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Abstract 

 

A key aspect of the condition of soil as a medium for growing plants is the soil 

physical environment under which germination, growth and establishment occur.  

Crucially this affects factors such as water content, oxygen availability and soil 

strength.  The dynamics of soil physical properties, and in particular soil structure, of 

a range of soils and how they relate to plant establishment are considered in this 

thesis.  By engineering a variety of seedbeds and contrasting soil structures using 

different cultivation techniques, from intensive (plough) to reduced (disc) strategies, 

significant differences in the physical properties of the soils in terms of volumetric 

water content, soil strength and bulk density and interactions with plant establishment 

were identified.  A model for Soil Quality of Establishment (SQE) was developed to 

predict plant establishment based upon soil bulk density and cultivation practices 

which significantly accounted for c. 50% of the variation occurring across contrasting 

soil types and environmental conditions.  It was hypothesized from this that the 

precise porous architecture (i.e. soil structure) plays a crucial role in plant 

establishment given soil bulk density was a significant factor in the SQE model.  

Utilizing X-ray Computed Tomography (CT) both at a macro (c.300µm) and meso 

(c.65µm) scale soil structure (in terms of: porosity, pore area and perimeter, 

elongation, nearest neighbour distance, ECD and pore distribution) were determined 

in a quantitative manner.  Results showed significant decreases in plant populations 

with associated increases in the soil porosity, with strong links to the pore size, 

roughness and spatial distribution (accounting for soil-seed contact, water storage / 

flow and ease of plant / root movement within the soil).  Preferred porosity conditions 

for establishment and yield occurred between 12 - 20 % porosity (at the meso scale).  

SQE prediction was significantly improved with the addition of structural properties 

accounting for c. 70 % variation in crop establishment across soil texture and seasonal 

variation.  The further 30 % variation in crop establishment may be explained by 

unforeseen circumstances such as disease and weather but equally this may also be 

related to crop genetics, soil chemistry and or the biological activities within the soil. 

 
 
 
 

 ii



CONTENTS 

Abstract ..........................................................................................................................ii 
 
Contents ....................................................................................................................... iii 
 
Dedication .....................................................................................................................ix 
 
Acknowledgements........................................................................................................x 
 
List of Tables ................................................................................................................xi 
List of Figures ..............................................................................................................xii 
 
 
 
 
Chapter 1:  General Introduction ................................................................1 

 
1.1 Rationale ........................................................................................................1 
1.2 Literature review............................................................................................3 
1.2.1 Seedbed dynamics......................................................................................3 
1.2.2 Plant establishment ....................................................................................5 
 
1.2.3 Effects of the seedbed environment on plant establishment......................6 

1.2.3.1  Soil water content and potential............................................................6 
1.2.3.2  Soil temperature ....................................................................................8 
1.2.3.3  Soil texture ............................................................................................8 
1.2.3.4  Soil strength ..........................................................................................9 
1.2.3.5  Bulk density ........................................................................................10 
1.2.3.6  Oxygen diffusion ................................................................................11 
1.2.3.7  Aggregate size.....................................................................................11 
1.2.3.8  Soil stability and crusting....................................................................12 
1.2.3.9  Soil organic matter..............................................................................13 
1.2.3.10 Crop residue .....................................................................................14 

 
1.2.4 Effects of seeding on establishment.........................................................15 

1.2.4.1  Sowing date.........................................................................................15 
1.2.4.2  Seeding rate.........................................................................................16 
1.2.4.3  Previous cropping ...............................................................................16 
1.2.4.4  Seed variety.........................................................................................17 
1.2.4.5  Seeding depth......................................................................................17 

 
1.2.5 Cultivation................................................................................................18 

1.2.5.1  Effect of cultivation ............................................................................19 
1.2.5.2  Cultivation equipment.........................................................................20 
1.2.5.2.1  Plough .............................................................................................20 
1.2.5.2.2  Disc harrow.....................................................................................20 
1.2.5.2.3  Power harrow..................................................................................21 
1.2.5.2.4  Tine .................................................................................................21 

 iii



1.2.5.2.5  Drill .................................................................................................23 
1.2.5.2.6  Cambridge roller .............................................................................23 

 
1.2.6 Effect of cultivation on establishment .....................................................23 

1.2.6.1  Compaction .........................................................................................25 
1.2.6.2  Soil degradation and nutrient loss.......................................................27 

 
1.2.7 Examination of soil structure ...................................................................28 

1.2.7.1  Soil structure .......................................................................................28 
1.2.7.2  Quantification of soil structure ...........................................................30 
1.2.7.3  Using X-ray Computed Tomography to examine soil structure.........31 

 
1.3 Research aim and objectives........................................................................36 
 
1.4 Thesis structure ............................................................................................37 

 
 
 
 
Chapter 1A:  Method Development..........................................................38 

 
1A.1 The effect of soil structure upon establishment (Glasshouse) .....................38 

 
1A.1.1  Sample Preparation .............................................................................39 
 
1A.1.2  Sampling .............................................................................................41 
 
1A.1.3  Results.................................................................................................42 
1A.1.3.1 Crop measurements..........................................................................42 
1A.1.3.2 Soil structure ....................................................................................64 
 
1A.1.4  Summary .............................................................................................65 

 
1A.2 Barley establishment under four spring cultivations (Field Trial)...............66 

 
1A.2.1  Field site and experimental design......................................................66 
 
1A.2.2  Results.................................................................................................69 
1A.2.2.1 Seedbed physical condition..............................................................69 
1A.2.2.2 Seedbed macro structure ..................................................................69 
1A.2.2.3 Seedbed meso structure....................................................................72 
 
1A.2.3  Summary conclusion...........................................................................76 

 
 
 
 
 

 iv



Chapter 2: Using selected soil physical properties of seedbeds to predict 
crop establishment ....................................................................................78 
 
Abstract ........................................................................................................................79
 
1. Introduction..........................................................................................................79
 
2. Materials and methods .........................................................................................80

2.1. Field site and experimental design...............................................................80
2.2. Measurements of soil physical characteristics.............................................81
2.3. Statistical analysis........................................................................................81

 
3 Results..................................................................................................................81

3.1 Prior to cultivation (- 6 days) .......................................................................81
3.2 Penetration resistance...................................................................................82
3.3 Shear strength...............................................................................................83
3.4 Volumetric water content.............................................................................83
3.5 Bulk density .................................................................................................84
3.6 Crop establishment.......................................................................................84
3.6.1 Soil physical properties and establishment ..............................................84
3.7 Soil quality of establishment (SQE) ............................................................85

 
4 Discussion ............................................................................................................87
5 Conclusions..........................................................................................................88
 
Acknowledgments........................................................................................................88
References....................................................................................................................89
 
 
 
 
Chapter 3: Effect of seedbed cultivation and soil macro structure on the 
establishment of winter wheat (Triticum aestivum) .................................90 

 
3.1 Abstract ........................................................................................................90 
 
3.2 Introduction..................................................................................................91 
 
3.3 Materials and methods .................................................................................93 

3.3.1 Field site and experimental design.......................................................93 
3.3.2 Soil structure sampling ........................................................................95 
3.3.3 Resin impregnation of undisturbed soil cores......................................95 
3.3.4 X-ray Computed Tomography.............................................................96 
3.3.5 Image analysis of soil structure characteristics....................................96 
3.3.6 Statistical analysis................................................................................97 

 
3.4 Results..........................................................................................................99 

3.4.1 Macro porosity .....................................................................................99 
3.4.2 Macroscale average pore size (mm2) .................................................100 

 v



3.4.3 Macroscale pore size distributions (PSD)..........................................103 
3.4.3.1  Pore size distribution - coefficient of uniformity (PSDcu) ................103 
3.4.4 Soil structural relationships................................................................106 
3.4.5 Soil quality of establishment (SQE) ..................................................108 

 
3.5 Discussion..................................................................................................113 
3.6 Conclusions................................................................................................116 
 
3.7 Acknowledgments......................................................................................117 
 
3.8 References..................................................................................................117 

 
 
 
 
Chapter 4: Effect of seedbed cultivation and soil meso structure on the 
establishment of winter wheat (Triticum aestivum cv. Robigus) ...........120 

 
4.1 Introduction................................................................................................120 
 
4.2 Materials and methods ...............................................................................123 

4.2.1 Field site and experimental design.....................................................123 
4.2.2 Soil structure sampling ......................................................................124 
4.2.3 Resin impregnation of undisturbed soil cores....................................124 
4.2.4 Image acquisition from resin impregnated soil blocks ......................125 
4.2.5 Image processing and analysis...........................................................126 
4.2.6. Statistical analysis..............................................................................128 

 
4.3 Results........................................................................................................129 

4.3.1 Seedbed evolution..............................................................................129 
4.3.2 Meso scale porosity............................................................................129 
4.3.3 Mean pore size (mm2)........................................................................133 
4.3.4 Equivalent circle diameter (ECD)......................................................133 
4.3.5 Mean pore perimeter (mm) ................................................................135 
4.3.6 Pore size distributions (PSD) .............................................................139 
4.3.6.1  Pore size distribution - coefficient of uniformity (PSDcu) ................139 
4.3.7 Elongation..........................................................................................147 
4.3.8 Nearest neighbour distance (mm) ......................................................147 
4.3.9 Linking soil physical properties with establishment..........................149 
4.3.9.1  Relationships between soil physical measurements and soil structure
 149 
4.3.9.2  Relationships between soil structure and crop establishment...........150 
4.3.9.3  Relationships between soil structural properties and crop yield.......150 
4.3.10 Soil quality of establishment (SQE) and soil meso structure ............154 

 
4.4 Discussion..................................................................................................160 
 
4.5 Conclusions................................................................................................162 

 

 vi



Chapter 5: A comparison of soil physical properties in reduced cultivation 
systems and the effect on winter wheat (Triticum aestivum cv. Einstein) 
establishment across two soil types. .......................................................165 

 
5.1 Introduction................................................................................................165 
 
5.2 Materials and methods ...............................................................................167 

5.2.1 Field site and experimental design.....................................................167 
5.2.2 Measurements of soil physical characteristics...................................168 
5.2.3 Statistical analysis..............................................................................169 

 
5.3 Results........................................................................................................169 

5.3.1 Prior to cultivation .............................................................................169 
5.3.2 Penetration resistance.........................................................................170 
5.3.3 Shear strength.....................................................................................170 
5.3.4 Volumetric water content...................................................................171 
5.3.5 Bulk density .......................................................................................174 
5.3.6 Crop establishment.............................................................................175 
5.3.7 Soil physical properties and establishment ........................................177 
5.3.8 Yield...................................................................................................179 

 
5.4 Discussion..................................................................................................180 
 
5.5 Conclusions................................................................................................183 

 
 
 
 
Chapter 6: A comparison of soil meso structure in reduced cultivation 
systems and the effect on winter wheat (Triticum aestivum cv. Einstein) 
establishment across two soil types. .......................................................185 

 
6.1 Introduction................................................................................................185 
 
6.2 Materials and methods ...............................................................................188 

6.2.1 Field site and experimental design.....................................................188 
6.2.2 Soil structure sampling ......................................................................189 
6.2.3 X-ray Computed Tomography...........................................................189 
6.2.4 Image analysis of soil structure characteristics..................................189 
6.2.5 Statistical analysis..............................................................................190 

 
6.3 Results........................................................................................................192 

6.3.1 Seedbed evolution..............................................................................192 
6.3.2 Meso Scale Porosity...........................................................................195 
6.3.3 Mean Pore Size (mm2) .......................................................................195 
6.3.4 Equivalent Circle Diameter (ECD)....................................................198 
6.3.5 Mean Pore Perimeter (mm)................................................................200 
6.3.6 Pore Size Distribution (PSD) .............................................................200 

 vii



6.3.6.1  Pore Size Distribution - Coefficient of Uniformity (PSDcu).............201 
6.3.7 Pore Shape - Elongation and Sphericity ............................................201 
6.3.8 Nearest Neighbour Distance (mm) ....................................................206 
6.3.9 Linking soil physical properties with establishment..........................208 
6.3.9.1  Relationships between soil physical measurements and soil structure
 208 
6.3.9.2  Relationships between soil structure and crop establishment...........210 
6.3.9.3  Relationships between soil structure and crop yield.........................211 

 
6.4 Discussion..................................................................................................212 
 
6.5 Conclusions................................................................................................215 

 
 
 
 
Chapter 7:  General Discussion ..............................................................218 

 
7.1 Introduction................................................................................................218 
 
7.2 Seedbed physical properties and establishment.........................................218 
 
7.3 Seedbed structural properties and establishment .......................................222 
 
7.4 Modelling seedbed properties and establishment ......................................231 

 
 
 
 
Chapter 8:  Conclusions..........................................................................236 

 
8.1 Seedbed establishment conditions .............................................................236 
 
8.2 Implications................................................................................................239 
 
8.3 Further work...............................................................................................240 

 
 
 
 
References...............................................................................................243 

 
 
 
 
 

 

 viii



DEDICATION 

 
 
 
 
 

This work is dedicated to my parents and grandparents without whom I would not 

have achieved so much, and to my bride to be Nicola for all the love, support and 

understanding. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

"It is not how much you do, but how 
much love you put in the doing." 

 
 
 

 

 ix



ACKNOWLEDGEMENTS 

 
 
 

I wish to express my thanks and gratitude to supervisors Dr Sacha Mooney and Dr. Debbie Sparkes for 

their professional support, encouragement and guidance in the shaping of both myself and my 

professional abilities, but most importantly for their continued patience and friendship throughout the 

course of my PhD.   

 

My thanks and gratitude to all the technical staff which helped to make this project possible, John 

Alcock and Matt Tovey for their assistance in field operations, Jim Craigon for his statistical design 

and analysis wisdom, John Corrie and Darren Hepworth for their assistance in laboratory matters, 

Alison Fenwick and Paul Morgan from the X-ray Computed Tomography department at the QMC, 

Nottingham (UK) and finally to Chris Fox from the NTEC pavement engineering department, 

University of Nottingham for his patience and X-ray CT imaging.   

 

The financial support from The University of Nottingham (School of Biosciences) and the Home 

Grown Cereal Authority (HGCA) for carrying out this research are also greatly acknowledged. The 

financial support of the British Society of Soil Science in attendance of regional and international 

meetings and conferences for presenting these finding is also acknowledged.  

 

To friends new and old many thanks.  I would also like to gratefully thank everybody who has provided 

help and support to me throughout every stage of my life and especially to my family who have 

supported me.  To my bride to be Nicola my thanks and love for supporting me throughout everything 

but most of all just for putting up with me.   

 

 

And finally I have one last thing to say……………………………‘42’ 
 

 
 

 

 

 

 x



List of Tables 

Table 1.1: Typical bulk density and porosity values for selected agricultural soils. 
(Soffe, 2003) .............................................................................................10 

 
Table 1A.1:  Mean crop variation as a result of treatment conditions.  OSR = oil seed 

rape.  Bulk = field aggregates representing bulk soil condition.  Fine = 
sieved soil < 2 mm in diameter with large aggregates removed...............43 

 
Table 1A.2: Selected soil properties of the Dunnington Heath (FAO class: Stagno-

Gleyic Luvisol).  *Percentage on a mass basis, measured using hydrometer 
method (Rowell, 1994). ............................................................................67 

 
Table 1A.3:  Seedbed evolution and the effect of cultivation......................................71 
 
Table 1A.4:  Mean variation in meso structure between cultivation treatments at 0 – 

80 mm depth..............................................................................................75 
 
Table 1: Selected soil properties of the Dunnington Heath (FAO class: Stagno-Gleyic

Luvisol) and Worcester (FAO class: Argillic Pelosol) series.  aPercentage
by mass, measured using hydrometer method (Rowell, 1994). 80

 
Table 2: Selected statistical variation between SQE model(s) in the validation sub-set

 88
 
 
Table 3.1: Selected soil properties of the Dunnington Heath (FAO class: Stagno-

Gleyic Luvisol) and Worcester (FAO class: Argillic Pelosol) series.  
aPercentage by mass, measured using hydrometer method (Rowell, 1994).
...................................................................................................................94 

 
Table 3.2:  Mean macro structure variation of evolving seedbeds under different 

cultivation. Images representative of Plough, Power Harrow and Rolled 
treatment, black represents pore space....................................................101 

 
Table 3.3: Selected statistical variation between SQE model(s) previously developed 

and the addition of structural elements.  ◊ Structural addition to the 
original models. * Observed population changes are a result of different 
seasons and changes in structural sampling regimes. .............................112 

 
Table 4.1:  Mean soil porosity variation over the evolution of the seedbeds created by 

different cultivations.  Images representative of PPD treatment, white 
represents porosity. .................................................................................132 

 
Table 4.2:  Mean meso structure variation over the evolution of the seedbeds created 

by different cultivations.  Images representative of DDR treatment, white 
represents pore space. .............................................................................137 

 

 xi



Table 4.3: Selected statistical variation between SQE model(s) previously developed 
and the addition of new structural elements.  Optimum model includes 
additional parameters (from the original) of mean pore area, pore 
perimeter and nearest neighbour distance.  * Observed population changes 
are a result of different seasons and changes in structural sampling 
regimes. ...................................................................................................159 

 
Table 6.1:  Mean soil structure variation over the evolution of the seedbeds in both 

soil type (sites) and in response to power harrowing.  Images 
representative of DDR treatment at both locations, white represents pore 
space........................................................................................................197 

 
Table 6.2:  Mean soil structure variation over the evolution of the seedbeds in both 

soil type (sites) and in response to power harrowing.  Images 
representative of DPDR treatment at both locations, white represents pore 
space........................................................................................................203 

 
 

List of Figures 

Figure 1.1:  Key mechanisms associated with seedbed preparation and soil-plant 
interactions.  We hypothesise soil structure should also be included as a 
primary influencing factor in plant establishment. .....................................4 

 
Figure 1.2:  Soil water retention curve (a) showing the relationship with matric 

potential and holding capacity.  (b) General soil water content 
relationships with soil texture (Figure from Fitzpatrick, 1986). .................7 

 
Figure 1.3:  Cultivation equipment; Mouldboard plough attached to tractor (a) and soil 

surface inversion (b); Disc harrow  (c) and the cultivation effect upon the 
soil (d); Power harrow in action (e) and the effect upon the soil surface 
with uniform compact (f) and level seedbeds (g). ....................................22 

 
Figure 1.4: Cultivation equipment; Spring tine both in action (a) and the effect upon 

the soil surface(b) and the shape of the forward facing tine with curved 
spring action (c); Drilling and the effect upon the soil (d) and seeding 
groves (e & f); Cambridge roller and the compaction / consolidation 
effects upon the soil (g & h)......................................................................24 

 
Figure 1.5:  Representation of the main soil structure units / aggregates (Figure from 

Fitzpatrick, 1986). .....................................................................................29 
 
Figure 1.6:  X-ray Computed Tomography scales of resolution and image acquisition 

through to analysis and 3-D visualisation applications for quantifying soil 
structure.....................................................................................................33 

 

 xii



Figure 1A.1:  Images of packed columns in a random distribution (a).  b) Oil seed 
rape within a clay loam at 28 days post seeding.  c) Barley within a clay 
loam at 28 days post seeding.....................................................................39 

 
Figure 1A.2:  Diagram showing the method of soil shear strength calculation from 

compaction of the three soil types (clay loam =▲; sandy loam = ■; loamy 
sand = ◊) used within the glasshouse experiment.  Highlighted area shows 
region of values recorded within literature (Schjønning and Rasmussen, 
2000).  Circular highlights show regions of high (50-80 kPa) and low (0-
25 kPa) soil strength used within this experiment. ...................................40 

 
Figure 1A.3:  Shear strength condition changes over time in response to crop a) barley 

and b) oil seed rape. ..................................................................................44 
 
Figure 1A.4: Image selection of barley cores and soil texture / structure differences. B 

= field aggregates; F = < 2mm aggregates; H = high strength (50-80 kPa); 
L = low strength (0-25 kPa). .....................................................................64 

 
Figure 1A.5:  Porosity variation between treatment and crop type.  High = High 

strength (50-8 kPa); Low = Low strength (0-25 kPa); Fine = < 2mm 
aggregates; Bulk = Field aggregates representative of bulk soil condition.
...................................................................................................................65 

 
Figure 1A.6: Spring tine cultivation in the creating of a seedbed (a ) & tine shape (b) 

and rolling equipment (c) used in the preparation of the spring seedbeds.
...................................................................................................................68 

 
Figure 1A.7:  Penetration resistance variation over the evolution of the seedbeds 

(prior to cultivation = ◊; after cultivation = ■; emergence = ▲; 
establishment = ●). A) wintered, B) wintered and rolled, C) spring tine 
and rolled and D) spring tine.  Error bar depicts s.e.d. .............................70 

 
Figure 1A.8:  An example of macro CT scan showing the evolution in seedbed soil 

structure of a spring tine and rolled treatment from prior to cultivation 
(left) through to establishment (right).......................................................72 

 
Figure 1A.9: Macro porosity variation over time as a result of cultivation differences. 

(80-160 mm no error bar as unreplicated) ................................................73 
 
Figure 1A.10:  Macro pore area variation over time as a result of cultivation 

differences. (80-160 mm no error bar as unreplicated).............................74 
 
Figure 1A.11:  Imaging and binary quantification of impregnated soil blocks after 

cultivation.  left: spring tine treatment.  right: wintered treatment.  White  
= pore space. .............................................................................................76 

 xiii



Fig. 1. Penetration resistance (MPa) with depth, showing the differences in soil
penetration resistance between (a) disc treatments and (b) plough
treatments; (1) prior to cultivation, (2) after cultivation, (3) emergence
and (4) pre-winter establishment. Bars depict S.E.D., 143 d.f.................82

 
Fig. 2. Soil shear strength variation over time: (a) disc treatments, (b) plough

treatments, (c) effect of power harrowed cultivation on disc plots and (d)
effect of power harrowed cultivation on ploughed plots. Date of
cultivation taken as 0 days. Bars depict S.E.D., 23 d.f. ...........................83

 
Fig. 3. Soil water content variation over time: (a) disc treatments, (b) plough

treatments, (c) effect of power harrowing, (d) effect of rolling. Date of
cultivation taken as 0 days. Bars depict S.E.D., 23 d.f. ...........................85

 
Fig. 4. Soil bulk density variation overtime: (a) disc treatments and (b) plough

treatments. Date of cultivation taken as0days. Bars depict S.E.D., 23 d.f 85
 
Fig. 5.  Plant no. per m2 over time within (a) disc treatments, (b) plough treatments,

(c) effect of power harrowing and (d) effect of rolling. Bars depict S.E.D.,
23 d.f. ........................................................................................................85

 
Fig. 6. Validation of modelled relationships between soil physical properties and crop

establishment. Validation was conducted over two soil types a clay loam
(∆) and sandy loam (□) as well as different environmental conditions to
the data in which the model was created. The three models created, (a) Eq.
(1), (b) Eq. (2) and (c) Eq. (3), account for varying degrees of variation, with
the determined best fit model as (c) due to a reduced over prediction. .........86

 
 

Figure 3.1:  Water release curve for the two soil textures (Table 3.1), data fitted to the 
Van Genuchten-Maulem (1980) model. Clay Loam = ▲; Sandy loam = ■. 
Data courtesy of Morris (2004).................................................................94 

 
Figure 3.2:  Morphological analysis of seedbed evolutionary changes between 

primary treatments are shown.  A) Primary and rolled.  B) Primary and 
power harrowed.  C) Primary, power harrowed and rolled. .....................98 

 
Figure 3.3:  Changes in soil macro structure of A) porosity and B) average pore size 

mm2, due to cultivation influences 1) primary cultivation.  2) power 
harrowing (PH).  3) rolling.  Figures show mean variation at each time 
series evolution of the seedbeds, P = prior to cultivation, A = after 
cultivation, E = Emergence, T = establishment, F = spring establishment, 
and O = mean variation across the time series.  Error bars in s.e.d ........102 

 
Figure 3.4: Pore size distribution after cultivation a. Disc treatment. b. Plough 

treatment, with either 1) drill and roll. 2) power harrow and drill. 3) power 
harrow, drill and roll.  From 0-70mm soil depth at the macroscale, 
expressed as percentage of total image area.  Error bars in s.e.d............104 

 

 xiv



Figure 3.5: Pore size distribution at establishment a. Disc treatment. b. Plough 
treatment, with either 1) drill and roll. 2) power harrow and drill. 3) power 
harrow, drill and roll.  From 0-70mm soil depth at the macroscale, 
expressed as percentage of total image area.  Error bars in s.e.d............105 

 
Figure 3.6:  Mean variation in pore size distribution coefficient of uniformity.  A) 

Mean variation of primary application and rolling.  B) Mean variation of 
primary application and power harrowing.  C)  Mean variation of primary 
application, power harrowing and rolling. Figures show mean variation at 
each time series evolution of the seedbeds, P = prior to cultivation, A = 
after cultivation, E = Emergence, T = establishment, F = spring 
establishment, and O = mean variation across the time series.  Error bars 
in s.e.d .....................................................................................................107 

 
Figure 3.7:  Correlations between establishment and increases in pore space of soil 

macro structure........................................................................................109 
 
Figure 3.8:  Comparison of SQE model output for best fit models within (A) fitted 

data and (B) validation data, and the changes to model predictability from 
(1) physical input to (2) physical and macro porosity input. Validation was 
conducted over two soil types a clay loam (∆) and sandy loam (□) as well 
as different environmental conditions to the data in which the model was 
created.  Also note that structural additions in the validation are at 
difference scale of resolution to the fitted data.  * Population change due 
to sample logistics...................................................................................111 

 
Figure 3.9: Compression stress regime which causes increased porous architecture 

under rolled cultivation applications.......................................................114 
 
Figure 4.1:  Images show Ultra Violet imaging of resin impregnated soil blocks.  i) 

Copy stand, camera and UV light source set-up.  ii) Florescent soil block 
surface.  iii) Example of good impregnation and imaging of soil surface.
.................................................................................................................126 

 
Figure 4.2:  Image manipulation of resin impregnated soil block. ............................128 
 
Figure 4.3: Seedbed evolutionary changes between primary treatments.  A) Primary 

and rolled.  B) Primary and power harrowed.  C) Primary, power 
harrowed and rolled. (white = pore space) see section 4.3.1 for 
explination...............................................................................................130 

 
Figure 4.4:  Mean porosity variation between secondary applications (NR = Rolled, 

SN = Power harrowed, SR = Power harrowed and rolled) at each time 
period a) Prior to cultivation, b) After cultivation, c) Emergence, d) 
Establishment, e) Spring Establishment. Error bars represent s.e.d .......131 

 
Figure 4.5:  Mean pore size (mm2) variation between secondary applications (NR = 

Rolled, SN = Power harrowed, SR = Power harrowed and rolled) at each 
time period a) Prior to cultivation, b) After cultivation, c) Emergence, d) 
Establishment, e) Spring Establishment. Error bars represent s.e.d .......134 

 xv



 
Figure 4.6: Mean ECD (mm) interaction between primary and secondary applications 

(NR = Rolled, SN = Power harrowed, SR = Power harrowed and rolled) at 
each time period a) Prior to cultivation, b) After cultivation, c) 
Emergence, d) Establishment, e) Spring Establishment. Error bars 
represent s.e.d..........................................................................................136 

 
Figure 4.7: Mean pore perimeter (mm) variations effected by secondary cultivation at 

a) after cultivation (P = 0.012) b) spring establishment (P = 0.005). (NR = 
Rolled, SN = Power harrowed, SR = Power harrowed and rolled). Error 
bars represent s.e.d ..................................................................................138 

 
Figure 4.8: Mean interactions over time between primary and secondary cultivation 

on pore perimeter (mm). (NR = Rolled, SN = Power harrowed, SR = 
Power harrowed and rolled). Error bars represent s.e.d..........................138 

 
Figure 4.9: Pore size distribution of Disc + Drill + Roll seedbed evolution at stages a. 

Prior to cultivation. b. After cultivation. c. Emergence. d. Establishment. 
e. Spring Establishment. f. mean values over time.    Error bars represent 
s.e.d .........................................................................................................140 

 
Figure 4.10: Pore size distribution of Plough + Drill + Roll seedbed evolution at 

stages a. Prior to cultivation. b. After cultivation. c. Emergence. d. 
Establishment. e. Spring Establishment. f. mean values over time.      
Error bars represent s.e.d.........................................................................141 

 
Figure 4.11: Pore size distribution of Disc + PH + Drill seedbed evolution at stages a. 

Prior to cultivation. b. After cultivation. c. Emergence. d. Establishment. 
e. Spring Establishment. f. mean values over time.      Error bars represent 
s.e.d .........................................................................................................142 

 
Figure 4.12: Pore size distribution of Plough + PH + Drill seedbed evolution at 

stages a. Prior to cultivation. b. After cultivation. c. Emergence. d. 
Establishment. e. Spring Establishment. f. mean values over time.      
Error bars represent s.e.d.........................................................................143 

 
Figure 4.13: Pore size distribution of Disc + PH + Drill + Roll seedbed evolution at 

stages a. Prior to cultivation. b. After cultivation. c. Emergence. d. 
Establishment. e. Spring Establishment. f. mean values over time.      
Error bars represent s.e.d.........................................................................144 

 
Figure 4.14: Pore size distribution of Plough + PH + Drill + Roll seedbed evolution 

at stages a. Prior to cultivation. b. After cultivation. c. Emergence. d. 
Establishment. e. Spring Establishment. f. mean values over time.      
Error bars represent s.e.d.........................................................................145 

 
Figure 4.15:  Mean PSDcu variation between secondary applications (NR = Rolled, 

SN = Power harrowed, SR = Power harrowed and rolled) at each time 
period a) Prior to cultivation, b) After cultivation, c) Emergence, d) 
Establishment, e) Spring Establishment.    Error bars represent s.e.d ....146 

 xvi



 
Figure 4.16:  Changes in PSDcu as a result of primary cultivation.  Figures show mean 

variation at each time series evolution of the seedbeds, P = prior to 
cultivation, A = after cultivation, E = emergence, T = establishment and F 
= spring establishment.  Error bars in s.e.d.............................................147 

 
Figure 4.17:  Mean variation in nearest neighbour distance (mm) secondary 

applications (◊= Rolled, □ = Power harrowed, ∆ = Power harrowed and 
rolled) at each time period a) Prior to cultivation, b) After cultivation, c) 
Emergence, d) Establishment, e) Spring Establishment and f) mean 
variation over time. .................................................................................148 

 
Figure 4.18:  Mean treatment regressions after cultivation of treatment a) significant 

(P <0.01) correlation between bulk density and porosity, b) significant (P 
<0.05) correlation between shear strength and PSDcu.  Both relationships 
were showing the opposite to expected relationship.  (NR = Rolled, SN = 
Power harrowed, SR = Power harrowed and rolled). .............................149 

 
Figure 4.19:  Relationships observed at emergence; a) significant (P <0.01) 

correlation and regression between bulk density and pore perimeter 
moisture content regressions; b) significant relationship (P <0.05) between 
moisture content and pore elongation.   Shear strength relationships; c) 
significant correlation (P <0.01) and regression with pore area, d) 
significant correlation (P <0.05) and regression with ECD, e) significant 
correlation (P <0.01) and regression with nearest neighbour distance.  (NR 
= Rolled, SN = Power harrowed, SR = Power harrowed and rolled). ....151 

 
Figure 4.20:  Mean treatment relationships at establishment a) significant (P <0.01) 

regression between penetration resistance and porosity, b) significant (P 
<0.01) regression between penetration resistance and PSDcu.  
Correlations at spring establishment c) significant (P <0.05) regression 
between bulk density and ECD.   (NR = Rolled, SN = Power harrowed, 
SR = Power harrowed and rolled)...........................................................152 

 
Figure 4.21:  Significant (P <0.01) regression between crop establishment (numbers 

per m2) and soil porosity (%), showing a significant decrease with a 10% 
increase in porosity %.   (NR = Rolled, SN = Power harrowed, SR = 
Power harrowed and rolled)....................................................................152 

 
Figure 4.22:  Significant (P <0.05) regressions between crop establishment (numbers 

per m2) and soil structural properties a) average pore size, b) PSDcu, c) 
elongation and  d) ECD.   (NR = Rolled, SN = Power harrowed, SR = 
Power harrowed and rolled)....................................................................153 

 
Figure 4.23:  Significant (P <0.05) regression between porosity and crop yield, 

showing a significant drop in crop yield with an 11 % increase in soil 
porosity.   (NR = Rolled, SN = Power harrowed, SR = Power harrowed 
and rolled). ..............................................................................................153 

 

 xvii



Figure 4.24:  Comparison of, fitted data, previous best fit model (A) with model 
including macro soil structure (B) and the new improved model 
containing meso scale structural elements (c). * Population (6) change due 
to sample logistics...................................................................................157 

 
Figure 4.25:  Comparison of SQE model output for best fit models within the 

validation data, and the changes to model predictability from (a) physical 
input to (b) physical and macro porosity input (c) physical and meso 
structural attributes . Validation was conducted over two soil types, a clay 
loam (∆) and sandy loam (□) as well as different environmental conditions 
to the data in which the model was created.  Also note that structural 
additions in the validation are at difference scale of resolution to the fitted 
data.  * Population (12) change due to sample logistics. ........................158 

 
Figure 5.1: Penetration resistance (MPa) with depth, showing the differences in soil 

penetration resistance between (a) clay loam and (b) sandy loam, (1) Prior 
to cultivation, (2) After cultivation, (3) Emergence and (4) Pre-winter 
establishment.  Error bars depict S.E.D., 71d.f.......................................172 

 
Figure 5.2: Variation in soil shear strength over time. a) Effect of cultivation on a clay 

loam.  b) Effect of cultivation on a sandy loam.  c) Effect of power 
harrowed cultivation on clay loam.  d) Effect of power harrowed 
cultivation on sandy loam.  Date of cultivation taken as 0 days.  Error bars 
depict S.E.D., 11 d.f. ...............................................................................173 

 
Figure 5.3: Variation in soil water content over time. a) Clay loam.  b) Sandy loam.  

Date of cultivation taken as 0 days.  Error bars depict S.E.D., 11 d.f.....174 
 
Figure 5.4: Variation in soil bulk density over time. a) Clay loam.  b) Sandy loam.  

Date of cultivation taken as 0 days.  Error bars depict S.E.D., 11 d.f.....175 
 
Figure 5.5: Plant number per m2 over time within a) Clay loam.  b) Sandy Loam.  1) 

Effect of treatments.  2) Effect of power harrowing.  3) Effect of rolling.  
Error bars depict S.E.D., 11 d.f. ..............................................................176 

 
Figure 5.6: Establishment relationships with a) Clay Loam.  b) Sandy loam.  1) Shear 

strength.  2) Water content......................................................................178 
 
Figure 5.7: Relationship between soil water and bulk density in both; a) Clay Loam.  

b) Sandy loam. ........................................................................................178 
 
Figure 5.8: Yield variation between treatment applications of; NN = no secondary or 

rolling; NR = no secondary but rolled; SN = secondary but not rolling; SR 
= secondary and rolled.  Error bars depict S.E.D., 11 d.f. ......................179 

 
Figure 5.9: a) Relationship between bulk density and crop yield in Clay Loam.  b) 

Relationship between yield and penetration resistance within the Sandy 
loam. At +7 days post drilling.................................................................180 

 

 xviii



Figure 5.10: Percentage variation from average monthly rainfall as a result of adverse 
weather conditions between October 2006 and September 2007 (Figure 
courtesy of Tim Payne). ..........................................................................182 

 
Figure 6.1:  X-ray computed tomography diagram of set-up and the effect of beam 

hardening (a) due to faster x-ray and the correction applied using copper 
filters (b) in preventing beam hardening.................................................191 

 
Figure 6.2:  Cross section of soil sample showing X-ray beam locations at 20, 30 and 

40 mm from base of sample....................................................................192 
 
Figure 6.3:  Image manipulation of X-ray CT soil block images. .............................193 
 
Figure 6.4: Seedbed evolutionary changes between secondary cultivation (power 

harrowing, PH) and soil texture (A) Clay loam; (B) Sandy loam.  (White = 
pore space) See section 6.3.1 for detailed description. ...........................194 

 
Figure 6.5: Mean porosity variation between secondary cultivation and site at each 

time period a) Clay Loam, b) Sandy Loam.  Error bars represent s.e.d..196 
 
Figure 6.6: Mean pore size (mm2) variation between secondary cultivation and site at 

each time period a) Clay Loam, b) Sandy Loam.  Error bars represent 
s.e.d. ........................................................................................................198 

 
Figure 6.7: Mean ECD (mm) variation between secondary cultivation and site at each 

time period a) Clay Loam, b) Sandy Loam.  Error bars represent s.e.d..199 
 
Figure 6.8: Mean pore perimeter (mm) variation between secondary cultivation and 

site at each time period a) Clay Loam, b) Sandy Loam.  Error bars 
represent s.e.d..........................................................................................202 

 
Figure 6.9:  Pore size distribution of non-power harrowed plots of a) Clay loam and b) 

Sandy loam at key seedbed evolution stages of 1) prior to cultivation; 2) 
after cultivation; 3) emergence; 4) establishment.  Error bars represent 
s.e.d. ........................................................................................................204 

 
Figure 6.10:  Pore size distribution of power harrowed plots of a) Clay loam and b) 

Sandy loam at key seedbed evolution stages of 1) prior to cultivation; 2) 
after cultivation; 3) emergence; 4) establishment.  Error bars represent 
s.e.d. ........................................................................................................205 

 
Figure 6.11: Mean PSDcu variation between secondary cultivation and site at each 

time period a) Clay Loam, b) Sandy Loam.  Error bars represent s.e.d..206 
 
Figure 6.12: Mean variation in nearest neighbour distance (mm) between secondary 

cultivation (◊ = non-power harrowed, □ = Power harrowed) and site 1) 
Clay Loam and 2) Sandy Loam at each time period a) Prior to cultivation, 
b) After cultivation, c) Emergence and d) Establishment.......................207 

 

 xix



Figure 6.13: Mean regressions after cultivation (□ = clay loam, ∆ =sandy loam).  a) 
Significant (P < 0.05) correlation between water content and nearest 
neighbour distance; b) Significant (P < 0.05) correlation between water 
content and pore size; c) Significant (P < 0.05) correlation between soil 
resistance and pore elongation. ...............................................................208 

 
Figure 6.14: Mean site regressions at emergence (□ = clay loam, ∆ =sandy loam).  a) 

Significant (P < 0.05) correlation between water content and nearest 
neighbour distance; b) Significant (P < 0.05) correlation between water 
content and ECD; c) Significant (P < 0.05) correlation between soil 
resistance and pore perimeter; and at establishment d) significant (P < 
0.05) correlation between water content and nearest neighbour distance 
the reversal of previous periods. .............................................................209 

 
Figure 6.15: Significant regression between crop establishment (per m2) with 

structural properties; porosity over time a) after cultivation (P < 0.05); b) 
emergence (P < 0.01) and c) establishment (P < 0.05); and d) NND (P < 
0.05) (□ = clay loam, ∆ =sandy loam). ...................................................210 

 
Figure 6.16: Significant (P < 0.05) regressions between crop yield (t ha-1) and 

structural properties; a) porosity; b) ECD and c) pore perimeter (□ = clay 
loam, ∆ =sandy loam). ............................................................................211 

 
Figure 7.1:  Seedbed collapse associated with soft ridge degradation in heavy rainfall 

events resulting in the infilling of inter-aggregate pore space and a 
reduction in soil macro porosity and pore area over time.  A)  Close up of 
soil disturbance associated with rolling resulting in surface cracking and 
soft ridge formation at cultivation.  B) Wide view of rolled effect at 
cultivation with perfect ridges.  C)  Image shows the same seedbed post a 
heavy rainfall event, resulting in soft ridge collapse and infilling of pores.
.................................................................................................................224 

 
Figure 7.2:  Meso scale binary images showing the effect of compaction (in particular 

rolling) effects in the creation of surface cracking and the development of 
vertical pores in a zone of disturbance.  Treatments shown: A) Plough + 
Power Harrow + Rolled; B) Plough + Power harrow.  White = pore space.
.................................................................................................................227 

 
Figure 7.3:  Dynamic range of soil conditions optimum for crop establishment with 

severe decreases in establishment and yield associated with excessive 
compaction and soil loosening................................................................229 

 
 

 

 

 xx



Chapter 1:  General Introduction 

 

1.1 Rationale 

 

Seedbed preparation is crucial for the growth of seedlings, plant establishment and the 

final yield of crops.  As such, a great deal of consideration is needed to determine the 

most suitable conditions for crop growth.  An important aspect of this is the physical 

characteristics of the seedbed such as soil strength, bulk density, water content, 

aggregate size distribution, water retention, aggregate stability, temperature, oxygen 

and nutrient availability.  The soil-plant system is extremely complex and previous 

work has shown the importance of soil physical properties in determining 

germination, crop establishment and yield (Awadhwal and Thierstein, 1985; Jakobsen 

and Dexter, 1987; Juma, 1993; Guérif et al., 1999; Aubertot et al., 1999; Dexter, 

2004).  However, no studies to date have concentrated on the direct effect of 

cultivation equipment on the changes to soil structure as a determinate of crop 

establishment and crop growth.   

 

Cultivation prepares soil for seeding by assisting the decomposition of organic matter, 

aeration of the soil, weed control, drainage and most importantly seedbed preparation.  

Whether cultivation of the soil improves its condition for seed germination, 

establishment and yield has been debated, and in many cases it has been shown that 

excess cultivation can have detrimental effects on establishment (Arshard et al., 1999; 

Ball et al., 1994; Ball-Coelho et al., 1998; Berntsen and Berre, 2002; Czyz, 2004; 

Díaz-Zorita et al., 2004; Scott et al., 2005; Servadio et al., 2005; Unger, 1979; Vos 

and Kooistra, 1994).  
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Seedbed practices are therefore key as cultivation implements impose varying degrees 

of alterations to both the surface soil and sub-soil.  As such it is crucial to determine 

the best practice for seedbed preparation to maximise crop establishment and yield.   

 

This research aims to understand these complex interactions by looking at how 

specific soil physical properties, in particular soil structure, affects crop establishment 

using image analysis (Ringrose-Voase, 1987; Commins et al., 1991; Glasbey et al., 

1991; McBratney et al., 1992; Kokko et al., 1993; Heijs et al., 1996; Vogel and Roth, 

2001; Pierret at al., 2002; Mooney et al., 2007).  This research evaluates the 

effectiveness of using image analysis of soil structure in the assessment of seedbed 

preparation for cereal crop production, particularly focusing on the use of winter 

wheat (Triticum aestivum).  Key issues include; the characterisation of the soil 

physical properties of the prepared seedbeds; the characterisation of the porous 

architecture induced by cultivation practices at a variety of spatial resolutions; linking 

the physical and structural condition of soil to crop establishment and yield; and the 

differences between soil texture and the response of cultivation to soil structure and 

establishment. 

 

 

 

 

 

 

 

 

 2



1.2 Literature review 

 

A seedbed is defined as a loose shallow surface layer, tilled during seedbed 

preparation with a basal layer underneath which is untilled and usually firm 

(Håkansson et al, 2002).  A seedbed is required to provide a medium for germination, 

root growth, emergence and establishment (Arvidsson et al, 2000), as such this covers 

a wide range of determinate factors. 

 

The following sections define seedbed attributes, consider the effect of seeding on 

establishment (Section 1.2.4), describe the seedbed structural effects on establishment 

in relation to soil strength (Section 1.2.3.4), aggregate size variation (Section 1.2.3.7), 

stability and crusting (Section 1.2.3.8), discuss the need for and types of cultivation 

and the effect these have on establishment (Section 1.2.5; 1.2.6), describe the use of 

soil structural visualisation in this context and hypothesise the optimum seedbed 

condition (Section 1.2.7).  This thesis focuses on the structural attributes of soil in the 

determination of best seedbed development practices, therefore chemical and 

biological factors are not considered here as this was not the aim of this research, but 

their influence is noted in the development of soil structure and the interactions they 

produce under field conditions. 

 

1.2.1 Seedbed dynamics 

 

The interactions between soil properties and plant root systems are vitally important 

for a number of considerations ranging from the formation of soil structure, 

rhizosphere biochemistry, root zone development, seedbed quality and germination.  
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The key mechanisms associated with soil structural development and plant 

establishment are listed in Figure 1.1; their interactions creates the vital differences 

between what can be determined as a ‘good’ or ‘bad’ seedbed in terms of maximum 

yield potential. 
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Figure 1.1:  Key mechanisms associated with seedbed preparation and soil-plant interactions.  We 

hypothesise soil structure should also be included as a primary influencing factor in plant 

establishment. 

 

Seedbed quality is affected by a variety of biological, physical and chemical 

influences that are directly or indirectly related to the management practices.  These 

can be defined as either primary or secondary factors (Figure 1.1).  Primary factors 

consist of limiting conditions such as temperature, soil water content, shear strength, 

penetration resistance, oxygen diffusion rates and the depth of seeding.  Secondary 

factors consist of broader aspects such as soil-seed contact, cultivation type, date of 

sowing, location, previous cropping, pests and disease, weather conditions, crop 

residues, row spacing, seeding rates, seed variety, basal layer relative to seed, soil 

condition prior to cultivation (Håkansson and Polgàr, 1984, McWilliam, 1998, 
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Davies, B.D. (pers. comm.), Håkansson et al., 2002, Blake et al., 2003, Lipiec and 

Hatano, 2003, Licht et al., 2004).   

 

1.2.2 Plant establishment 

 

An established plant is defined as a seedling which is sufficiently intact to have the 

expectation of reaching maturity (Bradbeer, 1988).  Germination of a seedling is 

initiated by the presence of water and a sufficient medium which provides warmth 

(optimum 20-25oC) and oxygen diffusion creating aerobic conditions.  A seedling is 

reliant upon stored food within the embryo of a seed until such time as root (radicle) 

and shoot (plumule) development occurs (Soffe, 2003).  Emergence describes post 

germination growth and development at a point in which root and shoot development 

is no longer reliant upon stored food but is in fact autotrophic, often associated with 

the emergence above ground level.  Milthorpe and Moorby (1974) found a wheat 

seedling does not become independent of seed reserves for nutrients until the third 

leaf begins to emerge.  Establishment is achieved once a vegetative state occurs, this 

is when cellular division promotes leaf and stem extension.  Establishment rates are a 

measure of surviving plants either in late autumn or in spring.  Spring Establishment 

accounts for the plants which do not survive the winter i.e. winter kill. Higher 

susceptibility to winter kill occurs within some species and / or regions of the United 

Kingdom (such as Scotland – due to heavy frosts etc.).  Final yields are a measure of 

the yield achieved at harvest time once crops have developed to maturity. 
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1.2.3 Effects of the seedbed environment on plant establishment 

 

The seedbed environment, determined by strength, water content, temperature, 

aerobic conditions, organic matter and cereal residues play a crucial role in the 

determination of plant health and ultimately yield. 

  

1.2.3.1  Soil water content and potential 

 

Soil water potential is the pressure at which water in soil is held and is directly related 

to the soil structural and textural conditions of a particular soil.  Pardo et al. (2000) 

found the spatial distribution of roots and plant water uptake was strongly affected by 

soil structural conditions and by the weather conditions which persist at the time.  Soil 

water content plays a key role in the development of seedlings, as they are required to 

reach 35-45% of grain dry weight before germination will occur (Blake et al., 2003). 

 

Soil water potential is also responsible for a number of potential yield consequences 

with problems occurring from a well drained soil resulting in drought, and the 

opposite, of a poorly drained soil resulting in very high saturation levels.  Both cause 

wilting damage to crops and a loss in overall yields.  Optimum soil water retention 

(also referred to as the available water capacity) is the water held between field 

capacity (following 48 hours drainage from saturation -15 kPa) and permanent wilting 

point (-1.5 MPa) (Russell, 1973; Fitzpatrick, 1986)(Figure 1.2).  Low soil water 

potentials act as a signal inducer within the plants resulting in the stunting of growth 

(Passioura, 2002) and reduction in yield, and continued decreases in water potentials 

result in the permanent wilting point being passed at which crops will fail.  
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The ability of soil to transmit water is dependent upon the interlink between pore 

arrangement, size and geometry i.e. structure (Connolly, 1998).  These interlinks, as 

Connolly (1998) states, can be classed by the size of pores which range from 0.2µm to 

10mm or more in diameter.  Pores sized between 0.2-30µm are important for storing 

water and uptake by plants whereas pores sized between 30-300µm are important for 

infiltration but do not retain water for use by plants.  The soil water retention 

characteristic is measured using a water release curve, determined by the loss in water 

content (on a drying curve) from a particular pore size range at degrees of pressure 

(suction) on a sand, clay or pressure membrane table (Figure 1.2).  

 (A) (B) 

 

 

 

 

 

 

 

 

Figure 1.2:  Soil water retention curve (a) showing the relationship with matric potential and holding 

capacity.  (b) General soil water content relationships with soil texture (Figure from Fitzpatrick, 

1986). 

 

Soil water content conditions of the soil also affect (Arvidsson et al, 2004; Munkholm 

and Schjønning, 2004) the appropriate time for particular cultivation equipment and 

drilling.  Soil types have a ‘friable range’, outside of this cultivation is ineffective or 

0.0
0.0

- 2000

0.5

Matric  Potential (Ψ) (kPa)

V
ol

um
e

 W
a

 C
o

t (
θ

m
-3

tr
ic

te
r

nt
en

) m
3

Available Water Capacity (AWC)

Permanent 
Wilting Point 
(PWP)

Field Capacity 
(FC)

-15 -1500
0.0

0.0
- 2000

0.5

Matric  Potential (Ψ) (kPa)

lu
m

e
 W

a
 C

o
t (
θ

m
-3

Soil 
moisture 
deficit 

) m
3

nt
en Available Water Capacity (AWC)

Permanent 
Wilting Point 
(PWP)

Field Capacity 
(FC)

-15 -1500

te
r

tr
ic

V
o

 7



damaging to the soil structure.  Both dry and saturated soils can result in damage to 

soil horizons as a result of structurally induced changes resulting in a loss of 

productivity and yields. 

 

1.2.3.2  Soil temperature 

 

Soil temperature, the ability to retain heat, as with soil water content, is directly 

related to soil texture and weather conditions.  Plant growth or germination is 

therefore restricted to an optimum temperature range.  However optimal temperature 

for germination is species dependent (McWilliam, 1998).  Optimum temperature 

ranges for most crops are within 20-25 oC (Blake et al., 2003), however, germination 

will start at temperatures of 5 oC (Fitzpatrick, 1986) but will cease when temperatures 

are excessively high resulting in loss of water.  Optimum germination temperatures 

for Triticum aestivum have been determined to be between 15-31 oC (Mayer & 

Poljakoff-Mayber, 1989).  Licht and Al-Kaisi (2004) found that changes in soil 

temperature due to tillage was highly dependent on air temperature throughout the day 

and that the maximum soil temperature was reached at the times of maximum air 

temperature, at around 12:00-16:00h. 

 

1.2.3.3  Soil texture 

 

Blake et al. (2003) reported texture accounted for 11.6% of variation in autumn 

establishment and 4.9% for spring establishment.  They also suggested sandy soils 

had better establishment than other soils (90% opposed to 65% in loam and clay 

textured soils), due to friability over wide ranges of water contents, good soil/seed 

contacts and lower soil strengths.   Blake et al. (2003) also suggested soil stability as a 
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result of texture is a key factor.  This was also determined by Wakindiki & Ben-Hur 

(2002) who found soil texture was very influential upon soil stability, and thus 

crusting potentials, infiltration rates and erosion.  They determined this was a result of 

both texture and chemical composition, of the minerals which make up the texture, 

with an increasing stability in soils with ≥20% clay and those with a higher proportion 

of kaolinite.   

 

1.2.3.4  Soil strength 

 

The effect of soil strength and penetration resistance on establishment, both in terms 

of the development of root systems and the emergence to establishment of crops has 

been well researched (e.g. Gregory, 2006).  A number of publications have suggested 

optimum conditions for establishment, Jakobsen and Dexter (1987) found for wheat 

that soil strength must be: <3.0MPa for germination, <2.3MPa for root elongation, 

<1.7MPa for coleoptiles and <0.8MPa for emergence.  Nasr and Selles (1995) 

provided a guideline of <1.5-1.4MPa for soil strength and penetration resistance 

limitations on establishment.  Pardo et al. (2000) found that soil strength >3MPa 

became a limitation to root development and establishment of chickpea, whereas 

Bengough & Mullins (1990) stated that root growth is hindered at levels above 1MPa 

and is non-existent at 5MPa. 

 

Shear strength can be determined using a shear vane which records lower values 

compared to penetration resistance due to shallower assessment between 0 and 80 

mm.  Schjønning and Rasmussen (2000) found shear strength was no higher than 

95kPa (silt loam) across direct drilled and mouldboard ploughed soils of silt loam, 
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sandy loam and a sand.  Ball et al. (1997) found soil shear strength was increased by 

up to three times under wheeled traffic than zero-traffic. 

 

1.2.3.5  Bulk density 

 

Dense soils and the associated high strength limits root growth due to the restriction 

of large mechanical resistance and reduced oxygen supply (Gregory, 2006).  Bowen 

(1981) stated root impedance within soils occurs between 1.55 to 1.85 Mg m-3 

depending upon soil texture.  Other studies also suggest both high and low bulk 

density can result in reduced crop establishment (Masle and Passioura, 1987).  Nasr 

and Sellers (1995) found the most rapid and complete emergence was achieved with 

densities <1.2 Mg m-3. 

 

Table 1.1: Typical bulk density and porosity values for selected agricultural soils. (Soffe, 2003) 

Bulk Density (Mg m-3) Porosity (%) Description 

0.5 - 0.8 >70 Loose, uncompacted topsoils. Peats and organic soils. 

~ 1.0 60-65 Permanent pasture, woodland soils, well structured. 

~ 1.5 45 Compacted, root penetration difficult. 

~ 2.0 25 Dense, no root growth. 

 

Heavy cultivation equipment or multiple pass management has been linked with 

severe compaction resulting in high mechanical resistance within soils (Soane et al., 

1982; Wu et al., 1997; Alakukku, 1996).  Munkholm et al. (2003) identified no till 

systems severely increased bulk density and resistance of soils over a three year 

period, due to the passing of drill equipment.  Tullberg (1990) estimated over 30% of 

agricultural soil is damaged by the tyres of machinery even in zero tillage systems.  
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Ball et al. (1997) found bulk density was 15 % less in soils under conventional and 

reduced systems than short term zero tillage, but that there was no significant 

difference between conventional and reduced tillage. 

 

1.2.3.6  Oxygen diffusion 

 

Oxygen diffusion in soil is crucial for seed development and good health in 

established crops.  During germination if insufficient oxygen supply reaches the seed, 

resulting in anaerobic conditions, this can generate toxic conditions for germinating 

seedlings (Bradbeer, 1988).  Similarly, during wet periods soil can readily become 

saturated, expelling air from pores, again resulting in anaerobic conditions within a 

seedbed (Brady & Weil, 1996).  This can be detrimental both at germination and once 

the crop is established.  Limiting oxygen supply to roots may damage them 

permanently thus limiting further plant growth or possibly leading to plant death.  

Singh and Singh (2003) observed 11 % mortality in seedling under waterlogged 

conditions during germination.  Blackwell and Wells (1983) found that levels of 

oxygen diffusion rates < 121 ng cm-2 min-1 resulted in a reduction in root elongation 

while levels < 7.8 ng cm-2 min-1 caused root growth to cease.  They also noted that 

reduced oxygen supply resulted in a thickening of root diameter. 

 

1.2.3.7  Aggregate size  

 

The soil aggregate size distribution either directly or indirectly effects establishment, 

and the development of root systems, through restrictions to aeration and water 

content within the soil.  Murungu et al. (2003) found finer aggregate sizes (<1 mm) 
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generally led to a greater final emergence and better seedling growth, due to increased 

soil/seed contact, compared with larger aggregates.  Less than 4 mm was found to be 

the optimum aggregate size for establishment by both Nasr and Selles (1995) and 

Håkansson and Polgàr (1984).  Russell (1973) observed that 1-5 mm size aggregates 

with at least 15 % <250 µm was preferable for establishment, whilst Håkansson et al. 

(2002) found that at least 50 % aggregates at <5 mm was optimum for establishment 

and root development. 

 

1.2.3.8  Soil stability and crusting 

 

Soil stability is crucial for a seedbed.  Unstable seedbeds in terms of aggregates can 

lead to surface capping or crusting.  Crusts form when soil particles are aligned due to 

stability breakdown, which results in the reduction of macroporosity and an alignment 

of homogeneous and less connected macropores parallel to the soil surface (Davies et 

al., 2001; Rousseva et al., 2002).  Crusting can result from a number of factors such as 

low organic matter content, texture, heavy rain both pre and post cultivation and 

heavy machinery (Wiseman et al., 1993).  Crusting can be severely detrimental, 

preventing water and air movements in soil and notably in crop germination and 

emergence if the cap formed before emergence (Rathore et al., 1983; Morrison et al., 

1988; Vandervaere et al., 1997; Davies et al., 2001; Awadhwal & Thierstein, 1985).   

Surface runoff and patchy emergence is also likely as a result of crusting (Robinson & 

Phillips, 2001).  Crust formation is strongly affected by tillage.  Usón and Poch 

(2000) found reduced tillage practices caused thicker and more complex crusting than 

conventional tillage.  Some studies have looked at the possibility of preventing crust 
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formation or increased crusting (such as the addition of gypsum to the soil surface) 

with some moderate success (van der Watt & Claassens, 1990). 

 

1.2.3.9  Soil organic matter 

 

Soil organic matter plays a vital role in soil stability by binding mineral particles into 

aggregates (Tisdall and Oades, 1982).  Soil organic matter is also a contributor to soil 

fertility providing sources of nutrients for crops such as nitrogen, phosphorus and 

sulphur.  Intensively farmed soils have, in recent years, become difficult to manage 

due to falling organic matter contents within the soils (Soffe, 2003).  No till 

management systems have more stable aggregates and increased soil organic matter in 

comparison to conventional tillage practices (Bronick and Lal, 2005).  Similarly, 

Larney et al. (1997) found 2.2 Mg ha-1 less organic matter within conventionally tilled 

soils compared with less intensive cultivation after a 16 year study. 

 

Soils which suffer long-term degradation under intensive agriculture, due to losses in 

soil organic matter levels as it is broken down and taken up by soil fauna and flora 

(Sommerfeldt and Chang, 1985) have severe negative effects on soil organism 

regeneration abilities, resulting in less developed, finer and weaker aggregates, as well 

as reduced pore sizes (Kay, 1990).  Susceptibility to soil physical degradation is 

therefore increased allowing for erosion and surface crusting. Watts et al. (2001) 

observed agricultural soils with high soil quality and SOM should be strong when wet 

and weak when dry.  This allows for the soil to resist structural collapse (i.e. crusting) 

in wet soil conditions, while weaker soil conditions in the dry allow for reduced soil 

resistance and improved root penetration and soil workability.  However, the loss in 
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organic matter as a result of cultivation can degrade a soil to the point at which it 

becomes the opposite, strong when dry and weak when wet, resulting in severe 

structural collapse and increased resistance (Tisdall and Oades 1982; Davies 1985). 

 

1.2.3.10 Crop residue 

 

In 1992, EU legislation (Statutory Instruments No. 1366 – The crop residue (burning) 

regulations, ISBN 0110343662) banned the burning of crop residues due to 

environmental damage.  Crop residues have a significant effect on the seedbed 

environment and crop growth.  Surface residues interfere with cultivation equipment 

and seed drills often resulting in poor drill penetration, seed placement and 

establishment stand (Siemens & Wilkins, 2006).  Studies have shown a link between 

reduced soil seed contact needed for good establishment and surface crop residues 

resulting in decreased populations (Bordovsky et al., 1998).  Surface residue 

breakdown produces toxins which can also be detrimental to crop growth (Harper, 

1985).  However, longer coleoptiles have been shown to improve seedling emergence 

in areas of high surface residue (Rebetzke et al., 2005).  In the same study, Rebetzke 

et al. (2005) also found that high surface residue can result in a delay in 1st leaf 

emergence within the crop.  Large amounts of surface residue increase soil 

macroporosity in near surface zones (Dao, 1996).  Surface residue can also prevent 

soil crusting by protecting the surface from heavy rain drops as well a reduction of 

surface evaporation (Awadhwal & Thierstein, 1985; Børresen, 1999). 
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1.2.4 Effects of seeding on establishment 

 

The development and hindrance to crop establishment is significantly affected by the 

ability of accurate and sufficient drilling of seeds.  Factors such as the date of sowing, 

seeding rate, previous crop, seed variety and depth of seeding (influenced by the 

degree and type of cultivation) all contribute to the environment in which a seedling 

has to develop. 

  

1.2.4.1  Sowing date 

 

Traditionally winter wheat is sown between September and November in the UK, 

however many studies have shown a direct link with delayed sowing and reduced crop 

establishment.  McLeod et al. (1992) observed plant populations decreased by 40-60 

% with a delay from early September to the end of October.  Blake et al. (2003), 

showed establishment decreased from around 70 % in September to early October 

sowings to 60 % in late October and less then 50 % in November and later.  Delayed 

sowing may be associated with the inability to adequately prepare the seedbed for 

seeding due to adverse weather conditions such as heavy rainfall.  Decreased 

establishment is also strongly linked with decreasing soil and air temperatures.  

Establishment decreases rapidly when soil temperatures at 100 mm fall below 8 °C 

(Blake et al., 2003).  An increase in seeding rate is required at later sowing dates to 

allow for reduced establishment.  However, some studies have shown this does not 

fully compensate yield losses in late seeding (McKenzie et al, 2007). 
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1.2.4.2  Seeding rate 

 

Seeding rate is the number or weight of seeds drilled per metre square, this is 

determined by field conditions (i.e. soil type) and the time of year.  Establishment 

percentages drop off rapidly at higher seed rates.  Increased seed rates lead to higher 

competition between plants, thus reducing establishment percentage.  Reduced 

seeding rates allows for greater radiation interception, canopy nitrogen and green area 

per plant; which results in increased grain number per plant (Whaley et al., 2000).  

Spink et al. (2000) found optimum seeding rates for winter wheat in September of 62 

plants per m-2.  However, later sowing dates required higher seeding rates with 

optimum numbers increasing to 93 and 139 plants per m-2 in October and November 

respectively (Spink et al., 2000).  Reduced plant populations are also adept at 

compensatory responses through increased tillering, particularly wheat, with lower 

plant density resulting in similar ear numbers (Lithourgidis et al., 2006). 

 

1.2.4.3  Previous cropping 

 

Previous cropping can be beneficial or detrimental to crop growth and establishment.  

The use of high nutrient capture crops prior to the present crop can result in reduced 

nutrient availability within the soil (Shepherd & Lord, 1996), which will affect the 

crop once seed reserves have been exhausted.   Previous or continued cropping, of the 

same species, can also lead to disease pressures from soil borne diseases such as 

Gaeumannomyces graminis var. tritici (take-all), which affects wheat roots.  Blake et 

al. (2003) reported the establishment of wheat following oats was 79%, potatoes, set-

aside and peas was 66-72% and wheat, rape and beans was 54-60%.  Previous crops 
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can also affect the soil structure such a clover which rapidly enhances the pore space 

of the soil (Holtham et al., 2007; Papadoupoulos et al., 2006). The equipment used in 

seedbed preparation and harvest of the previous crop can also have severe impact 

upon establishment as a result of soil structural damage.   

 

1.2.4.4  Seed variety 

 

The requirements of seeds from a seedbed and the conditions under which they are 

placed vary between genotypes.  Seed varieties are chosen based upon either spring or 

winter variety, the latest possible sowing date and disease resistance.  This is to 

prevent severe frost damage to crops and diseases etc. more resilient varieties provide 

the best chance of establishment.  Blake et al. (2003) stated that incorrect variety 

choice may have minimal effect on establishment but equally this may lead to a 10% 

reduction in establishment. 

 

1.2.4.5  Seeding depth 

 

Sowing depth is critical for seed germination both in terms of distance to soil surface, 

available nutrients and water content.  The depth of sowing is dependent upon seed 

size and availability of soil water content (Soffe, 2003).  In general, sowing aims to be 

deep enough to ensure good coverage and quick emergence but not sufficiently deep 

to prevent full shoot penetration to the surface.  If seeds are sown too shallow this 

may prevent adequate water uptake; the smaller the seed, the shallower the sowing 

due to reduced seed reserves (Soffe, 2003).   Seeding depth can be difficult to control 

and is dependent on the pre-sowing cultivations, if the soil is too unconsolidated this 
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will lead to deep sowing, if too dense then the seeds may not be adequately covered 

(which may result in loss due to pest damage).  Kirby (1993) observed significant 

decreases in emergence and establishment times with an increase in seeding depth as 

well as reduced crop stands.  The prolonged emergence also has implications toward 

crop health.  Kirby (1993) noted the best establishment in wheat was observed at 

sowing depths around 68 mm with good establishment occurring in ranges between 

23-83 mm.  Other studies have suggested 15-40 mm for wheat (Håkansson and 

Polgár, 1984) and 35-40 mm for barley and oats (Håkansson et al., 2002).  Bouaziz 

and Hicks (1990) identified that a depth of 158 mm could be achieved before failure 

to emerge would occur in wheat seedlings.  Bouaziz and Hicks (1990) further suggest 

that crop stand was not totally dependent upon seeding depth but also effected by 

other factors such as seedbed strength / resistance, coleoptile length, soil water 

content and lack of oxygen. 

 

1.2.5 Cultivation 

 

Cultivation can be performed in many different ways from intensive applications to 

reduced, and even zero tillage (drilling only).  The range of equipment available for 

these operations is vast e.g. plough, disc, spring tine, power harrow, Cambridge 

rollers and many more.  This section will concentrate on a selection of these 

apparatus. 
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1.2.5.1  Effect of cultivation 

 

Cultivation must be performed within the ‘friable range’ of the soil type to avoid 

damaging the soil i.e. not during or after heavy rainfall, as this would result in 

compaction and soil smearing.  Excessive cultivation can also damage biological 

activity in soil.  Cultivation processes generally have the following effects; loosening, 

consolidating, breaking, mixing, levelling and inverting.  Each of these can have 

beneficial and detrimental effects upon the seedbed environment for establishment.  

Loose soil is needed for drilling and reduced soil resistance needed for adequate 

germination, and emergence as well as root penetration.  However, loose soil can also 

result in seeds being drilled too deep and reduced soil contact, preventing 100% 

emergence and adequate nutrient and water uptake.  Consolidation is needed in cases 

where the soil is too loose.  However, this can also result in surface and subsoil 

compaction effects which can prevent emergence and root development.  Breaking 

(performed on large dried out clods) is needed for improved soil seed contact but, can 

also result in surface compaction and ponding.  Mixing provides a source of nutrients, 

biological habitats and appropriate fertilizer addition to the soil.  However, this can 

result in increased disease, aeration and reduced soil seed contact.  Levelling is 

needed in some crops for harvest requirements and uniform growth but, can result in 

increased soil strength, resistance and surface ponding.  Inverting, often performed 

by ploughing, is needed for the burial of crop residue and increasing soil seed contact.  

However this can lead to subsoil smearing or slaking resulting in plough pans and 

solute movement issues. 
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1.2.5.2  Cultivation equipment 

 

1.2.5.2.1  Plough 

 

The plough comes in a variety of classes.  For the purpose of this thesis the term 

plough refers to a mouldboard plough (Figure 1.3).  The plough consists of a series of 

mouldboards, forward rake points, vertical plates and tail pieces attached via a leg to 

the coulter frame.  The mouldboards are passed through the soil at a depth at of 

around 300 mm depending upon the speed of cultivation and soil type.  The plough 

inverts the soil while loosening, leaving ridges and furrows across the field.  Good 

ploughing, with level and uniform furrows, can only be achieved if all plough 

components are aligned parallel to each other (Soffe, 2003). 

 

1.2.5.2.2  Disc harrow 

 

The disc harrow consists of two to four adjustable axles each with a number of 

concave discs mounted along its length (Figure 1.3).  Axles are angled for forwards 

motion with front axle discs cutting and throwing soil outwards while rear axle discs 

throw soil inwards (Soffe, 2003).  Discs are passed through the soil roughly at around 

150 mm depth depending upon speed of cultivation and the soil type.  No inversion of 

the soil takes place, thus a mixing of soil and surface residue occurs.  Discs are suited 

to breaking up large clods. 
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1.2.5.2.3  Power harrow 

 

Often used as a form of secondary cultivation, power harrows consist of vertical 

spiked pairs of tines each driven by a series of gears which drives or is driven by 

adjacent gears which results in neighbouring sets of tines contrarotating (Soffe, 2003).  

The movement of the tines is faster than the forward motion of the tractor allowing for 

a pulverising action upon the soil (Figure 1.3).  Power harrows produce fine tilth 

seedbeds which are level and compact.  They also do not bring up subsoil or residue, 

working only at depth of around 120mm. 

 

1.2.5.2.4  Tine 

 

Tined cultivators fall into three groups; deep, medium or shallow working (Davies et 

al., 2001).  Tines can also come in different shapes with different angles from straight 

to curved and either fixed (rigid) or moving (spring) with front boards or crumblers 

attached to mounted sections.  For the purpose of this thesis only shallow working 

tines (more specifically the spring tine) are considered as deep and medium tines are 

often associated with drainage and subsoil work as opposed to seedbed preparation.  

The spring tine (Figure 1.4) is a curved tine which is able to vibrate (due to its shape) 

as the machine passes forwards.  Usually set at a depth between 100-150mm, although 

adjustable to the needs of the field or conditions, the spring tine shatters and breaks 

clods producing a loose soil with smaller clods.  The spring tine is also effective at 

weed removal. 

 

 

 21



 
(a) (b) 

 
(c) (d) 

 
(e) (f) (g) 

 

Figure 1.3:  Cultivation equipment; Mouldboard plough attached to tractor (a) and soil surface 

inversion (b); Disc harrow  (c) and the cultivation effect upon the soil (d); Power harrow in action (e) 

and the effect upon the soil surface with uniform compact (f) and level seedbeds (g). 
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1.2.5.2.5  Drill 

 

Although not technically a cultivation tool, the drill is responsible for seeding of the 

prepared seedbed.  The drill does not perform cultivation but does create soil 

disturbance at drill depth usually between 20 and 80mm where the soil is firstly 

pushed aside in a drill channel created by multiple drill shoots which feed from a 

grain store at a set drilling rate, this is then covered over by rear consolidators 

immediately behind the seed shoot (Figure 1.4). 

 

1.2.5.2.6  Cambridge roller 

 

Used as consolidators or soil compactors, when the soil is too loose or heavily 

clodded, post drilling to achieve greater seed-soil contact and or level surfaces.  

Cambridge rollers are made up of ribbed cast iron wheels on an axle (Figure 1.4), the 

ribbed point of contact with the soil results in disintegrating and compaction of the 

soil (Soffe, 2003).  Extra weight can be added to the roller if required. 

 

1.2.6 Effect of cultivation on establishment 

 

Cultivation creates a soil structure which enables crop establishment and the growth 

of crops.  However, cultivation can cause issues within the soil environment which are 

not conducive to crop establishment and growth such as compaction, crusting, 

ponding, soil degradation and nutrient loss. 
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(a) (b) (c) 

 

 
(e) (f) (d) 

 

(g) (h) 

 

Figure 1.4: Cultivation equipment; Spring tine both in action (a) and the effect upon the soil surface(b) 

and the shape of the forward facing tine with curved spring action (c); Drilling and the effect upon the 

soil (d) and seeding groves (e & f); Cambridge roller and the compaction / consolidation effects upon 

the soil (g & h). 
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1.2.6.1  Compaction 

 

Trafficking by wheeled operations is common to all forms of tillage systems, even 

zero tillage (Tullberg, 1990).  Compaction of the seedbed environment and indeed, at 

depth, is the result of excessive cultivation, heavy tillage machinery and residual 

effects of harvest machinery.  Kay (1990) also states conventional heavy machinery 

causes the collapse and loss of macropore structure and the breakdown of aggregation 

as a result of compacted soil.  This has further implications as Pagliai et al. (2003) 

found decreased porosity caused by tillage was strongly correlated with an increase in 

soil resistance and decreased hydraulic conductivity.  Increased mechanical 

impedance of the soil either by surface compaction or at depth (subsoil) has a direct 

influence on plant growth both in terms of emergence, yield and root development 

(Hassan et al., 2007).  Stirzaker et al. (1996) observed decreased root length, diameter 

and total explored volume with severe increases in soil resistance.  Reduction in crop 

establishment and yield is associated with excessive mechanical impedance (Lipiec et 

al., 1991).  Arvidsson (1998) found a link between soil organic matter in reducing the 

effects of compaction on barley yield where SOM levels were above 50 g kg-1, 

however SOM levels below 30 g kg-1 did not reduce the effect of compaction 

resulting in an 11 % decrease in yield.  Arvidsson (1998) further states that soils with 

high organic matter in field conditions are able to counteract some of the negative 

effects of compaction which emphasises the need for recompaction of loosened soil to 

attain maximum yield. 

 

Gysi et al. (1999) observed differing responses to soil compaction and reduced soil 

quality aspects under different water contents of the soil.  Wet soil was more 
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susceptible to partial loads, whereas dry soils were more susceptible to compaction 

under full loads.  Therefore, timing of tillage in relation to soil water content and 

texture is crucial (‘friable range’) (Håkansson and Lipiec, 2000).  O’Sullivan (1992) 

observed under uniaxial compaction, a susceptibility to clod formation as a result of 

compaction, which would require increased cultivation the following season, 

suggesting the benefit of reduced ground pressure was essential in particular 

conditions.  Horn et al. (1995) describes the formation of dense platy aggregates as a 

response to excessive compaction from repeated wheeling which resulted in 

pronounced horizontal flux of water, and reduced vertical flux, which may cause both 

severe erosion and impede gas exchange. 

 

Tillage-induced subsoil compaction may be alleviated through the use of periodic 

chiselling, deep ploughing, the addition of organic matter and the inclusion of deep-

rooted crops in crop rotations (Hassan et al., 2007).  Hamza and Anderson (2005) 

suggest other methods of compression prevention or remediation; 1) reduced pressure 

by decreasing axle load or increased contact area of wheels to the soil; 2) working 

soils at optimum water content; 3) reduced number of passes of machinery; 4) specific 

traffic routes within fields – controlled traffic; 5) increasing soil organic matter; 6) 

removal of soil compaction through deep ripping along with an aggregating agent; 7) 

crop rotations with strong / deep tap roots; 8) appropriate management for soil / crop 

systems to resist harmful external stresses.  Other approaches of soil protection for 

excessive degradation include the use of single pass or agricultural machines which 

carry out multiple operations simultaneously and the use of low-pressure tyres in 

decreasing soil compaction.  
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1.2.6.2  Soil degradation and nutrient loss 

 

Cultivation can cause severe nutrient loss through soil degradation as well as erosion 

by wind and water.  Soil degradation affects crop growth and yield as a result of 

decreased rooting depth, available water and nutrient reserves.  In a study of the 

effects of soil degradation on maize grain yield, Lal and Singh (1998) found a 

decreased yield of between 14 to 39 % due to soil erosion.  The loss of soil minerals 

or nutrients may also be caused by the removal of crops at harvest (Addiscott and 

Dexter, 1994).  Crops absorb soil nutrients during growth and incorporate them into 

plant biomass, and thus this nutrient store is lost upon removal of the crop.  

MacDonald et al. (1989) found 68 % of the nitrogen was recovered within the crop 

grain in winter wheat.   

 

Soil minerals or nutrients may be lost due to leaching as a result of cultivation.  This 

is caused by runoff, either as a direct result of cultivation, such as plough pan 

formation resulting in heavy leaching of soil minerals from the soil, or as an indirect 

effect of cultivation angles and slope.  Tillage does not have a direct effect on the 

precipitation, sorption or desorption mechanisms of soil minerals but cultivation alters 

the nature and area of soil surfaces within the soil, via which these processes take 

place (Addiscott and Thomas, 2000).  Malo et al. (2005) found significant observable 

decreases in phosphorous, potassium, pH, total carbon, organic carbon and total 

nitrogen in an 80 year study of cultivation impacts on soil nutrients compared with 

non-cultivated soils.   
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Tillage operations should create a surface roughness and porosity to encourage 

movement of water into the soil matrix, which will prevent surface runoff and 

preferential flow removing soil nutrients.  Addiscott and Thomas (2000) suggest 

solutions to nutrient loss caused by tillage with the use of inversion tillage 

interruptions of minimal tilled soil to reduce run-off risks and applications of 

secondary tillage to create uniform aggregated seedbeds and increased sorption areas 

within the soil. 

 

1.2.7 Examination of soil structure  

 

1.2.7.1  Soil structure 

 

As a soil develops, mineral particles of sand, silt and clay mix together with organic 

matter creating aggregates and soil structure.  Soil structure is defined as the degree 

and type of aggregation and the nature and distribution of pores and pore space 

(Fitzpatrick, 1986).  Soil structure can also be described as the degree of stability in 

aggregates (Bronick & Lal, 2005).  Tillage systems have a major role in the 

development and maintenance of soil structure by modifying the size, shape and 

stability of the soil aggregates in the preparation of seedbeds (Soffe, 2003; Carter, 

2004).  Soil structure is therefore crucial to crop establishment, growth and yield as 

soil structure is directly associated with many of the soil physical properties of the 

soil.  Gerhardt (1997) states soil structure is the determinate for the accessibility of 

air, water and nutrients needed for crop growth. Gerhardt (1997) observed that the 

ease of root and shoot movement through the soil is determined by soil structural 
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arrangement as well as for drainage and the resistance to soil degradation and 

compaction.   

 

 

  
Figure 1.5:  Representation of the main soil structure units / aggregates (Figure from Fitzpatrick, 

1986). 

 

Soil structure can be characterised by the shape of aggregates; such as blocky, 

columnar, crumb, granular, massive etc. (Fitzpatrick, 1986) (Figure 1.5); or by their 

size done in hierarchical order; microstructure (< 2 µm diameter), microaggregates (2-

250 µm) and macroaggregates (> 250 µm) (Tisdall and Oades, 1982).  Different 

physical, chemical and biological factors result in the stabilisation of the differing 

sizes (Dexter, 1988) these being; humic acid and inorganic ions for microstructure, 

microbial materials such as polysaccharides, hyphal fragments and bacterial cells or 

colonies in microaggregates, and a combination of plant roots and fungi / fauna in 

stabilised macroaggregates (Carter et al., 1999; Carter, 2004; Degens, 1997; Lavelle et 

al., 1997; Schjonning et al., 2002).  Structure sizes may also be determined through 
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the combination of lower hierarchical sizes or the fragmentation of higher hierarchical 

orders (Dexter, 1988) via processes such as wet-dry cycles.  Soil texture is also a 

determining factor in the development of soil structure (aggregation); very sandy soils 

typically remain loose and unaggregated, clay dominated soils aggregate well, whilst 

silty or sandy soils form less stable aggregates (Bronick & Lal, 2005; Shepherd, 

2002).  Dexter (1988) states that for a soil structure to have desirable hydraulic and 

mechanical properties, and therefore provide adequate medium for crop production, it 

is necessary for each of the hierarchical structures to be well developed and stable 

against water and mechanical stress.  Favourable soil structure and high aggregate 

stability are important in improving soil fertility, increasing agronomic productivity, 

enhancing porosity and decreasing erodability (Bronick & Lal, 2005). 

 

1.2.7.2  Quantification of soil structure  

 

Soil structure until recently was mainly assessed in a qualitative manner through the 

assessment of size, shape and stability either in the field or using soil thin sections 

(micromorphology).  In recent decades, the use of image analysis to define and 

quantify soil structure (Ringrose-Voase and Bullock, 1984; Ringrose-Voase, 1987; 

Ringrose-Voase, 1996; Vogel, 1997; Horgan, 1998; Lipiec et al., 2006) has increased 

rapidly, in part due to the advances in technology such as digital cameras, higher 

resolution, faster computers and processors, digital image capturing, higher storage 

capacity and advances in X-ray Computed Tomography (see section 2.7.3).  Improved 

software and digital image processing procedures have also aided the enhancement in 

image analysis and the quantification of soil porosity (Murphy et al., 1977; Moran et 

al., 1989; McBratney et al., 1992; Jogerius, 1972; Terrible & Fitzpatrick, 1992; 
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Marcelino et al., 2007; Protz & Van den Bygaart, 1998; Ringrose-Voase & Bullock, 

1984).   

 

Image analysis of soils provides quantifiable data concerning the pore space (Terrible 

& Fitzpatrick, 1992; Protz et at., 1992) and has been widely used in a variety of soil 

assessments such as; biological activities in relation to soil porous architecture (Nunan 

et al., 2001, 2003; Harris et al., 2002; Lamandé et al., 2003); the movement or 

distribution of fluids and preferential flows within soil through pore space (Deeks et 

al., 1999; Mooney, 2004; Morris & Mooney, 2004; Pagliai and Vignozzi, 2003); the 

assessment of pore connectivity (Vogel, 1997); determination of soil fractal 

parameters (Pachepsky et al., 1996; Giménez et al., 1997); the effects of tillage 

applications on the soil environment and possible soil degradation such as compaction 

(Pagliai et al., 2004; Hubert et al., 2007; VandenBygaart et al., 1999; Douglas & 

Koppi, 1997; Fox et al., 2004) and agricultural management such as organic farming 

(Kooistra, 1991; Papadoupoulos et al., 2006) or the effects of structure and crops e.g. 

cereal lodging (Mooney et al., 2007) and roots (Van Noordwijk et al., 1993; Pagliai & 

De Nobili, 1993; Bengough et al., 2001).  However, Bui (1991) importantly states that 

accurate and quality image analysis is highly dependent upon the quality and 

resolution of the initial image acquired and on the contrast achievable in processing. 

 

1.2.7.3  Using X-ray Computed Tomography to examine soil structure 

 

X-ray Computed Tomography (CT) is a non-destructive and non-invasive method that 

can be used for rapid imaging of soil structure and enable quantitative measurements 

of the soil pore network (Figure 1.6).  After the development of X-ray CT systems in 
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medical sciences based upon principles presented by Houndsfield (1973), the 

application of the technique to other scientific fields followed with the first results of 

X-ray CT in soil science reported by Petrovic et al. (1982) who used X-ray CT to 

assess the relationship between bulk soil density and X-ray attenuation.  Hainsworth 

and Aylmore (1983) followed this by assessing root-related water absorption 

processes using X-ray CT. 

 

The theory behind the use of X-ray CT has been covered previously in a number of 

reviews e.g. Van Geet et al., 2000.  Simply, a beam of X-ray radiation passes through 

a sample or material, which then experiences progressive attenuation due to 

interactions with constituent atoms (Taina et al., 2008).  Beam attenuation is the result 

of three mechanisms; incoherent scatter, coherent scatter and photoelectric absorption 

(Simons et al., 1997).  Incoherent scatter is affected by the density of the material 

scanning, coherent scatter is the redirection of X-ray photons without loss in energy 

and photoelectric absorption is the result of photon absorption within an atom and the 

ejection of an electron (Simons et al, 1997; Taina et al., 2008; Ketcham, 2005).  

Houndsfield units (HU) describe X-ray attenuation of specific volumes or elements 

such as solid, mineral, air and water, for example a value of 0 would represent water 

and air (at standard temperature and pressure) (Taina et al., 2008).  X-ray CT 

projections attained through reconstructions are made of integrations of attenuation 

coefficients, the most common of these being the filtered back-projection algorithm 

(Kak and Slaney, 1988).  X-ray CT image stacks can be differentiated into their 

respective densities using segmentation techniques such as image thresholding using 

histogram attenuations to create binary images which can be quantitatively analysed 

based upon pixel (2-D) or voxel (3-D) arrangements (Figure 1.6). 

 32



 

Kübiena 
Sampling 

Field 
 

 

 
Meso Scale 
(c. 100 µm)  

Micro Scale (c. 50 µm) – 
Material Engineering 
Scanner 

Macro Scale (c. 300 µm) – 
Medical Scanner 

 

 
 

 

 

 

 

Figure 1.6:  X-ray Computed Tomography scales of resolution and image acquisition through to 

analysis and 3-D visualisation applications for quantifying soil structure. 
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The use of X-ray CT has allowed soil structural conditions and the subsequent effects 

of this upon soil function to be assessed both in 2-D and 3-D where previously this 

would have not been possible, with the exception of thin section or resin impregnated 

soil.  X-ray CT has been performed in many aspects of soil science for example; 

Perret et al. (1999) used X-ray CT to determine tortuosity, hydraulic radius, numerical 

density and connectivity of pore networks in undisturbed soil cores and further went 

on (Perret et al., 2002) to assess macropore size, distribution, length, branching and 

connectivity from mathematical morphology parameters.  Anderson et al. (1992) 

showed X-ray CT imaging data could be correlated with standard measurements of 

solute breakthrough but gave a level of detail not previously attained.    Heijs et al. 

(1996) took this a step further assessing preferential flow patterns within soil, 

determining that macropore networks strongly correlate to flow regimes.  Flow 

regimes using X-ray CT have also be mapped in 3-D.  Mooney (2002) quantified 

water infiltration using repeated scans after an infiltration period, producing a 3-D 

map of pore space and water movement.   

 

X-ray CT has similarly been used to investigate the biological interactions with soil.  

Johnson et al. (2004) used X-ray CT to track the movement and final position of a 

clover root weevil larvae in real time whilst Nunan et al. (2006) investigated the 

microbial habitat structure within soil using synchrotron X-ray CT. Nunan et al. 

(2006) was able to resolve 3-D architecture of microaggregates directly relevant to the 

scales of microorganisms finding that the habitats to which fungi, bacteria and other 

microbiota live and function is highly heterogeneous.  Other studies have focused 

upon flora effects or more specifically plant roots such as Heeraman et al. (1997) who 

assessed in-situ plant roots in 3-D, determining plant root length was higher within X-

 34



ray CT samples than using conventional destructive measurements, but that fine root 

detection was highly dependent upon the resolution and noise from the soil matrix.  

Other non-invasive studies of roots within soil (Gregory et al., 2003; Perret et al., 

2007) disagreed with Heeraman et al. (1997) stating that X-ray CT underestimates 

root length dynamic compared with destructive techniques. 

 

The use of X-ray CT to assess the soil environment has also been widely used within 

agriculture, for example;  Olsen and Børresen (1997) utilised X-ray CT to measure 

soil properties following cultivation concluding that conventional tillage (ploughing) 

results in compaction and reduced macroporosity at depth in comparison to reduced 

tillage.  Similar results were also recorded by Langmaack et al. (2002) who found 

conventional tillage reduced soil porous architecture in terms of total pore length, 

volume, tortuosity and continuity, compared with conservation tillage.  However, 

increased surface crop residue associated with reduced tillage strategies has been 

found to significantly increase cracking and porosity near decaying residue (De Gryze 

et al., 2006) which may account for some of the differences observed by Olsen & 

Børresen (1997) and Langmaack et al. (2002).  In a comparison of no till systems 

versus conventional farming practice, Gantzer and Anderson (2002) observed 

conventional tillage had significantly increased measurements of macropore number, 

area, perimeter, circularity and fractal dimension compared to no till systems.   Other 

studies have shown the effects of soil compaction, as a result of management 

practices, on soil properties and crops such as Lipiec and Hatano (2003) who reported 

significant relationships with root growth and solute flow and Mooney et al. (2006) 

who used X-ray CT to illustrate the effect of soil structure on the propensity of cereal 

root systems to fail.  Mooney et al. (2006) identified that subterranean stem rotation 
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was the major mechanism causing plants to fail and that an increase in surface bulk 

density post establishment was needed to resist root failure. 

 

1.3 Research aim and objectives 

 

The overall aim of this project was to investigate and quantify the effect of soil 

physical properties, in particular soil structure, over a period of time, induced by 

selected cultivation practices (intensive to reduced techniques), on crop growth and 

establishment.  The over arching hypothesis is: 

 

“Soil structure significantly affects crop establishment, growth and ultimately yield?” 

 

To address this question three sub-aims have been developed: 

 

1. To identify the optimum soil physical condition for seed germination and crop 

growth. 

 

2. To understand the effect of consolidation processes post drilling on the 

changes to the soil porous architecture. 

 

3. To develop a greater understanding of soil quality produced by cultivation 

with the aim towards reduced cultivation strategies. 
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1.4 Thesis structure 

 

Chapter 1 has provided an overview of the subject area covered in this thesis and 

introduced the rationale behind the research conducted with the research aims and 

objectives.  Chapter 1A provides an overview of two preliminary experiments 

conducted to inform the main investigative chapters.  Chapter 2 assesses the effects 

of primary, secondary and tertiary cultivation practices on selected soil physical 

properties of a range of seedbeds as they evolve and develops a model of their effects 

on crop establishment.  This has been published in Soil and Tillage Research 

(Atkinson et al. 2007.  97: 218-228.) and hence is included in ‘paper format’.  

Chapter 3 assesses the affects of primary, secondary and tertiary cultivation practices 

on the soil macro structure using X-ray CT and models the relationships between 

macro structure, soil physical properties and crop establishment.  This research is 

under review for publication in Soil and Tillage Research (Atkinson et al.  2008. 

XXXXXXX) and is included in ‘paper format’.  Chapter 4 assesses the effect of 

primary, secondary and tertiary cultivation practices upon the meso structure of the 

soil using resin impregnated soil blocks and image analysis, and models the effects of 

data from this scale on crop establishment.  Chapter 5 describes the comparison 

between two soil types and the effects of minimal and secondary cultivation on crop 

establishment and selected soil physical properties.  Chapter 6 assesses the effect of 

minimal and secondary cultivation on soil meso structure across two soil types using 

X-ray CT, and the effect on crop establishment.  Chapter 7 provides a general 

discussion of the key findings reported within each chapter.  Chapter 8 gives the 

major conclusions from all of the research conducted.  
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Chapter 1A:  Method Development 

 

 

This chapter provides an overview of two preliminary experiments conducted prior to 

the main investigative chapters.  These experiments, one glasshouse trial and one 

small field trial, were designed to perfect the sampling and imaging methodologies 

and provide an insight into the nature of the root-soil interactions so as to allow 

informed decisions in the later experimentation.  As such they were not designed to 

provide statistical based conclusions but to guide the design for the field experiments.  

Experiments helped to determine optimum sampling periods in terms of examining 

both soil changes and root-soil interactions by looking at the structural deviations and 

how these changed over the evolution of the plant growth cycle. 

 

1A.1 The effect of soil structure upon establishment (Glasshouse) 

 

The aim of the initial experiment was to determine if manipulated soil structural / 

quality variations affect the establishment of crops.  The investigation included 

treatments which were: soil texture (loamy sand, sandy loam, clay loam); soil 

structure (field aggregate size distribution (representation of bulk soil conditions) and 

fine (< 2mm) aggregates (i.e. large aggregates removed)); soil strength (medium to 

high, low to medium (defined later)).  The experiment was performed in a controlled 

glasshouse environment. 
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1A.1.1  Sample Preparation 

 

Soil samples were collected from the topsoil of both the Newport series (loamy sand) 

and Worcester series (clay loam) at the University of Nottingham experimental farm, 

Bunny, Nottinghamshire, UK (52.52oN, 1.07oW).  A further soil sample was collected 

from the topsoil of the Dunnington Heath series (sandy loam) at the University of 

Nottingham experimental farm, Sutton Bonington, Leicestershire, UK (52.5oN, 

1.3oW).  Samples were prepared in columns 75 mm diameter by 160 mm height; the 

soil was wetted and maintained at field capacity and then uniformly packed (between 

1.0 and 1.5 g cm-3 depending on treatment and soil texture) into each column with the 

desired treatment application.  Treatments consisted of soil texture, aggregate 

variations of <2mm fine and field size distribution and soil strengths, low (0-25 kPa) 

and medium/high (50-80 kPa) as well as two cereal crops Hordeum vulgare - barley 

(cv. Optic) and Brassica napus - oil seed rape (cv. Recital).  Each treatment was 

replicated three times and distributed in a random pattern under a natural light emitter 

(Figure 1A.1).   

 

 
c a b 

 
Figure 1A.1:  Images of packed columns in a random distribution (a).  b) Oil seed rape within a clay 

loam at 28 days post seeding.  c) Barley within a clay loam at 28 days post seeding.  
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Soil strength treatments were produced using a standard soil compaction rammer 

complying with BS1377 (1975) (2.5  kg of 50 mm diameter and 300 mm drop) and a 

small disc 8 mm thick.  The soil was packed into each column and was then 

compacted to the desired soil strength by hitting the disc at the surface a calculated 

number of times (Figure 1A.2).  The weight was dropped from a height of 300 mm 

and was repeated in quick succession when more than one hit was required.  Soil 

strength was then determined with the use of a Pilcon Hand Vane tester 0 – 200 kPa.  

Compaction to strength ratios were calculated for each soil texture.  Soil strengths of 0 

– 25 kPa were created from one hit and strengths of 50 – 80 kPa were created from 

eight hits. 
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Figure 1A.2:  Diagram showing the method of soil shear strength calculation from compaction of the 

three soil types (clay loam =▲; sandy loam = ■; loamy sand = ◊) used within the glasshouse 

experiment.  Highlighted area shows region of values recorded within literature (Schjønning and 

Rasmussen, 2000).  Circular highlights show regions of high (50-80 kPa) and low (0-25 kPa) soil 

strength used within this experiment. 
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Soil volumetric water content was monitored throughout the experiment using a 

Delta-T theta probe (type ML2X), within one of the three replicates due to the 

disturbance caused on insertion of the probe, to maintain consistent water contents.  

Measurements showed clay loam soils volumetric water content of roughly around 40 

% water content and the sandy loam and loamy sand at around 30 % water content.  

Excessive ponding occurred within high strength soils often showing a wet soil 

surface but dry base.  No difference in response to crop was measured in response to 

water content. 

 

1A.1.2  Sampling 

 

Samples were harvested at growth stages 14 for oil seed rape and 22 for barley due to 

the speed of germination and growth of the different species.  At each harvest 

measurements of crop development were recorded including fresh weight (weight of 

freshly cut crop), dry weight (weight after 24 hours at a temperature of 105ºC), main 

shoot height, number of tillers (barley), number of leaves and the maximum / 

minimum leaf area.  Soil strength was recorded upon harvest using a Pilcon hand 

vane.  Soil cores 52 mm diameter by 70 mm depth were removed from 1 of each 

replicate and taken from the soil surface.  The cores were then impregnated using an 

epoxy resin mix and photographed under ultra violet light (see chapter 4 sections 

4.2.3; 4.2.4 for method details).  Images were then processed using the software 

AnalySIS ®. 
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1A.1.3  Results 

 

1A.1.3.1 Crop measurements 

 

Differences between the two crop types and the conditions of the soil (Table 1A.1) 

became apparent almost immediately with excessive ponding occurring within highly 

compacted soils.  Compaction severely hindered emergence of oil seed rape (OSR) 

increasing the time to germinate and to reach growth stage 14 by c. 7 days (P = 

0.004).  A slight increase in the time to emergence and development was also seen 

within the barley although this was not significantly different (c. 2 days).  No 

significant difference in fresh or dry weight was observed within OSR as a result of 

treatments applied.  A soil type and aggregate interactions was observed with field 

aggregates having higher dry weight within the sandy soils but the opposite within a 

clay loam with higher dry weights occurring under finer (< 2mm) aggregates.  Barley 

fresh weight and dry weight was significantly affected by soil type (P = 0.002; 0.003) 

and aggregate size (P = 0.003; 0.028), with higher fresh and dry weights occurring in 

the clay loam soil and with columns containing field aggregates (Table 1A.1).  The 

sandy loam soil had a slightly higher barley fresh and dry weight compared to the 

loamy sand.  Main shoot height and the number of leaves of both crop species was not 

significantly affected by soil treatments and was roughly c. 40 cm with c. 7 leaves 

within the barley and c.13 cm and c. 4 leaves within the OSR (Table 1A.1).  Leaf area 

within the barley was significantly affected by soil type, aggregate size and soil 

strength, with the smallest leaf area occurring within the loamy sand (P <0.001), finer 

aggregates (P = 0.004) and high soil strength (P = 0.012) and the largest leaf area 

occurring within the clay loam (P < 0.001), field aggregates  
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(P = 0.001) and low soil strength (P = 0.014) conditions (Table 1A.1).  OSR was 

affected differently to barley with the smallest leaf area occurring as a result of finer 

aggregates (P = 0.049) and the largest leaf area as a result of soil type (P = 0.040) in 

particular sandy loam then clay loam and finally loamy sand (Table 1A.1).  Soil 

strength increased by harvest in all treatments, especially under the OSR crop which 

suggests barley roots perhaps reduce the effect of compaction increase over time 

whilst OSR does not (Figure 1A.3). 
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Figure 1A.3:  Shear strength condition changes over time in response to crop a) barley and b) oil seed 

rape.
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1A.1.3.2 Soil structure 

 

Quantified soil structure from image analysis (Figure 1A.4) showed significantly 

different responses from the different soil textures (P < 0.001) with the clay loam 

having generally higher porosity and structural conditions (c. 12 %) than the sandy 

soils (c. 10 %).  Soil type and aggregates similarly affected the pore space with 

generally higher pore space associated with field aggregates in all soils except loamy 

sand which had greater pore space under finer aggregates (due to loamy sand 

aggregating poorly).  Lower soil strength resulted in greater pore space, whilst high 

strength was responsible for increased pore elongation and nearest neighbour 

distances (defined in chapter 4 section 4.2.5).  Due to the experimental design it was 

not appropriate to statistically measure the interaction between crop and soil, however 

it can be seen from Figure 1A.5 that the addition of crops to the soil increased (in 

most cases) soil porosity under high strength soils (perhaps due to un-differentiation 

between air and root material), whilst in low soil strength either through soil collapse 

or the aggregation of soil by plant root material a reduction in porosity was observed, 

these relationships also varied between soil texture. 

 (B,L) (F,L) (F,H) 

(B,H) (B,H) (B,H) 

Figure 1A.4: Image selection of barley cores and soil texture / structure differences. B = field 

aggregates; F = < 2mm aggregates; H = high strength (50-80 kPa); L = low strength (0-25 kPa). 
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mmary  

ent can be limited by the physical 

condition of the soil.  Links with soil structure were established both in response 

 

 th play an important role in the establishment and 

development of the two crops used in this experiment.  Low soil strength was 

Po
ro

si
ty

 %
 

Treatment

Initial Condition Barley 

F

OSR 

 and crop type.  High = High strength (50-8 kPa); 

L

bulk soil condition. 

 

1A.1.4  Su

 

 Crop development response and establishm

to crops and in the establishment of crops in terms of porosity and structural 

behaviour of the soil. 

Aggregate size and soil streng

preferable for small seeds such as OSR, while high strength was a hindrance to 

both but to a lesser extent in barley.  Field (un-sieved) aggregates opposed to 
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finer (< 2 mm sieved) aggregates provided the most suitable environment for 

establishment, perhaps due to advantages in the soil structural environment as a 

result of variation in storage, flow and ease of movement for nutrients, water and 

roots. 

Soil te

 

 xture can be a limiting factor on the speed of germination and crop 

establishment / development, which was fastest within the clay loam soil.  This 

 

1A.2

chniques 

nd small scale management practices in the preparation of seedbeds and 

ersity of Nottingham experimental 

rm, Sutton Bonington, Leicestershire, UK (52.5oN, 1.3oW).  The soil was a sandy 

 

may be related to nutrient availability within the soil, and or water/heat retention 

(both relating to structural arrangement in relationship to soil-seed contact). 

 Barley establishment under four spring cultivations (Field Trial) 

 

A small scale field trial experiment designed to introduce field sampling te

a

establishment was set up in March 2005.  The field trial was sown with spring barley 

(optic).  The aim of this investigation was to examine the effect of a small range of 

cultivation techniques in the preparation of a spring seedbed and monitor the 

evolution of the seedbeds both physically and structurally.   

 

1A.2.1  Field site and experimental design 

 

A field experiment was established at the Univ

fa

loam of the Dunnington Heath series (FAO class; Stagno-Gleyic Luvisol) (Table 

1A.2). (As used in the previous glasshouse trial) 
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Table 1A.2: Selected soil properties of the Dunnington Heath (FAO class: Stagno-Gleyic Luvisol).  

*Percentage on a mass basis, measured using hydrometer method (Rowell, 1994). 

(%)* (%)* (%)* 

lic 
Conductivity (cm s-1) 

Bulk 
Density 
(g cm-3) 

Organic 
Matter 

(%) 
pH 

 
 

FAO Class 
Sand 

(>50 µm) 
Silt 

(2-50 µm) 
Clay 

(<2 µm) Saturated hydrau

Stagno-Gleyic Luvisol 
(Dunnington Heath) 66.4 18.0 15.6 1.86 x 10-3 1.51 4.88 6.47 

 

 

Th ived w r cultivation read r sprin ; this co d of

loughing to 25cm, power harrowing to 12cm and rolling at surface.  The beds were 

 

ent 2 – Wintered + Rolled (WR) 

olled (STR) 

 

e site had rece inte y fo g drilling nsiste  

p

left to age over the winter months and further cultivations were performed in early 

March.   These were an unaltered soil directly drilled from its wintered condition, 

spring tine (to break-up surface crusting) (Figure 1A.6) to a depth of 15-18cm and 

then drilled, and then finally the same combinations with post drill rolling (Figure 

1A.6) giving a total of four seedbeds; 12m by 12m in size with 2m centres for 

trafficking (total cultivated area assessed 10m by 10m per treatment).  No replicate 

plots were used in this initial experiment. 

 

Treatment 1 – Wintered (W) 

Treatm

Treatment 3 – Spring Tine + R

Treatment 4 – Spring Tine (ST) 
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Figure 1A.6: Spring tine cultivation in the creating of a seedbed (a ) & tine shape (b) and rolling 

equipment (c) used in the prepar tion of the spring seedbeds. 

 

Four sampling regimes informed from the previous experiment and included; before 

ergence and establishment 

otalling four destructive sampling periods) or roughly equal to four week / monthly 

a b c 

 

 

 

 

a

cultivation, after further cultivation and drilling, em

(t

periods.  This allowed for quantitative analysis of the variation and effects of the 

cultivation techniques, drilling and establishment upon soil structure and the soil 

structural affects upon root growth, establishment and yield.  Sampling consisted of 

both destructive soil cores (3 x 0-80 mm and 1 x 80-160 mm depths) and bulk density 

samples as well as non-destructive methods (recording in field measurements of soil 

volumetric water content, soil strength, and penetration resistance) (see chapter 2 for 

detail concerning soil physical property measurement).  Establishment/yield estimates 

were calculated from grid counts performed every five days from five grids per 

treatment in a random placement; this was performed on an undisturbed division of 

each plot, non-destructive measurements were also recorded at this period.  Soil cores 

were impregnated using an epoxy resin (see chapter 4 section 4.2.3 for detailed 

method) and scanned using a Philips Mx8000 IDT whole-body X-ray Computed 

Tomography (CT) scanner (see chapter 3 section 3.3.4 for method detail). 
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1A.2.2  Results 

 

1A.2.2.1 Seedbed physical condition 

pring tined application resulted in soil loosening reducing the soil penetration 

 (Fig  soil bulk density (Table 1A.3).  Wintered 

eatments were harder than spring tined but did not appear to differ with an 

eedbed macro structure was determined from X-ray CT of impregnated soil cores at 

quences (Figure 1A.8).  Soil macro porosity 

t the surface (0 – 80 mm) was roughly equal prior to cultivation in all seedbeds c. 5.5 

 

S

resistance ure 1A.7), shear strength and

tr

application of rolling with similar responses in strength, water and establishment 

(Table 1A.3).  Rolled application within spring tined treatments resulted in an 

increase in soil strength (but reduced overall compared with wintered until 

establishment).  Volumetric water contents within the soil did not deviate between 

wintered and rolled treatments but was reduced within spring tined (Table 1A.3).  

Establishment as a result of seedbed preparation showed dramatic increases in crop 

establishment when a spring tine was applied compared with wintered applications.  

This was again improved with the addition of rolling post drilling within spring tined 

application (Table 1A.3). 

 

1A.2.2.2 Seedbed macro structure  

 

S

a resolution of 586 µm pixel-1 in time se

a

% (Figure 1A.9).  Tillage in all treatments increased porosity although this was much 

reduced within the wintered treatments (c. 8 %) compared with a large increase in 
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porosity within the spring tined treatments (c. 13 %) (the larger increase associated 

with spring tined and rolled) (Figure 1A.9). 
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Figure 1A.7:  Penetration resistance variation over the evolu

; after cultivation = ■; emergence = ▲; establishment = ●). A) wintered, B) wintered and rolled, C) 

 

tion of the seedbeds (prior to cultivation = 

◊

spring tine and rolled and D) spring tine.  Error bar depicts s.e.d. 

 

 

 70



Table 1A.3:  Seedbed evolution and the effect of cultivation. 

 

(W) Growth Stage

Physical Prior to Cultivation After Cultivation Emergence Establishment

Bulk Density (g cm-3) 1.18 (± 0.03) 1.16 (± 0.03) 1.11 (± 0.01) 1.27 (± 0.05)
Shear Strength (KPa) 43.8 (± 10) 74 (± 7.5) 94.8 (± 4) 116.8 ( ± 7)
Water Content (m3m-3)

0.38 (± 0.02) 0.23 (± 0.02) 0.25 (± 0.01) 0.17 (± 0.01)

Establishment Counts (final) 15 (± 3)  
 

Measurement

(WR) Growth Stage

Physical Prior to Cultivation After Cultivation Emergence Establishment
Measurement

Bulk Density (g cm-3) 1.09 (± 0.13) 1.16 (± 0.05) 1.14 (± 0.06) 1.22 (± 0.01)
Shear Strength (KPa) 42.8 (± 2) 70.2 (± 3.5) 83.6 (± 7.5) 115.6 ( ± 2)
Water Content (m3m-3) 0.38 (± 0.01) 0.26 (± 0.02) 0.24 (± 0.02) 0.11 (± 0.02)
Establishment Counts (final) 14 (± 4)

 

 
 

(STR) Growth Stage

Physical Prior to Cultivation After Cultivation Emergence Establishment
Measurement

Bulk Density (g cm-3) 1.27 (± 0.05) 1.15 (± 0.02) 1.21 (± 0.04) 1.10 (± 0.06)
Shear Strength (KPa) 48.2 (± 3) 31.6 (± 3) 50.8 (± 4.5) 115.8 ( ± 8)
Water Content (m3m-3) 0.34 (± 0.04) 0.21 (± 0.01) 0.18 (± 0.03) 0.10 (± 0.01)
Establishment Counts (final) 67 (± 3)  

 

 
(ST) Growth Stage

Physical Prior to Cultivation After Cultivation Emergence Establishment
Measurement

Bulk Density (g cm-3) 1.05 (± 0.01) 1.10 (± 0.03) 1.10 (± 0.07) 1.10 (± 0.12)
Shear Strength (KPa) 49.4 (± 3.5) 11.2 (± 1) 18.6 (± 2) 48.2 ( ± 9)
Water Content (m3m-3) 0.33 (± 0.01) 0.15 (± 0.02) 0.05 (± 0.02) 0.07 (± 0.01)
Establishment Counts (final) 57 (± 3.5)  

 
 

Porosity within the treatments remained roughly at these levels throughout the 

xperiment but with a gradual increases of c. 4 % within the wintered and rolled 

treatment and c. 3 % in both spring tined treatments (Figure 1A.9).  Porosity at depth 

(80 – 160 mm) was generally higher overall with c. 10 % prior to cultivation, this 

remained within the wintered treatments but the use of spring tine created an increase 

in macro porosity at depth from around 10 % to between 18-20 % (Figure 1A.9).  This 

remained high throughout the experiment, but was overall lower within spring tined 

e
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and rolled compared with spring tined alone.  Similar results were also observed in 

pore size (Figure 1A.10).  
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1A.8:  An example of macro CT s ing t in seedbed soil st f a spring 

tine and rolled treatment from prior to cultivation (left) through to establishment (right). 

 

eso d from impregnated soil cores and imaging 

nder ultra violet light at a resolution of 66 µm pixel-1 and processed using image 

can show he evolution ructure o

1A.2.2.3 Seedbed meso structure  

 

Seedbed m  structure was determine

u

analysis software to provide quantified soil structural data (Figure 1A.11).  Soil 

porosity at both depths was consistent with the effects observed within macro 

structural analyses with the exception of increased overall porosity due to improved 

resolution of finer pore space (Table 1A.4).  Average pore size as a result was also 

reduced due to higher numbers of finer pores, but also remained consistent with the 

cultivation effects observed in macro structure (Table 1A.4). 
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Figure 1A.9: Macro

error bar as unreplicated)

istribution of pores was also measured at this scale showing 

verall larger diameter pores within wintered treatments but increased sphericity 
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80 - 160 mm depth

Wintered Wintered +Roll Spring Tine Spring Tine + Roll 

 porosity variation over time as a result of cultivation differences. (80-160 mm no 

 

 

The pore shape and d

o

compared with spring tined treatments which showed greater pore elongation (Table 

1A.4).  The distribution of pores within the soil also showed a reduction in the nearest 

neighbour distance as a result of spring tine cultivations showing an increase in the 

number of finer pores created by this cultivation, this was slightly increased again 
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with the addition of rolling (Table 1A.4).  This was also true of pore perimeter, which 

also showed a reduction in pore perimeter in treatments which were rolled (Table 

1A.4). 
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Figure 1A.10:  Macro pore area variation over time as a result of cultivation differences. (80-160 mm 
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Table 1A.4:  Mean variation in meso structure between cultivation treatments at 0 – 80 mm depth. 

 

Porosity %
Wintered s.e.d Wintered + Rolled s.e.d Spring Tine s.e.d Spring Tine + Rolled s.e.d

Prior to Cultivation 26.4 2.720 16.5 2.450 22.4 1.520 18.2 4.120
After Cultivation 24.4 1.790 20.0 1.820 38.5 1.140 23.9 1.090
Emergence 22.6 3.660 20.8 3.150 29.0 0.100 19.8 0.650
Establishment 26.5 20.4 26.6 24.7

Area (mm²)

1.730 2.640 2.720 0.650

Wintered Wintered + Rolled Spring Tine Spring Tine + Rolled
Prior to Cultivation 0.33 0.27 0.25 0.23
After Cultivation 0.34 0.055 0.32 0.078 0.44 0.021 0.26 0.060
Emergence 0.23 0.021 0.19 0.045 0.19 0.014 0.13 0.024
Establishment 0.20 0.16 0.15 0.17

ECD (mm)

s.e.d s.e.d s.e.d s.e.d
0.078 0.041 0.010 0.075

0.030 0.014 0.017 0.014

Wintered Wintered + Rolled Spring Tine Spring Tine + Rolled
Prior to Cultivation 0.33 0.26 0.28 0.26
After Cultivation 0.31 0.024 0.30 0.017 0.25 0.009 0.26 0.014
Emergence 0.26 0.020 0.24 0.034 0.28 0.009 0.23 0.026
Establishment 0.25 0.23 0.24 0.23

Elongation

s.e.d s.e.d s.e.d s.e.d
0.011 0.033 0.021 0.026

0.002 0.005 0.004 0.023

Wintered Wintered + Rolled Spring Tine Spring Tine + Rolled
Prior to Cultivation 1.74 1.65 1.66 1.59
After Cultivation 1.74 0.022 1.76 0.018 1.66 0.022 1.70 0.031
Emergence 1.65 0.049 1.66 0.087 1.78 0.009 1.59 0.048
Establishment 1.71 1.62 1.74 1.65

Sphericity

s.e.d s.e.d s.e.d s.e.d
0.032 0.092 0.043 0.065

0.021 0.041 0.013 0.057

Wintered Wintered + Rolled Spring Tine Spring Tine + Rolled
Prior to Cultivation 0.29 0.27 0.28 0.29
After Cultivation 0.27 0.010 0.29 0.003 0.28 0.006 0.28 0.005
Emergence 0.28 0.012 0.27 0.010 0.26 0.001 0.30 0.011
Establishment 0.27 0.28 0.27 0.28

Nearest Neighbour Distance (mm)

s.e.d s.e.d s.e.d s.e.d
0.012 0.008 0.003 0.007

0.016 0.008 0.002 0.003

Wintered Wintered + Rolled Spring Tine Spring Tine + Rolled
Prior to Cultivation 0.55 0.58 0.51 0.53
After Cultivation 0.55 0.043 0.57 0.027 0.48 0.005 0.50 0.030
Emergence 0.49 0.013 0.45 0.043 0.42 0.012 0.42 0.036
Establishment 0.42 0.43 0.40 0.42

Perimeter (mm)

s.e.d s.e.d s.e.d s.e.d
0.022 0.032 0.020 0.005

0.009 0.030 0.003 0.025

Wintered Wintered + Rolled Spring Tine Spring Tine + Rolled
Prior to Cultivation 2.32 1.80 2.03 1.95
After Cultivation 2.19 0.038 2.31 0.326 3.52 0.237 2.01 0.270
Emergence 2.11 0.263 1.86 0.396 2.13 0.070 1.30 0.128
Establishment 1.88 1.76 1.61 1.71  

 

 

s.e.d s.e.d s.e.d s.e.d
0.191 0.333 0.095 0.568

0.193 0.053 0.158 0.095
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Figure 1A.11:  Imaging and binary quantification of impregnated soil blocks after cultivation.  left: 

spring tine treatment.  right: wintered treatment.  Wh = pore space. 

 

an effective tool for the assessment of structural 

changes induced by cultivation technique and provided previously undefined data 

 

  increased under spring tined treatments, 

accounting for the greater loosening of the soil.  This was then reduced under 

 

 educed compared to at 

depth within the wintered treatments.  This was mostly uniform within spring 

ite  

30 mm 30 mm 

Spring Tine Wintered 

 

1A.2.3  Summary conclusion 

 

 Soil structural visualisation was 

on the environment under which crop establishment must occur as a result of 

management techniques applied. 

Soil porosity was significantly

rolling accounting for the consolidation affect of rolling.   

Soil structure properties (i.e. porosity) at the surface were r

tined treatments.  Cultivation therefore will affect the seedbed behaviour as a 

result of structural change both at surface and at shallow depth i.e. 0 – 160 mm, 
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therefore the need for shallow surface depth sampling is not required as this is 

not dissimilar to a depth of 0 – 80 mm. 

Wintered conditions were not conduc

 

 ive to crop establishment due to hard 

seedbed structures, pertaining to reduced porosity and high soil strength.  

 

Therefore a need for cultivation at this period appears to be prudent for adequate 

seed drilling and optimum seedbed conditions for establishment. 
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Chapter 2:   

effect of primary, secondary and tertiary cultivation 

ractices on selected soil physical properties of a range of seedbeds as they evolve 

 

 

 

 

 

 

 

 

 

 

Using selected soil physical properties of seedbeds to predict 

crop establishment 

 

This chapter assesses the 

p

and develops a model of their effects on crop establishment.  This chapter has been 

published in Soil and Tillage Research (Atkinson et al. 2007. 97: 218-228) as such it 

is included in published ‘paper format’. 
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1. Introduction 

Seedbed preparation is crucial for crop establish-
ment, growth and ultimately, yield. Typically the aims
of cultivation are to incorporate crop residue, bury
weeds and loosen soil to allow appropriate soil–seed 
contact, easy flow of nutrients, air and water and
unimpeded root penetration and crop growth (Herma-
wan and Bomke, 1997; Bengough et al., 2006). The use
of tillage to prepare seedbeds and the subsequent 

* Corresponding author. Tel.: +44 115 846 6585; 
     fax: +44 115 951 6257. 

E-mail address: sbxbsa@nottingham.ac.uk (B.S. Atkinson). 

benefits are well documented. However the amount of 
tillage and best practice in terms of optimum soil 
physical properties specifically for the establishment 
period has received less attention in comparison. 

The influence of a seedbed can vary greatly in terms 
of soil aggregation and subsequent porosity. This soil 
arrangement therefore has direct impacts on soil 
temperature, water content, oxygen availability and 
strength, all of which have the potential to affect the 
performance of the seedbed and its ability to provide an 
adequate environment for crop establishment. In a 
review Braunack and Dexter (1989), state in summary 
of previous work conducted in soil aggregation that 
beds of aggregates will exhibit differing physical and 
chemical properties depending on the size of the 
bstract 

Seedbed preparation can involve a wide range of tillage methods from intensive to reduced cultivation systems. The state or
uality of the soil to which these tillage methods are applied for cereal crop management is not easily determined and excessive 
ultivations are often used. Seedbed preparation is crucial for crop establishment, growth and ultimately yield. A key aspect of the
oil condition is the soil physical environment under which germination, growth and establishment occur. Crucially this affects 
actors such as temperature, water content, oxygen availability, soil strength and ultimately the performance of a seedbed. The
ynamics of soil physical properties of a range of seedbeds and how they relate to crop establishment are considered in this paper. 
ignificant interactions between cultivation techniques, physical properties of the seedbed in terms of penetration resistance, shear
trength, volumetric water content and bulk density and the interaction with crop establishment were identified. A soil quality of 
stablishment (SQE) model was developed for the prediction of crop establishment based upon soil bulk density and cultivation
ractices. The SQE significantly accounted for ca. 50% of the variation occurring and successfully predicted crop establishment to a 
tandard error of around 20 plants per m-2 across contrasting soil types and environmental conditions. 

 2007 Elsevier B.Y. All rights reserved. 
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aggregates, thus influencing the suitability of a seedbed
for germination, emergence and root development, by
influencing factors such as intra- and inter-aggregate
aeration. Schjønning and Rasmussen, 2000, found that
cultivation me ods can have large im
soil layers, altering both strength and p

th pacts on surface
ore dynamics (air

and water filled), which can restrict plant growth. The
relationship between soil physical properties and the
plant
since

 root systems are vitally important in this process
 these are directly effective of seedbed quality

(Awadhwal and Thierstein, 1985; Auberto

Crop establishm
(Blake et a

t et al., 1999;
Dexter, 2004). 

ent is the key to successful yields
l., 2003). Different crops, however, require

different soil physical 
lishment. Excessiv

properties for successful estab-
e compaction and soil resistance can

result in detrimental effects on root growth and
development, which may lead to root behaviour and
c tics changing to accommodate increaseharacteris d
st ngham and Bengough, 2003; Clark et al.,
200
m
s
<
<

rength (Bi
3). Jakobsen and Dexter (1987) found while

odelling soil function for Triticum aestivum L. that
oil strength for crop development were not affected at;
3.0 MPa for germination, <2.3 MPa for root elongation,
1.7 MPa for coleoptile growth and <0.8 MPa for

e
(
>
g

mergence. In a review by Bengough and Mullins
1990) they discuss hindrance to growth at levels
1 MPa and non-existent growth at 5 MPa. Plant
rowth is also affected by the soil physical environment

created by cultivation, Dexter (1986), stated that root
behaviour is dependent upon pore space, with large pore
spaces resulting in deflection and contact with
compacted sub-layers. Kvasnikov (1928), states that
maximum yields in wheat, barley and oats are achieved
with seedbeds of 1–2 and 2–3 mm size aggregates.
H . (2002) found rolling after drilling
cereals resulted in improved final emergence by 4% an

âkansson et al
d

imp
a
p
h
st

roved yields by 2%. The spatial distribution of roots
nd plant water uptake is strongly affected by soil
hysical conditions (Pardo et al., 2000). Recent studies
ave shown a link between effective stress and soil
rength in relation to reduced impedance of roots in 

Ta
Selected soil properties of the Dunnington Heath (FAO class: Stagno-Gleyic
F

S

A

 Luvisol) and Worcester (FAO class: Argillic Pelosol) series 
ble 1 

unstructured soils at matric potentials > 250 kPa 
(Whalley et al., 2005). 

While several studies have sought to develop indices 
to measure soil quality (e.g. Pagliai et al., 2003), very 
few studies, with the exception of the least limiting 

LWR), (Da Silva e
2006) and soil condition inde
Colvin, 2002), have attempted to combine soil physica

water range (L t al., 1994; Leão et al., 
x (SCI), (Tapela and 

l 
properties into an index of soil quality related to cro
establishment. However, these methods are tim

p 
e 

ring more complex measure-
quick assessment using fewer soil 

diction of crop 
. This has no

consuming, often requi
ments, hence a 
physical properties and a consistent pre
establishment would be advantageous t 
previously been developed and this paper 
address this research gap. 

The objectives of this res

seeks to 

earch were: (i) to identify 
in a range ochanges in soil physical properties f 

evolving seedbeds created by a variety of cultivation 
methods, (ii) to determine the effect of soil physical 
properties on crop establishment and (iii) to develop a 
model to predict crop establishment based on soil 
physical properties. It was hoped that any such model 
would be applicable at estimating complicated functions 
of soils from simple measurements. 

2. Materials and methods 

2.1. Field site and experimental design 

A field experiment was established in 2005 at the 
ttingham experimental farm, SuttoUniversity of No n 

ton, Leicestershire, UK (52.5°N, 1.3°W). The 
soil was a sandy loam of the Dunnington Heath series 
(FAO class; Stagno-Gleyic Luvisol) (Table 1). The field 

as in a rotation of winter oats, winter wheat, sugar 
eet, winter wheat, with the current experiment in 
inter wheat following winter oats. The experimental 
esign was a 2 x 2 x 2 factorial, arranged in a split

w
b
w
d  plot 
wi
(
w

th three replicate blocks. Primary cultivations 
plough or disc) were arranged on the main plots, 
hich were divided into four sub-plots on which the 

Boning
AO class Sand 
%)a

Clay 
(<2 mm) (%)a

tagn 6..5
(>5 a

Silt 
(2–50 mm) (0 mm) (%)

Saturated hydraulic 
conductivity (cm s 1)

Bulk density 
(g cm 3)

Organic 
matter (%) 

pH

1.86 x 10o-Gleyic 66.4 18.0 15.6  -3 1.51 4.88 
Luvisol     

 -5 1.40 5.49 6..9rgillic Pelosol 31.1 34.5 34.4 
 

6.31 x 10
a Percentage by mass, measured using hydrometer method (Rowell, 1994). 
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Volumetric water content (VWC) of the upper
60 mm of soil was
probe (type ML ree

urem alib gra
en ata. A Fin Irvine Ltd sh’
ne ter was use ssess pene

2X) with th
ents were c

 replicates for each plot.
d using Field meas

and bulk d
rate

dlay/
vimetric

s
tr
ity d .

tr
 ‘Bu

cone soil pe ome d to a ation 

 measured using a Delta-T Theta

other treatments were factorally combined and allocated
at random; secondary cultivation (± power harrow)
and tertiary cultivation (± rolling) with Cambridge
rollers post-drilling. Previous cultivations for 2 years
had been performed by a single pass heavy disc cultivator
incorporating a levelling board and roller (Vaderstad
Carrier Super CR500). The experiment comprised of 24
plots that were 24 m x 2.5 m wide, in sets of 8 plots in 3
blocks with 12 m discards between blocks. Plots were
drilled using a Nordsten drill with winter wheat (T.
aestivum) cv. Robigus at a rate of 250 seeds per m2

on 27 September 2005. Cultivations were performed the
day before drilling for primary cultivations and the day 
of drilling for secondary cultivations and rolling. 

Soil quality of establishment (SQE) validation
sampling was conducted at the University of Nottingham
experimental farm, Sutton Bonington, Leicestershire
UK (52.5°N, 1.3°W), in an adjacent field to the previous
year and Bunny, Nottinghamshire, UK (52.52°N
1.07°W). The soils were a sandy loam of the Dunningto

,

,
n

Heath series (FAO class; Stagno-Gleyic Luvisol) at
Sutton Bonington and a clay loam of the Worcester series
(FAO class; Argillic Pelosol) at Bunny (Table 1). Both
sites were drilled with winter wheat (T. aestivum) cv
Einstein at a rate of 300 seeds per m

.
2 on 4 October 2006. 

2.2. Measurement of soil physical characteristics 

Soil physical measurements were taken prior to
cultivation and at weekly intervals until early November
where the crop had exceeded a ‘well emerged’ stage
noted by successive plant counts recording the same o

,
r

approximate value. Further measurements were taken at
the end of November (pre-winter establishment) and at 
spring establishment in early March (2006) to account
for any over winter plant losses. The soil physical
properties of the seedbed were evaluated by measure-
ments of soil shear strength, penetration resistance,
water content and bulk density, as well as crop
establishment. Bulk density measurements were
recorded at five key stages; prior to cultivation, after
cultivation, emergence, pre-winter establishment and 

n-
ducted within the centre 1 m of each plot, leaving a
0.75 m distance from the passage of any wheeled traffic. 

spring establishment. All measurements were co

resistance with three replicates per plot at intervals of 
 210 mm. Measurements were 

re
35 mm to a depth of

corded in MPa. Measurements of soil shear strength 
were taken using a Pilcon 120 kPa hand vane, at a depth 
of 50 mm, replicated three times per plot. Bulk density 
measurements were made using undisturbed 230 mm3

cores from the topsoil to a depth of 52 mm, replicated 
three times per plot, following oven drying for a period of 
24 h at 105°C. 

Physical measurements were recorded on each 
sampling date within a reasonable proximity of each 
other. Crop establishment was assessed using one 
1.2 m x 0.6 m quadrat per plot placed randomly at the 
time of cultivation to prevent bias. 

2.3. Statistical analysis 

The statistical software package GenStatTM v.8.1 
was used to analyse all data using analysis of variance 
(ANOVA) to test for significant differences between 
treatments and to calculate standard errors of difference 
(S.E.D.). Primary cultivation formed the main plots, 
secondary and tertiary cultivation were factorially 
combined and randomised on the sub-plots. Multiple 
linear regressions were used to produce a model to 
predict establishment utiising the soil physical mea-

reatments as parameters. surements and cultivation t A 
ch was used to determine 

3

backwards step-wise approa
the minimum adequate model. 

. Results 

3.1. Prior to cultivation (- 6 days) 

Soil physical data was collected 6 days prior to 
cultivation to provide a base-line measurement. No 
significant variation was recorded for volumetric water 
content and bulk density. However, differences were 
found in the strength of the soil, which varied slightly 
between main plots for shear strength (P < 0.05) and 
between sub-plots for penetration resistance (P < 0.01). 
In response, an assessment was performed to determine 
if the significant differences had any underlying cause 
likely to affect the results over the experimental period. 
Shear strength showed at  -6 days the main plots due to be 
disc cultivated had slightly higher shear strength. 

eHowever, these differences did not persist aft r 
cu ys t  receiv  
se n  netratio

ltivation. At -6 da
condary cultivatio

the plots tha
tly

 were to
higher pe

e no
had sligh n 

resi .e. 3.51 M versus 3 Pa. Primstances, i Pa .24 M ary 
cu appeared to icate any sig ficanltivation  erad ni t 
influ  prio ultivati hin plougence occurring r to c on wit h 
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plots but underlying differences remained within Block
2 on the disc plots, most likely due to a clay layer at
d

3

p

epth becoming shallower within the block. 

.2. Penetration resistance 

Disced plots had greater penetration resistance than 
loughed plots (P < 0.01). Power harrowing increased 

p
(
t

enetration resistance of seedbeds by 0.2–0.5 MPa 
P < 0.00 1), while rolling increased penetration resis-
ance at cultivation and became increasingly important 
ith seedbed age (P < 0.001). Penetration resistance aw t 
epth was increased by secondary cult ivation 

P < 0.00 1). Rolling in combination with secondar
d
( y 
ultivation also produced greater penetration resistance 
P < 0.05) (Fig. 1). 

c
(

F  in soil 
treatments; (1) prior to cultivation, (2) after cultivation, (3) emergence and (4) pre-winter establishment. Bars depict S.E.D., 143 d.f. 

penetration resistance between (a) disc treatments and (b) plough ig. 1. Penetration resistance (MPa) with depth, showing the differences
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Fig. 2. Soil shear strength variation over time: (a) disc treatments, (b) plough treatments, (c) effect of power harrowed cultivation on disc plots and 
(d) effect of power harrowed cultivation on ploughed plots. Date of cultivation taken as 0 days. Bars depict S.E.D., 23 d.f. 

At cultivation, discing created a much stronger
seedbed (2.1 MPa) than ploughing (0.7 MPa). There
was also a highly significant (P < 0.001) interaction
between primary cultivation and depth, with increasing
penetration resistance at 10.5 cm depth in disced plots
(>1 MPa), while penetration resistance remained
<1 MPa until 21 cm depth in ploughed plots. Primary 
treatments also had a significant (P < 0.01) interaction
with rolling. In disc treatments, rolling increased
penetration resistance by 0.8 MPa and in ploughed
treatments by 0.2 MPa. Secondary cultivation and
rolling both increased penetration resistance
(P < 0.001). Penetration resistance of ploughed treat-
ments remained ca. 1 MPa lower than disced throughout
the experiment (P < 0.001) (Fig. 1). Penetration
resistance of power harrowed plots generally remained
ca. 0.2 MPa greater than those that were not power
harrowed (P < 0.001). 

 
3.3. Shear strength 

Soil shear strength was not significantly affected by
primary cultivation, except at 21 and 29 days when
ploughed treatments had significantly (P < 0.05)

power harrowing and rolling increased soil shear 
strength (P < 0.001) by 0.02 MPa (Fig. 2). As the 
seedbeds aged, plots that had received secondary 
cultivation developed greater shear strength than those 
not power harrowed (P < 0.01, Fig. 2). The increase in 
soil shear strength caused by rolling persisted until 36 
days after cultivation. 
 

3.4. Volumetric water content 

Greater soil water contents were recorded within 
disced compared to ploughed plots (typically >3–5%) 
from 28 to 63 days. Although not significant at 155 
days, this trend continued post-winter with a 
difference of >4.4% in disced plots (Fig. 3). Secon-
dary cultivation had the greatest effect on soil water 
content with a significant increase recorded from 
cultivation through to spring establishment (P < 
0.01). Rolling showed no significant influence on soil 
water content with a mean difference between 
treatments of <2% (Fig. 3). 

A significant interaction between primary and 
secondary cultivation was observed at 21 days 

terns 
 and 

(P < 0.05) and 63 days (P < 0.01). Similar pat
were recorded on both dates with ploughing (14.7%greater shear strength than disced plots. At cultivation, 
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Fig. 3. Soil water content variation over time: (a) disc treatments, (b) plough treatments, (c) effect of power harrowing, (d) effect of ng. Date of 
cultivation taken as 0 days. Bars depict S.E.D., 23 d.f. 

Treatments receiving secondary cultivation had a 
ean establishment of 204 plants mm

1
H
d
h
n P < 0.05). Rolling increased 
es tabl ishment  by 20 plants  per  m m-2 a t  day 
14 (P < 0.05) but, by 21 days rolling had no significan

-2 compared to 
45 plants per m-2 at 14 days (P < 0.001) (Fig. 5). 
owever over time, differences between treatments 
eclined and at final establishment power harrow plots 
ad only 15 plants per m-2 more than those that were 
ot power harrowed (

t 
i  (Fig. 5). Therefore 
roll
nfluence on crop establishment

ing affected time of emergence but not final plant 
umber. 

 
.6.1. Soil physical properties and establishment 

An increase in penetration resistance (0–70 mm) had 
 negative relationship (P < 0.05) with establishmen

n

3

a t 
rior to cultivation but was positively related (P < 0.05) 
fter cultivation. Therefore there was a negative 
elationship between resistance of the soil and establish-

ent as the soil became increasingly compact 
>3 MPa), or increasingly 

p
a
r
m
( loose (<0.5 MPa). Volu-
metric water content (VWC) had a non-significant 
elationship with crop establishment, except at initiar l 
ultivation when establishment was positively correlated 
P < 0.05) with increased VWC. Shear strength 

c
(

spring establishment count, with 35.6 more plants per m-2

within ploughed treatments. 
2
(17.9% and 33.5%) and secondary cultivation leading to
an 
t

3

increased water content by up to 1.5% within disc
reatments and 7.6% within plough treatments. 

.5. Bulk density 

Primary cultivation did not significantly affect bulk
density but power harrowing increased bulk density by
0
<
t
(
a

.1 g cm-3 (P < 0.001) and rolling by 0.08 g cm-3 (P 
 0.01, Fig. 4). With increasing seedbed age, disc
reatments had significantly higher bulk density
P < 0.05) than plough treatments (1.33–1.26 g cm-3) 
fter emergence. Secondary cultivation increased bulk

d
(

ensity from 1.23 to 1.35 g cm-3 after emergence
P < 0.00 1). Rolling had no effect on surface bulk

d

3.6. C t 

occurred between 7 and 14 days,
with the first recorded measurements taken 14 days afte

ensity post 7 days (Fig. 4). 

 

rop establishmen

Initial emergence 
r

dril
h
c
t
differences were significant (P < 0.05) again at the 

ling. At this point, emergence was significantly
igher (P < 0.05) within ploughed (192.9 per m-2) 
ompared to disced (156.5 per m-2) treatments. Disc
reatments ‘caught up’ (Fig. 5) over time but the 

9.1%) producing reduced water contents than discing

 rolli
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Fig. 4. Soilbulkdensityvariationovertime: (a) disc treatments and (b) plough treatments. Date of cultivation taken as0days. Bars depict S.E.D., 23 d.f.

had a positive relationship (P < 0.05) with establish-
ment after 21 days post-cultivation; this was particularly
strong at 29 days. Bulk density showed a positive
relationship (P < 0.05) with establishment after culti-
vation but was not significant after this period. 

3.7. Soil quality of establishment (SQE) 

Soil quality affects establishment and growth of
crops in terms of strength, resistance, water content and
density. The interaction between soil physical proper-
ties and crop establishment illustrate a wide variety of 

relationships although it is unlikely soil quality could be 
simply explained by a single relationship. Using 
multiple linear regression a model for explaining the 
variation in soil quality and predicting establishment 
was developed, using data up to and including 14 days 
after cultivation. This was chosen based upon computa-
tional limits and number of days to em rgence. The 
model was designed to assess seedbed nce 

atments, (c) effect of power harrowing and (d) effect of rolling. Bars Fig. 5.  Plant no. per m2 over time within (a) disc treatments, (b) plough 
depict S.E.D., 23 d.f. 

tre

 

e
 quality o

created, and predict establishment, i.e. soil quality of 
establishment (SQE) using averaged plot values for 
penetration resistance (0–70 mm depth), shear strength 
(50 mm depth), water content (50 mm) and bulk density
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Fig il physical properties an

n  
with a standard error of ca. 25.7 (Fig. 6a). However the 
model slightly ‘over predicted’ establishment in the 
validation, possibly as a result of a change in the 
moisture regime at cultivation, which was generally 
higher within the validation sub-set by ca. 10%. This 
suggests the model may be over parameterised and that 
the moisture conditions of the soil are accounted for in 
the other factors such as soil strength and bulk density. It 
was unlikely that temperature conditions between the 
two seasons caused this as this remained roughly con-
stant at 13 °C during the time periods from cultivation 
to final establishment in both years. 

A second model was therefore developed using the 
same principle as before but removing all water content 
data from the analysis, producing the same model as in 
Eq. (1) but without water content at cultivation (Eq. (2)).
Regression analysis was significant (P < 0.001) 
accounting for 70.6% of variation with an estimated 
error of ca. 18.6 within the fitted data. 

SQE = 418 + 37.1P + 54.1S + 70.6R – 50.3PR 

- 1692SS – 89.2BD (2)
Regression analysis performed on the validation sub-set 
gave a good fit which was significa  (P < 0.001) nt
accounting for 58.1% of variation with a standard error 

ificant (P < 0.001) accounting for 59.2% of variation(0 el
development that cultivation technique had a strong
influence on crop establishment that was not entirely
explained by the soil physical properties measured.
Therefore numerical values were assigned to the 
cultivation techniques as follows; disc =0, plough = 1,
secondary (no = 0, yes = 1), rolled (no = 0, yes = 1).
The lower the value, the less intensive the cultivation. 

Backwards stepwise regression was used to find the
optimal model (Eq. (1)) where P = primary, S = sec-
ondary, R = rolled, PR = penetration resistance prior to
cultivation, WC = water content, SS = shear strength at
cultivation and BD = bulk density at 7 days. Regression
analysis was significant (P < 0.001), accounting for 
71.1% of variation with an estimated error of ca. 18.5
within the fitted data. 

SQE = 427 + 34.8P + 52.2S + 71.2R – 50.6PR 

+ 120WC - 1761SS - 102BD (1)

The SQE was validated against a small sub-set of data
collected in the 2006–2007 season. Samples were col-
lected from experiments using disc treatments, ±power
harrowing and ±rolling and across two soil types
(Dunnington Heath series – sandy loam and Worcester
series – clay loam). Regression analysis performed on
the validation sub-set gave a good fit which was sig- 

–52 mm). It became apparent early in mod

. 6. Validation of modelled relationships between so d crop establishment. Validation was conducted over two soil types a
clay loa ndit
crea ees of va
p

ions to the data in which the model was created. The three models
riation, with the determined best fit model as (c) due to a reduced over

m (∆) and sandy loam (□) as well as different environmental co
ted, (a) Eq. (1), (b) Eq. (2) and (c) Eq. (3), account for varying degr

rediction. 
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of ca. 25.1 (Fig. 6b). The previous model’s over pre-
diction was significantly reduced and a comparison of
1:1 line of identity, which accounts for model variation
from a perfect 1:1 line where greater than 0 is regarded
as a good fit, showed a change from -0.23 R2 in Eq. (1) to 
a value of 0.23 R2. There was still a slight over
prediction within this model. It was also unclear why
the model should choose factors prior to cultivation as
the values are from 0 to 70 mm depth and thus should
have been eradicated at cultivation. 

A third model was subsequently developed using the
same principles but removing ‘prior to cultivation’ data
from the analysis. This resulted in the selection of
cultivation techniques and bulk density at 7 days only
(Eq. (3)). Regression analysis was significant 
(P < 0.001) accounting for 55.6% of variation with
an estimated error of ca. 20.6 within the fitted data. 

SQE = 303 + 49.6P + 48.1S + 28R - 150BD (3)

diminished with time, ploughing therefore affected rate 
of emergence rather than final plant number. 

Secondary cultivation (power harrowing) resulted in 
increased penetration resistance, shear strength and 
bulk density due to surface compaction. Secondary 
cultivation also increased volumetric water content and 
crop establishment throughout the experiment, due to 
the creation of a fine aggregated seedbed allowing 
increased water storage and soil–seed contact. Rolling 
increased consolidation resulting in higher shear 
strength and penetration resistance, which was higher 
in conjunction with discing as a result of initial 
shallower cultivation. Rolling produced an increased 
crop emergence rate, due to initial consolidation. 
However, over time rolling was responsible for soil 
surface hardening which is detrimental to plant growth 
(Pagliai et al., 2003). 

The interaction between soil physical properties and 
crop establishment illustrated reduced emergence both 
in high strength and low bulk density soil conditions. 

l Masle and Passioura (1987) also noted soil mechanica
resistance adversely affects the growth of wheat in both 

 
a loose soil can result in deep sowing and reduce
compacted and loose soil. Other studies have suggested

d 
seedling emergence especially with small grain 
cultivars (Hãkansson et al., 2002). Similar observations 
were found with the effect of bulk density on crop 
establishment, where lower bulk density values were 
less responsive to crop establishment, due to reduced 
soil seed contact and increased lag time for imbition of 
water vapour to seeds (Bordovsky et al., 1998; Wuest, 
2002). Other researchers have recorded that increased 
bulk density resulted in reduced emergence, with the
fastest and more complete emergence achieved with
bulk densities <1.2 g cm

 
 

 
nmental conditions, 

a

-3 (Nasr and Selles, 1995). 

The SQE performed well on the contrasting soil
types and under different enviro
ccounting for over 50% of the variation in establishment 

with relatively low standard errors with respect to the 
natural variability of the conditions. The initial model 
slightly ‘over predicted’ establishment in the validation 
data, possibly because of a change in moisture regime
at cultivation, which was generally higher within the 
validation sub-set by ca. 10%, with no difference in mean
temperature across seasons. As shown,

 

 
 there was a 

ation 
and e
Howev

strong relationship between water content at cultiv
stablishment which the model will account for. 
er, one may argue this model may be over 

parameterised, as water content is closely related to
cultivation technique (particularly power harrowing) an

 
d 

strongly correlated with soil strength and bulk density. 

Regression analysis performed on the validation sub-set 
gave the best fit of all models which was significant 
(P < 0.001) accounting for 50.9 % of variation with a
standard error of ca. 20.4 (Fig. 6c). A comparison of 1:1 
line of identity showed a change from -0.23 R2 in 

.
e

Eq. (1) and 0.23 R2 in Eq. (2) to 0.52 R2 in Eq. (3). 

4. Discussion 

The examined soil physical properties were sig-
nificantly modified by contrasting cultivation technique
Discing produced compact seedbeds with observ d
increases in penetration resistance and bulk density, in
comparison to ploughed treatments. Comia et al. (1994
similarly found reduced penetration resistance within
ploughed treatments while, Filipovic et al. (2006) also
found conventional tillage reduced bulk density
Discing produced finer aggregate development whic

)

 
.
h

resulted in higher observed volumetric water content in
the top soil layer due to smaller pore development near
the surface and subsequently greater water retention.

gheCrop emergence was more favourable within plou d
treatments despite the compact seedbed and th

ption of increased soil–seed contact associated
e

assum  

. 
ts 

with discing, possibly due to reduced surface crop
residues. Addae et al. (1991) also found emergence 
rates delayed (up to 0.5 days) under minimal tillage
compared with conventional tillage. Other studies have
shown a link between reduced soil–seed contact and
surface crop residues resulting in decreased populations
of dryland and irrigated wheat (Bordovsky et al., 1998)
However, differences in the number of emerged plan
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elected statistical variation between SQE model(s) in the validation su
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Model 1 

ignificance (95% confidence limit) <0.001 

Model 2 Model 3 

<0.001 <0.001 

 
) 

208 
ea

 Variation accounted 59.2 
stimated standard error 25.7 
:1 line of identity (R

58.1 50.9 
25.1 20.4 
0.23 0.52 
0.66 (S.E. 0.114) 0.46 (S.E. 0.093) 
84.28 (S.E. 19.82) 86.15 (S.E. 16.01) 
167 167 
194 164 
0.67 -0.09 

2         - 0.23 
lope 0.69 (S.E. 0.117)
ntercept 92.95 (S.E. 20.31
verage observed population (per m2) 167 
verage predicted population (per m2) 

n % deviation 1.02 
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The second model had a better fit however, the over
prediction was also considerable. Using parameters
‘prior to cultivation’, at 0–70 mm depth, created 
increased variability. If the model was used at other
locations which have not used the same previous year
cultivation techniques as performed at the used field

ded variability may also be entered into thesites, ad
model. Subsequent removal of ‘prior to cultivation’ data
resulted in the best fit model (Eq. (3)). Although
accounting for less variation in both the fitted and
validation data sets, this model does not suffer from the
over prediction observed in the previous models
(Table 2). It is interesting to note the model select

y bulk density and cultivation technique as no
s

onl t
only is bulk density correlated with soil strength and
water content, but it is also an indicator of soil
structural condition. This suggests the cultivation
technique applied and the soil structure created by
these techniques have the greatest effect on crop
establishment. 

5. Conclusions 

The soil quality of establishment (SQE) models were
successful in explaining how variation in soil physical
properties affect crop establishment. Each model
accounted for ca. 50% or more of the total variation
in winter wheat establishment. Over parameterisation
led to an ‘over prediction’ within the initial two models
from the validation data, as a direct result of soil water
content and ‘prior to cultivation’ measurements.
Removing these from the model prevented over
prediction highlighting that bulk density (in conjunction
with cultivation technique) accounted for the best fit
model prediction of crop establishment. 

It is possible the model could be improved by
including other measurements such as soil temperature,
oxygen diffusion rate, etc. and other cultivation
techniques. However, as bulk density is an indicator 

of soil structure, it could also be anticipated that a 
greater understanding of the soil porous architecture 
through measurements of properties such as porosity 
and pore size distribution might yield further informa-
tion regarding crop establishment. It must also be noted 
not all factors can be controlled, such as disease, 
weather, etc. which can also effect the variability of crop 
establishment and growth. Ultimately it is important 
that any model of establishment should be linked 
closely with cultivation methods and in line with the 
appropriate management directives for soil protection. 
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Chapter 3:   

E dbed cultivation and so

rit

 

T ary, se

p X-ra

between macro structure, soil physical properties an hment. This chapter 

is under review for publication in Tillag

a ’. 

 

3

 

Soil physical properties affect the establishment of crops; these properties are 

influenced by cultivation incurred during seedbed preparation and vary greatly 

depending upon the intensity of applications.  However, there is little quantified data 

concerning the influence of cultivation upon the precise soil structural arrangement 

and the effects of this on crop establishment.  The dynamics of soil macro structure 

properties on a range of seedbeds and how they relate to crop establishment are 

considered in this paper.  Significant interactions between cultivation techniques, soil 

physical properties, the soil macropore structure of the seedbed and the interaction 

with crop establishment were identified.  The relationship between soil structure and 

crop establishment was highly significant, with increased pore space reducing final 

establishment numbers. An improvement to a previously developed model (soil 

quality of establishment (SQE)) was developed following the addition of soil macro 

structure properties, accounting for improved predictability of between ca. 6 - 19 % of 

nd is included in unpublished ‘paper format

.1 Abstract 

e Research (Atkinson et al., 2008) Soil and 

y CT and models the relationships 

d crop establis

ractices on the soil macro structure using 

condary and tertiary cultivation his chapter assesses the affect of prim
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and oxygen availability, all of which 

ffect the performance of a seedbed.  The physical properties of soil can be translated 

structural conditions created by cultivation.  However, the 

nfluence that cultivation and its subsequent effect on crop establishment have on soil 

the variation accounted across soil types, environmental conditions and image 

resolution changes. 

Keywords: Soil quality; Tillage; Soil structure; Seedbed; Establishment. 

 

3.2 Introduction 

 

Cultivation practices have a large influence on the soil physical properties of seedbeds 

and the subsequent establishment of crops.  Such management regularly affects soil 

strength, water content, temperature, nutrient 

a

as measures of the 

i

structure has rarely been quantified.  We hypothesise that by exploring the structural 

arrangement of a seedbed, in terms of its porous architecture, the effect on crop 

establishment may be better understood. 

 

The quantification of soil structure provides a greater understanding of the soil 

physical environment.  The most common way of visualising soil structure at present 

is by the use of X-ray Computed Tomography (CT) which enables the rapid 

observation of soil structure in two and three dimensions (Vogel and Roth, 1998; 

Perret et al., 1999; Young et al., 2001).  X-ray CT can be performed at a variety of 

scales, typically ranging from 5 µm to 500 µm, on undisturbed soil cores of varying 

size depending upon the scanner type.  X-ray CT is now a widely used and accepted 

tool for determining soil structural conditions, such as fluid dynamics through soil, 



   

changes in pore dynamics and morphological changes under cultivation (Mooney, 

2002; De Gryze et al., 2006; Rachman et al., 2005).   

ompaction on earthworm burrow systems.  This enabled them to determine that 

compaction contributed to the fragmentation of burrow systems with reduced 

chnique would not have been possible to determine 

 

 

 

 

Jégou et al. (2002) used medical X-ray CT for quantifying the impact of soil 

c

continuity; which prior to this te

non-destructively.  Langmaack et al. (2002) found that conventional tillage reduced 

soil porous architecture in terms of total pore length, volume, tortuosity and 

continuity, compared with conservation tillage. Mooney et al. (2006) used X-ray CT 

to illustrate the effect of soil structure on the propensity of a cereal root system to fail. 

They identified that subterranean stem rotation was the major mechanism causing 

plants to fail and that an increase in surface bulk density post establishment (e.g. by 

rolling) was needed to resist root failure.  Gantzer and Anderson (2002), using X-ray 

CT, showed conventional tillage created significantly higher macroporosity (11 %) 

compared to no till systems (5 %). 

Previously Atkinson et al. (2007) developed a soil quality of establishment model 

(SQE) which successfully predicted crop establishment, across two seasons and soil 

types, based on cultivation method and the soil physical properties.  Here we 

hypothesised that the addition of quantified soil structural data would provide a 

greater understanding of how the porous architecture affects crop establishment. 

Previous studies using soil structural imaging to examine the effects of agricultural 

practices have tended to concentrate on compaction and its effects on soil function 

and crop growth.  Very few have concentrated on quantifying the impact of 
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cultivation on the soil structural environment and its subsequent effect on crop 

establishment.  The objectives of this paper were (i) to identify changes in soil macro 

tructural properties in a range of evolving seedbeds created by different cultivation 

t following winter oats.  The experimental design 

 

een performed by a single pass heavy disc 

s

methods, (ii) to determine the effect of soil macro structure on crop establishment and 

links with physical properties and (iii) to develop a model to predict crop 

establishment based on soil physical properties and macro structural elements. 

 

3.3 Materials and methods 

 

3.3.1 Field site and experimental design 

 

A field experiment was established in 2005 at the University of Nottingham, Sutton 

Bonington, Leicestershire, UK (52.5oN, 1.3oW).  The soil was a sandy loam from the 

Dunnington Heath series (FAO class; Stagno-Gleyic Luvisol) (Table 3.1). The field 

was in a rotation of winter oats, winter wheat, sugar beet, winter wheat, with the 

current experiment in winter whea

was a 2 x 3 factorial, arranged in a split plot with three replicate blocks.  Primary 

cultivations (plough or disc) were arranged on the main plots, which were divided into 

three sub-plots on which secondary applications were factorally combined and 

allocated at random; either power harrowing (SN), rolling (NR) (Cambridge rollers 

post-drilling) or combined applications of both power harrowing and rolling (SR). 

Previous cultivations for two years had b

cultivator incorporating a levelling board and roller (Vaderstad Carrier Super CR500).  

The experiment comprised of 24 plots that were 24 x 2.5 m wide, in sets of 8 plots in 

3 blocks with 12 metre discards between blocks.  Plots were drilled using a Nordsten 
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drill with winter wheat (Triticum aestivum) cv. Robigus at a rate of 250 seeds per m2 

on 27th September 2005.  Cultivations were performed the day before drilling for 

primary cultivations and the day of drilling for secondary cultivations and rolling.  

 

Sampling for model validation was conducted at the University of Nottingham, Sutton 

Bonington, Leicestershire, UK (52.5oN, 1.3oW), in an adjacent field to the previous 

ear, and at Bunny, Nottinghamshire, UK (52.52oN, 1.07oW).  The soils were a sandy 

 fr  series (FAO class; Stagno-Gleyic Luvisol) at Sutton 

onington and a clay loam from the Worcester series (FAO class; Argillic Pelosol) at 

 were drilled with winter wheat (Triticum 

estivum) cv. Einstein at a rate of 300 seeds per m2 in early October 2006. 

Table 3.1: Selected soil properties of the Dunningto  Heath (FAO class: Stagno-Gleyic Luvisol) and 

Worcester (FAO class: Argillic Pelosol) series.  Percentage by mass, measured using hydrometer 

FAO Class (>50 µm) (2-50 µm) (<2 µm) Density 
rganic 

Matter 
(%) 

pH 

y

loam om the Dunnington Heath

B

Bunny (Table 3.1; Figure 3.1).  Both sites

a

 

n

a

method (Rowell, 1994). 

Sand 

(%)* 

Silt 

(%)* 

Clay 

(%)* 

Saturated hydraulic 
Conductivity (cm s-1) 

Bulk 

(g cm-3) 

O

Stagno-Gleyic Luvisol 66.4 18.0 15.6 1.86 x 10-3 1.51 4.88 6.5 (Dunnington Heath) 
Argillic Pelosol 31.1 34.5 34.4 6.31 x 10-5 1.40 5.(Worcester) 49 6.9 
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Figure 3.1:  Water release curve for the two soil textures (Table 3.1), data fitted to the Van Genuchten-
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Maulem (1980) model. Clay Loam = ▲; Sandy loam = ■. Data courtesy of Morris (2004). 
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 c
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3.3.2 Soil structure sampling 

 

Soil samples were collected by sampling the top 70 mm of the soil profile with 

ubiena tins (70 x 70 x 50 mm) from a shallow pit within the centre 1 m of each plot 

.3.3 Resin impregnation of undisturbed soil cores 

 

ied for a maximum of 7 days to reduce the moisture content; 

however, samples wer dried icient  to allow shrinkage or ura

damage.  A mixture of the following impregn  co  p  in 

sequence;  Crystic resin (Crystic 17449, Aeropia Ltd, UK), catalyst (Organic peroxide 

l Ethyl Ketone Peroxide, ScottBader, UK), acetone (Laboratory Reagent 

Grade, Fisher Scientific, UK), accelerator ‘G’ (Aeropia Ltd, UK) and fluorescent dye 

(Uvitex OB, CIBA Inca., UK).  Impregnation of sa ples was performed using a 

thinned resin solution, achieved by a 1.5:1 ratio of acetone to resin.  This was reduced 

to a 1:1 ratio, 0.5:1 ratio in subsequent top-ups if ired.  Catalyst was used in a 

100:1 ratio of resin to catalyst.  Accelerator wa  a 100:0.2 ratio of resin to 

accelerator.  Within each mix  0.5 g of optical brightener was 

K

leaving a 0.75 m distance from all wheeled traffic in randomised locations and 

replicated twice.  The orientation was marked and the sample carefully removed from 

the soil by excavating around the container.  Samples were then wrapped in cling film 

to prevent water loss and damage.  Samples were taken at key stages of seedbed 

evolution; prior to cultivation, after cultivation, emergence, establishment and spring 

establishment.   

 

3

Soil cores were air dr

e not  suff ly as struct l 

ation mponents was then repared

‘0’ – Methy

m

 requ

s used in

of the above ratios ca.

dissolved.  Resin mixture was poured gently on to the samples and allowed to 
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infiltrate into the pore space.  A 10 mm head was left above samples prior to placing 

nder a low vacuum to evacuate air (no observable change in soil structure occurred 

 Tomography (CT) scanner at the Queens Medical Centre (QMC), 

ottingham, UK.  The samples were scanned using a spiral scan routine.  Exposure 

ments of -0.8 mm, giving slice 

icknesses of 0.8 mm at an output device resolution of 512 x 512 pixels, and spatial 

-1

u

as a result of this process).  Extra solution was added to samples if the resin mixture 

level fell below the soil surface.  Samples were air cured until solid (2-3 weeks), then 

cured at 40 ºC for a further two weeks.  

 

3.3.4 X-ray Computed Tomography  

 

Resin impregnated soil blocks were scanned using a Philips Mx8000 IDT whole-body 

X-ray Computed

N

limits of 140Kv and 201mAs were applied to incre

th

resolution (voxel) of 0.46 x 0.46 x 0.46 mm, in a rotation time of 0.75 seconds.  The 

field of view was set at 447 mm to allow for maximum image size.  Data from each 

scan was recorded on a magnetic tape and converted to ARC / NEMA (DICOM) 

format for processing.  

 

3.3.5 Image analysis of soil structure characteristics  

 

Image stacks (a collection of images) acquired at scanning were 512 x 512 x 660 

pixels (330 MB) in size.  Each frame within this was 512 x 512 pixels which provided 

a spatial resolution of 824 µm pixel .  CT images were re-sized for each sequence of 

images, and converted to the TIFF format using public domain software ImageJ (Vs. 

1.35p, National Institutes of Health, USA, http://rsb.info.nih.gov/ij/).  Image 

sequences varied between samples due to edge effects, however, for consistency 30 
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images (maximum number of continuous images across all samples) taken from the 

centre of each sequence was used.  Image manipulation was performed in ImageJ to 

isolate pore space.  This involved resizing each sample (30 images per sample) to a 

size of 56.82 x 56.82 mm.  A series of imaging filters were evaluated from which the 

median and sharpen filter produced the best results.  Images were then binarised by 

anual adjustments of a threshold (Hounsfield units – HU), due to inconsistency in 

a  ImageJ; this was performed individually for 

ach sample (c. 1300-1600).  Binary images (stacks) were then subjected to a close 

 

 to test for significant differences between treatments 

difference between mean (S.E.D).   

m

autom ted threshold algorithms used in

e

function (dilation and erosion) consisting of two iterations and eight pixels.  

Morphological analysis was performed on the binary images created (Figure 3.2) 

using ImageJ, this included the following measurements; pore count, total pore area, 

average pore size, total image porosity and pore size distribution. Plant material was 

included as pore space due to issues with density differentiation between air and root. 

 

 3.3.6 Statistical analysis 

The statistical software package GenStatTM v.8.1 was used to analyse all data using an 

analysis of variance (ANOVA)

and to calculate standard errors of 
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(A) 

(C) 

(B) 

 

 

 

Figure 3.2:  Morphological analysis of seedbed evolutionary changes between prim

 

ary treatments are 

own.  A) Primary and rolled.  B) Primary and power harrowed.  C) Primary, power harrowed and 

rolled. 
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.4 Results  

 

 3.4.1 Macro porosity 

 

Soil macro porosity was not significantly different between plots prior to cultivation 

with natural variability between 9-12 % (Table 3.2).  Evolution in m  

showed the greatest increase (P < 0.001) after cultivation by ca. 10 %, thi reased 

with the age of the seedbed and by spring establishment macro porosity was ca. 5-6 % 

greater than prior to cultivation (Figure 3.3).  Interactions over time with primary 

cultivation, although not significant, showed increased macro porosity (4 %) within 

disc treatments compared to plough, this decreased by emergence to within ca. 1 %, 

and increased again with plant development by establishment to  ca.  4 % (Figure 3.2).  

Over seedbed evolution, secondary cultivations showed clear increased macro 

porosity (ca. 3-4 %) initially after cultivation within treatments which received 

rolling.  However, after 7 days this trend was reversed and treatments that received 

rolling had ca. 2-4 % less porosity than power harrowed treatments Figure 3.3).  

ignificant interactions occurred over time between primary and secondary 

power harrowed plots (Figure 3.3).  At emergence, a reverse pattern was observed in 

both plough and disc treatments with rolling reducing macro porosity (Figure 3.3).  At 

establishment, the largest macro porosity occurred within the disc and rolled treatment 

(ca. 23 %) and the lowest in the ploughed plots (ca. 14 %) (P < 0.05) (Figure 3.3).  

Spring establishment again reduced macro porosity as a result of rolling, and 

3

acro porosity

s dec

(

S

cultivations (P < 0.05), after cultivation, disc treatments, which included rolling, 

increased macro porosity, but within ploughed treatments this was only true of non-
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ploughed treatments which received power harrowing were ca. 3 % less than non-

ower harrowed treatment (P < 0.01) (Figure 3.3). 

Macroscale average pore size (mm2) 

2

2

2 2

2

2 2

2

p

 

3.4.2 

 

Average pore size was not significantly different prior to cultivation with natural 

variability between ca. 10-15 mm  (Table 3.2).  As seedbeds evolved, average pore 

size as a result of primary cultivation was consistently higher within disc treatments 

compared to ploughed (P < 0.05) (Figure 3.3).  The greatest increases in average pore 

size (P < 0.01) occurred after cultivation by ca. 5 mm , this decreased with seedbed 

age and at emergence it was roughly similar to the value prior to cultivation (11.5-12 

mm ), this increased again by establishment (ca. 15 mm ) and spring establishment 

(ca. 14 mm ).  Initially after cultivation, large increases in average pore size were seen 

within rolled treatments (ca. 18 mm ) compared with unrolled (ca. 12 mm ), however 

this was reversed as the seedbed evolved with rolled treatments having reduced 

average pore size compared with unrolled (ca. 5-7 mm ) (Figure 3.3).  The 

interactions between primary and secondary application showed significant 

interactions (P < 0.01) whereby an increase in cultivation intensity i.e. rolled through 

to combined, led to a general decrease in average pore size within disc treatments but 

an increase within ploughed treatments. 
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3.4.3 Macroscale pore size distributions (PSD) 

 

ltivation resulted in an overall increase in tota

D (Figure 3.4; 3.5).  Ploughed treatments were normally distributed between 0.5 

and 3 mm2 log10, however, rolling resulted in an in sed pore size, particularly where 

power harrowing was not applied.  The same was not true of disced treatments 

llowing cultiv lting in larger por

harrowing produced a m  pore size di

increased pore size.  Pore area was greatly

 difference between primary cultivation rema d the same with disc treatments 

erally having a greater total pore area and larger pore size.  Power harrowed 

treatments within disc applications remained similar to results after cultivation, 

however, ploughing increased the number of l ger pores.  The app

harrowing and rolling resulted 

3.4; 3.5) and spring establishment pore area and t number of larger pores increased 

htly possibly in response to crop growth.   

3.4.3.1  Pore size distribution - coefficient of uniformity (PSDcu) 

 

he coefficient of un ézdi  be used to numericall he 

ifferences in distributions where large and small pores co-exist.  This provides a ratio 

the larger the ratio the greater the number of larger pores (Eq. (1)). 

Cu

PS

l pore area which is described by the 

crea

fo ation with all tr e sizes.  Power eatments resu

ore uniform stribution, while rolling considerably 

 reduced as the seedbed evolved, however, 

the

gen

ine

ar lication of power 

in a decrease in total pore area.  Around winter (Figure 

otal 

slig

 

T mity (K , 1974) canifor y illustrate t

d

of the size of pores at a 10 % and 60 % total porosity of the sample (or distribution), 

 

10

60

d
d

PSDCU =     (1) 
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No significant differences in PSDcu were observed prior to cultivation with a mean 

sult of large heterogeneity in porosity withi e data, however trends in PSDcu 

owed previous observations recorded for average pore size (Figure 3.6).  

nificant (P < 0.001) changes in the PSD urred over time as a result of 

ultivation.  Over the evolution of the seed s, PSDcu as a result of primary 

ultivation was 5) with the mean difference h  

e were highly significant (

etween secondary cu tions once the seedbe d aged and crop esta ment had 

urred, with the largest ratio occurring within the power harrowed treatment (ca. 27 

), then rolled (ca. 28 - 20) and finally comb power harrowed and rolled) (ca. 

9 - 16) (Figure 3.6).  Interactions between pr ry and secondary applications was 

ignificant with r ge (P < 0.01), accounting for larger ratios within 

loughed treatments with rolling 37 and 23 in combination with power harrowing.  

m

led (ca. 19) and combined (ca. 17).  (Figure 3

4 Soil structural relationships 

he soil structu erived by image analysis correlated strongly with 

e influence of soil strength changes, with direct correlations with penetration 

here were also 

ignificant correlations with cultivation at particular time periods, especially after  

ratio of 13.3 (Table 3.2).  After cultivation there were no significant differences, as a 

re n th

cu

foll

ig  occ

bed

S

c

 significant (P < 0.0 igher with disc (ca.c

2 P < 0.01) differences 1) than plough (ca. 17).  Ther

b ltiva d ha

ined (

ima

blish

occ

 21-

1

s  inc eased seedbed a

p

However, under disc treat ents, power harrowing had the largest ratio (ca. 20), then 

rol

.4.

.6) 

 

3

 

T ral measurements d

th

resistance and shear strength and soil macro structure porosity, pore size and PSDcu.  

Over the evolution of the seedbed, the impact of increased soil strength resulted in a 

decrease in the measured structural properties of the soil.  However, t

s
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Figure 3.6:  Mean variation in pore size distribution coefficient of uniformity.  A) Mean variation of 
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series.  Error bars in s.e.d 
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ultivation and at establishment.  These relationships showed increases within the 

structural components with an increase in strength or compaction, especially within 

the disc and rolled treatments. 

 

Soil structural measurements were strongly correlated with crop establishment (per 

m2).  Establishment had a highly significant correlation with PSDcu, with higher ratios 

ssociated with a reduction in crop establishm

larger pores are responsible for reducing establishment.  This was also true with 

increasing porosity (%) and average pore size (mm2), both of which resulted in 

reduced crop estab ment with an increase in pore area (Figure 3.7).  

 

3.4.5 Soil quality of establishment (SQE)  

Previously, a model for predicting crop e ent (SQE) was developed based on 

the soil physical properties of a seedbed and the cultivation practices performed 

(Atkinson et al., 2007).  The model accounted for 56 % of variation within the fitted 

data (collected in 2005) and 51 % of variation within a validation subset (collected in 

2006).  The model was successful in predicting crop establishment to within an error 

f 20 plants per m2 at seven days post cultivation fr ents.  

lthough the model worked, it was limited by the indirect and disturbed 

architecture.  It was therefore hypothesised that the model maybe further improved 

c

a ent, showing that soil structures with 

lish

 

stablishm

o om soil physical measurem

A

measurements which may not account for the actual field 2-D & 3-D soil porous 

using soil structural measurements. 
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Figure 3.7:  Correlations between establishment and increases in pore space of soil macro structure. 

 

Multiple linear regression, using the macro structure data, was used to improve the 

model’s predictive ability.  Structural data was divided into time sequences; after 

cultivation, emergence and establishment.  Each time period was then assessed against 

the original model, including porosi

PSD

P  <0.01

150

250

300

ty, average pore size and PSDcu.  As a model was 

created in each time period, its continued predictive ability was assessed against the 

subsequent time periods. Although perfect models, which included at least two of the 
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structure factors, could be created especially after cultivation, the predictive power 

would not be the same with the subsequent time periods.  This is most likely due to 

the large variations within the samples which occur at this period, as a result of soil 

natural heterogeneity over short distances and large disturbances in soil conditions.  

The issue with continued predictability at subsequent time periods created with data 

from after cultivation also applied to nce data, however this was not the 

case for the estab ent data, models created at this time period were better at 

continued prediction at the different periods.  Increasing the number of parameters 

within the model increased the error, and using the principle of parsimony it was 

found that models using single structural terms were more successful at continued 

prediction, especially porosity and average pore size.  Both models including these 

factors were significant (P < 0.01) accounting for 66 % and 66.2 % with errors of 21.9 

and 21.8 respectiv .  With the mean percentage difference across the time periods 

between predicted  observed establishment of 2 % within porosity and -4 % within 

average pore size, it was decided that total macro porosity provided the more 

consistent model. 

 

 

 rolled, BD = bulk density at 7 days and TPm = total macro porosity (%).  Regression 

the emerge

lishm

ely

 and

The optimal model (Eq(2)) included the fitted terms of P = primary, S = secondary, R

=

analysis was significant as stated accounting for 74 % of variation, an increase of ca. 

18 % from the original model, with an estimated error of ca. 17, a decrease of ca. 4, 

within the fitted data (Figure 3.8). 

 

TPm0.18-BD250.2R51.1S74P57.7386SQE ××−×+×+×+=  

(2) 



   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8:  Compar
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ison of SQE model output for best fit models within (A) fitted data and (B) 

alidation data, and the changes to model predictability from (1) physical input to (2) physical and 

macro porosity input. Validation was conducted over two soil types a clay loam (∆) and sandy loam (□) 

as well as different environmental conditions to the data in which the model was created.  Also note 

against the 2006 / 7 season sub-set collected from 

xperiments using disc treatments, ± power harrowing, with rolling post drilling and 

across two soil types (Dunnington Heath series – sandy loam and Worcester series – 

clay loam).  Regression analysis performed on the validation sub-set gave a good

v

that structural additions in the validation are at difference scale of resolution to the fitted data.  * 

Population change due to sample logistics. 

 

The improved SQE was validated 

e

 fit 
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which was significant (P < 0.01) accounting for 56 % of variation (Figure 3.8) and a 

t nt in the m

, and an increased model fit to a 1:1 line of identity from 0.52 to 0.57 (Table 3.3).  

ever, there was a slight increase in standard error by ca. 8.   

able 3.3: Selected statistical variation between SQE model(s) previously developed ition 

f structural elements.  ◊ Structural addition to the original models. * Observed population changes 

r  changes in structural samp

 

Original Fitted Original Va ed Fitted ◊ Validated ◊ 

s odel with an increase in R2 of andard error of 28. This was an improveme

6

How

 

 

T and the add

o

a e a result of different seasons and ling regimes. 

 lidat

Significance 

(95% confidence limit) 
<0.001 <0.001 <0.001 0.003 

% Variation accounted 55.6 50.9 74 56 

Estimated Standard Error 20.6 20.4 16.8 28.4 

1:1 Line of Identity (R2) 0.57 0.52 0.74 0.57 

Slope 0.58 (SE 0.105) 0.46 (SE 0.093) 0.76 (SE 0.111) 0.69 (SE 0.181) 

Intercept 80.79 (SE 20.94) 86.15 (SE 16.01) 46.73 (SE 22.71) 47.59 (SE 31.97) 

Average Observed 

Population (per m ) 
193.34 167.24 200.54 170.14 

2

Average Predicted 

Population (per m ) 
193 164.71 199.48 165.51 

2

Mean % Deviation -0.01 - 0.09 - 0.03 - 0.23 
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3.5 Discussion 

 

The examined soil macro structure properties were significantly modified by 

cultivation techniques.  Discing created seedbeds which had greater porous 

rchitecture compared to ploughed treatments.  The porous architecture were likely a 

sult of inversion and crop residue, which affects soil movement under passing 

the discs, resulting in increased porosity, whereas inversion allows for a more 

pact seedbed, due to a reduction in surface residue.  Dao (1996) suggested large 

amounts of surface residue improves macroporosity near surface zones, which could 

 highe ity within disc treatments. ver, a r l 

ed age a op establishm this resulted i creased po  

, likel  to greater crop establishment.  

Secondary cultivation was responsible for the greatest changes in soil structural 

conditions.  Power harrowing resulted in consistent increases overall within pore area, 

ue to the dbed devel  and the re e action  

upon the soil, which also allows for better soil-seed contact.  

 (2002) found rotary harrowing resulted in a more stable bulk soil, 

 

 harrow created a consistent seedbed 

ount of previous or continued preparation, and attributed 

acropore attributes as a consequence of rolling.  Rolling had 

ctural condition of the soil in particular, immediately 

a

re

cultivation equipment, with crop residue causing disturbance within the topsoil.  This 

would lead to large scale movements of crop residue movement under the weight of 

com

also account for the r poros  Howe eversa

occurred with seedb nd cr ent, n in rosity

of ploughed treatments y due

 

this is possibly d fine see opment petitiv  power

harrowing has 

Langmaack et al.

which would account for reduced seedbed collapse which was also observed. 

Douglas & Koppi (1997) found the rotary

regardless of the am

differences between m

significant impact on the stru
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after cultivation, resulting in very high porosity, pore size and PSDcu which was 

nexpected as rolling is performed to consolidate the soil.  The reason for this may be 

 

 

 

u

due to the way in which Cambridge rollers pass over the soil, creating compaction in 

some areas, but also pushing soil between the pressure points of the rollers, thus 

developing a higher percentage of larger pores (cracking) near the soil surface in a 

zone of disturbance, as illustrated conceptually in Figure 3.9.  Over time however, 

seedbed collapse resulted in reduced porosity as an outcome of rolling, due to soft 

ridge collapse and infilling of pores.   

 

 

Figure 3.9: Compression stress regime which causes increased porous architecture under rolled 

cultivation applications. 
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Increases in pore space occurred around establishment and spring establishment, 

probably as a consequence of crop growth, due to the movement of the shoot through 

the soil and the opening of pore space around the plant shoot. This would explain why 

pore space increased more within ploughed treatments which had more established 

plants than disced plots. Seedbed evolution also resulted in increased soil strength, 

either resistance or shear, which led to a decrease in soil porosity, pore size and PSDcu 

in most treatments with the exception of some disc treatments and rolled treatments, 

likely a result of shallow cultivation, crop residues, soil cracking and crop growth.  

hese influences would result in higher overall strength of the soil, but at the same 

me increased larger pore space. 

o porosity as an 

 the variation in 

ral variability.  

rent time periods and validation sub-set.  

his is because, althoug o porosity, average pore size and PSDcu are 

measures of the soil structural condition, they each account fo re space i.e. 

not shape or connectivity.  The best model fitted was a combination o i

P ever we suggest this was over-paramatised, and the parsimonious 

application of porosity worked well at e period of soil structure sampling, 

giving accurate prediction.  This ad il structure to the model and the 

improvements observed confirmed that soil structural properties are directly linked 

with crop establishment. 

T

ti

 

The SQE was statistically improved with the addition of macr

influencing factor upon establishment, accounting for ca. 60 % of

establishment with relatively low standard errors in respect to natu

However, the addition of more than one element did result in larger errors through 

over prediction if assessed at both the diffe

T h soil macr

r size of po

ty and f poros

SDcu. How

each tim

dition of so
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3.6 Conclusions 

 

Quantified image analysis of seedbed soil structure revealed crop establishment was 

significantly reduced by increases in pore space, possibly a result of reduced soil seed 

contact and lack of nutrient capture from transmission pores. The greatest crop 

establishment occurred under consistent and finer seedbeds such as power harrowed, 

or the removal of surface residue (preventing soil disturbance) i.e. ploughing. 

 

The effect of soil structural elements is therefore key to explaining establishment; this 

was further demonstrated with direct improvements to the soil quality of 

stablishment (SQE) model with the addition of structural variables.  Each structural 

l conditions and their effect on crop establishment. 

e

variable on its own, and in combination, improved the original model developed using 

bulk density and cultivation techniques.  The most parsimonious SQE model, which 

included the addition of macro porosity (%), produced the best fit model.   

 

It is clear that the finer and more homogeneous seedbed structures produce the 

greatest establishment, mainly achieved through power harrowing and ploughing.  

The poorest soil structure and seedbed performance was produced by discing and 

rolling. Optimum structural conditions for establishment observed in this data (soils 

and resolution) occurred between ranges for porosity of 10-19 %, average pore size of 

8-12 mm2 and PSDcu ratio of 8-17.  These ranges are quite broad with a large amount 

of overlap between cultivation technique due to soil heterogeneity and it may 

therefore be further hypothesised that finer scale resolution may provide greater 

understanding of structura
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Chapter 4: 

Effect of seedbed cultivation and soil meso structure on the 

 

eedbed preparation has a significant influence on the physical properties of soil 

cluding soil structure as previously shown in chapter 3.  The soil condition affects 

e ability of the crop to establish due to factors such as compaction, reduced soil seed 

ontact, reduced nutrient uptake etc.  The quantification of soil structure by image 

nalysis has been performed by a number of researchers (Ringrose-Voase and 

ullock, 1984; Ringrose-Voase, 1987; Ringrose-Voase, 1996; Vogel, 1997; Horgan, 

998; Lipiec et al., 2006).  Advances in this technique have occurred relatively 

uickly due to technological improvements in digital imaging and computer 

rocessing e.g. Lipiec et al. (2006) allowing for high resolution imaging, large image 

torage, faster processing capability as well as developments in software.  Images 

erived from resin impregnated soil blocks have been used in a variety of soil 

structural analyses ranging from the assessment of pore connectivity (Vogel, 1997) to 

ination of soil fractal parameters (Pachepsky et al., 1996; Giménez et al., 

997).   

Image analysis of soil structure is used regularly in agricultural experiments to study 

anagement practices and their effect on the soil environment. The 

uantification of shape, size and continuity of pores helps the understanding of the 

establishment of winter wheat (Triticum aestivum cv. Robigus) 

4.1 Introduction 
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porosity.  Lipiec et al. (2006) observed the effect conventional, reduced and no till 

 

hich affected water infiltration, which was fastest under conventional tillage.  

the evolution of a seedbed in 

orphology under conventional tillage, but little change in both total porosity 

s result in degradation at shallower depth 

proving structure conditions in comparison.  Pagliai et al. 

effects of changes to soil induced by management practices (Pagliai et al., 2004).  A 

number of studies have considered the effects of different tillage methods on soil 

systems had on a silt loam and found marked differences in pore size and distribution

w

Hubert et al. (2007) observed significant changes over 

the pore m

and pore shape under reduced and no till systems.  VandenBygaart et al. (1999) also 

observed morphological changes in the upper three cm of soil under no tillage 

systems, stating that increased time under no till management resulted in pore 

morphology changes of increased porosity, pore roundness and irregular pores.  

VandenBygaart et al. (1999) also found that under conventional tillage, pore 

morphology is maintained each year and that four years of no tillage is required to 

achieve the same levels of pore morphology observed under conventional tillage.   

 

Poor management practices can also lead to soil degradation due to compaction or the 

formation of surface crusts.  Pagliai et al. (2004) found ploughing in comparison to 

reduced tillage systems resulted in soil more susceptible to degradation.  Douglas and 

Koppi (1997) found conventional tillage resulted in poorer structural conditions in 

terms of porosity and pore morphology at both the surface and at depth within a 

profile, whereas, reduced pressure system

with zero traffic greatly im

(2003) also found significant decreases in porosity of the surface layer with single 

passes of tractors and further reductions with an increase in the number of passes.  

Soil degradation from poor management practices can also result in a surface crust 



   

which can be detrimental to crop growth and water infiltration (Fox et al., 2004).  

Usón and Poch (2000) found reduced tillage did not reduce surface crusting, and in 

fact, was more susceptible to slaking and deposition in a series of events, compared 

with crusting under conventional tillage which is discontinuous and results from a 

single event.  

 

Examination of the macro structure of cultivated soil, using X-ray Computed 

Tomography, has shown a relationship between management type and soil structure 

with increased pore space resulting in reduced establishment for winter wheat 

(Atkinson et al., 2007).  However, the relationship could not be explained beyond this 

and it was hypothesized that a further detailed assessment of the soil porous 

architecture at finer scales may provide a better understanding of the soil condition 

and its effect on crop establishment. 

 

Previous studies of soil structure using image analysis have concentrated on the direct 

impact of management practices, mainly in terms of compaction.  Very few have 

concentrated on the effects on crops and fewer still on the effect cultivation has upon 

soil structure and subsequently crop establishment.  The objectives of this experiment 

were (i) to identify changes in soil meso structure in a range of evolving seedbeds 

created by different cultivation methods, (ii) to determine the effects of soil meso 

structure on crop establishment and (iii) to develop a model to predict crop 

establishment based on soil physical properties and the structure of the cultivated 

soils. 
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4.2 Materials and methods 

 

4.2.1 Field site and experimental design 

 

A field experiment was established at the University of Nottingham experimental 

rm, Sutton Bonington, Leicestershire, UK (52.5oN, 1.3oW).  The soil was a sandy 

) were arranged on the main plots, which were 

ivided into four sub-plots on which the other treatments were factorally combined 

g for primary cultivations and the day of drilling for secondary cultivations and 

lling. 

fa

loam of the Dunnington Heath series (FAO class; Stagno-Gleyic Luvisol) (Chapter 3, 

Table 3.1).   

 

The field was in a rotation of winter oats, winter wheat, sugar beet, winter wheat, with 

the current experiment in winter wheat following winter oats.  The experimental 

design was a 2 x 2 x 2 factorial, arranged in a split plot with three replicate blocks.  

Primary cultivations (plough or disc

d

and allocated at random; secondary cultivation (+/- power harrow) and tertiary 

cultivation (+/- rolling) with Cambridge rollers post-drilling.  Previous cultivations for 

two years had been performed by a single pass of a heavy disc cultivator 

incorporating a levelling board and roller (Vaderstad Carrier Super CR500).  The 

experiment comprised of 24 plots that were 24 x 2.5 m wide, 8 plots per block in 3 

blocks with 12 metre discards between the blocks.  Plots were drilled using a 

Nordsten drill with winter wheat (Triticum aestivum) cv. Robigus at a rate of 250 

seeds per m2 on 27 September 2005.  Cultivations were performed the day before 

drillin

ro
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Sam ng for model validation wpli as conducted at the University of Nottingham, Sutton 

onington, Leicestershire, UK (52.5oN, 1.3oW), in an adjacent field to the previous 

(52.52oN, 1.07oW).  The soils were a sandy 

am from the Dunnington Heath series (FAO class; Stagno-Gleyic Luvisol) at Sutton 

.2.2 Soil structure sampling 

his was conducted using the method included in chapter 3 section 3.3.3. 

B

year, and at Bunny, Nottinghamshire, UK 

lo

Bonington and a clay loam from the Worcester series (FAO class; Argillic Pelosol) at 

Bunny (Chapter 3, Table 3.1).  Both sites were drilled with winter wheat (Triticum 

aestivum) cv. Einstein at a rate of 300 seeds per m2 in early October 2006. 

 

4

 

Soil samples were collected by removing undisturbed soil from the top 70 mm of the 

soil profile with Kubiena tins (70 x 70 x 50 mm) from a shallow pit within the centre 

1 m of each plot leaving a 0.75 m distance from all wheel traffic in randomised 

locations and repeated twice per plot, totalling six replicates per treatment.  The 

orientation was marked and samples carefully removed from the soil by excavating 

around the container.  Samples were wrapped in cling film to prevent moisture loss 

and damage.  Samples were taken at the key stages of seedbed evolution; prior to 

cultivation, after cultivation, emergence, establishment and spring establishment.  

Plots that only received primary cultivations were not considered here resulting in a 2 

x 3 factorial design of primary (plough or disc) and secondary cultivation; rolled 

(NR), power harrowed (SN) and combined power harrow and rolled (SR). 

 

4.2.3 Resin impregnation of undisturbed soil cores 

 

T
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4.2.4 Image acquisition from resin impregnated soil blocks 

 

A Logitech CS10 thin section diamond saw was used to cut the sample in the vertical 

plane, after which the sample face was dried and cleaned.  Samples were smoothed by 

manual grinding using SiC Grinding paper (Buehler, UK) and lubricant, to remove 

surface irregularities caused by the diamond saw, different grades of grinding paper 

40, 600, 1200) were used depending on the degree of roughness.  The polished faces 

in METCOAT specimen protective lacquer (Buehler, 

K).  The soil samples were then photographed under darkroom conditions.   

ferred to a 

C for digital processing (Figure 4.1). 

(2

of the samples were protected 

U

 

The samples were levelled and orientated on sand (to ensure constant focal length) 

and placed on a copy stand. An Olympus Camedia C-4000 Z digital camera and an 

Ultra Violet light source (UVP – Model UVL-28 assembly, long wave, 230v, 50Hz, 

0.32Amps) was set at constant distance from the sample surface to maintain the same 

resolution.  The camera was set with the following image acquisition settings; macro 

lens; full zoom (3x optical); no flash; image size 1600 x 1200 pixel; and TIFF (tagged 

image format).  A Raynox RT5241 F52-M41mm UV (o) filter was attached to the 

camera lens to prevent over exposure.  Optimum image illumination was achieved 

through brightness settings.  A Kodak colour chart for image calibration was placed in 

the field of view.  Images were acquired on digital media cards and trans

P
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Figure 4.1:  Images show Ultra Violet imaging of resin impregnated soil blocks.  i) Copy stand, camera 

 

 

4.2.5 Image processing and analysis 

 
Image manipulation was performed using AnalySIS® (Soft Imaging Systems (SIS), 

Münster, Germany) to isolate pore spa

and UV light source set-up.  ii) Florescent soil block surface.  iii) Example of good impregnation and 

imaging of soil surface. 

ce (Figure 4.2).  The image resolution was 62 

µm pixel-1.  Images were initially cropped to a size of 65 x 65 mm, however at this 

resolution, large amounts of noise within some images was observed.  Images were 

i)

iii)

ii)
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therefore re-cropped to a size of 43 x 43 jority of noise 

introduced by stones and edge effects.    

 

Colour filtering was performed using the fo  and rotation. 

2) Frame size set (43 x 43 mm); 3) Median oothing; 4) 

Lowpass filter, as a noise filter and strong 

which removes spot noise from the original, ad  to grey 

values in surrounding area;  6) Image conve ages were then 

binarised using an auto threshold (removing operator bias) within AnalySIS®, defined 

by the greyscale value of the pixel, allowing for identical threshold parameters.  A 

single morphological filter was then applied to the binary image: 1) Erosion, reducing 

noise by replacing each pixel with the median neighbouring pixel value (Figure 4.2).   

Plant material was included as pore space due to issues with density differentiation 

between air and root. 

Morphological analysis was performed on binary images (Figure 4.3) using 

nalySIS®, this included the following pore measurements; porosity – total 

tage pore area of the sample; mean pore area – average pore size of the sample; 

eter of a circle that has an area equal to 

e area of the pore analysed; elongation - pore roundness as a result of sphericity, 

 

mm, removing the ma

llowing steps: 1) Calibration

 filter, providing image sm

image contrast smoothed; 5) Rank filter, 

justs pixel values in the centre

rted to greyscale.  Im

 

A

percen

equivalent circle diameter (ECD) - the diam

th

defined from 1 = spherical to 20 = elongate and flat; nearest neighbour distance - the 

average distance between pores from centre to centre; and mean pore perimeter - 

defined as the sum of the pixel distances along the closed boundary of the pore 

analysed. 



   

 

ORIGINAL 
UV Image 

Rotate 
180 º 

Crop 
(43.42 x 43.42 mm) 

Median 

Lowpass Rank Convert to
Greyscale 

Binarise 
Auto Threshold 

Erosion Analyse 

 

Figure 4.2:  Image manipulation of resin impregnated soil block. 

 
 
 
  4.2.6. Statistical analysis 

 
The statistical software package GenStatTM v.8.1 was used to analyse all data using an 

analysis of variance (ANOVA) to test for significant differences between treatments 

and to calculate standard errors of difference (S.E.D).   
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4.3 Results  

 

 4.3.1 Seedbed evolution 

 
Seedbed evolution seen in figure 4.3 clearly shows variation over time from prior to 

cultivation through to spring establishment.  Pore space, displayed in white, increased 

signi  cultivation w s variation between both primary (residue 

observable in disc treatments) and secondary cultivations.  Increased root and shoot 

material was also evident as time passes.  In the following sections these differences 

are described in detail from quantified image analysis. 

 

4.3.2 Meso porosity 

 

Soil porosity was not significantly different between plots prior to cultivation with the 

variability between 8-10 % (Table 4.1).  Porosity was significantly increased with 

cultivation to between 19–29 %, although primary cultivation had no significant effect 

when increased porosity was 

bserved within disc compared to ploughed treatments (c. 4.2 %).  Over the evolution 

f the seedbed, secondary cultivation clearly increased soil porosity, particularly after 

cultivation with increased porosity under rolling (P < 0.001) compared with power 

ent (+155 days) (P = 0.023) 

).  Significant interaction occurred over time between primary and 

econdary cultivations (P = 0.004) with increased porosity under rolling and reduced 

ficantly after ith obviou

scale 

on soil porosity until establishment (P = 0.046), 

o

o

harrowing (Figure 4.4).  The greatest increase in porosity occurred in combined 

treatments.    The increased porosity reduced over time but remained higher in 

treatments which were rolled until spring establishm

(Figure 4.4

s
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porosity under power harrowing within disc treatment and the reverse in ploughed 

treatments (Figure 4.4). 

 

 

 

 
 

Primary and power harrowed.  C) Primary, power harrowed and rolled. (white = pore space) see 

section 4.3.1 for explination. 

Figure 4.3: Seedbed evolutionary changes between primary treatments.  A) Primary and rolled.  B) 

a) 

b) 

c) 
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e) 

a) b) 

c) d) 

Figure 4.4:  Mean porosity variation between secondary applications (NR = Rolled, SN = Power 

harrowed, SR = Power harrowed and rolled) at each time period a) Prior to cultivation, b) After 

cultivation, c) Emergence, d) Establishment, e) Spring Establishment. Error bars represent s.e.d 
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.3 Mean pore size (mm2) 

erage pore size (mm2) was not significantly different prior to cultivation with mean 

ues between 0.3-0.4 mm2 (Table 4.1).  Pore size significantly increased following 

tivation to 0.5-1 mm2.  Primary application had no significant effect on pore size 

r the evolution of the seedbed.  Secondary cultivation however, clearly increased 

e size, particularly after cultivation with significantly (P = 0.045) increased pore 

s in treatments which were rolled (ca. 0.35 mm2) (Figure 4.5) compared to 

olled.  The increases in pore size reduced over time with a significant decrease in 

rage pore size with increasing secondary cultivation intensity (P = 0.043) (Figure 

).  By spring establishment average pore size was reduced by c. 0.3 mm2 from the 

t to most intensive secondary cultivation (P = 0.05) (Figure 4.5).  The interaction 

ween primary and secondary cultivation significantly (P = 0.004) decreased 

rage pore size with increasing secondary intensity under disc treatments.  

wever, ploughing created relatively consistent pore sizes under treatments which 

e rolled or p harrowed rolled, a duced p es unde er 

rowing. 

.4 Equivalent circle diameter (ECD) 

 significant difference in ECD was observed prior to cultivation with a mean value 

.41 mm (Table 4.2).  A significant interaction (P = 0.039) was observed after 

tivation with disc treatments which received rolling having reduced ECD, with the 

st intensive cultivation having the smallest ECD.  However, within ploughed 

ower  and nd re ore siz r pow
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treatm nts, the converse was e true, rolled treatments had a higher mean ECD than 

nrolled (Figure 4.6).   u
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No significant differences were observed at emergence or establishment.  At spring 

establishment however, discing had much higher mean ECD than ploughed plots (P = 

.025).  ECD also decreased with an increase in secondary cultivation intensity (P = 

0.009). Consistent with measurements after cu

ts but increased ECD in ploughed plots (P = 0.011) (Figure 4.6). 

.5 Mean pore perimeter (mm) 

No significant difference in pore perimeter was observed prior to cultivation or as a 

result of primary cultivation.  However, rolle

12) larger pore perimeters than power harrowed treatments (Figure 4.7).  Over the 

lution of the seedbed, pore perimeter was significantly (P = 0.011) larger within 

 rolled treatment and decreased with an in se in cultivation intensity (Figure 

) (Table 4.2).  Pore perimeter decreased with reasing cultivation intensity under 

disc treatments while under ploughed treatments both rolling and power harrowed and 

rolled treatments had greater pore perime  than power harrow alone (P < 0.001) 

(Figure 4.8).  The increases in mean pore perimeter are likely associated with 

increases in pore size as a result of cracking caused by rolling (Chapter 3, Figure 3.9). 
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4.3.6 Pore size distributions (PSD) 

ultivation resulted in an overall increase in the total pore area (Figures 4.9 to 4.14).  

Primary cultivation had a minima

created large differences; rolled treatments 

rowing increased the mid range pore sizes ating a bimodal distribution after 

ughing.  Combined treatments typically resulted in a normal distribution with a 

all increase in pore size.  Pore size distributions at emergence were similar to the 

previous stage b  increase i  larger pore sizes, notably within the 

ents had larger pore sizes at spring 

ent than power harrowed and combined treatments which had bimodal 

istributions. 

.3.6.1  Pore size distribution - coefficient of uniformity (PSDcu) 

 
No significant differences were observed in PSDcu prior to cultivation with a mean 

ratio of c. 69.3 (Table 4.1).  After cultivation, the PSDcu had significant (P = 0.013) 

differences between secondary cultivations, with rolled treatments having much larger 

ratios than u rolled (Figure 4.15).  No further significant differences were observed, 

although at emergence and establishment it was noted disc treatme

PSDcu than ploughed, and is most likely a result of surface residue, this reduced with 

r crop growth in ploughed treatments.  It should be noted due to heterogeneity 

ithin the data may have masked the significances. 

 
C

l effect on the PSD but, secondary cultivation 

increased the larger sized pores and power 

har

plo

sm

 cre

ut with a continued n

ploughed and power harrowed treatment.  At establishment, pore size distributions 

were similar between secondary treatments, with decreased smaller pore sizes and a 

slight increase in larger pore sizes.  Rolled treatm

establishm

d

 

4

n

nts had greater 

an increase in cultivation intensity (Figure 4.15).  At Spring establishment, ploughed 

treatments had larger PSDcu than disced (Figure 4.16), this could be associated with 

bette

w
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Figure 4.9: Pore size distribution of Disc + Drill + Roll seedbed evolution at stages a. Prior to 

cultivation. b. After cultivation. c. Emergence. d. Establishment. e. Spring Establishment. f. mean 

values over time.    Error bars represent s.e.d 
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Figure 4.10: Pore size distribution of Plough + Drill + Roll seedbed evolution at stages a. Prior to 

cultivation. b. After cultivation. c. Emergence. d. Establishment. e. Spring Establishment. f. mean 

values over time.      Error bars represent s.e.d 
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Figure 4.11: Pore size distribution of Disc + PH + Drill seedbed evolution at stages a. Prior to 

cultivation. b. After cultivation. c. Emergence. d. Establishment. e. Spring Establishment. f. mean 

values over time.      Error bars represent s.e.d 
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Figure 4.12: Pore size distribution of Plough + PH + Drill seedbed evolution at stages a. Prior to 

cultivation. b. After cultivation. c. Emergence. 
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Figure 4.13: Pore size distribution of Disc + PH + Drill + Roll seedbed evolution at stages a. Prior to 

ultivation. b. After cultivation. c. Emergence. d. Establishment. e. Spring Establishment. f. mean c

values over time.      Error bars represent s.e.d 
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Figure 4.14: Pore size distribution of Plough + PH + Drill + Roll seedbed evolution at stages a. Prior 

to cultivation. b. After cultivation. c. Emergence. d. Establishment. e. Spring Establishment. f. mean 

alues over time.      Error bars represent s.e.d 
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Figure 4.15:  Mean PSDcu variation betwe o = Rolled, SN = Power 

arrowed, SR = Power harrowed and rolled) at each time period a) Prior to cultivation, b) After 

ltivation, c) Emergence, d) Establishment, e) Spring Establishment.    Error bars represent s.e.d 
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Figure 4.16:  Changes in PSDcu as a result of primary cultivation.  Figures show mean variation at 

 time series evolution of the seedbeds, P = prio ltivation, A = after cultivation, E = 

emergence, T = establishment and F = spring establishment.  Error bars in s.e.d  

 

4.3.7 Elongati

 

No significant difference in pore elongation was observed prior to cultivation or after 

cultivation.  At emergence pore elongation decreased in the most intensive 

cultivations (P = 0.024) (Table 4.2).  At establishment, no significant differences were 

observed, however, at spring establishment discing created more elongated pores than 

ploughing (P = 0.004), and incre ondary cu ations decreased 

ore elongation (P < 0.001).   

earest neighbour distance (NND) was not significantly different prior to cultivation 

with the mean values typically between 0.93-0.99 mm (Table 4.2).  Primary 

over the evolution of the seedbed except 

t spring establishment where ploughed treatments (1.12 mm) had reduced NND in 
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4.3.8 Nearest neighbour distance (mm) 
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cultivation had no significant effect on NND 

a

 147



   

comparison to disc treatments (1.34 mm) (P = 0.033).  Secondary cultivation 

however, significantly effected NND, particularly after cultivation (P = 0.045) with 

decreased NND with increased secondary application from 0.96 mm in the least 

intensive to 0.87 mm in the most intensive (Table 4.2).  Over time, similar trends 

continued with significant (P = 0.012) decreases in NND with increased cultivation 

intensity (Figure 4.17).  Significant interactions occurred over time between primary 

and secondary cultivations (P = 0.003) with rolling decreasing NND within disc 

treatments but increasin

 

g NND in ploughed treatments. 
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Figure 4.17:  Mean variation in nearest neighbour distance (mm) secondary applications (◊= Rolled, □ 

= Power harrowed, ∆ = Power harrowed and rolled) at each time period a) Prior to cultivation, b) 

After cultivation, c) Emergence, d) Establishment, e) Spring Establishment and f) mean variation over 
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4.3.9 Linking soil physical properties with establishment 

 

4.3.9.1  Relationships between soil physical measurements and soil structure 

 

The soil structural measurements correlated strongly with other soil physical 

properties over the evolution of the seedbeds.  After cultivation, strong correlations 

between bulk density and soil structural measurements were recorded. For instance, as 

ulk density increased, porosity increased (P < 0.01, R2 = 0.45) relating to rolling 

duced surface cracking (Figure 4.18a) but this relationship reversed by emergence.  

hear strength at this period also had strong relationships with PSDcu (P < 0.05) with 

observed increases in shear strength resu  in increased PSDcu ratios and a R2 of 

0.44 (Figure 4.18b).  
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Figure 4.18:  Mean treatment regressions after cultivation of treatment a) significant (P <0.01) 

correlation between bulk density and porosity, b) significant (P <0.05) correlation between shear 

strength and PSDcu.  Both relationships were showing the opposite to expected relationship.  (NR = 

Rolled, SN = Power harrowed, SR = Power harrowed and rolled).  
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t emergence, pore perimeter increased with a decrease in bulk density (P < 0.01, R2 

(  a significant relationship 

ith decreased elongation (P < 0.05, R2 = 0.41) (Figure 4.19b).  Decreased shear 

1) 

), increased ECD (P < 0.05, R2 = 0.67) (Figure 4.19d) and increased 

Relationships between soil structure and crop establishment 

 

Crop establishment (per m2

Increased porosity had a significant negative relationship (

ablishment (R2 = 0.74) (Figure 4.21).  Other factors also had strong relationships (P 

0.05) with an increase in plant population as a result of decreasing in structure 

measurements such as pore size (R2 = 0.50) (Figure 4.22a), PSDcu (R2 = 0.37) (Figure 

4.22b), elonga 3) (Figure 4.22c) and ECD (

.22d). 

Some soil structural properties had a strong relationship with crop yield (t ha-1).  Final 

l condition of the soil after 

A

0.60) Figure 4.19a).  Increased soil moisture content had

w

strength had strong relationships with increased pore size (P < 0.01, R2 = 0.6

(Figure 4.19c

NND (P < 0.05, R2 = 0.83) (Figure 4.19e).  At establishment, strong positive 

relationships were observed with PSDcu (P < 0.01) and moisture content.  Penetration 

resistance was strongly related with porosity % (P < 0.01, R2 = 0.71) and PSDcu (P < 

0.01, R2 = 0.95) both of which showed increased resistance with increases in pore 

space, again associated with rolling induced surface cracking (Figure 4.20a, b).  At 

spring establishment, there was a strong positive relationship between bulk density 

and ECD (P < 0.05, R2 = 0.41) (Figure 4.20c). 

 

4.3.9.2  

) was strongly related to soil structural measurements.  

P < 0.01) with crop 

est

< 

ted pores (R2 = 0.8 R2 = 0.57) (Figure 

4

 

4.3.9.3  Relationships between soil structural properties and crop yield 

 

crop yields were significantly affected by the structura



   

cultivation, most notably a significant negative relationship (P < 0.05, R2 = 0.65) 

between yield and total porosity (Figure 4.23).   
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19:  Relationships observed at emergence; a) significant (P <0.01) correlation and regression 

between bulk density and pore perimeter moisture content regressions; b) significant relationship (P 

tween mo nificant 

correlation (P <0.01) and regression with pore area, d) significant correlation (P <0.05) and 

Shear Strength (MPa) 

e) 

<0.05) be isture content and pore elongation.   Shear strength relationships; c) sig

regression with ECD, e) significant correlation (P <0.01) and regression with nearest neighbour 

distance.  (NR = Rolled, SN = Power harrowed, SR = Power harrowed and rolled). 
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resistance and PSDcu.  Correlations at spring establishment c) significant (P <0.05) regression 

between bulk density and ECD.   (NR = Rolled, SN = Power harrowed, SR = Power harrowed and 
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Figure 4.22:  Significant (P <0.05) regressions between crop establishment (numbers per m2) and soil 

structural properties a) average pore size, b) PSDcu, c) elongation and  d) ECD.   (NR = Rolled, SN = 

Power harrowed, SR = Power harrowed and rolled). 
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Figure 4.23:  Significant (P <0.05) regression between porosity and crop yield, showing a significant 

drop in crop yield with an 11 % increase in soil porosity.   (NR = Rolled, SN = Power harrowed, SR = 

Power harrowed and rolled).  
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.10 Soil quality of establishment (SQE) and soil m

the previous Chapters (2 & 3), a model for predicting crop establishment was 

eloped based on soil physical properties and the cultivation practices performed, 

which was then refined through the addition of soil macro structure properties.  The 

model based upon bulk density measurements, was successful in predicting crop 

establishment, initially accounting for 56 

iation in validation data set.  This model was roved with the addition of macro 

osity, increasing the total accounted variance to 74 % within the fitted data and 56 

within the validation data set.  It was hypothesised that the addition of finer scaled 

soil structural data would improve the model’s predictive ability. 

 

Multiple linear regression, using the meso structure d

cy, the models were developed from 

establishment data (although attempts were still made using the other time periods to 

observe if differences could be found), and were assessed using the structural data 

uired at the same resolution; porosity, average pore size, equivalent circle diam

D), elongation, nearest neighbour distance, pore perimeter and sphericity.  As the 

model was created with data from one sampling period, it was assessed for its 

continued predictive abili he subsequent two time periods (similar issues 

emergence time periods).  During the model creation it was again apparent that the 

addition of cultivation type was needed for adequate prediction.  This is most likely 

4.3

 

In 

dev

eso structure 

% variation in the fitted data and 51 % 

var

por

% 

imp

ata, was used to improve the 

model’s predictive ability.  Structural data was divided into the plant development 

sequences; after cultivation, emergence, and establishment.  Based upon the findings 

of the previous chapters and for consisten

acq

(EC

eter 

ty within t

were observed to those in Chapter 3 with models created within after cultivation and 



   

due to the heterogeneity of the soil over short distances and the large errors within the 

large area covered 

tion and the small error provided by this.  Meso structure data on its own 

al model (Equation 1) included the fitted terms of P = primary, S = 

p

p

data which is not sensitive enough to predict accurately without the 

by cultiva

was insufficient in improving the previous model and the addition of soil physical 

properties, notably bulk density (at 7 days post cultivation) was required.  This is most 

likely due to the soil physical properties relating to bulk density such as soil strength 

and moisture content which cannot be solely explained by the meso soil structure data 

used in the model.  Due to the number of parameters to be fitted to the model, over 

prediction occurred as a result of repeated measures.  This was due to either strong 

correlations with the factors which fitted best within the model (Eq. 1), or because the 

measurements exhibited some similarity such as ECD and pore area. 

 

The optim

secondary, R = rolled, BD = bulk density at 7 days, MA  = mean pore area (mm2) 

MP  = mean pore perimeter (mm), NND = nearest neighbour distance (mm).  

Regression analysis was significant (P < 0.001), however, the model accounted for a 

minor decrease in variance c. 3 % from the improved original model, with an 

estimated error of c. 17.29, an increase of c. 0.5, within the fitted data (Figure 4.24). 

 

NNDMA p ×+×+××−×+×+×+= 35MPp5.1962-BD825R1.25S2.74P6.35443SQE  

(1) 

 

The improved SQE was validated against the 2006 / 7 season sub-set collected from 

experiments using disc treatments, ± power harrowing, with rolling post drilling and 

across two soil types (Dunnington Heath series – sandy loam and Worcester series – 

 155



   

clay loam).  Regression analysis on the validation sub-set gave a good fit which was 

highly significant (P < 0.001) accounting for 70 % of variation (Figure 4.25) and a 

standard error of c. 26.1.  This was a significant improvement on the previous model 

(Chapter 3) as the validation sub-set had an increased percentage variance accounted 

for of 14 % and a decrease in estimated standard error of c. 2.3. This was an 

improvement in the model with an increase in R2 of c. 0.12.  The model output was 

also significantly improved within the validation subset with an increase in fit to a 1:1 

line of identity from 0.52 (original), 0.57 (macro porosity) to 0.66 (Table 4.3) as well 

as decreased intercept and increased slope.  The overall additions did improve the 

predictability of crop establishment within the validation data; however the additions 

did not greatly increase the predictability within the fitted data, and thus may be a 

ource of over parameterisation in some datasets.  However, this is the more 

d 

rms of P = primary, S = secondary, R = rolled, BD = bulk density at 7 days, TPm = 

Total Macro Porosity (%), MPp = mean pore perimeter (mm), NND = nearest

neighbour distance (mm).   

 

s

consistent model with both fitted and validation data sets accounting for > 70 % of the 

variation within the data opposed to > 70 % in the fitted and < 60 % within the 

validation within the other models. 

 

Attempts were made to further improve the model by the addition of soil macro 

structural data as well as the physical and meso morphology data (Eq. 2) using fitte

te

 

NND6-MPp3.1TPm0.24-BD251R51.3S3.74P957.390SQE ××+××−×+×+×+=  

(2) 
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However, this results in over parameterisation, with the optimal model accounting for 

74 % and 56 % of the variation within the fitted and validated respectively (Table 

4.3).  The standard error, line of identity, slope, intercept etc. were also significantly 

worse than those predicted within the model (Eq. 1). 
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Figure 4.24:  Comparison of, fitted data, previous best fit model (A) with model including macro oil 

structure (B) and the new improved model containing meso scale structural elements (c). * Population 
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Figure 4.25:  Comparison of SQE model output for best fit models within the validation data, and the 

changes to model predictability from (a) physical input to (b) physical and macro porosity input (c) 

physical and meso structural attributes . Validation was conducted over two soil types, a clay loam (∆) 

and sandy loam (□) as well as different environmental conditions to the data in which the model was 

created.  Also note that structural additions in the validation are at difference scale of resolution to the 

fitted data.  * Population (12) change due to sample logistics. 
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Table 4.3: Selected statistical variation between SQE model(s) previously developed and the addition 

f new structural elements.  Optimum model includes additional parameters (from the original) of 

r and nearest neighbour dist  a 

result of different seasons and changes in structural sampling regimes. 

 

 

Significance 

(95% 

confidence 

limit) 

% 

Variation 

accounted 

Estimated 

Standard 

Error 

1:1 Line 

of 

Identity 

(R2) 

Slope Intercept 

Average 

Observed 

Population * 

(per m2) 

Average 

Predicted 

Population 

(per m2) 

Mean % 

Deviation 

o

mean pore area, pore perimete ance.  * Observed population changes are

Original 

Fitted 
<0.001 56 20.6 0.57 

0.58 

(SE 0.106) 

80.79 

(SE 20.94) 
-0.01 193.34 193 

Original 

Validated 
<0.001 51 20.4 

0.46 

(SE 0.093) 

86.15 

(SE 16.01) 
167.24 163.71 - 0.09 0.52 

 
ADDITION: - Macro Soil Structure data 

Fitted <0.001 74 16.8 0.74 
0.76 

(SE 0.109) 

46.73 

(SE 22.15) 
200.54 199.48 -0.03 

Validated 0.003 56 28.4 0.57 
0.69 

(SE 0.182) 

47.59 

(SE 32.03) 
170.14 165.51 - 0.15 

 
N: - Macro / Meso Soil Structure

0.77 46.66 
0.00 

ADDITIO  data 

Fitted <0.001 74 17.03 0.75 
(SE 0..110) (SE 22.45) 

200.54 200.65 

Validated 0.003 56 28.22 0.57 170.14 164.22 - 0.19 
0.70 

(SE 0.180) 

44.98 

(SE 31.76) 

 

0.74 

(SE 0

57.52 

OPTIMUM MODEL: – Physical & Meso Soil Structure data 

Fitted <0.001 71 17.29 0.69 
..112) (SE 22.79) 

200.54 205.1 0.13 

Validated <0.001 70 26.1 0.66 
0.87 

(SE 0.167) 

25.76 

(SE 29.37) 
170.14 173.31 0.10 
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4.4 Discussion 

 

Soil meso structure properties were significantly modified by cultivation technique.  

ary cultivation had minimal effect on the soil structure at this scale of resolution 

until later in seedbed evolution.  In general, the soil porosity properties significantly 

increased within disc compared to ploughed treatments, due to crop ncl

and reduced seedbed collapse over time.  An increase in NND between pores within 

atments suggests reduced pore connectivity.  The increased pore area within 

disc treatments also explains some of the relationships observed (Figure 4.20a).  For 

example, crease  penetr e occur ing at t e sa me a

crease in porosity; this relationship shows the combined effect of shallow 

cultivation and increased pore space as a result of cr sid lusion and rolling as 

previously described in chapter 3.  The breakdown of crop residue within the disc 

nts lso ha led to t ntinued increase i  pore space a ce de

s the seedbed evolved (De Gryze et al., 2006). 

 

Secondary cultivation was responsible for the greatest changes in soil meso structural 

ons reased re siz ially urred as a result of olled 

ombined applications.  However, seedbed ageing resulted in decreased porosity 

measurements with increasing cultivation intensity,  the ption of PSDcu ratios 

which increased in both power harrowed and combined applications after emergence, 

kel d to better crop lishm in these treatmen s.  T uld re

 increased pore space around the plant shoot and root.  The addition of surface 

sidue significantly increases porosity negating the development of micro pores.  

ao (1996) found that large amounts of surface residue increased macroporosity near 

Prim

residue i usion 

 

disc tre

the in  in ation resistanc r h me ti s an 

in

op re ue inc

treatme  may a ve he co n t surfa pths 

a

conditi .  Inc  po e init  occ   both r and 

c

with  exce

most li y relate  estab ent t his wo sult 

in
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the surface.  Pore elongation decreased with increased cultivation intensity showing 

at power harrowing, regardless of continued cultivation, had the greatest effect on 

 factors affect the surface tension of 

ater in pores and the ability for water storage and transmission.  Pagliai et al. (2004) 

th

pore shape.  Although surface residue initially resulted in irregular pores associated 

with collapsed structure within disced, power harrowed and rolled treatments, the 

opposite occurred for ECD and NND measurements with a decrease in disc and rolled 

treatments and an increase under ploughed and rolled treatments.  This was a result of 

increased pore roughness and development under ploughed and rolled treatments 

(although lower overall than disc treatments – due to surface residue). 

 

Power harrow and roll as well as rolling had the greatest porosity and largest bulk 

density as a result of compaction.  Rolling creates surface cracking and shallow depth 

increases in porosity, however bulk density remained the same or increased at depths 

just below the surface.  Moisture content was significantly correlated with pore shape 

as increased moisture was related to increased pore roughness, whilst pore elongation 

resulted in decreased moisture content.  These

w

found that more elongated transmission pores were created under minimal rather than 

conventional tillage.   Increased penetration resistance was related with increased 

porosity and PSDcu, this relationship is the result of cultivation depth.   However, 

within ploughed treatments significant differences between power harrowed and non-

power harrowed treatments (Figure 4.20a+b) showed significant loosening of the soil 

occurs as a result of ploughing which is then consolidated by power harrowing. 

 

The SQE was statistically improved by the addition of soil structural measurements 

from the meso scale as an influencing factor on establishment accounting for ca. 70 % 
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of the variation in establishment with relatively low standard error.  The measures 

included within the model were average pore size; pore perimeter; and nearest 

neighbour distance; accounting for the size and roughness of pores on establishment 

and the ease of root development over short distances between pores.  The 

improvements observed confirm the hypothesis that soil structure significantly affects 

crop establishment.  The improvements in the model with the addition of soil structure 

measurements is most likely related to the fact that this scale of resolution i.e. the 

meso scale is dynamically altered by plant root and shoot development.  Therefore the 

oil structure at this scale in particular has a direct influence on crop growth and 

 (%); 

verage pore size (mm2); PSDcu; elongation; ECD (mm); and nearest neighbour 

s

establishment, whereas the soil structure at the macro scale does not affect plant / root 

growth and nutrient capture to the same extent. 

 

4.5 Conclusions 

 

Discing was responsible for the greatest increase in porosity attributed to the inclusion 

of crop residue.  This large increase in pore space is a direct cause of poorer crop 

establishment likely due to reduced soil seed contact.  Power harrowing created 

similar porous architecture regardless of continued applications or previous soil 

condition.  Rolling increased pore size as a result of surface induced cracking (see 

chapter 3 Figure 3.9).  Meso scale image analysis (in comparison with macro scale) 

provided an improved understanding of the soil porosity response induced by 

cultivation and the effect on crop establishment with increases in porosity

a

distance (mm) resulting in a decreased plant population.  These results indicate 

establishment is significantly hampered by reduced seed-soil contact and nutrient 
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capture.  Final yield also decreases with increased porosity, determined at seven days 

post drilling. 

 

The influence of soil structure on crop establishment was again clearly illustrated with 

a large improvement to the soil quality of establishment (SQE) model with the 

addition of meso structural measurements.  The optimal model was fitted with 

cultivation, bulk density and meso morphology measurements of mean pore area, 

perimeter, and nearest neighbour distance.  Establishment is therefore linked with the 

size and roughness of the pores and the connectivity of the pore network, which has 

significant influence over the movement of solutes and nutrients as well as the 

movement of biological activity within the soil.  Bulk density is a major influence 

ithin the models and obviously accounts for factors which are not measurable using 

th and moisture content. 

w

image analysis such as streng

 

Finer seedbeds created by power harrowing produce the most suitable condition for 

crop establishment and yield.  The poorest soil structures and seedbed performances 

were created under rolling, in particular disced and rolled plots.  The preferable 

structural conditions for establishment at this scale of resolution occurred between 

ranges of; porosity 12-17 %, average pore size 0.4 - 1 mm2, PSDcu 80-110, elongation 

< 2, average pore perimeter 2 - 3 mm and ECD 0.42 - 0.54 mm. Optimum ranges for 

crop yield immediately after cultivation; porosity 18 - 20 % and PSDcu 25 - 35. These 

ranges show the values where establishment is maximised, above these ranges 

significant reductions in establishment and yield occurred.  However, below these 

ranges, significant reductions in crop establishment and yield might be expected, but 

this was not observed because soil properties below these ranges did not occur.   
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As macro and meso structural elements significantly help to understand the 

lationship with soil structure and crop establishment, it may be hypothesised that 

 

 

 

 

 

re

micro scale soil structure measurements may also provide further refinement, but this 

may lead to further over parameterisation.  However, it may also be stated that any 

further investigation may not improve the SQE and that in fact the development may 

have reached a plateau beyond which the relationships examined here may be being 

controlled by other factors such as weather and disease or soil biological and chemical 

properties. 
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Chapter 5:   

A comparison of soil physical properties in reduced 

 

cent years there has been a drive toward the use of reduced or minimal tillage, as 

pposed to conventional tillage, with the aim to reduce soil degradation, CO2 and 

utrient losses (Addiscott & Thomas, 2000).  Reduced cultivation can be defined as a 

 which is less expensive, less energy demanding, quicker and has lower labour 

emands than traditional cultivation systems (Davies & Finney, 2002). Reduced 

llage usually results in leaving crop residues on the soil surface as a result of non-

 A number of considerations are needed 

hen applying reduced cultivation such as the soil type and prevalent weather 

onditions, more so than when using conventional ploughing techniques.  It is 

nsidered that stable structured soils are most suited for reduced tillage 

trategies such as heavy soil (clay), due to aggregate stability, but these have a small 

indow of opportunity for cultivation due to the narrow friable range within which a 

il can be cultivated (Jordan & Leake, 2004).   

 Europe the proposed Common Agriculture Policy (CAP) reform is a major driver 

uced and in particular zero tillage application in an attempt to prevent soil 

degradation, CO2 losses and as a source for carbon sequestration.  Research into 

cultivation systems and the effect on winter wheat (Triticum 

aestivum cv. Einstein) establishment across two soil types. 

5.1 Introduction 

 

In re

o

n

system

d

ti

inversion techniques such as disc harrowing. 

w

c

generally co

s

w

clay so

 

In

towards red
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systems, concentrating on the comparisons between conventional and reduced 

ndary 

 on heavy clay soils.  Comia et al. (1994) further stated 

yield (in barley, wheat, oats and rape) were significantly greater in reduced tillage 

seven years of experimentation.  Filipovic et al. 

found on a silty loam that reduced tillage lowered bulk density and soil 

 

or crop growth.  Many studies have concentrated on only one soil type to 

tillage operations has been driven by the changes in cultivation practice (and high 

costs of ploughing) with observations in soil and crop responses to different tillage 

cultivation.  Comia et al. (1994) found no significant difference in crop emergence 

between conventional (ploughed) and reduced tillage methods (both with seco

applications of harrowing)

systems than conventional throughout 

(2006) 

resistance while increasing wheat and maize yield (after the first year in a five year 

trial) in comparison to conventional tillage.  Arvidsson (1998) however, found 

reduced cultivation (discing at 10 cm) decreased barley yield compared with 

conventional tillage.  Reduced cultivation also affects the stability of soil structure. 

Stenberg et al. (2000) observed improved aggregate stability in shallow tillage depths 

due to increased soil organic matter and biomass activity.   Increased bulk density and 

strength within untilled soil creates crop development issues such as restricted root 

movement under reduced tillage (Arvidsson, 1998; Rasmussen, 1999). 

 

Whilst previous studies have sought to differentiate the effects of conventional and 

minimal cultivation on soil quality and degradation, very few have concentrated on 

the effect on crop establishment and fewer still on the effects of degrees of minimal 

cultivation or the need for secondary application in pursuit of preferable soil 

conditions f

exclude the effects across soil type and the variations between these.  The objectives 

of this experiment were; (i) to identify changes in soil physical properties as a result 



   

of different minimal cultivation practices on heavy and light soil textures; (ii) observe 

the evolution of seedbeds of differing soil texture; (iii) to determine the effects of the 

soil physical properties of each texture on crop establishment, yield and the specific 

effects of secondary and tertiary cultivation; and (iv) determine the most suitable 

cultivation strategy for each soil texture based on establishment rates, yield and cost 

to output ratio. 

 

5.2 Materials and methods 

 

A field experiment was established in 2006 at the University of Nottingham 

experimental farm, Sutton Bonington, Leicestershire, UK (52.5

5.2.1 Field site and experimental design 

 

at, sugar beet, 

inter wheat, with the current experiment in winter wheat following winter oats.  The 

oN, 1.3oW)(in an 

adjacent field to the previous year’s trial, Chapters 2-4), and Bunny, Nottinghamshire, 

UK (52.52oN, 1.07oW).  The soils were a sandy loam from the Dunnington Heath 

series (FAO class; Stagno-Gleyic Luvisol) at Sutton Bonington and a clay loam of the 

Worcester series (FAO class; Argillic Pelosol) at Bunny (Chapter 3, Table 3.1).  The 

soil at Sutton Bonington was in a rotation of winter oats, winter whe

w

soil at Bunny was in a rotation of two years winter wheat with a break crop of oilseed 

rape, with the current experiment in the second year of winter wheat. 

 

The experimental design was a 2 x 2 factorial, arranged in three replicate blocks.  

Primary cultivation was performed by disc cultivar across the whole experimental 

area at each site.  The treatments, secondary cultivation (+/- power harrow) and 

tertiary cultivation (+/- rolling) with Cambridge rollers post-drilling, were factorally 
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combined and allocated at random.  Previous cultivations for two years had been 

performed by a single pass heavy disc cultivator incorporating a levelling board and 

roller (Vaderstad Carrier Super CR500).  The experiment comprised of 12 plots that 

were 24 x 2.5 m wide, in sets of 4 plots in 3 blocks with 12 metre discards between 

blocks at each site.  Both sites were drilled using a Nordsten drill with winter wheat 

(Triticum aestivum) cv. Einstein at a rate of 300 seeds per m2 on 4 October 2006.  

ultivations were performed on the same day.  

acteristics 

 m of each plot, 

aving a 0.75 m distance from the passage of any wheeled traffic. 

C

 
 

5.2.2 Measurements of soil physical char

 

Soil physical measurements were taken prior to cultivation and at weekly intervals 

until early November where the crop had exceeded a ‘well emerged’ stage, noted by 

successive plant counts recording the same or approximate value.  Further 

measurements were taken at the end of November (pre-winter establishment) and at 

spring establishment in early March (2007) to account for any over winter plant 

losses.  The soil physical properties of the seedbed were quantified by measurements 

of soil shear strength, penetration resistance, water content and bulk density, as well 

as crop establishment.  Bulk density measurements were recorded at five key stages; 

prior to cultivation, after cultivation, emergence, pre-winter establishment and spring 

establishment.  All measurements were conducted within the centre 1

le

 

Physical properties were collected using the same methodology approach included in 

Chapter 2 section 2.2. 
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5.2.3 Statistical analysis 

 

The statistical software package GenStat  v.8.1 was used to analyse all data using an 

analysis of variance (ANOVA) to test for significant differences between treatments 

and to calculate standard errors of difference (S.E.D).  Data was analysed as a split 

plot between sites to attain interactions between site (soil type) and cultivation 

applications.  Due to un-replicated sites it must 

TM

be noted that soil type effects can only 

e inferred and indeed may also be related to site specific variations in other factors 

such as weather, slope angle, pests, disease etc.  

 

ation at the depths 

easured.   

 

b

5.3 Results  

 

5.3.1 Prior to cultivation  

 

Soil physical data was collected one month prior to cultivation to provide a base-line 

measurement.  No significant variation was observed within each soil texture for 

volumetric water content, shear strength and bulk density.  However, differences were 

found in penetration resistance of the soil at Bunny (P < 0.001), with plots designated 

to be unrolled having higher resistance (by 0.46 MPa) than those to be rolled.  This 

may have been due to tracks from harvest equipment, which crossed the field in these 

locations.  However, these differences did not persist after cultiv

m
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 5.3.2 Penetration resistance  

re

.033), although the magnitude of 

ifferences decreased as the seedbed aged and the soil resistance became more 

ts.  On the sandy loam trial, penetration resistance increased in 

sponse to rolling by 0.24 MPa, whereas on the clay loam, the increase was only by 

re 5.1).  Power harrowing resulted in similar increases in 

enetration resistance regardless of further rolling, whereas penetration resistance in 

th in both soils was significantly affected by secondary and tertiary 

ultivation, with the exception of measurements at spring establishment.  A soil type 

raction over time with power harrowing resulted in a significant decrease in 

soil shear strength within the clay loam but an increase within the sandy loam soil (P 

 0.001; Figure 5.2).  Rolling was also significantly different (P < 0.001) across sites 

 

Penetration resistance was affected mo  significantly within the sandy loam soil 

compared with clay loam soil after cultivation.  After cultivation, penetration 

resistance was greater within the non-power harrowed (1.74 MPa) plots of the clay 

loam soil than the power harrowed (1.57 MPa), but within the sandy loam soil, the 

power harrowed plots (1.90 MPa) had much greater penetration resistance than non-

power harrowed (1.59 MPa) plots (P < 0.001; Figure 5.1).  This significant interaction 

continued throughout the experiment (P = 0

d

uniform between plo

re

0.10 MPa (P = 0.001; Figu

p

non-power harrowed plots which were rolled was significantly higher than unrolled 

plots (P < 0.001; Figure 5.1).  Penetration resistance within the clay loam significantly 

(P < 0.001) increased at a greater rate than within the sandy loam soil by 0.1-0.4 MPa 

per 35mm increases in depth (Figure 5.1). 

 
 
5.3.3 Shear strength 

 

Shear streng

c

(site) inte

<
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with a  overall increased soiln  shear strength within both soil types throughout the 

xperiment, but slightly larger effects within the sandy loam (0.02 MPa opposed to 

Power harrowing and rolling resulted in soils with significantly (P < 0.001) increased 

water content (ca. 2 %) within the upper layer of the seedbed compared to either non-

power harrowed or un-rolled plots.  This trend continued, with gradual increases in 

water content due to increased seasonal rainfall, however, a difference of between c. 2 

– 5 % remained (Figure 5.3).  At cultivation soil water content increased in response 

to rolling within the sandy loam and decreased within the clay loam (P < 0.001).  This 

interaction continued through to + 36 days when no significant difference was 

bserved within the clay loam but water content was greater under rolled treatments 

within the sandy loam (P = 0.049).   

e

0.01 MPa, per sampling period) (Figure 5.2).  A significant interaction over time (P = 

0.023) between site, power harrowing and rolling showed minimal variation between 

power harrowing within the sandy loam with only rolling affecting shear strength, 

while within the clay loam non-power harrowed plots had greater soil shear strength 

than power harrowed plots, but with an overall increased shear strength as a result of 

rolling (Figure 5.2).   

 

5.3.4 Volumetric water content 

 

 

o
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Figure 5.1: Penetration resistance (MPa) with depth, showing the differences in soil penetration 

resistance between (a) clay loam and (b) sandy loam, (1) Prior to cultivation, (2) After cultivation, (3) 

Emergence and (4) Pre-winter establishment.  Error bars depict S.E.D., 71d.f 
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5.3: Variation in soil water content over time. a)

tion taken as 0 days.  Error bars depict S.E.D., 11 d.

.5 Bulk density 

 

Bulk density was less variable in the sandy loam than clay loam (Figure  Rolling 

(1.25g cm-3) at both sites significantly (P = 0.006) increased bulk density compared to

nrolled (1.23 g cm-3) treatments throughout the experiment (Figure 5.4).  Bulk 

ensity increased in response to rolling on the sandy loam, but not on the clay loam at 

establishment (P < 0.001).  An interaction over time between soil type (site) and 

power harrowing occurred (P = 0.017) with reduced soil bulk density in non-power 

ts (1.25 g cm-3) compared with power harrowed (1.28 g cm-3) within the 

lay loam and the opposite effect in the sandy loam (1.21 and 1.23 g cm-3 

spectively) (Figure 5.4).  When averaged over time sandy loam had lower bulk 

ensity than the clay loam, with the highest recorded in the most intensive application 
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on the sandy loam c. 1.25 g cm- 3 (power harrowed and rolled), while the highest in 

the clay loam was recorded in the least intensive on-power 

arrowed and unrolled) and 1.30 g cm-3 (non-power harrowed and rolled) (Figure 4).  

hese are typical values for bulk density within these soil types i.e. not considered 

pacted. 

 applications 1.26 g cm-3 (n

h

T

com
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Figure 5.4: Variation in soil bulk density over time. a) Clay loam.  b) Sandy loam.  Date of cultivation 

ken as 0 days.  Error bars depict S.E.D., 11 d.f. 

 

5.3.6 Crop establishment 

 

Initial emergence occurred between 7 and 14 days at both sites, with the first recorded 

measurements taken 14 days after drilling.  At this point power harrowing resulted in 

c. 20 plants per m  more on the sandy loam soil than non-power harrowed plots, 

while on the clay loam the difference was c. 100 plants per m  (P < 0.001; Figure 

5.5).  These trends (P < 0.001) continued throughout the experiment with differences 

between power harrowed and non-power harrowed plots of c. 99 plants per m-2 in the 

clay loam and c. 28 plants per m  in the sandy loam at spring establishment.   
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Figure 5.5: Plant number per m

 

 

2 over time within a) Clay loam.  b) Sandy Loam.  1) Effect of 

treatments.  2) Effect of power harrowing.  3) Effect of rolling.  Error bars depict S.E.D., 11 d.f. 
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A significant interacti tween site and rollin

with increased establishment under rolled treatm

n-rolled (175 plants per m-2) within the sandy lo , but the opposite within the clay 

oam (Figure 5.5).   

 

5.3.7 Soil physical properties and establishment 

Increases in soil penetration resistance, shear streng

were all negatively correlated (P < 0.05) with crop estab

hile increased soil water content resulted in positive relationship with crop 

stablishment (P < 0.05, R2 = 0.49) in the clay loam (Figure 5.6).  The reverse was 

true for the sandy loam soil with increased soil shear strength (R2 = 0.38), bulk 

density and water content (R2 = 0.44) resultin in increased crop estab ent (P < 

.05) (Figure 5.6

penetration resistance and establishmen

here increased soil penetration resistance was correlated with an increased 

stablishment. 

Strong positive relationships (P < 0.05) occurred between each of the selected soil 

physical properties, in particular shear strength, bulk density and water content 

variations in both soil ty ntent decreased as bulk 

density increased (R2 = 0.22) while on the sandy loam (R2 = 0.72), the reverses was 

ensity after cultivation; with increased bulk density leading to increased soil 

sistance in both soil textures.  

on be g (P = 0.007) also occurred over time 

ents (187 plants per m-2) compared to 

amu

l

 

th (Figure 5.6) and bulk density 

lishment in the clay loam, 

w

e

 a 

g lishm

0 ).  No significant relationships were observed between soil 

t in the sandy loam, except at emergence 

w

e

 

pes.  On the clay loam soil, water co

true (Figure 5.7).  Soil penetration resistance only had a strong relationship with bulk 

d

re
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Figure 5.6: Establishment relationships with a) Clay Loam.  b) Sandy loam.  1) Shear strength.  2) 

Water content.   
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Figure 5.7: Relationship between soil water and bulk density in both; a) Clay Loam.  b) Sandy loam.   
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5.3.8 Yield 

 

p yield was not significantly affected by cultivation 

ture (Figure 5.8).  However, mean yield was greater on the sandy loam at 10.17 t 

ha-1 compared with 8.88 t ha-1 within the clay loam (Figure 5.8).  Significant 

relationships ( yield and s l physical properties were observed, 

particularly after cultiv at seven days post drilling.  

soil bulk density resulted in a decrease in crop yield (R

the sandy loam similar observations between reased penetration resistance and 

uced yield occurred (R2 = 0.26) (Figure 5.9). 

 

 

Cro

tex

technique on either soil 

P < 0.05) between oi

ation In the clay loam, increased 

2 = 0.38) (Figure 5.9).  Whilst 

in 

red

 inc

0

2
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Figure 5.8: Yield variation between treatment applicat  of; NN = no secondary or rolling; NR = no 

secondary but rolled; SN = secondary but not rolling; SR = secondary and rolled.  Error bars depict 

.E.D., 11 d.f.   
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Figure 5.9: a) Relationship between bulk density and crop yiel n Clay Loam.  b) Relationship 

between yield and penetration resistance within the Sandy loam. At +7 days post drilling. 
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.4 Discussion 

Soil texture plays a vital role in determining the effect of cultivation on soil physical 

properties with significantly different responses in crop establishment.  Secondary 

cultivation (power harrowing) showed the most marked differences in altering the two 

soil te es. Increased soil penetration resistance, shear strength, and bulk density, 

due to surface compaction, occurred within the sandy loam soil, supporting 

observations from previous exper same soil texture in Chapter 2.  

owever, secondary cultivation onsible for reducing soil 

enetration resistance, shear strength and bulk density, which supports findings by 

Comia et al. (1994).  This is likely due to the hard, cloddy and massive structure of 

assing of the power harrow breaking down this massive structure 

to a loose fine tilth.  The reason for the opposite to occur in the sandy loam soil is 

ecause it is not as strongly cohesive as the clay and thus the extra tillage weight 

auses compaction.  It is also most likely the result of water content conditions within 
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e soils at the time of cultivation and therefore the friability ranges of the two soil 

textures.  Similarities between the textures

cultivation with increased soil water conten

water storage, and establishmen

loam), due to increased soil-seed contact.   

 

olling, unlike se ion, produced ilar responses in both soil textures 

which also 

d to surface hardening in both textures as the seedbed matured. This again supported 

.  Crop establishment as a result of rolling however 

as different between soil textures, under the sandy loam this led to a slight increase 

th

 were observed as a result of secondary 

t, due to fine aggregates and increased 

t (although only c. 25 plants per m2 on the sandy 

R condary cultivat  sim

with increases in penetration resistance, shear strength, bulk density and water 

content.  This is the result of consolidation and compaction of the surface 

le

observations made in Chapter 2

w

in plant numbers (similarly observed in Chapter 2), while on the clay loam, which had 

been power harrowed, plant numbers were reduced, but increased numbers if power 

harrowing had not been performed.  This is likely due to the fine aggregated tilth 

prepared in the clay loam which when compacted decreased the pore space and the 

nutrient capture ability for the seed due to over compression of soil-seed contact area.  

The reason for the increase within the sandy loam soil is due to the larger pore sizes 

and the improved soil-seed contact that consolidation provides.  The response of water 

content to bulk density also shows this relationship, with a decrease in water content 

following an increased bulk density in the clay loam as a result of reduced pore space 

and an increase in the sandy loam with a reduction in pore size. 

 

Establishment was significantly affected by cultivation technique, particularly within 

the clay loam soil as a result of secondary cultivation.  However, the significant 
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differences in establishment did not translate into yield differences as a result of 

treatment effects, but there was a difference between soil textures with consistently 

reduced yield in the clay loam soil compared to the sandy loam.  Both the lack of 

result in treatment variation (not consistent with previous observations in yield 

decrease on a sandy loam due to rolling) and the difference between textures may 

ave been caused by adverse weather conditions.  In 2007 there were unusual rainfall h

patterns throughout the year with an 85 % decreased rainfall in April followed by 

100-140 % increase in average rainfall through May to July (Figure 5.10).  This may 

have resulted in crop damage through lack of water initially and then through water 

logging causing a reduction in growth and development and in some cases death at a 

later date.  This also meant that there was plenty of water available within the sandy 

loam soil (which in most summers is lacking), accounting for increased yield within 

the sandy loam soil which under normal circumstances would under perform against a 

clay soil. 
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gure 5.10: Percentage variation from average monthly rainfall as a result of adverse weather 

conditions between October 2006 and September 2007 (Figure courtesy of Tim Payne). 
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However, yield was strongly related to bulk density initially after cultivation within 

the clay loam and with penetration resistance in the sandy loam, with decreases in 

both resulting in observed increases in yield.  The cause of this for the clay loam may 

be the result of poor drilling due to hard under-prepared surfaces in the non-power 

harrowed plots.  Penetration resistance decreases within the sandy loam appear to 

negate the previous observations of increased establishment with consolidation, and 

may be the result of increased soil loosening at depth being preferential to yield while 

surface consolidation improves establishment. 

 

5.5 Conclusions 

 

Seedbed preparation on a clay loam requires added cultivation input from power 

harrowing to loosen the soil structure (i.e. increase porosity) adequately for improved 

drilling, nutrient availability and crop growth.  Minimal cultivation (discing) alone 

does not provide optimal soil physical conditions for crop establishment, with c. 100 

plants per m-2 more recorded following power harrowing.  This increased 

establishment did not translate to yield, due to adverse weather or optimum plant 

populations within the non-power harrowed plots, but perhaps may have in different 

conditions.  There was no advantage to rolling the clay loam which produced poor 

seedbed conditions with seedbed age. 

 

The sandy loam did not however require further cultivation from minimal cultivation 

establishment and yield as a result of consolidation and increased soil-seed contact 

under power harrowed and rolled treatments.  The advantages gained by secondary 

(discing) for adequate seedbed preparation with only slight increases in crop 

 183



   

and tertiary cultivation of the soil do not appear to out-weigh the cost of the time and 

effort for the cultivation additions.  Observations in the sandy loam soil support 

findings previously shown in chapter 2 with increased establishment due to 

consolidation, but no overall advantage in yield under minimal cultivation. 

 

It is therefore prudent to suggest that the European Union CAP reform on the use of 

zero or minimal tillage application across the whole of the UK, especially as UK soils 

are around 60 % clay rich (Batey, 1988), or indeed Europe is perhaps not viable in 

lay soils due to the poor establishment achieved under these applications.  Therefore 

 assess viable options for soil degradation, nutrient loss, CO2 

ss or sequestration need to be addressed for clay rich soils. 
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Chapter 6:   

A comparison of soil meso structure in reduced cultivation 

systems and the effect on winter wheat (Triticum aestivum 

cv. Einstein) establishment across two soil types. 

 

6.1 Introduction 

 

Minimal or reduced tillage can reduce soil degradation, CO  and nutrient loss, as well 

as benefit management costs compared with traditional cultivation systems.  The 

European Union, through common agricultural policy reform (CAP), is also pushing 

farm management practice towards zero or reduced tillage for environm

2

ental / soil 

parison between conventional and reduced (or even zero traffic) 

s has been widely documented in terms of soil properties such as 

Comia et al., 1994; Arvidsson, 1998; Rasmussen, 1999; 

eake, 2004; Filipovic et al., 2006).  Previous studies have also compared 

pact of reduced cultivation strategies on soil structure taking into account 

bance, residue management and reduced 

Douglas & Koppi, 1997; Moran et al., 1988; De Gryze et al., 2006; 

antzer & Anderson, 2002; Pagliai et al., 2004). 

ouglas & Koppi (1997) using image analysis to study soil macropore attributes of a 

lay loam under three management practices, zero, conventional and reduced ground 

ressure, found that average pore size was greater under zero cultivation (0.83 mm) 

nd similar under conventional and reduced cultivation (0.59 mm).  Similar results 

ere observed by Wairiu & Lal (2006) on a silt loam soil, with higher average pore 

protection.  The com

cultivation system

strength, bulk density etc. (

Jordan & L

the im

reduced cultivation applications, distur

ground pressures (

Servadio et al., 2005; G

 

D

c

p

a

w
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t with each other.   

ervadio et al. (2005) observed reduced soil degradation with the use of reduced 

ed macro porosity in dual tyre compared with single 

s.  Pagliai et al. (2004) found macroporosity was generally higher and 

either conventional (33 mm) or reduced (25 mm), but that 

radii under continuous long term zero tillage compared with conventional and reduced 

systems.  However, observations have shown that soil under conventional and 

minimum tillage has a much higher total macroporosity than zero tillage systems 

(Hubert et al., 2007).  These observations are in direct conflic

S

pressure equipment with increas

tyre system

more homogenously distributed in alternative tillage systems such as ripper and disc 

harrowing compared to conventional tillage.  This allowed for better water movement 

through the soil as well as creating more stable aggregates, reducing crust 

susceptibility in minimal techniques compared to conventional tillage.  Pagliai et al. 

(1983) previously showed soils were more susceptible to surface crusting under 

traditional cultivation systems than under direct drill techniques, with horizontal 

layering occurring on, or just below, the surface of the soil in conventional tillage.  

Pagliai et al. (1995), in a study of long-term conventional and minimal tillage, found 

conventional tillage damaged soil physical properties and structure with observed 

decreased transmission and elongated pores under conventional tillage compared with 

minimal tillage as a result of compaction. Douglas & Koppi (1997) observed 

differences in pore nearest neighbour distances, with zero tillage (16 mm) having 

closer pore networks than 

soil degradation was moderated when conventional practices used reduced pressure 

equipment. 

 

In recent years, X-ray Computed Tomography (CT) has been applied to the 

assessment of reduced tillage strategies as a quick and relatively non-destructive 



   

method for the study of the effects of minimal cultivation on soil structure.  Olsen & 

Børresen (1997) were able to differentiate cultivated soils using X-ray CT, observing 

conventional tillage led to a loose structure within the ploughed layer but significantly 

reduced macroporosity at depth due to compaction.  Reduced tillage resulted in 

uniform bulk density throughout the profile but overall increased macroporosity 

compared with conventional tillage.  Recent improvements in the resolution of X-ray 

CT have since allowed for more detailed analyses for example; Gantzer & Anderson 

(2002) utilised high resolution X-ray CT in the assessment of conventional versus 

zero tillage.  They found conventional tillage resulted in generally higher structural 

attributes such as pore area; macropore number; perimeter and fractal dimension.  

Other studies using X-ray CT have shown the effects of surface residue (reduced 

tillage) decomposition upon soil structure with increased porosity in the 27-67 µm 

range in association with decomposing residue and microbial activity (De Gryze et al., 

2006). 

 

Whilst previous studies using X-ray CT sought to differentiate the effects of 

conventional and minimal cultivation (or zero tillage) on soil properties (Gantzer & 

Anderson, 2002), none have concentrated on the effect on crop establishment.  

Optimum soil conditions for crop growth have similarly been omitted in previous 

studies.  The objectives of this experiment were; (i) to identify changes in soil 

structural properties as a result of degrees of minimal cultivation on a heavy and light 

soil texture; (ii) to determine the effects of the soil structure on crop establishment and 

ield and the specific effects of secondary cultivation application; and (iii) determine y

the most suitable cultivation strategy of minimum cultivation for each soil texture. 
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6.2 Materials and methods 

 

6.2.1 Field site and experimental design 

 

A field experiment was established in 2006 at the University of Nottingham 

experimental farm, Sutton Bonington, Leicestershire, UK (52.5oN, 1.3oW), in an 

adjacent field to the previous year (Chapters 2 - 4), and Bunny, Nottinghamshire, UK 

(52.52oN, 1.07oW).  The soils were a sandy loam of the Dunnington Heath series 

(FAO class; Stagno-Gleyic Luvisol) at Sutton Bonington and a clay loam of the 

Worcester series (FAO class; Argillic Pelosol) at Bunny (Chapter 3, Table 3.1).  The 

soil at Sutton Bonington was in a rotation of winter oats, winter wheat, sugar beet, 

winter wheat, with the current experiment in winter wheat following winter oats.  The 

soil at Bunny was in a rotation of two years winter wheat with a break crop of oilseed 

rape, with the current experiment in the second year of winter wheat. 

um 

 

At each site, the experiment was organized as a randomly distributed block design 

with two treatments (+/- power harrow), arranged in three replicate blocks.  Primary 

cultivation, with a disc cultivar, and tertiary cultivation, with Cambridge rollers post-

drilling, were performed across all plots at both locations as part of the experimental 

set-up opposed to treatments.  Previous cultivations for two years had been performed 

by a single pass heavy disc cultivator incorporating a levelling board and roller 

(Vaderstad Carrier Super CR500).  The experiment comprised of 6 plots that were 24 

x 2.5 m wide, in sets of 2 plots in 3 blocks with 12 metre discards between blocks at 

each site.  Both sites were drilled using a Nordsten drill with winter wheat (Tritic

 188



   

aestivum) cv. Einstein at a rate of 300 seeds per m2 on 4 October 2006.  Cultivations 

ere performed on the same day.  

.2.2 Soil structure sampling 

et 145 mm from 

e detector with a 2 mm primary (at the source) and 4 mm secondary (at the detector 

Münster, Germany) to isolate pore space (Figure 6.2).  The image spatial resolution 

w

 

6

 

Soil samples were collected using the same method as in Chapter 3 section 3.3.2.  

However, samples were only taken at four key stages of seedbed evolution; prior to 

cultivation, after cultivation, emergence and establishment.  Samples were also stored 

at 4 ºC prior to X-ray CT scanning. 

 

6.2.3 X-ray Computed Tomography  

 

Soil samples were scanned using an X-TEK Venlo high resolution X-ray CT scanner 

set at exposure limits of 175 Kv, 90 ms and 3 mÅs.  Samples were s

th

– to prevent beam hardening / saturation) copper filters to eliminate low kV scatter 

and raise mean detection (Figure 6.1).  The detector consisted of 3710 diodes set 

83µm apart.  A correction filter was applied to the diodes using a white and black 

image to adjust for exposure variations within the diodes of the detector. Each sample 

was scanned at 20, 30 and 40 mm from the base of the Kübiena tin (Figure 6.2).   

 

6.2.4 Image analysis of soil structure characteristics 

 

Image manipulation was performed using AnalySIS® (Soft Imaging Systems (SIS), 
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was 66 µm pixel-1.  Images were cropped to a size of 62 x 62 mm (940 x 940 pixels) 

for processing.  Greyscale filtering was performed using the following steps (Figure 

.3): 1) Calibration and rotation. 2) Frame size set (62 x 62 mm); 3) Sharpen, image 

s ian filter, providing image smoothing; 5) Lowpass 

lter, as a noise filter and strong image contrast smoothed; 6) Edge enhance, enhances 

 defined by the greyscale value of the pixel, 

llowing for identical threshold parameters (exceptions were made on occasions of 

ual manipulation, caused by small amounts of 

eam hardening, radial scatter and in some cases damaged diodes).  A single 

The statistical software package GenStat  v.8.1 was used to analyse all data using an 

analysis of variance (ANOVA) to test for significant differences between treatments 

and to calculate standard errors of difference (S.E.D).  Data was analysed as a split 

plot between sites to attain interactions between site (soil type) and cultivation 

applications.  Due to un-replicated sites it must be noted that differences between soil 

6

contra t enhancement; 4) Med

fi

contrast of image edges; 7) Rank filter, which removes spot noise from the original, 

adjusts pixel values in the centre to grey values in surrounding area; 8) Mean filter, 

for image smoothing.  Images were then binarised using an auto threshold (removing 

operator bias) within AnalySIS®,

a

poor image quality, which needed man

b

morphological filter was then applied to the binary image: 9) Erosion, reducing noise 

by replacing each pixel with the median neighbouring pixel value (Figure 6.3).  Plant 

material was included as pore space due to issues with density differentiation between 

air and root.  Morphological analysis and measured parameters on binary images 

(Figure 6.4) were conducted as before (Chapter 4 section 4.2.5). 

 

6.2.5 Statistical analysis 

 
TM
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textures can only be inferred and indeed may also be related to site specific variations 

in other factors such as weather, slope, soil degradation etc. 

 

 

 

 

 

 

Figure 6.1:  X-ray computed tomography diagram of set-up and the effect of beam hardening (a) due to 

faster x-ray and the correction applied using copper filters (b) in preventing beam hardening. 
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Figure 6.2:  Cross section of soil sample showing X-ray beam locations at 20, 30 and 40 mm from base 

of sample. 

 

 

6.3 Results  

 

6.3.1 Seedbed evolution 

 
Seedbed evolution (Figure 6.4) shows variation over time from prior to cultivation 

through to establishment.  Pore space, displayed in white, is increased significantly 

after cultivation.  Secondary cultivation (power harrowing) increased pore space at the 

finer scale compared to non-power harrowed treatments.  Visible differences between 

soil textures are also evident in the images as well as increased root and shoot material 

(classified as porosity due to un-definable density with air) as time passes.  In the 

ollowing sections these differences are described in detail from quantified image 

 

f

analysis. 
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Figure 6.3:  Image manipulation of X-ray CT soil block images. 
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Figure 6.4: Seedbed evolutionary changes between secondary cultivation (power harrowing, PH) and 

soil texture (A) Clay loam; (B) Sandy loam.  (White = pore space) See section 6.3.1 for detailed 

ption. 
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6.3.2 Meso Scale Porosity 

 porosity was not significantly different between plots or sites prior to cultivation 

with the variability between c. 11-12 % and c. 6 % within the sandy loam and clay 

loam respectively (Table 6.1).  After cultivation, porosity was significantly increased 

with both sites having c. 18 % porosity (Figure 6.5).  Plots which received power 

harrowing generally had greater porosity by c. 2 %.  The two soils responded 

differently to power harrowing with a 4 % increase in porosity in the clay loam and 1 

% decrease in the sandy loam in response to power harrowing (P = 0.031) (Figure 

6.5).  At emergence, plots which had received power harrowing (c. 12 %) had 

significantly lower porosity (P = 0.003) an non-power harrowed plots (c. 14 %) 

ure 6.5).  The interaction between soil type (site) and power harrowing also 

changed, with both clay loam and sandy loam soils having reduced porosity under 

power harrowed plots, with clay loam having the greater difference between 

treatments.  Both trends continued through to establishment.  Over time, soil porosity 

significantly (P < 0.001) decreased, resulting in a much reduced porosity within the 

soil at establishment compared with prior to cultivation, particularly within the sandy 

loam soil (Figure 6.5). 

ore size was not significantly different prior to cultivation with a mean 

lue of c. 1.1 and c. 1.3 mm2 within the sandy loam and clay loam respectively 

).  Mean pore size was increased at both locations after cultivation to c. 1.3 

nd c. 2.0 mm2 within the sandy loam and clay loam respectively, with the largest 

ore sizes observed under non-power harrowed plots (particularly within the sandy 

 

Soil

th

(Fig

 

6.3.3 Mean Pore Size (mm2) 

 

Average p
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a
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loam) compared with power harrowed plots (Figure 6.6).  This trend continued until 

stablishment where a slight increase in average pore size under power harrowed e

plots, perhaps relating to crop development, was observed at both sites, with the 

greatest increase occurring in the sandy loam (Figure 6.6).  However the above trends 

were not significant, perhaps due to large errors within the data.  
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Figure 6.5: Mean porosity variation between secondary cultivation and site at each time period a) Clay 
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6.3.4 Equivalent Circle Diameter (ECD) 
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 s ificant difference in ECD was observed prior to cultivation with a mean value 

c 9 and c. 0.69 mm within the clay loam and sandy loam respectively (Table 

) o significant differences were observed as a result of secondary cultivation, 

o  trends follow similar patterns as observed within average pore area, with 

r d ECD after cultivation within non-power harrowed plots compared to power 

r d and the reverse by establishment.  A highly significant interaction (P < 

a) 

b) 

Non-Power Harrowed Power Harrowed 

m.  Err nt s
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0.001) between soil type (site) occurred over time with significant increases occurring 

in both soil types after cultivation (c. 0.1 mm) (Figure 6.7).  However, as the seedbed 

aged, the ECD within the clay loam increased by 0.8 mm while a decrease was 

observed within the sandy loam (c. 0.12 mm) (Figure 6.7). 
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Figure 6.7: Mean ECD (mm) variation between secondary cultivation and site at each time period a) 

Clay Loam, b) Sandy Loam.  Error bars represent s.e.d. 
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6.3.5 Mean Pore Perimeter (mm) 

 

No significant differences were observed prior to cultivation with mean pore 

perimeter at both sites c. 3.83 mm (Table 6.1).  After cultivation, pore perimeter 

ased in all treatments, with the greatest increase observed in non-power harrowed 

pared to power harrowed plots within the sandy loam, but the reverse within the 

clay loam (Figure 6.8).  At emergence, trends in pore perimeter decreased s tly 

across treatments but remained highest within non-power harrowed plots (c. 5 mm) at 

both sites compared to power harrowed (c. 4 mm) (Figure 6.8).  At establishment this 

trend reversed with higher pore perimeter recorded within the power harrowed 

opposed to the non-power harrowed plots at both sites.  Averaged over time pore 

perimeter was between 1 – 1.5 mm greater within the clay loam than the sandy loam 

soil (P = 0.036) (Figure 6.8). 

 

6.3.6 Pore Size Distribution (PSD) 

 

The difference in PSD (Figures 6.9 and 6.10) prior to cultivation at both sites, 

although roughly similar in distribution order, showed a greater proportion of pores 

within each size class of the sandy loam soil compared with the clay loam i.e. higher 

porosity.  Cultivation resulted in the distributions of the non-power harrowed 

ents were roughly similar betwee arge

; the sandy loam non-power harrowed 

ad a reduced overall pore area, but the clay loam had an increase in larger pore sizes.  

SD at emergence was roughly similar in response to treatments at both sites, and by 

incre

com

ligh

treatm n soil types with increasing l r pore sizes in 

a normal distribution.  However, the difference between power harrowed treatments 

and soil types (site) was significantly different

h

P
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establishment the PSD were very similar regardless of soil type, but with overall 

ariations in total area between treatments and soils. 

cu

cu

cu

cu

cu

mergence (c. 39 and c. 72 within the clay and 

s respectively) and remained through the experiment (Figure 6.11). 

Pore Shape - Elongation and Sphericity 

 

v

 

6.3.6.1  Pore Size Distribution - Coefficient of Uniformity (PSD ) 

 

No significant differences were observed in PSD  prior to cultivation with a mean 

ratio of c. 30 and c. 51 within the clay loam and sandy loam respectively (Table 6.2).  

No significant differences were observed as a result of power harrowing throughout 

the experiment, which is probably due to large standard errors within the data e.g. 

average > 20 s.e.d..  A significant (P = 0.013) difference in PSD  over time between 

the soil types (site) was observed, with cultivation significantly reducing PSD  within 

the sandy loam (c. 33) and increasing PSD  within the clay loam (c. 67) (Figure 

6.11).  This again was reversed by e

sandy loam

 

6.3.7 

 

No significant difference in pore shape was observed prior to cultivation or after 

cultivation.  At emergence, pore elongation decreased within power harrowed 

compared to non-power harrowed plots (P = 0.04) (Table 6.2).  However, a reverse in 

this trend was observed at establishment with greater elongation occurring within 

power harrowed plots compared with non-power harrowed.  Pore sphericity was 

greatest after cultivation within power harrowed plots but over time this reversed (P = 

0.033) (Table 6.2).  Pore sphericity was greatest over time within the clay loam 

compared with the sandy loam soil (P = 0.019) (Table 6.2). 
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Figure 6.8: Mean pore perimeter (mm) variation between secondary cultivation and site at each time 

period a) Clay Loam, b) Sandy Loam.  Error bars represent s.e.d. 
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9:  Pore size distribution of non-power harrowed plots of a) Clay loam and b) Sandy loam at 

ed evolution stages of 1) prior to cultivation; 2) after cultivation; 3) emergence; 4) 

b ent.  Error bars represent s.e.d. 
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Figure 6.10:  Pore size distribution of power harrowed plots of a) Clay loam and b) Sandy loam at key 

seedbed evolution stages of 1) prior to cultivation; 2) after cultivation; 3) emergence; 4) establishment.  

Error bars represent s.e.d. 

 205



 

a) 

0

20

40

60

80

100

120

140

160

Prior to Cultivation After Cultivation Emergence Establishment

 

0

20

40

60

80

100

120

140

160

Prior to Cultivation After Cultivation Emergence Establishment

 

ltivation and site at each time period a) Clay 

 
Figure 6.11: Mean PSDcu variation between secondary cu

Loam, b) Sandy Loam.  Error bars represent s.e.d. 

 

 

6.3.8 Nearest Neighbour Distance (mm) 

 

Nearest neighbour distance (NND) was not signif

with the mean value between 1.5 – 2.3 mm,

between pores occurring within the clay loam com

.2).  A reduction in NND was 

.003).  This was particularly true within the clay loam with a 

PS
D

cu
PS

D
cu

b) 

Non-Power Harrowed Power Harrowed 

icantly different prior to cultivation 

 with generally higher mean distances 

pared with the sandy loam (Table 

6 observed at both sites after cultivation, with a 

significant difference between power harrowed (1.45 mm) and non-power harrowed 

(1.62 mm) plots (P = 0
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1.0

1.5

3.0
A)

B)D)

difference of 0.24 mm between power harrowed and non-power harrowed plots and 

only a difference of 0.1 mm within the sandy loam (Figure 6.12).  By emergence 

NND between treatments was roughly equal although generally lower NND was 

observed in the sandy loam compared with clay loam.  At establishment NND had 

increased in all treatments with a reverse in the trend observed after cultivation with 

power harrowed (2.4 mm) plots having higher NND than non-power harrowed (2.0 

mm) plots (P = 0.015) (Figure 6.12).  This reversal was uniform across sites but the 

clay loam (0.56 mm), as before, had a higher NND between treatments than the sandy 

loam (0.17 mm).  Over time the clay loam had significantly (P = 0.003) higher NND 

than the sandy loam soil (Figure 6.12). 
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2 = 0.4) (Figure 6.13). 

6.3.9 Linking soil physical properties with establishment 

 

6.3.9.1  Relationships between soil physical measurements and soil structure 

The soil structural measurements correlated strongly with a number of soil physical 

properties over the evolution of the seedbeds at both sites.  After cultivation, strong 

correlations with water content and measurements of pore area and NND occurred (P 

< 0.05, R2 = 0.4 and 0.58 respectively) showing an increase in water content with both 

a decrease in the distance between pores and pore size (increased number of finer 

pores) (Figure 6.13).  Increased soil penetration resistance was also strongly linked 

with increased pore elongation (P < 0.05, R

R2 = 0.5758
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At em rgence, the relationship between VWC and NND reme ained the same (P < 0.05, 

2 = 0.44) (Figure 6.14).  Increased water content at this period was also significantly 

2

2

R

correlated with decreased ECD (P < 0.05, R2 = 0.41) and increased penetration 

resistance was significantly correlated with an increase in pore perimeter (P < 0.05, 

R  = 0.37) (Figure 6.14).  At establishment, the observed relationship between NND 

and water content reversed with an increased water content related to an increase in 

NND (P < 0.05, R  = 0.5) (Figure 6.14). 
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Crop establishment (per m ) was strongly correlated with soil porosity throughout the 

experiment and across both sites.  Initially, increased porosity after cultivation 

resulted in a positive relationship with crop establishment (P < 0.05, R  = 0.38), 

although this appears to be driven mostly by the physical conditions of the clay loam 

soil allowing for improved drilling (Figure 6.15).  After this initial unexpected result, 

a reversal was observed with increased soil porosity resulting in a decrease in crop 

establishment at emergence (P < 0.01, R2 = 0.83) and establishment (  0.01, R2= 

Figure 6.15).  A significant correlation between crop establishment and the 

d, with a decreased plant population 

P < 0.05, .49) (Figure 6.15). 

6.3.9.2  Relationships between soil structure and crop establishment 
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6.3.9.3  Relationships between soil structure and crop yield 

 

Soil structural properties had strong relationships with crop yield (t ha ).  Final crop 

yields were significantly affected by the structural condition of the soil at emergence, 

most notably significant negative relationships between yield and increases in total 

porosity (P < 0.05, R  = 0.39), ECD (P < 0.05, R  = 0.38) and pore perimeter (P < 

0.05, R  = 0.41) (Figure 6.16). 
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6.4 Discussion 

 

Soil structural properties between the soil types were modified by cultivation 

technique, although high levels of heterogeneity within the data as a result of rolled 

applications (see chapter 3), which would be expected to perform the opposite, have 

masked some of the treatments effects.  Soil texture plays a vital role in determining 

the effects of cultivation on structure with initially different responses to cultivation 

etween soil types, but over time (seedbed evolution) similarity between the sites 

ccurred.  The structural condition initially after cultivation is highly determinate of 

both final plant numbers and yield.  Cultivatio ize 

perties (e.g. porosity, pore area / perimeter etc.) at both sites after cultivation 

mpared with prior to cultivation data).   

Initially after cultivation, power harrowing within the clay loam resulted in increased 

orosity, reduced pore area, increased pore perimeter and decreased NND.  However, 

with the exception of pore area and NND, the converse was true within the sandy 

loam soil.  The decrease in pore area and NND is likely the result of the cultivation 

equipment, which is designed to break up clods etc, and thus creating smaller pores.  

The reverse differences in porosity and pore perimeter between soil types is linked 

with the textural properties of the soils at each site.  The clay loam is much more 

cohesive and therefore cloddier if not broken by power harrowing.  However, the 

andy loam is less cohesive and therefore the extra weight causes compaction and 

thin the clay loam than 

b

o

n generally increased soil pore s

pro

(co

 

p

s

reduction in porosity and with this an overall reduced pore perimeter.  This was also 

observed with greater ECD and pore sphericity associated wi
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sandy loam soil throughout the experiment, as well as lower NND within the sandy 

am compared to clay loam soil over time, indicating less soil cohesion. 

g of the interaggregate packing pore and a 

oalescence of aggregates as a result of rainfall kinetic energy.  The increase in pore 

collapse.   

lo

 

As the seedbeds evolved, the differences observed at cultivation were reversed with 

structural measurements the same under the different cultivation treatments regardless 

of soil texture.  Porosity decreased within power harrowed compared with non-power 

harrowed treatments, whilst pore area, perimeter and NND all increased under power 

harrowed treatments.  The reason for the reduction in porosity is the result of seedbed 

collapse of the fine aggregated structure created at cultivation due to heavy rainfall 

and seedbed settling, this also accounts for the increase in NND as infilling of pores 

occurs.  Bresson & Moran (2003) similarly observed decreased porosity associated 

with seedbed slumping resulting in cloggin

c

area and perimeter however, are not easily explained as an increase in either would 

increase porosity.  The increase in both therefore must be associated with a number of 

factors such as aggregation of the soil during seedbed collapse resulting in larger pore 

spaces (at the loss of finer pore spaces) but overall reduced porosity, and the 

movement of soil associated with the development of root and shoot material through 

the soil which was significantly greater within the clay loam than sandy loam under 

power harrowed compared with non-power harrowed treatments.  Observations by 

Moret and Arrúe (2007) have previously shown a relationship with macropores 

changes induced by rainfall events in conventional and reduced tilled seedbeds.  It 

may be hypothesised the increased pore area and perimeter may be associated with 

preferential flow development through the soil during heavy rainfall and seedbed 
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Across both sites strong relationships between NND, pore area, and ECD with the soil 

ater content were observed.  Increased pore size and ECD resulted in a decrease in 

lated to the ability of the root and shoot material to 

w

soil water content, and is likely due to the ability to store water at increasing pore size 

ranges, especially at this scale of resolution (66 µm pixel-1).  The same was true of 

NND initially after cultivation showing increased distance between pores and 

therefore a presumed reduction in smaller storage pores which resulted in decreased 

soil water content.  However, by establishment this reversed showing increased water 

content within the soil with an increase in NND; the explanation for this is less clear 

and may in fact be related to textural differences in the soils as the sandy loam soil has 

little variation in NND compared to the high amount of heterogeneity within the clay 

loam.  Increased soil strength at both sites was strongly related to increased pore 

elongation and perimeter, and is likely the result of compaction and the collapse of 

pores increasing surface roughness.   

 

Crop establishment, as previously observed in chapter 3 and 4, was strongly related to 

soil porosity, showing in general decreased crop establishment with an increase in soil 

porosity.  The exception to this, not previously observed, was an initial response after 

cultivation which showed an increase in crop establishment numbers with an increase 

in soil porosity.  This may be caused by the textural differences between sites, where 

increased loosening of the soil within the clay loam was preferable to crop 

establishment, but on the sandy loam too much loosening was detrimental (see chapter 

5).  Interestingly, crop establishment was strongly related to NND across the two 

sites, showing that increased distance between pores resulted in reduced crop 

establishment, and is likely re
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move through a path of least resistance.  In a study of compaction effects on crop 

s true within the sandy loam with optimum 

onditions created under minimal input creating porosity ranges initially between 16-

development in soils, it was assumed macro-pores provided a way for easier root 

penetration (Whalley et al., 2008).  Whalley et al. (2008) similarly stated a strong 

correlation exists between the yield of winter wheat and the strength of the surface 

layers of a seedbed but observed no difference between soil textural response (sand 

and loam).  Final crop yields were significantly reduced with increased soil porosity, 

pore perimeter and ECD across both sites, showing increased pore space is less 

conducive for final crop yield.  This is related to reduced water storage; lack of 

nutrient capture; possible reduced soil temperature as well as increased susceptibility 

to severe changes in climate; and perhaps reduced anchorage stability due to reduced 

soil contact.  Optimum structural elements of the two soil textures are achieve under 

different conditions, on the clay loam this was best achieve through the use of a power 

harrow creating porosity ranges initially at c. 20 % and dropping to between 12 – 14 

% once settled.  The opposite wa

c

17 % and dropping to between 11 – 13 % once settled.  This increased optimum 

within the clay loam is needed for adequate drilling of the seeds, while the sandy loam 

requires less loosening and in fact deteriorates with excessive loosening. 

 

6.5 Conclusions 

 

The structural condition of the soil has a clear influence on winter wheat 

establishment and yield at this scale of resolution (66 µm pixel-1) showing the 

interaction between the meso and macro scale soil dynamics and soil to crop input / 

output.  Increased pore space significantly hampers establishment and yield through 
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reduced seed-soil contact and nutrient capture with the exception observed at 

cultivation, with a reversal of the above statement more beneficial within the clay 

loam soil at this period with a limit of around c. 18 % porosity beyond which a 

decreasing trend appears to occur.  Reduced NND (< 1.4 mm) is favourable for crop 

establishment and is independent of soil texture.  The advantages or disadvantages of 

the use of a power harrow were not clear with large amounts of heterogeneity within 

the data, which most likely relate to the use of a Cambridge roller, which induces 

cracking and compaction of the soil (see chapter 3).  The most preferable structural 

conditions are; total porosity 12-17 %; average pore size 0.4 – 1 mm2; PSDcu 80-110; 

elongation < 2, average pore perimeter 2 – 3 mm; NND < 1.4 mm and ECD 0.42 – 

0.54 mm, but due to the high level of structural heterogeneity, this could not be 

refined or distinguished between treatments.  It may be stated however from visual 

observation and physical data (chapter 5) that the benefit of power harrowing within 

clay loam remains and the need for rolling is not required, while in the sandy loam 

soil, little observable changes in structure between treatments and establishment and 

yield show minimal input is needed to achieve the similar output. 

 

Preferable soil structure conditions within the clay loam require greater input from 

gricultural machinery whereas preferable conditions in the sandy loam can be created 

 shows that the European Union CAP reform on the use of 

ero or minimal tillage application across the whole of the UK is not viable in clay 

a

by minimum input.  This

z

soils due to the poor structural conditions and establishment achieved under these 

applications.  Therefore further study is needed to assess viable options for preferable 

soil structural creation which is both viable for crop establishment but also reduces 
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soil degradation, nutrient loss, CO2 loss and increases soil carbon sequestration need 

in clay rich soils. 
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Chapter 7:  General Discussion 

 

 

ain objective of this work was to investigate and quantify the effects of selected 

il physical environment, with emphasis on the structural 

previously considered), and the effect on 

l crop establishment (Triticum aestivum) and yield.  This was working towards 

y affects crop establishment, growth and 

ately yield.  This was primarily performed through field experiments, on a sandy 

 (Dunnington Heath series, FAO class; Stagno-Gleyic Luvisol) and a clay loam 

orcester series; FAO class; Argillic Pelosol) soil, using intensive to reduced tillage 

ent combinations (plough, disc, power harrow, Cambridge roller).  Data sets 

h the physical condition of the soil (e.g. 

etric water content; bulk density) and the structural condition of the soil using 

age analysis techniques (e.g. porosity; pore area). 

Seedbed physical properties and establishment 

rongly affected by the various cultivation 

 on crop establishment.  The most intensive 

s (using two or more pieces of equipment) produced the most compaction 

rease soil strength and bulk density.  This was similarly observed in 

revious research with heavy cultivation equipment and multiple pass management 

7.1 Introduction 

 

The m

tillage applications on the so

condition of the soil (as this had not been 

cerea

the hypothesis that soil structure significantl

ultim

loam

(W

treatm

were collected across two seasons for bot

volum

X-ray CT and im

 

7.2 

 

The physical conditions of a seedbed were st

techniques and this, in turn, had an effect

application

resulting in an inc

p
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u et al., 1997).  Primary cultivation (disc or plough) had no 

initial effect upon shear strength or bulk density, but over time bulk density was 

sulted in higher penetration resistance overall, due to 

llower depth of cultivation, and increased the surface volumetric water content 

ent (+ 63 days), 

ll (measured at + 155 days).  Overall, 

strategies resulting in severe mechanical resistance within soils (Whalley et al., 2008; 

Soane et al., 1982; W

greater with discing.  Discing re

the sha

of the seedbed, likely a result of more compacted soil (higher resistance) at depth, 

restricting drainage.  Coquet et al. (2005) similarly observed reduced vadose zone 

flow and transport processes in large compacted soil zone particularly under wheel 

tracks.  Similar observations were made of the hydraulic conductivity of soil in 

seedbeds with reduced conductivity in ploughed and wheel trafficked areas compared 

with untilled soils (Coutadeur et al., 2002), while preferential flow within soils can 

also be created under compacted conditions (Kulli et al., 2003; Petersen et al., 2001).  

Reduced tillage (discing) compared with conventional (ploughing) reduced crop 

emergence after cultivation (+ 14 days) despite the increased water content and 

assumed higher soil-seed contact (higher strength), which is likely the result of 

incorporated crop residues reducing contact (Bordovsky et al., 1998; Kushwaha et al., 

1994).  Establishment rates were roughly equal by establishm

however, discing suffered the greater winter ki

yield was not affected by the different primary treatments. 

 

Power harrowing was responsible for the largest changes in the soil physical 

properties of the seedbeds and was consistent across two seasons of experimentation 

within the sandy loam soil, resulting in increased penetration resistance, shear 

strength, bulk density and volumetric water content.  The increased strength and 

density of the soil was caused by the extra tillage weight and compaction of the soil.  



 

The reason for the higher volumetric water contents within the soil was the finer tilth 

created under power harrowing (and associated finer pore space, see section 7.3).  

However, unlike the sandy loam, the clay loam soil responded differently to power 

harrowing with a reduction in soil penetration resistance and shear strength, as well as 

initially a reduced bulk density at cultivation (although this increased over time as a 

result of seedbed collapse under power harrowed treatments).  The difference in the 

soil strength response to the application of power harrowing is therefore related to the 

textural differences of the two soils, with the sandy loam being less cohesive (plastic 

deformation) and therefore less resilient to soil stresses than the clay loam (Horn et 

al., 1995; Tobias et al., 2001).  However, power harrowing caused increased 

volumetric water content in both soils, as a result of finer tilth creation and pore size 

(section 7.3).  Power harrowing increased the establishment rates and final plant 

population independent of soil texture, although the difference in response between 

power harrowed and non-power harrowed within the sandy loam is much reduced 

compared with the clay loam.  Overall yield was not affected by power harrowing on 

either soil texture or the different seasons, however, this may have been masked 

within the second year experiment due to adverse weather conditions. 

 

Rolling produced the most consistent response from both soil textures and was 

sponsible for increasing soil strength (penetration and shear) and soil bulk density as re

a result of surface compaction / consolidation effects.  Similarly, this surface 

compaction resulted in increased surface water contents.  Crop emergence rates 

increased under rolled seedbeds in both textures.  However, un-rolled seedbeds 

‘caught up’ over time negating this advantage.  Rolled seedbeds in combination with 

power harrowing produced severe compaction, and in the clay loam soil this hindered 

 220



 

crop establishment numbers compared with power harrowed seedbeds.  Overall, yield 

was affected by rolling in the first season (sandy loam soil) of experimentation with a 

0.5 tonne reduction in yield in treatments which were rolled, however this was not 

observed in the second season or across soil texture.  Again this may have been 

masked by adverse weather conditions in the second season, or it may be that the 

reduced yield under rolling was more severe under ploughed (not used in the second 

season) compared to disced treatments. 

 

 

7.2.1 Limiting physical properties on establishment 

 

• Compaction of the soil through excessive cultivation affected both soil 

textures equally.   

• Excessive loosening of sandy loam soil resulted in a reduced soil-seed 

contact.  This resulted in a negative response in crop establishment to 

decreased soil penetration resistance, shear strength and bulk density. 

• Compaction of clay loam soil was detrimental to crop establishment.  

There was a positive response in crop establishment to increased soil 

loosening, i.e. decreased soil penetration resistance, shear strength and 

bulk density, in contrast to the sandy loam. 

• Volumetric water content was a limiting factor for establishment in both 

soil textures and across seasons.  Crop establishment was severely limited 

by reduced water content in the soil (especially at cultivation). 
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7.3 Seedbed structural properties and establishment 

 

The cultivation techniques strongly affected the structural conditions of the seedbed 

and their response to crop establishment at both scales of resolution used in this 

research (Macro structure c. 824 µm pixel-1 and Meso structure c. 66 µm pixel-1).  

Primary cultivation (disc or plough) in general had more of an effect on the macro 

structure of the soil, increasing the soil porosity, although this was much greater under 

iscing (creating larger macropores compared to ploughing) due to the incorporation 

f crop residue at surface level.  Dao (1996) also found high amounts of surface 

ace horizons.  

bservations at the meso scale showed little difference between the two primary 

tillage 

ploughed application until spring establishment when ploughing was greater.  This is 

a resul  

size distrib

improved  the 

soil as e

difficulties

observed t

modificatio hment / disturbance of the soil 

both in e

pore netwo

Gregory, 2 ck on effect 

 other soil properties such as the water retention and water flow regimes within the 

  W ber of larger pores within 

d

o

residue resulted in increased macroporosity in the near surf

O

treatments with the exception of higher PSDcu ratios within disc compared to 

t of surface residue inclusion within the disc treatment creating a bimodal pore 

ution.  The reason for the reversal at spring establishment is the result of 

crop development under ploughed treatments causing cracking within

 th  plant develops (plant matter was also measured as pore space due to 

 in isolating variations between air and water).  Previous studies have also 

hese changes associated with root and shoot development resulting in the 

n of soil properties / structure and the detac

 th  development of soil aggregation, pore space and the expansion of existing 

rks (Pierret et al., 2007, 1999; Moran et al., 2000; Stewart et al., 1999; 

006).  Modification by roots of the soil structure can have a kno

to

soil. halley et al. (2005) observed an increase in the num
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the rhizosphere soil which lead to enhanced drainage at large matric potentials as well 

as possible changes to the wetting angle and surface tension of pores.  Macro porosity 

and pore area increased as a result of power harrowing and was roughly consistent 

regardless of primary application except in combination with rolling, as rolling 

resulted in increased porosity and pore area due to surface cracking and soil stress in a 

zone of disturbance (chapter 3; figure 3.9).  Over time, rolling resulted in seedbed 

collapse and a reduction in soil macro porosity and pore area due to the infilling of 

inter-aggregate pore space from soft ridge collapse during heavy rainfall events 

(Figure 7.1).  Similarly Bresson and Moran (2004) found a decrease in soil 

macroporosity was associated with physical dispersion and aggregate breakdown in 

simulated heavy rainfall events.  Pore size ratios as a result of secondary application 

were affected differently by the primary applications, with an increase in ratio 

associated with more intensive cultivation (compaction / loading) within the ploughed 

treatment and the reverse within disc.  This is due to residue removal within the 

ploughed treatments and less heterogeneity as a result of power harrowing whilst 

compaction and rolling severely cracks and disturbs the loose soil.  Within the disc 

treatments, residue causes wide disturbance of the soil and the consolidation effect of 

rolling reduces this disturbance by compressing the soil close to the residue surfaces. 

 

Power harrowing similarly showed reduced porosity and pore area at the mesoscale 

and was consistent across season on the sandy loam soil.  However in the clay loam 

an initial increase in porosity was observed, and is likely related to the textural 

cohesiveness of clay.  Pore size ratios at the meso scale showed a dissimilar pattern to 

that observed at the macroscale with a consistent response from secondary cultivation, 

regardless of the primary application to increased ratios (higher proportion of larger 

 223



 

pores) with an increase in cultivation intensity and rolling.  This is most likely related 

to the zone of disturbance at the surface caused by rolling. 

 

 

 

 

 

time.  A)  Close up of soil disturbance associated with rolling resulting in surface cracking and soft 

ridge formation at cultivation.  B) Wide view of rolled effect at cultivation with perfect ridges.  C)  

Image shows the same seedbed post a heavy rainfall event, resulting in soft ridge collapse and infilling 

of pores. 

Figure 7.1:  Seedbed collapse associated with soft ridge degradation in heavy rainfall events resulting 

in the infilling of inter-aggregate pore space and a reduction in soil macro porosity and pore area over 
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ment and the reverse in the 

andy loam.  This is due to the textural cohesiveness of the soils and the collapse of 

e seedbed over time as well as the development and movement of the soils in 

rela  to plant material (root and shoot). 

esoscale there were consistent responses to seco

season on the sandy loam soil, with increased ECD and pore perimeter under pow

 and unrolled treatments following discing but the reverse under ploughing.  

This shows the strong relationship between surface residue inclusion resulting in the 

increased ithin disc treatments as a result of residue disturbance within 

the soil under passing cultivation equipment.  A decreased pore space within

due and thus reduced disturbance associated with 

 (discing only) the reverse of the sandy loam was observed 

showing increased ECD and pore perimeter  

in pore roughness and overall size as a result of power harrowing.  This was due to the 

soil textural differences and the cohesive nature of the clay.  The response to 

increasing cultivation intensity was consistent across seasons and soil textures and 

a zone of disturbance associated with 

rolling.  This consistency was also shown at establishment with an increase in pore 

 with an increase in soil strength, with the exception of disced and rolled 

ents (due to surface residue disturbance) caused by the compaction of the soil 

Differences between soil texture and pore size ratios as a result of cultivation showed 

reduced pore size ratios within the clay loam until establish

s

th

tion

 

At the m ndary cultivation across 

er 

harrowed

 pore space w

 plough 

plots was due to the removal of resi

this.  On the clay loam

under power harrowing, with an increase

resulted in increased pore elongation and 

elongation associated with crop development.   

 

A decrease in soil macro structural properties (porosity, pore area and PSDcu) 

occurred

treatm



 

associated with increased surface traffic.  Meso structure was similarly affected by 

soil strength with increases in pore area, pore perimeter, ECD and NND at the same 

time as decreases in soil shear strength and bulk density, showing reduced compaction 

(increased soil strength) allowed for a more porous structure.  Increased penetration 

resistance of the seedbed results in increased pore elongation and pore perimeter.  

his shows seedbed compaction results in lateral and vertical (rolling) pore creation 

e (porosity, pore area, pore perimeter, 

SDcu, elongation, ECD and NND), a decrease in crop establishment is observed.  

T

associated with soil cracking, which in turn is associated with an overall increase in 

pore roughness and surface area (Figure 7.2).  Previously it had been stated that 

volumetric water content was a limiting factor for crop establishment (Passioura, 

2002; DaSilva et al., 1994; Leão et al., 2006).  Observations at this scale showed 

strong links with reduced soil water content (independent of texture) and increases in 

pore elongation, pore area, ECD and NND.  These measurements all relate to the size 

and number of pores which are able to store water or facilitate flow, therefore it is 

reasonable to hypothesise that with an increase in pore area and ECD, fewer water 

storing pores exist, increased elongation may increase preferential flow patterns 

assuming vertical opposed to lateral movement, while increased NND is most likely 

related to overall reduced pore numbers and thus ability to store water. 

 

At both scales of resolution and across season and soil texture (with the exception of 

initially at cultivation within the clay loam) a consistent response is seen showing that 

with an increase in the soil structural architectur

P

Therefore an increase in pore space (porosity, area, perimeter, PSDcu, elongation and 

ECD) has detrimental effects on establishment due to a hypothesised reduced soil 
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seed contact and the availability of nutrients and water necessary both for germination 

and plant stability. 

 

 

 

 

Figure 7.2:  Meso scale binary images showing the effect of compaction (in particular rolling) effects 

in the creation of surface cracking and the development of vertical pores in a zon

A) 

B) 

Zone of 
disturbance – 
surface cracking 
& increased soil 
porosity 

Increased 

towards depth 

finer pore 
development

Reduced 

roughness and 
pore size 

consolidation 

More compact 

 surface 

Surface 
cracking – 
vertical pore 
development 

elongation 
and increased 

30 mm 

e of disturbance.  

reatments shown: A) Plough + Power Harrow + Rolled; B) Plough + Power harrow.  White = pore 

 

It may be expected that a decrease in pore space representing compaction may also 

reduce establishment, but this was not observed (Figure 7.3).  The only exception to 

the rule is that an increase in porosity within the clay loam (as a result of power 

harrowing - increased soil loosening) at cultivation to allow for improved seed drilling 

and better soil nutrient / water movement (assumed avoidance of preferential flow) 

T

space. 
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improves crop establishment.  This maybe contrary to thoughts that increased porosity 

i.e. more aeration is equal to better soil structure and soil quality. 

Yield, as with establishment, was similarly linked with increases in soil structural 

architecture, with decreased yield occurring as a result of cr  soil porosity, 

pore perim  E is was not observed in the macro s  shows 

that estab  therefore yield was affected more by influences or changes to 

soil at the le.  The reduction in yield due to these factors is most likely the 

result of early effects on emergence and establis

nutrient availability discott and Thomas, 2000; Malo et al. oil 

anchorage stability (Mooney et al., 2007).  For both establishment and yield, the most 

influential e e soil loosening, it is also hypothesised that excessive 

compaction of the soil structure would also have detrimental effects upon 

establishment and yield; however this was not observed in either season (Figure 7.3).  

his could mean either of tw  was simply not observed but 

A dynamic range of structural and physical conditions must exist, whereby a seedbed 

which is excessively loose or compacted is detrimental to crop establishment, 

therefore between these extreme conditions there must be an optimum range for crop 

establishment and yield (Figure 7.3).   Although only the upper limits associated with 

excessive loosening were observed within these experiments, previous work has 

observed severe reductions in crop numbers as a result of excessive compaction 

 

eases in

tructure, which

 in

eter and

lishment and

 meso sca

CD.  Th

hment rate, as well as a reduction in 

(Ad  2005) and s

factor is xcessiv

T o factors; a) as stated this

that it may still occur, and b) structural compaction (within reason) is not an 

overriding limitation to crop establishment and yield but instead limitation is related 

to other factors such as water availability and nutrient capture. 
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(Jakobsen and Dexter, 1987; Pardo et al., 2000; Atwell, 1993; Kirby and Bengough, 

2002). 

 

 

 

 

 

Figure 7.3:  Dynamic range of soil conditions optimum for crop establishment with severe decreases in 

establishment and yield associated with excessive compaction and soil loosening. 

 

 

7.3.1 Limiting structural properties on establishment 

I
p
ncreasing plant 
opulation 

Excessive 
compaction 

Excessive 
loosening 

Decreasing population 
due to poor nutrient 
water retention or 
reduced soil-seed 
contact. 

and 

Dynamic range optimum for 
establishment and yield. 

c.18 % soil porosity 

Poor aeration 

 

• Increased porosity lead to reduced soil seed contact, nutrient availability 

and water storage resulting in reduced establishment and yield.  This was 

particularly true within sandy loam soils although the effect was 

independent of texture. 

• Increased pore spatial distribution, i.e. greater distance between pores, 

reduces the ease of movement for plant shoot and root material.  This 
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results in reduced emergence, establishment and perhaps yield due to the 

stresses associated with passing through soil as opposed to pore space. 

• A soil porosity of 12 -18 % within a clay loam is preferable for adequate 

crop establishmen llow for adequate drilling, 

followed by seedbed settling, beyond which a high porosity (>20 %) will 

be detr d soil-seed contact. 

esidue incorporation results in increased soil por

as a result of disturbance / m   

This can cause reduced soil-seed contact and decreased crop 

• Rolling c e cracking (Figure 7 apter 3 Figure 3.9) 

resulting in an increase in soil porosity, pore size and pore elongation in a 

• Increased pore structural properties and pore elongation (associated with 

rolling) reduce soil water content, perhaps due to water flow and / or 

tent is a limiting 

factor for crop establishment, therefore increased pore area limit crop 

 

 

 

 

 

t at a very early stage to a

imental to crop establishment due to reduce

• Crop r osity in pore space 

tivation equipment.ovement under passing cul

establishment. 

auses surfac .1; 7.2; Ch

zone of disturbance.  This can create limited soil-seed contact and nutrient 

availability resulting in reduced crop establishment. 

reduction in water storage pores.  Volumetric water con

establishment due to the association with reduction in soil water content. 
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7.4 Mo

 

This re a

resolution 

variety of 

across seas tion 

and the

influential 

physical an

establishm  then be used in the assessment of other soil textures (clay 

loam)  

establishm

initial eme

Soil Quali inst the data taken in 

season o

model cou

cultivation

determine 

 

terestingly, the model required the addition of cultivation intensity within the data 

ecause of improved model output associated with a smoothing of heterogeneity 

ithin the field as cultivation accounted for a large area), which was applied in 0 = 

duced or absent, 1 = intensive or used for the cultivation practices within the 

xperiments.  Cultivation strategy alone accounted for c. 50 % of the variation within 

ith the addition of soil 

delling seedbed properties and establishment 

se rch brings together observations from a variety of different scales of 

from field measured physical conditions and soil structure, as well as a 

cultivation techniques from intensive to reduced cultivation strategies 

ons and soil textures.  The interaction between these scales of resolu

ir effect on crop establishment has been shown, but which factors are the most 

for crop establishment?  This was determined by modelling the effects of 

d structural data on the sandy loam (season one) in the prediction of crop 

ent, which could

and in other cultivations.  A model was developed which could predict crop 

ent numbers as early as seven days after cultivation (seven days prior to 

rgence numbers) based on the soil bulk density at this period in time.  The 

ty of Establishment (SQE) model was validated aga

tw  to determine the effectiveness of the model at continued prediction.  The 

ld therefore be used either prior to cultivation to determine the need for 

 (based on bulk density measurements) or after reduced cultivation to 

the need for further cultivation. 

In

(b

w

re

e

the establishment data.  The model was then adjusted w
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physical data, which produced a model based on cultivation and soil bulk density.  

 of the variation in establishment across 

eason and soil texture. 

This addition improved model predictability accounting for 51 - 56 % of the variation 

within establishment.  At this point the model provides the farming community with a 

quick assessment (which can be performed by themselves) of the soil quality for 

establishment without the need for structural assessment, through soil bulk density 

measurements.  However, this does not answer our hypothesis that soil structure 

significantly affects crop establishment, growth and ultimately yield which is shown 

when a macro porosity addition improved the model further accounting for 56 – 74 % 

of the variation in establishment.  However, when the model with macro structure 

additions was assessed with meso structure additions, further improvement with 

‘meso structure’ properties did not occur whilst macro structure properties remained, 

and is related to the repetition of data, namely macro porosity and meso pore area / 

perimeter which are essentially the measurements of the same factor at both scales 

thus over prediction occurs due to counting the same factor twice.  However, using 

cultivation strategy, bulk density and meso structure (pore area, pore perimeter and 

NND) at the exclusion of macro structure this resulted in a vastly improved model 

which was able to account for 70 - 71 %

s

 

Cultivation strategy accounts for the bulk of variation within establishment with a 

further c. 20 % of variation accounted for by bulk density and the meso structure 

(pore area, pore perimeter and NND) of the soil.  This could mean either: a) 

cultivation strategy and not soil condition affects establishment, accounting for all 

described variables as well as the chemical and biological impacts upon crop 

establishment.  This would mean that only zero tillage would be affected by soil 
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condition as cultivation is not present. Or b) the numerical assignment, i.e. 0 = 

reduced, 1 = intensive, to cultivation strategy allows for the high levels of 

heterogeneity within the data, in effect creating a smoothing of the data which allows 

for greater prediction over a large area.  This would mean that the addition of 

cultivation strategy therefore accounts for the strength, water content, porosity, ECD, 

elongation, PSDcu etc. of the soil as a result of the application applied i.e. rolling 

increases all above properties and reduces overall establishment and yield in some 

cases but also acts as a consolidator and increases emergence rate.  The improvement 

observed through the addition of bulk density to the model therefore brings something 

which is not explained by cultivation, this may be related to the relationship of bulk 

density to both soil water content and an indicator of the structural condition of the 

soil.  Tapela and Colvin (2002) similarly found bulk density as an adequate indicator 

of soil quality, soil condition index (SCI), observing that a decrease in soil moisture 

was related to increased soil bulk density and resulted in a reduction in plant growth.   

 

The improvement observed with the addition of macroporosity (confirming the 

hypothesis that soil structure does significantly affects establishment) is unsurprising 

ith the strong negative correlation between soil porosity and crop establishment seen w

throughout the experiment and scales of resolution.  The best scale of resolution for 

observing variation in establishment was the meso structure scale.  This was because 

of the larger percentage variation accounted for at this scale most likely relating to the 

direct influence between plant material, i.e. root and shoot, and the soil environment 

at this resolution.  The meso structure additions account for the size and roughness of 

the pores and therefore the ability for greater soil-seed contact, nutrient availability 

and water storage.  NND accounts for the ease of movement through the soil of plant 
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shoot and root material, which is not easily explained through the other factors, it may 

also be inferred that this links with pore connectivity and flow regimes within the soil, 

although  this is only conjectural. 

 

7.4.1 Modelling limitations on establishment 

 

• Cultivation accounts for c. 50 % variation in establishment through 

smoothing of heterogeneous variation in observed measurements.  

Cultivation type therefore accounts for the wider scope of influencing 

factors such as water content, bulk density and structural condition of the 

soil and the adequacy of those conditions for crop establishment. 

• Establishment is significantly influenced by soil bulk density.  An SQE 

using cultivation intensity and soil bulk density provides an assessment of 

the soil environment for crop establishment which can be easily replicated 

by farms in the development of soil management strategies and the need 

for cultivation either reduced or intensive. 

-1• Soil meso structure (c.66 µm pixel ) provides a more realistic 

environment for model prediction than macro structure due to the direct 

influence between plant material, i.e. root, and the soil environment at this 

resolution.  Macro structure is therefore more related to the movement of 

air and water into this environment. 

• Establishment is most accurately predicted from meso scale pore size, 

roughness and pore density (NND), relating to the contact of seed and soil, 
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the availability of nutrients and water and the ease of root and shoot 

movement through a path of least resistance. 

• The model accurately predicts across season and soil texture showing 

sity and meso structural elements are 

accurate predictors of crop establishment.  The fact that soil texture is 

• The model is limited by being unable to account for unforeseen 

circumstances such as disease, weather conditions (such as extreme heat or 

excessive rainfall) and pest damage.  These factors may cause severe 

reductions in crop establishment and yield at any point in the development 

of the plant. 

• 
ent.  Equally the variation in 

 

 

 

 

 

tillage degree and type, soil bulk den

independent (i.e. not an influencing factor) within the model shows that 

crop establishment is dependent upon the terms included within the model. 

A further 30 % of variation in crop establishment was not explained by the 

model and may be related to the above statem

establishment not explained by the model may also be related to the 

genetics of the crop (i.e. incorrect choice for seasonal conditions or time of 

year etc.), soil chemical status (i.e. nutrient deficient soils) or the 

biological activities within the soil (i.e. microbial community symbiosis 

with the plant). 
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8.1 See

 

 Re c

structu

size a

minim

observed advantage, other than initially more favourable conditions for crop 

es l

input 

hypoth

affect 

 

 Reduc

preventing adequate drilling of the seedbed due to the hard cloddy nature of the 

soil (1.25 g cm-3) and reduced porosity (15 %).  An application of power 

harrowing was required to produce favourable soil conditions for drilling and 

establishment through structural change of the soil and subsequent seedbed 

collapse post drilling. 

architecture resulting in reduced soil seed contact.  Rolling increases crop 

emergence rates as a result of consolidation; however, this compaction also 

te  8:  Conclusions 

dbed establishment conditions 

du ed tillage strategies can produce unfavourable soil conditions (physical and 

ral) for winter wheat crop establishment, such as large porosity and pore 

ssociated with surface residue inclusion, but on a sandy loam soil this had 

al effect upon final establishment (due to ‘catch up’) and yield.  No 

tab ishment, was provided under ploughing and power harrowing as the cost of 

to output was much greater than discing alone.  This confirms the 

esis that soil structure significantly affects crop establishment, but the 

of structure upon yield is less clear. 

ed tillage (discing) on a clay loam soil is restrictive to crop establishment 

 

 Rolling causes excessive surface cracking and increases to the soil porous 
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results in lower overall establishment (due to poor soil seed contact and poor root 

and shoot mobility) and yield.  Rolling should only be used in cases where level 

 

 

eding germination, emergence and 

establishment. 

 

seedbed surfaces are required as the cost to benefit of rolling is not sufficient in 

establishment and yield returns.  Rolling has the same effect regardless of texture 

on both the physical and structural properties of the soil. 

Excessive soil loosening (i.e. too porous) is detrimental to crop establishment 

within a sandy loam soil while excessive consolidation (increased soil strength 

and bulk density) is detrimental within a clay loam soil (initially).  Crop 

establishment is limited by the volumetric water content of the soil at low values 

(independent of texture), severely imp

 

Increased porosity characteristics e.g. porosity, pore area, ECD, NND etc. have 

significantly negative effects upon crop establishment, observed at all scales of 

resolution.  This may be associated with poor soil-seed contact, reduced nutrient 

and water availability.  This is severely limiting within sandy loam soil.  The 

only period where this is not the case is within a clay loam soil at cultivation i.e. 

where increased porosity etc. is beneficial to drilling but this can reach a limit 

 

 

within a dynamic range beyond which would be detrimental to establishment due 

to excessive loosening. 

Preferred macro structural conditions of a seedbed for optimum crop 

establishment are: 

 Porosity 15 – 20 % (image analysis) c. 55 % total porosity 
 

o
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o Pore area 5 – 15 mm2 

o PSDcu  10 – 20 

 

 Meso structure (c. 66 µm pixel-1) is more comparable to the conditions relating to 

direct affects upon crop establishment (shoot and root material) within the soil 

seedbed environment.  Preferable conditions include (independent of texture): 

 Porosity  12 - 17 % (image analysis) c. 55 % total porosity 

 Pore area  0.4 – 1 mm2 

 Pore perim

 

o

o

o eter  2 – 3 mm 

o Elongation  < 2 

o

o

o cu

 

 

be observed at both seven and thirty six days after 

cultivation, with both conditions at this stage of seedbed evolution having 

 

ty range between 18 -20 % at cultivation. 

 

 Seedbed preparation, physical condition and structural properties were 

succes led ac  texture and season to create the soil quality of 

establishment (SQE), to predict the combined effects upon crop establishment 

 ECD   0.42 – 0.54 mm 

 NND   < 1.4 mm 

 PSD    80 – 110   

NB: PSDcu range higher than previous (Macro structure) due to greater pore size range at this scale. 

Meso structure significantly affects crop yield confirming the hypothesis.  As 

with crop establishment higher structural conditions i.e. porosity result in reduced 

crop yield.  This can 

significant beneficial or detrimental effect upon crop yield.  Preferred conditions 

occur with a porosi

sfully model ross soil
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numbers.  Cultivation accounts for c. 50 % of the variation in crop establishment, 

and is a smoothing of the underlying heterogeneity within the soil.  A further c. 

20 % of variation in crop establishment was explained directly by bulk density 

(presum bly accounting for porosity and water content variation in the soil), 

meso pore size, roughness and spatial 

contact, water sto nt within the soil). 

 

8.2 Implication  

 

 The European Union Common Agr  Policy reform (CAP) stipulates a 

move in all agricu  

findings show this may be possible for wheat grown on sandy loam soils with 

O2 output.   

a

distribution (accounting for soil-seed 

rage and ease of moveme

s

icultural

ltural practices towards reduced or zero tillage systems.  These

minimal loss in establishment and little to no loss from yield under discing alone.  

However in clay rich soils (accounting for ~ 60 % UK soils – Batey, 1988) will 

fail to meet with the CAP reform due to the inadequate structural environment 

created with single pass discing.  A further application of power harrow will be 

required to provide adequate seedbed conditions in these circumstances resulting 

in increased cost, possible soil degradation and an increased C

 

 Quick and accurate prediction of soil quality for establishment can be used to 

provide a relatively easy assessment of the soil condition for informed decision 

making by farmers to prevent excessive and unnecessary soil movement and 

degradation.  This can be achieved with the simplified model which incorporates 

cultivation intensity and soil bulk density both of which can be easily obtained.  

Field assessments may also be carried out using the full model should access to 
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equipment be unhindered.  The benefit of visualising structure and pore space of 

the soil is that it provides a greater understanding of the physical environment 

under which crops grow and also allows for a greater model prediction of the 

establishment.   

.3 Further work 

 

 

 The impact of soil crop residue plays a vital role in crop establishment under 

 

 

considered within the scope of this research such as the chemical and biological 

 

8

 

Perhaps the most influential factor on crop establishment within the soil was the 

assumed reduction in soil-seed contact associated with increased soil pore 

conditions.  It is recommended that further study of both the appropriate contact 

degree and the angle within the soil would be beneficial in the understanding of 

crop establishment as well as the spatial distribution of the interconnecting pores 

and flow paths through a seedbed environment.  This may be best achieved 

through Micro Computed Tomography (µCT) and fine resolution imaging. 

reduced cultivation strategies affecting both the soil porosity and porous 

architecture of the soil and the physical properties of the soil i.e. strength.  

Further study of how specific the effects of residue inclusion within the soil is 

recommended in the assessment of soil-seed contact, residue breakdown etc and 

how this affects root growth and anchorage, increases disease risk and changes 

the soil architecture. 

Unaccounted variability in establishment (30 %) is perhaps driven by factors not 
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influences upon crop establishment.  Further study of the biological communities 

and the relationships with soil pore development and association with 

rhizosphere development in cultivated soil is therefore needed. This could 

 of an effect these communities have in the interlink 

between the soil and rhizosphere and, how much they aid in the development of 

 

 e soil 

conducive to winter wheat establishment and has successfully predicted c. 70 % 

 

 

stablishment would provide greater understanding of the 

seedbed environment and perhaps help to explain the c. 50 % variability within 

determine how much

pore networks within the soil seedbed environment.  Nutrient availability was 

mentioned throughout the thesis as a key factor in limiting crop establishment, 

therefore how much of an influence does the movement of these nutrients and 

their availability within different soil textures and structures influence crop 

establishment also needs to be considered. 

This study has successfully determined the structural conditions of th

of the variability within this establishment across two soil textures and two 

seasons.  Further study should now be used to assess if the terms and model 

output can be used successfully to predict crop establishment both on a number 

of different soil textures and cereal crops such as oil seed rape. 

A study of further cultivation equipment and their interaction with the seedbed 

structure and crop e

crop establishment.  This would also lend to producing a grading system to 

cultivation equipment based upon the response of the soil.  The grading system 

could then be used within the SQE as a more developed cultivation intensity 

parameter. 
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During this study it was not possible to differentiate the soil porosity from the 

plant material (i.e. root and shoot) due to the close density values of air and plant 

material, in effect accounting for more pore space than was effectively there.  A 

further study designed specifically to observe this porosity differentiation and 

how much of the porosity which is plant material affects the soil hydrology 

would be beneficial,  as well as studying potential effects upon SQE output. 
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