glass 

production (Peltenburg 1992, 13-20) questions the widely held assumption that 

faience working led directly to the establishment of glass industries in North 

Syria/Mesopotamia in the sixteenth Century BC.  

 

Some researchers have gone on to define an additional category of vitreous 

material, “glassy faience” in which a significant proportion of an artefact’s body 

consists of a glass phase in which is embedded crystalline material (Santopadre 

and Verità 2000, p 25, Lilyquist and Brill 1993, p 8, 18). This material has been 

suggested as an intermediate material between faience and glass. However the 

technology involved in its production is distinct from any of the documented 

faience techniques, and here is considered as a variation of “true” glass (which is 

frequently a mixed phase material). 
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3.4.2 Slag  

Slag is the generic name given to waste products from a number of industrial 

processes. Typically it refers to the silica-rich material produced during the 

smelting of copper and iron ores. The slag formation is often encouraged by the 

addition of fluxes (i.e. potash, soda and calcium-rich material) in order that the 

metal be readily separated from the siliceous ore. Slags are typically poor-quality 

glasses- they contain unfused fragments of material and are full of gas bubbles 

from the evolution of CO2 and CO during the smelting process. Whilst slags 

themselves are distinct from true glasses, they do represent a similar type of 

material in an appropriate technological milieu (hotworking), in which 

metalworkers probably contributed to the recognition of glass (Biek and Bayley 

1979, p 3; Peltenburg 1992, p 20 – 23, Henderson 2000, p 53 - 54). 

 

3.4.3 Glazes 

The application of glazes to stone bodies also predate glass making and working. 

The earliest glazed material was the fusion of malachite to silica-rich stone steatite 

in the late 5th Millennium BC in Predynastic Egypt (Moorey 1985, p 136, 

Peltenburg 1971, p 7). This use of a glassy material was soon replaced by faience 

as the dominant technology (see above). The application of glazes to ceramic 

bodies coincides with the earliest core-formed glass vessels of the sixteenth 

Century BC in the Near East (Moorey, 1985, p 167). It seems unlikely that glazing 

led directly to the recognition of glass as a material, but is nonetheless a parallel 

technology reflecting a broad appreciation of high temperature materials. 
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3.5 Earliest glass. 

The problem of identifying the earliest glass manufacture (in the Near East) has 

been addressed by a number of authors (for example: Beck 1934, Harden, 1968, p 

46-53, Forbes 1966, p 115, Harding 1971, Oppenheim et al. 1988 p 105-128, 

Oppenheim 1973, Peltenburg 1992 and Moorey 1985 p 194-201). Isolated 

examples of glass beads have been recovered from archaeological contexts dating 

to the early third millennium BC onwards, initially in Syria (Tell Judeideh) and 

other sites in Mesopotamia, before their appearance along with amulets in Egypt 

during the Fifth Dynasty (2465-2323 BC) (Moorey 1985, p 194 – 200, Shortland 

and Tite, 2000, p 142). 

 

Peltenburg’s review of the available evidence classifies the development of glass 

production into two stages: the first as a series of isolated, infrequent and possibly 

accidental occurrence of glass items across Egypt, Syria, Mesopotamia, and 

Anatolya between 2500 and 1600 BC. The second stage is seen as the rapid 

development of a glass industry concerned with the production of core-formed 

glass vessels, a wide range of jewellery and architectural decorations, initially in 

Syria, but soon after in Egypt and Mesopotamia from 1600 BC (Peltenburg 1992, 

p 17). This system is useful for understanding the adoption of glass technology, 

and Peltenburg notes that the use of a technology is dependant upon the political 

and economic context as much as the nature of the innovation itself (Peltenburg 

1992, p 18). However, Peltenburg underestimates the significance of glass bead 

manufacture: although relatively small scale in terms of volume of glass, 

nonetheless it is well established across the Near East before vessel production, 

and is a technology which demands a sophisticated appreciation of both 
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glassmaking and glassworking. Although glass (like faience) appears first in the 

near East, before being adopted in Europe (either by diffusion or independent 

innovation), there is some evidence of very early glass use in Western Europe.  

 

Recent analyses of prehistoric glass from France (Guilaine et al. 1991, Gratuze et 

al. 1998) have demonstrated not only the very early presence of glass in 

Chalcolithic contexts (at Gord, Compiegne, Oise, 2895 – 2420 BC calibrated C14: 

Guilaine et al. 1991, p 259), but also a strong likelihood of local production (on 

the basis of the glass chemistry). However, the early date assigned to these beads 

may now have been withdrawn by Gratuze (Julian Henderson, pers. comm.). 

 

3.6 Sources of Information on glass technology 

Our contemporary knowledge of glass, ancient and modern is derived from a 

range of sources. Whilst modern theoretical models of glass structure are outlined 

above, and are useful in modelling the properties of existing compositions and 

facilitate the development of new glasses, useful knowledge of glass has been 

extant for a much longer period of time. The glass researcher has several kinds of 

information concerning ancient glass technologies: textual (ancient and modern), 

analysis of artefacts and experimental reconstruction. 

 

3.6.1 Texts 

Textual descriptions of glass manufacture or alluding to its manufacture date back 

to the 15th Century BC, and the student of ancient glass has inherited a rich body 

of material. It is beyond the scope of this study to critically review each text here, 
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but the principal contributions are listed in chronological order, along with 

references to discussion of their content.  

 

The Annals of Tutmose (1479-1425 BC). It has been suggested that tribute 

demanded from Babylon during Tutmose’s military campaigns included glass, 

referred to in the Annals as Babylonian lapis lazuli. This is considered by some as 

the origin of glassmaking and working in Egypt (Nicholson and Henderson 2000, 

p 195-196). 

 

The Amarna Letters (1353-1335 BC). Letters from the city of Tell el-Amarna, the 

capital of the Pharaoh Akhenaten (1353-1335 BC), include reference to both the 

importation of glass as tribute and its export as a high status royal gift (Nicholson 

and Henderson 2000, p 196). 

 

Cuniform texts. Four groups of Mesopotamian cuniform texts have been identified 

as instructions for the manufacture of glass. Their translation and interpretation 

have been progressing since 1909 (Oppenheim et al. 1988, p 22: Virolleaud 1909, 

Campbell Thompson 1925), but the most comprehensive treatment has been by 

Oppenheim et al. (1970, reprinted in 1988). The most significant group were 

recovered from the library of Asurbanipal at Ninevah, dating to the period 668 – 

627 BC, but other fragments have been dated to the last third of the second 

millennium BC (Oppenheim et al. 1988, p 22 – 23). On philological grounds, it 

has been argued that some of the content of the descriptions may be dated to the 

mid second millennium BC (Oppenheim et al. 1988, p 81). For additional 
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discussion of the rituals associated with the glassmaking processes, also see 

Henderson 2001 (p 471-472). 

 

Biblical References. Although there are no direct biblical references to glass 

manufacture, the use of glass as a metaphor permits inference of the status of glass 

in the contemporary societies, for example:  

Job 28.17, wisdom is compared with gold and glass, indicating the high status of 

each  (7th Century BC, Forbes 1966 p 147).  

I. Cor. 13.12, Paul’s “through a glass darkly” could be a metal mirror (Forbes 

1966, p 147). 

II. Cor. 3.18 a “katoptron” in which we behold the glory of the Lord could also be 

a metal mirror (Forbes 1966, p 147). 

Rev. 4.6, 15.2 John uses the term “hyalos” meaning sea of glass (Forbes 1966, p 

147). 

 

Talmud:  

Babylonian Talmud, Shabbath, 154: a reference to the transport of raw glass for 

reworking into finished artefacts (Brill 1988, p 284) 5th Century AD 

Palestinian Talmud, Sukkah IV, 59b and Niddah II, Halakhah 7 in which the 

fusion of glass is described and glass blowing is compared to God’s blowing of 

life into a human body (Forbes 1966 p 151, Isings 1957, p 4). 

 

Strabo Geography  (written c. 10 AD) e.g. Book XVI, 2.25 cap 758 Chapter II, 

sec. 25). Strabo made a number of references to the production of glass, in 

Alexandria and on the Palestinian coast, including reference to the suitability of 
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local sands for glassmaking (Forbes 1966, p 146, 156, Caley 1962, p 93, Tait 

1995, p 51, 56, Isings 1957, p 4-5).  

 

Pliny Natural History (written 77 AD) e.g. Book 36, chaps 65 and 66, Book 31, 

chap 46. Pliny made numerous references to raw materials, the production of glass 

and its working (hot and cold) into different forms, and locations of different 

glasshouses. Most famously he gives a mythological explanation of the accidental 

discovery of glass by natron merchants on the Phoenician coast (which is repeated 

by subsequent Classical authors) (Caley 1962, p 93 - 94, Forbes 1966 p 145 – 155, 

Tait 1995, p 20, 56, 57, 59, Stern and Schlick-Nolte 1994, p 20, 21, 72, 73, 108, 

Sayre and Smith 1967, p 301, Henderson 2000, p 66, also Henderson 2001, p 

475). 

 

Josephus De Bellio Iudaico (written late 1st Century AD). Josephus described the 

location of the famous glassmaking sands at the mouth of the River Belus on the 

Palestinian coast. (Josephus, p 132, Brill 1988, p 266, Forbes 1966, p 146) 

 

Roman Epigraphic sources. A number of diverse epigraphic sources, such as 

names on bottle bases, mottos on vessels, text on stamped disc weights and stone 

inscriptions relating to glass have been recovered from Roman contexts. They 

permit identification of places of manufacture, individual producers, the social 

context of their use and prices (Barag 1987, Barag 1996). 
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9th Century Manuscript from Syria, held in British Museum. Describes the 

structure of the “Southern” furnace type used by glassmakers (Charleston 1978, p 

10, Newton and Davison 1989, p 110 – 111, Henderson 2000, p 81) 

 

Theophilus On Divers Arts c. 1122 (translated by Hawthorne and Smith, 1979). 

This technical treatise by a practitioner includes an entire book on glass 

technology and is a comprehensive source for the production of Northern 

European medieval glass, from construction of different furnaces and kilns to the 

fabrication of leaded windows. This work has informed all studies of European 

medieval glass. 

 

Mappae Clavicula 12th Century. This is a compilation of writings drawing upon 

both historical and contemporary (12th Century) sources and includes descriptions 

of glassmaking (Biron et al. 1996, p 48). 

 

Eraclius De coloribus et artibus Romanorum 12th Century (translated by 

Merrifield 1849, in a two volume collection of manuscripts : “Original Treatises 

dating from the 12th to the 18th Centuries on the arts of painting”). Eraclius’s text 

is also a compilation of sources by a non-practitioner, and includes description of 

both glassmaking and the production of glass gems, in a combination of poetry 

and prose (Merrifield 1849, Vol. I: p 166-259).  

 

Abdallah al Qasani 1301. This author of a book on Medieval jewellery and faience 

manufacture from Tebriz in Iran includes useful information on glass colorants, 

including an intriguing reference to the importation of cobalt-manganese ore 
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(Ritter et al. 1935 p 35, Ganzenmuller 1939, p 136 – 7, Allen 1973). For a brief 

survey of Islamic Medieval sources on glass, see Irwin 1998. 

 

15th C. Anonymous MS from Bologna (translated by Merrifield, 1849). This book 

of recipes includes instructions (Chapter VII) on the production of differently 

coloured glasses for making gems, enamel and colours for painting upon glass, as 

well as glazes (Merrifield 1849, Vol. II: p 325 –341 and 479 – 547). 

 

Månsson, P. Glaskonst. 1524 (translated by R. Geste. Stockholm, 1915.) Gives a 

detailed description of a glass furnace used in Rome in the early 16th Century 

(Biek and Bayley 1979, Newton and Davison 1989, p 112 - 113) 

 

Biringucci, V. Pirotechnia  1540 Venice (translated by Smith and Gnudi 1943). 

Biringuccio gives a detailed description of the preparation of the raw components 

and manufacture of glass, including the construction of the furnaces for fritting, 

glassmaking and annealing the final objects (McCray 1999). 

 

Agricola, G. De Re Metallica, 1556 (translated by Hoover and Hoover 1912). This 

comprehensive treatise on Mining and allied industries includes a detailed 

description of the preparation of raw materials, construction of furnaces and 

production of glass articles, in addition to a series of four woodcuts illustrating the 

processes. 

 

Neri, A. L’arte vetraria 1612, translated and added to by Merrett as The Art of 

Glass (1662, republished in 2001) (and also by Knuckel in the German edition) 
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includes extensive descriptions on the preparation of raw materials, fusion of glass 

and its forming into finished items (Merret 1662, Turner 1962, McCray 1999). 

 

In the post medieval period technical treatises and recipes proliferated as the basis 

of the European economy was transformed by the development of the capitalist 

mode of production (e.g. Diderot’s encylopedia: “Encyclopédie ou Dictionaire 

Raisonée” vol. XVII, 1765). However, even relatively recent texts can be 

problematic for interpretation from specialist language into known raw 

components (for example see Moretti 1983). 

 

3.6.2 Development of modern glass industries.  

Since the early nineteenth Century there has been considerable interest in 

establishing the nature of ancient glasses as a means to improving the 

methodology of contemporary production (e.g. Davy, 1815, and Napier 1879). 

Leading technologists from the glass industry have often also been at the forefront 

of research into ancient glass technology (eg Turner, Rooksby and Cable). 

Archaeological science research has always benefited from the interest of physical 

scientists principally employed in other fields. 

 

3.6.3 Direct study of ancient materials. 

The study of glass artefacts in their own right constitutes the single most 

important source of information concerning ancient glasses. The direct study of 

ancient glass includes both typological and compositional analysis. Conventional 

typological work is well represented (for example Barag 1962, Beck and Stone 

1936, Guido 1978), but from early on the study of glass has involved the analysis 
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of its chemistry (such as Klaproth (1743-1817) Davy (1778-1829) and the 

contribution of John Percy to Layard 1853; Caley 1949,1962, p 13 – 15, Pollard 

and Heron 1996 p 3, Harbottle 1982).  

 

Compositional analysis has always been a central strand of enquiry into ancient 

glasses, and a number of key works are mentioned below (section 3.7). 

Compositional analysis has increasingly been accompanied by examination of the 

microstructure, as its complexity has been recognised (e.g. Lilyquist and Brill 

1993, p 18). Section 3.7 provides an extensive review of published compositional 

analyses and their interpretation. 

 

Ancient glass technology has been widely investigated by conservation 

researchers, who have generated a large amount of compositional data on ancient 

glasses. Conservation research has been driven by a range of issues, from the 

preservation of artefacts, modelling degradation processes (and linking these to 

ancient technologies), developing treatments and protocols to investigating the 

possibilities of long-term nuclear waste storage in vitreous forms (Newton and 

Davison 1989, p 135, Freestone 2001, p 615). 

 

3.6.4 Experimental work.  

Experimental work has played an important role in defining some of the 

possibilities involved in ancient glass production, for example Nicholson’s 

attempts to reconstruct glass making at El Amarna, reconstruction of medieval 

glass furnaces and experimental work on raw ingredient chemistry (Nicholson 

1995a, 1995b, Nicholson and Jackson 1998, Besberodov 1957, 1975, Brill 1999a, 
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1999b, Cable 1998, Sanderson and Hunter 1981a, 1981b, Smedley et al. 1998). 

The experimental work has been associated with specific texts (e.g. Brill in 

Oppenheim et al. 1988), excavated material and hypothetical reconstruction 

(Sanderson and Hunter1981a, Vandiver et al. 1991). Ethnographic observation has 

also been important in informing research into ancient glass technologies (Brill’s 

film of operations at Herat, Wulff et al. 1968 and Peltenburg 1992, p 10). In 

addition to glassmaking, there has also been considerable interest in 

reconstructing ancient glassworking practices, integrating observation from the 

physical examination of artefacts (equipment and glassware) and the skills of 

modern glassworkers (e.g. Gudenrath 1995, Gam 1990,1991, Lierke 1991, 1993). 

 

 

3.7 Interpreting compositional analyses of glass. 

The various components of glass, as identified by compositional analyses, are 

discussed individually below. The aim of this approach is to organise the 

information in a way that permits an archaeologist to move from the 

compositional data towards inference concerning the glass technology. This is 

also a useful mechanism for structuring a review of published literature on ancient 

glass chemistry. A number of existing studies already thoroughly examine the 

history of compositional analysis either from a chronological perspective (e.g. 

Caley 1962) or from a consideration of the raw materials (e.g. Henderson 1985). It 

is hoped that the approach adopted here will function as a guide to understanding 

the analyses undertaken in this project and elsewhere. 
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As outlined above, our knowledge of ancient glass recipes is a combination of 

evidence from different sources. As a route to exploring the materials used in 

glass production, the chemical components routinely analysed are considered in 

light of their role in glass chemistry, their interpreted origin, and how they may be 

employed to characterise different productions. 

 

The preparation and processing of raw materials in the manufacture of glass can 

greatly modify the chemistry of the resultant glass. Such processes are a necessary 

part of glass production since the process is a transformation of a number of 

unlikely looking ingredients into a composite material of radically different 

properties and appearance. Preparatory procedures are documented 

archaeologically and in the historical record. The grinding, washing, mixing, 

fritting and remelting operations are not shared by all glassmaking traditions: 

unfortunately these processes are not readily identified in the composition of the 

resultant glass. In large part the difficulties in back calculating the exact 

components are due to the variability in the chemistry of the raw materials which 

is then compounded by the alterations during the manufacture. Where these 

processes are relevant to the consideration of specific components and their 

precursors, they are mentioned in further detail. There is clearly a need for further 

experimental work to attempt to identify how specific components may be 

preferentially removed or enriched with different processes. Recent contributions 

to the study of ancient glassmaking process (Rehren 2000a and b), have 

challenged underlying assumptions concerning the calculation of compositions. 

Rehren has suggested that the two classic Mediterranean recipes for soda-lime-

silica glasses (see 3.7.2 below) owe their consistency to buffered non-total batch 
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melts rather than tightly controlled compositions. By plotting reduced 

compositions of glass analyses on ternary phase diagrams for soda-lime-silica 

systems, Rehren has shown that many ancient glasses lie on or close to eutectic 

troughs. This implies that glasses were formed (presumably alongside crystalline 

phases) out of variable compositional mixes of raw components, the specific 

composition relating to the maximum temperature reached which would 

determine the place a glass composition occupies along the eutectic trough. The 

resulting mixed phase material would have to be separated into glass and other 

phases, by an undefined process, before re-melting. This is an interesting 

departure, which as yet remains unresolved: the data reduction required in order to 

plot complex ancient glasses on laboratory-defined systems may not accurately 

reflect the melting behaviour of the original glass (or its host raw material mix). 

The extraction of a relatively homogenous glassy phase from the mixed glass-

crystalline-unfused raw component mix represents a technological process as yet 

unimagined. The model is however, a powerful explanation of the impressively 

consistent compositions for many soda-lime-silica glasses. The model will only be 

fully evaluated by extensive experimental melts of glasses to construct appropriate 

phase diagrams for the complex compositions, alongside many “buffered” melts 

of diverse composition to establish if the reductive process occurs. 

 

3.7.1 Silica. 

SiO2 

Silica is the principal network former for all ancient and most modern glasses. 

Historically this has originated in sand (e.g. Boswell 1917) or ground up quartz 
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pebbles from river beds, the sea shore or geological formations (e.g. Oppenheim 

et al. 1988, Henderson 1985, Brill 1999a).  

 

The raw material employed, whether sand or pebbles is likely to have undergone a 

number of refining processes during the production of the glass. The sand or rocks 

are both likely to have been ground up, since this maximises the surface area of 

the silica for fusion with the other ingredients, facilitating the process leading to 

more rapid and lower temperature fusion (Smedley et al. 1998, p 151, Boswell 

1917, p 5, West-Oram 1979, p 223). Since silica does not occur in a purely natural 

state in nature, other “contaminating” materials accompany it. These additional 

components are quite variable, both within and between geographic sources of the 

silica.  Researchers of both modern and ancient glass technologies have 

undertaken analyses of sands and rock to identify their suitability for inclusion in 

glass manufacture. The most comprehensive survey of possible ancient silica 

source chemistry has been carried out by Brill (1999a, p 208-211, 1999b, p 474-

480), but other significant analyses and surveys of other analyses include Turner 

(1956c, p 277-283), and Bezboradov (1975, p 57-60).  

 

It is possible to point out the variability of sand compositions from a single source 

by comparing those published by Brill (1999a, p 474) and Turner (1956c, p 281 

Table 2, after Heimann and Berl in 1935) taken from the mouth of the River Belus 

(modern site of River Na’aman, the location renowned for its glassmaking sand in 

the 1st C. AD): 
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 673 674 675 676 678 679 680 681 1 2 3
Li2O 0.005 0.005 0.005 0.005 0.005 0.005 0.005  
B2O3 0.005 0.005 0.005 0.005 0.005 0.005 0.01 0.005  
Na2O 0.86 0.82 0.68 0.66 0.82 0.79 0.57 0.71  
MgO 0.33 0.33 0.56 0.78 0.46 0.39 1.69 0.41  
Al2O3 3.16 3 2.41 2.22 2.69 3 1.62 2.65 3.58 3.92 5.27
SiO2 84.1 83.4 77 68.5 81.5 82.2 47.6 82.6 80.98 80.8 80.16
SO3 0.005 0.005 0.02 0.005 0.005 0.005 0.24 0.005  
Cl 0.13 0.019 0.011 0.009 0.024 0.008 0.017 0.008  
K2O 1.02 0.97 0.89 0.83 0.94 0.93 0.58 0.89  
CaO 5.92 6.37 9.98 14.6 8.49 7.91 25.1 7.98 9 8.82 8.6
TiO2 0.05 0.03 0.03 0.05 0.05 0.05 0.07 0.05  
MnO 0.02 0.02 0.02 0.03 0.05 0.02 0.06 0.05  
Fe2O3 0.45 0.42 0.42 0.54 0.44 0.46 0.63 0.42 0.12 0.12 0.15
CuO 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001  
ZnO 0.0068 0.0068 0.0057 0.0078 0.0072 0.0057 0.0073 0.0058  
SrO 0.01 0.01 0.02 0.05 0.04 0.005 0.2 0.04  
ZrO2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01  
Ag2O 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001  
BaO 0.03 0.03 0.01 0.03 0.03 0.01 0.01 0.03  
PbO  0.001 0.001 0.001  
CO2 4.08 4.69 7.72 11.46 4.63 3.38 10.82 3.15  
Loss    6.3 6.6 5.8
Total 100.19 100.14 99.799 99.794 100.2 99.182 89.242 99.022 99.98 100.26 99.98
 

Table 3.1 Chemical composition of sand from the mouth of the River Belus, 

values in weight %. Samples 1-3 from Turner 1956c, p 281, other samples from 

Brill 1999b, p 474. 

 

The more detailed analyses of Brill clearly demonstrate the wide range of 

contaminants associated with sand, which can enter into the final glass 

composition. Individual materials other than silica are discussed further below. 

 

The silica contents from this single source vary across the range 47.6 – 84.1 %. 

Whilst this particular source is significant as an example of a calcareous sand (see 

below), its silica content is not exceptionally low or variable when seen alongside 

other analyses. 
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The analyses of sands are not only subject to imprecision originating in the 

analytical procedure and the variation within a single deposit, but also from the 

treatment of the samples prior to analysis. Boswell (1917) and Peddle (1917) 

review the quality and location of British glassmaking sands and identify a 

number of critical factors relevant to all glass making sands. 

 

The complementary papers are not concerned with ancient glass technology, but 

represent a thorough, empirical critique of glass making sands, their chemistry, 

and simple procedures that may be applied to the preparation of sand during 

glassmaking. Boswell and Peddle sought to establish the purest sand (i.e. as close 

to 100 % silica as possible), containing only quartz crystals in order that the 

glassmaker might exercise greatest control over the chemistry of the glassmaking 

process. In doing so they identify a number of activities that alter the final glass 

chemistry- procedures which could easily have been adopted in antiquity. 

 

1. Grading. Both Boswell and Peddle stress the importance of using 

appropriately sized sand particles (Boswell 1917, p 5, Peddle 1917, p 36 –43). 

This is quoted as being important for the consistent fusion of the raw materials 

leading to a homogenous glass melt: too large particles (over 0.5 mm Boswell 

1917 p 6) (over 0.3 mm Peddle, 1917, p 37) may not become fused and remain 

as unmelted stones in the glass. Too fine a particle size (less than 0.1 mm 

Boswell, 1917, p 5-6) (less than 0.12 mm Peddle, p 31), such as silt and clayey 

material lead to “blowing out” during melting, or cordiness by differential 

melting or the presence of gas bubbles in the melt which are difficult to 
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remove. If the sand is sorted by elutriation, rather than sieving, then the effects 

of washing are also introduced. 

 

2. Washing. The washing of sands is recognised by Boswell as an iron-reducing 

activity (e.g. Boswell 1917 p 18), but it is Peddle who fully appreciates the 

value of washing sand in conjunction with grading it. Peddle identifies the 

principal source of the impurities in the sand originating from the finest 

fraction. This is identified by the analysis of the chemistry of the different 

particle size fractions of sand from a range of British, French, Dutch and 

Belgian glassmaking sands. The further washing of sand of particle size (0.12 

– 0.3 mm) removes the fine material adhering to the surface of the larger 

particles, and results in a sand of greater purity. (Peddle 1917, p 35 - 50). 

 

Whilst Boswell and Peddle’s investigations are underpinned by analytical 

chemistry, they confirm the empirical knowledge possessed by glassmakers 

through practical experience: Theophilus’s treatise of the 12th Century insists on 

the use of glassmaking sands which have been collected out of water (Theophilus, 

c1100, p 52). 

 

 

 

 

 

 

 

 63



Inclusions in sand and pebbles are listed by various authors (Henderson 1985, 

Boswell 1917, Peddle 1917, Henderson 2000, p 27): 

 

Minerals: titanite  (CaO. TiO2.SiO2)  titanium, calcium 

  chromite (FeO.Cr2O3)  chromium, +iron 

epidote  (Ca2(Al,Fe)3SiO4.3OH)aluminium, calcium, iron 

  feldspar (plagioclase)   aluminium, calcium, sodium 

  feldspar (alkali)  aluminium, sodium, potassium 

  illmenite (FeTiO3)  iron, titanium 

  rutile  (TiO2)   titanium 

  sphene 

  magnetite    iron 

  kaolin     aluminium 

  zircon  (ZrSiO4)  zirconium 

  alumina (Al2O3)  aluminium 

  haemetite    iron 

  garnet     iron 

  tourmaline 

staurolite 

  limonite    iron 

  leucoxene 

  serpentine 

  pyroxenes 

Shell in sand: calcium carbonate (CaCO3) calcium 
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Since all ancient glasses employ silica as the network former, its presence or 

absence alone cannot be a useful indicator of any specific technological tradition. 

Similarly the overall percentage of silica in a glass analysis is a poor tool for 

characterisation, since glasses from a single source often have variable silica 

contents- although a general tendency might be a useful observation concerning a 

group of analyses. High silica contents (i.e. 90%+) indicates either a poor analysis, 

or a badly weathered glass in which the dissolution of network modifiers leaves an 

apparently silica-enriched glass behind. Such a high silica content may also be 

derived from the analysis of a faience object misidentified as glass. 

 

Caley’s observation that ancient glasses usually have a silica content within the 

range 60 – 80 % (Caley 1962, p 65) can now be extended: glasses from the 2nd and 

1st Millenium BC tend to have higher silica contents than Medieval glass: 68-75 % 

compared with 51-58 % (Hartman et al. 1997, p 551). However, there is not a 

simple historical trajectory, contemporary glasses from different traditions may 

contain varying amounts of silica. For example, mixed-alkali glasses from the 

Final Bronze Age site of Billy Le Theil have an average silica content of 76.4 % 

(n = 11, stdev = 1.099, range = 75.5 – 78.9 %); whereas the contemporary soda-

lime-silica glasses from La Colombine à Champlay have an average silica content 

of 61.7 % (n = 5, stdev = 0.619, range = 61 – 62.5). The contemporary site of 

Rancogne has soda-lime-silica glasses with silica content between 69 and 79.1 % 

(n = 5, stdev = 4.241, mean = 72.88 %) (figures taken from Gratuze et al. 1998, p 

19 - 20). From this brief consideration of glasses from Late Bronze Age European 

contexts, it is clear that the silica content itself is not the principle discriminating 
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component, but is nonetheless on occasion a characteristic of a tradition defined 

by other oxides. 

 

3.7.2 Soda. 

Na2O  

Soda is the principal fluxing agent in many (but not all) ancient glasses. Its role is 

to lower the melting point of the silica from 1710 °C to place it within the reach of 

ancient furnaces. The sources of soda for ancient glass production represent one of 

the key areas of discussion concerning glassmaking technology.  

 

It was not until the late 18th//early 19th Century that soda was distinguished from 

potash (K2O - see 3.7.3 below) (Turner, 1956, V p 285, Ashtor and Cevidalli 

1983, p 492), which is the alternative fluxing agent for glass production. However, 

it is the diversity of possible sources of these materials, and their association with 

a range of oxides, which makes them interesting components of glass recipes. The 

earliest documentary records locate the soda-rich flux in the ashes of desert plants. 

This has been confirmed by the chemical analysis of desert plant ashes, based on 

both the translation of cuniform texts (Oppenheim et al. 1988, p 110-111, p 124), 

the observation of glassmaking in Herat during the 1960’s and 1970’s and the 

long documented tradition of soap-making from plant-ashes (Forbes 1965 p 186-

188, Turner 1956c, p 285 - 287). Whilst the particular plant type specified in the 

cuniform texts (translated as “Naga”) is uncertain, it is assumed to be of the 

genera salornica or salsola. Desert plant ashes are not the only source of soda-rich 

ashes, coastal plants and seaweed will also yield high soda concentrations. There 

has been some discussion concerning the terminology for alkali ashes and their 
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plant origins (e.g. Gasparetto 1975, Engle 1978) in an attempt to identify which 

species are the most likely to have been used in the past.  

 

In their study of the substantial trade in alkali ashes from the Levant to Southern 

Europe from the 8th to the 18th Centuries AD, Ashtor and Cevidalli survey a range 

of possible plants from Italy, Southern France and the Levant used in the past for 

glass (and soap-) making (Ashtor and Cevidalli 1983). Whilst this study does 

consider the epistemology of the plant and alkali names, most usefully it locates 

the chemical analysis of different plant ashes at the heart of the discussion. 

Comparing the analysis of salsola kali, salsola soda, hammada scoparia, fern ash, 

“soda di Catania”(plants from Sicily), “Vareque ashes”(marine algae ashes), and 

beechwood ash, the authors demonstrated the wide range of values of soda and 

potash in these plant ashes. On the basis of these analyses Astor and Cevidalli 

suggest that salsola soda is the most likely principle soda source for export to 

Europe during the middle ages: it contains the highest proportion of soda of all the 

analyses. Over-exploitation of this specific species would also account for its 

relative scarcity today (Ashtor and Cevidalli 1983, p 500). Perhaps what is most 

useful to note from these analyses is the associated oxides which (if otherwise 

untreated) would accompany the soda into the final glass composition: potash 

(K2O), lime (CaO) magnesia (MgO), alumina (Al2O3), manganese oxide (MnO), 

iron oxides (Fe2O3), phosphates (P2O5) and chlorine (Cl). It is the relationship 

between soda, potash and these other oxides and their relative concentrations, 

which are the principle means of discriminating between glass technologies.  
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Plant ashes have been extensively analysed by a number of authors in reference to 

their use for glass manufacture, including: Turner (1956c), Brill (1988, 1999a and 

b), Lehanier (1972) Besborodov (1975), Ashtor and Cevidalli (1983) Verità 

(1985). Sanderson and Hunter (1981a) highlight some of the problems of 

attempting to relate specific plant types to glass recipes, since the compositional 

variability can be extreme. For images of plants see Verità 1985, Ashtor and 

Cevidalli 1983, Engle 1978 and Henderson 2000, p 26. 

 

In addition to plant ashes, the other principal source of soda for ancient glasses is 

known to have been the evaporate natron. The most famous source of natron is 

from Egypt, from Wadi-el-Natrun (Henderson 1985, p 273, Forbes 1966, p 127), 

but also from Barnugi and El Kab (Forbes 1965, p 182, Partington, 1935, p 145), 

and has also been noted from Tripoli in Syria (Moretti 1983, p 179). The 

possibility of a Syrian natron source is also mentioned by Partington: “Thothmes 

III also obtained natron from Syria” (1935, p 145, ref to Brugsch 1891, p 406, 

426), but this has not been confirmed by any other sources. Other sources of 

natron are known from more recent exploitation for glass production, including: 

Magadi, East Africa, Wyoming, California, Utah,  (Turner 1956c p 283, West-

Oram 1979, p 229). This soda-rich mineral deposit had a long history in Egypt and 

the Middle East in the perfumery, mummification, food preservation, dye-making 

and soap making, prior to its use for the manufacture of glass. Natron is mostly 

the sesquicarbonate Na2 CO3.NaH CO3.2H2O (93.25 %), otherwise known as 

trona, with additional minor amounts of other salts (for detailed compositional 

analyses see Brill 1988, p 270, Table 9-9, Brill 1999a p 211 – 21 and Brill 1999b 

p 480 – 481, Turner 1956c p 284 Table 4, West-Oram 1979, p 230, Sayre and 
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Smith 1967, p 290). When heated it decomposes to soda with the loss of carbon 

dioxide (Kaczmarczyk and Hedges 1983, p 22). 

 

Natron consists of (from Forbes 1965, p 181): 

 

Sodium carbonate  22 – 75 % 

Sodium bicarbonate  5 – 26 % 

Sodium chloride 4 – 26 % 

Sodium sulphate 0.8 – 39 % 

Insolubles  0 – 16 % 

 

Whilst the different forms of sodium compound in the alkali may be variable in 

their concentrations, all analyses of natron contain a very high proportion of 

sodium carbonates and commensurately low proportions of potash, lime, 

magnesia, alumina, manganese oxide, iron oxides and phosphates (typically less 

than 0.5 %: Brill 1999b p 480). (For an image of natron see Douglas and Frank 

1972, p 58.) 

 

The presence of soda as the principle alkali in a glass immediately identifies it as a 

specific glass type: soda-lime-silica (for it is invariably accompanied by lime). 

The next critical question is to review the magnesia and potash levels to identify 

the type of raw material used to provide the alkali. 

 

It is the fundamental difference between the two soda sources which gave rise to 

the identification of glasses into distinct types in the seminal work of Sayre and 
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Smith in the 1960’s (Sayre and Smith 1961, Sayre and Smith 1967, Sayre and 

Smith 1974).  They distinguished between two major groups of soda-lime-silica 

glasses found in the Near East and Europe from the 2nd Millennium BC to the end 

of the first Millennium AD on the basis of the magnesia content (this is discussed 

in further detail below). Sayre and Smith were able to demonstrate that the raised 

magnesia levels (and associated increase in potash) could be explained by the use 

of distinct alkali types: plant ash rather than natron  (Sayre and Smith 1967, p 279 

– 292). Analyses by other researchers have underpinned this insight (Henderson 

1988b, p 77). The distinction also has temporal and geographic significance: the 

soda-lime-silica glasses of Mesopotamia, Mycenean Greece, Anatolia and Egypt 

of the 2nd Millennium BC are consistently high in magnesia indicating a plant-ash 

soda source, and from the 8th Century BC there is a shift in the Eastern 

Mediterranean to low magnesia, low potash soda-lime silica glasses as natron was 

adopted as the soda-source. There is now a suggestion that there may have been 

limited production of natron type glass prior to this (Henderson 2000, p 26). A 

recent review of 2nd Millennium BC Egyptian glass compositions suggests that 

cobalt-coloured high magnesia glasses may have been made from natron rather 

than a plant ash alkali source, with the magnesia entering the glass with the cobalt 

colourant (also see 3.7.20) (Shortland and Tite 2000). In the Levant, the natron 

type soda glass persisted until the ninth C AD, before the use again of soda-rich 

plant ash. A soda-rich plant ash glass employed in the early 9th C. (pre 808 AD) at 

Raqqa, Syria is one of the earliest examples (Henderson 1999, p 234). There is 

evidence to suggest that there was continuous use of plant-ash soda-lime-silica 

glass further east, which was then was readopted (Sayre and Smith 1967, p 283, 

Sayre and Smith 1974, p 61-62). It is important to note that the soda-ash type 
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glass does occur during the Roman period in the Western Empire alongside the 

natron glass, but is a relatively small proportion of the overall production (Lemke 

1998). 

 

The picture of one “Mediterranean” soda-lime-silica glass tradition displacing 

another during the 8th C BC has also been supplemented by the identification of an 

apparently unique European compositional category in the Late Bronze Age (i.e. 

1100 – 900 BC), defined as mixed-alkali glass (Henderson 1988a). The mixed-

alkali technology is discussed in detail in section 3.7.3 below. 

 

Variation in soda content can also be used to distinguish between glasses 

produced using similar raw ingredients, for example in the analysis of glass from 

Sepphoris, Fischer and McCray (1999, p 899) used the soda content to distinguish 

between two glass types used during the Roman period. Cast glass from the early 

Roman period had significantly more soda (19 wt%, average of 7 samples) than 

the contemporary blown glass (14.5 wt%, average of 14 samples). This is related 

to the different viscosities required for casting and blowing glass. The “casting” 

composition would be suitably viscous at 810 °C, with the “blowing” glass type 

only suitable for casting at a higher temperature of 910 °C. 

 

In Europe, soda-rich glass continued in production after the Roman period: studies 

on the origins of the Venetian glass industry demonstrate a soda glass made with a 

flux of marine plant ash in the 8th C. AD (Biron et al. 1996, p 57, Verità 1985). 

Studies of the Limoges enamels show that until c 1200 they use a Roman-type 

soda glass (high soda, antimony opacifiers, low magnesium and low potassium), 
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before changing to a plant ash soda glass (higher levels of potassium and 

magnesium, with a tin based opacifier). These analyses suggest either the 

continuation of Roman technology, or large-scale mining/reworking of Roman 

material. 

 

A slight reduction over time in the soda content of soda-lime-silica glasses from 

Roman and post-Roman Northern European contexts has been attributed to the 

loss of sodium through volatization. This may have occurred during subsequent 

heating of the glass when recycled and would tend to confirm the hypothesis that 

much of the later material was the product of recycling (Velde 1990, 115 – 116). 

Studies of Late Roman and Islamic glasses has led to the recognition of 

differential groupings within the “Roman” tradition of soda-lime –silica 

glassmaking, which had previously been regarded as largely homogenous 

(Freestone et al.2000, 2001) 

 

If soda is not the principle alkali, then it will be potash (K2O). The dominant 

technology in N. Europe during the medieval period is the high-potash, high 

calcium glass in which the alkali was derived from the ashes of terrestrial plants 

such as ferns or beech wood (further discussion is given below). However, 

exceptions to this dominant technology have been noted, such as the 12th C AD 

blue glasses from York Minster which are soda-lime-silica glasses  (Cox and 

Gillies 1986). It is worth commenting that these soda-lime-silica glasses are not 

compositionally homogenous, and includes examples of both plant ash and natron 

soda glasses. Both potash and soda glasses were produced during the Medieval 

period in France, but their distribution and dating locate each in separate 
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traditions: a northern industry linked to the potash glass (similar to the German 

“waldglas”), and a gradually expanding southern industry using soda-rich plant 

ashes (Barrera and Velde 1989). 

 

3.7.3 Potash 

K2O 

Like soda, potash is a key fluxing agent in ancient (and some modern) glasses and 

was not distinguished chemically from soda until the late 18th/early 19th Century 

(Turner, 1956c p 285, Ashtor and Cevidalli 1983, p 492). Its presence in glass 

defines the glass type, and is directly related to the source of alkali. Potash can 

usually be associated with additional oxides, often permitting the identification of 

the alkali raw material 

 

In natron potash is present in very small quantities (typically < 1 %, Brill 1999b p 

480) and the resultant soda-lime-silica glasses have 1 % or less. Potash is present 

in slightly greater amounts in soda-rich plant-ashes, and these glasses have c 2.5 – 

3.5 % potash accompanied by increased magnesia levels. In mixed-alkali glasses, 

the potash content is raised to 6.5 – 14 %, and as yet the precise techniques in 

producing this glass have not been defined, possibilities include the use of a 

soda/potash plant ash of equal proportions, and/or the processing of such a 

material (see discussion of mixed-alkali glasses below). 

 

Soda and Potash are both present in significant proportions in the mixed-alkali 

type glass, as defined by Henderson (1988b, p 77). Examples of glasses with soda 

and potash contents of 6 – 14 % are known from the Bronze Age in Northern 
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Italy, Switzerland, France, Germany, Britain and Ireland. They have also been 

noted as an exception amongst glass from France in the 1st Century BC – 2nd 

Century AD contexts (Henderson 1988b, p 81), and as intermediate compositional 

types during the transition to potash glasses in 9-11th C AD, recovered from 

England, Ukraine, Russia and Denmark (Henderson 1988b, p 86). 

 

Biavati (1983), closely followed by Guido et al. (1984) published the first 

qualitative and quantitative compositional analysis of a European Bronze Age 

mixed-alkali glass artefact. The former paper examined material from Frattesina, 

Northern Italy, and the latter from Wilsford, Southern England. Both of these 

papers discussed the role of vegetable ashes as the source of the alkali 

components, and distinguished the respective compositions from contemporary 

glass production in the Eastern Mediterranean. However, it was not until a larger 

number of Bronze Age European glasses had been analysed that the mixed-alkali 

composition was identified as a specifically European Bronze Age phenomenon 

(Henderson 1988a, p 439). This hypothesis has been underpinned by additional 

analyses of Bronze Age glasses, and there is now a body of compositional data on 

mixed-alkali glasses from Britain and Ireland (Henderson 1988a and b), France 

(Guilaine et al. 1991, Gratuze et al. 1998), Switzerland (Henderson 1988a and b), 

Germany (Hartmann et al. 1997) and Italy (Biavati 1983, Verità and Biavati 1989, 

Brill 1992, Santropadre and Verità 1993 and 1995, Bellintani and Biavati 1997, 

Bellintani et al. 1998 and Bietti Sestieri et al., forthcoming). 

 

This glass is characterised by a high potassium oxide, low magnesium content 

(mixed-alkali glass). The composition is the subject of some discussion (see 
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Biavati 1983, Hartman et al. 1997 and Brill 1992, Henderson 1988b), and there is 

no clear consensus on the exact manufacturing process responsible for the distinct 

composition, except that it originates in the flux source which probably includes 

terrestrial plant ashes. Jackson et al. inadvertently made a mixed-alkali glass using 

seaweed ash (rather than desert plant ash) in experimental reproduction of a glass 

furnace at el Amarna (Jackson et al. 1997). The mixed-alkali material is 

accompanied by low lime and low magnesia levels (CaO mean = 1.85 %, MgO = 

0.58 % (Brill 1992)), along with an associated reduction in phosphate, Brill 

suggests this is the consequence of a processed ash. Leaching of the ashes and 

recrystallisation would account for the resulting composition. 

 

Previously it had been assumed that glass had been made in the Eastern 

Mediterranean region and traded in Europe as either finished artefacts or raw glass 

for working into local forms. The adoption of localised manufacture implies a 

very different structure for the organisation of production and exchange.  The date 

of the first use of the mixed-alkali glass has not been clearly defined, and recent 

analyses undertaken in France suggest that it may have been in use as early as the 

Chalcolithic (late 3rd Millenium BC) (Guilaine et al. 1991 p 259, and also Gratuze 

et al. 1998). It is of great interest to identify when this glass type was first 

developed, and to explore any antecedents. 

 

Whilst a number of glass beads have been recovered from Early Bronze Age 

European deposits (Grotte au Collier, Gratuze et al. 1998), these are high 

magnesia, soda-lime-silica glasses typical of the Eastern Mediterranean region, 

and are likely to be imports. The next earliest identified mixed-alkali glasses from 
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France are from the Middle Bronze Age site of Grotte de Bringairet, Armisson, 

Aude (Guilaine et al. 1991, p 259 and 263).  

 

The suggested Chalcolothic origin of the mixed-alkali glasses currently hinges on 

the single example from Gord, which is followed by a hiatus until the beginning 

of the Middle Bronze Age. Clearly, additional well-dated glasses need to be 

analysed to be able to confidently assert the production of mixed-alkali glasses in 

Europe prior to the Middle Bronze Age. 

 

The recent discussion of conic buttons from Central and Northern Italy (Bellintani 

forthcoming, Bellintani et al. 1998, Bellintani and Biavati 1997 and earlier: 

Barfield 1978) integrate analysis of typology, chronology, distribution and 

chemical analysis. These studies locate the manufacture of the conic buttons in the 

beginning of the Middle Bronze Age, with the possibility of localised variation in 

form out of a regionally distinct glass type (i.e. the mixed-alkali glass). A 

consensus is now emerging for the widespread use of the mixed-alkali glass in the 

Middle Bronze Age (and before the development of the site of Frattesina). It 

would seem most likely that Frattesina represents the continuity of this particular 

industrial tradition into the Final Bronze Age (Bellintani forthcoming).  

 

The mixed-alkali glasses of Middle to Final Bronze Age Europe represent a 

distinct tradition, relatively well defined in terms of composition, location and 

duration. However, other examples of mixed-alkali glasses have been identified. 

Whilst they may be distinguished from each other in a number of ways, the 

existence of such glasses demonstrates that the mixed-alkali tradition is not 
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representative of a unique practice (preparation of the raw materials). It has even 

been demonstrated that mixed-alkali glasses can be produced accidently from the 

burning of wheat chaff (Folk and Hoops 1982). Nonetheless, the mixed-alkali 

glasses from, for example La Négade ( 1st C BC – 2nd C AD, Henderson 1988b), 

Augusta Praetoria (2nd – 3rd C AD, Aosta, Mirti et a.l 1993), India (Brill 1987) and 

Ferghana (10th – 12th C AD Central Asia, Besborodov and Zadneprovsky 1967) 

suggest that there is a need for further research into the modification of plant 

ashes. 

 

Glasses from the medieval period in Northern Europe have been characterised by 

very high levels of potash (12 – 18 %), which is consistent with the use of ashes 

from inland terrestrial plants, such as beechwood . However, potash glasses, with 

negligible soda contents, are also known from other contexts: high potash, low 

magnesia glasses have been found throughout China, India, Pakistan, and SE Asia 

during the 1st Millenium BC (Hall and Yablonsky 1998). 

 

Raised potash levels in ancient glasses are usually accompanied by increased 

amounts of phosphorous pentoxide, magnesia and calcium oxide. 

 

3.7.4 Magnesia 

MgO 

Magnesia acts as a stabilizer in glass chemistry, and inhibits devitrification by 

lowering the liquidus temperature (West-Oram 1979, p 234). The substitution of 

lime with magnesia, up to 5 % lowers the melting point of soda – lime – silica 

glasses by 100 °C (Rehren 2000b, p 15). Magnesia has not been a constant 
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component of glasses and is therefore a useful characterising tool. It is found in 

the earliest glasses at levels of 2 – 6 %, but during the Roman period it was 

typically less than 1 %. Caley (1962, p 65) states that magnesia has been an 

almost universal component in ancient glasses, usually 2 – 5 %, sometimes < 1%. 

Early glass scientists saw the high magnesia content of 2nd Millenium BC 

Egyptian glasses as an indicator of its deliberate inclusion, in the form of 

Dolomitic (i.e. magnesium-rich) limestone, as the source of lime (rather than purer 

forms of limestone) (Forbes 1966, p 128, Caley 1962, p 79, Matson 1948, p 53 

and 1951, p 84). It was Turner who was able to discern the likelihood of the 

magnesia in Egyptian glasses being derived from plant-ashes (Turner 1956c), 

based on compositional analyses of ashes. Limestone was not therefore required 

as a source of calcium oxide, since sands often contain a high proportion of 

calcium carbonate (Turner 1956b, p 176). 

 

High MgO 2.5-6 % 

Re. High K2O 2.5-3.5% 

High magnesium soda 

lime silica glass (soda-rich 

plant ash) High Na20 14-17% 

Low K2O 1% 

Low MgO <1% 

Low magnesium, soda 

lime silica glass (natron) 

High Na2O 14-17% 

High K2O 6.5-14% Mixed-alkali glass 

Low MgO 0.4-1% 

 

Table 3.2. Key characteristics of 2nd and 1st Millenium BC glasses. 

 

The compositional changes in glasses from the Eastern Mediterranean around the 

8th C BC defined the adoption of natron as the principle source of soda, and was 
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accompanied by a three-fivefold decrease in concentrations of magnesium and 

potassium oxide (Sayre and Smith 1967 p 281, Sayre 1963, p 269).  

 

This picture of high-magnesia glass being replaced by low-magnesia glass in the 

8th Century BC has been complicated by the investigation of 15th and 14th Century 

BC cobalt-coloured glasses from Egypt. Whilst this group of glasses are high in 

magnesia, it is suggested that this is derived from the cobalt-rich alum used as a 

colourant rather than a plant ash source, therefore indicating an earlier than 

anticipated use of natron in glass manufacture (Shortland and Tite 2000, also see 

3.7.20 below). 

 

There is evidence for continuity of production of high magnesia glass beyond the 

8th Century BC around the Euphrates and Tigris valleys across to India, where it 

was used alongside low magnesia glasses (Sayre 1963, p 273, also Caley 1962, p 

84)). During the Islamic period high-magnesia glasses becomes the dominant type 

used in the Levant, which may reflect the uninterrupted continuity of 

compositional type from the 2nd Millenium BC (Smith 1963 p 285). 

 

Variation in the magnesia contents of glasses from Raqqa (Syria) into discreet 

groups suggests that there is some variation within the soda-rich plant ash 

tradition of 8th-9th Century AD Islamic glass production. It is difficult to establish 

for certain if this reflects either the selection of a different plant for the ash, or a 

distinct processing of the usual ash before use (Henderson 1996b). 
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During the 1st Millennia BC and AD, high magnesia glasses were also produced 

on the Indian subcontinent, however these can be distinguished from that 

produced in the Middle East, because the Indian material is associated with higher 

alumina and lower lime contents (Hall and Yablonsky, 1998, p 1242). 

 

Raised levels of magnesia are also associated with potash–rich plant ashes, and 

the transition to potash glasses in Medieval Europe sees a corresponding increase 

in the magnesia contents of glasses over the preceding Roman natron soda-lime-

silica glass. The analysis of Roman and medieval glasses from the Weald clearly 

illustrates the difference in magnesia content: 0.07 wt% in the Roman glasses 

from Colchester, and 4.26 wt% from the Wealden glasses (Green and Hart 1987) 

 

Whilst Roman enamels and tesserae were basically the same composition as other 

Roman glasses, white enamels have been shown to have comparatively elevated 

magnesium levels suggesting a plant ash source for the base glass (Biron et al. 

1996 p 58) 

 

3.7.5 Alumina 

Al2O3 

Alumina acts as a stabiliser, inhibiting devitrification and lowering the melting 

point of soda-lime-silica glasses in small proportions (West-Oram 1979, p 227, 

Brill 1987). The presence of alumina as a major constituent improves the 

durability of the glass (Cole 1966, p 46). Above 7 % alumina, the glass viscosity 

begins to increase rapidly, making a glass more difficult to melt. It was first used 

as a deliberate component in glasses in the 19th Century. Study of the thermal 
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history of glasses suggests that repeated re-melting of alumina containing glasses 

results in a relative enrichment in the alumina levels compared with other 

components (Jackson 1996, p 292-293). Alumina is a universal component of 

ancient glasses, usually in the range of 1 – 5 % (Caley 1962, p 65). Early reports 

of glass analyses before 1953 may tend to over-estimate the alumina content at the 

expense of the calcium oxide levels. Until Geilmann and Jeneman’s 1953 paper 

identifying phosphates in glass, the unidentified P2O5 would have been 

precipitated out as calcium phosphate, which would be counted as alumina, 

leading to underestimation of calcium oxide content and exaggeration of the 

alumina (Geilmann and Jeneman 1953, Caley 1962, p 54).  

 

Analyses of sand have demonstrated that alumina in glasses may easily be derived 

from this silica source. For example, samples taken from the beach at Volturno in 

Italy have alumina contents as high as 12.5 %, although it is has not been clearly 

demonstrated if this particular sand was ever used in glassmaking (Brill 1999b, p 

475). Analyses of Indian glassmaking sands have given values of 7.17 %, and a 

silica:alumina ratio of 11:9, which matches the high alumina compositions of 

many Indian glasses (Brill 1987 p 7 and p 22). Indian glasses from Kopia from 3rd 

C BC – 3rd C. AD have consistent compositions and are characterised by their 

high alumina content (mean = 6.67 %), low lime and magnesia (2.93 and 1.61 % 

respectively) (Caley 1962, p 86, Brill 1987). 

 

The alumina contents of natron are very low, typically less than 0.5 %, and whilst 

plant ashes have variable compositions, ranging from 0.45 – 5.9 %, they are 

typically less than 2 % (Brill 1999b p 482 – 486). Roman glass invariably contains 
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2.5 % +/- 0.5% alumina (Henderson 1999), which is consistent with the use of 

sands such as that from the River Belus (Brill 1988). Modern glassmaking sands 

can contain up to 2 % alumina (Gould and Hampton 1930). 

 

A number of studies have examined the contribution of the crucibles employed in 

glass-melting to the final glass composition (Forbes 1966, p 118), with alumina 

possibly originating in alumino-silicates in the refractory clays used for making 

crucibles. Recent work investigating the glass-ceramic interface of excavated 

refractory materials have identified that there is a slight enrichment in alumina in 

the glass immediately adjacent to the crucible (Velde 1990, p 112, Merchant et al. 

1998). However, the contaminated zone is approximately 0.5 mm thick, and does 

not contribute a significant amount of alumina into the main body of glass melt. In 

a study of Roman glasses from France, Velde cannot identify any other 

component correlated to the alumina , and suggests a possible independent 

mineral source in the raw ingredients. However, this seems unlikely since the 

value of alumina to glass compositional stability was not known until the 19th 

Century: Brill’s experimental work with Belus sand and natron to reproduce glass 

compositions from Jalame suggest that the alumina content in Roman glasses is 

most likely to be derived from the sand (Brill 1988). 

 

Glass from late 8th- early 9th C Islamic contexts at Raqqa (, Syria) has been noted 

as a variation upon the “Roman” type natron glass: it has a high alumina content 

(range 1 – 4 %), but low magnesia levels suggesting the soda is from a mineral 

source (Henderson 1999). This range is still within the reported glass analyses for 

the Roman period in Northern Europe, which are identified as natron soda-lime-
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silica glasses (Velde 1990, p 114, table 5). The low alumina-high MgO 

characteristic of 12th C Islamic glasses, are present in Raqqa in late 8th-early 9th C 

material ahead of rest of Middle East’s transition to this type (Henderson 1999). It 

has been suggested that the lower viscosity arising from the reduced alumina 

levels of the new recipe facilitated the manufacture of cast artefacts, leading to the 

widespread adoption of the low alumina glass type (McLoughlin et al. 2001). 

High levels of alumina noted in blue enamel on a “13th Century” Persian plate 

helped to inform the decision that this was faked in the 19th or early 20th Century 

(Carboni et al. 1998, p 90 - 91). 

 

3.7.6 Calcium oxide 

CaO 

Lime is a glass stabiliser, and the most important modifier in glass-making, 

without which alkali-silica glasses would be water soluble (West-Oram 1979, p 

233). High CaO content, although improving durability, increases the viscosity of 

a glass below 1000 °C, reducing its workability (Guido et al. 1984, and Matson 

1951). Some writers have suggested that the lime content in ancient glasses was 

derived from the deliberate addition of limestone to the batch materials (Forbes 

1966, p 117, Caley 1962, p 79, Matson 1948, p 53 and 1951, p 84). The 

CaO:MgO ratio is therefore supposed to indicate the type of limestone employed 

(also see magnesia above). This position has been modified, since the lime and 

magnesia contents, although useful discriminants for several ancient glass types, 

are not themselves correlated (Turner 1956b, p 176, Sayre and Smith 1967, p 287 

- 288). Unfortunately this assumption occasionally persists in contemporary glass 

literature (Santopadre and Verità 2000, p 32). 
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Lime is frequently an incidental component in sands (from calcium carbonate in 

shell from beach sands, or eroded limestone in wind blown sands). Analyses of 

the Belus sands for example (see Table 3.1 above) show a lime content of 6 – 25 

%. Experimental work to reconstruct compositions of glasses recovered from 

Jalame has produced sufficient levels of lime in the final glass without the need of 

additives to a sand-natron batch (Brill 1988). Sand from Amarna has been shown 

to contain up to 18.86 % lime (Nicholson and Henderson 2000, p 197, Turner 

1956c, p 281). 

 

Plant ashes are often very rich in calcium (9.6 – 34 %, Ashtor and Cevidalli 1983, 

494 – 498, also see Brill 1999b p 482 - 486), as well as highly variable (Sanderson 

and Hunter 1981b), although the lime levels tend to be higher in the potash-rich 

ashes, rather than the soda-rich ashes. This means that it can be used as a 

discriminating component along with soda and potash as in Barrera and Velde’s 

paper on French medieval glass compositions (Barrera and Velde 1989). Medieval 

potash glasses are often noted for their very high lime levels, thought to have 

originated in the wood ash used in their manufacture. This characteristic has been 

identified as a key discriminator for the analysis of Roman and post-Roman 

glasses (Sanderson and Hunter 1981a, Wedepohl 1997). 

 

The earliest textual reference to the deliberate addition of lime-rich materials to a 

glass batch are in Pliny’s Natural Histories, in which shell is named as a 

glassmaker’s essential ingredient (Turner 1956a p 46, Henderson 1985 p 277, 

Henderson 2001 p 475). However, analyses of Roman glasses have demonstrated 
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that they may have been made without the deliberate addition of a lime-rich 

material, but if a non calcerous sand was used, then additional lime would be 

essential if natron were the soda source. None of the medieval treatises describe a 

lime-rich raw material for glass manufacture, and it is not until the 17th Century 

that recipes begin to prescribe the use of chalk, and not until the late 19th Century 

that lime was appreciated as a critical stabiliser for soda glasses when using pure 

soda (Turner 1956 p 45 – 47). The earliest analytical evidence for the deliberate 

use of a lime-rich raw material has been identified in a sample of frit from early 

9th Century Raqqa, in which a bone fragment was identified (Henderson 1999, 

2000 p 89). 

 

High-lime glasses (9.5 – 12.7 %) have been noted from post-Roman/Early Islamic 

contexts in Middle Egypt, in a glass composition, which would otherwise suggest 

a natron alkali source (Bimson and Freestone 1987, Matson 1948, p 52). In this 

case a calcium-rich sand or additional material has been employed. 

 

Recent work on the glass slab found in-situ in a tank furnace at Bet She’rim, 

Israel, suggests that the high calcium content may be the reason that this was a 

failed glassmelt, leading to impartial fusing and devitrification. It has been 

suggested that the glassmakers used a calcareous sand in combination with a soda-

rich plant ash (rather than natron), implying a 9th Century AD date, as the 

transition from natron to plant ash glass was taking place in the Levant (Freestone 

and Gorin-Rosen 1999, Freestone et al. 2000). 
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Calcerous sands might be distinguishable between in-land and sea shore sources 

on the basis of associated trace elements. The shell in sea shore sands has a greater 

capacity to absorb strontium than calcite, the typical component of limestone, and 

where in-land calcerous sands contain the latter the resulting glasses may be 

distinct (Freestone et al. 2000, p 73-74). 

 

Calcium fluoride is known from the 16th Century AD onwards as a white opacifier 

in glasses, and was first used by the Chinese (Henderson 2000, p 38). Calcium 

phosphate may also act as an opacifier (Henderson 2000, p 38), and has been 

noted in white enamels decorating 13th and 14th Century AD Islamic glass vessels 

(Freestone and Stapleton 1998, p 125, figure 27.5). 

 

Glasses analysed from Manching, from 260 – 50 BC contain lime in the range 8 – 

9% and are “characteristic of all known celtic glasses” (Gebhard et al. 1989, p 

209). As described above, there is possibility of undereporting of lime contents in 

some glasses prior to Geilmann and Jeneman’s paper (1953), because in earlier 

analyses, the unidentified P2O5 would have been precipitated out as calcium 

phosphate, which would be counted as alumina content leading to underestimation 

of calcium oxide content (Caley 1962, p 54). 

 

3.7.7 Phosphorous pentoxide 

P2O5 

Geilmann first noted that phosphorus pentoxide is generally present in all ancient 

glasses, from a few hundreds of a percent up to 4% (Geilmann and Jeneman 

1953). Whilst phosphorous pentoxide acts as a network former (like silica), and 

 86



has been used in modern times for the small-scale production of scientific glasses, 

it is an accidental component of ancient glasses (West-Oram 1979, p 224 – 226).  

 

Phosphorous pentoxide is not present in significant proportions in natron (<1 %, 

Brill 1999b p 480, Henderson 1988b p 87), but is present in all plant ashes (Biek 

and Bayley 1979, p 5). Soda-rich plant ashes contain 0.76 – 3.22 % phosphorous 

pentoxide, whilst potash rich plant ashes, such as beechwood contain up to 15.3 % 

(Besberodov 1975, p 50 table 5, Smedley et al. 1998, p 149 table 1).  

 

The Phosphorous pentoxide content is 0.05% - 0.38 % in Egyptian glasses of the 

2nd Millenium BC, and 0.04 – 0.24 % in Roman glasses, Medieval church window 

glass ranged from 2 – 4 %, reflecting the use of wood ashes in the batch (Caley 

1962, p 54, Geilmann and Jeneman 1953). 

 

3.7.8 Copper oxide 

CuO, Cu2O 

Copper oxides are employed as colouring agents in glass compositions. The 

earliest documentary records of glass-making include the use of “fast copper”, in 

the Babylonian texts (Turner 1956c, Oppenheim et al. 1988). The earliest vitreous 

materials, glazed steatite of the late 5th Millenium BC (Moorey 1985, p 136) were 

bluish-green coloured due to the copper content: malachite had already a long 

history as a pigment. The earliest copper coloured red glass known to date is from 

Nuzi, circa 1500 BC (Henderson 1985, p 281 and Vandiver 1983). Egyptian blue 

glasses coloured by copper alone have been found to contain copper oxide in the 

range of 0.59 – 1.45 % (Kaczmarczyk and Hedges 1983, p 61). Humphrey Davy, 
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one of the first to examine ancient glass chemistry, analysed and discussed 

copper- coloured “frit”, a combination of sand, carbonate of soda and copper 

filings for comparison with material from Pompeii, before concluding that the 

archaeological material was coloured using cobalt (Davy 1815, p 106-109, p 120). 

 

The role of copper is complex, and a range of colours can be achieved in glass 

depending upon the oxidation state of the copper and the presence or absence of 

other materials. Oxidised glasses can contain high concentrations of copper 

dissolved into the matrix as cupric ions (Cu++) producing a blue to green colour 

depending upon the concentration and glass type (Cable and Smedley 1998 p 

153). More reducing conditions gives rise to an increasing proportion of cuprous 

ions (Cu+), which will give a less intense colouration or even colourless glass. The 

capacity of a glass to contain dissolved cuprous ions is more limited than for 

cupric ions, which can lead to the precipitation of cuprous oxide or metallic 

copper when highly reduced copper containing glasses are cooled. The formation 

of dendrites of cuprous oxide gives rise to a red to brown colour range (Freestone 

1987). Lambert and McLaughlin (1978) confirmed the oxidation state of copper in 

blue and red glasses from 18th Dynasty Egypt using X-ray photoelectron 

spectroscopy (XPS): red glasses: Cu+ or Cu0, and the blue/green glasses: Cu2+. 

 

Experimental work to reproduce opaque red glasses from 6th Century BC Nimrud 

(Cable and Smedley 1992) elucidated the relationship between the copper oxide 

and other glass components. These red opaque glasses are also very high in lead 

(c. 25 % PbO, Freestone 1992). Simply retaining a reducing environment in the 

furnace was of itself insufficient to achieve the desired effect of maximum 
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precipitation of cuprite. Highly reducing furnace conditions can lead to localised 

reduction of the copper oxide on the glass surface, even to the point of reducing it 

to metallic copper. However, frequently the experimental melts were highly 

segregated, and insufficiently reduced throughout the batch. The type of raw 

component proved essential for increasing homogeneity and creating reducing 

conditions within the melt: litharge (PbO) proved better than red lead (Pb3O4), and 

copper carbonate (CuCo3- similar to the pigment/ore malachite, Cu 

CO3.Cu(OH)2.H2O) was more effective than cuprous oxide. The addition of tin 

and antimony to the melt facilitated the reduction of the cupric to cuprous oxide. 

The lead content of the glass, in proportions of the region of 25 wt%, increases the 

solubility of the cuprous oxide during the melt thereby increasing the potential for 

cuprite precipitation (Freestone 1992, p 186, also see Ahmed and Ashour 1981 for 

experimental work on cuprous oxide precipitation in high-lead glasses). An 

absence of lead leads to batch segregation and brown or less densely coloured red 

glasses. 

 

The copper-containing red glasses are chronologically useful: those with low or 

lead-free tend to be dull liverish or dark red and are known from the mid 2nd 

Millenium BC in Egypt onwards (Bimson 1992, p 166). The high-lead copper 

containing red glasses  (15-30 wt% PbO) are brilliant sealing wax-red, and all 

dated examples are from 850 BC and later (Brill, in Oppenheim et al. 1988, p 120, 

Bimson 1992, p 168). The two types are used contemporaneously thereafter up to 

at least the 7th Century AD (e.g. the Sutton Hoo material, Bimson 1992, p 169). 
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Henderson has suggested the development of regionally distinct red opaque glass 

production between western and eastern Britain after the 2nd Century BC, on the 

basis of varying copper and lead contents (Henderson 1989a, p 47-48, 2001, p 

476). 

 

Recent work on early medieval opaque red enamels has defined a type of material 

not related to a cuprite-coloured soda-lime-silica glass, but a copper oxide-lead 

oxide-silica material produced as a by product of metallurgical raffination process 

(Stapleton et al. 1999). 

 

The raw materials employed to introduce copper into the glass melt have rarely 

been investigated to date, considering the central role it has played as a colourant. 

 

Common copper bearing ores for metal extraction include cuprite (red oxide, 

Cu2O), melaconite (black oxide CuO), malachite (green basic carbonate, Cu 

CO3.Cu(OH)2. H2O) azurite (blue basic carbonate, Cu3(OH)2(CO3)2), the sulphate 

mineral chalcanthite (blue vitriol, CuSO4.5H2O), the chloride mineral atacamite 

(Cu2(OH)3Cl) and the silicate chrysocolla (CuSiO3.2 H2O). More complex 

sulphide ores include chalcocite (copper glance, Cu2S), covellite (CuS), the iron 

sulphide minerals chalcopyrites (copper pyrites, Cu2Fe2S4) and bornite (peacock 

ore, Cu5FeS4). More rare, but significant in the development of copper alloys, are 

those ores which also contain arsenic and antimony: tetrahedrite, containing iron 

and antimony ((Cu, Fe)12Sb4S13), bournonite containing lead and antimony 

(CuPbSbS3), tennanite containing iron and arsenic and enargite containing 

(Cu3As.S4) (Hodges 1989, p 65). 
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The cuniform instructions for introducing the copper colourants to a glass 

(Oppenheim et al. 1988, p 121-123) conform to the manufacture of blue 

translucent and red opaque glasses respectively. Although there is some 

discussion concerning the nature of the copper-bearing materials, it seems most 

likely that in both cases, the “slow copper” and “fast bronze” are both copper-

based metallic alloys (rather than mineral ores, Egyptian blue or metal slags) 

(Brill 1988, p 121). Furthermore, a large number of copper-containing ancient 

glasses have copper: tin ratios comparable to contemporary bronzes, suggesting 

that it is to metallurgy that glass scientists should look for the source of copper 

colourants in glass (Brill 1988, p 121, 123). Sayre and Smith (1967, p 307-9) 

compare the copper: tin: lead ratios of a number of glasses with contemporary 

bronzes, suggesting that oxidised bronzes have been used to colour the glasses. 

This is a line of enquiry, which deserves further exploration. 

 

Recent excavations of 13th Century BC deposits at Pi-Ramasses in Egypt have 

located glass colouring activities at the heart of a bronze-casting factory (Rehren 

et al., 1998). Some of the copper coloured blue glasses from Final Bronze Age 

Frattesina are accompanied by tin, in proportions indicating a bronze as the source 

of the colourant (Brill 1992, p 14). The appearance of traces of zinc and lead 

oxides in Egyptian copper coloured blue glasses, which were absent in 

contemporary copper metal artefacts may indicate the use of an ore rather than the 

refined metal (Kaczmarczyk and Hedges 1983, p 63). The absence of a correlation 

with alumina or iron elsewhere might suggest that a copper-containing 

metallurgical slag or copper mineral had not been used. 
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Copper and cobalt are correlated in cobalt-coloured blue glasses from Manching 

(260-50 BC), indicating the use of a colourant containing both components in 

these particular glasses (Gebhard et al. 1989, p 208).  

 

3.7.9 Lead oxide 

PbO 

Lead compounds can act as network former, colourants and opacifiers in glass, as 

well as bringing sparkling brilliance to cut and polished translucent glasses. High 

lead opaque and translucent glasses have been identified from the mid- 2nd 

Millenium BC onwards, and are well represented in the surviving glass literature 

(Henderson 1985, p 276 – 277).  The inclusion of lead oxide in a glass artefact 

over 1 % marks it out as being of particular interest.  

 

The earliest high lead glass analysed to date is from 1400 BC from Nippur in 

Mesopotamia containing 15.83 % PbO, and are also known from the 

contemporary site at Nuzi, North Eastern Iraq (Henderson 1985, p 276, Vandiver 

1983). High lead glazes are known from earlier contexts such as from 1700 BC 

Atchana in Turkey (Charleston, 1960, p 1, Caley 1962, p 85).  

 

Increasing the lead content of a glass will also lower its melting point, and as a 

consequence enamels and glazes are often high in lead. Glasses containing 65 – 84 

% lead oxide have melting points in the range of 740 – 760 °C (Wedepohl et al. 

1995, p 65). The presence of substantial quantities of lead in glass facilitates the 

precipitation of cuprite to colour them red (see section 3.7.8). The lead content in 
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red glasses changes through time: pre- 9th C BC it is c 1%, 9th - 6th C BC it is 3 %, 

6th - 3rd C BC it is 15 - 30% (Henderson 1985, p 282, p 276, Turner 1954b, p 455). 

 

Prehistoric yellow opaque glasses are often high in lead, since they are coloured 

and opacified with lead antimonate (Pb2Sb2O7, see antimony section) (Brill 1988, 

p 116). A high lead content facilitates the formation of tin oxide crystals when 

they are included as opacifying agents (Smith and Sayre 1967, p 303). 

 

There is an unexplained presence of raised lead levels in glasses from Vergina, 

Greece (from the 1st Millenia BC), with a mean of 1.42 % in uncoloured glasses 

(which have otherwise been decoloured using antimony). One might otherwise 

expect lead oxide levels of 0.1 % or less. This phenomenon may be associated 

with higher levels of silver in 2 of the 5 glasses. The lead is missing from the 

contemporary Greek material from Kakouli and the Phidias workshop (Brill 1994, 

p 17). 

 

Lead oxide contents of up to 44 % were found in glass being worked at Meare 

Lake Village West in the Late Iron Age (Henderson and Warren 1981, 1985 p 

276). 

 

Very high lead glasses were used in Anglo-Scandinavian England (up to 70 wt%) 

which has been suggested as a uniquely English phenomenon (Bayley 1982, p 

494), although this is now untenable in light of the widespread use of high lead 

glasses elsewhere. 
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High lead glasses were recognised by Sayre and Smith as a distinct compositional 

group when they noted the exceptionally high lead content of glass amongst a 

group of Islamic glasses from 8th –10th Century AD contexts (33-40 wt%, average 

36%) (Sayre and Smith 1961). 

 

The use of lead in a batch changes the refractive index of the resultant glass: 

Medieval and Renaissance texts specify its use for enamels or gemstones 

(Theophilus, Eraclius, 15th C. Merrifield 1849, p 216, 528, 530). Ravenscroft 

famously invented a high lead potash composition (30-35 % PbO) for the 

production of “crystal” glass in 1675/6; i.e. high quality tableware previously 

made using a soda-rich composition. The high refractive index lends itself to 

cutting and polishing. It is important to note that Ravenscroft was not the inventor 

of high lead glasses, but did combine a number of techniques to create a profligate 

and emulated business (for the establishment of similar industries around Europe 

see Charleston 1960). Similar high-lead colourless potash glass was already being 

produced in Russia in the 11th – 13th Centuries (Sayre and Smith 1961, p 1826, 

Besberodov 1957, p 179). 

 

An unusual combination of lead compounds for opacification of  late 13th C. AD 

Syrian glass has been noted by Bimson and Werner (1969): a solid solution of 

PbSnO3 in Pb2Sb2O7. This combination has been observed elsewhere in 11th 

Century AD glass from Novgorod and 14th Century AD Islamic glasses. 

 

Whilst lead levels in medieval Islamic and Venetian enamels can be high, levels 

of lead over 30 % have been found for opaque white, yellow and green enamels, 
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but not red or blue enamels of this period. This observation led to the suggestion 

that enamelling on a medieval plate was forged (Carboni et al. 1998). 

 

High lead window glass of Ayyubid date from Qas’r al-Banât (Raqqa, Syria) is 

the earliest known example of high-lead window glass- 66.1 % PbO (Henderson 

1999 p 233) 

 

It is possible to distinguish between antimony-rich glass recovered from 

Persepolis and contemporary Eastern Mediterranean sites on the basis of lead 

contents (these are not high-lead glasses). This has been attributed to different 

antimony sources (higher lead here is also associated with greater titanium and 

zirconium) (Smith 1963, p 285-6). 

 

Many Early Chinese glasses have very high lead contents (c 43.2 %). During the 

pre-Han and Han periods (Han period = 206 BC – AD 220), these high lead 

glasses were frequently lead-barium silicate glasses in which barium oxide 

accompanies the lead (also see 2.7.24 below) (Charleston, 1960, p 1, Caley 1962, 

p 66, Biek and Bayley, 1979, p 17). A high lead content without the associated 

barium indicates that a Chinese glass is from the Han period or later (Hall and 

Yablonsky 1998). Very high lead-content glasses (70% PbO) are also known from 

8th Century AD Japan (Henderson 1985, p 277). 

 

Lead isotope analysis has been undertaken in an attempt to relate the lead content 

of ancient glasses to geological sources mined in antiquity. This technique has not 

been widely adopted, and there remains the problems of mapping geological 
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sources exploited in antiquity, and the confusion brought about by recycling of 

lead-containing materials may make it very difficult to identify specific sources 

(Henderson 2000, p 14). Relatively discrete groupings of archaeologically distinct 

material have been achieved (Brill 1969, 1970, Lilyquist and Brill 1993). 

 

3.7.10 Chlorine 

Cl 

Chlorine exists in ionic form in glass (as Cl- ions), and can only be dissolved into 

the glass matrix in very small quantities (typically less than 2 % in soda – lime – 

silica glasses). The presence of significant amounts of chlorine (up to about 1.2%) 

in ancient glasses is well known (Geilmann 1955, Velde and Gendron 1980, 

Bimson and Freestone 1983). In early glassmaking chlorine was inadvertently 

added via the plant ash or mineral salts used to supply the alkali, causing an 

immiscible scum to form on the surface of the molten glass (Turner 1956c). 

Removal of the scum left the glass virtually saturated in chlorine and the 

concentrations in ancient glass often approach the high temperature saturation 

concentration, measured at 1.42 wt % Cl for a soda-lime-silica glass (Bateson and 

Turner 1939, p 267). Since chlorine solubility in a glass decreases with an 

increasing temperature, the chlorine content may be used as an approximate 

indicator of a melting temperature for a glass. This phenomenon has been 

employed to substantiate the model of reduced glass compositions relating to 

eutectic troughs in the soda – lime – silica phase diagrams (Rehren 2000a and b, 

also see 3.7 above). The manner in which chlorine is lost by vaporisation during 

the melting of medieval potash glasses has been detailed by Gerth et al. (1998), 
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explaining why relatively little chlorine may be available for inclusion in the final 

glass. 

 

3.7.11 Chromium oxide 

Cr2O3 

Whilst the mineral chromite was used on some 16th and 17th century Islamic 

ceramics as a black underglaze, green coloured chromium compounds were not 

used as pigments or glass colourants until the 19th century. Medieval Venetian and 

Islamic opaque green enamels are produced using a combination of copper oxide 

and lead-tin yellow (Carboni et al. 1998). 

 

3.7.12 Tin oxide 

SnO 

Occurs as an accidental ingredient when bronze is used as a source of copper 

colorant. However its principle role in glasses is as a colourant and opacifier in 

combination with other components. The highest level of SnO2 reported in pre-

Roman glasses is 0.6 % (Kaczmarczyk and Hedges 1983, p 82). 

 

Tin oxide, uncombined with any other component gives a white opacification 

(Rooksby 1962, p 23-24). The earliest use as a white opacifier has been the 

subject of some discussion: for example Egyptian glasses from 14th C deposits 

from Tel el Amarna and Elephantine Island (Farnsworth and Ritchie 1938), 2nd 

BC glasses in Europe (Henderson 1985, p 286, 1989a) or during the Islamic 

period  (Sayre and Smith 1967, p 296). 
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Neumann (1927) suggested that many Egyptian glasses were opacified with gas 

bubbles from incomplete fusion of the raw materials, but does claim that glasses 

were opacified using a tin oxide (Farnsworth and Ritchie 1938). Ritchie and 

Farnsworth disputed this, suggesting that with the exception of yellow opaque 

glasses (for which they couldn’t identify the colourant, but asserted it couldn’t be 

from the lead or antimony content), all the opaque glasses were opacified using 

gas bubbles. Henderson has recently restated that tin-based opacifiers were not 

employed in glasses before the 2nd Century BC in Europe (Henderson 2001, p 

477). 

 

Lead stannate has been identified as a yellow opacifier. PbSnO3, a lead tin oxide, 

is produced by adding tin to a lead-rich glass, and precipitating the lead tin oxide 

out (Sayre and Smith 1967, p 297). This colourant is unstable on heating, and 

above 900 ºC becomes tin oxide, which is white. The earliest example is from 

European Iron Age material from the 2nd Century BC (Henderson and Warren 

1981, Henderson 1985, p 286, Henderson 1987d, p 20). The only known 

compound of lead oxide and tin oxide is Pb2SnO4 (which has an orthorhombic 

crystal structure); this can be made by heating lead monoxide and tin oxide in an 

oxidising environment. However this will not give the correct form necessary for 

the yellow opacifier. When heated in the presence of silica, in an oxidising 

environment in the temperature range 700-900 ºC, PbSnO3 is formed, which has a 

cubic crystal structure (this structure is cubic like the other yellow opacifier lead 

antimonate). If the PbSnO3 -containing glass is overheated, then the compound 

decomposes, and cannot be recovered by cooling or reheating (Rooksby 1964, p 

20-25) 
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The use of lead-tin oxide as a yellow opacifier has chronological implications. 

Three groups of yellow opacifiers have been defined: the earliest from the 5th – 3rd 

C. BC was opacified with lead antimonate which is distinct from lead stannate 

yellow dating to the period 2nd – 1st C. BC. These glasses can in turn can be 

distinguished from a group of lead antimonate glasses of 1st C. BC – 2nd C. AD 

date (Henderson 1989a, p 49-51). Tin added to glaze compositions increases the 

refractive index (in a similar manner to lead), and has been noted as a frequent 

component of Egyptian glazes from the 18th Dynasty onwards (Kaczmarczyk and 

Hedges 1983, p 94). 

 

3.7.13 Bismuth oxide 

Bi2O3 

Bismuth is only found in glasses as a trace element, and is usually present at 

0.01% or less. Its interest to glass scientists lies in its relationship with specific 

copper and cobalt ores, and therefore as a potential identifier of the source of 

colourants. For example Bismuth is found in Aegean bronzes along with nickel, 

cobalt and silver. This correlation may be due to the association between bismuth 

and cobalt and nickel at Schneeberg, Saxony (Dayton 1981a, p 57: NB this source 

to be used with some circumspection given the number or erroneous statements 

within). A trace of bismuth in yellow opaque glass may indicate that the mineral 

Bindheimite (Pb2(Sb,Bi)2O6(O,OH)) has been used as the source of lead 

antimonate, since it contains some Bismuth (Henderson 2000, p 35). For further 

discussion of this see the section on cobalt below. 

 

 99



3.7.14 Nickel oxide 

NiO 

Nickel in glasses is typically at very low levels, less than 0.01 %, but is 

occasionally associated with cobalt ores (Henderson 1985, p 284, and section 

3.7.20 on cobalt below). 

 

3.7.15 Manganese oxide 

MnO 

Manganese has been used as a deliberate colourant and decolourant, and has also 

probably also appeared as an accidental component in ancient glasses.  

 

In many glasses it is barely present at all (i.e. less than 0.001 %). At levels of 0.1 – 

0.4 % and above it is considered a deliberate component in ancient glasses (of 

soda-lime silica type) (Sayre 1963, p 265, Brill 1988, p 259 – 261, for further 

discussion also see Sanderson et al. 1984, p 54). Davy was the first glass analyst 

to identify manganese in ancient glasses: noting its presence as a colourant in 

Roman glasses (Davy 1815 p 117).  

 

Manganese oxide acts as a decolourant by oxidising the divalent iron content, and 

as a decolouriser is present in many colourless glasses from the 1st Century BC to 

the 12th Century AD in the range 0.24 – 4.5 % (Sayre 1963, p 270). Larger 

amounts of manganese oxide (in the Mn+++ state) can give a violet colour to glass, 

for example 2.7 wt. % in a Late Roman piece from Sepphoris (Fischer and 

McCray 1999, p 901, Henderson 2000, p 34, Kaczmarczyk and Hedges 1983 p 
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30). If present in the more reduced state (Mn++), then the manganese imparts a 

yellow colour to the glass (Theophilus c1100, p 56). 

 

Manganese is not present in natron, and only appears in glassmaking sands at very 

low levels (< 0.1%, Brill 1999b, p 474 – 477, 480, Kaczmarczyk and Hedges 

1983, p 30). Therefore its presence in a natron-type soda lime silica glass above 

0.1 % indicates its deliberate addition. The presence of manganese in low 

concentrations (0.02 – 0.1 %) in Roman glasses from Jalame are regarded as 

accidental. In these glasses, manganese was correlated with iron, copper, 

vanadium, nickel and barium and probably originated in the mineral pyrolusite in 

the sand (Brill 1988, p 260). Manganese is similarly only present in soda-rich 

plant ashes in very low percentages (0.1%, Brill 1999b, p 482 – 484). Its 

concentration in potash – rich plant ashes is more variable: high concentrations 

have been found in wood ashes, with up to 13.7 % Mn3O4 in beechwood ash 

(Green and Hart 1987, p 278). Some cobalt ores are very rich in manganese, and 

cobalt- coloured glasses may subsequently become enriched in manganese by 

accident (Garner 1956, Young 1956, also see cobalt section 3.7.20 below for more 

discussion of this). The earliest documentary reference to the deliberate addition 

of manganese was by Pliny (Sayre and Smith 1967, p 301). 

 

The use of manganese as a deliberate decolourant has chronological importance; 

antimony pentoxide was widely used as a decolourant in Europe and the Eastern 

Mediterranean area from the 15th Century BC until the second Century AD when 

it was gradually replaced by the use of manganese oxide. Further east in the area 

of the Euphrates valley, the tradition of antimony pentoxide as the principle 
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decolourant persisted into the 5th – 7th Centuries AD (Sayre 1963, p 270 – 271). 

During the period of transition, some colourless glasses contain both components. 

Both antimony and manganese continued to be used as decolourants in the Middle 

East and Western Asia until the 14th Century AD, from when only manganese was 

used (Sayre and Smith 1967, p 301). The dual use of manganese and antimony in 

Roman glasses from the 1st to the 4th Century AD in the Western Empire has been 

explored (Velde and Hochuli-Gysel 1996). Whilst the addition of antimony could 

be correlated to the iron contents of the glasses, the use of manganese is less easily 

explained, and appears independent of other components. The use of both 

decolourants may be related to a desire to give different tints to the final glass. 

 

The manganese level in a Bronze Age bead from Wilsford was higher than 

expected (0.31 and 1.05%), and may be related to the use of a plant ash alkali in 

this mixed-alkali glass. The general shift from antimony to manganese in opaque 

glasses happens in material found later in Britain (2nd-1st C. BC), and may have 

come in with a colourant (Guido et al. 1984, p 251): other contemporary mixed-

alkali glasses from Frattesina are much lower (0.012 – 0.023, Brill 1999b, p 58). 

 

The high levels of manganese found in Northern European Medieval glasses is 

thought to be an accidental introduction by the use of wood ashes high in 

manganese, to supply the (potash) alkali (Newton 1978). The final colour of the 

forest glasses with high manganese contents was determined as much by the 

furnace environment as variation in chemical composition (Sellner et al. 1979, 

Theophilus c1100 p 55 - 57). 
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With the adoption of purified alkalis by the glassworkers of Murano, manganese 

again had to be added as a separate component to their glasses; it is documented 

as an ingredient imported for use in the glasshouses of Murano (lapis 

magnanensis) from 1290 onwards (Jacoby 1993, p 77). The raw mineral is of 

uncertain origin, probably from France, Germany and Catalonia according to 14th 

Century sources, although during the 17th Century a Piedemontese source is 

recommended (Jacoby 1993, p 77). 

 

3.7.16 Antimony compounds 

Sb2O5, Ca2Sb2O7, Ca2Sb2O6, Pb2Sb2O7 

Antimony pentoxide Sb2O5, calcium antimonate Ca2Sb2O7 or Ca2Sb2O6, lead 

antimonate Pb2Sb2O7. 

Antimony and its compounds can act as a fining agent, colourant, opacifier and 

decolourant in glasses. The raw material for antimony in glasses is uncertain, but 

frequently thought to be the mineral stibnite (antimony sulphide) (Biek and 

Bayley 1979, p 9, Forbes 1966, Rooksby 1962, p 23), the mineral bindheimite, or 

the metallurgical byproduct antimonal litharge (Mass et al. 1998). 

 

Lead antimonate (Pb2Sb2O7) was the principle yellow opacifying colourant in 

ancient glasses and glazes from 1450 BC to 400 AD (Brill 1988, p116, Mass et al. 

1998, p 139-140). A study of European yellow opaque glasses from the Iron Age 

has revealed that there was some diversity in the use of the colourant/opacifiers 

for yellow glass. From the 5th to the 3rd Centuries BC yellow glasses from across 

Europe were opacified/coloured yellow with lead antimonate, during the period 

from the 2nd to the 1st Centuries BC a different compound began to be used: lead 
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stannate (Henderson 1987d, p 20). Whilst lead antimonate continued to be 

employed alongside the lead stannate, these glasses can be distinguished from the 

earlier yellow glasses on the basis of their lead to ferric oxide and antimony to 

manganese ratios (Henderson 1989a, p 49 – 52). Lead antimonate is also found in 

green opaque glasses, where it has been added to a glass which would otherwise 

be coloured blue (Brill 1988, p 116, 119). A recent study of Roman opaque 

glasses found a correlation between the lead and antimony in yellow and green 

glasses: whilst each sample had an excess of lead for the stoichiometric formation 

of Pb2Sb2O7, the correlation of the two components suggests they originate in the 

same raw material, in this case an antimonal litharge from the cupellation of 

antimonal silver ores (Mass et al. 1998). 

 

Calcium pyroantimonate (CaSb2O6) was used as a white opacifying agent from 

the 14th Century BC until the 5th Century AD when it was replaced by a tin-based 

white opacifier. This compound was also used to opacify glasses which have other 

colours (Sayre 1963, p 269, Rooksby 1962, p 22). It has been noted to have 

continued in use beyond the 5th Century: 9th Century AD white opaque glass from 

Ribe contain raised antimony levels (Henderson 1985, p 286). 

 

Antimony oxide was first used to decolourise glass from the 7th Century BC, and 

is also associated with the adoption of a new alkali source (i.e. natron soda-lime-

silica glass). It is present in the quantitiy of 0.5 – 3 %. It was supplemented by 

manganese, as a decolourant from the 1st Century BC before manganese became 

the principle decolouring agent after the 4th Century AD (Sayre 1963, p 263, Sayre 

and Smith 1961, p 1824, Brill 1988, p 116, Brill 1994, p 11). Both of these 
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decolourants function by oxidising the divalent iron in glass (West-Oram 1979, p 

235). Even after the adoption by the Romans of manganese as the primary 

decolourant, antimony may still have been retained by glassmakers for special 

pieces, such as cage cups (Sayre 1963, p 280). There is slight evidence for the 

later use of antimony as a decolourant at Sepphoris during the period 950-1516 

AD (Fischer and McCray 1999, p 903). 

 

Antimony has been used as a fining agent, not improving the flow of glass to 

permit the escape of gas bubbles from the melt (as claimed by Sayre 1963, p 266), 

but by enriching the oxygen content of the gas bubbles in glass, allowing them to 

be more readily absorbed (West-Oram 1979, p 239). 

 

The levels of antimony have been employed to discriminate between Central 

European and British and Egyptian faience and glass beads from the Early Bronze 

Age: with a mean concentration of 190 ppm for the C. European beads and 5 ppm 

for beads from both contemporary British and Egyptian material (Harding and 

Warren 1973, p 64-66). 

 

The presence of antimony in blue glasses may be associated with the use of 

antimony-rich bronzes used as the source of copper as a blue colourant. 

 

3.7.17 Silver oxide 

Ag2O 

Silver oxide is usually found in very low levels in ancient glasses (typically less 

than 0.005 %), and is only very rarely found as a deliberate component. Silver 
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itself is present with gold and copper, in colloidal particles of metal in the Roman 

Lycurgus cup to give it its dichroic properties (present at levels in range 0.03 – 

0.19 % Ag, Brill 1999b, p 146). X-ray diffraction studies of glassy material from a 

crucible from 10th Century AD Gloucester revealed that the glass was opacified 

and coloured yellow with silver arsenic sulphide (Ag2As2S4) (Biek and Bayley 

1979, p 13). Silver was also used for staining medieval window glass, a process 

not known before the 14th Century AD (Biek and Baley 1979, p 13, Newton and 

Davison 1989, p 99). 

 

3.7.18 Gold 

Au 

Gold has only rarely been used in glassmaking. Its presence in metallic form in 

Roman dichroic glasses contributes to their colour (Newton and Davison 1989, p 

10, Bimson and Freestone 1985, p 211). Since the 17th Century AD gold has been 

used to give ruby red colour to glasses when present as colloidal metal particles in 

the matrix (Barber and Freestone 1990, p 42, Newton and Davison 1989, p 10, 

Henderson 2000, p 33). Gold or a gold alloy may be the red colouring agent used 

in an enamel on a 13th-14th Century Islamic glass vessel (Henderson and Allen 

1990, p 180-181). 

 

Thin sheets of gold have also been used as decoration when “sandwiched” 

between sheets of glass in a variety of forms, typically bowls and beakers from the 

Hellenistic (3rd Century BC) through to Roman periods (Saldern 1991, p 120, 

Harden 1968, p 63) 
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3.7.19 Arsenic 

As2O5 

Traditionally, arsenic has been used as a fining agent, increasing oxygen and 

carbon dioxide loss in the temperature range 600 – 925 °C, by absorption of 

bubbles into the glass during manufacture.  As a deliberate component in modern 

times its main role has been as a decolouriser, in soda-lime silica glasses, where 

its action has been to oxidise blueish-green FeO to the less highly coloured 

yellowish green Fe2O3 form (Cable 1969, West-Oram 1979, p 236). In many parts 

of the world minerals such as tennantite (3Cu2S.As2S3) and energite 

(3Cu2S.As2S3) are found in association with the copper ores chalcocite (Cu2S) and 

covellite (CuS) and therefore arsenic is frequently found in metallic copper 

(Kaczmarczyk  and Hedges 1983, p 70, 73). 

 

Arsenic is also associated with some cobalt ores (see section 3.7.20), but is subject 

to boiling off during ore preparation (Sayre 1963, p 281), and it may be difficult to 

link ratios found in ores and metals with those in finished glasses. Elsewhere it 

appears as an impurity in bronzes (e.g. Rehren et al. 1998 p 232 - in 36 analyses 

of 13th Century BC bronze from Pi-Ramesses, average Arsenic content = 4,000 

ppm). 

 

Lead-ox-arsenate (3Pb3(AsO4)2.PbO) is a white opacifying compound used in 

glasses made in 18th Century AD Venice (Rooksby 1962, p 25).  Approximately 5 

% arsenic oxide was added to a high lead glass, into which it would dissolve, and 

then precipitate out as lead-ox-arsenate. 
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3.7.20 Cobalt oxide 

CoO 

Cobalt oxide has a single function in glasses modern and ancient: it is a powerful 

colourant. In very low concentrations it will impart a strong blue colour to an 

otherwise colourless glass, however an excess of cobalt oxide will colour a glass 

so intensely it will appear black. Its use as a blue colourant indicates a 

sophisticated understanding and control over the raw components used in 

glassmaking.  

 

Writers on the subject differ on how small a cobalt component is required to 

colour glasses: 10 ppm (0.001 %) to 100 ppm (0.01 %) (Bayley 1983, p 30), 0.005 

% (Brill 1963, p 126), 0.05% (Henderson 2000, p 29). Levels in blue glasses from 

14th Century BC Egypt ranged from 0.08 – 0.15 % (Farnsworth and Ritchie 1938, 

p 158 – 165), and levels as high as 0.2 % have been noted in dark blue enamels of 

the Roman period (Biek et al. 1980, p 73). In this study it is considered a 

deliberate colourant at 0.05 % and above. 

 

Although it has been in use as a colourant for some 4500 years, cobalt was 

identified as a specific element in 1733 by Kennig Brandt (Taylor 1977, p 3; or 

1742 according to Dayton 1981b, p 130). Cobalt was identified as a colourant in 

Roman glasses by Davy (1815), but this analysis was probably flawed, and the 

first published quantitative analysis to identify cobalt in glass was by Lepsius in 

1877 (Caley 1962, p 20, Farnsworth and Ritchie 1938, p 162). However, the use 

of cobalt before the medieval period was not accepted by a number of glass 

scientists for a considerable period of time after this: Neumann continued to deny 
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its use before 1540 (Neumann 1927, Henderson 1989a, p 34). The reluctance to 

recognise cobalt as a colourant was probably due to the low concentrations and 

analytical problems in quantifying such low concentrations faced by early 20th 

Century glass scientists (Geilmann 1961, p 55). Farnsworth and Ritchie published 

the definitive study establishing the widespread early use of cobalt, and 

summarised previous debate on the matter in 1938 in an examination of a series of 

14th Century BC Egyptian glasses (Farnsworth and Ritchie 1938). The earliest 

documented use of cobalt in glass is from Egypt in the 5th Dynasty (i.e. from c. 

2680 – 2530 BC) (Taylor 1977, p 4), and analyses by a number of glass scientists 

have verified its widespread use to the present day (Geilmann 1961, p 56). Cobalt 

has also been used as a pigment on pottery in Egypt during the 15th to the 13th 

Centuries BC (Bachmann et al. 1980). 

 

Cobalt has been a widely discussed component of ancient glasses because of its 

strong association with other elements in the raw material. These relationships 

may be problematic, given the low levels of cobalt required to colour glasses, and 

the resulting dilution of associated minor constituents (Geilmann 1961, Henderson 

1989a, p 33-36). Nonetheless clear distinctions can be made between glasses on 

the basis of elements correlated to the cobalt content. 

 

Cobalt sources: 

Cobalt ores can be classified into four types:  

1. those with copper (such as black trianite: 2Co2O.Cu.6H2O) 

2. in ore rich in iron and manganese (absolites) 
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3. in arsenic and sulphur-rich ores (such as cobaltite/cobalt glance: CoAsS; 

smaltite : CoAs2 and Linnaeite: Co2S4) 

4. nickel and arsenic- rich ores (like skutterudite: (Co,Ni,Fe)As3) 

 

(after Henderson 1985, p 280 and Taylor 1977, p 3).  

 

These are not the only associations which cobalt ores have been noted to possess: 

lead, zinc, alumina, magnesia, bismuth, antimony, silver and nickel have all been 

shown to be correlated to the cobalt contents of ancient glasses in order to 

distinguish between groups of material (Rehren et al. 1998, p 246, Sayre 1963, p 

267, Dayton 1981a, p 57, Geilmann 1961, Henderson 1985, p 279, Henderson 

1989, p 33 – 36, Garner 1956, Young 1956, Kaczmarczyk 1986, Shortland and 

Tite 2000, p 145). 

 

Specific sources mined in the past 300 years are well characterised by modern 

chemists, widely distributed, and readily identified in the literature (for example 

Taylor 1977 p 4 – 10, Dayton 1981a, p 60): they are not however necessarily the 

same as those used in the past. The extraction and manufacture of cobalt 

colourants has historically been secondary to the mining of other materials (such 

as copper, silver or alum).  

 

The first studies distinguishing between cobalt sources were the work of Young 

and Garner (Young 1956, Garner 1956), who were able to discern distinct cobalt 

types in Chinese blue and white decorated porcelain. The two groups were 

differentiated on the basis of their manganese:cobalt ratio, a shift in which proved 
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to be chronologically significant. All pre-1400 AD samples contain MnO:CoO 

ratios of less than 0.5:1, whilst all post 1600 AD samples have ratios greater than 

3:1 (with a range during the intervening period) (Young 1956, p 43). The 

difference between the ratios reflects the adoption of a manganese-rich ore (an 

absolite) during the later period. Since all known Chinese cobalt sources are 

manganese rich, then the cobalt for the earlier material must have been imported, 

probably from the Islamic world (since it was known as ‘Mohammedan Blue’ 

Garner 1956, p 48). The high iron and manganese contents of Chinese cobalt-

coloured porcelain were first identified by Muspratt and Sheridan in 1853, who 

recognised their role as modifiers to the final colour (Taylor 1977, p 6). 

 

The source of cobalt used in Egyptian glass and faience is also subject to a similar 

shift in associated oxides. Kaczmarczyk has noted that late 2nd Millennium 

Egyptian cobalt-coloured glasses and faience have elevated levels of alumina, 

magnesia, manganese, iron, nickel and zinc, whereas 1st Millenium BC cobalt – 

coloured glasses do not (Kaczmarczyk 1986, p 369 – 371). Further investigation 

of these glasses and possible sources of the cobalt, led to the analysis of alum 

from the Western desert at Dakhla Oasis, which contained the correlated transition 

metals in proportions suggesting its use as the cobalt source. This source had been 

considered but rejected by Farnsworth and Ritchie (1938). The analytical data for 

the alums is reproduced from Kaczmarczyk (1986) and also discussed by 

Shortland and Tite (2000). The additional magnesia associated with the cobalt 

source has led to a re-evaluation of the characterisation of many 2nd Millenium BC 

glasses from Egypt. The high-magnesia soda-lime glasses coloured with cobalt 

from Egypt, from the time of Tuthmosis III onwards (i.e. from the period 1504-
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1450 BC), had previously been classified as a type made using a high-magnesia 

alkali source such as a plant ash. In light of the high magnesia content of the 

cobalt-bearing alums, and associated oxides (i.e. alumina, manganese, iron, nickel 

and zinc), it is possible to suggest that these glasses were made using a low-

magneisa alkali source such as natron. This is significant since it suggests not only 

local production of glass in Egypt when previously glass had been considered an 

exotic import, but pushes back the beginning of the use of natron in glassmaking. 

Contemporary cobalt coloured glasses from the Mycenean world contain the same 

pattern of associated oxides, indicating a shared cobalt source (or glass production 

origin) (Sayre and Smith 1974, p 51-54). It seems likely that the 1st Millenium BC 

cobalt – coloured glass and faience from Egypt were coloured with the more pure 

cobalt bearing ores from Iran, which are not associated with raised levels of 

manganese, iron and zinc. The Iranian cobalt ores are known to be free of 

manganese, and associated with arsenic (Kaczmarczyk 1986, p 369 – 371). The 

latter, however is a poor identifier since it is subject to boiling off at high 

temperature (above 1250 °C), although its presence/absence may be helpful 

(Henderson 1985, p 279). 

 

European Iron Age glasses coloured with cobalt shift from an antimony-rich 

source to a manganese-rich source c. 2nd Century BC (Henderson 2000, p 31, 

2001, p 475). 

 

Cobalt derives its name from the spirits thought by Medieval miners to have 

inhabited the copper and silver mines of the Erzgebirge (Saxony), and can be 

linked to the arsenic-rich cobalt ores accompanying the other metal ores (Taylor 
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1977, p 5 – 6). The mining of copper in the area has been continuous since the 

Bronze Age, and the extraction of cobalt for the colouring of glass documented 

since the 15th Century AD (Geilmann 1961, Taylor 1977, p 6). The possible role 

of waste materials from the extraction of silver for the source of cobalt in 

Mycenean glasses has been raised by Dayton, but has since been convincingly 

quashed (Dayton 1981a and b, Kaczmarczyk and Hedges, 1983, p 52-53, 301 – 

302). The cobalt ores from the Erzebirge region are associated with silver, nickel 

and bismuth, however the widespread incidence of cobalt minerals in Germany, 

Austria, Switzerland, the Czech republic and Slovakia make it very difficult to 

relate cobalt colourants to specific sources in this area (Henderson 1985, p 279). 

 

The mixed-alkali glass composition of the European Bronze Age (and possibly 

earlier) is predominantly blue-coloured. However, until c.1200 BC it is 

exclusively coloured by copper compounds, and only after this point is cobalt 

used alongside copper as a blue colourant (Guilaine et al. 1991). If this 

observation survives continued analysis of earlier mixed-alkali glasses, then it 

might indicate a shift in the mining of copper ores to include ones associated with 

cobalt – rich material (or simply the first recognition of cobalt rich material as a 

colourant). Cobalt blue mixed-alkali glass analysed by Brill from Frattesina 

contained substantial levels of nickel and arsenic which were considered 

characteristic of the cobalt source (Brill 1992, p 12 – 13). 

 

The analysis of a number of Islamic blue glasses revealed associated impurities of 

lead and zinc. Those from the 12th –14th C. AD were comparable with 

contemporary cobalt blue glasses from Southern France (lead oxide range 0.01-5 
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%; zinc oxide range 0.05-0.9 %), suggesting a similar cobalt source. An Iranian 

source is suggested - Anorak, near Tabriz in Iran has a zinc-rich cobalt source 

(Henderson 1998, 2000, p 32). Interestingly, in a documentary source of 1301, a 

technical treatise by Abdallah al Qasani of Tabriz, both cobalt mineral and cobalt-

manganese ore are discussed in relation to the faience industry (Ganzenmuller, 

1939, 136-137). It is even suggested that cobalt – ores were exported from 

“Frankenlande” (probably modern Germany rather than France) to Persia. This is 

intriguing given that the cobalt colourant zaffre was referred to as “Damascus 

pigment” during the medieval period, and might therefore be considered an import 

from the Near East. Theophilus notes that the French were particularly adept at 

producing sheets of blue glass, although through recycling blue cullet from 

Roman deposits (Cox and Gillies 1986 p 62). 

 

In a study of the Limoges enamels, there was a compositional division between 

early (1100 – 1200 AD) and late (1200 – 1350) materials. Although cobalt was 

employed as a blue colourant during both periods, it was found to be positively 

correlated with zinc in many of the later enamels. Whilst Biron et al. claim that no 

cobalt source is known in France (footnote no 94 in Biron et al. 1996), this is not 

strictly true, since deposits were worked during the 18th Century AD (Taylor 1977, 

p 6). 

 

Cobalt blue Roman glasses from Jalame, Israel are associated with raised iron, 

alumina and zinc levels, however the basic glass is identical to other glasses in the 

main assemblage, demonstrating that the colourant had been added at the 
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production site. The colourant must have been brought in as a highly concentrated 

glass or as the raw mineral (Brill 1988). 

 

Bass has suggested that the cobalt-blue glass ingots from the Ulu Burun shipwreck 

were indicators of glass production in Palestine for Egypt, but the analyses (by 

Brill) are similar to the Egyptian and Mycenean glasses as defined by 

Kaczmarczyk (Henderson 1989, p 33-36).  

 

3.7.21 Titanium oxide 

TiO2 

Whilst titanium oxide is employed as an opacifying agent in modern glasses, there 

is no evidence to suggest its deliberate inclusion in ancient glasses (Rooksby 

1962, p 20). It is often identified as a minor contaminant in glassmaking sands 

(Brill 1988, p 263). Titanium and strontium oxides were used to discriminate 

between sand sources for glasses from Pokrovka, Russia (400 BC – 200 AD): 

levels were between 0.11 and 0.542 % (Hall and Yablonsky 1998, p 1241 - 1242).  

 

3.7.22 Sulfur 

SO3 

Sulfur and its compounds are not regarded as deliberate additions to ancient 

glasses. Plant ashes are, however, often rich in sulphates (up to 31 % in kelp ash, 

Brill 1999b, p 486), and they are also present in natron (up to 7.37 % in Natron - 

Brill 1999b, p 480). 
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The amount of sulphur in a melt is limited to the saturation point in the particular 

glass type, so for example for the Roman glass from Jalame, this is 0.1 % (Brill 

1988, p 274), and the melting temperature for a particular composition (Chopinet 

and Barton 1986). 

 

Sulphur will act as a powerful colourant when in combination with iron as a ferri-

sulphide formed in reducing conditions to give an amber colour (Schreurs, in Brill 

1988, p 270). Research into the colouring effect of iron and sulphur have shown 

that when under reducing conditions, this ferri-sulphide complex (Fe3+, S2-) 

increasingly changes the colour of glass from bluish aqua (coloured by the already 

reduced Fe2+ ions) to amber (Schreurs and Brill 1984, p 200). Very reducing 

conditions within the melt are necessary to form the ferri-sulphide chromophore, 

and this might be achieved by the addition of powdered charcoal into the batch. 

To decolourise such a glass, it would be necessary to oxidise the iron and sulphur 

ions such as by the addition of a high manganese oxide (such as pyrolusite: MnO2) 

(Schreurs and Brill 1984, p 208). 

 

The sulphur content has not been widely used as a discriminating component of 

ancient glass, but it has been observed that 2nd Century AD tesserae from Salona, 

Dalmatia were found to have high sulphate contents (0.37 – 2.34 %, compared 

with 0.03 – 0.52 % for comparable material from Germany) (Caley 1962, p 96). 

 

3.7.23 Iron oxide 

FeO, Fe2O3 
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Iron is a universal component of ancient glasses, from trace to 10 %, only 

occasionally occurring at levels below 0.5 % (Caley 1962, p 65). It is mostly 

present as an unintentional (and undesired) component of sand – the levels are a 

fundamental point upon which to define a glassmaking sand, since it is a powerful 

colourant in its reduced forms. A very high content (10 % or greater) suggests that 

iron has been deliberately used to produce a dark glass (Caley 1962, p 33). A high 

iron content may suggest a metallurgical slag or obsidian have been used in its 

production (Brill 1987, p 5). It is possible to find very high iron contents in some 

sands: for example 31 % FeO was recorded by Brill (1999b, p 475) from sand 

recovered from the mouth of the River Volturno in Italy (an area in which Roman 

glassmaking is documented: Isings 1957, p 4-5). In some early Egyptian glazes, 

iron is associated with the use of manganese (Kaczmarczyk and Hedges, 1983, p 

34). 

 

The colouring effect of iron in glass is dependent upon the redox conditions of the 

glass during manufacture. It will appear blue in strongly reducing conditions due 

to the reduced ferrous ion Fe2+, whereas the oxidised ferric ion Fe3+ gives a 

weaker yellow or brown colour. A combination of the two types of ion will give 

rise to varying shades of green. This is complicated by the presence of sulphur, 

which in strongly reducing conditions will form a ferri-sulphide complex, which 

will colour a glass amber (see section 3.7.22). Manganese and antimony are both 

effective decolourants for iron containing glasses, because they will oxidise the 

ferrous iron ions to the nearly colourless ferric state (Brill 1988, p 275). The 

addition of low levels of iron oxide (1.4 – 2.3 %) into a low lead glass will also 

facilitate the dissolution of copper into the melt and the subsequent precipitation 
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of cuprite, which is useful in the production of red opaque glasses (Henderson 

1985, p 282, Henderson 2000, p 33, Guido et al. 1984, p 251, Hughes 1972, p 99). 

 

Iron oxide has also on occasion been noted as a red opaque colourant (e.g. Bimson 

and Werner 1969, p 263-264), although the manner in which this is achieved is 

unclear. The use of red iron oxide as a pigment is very well established in the 

archaeological record before the advent of glassmaking (i.e. ochre, haematite), but 

its use as a glass colourant is poorly documented. In their discussion of enamels 

on 13th and 14th Century Islamic glasses, Freestone and Stapleton (1998) describe 

two types of iron-containing red enamels. The first is where low-lead soda-lime 

silica glass has been finely ground and mixed with powdered iron oxide (c 3-5 % 

Fe2O3) and fired onto the surface of a glass vessel. The process is rapid to avoid 

collapse of the vessel, and the particles of glass and iron oxide are still well 

defined. In the second type, a high-lead glass is used with a higher iron content (c 

10-25 % Fe2O3): with the lower melting point of a high-lead glass the enamel 

would flow more easily over a soda-lime-silica vessel without danger of it 

collapsing. The iron-oxide particles can still be discerned within the high-lead 

glass matrix. If ground glass and iron oxide powder were held at high temperature 

for sufficient time, the iron oxide would dissolve into the glass matrix with the 

colouring effects described above. For the iron oxide to have an opacifying and 

red-colouring effect it is necessary for the iron oxide to remain as distinct particles 

within the glass matrix (Verità 1998, p 131-132). In his brief discussion of red 

iron-containing glasses, Weyl does not mention the role of iron-oxide particles as 

an opacifying and colouring agent (Weyl 1999, p 94). The capacity for different 
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base glasses to contain undissolved iron oxide particles has been underexplored, 

and is worthy of additional experimental research. 

 

The iron oxide content of a glass has been used to discriminate an individual 

piece: the red enamel decoration of a supposed 13th Century AD glass plate was 

shown to be a later addition to an early plate. A level of 27% is three to six times 

the reported level for any previously analysed 13th Century red enamels (Carboni 

et al. 1998, p 90). 

 

3.7.24 Barium oxide 

BaO 

Barium oxide levels in ancient glasses are typically less than 1 %, and most 

frequently lower than 0.1 % (although some Medieval glasses are occasionally 

found with higher quantities). Since the 19th Century it has been used to produce 

specialist technical glasses, but its use in ancient glasses is confined to a unique 

compositional type produced in China between the 6th Century BC until the 3rd 

Century AD. During this period high barium oxide glasses with 8 – 25 % BaO 

were produced (Brill 1987, p 16, Henderson 2000, p 51). The Chinese glasses are 

also high in lead (e.g. 19.2 % BaO, 24.5 % PbO, 41.9 % SiO2 reported in Caley 

1962, p 38, after Beck and Seligman 1934). It has been suggested that the 

inclusion of barium is accidental, given that barium ores are found alongside lead 

ores in China, and is of similar specific gravity (Caley 1962, p 89 - 91). Barium 

ores include the sulphate barite and the carbonates barytes (Ba CO3) and witherite 

(West-Oram 1979, p 234).  
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3.7.25 Zinc oxide 

ZnO 

Whilst zinc was not isolated as an element until 1504 AD, it had been used for a 

much longer period in the manufacture of copper alloys (Dayton 1981b, p 130). 

Since the 19th C AD zinc compounds have been used as colourants in glasses, but 

prior to this its appearance was purely accidental (Kaczmarczyk and Hedges, 

1983, p 63). Zinc oxide can modify the action of other colourants, such as cobalt 

blue to “Rinman’s green”, or nickel-brown into a blue/violet colour. Zinc is 

associated with some copper ores, lead ores and manganese/cobalt ores: up to 0.36 

% ZnO has been recorded in cobalt blue glass, and 0.17 % in yellow glass of the 

New Kingdom period (Kaczmarczyk and Hedges, 1983, p 67). Sayre and Smith 

noted the high zinc content of New Kingdom cobalt-coloured blue Egyptian 

glasses were similar to Mycenean material, suggesting a shared colourant (and 

therefore possible origin) (Sayre and Smith 1974, p 51). 

 

3.8 Conclusions. 

Whilst the material presented here is not a complete record of all compositional 

analyses, it is sufficient to illustrate how the compositional analysis of ancient 

glasses and raw materials during the past 200 years have led to a broad 

understanding of glass technology and the often regional development of the 

manufacture of vitreous materials. The integration of historical and experimental 

data has established a sophisticated knowledge of the processes involved. Clearly 

the emphasis here has been on the technology alone of glass from Europe, the 

Near and Middle East. Significant work has also been undertaken upon glasses 

from South Asia, Central Asia, China and the Indian Ocean area. 
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The purpose of this chapter has been to establish the framework for the 

interpretation of the data from the compositional analysis of prehistoric Italian 

glasses. By addressing individual components and their role as reported in the 

technical and archaeological literature, the chapter acts as a guide to interpreting 

such data. 
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CHAPTER 4: ANALYTICAL PROCEDURES 

 

4.1. Introduction 

This chapter describes the selection and application of techniques applied to the 

compositional analysis of glass samples from Prehistoric Italy: X-ray 

Fluorescence Analysis  (XRF), Energy Dispersive X-ray Micro Analysis 

(EDXMA) (the latter attached to a Scanning Electron Microscope- SEM), 

Electron Microprobe Analysis (EMP) and X-ray Diffraction (XRD). These forms 

of instrumental analysis share some basic principles and the discussion of certain 

aspects of their operation is relevant to each. In order to avoid repeated accounts 

of shared principles and phenomenon in the applications of these techniques, XRF 

analysis is described in some detail and the other methods are explained in so far 

as how they differ to XRF. The suite of techniques employed generates different 

but complimentary data concerning ancient glasses: qualitative and quantitative 

analysis of the oxides present in the glasses (XRF and EMP), imaging and 

selected qualitative analysis of discrete parts of a sample (EDXMA) and 

qualitative data on the crystalline phases of a sample (XRD). 

 

In addition to the theoretical principles behind each technique, a consideration of 

their practical application to specimens of archaeological glass is included below. 

The emphasis is on understanding the techniques as applied to this project. The 

technical specifications for the equipment and procedures employed for the 

purposes of this project are also described alongside calculations of precision and 

accuracy for the quantitative data. 
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4.2 X-Ray Fluorescence Analysis.  

The X-ray region of the electromagnetic spectrum lies between 0.1 and 200 Å (Å 

= 10-10 m), although the range used in X-ray spectrometry (the analytical region) 

is only between 0.1 - 25 Å. X-ray fluorescence spectrometry is only one of an 

number of routine techniques employing X-rays to investigate the structure or 

composition of materials, it is however: 

 

"one of the most widely used of all analytical methods for the qualitative 

identification of elements having atomic numbers greater than oxygen 

(>8); in addition it is often employed for semi quantitative or quantitative 

elemental analyses as well " (Skoog and Leary 1992). 

 

The widespread adoption of this form of instrumental analysis, in both industry 

and universities has lead to the application of X-ray fluorescence, and closely 

related techniques (such as electron microprobe analysis and energy dispersive 

microanalysis), to the resolution of research questions in the fields of archaeology 

and conservation (see Hall et al. 1973 for an early account).  

 

X-ray fluorescence analysis is concerned with the excitation of a samples’ 

constituent atoms (regardless of their state of chemical combination), by the 

removal of inner shell electrons, and the identification of characteristic emitted X-

rays as the atom returns to ground state. As with any tool, the practitioner must 

have some understanding of the theoretical and practical limitations of the 

technique, and to this end X-ray fluorescence analysis is explained below.  
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4.2.1. Principles of the Technique: X-ray generation 

Although the atoms in a sample can be directly excited by electrons, as in electron 

microprobe analysis (see below), in XRF analysis the sample is exposed to a beam 

of primary X-rays generated in an X-ray tube.  

 

An X-ray tube consists of an evacuated chamber in which electrons from a heated 

cathode are accelerated towards a metal anode by a potential (measured in keV). 

Upon impact part of the energy of the electrons become X-rays: this is continuous 

radiation known as Bremstrahlung, or breaking energy. The intensity of the 

resulting X-rays is controlled by the size of the heating current across the cathode, 

and the energy (or wavelength - because of wave/particle duality) is determined 

by the accelerating voltage. This relationship can be expressed as: 

 

  λo = 12,398/V 

 

where:  λo = short wavelength limit in Å 

V = accelerating voltage in volts  

(derived from the Duane-Hunt law, Skoog and Leary 1992, p 358). 

 

Depending upon the metal target (anode) in the X-ray tube, one may get a line 

spectrum superimposed upon the continuum. X-ray line spectra are derived from 

energy transitions involving the innermost electron shells of an element: high 

energy electrons from the cathode eject electrons from the orbital closest to the 

nucleus of an atom forming excited ions. As electrons from the outer orbital 

undergo transitions to fill the vacancies in the inner orbitals, x-radiation is emitted. 
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The electronic transitions are directly related to the configuration of the atom, and 

are therefore characteristic of the element being excited. The spectral lines are 

termed K and L depending upon from which shell the transitions have taken place 

(elements with atomic numbers below 23 only produce a K series of lines). The 

minimum acceleration voltage required for the excitation of the lines of elements 

increases with the atomic number of the target material. The superimposition of 

spectral lines onto the continuum may need to be accounted for during the 

processing of detected spectra: it may also be a desired phenomena for excitation 

of a specific part of the spectrum. 

 

Figure 4.1 schematic diagram of an X-ray tube, after Skoog and Leary 1992, 

figure 15-7, p 364) 

 

The X-rays pass through a beryllium window towards the sample. Beryllium has 

good X-ray transmission properties because of its low atomic number. Depending 

upon the type of system in use (wavelength or energy dispersive, i.e. the detection 
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method- see below), or the desired area of irradiation, the primary beam may have 

to be collimated between the X-ray tube and sample. 

 

4.2.2 Interaction with the sample 

When the primary X-ray beam impinges on the sample, a number of different 

phenomena take place. 

 

Figure  4.2 Primary beam interaction with the sample after Jenkins 1974 figure 3-

3, p 40. 

 

4.2.3 Scattering.  

A proportion of the X-rays striking the sample become scattered, in one of two 

ways:   

Coherent (Rayleigh) scattering is where the X-rays are elastically 

scattered, and the subsequently scattered ray retains the same wavelength and 

spectral lines characteristic of the primary beam (emergent beam λ in figure 4.2). 

This radiation will be detected. 

 Incoherent (Compton) scattering results in a ray of longer wavelength 

(lower energy) than the primary beam, giving rise to a broadened inelastic peak at 
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the lower energy/higher wavelength side of the coherently scattered lines in the 

resulting spectra (emergent beam λC in figure 4.2). 

 

4.2.4 Primary Absorption.  

As an X-ray beam passes into a sample, its intensity is reduced as a consequence 

of absorption where an X-ray photon ejects an inner orbital electron to produce an 

excited ion. The greatest probability of absorption occurs when the energy of the 

photon is equal to the minimum energy required for the ejection of an electron 

from a particular atom. This optimum point is known as the Absorption edge, 

which is crucial in the excitation of the sample: the absorption edge is dependant 

on the electronic configuration of the stimulated atom; the actual energy required 

to reach the absorption edge of individual spectral lines increases with the atomic 

number the element concerned. 

 

The attenuation of an X-ray beam as it passes through a material conforms to 

Beer's Law, which can be expressed as: 

  I(λ) = IO exp(-μρx) 

where:   I(λ) = intensity of the beam 

IO = intensity of the primary beam 

μ = mass absorption coefficient 

  ρ = density of the material 

x = distance travelled 

 

The mass absorption coefficient is a function of the wavelength of the incident 

beam and the atomic number of the material: in complex multi-element samples 
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the mass absorption coefficient is the sum of the individual values weighted  

according to their relative concentrations. 

 

4.2.5 Fluorescence. 

The excited ion will return to its ground state by a series of electronic transitions 

like those involved in primary beam generation (see above). The transitions are 

dependent upon, and also characteristic of, the configuration of the excited ion, 

and result in the emission of secondary X-rays. The energy/wavelength of the 

emitted X-rays are related to the electron shells involved in the transitions: the 

principle shells K, L M etc. correspond to the energy levels in the Bohr model of 

the atom. The ejection of electrons from the inner shell result in two resolvable 

emission lines (Kα and Kβ), of which the former is the most intense and of greater 

energy. Emission lines from the next shell (the second or L shell) are again of 

lower intensity and energy, resolvable into three spectral lines (Lα, Lβ and Lγ) 

(Jenkins 1974). 

 

4.2.6 Secondary absorption and escape depth.  

The secondary X-ray beam is also subject to attenuation according to Beer's Law 

as it leaves its source. There comes a depth beyond the sample's surface when the 

incident beam no longer generates detectable fluorescence due to the combined 

affects of primary and secondary absorption, and this is known as the escape 

depth. For quantitative analysis it is important that the sample is thicker than the 

critical depth (Jenkins 1974), it can be calculated by: 
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dS = xS sin ψ2 

 

where:  dS  = escape depth 

  xS  = effective path length 

  ψ2 = take off angle of secondary radiation  

(also see figure 4.2) 

 

4.2.7 Enhancement.  

Whilst direct excitation of the sample is predominantly a consequence of radiation 

from the primary beam, additional fluorescence can be stimulated, known as 

secondary and tertiary fluorescence (Jenkins 1974, p 43). The enhancement effect 

occurs when the emitted radiation from an inner shell ionisation event excites 

other atoms within the sample (secondary fluorescence) which may in turn 

stimulate further fluorescence (tertiary fluorescence). 

 

4.2.8 Auger Process and fluorescent yield.  

In addition to the emission of x-radiation, an alternative de-excitation process can 

occur, in which the emitted photon of x-radiation ejects another electron instead of 

leaving the atom: an event known as auger emission. The fluorescent yield is the 

relative efficiency of the two de-excitation processes for a given energy level, and 

can be expressed: 

  ωK = ∑ (n)K / NK 

where:   ωK = fluorescent yield of an elements K shell 

n = number of X-ray photons emitted 

N = total number of vacancies 
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4.2.9 Detection of characteristic X-rays: energy dispersive systems 

The detection of the secondary X-ray beam is essentially what defines the 

difference between the two XRF techniques in widespread use. Energy dispersive 

XRF is where the photons are identified according to their respective energies, the 

other technique is wavelength dispersive XRF, where the fluorescent x-radiation 

is characterised in terms of its wavelengths. The detection methods have 

implications for the geometry, detection, qualification and quantification of the 

results. 

 

Energy dispersive systems use semi-conductor detectors, which are based upon 

either a lithium drifted silicon crystal or a lithium drifted germanium crystal 

(Skoog and Leary 1992).  The former is constructed out of a wafer of crystalline 

silicon which consists of three zones: adjacent to the X-ray source a layer of p - 

type semi-conducting silicon coated with gold for electrical contact and protected 

by a beryllium window; a central intrinsic zone; and an n -type layer which is 

coated with aluminium (Skoog and Leary 1992). When an X-ray photon hits the 

detector, it is absorbed into the crystal with the creation of a cloud of electron 

pairs, each of which requires 3.8 eV to form. The number of these electron pairs is 

proportional to the energy of the incident photon: 

n = E / εError! Bookmark not defined. 

where:   n = number of electron pairs 

  E = energy of the incident electron 

  εError! Bookmark not defined. = average energy required to 

generate one electron pair 

(Jenkins 1974) 
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Figure 4.3 Schematic diagram of a lithium drifted silicon detector, after Skoog 

and Leary 1992, figure 15-12, p 371 

 

A voltage is applied across the crystal, and the electrons produced by photon 

absorption are attracted towards the positive terminal forming a current pulse. The 

current passes through a preamplifier to an amplifier. The current pulse represents 

a single count defined by its magnitude which is proportional to the photon's 

energy. Each current pulse is sorted according to its size in a multichannel 

analyser. The data is displayed and stored as a spectra, in which the x-axis is the 

increasing energy values and the y-axis shows the relative intensity. The detector 

and preamplifier are maintained in a cryogenic state during use to limit the 

amount of electronic noise in the system and prevent the lithium diffusing out: this 

is effected using liquid nitrogen.  
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4.2.10 Qualification and Quantification of Results.  

The various peaks on the spectra need to be associated with the specific spectral 

lines of individual elements in the sample. This is possible since the Kα, Kβ etc. 

energies for each element are established and tabulated (for example see Jenkins 

1974, Appendices I-III). The intensities of individual lines can be used to establish 

the amount of that element in the sample. The peak identification and processing 

associated with the calculation of concentrations are performed automatically by 

computer systems, which also control the detector and multichannel analyser. A 

number of factors are involved in these processes. 

 

4.2.11 Resolution.  

The resolution of the detector is defined as the width of an energy peak at half its 

maximum intensity (Jenkins 1974, p 72). The resolution is important in being able 

to distinguish and separate individual peaks: peak overlap can hinder 

quantification. Resolution in an energy dispersive system is related to energy of 

the incident photons and amount of electronic noise in the system: the resolution 

improves with decrease in wavelength. (Jenkins 1974, p 92). 

 

4.2.12 Identification.  

If the presence of an element is suspected in an analysed sample, because of a 

tentatively identified Kα, line, a corresponding, but less intense Kβ line must also 

be present in the spectra.  
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4.2.13 Background.  

Before the net intensities of individual peaks are calculated, the background of 

continuous radiation must be removed: this is achieved with the application of a 

computer "stripping" programme which creates a clean base line beneath the 

peaks by interpolating between a series of predetermined points selected to cut out 

as much of the background radiation as possible. Clearly, for the fluorescence of a 

particular spectral line to be detected, it must emerge sufficiently above the 

background in order to survive the stripping routine. 

 

4.2.14 Intensity.  

The intensity of a peak in energy dispersive systems is not represented by the peak 

height, but the area of the peak. However, because of differential primary and 

secondary absorption, the relative intensities do not simply correspond to 

elemental concentrations in the sample. 

 

4.2.15 Calibration.  

In order that one might sufficiently compensate for the matrix effects outlined 

above, and most accurately correlate intensity with concentration, then the spectra 

of known standards are employed. The accuracy of determining concentrations 

empirically, with the use of standards improves with the use of a standard that 

closely matches the unknown in terms of both components and their 

concentration. A similar composition will ensure that the absorption and 

enhancement effects are of a comparable nature and magnitude. 
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4.2.16 Wavelength Dispersive Systems.  

Wavelength dispersive systems identify the characteristic radiation on the basis of 

the wavelength rather than energy of the fluorescent X-rays. 

 

The x-radiation emitted by an excited sample is broken up into its constituent 

wavelengths by being diffracted through a crystal. This process is founded upon 

Braggs Law which states: 

 

  nλ = 2d sinθ 

 

where:   n = an integer 

  λ = wavelength of the radiation 

  d = interplanar distance of the crystal 

  θ = angle of incidence 

 

The angle of incidence and d – spacing of the crystal are controllable elements 

within the geometry of the spectrometer. The location of the detector in relation to 

the diffracting crystal determines which wavelength of energy is being detected. 

Clearly the properties of the crystal are crucial: a larger d – spacing equates to a 

greater range of wavelengths, but lower values of dispersion. Systems often 

include more than one crystal to enable a broader range of wavelengths to be 

detected (Skoog and Leary 1992, p 367). 
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Figure 4.4. Schematic representation of wavelength dispersive XRF (after Birks 

1963, Figure 2.2, p 8). A, X-ray source; B, specimen; C, collimator; D, diffracting 

crystal; E, detector. 

 

4.2.17 Detection in wavelength dispersive systems. 

The individual wavelengths are detected in a gas-filled proportional counter. X-

rays pass through a window (of beryllium or Mylar) into an inert gas containing 

chamber. The X-ray photons ionise the gas, generating a large number of electrons 

and positive gaseous ions. The electrons are drawn towards a wire anode in the 

centre of the chamber, whilst the cations are attracted to the cathode detector body 

causing a measurable pulse. Each ion-pair (i.e. an electron and a positive gaseous 

ion) is generated per 25 –30 eV of photon energy. The amplitude of the pulse is 

therefore proportional to the X-ray energy. The signal is amplified by maintaining 
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a high potential across the detector: the electrons are accelerated towards the 

anode causing secondary ionisation creating an avalanche of secondary electrons. 

 

Figure 4.5 Schematic diagram of gas proportional counter (after Birks 1963, 

Figure 7.1, p 94). 

 

4.2.18 Energy Dispersive and Wavelength Dispersive Systems. 

The internal geometries of the systems are quite different, as are the demands 

placed upon the fluorescence efficiency by the respective detectors. In practice 

this means that the higher collection efficiency of energy dispersive systems 

means a lower beam current is required in electron beam systems (Reed 1996). 

Wavelength dispersive systems give better peak to background ratio and better 

resolution of closely spaced spectral lines, eliminating the peak-overlap problems 

experienced in energy dispersive systems. However, several recent studies (Verità 

et al. 1994, Potts et al. 1985 and Dunham and Wilkinson 1978) have demonstrated 

that although wavelength dispersive systems have lower detection limits, for the 

study of the components of ancient glasses and silicate rocks, the two techniques 

are of comparable sensitivity, precision and accuracy (ibid and Pollard and Heron 

1996, p 47). Henderson (1988b, p 80) also contrasts the relative efficiencies of the 
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two types of detector in their lower limits of detection, noting that EPMA is more 

efficient at detecting low atomic weight elements, whereas EDXRF is better for 

the heavier transition metals. 

 

4.3 Energy Dispersive X-Ray MicroAnalysis (EDXMA). 

The use of the electron beam within an scanning electron microscope (SEM) is 

sometimes referred to generically as electron microprobe analysis (e.g. Reed 

1996), however this term is also used to specifically mean a system including a 

wavelength dispersive detector (see electron microprobe analysis below). The 

system described here employs an energy dispersive detector, and is therefore 

referred to as energy dispersive X-ray microanalysis. The use of an electron 

microscope as an analytical tool has many similarities with the X-ray fluorescence 

analysis described above, but also a number of important differences, which 

enable the researcher to recover different types of data.  

 

4.3.1 Imaging.  

A SEM was employed to examine the microstructure of the glasses and attempt to 

elucidate aspects of the various glasses’ technologies by qualitative analysis of 

inclusions and inhomogeneities in the samples. An SEM employs electrons 

instead of visible light to construct an image of the sample’s surface.  An electron 

beam is generated, focussed and swept in a raster pattern over the surface of a 

sample. A number of signals are produced from the surface, including: secondary 

electrons, backscattered electrons, Auger eletrons and X-ray fluorescence. The 

secondary and backscattered electrons are detected and their intensity used to 

control a spot on a cathode ray tube display which construes the image. The 
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magnification range is 10 x to 100,000x , depending upon the instrument (Skoog 

and Leary 1992, p 396). 

 

In addition to greater powers of magnification and resolution over light 

microscopy, an SEM image can offer information in addition to surface 

topography. When in “backscatter” mode, the image is constructed using reflected 

or backscattered electrons, which shows the relative atomic weight of the area 

under examination. Discreet zones of differing chemical composition can be 

clearly identified, and thereafter analysed using the Energy Dispersive facility on 

the SEM. The analysis is similar to XRF analysis, and is described below. The 

small beam size (1 μm diameter (Reed 1996)) permits the selective analysis of a 

sample's surface such as unfused components or opacifying crystals within the 

glass matrix. 

 

4.3.2 X-ray generation.  

As described above, X-ray fluorescence can be achieved by exciting a sample's 

atoms using an incident beam of X-rays. In addition one can excite atoms using an 

electron beam, in a manner similar to that employed for generation of the incident 

X-ray beam in XRF analysis. Within the EDXRMA system the electron beam is 

generated by an electron gun positioned vertically above the sample stage. 
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Figure 4.6 Schematic diagram of an SEM with an Energy Dispersive detector for 

analysis (after Skoog and Leary 1992, Figure 16-11, p 395). 

 

 Thermionically generated electrons are accelerated towards an anode plate with 

an aperture, through which they pass, towards the specimen. The beam of 

electrons is focused upon the sample using magnetic lenses. The electron gun and 

column is held under vacuum to prevent oxidation of the tungsten filament in the 

gun, and usually the sample chamber is also under vacuum to avoid absorption of 

fluorescent X-rays by air.  

 

4.3.3 Interaction with the sample.  

The electron beam strikes the surface of the sample and causes inner shell 

ionisation dependant upon the energy of the beam (determined by the accelerating 

voltage in the gun) and the absorption edges of elements in the sample. The beam 
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of electrons and subsequent X-ray fluorescence are subject to the same attenuation 

processes from matrix effects as XRF analysis. 

 

4.3.4 Detection.  

The X-rays are detected using an energy dispersive detector, as described above. 

 

4.3.5 Qualification and Quantification of results.  

The peaks in the X-ray spectra are identified according to their energies, and may 

be quantified by comparison to known standards. In the application here, however, 

the analyses were standardless and semi-quantitative- performed for 

differentiation and identification of inhomogeneities in the samples. For the most 

part the analyses were reviewed by simply examining the resultant spectra and 

identifying distinguishing peaks on the spectra. Semi-quantitative overall results 

were calculated using the computer software within the operating system. 

Corrections for matrix effects are applied using the "ZAF" programme, which 

involves separate correction factors dependant upon atomic number, absorption 

and fluorescence of the identified components. 

 

4.4 Electron Microprobe Analysis. 

Electron microprobe analysis is the oldest technique of chemical analysis reliant 

upon the interaction of an electron beam with a sample and the identification of 

the resultant fluorescent radiation. Like an SEM, the electron microprobe uses the 

interaction between an electron beam and a sample’s surface. Although an 

electron microprobe may be an SEM (see above), typically it is dedicated to 
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instrumental analysis, in which the location of the analysing beam of electrons is 

determined using visible light optics. 

 

Figure 4.7 Schematic diagram of an electron microprobe: a wavelength dispersive 

detecting system and light optics viewing system (after Skoog and Leary 1992, 

Figure 15-19, p 381). 

 

The interaction between the electron beam and the surface of the sample is subject 

to similar attenuation phenomenon due to matrix effects like EDXMA and XRF as 

described above.  

 

Previous studies have identified particular problems experienced with the analysis 

of samples containing sodium and other volatile elements (Henderson 1988, p 78 

and references). These problems are associated with either the localised heating of 

the sample surface, causing sodium migration away from the area being analysed, 

or conversely, the increase in measured sodium counts due to high temperatures 

and surface charging drawing sodium ions to the surface being analysed 

(particularly in mixed-alkali glasses). These phenomenon can be avoided by 
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defocusing the electron beam in order that it is some 80 μm in diameter, and 

ensuring that the counting time does not exceed the critical temperature build up 

at the point being analysed. These corrective procedures were established by 

Henderson (ibid.), and were adopted here. For the specific operating conditions 

employed, see below. 

 

4.5 X-ray Diffraction. 

X-ray diffraction analysis is a long established procedure for investigating the 

crystalline structure of materials (Skoog and Leary 1992, p 378). This technique is 

not employed to study glasses, since they are non-crystalline solids, but is very 

useful for identifying crystalline inclusions in glassy matrices (such as opacifiers, 

colourants and weathering products). 

 

The technique relies upon the reflective nature of surfaces within crystals, and the 

consistent order in lattice structure which crystals possess. The regular interplanar 

spacing in crystals is one of the defining characteristics of individual species. The 

technique employs an incident beam of X-rays upon the sample, and relies upon 

each lattice surface reflecting a proportion of the X-rays. At a certain angle of 

incidence, X-rays of a given wavelength scattered by parallel planes of atoms are 

in phase and a strong reflection takes place. When the reflected X-rays are in 

phase, the geometry of the system is conforming to Bragg’s law (see above), 

which generates a unique diffraction pattern, permitting the calculation of the d- 

spacing, or interplanar spacing of the crystal. 
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Figure 4.8 Schematic diagram of X-ray diffraction to determine crystal structure 

(after Anderson et al. 1991, Figure 6-15, p 105). 

 

In practice, the sample is often ground up into a powder: of the huge number of 

crystals a number will be orientated such that they will conform to the Bragg 

condition for in-phase diffraction of the incident beam. The sample is typically 

mounted in a circular instrument, which records the location of the pattern either 

on photographic film arranged around the inside of the instrument (a Debye-

Scherrer powder camera) or in an automatic system in which a detector scans for 

individual diffraction lines. Both the line location and relative intensities are 

characteristic of the crystal structure. With the traditional Debye-Scherrer camera 

system, the individual diffracted lines have to be measured from the photographic 

film in order to calculate the d- spacings, which are then compared to published 

data. Automated systems will perform the calculations and identify the crystalline 

components from computer-held libraries of data on crystalline structures. When 

standards are run alongside unknowns, then the automated system can be fully 

quantitative, but in the application to this project only the identification of crystal 

species was considered necessary. 
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4.6 Operating Conditions Employed  

The sample preparation and operating conditions for each technique are specified 

below, alongside calculations of accuracy and precision for the quantitative 

methods (i.e. XRF and Electron Microprobe Analysis). Where necessary, a 

number of experiments were undertaken to ensure that the most appropriate 

procedures were adopted. 

 

4.7 Experiments to establish ideal instrument and operating conditions for 

the analysis of ancient glasses I: XRF.  

A number experiments were undertaken to identify the most suitable operating 

conditions for the XRF analyses. These experiments sought to ascertain the ideal: 

accelerating voltage 

beam current  

primary X-ray beam diameter 

counting time 

background files 

  to establish the accuracy and precision of the technique when applied to 

suitable standards. 

 

The quality of analyses are judged on the basis of several criteria, including: the 

peak:background ratio (a measure of the distinctiveness of a characteristic peak 

above the background x-radiation); the count rate recorded during the capture of a 

spectra (i.e. the number of X-ray photons entering the detector during any given 

period) and the capacity of the system to identify and detect the characteristic 

radiation of trace elements (measured in net intensity values). 
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The X-ray fluorescence system employed at Nottingham is a Philips PV 9500/70 

which consists of a 9500 XRF subsystem and a 9100/70 analyser. This uses an 

energy-dispersive detector (a lithium-drifted silicon crystal) with a signal 

amplifier, multi-channel analyser (4K memory) and computer operating system. 

The 9500 subsystem operates in the ranges: 10 – 500 μA, 5 – 50 keV. The sample 

chamber is relatively large (130 mm diameter, 100 mm deep) which can be 

evacuated for the detection of low energy x-radiation. The X-rays were generated 

in a cathode ray tube with a rhodium target. The two principle spectral lines of 

rhodium (Kα  and Lα  at 20.165 and 2.69 keV respectively), make a dominant 

contribution to the low energy part of the spectrum making it suitable for use in 

the analysis of complex glasses (Henderson 1982, p 103). 

 

A number of glass standards were employed, including Corning Standards A – D 

supplied by Dr Robert Brill of the Corning Museum of Glass, from batches 

produced for inter-laboratory tests (Brill 1972). The recommended compositions 

for these glasses are taken from Brill 1999 Vol II, p 544, except for SiO2, which is 

taken from Brill 1972. The later recommended compositions do not give a value 

for SiO2, which is calculated by difference from Optical Emission Spectroscopy 

and Inductively Coupled Plasma spectroscopy (Brill 1999b, Appendix A). The 

value by difference is rejected in favour of the directly measured value in the 1972 

figures. The standards were mounted in epoxy resin blocks and polished with 

progressively finer carborundum papers and finished with 8 and 1 μm diamond 

paste polishing compound to ensure a flat unweathered surface for analysis. 

Jenkins (1977, p 105) recommends that surface roughness does not exceed 50 μm 
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peak to peak for atomic number elements above Z = 25, and 10 μm for elements 

around Z = 12. For preparation of the archaeological samples, see below. 

 

Calibration: the instrument was initially calibrated using an aluminium/copper 

standard, (with Kα  peaks at 1.486 and 8.040 keV respectively). This routine is 

performed automatically and is periodically repeated to identify instrumental shift. 

Essentially it ensures that the designation of specific photon energies is correct. 

Further calibration against complex glass standards was performed after collection 

of the spectra. 

 

Since ancient glasses have complex compositions, and the operating system for 

the machine employed was relatively slow, it was decided to select a small 

number of elements to act as markers for the range of components being studied.  

These were sodium, potassium, iron and lead. Sodium is the lowest atomic weight 

element under examination, and its Kα energy line (1.041 keV) is the longest 

wavelength/lowest energy reliably detected using EDS systems. Potassium (Kα = 

3.312 keV) is representative of an element from the 2 - 4 keV range, which is 

crowded with peaks of interest. Iron was chosen as an example of a mid-table 

transition metal (like manganese, cobalt or copper) with its Kα line at 6.398 keV. 

Lead is the highest atomic weight element under consideration and its Lα line is at 

10.550 keV.  
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Figure 4.9 XRF Operating system. 
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Figure 4.10 XRF Machine 

 

Figure 4.11 XRF sample chamber 
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4.7.1 X-ray tube potential.  

To excite any single element, then an accelerating voltage should be greater than 

the absorption edge of the element. To do so most efficiently, then the voltage 

should be some 2.5 to 3 times the absorption edge. However, with a multi-element 

sample a compromise between the requirements for efficient excitation of a range 

of absorption edges is required. The manual accompanying the machine used 

(EDAX, 1983) recommends the following equation as a rule of thumb:  

 

keV = 3/4.El  +  3/2.Eh  

 

where:   keV is the accelerating voltage 

El is the lowest energy absorption edge of any of the elements 

being detected 

Eh is the highest energy absorption edge of any of the elements 

being detected 

 

In the case of the ancient glasses being analysed, with reference to the Corning 

glasses A - D, sodium to lead represents a wide range of absorption edges for 

many of the components under consideration (i.e. an energy range of 1.041 - 

10.55 keV). 

 

therefore: keV =  (3/4 x 1.041) + (3/2 x 10.55)  

keV = 16.60575  
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However, it is also noted that where one has variable concentrations of the 

different elements one should weight the accelerating voltage in favour of the 

minor component, in order to efficiently excite, and therefore detect its presence. 

When dealing with the complex multi-element glasses produced in antiquity it is 

not a simple matter to establish an ideal set of conditions suitable for all glass 

types.  Several experiments were undertaken in an attempt to empirically establish 

appropriate accelerating voltages. Corning standards B and C were used since they 

represent complex glasses with soda-lime silica and lead-rich glasses respectively. 

 

4.7.2 Relationship between  peak:background ratio and accelerating voltage. 

The peak:background ratio for sodium, potassium, iron and lead were recorded 

from analyses using 10 - 40 keV at 5 keV intervals, with a beam current of 500 

μA , employing a 1 mm collimator for 1000 live seconds. 

 

10 keV 15 keV 20 keV 25 keV 30 keV 35 keV 40 keV 
Na 8.16 8.75 10.2 6.65 4.08 2.5 1.72 
K 5.07 5.53 6.47 6.73 5.89 5.45 4.02 
Fe 2.33 4.58 5.1 5.24 5.61 5.44 5.88 
Pb 0 1.06 2.46 3.8 4.85 5.17 5.9 

 

Table 4.1 showing peak:background ratio in relation to accelerating voltage 
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Figure 4.12 Chart showing peak:background ratio in relation to accelerating 

voltage. 

 

Sodium clearly benefits from lower accelerating voltages than the other elements 

examined, with an optimum at a surprisingly high voltage of 20 keV, there is a 

rapid fall off in the ratio with increased rates. Potassium peaks at 25 keV, but does 

not undergo a rapid reduction in ratio at higher voltages. Iron has an optimum 

excitation voltage in this matrix at 30 keV and is stable at rates higher than this. 

Unsurprisingly lead is preferentially stimulated at the highest rates (in this case 40 

keV), however its improvement in ratio becomes less rapid above 30 keV. Clearly 

no single accelerating voltage is ideal for all the elements, but a voltage in the 

region of 25 - 30 keV appears suitable.  

 

4.7.3 Beam current: Relationship between peak:background ratio and beam 

current. 

In order to explore the effect of varying the beam current upon the 

peak:background ratio, the beam current was gradually increased through the 
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intervals 10, 50, 100  200, 300, 400 and 500 µA. A 3 mm collimator was fitted for 

all these analyses, with a counting time of 1000 seconds and  accelerating voltage 

of 30 keV.   

 

10 µA 50 µA 100 µA 200 µA 300 µA 400 µA 500 µA 
Na 3.46 3.47 3.24 3.64 3.62 3.69 3.73 
K 5.71 5.29 5.79 5.67 5.54 5.65 5.57 
Fe 5.75 5.65 5.73 5.55 5.6 5.6 5.54 
Pb 5.67 5.13 5.19 5.35 5.05 4.88 4.82 

 

Table 4.2 showing peak:background ratio in relation to beam current. 

 

2.5

3

3.5

4

4.5

5

5.5

6

10 50 100 200 300 400 500

beam current

pe
ak

:b
ac

kg
ro

un
d 

ra
tio

Na K Fe Pb

 

Figure 4.13 Chart showing variation in peak:background ratio in relation to beam 

current. 

 

All the elements experience some instability over the 50 – 200 μA range. When 

the beam is above 200 μA, both potassium and iron are stable, but lead and 

sodium experience diverging trajectories with a gradual improvement in the ratio 
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for sodium, and an overall decline for lead. Since sodium’s characteristic radiation 

is of low energy/long wavelength, and is therefore more readily absorbed and less 

easily detected, then the higher beam current should be selected.  

 

4.7.4 Beam and the count rate. 

Ideally the count rate should be as high as possible in order to give the best 

possible chance of achieving good peak shapes for quantification (i.e. a greater 

number of counts improves the statistics for quantification). With the system 

employed, the saturation point for the detector is a count rate of between 10 - 

15,000 cps: this is the point at which the detector is experiencing a high 

proportion of dead time since it is being bombarded by more X-ray photons than it 

can deal with, giving rise to loss of resolution. In order to ensure that the selected 

conditions maximised the count rate without saturating the detector, then the count 

rate was noted through a range of beam current settings. The collimator size was 

also changed to demonstrate that this too can effect the count rate.  

 

The primary beam of X-rays is directed towards the sample through a collimator 

body with an internal diameter of approximately 5 mm. The collimator body has 

an internal thread which was cut to fit variable collimators, permitting the 

reduction in size of the beam to diameters of 1, 1.5, 2, 2.5 and 3 mm. The 

collimators are stainless steel machine screws with a hole drilled down the centre, 

fabricated for the purpose of this  project. The location of the beam and sample 

position are explained elsewhere (see below).  
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It is important to note that beam collimation is essential in order to analyse 

discrete portions of a sample’s surface. Several experiments were undertaken to 

establish the impact of changing the primary beam diameter using collimators. 

 

Analyses were undertaken using no collimator, the collimator body alone (i.e. 5 

mm), and each of the collimators, in which the observed count rate was noted. The 

count rate fluctuates for any given set of conditions, but becomes relatively stable 

after a short period of time, the recorded count rate in the tables below reflect the 

approximate rate observed for those conditions. The experiment was repeated 

using Corning standards B and C, to illustrate the higher count rate for lead 

glasses (Corning C) compared with soda-lime-silica glasses (Corning B). 

 

The count rate increases with both beam diameter and beam current. In terms of 

increased count rates, as large a collimated beam as possible should be employed: 

even with the 3 mm collimator in place, a lead – rich glass and a maximum beam 

current (i.e. 500 μA), then count rate does not approach the saturation point of 10 

– 15,000+ cps.  

 

Corning C 10 µA 50 µA 100 µA 200 µA 300 µA 400 µA 500 µA 
No collimator body 2700 12500 24000 44000 60000 76000 90000 
collimator body 350 1450 2800 5400 7500 10000 12000 
3 mm collimator 150 750 1400 2750 3800 5100 6100 
2.5 mm collimator 120 500 1000 1900 2600 3500 3900 
2 mm collimator 80 300 600 1200 1750 2250 2700 
1.5 mm collimator 40 200 350 700 950 1250 1450 
1 mm collimator 25 80 150 300 400 500 650 
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Corning B 10 µA 50 µA 100 µA 200 µA 300 µA 400 µA 500 µA 
No collimator body 2200 10000 19000 36000 48500 62500 70500 
collimator body 200 1000 1900 3600 5000 6900 7800 
3 mm collimator 120 450 1000 1900 2600 3400 3900 
2.5 mm collimator 80 350 700 1300 1800 2400 2700 
2 mm collimator 50 200 400 850 1150 1500 1800 
1.5 mm collimator 30 120 250 450 650 850 1000 
1 mm collimator 20 60 100 200 300 350 450 

 

Tables 4.3 and 4.4 showing count rate in relation to beam current and primary 

beam diameter 
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Figure 4.14 Chart showing impact of varying beam diameter and current: detector 

saturation is reached at 15,000 counts per second, using Corning standard C. 

 

All analyses employed an accelerating voltage of 30 keV. Note the increased 

count rates for Corning C in comparison with Corning B for identical conditions: 

this is due to the high lead content of Corning C. 

 

 155



The saturation point is only achieved using an uncollimated beam, or with 

collimator body alone fitted. The graph below shows how the count rate increases 

with beam current for all beam diameters. Given that a collimated beam is to be 

applied for all analyses, then the maximum beam current of 500 µA can be safely 

used for all beam diameters up to 3 mm. 

 

4.7.5 Primary X-ray beam diameter 

Beam collimation and peak:background ratio  

The peak to background ratio was noted during the analysis of Corning B, at 30 

keV, 500 µA for 1000 seconds. 

 1 mm 1.5 mm 2 mm 2.5 mm 3 mm 5 mm 
Na 3.88 3.91 3.88 3.08 3.11 3.63 
K 5.94 6.17 5.8 4.36 4.36 4.88 
Fe 5.64 5.4 5.43 4.33 4.42 5.02 
Pb 5.08 5.14 4.84 4.4 4.4 4.63 

 

Table 4.5 showing peak:background ratio in relation to beam diameter.  
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Figure 4.15 Chart showing peak:background ratio in relation to primary beam 

diameter. 
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All of the elements experience a similar variation in peak:background ratio, with a 

reduction in the ratio when the beam current is greater than 2 mm in diameter. For 

the purposes of this study, (the analyses include the examination of narrow 

decoration on beads and vessel bodies,) a small beam diameter is preferred. 

Although a larger diameter would give a greater count rate, and therefore lend 

itself to better statistics during quantification for any given analysis time, this 

experiment does demonstrate that there is no systematic deterioration in analytical 

quality as a consequence of reducing the primary beam diameter.  

 

In order to ensure that the pattern observed above is not simply the product of 

random variation in the analysis, the measurement of the peak:background ratio 

for the 1 mm collimator was subsequently repeated five times under the same 

conditions. The results are tabulated below and displayed on the chart. 

 1 2 3 4 5 range average stnd. dev. 
Na 4.38 3.99 3.63 4.3 4.21 3.63-4.30 4.1 0.3 
K 5.96 5.67 5.49 6.16 6.14 5.49-6.16 5.88 0.3 
Fe 6 5.83 5.62 5.58 5.82 5.58-6.00 5.77 0.17 
Pb 4.75 5.51 5.33 5.24 5.46 4.75-5.51 5.26 0.3 

 

Table 4.6 showing variation of peak:background ratio when all the conditions are 

kept constant. 

 

The range, average and standard deviation of the results can be compared between 

the repeat analysis and the collimation experiment, which are shown in the table 

below. The standard deviation of the results is greater for the collimator 

experiments, and when plotted (see chart below), one can see that the repeat 

results are random in their variation rather than systematic. 
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range average stnd. dev. 
3.11-3.91 4.66 0.39
4.36-6.17 4.75 0.82
4.33-5.64 4.52 0.55
4.4-5.08 4.07 0.33

 

Table 4.7 showing range, average and standard deviation of results from table 

above. 
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Figure 4.16 Chart showing random variation in peak:background ratio with 

conditions at: 500 µA, 30 keV for 1000 live seconds. 

 

4.7.6 Counting time 

The duration of each analysis is an important determinant in the quality of the 

results: ideally the quantification should be based on a maximum number of 

counts for the elements of interest, in order that the counting statistics are 

improved. To establish the effect of variable counting times, the peak:background 

ratio was recorded at 100 second intervals up to a maximum of 2000 seconds. The 
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period is based on live seconds, which is typically longer than real time, since it is 

a measure of the time during which the detector is available to receive X-ray 

photons. The detector is momentarily closed during the absorption of photons, and 

the measurement of live time ensures that analyses with different count rates are 

of comparable duration. 

 

 100 200 400 600 800 1000 1200 1400 1600 1800 2000 
Na 4.16 5.12 4.42 3.68 3.85 4.2 3.9 3.98 3.97 3.78 3.92 
K 7.02 5.75 6.55 7.36 6.39 5.73 6.4 5.72 5.81 5.56 6.24 
Fe 5.49 7.11 5.58 5.58 6.03 6.08 6.11 5.78 5.86 5.51 5.89 
Pb 5.48 6.09 5.12 5.01 5.38 5.06 5.37 5.2 5.11 5.35 5.21 

 

Table 4.8 showing peak:background ratio in relation to analysis time. 
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Figure 4.17 Chart showing peak:background ratio in relation to analysis time. 

 

All of the elements experience random variation up to 800 seconds, thereafter they 

appear stable. Since there does not appear to be a significant improvement over 

1000 seconds, this is selected as the most suitable time. 
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As a result of the above experiments, the conditions employed were: 30 keV, 500 

µA for 1000 live seconds. 

 

4.7.7 Background files 

Net intensities and the background files. 

Spectra for all of the corning standards (A - D) were recorded employing 30 (and 

25) keV, 500 µA, and 1000 live seconds conditions. Net intensities were sought 

from all the spectra to ensure the conditions were appropriate for this range of 

glass types. 

 

However, problems were encountered obtaining net intensities for a number of 

elements of interest. These were sodium, magnesium and nickel. Since these 

elements are known to be components of the standards, and all should be 

sufficiently excited by the above conditions to be detected, the “background file” 

was examined. 

 

The background file consists of a series of points across the spectra, and is used to 

remove detected background radiation during the calculation of net intensity 

values for peaks of interest. The points should be carefully located around the 

peaks of interest. The position of these points is crucial to the identification of 

individual peaks, particularly those of low intensity owing to either small 

concentration and/or low energy (and therefore more susceptible to absorption). 

The background file initially used was designed for potassium-rich medieval glass 

compositions, and not fine-tuned for soda-lime-silica glasses.  

 160



 

The background file was easily amended to identify nickel, which was 

subsequently detected in all the standards. Manipulation of the background file 

was thought to be the solution to the detection of sodium and magnesium in all the 

glass standards. However, this proved not to be the case, because whilst it was 

possible to position points appropriate to the sodium and magnesium peaks of 

standards A and B, these were not ideally suited for C and D. Repeated changes to 

the background file enabled an optimum arrangement for standards A, B and D, 

but not C (background file STAN 1).  It proved particularly difficult to obtain a 

net intensity value for sodium from Corning standard C. It contains the lowest 

concentration of soda of all the standards (1.2%), and is a high lead glass 

(36.91%). The characteristic x-radiation of sodium and magnesium is long 

wavelength/low energy  (Kα  at 1.041 and 1.253 keV respectively), and therefore 

more vulnerable to attenuation than higher energy radiation. The presence of such 

a high lead content in the glass matrix also means that the effective analytical 

depth for sodium and magnesium is less than it would otherwise be in a matrix of 

lower average atomic weight. 

 

Net intensities were calculated for spectra recorded at both 25 and 30 keV (using 

background file STAN 1). It might be expected that the results from the lower 

accelerating voltage would yield higher net intensities for the low atomic weight 

elements (i.e. sodium and magnesium in this instance): this was not the case (see 

table below). With the exception of Corning C, all the values for sodium and 

magnesium showed a slight improvement at 30 keV. 
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25 keV 30 keV 
Corning A Na 0.6879 0.8079

Mg 0.328 0.404
Corning B Na 0.8639 1.0139

Mg 0.085 0.126
Corning C Na 0 0

Mg 0.263 0.255
Corning D Na 0.064 0.085

Mg 0.7939 0.8979
 

Table 4.9 of recorded net intensities from Corning standards A – D, using 500 

μA, 1000 live seconds, 1 mm collimator and varying the accelerating voltage, 

background file STAN 1. Note the absence of any value for sodium in Corning C 

with this background file. 

 

A background file was designed specifically to achieve a net intensity for all the 

elements of interest in Corning C under these operating conditions (background 

filename STAN 2).  

 

To illustrate the impact of the high-lead matrix upon the measured net intensity 

for sodium in low-soda glasses, it is worth comparing the values for Corning 

standards C and D. Both of these standards have similarly low soda contents, but 

significantly different concentrations of lead (see below).  

 

Corning C Corning D 
Sodium 0.006 0.015
Magnesium 0.271 0.6389

 

Table 4.10 Net intensity values for sodium and magnesium in Corning Standards 

C and D. 
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Corning C Corning D 
Soda 1.20% 1.32%
Magnesia 2.84% 4.09%

 

Table 4.11 Weight % content of soda and magnesia in Corning Standards C and 

D (Brill, 1972). 

 

The low net intensity value recorded for sodium in Corning D is not due to the 

low soda content, but to the matrix absorption effects of a high lead glass: the 

similarly low-soda glass Corning C has a much higher net intensity value for 

sodium. 

  

Summary of ideal conditions for use of XRF: 

X-ray tube potential: 20-30 keV 

beam current: 500 µA 

beam diameter: 1 mm collimator acceptable, 3 mm better for statistics 

counting time: 1000 live seconds 

background files: STAN1 for glasses similar to Corning A, B and  D, 

STAN2 for high lead glasses like Corning C. 

 

4.7.8 Accuracy and Precision of XRF results. 

The experiments above sought to optimise the operating and quantifying 

conditions, and based on these procedures, it is necessary to specify the degree of 

accuracy and precision of the results.  
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Accuracy describes the correctness of an experimental result, and is a relative 

term. Typically accuracy is described in terms of absolute or relative error. 

Precision is the reproducibility of results- the agreement between measurements 

made under identical conditions. The precision is usually expressed in terms of 

standard deviation (Skoog and Leary, 1992: p A-1) 

 

The precision and accuracy were evaluated by performing repeat analyses of glass 

standards of known composition. Corning Standard A was treated as an unknown, 

and analysed repeatedly under the conditions 30 keV, 500 μA for 1000 live 

seconds. The spectra were quantified using Corning Standard B which was 

analysed at the same time. The background file STAN 1 was employed for 

calculating the net intensity values. 

 

The values obtained from the repeat analyses are tabulated below: 

 1 2 3 4 5 0 σ σ as a % of 0 
Na2O 15.13 15.56 15.86 16.06 15.7 15.66 0.35 2.24 
MgO 3.84 3.67 3.98 4.74 4.59 4.16 0.47 11.4 
Al2O3 1.71 1.77 1.76 1.73 1.87 1.77 0.06 3.58 
SiO2 66.42 66.44 66.89 67.65 67.37 66.95 0.55 0.82 
P2O5 0.1 0.15 0.12 0.09 0.12 0.12 0.02 20 
K2O 3.26 3.25 3.24 3.31 3.31 3.27 0.03 1.04 
CaO 5.47 5.47 5.47 5.56 5.54 5.5 0.04 0.79 
TiO 0.9 0.86 0.9 0.92 0.93 0.9 0.03 2.98 
MnO 1.15 1.17 1.14 1.16 1.15 1.15 0.01 1.23 
Fe2O3 1.03 1.05 1.02 1.04 1.04 1.03 0.01 1.14 
CoO 0.13 0.12 0.12 0.13 0.12 0.13 0 2.43 
NiO 0.01 0.01 0.01 0.02 0.01 0.01 0 33.17 
CuO 1.08 1.08 1.06 1.07 1.08 1.07 0.01 0.77 
ZnO 0.04 0.04 0.04 0.04 0.05 0.04 0 8.18 
PbO 0.06 0.06 0.06 0.06 0.06 0.06 0 6.79 
SrO 0.02 0.02 0.02 0.02 0.02 0.02 0 0 
total 100.34 100.73 101.69 103.59 102.96 102.96   
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Table 4.12 showing the results of repeat analyses of Corning A (wt. %), the mean 

value (0) and the standard deviation (σ). These results can be compared with the 

published values for Corning Standard A (see table below). 

 

The accuracy of the repeat results can be expressed in terms of the absolute error 

of the mean (Ea). 

Ea = 0 - x1 

where:  0 = average measurement 

x1 = true value 

 

 0 Corning Standard A Ea 
Na2O 15.66 14.52 1.14
MgO 4.16 2.81 1.35
Al2O3 1.77 1.01 0.76
SiO2 66.95 66.56 0.39
P2O5 0.12 0.14 -0.02
K2O 3.27 2.93 0.34
CaO 5.5 5.3 0.2
TiO 0.9 0.8 0.1
MnO 1.15 1.18 -0.03
Fe2O3 1.03 1.09 -0.06
CoO 0.13 0.15 -0.02
NiO 0.01 0.03 -0.02
CuO 1.07 1.22 -0.15
ZnO 0.04 0.04 0
PbO 0.06 0.08 -0.02
SrO 0.02 0.1 -0.08

 

Table 4.13 of absolute error of mean value from the true value (recommended 

composition from Brill 1999b, except SiO2, which is from Brill 1972). 

 

These gross errors are small, and appear insignificant, however, their impact on 

the data set should also be considered in relation to their proportion of the 
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individual components’ total. The individual errors may be expressed as 

percentages of the known value: 

 

 

 1 2 3 4 5 average 
Na2O 5.8 8.81 10.91 12.31 9.79 9.52 
MgO 44.36 37.97 49.62 78.2 72.56 56.54 
Al2O3 71 77 76 73 87 76.8 
SiO2 0.21 0.18 0.5 1.64 1.22 0.75 
P2O5 23.08 15.38 7.69 30.77 7.69 16.92 
K2O 13.59 13.24 12.89 15.33 15.33 14.08 
CaO 8.75 8.75 8.75 10.54 10.14 9.38 
TiO 12.5 7.5 12.5 15 16.25 12.75 
MnO 15 17 14 16 15 15.4 
Fe2O3 5.5 3.67 6.42 4.59 4.59 4.95 
CoO 23.53 29.41 29.41 23.53 29.41 27.06 
NiO 50 50 50 0 50 40 
CuO 7.69 7.69 9.4 8.55 7.69 8.21 
ZnO 9.09 9.09 9.09 9.09 13.64 10 
PbO 50 50 50 50 50 50 
SrO 80 80 80 80 80 80 

 

Table 4.14 showing error of repeat analyses of Corning Standard A, error 

expressed as % of the published result (Brill 1972 and 1999). 

 

It is necessary to review the errors: the mean Na2O error is below 10%, a value 

which is remarkably good given the problems of detecting the low-energy x-

radiation from sodium. The magnesia error is high, ranging from 30 – 69 % of the 

published value for Corning A, reflecting the problems of using a standard with 

low levels of magnesia (1.03 % in Corning B) to quantify an unknown containing 

twice that amount (2.66 % MgO in Corning A). This error should be less when 

analysing magnesia in archaeological samples if the most appropriate standard is 

chosen for quantification. 
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The errors associated with the detection of alumina are poor (mean = 76.8 %, 

range 71 – 87 %) illustrating the problem of resolving the aluminium Kα peak 

from the larger, adjacent silica Kα peak (at 1.486 and 1.739 keV respectively). 

Silica has an excellent mean error value (0.75 %) reflecting both its accurate 

measurement and benefiting from the improved statistics of being the largest 

single component (66.56 % in Corning A). 

 

Phosphorus’s apparent poor mean error (20.29 %) reflects its low concentration 

and difficulties resolving the Kα peak from that of silica (phosphorus Kα peak = 

2.013 keV, concentration in Corning A = 0.14 wt. %): the absolute error of the 

mean result was still only 0.02 %. 

 

Potash has a good mean error at 11.7 %, and the mean error for lime is an 

excellent 3.78 %. TiO (12.75 %), MnO (2.27 %) and iron oxide (5.16 %) are all 

acceptable. Cobalt is further adrift at 16.4 %, reflecting its relatively low 

concentration in Corning B in comparison with Corning A (0.035 and 0.15 wt. % 

respectively). Nickel oxide also has poor error values (mean error = 62 %)- the 

low concentrations and differential proportions in the two standards probably 

accounts for this. Both copper oxide and zinc oxide are acceptable at 11.92 and 

7.5 % mean errors respectively. Lead oxide has a poor mean error of 24 %, due to 

the low concentration in Corning A (0.08 wt. %) in relation to Corning B (0.4 wt. 

%). 
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4.7.9 Problems encountered applying XRF to archaeological specimens. 

The conditions defined by the above experimentation were employed in the 

analysis of an oinochoe from Lincoln Museum (M 1926.657, Haevernick, 1959, 

sample 11 in this project).  

 

 

 

Figure 4.18 Sample 11: oinochoe from Etruscan context at Chiusi. 

 

4.7.10 Surface preparation. 

Previous work has emphasised the necessity of carefully preparing the sample 

prior to analysis (Cox and Pollard, 1977; Henderson, 1982, p 126). All 

archaeological glasses are likely to have weathered surfaces, which are chemically 

different from the original composition. This is the case even with examples 

which appear to be in good condition: the weathering may only be visible at 

microscopic level (Towle, 1995). This phenomenon is of great importance when 

one considers that XRF is essentially a surface technique. The analyst has to work 
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with the assumption that below the surface there is an unaltered glass core 

available for analysis. The surface layers should be removed prior to the analysis. 

 

In this case the surface area to be excited was polished using progressively finer 

carborundum papers (P 369, P 280 and P 1000) and finishing with a polishing pad 

coated in 8 micron diamond paste. The polished area was kept to a minimum by 

using a hand-held drill (a Dremel Multi-tool) with the carborundum papers 

mounted on polishing pads. To ensure that the polished area was as unobtrusive as 

possible, a small area on the base of the oinochoe was chosen 

 

Figure 4.19 Sample preparation for XRF analysis- polishing archaeological 

artefact (sample 10). 

 

Since the depth of the weathering layers is uncertain, the sample was polished, a 

spectrum collected, and the sample repolished before being re-analysed. After 

each polish the net intensity values for sodium, magnesium, aluminium, silica and 

phosphorus were obtained. By monitoring the varying net intensity values (see 

below), it is possible to see the increasing concentration of soda and decreasing 
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concentration of silica. The lowered sodium value and consequential enrichment 

in silica are indicative of weathering layers where the alkali has leached from the 

glass (Douglas and El-Shamy, 1967). When the net intensity values for the sodium 

stabilised, then the weathering layers were considered to have been removed.  

 

 ACT49 ACT50 ACT52 ACT53 Corning B 
Na 0.225 0.396 0.5599 0.5009 0.9559 
Mg 0.016 0.032 0.027 0.018 0.101 
Al 2.5667 2.6967 2.0808 1.6848 2.3698 
Si 24.9083 42.9352 46.3352 54.114 63.3566 
P 0.178 0.135 0.096 0.072 0.9799 

 

Table 4.15 showing net intensity values for select elements after successive 

polishes, and the values for Corning Standard B used for quantification. 
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Figure 4.20 Chart showing detail of increasing sodium net intensity values as 

weathering layers were removed. 
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After selecting “ACT52” as a spectrum suitable for further processing, an initial 

quantification was performed using a spectrum collected from the contemporary 

analysis of Corning Standard B. The first quantification routine for spectrum 

ACT51 gave a poor result: the detected elements, when expressed as suitable 

oxides accounted for only 68 % of the total composition (see table below). In view 

of this, spectra ACT51 and ACT53 were also quantified to establish whether or 

not these were also of poor quality. 

 

oxides ACT51 ACT52 ACT53 
Na 7.479 10.273 8.922
Mg 0.366 0.316 0.207
Al 4.651 3.662 2.907
Si 41.913 45.227 51.452
P 0.119 0.091 0.07
K 1.028 0.811 0.54
Ca 6.505 6.174 6.359
Ti 0.069 0.051 0.058
Cu 1.699 1.618 1.946
total: 63.829 68.223 72.461

 

Table 4.16 showing calculated wt. % composition for three spectra taken from 

base of Lincoln oinochoe. 

 

The calculated compositions are clearly unreliable: not only is the overall total 

less than the 90% or so one would expect from this range of components, 

individually the measurements are inadequate: the silica content should be 60 % 

+, and the alkali content ought to be higher than the 9 – 11 % range in order for it 

to be an effective flux.  

 

A visual examination of the individual spectra revealed that there were no 

significant peaks unaccounted for in the analyses. It was possible that the 
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oinochoe was manufactured from an unusual glass type such as a boron-rich glass: 

since boron has a very low atomic number, its characteristic radiation (very low 

energy/long wavelength (Kα = 0.138 keV)), would not be detected by the system 

employed in the Archaeological Science Laboratory in Nottingham. A high boron 

content would indicate the vessel was a fake, since boron-rich glasses were not 

manufactured until the Nineteenth Century (J. Henderson, pers. comm.). To 

ensure that the glass was not a boro-silicate, a small chip was removed from the 

polished zone (< 2 mm long) and analysed using an environmental scanning 

electron microscope (ESEM) in the Dept of Materials at the University of 

Nottingham, with the assistance of Nicola Bock. 

 

Figure 4.21 Base of oinochoe, sample 11 showing fragment removed for 

microanalysis (A) and zone polished for XRF (B). Scale 1:1. Note the crystalline 

weathering products removed by polishing. 

 

The specifications of the instrument are not detailed here. The analysis was rapid 

and standardless, the flake was not mounted in epoxy resin, but stuck to an 

aluminium stub with an adhesive carbon pad. No further polishing was 

undertaken. The glass was analysed several times, at different points, which were 
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selected visually by moving the sample around and examining the surface. Three 

of the results are included in the table below.  

1 2 3 average 
Na2O 26.21 24.44 21.62 24.09
MgO 0.52 0.69 0.51 0.57
Al2O3 0.86 1.17 1.02 1.02
SiO2 66.64 67.39 66.21 66.75
SO3 0.77 0.5 0.82 0.7
Cl 1.02 0.87 2.48 1.46
K2O 0.37 0.29 1.58 0.75
CaO 3.62 3.58 4.52 3.91
Fe2O3 0.27 0.22 0.25
CuO 0.8 1.01 0.91
total: 100.01 100 99.99

 

Table 4.17 showing results of rapid analyses of Lincoln oinochoe using ESEM. 

 

Boron was not identified as a component of the glass. When performing 

standardless analyses with this system, then the results are automatically 

normalised to 100 %, which is far from ideal since errors become spread across 

the entire data set. Nonetheless, the results are useful for comparison with the 

more fully “quantified” analyses performed using XRF. The accelerating voltage 

was varied: the first analysis listed in the table above was at 20 keV, the other two 

at 30 keV- permitting the ready identification of iron and copper. All the analyses 

were for 100 live seconds. The peak identification was performed automatically 

by the operating system, as was the selection of background points for calculation 

of the net intensity values. Chlorine was readily identified in all the analyses, and 

would not have been present in an oxide state, but as chloride ions within the 

glass: a high chlorine content has been noted elsewhere as an indication of a 

heavily weathered glass (Towle, 1995). This is not readily identified using the 

XRF, since there is a spectral peak overlap between the chlorine Kα and the 
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rhodium Lα peaks (2.621 and 2.696 keV respectively): the rhodium peak is 

derived from the generation of the primary x-radiation which involves a rhodium 

anode in the system employed in Nottingham. 

 

4.7.11 Further archaeological samples: a Faliscan bead from the Ashmolean 

Museum.  

In an attempt to understand why the XRF analysis of the Lincoln oinochoe was 

unsuccessful, an alternative archaeological sample was analysed. A blue and white 

glass eye-bead from the Ashmolean Museum was analysed. A small area of the 

blue glass matrix was polished using the procedure outlined above.  

 

 ACT55 ACT56 ACT58 ACT60 
Na 0.6899 0.6529 0.5919 0.7569
Mg 0.058 0.061 0 0.042
Al 1.5788 1.2809 1.3588 1.6538
Si 82.0978 71.949 69.7762 78.5663
P 0.138 0.144 0.062 0.092
K 2.0898 1.8248 1.8408 2.0938
Ca 27.7299 25.6782 26.3241 27.7369
Ti 0.383 0.28 0.279 0.255
Cu 6.4893 6.3563 6.2723 8.1881

 

Table 4.18 showing net intensity values for select elements after repeated 

polishing of glass bead. 

 

The sodium net intensity value did not improve in a clear trajectory as can be 

observed with the oinochoe above. This suggests that the first polish removed the 

weathered layers, or that the variation is due to reasons other than the removal of 

alkali-depleted glass. 

The latter two spectra were quantified with reference to Corning B: 
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ACT58 ACT60 
Na2O 11.866 15.055
MgO 0 0.522
Al2O3 2.125 2.627
SiO2 64.332 73.496
P2O5 0.059 0.087
K2O 0.668 0.759
CaO 6.929 7.266
TiO 0.052 0.047
CuO 0.256 0.327
total: 86.287 100.186

 

Table 4.19 Quantified spectra from analysis of Faliscan bead 

 

The results are cause for concern on several counts. Spectra ACT60 is clearly a 

reasonable result- the silica content is high, and alkali content relatively low, but 

within the bounds of possibility. The total composition is over 100 % - only nine 

oxides of interest are listed in this analysis and the total will increase if this 

spectrum is quantified for a wider range of components. 

 

The net intensity values do not readily identify the most ideal spectrum for 

analysis: low magnesia count apart, ACT58 might otherwise be regarded as 

reasonable for quantification. Whilst the sodium count is lower than those 

preceding it, the sodium count does not follow an increasing trajectory, suggesting 

that the variation is due to random error. Similarly, the lack of a magnesium 

intensity for ACT58 would appear to reflect some other phenomenon. 
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4.7.12 Surface geometry.  

Since there are no problems achieving successful analyses of the standard  

glasses, then the variable results from archaeological examples must be explained. 

The instrumentation employed cannot be responsible for the difficulties 

encountered. The principle problem is the quantification of the spectra to achieve 

a total, or near total compositional analysis.  
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Figure 4.22 Chart detail showing net intensity values fluctuating after repeated 

polishing and analysis. 

 

It might be argued that if a glass is severely weathered, even the exposed sub-

surface is not of the original composition. However, were this the case, then one 

should still expect to be able effect a complete analysis, but achieve a result of 

skewed proportions (i.e. lower alkali, higher silica). However, this is not the case 
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for the fragment of the oinochoe analysed by ESEM (see above)- the result, 

although normalised to 100 %, gives a quite different result to that of the XRF 

(even when the XRF results  are also normalised). 

 

It seems likely that the difficulties are the result of imperfect geometry during 

analysis, probably compounded by the difficulties of arranging the sample before 

the primary beam of X-rays. XRF analysis works on the assumption that the 

surface being analysed is perfectly flat: the Corning Standards are all mounted in 

epoxy resin, ground and polished to a 1 micron finish. As a result the count rate 

for the analysis of the standards (at 30 keV, 500 μA, 1 mm collimator) is typically 

in the region of 450 cps (for a non-lead standard).  

 

In contrast, the archaeological samples are museum pieces, which require 

minimum intervention: they cannot be broken up and mounted up in epoxy resin 

for XRF analysis. The adopted procedure, of polishing a selected area as 

unobtrusively as possible, whilst using the smallest collimator (1 mm) means that 

the ensuing surface is not as flat as would be ideal. The location of the sample 

surface before the X-ray beam is reliable, using a window cut into an acetate sheet 

(as with the standards). Where the glass has a deeply weathered surface, as was 

the case with the Lincoln oinochoe (thick crystalline deposit over the body and 

foot), the act of polishing effectively creates a shallow depression in the sample’s 

surface: this too distorts the geometry of the analysis. The count rates for the 

archaeological samples have been in the range 300 – 360 cps, reflecting the less 

than ideal detection of X-ray photons. 
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The problem of surface geometry also effects the analysis of the beads. Here the 

surface gradually becomes flattened with polishing- it is not acceptable, however, 

to grind a flat platform for analysis onto the side of each bead. As a result, a 

curved surface is arranged before the beam, which gives rise to a different 

excitation-detection. 

 

The analysis of small archaeological artefacts which could not be either heavily 

sampled for mounting in epoxy resin blocks (like the standards), nor ground to a 

flat platform proved problematic. The XRF procedures developed here, whilst 

suitable for large glass pieces which could be suitably prepared or sampled were 

not appropriate for the minimal intervention required of small artefacts like glass 

beads. 

 

In view of these observations, it was decided to pursue an alternative method of 

analysis for the principle quantitative analysis. Electron microprobe analysis was 

selected for a number of reasons: this technique is well established and an 

instrument is available at the Department of Earth Sciences in Oxford. Although 

the technique requires the sampling of the artefacts under study, in reality the 

removal of a small fragment for mounting in an epoxy resin block is less intrusive 

than the grinding and polishing of a flat platform on an artefact required to attempt 

high quality analysis using the XRF system.  This can be readily observed by 

reference to Figure 4.21 above. 
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4.8 Experiments to establish ideal instrument and operating conditions for 

the analysis of ancient glasses II: Electron Microprobe Analysis. 

 

4.8.1 Sample preparation. 

The artefacts were sampled by pressure flaking a small fragment c. 1-2 mm2 from 

an unobtrusive part of the archaeological artefacts (i.e. the base of vessels or 

adjacent to the perforation of beads). The samples were then mounted in epoxy 

resin blocks and polished down to 1 μm. The blocks were coated with carbon to 

make the surface conductive- a necessary preparation for non-conducting surfaces 

in electron microprobe analysis and SEM work. 

 

Figure 4.23 Archaeological Samples mounted in epoxy resin block, polished to 1 

μm and carbon coated prior to EMP analysis and EDXMA work, scale 1:1. 

 

Access to the machine itself was limited (due to costs), and therefore the 

opportunity to experiment with the operating conditions of the analyses were not 

an option as with XRF. Fortunately the machine has been used for the quantitative 

analysis of ancient glasses for at least a decade. Previous work has involved the 

definition of ideal conditions for analysing ancient glasses (Henderson 1988b). 

The instrument used for this project was a Cambridge Microscan 9 system, at the 

Dept. of Earth Sciences, University of Oxford. The operating parameters defined 
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by Henderson (1988) were adopted. The machine was calibrated prior to use by 

Dr Norman Charnley (who maintains the laboratory in Oxford), using a range of 

pure element, geological and Corning Standards.  

 

Prior to the analysis of the archaeological samples, Corning B, not used in the 

calibration procedure, was analysed as an unknown to check upon the system. The 

accumulated analyses of this standard can be used to ascertain the precision and 

accuracy of the data. The samples were analysed at 20 kV, with a beam current of 

40 nA, and a defocused beam of 80 micron diameter.  

 1 2 3 4 5 6 7 0 σ σ as % of 
0  

Na2O 16.26 16.76 16.28 16.62 15.44 16.71 16.62 16.38 0.43 2.61
MgO 1.18 1.09 1.12 1.07 1.1 1.1 1.16 1.12 0.04 3.27
Al2O3 4.35 4.41 4.38 4.37 4.85 5.36 4.44 4.59 0.35 7.65
SiO2 60.95 61.87 60.98 60.36 62.96 62.86 61.98 61.71 0.92 1.49
P2O5 0.79 0.8 0.79 0.74 0.75 0.75 0.7 0.76 0.03 4.34
SO3 0.51 0.57 0.51 0.45 0.54 0.48 0.69 0.54 0.07 13.53
Cl 0.2 0.22 0.18 0.17 0.16 0.17 0.16 0.18 0.02 11.5
K2O 1.01 1.03 1.04 1.01 1.05 1.03 1.04 1.03 0.01 1.37
CaO 8.74 8.86 8.32 8.55 8.8 8.63 8.61 8.64 0.17 1.93
TiO2 0.07 0.09 0.06 0.06 0.04 0 0.07 0.06 0.03 47.83
Cr2O3 0.03 0.02 0.02 0 0.02 0 0 0.01 0.01 90.27
MnO 0.27 0.26 0.24 0.23 0.29 0.26 0.23 0.25 0.02 8.1
FeO 0.3 0.35 0.35 0.38 0.33 0.38 0.35 0.35 0.03 7.42
CoO 0.05 0.06 0.05 0.08 0.05 0.05 0.08 0.06 0.01 21.82
NiO 0.05 0.06 0.05 0.13 0.06 0.12 0.09 0.08 0.03 38.96
CuO 2.87 2.78 2.76 2.6 2.68 2.77 2.71 2.74 0.08 2.89
ZnO 0.29 0.15 0.12 0.15 0.28 0.19 0.19 0.2 0.06 31.12
As2O5 0 0 0 0 0 0 0 0 0 0
SnO2 0 0.03 0.01 0.01 0.05 0.01 0.04 0.02 0.02 80.55
Sb2O5 0.41 0.42 0.3 0.46 0.48 0.52 0.44 0.43 0.06 14.86
BaO 0.12 0.12 0.1 0.12 0.12 0.12 0.12 0.12 0.01 5.97
PbO 0.43 0.48 0.54 0.48 0.49 0.47 0.35 0.46 0.05 11.87
Total 98.88 100.43 98.2 98.04 100.54 101.98 100.07   
 

Table 4.20 Repeat analyses of Corning Standard B using Electron Microprobe 

Analysis. In the table 0 indicates the mean value, σ is the standard deviation and 

final column shows the standard deviation as a percentage of the average. 
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 mean Corning Standard B Ea 
Na2O 16.38 17 0.62
MgO 1.12 1.03 0.09
Al2O3 4.59 4.36 0.23
SiO2 61.71 61.55 0.16
P2O5 0.76 0.82 0.06
SO3 0.54 0.5 0.04
Cl 0.18 0.2 0.02
K2O 1.03 1 0.03
CaO 8.64 8.56 0.08
TiO2 0.06 0.089 0.029
Cr2O3 0.01 0.005 0.005
MnO 0.25 0.25 0
FeO 0.35 0.34 0.01
CoO 0.06 0.046 0.014
NiO 0.08 0.099 0.019
CuO 2.74 2.66 0.08
ZnO 0.2 0.19 0.01
As2O5 0 0 0
SnO2 0.02 0.04 0.02
Sb2O5 0.43 0.46 0.03
BaO 0.12 0.12 0
PbO 0.46 0.61 0.15
Total 99.929

 

Table 4.21 showing error expressed in terms of the absolute error of the mean 

(Ea). 

Ea = 0 - x1 

where:  0 = average measurement 

x1 = true value 

 

The errors may also be expressed as percentages of the known value:   
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1 2 3 4 5 6 7 average error 

Na2O 5.79 2.9 5.68 3.71 10.54 3.19 3.71 5.07 
MgO 0.84 8.4 5.88 10.08 7.56 7.56 2.52 6.12 
Al2O3 3.08 4.5 3.79 3.55 14.93 27.01 5.21 8.87 
SiO2 0.97 0.52 0.93 1.93 2.29 2.13 0.7 1.35 
P2O5 5.95 4.76 5.95 11.9 10.71 10.71 16.67 9.52 
SO3 5.56 5.56 5.56 16.67 0 11.11 27.78 10.32 
Cl 0 10 10 15 20 15 20 12.86 
K2O 8.18 6.36 5.45 8.18 4.55 6.36 5.45 6.36 
CaO 0.34 1.72 4.48 1.84 1.03 0.92 1.15 1.64 
TiO2 30 10 40 40 60 100 30 44.29 
Cr2O3 500 300 300 100 300 100 100 242.86 
MnO 3.57 7.14 14.29 17.86 3.57 7.14 17.86 10.2 
FeO 14.29 0 0 8.57 5.71 8.57 0 5.31 
CoO 42.86 71.43 42.86 128.57 42.86 42.86 128.57 71.43 
NiO 44.44 33.33 44.44 44.44 33.33 33.33 0 33.33 
CuO 6.3 2.96 2.22 3.7 0.74 2.59 0.37 2.7 
ZnO 45 25 40 25 40 5 5 26.43 
As2O5 0 0 0 0 0 0 0 0 
SnO2 100 25 75 75 25 75 0 53.57 
Sb2O5 10.87 8.7 34.78 0 4.35 13.04 4.35 10.87 
BaO 14.29 14.29 28.57 14.29 14.29 14.29 14.29 16.33 
PbO 7.5 20 35 20 22.5 17.5 12.5 19.29 

 

Table 4.22 showing individual errors of analyses expressed as a percentage of the 

true value. 

 

4.8.2 EMP of archaeological samples. 

The data from the EMP analysis of archaeological samples have proven more 

consistent than that derived from XRF. Firstly, the analyses typically have totals 

of 100 % +/- 3%, without recourse to any normalisation procedures indicating a 

realistic analyses. On occasion, results would be very low (i.e. circa 60 %) with an 

unlikely composition (negligble SiO2, very high Cl). These results are derived 

from analyses of the epoxy blocks rather than the glass sample due to 

misalignment of the electron beam during the setting up of the analyses. Such 

results are rejected. It is not possible to make a measurement of the accuracy of 

the analyses on unknown archaeological samples- this can only be done using 

 182



well-analysed standards as unknowns (as above). It is possible to undertake 

repeated analyses of archaeological samples to achieve a measurement of the 

precision of the data. Sample 85 was analysed 8 times (at different locations on 

the mounted sample’s surface). 

 1 2 3 4 5 6 7 8 mean stdev
Na2O 15.5 15.86 15.84 15.55 15.71 15.58 15.54 15.78 15.67 0.14
MgO 2.29 2.25 2.23 2.16 2.28 2.28 2.18 2.37 2.26 0.07
Al2O3 1.52 1.66 1.51 1.5 1.76 1.48 1.44 1.96 1.6 0.18
SiO2 65.15 65.7 64 65.4 65.31 65.76 65.5 65.83 65.33 0.59
P2O5 0.19 0.17 0.22 0.22 0.19 0.17 0.17 0.22 0.19 0.02
SO3 0.18 0.18 0.21 0.21 0.18 0.21 0.21 0.21 0.2 0.02
Cl 0.73 0.73 0.78 0.82 0.76 0.84 0.82 0.77 0.78 0.04
K2O 1.38 1.32 1.28 1.38 1.33 1.32 1.32 1.38 1.34 0.04
CaO 5.36 5.11 5.16 5.2 5.32 5.2 5.14 5.37 5.23 0.1
TiO2 0.09 0.09 0.11 0.09 0.11 0.13 0.11 0.13 0.11 0.02
Cr2O3 0 0.03 0.02 0 0.02 0 0.02 0 0.01 0.01
MnO 0.03 0.01 0.04 0.01 0.01 0.03 0.01 0.03 0.02 0.01
FeO 9.86 9.45 9.87 9.62 8.85 10.06 9.83 8.85 9.55 0.47
CoO 0.06 0 0.02 0.03 0.03 0 0.02 0.08 0.03 0.03
NiO 0.02 0 0 0.01 0 0 0.02 0.02 0.01 0.01
CuO 0 0 0.04 0.08 0.01 0 0.04 0 0.02 0.03
ZnO 0.06 0.02 0.08 0.08 0.05 0.03 0 0 0.04 0.03
As2O5 0.02 0.03 0.02 0.02 0.02 0 0 0.05 0.02 0.02
SnO2 0.03 0 0.03 0.01 0.01 0 0 0 0.01 0.01
Sb2O5 0.02 0.09 0.02 0.04 0.15 0.09 0.06 0.09 0.07 0.04
BaO 0.02 0.04 0.04 0.02 0.05 0.04 0.01 0.01 0.03 0.02
PbO 0 0.01 0 0.04 0.01 0.06 0 0 0.02 0.02
Total 102.51 102.75 102.52 102.49 102.16 103.28 102.44 103.15  
 

Table 4.23 Repeat EMP analysis of sample 85 to establish Standard Deviation 

 

4.8.3 Discussion of the errors.  

The data from the EMP tests is more readily applicable to archaeological material 

than the XRF; since the sample preparation is identical (i.e. both standards and 

samples are mounted in epoxy resin and polished to 1 μm), whereas the XRF 

procedure was designed within the limitations of minimal intervention upon the 

artefact. 
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4.8.4 Comparison of the data quality between XRF and EMP. 

It is possible to compare the evaluations of the quantitative data from XRF and 

EMP. The most obvious difference between the test results on Corning Standards 

A and B is the number of oxides for which data is available for comparison: some 

22 oxides/elements for EMP and 16 oxides for XRF. This reflects the analysts’ 

choice of key components for detection and quantification- the fewer number for 

XRF are because of the laboriously slow quantification procedure necessary with 

the system employed in Nottingham. There are still sufficient components for 

consideration. Whilst the tests consider data on different standards, they may still 

be compared. It is should also be noted that the XRF data was collected over the 

course of one day, whilst the EMP data at intervals over 12 months: errors due to 

instrumental drift should be minimised by the respective calibration procedures, 

but any persisting would be greater in the EMP data. 
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 EMP Ea Corn. B XRF Ea Corn. A 
Na2O 0.62 1.36
MgO 0.09 1.5
Al2O3 0.23 0.77
SiO2 0.16 0.39
P2O5 0.06 0.01
SO3 0.04
Cl 0.02
K2O 0.03 0.4
CaO 0.08 0.47
TiO2 0.029 0.1
Cr2O3 0.005
MnO 0 0.15
FeO 0.01 0.06
CoO 0.014 0.04
NiO 0.019 0.01
CuO 0.08 0.1
ZnO 0.01 0.004
As2O5 0
SnO2 0.02
Sb2O5 0.03
BaO 0
PbO 0.15 0.06
SrO 0.08

 

Table 4.24 Comparison of the average gross errors on Corning Standards A and B 

using XRF and EMP methods of analysis. 

 

As with the discussion above, it is useful to convert these gross errors into 

measures of the percentage of the published value: 
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 EMP Ea as % of true value XRF Ea as % of true value 
Na2O 3.81 9.51 
MgO 8.04 56.39 
Al2O3 5.25 77 
SiO2 0.26 0.59 
P2O5 7.59 7.69 
SO3 7.84  
Cl 11.11  
K2O 2.88 13.94 
CaO 0.96 9.34 
TiO2 48.33 12.5 
Cr2O3 25  
MnO 0 15 
FeO 2.86 5.5 
CoO 28 23.53 
NiO 38 50 
CuO 2.9 8.55 
ZnO 8.33 9.09 
As2O5 0  
SnO2 200  
Sb2O5 10  
BaO 0  
PbO 27.78 50 
SrO 80 

 

Table 4.25 Comparing percentage errors between XRF and EMP analyses. 

 

The EMP data has much lower errors for all but two of the compared oxide 

components: CoO and TiO2.The higher error encountered by EMP with these two 

oxides can be explained by two factors. Firstly they are both present in Corning 

Standard B at trace level (TiO2 = 0.089 % and CoO = 0.046 %). They are also 

present in Corning Standard A at trace level (TiO2 = 0.79 % and CoO = 0.17%), 

but of a different order of magnitude (9 x the TiO2 and 4 x the CoO levels). 

Secondly, these are both oxides of transition metals with relatively high atomic 

weights (Ti = 22, Co = 27), and as described above, wavelength-dispersive 

systems tend to be less sensitive than energy dispersive systems for heavier 

elements. 
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The EMP data demonstrates the superior overall accuracy of the technique (using 

the described procedures) on glass standards. The precision is simularly 

impressive.  

 

EMP stdev XRF stdev 
Na2O 0.43 0.35
MgO 0.04 0.47
Al2O3 0.35 0.06
SiO2 0.92 0.55
P2O5 0.03 0.02
SO3 0.07
Cl 0.02
K2O 0.01 0.03
CaO 0.17 0.04
TiO2 0.03 0.03
Cr2O3 0.01
MnO 0.02 0.01
FeO 0.03 0.01
CoO 0.01 0
NiO 0.03 0
CuO 0.08 0.01
ZnO 0.06 0
As2O5 0
SnO2 0.02
Sb2O5 0.06
BaO 0.01
PbO 0.05 0
SrO 0

 

Table 4.26 Comparative standard deviations for EMP and XRF analyses 

 

4.9 Non-Quantitative Methods.  

In addition to the electron microprobe and limited XRF analyses, two other 

techniques were used: Energy Dispersive X-ray MicroAnalysis (using an SEM) 

and X-ray Diffraction. The principles behind both of these techniques are briefly 
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described above. These techniques were employed to elucidate aspects of the glass 

technology not revealed through standard quantitative analysis.  

 

4.9.1 Energy Dispersive X-ray Micro Analysis (EDXMA). The system used 

was a R. J. Lee Personal SEM at the Science and Research Department of the 

Conservation Centre, National Museums and Galleries on Mersyside. This system 

is a computer operated SEM with Energy Dispersive analysis capabilities. No 

additional sample preparation was required; the samples preperation for EMP 

analysis was appropiate for EDXMA work. The instrument was used for imaging 

and qualitative analysis of observed discrete inclusions in the glasses (e.g. see 

Figure below). The machine was operated at 20 keV and 5 μA. 

 

 188



Figure 4.24 Micrograph and ED spectrum of silica-rich inclusion in Sample 51 

(probably unfused raw ingredient or opacifier added at final stages of production). 

 

4.9.2 X-Ray Diffraction 

X-ray diffraction was selected to identify the crystalline phases in the glass matrix 

of a number of the samples. Quantitative analysis from the electron microprobe 

does not distinguish between the different phases under the beam during analysis. 

The EDXMA permits the analyst to distinguish between phases in the structure, 

and even give a compositional analysis, but does not tell how the elemental 

components are bonded. XRD will actually identify the crystal structures, 

permitting the reconstruction of their origin (such as what kind of mineral has 

been used). 

 

Only a few samples were analysed using this method to identify inclusions in 

specific glasses. Material left from the preparation of EMP samples was used. 

This material was not available for more than a limited number of samples, and 

was in less than ideal quantities. The analysis was undertaken by Mr Dave Triff of 

the Dept of Materials, Nottingham University. The few mg used were ground in a 

ball mill, mixed into a paste with acetone, and placed on a glass plate in the 

sample holder of the XRD machine. Before the acetone had finally evaporated, the 

paste was agitated to ensure the crystalline component was not systematically 

aligned. 

 

Unfortunately the samples tested were insufficient to give sufficient signal for 

reliable identification of the crystalline components of those glasses analysed. 
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Since the sampling procedure was constrained by the necessity to minimally 

damage the artefacts, XRD proved of little use here.  

 

4.10 Conclusions. 

This chapter has sought to explain the analytical techniques investigated and 

applied to the analyses of ancient glass for the purpose of this project. Rather than 

a single method, it has been found essential to integrate the data from a suite of 

techniques. The process of defining ideal operating conditions and the 

development of sampling and the preparation of material for analysis proved to be 

a useful exercise. Whilst XRF was initially considered to be the most appropriate 

technique for this project, the constraints of sample preparation meant that micro- 

techniques were adopted as the principle analytical tools. 
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CHAPTER 5: RESULTS AND DATA ANALYSIS. 

 

5.1 Introduction 

This chapter presents the results from the analysis of 248 samples of Italian glass 

beads, vessels, ingots and working debris. The samples are from sites ranging 

from the Final Bronze Age (c 1100 BC) to Iron Age and Roman material (up to 

the 2nd Century BC). The samples are mainly from sites from the Po valley in 

Northern Italy, and are supplemented by material from various British collections 

of Early Italian glass, which extend to Central Italy. The sample selection and 

strategy are discussed in greater detail in Chapter 2. 

 

In this chapter, the characterisation of material from each individual site is 

outlined according to the basic analytical data, before discussing the analyses in 

light of the entire body of data and in comparison with appropriate published 

work. The complete results of the analyses are listed in Appendix 1. Tables of 

processed and on occasion raw data are used to substantiate arguments made in 

the text. Sample numbers can be used to cross reference to full artefact 

descriptions in the catalogue (Appendix 2) and pictures (Appendix 3). 

 

The most significant question addressed by the analysis of this material is that of 

localised manufacture and continuity of technological traditions particularly 

between the Late Bronze Age and Iron Age. In addition the changes in 

glassmaking are traced through the first Millennium BC and related to the wider 

transitions noted from the Mediterranean region. The specific question of defining 

an Etruscan glassmaking tradition is addressed, and issues concerning the 
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definition of production are raised. The broader archaeological inferences derived 

from the data are discussed in greater detail in Chapter 6. 

 

5.2 Treatment of the data 

All of the full compositions are not reproduced in this chapter, but may be found 

in Appendix 1. After analysis of samples, the data, which was stored on disc and 

on paper output, was transferred to Microsoft Excel files. The paper and computer 

records were double-checked with the layout of the individual stubs to ensure that 

analyses’ location co-ordinates conformed to the mounted samples. The colour, 

site of origin and date for each sample was added to the compositional data. 

Initially the compositional data from each site was simply reviewed, and the 

individual examples identified according to their membership of the established 

glass categories: mixed-alkali, high - magnesia soda - lime - silica, low magnesia 

soda - lime - silica, potash, and high - lead glasses. Any other exceptional 

characteristics, such as exceptionally high or low values for alumina, lime or iron 

oxide were noted at this point. Oxides responsible for colouring individual 

samples were also identified. The data was then transferred to SPSS files for 

further processing. 

 

In addition to the plotting of components in established bi-variate charts to 

examine variation within groups of glasses (which would tend simply to confirm 

the categorisation already performed using the classic groupings) several other 

statistical routines were employed. Principle Component Analysis (PCA), 

Correlation Matrices and Cluster Analysis were all used to identify variation 

within the data, establish which components were responsible for the variation and 
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help select suitable oxides and factors for bi-variate plotting in order that the 

variation might be explained. PCA is a statistical technique for multivariate 

analysis, which is useful for looking at underlying trends across a large number of 

variables (Shennan 1988, p 261). The technique identifies the variables principally 

responsible for the observed variation in a complex dataset, and by the generation 

of factor matrices the relationships between variables can be observed. The 

allocation of scores for each variable in the principal components permits bi-

variate plotting of the factors, more clearly identifying association and variation in 

the data (here the rotated matrices are generated using the Varimax method). The 

PCA matrices correlation matrices and dendrograms are not all reproduced here, 

since they are simply tools for identifying variation within datasets: bi-variate 

plots are more frequently included since they illustrate the explanation of such 

variation. 

 

The mean values are given for glasses of a similar type from each site, alongside 

additional information where useful. In places this includes a reduced glass 

composition, on the model of Brill (1999b p 8-10), which seeks to characterise the 

glass on the basis of seven components. These figures have been normalised to 

100 %. Some caution should be employed when using the reduced compositions, 

since they assume that the glass is manufactured in at least two stages: firstly as a 

colourless base to which colorants or opacifiers are added in a second, distinct 

activity. This division can be inferred from the cuniform texts (Oppenheim et al. 

1988) and review of data on variously coloured glasses from single sources (see 

Brill 1988) as well as direct observation of archaeological specimens (Rehren 

2000b, p 19), however it cannot be assumed to be the case for glass produced at 
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all times. Additional caution should be exercised in light of the possibility of the 

colourant/opacifying materials supplementing the key components (for example, 

the introduction of additional magnesia, alumina and iron with cobalt colourants- 

see 3.7.20, and also Shortland and Tite 2000).  

 

 

5.3 Characterisation of glasses from Final Bronze Age Sites 

Samples were taken from material from three Final Bronze Age sites in the Po 

valley. One of these has been widely investigated by glass scientists before 

(Frattesina) on account of the extensive evidence for glassworking (and other 

industrial activities). The contemporary sites of Borgo San Zeno (Montagnana) 

and Mariconda have also yielded evidence of glassworking, and were considered 

useful indicators of the broader technology of glassmaking/working within which 

Frattesina was operating. 

 

5.3.1 Montagnana 

18 samples: 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 337, 338, 

339, 340, 341and 342. 

 

The Montagnana material was collected from Montagnana and Este Museums. All 

the material from the former was recovered from the Final Bronze Age site of 

Borgo San Zeno (samples 308- 319 inclusive), and the artefacts held by Este 

Museum are thought to be from the same site except 342 which was recovered 

from a nearby funerary context (“Corredo Ossuaria”). At the time of sample 

collection it was assumed that 342 was contemporary to the other samples. The 
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material consisted of 14 samples from beads and their decoration, 3 samples from 

ingot fragments and one irregular glass fragment. 

 

Glass types. 

As expected, the glass is of the mixed-alkali type, a previously identified 

European Bronze Age compositional grouping (Henderson 1988a, also see section 

3.7.3 above and 5.4.1 below). Sample 342 is an exception, and will be discussed 

separately below. The mean compositions, standard deviation, compositional 

ranges and reduced compositions are tabulated below.  

 

The glasses contain between 4.15 and 8.16 wt % Na2O, and between 7.02 and 12.88 wt % K2O, 

with an average total alkali content of 15.88 %. These figures are well within the ranges of soda 

and potash compositions from previously published mixed-alkali glasses (see table 5.5).  

 
 mean stdev min max Reduced comp. sample 342 
Na2O 6.39 1.09 4.15 8.16 6.73 18.14 
MgO 0.78 0.29 0.58 1.84 0.82 1.69 
Al2O3 2.12 1.03 1.54 6.02 2.23 3.89 
SiO2 73.73 3.27 62.27 76.25 77.68 69.83 
P2O5 0.13 0.03 0.07 0.19 0.02 
SO3 0.02 0.01 0.00 0.03 0.31 
Cl 0.07 0.04 0.01 0.15 0.82 
K2O 9.53 1.75 7.02 12.88 10.04 0.20 
CaO 1.65 0.50 1.28 3.35 1.74 4.21 
TiO2 0.06 0.03 0.02 0.18 0.07 
Cr2O3 0.01 0.02 0.00 0.07 0.02 
MnO 0.02 0.02 0.00 0.05 0.27 
FeO 0.72 0.45 0.46 2.39 0.76 0.80 
CoO 0.02 0.05 0.00 0.22 0.03 
NiO 0.04 0.06 0.00 0.23 0.02 
CuO 3.25 1.47 0.56 5.35 0.01 
ZnO 0.02 0.02 0.00 0.06 0.02 
As2O5 0.00 0.00 0.00 0.02 0.00 
SnO2 0.09 0.16 0.00 0.53 0.01 
Sb2O5 0.02 0.03 0.00 0.11 0.06 
BaO 0.04 0.01 0.02 0.06 0.02 
PbO 0.03 0.04 0.00 0.11 0.03 
Total  100 100.47 
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Table 5.1 Mean composition for mixed-alkali glasses from Montagnana, and 

sample 342. 

 

 

 
 

Figure 5.1 Backscattered electron SEM images of sample 311 showing silica-rich 

inclusions (dark grey) in a glassy matrix (light grey). Note the micro-cracks 

around the inclusion, and alkali depletion in the EDS spectrum. The EDS 

spectrum on the left is from the silica-rich zone, and of the glassy matrix to the 

right. 
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The glasses are also all mixed-phase, containing silica-rich components in a glassy 

matrix (see Figure 5.1). This phenomenon has been identified in previous studies 

(Biavati and Verità 1989, Santropadre and Verità 2000). The silica-rich phase has 

been identified in a small number of samples as tridymite, a crystalline form of 

silica formed at temperatures above 870 °C.  It has been suggested that the silica-

rich phase is the result of the addition of finely ground sand or quartz towards the 

end of the melt to opacify the glass, rather than remnant batch material. This has 

been asserted on the basis of observed irregular boundaries between the silica-rich 

phase and the glassy matrix (Biavati and Verità 1989, p 296). In addition to the 

well-defined silica-rich phase, there appears to be a network of cracks and 

alkaline-depleted zones within the glass, where weathering has preferentially 

removed the potash and soda contents of the glass. This porous structure is 

probably a consequence of the differential thermal expansion coefficients of the 

two phases and subsequent weathering. The observed sharp interface between two 

phases may therefore be due to the properties of the two phases, rather than the 

late introduction of additional silica to the melt. The silica-rich phase in part may 

be due to the formation of devitrification products crystallising out of the melt. 

Indeed, further comparison of examples from Frattesina with other mixed-phase 

glasses from prehistoric Italian contexts suggests that the Frattesina glasses 

contain more rounded crystalline “inclusions” than other glasses (Santropadre and 

Verità  2000, p 35), reflecting either higher temperatures or longer heating times. 

The consistent occurrence and distribution of the silica-rich phase in all the 

mixed-alkali glasses examined by SEM in this study would tend to suggest that 

this is a characteristic of the glassmaking technology, rather than a separate 

opacifying process. The incomplete fusion of the raw components, rather than 
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complete dissolution into a single vitreous phase is a reflection of the technology 

involved. It has been suggested that the mixed phase glasses are the partial fusion 

of vitreous material recovered from the manufacture of cementation faience and 

silica-rich crystalline material (Santropadre and Verità  2000, p 40). However, 

examination of the artefact forms, from wound beads to shaped-ingots 

demonstrate that the mixed-alkali glass was worked whilst plastic, which could 

not be achieved with a barely adhering and semi-fused solid glass-sand mix. The 

material would have been maintained at the kind of temperatures from which glass 

could be made from raw components. The hot working characteristics of the 

artefacts identify the material as distinct from any faience technology, which 

involve baking and firing-type processes. On these grounds, the term “glass” is 

retained in preference to “glassy faience” for this mixed-phase material. 

 

Colourants 

All of the Montagnana samples are blue except 311 and 315, which are opaque 

reds. All of the 15 blue mixed-alkali glasses contain copper, but are not all simply 

coloured by copper oxide alone (mean copper oxide content = 3.25 %, range 0.56 

- 5.35 %). Three of the blue glasses are principally coloured using cobalt oxide: 

samples 311, 312, and 337 contain 0.05, 0.06 and 0.22 % CoO respectively. Their 

copper oxide contents are commensurately lower: 1.41, 0.63 and 0.56 %. These 

cobalt-containing glasses also contains raised levels of both iron and nickel in 

comparison with the other blue mixed-alkali glasses. They do not contain raised 

levels of magnesia, alumina and zinc, which would be consistent with an Egyptian 

cobalt source, or the known zinc-rich sources in Iran (such as Tabriz: Henderson 
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1998, 2000, p 32). There is also no associated increase in arsenic, antimony, lead 

or manganese, which are elsewhere noted as companions of cobalt (see 3.7.20).  

 

Amongst the other samples there is a group largely coloured by copper (2.08 - 

5.35 % CuO), and several glasses with lower copper oxide contents with trace 

quantities of cobalt which may be intermediate glasses formed by the recycling of 

cullet (samples 310, 314, 318, 340: CuO content 1.72 - 3.88 %, CoO content 0.02 

- 0.06 %). Interestingly, the highest cobalt coloured glass is an ingot fragment 

(sample 337), and has a concentration of cobalt four times the required quantity to 

colour the glass, raising the possibility of the use of concentrated coloured glass 

being produced with the intention of being used to colour other glasses (an early 

“zaffre”). Similarly, the highest copper - containing blue glass is also an ingot 

fragment (sample 308, CuO content = 5.35 %). Other writers have noted that the 

cobalt-coloured glasses from the contemporary site of Frattesina have raised levels 

of nickel (Brill 1992, p 14) this pattern can be observed in the Montagnana data, 

(see Figure 5.2,) which would tend to confirm that low levels of cobalt in some of 

the blue glasses is a consequence of recycling cobalt blue glasses. The cobalt ores 

from the Erzebirge region are associated with silver, nickel and bismuth, however 

the widespread incidence of cobalt minerals in Germany, Austria, Switzerland, the 

Czech republic and Slovakia make it very difficult to relate cobalt colourants to 

specific sources in this area (Henderson 1985, p 279). 
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Chart 5.2 Showing correlation between cobalt and nickel oxides in blue mixed-

alkali glasses from Montagnana. 

 

The two opaque red glasses are both worthy of note (samples 311 and 315). Of the 

mixed-alkali glasses all but one have very low magnesia contents: average 0.77 %, 

range 0.58 - 1.84 %. Sample 311 has a magnesia content of 1.84 %, and if it is 

excluded from these figures, then the mean becomes 0.71 % with a reduced range 

of 0.58 - 0.88 %. Again these values are consistent with the previously published 

data. However, sample 311 cannot be readily dismissed as an intrusive find - it is 

a red opaque decorative band on a blue bead (sample 310) and has 5.8 % soda and 

12.88 % potash (figure 5.5). It is distinct from the other mixed-alkali glasses on 

the basis of other variables: the alumina levels are very much higher (6.02 % 

compared with a mean of 1.88 %, range 1.54 - 2.45 % for the other glasses) and 

the iron content is elevated (2.39 %, compared with a mean of 0.61 %, range 0.46 
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- 1.09 for the other glasses). The lime levels are also slightly higher (3.35%) than 

the average for the rest of the mixed-alkali (mean = 1.54, range 1.28 - 2.09). 

Intriguingly, sample 311 has a relatively low copper content of 1.41 %. This 

amount is sufficient to be recognisable as a deliberate addition to the glass, and to 

impart colour, but it is lower than might be expected (in the region of 6- 10 %, 

Bimson 1992, p 167-168). The copper must be present as crystals of cuprous 

oxide (cuprite) and/or metallic copper (Hughes 1972, p 99). SEM imaging and 

qualitative EDS analysis of high atomic weight inclusions demonstrate the 

presence of copper-rich colourants (see figure 5.3). 

 

 
 

Figure 5.3 Backscattered electron SEM image of sample 311, also showing 

copper-rich inclusion using qualitative EDS analysis. 

 

However, these inclusions are not common within the matrix of sample 311, and 

elemental mapping of the sample demonstrates that copper is present throughout 

the matrix, probably dissolved into the glass (see Figure 5.4). 

 

 201



 

 

Figure 5.4 Elemental mapping of sample 311 using SEM. Note the silica-rich 

(and alkali-depleted) phases, and widely dispersed copper content. 

 

Although these glasses predate the development of high-lead copper-coloured red 

glasses (Bimson 1992, p 168), it is possible that the high iron content facilitated 

the dissolution of copper oxide in the glass and the subsequent precipitation of 

cuprite/metallic copper (Henderson 1985, p 282, Guido et al. 1984, p 251, Hughes 

1972, p 99). This bead’s decoration represents a significant technological feat, for 

the red-coloured glass has to be produced and maintained under reducing 

conditions, yet in this case it has been succesfully applied and marvered into to a 

glass core which has a much higher copper content (3.53 %), which has not been 

reduced itself. Could it have been applied, marvered flush and then polished to 

remove surface oxidation? Although sample 311 is from the mixed-alkali 

tradition, it is distinct from the other glasses from Montagnana, and perhaps 

should be regarded as a specialist composition developed to achieve and retain its 

red opaque colour when applied to a copper-rich blue coloured glass bead matrix. 
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Figure 5.5 sample 310 (bead matrix) and sample 311 (red opaque decoration). 

(Scale 2:1) 

 

Another sample from this group (315) is also red opaque coloured. However, its 

composition is much more consistent with the main body of samples. Sample 315 

is a broken annular bead, with rounded edges and a heat-distorted surface (see 

figure 5.6). The red colour does not extend over the entire surface and careful 

examination reveals that the bead is also dark blue in colour. The broken edges of 

the bead are rounded and coloured red. It seems most likely that this bead may 

never have been intended to appear red, but has undergone high temperatures and 

a reducing atmosphere after having been broken. This is significant in illustrating 

how the usual copper-coloured blue glass recovered from Montagnana can 

potentially be blue or red depending upon the final heat treatment, but is distinct 
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from the glass composition employed as red decoration to the blue glasses. Work 

on similar material from Frattesina suggests that the red surface layer consists 

solely of copper oxide without the presence of glass (Santopadre and Verità 2000, 

p 38-39, and Figures 11-12). This has been interpreted as the deliberate 

application of a coating of finely powdered cuprite and metallic copper to the 

surface of the bead. However, this seems highly unlikely, given the frequent 

occurrence of red patches on a range of the artefacts discussed here (beads, bead 

decoration and ingot fragments), especially in the case of sample 315 where the 

broken edge of the bead is also red coloured. The separate application of a red 

coating was not necessary to achieve the required finish. The apparent surface 

enrichment of reduced copper oxide (c. 2 µm thick) observed by Santopadre and 

Verità is not likely to be an applied layer, but deserves experimental investigation 

to be more fully understood. 

 

   

 

Figure 5.6 Images of sample 315, scale 2:1. 

 

Sample 342. 

During sampling it was assumed that sample 342 from Montagnana was from the 

excavation of the Bronze Age site of Borgo San Zeno. This was not a complete 

artefact, but a collection of small irregular fragments of translucent blue glass 

stored with an annular bead of translucent blue glass. The artefact is from a 

funerary context, but no other information is available. From the chemical 
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analysis (see table 5.1 above) it is quite different to the mixed-alkali glasses 

recovered from Borgo San Zeno, and should not be considered alongside the other 

samples. It is a low magnesia, soda-lime-silica glass with a significant manganese 

content (0.27 %) typical of a Roman glass from the late 2nd Century BC onwards. 

Given the poorly recorded context, it seems most likely that this is a much later 

product and not contemporary to the other Montagnana material. 
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Figure 5.7 Copper and Tin contents of Bronze Age Glasses from Montagnana 

coloured by copper. 

 

To investigate the use of copper and copper alloys in the colouring of the glasses, 

it is useful to examine the relationship between the copper and tin components in 

the copper coloured glasses (in this case the entire assemblage excluding samples 

342 and 337). Simply running a correlation analysis between the two variables 

may not indicate the nature of the relationship: a bivariate correlation (Pearson) 
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gives a correlation coefficient of 0.194. However, by displaying the data on a 

bivariate scatter plot is possible to discern two distinct types of copper colourant: 

one group containing almost pure copper, and the other containing a copper/tin tin 

alloy. A trend line on the latter group gives a gradient of y = (8.1949x) + 0.6492, 

which gives an approximate ratio of copper : tin of 1: 0.122 (i.e. 89 % copper/11% 

tin alloy). This indicates that the Montagnana assemblage represents the use of 

both copper - tin alloys and pure copper as colourants. The group designated as 

coloured using “pure” copper was examined to ensure that the copper is not 

associated with any other component, such as silica, alumina, lead oxide which 

might indicate that it is derived from some other material such as a copper-rich 

slag. A bivariate correlation matrix for these glasses demonstrated no positive 

corelates for copper oxide, and only a single strong negative correlation (-0.603) 

between cobalt oxide and copper oxide. This would tend to confirm that the 

copper raw material was almost pure. 

 

A number of the Montagnana beads were decorated with white opaque glass 

trailed around a blue matrix, unfortunately this glass was badly weathered and 

friable, and none of the attempts to sample the white opaque glass were 

successful. 

 

 

5.3.2 Frattesina 

25 samples: 220, 222, 223, 224, 225, 226, 227, 228, 230, 233, 234, 235, 236, 289, 

290, 291, 292, 293, 294, 295, 296, 298, 299, 300, and 301. 
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The Frattesina material was collected from the Museum of Adria (samples 220 - 

236) and the Museum of Rovigo (samples 289 - 301): the latter holding the 

majority of glass collected from excavations and fieldwalking from Fratte 

Polesine.  

 

The sampled Frattesina assemblage includes anthropomorphic figures, glass 

ingots, working waste, beads and applied bead decoration, crucible residue and a 

core-formed glass vessel. 

 

Glass types 

The dominant glassmaking tradition amongst the Frattesina material is the mixed-

alkali glass type previously identified as a Bronze Age European phenomenon 

(Henderson 1988a, also see section 3.7.3 above and 5.4.1 below). 22 of the 25 

samples are of this type, which have a mixed soda/potash composition. The soda 

values range from 3.3 - 8.83 % and the potash values range from 6.24 - 13.27 %, 

which are consistent with previously published analyses of this compositional type 

(both upper range values are less than 1 % above the other analyses, and the lower 

values are within previously published compositions). The average overall alkali 

content is 15.49 %.  

 

Three analyses are not mixed-alkali glasses (samples 235, 236 and 294, a bead, a 

vessel and a crucible residue respectively ), these are all potash glasses. In these 

glasses potash (16.53, 17.3 and 15.67 %) is the principle alkali, and there are 

commensurately low soda contents (0.96, 1.3 and 1.76 %). This technology is 

distinct from the mixed-alkali tradition, and suggests that a different plant ash has 
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been employed in their manufacture. Potash-rich plant ashes are typically inland 

plants, such as wood or fern ash. The manufacture of potash glasses is well 

established in Northern Europe during the Medieval period, but has not been 

widely documented for earlier periods in the region. Potash glasses are known 

elsewhere during the 1st Millenium BC, such as China, India, Pakistan and SE 

Asia (Hall and Yablonsky 1998, p 1243).  

 

The potash glasses are also characterised by slightly raised calcium oxide levels, 

which is consistent with observations of the later, medieval glasses. However, the 

lime levels of 2.05, 3.34 and 3.15 % are not comparable to the high lime potash 

glasses of Medieval Europe, which are typically much higher in the range of 10 - 

22 % (for example see the analyses of Medieval Northern European window 

glasses in Brill 1999b, p 260 - 290). A low lime level is characteristic of the 

European mixed-alkali group. There are further aspects of these glasses, which 

distinguish them from other potash glasses. There is also no significant increase in 

magnesia levels when compared with the other mixed-alkali glasses, which is 

often a feature of potash glasses. Low magnesia content is one of the remarkable 

characteristics of the mixed-alkali glass type, and it is a feature shared by the 

potash glasses from Frattesina. The processes involved in the preparation of the 

raw materials for fusion into glass are therefore likely to be the same for both the 

mixed-alkali glass and the potash glass. This is likely to have been a refining of 

plant ashes which preferentially removed magnesia and calcium compounds.  

 

Whilst there was no doubt that samples 235, 236 and 294 are from contemporary 

contexts to the other Frattesina material, the shared low-magnesia phenomenon is 
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useful confirmation. The three artefacts involved, a miniature core-formed vessel, 

a finished bead and crucible residue demonstrate that this glass type is represented 

amongst both working debris and finished artefacts, meaning that potash glass is 

not an exotic import, but likely to have been worked alongside the mixed-alkali 

type. Its use for a bead (a ubiquitous artefact at Frattesina) and the miniature core-

formed glass vessel indicate the potash glass is not a specialised recipe reserved 

for specific forms. However, it cannot be attributed to natural variation in the 

mixed-alkali recipe: there is no continuum of potash and soda values across the 

Frattesina data set between “mixed-alkali” and “potash” glasses. The difference 

between the two glass types is a distinct one, and although they are from the same 

technological tradition, they are not due to natural variation in plant ash chemistry. 

 
 mean MA min max stdev reduced comp. 235 236 294 mean K2O 
Na2O 5.67 3.30 8.83 1.27 5.97 0.96 1.30 1.76 1.34
MgO 0.81 0.50 1.90 0.29 0.85 0.61 0.83 0.77 0.74
Al2O3 2.86 1.03 7.19 1.64 3.01 2.84 2.11 1.50 2.15
SiO2 73.19 62.12 82.60 4.67 77.08 67.96 71.97 77.47 72.47
P2O5 0.14 0.05 0.24 0.05 0.21 0.25 0.14 0.20
SO3 0.31 0.00 4.33 0.96 0.03 0.06 0.09 0.06
Cl 0.07 0.01 0.34 0.08 0.01 0.01 0.01 0.01
K2O 9.82 6.24 13.27 2.05 10.34 16.53 17.30 15.67 16.50
CaO 1.96 1.02 3.94 0.81 2.06 2.05 3.34 3.15 2.85
TiO2 0.06 0.00 0.19 0.04 0.06 0.13 0.07 0.09
Cr2O3 0.01 0.00 0.05 0.01 0 0.01 0.00 0.00
MnO 0.02 0.00 0.05 0.01 0.05 0.05 0.07 0.06
FeO 0.66 0.31 1.98 0.34 0.70 0.43 0.61 0.61 0.55
CoO 0.02 0.00 0.08 0.02 0.02 0.01 0.02 0.02
NiO 0.02 0.00 0.32 0.07 0 0.02 0.00 0.01
CuO 3.42 0.05 5.86 1.70 5.39 3.59 1.18 3.39
ZnO 0.01 0.00 0.03 0.01 0 0.02 0.02 0.01
As2O5 0.01 0.00 0.13 0.04 0 0.00 0.00 0.00
SnO2 0.22 0.00 0.57 0.18 0 0.21 0.03 0.08
Sb2O5 0.02 0.00 0.09 0.02 0.01 0.02 0.02
BaO 0.05 0.02 0.06 0.01 0.05 0.05 0.05
PbO 0.03 0.00 0.18 0.04 0.03 0.04 0.04
Total   100 97.5 101.88 102.67 
 
Table 5.2 Summary of data for Frattesina glasses  
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Colourants 

The Frattesina assemblage includes a range of colours, amongst those sampled 

here are 9 blue translucent glasses, 8 blue opaque glasses, 1 white opaque, 3 red 

opaque 2 green translucent and 2 aqua translucent. The “blue” category includes a 

range of shades including turquoise and azzure, and the distinction between 

opaque and translucent is not a clear one: all of the completed artefacts were 

densely coloured but often translucent when thin fragments were observed against 

a light source. 

 

Samples 266 (aqua translucent ingot fragment) 294 (aqua translucent crucible 

residue) and 301 (pale green translucent pinched-off working waste) are all 

essentially uncoloured glasses, without the deliberate addition of colourants, and 

owe their respective tinges to a combination of their iron impurities and oxidation 

state during production.  

 

There is no indication of the use of a decolourant in any of the Frattesina glasses: 

antimony pentoxide would be the most likely during this period. There is no 

accidental inclusion of manganese oxide in the glass compositions which is often 

a component of potash-rich plant ashes, and can have a decoloursing effect (see 

3.7.15 and 3.7.16). 

 

Copper is present in all of the blue and red glasses, and one dark green translucent 

glass (sample 300). The copper content is quite variable amongst this group (from 

0.29 - 5.86 %), but the only sample with less than 1.3 % copper oxide content is 

sample 222, an opaque blue ingot fragment which is also coloured with cobalt 
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(copper oxide = 0.29 %, cobalt oxide = 0.08%). This is the highest cobalt oxide 

content of any of the glasses from Frattesina. There are three samples with 

moderate cobalt oxide contents: samples 222, 234 and 290 containing 0.08, 0.06 

and 0.06 % CoO respectively. 10 samples contain low cobalt oxide levels 

accompanied by significant proportions of copper oxide suggesting that the cobalt 

is an accidental component (i.e. 0.02 - 0.03 % CoO, with 1.36 - 5.46 % CuO). 

This would tend to be confirmed with similar levels of CoO in samples 294 and 

301 which are essentially uncoloured glasses.  
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Figure 5.8 Scatter plot showing the relationship between tin and copper oxides in 

glasses from Frattesina. 

 

The copper used as a colourant in the glasses is derived from two sources: a 

relatively pure copper, and a copper-tin alloy. A trendline across the correlated tin 

and copper -containing glasses has a gradient of y = 9.3641 x + 1.0442, which 
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equates to a copper : tin ratio of approximately 1 : 0.107 (, or 90 % copper, 10 % 

tin). 

 

5.3.3 Mariconda 

19 samples: 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 

214, 215, 216, 217, 219.  

 

All the samples were collected from the Museum of Adria, and are derived from 

the Final Bronze Age site of Mariconda. The assemblage includes glass residue on 

“crucibles”, working waste, beads and a possible fragment of overheated frit. 

 

Glass types 

All of the Mariconda material is from the Bronze Age Europe mixed-alkali glass 

tradition (Henderson 1988a, also see section 3.7.3 and 5.4.1). The glasses contain 

significant quantities of both soda (4.79 - 6.79 %) and potash (7.34 - 12.03 %), 

and low levels of magnesia (0.46 - 1.76 %) and lime (1.51-3.19 %) characteristic 

of this glass type. Two of the samples are not from “true “ glasses, but are 

nonetheless worthy of note. 
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 Mean (excluding 205 
and 206) 

min Max stdev Reduced comp. 

Na2O 5.99 4.79 6.79 0.53 6.03 
MgO 0.87 0.46 1.76 0.34 0.88 
Al2O3 2.81 1.86 4.26 0.77 2.83 
SiO2 76.99 70.91 81.88 3.39 77.48 
P2O5 0.18 0.1 0.38 0.06  
SO3 0.04 0 0.33 0.08  
Cl 0.08 0.03 0.21 0.05  
K2O 9.63 7.34 12.03 1.18 9.69 
CaO 2.20 1.51 3.19 0.48 2.22 
TiO2 0.07 0.04 0.13 0.02  
Cr2O3 0.02 0 0.12 0.03  
MnO 0.04 0 0.16 0.04  
FeO 0.86 0.49 1.37 0.25 0.87 
CoO 0.11 0 0.36 0.12  
NiO 0.15 0 0.56 0.17  
CuO 1.39 0.08 3.33 1.30  
ZnO 0.01 0 0.06 0.02  
As2O5 0.04 0 0.18 0.06  
SnO2 0.05 0 0.27 0.10  
Sb2O5 0.05 0 0.34 0.08  
BaO 0.03 0.01 0.05 0.02  
PbO 0.02 0 0.06 0.02  
Total 100 

 
 

Table 5.3 Mean values for mixed-alkali glasses from Mariconda 

 

Samples 204, 205 and 206 

Samples 204, 205 and 206 are all derived from the same object (see figure 5.9), 

which was of uncertain nature during sampling. The artefact consists of a roughly 

triangular shaped fragment of material 15 mm long, 7 mm wide and 7 mm thick, 

consisting of three layers of material. The surface is a layer of blue (turquoise?) 

translucent glass 2.5 mm thick adhering to a band of friable white crystalline 

material 2.5 mm thick which in turn lies on a compact layer of grey granular 

material. All three layers were sampled and analysed.  
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Figure 5.9 Samples 204, 205 and 206 from fragment of “frit”. Scale 1:1. 

 
 204 205 206 
Na2O 5.56 0.68 5.8
MgO 1.76 0.49 0.65
Al2O3 4.26 1.44 1.85
SiO2 74.59 94.72 85.14
P2O5 0.17 0.1 0.17
SO3 0.03 0 0.03
Cl 0.06 0.09 0.06
K2O 7.34 1.34 6.99
CaO 1.68 1.15 1.66
TiO2 0.13 0.04 0.06
Cr2O3 0.02 0.02 0.03
MnO 0.1 0.01 0.03
FeO 1.3 0.47 0.56
CoO 0 0 0
NiO 0.01 0 0
CuO 0.08 0.09 1.04
ZnO 0 0 0
As2O5 0 0 0
SnO2 0 0.01 0.01
Sb2O5 0 0.02 0
BaO 0.04 0.02 0.05
PbO 0 0 0.04
Total 97.13 100.69 104.17

 
 

Table 5.4 Analytical data for samples 204, 205 and 206. 

 

Sample 204 from the upper layer is a typical mixed-alkali glass, and is 

unremarkable, except perhaps for its low copper content (0.08 %) and absence of 

cobalt: its blue colour probably derived in part from the iron content (1.3 %). It 

also has slightly raised magnesia content in comparison with the rest of the 
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assemblage (1.76 %), but is comparable with other contemporary mixed-alkali 

glasses. The crystalline material in the centre of the object proved to be almost 

entirely silica (94.72 %) supplemented with small quantities of alumina, lime and 

potash. This silica-rich composition might suggest that the object was a fragment 

of molten glass which has fused to a patch of sand, such as might happen during 

glassworking, or even be a fragment of poorly made faience with a vitreous layer 

adhering to a partially fused silica-rich core. The third layer, however proved to be 

of composition very similar to the glass. With raised silica levels and slightly 

lowered potash content, this material could be interpreted as a fragment of 

overfired frit. The upper surface of the artefact has become fully vitrified, the 

centre of the piece is a patch of silica-rich material, which has been incompletely 

mixed, and the third layer is of partially fused raw materials. Alternatively the 

material may be a fragment of faience-type material, formed by the efflorescence 

method (Nicholson 1993, p 10-14). In this process the surface of the object 

becomes enriched in alkaline salts during the drying of a paste object made from a 

mixture of silica and alkaline-rich materials. During subsequent firing the surface 

vitrifies, leaving a glassy surface fused to a sintered silica-rich core. This would 

explain the layered effect observed in the artefact, with a vitreous surface, an 

alkali-depleted zone and a core of composition similar to the surface. The 

appearance of this material would also be consistent with the suggested initial 

production technique for mixed-alkali glass described by Santopadre and Verità, 

in which the faience cementation method is outlined (Santopadre and Verità 2000, 

p 31-32). However, these authors fail to recognise that their suggested 

manufacturing process does not account for the indications of hotworking found 

on the Frattesina artefacts amongst their samples. 
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SEM images and EDS analysis of the different phases in each sample confirms the 

distinction between the three layers of the artefact suggested by the EMP results. 

Figures 5.10 and 5.11 demonstrate the two phases present in the upper glassy 

layer (sample 204), in which the darker zone is silica-rich. This can be contrasted 

with Figure 5.12 which shows a backscattered image of sample 205 which is 

principally silica-rich material, and figure 5.13 of sample 206, which is again a 

two-phase material. 

 

 
 

Figure 5.10 Backscattered SEM image of sample 204 showing the two-phase 

composition typical of the mixed-alkai glasses. 
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Figure 5.11 Backscattered SEM images of sample 204 with qualitative EDS 

analyses of the different phases. 
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Figure 5.12 Backscattered SEM images of sample 205 showing two phases but 

dominated by the silica-rich phase 

 

 
 

Figure 5.13 Backscattered SEM images of sample 206. 
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This interpretation is tentative, but does explain the lack of a deliberately added 

colourant in sample 204: all of the other Mariconda samples are coloured by 

copper, cobalt or both. This would suggest the addition of colourant is a secondary 

process to the primary fusion of the raw materials into glass. The absence of 

faience from the site would tend to suggest that this piece is not a fragment of 

faience production waste. If this object is a fragment of frit (or even faience 

waste), it is the only concrete evidence for the primary production of mixed-alkali 

glass. Whilst the sheer quantity of glassworking material from Frattesina in 

particular, and also Mariconda and Montagnana strongly suggest the production of 

mixed-alkali glass in the Po valley during the Final Bronze Age, there has been no 

definitive evidence of glassmaking. This piece might therefore be very significant. 

 

 

Colourants 

All of the sampled glasses were blue (translucent or opaque), attempts to sample 

the white spiral decoration on some of the beads were unsuccessful. Apart from 

sample 204 (see above) all of the glasses were coloured by copper or cobalt (11 

samples of blue glasses contained 0.05+ % CoO). The oxides of these two 

elements are very strongly negatively correlated (-0.716, Pearson bivariate 

correlation), and demonstrate that the makers of these glasses knowingly selected 

cobalt or copper compounds as colourant, and were not tied into a craft tradition 

which demanded both to achieve the desired colour. Only one of the samples 

contained both oxides in quantities suitable for colouring (sample 218, 0.09 % Co 

O, and 3.29 % CuO), and one further sample coloured by copper oxide had a trace 
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of cobalt oxide, suggesting that recycling was practised (sample 208, 3.33 % CuO, 

0.02 % CoO). 
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Table 5.14 Cobalt versus copper oxide content for glasses from Mariconda 

 

An examination of those glasses coloured by copper compounds alone reveals that 

both pure copper and a copper-tin alloy were employed (see figure 5.15 below). A 

trend line across the copper-tin correlated data gives a gradient of y = 11.333 x + 

0.4268, which equates with a copper : tin ratio of 1 : 0.08 (or a bronze 

composition of approximately 92 % copper 8 % tin). 
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Figure 5.15 Scatter plot showing relationship between the copper and tin oxide 

contents of glasses from Mariconda coloured with copper alloy 

 
 

5.3.4 Discussion of the Bronze Age material. 

As described above this project involved the study of material from three Final 

Bronze Age sites, with 62 samples in total (one of which is excluded from this 

discussion, sample 342, see 5.3.1 above). The identification of mixed-alkali 

glasses and subsequent analysis of this particular glass technology is discussed in 

some detail above (section 3.7.3). The glasses from these three sites are 

remarkably consistent with the published material on mixed-alkali glasses from 

previous studies of European Bronze Age glasses, which are summarised in tables 

5.5 - 5.8 below. 
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site date  Na2O K2O MgO 
Rathgall (n=16) 9th-7th C. BC average 7.7 8.47 0.68

 range 3.3-8.8 7.3-10.3 0.6-0.80
Hauterive-Champréveyres 11th-10th C. BC average 5.5 10.1 0.7
(n=31)  range 3.7-7.6 7.7-13.2 0.4-1.1
Kassell (n=4) 12th-8th C. BC average 4.6 10.6 0.58

 range 3.07-5.6 8.97-13.9 0.54-0.63
Frattesina (Brill) (n=6) 12th-9th C. BC average 5.63 9.91 0.58

 range 4.85-6.91 8.71-12.30 0.43-0.7
Frattesina (B+V) (n=3) 12th-9th C. BC average 6.06 9.43 0.82

 range 5.0-7.4 8.5-9.9 0.7-0.9
Frattesina (Biavati) (n=3) 12th-9th C. BC average 5.15 7.82 0.62

 range 3.79-6.12 6.77-8.96 0.59-0.64
Grotte de Bringairet (n=10) 16th-12th C. BC average 6.72 8.78 0.75

 range 4.3-8.0 6.5-11.8 0.64-0.88
Grotte de Sindou (n=2) 12th-10th C. BC average 6.5 8.35 0.6

 range 6.0-7.0 7.8-8.9 0.4-0.8
Billy le Theil (n=11) 12th-10th C. BC average 4.4 10.8 0.6

 range 3.5-4.8 9.1-11.3 0.5-0.6
Le Fort-Harrouard (n=4) 1500-1100 BC average 4.75 8.18 0.55

 range 3.4-6.3 5-10.2 0.4-0.7
Le Depot de Reallon (n=4) 1200-900 BC average 4.98 9.48 0.65

 range 3.5-6 8.7-10.7 0.4-1.3
Rancogne (n=2) 1200-900 BC average 4.65 8.6 0.7

 range 4.5-4.8 7.8-9.4 0.6-0.8
Gord (n=1) 2895-2420 BC(?) 1 sample 7.7 9.2 0.6
Vicofertile (n=1) 1500-1100 BC 1 sample 5 10.5 0.58
Quingento (n=1) 1500-1100 BC 1 sample 6.6 9.5 0.5
all mixed-alkali (n=99) 2895(?) - 600 BC average 5.82 9.52 0.67

 range 3.07-8.8 5-13.2 0.4-1.3
 
Table 5.5 Values of soda, potash and magnesia from earlier studies of prehistoric 

mixed-alkali glasses. Values taken from: Rathgall (Henderson 1988b, 16 

analyses), Hauterive-Champréveyres (Henderson 1993b, 31 analyses), Kassel 

(Hartman et al. 1997, 4 analyses), Frattesina (Brill 1992, 6 samples)(Biavatti and 

Verità 1989, 3 analyses) (Biavati 1983, 3 samples), Grotte de Brinairet, Grotte de 

Sindou, Gord (Guilaine et al. 1991), Billy le Theil, Rancogne, Le Fort-Harrouard, 

Le Depot de Reallon (Gratuze et al. 1998), Vicofertile and Quingento (Bellintani 

et al. 1998). 
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site date  Na2O K2O MgO 

Mariconda, Frattesina and 12th-9th C. BC average 5.99 9.67 0.82
Montagnana (n=57)   range 3.3-8.83 6.24-13.27 0.3-0.46

 
 

Table 5.6 Values of soda, potash and magnesia contents from Bronze Age mixed-

alkali glasses from Mariconda, Montagnana and Frattesina, analysed for this 

project. 

 

The Frattesina assemblage included three distinct glasses, which may be 

characterised as potash rather than mixed-alkali glasses. These glasses share 

common features with the contemporary mixed-alkali glasses, such as low 

magnesia and lime contents which distinguish them from potash glasses from 

other periods and locations (see table 5.7 and section 5.3.2). 

 
 

site date  Na2O K2O MgO 
Frattesina (n=3) 12th-9th C. BC average 1.34 16.50 0.74
 range 0.96-1.76 15.67-17.30 0.61-0.83

 
Table 5.7 Values of soda, potash and magnesia contents from Bronze Age potash 

glasses from Frattesina. 

 

It is important to note that these three contemporary sites from the Final Bronze 

Age not only have glass which is manufactured in the same tradition (perhaps 

even in the same place), but all of these sites have evidence of glassworking using 

the mixed-alkali glass. To date, examples of mixed-alkali glasses from other sites 

have been completed items only. Whilst it seems likely that this glass type was 

being manufactured at Frattesina, given the range and quantity of material 

recovered, there is no conclusive evidence that this was the case. It is also possible 
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that glass was being manufactured from raw material at Mariconda (see 5.3.3 

above). It is absolutely clear that the polity of Frattesina, for all its economic 

power and significance in inter-regional commerce (Bietti Sestieri 1997), it does 

not exercise monopolistic control over glass technology. 

 

By comparing the standard deviations and mean values for the components for the 

glasses from these three sites, it is possible to see how similar they are: 

 
 

 mean (this project) stdev (this project) stdev (other MA glasses) mean (other MA 
glasses) 

Na2O 5.99 1.060 1.371 5.83
MgO 0.82 0.303 0.156 0.65
Al2O3 2.62 1.268 1.162 2.25
SiO2 74.55 4.189 3.003 74.28
P2O5 0.15 0.054 0.712 0.26
SO3 0.14 0.607 0.052 0.08
Cl 0.08 0.058 0.095 0.11
K2O 9.67 1.702 1.488 9.52
CaO 1.94 0.657 2.061 2.64
TiO2 0.06 0.031 0.023 0.08
Cr2O3 0.01 0.020 0.009 0.02
MnO 0.03 0.025 0.045 0.03
FeO 0.74 0.359 0.177 0.55
CoO 0.05 0.084 0.096 0.06
NiO 0.07 0.123 0.170 0.10
CuO 2.73 1.748 1.357 2.81
ZnO 0.01 0.018 0.026 0.03
As2O5 0.02 0.044 0.143 0.08
SnO2 0.13 0.165 0.180 0.14
Sb2O5 0.03 0.053 0.202 0.17
BaO 0.04 0.014 0.003 0.01
PbO 0.02 0.035 0.085 0.05

 
Table 5.8 Standard deviations for mixed-alkali glasses from this study, and those 

previously published. 

 

It is remarkable that the mixed-alkali glasses, from studies of material across 

Western Europe over a considerable timespan are so consistent: the 99 samples 

 224



from previous studies demonstrate very little variation across the entire dataset, 

and when compared with the standard deviations for components from this study, 

they cannot be readily distinguished in terms of either mean values or degree of 

variance for the measured components. 

 

In order to try and establish if the mixed-alkali glasses might be differentiated on 

compositional grounds, both PCA and Correlation analysis were performed on the 

merged data from the published analyses and this study. Since not all the 

published analyses have data on the same range of oxides, a reduced number of 

variables were examined in the PCA (i.e. 156 samples from 13 sites). For the 

maximum inclusion of samples, only 6 oxides could be included (Na2O, MgO, 

Al2O3, SiO2, K2O and CaO). Two components accounted for 61 % of the 

variation. 

 

 Component 1 Component 2 
Na2O -0.119 -0.883
MgO 0.701 -0.149
Al2O3 0.759 4.91E-02
SiO2 -0.778 -1.36E-02
K2O -8.57E-02 0.82
CaO 0.603 0.352

  

Table 5.9 PCA analysis on combined Mixed-alkali glasses: Rotated Component 

Matrix. Extraction Method: Principal Component Analysis. Rotation Method: 

Varimax with Kaiser Normalization. Rotation converged in 3 iterations. 

 

A scatter plot of the 2 principal components labelled by site does not identify site-

specific groups (figure 5.16). The tight clustering of samples from Billy Le Theil 
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reflects their narrow compositional variation, rather than significant difference 

from the body of data as a whole. 

 

 
 

Figure 5.16 Scatter plot of 2 principal components of combined mixed-alkali 

glasses. 

 

All the samples and all oxides sought were available for the generation of a 

correlation matrix, permitting the identification of components for bi-variate 

plotting, however no site-specific groups were identified using this method. 

 

Colourants in the mixed-alkali glasses. 

The majority of the mixed-alkali glasses are coloured blue, in a range including 

turquoise translucent to dark blue opaque, but also include opaque white, opaque 

red and uncoloured glasses (which often carry faint tints due to their iron content). 
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Guilaine has noted that mixed-alkali glasses were not coloured using cobalt prior 

to 1200 BC (Guilaine et al. 1991), and this observation remains true for those 

early glasses published in the meantime (i.e. Bellintani et al. 1998 and Gratuze et 

al. 1998). Both cobalt and copper oxides are used in glasses from Final Bronze 

Age contexts examined here. 
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Figure 5.17 Cobalt oxide vs nickel oxide, all published mixed-alkali glasses and 

this study. 

 

Figure 5.17 clearly shows the correlation between cobalt and nickel across all 

mixed-alkali glasses, where cobalt has been used as a colourant. 
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Figure 5.18 Scatter plot of copper and cobalt oxide contents of published mixed-

alkali glasses and this study. 

 

The use of copper and cobalt as colourants can be seen as alternate choices 

amongst the mixed-alkali glass making tradition: whilst a few glasses contain 

significant quantities of both colourants, the majority of glasses contain one or 

other in amounts sufficient to colour the glass (i.e. >0.05 % CoO and >1% CuO). 

Whilst those sites with glass employing cobalt oxide as a colourant (Hauterive-

Champréveyres, Frattesina, Mariconda and Borgo San Zeno (Montagnana)) also 

used copper oxide, a number of sites had material exclusively coloured with 

copper oxide (Le Depot de Reallon, Le Fort-Harroud, Kassell, Rancogne, Billy le 

Theil and Grotte de Sindou). The few examples coloured with both oxides were 

derived from the first group, and seem likely to be the product of recyling of glass 

from both colouring traditions. Clearly there is not universal or continual access to 

the cobalt containing colourant. This is significant because it would suggest that 
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despite the impressively consistent composition of the mixed-alkali glasses, there 

would appear to be distinct patterns of colourant use. This would imply numerous 

production (or glass colouring) centres. Where cobalt is used, it is alongside 

copper, but there would appear to be more limited access to the cobalt. The more 

limited use of cobalt in the French material may reflect a lack of access to the raw 

material (from the Erzebirge?). 

 

Whilst the Bronze Age mixed-alkali glasses have been well characterised, there 

remains a number of technological issues which are unresolved. There is a clear 

need for experimental work to establish working properties, microstructure and 

temperatures employed in the manufacture of these glasses. It would be useful to 

establish how the red glasses remain red and workable in an oxidising 

environment in decoration such as with sample 310 (see 5.3.1). The retention of a 

significant silica-rich crystalline phase would define the limitations of the 

temperature regime used. Similar work has already been undertaken for other 

compositional types (for example Stern and Schlick-Nolte 1994, p 21-24 and 

McLoughlin et al.2001 for the working properties of soda-lime silica glasses): 

defining the technological boundaries for their production and working would be 

helpful. Experimental work could also contribute to a better understanding of the 

chemistry of the raw components- what kind of refining processes could give rise 

to the resultant, highly consistent glass chemistry (such as suggested by 

Santopadre and Verità 2000, p 29-31). 
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5.4 Etruscan Material. 

The group of samples defined here as Etruscan are from artefacts of diverse 

provenance, some of which have been assigned an Etruscan origin on grounds of 

typology rather than secure archaeological context. Nonetheless, this collection of 

samples represents a diverse range of artefacts and permits useful observations on 

the relationship between Etruscan glasses and the Final Bronze Age mixed-alkali 

glassmaking tradition. 

 

18 samples: 10, 11, 12, 150 - 161, 176 - 178 inclusive. 

 

The Etruscan samples are all taken from material held in the UK, since approaches 

to Italian and US institutions for samples of Etruscan glass were unsuccessful. 

They are from several museum collections: Lincoln County Museum, National 

Museums and Galleries on Merseyside, Bristol City Museum and from Cambridge 

University Museum of Archaeology. The artefacts ranged from core-formed glass 

vessels to beads and complex brooch decorations, variously dated to the period 

800-500 BC. 

 

Glass types 

This group of glasses contains: potash glasses (5 examples: 150, 151, 159, 160 

and 161), high - magnesia soda - lime - silica glasses (1 example: sample 152) and 

low magnesia soda - lime - silica glasses (12 examples: 10, 11, 12, 153, 154, 155, 

156, 157, 158, 159, 176, 177, 178). Clearly this assemblage cannot be considered 

as coming from a single glassmaking tradition. The variable provenance means 
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that it is useful to discuss these glasses initially in terms of their general type, 

before consideration of form and association. 
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Figure 5.19 Glass types from the Etruscan group: magnesia against potassium 

oxide. 

 

The potash glasses are a remarkable phenomenon: they are all very similar in 

composition, and each contains no identifiable soda. They are all undecorated blue 

translucent annular beads. These glasses are characterised by their high potash 

content (mean 16.29 %, range 14.73 - 17.70 %), and absence of soda (i.e. below 

the lower limit of detection for the machine used here: 0.01 % Na2O, Henderson 

1988b, p 80). The lack of soda is most unusual, and without parallel in the glass 

literature for all periods of production. There is however, no reason to doubt the 

analyses. They have no overall lack of alkali, which might indicate a weathered 

glass, all approach 100 % totals and were not analysed consecutively, suggesting 
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that a temporary machine error is not responsible for the low soda values. The 

EMPA results were confirmed by repeat analysis of three samples (159, 160 and 

161) using EDS analysis on an SEM specifically designed for the detection of low 

atomic weight elements. Spectra from these analyses demonstrate no characteristic 

sodium peak (Figure 5.20). 

 

  
 

 

Figure 5.20 SEM images and EDS spectra for Etruscan potash glasses 159 and 

160. 

 

Several aspects of the glasses’ chemistry are consistent with the use of a terrestrial 

plant ash as the alkali source. The high potassium oxide levels are accompanied 

by similarly high phosphate and lime levels: phosphorous pentoxide mean 6.19 %, 

range 5.44 - 7.34 compared to a mean of 0.12 %, range 0 - 0.5 % for the other 

“Etruscan” group, and a mean of 11.47 % lime, range 10.6 - 12.51 % compared 

with a mean value of 6.62 %, range 3.25 - 8.56 for the other glasses. However, the 

magnesia levels remain remarkably low for a glass made with a plant ash: mean 
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0.31, range 0.24 - 0.38 %. This would suggest some kind of preparatory process 

preferentially removing the magnesia, but not the phosphates and lime. 

 

 

 
Figure 5.21 Scatter plot of potash against phosphorous pentoxide for all samples 

in this study. Group A is the Etruscan potash glasses, quite distinct from the 

Bronze Age mixed-alkali glasses (Group B) and the soda-lime-silica glasses 

(Group C). 

 

When compared with all the other samples examined in this study, in terms of the 

phosphorous pentoxide and potassium oxide content, the Etruscan potash glasses 

are quite distinct. The strong association between these two components suggests 

a terrestrial plant ash as the alkali source for the glasses (also see 3.7.7). 
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These glasses are also characterised by their low alumina  and iron levels, 

reflecting a pure silica source (mean values of 0.49 and 0.24 compared with 2.05 

and 1.45% respectively). 

 
 
sample 150 151 159 160 161 mean stdev min max reduced comp. 
Na2O 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0.00 0
MgO 0.38 0.32 0.34 0.24 0.29 0.31 0.05 0.24 0.38 0.35
Al2O3 0.75 0.32 0.63 0.34 0.40 0.49 0.19 0.32 0.75 0.54
SiO2 58.27 62.87 61.30 65.62 61.82 61.98 2.66 58.27 65.62 68.27
P2O5 7.34 6.43 6.31 5.44 5.45 6.19 0.79 5.44 7.34 
SO3 0.52 0.58 0.52 0.00 0.47 0.42 0.24 0 0.58 
Cl 0.11 0.11 0.08 0.11 0.06 0.09 0.02 0.06 0.11 
K2O 17.70 15.42 16.48 14.73 17.14 16.29 1.22 14.73 17.70 17.95
CaO 12.51 11.98 11.58 10.67 10.60 11.47 0.83 10.6 12.51 12.63
TiO2 0.02 0.02 0.02 0.02 0.02 0.02 0.00 0.02 0.02 
Cr2O3 0.00 0.02 0.00 0.00 0.02 0.01 0.01 0 0.02 
MnO 0.01 0.03 0.03 0.08 0.07 0.04 0.03 0.01 0.08 
FeO 0.24 0.18 0.26 0.29 0.21 0.24 0.04 0.18 0.29 0.26
CoO 0.00 0.02 0.08 0.05 0.06 0.04 0.03 0 0.08 
NiO 0.06 0.10 0.01 0.08 0.01 0.05 0.04 0.01 0.10 
CuO 0.05 0.00 0.00 0.00 0.04 0.02 0.02 0 0.05 
ZnO 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0 0.02 
As2O5 0.85 0.21 0.07 0.32 1.91 0.67 0.75 0.07 1.91 
SnO2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 
Sb2O5 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0 0.02 
BaO 0.04 0.04 0.04 0.04 0.05 0.04 0.00 0.04 0.05 
PbO 0.01 0.02 0.01 0.05 0.01 0.02 0.02 0.01 0.05 
Total 98.88 98.67 97.76 98.10 98.63  100
 
Table 5.10 Summary data for Etruscan Potash glasses 

 

The potash glasses are all blue translucent and of similar form. Samples 159, 160 

and 161 are coloured with the use of cobalt oxide, containing 0.08, 0.05 and 0.06 

% CoO respectively. Sample 150 contains no cobalt oxide, and very low copper 

content (0.05 %): it is probably coloured by reduced iron oxide (0.24 %). Sample 

151 contained very low cobalt oxide levels (0.02 %), which must be responsible 

for the glass’s colour, in the absence of any copper.  
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The potash glasses from Frattesina can be briefly compared with these from 

Etruscan contexts (see Tables 5.2 and 5.10). The Frattesina potash glasses contain 

low soda levels compared with none detected in the Etruscan examples, and both 

groups have similarly low magnesia contents. Both groups have low alumina 

contents, but the Etruscan glasses contain less than 0.8% Al2O3, compared with a 

range of 1.5 - 2.84 % for the Frattesina glasses. The silica contents of the Etruscan 

glasses are lower, and do not contain the silica-rich crystalline phase present in the 

Frattesina material. The very high phosphorous pentoxide content of the Etruscan 

glasses (5.44 - 7.34 %), consistant with a potash-rich terrestrial plant ash is not 

matched in the Frattesina glasses (0.14 - 0.25 %, also see Figure 5.21). The two 

groups are also markedly different in their lime levels, with much greater 

quantities present in the Etruscan group (10.6 - 12.51 % compared to 2.05 - 3.15 

%).  

 

The Etruscan potash glasses contain elevated arsenic levels. This may be 

associated with the use of arsenic-rich cobalt for blue colourant, but there is no 

simple correlation between these components, with sample 150 containing 0.85 % 

As2O5, but no detectable cobalt oxide. The two samples with the highest arsenic 

content also contain the greatest amount of copper oxide (samples 150 and 161), 

which may indicate the use of an arsenic-rich copper. Arsenic can easily boil off 

during the preparation of metal ores, which may account for the variation in the 

levels seen here: its presence remains significant, but at present not entirely 

explicable. The Etruscan potash glasses are distinct from the earlier Frattesina 

potash glasses (which could be readily identified with the mixed-alkali 

technology). The Etruscan material nonetheless is a significant discovery. The 
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technology involved would appear to employ a terrestrial plant ash, rich in both 

potash and phosphates. The low magnesia content may indicate some refining 

process which has preferentially removed this component, but would be different 

to that used in the production of the Frattesina glasses, since phosphorous 

pentoxide remain to be included in the final glass composition. 

 

Two of the potash glass beads are from a single artefact: threaded on a copper 

alloy “earing” (samples 150 and 151, Bead Study Trust 1997, p 84: see Figure 

5.22 below), and are associated with a further anomalous composition: the only 

high magnesia soda - lime - silica glass in the “Etruscan” group. Samples 159 - 

161 are from an uncatalogued group from the Beck Collection labelled “Etruscan, 

800 - 600 BC, from Florence”. 

 
 

Figure 5.22 Etruscan earring with artefacts from which samples 150-152 were 

taken. The unlabelled bead is made of amber. Scale 2:1 
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There is only one high - magnesia soda - lime - silica glass (sample 152), which 

was associated with samples 150 and 151 (see above). With 4.38 % magnesia, this 

sample’s composition is consistent with the use of a soda - rich plant ash for the 

alkali source, and also contains raised level of potash (2.33 %). 

 

All of the other glasses are low - magnesia soda - lime - silica glasses consistent 

with the use of a natron type soda source.  

 
 mean stdev min max reduced comp. 
Na2O 17.67 1.71 14.8 20.02 18.21 
MgO 0.70 0.27 0.3 1.05 0.72 
Al2O3 2.17 1.78 0.35 6.08 2.23 
SiO2 67.50 4.89 61.5 74.78 69.57 
P2O5 0.11 0.16 0 0.50  
SO3 0.29 0.14 0 0.48  
Cl 0.90 0.29 0.43 1.49  
K2O 0.88 0.76 0.31 2.60 0.91 
CaO 6.59 1.65 3.25 8.56 6.79 
TiO2 0.10 0.07 0.04 0.26  
Cr2O3 0.01 0.02 0 0.05  
MnO 0.53 0.67 0 2.02  
FeO 1.53 2.04 0.29 7.34 1.57 
CoO 0.07 0.07 0 0.25  
NiO 0.05 0.06 0 0.16  
CuO 0.56 0.72 0 1.99  
ZnO 0.01 0.02 0 0.05  
As2O5 0.01 0.02 0 0.06  
SnO2 0.26 0.67 0.01 2.37  
Sb2O5 0.42 0.63 0 1.69  
BaO 0.05 0.02 0.01 0.09  
PbO 1.67 3.54 0 12.33  
Total 100.00 

 
Table 5.11 Summary data of low –magnesia –soda –lime silica glasses from 

“Etruscan” group. 

 

The glasses making up this group are of variable provenance, and cannot therefore 

be considered of a single tradition. The diversity is well illustrated by the variation 

in glass types, and also the diversity of alumina contents of these glasses. 
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Samples were taken from two Etruscan core-formed glass vessels (samples 10-

12). As described in Chapter 1 (1.3.2), these are representative of a glass vessel 

type unique to Etruscan contexts.  No previous chemical analysis has been 

performed on this group, and this study is the first attempt to characterise the glass 

employed in their manufacture. 

 

 
Figure 5.23 Etruscan core-formed glass vessel, from which samples 11 and 12 

were taken. 

 

Although the underlying form, whether oinochoe, alabastron or aryballos, may 

have an eastern origin, the decoration is known only from Etruscan material 

suggesting they were produced within the Etruscan world.  

 

Whilst three samples from two artefacts do not represent a comprehensive survey 

of Etruscan glass vessels, the results are worth commenting upon.  Firstly it is 

 238



interesting to note that despite their separate provenance, the two vessels have a 

similar chemistry. 

 
 Etruscan glass vessels 

650-550 BC 
 average Range 
Na2O 17.9 17.62-18.08 
K2O 0.33 0.31-0.36 
MgO 0.42 0.4-0.42 

 
Table 5.12 Key components of Etruscan core-formed glass vessels. 

 

The Etruscan glass vessels are fabricated from low magnesia soda-lime-silica 

glass: they have a low phosphate content (avg. = 0.02 wt.%), and raised chlorine 

and sulphur oxide levels associated with the use of natron. They are distinguished 

by their colouring agents: both contain copper (1.04 and 1.99 wt.% respectively). 

The darker, more densely coloured vessel also contains 0.11 wt.% cobalt oxide, 

sufficient to give the piece its hue. Most importantly, these analyses demonstrate 

no link whatsoever between the North Italian mixed-alkali glassmaking tradition 

and the Etruscan core-formed glass vessels. 

 

Colourants. 

The colourants used for the potash glasses have been briefly discussed above. The 

“Etruscan” group of glasses includes 9 blue translucent glasses (samples 10, 11, 

12, 150, 151, 158, 159, 160 and 161), 3 clear translucent glasses (samples 153, 

154 and 155), 2 white opaque glasses (samples 157 and 178), 2 red opaque glasses 

(samples 156 and 177), 1 yellow opaque (sample 176) and 1 green translucent 

glass (sample 152). 
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Of the blue translucent glasses, samples 150 and 10 are coloured using copper 

oxide (containing 0.05 and 1.05 % copper oxide respectively). Samples 151 and 

158 must have been coloured with very low cobalt content (0.02 % in each, and 

copper contents of none and 0.12 %), and samples 160, 161, 12, 159 and 11 were 

all definitely coloured with cobalt (with 0.05, 0.06, 0.08, 0.08 and 0.11 % CoO). 

 

 
sample 150 10 151 158 160 161 12 159 11 
Na2O 0.00 17.62 0.00 20.02 0.00 0.00 18.08 0.00 17.99 
MgO 0.38 0.45 0.32 0.80 0.24 0.29 0.4 0.34 0.42 
Al2O3 0.75 0.43 0.32 2.24 0.34 0.40 0.35 0.63 0.35 
SiO2 58.27 74.78 62.87 68.18 65.62 61.82 74.37 61.30 74.06 
P2O5 7.34 0.02 6.43 0.02 5.44 5.45 0.02 6.31 0.02 
SO3 0.52 0.21 0.58 0.24 0.00 0.47 0.21 0.52 0.24 
Cl 0.11 1.01 0.11 1.49 0.11 0.06 1 0.08 0.98 
K2O 17.70 0.36 15.42 0.41 14.73 17.14 0.31 16.48 0.31 
CaO 12.51 7.84 11.98 6.86 10.67 10.60 7.23 11.58 7.33 
TiO2 0.02 0.06 0.02 0.09 0.02 0.02 0.04 0.02 0.04 
Cr2O3 0.00 0.02 0.02 0.02 0.00 0.02 0 0.00 0 
MnO 0.01 0.01 0.03 0.55 0.08 0.07 0.01 0.03 0 
FeO 0.24 0.29 0.18 0.93 0.29 0.21 0.4 0.26 0.4 
CoO 0.00 0.02 0.02 0.02 0.05 0.06 0.08 0.08 0.11 
NiO 0.06 0.02 0.10 0.06 0.08 0.01 0 0.01 0 
CuO 0.05 1.04 0.00 0.12 0.00 0.04 1.85 0.00 1.99 
ZnO 0.00 0.00 0.00 0.00 0.02 0.00 0 0.00 0 
As2O5 0.85 0.00 0.21 0.00 0.32 1.91 0 0.07 0 
SnO2 0.00 0.01 0.00 0.03 0.00 0.00 0.01 0.00 0.04 
Sb2O5 0.02 0.00 0.00 0.30 0.00 0.00 0.04 0.00 0.02 
BaO 0.04 0.04 0.04 0.06 0.04 0.05 0.02 0.04 0.01 
PbO 0.01 0.06 0.02 0.16 0.05 0.01 0 0.01 0.15 
Total 98.88 104.29 98.67 102.60 98.10 98.63 104.42 97.76 104.46 

 
Table 5.13 Blue glasses from Etruscan group.  

 

The three clear translucent glass samples were taken from a fragmentary brooch 

decoration and two annular beads (samples 153 - 155). Intriguingly, all three 

contain CoO at levels of 0.05, 0.11 and 0.02 respectively. These levels might be 

expected to colour the glasses blue and remains a mystery. Samples 152 and 153 

have both been decolourised using manganese oxide, containing 2.02 and 1.44 % 

 240



respectively, which would strongly suggest that these glasses are from later 

contexts, from the 2nd Century BC onwards (see section 3.7.15). 

 

Sample 157 is a white opaque glass decoration on a red opaque bead, coloured 

using tin oxide (2.37 % SnO2). The lead content of this glass (2.25 % PbO) 

suggests that the glass may originally have been intended to be coloured opaque 

yellow using lead stannate (PbSnO3). When heated above 900 °C, lead stannate 

decomposes to tin oxide, a process that is irreversible (see 3.7.12). The use of tin 

oxide (and lead stannate) to colour and opacify glasses is currently dated to the 

2nd Century BC onwards (Henderson 1985, p 286, Henderson and Warren 1981, 

Henderson 1989a, p 49 - 51). Given the relatively poor provenance, it seems most 

likely that this particular artefact has been misidentified as Etruscan (Bead Study 

Trust 1997 p 84), and was actually made later than the Etruscan era.  

 

The other “white” opaque glass (sample 178) is from the combed decoration of a 

leech - shaped brooch slider. Initially considered an accidental inclusion, possibly 

of quartz, upon analysis it proved to be a fragment of glass. Backscattered SEM 

imaging and EDS analysis demonstrated that the EMPA analysis was not of the 

intended white inclusion, but of glass adhering to the edge of a silica-rich core. 

This highlights the potential for error when using a microprobe aligned using an 

optical system. 
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Figure 5.24 Backscattered SEM image of sample 178. The dark grey zone is 

almost pure silica. 

 
 

Examination of the vitreous phase adhering to the silica-rich lump showed it to 

contain inclusions very high in copper, antimony and arsenic, suggesting that this 

was a glass coloured red with reduced copper oxide from an unusual bronze 

(Figure 5.25). 
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Figure 5.25 Backscattered Sem image and EDS analysis of inclusions in sample 

178 

 

The two red opaque glasses (156 and 177) are from the same composite artefacts 

as the white opaques (i.e. a bead and a brooch slider). Sample 156 has a low 

copper oxide content of 0.19 %, and a raised iron oxide level of 7.34. It was 

initially assumed that the colour is due to the copper being in the reduced cuprous 

state (see 3.7.8 for more details). Added iron has been noted as a method of 

facilitating the dissolution of copper oxide into a glass, and the subsequent 

precipitation of cuprite (see 3.7.23). Sample 177 has a similar low copper oxide 

content (0.67 %) and raised iron level (3.88 %), and may be coloured in the same 

way. SEM imaging of the samples failed to identify copper rich inclusions- either 

cuprite or metallic copper in the glass matrix. Since both of these glasses contain 

high iron levels additional consideration was given to the possibility of iron oxides 

as a colourant. A number of authors have noted the use of iron oxide as a 

colourant for red enamels (Bimson and Werner 1969, p 263-264, Freestone and 

Stapleton 1998, Verità 1998, p 131-132, Carboni et al. 1998, p 90, Biek et al. 

1980, also see 3.7.23 above). In the examples discussed in previous studies, finely 

ground red iron oxide (haematite) and uncoloured glass are mixed and rapidly 

fused to another surface. Both high-lead and soda-lime-silica glasses have been 

employed, but in each case the process is regarded as rapid to avoid complete 

fusion and dissolution of the iron oxide into the glass matrix, and thereby losing 

its colouring properties (Verità 1998, p 131-132). The capacity of either high-lead 

or soda-lime silica glass to be sufficiently hot to be workable and simultaneously 

contain undissolved red iron oxide has yet to be determined, and might usefully be 
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established by experimental work. However, even elemental dot mapping of 

sample 177 failed to identify discrete iron-rich inclusions in this glass. Occasional, 

small (15 µm diameter) copper-rich inclusions could be discerned, and these must 

be responsible for the colour (Figure 5.26). 

 
 

Figure 5.26 Backscattered SEM image and EDS analysis of copper-rich 

inclusions in sample 177. 

 

The only yellow opaque glass amongst this group is sample 176, from the same 

brooch decoration as samples 177 and 178. It is opacified and coloured using lead 

antimonate (12.33 PbO, and 1.35 % Sb2O5). 

 

The single green translucent sample (152) was also the only high - magnesia soda 

- lime - silica glass amongst this assemblage, and was associated with two potash 

glasses (sample 151 and 152). It has only a very low iron oxide content (0.48 %) 

and only small amounts of other modifiers to account for its colour (0.11% MnO, 

0.22 % Sb2O5) which must be due to iron oxide.  
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5.4.1 Discussion of glasses from Etruscan Contexts 

Although the sites of Cumae and Pozzouli are sometimes considered to be within 

the Etruscan cultural sphere, these cities are located South of the Etruscan 

heartland (see figure 1.1), and were both principally Greek settlements. For these 

reasons, and their distinct chemical composition, samples from these sites are 

considered separately below. 

 

Given the poor provenance of several of the “Etruscan” items, and the likely 

inclusion of several later glasses (see above), a certain circumspection is required 

when discussing this collection of analyses. The principle observation to be made 

concerning the Etruscan glasses is that there is no evidence for continuity or 

shared technological tradition with the Final Bronze Age glasses from the Po 

valley. This is an important observation since it has been suggested that Frattesina 

may represent some form of early proto-Etruscan colony in the Po Valley (Bietti-

Siesteri 1997). It can now be seen that the technological milieu of the Frattesina 

glass industry is more closely related to a longstanding and broader European 

tradition than that employed in the (later) Etruscan world.  

 

Despite the presence of distinct typological forms (such as the stachelflaschen), 

the chemical composition of the Etruscan glasses considered above is neither 

sufficiently homogenous nor distinct to be classified as an individual production 

tradition. Whilst there can be no doubt about the technological sophistication of 

Etruscan high temperature industries (e.g. Spivey 1997, Martelli 1994) there is as 

yet no direct evidence for glassmaking or glassworking from Etruscan contexts: 
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however the unique forms would suggest that glassworking at least was taking 

place.  

 

The presence of the potash glasses amongst this group is an intriguing suggestion 

of a distinct technological tradition, which might prove to be diagnostic of an 

Etruscan production. Unfortunately the forms and colour (blue translucent 

undecorated annular beads) are poor markers to aid selection of these artefacts for 

further analysis. There is a clear need for additional analyses of well provenanced 

glass objects from Etruscan contexts. 

 

The variable compositions of the glass amongst the Etruscan material, like much 

contemporary glass, tends to suggest that glass production was both highly 

localised and uncontrolled. Whilst it is not at present possible to locate individual 

manufacturing traditions, nor may it ever be so, it seems likely that production of 

glass consumed in Etruscan contexts was a non-centralised affair without the 

consistency which marks so many other periods of glass production. Whereas 

from the Middle Bronze Age to Final Bronze Age (1400 - 900 BC) the glass 

consumed by communities in Central and Northern Italy (and elsewhere in 

Europe) tend to be compositionally consistent, whether mixed-alkali or soda-lime-

silica glasses, the glasses deposited during the Early Iron Age to the Roman 

Period (900 - 300 BC) are far more variable. The glasses from Cumae and 

Pozzouli are an exception to this and are discussed below. 
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5.5  7th Century BC Beads from Pozzouli and Cumae 

 

The material from Pozzouli (near Naples) and Cumae dates to the 7th Century BC, 

and is distinct from the rest of the assemblage analysed as part of this study in 

terms of both typology and chemical composition. Whilst the forms and colours 

are well known from Etruscan contexts across Prehistoric Italy (Bead Study Trust 

1997, p 75, Hencken 1968b, Heurtley and Skeat 1933, p 38-39), these are treated 

as distinct from the other Iron Age glasses since they are from Southern Central 

Italy and have quite unusual compositions. 

 

5.5.1 Pozzouli 

46 samples: 50 - 68, 70 - 97 inclusive. 

 

All of the Pozzuoli samples were taken from beads in the Beck collection held by 

Cambridge University Museum of Archaeology. 

 

Glass types 

The glass compositions from Pozzuoli are quite remarkable: although there is a 

limited range of typological forms and colours, the compositions include a number 

of characteristics which are consistent, indicating that the entire group is made in 

the same manufacturing tradition. The chemical composition of the glasses defies 

the ready categorisation adopted elsewhere for 1st Millennium BC glasses: they 

are all soda-lime silica glasses, but have magnesia contents across a continuum 

from 0.53 - 3.97 %. Whilst a group may be defined as containing less than 1.5 % 

magnesia (figure 5.27), the division is less credible since the magnesia is not 
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correlated with the potash content, as in many other glasses. If there was a diverse 

range of artefact forms this might be taken to indicate glasses from both high and 

low magnesia soda-lime-silica glass making traditions, with intermediate 

compositions arising out of the mixture of both glass types. With this assemblage 

of material, the matrix of most of the artefacts appears black (or dark brown), 

there is a relatively limited range of forms, and a scatter plot containing magnesia 

(see figure 5.27) shows a continuum rather than grouping into the conventional 

high and low magnesia glass types. 

 
 mean All min max stdev 
Na2O 15.96 12.17 17.99 1.20
MgO 1.66 0.53 3.97 0.94
Al2O3 1.70 0.88 3.39 0.72
SiO2 65.62 59.07 72.22 2.46
P2O5 0.22 0.05 1.67 0.25
SO3 0.23 0.03 0.91 0.16
Cl 0.59 0.37 0.99 0.15
K2O 1.12 0.62 1.79 0.27
CaO 2.68 1.16 5.37 1.28
TiO2 0.13 0.05 0.27 0.05
Cr2O3 0.02 0 0.10 0.02
MnO 0.03 0 0.09 0.02
FeO 11.28 5.39 19.07 3.43
CoO 0.02 0 0.08 0.02
NiO 0.02 0 0.08 0.02
CuO 0.07 0 1.47 0.23
ZnO 0.04 0 0.17 0.04
As2O5 0.01 0 0.20 0.03
SnO2 0.01 0 0.05 0.01
Sb2O5 0.05 0 0.24 0.05
BaO 0.03 0 0.05 0.01
PbO 0.02 0 0.12 0.03

 
Table 5.14 mean values and variation for all samples from Puzzuoli material 
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Figure 5.27 Glass types from the Pozzuoli group: magnesia against potash 

 

A review of artefacts at either end of the magnesia spectrum reveals no discernible 

relationship between magnesia content and form or colour. It is suggested that 

these glasses are therefore from the same glassmaking tradition which employs a 

recipe with a highly variable magnesia-containing raw component. Whilst this 

might be a soda-rich plant ash, it cannot be definitively established. An alternative 

explanation might be the mixing of glasses from the low and high-magnesia soda-

lime silica glass making traditions, and the addition of an iron-rich colouring 

agent.  

 

In an attempt to identify which raw ingredient component accounts for the 

variable magnesia content, PCA analysis was undertaken. The different 
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components should include correlated variables which account for difference 

within the dataset, for example if a plant ash contained correlated magnesia, 

potash, soda and phosphate components, they should appear in the same 

component in the rotated component matrix (see Table 5.15). 

 

 1 2 3 4 5 6 7 8 
Na2O -1.64E-02 0.248 0.444 -0.182 5.64E-02 -0.528 -0.145 -0.481
MgO -1.14E-02 0.571 0.149 -4.21E-02 7.09E-01 -6.33E-02 3.71E-02 -7.73E-02
Al2O3 1.46E-01 0.848 0.28 -7.84E-02 -0.139 -1.02E-01 7.33E-02 -1.88E-02
SiO2 0.307 -0.151 9.68E-02 -6.30E-01 -0.321 5.71E-02 8.58E-03 1.40E-02
P2O5 -0.126 2.34E-02 1.76E-01 -3.89E-02 9.72E-03 4.67E-02 -6.13E-02 8.01E-01
SO3 0.309 3.18E-01 0.625 -2.14E-01 4.76E-02 7.94E-02 2.10E-01 0.12
Cl -0.237 -0.15 0.242 -3.74E-02 7.07E-01 -2.74E-01 0.129 0.14
K2O 0.333 0.59 0.451 -3.03E-02 9.97E-02 -0.357 0.14 1.57E-02
CaO 0.216 -5.12E-02 -0.1 5.00E-02 8.38E-01 0.203 -5.16E-02 -1.02E-01
TiO2 8.76E-02 4.60E-01 0.124 1.50E-01 -2.21E-03 -0.292 6.02E-01 -1.20E-03
Cr2O3 -3.16E-01 0.749 1.68E-03 7.69E-02 6.72E-02 5.93E-02 -0.226 9.67E-03
MnO 0.274 -2.47E-02 1.21E-01 5.08E-01 -1.53E-01 -7.13E-02 -0.423 5.38E-01
FeO -0.341 -4.13E-01 -0.349 0.528 -0.191 8.83E-02 2.21E-02 0.305
CoO -6.00E-02 -2.38E-02 5.17E-02 -8.14E-02 1.48E-02 8.79E-01 -1.44E-02 2.62E-02
NiO -5.49E-02 1.28E-01 8.44E-01 -8.31E-03 6.23E-02 2.10E-02 -1.19E-01 1.44E-01
CuO 8.33E-01 -4.33E-02 0.239 1.14E-01 -2.24E-02 -6.81E-02 2.17E-02 -6.88E-02
ZnO -1.09E-03 -4.30E-01 9.29E-02 0.249 -3.37E-02 4.95E-01 -3.99E-01 6.76E-03
As2O5 8.67E-01 -5.59E-02 -1.30E-01 -1.47E-02 1.30E-01 -3.66E-02 2.19E-02 2.72E-02
SnO2 0.179 -6.87E-02 -0.142 7.05E-01 -9.40E-02 3.82E-02 9.40E-02 6.54E-02
Sb2O5 0.802 1.31E-01 1.15E-02 -0.153 -9.93E-02 2.18E-02 2.25E-01 -5.20E-02
BaO 0.242 -0.199 -4.66E-02 0.147 3.70E-02 6.21E-02 0.803 -1.11E-01
PbO 0.148 1.06E-03 -3.63E-01 -0.562 -2.52E-02 1.53E-02 -0.248 0.333
 

 

Table 5.15 Rotated Component Matrix for glasses from Pozzuoli Extraction 

method: Principal Component Analysis. Rotation Method: Varimax with Kaiser 

Normalisation. Rotation converged in 15 iterations. 

 

However this is not the case in this matrix. The repeated plotting of individual 

components fail to reproduce the low-magnesia versus all other glasses 

differentiation seen in figure 5.27. 
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Figure 5.27 Scatter plot of first 2 principlal components for Pozzuoli glasses, 

showing how magnesia content is not a significant discriminant for these glasses 

(LMG = <1.5 % MgO, HMG = > 1.5 % MgO). 

 

The most remarkable attribute of this group of glasses is their shared high iron 

content. A range of 5.39 - 19.07, mean 11.28 % iron oxide content is rare amongst 

prehistoric glasses from Europe and the Near East (4 exceptions: Brill 1999b: 

Hasanlu p 44, Chotin p 59, see Table 5.16). The few other glasses with 

comparable high iron contents are exceptions amongst their respective 

assemblages, and are distinct from these glasses and each other in terms of other 

components. The origin of the high iron content is difficult to establish. Whilst it 

is possible that an iron-rich metallurgical slag was added to the glass melt, this 
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seems unlikely since one would also expect elevated and variable alumina and 

lime levels, which are not noted (Brill 1999b, p 510).  

 

FeO

201816141210864

Al
2O

3

3.5

3.0

2.5

2.0

1.5

1.0

.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.29 Alumina against Iron Oxide amongst the Pozzouli group. 
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Brill's sample no. 3462 3463 5431 5433 
Li2O 0.001 0.001 0.005 0.01 
B2O3 0.02 0.02 0.3 0.3 
Na2O 2.16 1.99 17.1 18.4 
MgO 2.01 3.4 0.9 3.82 
Al2O3 1.33 1.17 0.8 2.32 
SiO2 (a)  
SiO2 (d) 57.12 61.68 63.82 59.71 
P2O5 1.88 1.64 0.26 
SO3  
Cl  
K2O 7.76 7.9 0.83 1.53 
CaO 6.41 5.94 1.56 5.02 
TiO2 0.13 0.1 3.32 0.15 
V2O5 0.005 0.005 0.02  
Cr2O3 0.008 0.005 
MnO 0.24 0.5 0.011 0.04 
Fe2O3 20.2 14.9 11.2 7.9 
CoO  
NiO 0.01 0.005 0.01 0.005 
CuO 0.44 0.55 0.005 0.12 
ZnO 0.016 0.012  
As2O5 0.004 0.032 
SrO 0.05 0.05 0.03 0.03 
ZrO2 0.01 0.01 0.02  
Ag2O 0.001 0.001 0.05  
SnO2 0.08 0.005 0.001 0.01 
Sb2O5 0.01 0.01  
BaO 0.1 0.1 0.22 
PbO 0.01 0.005 0.01 0.02 
Bi2O3 0.1 
total 99.993 99.994 100.004 100.002 
site Chotin Chotin Hasanlu Hasanlu 
date 700-400 BC 700-400 BC 1100-800 BC 1100-800 BC 
colour 10 10 10 10 
ref Brill 99 Brill 99 Brill 99 Brill 99 
method ICP/OES ICP/OES ICP/OES ICP/OES 

 
 

Table 5.16 Comparable prehistoric high-iron glasses 

 

It seems most likely that a high-iron sand has been employed in the production of 

these glasses. The deliberate selection of a black sand, such as that analysed by 

Brill from the mouth of the River Volturna, can yield an iron oxide content as high 

as 31.4 % (Brill 1999a p 209, 1999b, p 475). 
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Colourants 

The high iron content is responsible for the colour of most of the beads, however 

it is important to note that without exception all of the Pozzuoli glasses have high 

iron contents. Thirty-one of the samples are from glass which appeared “black” 

i.e. they were very intensely coloured (for examples see figure 5.30), whilst six 

appeared green opaque, which was probably due to weathering layers rather than 

the colour of the original glass (see below), and may originally have been similar 

to the black glasses. The four brown opaque glasses are also heavily weathered, 

and the original colour is not readily apparent: it seems most likely that they 

would originally have appeared black. One of the samples is very dark blue 

(sample 85, figure 5.31), and has a low cobalt content (0.03 % CoO), the iron 

content (9.5 % FeO) should otherwise be dominant suggesting that the iron is 

present as the reduced form (Fe2+) which is also blue. Whilst it is possible that the 

cobalt is an accidental component of the glass, perhaps arising by recycling other 

glass, this seems unlikely since 0.03 % CoO would be sufficient to colour most 

soda-lime-silica glasses blue, and is therefore unlikely to be the diluted cobalt 

from mixing different glasses. Only 10 of the glasses from Pozzouli had 

undetected levels of cobalt oxide, the remaining 36 glasses contained from 0.01 - 

0.08 %, with 10 glasses containing 0.05 % or more cobalt oxide. Since only one of 

the cobalt-containing glasses could be clearly identified as appearing blue (i.e. 

sample 85, see above), the use of cobalt here is a curious phenomenon. It may be 

the consequence of recycling of glass from elsewhere, but this seems unlikely 

given the tight compositional grouping of many of these glasses (as low-magnesia 

soda-lime-silica glasses, see Figure 5.27). Alternative explanations might include 

 254



the addition of a cobalt-containing raw material, which has become an established 

part of a craft tradition. This practise of continuing to use a component, which had 

once proved useful as a colourant, has been noted elsewhere (Gebhard et al. 1989, 

p 215). The glasses examined here may have originally been blue glasses, which 

have been re-melted and coloured “black” with the addition of an iron-rich 

material. The cobalt oxide content only correlates with zinc oxide (Pearson 

correlation coefficient = 0.293, significant at the 0.05 level), rather than the suite 

of elements often found (see 3.7.21 for additional discussion). Whilst it is difficult 

to assign a specific cobalt source, this would be consistent with that known from 

Tabriz in Iran, rather than those from the Erzebirge region of Europe or from 

Egypt during the second Millennium BC. The iron oxide is strongly negatively 

correlated with soda, magnesia, alumina, silica, sulphur oxides, potassium oxide 

and antimony (Correlation is significant at the 0.01 level (2-tailed)), suggesting 

that the iron source is independent of all of these key glassmaking components. 

 

   
 

Figure 5.30 Examples of “black”, green, and brown glasses (samples 57, 67 and 

62 respectively). Scale 2:1 
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Figure 5.31 Blue glass bead, sample 85 

 

Four of the samples are from red decorative glass which has been added to the 

dark matrix of various beads as small crumbs which have been marvered flush 

with the surface (for example see figure 5.33). These samples are also high in iron 

(see table 5.17 below), and contain small amounts of copper oxide. Backscattered 

imaging and semi-quantitative analysis has shown the presence of small copper-

rich inclusions, which account for the colour (see figure 5.33). The associated 

presence of sulphur suggests that the copper originated in a sulphur-rich ore (see 

3.7.8). 

 

  
 

Figure 5.32 Backscattered SEM image of samples 75 and 84 showing copper (and 

sulphur)-rich inclusions. 
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Figure 5.33 Sample 74 taken from the red decoration of this bead. 

 
 

sample 75 84 89 93 mean  stdev min  max 
Na2O 15.86 17.57 15.95 15.04 16.11 1.06 15.04 17.57 
MgO 1.02 2.46 1.03 1.27 1.45 0.69 1.02 2.46 
Al2O3 1.93 2.41 1.34 1.26 1.74 0.54 1.26 2.41 
SiO2 69.07 64.35 68.06 67.77 67.31 2.05 64.35 69.07 
P2O5 0.10 0.22 0.12 0.12 0.14 0.05 0.10 0.22 
SO3 0.40 0.67 0.24 0.36 0.42 0.18 0.24 0.67 
Cl 0.49 0.45 0.50 0.56 0.50 0.05 0.45 0.56 
K2O 1.39 1.79 1.04 0.97 1.30 0.38 0.97 1.79 
CaO 2.78 3.32 2.14 3.52 2.94 0.62 2.14 3.52 
TiO2 0.13 0.24 0.11 0.09 0.14 0.07 0.09 0.24 
Cr2O3 0.00 0.00 0.00 0.02 0.01 0.01 0.00 0.02 
MnO 0.05 0.04 0.01 0.04 0.04 0.02 0.01 0.05 
FeO 7.81 8.15 9.15 10.19 8.83 1.07 7.81 10.19 
CoO 0.00 0.00 0.08 0.02 0.03 0.04 0.00 0.08 
NiO 0.00 0.06 0.00 0.01 0.02 0.03 0.00 0.06 
CuO 1.16 1.47 0.83 0.79 1.06 0.32 0.79 1.47 
ZnO 0.02 0.00 0.02 0.05 0.02 0.02 0.00 0.05 
As2O5 0.20 0.05 0.08 0.00 0.08 0.09 0.00 0.20 
SnO2 0.01 0.01 0.01 0.03 0.02 0.01 0.01 0.03 
Sb2O5 0.24 0.13 0.22 0.06 0.16 0.08 0.06 0.24 
BaO 0.05 0.04 0.04 0.05 0.05 0.01 0.04 0.05 
PbO 0.08 0.00 0.00 0.00 0.02 0.04 0.00 0.08 
Total 102.79 103.43 100.97 102.22   

 
Table 5.17 Composition of red opaque glass decoration on Pozzouli beads. 

 

 

 

5.5.2 Cumae 

13 samples: 162 - 174 inclusive. 
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All of the Cumae samples were taken from beads in the Beck collection held by 

Cambridge University Museum of Archaeology. These beads date to the 8th - 7th 

Century BC and are very similar in the range of forms, colour and glass type as 

the Pozzouli material. 

 

Glass Types 

The glass types represented amongst the Cumae assemblage are comparable with 

those from Pozzouli: a number of them are very high in iron. All of the glasses are 

soda-lime silica glasses, two are high magnesia, soda-lime silica glasses (samples 

162 and 163), and all the others are low magnesia soda-lime silica glasses 

(although with variable magnesia contents between 0.28 and 1.98 % MgO). This 

distinction is not arbitary, since samples 162 and 163 are also quite different in 

terms of form and colour from the beads from which the other samples are taken. 

The two high-magnesia soda - lime - silica glasses are distinct from the other 

Cumae glasses because of their relatively low iron oxide contents (see Table 

5.18), and raised lime contents. 

 

 

 

 

 

 

 
sample mean high FeO stdev min max 162 163 
Na2O 15.62 1.86 10.32 17.34 16.40 17.26 
MgO 1.21 0.59 0.28 1.98 3.57 6.02 
Al2O3 1.81 0.59 1.05 3.24 0.52 1.26 
SiO2 67.70 2.70 63.85 73.87 68.81 63.37 
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P2O5 0.13 0.07 0.05 0.24 0.17 0.10 
SO3 0.22 0.25 0 0.82 0.24 0.00 
Cl 0.49 0.16 0.35 0.92 0.92 0.70 
K2O 1.51 0.70 0.76 2.88 1.62 3.26 
CaO 2.22 0.94 1.17 3.80 7.04 6.79 
TiO2 0.16 0.06 0.09 0.32 0.04 0.02 
Cr2O3 0.02 0.01 0 0.05 0.02 0.00 
MnO 0.05 0.03 0.01 0.11 0.03 0.05 
FeO 10.56 3.18 5.03 16.30 0.37 0.46 
CoO 0.03 0.01 0 0.05 0.05 0.02 
NiO 0.02 0.02 0 0.05 0.00 0.02 
CuO 0.03 0.04 0 0.10 1.45 1.22 
ZnO 0.03 0.05 0 0.15 0.00 0.02 
As2O5 0.00 0.01 0 0.04 0.02 0.04 
SnO2 0.01 0.01 0 0.04 0.01 0.00 
Sb2O5 0.06 0.07 0 0.20 0.09 0.00 
BaO 0.04 0.01 0.01 0.06 0.01 0.02 
PbO 0.04 0.03 0 0.09 0.03 0.00 
Total 101.41 100.63 

 
Table 5.18 Summary data for high iron and high magnesia glasses from Cumae 

 

The high iron glasses have magnesia contents within the range 0.28 and 1.98 %, 

which place them all within the low - magnesia soda - lime - silica glass tradition, 

using a natron type soda source. However, the magnesia contents are probably not 

the most significant characteristic of these glasses. The Cumae high iron 

containing glasses are only 11 samples, with an average of 1.21 MgO %, the 

Pozzuoli high iron glasses have a range of 0.53 - 3.97 % MgO, but with a similar 

mean value of 1.66. Since all 46 of the Pozzuoli samples are high in iron, they are 

more likely to be more representative of this particular type of glass. The Cumae 

high iron samples are consistent with the Pozzuoli glasses: both groups of samples 

have similar means (i.e. within the low magnesia category), but the spread of 

magnesia values is greater for the larger number of samples from Pozzuoli. It 

seems most likely that the variable magnesia content is due to the use of a soda 

source with similarly variable magnesia content, such as a plant ash, the low, but 

variable potash content would tend to confirm this (0.76 - 2.88 %). 
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Colourants. 

Sample 162 is difficult to describe in terms of colour: it is presently both green 

translucent and mottled brown (described as “buff” in the Beck catelogue (Bead 

Study Trust 1997 p 79), this colour variation is probably due to differential 

weathering, which may be due to variation in the burial environment rather than 

the bead’s composition. The area sampled was translucent green, and the colour 

can be attributed to the copper content (1.45 % CuO). Intriguingly, this glass 

contains 0.05 % Cobalt oxide, which might be expected to impart a blue colour: in 

this instance the copper oxide must be the dominant colourant. Sample 163 is dark 

blue translucent in colour also due to its copper content (1.22 %), probably 

deepened by the low cobalt oxide component (0.025 %). Like the Pozzouli 

material, many of the Cumae glasses contain significant cobalt oxide content: only 

one glass has undetected levels of cobalt oxide (sample 169), with the others 

ranging from 0.02 - 0.05 % CoO, and 2 glasses containing 0.05 % of this oxide. 

 

All of the samples except 162 and 163 are from the same high iron tradition. 

Sample 167 is the only glass that does not appear black, and is from the white 

opaque decoration of a sub-triangular black bead (see figure 5.34). 
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Figure 5.34 Sub-triangular bead, sample 167 taken from white opaque glass 

decoration. 

 

The compositional data for this white glass was unexpected, since it differed little 

from the high-iron “black” glasses from Cumae. Additional backscattered SEM 

imaging and semi-quantitative EDS analysis demonstrated why. The sample taken 

from the artefact consisted of both white glass, low in iron, but containing calcium 

antimonate crystals and black glass, high in iron (figure 5.35). The EMPA 

analysis was from the black glass rather than the opaque white fragment. 

 

  
 

Figure 5.35 Backscatterred SEM image and EDS analysis of sample 167. 

 

 

The black glasses, (samples 164, 165, 166, 168, 169, 170, 171, 172, 173 and 174) 

are coloured by their high iron contents, which makes then appear black. 
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5.5.3 Discussion of 7th Century BC glasses from Pozzuoli and Cumae 

In the Bead Study Trust catalogue (Bead Study Trust 1997, p 23-24, 74-76) the 

black or brown beads decorated with white opaque eyes are described as typical of 

Etruscan necklaces, and might be a European product. This bead type is well-

represented in Etruscan contexts to the North (Hencken 1968a and b), and further 

afield in Central Europe (Spaer 1987). Unfortunately they are not amongst those 

objects otherwise described as Etruscan studied as part of this project, and are 

therefore considered separately. It is possible that these glasses represent a 

genuinely distinct Etruscan glassmaking tradition, but in this case the artefacts 

sampled are from the periphery of the Etruscan sphere. The high iron containing 

glasses are therefore contenders for a uniquely Etruscan glass production in which 

large amounts of iron are added to a low-magnesia soda-lime-silica type glass 

composition. Statistical analysis of the combined datasets from the two sites fail to 

generate meaningful subdivision between the groups or within the combined data. 

It was not possible to generate a rotated component matrix and principle 

component variables scrutiny (the routine fails after 25 iterations). The inability to 

link the iron oxide to any of the key glassmaking oxides suggests that it was either 

added independently, or was associated with the silica source. 

 

5.6 Glass from the Este Culture 

A large number of samples were recovered from amongst the Iron Age material 

held by Este museum, derived from cemeteries beneath the modern city of Este 

(Chieco Bianchi and Capuis, 1985a Tavola I and 1985b). The assemblages 

sampled included Casa di Recovero, Casa Muletti Prosdocimi, Casa Alfonsi, Villa 

Benvenuti and Fondo Rebato. The material from the Este culture has been 
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excavated since the early 1880s (Chieco Bianchi and Capuis, 1985a, p 19-34), and 

the meticulous retention of grave-group context for much of the material has 

ensured that these collections have been central to the construction of 

chronologies for Prehistoric Northern Italy (Randall-MacIver 1927a and b, 

Müller-Karpe 1959, Ridgeway 1979 p 422). This material dates from c 900 BC to 

c 350 BC (Ridgeway 1979 p 485). 

 

5.6.1 Casa di Recovero 

16 samples: 336, 344, 345, 347, 367, 368, 369, 370, 374, 375, 376, 393, 397, 398, 

400, 401. All the samples were collected from the Museum of Este, and all are 

from finished artefacts derived from funerary contexts from the site of Casa di 

Recovero dating to the 9th to 7th Centuries BC. The excavations took place over a 

long period of time (1882-1964: Chieco Bianchi and Capuis, 1985a, p 19-32). The 

sampled assemblage principally consists of beads, but also includes spindle 

whorls and a brooch slider. 

 

Glass types 

All of the glasses successfully analysed from Casa di Recovero are soda-lime 

silica glasses, and none have sufficiently high potash contents to be described as 

mixed-alkali: all but two of the samples have less than 0.5 % potash (the two 

exceptions contain 1.68 and 1.84 %: samples 336 and 345 respectively). However, 

the assemblage as a whole is not compositionally homogenous and is remarkable 

in comparison with other groups of analyses by being compositionally variable. 

The date of the material coincides with the transition from high magnesia soda-

lime silica glasses to low magnesia soda lime glasses as the dominant glassmaking 
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tradition in the Mediterranean, and it is no surprise therefore that both types are 

represented amongst the assemblage. 

 

Eight of the samples are low-magnesia, soda-lime silica glasses (with less than 1.2 

% MgO), which would be consistent with a natron-type soda source for the glass 

(see 3.7.2 above and Lilyquist and Brill 1993, p 56, Fig 5.1). Seven of the samples 

are high-magnesia, soda-lime silica glasses (with more than 2.6 % MgO), typical 

of glasses made using soda-rich plant ashes (Lilyquist and Brill 1993, p 56, Fig 

5.1). One of the samples has an intermediate magnesia content of 1.95 %, and may 

indicate a glass containing cullet from both traditions. However, despite being 

able to characterise the glasses into these basic groups, the individual analyses are 

still quite diverse within these categories, indeed several features are shared by 

glasses across this division. 

 

 

 264



Figure 5.36 MgO vs K2O demonstrating glasses from Casa di Recovero are all 

either high or low magnesia soda-lime-silica glasses. 

 

According to previous analyses of raw materials and glasses, natron and soda-rich 

plant-ash glasses can be distinguished by several components (Lilyquist and Brill 

1993, p 56, Fig 5.1): plant ash soda rich glasses contain higher quantities of 

magnesia which may be accompanied by increased levels of potassium oxide, 

lime, alumina, manganese oxide, iron oxide, chlorine and phosphorous pentoxide. 

Reference to table 5.19 below will reveal that the Casa di Recovero glasses do not 

conform precisely to this convention. The high magnesia glasses also tend to 

contain increased levels of alumina, manganese oxide and chlorine, but not 

potash, lime, iron and phosphorous pentoxide. Whilst the fundamental division of 

the glasses into high and low magnesia glasses can be made, there remains 

considerable variability within the groups. 

 

Many of the glasses have very high alumina contents, which may indicate a shared 

silica source for glasses from both groups, if for instance a sand rich in alumina 

has been employed. Six glasses contain less than 2 % alumina (367, 369, 370, 

393, 400 and 401), all of which are low magnesia glasses, two of this group 

contain elevated alumina levels (336 and 345, with 7.09 and 6.24 % Al2O3 

respectively). Across the entire data set, the alumina is strongly correlated with 

several components: FeO (0.506*), MgO (0.612*) TiO2 (0.781**) and As2O5 

(0.563**) (**Correlation is significant at the 0.01 level (2-tailed)*Correlation is 

significant at the 0.05 level (2-tailed). However, bivariate plotting of alumina 

against these other oxides does not reveal a consistent relationship. The high 
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alumina content is not associated with only the high magnesia glasses for 

example, and cannot therefore be linked to either a plant ash or a particular silica 

source used in those glasses. 

sample mean 
LMG 

min max reduced mean 
HMG 

min max reduced intermediate? 
344 

Na2O 17.06 14.53 20.2 17.49 18.35 13.79 22.17 18.64 17.05
MgO 0.70 0.33 1.2 0.71 3.45 2.66 4.1 3.50 1.95
Al2O3 2.57 0.45 7.09 2.63 8.34 5.065 16.35 8.47 4.35
SiO2 67.54 59.75 72.885 69.22 60.27 40.61 68.965 61.20 71.74
P2O5 0.11 0.045 0.17 0.04 0 0.15  0
SO3 0.24 0.12 0.39 0.33 0.03 0.48  0.25
Cl 0.95 0.34 1.31 0.48 0.3 0.615  0.62
K2O 0.71 0.11 1.84 0.73 0.23 0.095 0.49 0.23 0.15
CaO 4.55 2.02 6.22 4.66 3.56 2.31 5.1 3.62 3.44
TiO2 0.12 0.02 0.33 0.24 0.02 1.09  0.04
Cr2O3 0.01 0 0.02 0.01 0 0.02  0.02
MnO 0.12 0.005 0.34 0.38 0.16 1  0.33
FeO 4.45 0.21 10.76 4.56 4.27 0.625 21.3 4.34 0.74
CoO 0.11 0 0.29 0.06 0 0.17  0.05
NiO 0.07 0 0.27 0.06 0 0.15  0.08
CuO 0.21 0.005 0.71 0.02 0 0.09  0
ZnO 0.01 0 0.03 0.06 0 0.22  0.06
As2O5 0.03 0 0.12 0.04 0 0.22  0
SnO2 0.03 0 0.08 0.01 0 0.03  0
Sb2O5 0.22 0 1.21 0.22 0 1.16  0
BaO 0.05 0.02 0.1 0.04 0.01 0.07  0.04
PbO 1.33 0 8.33 0.32 0 1.78  0
Total   100  100 100.91
 
 

Table 5.19 Summary data for Casa di Recovero. 
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 Component 1 Component 2 Component 3 Component 4 Component 5
Na2O -0.495 -0.129 0.593 0.107 0.16
MgO 8.35E-02 -0.129 0.473 -0.424 0.731
Al2O3 7.44E-01 -0.204 0.325 1.80E-02 4.96E-01
SiO2 -9.14E-01 -2.67E-02 -0.261 -1.03E-01 -2.17E-01
P2O5 1.58E-01 0.431 0.255 5.78E-01 -0.481
SO3 -0.405 0.239 5.71E-01 2.53E-01 0.527
Cl -0.409 2.20E-02 -3.20E-01 -1.41E-01 -8.23E-01
K2O 0.131 9.99E-02 -3.49E-02 9.53E-01 5.69E-02
CaO -0.176 -9.44E-02 0.103 -3.06E-01 -8.87E-01
TiO2 0.928 -8.07E-02 -0.199 1.10E-01 1.92E-01
Cr2O3 -0.116 -2.03E-01 0.336 7.61E-01 9.51E-02
MnO 6.12E-02 -6.85E-04 0.935 1.41E-01 2.91E-01
FeO 9.09E-01 -6.87E-02 -2.38E-01 1.27E-01 -1.33E-01
CoO 6.72E-02 5.26E-01 2.63E-01 7.61E-01 1.47E-01
NiO -0.135 8.38E-01 0.375 0.172 0.144
CuO 3.90E-02 8.58E-01 -2.17E-01 4.03E-01 1.62E-02
ZnO -2.87E-02 -1.04E-01 9.64E-01 8.98E-03 -4.56E-02
As2O5 8.53E-01 3.77E-01 -9.70E-02 1.54E-01 1.00E-01
SnO2 -7.00E-02 8.51E-01 -2.91E-01 -8.00E-02 -1.02E-01
Sb2O5 1.58E-02 7.52E-01 5.85E-01 8.92E-02 -1.03E-01
BaO 0.384 1.00E-01 -0.116 8.32E-01 1.14E-01
PbO 0.161 9.39E-01 -1.52E-01 -5.68E-02 -3.88E-03

 

Table 5.20 Rotated Component Matrix for all compositional data from Casa di 

Recovero. Extraction Method: Principal Component Analysis. Rotation Method: 

Varimax with Kaiser Normalization.  Rotation converged in 8 iterations. 

 

By performing PCA on this data set it is possible to see that 5 components account 

for 90 % of the variance in the data set. The components in table 5.20 confirm the 

association between Al2O3, FeO, TiO2 and As2O5 identified from the correlation 

analysis (see Component 1). 
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Figure 5.37 Scatter plot of first two Principal components for glasses from Casa 

di Recovero. 

 

Two samples (368 and 370) are distinct from the other glasses. Sample 368 is a 

high-magnesia soda-lime-silica glass, but is distinguished by its very high alumina 

and iron contents (16.3 and 21.3 % respectively). Sample 370 is a low-magnesia 

soda-lime silica glass containing a significant proportion of lead (8.33 %). The 

components which mark these glasses out as different to the other s are those 

deliberately added as colourants. 

 

Colourants 

The majority of the glasses from Casa di Recovero are blue translucent and blue 

opaque (12 of 16), three are brown opaque or brown translucent- all dark glasses 

now badly weathered which may have appeared either black or amber in colour 
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originally. One of the glasses is green opaque. A number of the artefacts sampled 

had yellow and white opaque glass decoration, unfortunately these were all badly 

weathered, and analyses were unsuccessful. 

 

The low magnesia glasses (samples 336, 345, 367, 369, 370, 393, 400 and 401) 

and high magnesia glasses (samples 347, 368, 374, 375, 376, 397, 398) both 

contain glasses which have high iron contents. Samples 345, 367 and 393 are low 

magnesia glasses with 8.97, 10.76 and 7.89% FeO respectively, whilst sample 368 

is high in magnesia and contains a massive 21.3 % iron oxide. The very high 

levels of iron oxide in glasses from both groups represent the deliberate addition 

of an iron-rich material, presumably as a colourant designed to make the resultant 

glass appear black. Iron working slag is a possible source of raw material for this 

component, and may contribute to the variable alumina levels observed amongst 

the glasses. 

 

Cobalt is a colourant common to both glass types, and is highly correlated with 

nickel and copper, which may indicate a European source (as opposed to a Middle 

Eastern or Egyptian origin). It is not possible to discern a relationship between the 

cobalt and alumina contents, since the underlying alumina levels are variable. 

Egyptian glasses coloured with distinctive local cobalt have raised alumina levels 

of c. 2.4 % compared with 1% for contemporary glasses (Kaczmarczyk and 

Hedges 1983, p 136, Shortland and Tite 2000). 

 

None of the glasses have been deliberately coloured with copper compounds. Two 

of the glasses have significant levels of antimony (samples 347 and 370, high and 

 269



low magnesia glasses respectively with 1.16 and 1.21 % Sb2O5). Both are 

coloured with cobalt, and it seems likely that in part the antimony component is 

derived from the cobalt source rather than a deliberate attempt to decolour the blue 

glasses. Sample 370 also contains a significant lead oxide component (see above). 

The colour of this sample (pale green opaque) would therefore tend to suggest that 

this glass has a cobalt coloured glass matrix opacified with yellow lead antimonate 

crystals to give an opaque green glass. The green opaque glass is from a complex 

artefact a “leech” shaped brooch slider made of dark green opaque glass decorated 

with yellow opaque glass which had been trailed around the body of the artefact, 

marvered flush and then combed into chevrons (see figure 5.42).  

 

 

5.6.2 Benvenuti 

34 samples: 321, 322, 323, 325, 326, 327, 328, 331, 332, 333, 334, 335, 351, 352, 

353, 354, 357, 358, 359, 360, 362, 364, 365, 377, 378, 379, 380, 382, 384, 385, 

386, 390, 391, 395. 

 

All of the samples from Benvenuti are from funerary contexts, and are therefore of 

completed artefacts rather than industrial waste. This assemblage largely consists 

of beads, but also includes a spindle whorl and irregular fragments of (clear) glass. 

 

Glass Types 

The glass recovered from Benvenuti represents a wide range of glassmaking 

technologies, suggesting the community using the cemetery had access to glass 

from different sources. Implicit in this observation is the suggestion that this 
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community was not producing its own glass, since no single tradition dominates 

the assemblage. Unsurprisingly, the assemblage contains no examples of mixed-

alkali glass, however there are examples of both high and low magnesia soda-lime 

silica glasses, with low magnesia glasses being the dominant tradition (27 out of 

34 samples are low-magnesia soda-lime-silica glasses). There is also a high lead, 

low alkali glass of unusual composition (sample 359, see table 5.21 below). 

 

 
Figure 5.38 Glass types from Benvenuti: magnesia against potassium oxide. 

 
 

The Benvenuti group contains six high-magnesia glasses, made using soda-rich 

plant ashes contain 1.86, 1.88, 1.89, 2.79, 2.72 and 3.81 % magnesia (samples 

377, 378, 379, 322, 364 and 382 respectively), compared with a range of 0.34 - 

1.35, mean 0.66 for the low-magnesia glasses. The high-magnesia glasses are all 

beads, but are not visibly distinct from the rest of the assemblage or even similar 

to each other in terms of colour, condition or form. Sample 322 has the raised 
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potash, lime and phosphate levels, which classically define the plant-ash soda-

lime silica glasses in comparison with those made with natron. Samples 364 and 

382 are similar to each other, but different to sample 322: they do not have raised 

potash, lime and phosphate levels, but contain significantly higher alumina and 

manganese oxide. It seems most likely that the high-magnesia glasses were made 

according to two different recipes, both containing soda-rich plant ashes. 

 

sample mean LMG reduced mean HMG reduced 359 
Na2O 17.43 18.06 18.09 18.48 2.92 
MgO 0.66 0.69 2.49 2.54 0.57 
Al2O3 3.34 3.46 2.22 2.27 2.67 
SiO2 67.63 70.07 68.31 69.77 41.26 
P2O5 0.14 0.11 1.26 
SO3 0.27 0.41 0.24 
Cl 0.94 0.72 0.42 
K2O 0.92 0.95 0.92 0.94 0.44 
CaO 4.83 5.00 5.50 5.61 1.78 
TiO2 0.15 0.06 0.09 
Cr2O3 0.01 0.01 0.00 
MnO 0.14 0.26 2.26 
FeO 1.71 1.77 0.38 0.39 6.36 
CoO 0.13 0.02 0.06 
NiO 0.07 0.02 0.00 
CuO 0.31 0.18 0.16 
ZnO 0.02 0.04 0.66 
As2O5 0.01 0.00 3.02 
SnO2 0.06 0.02 0.01 
Sb2O5 0.22 0.03 0.13 
BaO 0.06 0.03 0.11 
PbO 1.01 0.04 37.65 
Total 100.08 100.00 99.83 100.00 102.07 

 
 
Table 5.21 Summary data for glasses from Benvenuti 

The low magnesia glasses can also be further broken down into two groups, since 

there is a discontinuous range of magnesia values 0.34 - 0.67 % MgO and 0.96 - 

1.35 % MgO. These samples are characterised in table 5.22 and figure 5.38 as 

LMG 1 and LMG 2 respectively. LMG1 includes samples 334, 335, 325, 328, 

333, 327, 321, 326, 323, 331, 332, 354, 385, 386, 360, 384, 362, 391, 390. LMG2 
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includes samples 358, 357, 351, 365, 380, 395, 352, 353. This subdivision is also 

evident across several other components, with higher soda contents in the latter 

group (12 - 18.2 % Na2O and 17.17 - 22.73 % Na2O) accompanied by higher 

alumina (0.63 - 2.46, mean 1.81 %, and 6.13 - 8.24, mean 6.99 %). LMG2 also 

contains lower lime and higher manganese oxide than LMG1. 

 

 

sample mean LMG 1 min max stdev mean LMG 2 min max stdev 
Na2O 16.22 12 18.2 1.59 20.30 17.17 22.73 1.86
MgO 0.48 0.34 0.67 0.09 1.11 0.96 1.35 0.16
Al2O3 1.81 0.63 2.46 0.57 6.99 6.13 8.24 0.73
SiO2 70.72 60.79 78.85 3.62 60.31 56.62 64.73 3.35
P2O5 0.05 0.01 0.12 0.03 0.38 0.17 1.09 0.35
SO3 0.23 0.105 0.4 0.08 0.36 0.21 0.45 0.10
Cl 1.12 0.46 1.49 0.32 0.52 0.44 0.6 0.06
K2O 0.42 0.19 0.61 0.12 2.11 1.69 2.46 0.28
CaO 5.67 3.13 8.99 1.38 2.85 2.36 3.77 0.56
TiO2 0.07 0.02 0.13 0.03 0.33 0.27 0.4 0.05
Cr2O3 0.01 0 0.05 0.01 0.02 0 0.03 0.01
MnO 0.05 0 0.25 0.07 0.34 0.27 0.42 0.06
FeO 1.18 0.38 1.82 0.39 2.96 1.81 3.87 0.89
CoO 0.11 0 0.25 0.08 0.19 0 0.39 0.16
NiO 0.07 0 0.26 0.10 0.09 0 0.24 0.09
CuO 0.34 0.05 1.73 0.44 0.23 0.04 0.48 0.16
ZnO 0.02 0 0.12 0.03 0.01 0 0.05 0.02
As2O5 0.02 0 0.2 0.05 0.00 0 0.02 0.01
SnO2 0.03 0 0.17 0.04 0.12 0 0.88 0.31
Sb2O5 0.27 0 1.57 0.36 0.11 0.02 0.26 0.10
BaO 0.04 0.02 0.07 0.01 0.09 0.07 0.1 0.01
PbO 1.27 0 14.69 3.30 0.37 0.03 1.79 0.59

 
 
Table 5.22 Summary data for LMG glasses from Benvenuti 

 

The LMG2 group can be further subdivided: samples 377, 378 and 379 are all 

from irregular fragments of clear, translucent glass fragments, and are sufficiently 

similar analyses for them to have originally been from the same artefact or batch. 

They are distinct from the other LMG2 glasses by having a higher magnesia 
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content and lower potash levels, in addition to much lower alumina and iron levels 

which would indicate a distinct silica source, not surprising in the production of 

uncoloured glass. The other LMG 2 glasses all contain impurities of lead oxide, 

copper oxide, nickel oxide and chromium oxide greater than the clear glasses, 

suggesting that the clear glasses have been deliberately produced with purified 

ingredients without the use of mixed glass cullet. 

 

sample 358 357 351 365 380 395 352 353 377 378 379
Na2O 17.17 18.08 20.46 19.97 21.5 20.9 22.73 21.55 18.68 18.59 18.63
MgO 0.96 0.97 0.99 1.02 1.11 1.15 1.33 1.35 1.86 1.88 1.89
Al2O3 6.28 6.45 7.04 6.13 7.16 6.81 8.24 7.77 0.32 0.32 0.32
SiO2 64.73 63.95 60.15 63.8 57.82 57.76 56.62 57.64 69.08 69.48 69.72
P2O5 1.09 0.75 0.19 0.24 0.22 0.19 0.19 0.17 0.12 0.12 0.12
SO3 0.24 0.21 0.3 0.45 0.39 0.45 0.42 0.45 0.51 0.52 0.45
Cl 0.48 0.49 0.5 0.6 0.56 0.58 0.5 0.44 0.73 0.79 0.69
K2O 1.69 1.81 2.19 1.94 2.25 2.08 2.43 2.46 0.99 0.99 1.01
CaO 3.77 3.7 2.36 2.48 2.58 2.68 2.65 2.54 6.76 6.81 6.8
TiO2 0.27 0.31 0.35 0.29 0.36 0.31 0.4 0.38 0.02 0.04 0.02
Cr2O3 0.02 0.03 0.03 0.02 0 0 0.02 0 0 0.02 0
MnO 0.27 0.38 0.42 0.31 0.41 0.33 0.35 0.27 0 0.03 0.04
FeO 1.81 1.92 3.87 1.99 3.84 3.34 3.53 3.38 0.1 0.21 0.18
CoO 0 0 0.39 0.02 0.31 0.28 0.25 0.28 0 0.02 0
NiO 0.02 0 0.15 0 0.04 0.18 0.05 0.24 0 0 0
CuO 0.12 0.04 0.34 0.09 0.36 0.48 0.13 0.3 0.01 0.04 0.01
ZnO 0.03 0 0.05 0.02 0 0 0 0 0 0.12 0
As2O5 0 0 0 0 0 0 0 0.02 0 0 0
SnO2 0 0 0.01 0.01 0.04 0.88 0 0.03 0 0.01 0
Sb2O5 0.02 0.02 0.22 0.02 0.11 0.26 0.02 0.19 0.02 0.02 0
BaO 0.07 0.1 0.09 0.07 0.1 0.1 0.1 0.09 0.02 0.04 0.04
PbO 0.03 0.04 0.33 0.14 0.48 1.79 0.05 0.11 0 0 0
Total 99.07 99.25 100.43 99.61 99.64 100.56 100.01 99.66 99.22 100.05 99.92
 
 

Table 5.23 Low magnesia glasses LMG2 including samples 377 – 379 of clear 

translucent glass. 
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Despite being differently coloured, the LMG 2 group, excluding 377-379, all 

contain high titanium oxide levels which are strongly correlated with the iron and 

alumina contents, suggesting a shared silica source. 
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Figure 5.39 Scatter plot of titanium oxide and iron contents in glasses from 

Benvenuti. 

 

Sample 359 is a glass unlike any other from this assemblage. It is a sample from a 

spindle whorl of composite structure. The spindle whorl has ceramic or 

ceramic/metal core (it is very dense) with a weathered green opaque glass “glaze” 

finish. The glassy surface is in turn decorated with both horizontal bands and zig-

zag decoration of white opaque glass. The sample was taken from the green glass 

coating on the exterior. The resulting analysis is quite unusual (see table 5.21). 
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Figure 5.40 Sample 359 taken from glass coating of spindle whorl. Scale 2:1 

 

Whilst this glass belongs nominally to the low magnesia soda-lime silica glass 

group LMG 1, it is a distinct glass composition with a high lead composition 

(37.65 % PbO). The high lead content alone is not exceptional, since high lead 

glasses are known from 1400 BC onwards (see 3.7.9). In this case there is a low 

overall alkali content (3.36 % total), which may reflect a weathered composition, 

although less alkali is necessary when fusing high lead glasses (high-lead glasses 

from Nimrud contained 3.46 and 3.68 % total alkali (Brill 1999b, p 48)). High 

levels of arsenic (3.02 % As2O5) also accompany the high lead. The high iron and 

manganese contents may have been added to to give a dark opaque glass sufficient 

to cover the core and give a contrasting background for the white decoration. This 

artefact is very dense, and may have a ceramic core, making the “glass” surface a 

glaze. The high lead composition would enhance the adhering properties of the 

glaze. 
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Figure 5.41 Alumina and cobalt oxide levels in cobalt-coloured blue glasses from 

Benvenuti 

 

Colourants 

The Benvenuti assemblage principally consists of blue (opaque and translucent) 

glasses (22 samples), but also includes 3 clear translucent, 2 yellow opaque, 2 

green opaque, 3 white opaque, 1 aqua and 1 brown opaque glass (the white and 

brown opaques are heavily weathered. 

 

A number of the cobalt-coloured blue glasses contain particularly high levels of 

alumina, suggesting that these beads from Benvenuti were manufactured using 
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two distinct cobalt sources, with the high alumina glasses also tending to contain 

higher levels of cobalt oxide (see Figure 5.41). This raises the possibility of the 

cobalt colourant originating in the Egyptian source noted by Kaczmarczyk (1986), 

however the high-alumina cobalt containing glasses (samples 351, 352, 353, 380, 

395) are all from the LMG 2 group, which contain high alumina and titanium 

oxide levels irrespective of the presence of cobalt. 

 

5.6.3 Rebato 

Only two samples were taken from material from this site: samples 343 and 373. 

The Rebato artefacts were recovered from excavations of a 7th Century BC 

cemetery, and are held at Este Museum (Chieco Bianchi and Capuis 1985a, p 10 

Figure 1, Plates 1 and 2). 

 

 
 

Figure 5.42 Brooch decoration from which sample 373 was taken (scale 1:1). 
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Glass types. 

Both of the glasses are low - magnesia soda - lime- silica glasses. The glasses, in 

addition to being from quite different artefacts (a bead and a brooch decoration), 

are not very similar in terms of their chemical composition: 343 has lower 

alumina and iron levels, and higher lime than 373, suggesting quite distinct silica 

sources.  

 

sample 343 373
Na2O 13.07 19.42
MgO 0.41 1.03
Al2O3 2.27 5.70
SiO2 63.12 63.53
P2O5 0.02 0.19
SO3 0.23 0.24
Cl 0.79 0.43
K2O 1.15 1.95
CaO 7.20 2.70
TiO2 0.04 0.24
Cr2O3 0.00 0.02
MnO 0.03 0.23
FeO 0.87 2.49
CoO 0.02 0.31
NiO 0.00 0.29
CuO 0.06 0.47
ZnO 0.02 0.03
As2O5 0.00 0.00
SnO2 0.00 0.04
Sb2O5 1.57 0.20
BaO 0.06 0.07
PbO 10.83 0.19
Total 101.76 99.77

 
 
Table 5.24 Compositional data for samples from Rebato. 

 

Sample 343 is of a heavily weathered glass bead, in which the matrix is now 

opaque brown, but the decoration of blue and white stratified eyes and opaque 

yellow “knops” can be clearly discerned, despite a heavy layer of varnish having 

been used as a (modern) stabilising agent. The sample included both matrix and 
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yellow glass, and the analysis is clearly of a glass coloured and opacified using 

lead antimonate. 

 

Sample 373 is also from a heavily weathered (and varnished) glass now appearing 

brown and opaque. The analysis suggests that the original glass would have been 

dark blue (or black) since it contains 0.31 % cobalt oxide and 2.49 % iron oxide. It 

is possible that the cobalt source has contributed to the raised iron content in this 

glass, and also to the higher levels observed of copper, nickel, manganese and 

potash (see 3.7.20). 

 

5.6.4 Alfonsi 

A single sample from the cemetery site of Casa Alfonsi was taken from a brooch 

decoration held by Este Museum (sample 348). The tomb is dated to 525-450 BC 

(Este III D1, Ridgeway 1979, p 485). The material from Casa Alfonsi was 

recovered during excavations in 1906 and 1907 (Chieco Bianchi and Capuis 

1985a p 10, 34, Figure 1 and Plates 1 and 2). 

 

This sample is from a badly weathered blue translucent glass. It is a low -

magnesia soda - lime - silica glass (0.43 % MgO) with a low alumina content 

(0.81 %). There is a low overall alkali content (11.89 %) and no significant 

amount of lead oxide suggesting that the analysis may be of a weathered glass. It 

is coloured with cobalt oxide (0.4 %) and has associated nickel, copper and 

arsenic (but no manganese). This is a very high cobalt oxide content, and the 

original glass may have appeared black. 
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sample 348
Na2O 11.73
MgO 0.43
Al2O3 0.81
SiO2 80.09
P2O5 0.02
SO3 0.18
Cl 0.76
K2O 0.16
CaO 5.14
TiO2 0.04
Cr2O3 0.02
MnO 0.00
FeO 0.79
CoO 0.40
NiO 0.14
CuO 0.12
ZnO 0.09
As2O5 0.21
SnO2 0.04
Sb2O5 0.06
BaO 0.02
PbO 0.04
Total 101.29

 
 

Table 5.25 Compositional data from sample 348 from Alfonsi 

 

 

 
 

Figure 5.43 Sample 348 
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5.6.5 Muletti Prosdocimi 

3 samples: 320, 349 and 350. 

 

The three samples from Muletti Prosdocimi are from glass beads recovered during 

the excavation of a cemetery between 1886 and 1925, and are now currently held 

at Este Museum (Chieco Bianci and Capuis 1985a p 32-34). The tomb groups 

with which they are associated are dated to the period 525 – 450 BC. 

 

Glass types 

Sample 320 is a high - magnesia soda - lime - silica glass, containing 3.73 % 

MgO. It does not contain raised levels of potash and phosphorus pentoxide, which 

might be expected of a plant ash soda -source. It is badly weathered, but upon 

sampling the bead matrix appeared to be of blue translucent glass, probably 

coloured by the low copper oxide content (0.57 %), since no cobalt was detected. 

 

Samples 349 and 350 are both low - magnesia. soda - lime silica glasses, but are 

not otherwise alike. 
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sample 320 349 350
Na2O 16.62 17.81 17.51
MgO 3.73 0.56 0.83
Al2O3 2.74 0.39 2.27
SiO2 63.18 69.36 65.84
P2O5 0.12 0.02 0.12
SO3 0.48 0.18 0.33
Cl 0.61 1.33 0.85
K2O 0.89 0.09 0.63
CaO 8.68 10.09 5.83
TiO2 0.04 0.06 0.13
Cr2O3 0.02 0.00 0.02
MnO 0.11 0.04 0.29
FeO 0.58 0.23 6.23
CoO 0.00 0.00 0.00
NiO 0.06 0.00 0.00
CuO 0.57 0.00 0.58
ZnO 0.05 0.00 0.00
As2O5 0.00 0.00 0.00
SnO2 0.01 0.03 0.01
Sb2O5 0.02 1.67 0.07
BaO 0.04 0.02 0.05
PbO 0.00 0.09 0.33
Total 98.55 101.97 101.92

 
 

Table 5.26 Compositional data from samples from Muletti Prosdocimi 

 

Sample 349 is from a fragment of a badly weathered aqua translucent glass bead, 

which contains very low amounts of alumina (0.39 %) and iron oxide (0.23 %), a 

high lime content (10.09 %) and was decolourised with the addition of antimony 

pentoxide (1.67 %). 

 

Sample 350 is from a heavily weathered brown opaque bead distinguished by its 

high iron content (6.23 %) 
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5.6.6. Discussion of the Este glasses. 

Considered as a group, the glasses from Este Culture cemeteries do not constitute 

a singular technology, or readily identifiable type. There is no evidence for 

continuity of glass production from the industry associated with settlements in the 

Po Valley from Final Bronze Age. There is no sign even of recycling of the earlier 

glass, or occasional examples of the earlier material remaining in circulation to be 

deposited alongside beads from the Early Iron Age. Unsurprisingly, the variation 

seen within the Benvenuti material, is reflected across the data set as a whole: i.e. 

two groups of LMG glasses, a few HMG glasses, and no high potash or mixed-

alkali type-glasses (figures 5.44 and 5.38). The subdivision of this material into 

sites is essentially an arbitrary act based upon 19th Century urban property 

boundaries rather than any archaeological characteristic (Chieco Bianchi and 

Capuis 1985a, p 10 Figure 1). 
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Figure 5.44 Glass types from Este Culture Cemeteries base on the magnesia and 

potassium oxide contents.  
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The Este glasses are also discussed as a single group in further detail below (see 

page 314). 

 

5.7 Co Garizoni 

16 samples: 272 - 274, and 276 - 288 inclusive. 

 

All of the Co’Garizoni samples were taken from artefacts held at Adria Museum, 

and are derived from rescue excavations of a cemetery near Adria in 1966. The 

cemetary dates to the 3rd – 2nd Century BC (Simonetta Bonomi pers. comm, 

Fogolari and Scarfi 1970, p 14). The beads are all of identical form and there are 

three colours represented amongst the original assemblage (opaque white, blue 

and green). 

 

 

     
 

Figure 5.55 samples 272, 285 and 288 illustrate the form and range of colours 

amongst the beads sampled from Co’Garizoni (scale 2:1) 

 

Glass types 

All of the Co’Garizoni glass samples are classic low-magnesia soda - lime - silica 

glasses, consistent with use of a natron -type soda source. The soda values range 
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from 13.82 - 17.94 %, and the magnesia content is consistently low with a range 

of 0.35 - 0.56 %. The alumina content is unexceptional with a mean of 2.42 %, 

range 2.28 - 2.61 %. The potassium oxide and phosphorous pentoxide levels are 

also compatable with a natron type glass with means and ranges of 0.68, 0.53 - 

0.82 % and 0.06, 0.02 - 0.09 % respectively. A low iron containing silica source 

has been used throughout (0.32 - 0.78 %), and coupled with concentrations of 

other metals (except deliberate colourants) suggests that either a very clean sand 

or ground quartz was employed. 

 
sample mean all stdev min max reduced comp. 
Na2O 16.22 1.38 13.82 17.94 17.48 
MgO 0.44 0.08 0.35 0.56 0.48 
Al2O3 2.42 0.09 2.28 2.61 2.61 
SiO2 66.08 2.06 59.43 67.82 71.24 
P2O5 0.06 0.02 0.02 0.09  
SO3 0.47 0.09 0.33 0.71  
Cl 0.86 0.11 0.59 1.03  
K2O 0.68 0.09 0.53 0.82 0.73 
CaO 6.47 0.72 5.64 8.23 6.97 
TiO2 0.05 0.01 0.04 0.06  
Cr2O3 0.01 0.01 0.00 0.02  
MnO 0.61 0.39 0.02 1.24  
FeO 0.46 0.16 0.32 0.78 0.50 
CoO 0.03 0.04 0.00 0.11  
NiO 0.00 0.01 0.00 0.02  
CuO 0.10 0.23 0.00 0.91  
ZnO 0.01 0.02 0.00 0.06  
As2O5 0.03 0.04 0.00 0.14  
SnO2 0.03 0.02 0.01 0.06  
Sb2O5 4.30 2.07 0.52 8.54  
BaO 0.05 0.01 0.04 0.06  
PbO 1.48 2.63 0.00 8.80  
Total 100 

 

Table 5.27 summary data for all samples from Co’Garizoni 
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Colourants 

The only way to distinguish compositionally between these glasses is on the basis 

of their colourants.  

 

The white glasses are opacified by calcium antimonate, the most widely used 

white opacifier during the 2nd and 1st Millennia BC (Kaczmarczyk and Hedges 

1983, p 145). The white glasses contain the highest antimony levels (measured as 

Sb2O5), ranging from 3.37 - 8.54, mean 5.42 %, compared with a range of 0.52 - 

2.38, mean 1.83 for all of the other glasses. 

 

 
 mean white stdev min max 
Na2O 15.89 1.28 13.82 17.46
MgO 0.40 0.06 0.35 0.55
Al2O3 2.42 0.08 2.29 2.59
SiO2 65.75 2.40 59.43 67.55
P2O5 0.05 0.02 0.02 0.09
SO3 0.50 0.09 0.38 0.71
Cl 0.82 0.10 0.59 0.94
K2O 0.64 0.07 0.53 0.73
CaO 6.36 0.85 5.64 8.23
TiO2 0.05 0.01 0.04 0.06
Cr2O3 0.01 0.01 0.00 0.02
MnO 0.43 0.24 0.02 0.67
FeO 0.37 0.03 0.32 0.43
CoO 0.01 0.01 0.00 0.03
NiO 0.00 0.01 0.00 0.02
CuO 0.00 0.00 0.00 0.01
ZnO 0.01 0.02 0.00 0.05
As2O5 0.05 0.04 0.01 0.14
SnO2 0.04 0.01 0.01 0.06
Sb2O5 5.42 1.34 3.37 8.54
BaO 0.04 0.01 0.04 0.06
PbO 1.71 3.00 0.01 8.80

 
Table 5.28 Summary data for all white opaque samples from Co’Garizoni 
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The blue glasses also contain a significant antimony content, also probably present 

as the white opacifier, calcium antimonate. These glasses have their colour 

modified by the addition of cobalt oxide, resulting in a blue opaque glass. 

 

 

 mean blue stdev min max 
Na2O 16.85 1.63 14.42 17.94
MgO 0.53 0.02 0.51 0.55
Al2O3 2.46 0.10 2.40 2.61
SiO2 66.95 0.69 66.15 67.82
P2O5 0.07 0.00 0.07 0.07
SO3 0.40 0.05 0.33 0.45
Cl 0.94 0.02 0.91 0.96
K2O 0.79 0.03 0.76 0.82
CaO 6.80 0.12 6.72 6.98
TiO2 0.05 0.01 0.04 0.06
Cr2O3 0.01 0.01 0.00 0.02
MnO 1.16 0.05 1.11 1.24
FeO 0.72 0.05 0.66 0.78
CoO 0.10 0.01 0.09 0.11
NiO 0.01 0.01 0.00 0.02
CuO 0.17 0.04 0.13 0.21
ZnO 0.02 0.03 0.00 0.06
As2O5 0.00 0.00 0.00 0.00
SnO2 0.02 0.01 0.01 0.03
Sb2O5 2.15 0.16 2.05 2.38
BaO 0.06 0.00 0.06 0.06
PbO 0.18 0.24 0.00 0.53

 
Table 5.29 Summary data for all opaque blue glasses from Co’Garizoni. 

 

The cobalt content is strongly associated with manganese oxide, iron oxide, and 

potash, all of which must therefore be diagnostic of the cobalt raw material. The 

cobalt content is not associated with alumina, nickel or arsenic. It seems most 

likely that the cobalt-containing absolite mineral has been used (see section 

3.7.20). 
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 K2O MnO FeO CoO BaO 
K2O 1 0.916* 0.69** 0.831** 0.388 
MnO 0.916** 1 0.833** 0.871** 0.557** 
FeO 0.690** 8.30E-01 1 0.887** 0.757** 
CoO 0.831** 0.871* 0.887** 1 0.7** 
BaO 0.388 5.57E-01 0.757** 0.700** 1.00E+00 

 

Table 5.30 Correlation between cobalt and associated oxides amongst 

Co’Garizoni (** Correlation is significant at the 0.01 level (2-tailed) 

* Correlation is significant at the 0.05 level (2-tailed)) 

The single green glass sampled (sample 288) is coloured and opacified by a 

combination of lead antimonate (which is a yellow opacifier) in a blue matrix 

coloured by copper oxide.  

 
 sample 288 
Na2O 17.32
MgO 0.56
Al2O3 2.28
SiO2 66.22
P2O5 0.02
SO3 0.39
Cl 1.03
K2O 0.58
CaO 6.27
TiO2 0.04
Cr2O3 0.00
MnO 0.35
FeO 0.49
CoO 0.00
NiO 0.00
CuO 0.91
ZnO 0.00
As2O5 0.00
SnO2 0.05
Sb2O5 0.52
BaO 0.05
PbO 4.04
Total 101.12

 
Table 5.31 Compositional data for green glass from Co’Garizoni (sample 288). 
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This is attested by the raised lead oxide level, 4.04 % compared to an average of 

1.83 % for all of the other glasses, and a raised copper content of 0.91 %. The 

trace of tin oxide present is probably associated with the use of a bronze for the 

source of the copper. 

 

If the reduced compositions of the three colours are considered then it is possible 

to see how similar the underlying glass compositions are, with only slight 

variation contributed by increased potash and iron levels in the blue glasses 

originating in the cobalt source. These are so slight that they do not significantly 

alter the overall picture of a single glass type being employed. 

 

 reduced comp. All reduced comp. White reduced comp. Blue reduced comp. Green 
Na2O 17.48 17.30 17.72 18.48
MgO 0.48 0.43 0.56 0.60
Al2O3 2.61 2.63 2.59 2.43
SiO2 71.24 71.60 70.40 70.66
K2O 0.73 0.70 0.83 0.62
CaO 6.97 6.93 7.15 6.69
FeO 0.50 0.40 0.75 0.52
Total 100 100 100 100

 

Table 5.32 Reduced compositions for different coloured glasses from 

Co’Garizoni 

 

5.8 Canale Bianco 

18 samples, 239 - 244, 246 - 250, 254 - 257, 263, 302, 304. 

 

All of the samples are derived from the collection held at Adria Museum, and are 

from the rescue excavations of a nearby necropolis, in this case associated with 

the canalisation of a tributary of the Po. The artefacts sampled date from the 5th to 

the 2nd Centuries BC. The assemblage largely consists of beads: complex 
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stratified eye beads (e.g. samples 302 and 254), spirally decorated beads, ring 

beads and also includes spindle whorls. 
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Figure 5.56 Scatter plot of potash against magnesia for glasses from Canale 

Bianco. 

 

Glass types 

All except one of the Canale Bianco glasses are low- magnesia, soda-lime silica 

glasses (see Figure 5.56), the exception being a single high lead glass containing 

20.52 % lead oxide (sample 255), this glass is an opaque yellow, coloured and 

opacified with lead antimonate crystals. The assemblage is quite diverse in terms 

of artefact types, forms and colours making their collective composition 
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unsuitable for reduction into a single “type” for tabulation, although a 

consideration of the compositional ranges may be useful. 

 
 

 
 

Figure 5.57 Bead from Canale Bianco, sample 255 from yellow opaque 

decoration. 

 
sample mean stdev min max 255
Na2O 16.42 1.21 14.15 18.09 12.96
MgO 0.66 0.22 0.36 1.14 0.35
Al2O3 2.30 0.46 1.14 3.38 1.91
SiO2 66.91 3.04 61.97 73.89 54.52
P2O5 0.06 0.04 0 0.14 0.02
SO3 0.29 0.10 0.12 0.52 0.26
Cl 0.92 0.17 0.57 1.35 0.82
K2O 0.77 0.19 0.38 1.11 0.60
CaO 8.10 1.60 5.8 12.08 5.32
TiO2 0.04 0.02 0 0.09 0.06
Cr2O3 0.01 0.01 0 0.03 0.00
MnO 0.88 1.19 0 3.72 0.04
FeO 1.14 1.95 0.24 8.63 1.99
CoO 0.05 0.06 0 0.20 0.04
NiO 0.01 0.02 0 0.08 0.00
CuO 0.21 0.35 0 1.15 0.00
ZnO 0.02 0.03 0 0.11 0.09
As2O5 0.00 0.01 0 0.02 0.00
SnO2 0.02 0.02 0 0.06 0.01
Sb2O5 0.80 1.38 0 5.16 2.55
BaO 0.06 0.02 0.04 0.13 0.02
PbO 0.86 2.22 0 9.30 20.52
Total 102.08

 

Table 5.33 Summary data for glasses from Canale Bianco 
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Colourants 

The Canale Bianco assemblage represents a wide range of glass colours: 5 blue 

translucent glasses, 2 blue opaques, 1 white opaque, 2 colourless translucent, 1 

green translucent, 2 yellow opaques, 2 brown opaques (probably badly 

weathered), 1 “black” and 2 aqua translucent glasses. 

 

The blue samples are mostly coloured by the addition of cobalt oxide (six 

samples: 241, 242, 254, 257, 263 and 302), with only one blue glass coloured by 

copper alone (sample 304).  

 

 
sample 241 242 254 257 263 302 304 
Na2O 17.58 17.36 16.22 15.34 16.10 15.75 17.47 
MgO 0.72 0.68 0.65 0.66 1.14 0.49 0.48 
Al2O3 2.17 2.14 1.14 2.11 2.51 3.38 2.51 
SiO2 66.76 67.67 73.89 67.30 66.07 69.07 69.96 
P2O5 0.05 0.00 0.07 0.02 0.12 0.05 0.02 
SO3 0.30 0.36 0.12 0.33 0.24 0.42 0.52 
Cl 0.98 1.04 1.35 0.85 0.95 0.82 0.57 
K2O 0.63 0.66 0.38 0.91 0.97 0.61 1.11 
CaO 7.30 7.27 6.74 8.98 9.84 9.35 7.55 
TiO2 0.06 0.02 0.09 0.04 0.04 0.00 0.04 
Cr2O3 0.00 0.02 0.03 0.02 0.00 0.00 0.00 
MnO 1.49 1.56 0.94 0.10 0.68 0.03 0.01 
FeO 0.77 0.79 0.72 1.25 1.17 0.56 0.24 
CoO 0.06 0.11 0.11 0.12 0.16 0.20 0.02 
NiO 0.00 0.02 0.02 0.00 0.01 0.00 0.00 
CuO 0.10 0.17 0.13 0.32 0.22 0.04 1.15 
ZnO 0.00 0.02 0.11 0.00 0.03 0.00 0.00 
As2O5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SnO2 0.03 0.00 0.00 0.01 0.03 0.00 0.01 
Sb2O5 0.06 0.02 0.00 0.20 0.07 0.02 0.09 
BaO 0.06 0.06 0.05 0.04 0.06 0.05 0.05 
PbO 0.08 0.09 0.01 1.53 0.18 0.04 0.00 
Total 99.20 100.06 102.77 100.13 100.59 100.88 101.80 

 
Table 5.34 blue samples from Canale Bianco 
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Statistical analysis of the data for these glasses reveals no significant correlation 

between cobalt and other components (such as alumina, copper oxide, manganese 

oxide, iron oxide, zinc oxide or arsenic oxide), suggesting that a pure or refined 

cobalt raw material was employed. Interestingly, the copper coloured blue glass 

sample (sample 304) is derived from an artefact which also includes cobalt-

coloured glass (sample 302). 

 

 
 

Figure 5.58 Artefact from which samples 302 and 304 were taken (scale 2:1). 

 

Sample 302 was removed from the core of the bead (dark blue translucent glass 

containing 0.2 % CoO), and sample 304 was taken from a lighter blue opaque 

(turquoise?) decorative crumb attached to the surface of the bead. This is clearly a 

complex structured artefact, in which composite roundels of decorated glass have 

been inserted and marvered onto a blue core, and then the decoration augmented 

with the further addition of blue and yellow opaque crumbs. The craftsperson (or 

people) manufacturing the object had access to different shades of blue coloured 

glass, and distinguished between them both in their manufacture and use (this 

distinction is less clear in the Bronze age material). 

 

 294



The colourless translucent samples (243 and 250), green translucent (244) and 

aqua translucent (248 and 249) are treated as similar in terms of colour: they have 

not been manufactured with the intention of being strongly coloured. The samples 

come from beads (243 and 244) and spindle whorls (248, 249 and 250). These 

clear or lightly coloured translucent glasses were initially assumed to be 

“naturally” coloured by low iron containing sand, but examination of the 

analytical data (see Table 5.35 below) show that each of them is deliberately 

decoloured by the addition of modifying agents. Samples 248, 243, 249 and 250 

are all decoloured with the addition of antimony pentoxide, with 1.2, 3.29, 0.93 

and 0.84 % respectively. The first use of use of this decolourant is associated with 

the shift to natron-type soda-lime silica glasses in the 8th Century BC, and is the 

sole known decolourant until supplemented and finally replaced by manganese 

after the 1st Century BC (see 3.7.16 above). Sample 244 surprisingly contains 

1.25 % manganese oxide. Since this is a low-magnesia soda-lime-silica glass, the 

manganese is not an accidental component originating in a plant ash, and must 

therefore be considered a deliberate addition. The use of manganese oxide as a 

decolourant is not documented before the 2nd Century BC (Sayre 1963). This 

would suggest that sample 244 is from an artefact incorrectly dated to the period 

3rd - 2nd Century BC. Review of its form would tend to confirm this, since it is a 

ring bead (or ringperlen) common across Central and Southern Europe from the 

2nd Century BC onwards (Zepezauer 1993, p 30-63, 95) 
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Figure 5.59 Bead from which sample 244 was taken (scale 1:1). 

 
 

sample 243 244 248 249 250 
Na2O 17.67 16.36 16.34 17.07 17.19 
MgO 0.70 0.88 0.88 0.36 0.41 
Al2O3 2.32 2.20 2.65 2.61 2.63 
SiO2 67.93 63.42 66.12 69.13 70.47 
P2O5 0.05 0.12 0.07 0.05 0.02 
SO3 0.21 0.27 0.24 0.30 0.27 
Cl 0.86 0.61 0.91 0.91 0.93 
K2O 0.78 0.80 0.58 0.95 0.94 
CaO 9.11 12.08 8.73 5.80 5.87 
TiO2 0.04 0.04 0.06 0.06 0.04 
Cr2O3 0.00 0.00 0.02 0.02 0.00 
MnO 0.00 1.25 0.01 0.01 0.03 
FeO 0.35 0.31 0.66 0.29 0.42 
CoO 0.00 0.02 0.00 0.00 0.00 
NiO 0.02 0.00 0.00 0.00 0.02 
CuO 0.04 0.01 0.00 1.09 0.00 
ZnO 0.02 0.00 0.00 0.00 0.00 
As2O5 0.00 0.00 0.02 0.00 0.00 
SnO2 0.03 0.00 0.05 0.03 0.01 
Sb2O5 1.20 0.41 3.29 0.93 0.84 
BaO 0.05 0.06 0.04 0.06 0.05 
PbO 0.00 0.02 0.01 0.47 0.56 
Total 101.38 98.86 100.68 100.14 100.70 

 
Table 5.35 clear and pale coloured translucent glasses from Canale Bianco 

 

Both yellow opaque glasses (samples 247 and 255) are coloured with lead 

antimonate. Sample 255 has a sufficiently high lead content (20.52 %) to be 

considered a high lead glass.  
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The white opaque glass (sample 256) was one of the few analyses of this type to 

be successful: many of the white opaque glasses were badly weathered and the 

samples too friable to survive polishing during preparation for analysis. Its raised 

antimony content (5.16 %) suggests that calcium pyroantimonate is the opacifier 

and colouring agent. 

 

The only “black” glass from the Canale Bianco assemblage (sample 246 see 

Figure 5.61) was not coloured by iron oxide or an excess of cobalt as elsewhere, 

but with a high manganese content of 3.62 %. Interestingly this high manganese 

content is also present in one of the brown opaque glasses (sample 240). Sample 

240 therefore probably appeared black after manufacture, and has weathered to its 

current condition. However, sample 239, which is very similar to 240 in terms of 

form, decoration and colour, does not have such elevated manganese content, but 

a high iron content of 8.63 %, showing the choices of colourant available to the 

manufacturer. Ten of the Canale Bianco glasses contain manganese oxide at 0.1 % 

and above, suggesting that these samples should be placed towards the later phase 

of the site’s use (samples 239, 240, 241, 242, 244, 246, 247, 254, 257, 263). 

 
Figure 5.60 sample 246 taken from the “black” matrix of this bead 
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Figure 5.61 Samples 339 and 340, coloured using different oxides 

 

5.9 Ca’Cima 

7 samples: 264 - 270 inclusive 

 

All of the Ca’Cima samples were taken from the assemblage held by the Museum 

of Adria. The material is from recent rescue excavations of a necropolis dating to 

the 6th C BC. All the glassy material recovered from this site were completed 

artefacts from funerary contexts. There was no evidence for associated glass 

production or working. It includes stratified and simple eye beads (e.g sample 

266) from different coloured glass, zig-zag decorated beads, rod-formed pin heads 

and pendants such as the goat’s-head pendant (e.g. sample 267).  

 

Glass types 

The Ca’Cima glasses are all low - magnesium soda-lime -silica glasses, consistent 

with the use of a mineral soda raw material. It seems unlikely that the diverse 

artefact types and styles are from the same source, but their similar glassmaking 

tradition reflects the widespread adoption of this type during the middle Iron Age. 
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sample mean stdev min max 
Na2O 16.82 1.61 14.73 19.37
MgO 0.53 0.11 0.42 0.68
Al2O3 1.51 0.88 0.52 2.44
SiO2 65.77 2.10 61.57 67.51
P2O5 0.05 0.03 0.02 0.10
SO3 0.25 0.13 0.15 0.54
Cl 1.31 0.22 1.02 1.56
K2O 0.31 0.24 0.06 0.77
CaO 9.16 0.96 8.2 10.72
TiO2 0.07 0.03 0.04 0.13
Cr2O3 0.02 0.01 0 0.04
MnO 0.04 0.02 0.01 0.08
FeO 2.24 2.92 0.32 7.16
CoO 0.03 0.04 0 0.11
NiO 0.00 0.00 0 0.01
CuO 0.54 1.29 0 3.45
ZnO 0.02 0.03 0 0.09
As2O5 0.01 0.01 0 0.03
SnO2 0.03 0.02 0 0.06
Sb2O5 2.23 1.66 0 3.75
BaO 0.04 0.02 0.01 0.06
PbO 0.31 0.71 0 1.91

 
Table 5.36 Summary data for glasses from Ca’Cima 

 

Colourants 

There are three white opaque glasses amongst those sampled, each of which is 

opacified and coloured using calcium antimonate (samples 267, 269 and 270). The 

compositions of these three glasses are very close, despite coming from quite 

distinct artefacts (a goat’s head pendant, bead and pin head respectively). The 

goat’s head pendant is almost certainly an exotic import, probably Phoenician 

(also see 5.12.5). 
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sample 267 269 270 mean stdev min max 
Na2O 18.30 17.08 16.81 17.40 0.79 16.81 18.30 
MgO 0.53 0.42 0.42 0.46 0.06 0.42 0.53 
Al2O3 1.61 2.41 2.44 2.15 0.47 1.61 2.44 
SiO2 67.51 66.34 67.32 67.06 0.63 66.34 67.51 
P2O5 0.05 0.05 0.02 0.04 0.02 0.02 0.05 
SO3 0.24 0.18 0.18 0.20 0.03 0.18 0.24 
Cl 1.53 1.45 1.56 1.51 0.06 1.45 1.56 
K2O 0.35 0.36 0.36 0.36 0.01 0.35 0.36 
CaO 8.88 8.20 8.31 8.46 0.37 8.2 8.88 
TiO2 0.06 0.06 0.04 0.05 0.01 0.04 0.06 
Cr2O3 0.04 0.00 0.02 0.02 0.02 0 0.04 
MnO 0.05 0.01 0.01 0.02 0.02 0.01 0.05 
FeO 0.34 0.34 0.32 0.33 0.01 0.32 0.34 
CoO 0.00 0.03 0.05 0.03 0.03 0 0.05 
NiO 0.00 0.00 0.01 0.00 0.01 0 0.01 
CuO 0.00 0.05 0.00 0.02 0.03 0 0.05 
ZnO 0.02 0.09 0.00 0.04 0.05 0 0.09 
As2O5 0.03 0.02 0.02 0.02 0.01 0.02 0.03 
SnO2 0.04 0.00 0.01 0.02 0.02 0 0.04 
Sb2O5 3.73 3.18 3.75 3.55 0.32 3.18 3.75 
BaO 0.04 0.05 0.05 0.05 0.01 0.04 0.05 
PbO 0.06 0.00 0.01 0.02 0.03 0 0.06 
Total 103.41 100.32 101.71  

 
Table 5.37 Compositional data for white opaque glasses from Ca’Cima 

 

The green translucent (sample 264) and “black” (sample 266) glasses owe their 

colour to their iron oxide contents (7.16 and 5.73 % respectively). The two blue 

samples (265 and 268) are coloured quite differently. Sample 265 was taken from 

the blue opaque eye decoration of a bead, and is opacified with calcium 

antimonate and coloured blue with copper oxide (3.24 % Sb2O5, 3.45 % CuO). 

Sample 268, which is translucent blue glass is coloured by cobalt oxide alone 

(0.11 %). None of the Ca’ Cima samples contain sufficient manganese to be 

considered a deliberate addition. 
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5.10 Faliscan 

The only sample successfully analysed from a group of Faliscan beads from the 

Ashmolean Museum was sample 16. This sample is of the blue translucent matrix 

of a stratified eye - decorated annular bead. Sample 16 is a high - magnesia soda - 

lime silica glass, with 2.66 % MgO. It is however, not a classic example of this 

type of glass, since it has very low potash (0.24 %) and low phosphorus pentoxide 

(0.05 %) which are typically associated with the raised magnesia levels in glasses 

made with a plant ash alkali source. It is possible that the magnesia is therefore 

associated with another raw material in the original recipe (such as the silica 

source if this was a sand containing degraded dolomitic limestone for example). It 

is also possible that a soda - rich plant ash has been processed prior to use which 

has preferentially removed the “missing” components. 

sample 16 
Na2O 16.12 
MgO 2.66 
Al2O3 4.61 
SiO2 70.86 
P2O5 0.05 
SO3 0.34 
Cl 0.67 
K2O 0.24 
CaO 3.00 
TiO2 0.04 
Cr2O3 0.00 
MnO 0.18 
FeO 1.04 
CoO 0.02 
NiO 0.05 
CuO 0.00 
ZnO 0.16 
As2O5 0.00 
SnO2 0.01 
Sb2O5 0.02 
BaO 0.04 
PbO 0.01 
Total 100.12 

 

Table 5.38 data from Faliscan sample 16 
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The colourant employed in the manufacture of sample 16 must have been reduced 

iron oxide (1.04 %) perhaps supplemented with a small amount of cobalt oxide 

(0.02 %). The manganese and iron contents may be associated with the cobalt - 

rich raw material. 

 

5.11 Unprovenanced items. 

11 samples: 237, 238, 245, 251, 252, 253, 261, 305, 307a, 307b and 307c. 

 

A number of artefacts were sampled from Adria Museum despite having uncertain 

provenance. All of these artefacts were recognised by their various forms as being 

of Iron Age date, and originated in archaeological contexts in the vicinity of 

Adria. 

 

The chemical composition of each individual bead is not considered in detail here, 

but the data considered alongside comparative material when specific forms are 

discussed across site boundaries below. Four of the samples can be considered 

together from the unprovenanced group since they are similar in terms of colour 

and form (see below). All but one of the unprovenanced samples are low - 

magnesia soda - lime - silica glasses, and whilst they should not be considered as 

representative of a single production tradition or even the consumption range of a 

single community, it is still useful to illustrate the compositional variability of this 

diverse group of artefacts.  
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sample mean (LMGs) stdev min max 238 
Na2O 16.43 1.79 12.96 18.73 10.10 
MgO 0.54 0.16 0.38 0.84 1.80 
Al2O3 1.84 0.84 0.90 3.19 1.87 
SiO2 70.16 3.52 64.90 75.80 61.87 
P2O5 0.04 0.03 0.02 0.10 0.75 
SO3 0.24 0.12 0.09 0.46 0.30 
Cl 1.17 0.20 0.86 1.40 1.33 
K2O 0.55 0.19 0.29 0.82 4.88 
CaO 7.32 1.82 4.77 10.61 11.97 
TiO2 0.05 0.02 0.02 0.07 0.07 
Cr2O3 0.02 0.01 0.00 0.04 0.01 
MnO 0.22 0.41 0.01 1.04 0.24 
FeO 1.44 2.31 0.29 7.84 0.60 
CoO 0.10 0.15 0.01 0.41 0.02 
NiO 0.00 0.01 0.00 0.02 0.02 
CuO 0.60 0.68 0.00 1.97 0.01 
ZnO 0.01 0.02 0.00 0.05 0.03 
As2O5 0.01 0.03 0.00 0.08 0.07 
SnO2 0.05 0.04 0.01 0.13 0.03 
Sb2O5 0.83 1.26 0.02 3.53 5.22 
BaO 0.04 0.02 0.01 0.07 0.04 
PbO 0.12 0.12 0.00 0.30 0.12 
Total 101.29 

 
Table 5.39 Summary of data for unprovenanced prehistoric glasses from Adria 

 

The only non low - magnesia soda - lime - silica glass amongst the group is a 

single mixed-alkali glass of unusual composition, sample 238 (see table 5.39). 

This glass is unlike the mixed-alkali glasses of late Bronze Age Europe, such as 

those from Frattesina and Mariconda. Sample 238 has soda as the principle alkali 

(10.01 %), with potash as a secondary, but still major contributor (4.88 %), with 

the raised phosphorus pentoxide and high lime levels consistent with the use of a 

plant ash. The artefact is probably from a much later context (possibly 17th 

Century AD: Julian Henderson pers. comm.) 
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Figure 5.62 Sample 238 (scale 2:1). 

 

Samples 251, 252, 253 and 305 are all taken from pale blue opaque beads 

decorated with stratified eyes constructed of alternate bands of blue and white 

opaque glass. In each case the sample is of the pale blue opaque glass bead matrix. 

   

        
    

Figure 5.63 Samples 251, 252, 253 and 305 (scale 1:1). 
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sample 251 252 253 305 mean stdev min max reduced comp. 
Na2O 15.73 14.64 15.70 15.96 15.51 0.59 14.64 15.96 15.93
MgO 0.47 0.46 0.39 0.79 0.53 0.18 0.39 0.79 0.54
Al2O3 1.32 2.12 1.88 3.19 2.13 0.78 1.32 3.19 2.19
SiO2 69.46 70.21 71.63 69.46 70.19 1.02 69.46 71.63 72.10
P2O5 0.05 0.05 0.02 0.02 0.04 0.02 0.02 0.05 
SO3 0.15 0.18 0.24 0.35 0.23 0.09 0.15 0.35 
Cl 1.40 1.02 0.95 1.08 1.11 0.20 0.95 1.40 
K2O 0.29 0.70 0.64 0.54 0.54 0.18 0.29 0.70 0.56
CaO 8.14 7.59 7.02 9.03 7.95 0.86 7.02 9.03 8.16
TiO2 0.04 0.04 0.06 0.07 0.05 0.01 0.04 0.07 
Cr2O3 0.02 0.00 0.02 0.00 0.01 0.01 0.00 0.02 
MnO 0.03 0.01 0.04 0.04 0.03 0.01 0.01 0.04 
FeO 0.80 0.48 0.34 0.42 0.51 0.20 0.34 0.80 0.52
CoO 0.03 0.05 0.03 0.01 0.03 0.02 0.01 0.05 
NiO 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.01 
CuO 1.97 1.01 0.84 1.33 1.29 0.50 0.84 1.97 
ZnO 0.05 0.05 0.00 0.03 0.03 0.02 0.00 0.05 
As2O5 0.00 0.00 0.00 0.03 0.01 0.01 0.00 0.03 
SnO2 0.13 0.06 0.05 0.10 0.08 0.04 0.05 0.13 
Sb2O5 0.06 0.63 0.06 1.09 0.46 0.50 0.06 1.09 
BaO 0.07 0.05 0.04 0.06 0.05 0.01 0.04 0.07 
PbO 0.19 0.23 0.00 0.30 0.18 0.13 0.00 0.30 
Total 100.4 99.58 99.95 103.85  100

 
Table 5.40 Unprovenanaced blue opaque glasses from Adria. 

 

These glasses are very similar in composition, as well as colour and form, sharing 

similar soda, magnesia, phosphorous pentoxide, potash and lime levels. They all 

contain low levels of cobalt oxide (0.01 - 0.05 %) and copper (0.84 - 1.97 %), and 

are coloured by the combination of both. Only one of the samples contains 

significant level of “antimony pentoxide” to suggest that it may have been 

opacified by the addition of calcium antimonate (sample 305, 1.09 % Sb2O5, also 

see 3.7.16 above) 
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5.12 Integration of data across sites: Global perspectives of the data. 

5.12.1 Statistical analysis of the entire data set. 

In addition to the detailed examination of compositional data from individual sites 

and periods, the entire data set was combined in order that trends within the whole 

body of data might be identified. 

 

Principal component analysis was performed to identify trends across the 

combined data. Since the SPSS programme can only display up to 12 labels for 

variables in bi-variate plots, the site designations were changed to accommodate 

this. The samples from Mariconda, Montagnana and Frattesina were all labelled as 

“Brz Age” (excluding sample 342, see above), the Cumae and Pozzouli material 

labelled Cum/Pozz, and the Alfonsi and Faliscan samples labelled as 

unprovenanced since there was only 1 sample from each site. The change in site 

name does not effect in any way the outcome of the statistical routine. 

 

8 components account for 76.7 % of the total variance in the merged dataset. The 

matrix was rotated on these 8 components to maximise the relationships between 

the variables (the Varimax method). Table 5.41 is the rotated principal 

components matrix for the measured oxide components in the samples. The 

loadings of the variables on these factors can provide information on the 

relationships between the variables (these relationships can also be identified 

using a bi-variate correlation analysis). 
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 Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8 
Na2O 0.89967 -1.06E-01 1.30E-01 -3.26E-02 -1.35E-02 -2.10E-01 1.58E-01 0.03275
MgO 0.08051 -2.34E-02 -0.0709 -1.30E-01 -3.88E-02 -5.79E-02 0.88407 -0.00285
Al2O3 -0.03879 -4.77E-02 0.68377 -7.51E-02 2.55E-01 -0.06869 0.51677 4.03E-02
SiO2 -0.47176 -3.58E-01 -0.48939 1.38E-01 2.11E-01 -0.3625 -2.70E-01 -1.02E-01
P2O5 -2.38E-01 8.63E-02 -0.03309 2.83E-02 -5.50E-04 0.91906 -5.57E-02 1.03E-02
SO3 1.04E-01 2.35E-02 2.74E-01 4.18E-01 -1.25E-01 1.24E-01 0.30946 5.30E-01
Cl 8.53E-01 -1.83E-02 -5.61E-02 2.81E-01 -8.65E-02 -4.42E-02 -0.17583 -3.29E-02
K2O -0.91294 -8.99E-02 -0.04348 0.03309 0.08138 2.70E-01 -8.21E-02 -0.06106
CaO 4.76E-01 -6.51E-02 -2.64E-02 5.74E-01 -1.11E-01 4.92E-01 -1.31E-01 -1.28E-01
TiO2 1.28E-01 -8.39E-02 6.31E-01 -5.88E-01 1.07E-01 5.64E-02 2.41E-01 6.10E-02
Cr2O3 9.80E-03 -5.65E-02 -5.93E-02 -1.43E-01 1.75E-01 -5.20E-02 -6.23E-02 7.99E-01
MnO 2.48E-01 2.98E-01 3.79E-01 3.09E-01 7.86E-02 -3.32E-02 -1.85E-02 -3.25E-01
FeO 2.83E-01 9.58E-02 -4.24E-03 -8.26E-01 -2.25E-01 3.97E-02 2.92E-02 1.82E-01
CoO 0.11494 2.29E-03 0.19348 -1.67E-02 8.54E-01 -2.81E-02 -1.02E-01 4.50E-02
NiO -0.13426 8.80E-04 -1.08E-02 1.29E-02 8.65E-01 1.27E-02 8.57E-02 8.17E-02
CuO -0.77883 -0.09808 8.22E-02 0.15531 -2.19E-01 -2.89E-01 -0.09273 4.32E-02
ZnO 0.06651 8.66E-01 -4.46E-02 -0.15286 5.68E-03 -7.69E-02 0.08572 -0.0194
As2O5 -0.13538 0.79783 0.05373 0.02604 0.0557 0.39538 -0.04355 0.00437
SnO2 -0.29145 -0.06204 0.40655 0.19595 -0.21647 -0.203 -0.18792 0.15728
Sb2O5 0.31713 0.03492 0.0552 0.49935 -0.15562 0.0357 -0.12934 0.1056
BaO 0.00171 0.15143 0.8136 0.07917 0.11444 0.00611 -0.24959 -0.0778
PbO 0.056764 0.838016 0.111629 0.099001 -0.04155 -0.03891 -0.09202 -0.0599

 

  

Table 5.41 Rotated Principal Components Matrix for all samples. Rotation 

Method: Varimax with Kaiser Normalization. All values greater than +/- 0.5 are 

highlighted. 
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Figure 5.64 Scatter diagram of samples scores on the first two factors extracted 

by PCA (all samples). 

 

The samples can be readily distinguished into two groups by plotting factor 1 

against factor 2 from the PCA. The difference is also essentially a chronological 

feature, with one group almost entirely of Final Bronze Age glasses. The position 

of 5 Etruscan samples amongst the Bronze Age glasses is initially an exciting 

prospect, suggesting a shared technology. However a brief survey of the Rotated 

PCA matrix (see Table 5.41 above) reveals that potash and soda are key variables 

in the first factor, and are negatively correlated. The separation of the glasses into 

two groups is largely based on the high-potash and relatively low soda contents of 

the mixed-alkali glasses in comparison with the other glasses, which are soda-

lime-silica compositions. Since the 5 Etruscan glasses contain no soda and 

commensurately high levels of potash, they are associated with the mixed-alkali 

glasses. A similar grouping can be achieved using the raw data, in which potash is 

plotted against any other component (for example figure 5.65). The single outlier 

from the site of Benvenuti is sample 359, a high lead glass containing 37.65 % 

PbO).  
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Figure 5.65 potash against magnesia for all samples. 

 

If the Bronze Age mixed-alkali and Etruscan potash glasses are removed from the 

dataset, PCA can be performed again to try and discern patterning within the later 

glasses alone. 7 components account for 69.3 % of the variance. 
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 factor 1 factor 2 factor 3 factor 4 factor 5 factor 6 factor 7 
Na2O -0.6665 0.22756 0.13246 0.20435 0.08269 -0.03749 0.2937
MgO -0.04788 -0.05289 -0.09854 -0.05557 -0.05373 0.10258 0.90369
Al2O3 -0.10313 0.6632 -0.27978 0.28755 0.11418 -0.06897 0.39078
SiO2 -0.38475 -0.65943 0.30695 0.17783 -0.10525 -0.06243 -0.25059
P2O5 0.56011 0.17521 -0.12215 -0.06933 -0.00935 0.46898 0.10159
SO3 -0.06063 0.06536 0.07327 0.17619 0.78959 0.10277 0.20539
Cl -0.15585 -0.05903 0.63984 -0.15381 0.02109 -0.31012 -0.35693
K2O -0.00552 0.26124 -0.10454 0.0445 0.12865 0.71651 0.2404
CaO -0.10559 0.06586 0.73444 -0.24504 0.27537 -0.27052 -0.14214
TiO2 -0.08664 0.61416 -0.48428 0.14879 -0.21168 0.26629 0.13883
Cr2O3 -0.12345 -0.08887 -0.04152 0.026 -0.04016 0.58767 -0.05502
MnO 0.24988 0.43394 0.19104 0.05465 0.15436 -0.36121 0.02966
FeO 0.09673 -0.02939 -0.69179 -0.2404 -0.45896 0.3091 -0.04536
CoO -0.03137 0.18432 0.03661 0.85185 -0.06823 0.02508 -0.13974
NiO -0.00902 0.03774 -0.07397 0.8646 0.06872 0.02667 0.1185
CuO 0.00398 -0.01682 0.6517 0.13339 -0.21215 0.28607 0.09125
ZnO 0.8393 -0.01958 -0.08991 0.06131 -0.11943 -0.06899 0.11675
As2O5 0.9075 0.12782 0.02 0.04859 0.01252 -0.0573 0.02899
SnO2 -0.06269 0.41512 0.22038 -0.04413 -0.07428 0.06606 -0.16611
Sb2O5 0.0152 0.00164 0.04772 -0.2153 0.79067 -0.06886 -0.30851
BaO 0.14991 0.78157 0.09317 0.28105 0.10009 0.01529 -0.21414
PbO 0.81302 0.13221 0.0164 -0.00366 0.09042 -0.18035 -0.1007

 

 

Table 5.42 Rotated Principal Components Matrix for all samples except Bronze 

Age mixed-alkali and Etruscan potash glasses. Rotation Method: Varimax with 

Kaiser Normalization. All values greater than +/- 0.5 are highlighted. 

 

However, the removal of the high potash glasses makes the data less easy to sub-

divide using multivariate statistics: 
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Figure 5.66 Scatter diagram of samples’ scores on the first two factors extracted 

by PCA, Iron Age glasses only (excluding high potash glasses). 

 
Figure 5.67 Magnesia against potash for Iron Age glasses only. Group A are the 

high potash Etruscan glasses, and groups B and C are low and high-magnesia 

soda-lime silica glasses respectively. 
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The sharp differentiation between high and low magnesia soda-lime silica glasses 

observed elsewhere (for example Henderson 1988a, p 447, Figure 3 and Lilyquist 

and Brill 1993, p 56, Figure 51) is not so readily apparent here. Whilst it is 

possible to delineate between the glasses, there is almost a continuum in terms of 

magnesia values. In part this might be through the recycling of glasses from both 

traditions. Nonetheless, the low-magnesia glasses are very tightly clustered. 

 

It is possible to consider the Este glasses as a single group (i.e. those samples from 

material recovered from Villa Benvenuti, Casa di Revovero, Fondo Rebato, Casa 

Alfonsi and Casa Muletti Prosdocimi) and compare them with published analyses 

from elsewhere. This is a useful way to consider how distinct the Este glasses are, 

and whether or not one can posit a production distinct to the Eastern 

Mediterranean region. 

 

There are relatively few published analyses of glasses from contemporary 

archaeological contexts anywhere, and a selection of analyses from a wide date 

range have been selected here for comparative purposes (all are from Brill 1999a 

and b). The sites are: Nimrud (700-600 BC), Mycenean (1400-1250 BC), Lisht 

(1200-900 BC), Hasanlu (1100-800 BC), Chotin (700-400 BC) and Amarna 

(1348-1335 BC). 
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Figure 5.68 Magnesia against potash for Este glasses and comparative published 

material. Values normalised to six key components as described in Lilyquist and 

Brill 1993, p 40 in order that the defined zones for "natron", “plant ash” and 

“Egypt other” from ibid p 56 can be used. 

 

As described elsewhere (section 5.6.6, Figure 5.44), the Este glasses can be 

subdivided into two low-magnesia groups, and a range of high magnesia glasses. 

Neither of the low-magnesia groups map directly onto Brill’s definition of a 

“natron” type glass, and the high magnesia Este glasses are quite distinct from 

those recorded from Egypt and the Near East. The high-magnesia glasses from 

Este contain much lower levels of potash than all other glasses except those from 

Nimrud. 

 

 313



A further observation is how closely grouped the Este low-magnesia glasses and 

analyses of Chotin glasses are. The Chotin glasses are the closest in terms of both 

geography and chronology (coming from a site in former Jugoslavia), and would 

tend to further substantiate the idea that glass is being produced in the Northern 

Adriatic area during the 9th to 5th Centuries BC. 

 

5.12.2. Discussion of artefacts types across site boundaries: Brooch Slider 

decorations 

A number of brooch decorations were sampled for this project, of a form not 

found in the Eastern Mediterranean, but well known from an area stretching from 

Central Italy to Poland (also see 1.3.2). These consist of a large leech-shaped mass 

of opaque glass decorated with bands of different coloured opaque glass wrapped 

around the mass which is marvered flush and then combed in alternate directions 

into a feathered decoration. The combing action often leaves behind an uneven 

ridged surface.  

 
Figure 5.69 Leech-shaped brooch decoration from which samples 175-178 were 

taken. Scale 1:1 

 

These artefacts are well known from both Etruscan and non-Etruscan contexts 

from the 8th to the 7th Centuries BC (Montelius 1895 Serie A plate 7 and Serie B 

plates: 90, 94, 195, 219, 307, 318, 349, Harden 1968, p 59 and references, Tatton-

Brown 1995 p 321 and references, Dobiat 1987, p 27-29, figure 17, plate 1). 
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Whilst the distribution of these artefacts is extensive, they are concentrated in the 

Northern Adriatic and in Tuscany (see Map 13 in Haevernick 1987). Previous 

writers have posited an Italian origin for these artefacts on the basis of the 

distribution (Dobiat 1987, p 28, Harden 1968, p 59, von Bissing 1942 144-168), 

but there is currently no evidence to establish this in preference to any other N. 

Adriatic location. It does seem most likely that they are fabricated within the 

region, rather than being exotic imports from the Eastern Mediterranean. 

 

Although a total of 8 samples were recovered from 4 artefacts, only 5 analyses 

from 3 artefacts were successful, giving fully quantitative results (samples: 175-

178, 370-371, 372, 373 of which 176, 177, 178, 370, and 373 were successful). 

 

sample 176 177 178 370 373 
Na2O 14.87 18.44 14.8 16.14 19.42 
MgO 0.3 1.01 1.05 1.13 1.03 
Al2O3 0.43 6.08 4.78 1.16 5.7 
SiO2 69.16 61.91 62.6 66.51 63.53 
P2O5 0.05 0.19 0.5 0.14 0.19 
SO3 0 0.24 0.42 0.36 0.24 
Cl 0.59 0.43 0.52 0.81 0.43 
K2O 0.5 2.6 1.89 0.46 1.95 
CaO 3.57 3.25 5.46 3.47 2.7 
TiO2 0.04 0.26 0.24 0.06 0.24 
Cr2O3 0 0.05 0 0 0.02 
MnO 0 0.23 0.18 0.16 0.23 
FeO 0.61 3.38 2.24 1.83 2.49 
CoO 0 0.25 0.14 0.23 0.31 
NiO 0.01 0.14 0.16 0.27 0.29 
CuO 0.08 0.67 0.74 0.71 0.47 
ZnO 0.02 0 0.05 0 0.03 
As2O5 0 0 0.06 0.12 0 
SnO2 0.03 0.01 0.13 0.08 0.04 
Sb2O5 1.35 0.11 1.26 1.21 0.2 
BaO 0.04 0.06 0.06 0.05 0.07 
PbO 12.33 0.24 3.43 8.33 0.19 
Total 103.98 99.55 100.71 103.23 99.77 

site Etruscan Etruscan Etruscan C. d. R. Rebato 
date 800-600 BC 800-600 BC 800-600 BC 650-625 BC 650-625 BC 

colour yellow opaque red opaque white opaque green opaque brown opaque
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Table 5.43 Compositions of brooch sliders 

 

A brief examination of the compositions of the samples from the brooch 

decoration reveals them all to be unusual glasses.  

 

Samples 176, 177 and 178 are from the same artefact, and yet are quite different, 

regardless of colourants: 176 is a high lead glass, opacified and coloured yellow 

with lead antimonate, it contains low magnesia, low alumina and low potash 

levels typical of natron-type glasses. Sample 177 has a high iron content, which 

may contribute to the red colour and a high alumina content, its potash content is 

high, and has raised magnesia levels suggesting a soda-rich ash as the alkali 

source. Sample 178 was supposed to be of a white opaque inclusion in the glass 

body of the artefact, but the analysis turned out to be of adhering red opaque glass 

(see section 5.4, and figures 5.24 and 5.25). The composition includes high iron 

levels, some lead, antimony and slightly raised but intermediate magnesia and 

potash. 

 

Samples 370 and 373 are from different artefacts, but are similarly distinct 

compositions. 370 has low alumina, intermediate magnesia and a low potash 

content, the high cobalt (accompanied by nickel) in combination with lead and 

antimony suggests the green colourant is generated with yellow lead antimonate 

crystals in a cobalt-blue matrix. 373 was also coloured by cobalt (although it has 

since weathered to a brown opaque colour), and also has intermediate magnesia 

and potash levels for a soda-lime-silica glass.  
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The highly variable compositions for this small number of samples are unlike 

those for published contemporary glasses from the Eastern Mediterranean and 

Mesopotamia (for example from Hasanlu, Nimrud and Persepolis: Brill 1999a, p 

43-47, 1999b, p 43-50), which tend to conform to the established categories. 

 

The glasses from the brooch decorations may be more closely related to that from 

the Iron Age cemetery site of Chotin in Yugoslavia (8 - 5th Century BC, Brill 

1999a, p 49-50, 1999b, p 59). Beads from this site have been analysed by Brill, 

and the compositions demonstrate significant variability across several key 

components (potash, soda, iron oxide). There would appear to be emerging 

evidence for a highly variable glass production industry located in either Northern 

Italy or elsewhere in the Northern Adriatic during the Iron Age and Etruscan 

periods. The distribution crosses the established “ethnic” borders of the region, 

making it difficult to assign a specific cultural milieu for its origin. 

 

5.12.3 Discussion of artefacts types across site boundaries: Spindle Whorls 

Perhaps less typologically homogenous, but longer-lived as a form are the glass 

and glass-composite spindle whorls, which appear throughout the assemblages 

examined here (i.e. from the Final Bronze Age to the Roman period). This group 

of artefacts share a common form, hence their grouping for discussion, but have 

period-specific decoration. 
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a  b   c  

Figure 5.70 examples of spindle whorls, sample 313 from a (Montagnana), 

sample 359 from b (Benvenuti) and sample 247 and 248 from c (Canale Bianco). 

Scale 1:1. 

 

The form is most frequently found in ceramic (for example from Rebato, Tomb 

100, illustrated in Haevernick 1987, drawing no. 17, and Ridgeway 1979, p 430, 

figure 5), but is well established in glass (for example Montelius 1895 Serie B 

plate 84, Fogolari and Scarfi 1970, p 76-77 and plate 49). For this project 10 

samples were taken from 8 artefacts (samples 247, 248, 249, 250, 313, 336, 359, 

369, 393 and 396), of which 9 were successfully analysed (396 failed). 
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sample 313 359 336 369 393 247 248 249 250
Na2O 7.12 2.92 19.94 17.53 14.53 15.02 16.34 17.07 17.19
MgO 0.7 0.57 1.2 0.44 0.38 0.48 0.88 0.36 0.41
Al2O3 1.67 2.67 7.09 1.96 0.69 2.14 2.65 2.61 2.63
SiO2 75.75 41.26 62.53 72.47 69.52 63.17 66.12 69.13 70.47
P2O5 0.1 1.26 0.12 0.15 0.05 0.05 0.07 0.05 0.02
SO3 0.03 0.24 0.39 0.15 0.21 0.24 0.24 0.3 0.27
Cl 0.05 0.42 0.59 1.31 0.98 1.04 0.91 0.91 0.93
K2O 7.88 0.44 1.68 0.38 0.49 0.72 0.58 0.95 0.94
CaO 1.28 1.78 2.02 6.22 4.55 6.9 8.73 5.8 5.87
TiO2 0.04 0.09 0.33 0.04 0.07 0.04 0.06 0.06 0.04
Cr2O3 0 0 0.02 0 0.01 0 0.02 0.02 0
MnO 0.01 2.26 0.26 0.01 0.05 0.61 0.01 0.01 0.03
FeO 0.54 6.36 3.64 1.09 7.89 0.71 0.66 0.29 0.42
CoO 0 0.06 0.2 0.03 0.02 0 0 0 0
NiO 0.07 0 0.06 0.08 0.02 0.01 0 0 0.02
CuO 5.08 0.16 0.38 0.12 0.01 0.1 0 1.09 0
ZnO 0 0.66 0 0.02 0.01 0.02 0 0 0
As2O5 0 3.02 0 0 0.00 0 0.02 0 0
SnO2 0.01 0.01 0.03 0.01 0.01 0.01 0.05 0.03 0.01
Sb2O5 0 0.13 0.17 0.04 0.19 0.71 3.29 0.93 0.84
BaO 0.05 0.11 0.09 0.04 0.04 0.06 0.04 0.06 0.05
PbO 0 37.65 0.14 0.11 1.44 9.3 0.01 0.47 0.56
Total 100.38 102.07 100.88 102.2 101.11 101.33 100.68 100.14 100.7
site Borgo S. 

Zeno 
Benvenut
i 

C. d. R. C. d. R. C. d. R. Canale 
Bi. 

Canale 
Bi. 

Canale 
Bi. 

Canale 
Bi. 

date 1100-
900 BC 

625-575 
BC 

625-575 
BC 

625-575 
BC 

625-575 
BC 

300-200 
BC 

300-200 
BC 

400-100 
BC 

400-100 
BC 

colour blue 
opaque 

green 
opaque 

blue 
trans. 

blue 
trans. 

brown 
opaque 

yellow 
opaque 

aqua aqua clear 

 

Table 5.44 Compositional data for spindle whorls. 

 

Perhaps unsurprisingly, the glass compositions reflect the broad changes taking 

place throughout the entire dataset: the Final Bronze Age example from 

Montagnana is a classic mixed-alkali glass (sample 313) coloured blue with the 

addition of copper oxide. Sample 359, from the Iron Age site of Benvenuti is an 

exceptional composition, and is discussed in more detail elsewhere (see 5.6.2). 

Samples 336, 369 and 393 have compositions which defy the conventional 

HMG/LMG classification, and are therefore characteristic of many Iron Age 

glasses from the N. Adriatic. Samples 247 and 248 are both low-magnesia-soda-

lime silica glasses, typical of the natron-type glasses known throughout the 
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Mediterranean world from the 8th Century BC onwards, both have been 

decolourised using low levels of antimony, with 249 further modified with the 

addition of copper.  

 

 

5.12.4 Discussion of artefacts types across site boundaries: Eye-decorated 

beads 

Many of the beads examined here belong to the broad category “eye beads”: a 

total of 65 individual artefacts (including an eye bead in a fused mass of glass 

waste: sample 297). The eye beads include all of those decorated with a single or 

multiple rings of glass marvered flush into the bead matrix, individual crumbs of 

glass, inserted canes and stratified layers of differently coloured glass. 

 

A number of studies have discussed eye-decorated beads, their definition, origins 

and history in Europe and the Eastern Mediterranean (Eisen 1916a, Beck 1928, 

Venclová 1983 and 1990, Hencken 1968b, Spaer 1987, Haevernick 1987 and 

Francis 1996).  

 

The earliest eye-beads were made in Egypt of fired clay, and have been dated to 

period 1570-1293(i.e. the 18th Dynasty): glass eye-beads in Egypt were first 

produced during the reign of Ramases II (i.e. 1279-1212) (Eisen 1916a, p 6-8, 

Nicholson 1993, p 6-7,). The decoration of glass beads with eyes was also 

common in the Levant and Mesopotamia during the 15th-13th Centuries BC (Spaer 

1987, p 1). Eye-decoration of beads predate the small core-formed figurines and 
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mask pendants of the 8th-7th Centuries BC, which are suggested as predecessors in 

the Mediterranean region for all eye-beads by Venclová (1983, p 12). 

 

Eye-beads are represented throughout the assemblage examined here and are not 

specific to any one period or site. They are less frequent amongst the Final Bronze 

Age material (only 2 examples samples here: samples 297 and 316), and are most 

common from the 8th Century BC onwards (although they are well known from 

Final Bronze Age contexts, for example see Salzani 1989 and 1992). The earlier 

studies suggest both Eastern Mediterranean and Central European production 

centres for different variations in eye-decoration technique on the basis of 

distribution (Spaer 1987, p 3-5, Venclová 1983, p 12-16, Haevernick 1987). 

Amongst those beads analysed here, the eye-beads have been analysed statistically 

in an attempt to establish discrete compositional groupings, which differentiate 

them from contemporary samples from other artefacts (using hierarchical cluster 

analysis). It has not been possible to generate compositional groupings for eye-

beads independent of other material, suggesting that eye-beads are not 

manufactured at specialist centres separate to other bead manufacture. When the 

eye beads alone are examined using cluster analysis, the sites of Pozzouli and 

Cumae (and one sample, 345, from Casa di Recovero) are repeatedly shown as 

distinct from the other glasses. This difference is principally due to the high-iron 

contents of these glasses (as discussed in 5.5 above), a characteristic shared by 

sample 345, which may share a common origin. Much of the Pozzouli and Cumae 

material is typologically distinct from the rest of the assemblage and is worth 

additional discussion.  
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This study represents the first series of chemical analysis upon the black beads of 

Pozzouli and Cumae: they are not all eye-beads, but also include beads which 

have trails of white glass wrapped around the matrix, either as single bands or 

spirals. Most of these beads have eye-decoration: several have single or multiple 

spots marvered into the bead surface, but most are sub-triangular, decorated with 

stratified eyes constructed from layers of alternately coloured black and white 

glass fused to a black core (see figure 5.71). 

 

 
 

Figure 5.71 Sub triangular stratified eye-bead from Pozzouli from which sample 

59 was taken. Scale 1:1 

 

Typological study of the dominant form (i.e. the sub-triangular eye-bead) reveals 

a distribution stretching from the Orkney Islands to the Levant, and dating to the 

8th to the 6th Century BC (Haevernick 1987 p 23-26, 112-117, Map 12). Without 

comparable compositional analysis of this broader group it is not possible to 

ascertain whether or they were all fabricated from this unusual glass 

compositional type. The distribution of the sub-triangular eye-beads is 

concentrated upon the Aegean, and the provenance of the examples analysed here 
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(close to the Greek settlement of Pithecussae: Bead Study Trust 1997, p 23-24) 

suggest that if this form has a single manufacturing centre it might be elsewhere 

than the Italian peninsular (also see Morel 1984 for discussion of early Greek 

settlements). Other beads from the Pozzuoli/Cumae assemblage, such as sample 

73, also have a wide circulation including the Aegean (see figure 5.72 and 

Heurtley and Skeat 1933, p 38-39).  

 

 
 

Figure 5.72 Sample 73 from Cumae 

 

Until additional analyses are performed it remains possible that these glasses were 

from a highly localised and possibly Etruscan manufacture of a form adapted 

across a large geographical area. Clearly typological study alone gives only a 

limited understanding of the use and distribution of the sub-triangular eye-beads: 

chemical analysis would underpin (or challenge) the assumptions held on the basis 

of distribution maps alone. Given the non-association between specific forms and 

chemical composition noted amongst some of the glasses (see above), there is a 

case for more routine chemical analysis of glass alongside typological work. 

 

5.12.5 Discussion of artefact types across site boundaries: Punic head bead 

Many of the glass artefacts recovered from Italian first Millennium BC contexts 

have been identified as products of the Levant, Mesopotamia and Egypt (see 
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Chapter 1, and for example glass bowls (Rathje 1979, p 167, Tatton-Brown 1995, 

p 322) and many of the core-formed glass vessels recovered from Etruscan tombs 

(Bissing 1930, 1938 and 1942, Harden 1968, 1981, Bonomi 1996)). It has been 

the principle objective of this study to examine those artefacts which might 

demonstrate the existence of localised glass production, and has therefore 

concentrated upon beads. One of the well-established “exotic” imports is the 

category of rod-formed glass pendants, in the form of human and animal heads. 

This group of artefacts has been the subject of a number of studies (for example: 

Seefried 1986 and 1979, Haevernick 1977 and Tatton-Brown 1981 p 143-163, 

Stern and Schlick-Nolte 1994, p 180-191), and all conclude that they are of 

Phoenician origin dating to the 6th-3rd Centuries BC. One example was examined 

here (sample 267) to see how it compared with forms which are less easily related 

to “exotic” origins in terms of form (see 5.9, and figure 5.73).  

 

 
 

Figure 5.73 Sample 267 taken from this rod-formed pendant. Scale 1:1. 

 

Unsurprisingly the glass type proved to be low-magnesia soda-lime-silica glass, 

consistent with the classic category defined from the Eastern Mediterranean 

region, probably produced from a lime-rich sand and a natron-type soda source 

(opacified and coloured with calcium antimonate). Perhaps what is most 

significant is how similar the composition is to many of the other glasses sampled: 

for example from the site of Ca’Cima the other two white opaque glasses are 
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almost identical to 267 in terms of composition (see 5.9). The forms of the other 

glasses are less distinct as “exotic” imports: 269 is a white bead with a single zig-

zag decorative band of dark glass around the circumference, and 270 is a 

decorative pin-head. The significance of the rod-formed goat’s head is to suggest 

how frequently imported glass is employed in undiagnostic forms. 

 

5.13 Summary 

This chapter has provided a detailed discussion of the compositional analyses of 

the glasses and their interpretation in terms of glass technology. Several 

observations should be highlighted. 

 

The mixed-alkali glasses analysed from Final Bronze Age contexts in the Po 

valley are very similar to those published from across Europe dating from 1500 - 

600 BC. This group of glasses is remarkably compositionally consistent, reflecting 

either a deeply conservative technological tradition, a shared refining process, or 

possibly an accidental reducing process during melting. Further experimental 

work will be fundamental to understanding this phenomenon. 

 

There is no evidence of technological continuity in glassmaking from the Final 

Bronze Age into the Iron Age from the mixed-alkali glasses of Mariconda, 

Montagnana and Fratessina to later Iron Age communities in the North of Italy or 

Etruscan societies to the South. 

 

Superficially the Early Iron Age glass compositions reflect the predominant 

technologies established in the Eastern Mediterranean, and the transition from 
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high-magnesia to low-magnesia soda - lime - silica glasses around the 8th Century 

BC is also manifested amongst the assemblages analysed here. However the high-

magnesia glasses form Este have significantly lower potash levels, and a number 

of the low-magnesia samples are more similar to other glasses from the Northern 

Adriatic area than Eastern Mediterranean glasses. It is possible to tentatively 

advance a case for a regional production in the Early Iron Age, which is distinct 

from the preceding Bronze Age tradition. 

 

The glasses analysed here from Etruscan or associated contexts demonstrate a 

diverse range of compositions, suggesting that there is no single Etruscan 

glassmaking tradition. The presence of uniquely Etruscan forms does suggest that 

glassworking at least was being undertaken, and the broad compositional variation 

may indicate localised production in addition to importation from the Eastern 

Mediterranaean. A number of sub-groups of the Etruscan glasses are quite distinct 

from the established types, particularly the potash glasses and high-iron glasses 

from Cumae and Pozzuoli: these compositional groupings may prove to be 

specifically Etruscan, or in the case of the high iron glasses, Italian or Greek 

technologies. The potash Etruscan glasses are without parallel amongst 

contemporary or later glasses, and at present represent a distinct if limited 

technology. 
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CHAPTER 6: GLASS PRODUCTION AND EXCHANGE IN 

PREHISTORIC NORTHERN ITALY 

 

6.1 Introduction 

The analysed material is from sites in Italy from the Final Bronze Age to the Early 

Roman Period, from the Po Valley in the North of Italy and as far South as 

modern Naples. The central focus has been upon the further characterisation of the 

earlier glasses and an evaluation of the evidence for continued production of glass 

by subsequent communities in the Po Valley and further afield. Examination of 

the chemical composition of the later material has permitted extensive discussion 

of the glassmaking technologies involved. 

 

It is beyond the remit of this study to comprehensively review the existing 

archaeological narratives for Italy during the period 1200 – 200 BC. It is the 

intention, therefore in this chapter to outline the chronological and cultural 

framework from whence the glass came, and extend the discussion of a number of 

the artefacts. 

 

This study has principally been concerned with glass from many different sites in 

Northern and Central Italy, over a long time period. The sampling strategy is 

discussed elsewhere (see Chapter 2), for a number of reasons it is not possible to 

claim that the artefacts examined are fully representative of the full range of types, 

forms and colours originating in Italy, extant in museum collections around the 

world. Surviving glass objects should not necessarily be considered as a reflection 

of all glasses used during this period, since glass more than many materials is 
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particularly vulnerable to the vagaries of survival in the archaeological record and 

the excavation process (for post-depositional deterioration of glasses see 

Freestone 2001). Given this proviso, the samples still offer information 

concerning the glasses in use, and in some instances are the first analyses of any 

vitreous materials for a number of the locations and periods. Furthermore the 

chronological spread of the samples provides an opportunity to investigate long 

term changes in glass technology. 

 

6.2 Traditional perspectives of Italian prehistory. 

Historically the Pre- and proto-history of the Italian peninsular has been 

constructed by antiquarians and archaeologists into a number of cultural historical 

mosaics, assembled principally to form chronological schemes in the absence of 

either independent dating techniques or substantial quantities of material 

correlated to external chronologies. Individual cultures have been defined, largely 

on the basis of funerary material in addition to limited settlement data (for 

example: Montelius 1895, Randall-McIver 1924, 1927a and b). The advent of 14C 

and subsequent calibration using dendrochronology inevitably brought about a re-

evaluation of the dating of individual sites and a refinement of the chronologies. 

The necessary re-evaluation of the culture-historical approach, which was no 

longer so essential for the construction of chronology was slower to happen, and it 

was not until relatively recently that the traditional explanatory models for change 

in Italian pre- and proto-history were challenged (Ridgeway and Ridgeway 1979, 

p 3-5).  
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It is impossible to discuss material without reference to the cultural-historical 

model which has arisen over a long period of time, but the names still retain some 

use as chronological markers if not explanations of historical change (i.e. a group 

of invaders bringing change in material culture or burial behaviour). Therefore the 

discussions below use some of these terms in a chronological sense only. 

 

Peroni’s paper on the broad historical changes from the Final Bronze Age to the 

Iron Age in Italy outlines the general shifts in demography, agricultural base, 

metallurgy, settlement pattern, social structure, “markets” and wealth 

accumulation taking place between 1200 and 700 BC (Peroni 1969). Whilst it is 

possible to disagree with the detail and explanatory power of some of the ideas 

employed in structuring the information (such as shifting markets driving changes 

in metallurgy), it is nonetheless an admirable attempt to summarise the qualitative 

changes taking place during this period. The clearest assertion is that the Final 

Bronze Age and Early Iron Age period marks a distinct departure from the 

preceding period (Peroni 1969, p 20).  

 

However, it is very difficult to construct a single narrative, which encompasses the 

highly localised trajectories of societies in prehistoric Central and Northern Italy. 

Although the Proto-Villanovan has been used as an umbrella term to describe the 

societies of Final Bronze Age Central and Northern Italy, in which a shared 

funerary ritual places them within a broader “urnfeld” context, regional diversity 

can be identified (Peroni 1969, p 22-23). The localised developments clearly 

manifested themselves in the different “cultures” of the Early Iron Age, such as 

the Villanovan of Central Italy and as far North as the Bologna area, 
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contemporary with the neighbouring Golasecca and Este cultures, and the Picene, 

Latial and Iapygian Cultures further south. The settlement (and therefore 

population) density of 9th Century BC Po valley is very meagre compared with the 

Villanovan heartlands (Peroni 1969, p 26). 

 

It is therefore not possible to talk about a single historical trajectory in the sense of 

an inevitable development of larger and ever more complex social formations, 

from kin-based groups through proto-urban settlements to city-states. A reductive 

social-evolutionary system cannot be used as a backdrop for glass-use or 

manufacture. The glasses analysed in this study are considered here in more 

general terms, and their value for wider inference in the study of Pre- and Proto-

historic Italy. The key themes examined are localised production, regional trade 

and exotic imports. 

 

6.3 The final Bronze Age: the evidence for localised production at Frattesina, 

Mariconda and Montagnana.  

To firmly establish the primary manufacture of glass is extremely difficult for all 

periods. An unambiguous assertion for glass manufacture requires an 

identification of material unique to the processes involved, namely frit, the 

partially reacted raw components which by its very nature is compositionally 

unstable, and unlikely to survive in the archaeological record. To date this has 

only been unambiguously identified at 8th-9th Century AD Raqqa where an 

overheated portion of frit survived to be recognised during excavations 

(Henderson 2000, p 38-39). Furnaces can be very difficult to interpret, since their 

use in connection with glass may be related to the reheating of glass manufactured 
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elsewhere. Only rarely have furnaces been discovered with the remains of primary 

glassmaking in situ: for example the “great glass slab” from Bet She’Arim dating 

to the 9th Century AD (Freestone and Gorin-Rosen 1999), although remains of 

tank furnaces in fragmentary form have also been found elsewhere (Freestone and 

Gorin-Rosen 1999, p 106-109, Henderson 1999). Where glass has been prepared 

in crucibles or fritting trays, the actual furnace structure itself is unlikely to be 

diagnostic of primary glass manufacture (Henderson 2000, p 40). Other associated 

material, such as crucibles, glass trails, ingot or “chunk” glass fragments and 

moulds, which may well be present at glassmaking sites, only testify to the 

working of glass and cannot therefore be considered definitive of primary 

production itself. 

 

In the absence of direct evidence for primary glass manufacture at a specific 

location, it may be inferred more or less confidently by the collection of other 

evidence. A site, which has produced any quantity of glass, could have evidence 

for high-temperature structures, crucibles, trails of glass, ingot or “chunk” glass, 

finished objects and wasters of malformed objects from failed manufacture. 

Clearly these may also be found at sites involved in glassworking alone, but are 

also often recovered from glassmaking centres. It should be noted that 

glassmaking has been identified as an activity carried out separately from 

glassworking, and therefore many associated glassworking objects might not 

necessarily be found (Freestone and Gorin-Rosen 1999). The complete separation 

of the activities is only likely to take place under circumstances where there is a 

strong single state such as during the Roman period. The identification of a unique 

glass compositional type in completed artefacts, wasters, ingots and crucible 
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residues might suggest that glass was being manufactured at a particular site. 

However, this would be a classic example of archaeological negative evidence: 

the absence of additional sites producing the same glass type does not preclude the 

possibility of it being present elsewhere. 

 

Despite recent comments suggesting Frattesina was the only European 

glassworking centre of the period (Santopadre and Verità 2000, p 25), the Final 

Bronze Age sites of Frattesina, Mariconda and Montagnana (Borgo San Zeno) 

have all produced a range of material associated with glassworking, and this is 

worth further discussion. Both Frattesina and Mariconda have whole or 

fragmentary ceramic plates, in addition to conventional crucible forms with glass 

adhering to them (for the crucibles see figure 6.1 and also Bellintani 1997, p 125, 

fig 8, and Biavati and Verità 1989, p 296, fig. 2). The ceramic plates are not 

simply shallow crucibles, but represent a tool type associated with bead forming. 

This artefact type consists of purpose-made ceramic plates and re-used pottery 

(see figure 6.2). Their common characteristic is that the flat plates have had 

molten glass on one surface. Their presence at both Frattesina and Mariconda 

permits inferences concerning the glass technology at both sites.  

 

Figure 6.1 crucible containing glass from Frattesina. Scale 1:2 
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Figure 6.2 Re-used oinochoe lid, sample 200 removed from glass on upper 

surface. Note retaining rim of clay added to lid prior to application of glass. Scale 

1:3 

 

The nearest parallel in the glass literature is a flat iron plate recovered with 

beadmaking material from 8th Century AD contexts at Ribe in Denmark (Gam 

1990). Copies of the Ribe plates have been employed in experimental beadmaking 

at Lejre for preheating, as a working surface and finally annealing after bead 
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fabrication. However, these functional analogies are inappropriate for 

understanding the role of the flat ceramic plates recovered from Mariconda and 

Frattesina. The ceramic plates from Mariconda and Frattesina have been used in a 

different manner, since they have been designed for use with molten glass.   

 

The re-used oinochoe lid from Mariconda (figure 6.2) has had a retaining rim of 

clay added prior to the glass being deposited. Clearly this was fabricated with the 

knowledge that the glass on its upper surface would be molten. This observation 

has implications for not only the manner in which the beads were manufactured, 

but also the nature of the pyrotechnology employed at Mariconda. The form is 

curious: if the glassworker intended the object to simply act as a reservoir for 

molten glass, then the under side of the lid would have been more appropriate, 

since it already has a projecting lip for locating the lid in an oinochoe jar (see 

Figure 6.2). It is suggested that the selection of the flat side was to avoid the deep 

recess (10.5 mm), since an essentially flat surface was required: perhaps for the 

gathering of hot glass on a mandrel/pontil at a very low angle.  

 

There is limited direct evidence of glass making at Mariconda (also see 5.3.3 

above), and it has been assumed that the glass has simply been heated and worked. 

Glassworking as opposed to glassmaking, can be a much lower temperature 

activity: beads and similar artefacts can be formed from softened glass rather than 

from “liquid” glass. The implication of this is that whilst glassworking is an 

activity requiring a high degree of skill and technical ability, it is distinct from the 

more specialised activity of glassmaking, which requires higher temperatures and 

empirical “knowledge” of glass chemistry.  However, the presence of the 
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oinochoe lid with its lip designed to retain the molten glass, demonstrate the 

technical capacity of the Mariconda workers to achieve temperatures appropriate 

for glassmaking. The deliberately high temperatures used at Mariconda 

demonstrate the possibility of sophisticated high temperature processes like 

glassmaking and colouring. 

 

The assemblages from Frattesina, Mariconda and Montagnana also included a 

large number of fragments of flat glass disks. From the edge fragments, it is 

possible to suggest that these have a consistent diameter, approx. 8-10 cm, and are 

between 0.6 and 1.5 cm thick. These disks appear to have been poured onto a flat 

surface, and on occasion manipulated (there are tool marks on the upper surface) 

whilst soft. It is suggested that the disks represent a convenient form for the 

storage of unworked glass and are therefore ingots.  

 

Several of these ingots are coloured red on the surface, one almost completely 

(figure 6.3) others in places (figure 6.4). The cores of these glass ingots are all 

blue, and the red surface is due to the copper content having been locally reduced 

to cuprous oxide (i.e. Cu2O -see 3.7.8 above). The surface of these ingots have 

clearly been held in a strongly reducing environment for sufficient time for the 

change in colour to take place. Given that the main body of glass for each ingot is 

still blue coloured, several interpretations are possible.  

 

• the colour change was brought about accidentally after the manufacture of the 

ingots, such as by accidental conflagration 

 335



• the colour change happened as an accidental result of annealing of the ingots 

in a reducing environment, such as buried in ashes at the edge of a hearth (as 

described in experimental work by Gam 1990). If so, this would suggest that 

annealed ingots were valued over and above those that fractured, since the 

volume of glass would be the same irrespective of the ingot breaking. This 

value might be significant as an indicator of a quality of glass composition 

• the ingots were held in a reducing environment to deliberately bring about the 

colour change, and thus demonstrate the possibility of achieving opaque red 

from a particular body of glass. This would be a visible marker of a glass 

suggesting trade in the item extending beyond the immediate area of its initial 

production. 

 

 

 

 

Figure 6.3 Glass ingot fragment from Frattesina. Sample 292 taken from this 

artefact. Scale 1:2 
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Figure 6.4 Glass ingot fragment from Frattesina, surface partially reduced. 

Sample 293 taken from this artefact. Scale 1:2. 

 

In addition to the disc-shaped ingots, several irregularly-shaped fragments had 

dimensions exceeding those from discs, for example sample 208 (figure 6.5). This 

irregular piece of glass has broken edges, none of which are deformed by heat and 

was clearly broken out of a larger mass of glass. Elsewhere such material has been 

described as “chunk” glass, although this has typically been in the context of the 

discussion of glass manufactured in large volumes in tank furnaces (Freestone and 

Gorin-Rosen 1999, p 108). This would suggest that the disc-shaped ingots are not 

the only form in which fully-formed glass was stored for remelting. 
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Figure 6.5 Fragment of “chunk” glass from Mariconda. Sample 208 removed 

from this artefact. Scale 1:1. 

 

Whilst it is not possible to definitely assert the production of glass at Frattesina, 

there is limited evidence for glass colouring, a technology requiring similar levels 

of technology (i.e. knowledge of components and capacity to reach and maintain 

high temperatures and have access to suitable ceramics). Amongst the working 

debris were trails of colourless or faintly coloured translucent glasses (e.g. see 

figure 6.6 below), and residues of colourless glass were also found attached to 

crucible fragments, for example sample 221 (see figure 6.1 above). None of the 

finished artefacts from the Final Bronze Age sites were from uncoloured glass. 

The presence therefore of uncoloured glass as waste material suggests that the 

addition of colourants was a separate process to primary fusion, and this activity at 

least was taking place at Frattesina. None of the ingot or “raw” glass fragments 

was uncoloured glass, suggesting that the colouring process took place before the 
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manufacture of portable items (i.e finished objects or ingots for trade), implying 

primary manufacture at Frattesina. 

 

 

 

 

Figure 6.6 Trail of uncoloured glass working waste from Frattesina, sample 301. 

Scale 1:1. 

 

The discussion of glass colourants in the Final Bronze Age glasses links the glass 

technology into a broader debate concerning the role of Frattesina and 

contemporary sites into the circulation of metals and long term change in the 

region. In a recent article, Pearce has placed Frattesina at the heart of the debate 

concerning the shifting patterns of settlement and bronze supply in the Late 

Bronze Age (Pearce 2000). Frattesina, the Protovillanovan settlement in the Po 

valley, dates to the Final Bronze Age (c 1200-900 BC), and along with 

neighbouring sites such as Mariconda and Montagnana represent a change in 

settlement pattern in the Po valley from the Terramare and Palafitte settlements of 

the Middle and Recent Bronze Ages. The Protovillanovan cultural milieu (or 

koinè) extended from the southern Po valley and parts of Emilia-Romagna into 

Etruria, Marche and Campania, although it has been used as a generic term for a 
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wider description of Final Bronze Age cultures (see Fugazzola Delpino 1979, p 

46-47). The decline of the Terramare/Palafitte settlements and development the 

Protovillanovan coincides with a fundamental shift in the extraction and trade of 

metals in the region. The decline of the long established southern Trentino Alpine 

copper industry based around the Valsugana River (Pearce 2000, p 108) can be 

seen to take place at the same time as the expansion of the Tuscan industry after 

the 13th C BC (Pearce 2000, p 112, also see Sperber 1999). There is a possibility 

of some chronological overlap between the Terramare and the Protovillanovan: 

for example Late Helladic (LH C III) pottery is found at both Frattesina and the 

nearby sites of Fondo Paviani, Castello del Tartaro and Fabrica (Pearce 2000 p 

111). Nonethless the historical trajectory remains one of decline for the Terramare 

in the face of the development of Protovillanovan settlements. Interestingly, the 

Terramare polity of Grandi Veronese (consisting of the Terramare Fondo Paviani, 

Castello del Tartaro and Fabrica) can be seen as a functional precurser to that of 

Frattesina, with bronze-working, amber-working and glass-working at some or all 

of the sites. 

 

It is the wide-range of craft/industrial activities discovered at Frattesina that have 

marked it out as an exceptional site: ceramic production, bronze melting and 

casting, the working of African ivory, Baltic amber, horn, bone, antler and ostrich 

shell (Pearce 2000, p 109, Bietti Sestieri 1981, p 146-148). Glass working is only 

one of many industrial activities taking place at Frattesina. It is worth noting that 

with the identification of glassworking, ceramic production, antler, bone and 

bronze working at Montagnana (Pearce 2000, p 110), and glass working at least at 

Mariconda, the unique role assigned to Frattesina may require review: clearly the 
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Protovillanovan settlements in the Po valley were engaging in production and 

trading systems extending far beyond their immediate region. The polity of 

Frattesina did not possess exclusive control over these activities. 

 

Equally, the development of Frattesina as a polity engaged in both regional and 

long-distance exchange systems was not simply an overnight innovation, since the 

Terramare precursers have evidence for similar if not so extensive activities. Bietti 

Sestieri’s claim of Eastern Mediterranean traders appearing “at the head of the 

Adriatic in the last centuries of the Final Bronze Age” being responsible for the 

development no longer seems tenable (Bietti Sestieri 1981, p 147). The traditional 

reliance of external eastern Mediterranean intervention to explain culture change 

unfortunately fails to explain the transition from Terramare to Protovillanovan in 

the Po valley after the fall of the palace cultures (Pearce 2000, p 111). 

 

An alternative interpretation for the changes in settlement pattern and eclipse of 

the Grand Veronese polity has been proffered by Pearce, in which the Tuscan 

bronze is posited as a higher value material. The presence of tin ores adjacent to 

copper ores in the Colline Metallifere of Tuscany gave the metallurgists a 

productive advantage over those working the south Alpine ores from the Trentino, 

who did not have such ready access to tin for alloying. The reconstitution of 

settlements in the Po valley may well be rooted in this development in access and 

control over Tuscan bronze. 

 

As yet, this explanation is predicated on a limited number of bronze analyses 

(Pearce 2000, p 113), and awaits further comparison of Early Tuscan and Trentino 
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bronzes. In the meantime it is worth briefly examining the copper and tin contents 

of those glasses from Frattesina, Mariconda and Montagnana coloured with 

copper alloy. 

 

From Figure 6.7 it is possible to observe two distinct types of copper alloy 

material as a source of colourant: one in which there is a negligible tin content, 

despite the copper oxide value ranging from 2 to 6 %, and the other in which the 

tin and copper oxide contents are closely related. There is no evidence for 

preferential use of bronze over more pure copper between the sites examined. If 

the analysis is restricted to those samples containing correlated tin and copper 

contents (figure 6.8), then an average trendline suggests a copper alloy containing 

approximately 12% tin. 
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Figure 6.7 Copper and tin oxide contents for copper-containing glasses from 

Frattesina, Mariconda and Montagnana. 
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Figure 6.8 copper and tin oxide contents in glasses coloured using high-tin bronze 

 

Bronze workers are known to have a sophisticated understanding of the use and 

technical value of tin in bronzes (Craddock 1978, 1995, Pearce 1999, Henderson 

2000), and would therefore have been able to distinguish between high-tin bronze 

and relatively pure copper. During the excavations at Frattesina it was noted that 

there was no distinction between domestic and industrial areas within the site, or 

even between industrial activities (Bietti Sestieri 1981, p 146). The lack of 

separation of activities into distinct zones suggests the glassworkers were 

probably equally familiar with the role of tin in bronze as the use of copper as a 

colourant in glass. The same people may have undertaken both metalworking and 

glassworking. It remains something of a mystery as to why both pure copper and 
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tin-bronzes were used. It does however further demonstrate the access of the 

glassmakers/colourers to both pure copper and bronze, and if this was the 

craftspeople of Frattesina, suggests that alloying of metals was also within their 

technical capacity (indeed, a lead ingot is amongst the material recovered from 

Frattesina: Bietti Sestieri 1981). 

 

The mixed-alkali glass from the Final Bronze Age sites is from a broader 

European tradition, which on the evidence currently available, probably began in 

the Middle Bronze Age (see 2.1 and 3.7.3 above). It is known from other analyses 

that the mixed-alkali composition continues in production elsewhere in Europe 

(examples are known from Rathgall in Ireland from contexts dating to 9th – 7th 

Century BC (Henderson 1988b). On the basis of the work here there is no 

evidence for later production or use of the mixed-alkali glass. There appears to be 

a sharp dislocation in the manufacture of this glass type, which coincides with the 

abandonment of the many of the Protovillanovan settlements in the Po valley 

(Peroni 1969, p 26), including Frattesina, Mariconda and Montagnana, a 

phenomenon which tends to imply that this material was being produced at least 

one of these sites.  

 

Of the mixed-alkali glasses from outside of Italy analysed by previous workers 

(see 5.3.4), they are frequently recovered alongside glasses of different types (for 

example Raftery and Henderson 1987, p 50). All of the samples analysed here 

from the Final Bronze Age sites of Mariconda, Montagnana and Frattesina are 

from the same glassmaking tradition. This is additional circumstantial evidence 

for local manufacture of the type, since it is the dominant (overwhelming) 

 344



tradition of glass being worked and consumed in a context of extensive long 

distance trade in prestige goods. Elsewhere the mixed-alkali glass may simply be 

one of several types being exchanged and consumed. The Po valley is located at 

the heart of a long distance trade system, and critically at the juncture of several 

cultural spheres: part of an intense trans-Alpine network (Endrizzi and Marzatico 

1997), on the periphery of the Alpine Bronze industry, but also between the 

worlds of urnfield culture of Central Europe and the wider Mediterranean cultures. 

 

The study of vitreous materials from Italy by Santopadre and Verità (2000) 

includes samples from the Iron Age site of Chiaromonte in Southern Italy. The 

paper compares material from the Middle and Late Bronze Ages and Iron Ages, 

and includes quite different materials under the umbrella term “glassy faience”. 

However, the analyses of the later material from Chiaromonte shows that it is not 

directly related to the mixed-alkali tradition of Frattesina/Mariconda/Montagnana. 

The proportions of potash to soda, key defining components of the Bronze Age 

type, are reversed (Santopadre and Verità 2000, p 31). The microstructure of the 

Chiaromonte material is quite different from the Bronze Age glasses considered 

here, which would tend to suggest quite different manufacturing processes were 

employed. However, the low magnesia and lime contents may indicate similar 

plant-ash processing in the preparation of the flux. It is difficult on current 

evidence to regard the Chiaromonte material as a continuation of the tradition seen 

in the Po Valley during the Bronze Age. 
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6.4 The evidence for regional production and exotic imports from the Early 

Iron Age to the Etruscans. 

 

An examination of the chemical composition of the glasses analysed for this 

project reveals that an argument cannot be made for continuous production from 

the Final Bronze Age into the Iron Age and beyond. The sharp dislocation of 

settlement in the Po Valley is matched by the demise of the mixed-alkali glass 

composition in Italy. Despite the recovery of glass artefacts from contexts dating 

from the 9th Century onwards, the consistent compositional grouping evident in 

the Final Bronze Age material is no longer in evidence for the glass being 

consumed by the different communities in Northern Italy. The glass samples taken 

from early Iron Age contexts in the Po valley are relatively few in number, 

reflecting the relative paucity of material available. The dating of individual 

artefacts can sometimes be problematic, given that some of the material is derived 

from long-lived cemeteries, and some artefact-forms are almost universal. The 

reworking of the chronologies of the Este and Golasecca cultures permits accurate 

dating for many of the glasses sampled which are from tomb groups (Ridgeway 

1979, p 419 – 487, and Peroni et al. 1975, Chieco Bianchi and Capuis 1985a and 

b). What is generally clear is the distinctly regional trajectory of development in 

Central and Northern Italy with the development of the Villanovan societies from 

Bologna southwards into Etruria and beyond to Campania (Torrelli  1986, p 50), 

and the distinct Este and Golaseccan cultures in the North of Italy (Ridgeway 

1979). 
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None of the material sampled from the Iron Age onwards can be directly 

associated with either glass working or glassmaking activities. Without exception 

the later samples are all from funerary contexts. This inevitably means that it is 

more difficult to understand the pathway of an artefact from primary production to 

its burial environment, and thereby reconstruct its biography. Nonetheless, a 

discussion of the glass chemistry alongside typology, distribution and comparable 

technologies permits inference on the organisation of glass technology. 

 

The range of glass compositional types from Benvenuti and Casa di Ricovero (see 

5.6 and 5.7) demonstrates the diversity in use during the lifetime of these 

cemeteries alone (from approximately 900 BC to 350 BC). The transition from 

high - magnesia to low – magnesia soda – lime – silica glass which has been noted 

during earlier studies of material from the Eastern Mediterranean region is present 

amongst the material here, but neither glass group is sufficiently internally 

homogenous to suggest dominant production technologies. This transition is not 

easy to date: the latest well dated high magnesia glass is sample 382 from 

Benvenuti, originating in tomb 122, dated to 675-575 BC (Este III B1 - III B6, 

Ridgeway 1979, p 485), and is from the same phase as low – magnesia glasses 

from this site. This is relatively late for the transition to be taking place, since 

other authors have noted the shift during the 8th Century BC (see 3.7.2). It is 

possible that this sample, a yellow opaque glass is an example of an exceptional 

composition being employed in the manufacture of a particular colour (yellow 

opaque). 
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The overall pattern would seem to indicate the consumption of glass produced in 

many different places, or a limited number of places using a highly variable 

glassmaking technology. It may be easy to re-adopt the conventional picture of 

glass being manufactured in the Eastern Mediterranean and entering into Northern 

Italy through well established exchange systems (such are known to have existed 

for other materials such as ceramics, metalwork, ivory and faience: Rathje 1979, 

Turfa 1986). However, whilst undoubtedly many glass artefacts found in Central 

and Northern Italy dating to the Iron Age and Etruscan periods originated in the 

Levant (such as Phoenician glass bowls and Egyptian core-formed vessels: e.g. 

Rathje 1979, p 167), there is evidence for regional production of some of the 

material. 

 

6.5 Further considerations of Trade and Exchange  

The study of production and use of glass in prehistoric Italy generates several 

intriguing patterns, which remain to be addressed. How is it that the 

ProtoVillanovan settlements in the Po valley, with their extensive long distance 

trading connections, and evidence for significant craft production (such as 

Frattesina, Mariconda and Montagnana) were abandoned and eclipsed by the 

growth of the Villanovan and later Etruscan settlements in the region? How was it 

that the subsequent societies in Northern and Central Italy were unable to sustain a 

comparable glass industry, particularly in light of the impressive productive 

capacity of the Villanovan and Etruscan societies? 

 

Whilst there are no easy answers to these questions, a number of concepts 

borrowed from debates concerning technological change in other contexts may 
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help. The “Brenner debate”, concerning the transition from Feudalism to 

Capitalism in Western Europe during the Medieval period includes a number of 

important characterisations of pre-capitalist societies.  

 

The terms of the discussion are detailed elsewhere (for example Saunders 1996, p 

127-134), but what is of use here is the specific identification of key components 

shared by pre-Capitalist agrarian societies. Those societies which are based on 

subsistence farming, in which the producers remain tied to the land, support 

hierarchies which can only appropriate surplus’s through extra-economic forms of 

coercion (i.e. physically coerced labour). The relations of the producers and élites 

in such circumstances constrain the capacity to intensify production, since the 

producers can meet their own subsistence needs, and the élites would find it 

difficult to reinvest surplus in the development of production. In the face of such 

limititations, there is a tendency to invest surplus into political rather than 

economic accumulation such as military expenditure and conspicuous 

consumption. In the long term this would create a development towards economic 

stagnation. Most significant for the discussion here is the impact of the growth of 

trade and “urban” markets on pre-Capitalist societies. Since producers and élites 

would be receiving sufficient from the existing arrangement to reproduce 

themselves independently of the market, the potential for trade itself would not 

lead to intensification of production. Production for trade and exchange therefore 

exists separately to production for use within a “commercial-specialised sector” of 

the economy. Whilst Brenner has been criticised for privileging the relations of 

production over the forces of production, and ignoring the capacity of agrarian 

societies to innovate and adopt technological changes, he provides an effective 
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refutation of “trade” as the principal or only dynamic in culture change (Saunders 

1996 p 127-134). 

 

Whilst the ideas outlined here are derived from a specific debate concerning 

changes in Early Medieval society, they have implications for the way in which 

technology and trade are conceptualised in Prehistoric Italy. By removing the 

emphasis on regional and long-distance trade as the most fundamental dynamic in 

the explanation of the societies, then it becomes possible to consider alternative 

mechanisms for change. Therefore, the importance placed upon the evidence for 

craft production, using materials from the Baltic to Africa, recovered from the Po 

Valley Proto-Villanovan sites may well be exaggerated. The settlements 

themselves may well have functioned as nodal points for the articulation of rural 

surplus for larger rural areas and the production of goods for commercial trade. 

The recovery of glassworking debris from three of the Po valley sites suggests that 

Frattesina should not necessarily be privileged over others in its role as a 

manufacturing and redistribution centre. 

 

Futhermore, the abandonment of the Po valley sites suggests a fundamental shift 

in the nature of the societies in the North of Italy, the distinctly different 

trajectories of the North East (e.g. the Este and Golasecca cultures) compared with 

the Villanovan and Etruscan societies suggest that a reconstitution of the social 

structures had taken place (Peroni 1969, p 26-27). That these changes coincided 

with the adoption of iron use is surely no coincidence.  
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6.6 Conclusions for this Chapter 

The role of glass in the economies of Final Bronze Age and Iron Age economies 

of Northern and Central Italy should be seen within a larger context of production 

and exchange. Glass itself cannot be seen as a fundamental cornerstone of the 

economic base of a prehistoric society in the same way as bronze production was. 

Bronze, once smelted and cast into ingots becomes a form of wealth unlike any 

other, since it could not only be traded or accumulated as a prestige commodity 

alongside other materials (such as glass, amber, or ivory): its use for tools ensured 

it had a capacity to also unlock productive capacity in the agricultural base upon 

which all the contemporary societies relied. Its use in weaponry only extended this 

role, in its use in primitive accumulation. Glass on the other hand can only have 

been used in non-utilitarian artefacts, and its role in any prehistoric economy has 

to be seen as secondary to other aspects of production. The ubiquity of glass 

artefacts in burial contexts from the Bronze Age onwards nonetheless 

demonstrates the importance placed on this material. The location of glassworking 

(and possibly making) alongside bronze casting and the working of African ivory, 

Baltic amber, horn, bone, antler and ostrich shell at Frattesina certainly suggests a 

status for glass alongside the most valuable materials of the day (Bergonzi and 

Cardarelli 1992). 

 

The general trend across the period and place of study includes the development 

from a non-state levels society to highly stratified city states (Service 1971). 

Although it is important to note that the societies in Central and Northern Italy 

during this period are not homogenous, and contemporary cultures display 

different degrees of complexity. The chemical composition of glass in the Final 
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Bronze Age is impressively consistent, and is produced in a context without the 

trappings of state level society, suggesting either strong central control to the 

glassmaking technology (i.e. a single or very few sources), a tightly defined and 

controlled technology widely used (suggesting a strong knowledge/ideological 

constraints), or an unknown shared physico-chemical reducing mechanism which 

homogenises the composition. The compositions become much more variable in 

the Early Iron Age, and despite the long development of state-level society in the 

Proto-Villanovan to Etruscan settlements, this is not reflected in standardised 

glass manufacture or consumption. Whilst the general adoption of low-magnesia 

soda-lime-silica glass can be noted, hugely variable glass compositions suggests 

multiple manufacture or import from multiple sources for consumption in 

Etruscan contexts. In this instance, the craft specialisation which has taken place 

elsewhere in Etruscan society with the adoption and manufacture of new forms in 

ceramics, metals and stone, is not matched in the inferred structure of the 

organisation of glass making/working. As noted elsewhere (Wailes 1996) craft 

specialisation may reflect other changes in society rather than simply be the 

driving force behind the changes in societal formations. 

 

It is tempting to see glass beads and other artefacts functioning in a manner 

analogous to “trade” beads from the 17th to the Late 19th Centuries: where the 

mass-produced glass beads of Western Europe were used in exchange for slaves 

and raw materials from Africa and North America. In this case the dominant 

economies of the Aegean and Eastern Mediterranean being the source of the glass 

artefacts as they plunder the resources of Central and Northern Italy, specifically 

the metals of the Colline Metalifere. However, the analogy is weak, putting aside 
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the problems of correlating the exchange mechanisms of a capitalist world 

economy with the pre-industrial economies of the 1st Millenium BC 

Mediterranean world, there is strong evidence for independent production of glass, 

and certainly the working up of local forms in a cultural context which has distinct 

regional and local identities. Ultimately the Villanovan and Etruscan cultural 

zones, whilst participating in many aspects of a wider “Greek” culture, remained 

free of the colonies established elsewhere in the Italian peninsular and 

Mediterranean. 

 

In disentangling the overlap of local, regional and long distance manufacture and 

distribution of glass, the archaeologist is examining the consequences, rather than 

the agent of change in economy and society. The long-lived and widespread 

distribution of glass beads makes them suitable for the study of shifting exchange 

patterns. It is interesting to note that communities simultaneously participate in 

quite different systems: depositing both locally made and imported glass in 

graves. 

 

It is possible to suggest an outline for the development of glass production and use 

during the 1st Millenium BC in Central and Northern Italy. The Final Bronze Age 

sites in the Po valley reveal the existence of a distinctly European glass type (i.e. 

mixed-alkali glass) which is either manufactured in a single place, or made within 

a tightly controlled technical tradition. A growing body of analytical data suggests 

that this glassmaking tradition started in the Middle Bronze Age, but in Italy at 

least, does not continue beyond the Final Bronze Age. During the Early Iron Age, 

there is both typological and compositional evidence for regional production of 
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glass: the highly variable chemical composition of both beads and brooch sliders 

would suggest that although glass is likely to have been made in the Northern 

Adriatic region, it is a far less sophisticated technology, using raw components of 

inconsistent composition. Whilst glass was imported into the region from the 

Middle Bronze Age onwards (Harding 1971), the proportion increased from the 

8th Century onwards: a development frequently attributed to “Phoenician” trade 

(Turfa 1986, p 66-68). The transition from high-magnesia soda-lime-silica-glass 

to low-magnesia soda-lime-silica glass noted elsewhere in the Mediterranean can 

be identified amongst the material examined here, demonstrating the inclusion of 

material from outside the immediate region. However, the presence of local forms 

alongside core-formed vessels from the Levant during the 6th and 5th Centuries BC 

suggests a strong local tradition of glassworking. The continuity of variable glass 

chemistry for beads, such as the high-potash examples from Etruscan contexts 

also suggest localised glassmaking. The later material does tend to become more 

compositionally homogenous, with the dominance of the classic “Roman” 

composition from the 4th Century BC onwards. At present it is difficult to 

establish for certain what this indicates: production in a restricted geographical 

area, the export of the suitable raw ingredients, or a homogenising process either 

intentional in the preparation of the components or as an accident of the melting 

process. Recent work on Late and post-Roman glass in the Levant (Freestone et 

al. 2001) has demonstrated internal differentiation for Late Roman glass, between 

the North Western European material and that from the Levant, which had 

previously been regarded as homogenous. With additional analysis of 

contemporary material from elsewhere in the Mediterranean from the latter part of 

the 1st Millennium BC, it should be possible to resolve this question. 
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CHAPTER 7: CONCLUSIONS 

This chapter draws together the conclusions reached during the course this 

research and contains tentative suggestions for further research in light of the 

study. 

 

7.1 Analytical Techniques 

Electron probe microanalysis proved a highly effective technique for the 

generation of compositional data, providing a chemical characterisation of the 

glasses studied here.  

 

Despite extensive work with XRF equipment, this method proved less suitable in 

this case: the need for minimal intervention upon small archaeological artefacts 

constrained the capacity to create ideal circumstances for generating accurate data. 

The XRF equipment employed at Nottingham was accurate when using glasses 

which could be prepared in an appropriate manner, for example large fragments of 

glass (i.e. 6 mm2 and larger) which could be mounted, polished and presented to 

the X-ray beam.  

 

The EMP system used here included an optical arrangement for aligning the 

electron beam for analysis. Whilst this was effective with both transmitted and 

reflected light for ensuring the area analysed was away from large gas holes or 

inhomogeneities in the sample, it was not possible to discern which phase(s) were 

being excited during the analysis of mixed phase glasses. Inevitably a certain 

amount of averaging across phase boundaries must have taken place for some 
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samples. This analyses of groups of mixed-phase glasses were remarkably 

consistent.  

 

SEM imaging with semi-quantitative EDS analysis was useful for examining and 

defining micro-structure within the glasses, including opacifying and colouring 

agents and different phases. Ideally a microprobe with SEM imaging capacity 

would be used in future studies (i.e. an SEM with Wavelength Dispersive X-ray 

analysis capability).  

 

XRD was only used for a small number of samples, with inconclusive results. 

This technique could not be more widely applied during the course of the study 

due to the limitations of sample size, but ideally would be employed more widely 

in future work to resolve questions concerning the microstructure of multi-phase 

glasses. 

 

7.2 Experimental work 

This study has focused attention upon glass technologies and has highlighted 

several areas in which experimental work would aid the interpretation of some of 

the data. The mixed-alkali glasses which contain a silica-rich crystalline phase are 

the subject of some debate- is the silica-rich phase the late addition of finely 

ground sand to act as an opacifying agent, or is it unreacted remnant raw material? 

Only through experimental work could this be fully resolved. The working 

properties and temperature ranges required to maintain the observed structural 

integrity would give greater insight into how this glass type was formed and 

treated. In the absence of remains of contemporary furnaces, the definition of 
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temperature parameters necessary for the processes involved would generate 

information about their capacities, which might usefully be compared with 

parallel research in early bronze technology. 

 

The use of iron and copper in such glasses as a red colouring agent also requires 

direct experimental work to inform the interpretation of the composition of these 

glasses. The capacity to use a red opaque glass opacified and coloured with 

cuprous oxide to decorate a blue opaque glass of similar composition clearly 

demands further investigation of the properties of such glasses. How long and at 

which temperatures could such a red glass retain its working and colour properties 

in an oxidising environment? As always, the results of experimental work carry 

the qualifying condition of demonstrating the possible, rather than identifying the 

definite processes involved. 

 

The processing of different plant ashes and experimental melting might profitably 

be undertaken as means of reconstructing the mixed-alkali composition. Given its 

longevity from the beginning of the Middle Bronze Age to the Final Bronze Age 

(in Italy), and the impressive consistency of the compositions, it seems likely that 

refining processes rather than specific plant selection account for this. The 

existence of a few glasses clearly made in the same tradition with exceptionally 

low soda levels seems likely to be due to plant ash compositional variability, the 

compositional similarity on other counts suggests a shared process. It is always 

possible that a physico-chemical reducing process generates a limited 

compositional result from variable raw materials, again this can only be 
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investigated through experimental work in the laboratory, and the construction of 

appropriate phase diagrams. 

 

Similarly, the “Etruscan” potash composition would appear to contain a processed 

ash, in which the magnesia, soda and lime have been preferentially removed. The 

solution and evaporation of a range of plant ashes would help to define the 

processes and possible ash-types employed. 

 

7.3 Final Bronze Age 

The analysis of glass from the Final Bronze Age sites of Frattesina, Mariconda 

and Montagnana has significantly extended the characterisation of the mixed-

alkali glassmaking tradition. Whilst the majority of the glasses sampled from the 

three sites are consistent with the established definition of this uniquely European 

glass type, a small number are subtly distinct as potash glasses but are nonetheless 

clearly manufactured within the same tradition on the basis of other components. 

Whilst it is not possible to definitely assert the primary manufacture of glass at 

Frattesina, this does seem to have been very likely, and there is now some 

tentative evidence for glassmaking at Mariconda. Clearly Frattesina did not 

control the supply of this glass type in the region, with extensive evidence for 

glassworking at the other two sites. The idea of Frattesina as a settlement of 

singular importance in the Po valley needs to be modified. 

 

Whilst the end of mixed-alkali glass use in Italy is sharply defined, the wider 

adoption/use of this glass type in Middle and Late Bronze Age Europe is less well 

defined. This is principally due to the limited compositional analysis of glasses 
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from such contexts. It seems likely, given the established nature of exchange in 

other materials, that the mixed-alkali glass was more widely used in Central 

Europe. There remains the need for additional characterisation studies on other 

European Bronze Age glasses to more fully delineate the use of this material. 

 

7.4 Iron Age and Etruscan 

There is no evidence for continuity of glass production from the Final Bronze Age 

into the Iron Age, either within or without the Villanovan/Etruscan koine of 

Central and Northern Italy. Instead, the chemical composition of glasses from 

these contexts represent a more complex picture of production and consumption. 

The transition from high to low magnesia-soda-lime-silica glasses can be 

recognised within the data set, suggesting that a significant proportion of the glass 

originated in the Eastern Mediterranean region. However, the Este glasses, along 

with material analysed by others from former Yugoslavia can be distinguished 

from material from the Eastern Mediterranean. 

 

However, there are glasses that do not conform to the conventional classification 

of either high/low magnesia-soda-lime-silica, with a continuum of soda, potash or 

magnesia contents. The highly variable nature of their compositions is what 

characterises them and suggests that they represent a glass technology that does 

not employ consistent raw materials or a homogenising process. Given the limited 

distribution of some of the glass forms, it seems likely that the glass production of 

this type is localised to Italy and the N. Adriatic. A group of high-iron glasses 

recovered from Greek settlements in Southern Central Italy may represent a new, 

highly localised glass type used for forms found across a large area (from the 
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Aegean to Central Europe). The absence of data on further examples from 

elsewhere makes this an intriguing proposition.  

 

The few examples of potash glasses from “Etruscan” contexts are an exciting 

discovery: they are without parallel in the glass literature from any period. It is 

possible these glasses are indicators of an Etruscan technology, rather than the 

Etruscan glassmaking technology in a localised and fragmented industry. 

 

Further investigation of glass from Etruscan contexts, preferably from recently 

excavated secure deposits would help clarify this picture of glassmaking in Iron 

Age and Etruscan Italy. Rather than single or even regionally specific traditions, it 

would appear that glass production is highly variable affair lacking the strong 

conformity which marks other contemporary productions in ceramics or 

metalwork. 

 

7.5 The scientific analysis of glass and technological choices. 

The recent discussion within the pages of Archaeometry has highlighted a range 

of issues facing archaeological scientists, at the centre of which is the necessity to 

locate the study of technology within a broader archaeological context in order to 

avoid functionalist explanations (see 2.4 and 6.5). Whilst the published discussion 

has centred on ceramic production, the principle arguments apply equally to 

ancient glass industries. In this case, the shifting compositions of glass noted in 

this study do not simply indicate variation between domestic 

production/importation, but illustrate a more complex situation suggesting highly 

variable (localised?) production alongside importation. Indeed the dislocation in 
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glass composition which coincides with the abandonment of Proto-Villanovan 

settlements in the Po valley speaks of a more fundamental economic re-alignment 

which can also be traced in Copper alloy metal production (6.3). The manufacture 

of glass in Prehistoric Italy is not independent of the economic and political 

context, but nonetheless exhibits surprising variation from the expected pattern, 

especially within the Etruscan sphere. 

 

7.6 In conclusion. 

This study constitutes the first general survey of the chemistry of glasses from 

Central and Northern Italy from the 1st Millennium BC, and as such the data (and 

conclusions) should inform future studies of ancient glass technology for both the 

Italian peninsular and the N. Adriatic for this period. The successful 

characterisation of these glasses enables detailed technological understanding of 

individual glasses, the definition of discrete groups and the generation of wider 

inference concerning the organisation of glass production for specific periods.  

 

This study has highlighted the extent to which the Protovillanovan settlements of 

the Final Bronze Age Po valley were engaged in glassworking. It is interesting to 

note the widespread adoption of a single technological tradition. There is tentative 

evidence for actual glass production at Mariconda and the definition of the 

glassmaking tradition has been extended to include potash as well as mixed-alkali 

glasses. The tools and associated glassworking debris offer new insight into the 

bead making processes in use. 
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There is evidence for localised glass production in the highly variable 

compositions recovered from Early Iron Age contexts in Northern Italy. However, 

the transition from high-magnesia to low magnesia glasses noted in the Eastern 

Mediterranean region during this period can be observed amongst the Italian 

material, demonstrating an imported component amongst the assemblages 

sampled. 

 

The compositional diversity continues within the Etruscan world: as yet it remains 

difficult to talk of an Etruscan glass industry as a single entity. The presence of 

forms unique to Etruscan contexts has been used to argue for a distinct industry. 

Unfortunately the chemistry of the stachelflaschen does not substantiate the 

hypothesis of a distinct glassmaking tradition. This does not mean that the primary 

glass was not produced in Italy, but that the tradition employed is closely 

associated with that in the Eastern Mediterranean, and therefore the Etruscan 

vessels may have been made from imported glass. However, the presence of 

potash glasses of unique type suggest that glassmaking and working may have 

been taking place alongside the importation of raw glass and finished exotic items 

from the Eastern Mediterranean.  

 

Whilst the presence of high-iron glasses from Cumae and Pozzouli may indicate 

another “Etruscan” glass type in a highly fragmented glassmaking industry, their 

origin in Greek contexts in South Central Italy ensures that this glass type should 

be treated with some caution before being welcomed into the Etruscan fold. 
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This study has generated highly specific insights into the technology of a number 

of glasses used from 1200 to 200 BC in Northern and Central Italy. The 

technological choices made in their manufacture reflect culturally specific 

contexts. However, the relatively few analyses also permit the construction of a 

framework for glass production (and consumption) for the region over the course 

of a thousand years. The long-term changes can be traced, and the glass 

compositions demonstrate a surprising degree of both diversity and conformity 

when considered in their archaeological context. Further targeted analytical work 

can only help elaborate the picture, and resolve a number of specific questions 

raised by this study. 

 363



REFERENCES 

 

Aerts, A., Janssens, K. and Adams, F. 1999 Trace-level microanalysis of Roman 

glass from Khirbet Qumrân, Israel. Journal of Archaeological Science 26: 883-

891. 

 

Agricola, G. 1556 De Re Metallica (Translated by Hoover, H. C. and Hoover, L. 

H., published by Dover, New York). 

 

Ahmed, A.A. and Ashour, G.M. 1981 Effect of heat treatment on the 

crystallisation of cuprous oxide in glass. Glass Technology 22 (1): 24-33. 

 

Allen, J.W. 1973 Abu’ L-Quasim’s Treatise on Ceramics. Iran 11: 111-120 

 

Ambert, P. Barge-Mahieu 1989 Essai sur les Perles en verre antérieures à l’Age 

du Fer en Languedoc et en Provence. Le verre prèromaine en Europe occidentale, 

edited by Feugère, M. 

 

Anderson, J.C., Leaver, K.D., Rawlings, R.D. and Alexander, JM 1991 Materials 

Science. Fourth Edition, Chapman and Hall, London. 

 

Ashton, M. and Towle, A. 1999 Electronic Scanning: an alternative to Photographing 

Glass Beads and other small archaeological artefacts. Bead Study Trust Newsletter 

33: p 4 – 5. ISSN: 1463 – 9602. (reproduced at: 

http://www.shef.ac.uk/~assem/5/towle.html.) 

 364



Ashtor, E. and Cevidalli, G. 1983 Levantine Alkali Ashes and European 

Industries. Journal of European Economic History 12: p 475 - 522 

 

Aspinall A., Warren, S.E., Crummett, J.G. and Newton, R.G.  1972 Neutron 

activation analysis of faience beads. Archaeometry 14: p 27 - 40. 

 

Azémar, R., Billaud, Y., Bories, G., Costantini, G. and Gratuze, B. 2000 Les 

Perles Protohistoriques en verre de L’Aveyron. Vivre en Rouereue 2000. Cahiers 

d’Archéologie Aveyronnaise 14: 75-87. 

 

Bachman, H.G., Everts, H and Hope, CA. 1980 Cobalt-blue pigments on 18th 

Century Egyptian Pottery. Mitteilungen des Deutschen Archaologischen Instituts 

Abteilung Kairo 36: 33-37. 

 

Banks, M. and Hall, E.T. 1963 X-Ray Fluorescence Analysis in Archaeology: the 

Milliprobe. Archaeometry 6: 31-36 

 

Barag, D. 1962 Mesopotamian Glass Vessels of the 2nd Millenium BC, in Journal 

of Glass Studies 4: 8 - 27 

 

Barag, D. 1972 The Origin of Glass. XI Congres International du Verre, 27 

septembre – 2 octobre 1971: 183-190. Communications Artistiques et Historiques. 

Paris. 

 

 365



Barag, D. 1987 Recent Important Epigraphic Discoveries Related to the History of 

Glassmaking in the Roman Period. Annales du 10e Congrès de l’Association 

Internationale pour l’Histoire du Verre, Madrid-Segovie, 23-28 septembre 

1985:109-116. Association Internationale pour l’Histoire du Verre, Amsterdam. 

ISBN 90-72290-01-1. 

 

Barag, D. 1996 Phoenicia and mould-blowing in the early Roman period. Annales 

du 13e Congrès de l’Association Internationale pour l’Histoire du Verre, Pays Bas, 

28 août-1 septembre 1995: 77-92. Association Internationale pour l’Histoire du 

Verre, Lochem. ISBN 90-72290-04-6. 

 

Barber, D. J. and Freestone, I. C. 1990 An investigation of the origin of the colour 

of the Lycurgus cup by analytical transmission microscopy. Archaeometry 32 (1): 

33 - 45. 

 

Barfield, L. 1971 Northern Italy Before Rome. Volume 76 in the Ancient Peoples 

and Places series, general editor: Dr Glyn Daniel. Thames and Hudson, London. 

ISBN 0 500 02075 2. 

 

Barfield, L. 1978 “North Italian Faience Buttons” in Antiquity 52: 150-153 

 

Barker, G. 1988 Archaeology and the Etruscan countryside. Antiquity 62: 772-85. 

 

Barker, G. and Hodges, R. 1981 Archaeology and Italian Society: Prehistoric, 

Roman and Medieval Studies. B.A.R. International Series 102. Oxford. 

 366



 

Barrera and Velde 1989 A Study of French Medieval glass composition. 

Archéologie Médiévale 19: 81-130. 

 

Basa, K., Glover, I. and Henderson 1991 The relationship between early Southeast 

Asian and Indian glass. Indo-Pacific Prehistory 1990: Volume 1 of Papers from 

the 14th IPPA Congress, Yogyakarta. Edited by Bellwood, P. Bulletin of the Indo-

Pacific Prehistory Association 10: 366-385. 

 

Bass G.F. 1986 A Bronze Age Shipwreck at Ulu Burun: 1984 Campaign. 

American Journal of Archaeology 90: 269-296. 

 

Bass G.F. 1987 Oldest known shipwreck reveals splendours of the Bronze Age. 

National Geographic 172 (6): 693-732. 

 

Bateson, H.M. and Turner, W.E.S. 1939 A note on the solubility of sodium 

chloride in a soda-lime-silica glass. Journal of the Society of Glass Technology 

23: 265-267. 

 

Baxter M.J. 1989 Mutivariate Analysis of Data on Glass Compositions: a 

methodological note. Archaeometry 31 (1): 45-53. 

 

Baxter, M.J. Cool, H.E.M., Heyworth, M.P. and Jackson, C. 1995 Compositional 

variability in colourless Roman glass vessels. Archaeometry 37 (1): 129-141. 

 

 367



Bayley, J. 1982 Non-ferrous metal and glassworking in Anglo-Scandinavian 

England. PACT 7: 487-496 (Journal of the European Study Group on Physical, 

Chemical and Mathematical Techniques Applied to Archaeology). 

 

Bayley, J. 1983 Notes on the composition of coloured glasses. Unpublished Notes. 

 

Bayley, J. 1987 Viking glassmaking: the evidence from York. Annales du 10e 

Congrès de l’Association Internationale Pour l’Histoire du Verre, Madrid-

Segovie, 23-28 septembre 1985: 245-255. 

 

Bayley, J. 1991 Analytical results for metal and glass-working crucibles from 

Frere’s excavations at Verulamium, Herts. Ancient Monuments Laboratory Report 

68/91. English Heritage. 

 

Bayley, J. and Wilthew, P. 1986 Qualitative and Semiqualitative Analysis of 

Glass Beads, in Olin, S.J. and Blackman, M.J. (editors) Proceedings of the 24th 

International Archaeometry Symposium, Washington DC, 1984: 55-62. 

 

Beck, H.C. 1928 Classification and Nomenclature of Beads and Pendants. 

Archaeologia 77: 1-76. 

 

Bead Study Trust (BST) 1997 Catelogue of the Beck Collection Part 1: Europe. 

With contributions by: Boon, G., Westlake, F., Francis, P., Henderson, J. and 

Hughes-Brock, H. Published by the Bead Study Trust, Cambridge. 

 

 368



Beck, H.C. 1934 Glass Before 1500. Ancient Egypt, June 1934: 7-21. 

 

Beck, H.C. and Seligman 1934 Barium in Ancient Glass. Nature 133: 982. 

 

Beck, H.C. and Stone, J.F.S. 1936 Faience Beads of the British Bronze Age, 

Archaeologia 85: 203 - 252 

 

Bellintani, P. 1995 Breve guida al Museo Civico Di Fratta Polesine. 

Amministrazione Provinciale di Rovigo, Rovigo, Italy. 

 

Bellintani, P. 1997 Frattesina: l’ambra e la produzione vitrea nel contesto delle 

relazioni transapline in Ori Delle Alpi. Edited by Endrizzi L. and Marzatico, F. 6 

Quaderni della Seizione Archeologica Castello del Buonconsiglio. Provincia 

autonoma di trento servizio beni culturali. 

 

Bellintani, P. (forthcoming) “I bottoni conici ed altri materiali vetrosi delle fasi 

non avanzate della media età del Bronzo dell'Italia settentrionale e centrale”, 

Padusa. 

 

Bellintani, P. and Biavati, A. 1997 Ornamenti in materiale vetroso in Le 

Terramare: La Piu Antica Civilta Padona. Edited by Brea, M.B. Cardarelli, A. and 

Cremaschi, M. Electa. 

 

Bellintani, P, Biavati, A. and Verità, M. 1998 “Alcune considerazione su materiali 

vetrosi da contesti dell’età del bronzo media e recente dell’Italia settentrionale”, in 

 369



Il vetro dall’antichità all’età contemporanea: aspetti tecnologici, funzionali e 

commerciali atti 2e giornate nazionali di studio AIHV – comitato nazionale 

Italiano, 14 – 15 Dicembre 1996, Milano. 

 

Bergonzi, G. and Cardarelli, A. 1992 Status symbol e oggetti d’ornamento nella 

media età del Bronzo dell’Italia settentrionale: ambra, faïence, pasta vitrea, metalli 

preziosi. Rassegna di Archeologia 10: 217-220. 

 

Besborodov, M.A. 1957 A chemical and Technical Study of Ancient Russian 

Glasses and Refractories. Journal of the the Society of Glass Technology 41: 168-

184. 

 

Besborodov, M.A. 1975 Chemie und Technologie der antichen und 

Mittelalterlichen Gläser. Philip Von Zabern, Mainz. 

 

Besborodov, M.A. and Zadneprovsky, J.A. 1967 Ancient and Medieval Glass of 

Middle Asia. Archaeological Chemistry: 29-57. Philadelphia. 

 

Bettembourg, J-M. 1976 Composition et alteration des verres de vitraux anciens. 

Verres Réfract. Vol 30 (1): 36-42. 

 

Biavati, A. 1983 “L’arte vetraria nella cività protovillanoviana di Frattessina di 

Fratte Poloesine (RO): analisi chimica dei reperti archeologici” in Padusa 19: 59 – 

63. 

 

 370



Biavati A. and Verità M. 1989 The glass from Frattesina, a glassmaking centre in 

the late Bronze Age. Rivista Stazione Sperimentale Vetro 19 No. 4: 295-299. 

 

Biek L. and Bayley J. 1979 Glass and other vitreous materials. World 

Archaeology 11 (1): 1-25. 

 

Biek, L., Butcher, S.A., Carruthers, T.G., Rooksby, H.P., Warren, S.E., Crummett, 

J.G., Hedges, R.E.M. and Kaczmarczyk, A. 1980 Enamels and glass pastes on 

Roman-period “bronzes” found at Nornour, Isles of Scilly, in Slater, E.A. and 

Tate, J.O. (editors) Proceedings of the 16th International Symposium on 

Archaeometry and Archaeological Prospection: 50-79. 

 

Bietti Sestieri, A.M. 1973 The metal industry of continental Italy, 13th to the 11th 

Century BC, and its connections with the Aegean. Proceedings of the Prehistoric 

Society 39: 383-424. 

 

Bietti Sestieri, A.M. 1981 Economy and Society in Italy between the Late Bronze 

Age and Early Iron Age, in Barker, G. and Hodges, R. Archaeology and Italian 

Society: Prehistoric, Roman and Medieval Studies: 133-154. British 

Archaeological Reports International Series: 102. Oxford. 

 

Bietti Sestieri, A.M. 1992 The Iron Age community of Osteria dell Osa. 

Cambridge University Press. 

 

 371



Bietti Sestieri, A.M. 1997 Italy in Europe in the Early Iron Age, Proceedings of 

the Prehistoric Society 63: 371 – 402. 

 

Bietti Sestieri, AM., Henderson, J. and Ponting, M. forthcoming paper on material 

from Frattesina. 

 

Bimson, M. 1992 Opaque red glass: a review of previous studies. Bimson M. and 

Freestone I. (editors) Early Vitreous Materials: 165-172. British Museum 

Occasional Paper 56. ISBN 0-86159-056-2. 

 

Bimson M. and Werner, A.E. 1969 two Problems in Ancient Glass: Opacifiers and 

Egyptian Core Material. Annales du 4e Congres d’Etude Historique du Verre 

Ravenne-Venise, 13-20 Mai 1967: 262-266. Association Internatioale pour 

l’Histoire du Verre, Liege. 

 

Bimson M. and Freestone I.C. 1983 An analytical study of the relationship 

between the Portland Vase and other Roman cameo glasses. Journal of Glass 

Studies 4: 127-138. 

 

Bimson M. and Freestone I. 1985 “Rouge Clair” and other Late 14th Century 

enamels on the Royal Gold Cup of the Kings of France and England. Annales du 

9e Congrès de l’Association Internationale pour l’Histoire du Verre, Nancy 

(France) 22-28 Mai 1983. Association Internationale pour l’Histoire du Verre, 

Liège. 

 

 372



Bimson M. and Freestone I. 1987 The Discovery of an Islamic glass-making site 

in Middle Egypt. Annales du 10e Congrès de l’Association Internationale pour 

l’Histoire du Verre, held at Madrid-Segovie, 23-28 September 1985: 237-243. 

Published by the International Association for the History of Glass, Amsterdam. 

ISBN: 90-72290-01-1. 

 

Bimson M. and Freestone I. 1992 (editors) (reprinted from 1987) Early Vitreous 

Materials. British Museum Occasional Paper 56. ISBN 0-86159-056-2. 

 

Binford, L. 1962 Archaeology as anthropology. American Antiquity 28 (2): 217-

225. 

 

Bintliff, J. 1988 Foreword: Disneylands, Parables, or Value-Free Knowledge for 

its own sake: why do we need a past?, in Bintliff, J. (editor) Extracting Meaning 

from the Past: 1-3. Oxbow Books, Oxford. 

 

Bintliff, J. 1988 (editor) Extracting Meaning from the Past. Oxbow Books, 

Oxford. 

 

Biringucci, V. (1540) The Pirotechnia of Vannoccio Biringucci (translated by 

Smith, C. S and Gnudi M. D. published in 1943 by MIT Press). 

 

Birks, L. S. (1963) Electron Probe Microanalysis. John Wiley and Sons, New 

York. 

 

 373



Biron, I., Dandridge, P. and Wypyski, M.T. 1996 Techniques and Materials in 

Limoges Enamels, in O'Neill, J.P. (editor), Enamels of Limoges 1100 - 1350. The 

Metropolitan Museum of Art, New York. ISBN 0870997599. 

 

Bissing, F.V. 1930 Materiali Archeologici Orientali ed Egiziani. Studi Etruschi 4: 

371-377. 

 

Bissing, F.V. 1938 Materiali Archeologici Orientali ed Egiziani. Studi Etruschi 

12: 297-302. 

 

Bissing, F.V. 1942 Studien zur ältesten Kultur Italiens, IV Alabastra, D. Die 

Alabastra in Glas und Die Frage der Ostlichkeiten der Herstellung bunten 

Glaswaare. Studi Etruschi 16: 89-195. 

 

Bizzarri, M. 1965 Un raro vasetto di vetro della necropoli nord di Orvieto. Studi 

in onore di Luisa Banti: 57-61. Bretschneider, Rome. 

 

Bloch, R. 1958 The Etruscans. Thames and Hudson, London. 

 

Boitoni, F., Cataldi, M. and Pasquinucci, M. 1975 Etruscan Cities. Cassell, 

London. 

 

Bonfante, L. 1986 (editor) Etruscan Life and Afterlife: a handbook of Etruscan 

studies. Wayne State University Press, Detroit. 

 

 374



Bonomi, S. 1996 Vetri antichi del Museo Archeologico Nazionale di Adria. 

Association Internationale pour l’Histoire du Verre. 

 

Bosch-Gimpera, P. 1929 Le Relazioni Mediterranae postmicenee ed il problema 

Etrusco. Studi Etruschi 3: 9-41. 

 

Boswell, P.G.H. 1917 British glass sands: their location and characteristics. 

Journal of the Society of Glass Technology 1: 3-61. 

 

Bradford, J. 1947 Etruria from the Air. Antiquity 21: 74-83. 

 

Brill R.H. 1962 A note on the scientist’s definition of glass. Journal of Glass 

Studies 4: 127-138. 

 

Brill R.H. 1963 Ancient Glass. Scientific American 209 (5) November 1963: 120-

130 

 

Brill R.H. 1965 Interlaboratory Comparison Experiments on the Analysis of 

Ancient Glass. Proceedings of the 7th International Congress on Glass, Brussels, 

28th June-3rd July 1965 Preliminary Papers, Section E, Paper 226: 226.1-226.4 . 

Brussels. 

 

Brill R.H. 1967 A great Glass Slab from Ancient Galilee. Archaeology 20: 89-95 

 

 375



Brill R.H. 1969 Lead Isotopes in Ancient Glass. Annales du 4e Congres d’Etude 

Historique du Verre Ravenne-Venise, 13-20 Mai 1967: 255-261. Association 

Internatioale pour l’Histoire du Verre, Liege. 

 

Brill R.H. 1970 Scientific Studies of Ancient Glass. Journal of Glass Studies 12: 

185 - 192. 

 

Brill R.H. 1972 A chemical-Analytical round-robin on four synthetic ancient 

glasses. 9th Congres International du Verre, Versailles, 27th September-2nd October 

1971: 93-110. Communications Artistiques et Historiques, Paris 1972. 

 

Brill R.H. 1987 Chemical Analyses of Some Early Indian Glasses. Archaeometry 

of Glass: Archaeometry Session of the 14th International Congress on Glass, New 

Delhi, Section 1: 1-25. 

 

Brill, R. 1988 Scientific Investigations of the Jalame glass and related finds, in 

Weinberg, G.D (editor) Excavations at Jalame: site of a glass factory in Late 

Roman Palestine. University of Missouri Press, Columbia. 

 

Brill, R.H. 1992 Chemical Analyses of Some glasses from Frattesina. Journal of 

Glass Studies 34: 11-22. 

 

Brill R.H. 1994 Laboratory Studies of Some Glasses from Vergina. Journal of 

Glass Studies 36: 11-22. 

 

 376



Brill R.H. 1999a Chemical Analyses of Early Glasses Volume 1: The Catalogue 

The Corning Museum of Glass, Corning, New York. 

 

Brill R.H. 1999b Chemical Analyses of Early Glasses Volume 2: The Tables The 

Corning Museum of Glass, Corning, New York. 

 

Brill R.H. forthcoming Chemical Analyses of Ancient Glasses Volume 3: The 

Interpretation The Corning Museum of Glass, Corning, New York. 

 

Brill R.H. and Schreurs, J.W.H. 1984 Iron and Sulphur related colours in Ancient 

Glass. Archaeometry 26 (2): 199-209. 

 

Brill R.H. and Martin, J.H. (editors) 1991 Scientific Research in Early Chinese 

Glass. Proceedings of the Archaeometry of Glass Sessions of the 1984 

International Symposium on Glass, Beijing, September 7, 1984, with 

Supplementary Papers. Published by the Corning Museum of Glass, Corning, 

New York. ISBN: 0-87290-126-2. 

 

Brothwell, D.R. and Higgs, E. (editors) 1971 Science in Archaeology: a survey of 

progress and research. Thames and Hudson. 

 

Brothwell, D.R. and Pollard, A.M. (editors) 2001a Handbook of Archaeological 

Sciences. John Wiley and Sons, Ltd, Chichester. ISBN 0-471-98484-1 

 

 377



Brothwell, D.R. and Pollard, A.M. 2001b Archaeological Science: a current 

perspective, in Brothwell, D.R. and Pollard, A.M. (editors) Handbook of 

Archaeological Sciences: xvii-xx. John Wiley and Sons, Ltd, Chichester. ISBN 0-

471-98484-1 

 

Brown, A.C. 1980 Ancient Italy before the Romans. Ashmolean Museum, Oxford. 

 

Brugsch, H. 1891 Die Ägytologie. Leipzig. 

 

Brun N. and Pernot M. 1992 The opaque red glass of Celtic enamels from 

continental Europe. Archaeometry 34 (2): 235-252. 

 

Buitron, D.M. 1980 Etruscan Jewelry, in Garside, A. (editor) Jewellery: Ancient 

to Modern: 54-71. The Viking Press, New York. 

 

Cable, M. 1969 The Physical Chemistry of glassmaking. Eighth International 

Congress on Glass, London, 1 – 6th July 1968: 163-178. Published by the Society 

of Glass Technology. 

 

Cable, M. 1991 The Calculation of Glass and Glass Batch Compositions. School 

of Materials, Sheffield University. 

 

Cable, M. 1998 The operation of wood fired glass melting furnaces, in McCray, P. 

(editor) The Prehistory and History of Glassmaking Technology: 315-329. 

Proceedings of the Prehistory and History of Glassmaking Technology 

 378



Symposium, held at the 99th Annual Meeting of the American Ceramics Society in 

Cincinnati, Ohio, May 4-7, 1997. Ceramics and Civilisation 8. ISBN 1-57498-

041-6. 

 

Cable, M. and Smedley, J.W. 1992 The Replication of an opaque red glass from 

Nimrud. Bimson and Freestone (editors) Early Vitreous Materials: 151-164. 

British Museum Occasional Paper 56. ISBN 0-86159-056-2. 

 

Cable, M. and Smedley, J.W. 1987 Liquidus Temperatures and Melting 

Characteristics of some Early Container Glasses. Glass Technology 28 (2): 94-98. 

 

Cable, M. and Yang, Y.X. 1993 Crystallisation in glasses of the system Na2O – 

K2O – CaO – MgO – Al2O3 – SiO2. Physics and Chemistry of Glasses 34 (1): 18-

23. 

 

Caley, E.R. 1949 Klaproth as a pioneer in the chemical investigation of 

antiquities. Journal of Chemical Education 26: 242-247, 268. 

 

Caley, E.R. 1951 Early History and Literature of Archaeological Chemistry. 

Journal of Chemical Education 28: 64-66. 

 

Caley, E.R. 1962 Analyses of Ancient Glasses 1790 – 1957. The Corning 

Museum of Glass, Corning, New York. 

 

 379



Caley, E.R. 1967 The Early History of Chemistry in the Service of Archaeology. 

Journal of Chemical Education 44: 120-123. 

 

Callinicos, A. 1995 Making History. Polity Press, Cambridge. 

 

Callinicos, A. 1996 Against Postmodernism: a marxist critique. Polity Press, 

Cambridge. 

 

Campbell Thompson, R. 1925 On the Chemistry of the Ancient Assyrians. 

London. 

 

Capecchi, G. 1993 Entre collectionisme et archeologie: La collection de verres 

antiques du Museo Archeologico de Florence. Annales du 12e Congrès de 

l’Association Internationale pour l’Histoire du Verre, Vienne - Wien, 26-31 août 

1991: 129-140. Association Internationale pour l’Histoire du Verre, Amsterdam. 

ISBN 90-72290-03-8. 

 

Carboni, S., Pilosi, L. and Wypyski, M.T. 1998 A gilded and enamelled glass 

plate in the Metropolitan Museum of Art, in McCray, P. (editor) The Prehistory 

and History of Glassmaking Technology: 79-102. Proceedings of the Prehistory 

and History of Glassmaking Technology Symposium, held at the 99th Annual 

Meeting of the American Ceramics Society in Cincinnati, Ohio, May 4-7, 1997. 

Ceramics and Civilisation 8. ISBN 1-57498-041-6. 

 

Carrington, R.C. 1932 The Etruscans and Pompeii. Antiquity 6: 5-23. 

 380



 

Casi C., D’Ercole, V., Negroni Catacchio, N. and Trucco, F. 1993 Prato di 

Frabulino (Farnese, VT). Tomba a camera dell’età del Bronzo, in Preistorica e 

Protostoria in Etruria. Atti del Secondo Incontro di Dtudi: 81-110. 

 

Challet, V. 1997 L’Art du Verre chez Les Celtes. Revue Ceramique et Verre 92: 

10-11. 

 

Charleston, R.J. 1960 Lead in Glass. Archaeometry 3: 1-4 

 

Charleston, R.J. 1963 Glass Cakes as raw materials and articles of trade. Journal 

of Glass Studies 5: 54-67 

 

Charleston, RJ. 1978 Glass Furnaces through the Ages. Journal of Glass Studies 

20: 9-33. 

 

Chieco Bianchi, A.M. and Capuis, L.C. 1985a Este I: Le Necropoli Casa di 

Ricovero, Casa Muletti Prosdocimi e Casa Alfonsi: teste e tavole. Bretschneider, 

Rome. 

 

Chieco Bianchi, A.M. and Capuis, L.C. 1985b Este I: Le Necropoli Casa di 

Ricovero, Casa Muletti Prosdocimi e Casa Alfonsi: grafico. Bretschneider, Rome. 

 

Childe, V.G. 1936 Man Makes Himself. Watts, London. 

 

 381



Childe, V.G. 1942 What Happened in History. Penguin, London. 

 

Childe, V.G. 1951 The Urban Revolution. Town Planning Review 21: 3-17. 

 

Childe, V.G. 1957 The Dawn of European Civilization (6th Edition). Routledge 

and Kegan Paul Ltd, London. 

 

Chopinet, M-H. and Barton, J.L. 1986 The Effect of Melting Temperature on the 

Residual Sulfate Content of Glass. XIVth International Congress on Glass (1986), 

Collected Papers 3: 9-15. 

 

Christie, O.H.J., Brenna, J.A. and Straume, E. 1979 Multivariate Classification of 

Roman Glasses found in Norway. Archaeometry 21 (2): 233-241. 

 

Ciliberto, E. 2000 Analytical Methods in Art and Archaeology. Ciliberto, E. and 

Spoto, G. (editors) Modern Analytical Methods in Art and Archaeology: 1-10. 

Chemical Analysis Volume 155. John Wiley & Sons Inc., New York. ISBN 0-

471-29361-X. 

 

Ciliberto, E. and Spoto, G. 2000 (editors) Modern Analytical Methods in Art and 

Archaeology. Chemical Analysis Volume 155. John Wiley & Sons Inc., New 

York. ISBN 0-471-29361-X. 

 

Clarke, D. 1968 Analytical Archaeology. Methuen, London. 

 

 382



Clarke, D. 1973 Archaeology: the loss of innocence. Antiquity 47: 6-18 

 

Cole, H. 1966 Analyses and discussion of the Caerleon Window glass. Journal of 

Glass Studies 8: 46-47. 

 

Concetta, M.S., Callipo, A. and Bellintani, P. 1994 Dati archeologici e 

paleoambientali del territorio di Frattesina di Fratte Polesine (RO) tra la tardo età 

del Bronzo e la prima età del Ferro. Padusa 30: 7-65. 

 

Cox, G. A. and Pollard, A. M. 1977 X-Ray Analysis of Ancient Glass: the 

importance of sample preparation. Archaeometry 19: 45-54. 

 

Cox G.A., Heavens O.S., Newton R.G. and Pollard A.M. 1979. A study of the 

weathering behaviour of Medieval glass from York Minster. Journal of Glass 

Studies 21 54-75. 

 

Cox G.A. and Gillies K.J.S. 1986 The X-ray fluorescence analysis of medieval 

durable blue soda glass from York Minster. Archaeometry 28 (1): 57-68. 

 

Cox, G.A. and Gillies, K.J.S. 1988 Decay of medieval stained glass at York, 

Cantabury and Carlisle: part 2. Relationship between the composition of the glass, 

its durability and the weathering products. Glastechnische Berichte 61 (4): 101-

107. 

 

 383



Cox G.A and Ford, B.A. 1989 The Influence of inhomegeities in glass on the 

morphology of the weathering layers. Glass Technology 30 (3): 113-114. 

 

Cox G.A and Ford, B.A. 1989 The Corrosion of glass on the sea bed. Journal of 

Materials Science 24: 3146-3153. 

 

Cox G.A and Ford, B.A. 1993 The long term corrosion of glass by ground-water. 

Journal of Materials Science 28: 5637-5647. 

 

Craddock, P.T. 1978 The composition of the copper alloys used by the Greek, 

Etruscan and Roman civilisations. Journal of Archaeological Science 5: 1-16. 

 

Craddock, P.T. 1995 Early Metal Mining and Production. Edinburgh University 

Press, Edinburgh. 

 

Cumberpatch, C.G. 2001 Comments on “technological choices in ceramic 

production”, Archaeometry, 42 (1), 1-76, 2000. Archaeometry 43 (2): 269-271. 

 

Cunliffe B.W. 1974/1978/1991 Iron Age Communities in Britain. Routledge. 

 

Cunliffe B.W. 1987 Hengistbury Head, Dorset. Volume 1: the prehistoric and 

Roman settlement, 3500 BC- AD 500. Oxford University Committee for 

Archaeology Monograph No. 13. 

 

 384



Davy, H. 1815 Some experiments and observations on the colours used in painting 

by the Ancients. Philosophical Transactions of the Royal Society of London 105: 

97-124. 

 

Dayton, J.E. 1981(a) Geological evidence for the discovery of cobalt blue glass in 

Mycenean times as a by-product of silver smelting in the Schneeberg area of the 

Bohemian Erzebirge. Revue D’Archeometrie: Actes du XX Symposium 

International D’Archeometrie (Symposium for Archaeometry) Paris 26 – 29 Mars 

1980 Volume III: 57-61. Bulletin de Liason du Groupe des Methodes Physiques et 

Chimiques de l’Archaelogie. 

 

Dayton, J.E. 1981(b) Cobalt, Silver and Nickel in the Late Bronze Age Glazes, 

Pigments and Bronzes, and the Identification of Silver sources for the Aegean and 

Near East by Lead Isotope and Trace Element Analysis. Scientific studies in 

Ancient Ceramics: Occasional Papers of the British Museum Volume 19: 129-

142. 

 

De Min, M. 1986 Frattesina di Fratta Polesine. La necropoli protostorica, in De 

Min, M. and Peretto, R. (editors) L’Antico Polesine: testimonianze archeologiche 

e paleoambientali. Catalogo delle esposizioni di Adria e di Rovigo: Febbraio-

Novembre 1986:143-170. Ministero per I beni cultuali e ambientali 

soprintendenza archeoligca del Veneto, Padua, Italy. 

 

De Min, M. and Peretto, R. 1986 (editors) L’Antico Polesine: testimonianze 

archeologiche e paleoambientali. Catalogo delle esposizioni di Adria e di Rovigo: 

 385



Febbraio-Novembre 1986. Ministero per I beni cultuali e ambientali 

soprintendenza archeoligca del Veneto, Padua, Italy. 

 

De Min, M. and Gerhardingher, E. 1986 Frattesina di Fratta Polesine. L’abitato 

protostorico in De Min, M. and Peretto, R. (editors) L’Antico Polesine: 

testimonianze archeologiche e paleoambientali. Catalogo delle esposizioni di 

Adria e di Rovigo: Febbraio-Novembre 1986: 117-142. Ministero per I beni 

cultuali e ambientali soprintendenza archeoligca del Veneto, Padua, Italy. 

 

De Puma, R.D. and Small, J.P. 1994  (editors) Murlo and the Etruscans: Art and 

Society in Ancient Etruria. The University of Wisconsin Press. 

 

De Ste Croix, G. 1983 Class Struggle in the Ancient Greek World. Cornell 

University Press, Ithaca, New York. ISBN 0-8014-9597-0. 

 

Diderot, D, and d’Alembert, J. le R. 1765 Encylopédie ou Dictionnaire Raisonée, 

Verrerie, Vol XVII: 102 – 156, Neufchastel. 

 

Dobiat, C. 1987 Perlen mit konzentrischen Ringen, in Haevernick, E. (with 

contributions by Dobiat, C. Matthäus, H., Raftery, B. and Henderson, J.) 

Glasperlen der Vorrömischen Eisenzeit II: 15-38. Marburger Studien Zur Vor- 

und Frühgeschichte, Band 9. 

 

 386



Dobres, A-M, and Hoffman, C.R. 1994 Social Agency and the Dynamics of 

Prehistoric Technology. Journal of Archaeological Method and Theory 1 (3): 211-

258.  

 

Dohan, E.H. 1942 Italic Tomb-Groups in the University Museum. University of 

Pennsylvania Press, Philadelphia. 

 

Doremus, R.H. 1994 Glass Science. 2nd edition John Wiley and Sons, New York. 

 

Douglas, R.W. and El-Shamy, T.M.M. 1967 Reaction of glasses with aqueous 

solutions. Journal of the American Ceramics Society 50: 1-8. 

 

Douglas, R.W. and Frank, S. 1972 A History of Glassmaking. Foulis, Henley-on-

Thames. ISBN 0854291172 

 

Dubin, LS. 1987 The History of Beads from 30,000 BC to the Present. Thames 

and Hudson, London 

 

Dudley, R.J., Howden,C.R., Taylor, T.J. and Smalldon, K.W. 1980 The 

discrimination and classification of small fragments of window and non-window 

glasses using energy-dispersive X-ray fluorescence spectrometry. X-Ray 

Spectrometry 9 (3): 119-122. 

 

 387



Dunham, A. C. and Wilkinson, F. C. F.  1978 Accuracy, Precision and detection 

limits of energy dispersive electron microprobe analyses of silicates X-Ray 

Spectrometry 7 (2): 50-56. 

 

Eisen, G. 1916 Eye beads: characteristics from earliest times to the present. 

American Journal of Archaeology 20: 1-27. 

 

Eisen, G. 1916 Button Beads, with special reference to those of the Etruscan and 

Roman periods. American Journal of Archaeology 20: 299-307. 

 

Endrizzi, L. and Marzatico, F. (editors) 1997 Ori Delle Alpi. 6 Quaderni della 

Sezione Archeologica Castello del Buonconsiglio. Monumenti e collezioni 

provinciali Ori delle Alpi. Provincia Autonoma di Trento Servizio Beni Culturali.  

 

Engels, F. 1876 The part played by labour in the transition from ape to man. 

Unfinished essay written in 1876, published as an Appendix in Engels, F. 1988 

The Origin of the family, private property and the state published by Lawrence 

and Wishart, London.  

 

Engle, A. 1978 Soda and the Glassmaker. Engle, E. (Editor) Ancient Glass in its 

Context. Jerusalem. 

 

Farnsworth, M. and Ritchie, P.D. 1938 Spectrographic Studies on Ancient Glass: 

Egyptian Glass, mainly of the 18th Dynasty, with special reference to its cobalt 

content. Technical Studies in the Field of the Fine Arts 6 (3): 155-173. 

 388



 

Fischer, A. and McCray, W.P. 1999 Glass Production Activities as Practised at 

Sepphoris, Israel (37 BC – AD 1516). Journal of Archaeological Science 26: 893-

905. 

 

Fogolari, G. and Scarfi, B.M. 1970 Adria Antica. Published by Alfieri, Venice. 

 

Folk, RL. and Hoops, GK. 1982 An Early Iron-Age Layer of Glass Made From 

Plants at Tel Yin’am, Israel. Journal of Field Archaeology 9 (4): 455-66. 

 

Forbes, R.J. 1965 Chapter 6: Salts, preservation processes, mummification. 

Studies in Ancient Technology Volume 3: 164-209. 2nd edition, E.J. Brill, Leiden. 

 

Forbes, R.J. 1966 Chapter 3: Glass. Studies in Ancient Technology Volume. 5: 

112-231. 2nd edition, E.J. Brill, Leiden. 

 

Fossing, P. 1940 Glass Vessels before Glass-Blowing: 33-34. Ejnar Munksgaard, 

Copenhagen. 

 

Francis, P. European 1996 Glass Beads ca. 1000 BC to AD 1500, The 

Margaretologist Vol. 9, No. 1, Issue 21:3-12 

 

Frank S. 1985 Glass and Archaeology. Academic Press. 

 

 389



Freestone, I.C. 1992 Composition and microstructure of early opaque red glass, in 

Bimson M. and Freestone I. (editors) Early Vitreous Materials: 173-191. British 

Museum Occasional Paper 56. ISBN 0-86159-056-2. 

 

Freestone I.C. 2001 Post-Depositional Changes in Archaeological Ceramics and 

Glasses, in Brothwell, D.R. and Pollard, A.M. (editors) Handbook of 

Archaeological Sciences: 615-625. John Wiley and Sons, Ltd, Chichester. ISBN 

0-471-98484-1 

 

Freestone, I.C., Bimson, M. and Buckton, D. 1990 Compositional categories of 

Byzantine glass tesserae. Annales du 11e Congrès de l’Association Internationale 

pour l’Histoire du Verre, Bâle, 29 août - 3 septembre 1988: 271-279. Association 

Internationale pour l’Histoire du Verre, Amsterdam. ISBN 90-72290-02-X. 

 

Freestone, I.C. and Stapleton, C.P. 1998 Composition and technology of Islamic 

enamelled glass of the 13th and 14th Centuries, in Ward, R. (editor) Gilded and 

Enamelled Glass from the Middle East: 122-146. British Museum Press, London. 

 

Freestone, I.C. and Gorin-Rosen, Y. 1999 The great glass slab at Bet She’arim – 

an early Islamic glass making experiment? Journal of Glass Studies 41: 105-116. 

 

Freestone, I.C., Gorin-Rosen, Y. and Hughes, M. 2000 Primary Glass from Israel 

and the production of glass in Late Antiquity and the Early Islamic Period. La 

Route du Verre. Lyon 

 

 390



Freestone, I.C., Greenwood, R. and Gorin-Rosen, Y. 2001 Byzantine and Early 

Islamic Glass making in the Eastern Mediterranean: Production and Distribution 

of Primary Glass. Paper presented at “Hyalis-Vitrium-Glass”, a conference held in 

Rhodes, May 2001. 

 

Fremersdorf, F. 1975 Catalogo del Museo Sacro Della Biblioteca Apostolica 

Vaticano Pubblicato per Ordine Della Santita Di Paolo Papa VI. Volume V: 

Antikes, Islamiches und Mittelalterliches Glas 

 

Fugazzola Delpino, M.A. 1979 The Proto-Villanovan: A Survey, in  Ridgeway, D. 

and Ridgeway, F.R. (eds) Italy before the Romans: the Iron Age, Orientalizing 

and Etruscan Periods: 31-51. Academic Press, London. 

 

Gam, T. 1990 Prehistoric Glass Technology- experiments and analyses. Journal of 

Danish Archaeology 9: 203-213. 

 

Gam, T. 1991 Glasperlefremstilling i jngre jernalder og vikingetid in 

Eksperimentel Arkæologi: studier I teknologi og kultur nr. 1: 153 – 176. 

Historisk- Arkæologisk Forsøgscenter, Lejre, Denmark. 

 

Gam, T. 1993 Experiments in Glass: Present and Future. Annales du 12e Congrès 

de l’Association Internationale pour l’Histoire du Verre, Vienne - Wien, 26-31 

août 1991: 261-270. Association Internationale pour l’Histoire du Verre, 

Amsterdam. ISBN 90-72290-03-8. 

 

 391



Gambacurta, G. 1986 Prime osservazioni sulle perle in pasta vitrea di eta 

protostorica, provenienti da Altino (VE). Pubblicazione Annuale Estratti da 

Aquileia Nostra LVII: 166-183. 

 

Gambacurta, G. 1987 Perle in pasta vitrea da Altino (Venezia): proposta di una 

tipologia e analisi della distribuzione areale. Quaderni di Archeologia del Veneto 

– III 1987: 192-214. 

 

Ganzenmuller, W. 1939 Uber die Verwendung von Kobalt beiden Glasmachern 

des Mittelalters. Glastechnische Berichte 17: 133-138. 

 

Garner, H. 1956 The use of imported and native cobalt in Chinese blue and white 

in Oriental Arts Vol 2, part 3: 48 – 50.  

 

Gasparetto, A. 1975 Soda and the Glassmaker. Engle, A. (editor) Readings in 

Glass History 5: 53-56. 

 

Gastaldi, B. 1876 Frammenti di Paleoetnologia italiana. Memoria del Socio B. 

Gastaldi, in Atti R. Accademia dei Lincei. Memorie della Classe di Sc. Fisiche, 

Ser. II, Volume III, part II: 497-557. 

 

Gebhard, R., Kossack, G. Riederer, J., Schwabe, R. and Wagner, U. 1989 

Colouration of Celtic Glass from Manching. Maniatis, Y. (editor) Archaeometry: 

Proceedings of the 25th International Symposium: 207-215. 

 

 392



Geilman, W. 1955 Die chemische Zusammensetzung einiger alter Gläserdes 10. 

bis 18. Jahrhunderts, Glastechnische Berichte 27: 146-156. 

 

Geilman, W. 1961 Cobalt as a colouring Agent Glastechnische Berichte 35 (4): 

39-58. 

 

Geilman, W. and Jenemann, H. 1953 Der Phophatgehalt alter Gläser und seiner 

Bedeutung für die Geschichte der Schmelztechnik, Glastechnische Berichte 26 

(9): 259-263. 

 

Gerth, K. Wedepohl, K.H. and Heide, K. 1998 Experimental Melts to explore the 

technique of Medieval Woodash Glass Production and the Chlorine Content of 

Medieval Glass Types. Chemie der Erde 58: 219-232 

 

Giuntoli, S. 1996 Balsamari etruschi in vetro di eta orientalizzante e arcaica. 

Notarianni, G.M. and Ferrari (editors) I Quaderni del Giornale Economico: Il 

vetro dall’antichita all’eta contemporanea, Venezia, 2 dicembre 1995: 13-16. 

 

Glascock, M.D. 1992 Characterisation of Archaeological Ceramics at Murr by 

Neutron Activation Analysis and Multivariate Statisitics. Neff, H. (editor) 

Chemical Characterisation of Ceramic Pastes in Archaeology: 3-16. 

 

Glauert, A.M. 1991 Epoxy Resins: an update on their selection and use. 

Microscopy and Analysis September 1991, Issue 25: 15-20. 

 

 393



Goldstein, S.M. 1979 Pre-Roman and Early Roman Glass in the Corning Museum 

of Glass. The Corning Museum of Glass, Corning, New York. 

 

Gordon, R.B. 1993 The Interpretation of Artifacts in the History of Technology, in 

Luber, S. and Kingery, W.D. (editors) History from Things: essays on material 

culture:74-93. Smithsonian Institution Press, Washington DC. 

 

Gould, C.E. and Hampton, W.M. 1930 The calculation of glass compositions from 

the batch and vice versa. The Glass Industry 11(11): 249-252. 

 

Gould, S.J. 1981 The Mismeasure of Man. Norton, New York. 

 

Gratuze B. and Barrendon J.-N. 1990 Islamic Glass weights and stamps: analysis 

using nuclear techniques. Archaeometry 32 (2): 155-162. 

 

Gratuze B., Barrendon J.-N., Dulin, L. and Al Isa, K. 1992 Ancient glassy 

materials analysis: a new bulk nondestructive method based on fast neutron 

activation analysis with a cyclotron. Nuclear Instruments and Methods in Physics 

Research B71: 70-80. 

 

Gratuze, B. Louboutin, C. and Billaud Y. 1998 “Les perles protohistorique en 

verre du Musée des Antiquités nationales” in Antiquités Nationales 30, p 11 – 24. 

 

 394



Gratuze, B., Blet-Lemarquand, M. and Barrandon, J.-N. 2001 Mass spectometry 

with laser sampling: A new tool to characterize archaeological materials. Journal 

of Radioanalytical and Nuclear Chemistry 247 (3): 645-656. 

 

Green L.R. and Hart A.F. 1987 Colour and Composition in Ancient Glass. Journal 

of Archaeological Science 14: 271-282. 

 

Grenier, A. 1912 Bolgne Villanovienne et Étrusque, VIIIe-IV Siècles Avant Notre 

Ère. Published by Bibliothèque des Éçaises D’Athènes et de Rome, Paris. 

 

Griffiths, D.R. 2001 Comments on “technological choices in ceramic production”, 

Archaeometry, 42 (1), 1-76, 2000. Archaeometry 43 (2): 271-273. 

 

Grose, D. F. 1989 Early Ancient Glass: core-formed, rod-formed and cast vessels 

and objects from the late Bronze Age to the early Roman Empire, 1600 BC to AD 

50. Hudson Hills Press, New York  

 

Gudenrath, W. 1995 Techniques of Glassmaking and Decoration in Tait, H. 

(editor) Five Thousand Years of Glass: 213 – 247. British Museum Press, London. 

 

Guido, M., Henderson, J., Cable, M., Bayley, J. and Biek, L. 1984 A Bronze Age 

Glass Bead from Wilsford, Wiltshire: Barrow G.42 in the Lake Group. 

Proceedings of the Prehistoric Society 50: 245-254. 

 

 395



Guido, M. 1978 The Glass Beads of the Prehistoric and Roman Periods in Britain 

and Ireland. Reports of the Research Committee of the Society of Antiquaries of 

London No. 35. 

 

Guilaine, J. Gratuze, B. and Barrandon, J-N 1991 “Les perles de Verre du 

Chalcolithiique de l’age du bronze. Analyses d’examplaires trouvés en France” in 

L’Âge du Bronze Atlantique: Actes du 1st colloque du parc archéologique du 

Beynac, 10-14th Sept 1990, Ed, de l’association des Musees du Sarladais, Beynac 

et Cazenac. 

 

Hackens, T. Holloway, N.D. and Holloway, R.R. (editors) 1984 Crossroads of the 

Mediterranean: Papers delivered at the International Conference held at Brown 

University, 8-10 May 1981. Archaeologia Transatlantica II, Art and Archaeology 

Publications, Louvain-la-Neuve (Belgium). 

 

Haevernick, T.E. 1959 Beitrage zur geschichte des antiken glases: I Zu den 

Glasbugelfibeln, II Stachelflaschen. Jahrbuch des Romisch-Germanischen 

Zentralmuseums Mainz 6: 57-65 (also reproduced in Haevernick 1981). 

 

Haevernick, T.E. 1961 Beitrage zur geschichte des antiken glases: VII Zu den 

Stachelflaschen. Jahrbuch des Romisch-Germanischen Zentralmuseums Mainz 8: 

137-138.(also reproduced in Haevernick 1981). 

 

Haevernick, T.E. 1977 Gesichtsperlen. Madrider Mitteilungen 18:152-231 

 

 396



Haevernick, T.E. 1981 Beiträge zur Glasforschung: die wichtigsten aufsätzen von 

1938 bis 1981 von Thea Elisabeth Haevernick. Verlag Philipp von Zabern, Mainz 

am Rhein. 

 

Haevernick, E. 1987 (with contributions by Dobiat, C. Matthäus, H., Raftery, B. 

and Henderson, J.) Glasperlen der Vorrömischen Eisenzeit II. Marburger Studien 

Zur Vor- und Frühgeschichte, Band 9. 

 

Hall, E.T., Schweizer, F. and Toller 1973 X-Ray Fluorescence Analysis of 

Museum Objects: a new instrument. Archaeometry 15, (1): 53-78. 

 

Hall, M.E. and Yablonsky, L. 1998 Chemical Analyses of Sarmatian Glass Beads 

from Pokrovka, Russia. Journal of Archaeological Science 25: 1239-1245. 

 

Harbottle, G. 1982 Chemical Characterisation in Archaeology. Ericson, J.E. and 

Earle, T.K. (eds) Contexts for Prehistoric Exchange. Academic Press, London. 

 

Harden D.B. 1961 Domestic window glass: Roman, Saxon and Medieval. Jope, 

E.M. (editor) Studies in Building History: essays in honour of the work of B.H. St. 

J. O’Neil: 39-63. 

 

Harden D.B. 1968 Ancient Glass I: Pre Roman. Archaeological Journal 125: 46-

72. 

 

Harden D.B. 1969 Ancient Glass II: Roman. Archaeological Journal 126: 44 -77. 

 397



 

Harden D.B. 1971 Ancient Glass III: Post-Roman. Archaeological Journal 128: 77 

- 117. 

 

Harden D.B. 1981 (with a chapter by Veronica Tatton-Brown) Catalogue of the 

Greek and Roman Glass in the British Museum: Volume 1: core- and rod-formed 

vessels and pendants and Mycenean cast objects. British Museum, London. 

 

Harden D.B., Painter K.S. Pinder-Wilson, R.H. and Tait, H. 1968 Masterpieces of 

Glass. British Museum, London. 

 

Harding, A.F. 1971 The Earliest Glass in Europe. Archeologicke Rozhledy 23: 

188-200. Prague. 

 

Harding A.F. 1984 The Mycenaeans and Europe. London, Academic Press. 

 

Harding, A.F. and Warren, S.E. 1973 Early Bronze Age Beads from Central 

Europe. Antiquity 47: 64-66. 

 

Harman, C. 1994 Engels and the origins of human society. International Socialism 

65: 83-142. ISBN 0906-224993. 

 

Harman, C. 1999 A People’s History of the World. Bookmarks, London. ISBN 1 

898876 55 X. 

 

 398



Hartmann, G., Kappel, I., Grote, K. and Arndt, B 1997 Chemistry and Technology 

of Prehistoric Glass from Lower Saxony and Hesse. Journal of Archaeological 

Sciences 24: 547-559. 

 

Hencken, H. 1966 A view of Etruscan Origins. Antiquity 40: 205-211. 

 

Hencken, H. 1968a Tarquinia and Etruscan Origins. Thames and Hudsen, London 

 

Hencken, H. 1968b Tarquinia, Villanovans and Early Etruscans. Bulletin of the 

American School of Prehistoric Research No. 23. Peabody Museum, Cambridge, 

Mass.  

 

Henderson J.1982 Unpublished PhD thesis, University of Bradford, X-Ray 

Fluorescence Analysis of Iron Age Glass. 

 

Henderson J. 1985 The raw materials of early glass production. Oxford Journal of 

Archaeology 4 (3): 276-291. 

 

Henderson J. 1987a The Iron Age of Loughy and Meare: some inferences from 

glass analysis. The Antiquaries Journal 67 (1): 29-42. 

 

Henderson J. 1987b The archaeology and technology of glass at Meare Lake 

Village East. Somerset Levels Papers 13, (ed) JM Coles. 

 

 399



Henderson J. 1987c The Chemical Analysis of Glass from Lough Gur and its 

Archaeological Interpretation. Proceedings of the Royal Irish Academy 

(Archaeology): 502-506. 

 

Henderson J. 1987d Chemical and Archaeological analysis of some British and 

European Prehistoric glasses. Annales du 10e Congrès de l’Association 

Internationale pour l’Histoire du Verre, Madrid-Segovie, 23-28 septembre 

1985:13-22. Association Internationale pour l’Histoire du Verre, Amsterdam. 

ISBN 90-72290-01-1. 

 

Henderson J. 1988a Glass Production and Bronze Age Europe. Antiquity 66: 435-

51. 

 

Henderson J.  1988b Electron Probe Microanalysis of mixed-alkali glasses. 

Archaeometry 30 (1): 77-91. 

 

Henderson J. (editor) 1989a Scientific Analysis in Archaeology, and its 

interpretation OUCA Monograph 19. 

 

Henderson, J. 1989b The use of colourants in mixed-alkali and soda-lime-silica 

prehistoric glass. Maniatis, Y. (editor) Archaeometry: Proceedings of the 25th 

International Symposium: 217-229. 

 

Henderson, J. 1990 Bronze Age glass in Europe: some aspects of its technology, 

production and distribution. Annales du 11e Congrès de l’Association 

 400



Internationale pour l’Histoire du Verre, Bâle, 29 août - 3 septembre 1988: 1-10. 

Association Internationale pour l’Histoire du Verre, Amsterdam. ISBN 90-72290-

02-X. 

 

Henderson, J. 1991 Chemical Characterisation of Roman Glass Vessels, Enamels 

and Tesserae. Vandiver, P.B., Druzik, J., and Wheeler, G.S. (eds) 2nd Symposium 

on Materials Issues in Art and Archaeology. 17 – 21 April 1990 San Francisco, 

California. Materials Research Society. 

 

Henderson J 1991 Chemical and structural analysis of Roman enamels from 

Britain. Archaeometry 90, Proceedings of the International Symposium on 

Archaeometry, Heidelburg 1990. Pp. 285-294. 

 

Henderson J. 1991 Industrial Specialisation in Late Iron Age Britain and Europe. 

The Archaeological Journal 148: 104-148. 

 

Henderson J. 1991 Some chemical and physical characteristics of ancient glass 

and the potential of scientific study. The Glass Circle 7: 67-77. 

 

Henderson J. 1993a Aspects of early Medieval glass production in Britain. 

Annales du 12e Congrès de l’Association Internationale pour l’Histoire du Verre, 

Vienne - Wien, 26-31 août 1991: 247-259. Association Internationale pour 

l’Histoire du Verre, Amsterdam. ISBN 90-72290-03-8. 

 

 401



Henderson J. 1993b Chemical Analysis of the glass and faience from Hauterive-

Champréveyres, Switzerland. Rychner-Faraggi, A-M, (editor) Metal et parure au 

Bronze Final: Hauterive-Champréveyres 9: 79 – 81, 111 – 117, pl. 114 – 123, figs. 

69 – 71, xi, xii, xv, xvi. Archéologie neuchâteloise 17. Published by the Musée 

cantonal d’archéologie, Neuchâtel, Switzerland. 

 

Henderson, J. 1994 The Scientific analysis of vitreous materials from Kentria and 

Theologos-Tsiganadika tombs, in Koukoule-Chrysanthake, C. (editor) 

Protoistorike Thasos: Ta nekrotopheiatou oikismou kastri: 804-806. 

 

Henderson, J. 1995a The Scientific Analysis of Glass Beads. Rasmussen, M., 

Hansen, U.L. and Nasman, U. (editors) Glass Beads: Cultural History, 

Technology, Experiment and Analogy. Proceedings of the Nordic glass bead 

seminar 16 – 18 October 1992 at the Historic – Archaeological Centre in Lejre, 

Denmark. Studies in Technology and Culture Vol 2: 67-73. Historical – 

Archaeological Experimental Centre, Lejre, Denmark. 

 

Henderson J. 1995b Ancient Vitreous Materials. American Archaeological Journal 

99: 117-121. 

 

Henderson J. 1995 The Analysis of Ancient Glasses Part I: Materials properties 

and early European glass.. Archaeotechnology Nov 1995. 

 

Henderson J. 1996a The Analysis of Ancient Glasses Part II: luxury Roman and 

Early Medieval glasses. Archaeotechnology Feb 1996. 

 402



 

Henderson J. 1996b New light on early Islamic industry: excavations in Raqqa, 

Syria. Wilson, R.J.A. (editor) From River Trent to Raqqa: 59-71. 

 

Henderson, J. 1998 Blue and other coloured translucent glass decorated with 

enamels: possible evidence for trade in cobalt-blue colourants in R. Ward (ed) 

Gilded and Enamelled Glass from the Middle East: 116-121. British Museum 

Press, London. 

 

Henderson, J. 1999 Archaeological and Scientific Evidence for the Production of 

Early Islamic glass in Al-Raqqa, Syria. Levant 31: 225-240. 

 

Henderson, J. 2000 The Science and Archaeology of Materials: an investigation of 

inorganic materials. Routledge. 

 

Henderson, J. 2001 Glass and Glazes, in Brothwell, D.R. and Pollard, A.M. 

(editors) 2001 Handbook of Archaeological Sciences: 471-482. John Wiley and 

Sons, Ltd, Chichester. ISBN 0-471-98484-1 

 

Henderson, J. forthcoming Scientific analysis of glass and glaze from Tell Brak 

and its archaeological implications. 

 

Henderson, J. and Warren, S. 1981 X-ray Fluorescence Analysis of Iron Age 

Glass: Beads from Meare and Glastonbury Lake Villages. Archaeometry 23 (1): 

83-94. 

 403



 

Henderson J. and Allen J. 1990 Enamels on Ayyubid and Mamluk glass 

fragments. Archaeomaterials 4: 167-183. 

 

Henderson J. and Freestone I.C. 1991 The examination of red inlay on the 

broaches from Burton Fleming and Rudstone. In IM Stead Iron Age Cemeteries in 

East Yorkshire. English Heritage Reasearch Reports 22: 164-167. 

 

Henderson J. and Holand I. 1992 The glass from Borg, an Early Medieval 

Chieftain’s farm in Northern Norway. Medieval Archaeology 36: 29-58. 

 

Henderson J. and Ivens R. 1992 Dunmisk and glass-making in early Christian 

Ireland. Antiquity 66: 53-64. 

 

Heurtley, WA. and Skeat, TC. 1933 The Tholos Tombs of Marmariane. Annual of 

the British School at Athens 31: 1-55. 

 

Heyworth, M.P., Hunter, J.R. and Warren, S.E. 1989 The Role of Inductively 

Coupled Plasma Spectrometry in Glass Provenance Studies. Maniatis, Y. (editor) 

Archaeometry: Proceedings of the 25th International Symposium: 661-669. 

 

Hill, D.K. 1972 Precious Metal and Glass: An Alabastron at the Walters Art 

Gallery. Journal of Glass Studies 14: 23-25. 

 

 404



Hirst, S.M. and Biek, L. 1981 Investigation of a glass bead assemblage from an 

Anglo-Saxon cemetary near York. Revue D’Archeometrie: Actes du XX 

Symposium International D’Archeometrie (Symposium for Archaeometry) Paris 

26 – 29 Mars 1980 Volume III: 139-146. Bulletin de Liason du Groupe des 

Methodes Physiques et Chimiques de l’Archaelogie. 

 

Hodges, H. 1989 Artifacts: An introduction to early materials and technology. 

Gerald Duckworth and Co. Ltd, London. ISBN 0-7156-2316-8. 

 

Holloway, R.R. 1981 Italy and the Aegean 3000 – 700 B.C. Publications 

d’Histoire de l’Art et d’Archeologie de l’Universite Catholque de Lorraine – 28. 

 

Howden, C.R., Dudley, R.J. and Smalldon, K.W. Standardization of the Peak 

Area Ratios Obtained from the Analysis of Small Glass Fragments Using Energy-

dispersive X-Ray Fluorescence Spectrometers. X-Ray Spectrometry, Volume 10, 

No 3: 98-102. 

 

Hughes M.J. 1972 A technical study of opaque red glass of the Iron Age in 

Britain. Proceedings of the Prehistoric Society 38: 98-107. 

 

Irwin, R. 1998 A note on the textual sources for the history of glass, in Ward, R. 

(editor) Gilded and Enamelled Glass from the Middle East: 24-26. British 

Museum Press, London. 

 

 405



Isings, C. 1957 Roman Glass from Dated Finds. Archaeologica Traiectina, edita 

ab Academiae Rheno-Traiectinae Instituto Archaeologico. J.B. Wolters, 

Groningen.  

 

Jackson, C.M. 1996 From Roman to early medieval glasses: many happy returns 

or a new birth. Annales du 13e Congrès de l’Association Internationale pour 

l’Histoire du Verre, Pays Bas, 28 août-1 septembre 1995: 289-301. Association 

Internationale pour l’Histoire du Verre, Lochem. ISBN 90-72290-04-6. 

 

Jackson, C.M. Nicholson, P.T. and Gneisinger, W. 1997 Glassmaking at Tell El-

Armana: an integrated approach. Journal of Glass Studies 39:1-13 

 

Jacoby, D. Raw materials for the glass industries of Venice and the Terraferma, 

about 1370- about 1460. Journal of Glass Studies 35: 65-90. 

 

Jenkins, R. 1974  An Introduction to X-Ray Spectrometry. 

 

Jenkins, R. 1977 Nomenclature in X-Ray Spectrometry. X-Ray Spectrometry, Vol 

6, No. 2: 104-109. 

 

Johnstone, M.A. 1932 The Etruscan Collection in the Public Museum of 

Liverpool. Studi Etruschi 6: 443-452. 

 

Josephus, F. Late 1st Century AD The Jewish War. Translated by GA Williamson, 

1974 edition published by Penguin. 

 406



 

Kaczmarczyk, A. 1986 The Source of Cobalt in Ancient Egyptian Pigments. Olin, 

J.S. and Blackman, M.J. (editors) Proceedings of the 24th International 

Archaeometry Symposium, 1984, Washington DC: 369-376. 

 

Kaczmarczyk, A. and Hedges, REM. 1983 Ancient Egyptian Faience: an 

analytical survey of Egyptian faience from Predynastic to Roman Times. 

Warminster, England. Aris and Philips. 

 

Keller, C. A. 1983 Problems in Dating Glass Industries of the Egyptian New 

Kingdom: examples from Malkata and Lisht. Journal of Glass Studies 25: 19-28. 

 

Kisa, A. 1968 Das Glas im Altertume. Bretschneider, Rome. 

 

Kolb, C.C. 2001 Comments on “technological choices in ceramic production”, 

Archaeometry, 42 (1), 1-76, 2000. Archaeometry 43 (2): 273-277. 

 

Lambert, J.B. and McLaughlin, C.D. 1978 Analysis of Early Egyptian Glass by 

Atomic Absorption and X-ray Photoelectron Spectroscopy. Carter, G.F. (editor) 

Archaeological Chemistry II: 189-199. Symposium on Archaeological Chemistry, 

August 31 – September 1, 1977 in Chicago. Advances in Chemistry Series 177. 

American Chemical Society, Washington DC. 

 

Layard, A.H. 1853 Discoveries in the Ruins of Nineveh and Babylon; with travels 

in Armenia, Kurdistan and the desert: being the result of a second expedition 

 407



undertaken for the British Museum: 196-199, 502-503, 592-593, 596-597, 672-

676. John Murray, Albemarle St., London. 

 

Lehanier, P. 1972 Analyse de Verres de Vitraux par spectrometrie de fluorescence 

X. Proceedings of the 9th International Congress on glass, Versailles 1971. 

Association Internationale pour l’Histoire du Verre, Art Historical 

Communications, Versailles. 

 

Lemke, C. 1998 Reflections of the Roman Empire: the 1st Century glass industry 

as seen through the traditions of manufacture. McCray, P. (editor) The Prehistory 

and History of Glassmaking Technology: 269-291. Proceedings of the Prehistory 

and History of Glassmaking Technology Symposium, held at the 99th Annual 

Meeting of the American Ceramics Society in Cincinnati, Ohio, May 4-7, 1997. 

Ceramics and Civilisation 8. ISBN 1-57498-041-6. 

 

Lierke, R. 1991 Glass bowls made on the potters wheel- a new approach to 

ancient glass technology. Glastechnische Berichte 64 (12): 310-317. 

 

Lierke, R. 1993 It was the turning wheel, not the lathe- mold pressing and mold 

turning of hot glass in ancient glass vessel production. Glastechnische Berichte 66 

(12): 321-329. 

 

Lillich, M.P. 1985 Gothic Glaziers: Monks, Jews, Taxpayers, Bretons, Women. 

Journal of Glass Studies 27: 72-92. 

 

 408



Lilyquist, C. and Brill R.H. 1993 Studies in early Egyptian glass New York : 

Metropolitan Museum of Art, New York. 

 

Liu, R.K. 1994 Photographing Beads. Ornament 17 (4): 90-95. 

 

Liu, R.K. 2000 Comparisons of Ancient Faience Ornaments. Ornament 23 (3): 56-

61. 

 

Livingstone Smith, A. 2000 Processing clay for pottery in Northern Cameroon: 

social and technical requirements. Archaeometry 42 (1): 21-42. 

 

Livingstone Smith, A. 2001 Comments on “technological choices in ceramic 

production”, Archaeometry, 42 (1), 1-76, 2000. Archaeometry 43 (2): 292-295. 

 

Luber, S. and Kingery, W.D. (editors) 1993 History from Things: essays on 

material culture. Smithsonian Institution Press, Washington DC. 

 

Lucas A. 1934 Ancient Egyptian materials and industries: 179-194. London. 

 

Macnamara, E. 1973 Everyday life of the Etruscans. Batsford, London. 

 

Malone, C. and Stoddart, S. 1994 Territory, Time and State: the archaeological 

development of the Gubbio Basin. Cambridge University Press. 

 

 409



Mann, L. 1906 Prehistoric Beads of Coarse Vitreous Paste. Proceedings of the 

Society of Antiquities of Scotland 1905-6 40: 396-402. 

 

Månsson, P. 1524 Glaskonst. translated by R. Geste in 1915, Stockholm. 

 

Martelli, M. 1994 Sulla Produzione di Vetri Orientalizanti. Martelli, M. (editor) 

Tyrrhenoi Philotechnoi: 77-103. Gruppo Editoriale Internazionale, Rome. ISBN 

88-8011-022-5. 

 

Mass, J.L., Stone, R.E. and Wypyski, M.T. 1998. The Mineralogical and 

Metallurgical origins of Roman opaque coloured glasses, in McCray (editor) The 

Prehistory and History of Glassmaking Technology: 121-144. Proceedings of the 

Prehistory and History of Glassmaking Technology Symposium, held at the 99th 

Annual Meeting of the American Ceramics Society in Cincinnati, Ohio, May 4-7, 

1997. Ceramics and Civilisation 8. 

 

Matson, F.R. 1948 The Manufacture of 8th Century Egyptian glass Weights and 

Stamps, in Miles, C. (editor) Early Arabic Glass Weights and Stamps: 31-69. 

Numismatic Notes and Monographgs No. 111, The American Numismatic 

Society, New York. 

 

Matson, F. R. 1951 The Composition and Working Properties of Ancient Glass. 

Journal of Chemical Education 28: 82-87. 

 

 410



McClellan, M. 1984. Unpublished D.Phil Dissertation, University of 

Pennsylvania: Core-formed Glass from Dated Contexts. 

 

McClellan, M. 1985 Ancient Glass Perfume Vases: the Collection of the Museum 

of Art and Archaeology. Muse 19: 34-43 

 

McCray, P. 1998 (editor) The Prehistory and History of Glassmaking Technology. 

Proceedings of the Prehistory and History of Glassmaking Technology 

Symposium, held at the 99th Annual Meeting of the American Ceramics Society in 

Cincinnati, Ohio, May 4-7, 1997. Ceramics and Civilisation 8. ISBN 1-57498-

041-6. 

 

McCray, W.P. 1999 Creating Networks of Skill: Technology Transfer and the 

Glass Industry of Venice. Journal of European Economic History 28 (2): 301-334. 

 

McDonnell, J.G. 2001 Pyrotechnology, in Brothwell, D.R. and Pollard, A.M. 

(editors) Handbook of Archaeological Sciences: 493-505. John Wiley and Sons, 

Ltd, Chichester. ISBN 0-471-98484-1 

 

McGuire, R. 1992 A Marxist Archaeology. Academic Press, London. 

 

McKerrell, H. 1972 On the Origins of British Faience Beads. Proceedings of the 

Prehistoric Society 38: 286-301. 

 

 411



McKinley, G. 1972 Ancient Glass and Glazed Wares.London. (Antiquity dealer’s 

catalogue, from Rakow library at Corning). 

 

McLoughlin, S.D., Nargis, A-S., Henderson, J. and McPhail, D.S. 2001 On 

Technological Changes in Islamic Glass Production at Raqqa, Syria. Glass News 

January 2001: 4-5. 

 

Merchant, I., Henderson, J., Crossley, D. and Cable, M. 1998 Medieval Glass-

making Technology: the corrosive nature of glass. Archaeological Sciences 1995: 

31-37. Oxbow, Oxford. 

 

Merrett, C. 1662 The Art of Glass, translation and enlargement of Neri, A. 1612 

L’arte vetraria, reprinted in 2001 by The Society of Glass Technology, Sheffield. 

ISBN 0 900682 37 X. 

 

Merrifield, Mrs 1849 Original Treatises, dating from the 12th to the 18th Centuries 

on the Arts of Painting in oil, miniature, mosaic, and on glass; of gilding, dyeing, 

and the preperation of colours and artificial gems; preceded by a general 

introduction; with translation, prefaces, and notes. In two volumes. John Murray, 

London. 

 

Miller, D. and Tilley, C. 1984 Ideology, Power and long term social change, in 

Miller, D. and Tilley, C. (editors) Ideology, Power and Prehistory: 147-152. 

Cambridge University Press. 

 

 412



Mirti, P., Casoli, A. and Appolonia, L. 1993 Scientific analysis of Roman glass 

from Augusta Praetoria. Archaeometry 35 (2): 225-240. 

 

Montelius, O. 1895-1910 La civilisation primitive en Italie depuis l'introduction 

des métaux illustree et decrite par Oscar Montelius. Published by Imprimerie 

Royale, Stockholm. 

 

Moorey, P.R.S. 1985 Materials and Manufacture in Ancient Mesopotamia: The 

evidence of Archaeology and Art. Metals and metalwork, glazed materials and 

glass. BAR International Series 237. Oxford, England. 

 

Morel, J-P. 1984 Greek colonisation in Italy and the West (Problems of evidence 

and Interpretation), in Hackens, T. Holloway, N.D. and Holloway, R.R. (editors) 

Crossroads of the Mediterranean: Papers delivered at the International Conference 

held at Brown University, 8-10 May 1981: 123-162. Archaeologia Transatlantica 

II, Art and Archaeology Publications, Louvain-la-Neuve (Belgium). 

 

Moretti, C. 1983 Raw Materials used by the Murano glass makers in the 

nineteenth century, Glass Technology 24 (4): 177-183. 

 

Moscati, S. 1988 The Phonecians. Abbeville Press, New York. 

 

Müller-Karpe, H. 1959 Beiträge zur Chronologie der Urnenfelderzeit Nördlich 

und Südlich der Alpen. Walter de Gruyter & Co., Berlin. 

 

 413



Napier, J. 1879 Manufacturing Arts in Ancient Times, with special reference to 

Bible history. Alexander Gardner, Paisley. 

 

Neff, H. 2001 Comments on “technological choices in ceramic production”, 

Archaeometry, 42 (1), 1-76, 2000. Archaeometry 43 (2):278-281. 

 

Neri, A. 1612 L’arte vetraria, translated and added to by Merrett, C. The Art of 

Glass (1662), reprinted in 2001 by The Society of Glass Technology, Sheffield. 

ISBN 0 900682 37 X. 

 

Neumann, B. 1927 Antike Gläser. Zeitschrift für Angewandte Chemie XL: 964. 

 

Newton, R.G. 1971 The Enigma of the Layered Crusts on Some Weathered 

Glasses, a Chronological Account of the Investigations. Archaeometry 13: 1-9. 

 

Newton, R.G. 1972 Glass Trade Routes in the Iron Age. Proceedings of the 9th 

International Congress on Glass, Versailles, 27th September – 2nd October 1971: 

197-205. Institute of Glass, Sheffield. 

 

Newton, R.G. 1975 The Weathering of Medieval Window Glass. Journal of Glass 

Studies 17: 161-168. 

 

Newton, R.G. 1976 12th Century Soda Glass at York Minster. Corpus Vitrearum 

Newsletter 20: 6-7. 

 

 414



Newton, R.G. 1976 12th Century York Soda Glass – part 3. Corpus Vitrearum 

Newsletter 22: 7-8. 

 

Newton, R.G. 1977 More 12th Century Blue Soda. Corpus Vitrearum Newsletter 

24: 3-4. 

 

Newton, R.G. 1978a More Durable Blue12th Century Glass – part 5. Corpus 

Vitrearum Newsletter 27: 10. 

 

Newton R.G. 1978b Colouring agents used by Medieval glass makers. Glass 

Technology 19: 59-60. 

 

Newton R.G. 1980 Recent Views on Ancient Glass. Glass Technology 21 (4): 

173-183. 

 

Newton R.G. 1985 The durability of glass – a review. Glass Technology 26 (1): 

21-38. 

 

Newton R.G. and Brill, R.H. 1985 A”Weeping” Glass Bowl at the Ashmolean 

Museum. Journal of Glass Studies 27: 93-96. 

 

Newton R. and Davison S. 1989 Conservation of Glass. Butterworths.  

 

Newton  R.G. and Hedges R.E.M. 1974 Analysis of weathered glass from York 

Minster. Archaeometry 16: 244-245. 

 415



 

Newton R. and Renfrew C. 1970 British faience beads reconsidered. Antiquity 44: 

199-206. 

 

Nicholson, P.T. 1993 Egyptian Faience and Glass. Shire Egyptology 

 

Nicholson, P.T. 1995a Glassmaking and Glassworking at Armana: some new 

work. Journal of Glass Studies 37: 11-19. 

 

Nicholson, P.T. 1995b Recent excavations at an ancient Egyptian glassworks: Tell 

el-Amarna1993. Glass Technology 36 (4): 124-128. 

 

Nicholson, P.T. and Jackson, C.M. 1998 “Kind of Blue”: Glass of the Amarna 

period replicated. In McCray, P. (editor) The Prehistory and History of 

Glassmaking Technology: 105-120. Proceedings of the Prehistory and History of 

Glassmaking Technology Symposium, held at the 99th Annual Meeting of the 

American Ceramics Society in Cincinnati, Ohio, May 4-7, 1997. Ceramics and 

Civilisation 8. ISBN 1-57498-041-6. 

 

Nicholson, P.T. and Shaw, I. 2000 (editors) Ancient Egyptian Materials and 

Technology. Cambridge University Press. ISBN 0 521 45257 0. 

 

Nicholson, P.T. and Henderson, J. 2000 Glass, in Nicholson, P.T. and Shaw, I. 

(editors) Ancient Egyptian Materials and Technology: 195-224. Cambridge 

University Press. ISBN 0 521 45257 0. 

 416



 

Oppenheim A.L. 1973 Towards a history of glass in the Ancient Near East. 

Journal of the American Oriental Society 93: 259-266. 

 

Oppenheim A.L., Brill R.H., Barag .D and von Saldern A. 1988 Glass and 

Glassmaking in Ancient Mesopotamia. Corning, New York. Originally printed in 

1970. 

 

Pallottino, M. 1975 The Etruscans. Allen Lane, London. 

 

Panagiotaki, M. 1995 Preliminary Technical Observations on Knossian Faience. 

Oxford Journal of Archaeology 14 (2): 137-150. 

 

Partington, J.R. 1935 Origins and Development of Applied Chemistry. Longmans, 

Green and Co., London. 

 

Paul A. 1990 Chemistry of Glasses. Chapman and Hall. 

 

Pearce, M. 2000 Metals make the world go round: the copper supply for 

Frattesina, in Pare, C.F.E. (editor) Metals Make the World Go Round: the supply 

and circulation of Metals in Bronze Age Europe: 108-115. Proceedings of a 

conference held at the University of Birmingham in June 1997. Oxbow books, 

Oxford. 

 

 417



Peddle, C.J. 1917 British glass-making sands. Journal of the Society of Glass 

Technology 1: 27-61. 

 

Peltenburg, E.J. 1971 Some Early Developments of Vitreous Materials. World 

Archaeology 3: 6-12. 

 

Peltenburg, E.J. 1992 Early Faience: recent studies, origins and relations with 

glass, in Bimson, M. and Freestone IC. (editors) Early Vitreous Materials British 

Museum Occasional Paper 56: 5 – 30. 

 

Peroni, R. 1969 Per uno studio dell’economica di scambio in Italia nel quadro 

dell’ambiente culturale dei secoli intorno al Mille a.C. La Parola del Passato 24: 

134-160, reprinted in English translation in Ridgeway, D. and Ridgeway, F.R. 

(editors) 1979 Italy before the Romans: the Iron Age, Orientalizing and Etruscan 

Periods. Academic Press, London. 

 

Peroni, R., Carancini, G.L., Coretti Irdi, P., Ponzi Bonomi, L., Rallo, A., Saronio 

Masolo, P. and Serra Ridgeway, F.R. 1975 Studi sulla cronologie delle civiltâ di 

Estew e Golasecca. Origines. Studi e materiali pubblicato a cura dell’Istituto 

Italiano di Preistoria e Protostoria, Firenze. 

 

Pfaffenburger, B. 1992 Social Anthropology of Technology. Annual Review of 

Anthropolgy 21: 491-516. 

 

 418



Philips, K.M. 1993 In the Hills of Tuscany: recent excavations at the Etruscan site 

of Poggio Civitate (Murlo, Siena). The University Museum, University of 

Pennsylvania, Philadelphia. 

 

Pollard, A.M. and Heron, C. 1996 Archaeological Chemistry. The Royal Society 

of Chemistry, Cambridge. 

 

Pool, C.A. 2000 Why a kiln? Firing technology in the Sierra de los Tuxtlas, 

Veracruz (Mexico). Archaeometry 42 (1): 61-76. 

 

Pool, C.A. 2001 Comments on “technological choices in ceramic production”, 

Archaeometry, 42 (1), 1-76, 2000. Archaeometry 43 (2): 295-299. 

 

Potts, P. J., Webb, P. C. and Watson, J. S. 1985 Energy Dispersive Analysis of 

Silicate Rocks: Comparisons with Wavelength-dispersive Performance. Analyst, 

May 1995, Vol 110: pages? 

 

Porai-Koshits, E.A. 1977 The Structure of Glass. Journal of Non-crystalline 

Solids: 87-128. 

 

Porai-Koshits, E.A. 1990 Genesis of concepts on structure of inorganic glasses. 

Journal of Non-crystalline Solids 123: p 1-13. 

 

Raftery, B. and Henderson, J. 1987 Some glass beads of the Later Bronze Age in 

Ireland, in Haevernick, E. 1987 (with contributions by Dobiat, C. Matthäus, H., 

 419



Raftery, B. and Henderson, J.) Glasperlen der Vorrömischen Eisenzeit II: 39-53. 

Marburger Studien Zur Vor- und Frühgeschichte, Band 9. 

 

Rana, M.A. and Douglas, R.W. 1961 The Reaction between glass and water. Part 

1. Experimental methods and observations. Physics and Chemistry of Glasses 2 

(6): 179-195. 

 

Rana, M.A. and Douglas, R.W. 1961 The Reaction between glass and water. Part 

2. Discussion of the results. Physics and Chemistry of Glasses 2 (6): 196-205. 

 

Randall-MacIver, D. 1924 Villanovans and Early Etruscans. Clarendon Press, 

Oxford. 

 

Randall-MacIver, D. 1927 The Iron Age in Italy. Oxford. 

 

Randall-MacIver, D. 1927 The Etruscans. Antiquity 1: 159-170. 

 

Rapp, R. 1977 Gender and Class: an archaeology of knowledge concerning the 

origin of the state. Dialectical Anthropology 2: 309-316. 

 

Rathje, A. 1979 Oriental imports in Etruria in the 8th and 7th Centuries BC: their 

origins and implications, in: Italy before the Romans: the Iron Age, Orientalizing 

and Etruscan Periods edited by Ridgeway, D. and Ridgeway, F.R. Academic 

Press, London. 

 

 420



Reed, S. J. B. (1975) Electron Microprobe Analysis. Cambridge University Press. 

 

Reed, S. J. B. (1996) Electron Microprobe Analysis and Scanning Electron 

Microscopy in Geology. Cambridge University Press. 

 

Rehren, T., Pusch, Eb. And Herold, A. 1998 Glass Colouring within a copper-

centred industrial complex in Late Bronze Age Egypt, in: The Prehistory and 

History of Glassmaking Technology edited by McCray, P. and Kingery. Ceramics 

and Civilisation Volume III. 

 

Rehren, T. 1997 Ramesside Glass-colouring Crucibles. Archaeometry 39 (2): 355-

368. 

 

Rehren, T. 2000(a) Rationales in Old World Base Glass Compositions. Journal of 

Archaeological Science 27: 1225-1234. 

 

Rehren, T. 2000(b) New Aspects of Ancient Egyptian Glassmaking. Journal of 

Glass Studies 42: 13-24. 

 

Ridgeway, D. 1974 George Dennis and the Etruscans. Antiquity 48: 190-195. 

 

Ridgeway, D. and Ridgeway, F.R. (editors) 1979 Italy before the Romans: the 

Iron Age, Orientalizing and Etruscan Periods. Academic Press, London. 

 

 421



Ridgeway, F.R. 1979 The Este and Golasecca Cultures: a chronological guide, in: 

Ridgeway, D. and Ridgeway, F.R. (editors)  Italy before the Romans: the Iron 

Age, Orientalizing and Etruscan Periods: 419-488. Academic Press, London. 

 

Ritter, R., Ruska, J., Sarre, F., and Winderlich H. 1935 Orientalische Steinbücher 

und Persische Fayencetechnik. Instituts des Deutschen Reiches 3: 35-? 

 

Rooksby, H.P. 1962 Opacifiers in Glass through the ages. General Electric 

Company Journal 29 (1): 20-26. 

 

Rooksby, H.P. 1964 A yellow cubic lead tin oxide opacifier in ancient glasses. 

Physics and Chemistry of Glasses 5(1) 20-25. 

 

Roux, V. 2001 Comments on “technological choices in ceramic production”, 

Archaeometry, 42 (1), 1-76, 2000. Archaeometry 43 (2): 281-285. 

 

Russ, J.C. 1984 Fundamentals of Energy Dispersive X-Ray  Analysis. 

Buttorworths Monographs in Materials. 

 

Sablerolles, Y, Henderson, J. and Dijkman, W. 1997 Early Medieval glass bead 

making in Maastricht (Jodenstraat 30), The Netherlands. An archaeological and 

scientific investigation. Perlen: Archaologie, Techniken, Analysen: 293-313. 

Bonn. 

 

 422



Saitowitz, S.J. Reid, D.L. and Van Der Merwe, N.J. 1996 Glass bead trade from 

Islamic Egypt to South Africa c. AD 900 – 1250. South African Journal of 

Science 92: 101-104. 

 

Saldern, A., Nolte, B., La Baume, P. and Haevernick, T.E. 1974 Glaser der 

Antike: Sammlung Erwin Oppenländer. Verlag Philip von Zabern, Mainz am 

Rhein. 

 

Saldern, A 1991 Roman Glass with Decoration Cut in High Relief, in Newby, M. 

and Painter, K. (editors) Roman Glass: two centuries of art and invention: p 111 – 

121. Published by The Society of Antiquaries of London, Occasional Papers 13. 

 

Saleh, S.A., George, A.W. and Helmi, F.M. 1972 Study of Glass and Glassmaking 

Processes at Wadi El-Natrun, Egypt in the Roman Period, 30 BC to 359 AD, part 

1: Fritting Crucibles, their technical features and temperature employed. Studies in 

Conservation 17: 143-172. 

 

Salzani, L. 1986 Abitato preistorici e protostorici dell’alto e del medio Polesine in 

De Min, M. and Peretto, R (editors) L’Antico Polesine: testimonianze 

archeologiche e paleoambientali. Catalogo delle esposizioni di Adria e di Rovigo: 

Febbraio-Novembre 1986: 103-116. Ministero per I beni cultuali e ambientali 

soprintendenza archeoligca del Veneto, Padua, Italy 

 

Salzani, L. 1989 Necropoli dell’Età del Bronzo Finale alle Narde di Fratte 

Polesine. Prima Nota. Padusa 25: 5-42 

 423



 

Salzani, L 1992 Necropoli dell’Età del Bronzo Finale alle Narde di Fratte 

Polesine. Seconda Nota. Padusa 27/28: 125-206. 

 

Sanderson D.C.W. and Hunter J.R. 1981a Major – element glass type 

specification for Roman, Post-Roman and Medieval Glasses. Revue 

D’Archeometrie: Actes du XX Symposium International D’Archeometrie 

(Symposium for Archaeometry) Paris 26 – 29 Mars 1980 Volume III: 255-264. 

Bulletin de Liason du Groupe des Methodes Physiques et Chimiques de 

l’Archaelogie. 

 

Sanderson D.C.W. and Hunter J.R.1981b Compositional variability in vegetable 

ash. Science and Archaeology No. 23: 27-30. 

 

Sanderson D.C.W. and Hunter J.R. 1982 The Neutron Activation Analysis of 

archaeological glasses from Scandinavia and Britain. PACT 7: 401-411. 

 

Sanderson D.C.W., Hunter J.R. and Warren S.E. 1984 Energy dispersive X-ray 

fluorescence analysis of 1st Millenium AD glass from Britain. Journal of 

Archaeological Science 11: 53-69. 

 

Sanderson, D.C.W. and Hutchings 1987 The origins and measurement of colour in 

archaeological glasses. Glass Technology 28 (2): 99-105. 

 

 424



Santropadre, P. and Verità, M. 1993 Le Perle di Prato di Frabulino (Farnese, VT): 

indagini analitiche, in: Preistoria e Protohistoria in Etruria. Atti del Secondo 

Incontro di Studi, p 111 – 117. 

 

Santropadre, P. and Verità, M. 2000 Analyses of the Production of Italian 

Vitreous Materials of the Bronze Age. Journal of Glass Studies 42: 25-40. 

 

Saunders, T. 1996 Economy and Society: technological change in Early Medieval 

England. Journal of Theoretical Archaeology 5/6 (1995-1996): 125-154. 

 

Sayre E.V. 1963 The Intentional use of antimony and manganese in ancient 

glasses. In F.R. Matson and G.E. Rindone (editors) VI International Congress on 

Glass: 263-282. 

 

Sayre E.V. and Smith R.W. 1961 Compositional categories of ancient glass. 

Science 133: 1824-1826. 

 

Sayre E.V. and Smith R.W. 1967 Some materials of glass manufacturing in 

Antiquity. In M. Levey (editor) Archaeological Chemistry. Philadelphia. 279-311. 

 

Sayre E.V. and Smith R.W. 1974 Analytical Studies of Ancient Egyptian Glass. 

Bisheya (editor) Recent Advances in Science and Technology of Materials 3: 47-

70 

 

 425



Scheurs J.W.H. and Brill R.H. 1984 Iron and sulphur related colours in ancient 

glass. Archaeometry 26 (2): 199-209. 

 

Schliemann, H. 1880 Mycenæ: a narrative of researches and discoveries at 

Mycenæ and Tiryns: 108-111, 156-159. Republished by Arno Press, New York in 

1976. 

 

Seefried, M. 1979 Glass Core Pendants found in the Mediterranean Region. 

Journal of Glass Studies 21: 17-26. 

 

Seefried, M. 1986 Glass in Cyprus from the Late Bronze Age to Roman Times. 

Report of the Department of Antiquities, Cyprus (RDAC) 1986: 145-149. 

 

Seligman, CG., Ritchie, PD. and Beck, HC. 1936 Early Chinese Glass from Pre-

Han to T’ang Times. Nature 138: 721. 

 

Sellner, C., Oel, H.J. and Camara, B. 1979 An investigation of the relation 

between Composition, Colour and Furnace Atmosphere in Early Glass by 

Absorption Spectroscopy and Electron Spin Resonance. Reports on Glass 

Technology 52, No. 12: 59-89. 

 

Service, E. 1971 Primitive Social Organisation. Random House, New York. 

 

Shanks, M. and Tilley, C. 1992 Re-Constructing Archaeology: Theory and 

Practice. 2nd Edition. Routledge, London. 

 426



 

Shennan, S. 1988 Quantifying Archaeology. Edinburgh University Press, 

Edinburgh. 

 

Shortland, A.J. 2000 The number, extent and distribution of the vitreous materials 

at Amarna. Oxford Journal of Archaeology 19(2): 115-134. 

 

Shortland, A.J. and Tite, M.S. 2000 Raw Materials of Glass from Amarna and 

implications for the origins of Egyptian glass. Archaeometry 42 (1): 141-151. 

 

Sillar B. 2000 Dung by preference: the choice of fuel as an example of how 

Andean pottery production is embedded within wider technical, social and 

economic practices. Archaeometry 42 (1): 43-60. 

 

Sillar, B. 2001 Comments on “technological choices in ceramic production”, 

Archaeometry, 42 (1), 1-76, 2000. Archaeometry 43 (2): 288-292. 

 

Sillar B. and Tite, M.S. 2000 The challenge of “technical choices” for materials 

science approaches in archaeology. Archaeometry 42 (1): 2-20. 

 

Skoog, DA. and Leary, JJ. 1992 Principles of Instrumental Analysis. 

 

Smedley, J.W., Jackson, C.M. and Booth, C.A. 1998 Back to the roots: the raw 

materials, glass recipes and glassmaking practices of Theophilus in McCray, P. 

and Kingery, WD. (editors) Prehistory and History of Glassmaking technology: 

 427



145 – 165. Ceramics and Civilisation Volume III, published by the American 

Ceramics Society. 

 

Smith, R.W. 1963 Archaeological Evaluation of Analyses of Ancient Glass. 

Matson and Rindone (editors) 6th International Congress on Glass Part II: 283-

290. 

 

Smith, R.W. 1969 The Analytical Study of Glass in Archaeology. Brothwell, D. 

(editor) Science in Archaeology: 614-623. London. 

 

Spaer, M. 1987 Some Observations on the stratified Mediterranean eye-beads of 

the 1st Millennium BC. Annales du 10e Congrès de l’Association Internationale 

pour l’Histoire du Verre, Madrid-Segovie, 23-28 septembre 1985:1-12. 

Association Internationale pour l’Histoire du Verre, Amsterdam. ISBN 90-72290-

01-1. 

 

Sperber, L. 1999 Crisis in Western European Metal Supply during the Late 

Bronze Age: from Bronze to Iron. Demakopoulou, K., Eluère, Jensen, J. 

Jockenhövel, Mohen, J.-P. (editors) Gods and Heroes of the European Bronze 

Age. Catalogue to accompany the exhibition “ Guder og Helter I Bronzealderen. 

Europe på Odysseus’ tid” from December 19th 1998-April 5th 1999 at the National 

Museum of Denmark, Copenhagen. Thames and Hudson, London. 

 

Spivey, N. 1997 Etruscan Art. Thames and Hudson, London. ISBN 0-500-20304-

0. 

 428



 

Spivey, N. and Stoddart, S. 1990 Etruscan Italy: an archaeological history. 

Batsford, London. 

 

Spriggs, M. 1984 (editor) Marxist Perspectives in Archaeology. Cambridge 

University Press, Cambridge. ISBN 0521255449. 

 

Stankiewicz, W., Fudal, A. and Wojtowicz, M. 1983 The surface geometrical 

structure effect in X-ray fluorescence analysis of metallic samples. X-ray 

spectrometry 12 (3): 92-96. 

 

Stapleton, C.P., Freestone, I.C. and Bowman, S.G.E. 1999 Composition and 

Origin of Early Medieval Opaque Red Enamel from Britain and Ireland. Journal 

of Archaeological Science 26: 913-921. 

 

Stern, E.M. and Schlick-Nolte, B. 1994 Early Glass of the Ancient World 1600 

BC – AD 50 Ernesto Wolfe Collection. Verlag Hatje, Ostfildern, Germany. 

 

Sternini, M.1995 La fenice di sabbia : storia e tecnologia del vetro antico. 

Bibliotheca archaeologica, Bari, Italy. ISBN: 8872281423 

 

Stilborg, O. 2001 Comments on “technological choices in ceramic production”, 

Archaeometry, 42 (1), 1-76, 2000. Archaeometry 43 (2): 285-288. 

 

 429



Stone J.F.S and Thomas L.C. 1956 The use and distribution of faience in the 

Ancient East and Prehistoric Europe. Proceedings of the Prehistoric Society 22: 

37-84. 

 

Sundwall, J. 1943 Die Älteren Italischen Fibeln. Archäologisches Institut des 

Deutschen Reiches. Verlag Walter De Gruyter & Co., Berlin. 

 

Swaddling, J., Walker, S. and Roberts, P. 1995 (editors) Italy in Europe: 

Economic Relations 700 BC – AD 50: 321- 335. British Museum Occasional 

Paper 97. 

 

Swider, JR. and Walters, WB. 1997 pers. comm. “Focussed cold neutrons in 

prompt-gamma activation analysis for the site specific, non-destructive 

investigation of cultural artefacts”. Unpublished conference paper, on non-

destructive testing, in September 1996. 

 

Tait, H. (editor) 1995 Five Thousand Years of Glass. British Museum Press, 

paperback edition. 

 

Taniichi, T. 1983 Pre-Roman and Roman Glass Recently Discovered in China. 

Bulletin of the Okayama Orient Museum 3: 83-105. 

 

Tatton-Brown, V. 1981 Rod-Formed Glass Pendants and Beads of the 1st 

Millenium BC, in Harden, D.B. Catelogue of Greek and Roman Glass in the 

 430



British Museum Volume 1: Core- and rod- formed vessels and pendants and 

Mycenean Cast objects:143-155. 

 

Tatton-Brown, V. 1995 Glass in Italy. Swaddling, J., Walker, S. and Roberts, P. 

(editors) Italy in Europe: Economic Relations 700 BC – AD 50: 321- 335. British 

Museum Occasional Paper 97. 

 

Tatton-Brown, V. and Andrews, C. 1995 Before the Invention of Glassblowing, in 

Tait, H. (editor) Five Thousand Years of Glass: 21-61. British Museum Press, 

paperback edition. 

 

Taylor, J.R. 1977 The Origin and Use of Cobalt Compounds as Blue Pigments. 

Science and Archaeology 19: 3-15. 

 

Theophilus c1100 On Divers Arts translated by Hawthorne, JG. And Smith, CS. 

published by Dover in 1979. 

 

Tite M.S. 1972 Methods of Physical Examination in Archaeology.  

 

Tite, M. 2000 Preface, in Henderson, J. The Science and Archaeology of 

Materials: an investigation of inorganic materials: xv-xvi. Routledge. 

 

Tite, M.S. 2001 Overview- Materials Study in Archaeology, in Brothwell, D.R. 

and Pollard, A.M. (editors) Handbook of Archaeological Sciences: 443-448. John 

Wiley and Sons, Ltd, Chichester. ISBN 0-471-98484-1. 

 431



 

Tite, M.S., Bimson, M. and Meeks, N.D. 1981 Technological characterisation of 

Egyptian Blue. Revue D’Archeometrie: Actes du XX Symposium International 

D’Archeometrie (Symposium for Archaeometry) Paris 26 – 29 Mars 1980 

Volume III: 297-301. Bulletin de Liason du Groupe des Methodes Physiques et 

Chimiques de l’Archaelogie. 

 

Tite M.S., Freestone, I. C. and Bimson M. 1983 Egyptian Faience: an 

investigation of the methods of production. Archaeometry 25 (1): 17-27. 

 

Tite M.S. and Bimson M. 1986 Faience: an investigation of the micro-structure 

associated with different methods of glazing. Archaeometry 28 (1): 69-78. 

 

Tite M.S., Freestone, I. C. and Bimson M. 1987 The Scientific Examination of 

pre-Hellenistic Faience from Rhodes, in Bimson M. and Freestone I. (editors) 

Early Vitreous Materials: 127-132. British Museum Occasional Paper 56. ISBN 0-

86159-056-2. 

 

Torelli, M. 1986 History: Land and People, in Bonfante, L. (editor) Etruscan Life 

and Afterlife: a handbook of Etruscan studies. Wayne State University Press, 

Detroit. 

 

Towle, A 1995 Unpublished MA dissertation. Unpublished Master’s Dissertation 

submitted in partial fulfilment of the requirements for the degree of Master by 

Advanced Study in Scientific Methods in Archaeology, Dept. of Archaeology, 

 432



University of Bradford. An investigation of a deposit of Medieval Window Glass 

from the Archbishop’s Palace, Trondheim, using Energy Dispersive X-ray 

Microanalysis and Neutron Activation Analysis.  

 

Towle, A., Henderson, J., Gambacurta, G. and Bellintani, P. in press Frattesina 

and Beyond: Preliminary Report of Scientific Analyses of Early Glass from the 

Veneto. Padusa, Padova. 

 

Trigger, B. 1980 Gorden Childe: Revolutions in Archaeology. Thames and 

Hudson 

 

Trigger, B. 1986 The Role of Technology in V. Gorden Childe’s Archaeology. 

Norwegian Archaeological Review 19 (1): 1-14. 

 

Trigger, B. 1988 Archaeology’s relations with the physical and biological 

sciences: a historical review. Farquar, Hancock and Pavlish (editors) The 26th  

International Archaeometry Symposium: 1-9. Toronto. 

 

Trigger, B. 1989 A History of Archaeological Thought. Cambridge University 

Press. 

 

Tringham, R. 1983 V Gorden Childe 25 years after: his relevance for the 

Archaeology of the eighties. Journal of Field Archaeology 10: 85-100. 

 

 433



Turfa, J.M. 1986 International Contacts: Commerce, Trade and Foreign Affairs, in 

Bonfante, L. (editor) Etruscan Life and Afterlife: a handbook of Etruscan studies: 

66-91. Wayne State University Press, Detroit. 

 

Turner W.E.S. 1954a Studies in ancient glass and glass-making processes. Part I 

Crucibles and melting temperatures employed in Ancient Egypt. Journal of the 

Society of Glass Technology 38: 436-444. 

 

Turner W.E.S. 1954b Studies in ancient glass and glass-making processes. Part II 

The Composition, Weathering Characteristics and Historical Significance of Some 

Assyrian Glasses of the 8th to 6th Centuries BC from Nimrud. Journal of the 

Society of Glass Technology 38: 445-456. 

 

Turner W.E.S. 1955 Glass Fragments from Nimrud of the 8th to the 6th Century 

BC. Iraq 17: 57-68. 

 

Turner W.E.S. 1956a Studies in ancient glass and glass-making processes. Part III 

The chronology of glass making constituents. Journal of the Society of Glass 

Technology 40: 39-52. 

 

Turner W.E.S. 1956b Studies in ancient glass and glass-making processes. Part IV 

The chemical composition of Ancient glasses. Journal of the Society of Glass 

Technology 40: 162-186. 

 

 434



Turner W.E.S. 1956c Studies in ancient glass and glass-making processes. Part V 

Raw materials and melting processes. Journal of the Society of Glass Technology 

40: 277-300. 

 

Turner W.E.S. 1962 A notable British 17th Century contribution to the literature of 

glassmaking. Glass Technology 3 (6): 201-213. 

 

Turner W.E.S and Rooksby H.P. A study of the opalizing agents in Ancient Opal 

glasses throughout three thousand four hundred years. Glastechnische Berichte 32 

(8): 17-29. 

 

Vandiver P.B. 1982 Mid -Second Millenium BC Soda-lime-silicate Technology at 

Nuzi (Iraq). In T.A. Wertime and S.F. Wertime (editors) Early Pyrotechnology: 

73-92. Smithsonian Institution Press. 

 

Vandiver P.B. 1983 Glass Technology and the 3rd- 2nd millennium BC Hussain 

site of Nuzi. Journal of Glass Studies 25: 183-187. 

 

Vandiver, P.B. 1995 Xeroradiographic Imaging. American Journal of 

Archaeology 99: 121-124. 

 

Vandiver P.B., Swann, C. and Cranmer, D. 1991 A review of Mid-Second 

Millenium BC Egyptian glass technology at Tell El-Amarna. Material Research 

Society Symposium Proceedings Volume 185: 609-616. 

 

 435



Velde, D. 1990 Alumina and calcium oxide content of glass found in Western and 

Northern Europe, 1st – 9th Centuries. Oxford Journal of Archaeology 9: 105-117. 

 

Velde, D. and Gendron, C. 1980 Chemical Composition of some Gallo-Roman 

glass fragments from Central Western Gaul. Archaeometry 22 (2): 183-187. 

 

Velde, D. and Hochuli-Gysel, A. 1996 Correlations between Antimony, 

Manganese and Iron content in Gallo-Roman glasses. Annales du 13e Congrès de 

l’Association Internationale pour l’Histoire du Verre, Pays Bas, 28 août-1 

septembre 1995: 185-192. Association Internationale pour l’Histoire du Verre, 

Lochem. ISBN 90-72290-04-6. 

 

Venclová, N. 1983 Prehistoric eye beads in Central Europe. Journal of Glass 

Studies 25: 11-18. 

 

Venclová, N. 1990 Prehistoric Glass in Bohemia. Prague. 

 

Venclová, N. 1990 Late Bronze and Early Iron Age glass in Czechoslovakia. 

Annales du 11e Congrès de l’Association Internationale pour l’Histoire du Verre, 

Bâle, 29 août - 3 septembre 1988: 11-17. Association Internationale pour 

l’Histoire du Verre, Amsterdam. ISBN 90-72290-02-X. 

 

Verità, M. 1995 L’invenzione del cristallo muranese: una verifica analitica delle 

fonti storiche. Riviste Della Stazione Sperimentale Del Vetro 15: 17-29 

 

 436



Verità, M. 1998 Analyses of Early enamelled Venetian glass: a comparison with 

Islamic glass, in Ward, R. (editor) Gilded and Enamelled Glass from the Middle 

East: 129-134. British Museum Press, London. 

 

Verità, M., Basso, R. Wypyski, M.T. and Koestler, R.J. 1994 X-ray microanalysis 

of ancient glassy materials: a comparative study of wavelength dispersive and 

energy dispersive techniques. Archaeometry 36 (2): 241-251. 

 

Verità, M. and Biavati, A. 1989 The Glass from Frattesina, a glassmaking centre 

in the Late Bronze Age. Rivista Stazione Sperimentale Vetro 19 (4): 295-299. 

 

Virolleaud, C. 1909 Une Formule Chemique. Babyloniaca 3: 221. 

 

Vogel, W. 1977 Phase Seperation in Glass. Journal of Non-crystalline Studies 25: 

172-215. 

 

Wailes, B. 1996 (editor) Craft Specialization and Social Evolution: in Memory of 

Gorden Childe. Published by The University Museum of Archaeology and 

Anthropology, University of Pennsylvania, Philadelphia. 

 

Ward, R. 1998 (editor) Gilded and Enamelled Glass from the Middle East. British 

Museum Press, London. 

 

Warren, B.E. 1937 X-ray determination of the structure of liquids and glass. 

Journal of Applied Physics 8: 645-654. 

 437



 

Warren, B.E. and Biscoe, J. 1938 Fourier analysis of X-ray patterns of soda-silica 

glass. Journal of the American Ceramic Society 21: 259-265. 

 

Wedepohl, K.H. 1993 Die Herstellung Mittelalterlicher und Antiker Gläser. 

Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse Jahrgang 1993 

Nr 3. Akademie der Wissenschaften und der Literatur, Mainz. 

 

Wedepohl, K.H. 1997 Chemical Composition of medieval glass from excavations 

in West Germany. Glastechnisches Berichte (Glass Science and Technology) 70 

(8): 246-255. 

 

Wedepohl, K.H., Kreuger, I and Hartman, G. 1995 Medieval Lead Glass from 

North Western Europe. Journal of Glass Studies 37: 65 – 82. 

 

Weinberg, G.D. 1963 Two Glass Veseels in the Heraklion Museum. Kretika 

Chronika 15: 226-229. 

 

Weinberg, G.D. 1969 Glass manufacture in Hellenistic Rhodes. Archaiologikon 

Deltion 24: 143-151. 

 

Weinberg, G.D 1988 (editor) Excavations at Jalame: site of a glass factory in Late 

Roman Palestine. University of Missouri Press, Columbia 

 

 438



Weinberg, G.D. 1992 Glass Vessels in Ancient Greece: their history illustrated 

from the collection of the National Archaeological Museum, Athens. Publication 

of the Archaeologikon Deltion No. 47. Athens. 

 

West-Oram, F.G. 1979 Raw materials for glass making – a review. Glass 

Technology 20 (6): 222-245. 

 

Weyl, W.A. 1999 Coloured Glasses. First published 1951, republished 1999, 

Society of Glass Technology, Sheffield.  

 

Wilson, L. and Pollard, A.M. 2001 The provenance hypothesis, in Brothwell, D.R. 

and Pollard, A.M. (editors) Handbook of Archaeological Sciences: 507-517. John 

Wiley and Sons, Ltd, Chichester. ISBN 0-471-98484-1 

 

Wright, R.P. 1993 Technological Styles: Transforming a Natural Material into a 

Cultural Object, in Luber, S. and Kingery, W.D. (editors) History from Things: 

essays on material culture: 242-269. Smithsonian Institution Press, Washington 

DC. 

 

Wulff, H.E., Wulff, H.S. and Koch, L. 1968 Egyptian faience: a possible survival 

in Iran. Archaeology 21: 98-107. 

 

Young, S. 1956 An analysis of Chinese blue and white, in Oriental Art, Vol 11, p 

43 – 47. 

 

 439



Zachariasen, WH. 1932 The Atomic Arrangement in Glass. Journal of the 

American  Chemical Society 54: p 3841 – 3851. 

 

Zepezauer, M.A. 1993 Glasperlen der vorrömischen Eisenzeit III: Mittel- und 

spätlatènezeitliche Perlen (mit Unterlagen von Th. E. Haevernick). Marburger 

Studien Zur Vor- und Frühgeschichte, Band 15. Hitzeroth, Marburg. ISBN 3-

89398-137-3. 

 440











































APPENDIX 2: SAMPLE CATALOGUE 

 

Sample 10 

Location: Liverpool  Site: unknown   invent.: 10159M 

650-550 BC 

Core formed glass vessel of blue opaque glass. Oinochoe form decorated with 

“scales” (“stachelflaschen”). 85 mm high, base diameter 22 mm, body max 

diameter 38 mm. Heavily restored and gap-filled. Also see Haevernick 1959, 

1961, Harden 1968, Martelli 1994 and Giuntoli 1996. 

 

Samples 11 and 12 

Location: Lincoln  Site: Chiusi   invent.: M1926.657 

650-550 BC 

Core formed glass vessel of blue opaque glass. Oinochoe form decorated with 

“scales” (“stachelflaschen”). 67 mm high, base diameter 23 mm, body max 

diameter 32 mm. Sample 11 from a decorative scale on the body, sample 12 from 

the base. Also see Haevernick 1959, 1961, Harden 1968, Martelli 1994 and 

Giuntoli 1996. 

 

Sample 16 

Location: Ashmolean Site: Civita Castellana (Falerii Veteres) invent.: Pr 284-320 

800-700 BC 

Annular bead of translucent blue glass decorated with 2 stratified eyes of white 

opaque glass @ matrix. Width 8 mm, length 4mm. Sample from matrix. Also see 

Brown 1980, p 43, and for eye beads in general: Eisen 1916a, Beck 1928, 

 461



Venclová 1983, Hencken 1968b, Spaer 1987, Haevernick 1987 and Francis 1996, 

Nicholson 1993, p 6-7. 

 

Sample 50 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 A 

700-600 BC 

Sub triangular bead of “black” opaque glass decorated with 3 stratified eyes of 

white opaque glass @ dark opaque glass @ white opaque glass @ dark opaque 

glass. White opaque decoration has largely weathered away. Width 24 mm, length 

19 mm. Bead Study Trust 1997 p 74, and for eye beads in general: Eisen 1916a, 

Beck 1928, Venclová 1983, Hencken 1968b, Spaer 1987, Haevernick 1987 and 

Francis 1996, Nicholson 1993, p 6-7. 

 

Sample 51 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 B 

700-600 BC 

Sub triangular bead of “black” opaque glass decorated with 3 stratified eyes of 

white opaque glass @ dark opaque glass @ white opaque glass @ dark opaque 

glass. White opaque decoration has largely weathered away. Width 22 mm, length 

15 mm. Bead Study Trust 1997 p 74, and for eye beads in general: Eisen 1916a, 

Beck 1928, Venclová 1983, Hencken 1968b, Spaer 1987, Haevernick 1987 and 

Francis 1996, Nicholson 1993, p 6-7. 

 

Sample 52 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 C 
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700-600 BC 

Sub triangular bead of “black” opaque glass decorated with 3 stratified eyes of 

white opaque glass @ dark opaque glass @ white opaque glass @ dark opaque 

glass. White opaque decoration has largely weathered away. Width 23 mm, length 

17 mm. Bead Study Trust 1997 p 74, and for eye beads in general: Eisen 1916a, 

Beck 1928, Venclová 1983, Hencken 1968b, Spaer 1987, Haevernick 1987 and 

Francis 1996, Nicholson 1993, p 6-7. 

 

Sample 53 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 D 

700-600 BC 

Globular bead of “black” opaque glass decorated with 3 stratified eyes of white 

opaque glass @ dark opaque glass @ white opaque glass @ dark opaque glass. 

White opaque decoration has largely weathered away. Width 22 mm, length 15 

mm. Bead Study Trust 1997 p 74, and for eye beads in general: Eisen 1916a, Beck 

1928, Venclová 1983, Hencken 1968b, Spaer 1987, Haevernick 1987 and Francis 

1996, Nicholson 1993, p 6-7. 

 

Sample 54 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 E 

700-600 BC 

Globular bead of dark green (weathered?) opaque glass decorated with 3 stratified 

eyes. Eye decoration has completely weathered away. Eyes placed irregularly on 

bead. Width 14 mm, length 15 mm. Bead Study Trust 1997 p 74, and for eye 
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beads in general: Eisen 1916a, Beck 1928, Venclová 1983, Hencken 1968b, Spaer 

1987, Haevernick 1987 and Francis 1996, Nicholson 1993, p 6-7. 

 

Sample 55 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 F 

700-600 BC 

Globular bead of “black” opaque glass decorated with 3 stratified eyes. Eye 

decoration has completely weathered away. Eyes placed irregularly on bead. 

Wound bead- can see break-off point for trail at neck. Width 12.5 mm, length 11 

mm. Bead Study Trust 1997 p 74, and for eye beads in general: Eisen 1916a, Beck 

1928, Venclová 1983, Hencken 1968b, Spaer 1987, Haevernick 1987 and Francis 

1996, Nicholson 1993, p 6-7. 

 

Sample 56 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 G 

700-600 BC 

Globular bead of “black” opaque glass decorated with 2 stratified eyes of white 

opaque glass @ black matrix. Eye decoration has almost completely weathered 

away. Width 12 mm, length 8 mm. Bead Study Trust 1997 p 74, and for eye beads 

in general: Eisen 1916a, Beck 1928, Venclová 1983, Hencken 1968b, Spaer 1987, 

Haevernick 1987 and Francis 1996, Nicholson 1993, p 6-7. 

 

Sample 57 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 H 

700-600 BC 
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Sub triangular bead of “black” opaque glass decorated with 3 stratified eyes of 

white opaque glass @ dark opaque glass @ white opaque glass @ dark opaque 

glass. White opaque decoration has largely weathered away. Wound bead- can see 

break-off point for trail at neck. Width 24 mm, length 18 mm. Bead Study Trust 

1997 p 74, and for eye beads in general: Eisen 1916a, Beck 1928, Venclová 1983, 

Hencken 1968b, Spaer 1987, Haevernick 1987 and Francis 1996, Nicholson 1993, 

p 6-7. 

 

Sample 58 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 I 

700-600 BC 

Sub triangular bead of “black” opaque glass decorated with 3 stratified eyes of 

white opaque glass @ dark opaque glass. White opaque decoration has largely 

weathered away. Width 24 mm, length 19 mm. Bead Study Trust 1997 p 74, and 

for eye beads in general: Eisen 1916a, Beck 1928, Venclová 1983, Hencken 

1968b, Spaer 1987, Haevernick 1987 and Francis 1996, Nicholson 1993, p 6-7. 

 

Sample 59 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 J 

700-600 BC 

Sub triangular bead of “black” opaque glass decorated with 3 stratified eyes of 

white opaque glass @ dark opaque glass @ white opaque glass @ dark opaque 

glass. Width 20 mm, length 17 mm. Bead Study Trust 1997 p 74, and for eye 

beads in general: Eisen 1916a, Beck 1928, Venclová 1983, Hencken 1968b, Spaer 

1987, Haevernick 1987 and Francis 1996, Nicholson 1993, p 6-7. 
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Sample 60 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 K 

700-600 BC 

Sub triangular bead of “black” opaque glass decorated with 3 stratified eyes of 

white opaque glass @ dark opaque glass @ white opaque glass @ dark opaque 

glass. Wound bead- can see break-off point for trail at neck. Width 23 mm, length 

17 mm. Bead Study Trust 1997 p 74, and for eye beads in general: Eisen 1916a, 

Beck 1928, Venclová 1983, Hencken 1968b, Spaer 1987, Haevernick 1987 and 

Francis 1996, Nicholson 1993, p 6-7. 

 

Sample 61 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 L 

700-600 BC 

Sub triangular bead of “black” opaque glass decorated with 3 stratified eyes of 

white opaque glass @ dark opaque glass @ white opaque glass @ dark opaque 

glass. One corner of bead is missing. White opaque decoration has largely 

weathered away. Width 25 mm, length 21 mm. Bead Study Trust 1997 p 74, and 

for eye beads in general: Eisen 1916a, Beck 1928, Venclová 1983, Hencken 

1968b, Spaer 1987, Haevernick 1987 and Francis 1996, Nicholson 1993, p 6-7. 

 

Sample 62 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 M 

700-600 BC 
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Globular bead of dark brown (weathered?) opaque glass decorated with 1 

stratified eye of white opaque glass @ dark opaque glass @ white opaque glass @ 

dark opaque glass. White opaque decoration has largely weathered away. 

Impressed ring decoration around the perforation may originally have held glass 

of another colour. Width 17 mm, length 14 mm. Bead Study Trust 1997 p 74, and 

for eye beads in general: Eisen 1916a, Beck 1928, Venclová 1983, Hencken 

1968b, Spaer 1987, Haevernick 1987 and Francis 1996, Nicholson 1993, p 6-7. 

 

Samples 63 and 64 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 N 

700-600 BC 

Globular bead of brown opaque (weathered) glass decorated with 3 stratified eyes 

of white opaque glass @ dark opaque glass @ white opaque glass @ dark opaque 

glass. White opaque decoration has partially weathered away. Width 19 mm, 

length 14 mm. Sample 63 is of the matrix, sample 64 of the white opaque 

decoration: the analysis of the latter was unsuccessful. Bead Study Trust 1997 p 

74-75, and for eye beads in general: Eisen 1916a, Beck 1928, Venclová 1983, 

Hencken 1968b, Spaer 1987, Haevernick 1987 and Francis 1996, Nicholson 1993, 

p 6-7. 

 

 

Sample 65 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 O 

700-600 BC 
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Fragment of ellipsoidal bead of “black” opaque glass decorated with a single trail 

of white opaque glass wrapped 3 times around the body of the bead. White opaque 

decoration has partially weathered away. Width 19 mm, length 14 mm. Bead 

Study Trust 1997 p 74. 

 

Sample 66 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 P 

700-600 BC 

Cylinder bead of “black” opaque glass decorated with 3 bands of white opaque 

glass wrapped around the body of the bead. White opaque decoration has largely 

weathered away. Width 17 mm, length 18 mm. Bead Study Trust 1997 p 74. 

 

Sample 67 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 Q 

700-600 BC 

Ellipsoidal bead of “black” opaque glass, flattened on one side, decorated with a 

band of white opaque glass wrapped 5 times around the body of the bead. White 

opaque decoration has largely weathered away. Width 18 mm, length 15 mm. 

Bead Study Trust 1997 p 74. 

 

Samples 68 and 69 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 R 

700-600 BC 

Globular bead of “black” opaque glass decorated with 3 horizontal bands of white 

opaque glass wrapped around the body of the bead. White opaque decoration has 
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partially weathered away. Sample 68 is from the dark matrix, and sample 69 is of 

the white opaque glass: the analysis of the latter was unsuccessful. Width 17 mm, 

length 14 mm. Bead Study Trust 1997 p 74. 

 

Sample 70 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 S 

700-600 BC 

Globular bead of “black” opaque glass decorated with a horizontal groove around 

the body of the bead, which probably originally contained white opaque glass. 

Width 9 mm, length 9 mm. Bead Study Trust 1997 p 74. 

 

Sample 71 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 T 

700-600 BC 

Globular bead of “black” opaque glass decorated with a horizontal groove around 

the body of the bead, which probably originally contained white opaque glass. 

Ring depression around one of the  perforations may also have contained a 

differently coloured glass which has subsequently weathered away. Width 14 mm, 

length 11 mm. Bead Study Trust 1997 p 74. 

 

Sample 72 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 U 

700-600 BC 
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Globular bead of “black” opaque glass decorated with a horizontal band of white 

opaque glass. White opaque decoration has largely weathered away. Width 14 

mm, length 11 mm. Bead Study Trust 1997 p 74. 

 

Sample 73 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 V 

700-600 BC 

Broken cylinder bead of “black” opaque glass decorated with a trail of white 

opaque glass wrapped at least 6 times around the body of the bead and combed 

into a chevron design. Width 10 mm, length 13 mm. Bead Study Trust 1997 p 74 

(also see first illustration on this page). 

 

Samples 74 and 75 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 W 

700-600 BC 

Irregular shaped bead of “black” opaque glass decorated with crumbs of red 

opaque,  white opaque and yellow glass marvered into the surface. Sample 74 is 

from the matrix, and sample 75 is from the red opaque glass. Width 10 mm, length 

13 mm. Bead Study Trust 1997 p 74. 

 

Sample 76 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 X 

700-600 BC 

Globular bead of “black” opaque glass decorated with crumbs of red and white 

opaque glass marvered into the surface. The white opaque has largely weathered 
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away leaving behind irregular craters in the surface. Wound bead: can see the 

break-off point adjacent to one of the perforations. Width 11 mm, length 9 mm. 

Bead Study Trust 1997 p 74. 

 

Sample 77 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 Y 

700-600 BC 

Globular bead of “black” opaque glass decorated with crumbs of red and white 

opaque glass marvered into the surface. The white opaque has largely weathered 

away leaving behind irregular craters in the surface. It is possible that one of the 

crumbs was a stratified eye with white opaque arranged around red opaque 

decoration. Width 11 mm, length 9 mm. Bead Study Trust 1997 p 74. 

 

Sample 78 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 Z 

700-600 BC 

Annular bead of “black” opaque glass decorated with crumbs of red and white 

opaque glass marvered into the surface. The white opaque has largely weathered 

away leaving behind irregular craters in the surface. Width 10.5 mm, length 7 

mm. Bead Study Trust 1997 p 74. 

 

Sample 79 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 AA 

700-600 BC 
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Annular bead of “black” opaque glass decorated with crumbs of red and white 

opaque glass marvered into the surface. Width 11.5 mm, length 10.5 mm. Bead 

Study Trust 1997 p 74. 

 

Sample 80 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 AB 

700-600 BC 

Annular bead of “black” opaque glass decorated with crumbs of red and white 

opaque glass marvered into the surface. Matrix includes many small gas holes, 

and the white opaque decoration has largely weathered away leaving irregular 

craters. Width 10 mm, length 8 mm. Bead Study Trust 1997 p 74. 

 

Sample 81 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 AC 

700-600 BC 

Globular bead of “black” opaque glass decorated with crumbs of red, yellow and 

white opaque glass marvered into the surface. The white opaque decoration has 

largely weathered away leaving irregular craters. Width 10.5 mm, length 9 mm. 

Bead Study Trust 1997 p 74. 

 

Sample 82 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 AD 

700-600 BC 

Globular bead of “black” opaque glass decorated with crumbs of white opaque 

glass marvered into the surface. The white opaque decoration has largely 
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weathered away leaving irregular craters. Width 10.5 mm, length 9 mm. Bead 

Study Trust 1997 p 74. 

 

 

Samples 83 and 84 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 AE 

700-600 BC 

Globular bead of “black” opaque glass decorated with crumbs of red and white 

opaque glass marvered into the surface. The white opaque decoration has largely 

weathered away leaving irregular craters. Sample 83 is of the matrix and sample 

84 is of the red opaque glass. Width 10 mm, length 9 mm. Bead Study Trust 1997 

p 74. 

 

Samples 85 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 AF 

700-600 BC 

Globular bead of dark blue translucent glass decorated with crumbs of red and 

white opaque glass marvered into the surface. The white opaque decoration has 

largely weathered away leaving irregular craters. Width 13.5 mm, length 10.5 

mm. Bead Study Trust 1997 p 74. 

 

Samples 86 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 AG 

700-600 BC 
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Globular bead of “black” glass decorated with crumbs of red and white opaque 

glass marvered into the surface. The white opaque decoration has largely 

weathered away leaving irregular craters. Width 10 mm, length 8 mm. Bead Study 

Trust 1997 p 74. 

 

 

Sample 87 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 AH 

700-600 BC 

Globular bead of “black” glass decorated with crumbs of white opaque glass 

marvered into the surface. The white opaque decoration has largely weathered 

away leaving irregular craters. Width 10 mm, length 7.5 mm. Bead Study Trust 

1997 p 74. 

 

Samples 88 and 89 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 AI 

700-600 BC 

Annular bead of “black” glass decorated with crumbs of red and white opaque 

glass marvered into the surface. The white opaque decoration has largely 

weathered away leaving irregular craters. Wound bead- can see break-off point 

next to perforation. Sample 88 is of the matrix, sample 89 from red decoration. 

Width 7.5 mm, length 10 mm. Bead Study Trust 1997 p 74. 

 

Samples 90 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 AJ 
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700-600 BC 

Annular bead of “black” glass decorated with 1 red and 3 white opaque glass 

crumbs marvered into the surface. The white opaque decoration has largely 

weathered away leaving irregular craters. Width 10 mm, length 7 mm. Bead Study 

Trust 1997 p 74. 

 

 

Sample 91 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 AK 

700-600 BC 

Annular bead of weathered green opaque glass decorated with 1 red and numerous 

white opaque glass crumbs marvered into the surface. The white opaque 

decoration has largely weathered away leaving irregular craters. Width 13.5 mm, 

length 8.5 mm. Bead Study Trust 1997 p 74. 

 

Samples 92 and 93 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 AK 

700-600 BC 

Globular bead of “black” glass decorated with red and white opaque glass crumbs 

marvered into the surface. The white opaque decoration has largely weathered 

away leaving irregular craters. Wound bead. Sample 92 is of the matrix, sample 

93 is from the red decoration. Width 10 mm, length 8.5 mm. Bead Study Trust 

1997 p 74. 
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Sample 94 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 AM 

700-600 BC 

Globular bead of “black” glass decorated with red and white opaque glass crumbs 

marvered into the surface. The white opaque decoration has partially weathered 

away. Abortive hole adjacent to one of the perforations demonstrates that this is 

not a wound bead, but a pierced ball of glass. Width 14.5 mm, length 13.5 mm. 

Bead Study Trust 1997 p 74, illustrated on page 75. 

 

Sample 95 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 AN 

700-600 BC 

Globular bead of “black” glass decorated with red and white opaque crumbs of 

glass marvered into the surface. White glass is powdery and largely weathered 

away. Width 19 mm, length 10 mm. Bead Study Trust 1997 p 75. 

 

Sample 96 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 AO 

700-600 BC 

Globular bead of “black” glass decorated with three “eyes” of weathered glass 

which are only partially marvered into the matrix. Colour of “eyes” 

indistinguishable from the matrix, both of which are heavily weathered. Width 13 

mm, length 10 mm. Bead Study Trust 1997 p 75. 
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Sample 97 

Location: Cambridge  Site: Pozzouli  invent.: 1947.1937 AP 

700-600 BC 

Globular bead of “black” glass, undecorated. Wound bead. Width 10 mm, length 8 

mm. Bead Study Trust 1997 p 75. 

 

Sample 150 

Location: Cambridge  Site: Etruscan  invent.: 1947.1946 A 

800-500 BC 

Globular bead of blue translucent glass, undecorated. 1 of three sampled beads 

from this artefact: a copper alloy hoop, probably an earring. Has a brown 

weathering layer. Wound bead. Also see samples 151 and 152. Width 10 mm, 

length 9 mm. Bead Study Trust 1997 p 84. 

 

Sample 151 

Location: Cambridge  Site: Etruscan  invent.: 1947.1946 A 

800-500 BC 

Globular bead of blue translucent glass, undecorated. 2 of three sampled beads 

from this artefact: a copper alloy hoop, probably an earring. Heavily pitted and 

has a brown weathering layer. Wound bead. Also see samples 150 and 152. Width 

10 mm, length 8 mm. Bead Study Trust 1997 p 84. 

 

Sample 152 

Location: Cambridge  Site: Etruscan  invent.: 1947.1946 A 

800-500 BC 
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Globular bead of pale green translucent glass, undecorated. 3 of three sampled 

beads from this artefact: a copper alloy hoop, probably an earring. Heavily pitted 

and has a brown weathering layer. Wound bead. Also see samples 150 and 151. 

Width 18 mm, length 15 mm. Bead Study Trust 1997 p 84. 

 

Sample 153 

Location: Cambridge  Site: Etruscan  invent.: 1947.1946 B 

700 BC 

Irregular fragment of clear translucent glass, undecorated. Suspended upon a 

copper alloy brooch fragment, probably originally a bead. Has an iridescent 

weathering layer. Max dimension 28 mm. Bead Study Trust 1997 p 84. 

Sample 154 

Location: Cambridge  Site: “Etruscan”  invent.: 1947.1946 C 

“700 BC” (probably 2nd Century BC onwards) 

Annular bead of clear translucent glass, undecorated. Form is that of a ring bead 

(or ringperlen) common across Central and Southern Europe from the 2nd Century 

BC onwards (Zepezauer 1993, p 30-63, 95). Contains significant levels of 

manganese: the use of manganese as a decolourant in is not documented before 

the 2nd Century BC (Sayre 1963). 1 of a group of 3 beads, described as “Etruscan 

(?) 600 BC (?)” in the Bead Study Trust catalogue. The others may also be 

assigned a later date: see samples 155 and 156. Width 18.5 mm, length 10 mm. 

Bead Study Trust 1997 p 84. 

 

Sample 155 

Location: Cambridge  Site: “Etruscan”  invent.: 1947.1946 C 
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“700 BC” (probably 2nd Century BC onwards) 

Fragment of annular bead of clear translucent glass, undecorated. Form is that of a 

ring bead (or ringperlen) common across Central and Southern Europe from the 

2nd Century BC onwards (Zepezauer 1993, p 30-63, 95). 2 of a group of 3 beads, 

described as “Etruscan (?) 600 BC (?)” in the Bead Study Trust catalogue. The 

others may also be assigned a later date: see samples 154 and 156. Width 18.5 

mm, length 12 mm. Bead Study Trust 1997 p 84. 

 

Samples 156, 157 and 158 

Location: Cambridge  Site: “Etruscan”  invent.: 1947.1946 C 

“700 BC” (probably 2nd Century BC onwards) 

Annular bead of red opaque glass decorated with crumbs of opaque white, opaque 

yellow, blue translucent and clear translucent glass crumbs marvered into the 

surface. 3 of a group of 3 beads, described as “Etruscan (?) 600 BC (?)” in the 

Bead Study Trust catalogue. Sample 156 is of the red opaque matrix, sample 157 

is from the white opaque decoration and 158 from blue translucent decoration. 

The white decoration is opacified with tin oxide, which means it is more likely to 

be 2nd – 1st Century BC (see 3.7.12). The others may also be assigned a later date: 

see samples 154 and 155. Width 27 mm, length 17 mm. Bead Study Trust 1997 p 

84. 

 

Sample 159 

Location: Cambridge  Site: “Florence Etruscan” invent.: 1947.1947 III 

800-500 BC  
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Globular bead of blue translucent glass, undecorated. Yellow weathering layer, 

horizontal striations suggesting it is a wound bead. Width 10 mm, length 7.5 mm. 

Not in Bead Study Trust catalogue, but stored and labelled within the other Italian 

material. 

 

Sample 160 

Location: Cambridge  Site: “Florence Etruscan” invent.: 1947.1947 III 

B 

800-500 BC  

Globular bead of blue translucent glass, undecorated. Yellow weathering layer, 

horizontal striations suggesting it is a wound bead. Width 10 mm, length 8.5 mm. 

Not in Bead Study Trust catalogue, but stored and labelled within the other Italian 

material. 

 

Sample 161 

Location: Cambridge  Site: “Florence Etruscan” invent.: 1947.1947 III 

C 

800-500 BC  

Globular bead of blue translucent glass, undecorated. Yellow weathering layer, 

flat platform on one side, probably original since there are weathering product on 

it: from polishing during the finishing processes of manufacture. Width 9 mm, 

length 8 mm. Not in Bead Study Trust catalogue, but stored and labelled within 

the other Italian material. 
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Sample 162 

Location: Cambridge  Site: Cumae  invent.: 1947.1960 

800-600 BC  

Annular bead of green translucent glass, undecorated. Brown opaque weathering 

layer. Wound bead: can see the breaking-off point. Width 12 mm, length 8 mm. 

Bead Study Trust 1997 p 78. 

 

Sample 163 

Location: Cambridge  Site: Cumae  invent.: 1947.1960 

800-600 BC  

Globular bead of blue translucent glass, undecorated. Lots of gas bubbles. Width 

21 mm, length 15.5 mm. Bead Study Trust 1997 p 78. 

 

Sample 164 

Location: Cambridge  Site: Cumae   invent.: 1947.1971 A 

800-600 BC  

Sub-triangular bead of “black” glass, decorated with 3 stratified eyes of white 

opaque @ matrix @ white opaque around matrix. White decoration is very 

powdery and has partially weathered away. Width 17 mm, length 13.5 mm. Bead 

Study Trust 1997 p 75, and for eye beads in general: Eisen 1916a, Beck 1928, 

Venclová 1983, Hencken 1968b, Spaer 1987, Haevernick 1987 and Francis 1996, 

Nicholson 1993, p 6-7. 

 

Sample 165 

Location: Cambridge  Site: Cumae   invent.: 1947.1971 A 
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800-600 BC  

Sub-triangular bead of “black” glass, decorated with 3 stratified eyes of white 

opaque @ matrix @ white opaque around matrix. White decoration is very 

powdery and has partially weathered away. Width 18 mm, length 14 mm. Bead 

Study Trust 1997 p 75, and for eye beads in general: Eisen 1916a, Beck 1928, 

Venclová 1983, Hencken 1968b, Spaer 1987, Haevernick 1987 and Francis 1996, 

Nicholson 1993, p 6-7. 

 

Samples 166 and 167 

Location: Cambridge  Site: Cumae   invent.: 1947.1971 A 

800-600 BC  

Sub-triangular bead of “black” glass, decorated with 3 stratified eyes of white 

opaque @ matrix @ white opaque around matrix. White decoration is very 

powdery and has partially weathered away. Sample 166 is of the matrix, sample 

167 is of the white opaque decoration. EMP analysis of 167 is probably of matrix 

adhering to white decoration. Width 19 mm, length 14 mm. Bead Study Trust 

1997 p 75, and for eye beads in general: Eisen 1916a, Beck 1928, Venclová 1983, 

Hencken 1968b, Spaer 1987, Haevernick 1987 and Francis 1996, Nicholson 1993, 

p 6-7. 

 

Sample 168 

Location: Cambridge  Site: Cumae   invent.: 1947.1971 A 

800-600 BC  

Plano-convex bead of “black” glass, decorated with a band of white opaque glass 

wrapped 4 times @ matrix and drawn into chevron. White decoration is very 
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powdery and has partially weathered away. Brown weathering layer on matrix. 

Width 14 mm, length 15 mm. Bead Study Trust 1997 p 76, and Heurtley and 

Skeat 1933 p 38. 

 

Sample 169 

Location: Cambridge  Site: Cumae   invent.: 1947.1971 A 

800-600 BC  

Cylinder-shaped bead with convex ends, of “black” glass, decorated with a band 

of white opaque glass wrapped 4 times @ matrix. White decoration is very 

powdery and has largely weathered away leaving a channel behind. Width 12.5 

mm, length 12.5 mm. Bead Study Trust 1997 p 76. 

 

Sample 170 

Location: Cambridge  Site: Cumae   invent.: 1947.1971 A 

800-600 BC  

Plano-convex bead of “black” glass, decorated with a band of white opaque glass 

wrapped 5 times @ matrix. White decoration is very powdery and has partially 

weathered away. Brown weathering layer on matrix. Width 12 mm, length 11 mm. 

Bead Study Trust 1997 p 76, and Heurtley and Skeat 1933 p 38. 

 

Sample 171 

Location: Cambridge  Site: Cumae   invent.: 1947.1971 A 

800-600 BC  

Large fragment of plano-convex bead of “black” glass, decorated with a band of 

white opaque glass wrapped 5 times @ matrix. White decoration is very powdery 
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and has largely weathered away leaving behind a channel. Width 11.5 mm, length 

12 mm. Bead Study Trust 1997 p 76, and Heurtley and Skeat 1933 p 38. 

 

Sample 172 

Location: Cambridge  Site: Cumae   invent.: 1947.1971 A 

800-600 BC  

Globular bead of “black” glass. Groove around the middle of the bead probably 

held white decoration which has since weathered away. Wound bead. Width 12 

mm, length 11 mm. Bead Study Trust 1997 p 76. 

 

Sample 173 

Location: Cambridge  Site: Cumae   invent.: 1947.1971 A 

800-600 BC  

Globular bead of “black” glass. Groove around the middle of the bead probably 

held white decoration which has since weathered away. Wound bead. Width 12 

mm, length 10 mm. Bead Study Trust 1997 p 76. 

 

Sample 174 

Location: Cambridge  Site: Cumae   invent.: 1947.1971 A 

800-600 BC  

Irregular shaped bead of “black” glass. Decorated with crumbs of red opaque, 

white opaque and green opaque glass marvered into the surface. Large craters in 

the surface suggest some of the decoration has weathered away. Width 14.5 mm, 

length 12 mm. Bead Study Trust 1997 p 76. 
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Sample 175, 176, 177 and 178 

Location: Bristol  Site: “Etruscan”  invent.: Fa 332 

800-600 BC  

Packaging also labelled with: “ 286”, “2132” and “SW88055”. From the Bomford 

Collection. 

Brooch slider. Leech-shaped gather of blue opaque glass decorated with bands of 

yellow opaque, and red opaque glass wrapped around the blue matrix and combed 

into chevrons. The combing action has left a ridged surface. Appears to be lots of 

small quartz (?) inclusions 1-2 mm diameter embedded in the object. Sample 175 

(failed) is from the blue matrix, sample 176 is of the yellow opaque decoration, 

sample 177 is from the red opaque decoration, sample 178 is of the white opaque 

inclusion. Length 49.5 mm, width 28.5 mm. References: Montelius 1895: Serie A 

plate 7 and Serie B plates: 90, 94, 195, 219, 307, 318, 349, Grenier 1912 p 294-

305, von Bissing 1942 144-168, Dohan 1942 Plate 19, Figure 40, Plate 22, Figure 

61, Sundwall 1943, p 193, Figure 311, p 208, Figure 333, Harden 1968, p 59, 

Goldstein 1979, p 122-123, Grose 1989 p 70, 81-82, 87,Tatton-Brown 1995 p 321, 

Dobiat 1987, p 27-29, figure 17, plate 1. Also see samples 370-373. 

 

Sample 200 

Location: Adria Site: Mariconda di Malera  invent.: IG 147000 

1100-900 BC 

Ceramic lid to oinochoe jar, with translucent blue glass adhering to upper (slightly 

concave side. Lid has a lip of additional clay added to retain molten glass one one 

side (applied before glass). Used as working platform in beadmaking. Lid is 130 

mm in diameter, and up to 25 mm thick (including ridge to locate in top of 
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oinochoe jar). Glass is an irregular spread 95 x 75 mm, up to 5 mm thick. Also see 

Salzani 1986, p 109 and 115, and sample 201 below. 

 

Sample 201 

Location: Adria Site: Mariconda di Malera  invent.: IG 147001 

1100-900 BC 

Twisted ceramic plate, with translucent blue glass on upper surface. Irregular 

broken edges except for a short (50 mm) curved edge, suggesting the plate was 

originally circular. Possibly used as a working platform in beadmaking. Overall 

dimensions of ceramic plate: length l00 mm, width 75 mm, thickness 9 mm. Glass 

is an irregular spread 55 x 45 mm up to 6.5 mm thick. Also see Salzani 1986, p 

109 and 114, and sample 200 above. 

 

Sample 202 

Location: Adria Site: Mariconda di Malera  invent.: IG 147011 

1100-900 BC 

Incomplete annular bead of translucent blue glass. Possibly a waster- the bead is 

twisted which must have taken place whilst hot and plastic. Width 4 mm, length 

2.5 mm. Also see Salzoni 1986, p 109 and 115. 

 

Sample 203 

Location: Adria Site: Mariconda di Malera  invent.: IG 147014 

1100-900 BC 
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Irregular fragment of opaque blue glass. Rounded heat-deformed edges, heavily 

weathered with iridescent surface. Possible working waste. 16 mm x 10 mm x 10 

mm. Also see Salzani 1986, p 109 and 115. 

 

Sample 204-206 

Location: Adria Site: Mariconda di Malera  invent.: IG 147016 

1100-900 BC 

Irregular fragment of glassy material, consisting of three layers: blue glass 

(sample 204, white opaque glassy material (sample 205), grey opaque crystalline 

material (sample 206). Possibly a fragment of faience. Length 15 mm, width 7 

mm, thickness 7mm. 

 

Sample 207 

Location: Adria Site: Mariconda di Malera  invent.: IG 147007 

1100-900 BC 

Fragment of annular bead of translucent blue glass. Width 12 mm, length 4 mm. 

Also see Salzani 1986, p 109 and 115. 

 

Sample 208 

Location: Adria Site: Mariconda di Malera  invent.: IG 147015 

1100-900 BC 

Irregular fragment of opaque blue glass broken from a much larger piece (“raw 

glass”). None of the edges deformed by heat. Dimensions 19 x 23.5 x 15 mm. 

Also see Salzani 1986, p 109 and 115. 
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Sample 209 

Location: Adria Site: Mariconda di Malera  invent.: IG 147017 

1100-900 BC 

Irregular fragment of translucent blue glass. Working waste. Appears “black”, but 

actually intensely coloured blue. Length 19 mm, width 8.5 mm. 

 

Sample 210 

Location: Adria Site: Mariconda di Malera  invent.: IG 147002 

1100-900 BC 

Half of a globular bead from opaque blue glass. Width 15 mm, length 15.5 mm. 

Wound bead? - horizontal striations, matrix heavily seeded.  

 

Sample 211 

Location: Adria Site: Mariconda di Malera invent.: IG 147018 

1100-900 BC 

Irregular fragment of translucent blue glass. Working waste. Appears “black”, but 

actually intensely coloured blue. Matrix heavily seeded. Width 8.5 mm, length 10 

mm. Also see Salzani 1986, p 109 and 115. 

 

Sample 212 

Location: Adria Site: Mariconda di Malera  invent.: IG 147005 

1100-900 BC 

Half a barrel shaped bead of translucent blue glass decorated with 4 horizontal 

bands of opaque white glass. Width 8 mm, length 11 mm. Also see Salzani 1986, 

p 109 and 115. 

 488



 

Sample 213 

Location: Adria Site: Mariconda di Malera  invent.: IG 147006 

1100-900 BC 

Half a barrel shaped bead of translucent blue glass decorated with a band of 

opaque white glass wrapped around the bead. Width 8 mm, length 11 mm.  Also 

see Salzani 1986, p 109 and 115. 

 

Sample 214 

Location: Adria Site: Mariconda di Malera  invent.: IG 147004 

1100-900 BC 

Barrel shaped bead of translucent blue glass decorated with a single trail of 

opaque white glass wrapped 4 x @ the bead. Asymmetrical pinched and deformed 

whilst hot and plastic- possible waster. Width 9 mm, length 12 mm. Also see 

Salzani 1986, p 109 and 115. 

 

Sample 215 

Location: Adria Site: Mariconda di Malera  invent.: IG 147009 

1100-900 BC 

Barrel shaped bead of translucent blue glass decorated with a single trail of 

opaque white glass wrapped 5 x @ the bead. Width 6.5 mm, length 11 mm. Also 

see Salzani 1986, p 109 and 115. 

 

Sample 216 

Location: Adria Site: Mariconda di Malera  invent.: IG 147008 

 489



1100-900 BC 

Half a globular bead of translucent blue glass decorated with a single trail of white 

opaque glass wrapped 3 x @ the bead. Width 8.5 mm, length 8 mm. Also see 

Salzani 1986, p 109 and 115. 

 

Sample 217 

Location: Adria Site: Mariconda di Malera  invent.: IG 147013 

1100-900 BC 

Annular bead of translucent blue glass. Clearly made by trailing glass around a 

rod. Not marvered or smoothed by heating. Width, 5.5 mm, length, 2 mm. . Also 

see Salzani 1986, p 109 and 115. 

 

 

Sample 218 

Location: Adria Site: Mariconda di Malera  invent.: IG 147009 

1100-900 BC 

Wound annular bead from blue translucent glass. Width 10 mm, length 2 mm.  

Also see Salzani 1986, p 109 and 115. 

 

Sample 219 

Location: Adria Site: Mariconda di Malera  invent.: IG 147010 

1100-900 BC 

Annular bead of dark blue opaque glass. Smooth finished surface. Width 6.5 mm, 

length 3.5 mm. Also see Salzani 1986, p 109 and 115. 
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Sample 220 

Location: Adria Site: Frattesine - surface find  invent.: none 

1100-900 BC 

Fragment of rod-formed anthropomorphic (?) figure of opaque blue glass, torso 

only. Glass matrix heavily seeded. Note with object: “Perla framm Antropomorea 

(?). Da Fratta Polesine raccolta di superficie, sequestro carabineri 1995”. Width, 

18 mm, length 17.5 mm.  

 

Sample 221 

Location: Adria Site: Fratte Abitato  invent.: IG 32893 

1100-900 BC 

Fragment of crucible with irregular spread of translucent aqua glass adhering to 

upper surface. Marked as IG 31893, but published as IG 32893. Crucible form is 

of a shallow bowl with straight-sided sloping sides. Fabric is grey and coarse with 

large crystalline inclusions. Base of crucible 14 mm thick, sides taper from base to 

6 mm at undecorated rim. Glass an irregular spread 50 mm x 35 mm up to 4 mm 

thick. Also see De Min 1986, p 126 and 138. 

 

Sample 222 

Location: Adria Site: Fratte Abitato  invent.: IG 32893 

1100-900 BC 

Fragment of a disk ingot of dark blue opaque glass. Fragment includes a rounded 

edge and is twisted from being manipulated whilst hot and plastic. Upper surface 

has the indications of trails of hot glass which have incompletely fused with the 

main body of glass. These trails are from either the drawing off of glass from the 
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ingot, or the formation of the disk. Matrix is heavily seeded. Width 58 mm, length 

75 mm, thickness up to 16 mm. Also see De Min 1986, p 126 and 138. 

 

Sample 223 

Location: Adria Site: Fratte Abitato  invent.: IG 80883 

1100-900 BC 

Fragment of a disk ingot of dark blue opaque glass with large area of red coloured 

surface. Fragment includes a rounded edge and is twisted from being manipulated 

whilst hot and plastic. The red surface is on the underside, and is probably due to 

the localised reduction of the copper content, which otherwise colours the glass 

blue. Possibly from the annealing of the disk in hot ashes. Width 43 mm, length 

58 mm, thickness up to 11 mm. Also see De Min 1986, p 126 and 138. 

 

Sample 224 

Location: Adria Site: Fratte Abitato  invent.: IG 80883 

1100-900 BC 

Irregular fragment of a disk ingot of dark blue opaque glass. Twisted, and 

showing signs of having been pinched by a tool whilst hot and plastic. Matrix is 

heavily seeded. Width 44 mm, length 65 mm, thickness up to 13 mm. Also see De 

Min 1986, p 126 and 138. 

 

Sample 225 

Location: Adria Site: Fratte Abitato  invent.: IG 80883 

1100-900 BC 
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Irregular fragment of a disk ingot of dark blue translucent glass. Fragment 

includes a rounded edge and is twisted from being manipulated whilst hot and 

plastic. Matrix is heavily seeded. Width 36 mm, length 50 mm, thickness up to 12 

mm.  Also see De Min 1986, p 126 and 138. 

 

Sample 226 

Location: Adria Site: Fratte Abitato  invent.: IG 80883 

1100-900 BC 

Irregular fragment of working wasre, possibly the edge of a disk ingot, of 

translucent aqua glass. Upper surface has signs of trails which are not fused fully 

into the body of the glass after working formation of the piece. Width 30 mm, 

length 42 mm.  Also see De Min 1986, p 126 and 138. 

 

Sample 227 

Location: Adria Site: Fratte Abitato  invent.: IG 80883 

1100-900 BC 

Irregular fragment of working waste, possibly the edge of a disk ingot, of opaque 

blue glass with large area of red coloured surface. The red surface is probably due 

to the localised reduction of the copper content, which otherwise colours the glass 

blue. Width 21 mm, length 30 mm, thickness 12mm.  Also see De Min 1986, p 

126 and 138. 

 

Sample 228 

Location: Adria Site: Fratte Abitato  invent.: IG 80883 

1100-900 BC 

 493



Irregular fragment of working waste, possibly the edge of a disk ingot, of opaque 

blue glass with small area of red coloured surface. The red surface is probably due 

to the localised reduction of the copper content, which otherwise colours the glass 

blue. Upper surface very uneven from being manipulated whilst hot and plastic. 

Width 27 mm, length 38 mm, thickness up to 4 mm. Also see De Min 1986, p 126 

and 138. 

 

Sample 229 

Location: Adria Site: Fratte Abitato  invent.: IG 32888/32890 

1100-900 BC 

Fragment of annular bead of translucent blue glass. Width 16 mm. Length 5 mm. 

Also see De Min 1986, p 126 and 138. 

 

Sample 230 

Location: Adria Site: Fratte Abitato  invent.: IG 32888/32890 

1100-900 BC 

Fragment of annular bead from blue translucent glass. Width approx. 15 mm, 

length 5 mm. Also see De Min 1986, p 126 and 138. 

 

Sample 231 

Location: Adria Site: Fratte Abitato  invent.: IG 32890 

1100-900 BC 

Fragment of annular bead from blue translucent glass. Width approx. 16 mm, 

length 4 mm. Also see De Min 1986, p 126 and 138. 
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Sample 232 

Location: Adria Site: Fratte Abitato  invent.: IG 80881d 

1100-900 BC 

Fragment of elliptical bead of translucent blue glass. Horizontal striations in 

otherwise smmoth surface suggest it was formed by winding a glass trail around a 

rod. Matrix heavily seeded. Width 14.5 mm, length 17 mm. Also see De Min 

1986, p 126 and 138. 

 

Sample 233. 

Location: Adria Site: Fratte Abitato  invent.: IG 80881c 

1100-900 BC 

Half an ellipsoidal bead from translucent blue glass decorated with a single band 

of red opaque glass (<1 mm wide) wound 6 times around the bead. 10.5 mm wide, 

16 mm long. Also see Salzani 1986, p 109 and 115. 

 

Sample 234 

Location: Adria Site: Fratte Abitato  invent.: IG 32870 

1100-900 BC 

Tapered, cylinder shaped bead from opaque blue glass, decorated with a single 

band of opaque white glass wrapped 12x around the bead. Band dragged into 

chevrons. Width 6-9.5 mm, length 25 mm. Also see De Min 1986, p 126 and 138.  

Gambacurta 1987, p 199 fig. 9, p 211 fig. 24 and p 212. Type “M”: Perle 

cilindriche con decorazione a piuma d’uccello e a zig-zag incrociato. 
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Sample 235 

Location: Adria Site: Fratte Necropoli  invent.: IG 80919 

1100-900 BC 

Annular bead of translucent blue glass. Formed by winding around a rod- not 

smoothed. Width 6.5 mm, length 4 mm. Also see De Min and Gerhardingher 

1986, p156 and 168. 

 

Sample 236 

Location: Adria Site: Fratte Necropoli  invent.: IG 80914 

1100-900 BC 

Core-formed glass vessel, in Alabastron form, from opaque blue glass, with collar 

below rim. Miniature. This is the earliest core-formed glass vessel recovered from 

Italy, and predates imported examples known from Etruscan contexts of the 8th 

Century BC (Giuntoli 1996, p 14, Tatton-Brown 1995, p 321-325). Diameter 8-15 

mm, height 30 mm. Also see De Min and Gerhardingher 1986, p 156 and 168. 

 

Sample 237 

Location: Adria Site: unknown  invent.: IG 9167 

400-200 BC 

Anthropomorphic pendant of clear glass (slight yellowish tinge). Width 4 – 11.5 

mm, length 20 mm. Also see sample 258. 

 

Sample 238 

Location: Adria Site: unknown  invent.: IG 21970 
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Cylinder bead of white opaque glass decorated with virtical stripes of red opaque 

glass. Width 6.5 mm, length 18.5 mm. This artefact is probably a much later 

product (17th Century AD: Henderson pers. comm. 2002). 

 

Sample 239 

Location: Adria Site: Canale Bianco Necropoli invent.: IG 4919/9168 

tomb 363 

500-300 BC 

Barrel shaped bead of brown (weathered) glass decorated with a single band of 

white opaque glass wrapped 6 x @ the bead and combed into chevrons. A band of 

red and white opaque glass wrapped around the perforations. All decoration 

marvered flush. Width 14 mm, length 19.5mm.  

 

Sample 240 

Tomb 363 

Location: Adria Site: Canale Bianco Necropoli invent.: IG 4919/9168 

500-300 BC 

Barrel shaped bead of brown (weathered) glass decorated with a single band of 

white opaque glass wrapped 6 x @ the bead and combed into chevrons. A band of 

red and white opaque glass wrapped around the perforations. All decoration 

marvered flush. Width 14 .5 mm, length 17.5mm.  

 

Sample 241 

Tomb 25 

Location: Adria Site: Canale Bianco Necropoli invent.: IG 9169 
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300-100 BC 

Globular bead of blue translucent glass  decorated with 8 stratified eyes (white 

opaque around blue around white opaque around blue). Eyes are inserted canes. 

Width 13.5 mm, length 12 mm. 

 

Sample 242 

Tomb 25 

300-100 BC 

Location: Adria Site: Canale Bianco Necropoli invent.: IG 9169 

Globular bead of blue translucent glass  decorated with 7 stratified eyes (white 

opaque around blue around white opaque around blue). Eyes are inserted canes. 

Width 13.5 mm, length 9.5 mm. 

 

Sample 243 

Location: Adria Site: Canale Bianco Necropoli invent.: IG 9170 

500-300 BC 

Globular bead of clear glass. Width 20 mm, length 14 mm. 

 

Sample 244 

Tomb 27 

Location: Adria Site: Canale Bianco Necropoli invent.: IG 358 

300-100 BC 

Annular bead of pale green translucent glass. Width 30.5 mm, length 10.5 mm. 
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Sample 245 

Location: Adria Site: unknown  invent.: IG ?  Bocchi collection 2907 

Incomplete annular bead of amber coloured translucent glass decorated with 

alternate bands of yellow opaque and white opaque glass. Width 28 mm, length 12 

mm. Ringperlen ? . Also see Gambacurta 1987, Type “I”, p 198, 200, p 210 fig. 

22, p 212. 

 

Sample 246 

Location: Adria Site: Canale Bianco Necropoli invent.: none 

Tomb 36 

300-200 BC 

Tapered cylinder bead of “black” glass decorated with two horizontal bands of 

white opaque glass. Matrix heavily seeded. Width 70.5 mm, length 4.5 mm. 

 

Samples 247 and 248 

Location: Adria Site: Canale Bianco Necropoli invent.: none 

Tomb 157 

300-200 BC 

Rod-formed spindle whorl of pale green opaque glass decorated with: yellow 

opaque glass horns around the base, yellow opaque glass trail around the body, 

yellow opaque glass zig-zag decoration around the head on the base. Cold worked 

around the perforations. Also see Fogolari and Scarfi 1970, p 76,77 and plate 49. 

Sample 247 = yellow opaque decoration. Sample 248 = matrix. Width at base 28 

mm, length 26 mm. 
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Samples 249 and 250 

Location: Adria Site: Canale Bianco Necropoli invent.: 9113 

Rod-formed spindle whorl of clear glass decorated around the waist with 7 bosses 

of translucent aqua glass. Sample 249 = aqua glass decoration. Sample 250 = 

matrix. Width at base of 28 mm, length 22 mm. 

 

Sample 251 

Location: Adria Site: unknown    invent.: 21971 

Globular bead of opaque blue glass decorated with 8 stratified eyes (white opaque 

around blue translucent around white opaque around blue translucent). Matrix 

heavily pitted. Width 17.5 mm, length 16 mm. 

 

Sample 252 

Location: Adria Site: unknown    invent.: 9114 

600-400 BC 

Annular bead of blue opaque glass decorated with 8 stratified eyes arranged in 

vertical pairs (white opaque around blue translucent and white opaque around blue 

translucent around white opaque around blue translucent). Width 10 mm, length 

5.5 mm. 

 

Sample 253 

Location: Adria Site: unknown    invent.: 9114 

600-400 BC 
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Globular bead of opaque blue glass decorated with seven stratified eyes (opaque 

white around blue translucent around opaque white around blue translucent 

around opaque white around blue translucent).Width 10 mm, length 7 mm. 

 

Sample 254, 255 and 256 

Location: Adria Site: Canale Bianco Necropoli invent.: none 

300 BC 

Annular bead of blue translucent glass decorated with 3 stratified eyes (white 

opaque @ blue translucent), 6 horns of white opaque glass and 6 horns of yellow 

opaque glass. Sample 254 = sample of blue matrix, sample 255 = opaque yellow 

decoration, sample 256 = white opaque decoration. Width 13 mm, length 9 mm. 

 

Sample 257 

Location: Adria Site: Canale Bianco Necropoli invent.: none 

Tomb 391 

300 BC 

Annular bead of translucent blue glass decorated with six stratified eyes (opaque 

white around blue translucent glass).  Width 11.5 mm, length 7 mm. 

 

Sample 258 

Location: Adria Site: Canale Bianco Necropoli invent.: none 

Tomb 391 

Anthropomorphic pendant of clear glass (slight yellowish tinge). Width 5.5 – 12.5 

mm, length 17 mm. Also see sample 237. 
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Sample 259 

Location: Adria Site: unknown    invent.: IG 22034 

Fragment of globular bead of yellow opaque glass decorated with two stratified 

eyes: white opaque around blue opaque around white opaque around blue opaque. 

Width 24 mm, length 25 mm. 

 

Sample 260 

Location: Adria Site: Pavanello   invent.: K013 

Fragment of cylinder (?) bead of opaque turquoise glass decorated with 6 stratified 

eyes: white opaque around blue opaque around white opaque around blue opaque. 

Deformed whilst hot and plastic- two of the eyes merge and a deep incision 

dragged through both the decoration and the matrix. The eyes not marvered flush 

with the matrix. Possible waster. Width 13 mm, length 12 mm. 

 

Sample 261 

Location: Adria Site: unknown    invent.: none 

Fragmentary annular bead of heavily weathered brown (?) glass decorated with 

three stratified eyes (white opaque around brown opaque around turquoise 

opaque, and three unstratified eyes of white opaque or turquoise opaque glass. 

None of the decoration has been marvered flush with the surface of the glass. 

Width 16 mm, length 11 mm. 

 

Sample 262 

Location: Adria Site: unknown    invent.: none 
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Globular bead of yellow opaque glass. Squeezed into two lobes. Width 13 mm 

and 8 mm, length 9 mm. 

 

Sample 263 

Location: Adria Site: Canale Bianco Necropoli invent.: K037 

Tomb 240 

500-300 BC 

Fragment of a globular bead of blue translucent glass decorated with two stratified 

eyes constructed from white opaque and blue translucent glass. Width 22 mm, 

length 20.5 mm. 

 

Sample 264 

Location: Adria Site: Necropolis di Ca’ Cima  invent.: none 

Tomb 16/95 

600-500 BC 

Globular bead of heavily weathered green translucent glass decorated with three 

stratified eyes : white opaque around green translucent. Width 10 mm, length 8 

mm. 

 

Sample 265 

Location: Adria Site: Necropolis di Ca’ Cima  invent.: none 

Tomb 16/95 

600-500 BC 

Annular bead of blue opaque glass decorated with three stratified eyes: turquoise 

opaque around blue opaque and one unstratified eye of turquoise opaque glass. All 
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decoration marvered flush with the surface of the bead. Width 12 mm, length 11.5 

mm. 

 

Sample 266. 

Location: Adria Site: Necropoli di Ca’Cima  invent.: IG ?  

tomb16/95 

Tomb 16/95 

600-500 BC 

Annular bead of badly weathered green glass decorated with 4 stratified eyes 

which have eroded away leaving the matrix behind. Width 18.5 mm length 10 

mm. 

 

Sample 267. 

Location: Adria Site: Necropoli di Ca’Cima  invent.: IG 9578 

Tomb 13/95 

500 BC 

Rod –formed animal head pendant (goat’s head) of opaque white glass decorated 

with eyes of opaque yellow around green glass and nostrils and mouth of green 

translucent glass. Width 16.5 mm, length 31 mm, height 17 mm. Also see Stern 

and Schlick-Nolte, 1994, p190-191 and references. Also see Tatton-Brown in 

Lerje book. 

 

Sample 268 

Location: Adria Site: Necropoli di Ca’Cima  invent.: none 

Tomb 13/95 
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500 BC 

Annular bead of blue translucent glass, heavily pitted weathering on the surface. 

Decoration has weathered away leaving behind a depression in the surface: a zig-

zag horizontal band and a single eye. Width 13.5 mm, length 10 mm 

 

Sample 269 

Location: Adria Site: Necropoli di Ca’Cima  invent.: 9599 

Tomb 12/95 

600-500 BC 

Annular bead of white opaque glass decorated with a zig-zag horizontal band of 

bark brown translucent glass. Width 13 mm, length 9 mm. 

 

Samples 270 and 271 

Location: Adria Site: Necropoli di Ca’Cima  invent.: 9202 

Tomb 12/95 

600-500 BC 

Dome – shaped pin or brooch head of white opaque glass formed on an iron rod- 

the remains of which can be seen embedded in the base. The glass has been 

grozed around the rod to finish it. Decorated with nine horns of blue translucent 

glass. Width 13.5 mm, length 9.5 mm. Sample 270 = white opaque glass matrix, 

sample 271 = blue translucent glass decoration. 

 

Sample 272 

Location: Adria Site: Co’ Garizoni 1966  invent.: IG 11.305 

Tomb 47 
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Cylinder shaped bead of white opaque glass with moulded or drawn surface to 

give a decoration of 15 “knops” arranged alternately singly and in vertical pairs. 

Gives a granulated appearance. Width 6 mm, length 6 mm. Also see Beck1926, p 

26-27. 

 

Sample 273 

Location: Adria Site: Co’ Garizoni 1966  invent.: IG 11.305 

Tomb 47 

Cylinder shaped bead of white opaque glass with moulded or drawn surface to 

give a decoration of 15 “knops” arranged alternately singly and in vertical pairs. 

Gives a granulated appearance. Width 6 mm, length 6 mm. 

 

Sample 274 

Location: Adria Site: Co’ Garizoni 1966  invent.: IG 11.305 

Tomb 47 

Cylinder shaped bead of white opaque glass with moulded or drawn surface to 

give a decoration of 15 “knops” arranged alternately singly and in vertical pairs. 

Gives a granulated appearance. Width 5 mm, length 6 mm. 

 

Sample 275 

Location: Adria Site: Co’ Garizoni 1966  invent.: IG 11.305 

Tomb 47 

Cylinder shaped bead of white opaque glass with moulded or drawn surface to 

give a decoration of 18 “knops” arranged alternately singly and in vertical pairs. 

Gives a granulated appearance. Width 7 mm, length 6 mm. 
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Sample 276 

Location: Adria Site: Co’ Garizoni 1966  invent.: IG 11.041 

Tomb 29 

Cylinder shaped bead of white opaque glass with moulded or drawn surface to 

give a decoration of 18 “knops” arranged alternately singly and in vertical pairs. 

Gives a granulated appearance. Width 6.5 mm, length 6 mm. 

 

Sample 277 

Location: Adria Site: Co’ Garizoni 1966  invent.: IG 11.041 

Tomb 29 

Cylinder shaped bead of white opaque glass with moulded or drawn surface to 

give a decoration of 15 “knops” arranged alternately singly and in vertical pairs. 

Gives a granulated appearance. Width 6 mm, length 6 mm. 

 

Sample 278 

Location: Adria Site: Co’ Garizoni 1966  invent.: IG 11.041 

Tomb 29 

Cylinder shaped bead of white opaque glass with moulded or drawn surface to 

give a decoration of 15 “knops” arranged alternately singly and in vertical pairs. 

Gives a granulated appearance. Width 6 mm, length 6 mm. 

 

Sample 279 

Location: Adria Site: Co’ Garizoni 1966  invent.: IG 11.041 

Tomb 29 
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Cylinder shaped bead of white opaque glass with moulded or drawn surface to 

give a decoration of 15 “knops” arranged alternately singly and in vertical pairs. 

Gives a granulated appearance. Width 5.5 mm, length 5.5 mm. 

 

Sample 280 

Location: Adria Site: Co’ Garizoni 1966  invent.: IG 11.041 

Tomb 29 

Cylinder shaped bead of white opaque glass with moulded or drawn surface to 

give a decoration of 15 “knops” arranged alternately singly and in vertical pairs. 

Gives a granulated appearance. Width 6 mm, length 6 mm. 

 

Sample 281 

Location: Adria Site: Co’ Garizoni 1966  invent.: IG 11.041 

Tomb 29 

Cylinder shaped bead of white opaque glass with moulded or drawn surface to 

give a decoration of 15 “knops” arranged alternately singly and in vertical pairs. 

Gives a granulated appearance. Width 7 mm, length 6 mm. 

 

Sample 282 

Location: Adria Site: Co’ Garizoni 1966  invent.: IG 11.041 

Tomb 29 

Cylinder shaped bead of white opaque glass with moulded or drawn surface to 

give a decoration of 15 “knops” arranged alternately singly and in vertical pairs. 

Gives a granulated appearance. Width 6 mm, length 6 mm. 
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Sample 283 

Location: Adria Site: Co’ Garizoni 1966  invent.: IG 11.041 

Tomb 29 

Cylinder shaped bead of white opaque glass with moulded or drawn surface to 

give a decoration of 15 “knops” arranged alternately singly and in vertical pairs. 

Gives a granulated appearance. Indistinct zone on this bead may indicate that it 

was made using a two-piece mould. Width 6 mm, length 6 mm. 

 

Sample 284 

Location: Adria Site: Co’ Garizoni 1966  invent.: IG 11.041 

Tomb 29 

Cylinder shaped bead of weathered blue opaque glass with moulded or drawn 

surface to give a decoration of six or more “knops” arranged alternately singly and 

in vertical pairs. Gives a granulated appearance. Width 6 mm, length 5.5 mm. 

 

Sample 285 

Location: Adria Site: Co’ Garizoni 1966  invent.: IG 11.042 

Tomb 29 

Cylinder shaped bead of blue opaque glass with moulded or drawn surface to give 

a decoration of 15 “knops” arranged alternately singly and in vertical pairs. Gives 

a granulated appearance. Width 6 mm, length 5.5 mm. 

 

Sample 286 

Location: Adria Site: Co’ Garizoni 1966  invent.: IG 11.042 

Tomb 29 
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Cylinder shaped bead of blue opaque glass with moulded or drawn surface to give 

a decoration of 15 “knops” arranged alternately singly and in vertical pairs. Gives 

a granulated appearance. Width 7 mm, length 6 mm. 

 

Sample 287 

Location: Adria Site: Co’ Garizoni 1966  invent.: IG 11.042 

Tomb 29 

Cylinder shaped bead of blue opaque glass with moulded or drawn surface to give 

a decoration of 15 “knops” arranged alternately singly and in vertical pairs. Gives 

a granulated appearance. Width 7 mm, length 6 mm. 

 

Sample 288 

Location: Adria Site: Co’ Garizoni 1966  invent.: IG 11.043 

Tomb 29 

Cylinder shaped bead of green opaque glass with moulded or drawn surface to 

give a decoration of 15 “knops” arranged alternately singly and in vertical pairs. 

Gives a granulated appearance. Width 7 mm, length 6 mm. 

 

Sample 289 

Location: Rovigo Site: Fratte Abitato   invent.: IG 17319 

1100-900 BC 

Anthropomorphic figure, head and neck only, formed on a rod from translucent 

blue glass. max width 11.5 mm, max length 19 mm. Also see Verita and Biavati 

1989.  
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Sample 290 

Location: Rovigo Site: Fratte Abitato   invent.: IG 32865 

1100-900 BC 

Annular bead of blue translucent glass with red patches on the surface. From a 

group of 240 similar beads. Width 4 mm, length 2 mm. Also see De Min 1986, p 

126 and 138. 

 

Sample 291 

Location: Rovigo Site: Fratte Abitato   invent.: IG 32865 

1100-900 BC 

Annular bead of blue translucent glass with red patches on the surface. From a 

group of 240 similar beads. Width 4 mm, length 2 mm. Also see De Min 1986, p 

126 and 138. 

 

Sample 292 

Location: Rovigo Site: Fratte Abitato   invent.: IG 17319 

1100-900 BC 

Irregular fragment of disk of blue translucent glass, covered with a red (reduced) 

surface. Ingot fragment. Thickness varies from 6.5 to 11.5 mm. Width 46 mm, 

length 74 mm. 

 

Sample 293 

Location: Rovigo Site: Fratte Abitato   invent.: none 

1100-900 BC 
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Fragment of flat disc of blue translucent glass with red patches on the (reduced) 

surface. Smooth rounded outer edge. Ingot fragment. Width 29.5 mm, length 44.5. 

Thickness 10-14.5 mm. Estimated original diameter of disc: 100 mm. 

 

Sample 294 

Location: Rovigo Site: Fratte Abitato   invent.: none 

1100-900 BC 

Fragment of crucible with translucent blue glass adhering to the inner surface. The 

crucible fabric has been overheated on the outside and begun to melt, and has two 

distinct zones: a dark reddish brown exterior and a yellowish, reduced interior. 

The crucible fragment is 30 mm wide and 50 mm long and up to 15 mm thick. 

The glass is an irregular spread up to 1 mm thick. 

 

Samples 295 and 296 

Location: Rovigo Site: Fratte Abitato   invent.: 272079 

1100-900 BC 

Irregular fragment of a crucible/ceramic platform with translucent blue glass 

adhering to one, slightly convex surface. Glass includes swirls of opaque red 

glass. Ceramic plate width 34 mm x 48 mm, 8 mm thick, red fabric. Used as 

working platform in beadmaking. Glass covers an area of approx. 25 x 28 mm and 

is 1.5 mm thick. Sample 295 = translucent blus glass, sample 296 = red swirl 

within blue glass. 

 

Sample 297-299 

Location: Rovigo Site: Fratte Abitato   invent.: 272059 
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1100-900 BC 

Irregular fragment of waste glass - a fused lump including fragments of stratified 

eye beads (white eyes on green matrix), blue translucent glass and green 

translucent glass. 

Sample 297 = green translucent glass, sample 298 = white opaque glass,  sample 

299 = blue translucent glass. 

 

Sample 300 

Location: Rovigo Site: Fratte Abitato   invent.: 272059 

1100-900 BC 

Fragment of flat disc of green translucent glass. Heavily seeded. Smooth rounded 

outer edge. Ingot fragment. Width 15 mm, length 19 mm. 

 

Sample 301 

Location: Rovigo Site: Fratte Abitato   invent.: IG 272059 

1100-900 BC 

Pinched trail of pale green translucent glass, from the working of hot glass. Width 

6 mm, length 20 mm. For experimental parallels see Gamm 1990. 

 

Sample 302-304 

Location: Adria Site: Canale Bianco   invent.: none 

Tomb 333 

500 BC 

Globular bead of dark opaque glass, decorated with 3 compound eyes and 9 

opaque yellow horns. The compound eyes are made up of white opaque glass 
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around a dark opaque matrix into which are set two types of eye decoration: a 

single yellow opaque glass around translucent blue eye surrounded by 6 white 

opaque around translucent blue eyes. Width 14.5 mm, length 13.5 mm. Also see 

Gambacurta 1987, Type “G”, Perle ad occhi composito, p 212, p207 fig. 21. 

 

Sample 305 

Location: Adria Site: unknown    invent.: none 

Globular bead of blue opaque glass decorated with four compound eyes of blue 

and white opaque glass. Width 21.5 mm, length 23 mm. 

 

Sample 306 

Location: Adria Site: unknown    invent.: K041 

Annular bead of blue opaque glass decorated with four swirled eyes of white 

opaque glass trailed onto and marvered into the surface of the bead. Width 29 mm, 

length 19 mm. 

 

Sample 307 (brown, white and blue) 

Location: Adria Site: unknown    invent.: K043 

Globular bead of translucent blue glass decorated with seven stratified eyes: white 

opaque glass around dark brown translucent glass around white opaque glass 

around blue translucent glass. Width 27 mm, length 23 mm. Analysed as 

“307(brown)”, “307(white)” and “307(blue)”. 

 

Sample 308 

Location: Montagnana Site: Borgo San Zeno  invent.: 214964 
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1100-900 BC 

Irregular fragment of blue translucent glass possibly part of a disc ingot. No 

decoration, but patches of surface are red opaque indicating localised reduction of 

the copper oxide component of the glass. Width 26 mm, length 26 mm, thickness, 

14.5 mm. Citton and De Min 1990. 

 

Sample 309 

Location: Montagnana Site: Borgo San Zeno   invent.: 

214965 

1100-900 BC 

Irregular fragment of an opaque blue glass bead, possibly sub-triangular in form. 

The fracture surfaces are a red opaque colour, indicating exposure to heat in a 

reducing environment. Width 12.5 mm, length 9 mm. Citton and De Min 1990. 

 

 

Samples 310 and 311 

Location: Montagnana Site: Borgo San Zeno   invent.: 61166 

1100-900 BC 

Cylindrical bead of blue opaque glass decorated with a single trail of red opaque 

glass wrapped 12x around the body of the bead and partially drawn into a chevron 

pattern. The decorative trail has been marvered flush with the surface of the body 

of the bead. The technology required to retain the reduced red opaque decoration 

workable without reducing the surface of the bead body is interesting. Sample 310 

is of the blue matrix, and sample 311 is from the red decoration. Width 11 mm, 

length 38 mm. Citton and De Min 1990, pictured on page 18. 
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Sample 312 

Location: Montagnana Site: Borgo San Zeno   invent.: 61164 

1100-900 BC 

Fragment of ellipsoidal bead of blue opaque glass decorated with a trail of white 

opaque glass wrapped at least 6x around the body and drawn into a chevron 

pattern. Decoration marvered flush with the surface of the bead. Width 16 mm, 

length 22 mm. Citton and De Min 1990, pictured on page 18. 

 

Sample 313 

Location: Montagnana Site: Borgo San Zeno   invent.: 61168 

1100-900 BC 

Fragment of blue opaque glass spindle whorl decorated with crumbs (or eyes) of 

white opaque glass which have not been marvered into the surface of the artefact. 

Width 23 mm, length 12.5 mm. Citton and De Min 1990. 

 

Sample 314 

Location: Montagnana Site: Borgo San Zeno   invent.: 

154129 

1100-900 BC 

Fragment of rounded blue opaque glass, undecorated. Horizontal striations, 

frequent gas bubbles in matrix. Width 15.5, length 14 mm. Citton and De Min 

1990 pictured on page 18. 
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Sample 315 

Location: Montagnana Site: Borgo San Zeno   invent.: 

214465 

1100-900 BC 

Fragment of an annular bead of red opaque glass. The fracture surfaces are also 

red, suggesting it was exposed to high temperatures in a reducing environment 

after being broken. Width 10 mm, length 7.5 mm. Citton and De Min 1990. 

 

Sample 316 

Location: Montagnana Site: Borgo San Zeno   invent.: 

154116 

1100-900 BC 

Fragment of rounded bead of opaque blue glass decorated with two unstratified 

eyes (single crumbs of white opaque glass marvered flush). Width 11.5 mm, 

length 10.5 mm. Citton and De Min 1990. 

 

Sample 317 

Location: Montagnana Site: Borgo San Zeno   invent.: 

154129 

1100-900 BC 

Fragment of irregular shaped bead of blue opaque glass. Width 14 mm, length 16 

mm. Citton and De Min 1990. 
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Sample 318 

Location: Montagnana Site: Borgo San Zeno   invent.: 

154129 

1100-900 BC 

Fragment of ellipsoidal bead of blue opaque glass, undecorated. Width 10 mm, 

length 14 mm. Citton and De Min 1990. 

 

Sample 319 

Location: Montagnana Site: Borgo San Zeno   invent.: 61165 

1100-900 BC 

Fragment of ellipsoidal bead of blue opaque glass decorated with a trail of white 

opaque glass wrapped 3x around the body of the bead. Decorative band is 

marvered flush with surface of bead. Width 8 mm, length 10 mm. Citton and De 

Min 1990. 

 

Sample 320 

Location: Este  Site: Casa Muletti Prosdocimi invent.: IG 6410 

450 BC 

Tomb 258 

Fragment of annular bead of blue translucent glass (heavily weathered), decorated 

with 2 stratified eyes of white opaque glass around the matrix. Width 21 mm, 

length 16 mm. Chieco Bianchi, and Capuis, 1985a p 32-34, Figure 1, page 10, 

plates 1 and 2, drawing 248 number 15. 
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Sample 321 

Location: Este  Site: Villa Benvenuti    invent.: IG 

3950 

Tomb 115 

Rounded bead of blue opaque glass in two fragments, undecorated. Width 13 mm, 

length 10.5 mm. Chieco Bianchi, and Capuis, 1985a Figure 1, p 10, and plates 1 

and 2. 

 

Sample 322 

Location: Este  Site: Villa Benvenuti    invent.: IG 

3950 

Tomb 115 

Annular bead of aqua translucent glass, undecorated. Badly weathered with 

iridescent surface. Width 13.5 mm, length 7 mm. Chieco Bianchi, and Capuis, 

1985a Figure 1, p 10, and plates 1 and 2. 

 

Sample 323 

Location: Este  Site: Villa Benvenuti    invent.: IG 

3950 

Tomb 115 

Annular bead of blue opaque glass, undecorated. Badly weathered surface. Width 

7 mm, length 4 mm. Chieco Bianchi, and Capuis, 1985a Figure 1, p 10, and plates 

1 and 2. 
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Samples 324-328 

Location: Este  Site: Villa Benvenuti    invent.: IG 

3950 

Tomb 115 

Annular beads of blue opaque glass, undecorated. Weathered surface. From a 

group of 37. Width 11.5 - 15 mm, length 7 - 10 mm. Analysis of sample 324 

unsuccessful. Chieco Bianchi, and Capuis, 1985a Figure 1, p 10, and plates 1 and 

2. 

 

Sample 330 - 333 

Location: Este  Site: Villa Benvenuti    invent.: IG 

3949 

Tomb 115 

Annular beads of blue opaque glass, undecorated. Weathered surface. From a 

group of 16. Width 6.5 - 8.5 mm, length 3.5 – 5 mm. Analysis of sample 330 

unsuccessful. Chieco Bianchi, and Capuis, 1985a Figure 1, p 10, and plates 1 and 

2. 

 

Sample 334 

Location: Este  Site: Villa Benvenuti    invent.: IG 

3949 

Tomb 115 

Annular bead of aqua translucent glass, decorated with 4 pairs of stratified eyes. 

Eyes constructed of inserted canes of white opaque @ blue translucent @ white 

opaque @ blue translucent @ white opaque @ blue translucent. Width 14 mm, 
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length 9 mm. Chieco Bianchi, and Capuis, 1985a Figure 1, p 10, and plates 1 and 

2. 

 

Sample 335 

Location: Este  Site: Villa Benvenuti    invent.: IG 

3949 

Tomb 115 

Annular bead of yellow opaque glass, decorated with 4 pairs of stratified eyes and 

1 additional eye. Eyes constructed of inserted canes of white opaque @ blue 

translucent @ white opaque @ blue translucent. Width 15.5 mm, length 12.5 mm. 

Chieco Bianchi, and Capuis, 1985a Figure 1, p 10, and plates 1 and 2. 

 

Sample 336 

Location: Este   Site: Casa di Recovero  invent.: IG 

13717 

Tomb 1 (1962) 

625-575 BC 

Spindle whorl of blue translucent glass, decorated with crumbs and zig-zag trails 

of yellow opaque glass in zones defined by horizontal bands of opaque yellow 

glass. Width 26.5 mm, length 25 mm. Chieco Bianchi, and Capuis, 1985a Figure 

1, p 10, and plates 1 and 2, p 312-314, drawing 220. 

 

Sample 337 

Location: Este  Site: Borgo San Zeno (Montagnana)  invent.: IG 

60845 
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1100-900 BC 

Irregular fragment of blue opaque glass, part of a disc ingot. No decoration, but 

patches of surface are red opaque indicating localised reduction of the copper 

oxide component of the glass. Width 34 mm, length 74 mm, thickness, 15 mm. 

Citton and De Min 1990. 

 

Sample 338 

Location: Este  Site: Borgo San Zeno (Montagnana)  invent.: IG 

60845 

1100-900 BC 

Irregular fragment of blue opaque glass, part of a disc ingot. No decoration. 

Contains large cavity, possibly a gas bubble but most likely to be result of folding 

during manufacture. Upper surface pinched from where it has been manipulated 

whilst hot. Width 30 mm, length 51 mm, thickness, 13 mm. Citton and De Min 

1990. 

 

Sample 339 

Location: Este  Site: Borgo San Zeno (Montagnana)  invent.: IG 

60854 

1100-900 BC 

Fragment of barrel shaped bead of blue opaque glass decorated with a trail of 

white opaque glass wrapped 4x around the body of the bead. White decoration has 

almost entirely weathered away. Width 10 mm, length 11.5 mm. Citton and De 

Min 1990, also Bellintani et al. 1998 p 16, figure 5 number 16. 
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Sample 340 

Location: Este  Site: Borgo San Zeno (Montagnana)  invent.: IG 

60857 

1100-900 BC 

Fragment of tapered bead of blue opaque glass decorated with a trail of red 

opaque glass wrapped 5x around the body of the bead. Sample included both red 

opaque and blue glass. Width 5 – 10.5 mm, length 14 mm. Citton and De Min 

1990. 

 

Sample 341 

Location: Este  Site: Borgo San Zeno (Montagnana)  invent.: IG 

60847 

1100-900 BC 

Irregular fused mass of small annular blue glass beads of blue opaque glass, all 

undecorated. max dimension 22 mm. Citton and De Min 1990. 

 

Sample 342 

Location: Este  Site: Montagnana via Prateria  invent.: IG 60969 

2nd Century BC or later. 

Tomb 1. 

Irregular fragment of blue translucent glass (possibly a bead fragment). Initially 

considered as contemporary to the material from Borgo San Zeno, Montagnana 

(i.e. 1200-900 BC). The chemistry of the glass suggests it dates from the Roman 

period. 
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Sample 343 

Location: Este    Site: Rebato   invent.: IG 

8955 

Tomb 149 

700-500 BC 

Rounded bead of blue opaque glass decorated with knops of yellow opaque glass 

and stratified eyes of white opaque glass @ blue translucent glass. Sample is of a 

yellow knop. Bead has been “conserved” with a thick layer of varnish. Width 12 

mm, length 12 mm. 

 

Sample 344 

Location: Este   Site: Casa di Recovero  invent.: IG 

7114 

Tomb 177 

625 – 575 BC 

Annular bead of blue opaque glass decorated with three stratified eyes of white 

opaque glass around matrix. White decorative glass has largely weathered away. 

Width 10 mm, length 7 mm. Chieco Bianchi, and Capuis, 1985a Figure 1, p 10, 

and plates 1 and 2, p 150-152, drawing 88. 

 

Sample 345 

Location: Este   Site: Casa di Recovero  invent.: IG 

7114 

Tomb 177 

625 – 575 BC 
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Annular bead of “black” glass, heavily weathered, decorated with three stratified 

eyes in which the eyes are swirls of white opaque glass around the matrix. 

Decoration marvered flush with the surface of the bead. Width 9.5 mm, length 6 

mm. Chieco Bianchi, and Capuis, 1985a Figure 1, p 10, and plates 1 and 2, p 150-

152, drawing 88. 

 

Sample 347 

Location: Este   Site: Casa di Recovero  invent.: IG 

13668 

Tomb 234 

c 625 BC 

Annular bead of blue translucent glass, decorated with three stratified eyes in 

which the eyes have weathered away. Width 9 mm, length 7 mm. Chieco Bianchi, 

and Capuis, 1985a Figure 1, p 10, and plates 1 and 2, p 281-294, drawing 195. 

 

Sample 348 

Location: Este   Site: Casa Alfonsi   invent.: IG 

8229 

Tomb 22 

525 – 450 BC 

Brooch decoration of “black” weathered glass (originally blue translucent), 

zoomorphic form with applied knops and incised decoration. Still contains 

corroded remains of copper-alloy brooch pin. Width 7 – 11 mm, length 43 mm. 

Chieco Bianchi, and Capuis, 1985a Figure 1, p 10, 34 and plates 1 and 2, p 405-

406, drawing 273. 
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Sample 349 

Location: Este   Site: Casa Muletti Prosdocimi invent.: IG 

9326 

Tomb 254 

525 – 450 BC 

Fragment of an annular bead of aqua translucent glass, undecorated. Has 

iridescent weathering layer. Width 19 mm, length 12 mm. Chieco Bianchi, and 

Capuis, 1985a Figure 1, p 10, 32-34 and plates 1 and 2, p 358 - 360, drawing 243. 

 

Sample 350 

Location: Este  Site: Casa Muletti Prosdocimi invent.: IG 9326 

Tomb 254 

525 – 450 BC 

Annular bead of (weathered) brown opaque glass decorated with 4 stratified eyes 

of white opaque glass @ matrix @ white opaque glass @ matrix @ white opaque 

glass @ matrix. The decoration has mostly weathered away. Chieco Bianchi, and 

Capuis, 1985a Figure 1, p 10, 32-34 and plates 1 and 2, p 358 - 360, drawing 243 

(no. 22). 

 

Samples 351 – 354 

Location: Este   Site: Benvenuti  invent.: IG 4496 

Tomb 78 
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Annular beads of blue translucent glass, undecorated, from a large group from this 

context. Width 6.5 – 8.5 mm, length 3.5 – 5 mm. Chieco Bianchi, and Capuis, 

1985a Figure 1, p 10, and plates 1 and 2. 

 

Samples 357 – 358 

Location: Este   Site: Benvenuti  invent.: IG 4496 

Tomb 78 

Annular beads of white opaque glass, undecorated, from a large group from this 

context. Width 6.5 and 7 mm, length 4 and 4.5 mm. Chieco Bianchi, and Capuis, 

1985a Figure 1, p 10, and plates 1 and 2. 

 

Sample 359 

Location: Este   Site: Benvenuti  invent.: unknown 

Tomb 101 

Spindle whorl of various materials: core is ceramic possibly with a metal weight 

(artefact is very dense), with a thick glass surface (“glaze”) of dark green opaque 

glass, decorated with white opaque bands defining zones filled with zig-zag 

patterns. Sample 359 is of the green glaze. Width 28 mm, length 19 mm. Chieco 

Bianchi, and Capuis, 1985a Figure 1, p 10, and plates 1 and 2. 

 

Sample 360 

Location: Este   Site: Benvenuti  invent.: unknown 

Tomb 105 

Rounded bead of blue opaque glass, undecorated. Width 13.5 mm, length 10.5 

mm. Chieco Bianchi, and Capuis, 1985a Figure 1, p 10, and plates 1 and 2. 
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Sample 362 

Location: Este   Site: Benvenuti  invent.: IG 5409 

Tomb 104 

Fragment of annular bead of aqua translucent glass decorated with a zig-zag trail 

which has weathered away leaving a depression around the middle of the bead. 

Width 17 mm, length 12 mm. Chieco Bianchi, and Capuis, 1985a Figure 1, p 10, 

and plates 1 and 2. 

 

Sample 364 

Location: Este   Site: Benvenuti  invent.: IG 4495 

Tomb 78 

Annular bead of blue translucent glass, undecorated. Width 14 mm, length 8.5 

mm. Chieco Bianchi, and Capuis, 1985a Figure 1, p 10, and plates 1 and 2. 

 

Sample 365 

Location: Este   Site: Benvenuti  invent.: IG 4495 

Tomb 78 

Globular bead of weathered pale green opaque glass decorated with 3 stratified 

eyes of yellow opaque glass @ matrix @ yellow opaque glass @ matrix @ yellow 

opaque glass @ matrix. width 20.5 mm, length 16 mm. Chieco Bianchi, and 

Capuis, 1985a Figure 1, p 10, and plates 1 and 2. 

 

 528



Sample 367 

Location: Este   Site: Casa di Recovero  invent.: IG 

7427 

Tomb 205 

525 – 450 BC 

Tubular shaped bead of weathered brown opaque glass decorated with 4 knops 

and collars around each perforation. Similar in style to sample 348. Width 8 mm, 

length 14 mm. Chieco Bianchi, and Capuis, 1985a Figure 1, p 10, 19 – 32, 197 - 

202, plates 1 and 2, drawing 122 (no 10). 

 

Sample 368 

Location: Este   Site: Casa di Recovero  invent.: IG 

7427 

Tomb 205 

525 – 450 BC 

Globular bead of weathered brown opaque glass, undecorated. Width 4 mm, 

length 4 mm. Chieco Bianchi, and Capuis, 1985a Figure 1, p 10, 19 – 32, 197 - 

202, plates 1 and 2, drawing 122. 

 

Sample 369 

Location: Este   Site: Casa di Recovero  invent.: IG 

12164 

Unstratified find. 

Spindle whorl of blue translucent glass decorated with a trailed-on zig-zag pattern 

of white opaque glass (i.e. decoration has not been drawn after application). Width 
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17 mm, length 16.5 mm. Chieco Bianchi, and Capuis, 1985a Figure 1, p 10, 19 – 

32, 442, plates 1 and 2, drawing 298 (no 241). 

 

Samples 370 and 371 

Location: Este   Site: Casa di Recovero  invent.: IG 

7880 

Tomb 235 

700 – 675 BC 

Leech-shaped brooch slider of weathered pale green opaque glass decorated with 

yellow opaque glass trailed around the matrix and combed into a feathered 

pattern. Sample 370 is of the matrix, sample 371 is of the yellow opaque 

decoration (analysis of the latter failed). Matrix is very badly weathered, and the 

object has been “conserved” with a thick layer of varnish. Width 23.5 mm, length 

52 mm. Chieco Bianchi, and Capuis, 1985a Figure 1, p 10, 19 – 32, 294 - 300, 

plates 1 and 2, drawing 197 (no 14), also see: Montelius 1895: Serie A plate 7 and 

Serie B plates: 90, 94, 195, 219, 307, 318, 349, Grenier 1912 p 294-305, von 

Bissing 1942 144-168, Dohan 1942 Plate 19, Figure 40, Plate 22, Figure 61, 

Sundwall 1943, p 193, Figure 311, p 208, Figure 333, Harden 1968, p 59, 

Goldstein 1979, p 122-123, Grose 1989 p 70, 81-82, 87,Tatton-Brown 1995 p 321, 

Dobiat 1987, p 27-29, figure 17, plate 1. 

 

Sample 373 

Location: Este    Site: Rebato   invent.: IG 

8415 

Tomb 100 
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650 – 625 BC 

Leech-shaped brooch slider of weathered brown opaque glass decorated with 

alternate trails of white opaque and yellow opaque glass combed into a feather 

pattern. Copper alloy brooch still in place. Brooch slider is heavily restored, and 

has a coat of varnish. Width 26.5 mm, length 60 mm. For parallels see: Montelius 

1895: Serie A plate 7 and Serie B plates: 90, 94, 195, 219, 307, 318, 349, Grenier 

1912 p 294-305, von Bissing 1942 144-168, Dohan 1942 Plate 19, Figure 40, 

Plate 22, Figure 61, Sundwall 1943, p 193, Figure 311, p 208, Figure 333, Harden 

1968, p 59, Goldstein 1979, p 122-123, Grose 1989 p 70, 81-82, 87,Tatton-Brown 

1995 p 321, Dobiat 1987, p 27-29, figure 17, plate 1. 

 

Sample 374 

Location: Este   Site: Casa di Recovero  invent.: IG 

13557 

Tomb 143 

775-750 BC 

Annular bead of blue opaque glass decorated with three stratified eyes of yellow 

opaque glass @ matrix. Decoration has largely weathered away. Width 10.5 mm, 

length 6.5 mm. Chieco Bianchi, and Capuis, 1985a Figure 1, p 10, 19 – 32, 61 - 

68, plates 1 and 2, drawing 16 (no 15). 

 

Sample 375 

Location: Este   Site: Casa di Recovero  invent.: IG 

13557 

Tomb 143 
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775-750 BC 

Annular bead of blue opaque glass decorated with three stratified eyes of yellow 

opaque glass @ matrix. Decoration has largely weathered away. Width 11.5 mm, 

length 8 mm. Chieco Bianchi, and Capuis, 1985a Figure 1, p 10, 19 – 32, 61 - 68, 

plates 1 and 2, drawing 16 (no 15). 

 

Sample 376 

Location: Este   Site: Casa di Recovero  invent.: IG 

13557 

Tomb 143 

775-750 BC 

Annular bead of blue opaque glass decorated with three stratified eyes of yellow 

opaque glass @ matrix. Decoration has largely weathered away. Width 12 mm, 

length 8 mm. Chieco Bianchi, and Capuis, 1985a Figure 1, p 10, 19 – 32, 61 - 68, 

plates 1 and 2, drawing 16 (no 15). 

 

Samples 377 – 379 

Location: Este   Site: Benvenuti  invent.: unknown 

Tomb 122 

Irregular fragments of clear translucent glass associated with a large group of 

glass, faience, amber and bone beads and pendants. Maximum dimension of clear 

glass 16 mm. Chieco Bianchi, and Capuis, 1985a Figure 1, p 10, and plates 1 and 

2. 
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Sample 380 

Location: Este   Site: Benvenuti  invent.: unknown 

Tomb 122 

Cylinder shaped bead of blue opaque glass, undecorated. Width 8 mm, length 10 

mm. Chieco Bianchi, and Capuis, 1985a Figure 1, p 10, and plates 1 and 2. 

 

Sample 382 

Location: Este   Site: Benvenuti  invent.: unknown 

Tomb 122 

Annular bead of yellow opaque glass, undecorated, heavily weathered. Width 7 

mm, length 4 mm. Chieco Bianchi, and Capuis, 1985a Figure 1, p 10, and plates 1 

and 2. 

 

Sample 384 – 386 

Location: Este   Site: Benvenuti  invent.: unknown 

Tomb 79 

Annular beads of blue opaque glass, undecorated. Width 5.5 – 6.5 mm, length 1.3 

– 3.5 mm. Chieco Bianchi, and Capuis, 1985a Figure 1, p 10, and plates 1 and 2. 

 

Samples 390 and 391 

Location: Este   Site: Benvenuti  invent.: 5312 

Tomb 98 

Tubular bead of plae blue opaque glass decorated with a collar, a trailed 

decoration and 6 knops, all of white opaque glass. Sample 390 is of the matrix, 
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and sample 391 is from the white opaque decoration. Width 11.5 mm, length 24.5 

mm. Chieco Bianchi, and Capuis, 1985a Figure 1, p 10, and plates 1 and 2. 

 

Sample 393 

Location: Este   Site: Casa di Recovero  invent.: IG 

4835 

Tomb 233 

c 575 BC 

Spindle whorl of weathered brown opaque glass decorated with zig-zag trails of 

yellow opaque glass. In poor condition and heavily varnished. Width 24.5 mm, 

length 20.5 mm. Chieco Bianchi, and Capuis, 1985a Figure 1, p 10, 19 – 32, 276 - 

281, plates 1 and 2, drawing 183 (no 11). 

 

Sample 395 

Location: Este   Site: Benvenuti  invent.: 4700 

Tomb 126 

Annular bead of weathered brown opaque glass decorated with 4 stratified eyes of 

yellow opaque glass @ matrix @ yellow opaque @ matrix @ yellow opaque @ 

matrix. Heavily varnished and in poor condition. Width 26.5 mm, length 20 mm. 

Chieco Bianchi, and Capuis, 1985a Figure 1, p 10, and plates 1 and 2. 

 

Sample 397 

Location: Este   Site: Casa di Recovero  invent.: IG 

13518 

Tomb 236 
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750 BC 

Annular bead of blue translucent glass decorated with 3 stratified eyes of yellow 

opaque glass @ matrix. Decoration has largely weathered away leaving behind a 

depression. Width 11 mm, length 7 mm. Chieco Bianchi, and Capuis, 1985a 

Figure 1, p 10, 19 – 32, 300-312, plates 1 and 2, drawing 205 (no 12). 

 

Sample 398 

Location: Este   Site: Casa di Recovero  invent.: IG 

13518 

Tomb 236 

750 BC 

Annular bead of blue translucent glass decorated with 3 stratified eyes of yellow 

opaque glass @ matrix. Decoration has largely weathered away leaving behind a 

depression. Width 10.5 mm, length 7 mm. Chieco Bianchi, and Capuis, 1985a 

Figure 1, p 10, 19 – 32, 300-312, plates 1 and 2, drawing 205 (no 12). 

 

Sample 400 

Location: Este   Site: Casa di Recovero  invent.: IG 

7965 

Tomb 236 

750 BC 

Annular bead of blue translucent glass decorated with alternate single and pairs of 

stratified eyes of white opaque glass @ blue translucent glass. Width 33 mm, 

length 23 mm. Chieco Bianchi, and Capuis, 1985a Figure 1, p 10, 19 – 32, 300-

312, plates 1 and 2, drawing 210 (no 81). 
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Sample 401 

Location: Este   Site: Casa di Recovero  invent.: IG 

7965 

Tomb 236 

750 BC 

Irregular fragment (barrel - shaped?) bead of brown translucent, undecorated. 

Width c 25 mm, length c 26 mm. Chieco Bianchi, and Capuis, 1985a Figure 1, p 

10, 19 – 32, 300-312, entry 86, plates 1 and 2. 
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APPENDIX 3: PLATES 

Unless otherwise specified, all images are 100 % of the original (i.e. scale 1:1), 

sample number is indicated in lower left-hand corner of each image. 
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