Studies on Distributed Approaches for Large Scale
Multi-Criteria Protein Structure Comparison and
Analysis

Azhar Ali Shah, MPhil

Thesis submitted to The University of Nottingham
for the degree of Doctor of Philosophy

September 2010



Abstract

Protein Structure ComparisofiPSC) is at the core of many important structural biology problems.
PSC is used to infer the evolutionary history of distantly related proteinsjitatso help in the
identification of the biological function of a new protein by comparing it with ottr@teins whose
function has already been annotated; PSC is also a key step in proteinrgnouediction, because
one needs to reliably and efficiently compare tens or hundreds of thisisdrdecoys (predicted
structures) in evaluation ofnative-liké candidates (e.g.Critical Assessment of Techniques for
Protein Structure Prediction(CASP) experiment). Each of these applications, as well as many
others where molecular comparison plays an important role, requireseaetitfnotion of similar-

ity, which naturally lead to the Multi-Criteria Protein Structure ComparistC{PSG problem.
ProCKSI (www.procksi.org), was the first publicly available server t/jate algorithmic solutions
for the MC-PSC problem by means of an enhanced structural compdhiabrelies on the princi-
pled application of information fusion to similarity assessments derived from reultgonparison
methods (e.g. USM, FAST, MaxCMO, DaliLite, CE and TMAIign). Current N¢GC works well

for moderately sized data sets and it is time consuming as it provides publicesémvmultiple
users. Many of the structural bioinformatics applications mentioned aboudvbenefit from the
ability to perform, for a dedicated user, thousands or tens of thousdnosmparisons through
multiple methods in real-time, a capacity beyond our current technology.

This research is aimed at the investigation of Grid-styled distributed computatggies
for the solution of the enormous computational challenge inherent in MC-P&this aim a novel
distributed algorithm has been designed, implemented and evaluated witemlfflead balancing
strategies and selection and configuration of a variety of software t@sisces and technologies
on different levels of infrastructures ranging from local testbeds talpction level eScience in-
frastructures such as ti¢ational Grid Servic NGS). Empirical results of different experiments
reporting on the scalability, speedup and efficiency of the overall syateresented and discussed
along with the software engineering aspects behind the implementation of audedrdolution to
the MC-PSC problem based on a local computer cluster as well as with a @RIBmentation.
The results lead us to conclude that the combination of better and fastdelpana distributed
algorithms with more similarity comparison methods provides an unprecedentadcedon pro-
tein structure comparison and analysis technology. These advancesfaajtdte both directed
and fortuitous discovery of protein similarities, families, super-families, dos&itt, and also help
pave the way to faster and better protein function inference, annotatibpratein structure predic-
tion and assessment thus empowering the structural biologist to do a sttiahbe/she would not
have done otherwise.
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CHAPTER1

I NTRODUCTION

This thesis presents the outcome of the exploratory and investigatidies on Distributed Ap-
proaches for Large Scale Multi-Criteria Protein Structure Comparison anadlysisin ten self-
contained chapters. This chapter being the first one sets the stage lolyanig the research topic
and explaining why this topic was chosen for study. Besides introducingeearch topic, this
chapter also provides a succinct overview of the research objeatiathodology and the structure

of the thesis.

1.1 Introduction

"The organic substance which is present in all constituents of the anirdg] also as
we shall soon see, in the plant kingdom, could be named 'protein’ fromeal3rord
'proteios’ meaning 'of primary importance™ [1].

In 1839 the above words first appeared in an article authorgadrgirdus Johannes Mul-
der(1802-1880), a Dutch organic chemist [1]. Mulder wrote these waditéds eorrespondence with
Jons Jakob Berzeliyd779-1848), a Swedish chemist who originally coined the terateinbased
on Mulder’'s observations thaall proteins have same empirical formula and are composed of a
single type of molecule’Since this time proteins have remained among the most-actively studied

molecules in biochemistry and the understanding of their structure and foma®remained an es-
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sential question. It was only in 1955 that a British biocherhistlerick Sange(1918) introduced
an experimental method to identify the sequenéngary structurg of a protein nameahsulin’ [2].
This achievement entitled Sanger to win his first Noble Prize in 1958. Thiswsg was followed
by another breakthrough gir John Cowdery Kendre{d917-1997), an English biochemist and
crystallographer antflax Perutz1914-2002), an Austrian-British molecular biologist who discov-
ered the three-dimensional structuleitiary structuré of two proteins nametmyoglobin’[3] and
'hemoglobin’[4] respectively and were co-awarded the 1962 Noble Prize in chenfmtrhese
achievements. It was exactly at this time titristian Anfinser(1916-1995), an American bio-
chemist, had developed his theory of protein folding, which explains theepsdby which a protein
sequence coils (folds) into a more stable and unique three-dimensiora@bstrgnative conforma-
tion) [5—7]. Anfinsen’s theory of protein folding provided the basis fastpin structure prediction
and also raised the need for structure-based comparison and anélpsideins [8—-10]. He was
awarded the 1972 Noble Prize for this work. A few years later, in 19angsr became success-
ful in sequencing the complete genomeRifage Phi X 174a virus (bacteriophage) that infects
bacteria [11]. This provided the basis fdHuman Genome Proje€HGP) [12] and hence entitled
Sanger to share his second Noble Prize in chemistry in 1980 with two Amerigalindmists named
Walter Gilbert(1932) andPaul Berg(1926). The successful completion of HGP in 2003 lead to
various world wide structural genomic and proteomic initiatives such aSthestural Genomics
Consortium(SGC) [13], theProtein Structure InitiativéPSI) [14] , and theduman Proteome Or-
ganization(HUPO) [15] amongst others. These initiatives are targeted at lowermgdhkt and
enhancing the efficiency for the experimental determination or computatiwediction of novel

protein 3D structures. As a consequence, there is an exponentialljngrowmmber of protein se-
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guences and 3D structures being deposited in publicly available datahagess thdJniversal
Protein Resourc€UniProt) [16, 17] andProtein Data BankPDB) [18] respectively. In order for
this data to be analyzed, understood and utilized properly, the need ofiaetd, efficient and reli-
able software tools and services especially for determiningtituetural similarities/dissimilarities
among all known structure becomes indispensable. The knowledge ofusalu(dis)similarities
obtained from the comparison of protein structures is mainly used in core Hioateesearch ac-
tivities including structure-based drug design [19], protein structuediption/modeling [20-22],
classification [23, 24], molecular docking algorithms [25] and other strathioinformatics appli-
cations.

Several methods and tools have been developed to investigate the (dis)sawiéanong
protein structures [26]. Not surprisingly, there is no agreement on toomptimally definewhat
similarity/distance means as different definitions focus on different bicdgiaterion such as se-
guence or structural relatedness, evolutionary relationships, chefuigzlons or biological roles
etc and these are highly dependent on the task at hand. This obsecadisdior an explicit identifi-
cation and understating of the various stages involved in the assessmeotiedfs’ similarities. As
illustrated in Figure 1.1, the first four stages, which have dominated tharadsi protein structure
comparison so far, are: similarity conception, model building, mathematicalitieii and method
implementation. Interestingly, the fifth stage, where one would seek to leénagstrength of a
variety of methods by using appropriate consensus and ensemble methaas barely been in-
vestigated. One such approach has recently been introduced by nidhesPootein (Structure)
Comparison, Knowledge, Similarity and Informati(ProCKSI) web server [27]. Using a set of

modern decision making techniques, ProCKSI automatically integrates thatiopesf a number



1. INTRODUCTION 4

of the most popular comparison methods (as listed in Table 1.1) and providegegrated con-
sensus that can be used to obtain more reliable assessment of similaritiestéon datasets. The
consensus-based results obtained from ProCKSI take advantagéaufikbctive wisdomof all the
individual methods (i.e, the biases and variances of a given method migecsgated by the other
methods biases and variances) and minimizes the chances of falsely attrifimtitagity to (sets
of) proteins. That is, false positives are more frequent at indivichethod level because usually
most of globally different proteins still share some common substructures.

While trying to cope with the above mentionedientific challenggFigure[1.1) in the
field of computational molecular biology, the performance of ProCKSI messothe bottleneck
for moderately large and very large instances of datasets (section Vidgsdurther details of this
computational challenge). A thorough survey of the related literaturaleteat in order to improve
the overall performance, three routes are usually followed [28]: @)Y#velopment of new algo-
rithms or the redesign/modification of existing ones based on fastgnistic techniques [29, 30];
(b) development of special purpose ROM based hardware chip83B&nd (c) the use of parallel
and distributed computing. Routes (a) and (b) can only be applied in vegjfispcases as they re-
quire considerable in-depth knowledge of a problem or substantiabeticimesources respectively.
The third alternative, the utilization of distributed and parallel computation isrhew a more
ubiquitous approach as in some cases distributed/parallel solutions in @mlerprcan be reused
(with slight modifications) in other problems. Moreover, due to ongoing acks in processor and
networking technologies, the scope of parallel computing is also extenaingtfaditional super-
computers to massively parallel computers, clusters of workstations (GD@#gven crossing the

boundaries in the form of clusters of clustersgred computing33—35]. This paradigm shift in the
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provision of parallel computing facilities afford scalability at very low costrtRermore, in terms
of code maintenance and code portability, as compared to traditional sup@uters, distributed
computing fares better and several successful applications to biccesiare discussed in [36—44].
Notwithstanding the above successes, grid computing has no magic applidabititya
and many different distribution/parallelization solutions might exists for argpreblem. Which of
these strategies would be the best one to use will depend to a large extentynon the specific
problem structure but also on factors such as the choice/availability téylar hardware, software,
interconnection types, security protocols and human resources etcthéhis investigates several
approaches that could provide the solution to the computational challenlyg¥¢&®SC using vari-
ous distributed approaches as described in chapter 4. The theoretdoafrgoirical results of these

investigations are discussed in the successive chapters as outlinetian|4€s.

1.2 Challenges of MC-PSC

As described abovdlroCKSlis an online automated system that implements a protocol for MC-
PSC. In particular, it allows the user to submit a set of protein structure@gpariorm eitherall-
against-allor target-against-albrotein comparisons with the methods listed in Table 1.1. ProCKSI
combines the results of pairwise comparisons delivered by the varioustdgamethods, nor-
malizes them and presents a consensus form of the results through anaéntéti-based visual
interface. Furthermore, it gathers information about the proteins beimpaced through hyper
links to external sources of information e.mformation Hyperlinked Over ProteiiHOP) [51],
Structural Classification of ProteinSCOP) [52], andClass Architecture Topology and Hierar-

chy(CATH) [53]. As demonstrated in [27], and previously suggested ih§sdl [55], the ensemble
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FIGURE 1.1: Stages in the derivation of a protein’s classification: (Ecle what “similarity” means,
which is a declarative and problem-dependent step. (2)istaally build a model of similarity based dh
This new similarity/distance conception will have its owiady variance and outliers. (3) Decide whether this
idealized model will be instantiated as a distance/sintylaneasure or metric. (4) One or more algorithms
are implemented in order to calcul@gwhich can be solved exactly and in polynomial time only ie $im-
plest of cases. The more interesting similarity definitidnawvever, give rise to complex problems requiring
heuristics/approximate algorithms for their solution) Gombining many different methods with different
views of similarity produces a multi-competence paretmfr from which a consensus picture might be de-
rived. In turn, this allows the structural biologist to (BUuster and classify proteins reliably. Furthermore, in
order to provide most efficient (real-time) results basedtephilosophy of (5), the need for the data and
computation to be distributed and executed in a grid enviremt becomes indispensable.

and consensus based approach adopted by ProCKSI yields mor&enadmlits of biological signif-
icance as compared to the results obtained with any single structure compagiood developed
so far. However, the integration of multiple methods for protein structure aoisgn, on the one
hand, coupled with a rapidly growing number of 3D structures in the Protata Bank (PDB),

on the other hand, gives rise to a computational challenge that is far delgercapabilities of a
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TABLE 1.1: Building Blocks for Multi-Criteria Protein Structure Corapson. The name and references for
each of the method is shown in column “Method”, followed bg ttolumn “Notion of similarity” where the
specific notions that each method uses to determine (digsitgiare mentioned. Columns “Computational
techniques” and “Resulting measures/metrics” summaiizedach similarity is computed and in what form
it is returned. The last column gives an indication of relatcomputational requirements (time) for the
different methodsKey: AL = Number of Alignment€)L = Number of Overlap& = Z-Score;TMS= TM-
align Score;SN= Normalized Score* The average CPU time for a single pair of protein structures o
standard P4 (1.86 GHz, 2GB RAM) dual-core machine. Thusdta average execution time taken by all
six methods (with a total of 15 different similarity meassfraetrics) for the comparison of a single pair of
protein structures is.B4 secs plus some additional time for performing I/O.

Method Notion of similarity Computational techniques | Resulting measures/metrics| Time* [sec]

DaliLite [45] intramolecular distances distance matrices, AL,Z, RMSD 3.33
combinatorial,

simulated annealing

MaxCMO [46] | overlap between contact maps Variable Neighborhood Search AL, OL 3.32

CE [47] inter-residue distances heuristics, AL, Z, RMSD 1.27
rigid body superposition dynamic programming

USM [48] Kolmogorov complexity compression utilities USM-distance 0.34

TM-align [49] inter-atomic distances rotation matrix, AL, RMSD,TMS 0.21

dynamic programming

FAST [50] inter-residue distances heuristics, RMSD, AL, SN 0.07

dynamic programming

single standard workstation or a small group of workstations, speciallyeifxamuld like to perform
a multi-criteria comparison for very large datasets in real-time. That is, asuimbder of protein
structures being compared increases, the corresponding numbenmfpacomparison jobs, 1/0
files and directories, computational time and memaory required for each cmopanethod and
associated pre-processing (e.g. data extraction and contact mapagiepaand post-processing
(e.g. consensus generation, clustering and result visualization) melBodsaeases. An estimate

of some of these complexities is presented in the following sections.
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Job Complexity

Job complexity for protein structure comparison depends on the size (i.eanafrdiructures) of the
dataset/database in hand as well as the mode of comparison. As of writing disgertation, there
are64,036protein structures in the PDB and this number grows steadily. If we compzadiaular
protein against all the proteins in a given dataset (e.g. PDB), this isedfey agarget-against-all
mode of comparison. While being the simplest mode, it is usually used to compaotein of
unknown function but known structure with those whose structures ametibns are known. The
results of comparison would provide clues regarding the function of teeyqurotein. The number
of pairwise comparison jobs in this mode is directly related to the number of stegdtuthe target
dataset. For example, given the current holdings of PDB, there williti@36comparison jobs while
using target-against-all mode of comparison. However, in the case of mitgtii comparison the
actual number of jobs will be the number of target structiwebie number of methodsing used
for multi-comparison.

Another mode of comparison is the one in which we compare all the elementsanf a p
ticular dataset among itself or with all the elements of another dataset. This moaferied as
all-against-allcomparison and is mostly used to cluster/classify a group of structurese3hiing
clustering/classification is aimed to reveal the functional and evolutionary sitieéaamong the
proteins. The number of pairwise comparison jobs in this mode is proportiotia¢ square of the
number of protein structures involved in the comparﬂs&nthe number of method$or example,
the comparison jobs for current holdings of PDB using all-against-all matteonly one method

will be:

!Please note that some methods return different similarities for the c@supaof P, with Pj and the reverse
comparison
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N;j = n® = 64036 = 4,100 609 296

Where,N; represents the number of pairwise comparison jobs, whideing the current
number of protein structures available in the PDB.

As mentioned above the actual number of jobs will4h&00,609,296x the number of
methodsbeing used. Therefore, it will require an optimal way to distribute all thebs jo the
form of some smaller subsets (working packages) that could be submittparallel/distributed
execution. Needless to say, this complexity calls for a high performance ¢mggolution. Please
note that protein structure prediction methods, e.g. Robetta [56] and SERF57], often sample
thousands of “decoys” that must be compared and clustered togetbachatteration of the algo-
rithm as to obtain a centroid structure. Thus comparing thousands or tenusfathds of protein
structures is not limited to assessing the PDB only but actually occurs as@aniem in many

other structural bioinformatics activities.

Time Complexity

Different protein structure comparison algorithms have different time coxj@e and run time
profiles. Table 1.1 provides an indicative comparison between the times ligkiire algorithms
we used in our experiments for a typical protein pair. Arguably, depgndinthe length of the
members of a protein pair, the times mentioned in the table would change. Hotms® can be

use to give a rough estimgtef the run time profile that can be expected from these algorithms:

2More detailed analysis of run times is provided in later chapters
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target-against-all: for a given protein structure compared against@ig@36structures in the
PDB (assuming only one chain per PDB file), a Multi-Criteria comparison withrteghods
available in Table 1/1 consuming the time mentioned in the fifth column, would takePdn a

(1.86GHz, 2GB RAM) dual-core workstatid@v.98days.

all-against-all: if one were to execute this type of comparison for the entire PDB, this will
result on2,798,939,02%airwise comparison jobs (assuming again one chain per PDB file)

and it would take aboui662.71years for all jobs to finish on a single machine.

Space Complexity

Executing potentially millions of pairwise protein structure comparison jobsthasrequirements
in terms of memory and bandwidth allocation. MC-PSC jobs generate a vesy hangber of
output data files that need to be parsed and summarized in a way that ehabdescution of the
normalization and consensus steps but also that falls within the memory coissfetime available
computational infrastructure. With the current number of proteins strestimr PDB, and the total
number of comparison measures/metrics for all six methods (Table 1.1) thgreenas many data
items in the resultant di(similarity) matrix as:

n? x (Nmt + 2) =64,036 x 17=69,710,358,032

Wheren again represents the current number of protein structures in RRpBrepresents
the total number of measures/metrics (see Table 1.1) and the addif@wounts for the two
protein IDs involved in each comparison. Using a minimum of 5 digits/charaitiérsid each data
item it may require about 348 GB to hold the matrix. Given the size of this matrixedbines

indispensable to compute and hold its values in a distributed environment@sdms parallel I/O
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techniques to assemble each distributed portion directly at an appropriatgestocation.
The above back-of-the-envelope calculations point to the need forhapeigormance

solution to the MC-PSC problem as described in the next section.

1.3 Research Objectives

Based on the above mentioned problem description, this dissertation seeksitte a step change
in computing capabilities through a suite of grid-styled distributed computing téobies by par-
allelizing the existing code to bring closer the dream of real-time multi-comparisorery large
protein structures datasets. The dissertation also aims at providing dioeflen the software
engineering aspects behind the implementation of a distributed solution to theS@pfblem
based on local computer cluster as well as with a Grid implementation. The iratestigf sev-
eral computational strategies, approaches and techniques is aimedtemtiatg improve the ways
to enhance the ProCKSI's functionality and interoperability with other sesvihus extending its
applicability to a wider audience. The combination of better and faster paaaliiedistributed algo-
rithms with more similarity comparison methods is deemed to represent an ungnéeg@dvance
on protein structure comparison technology. Thus, the advances tharesented through this
thesis might allow both directed and fortuitous discovery of protein similarite@silfes, super-
families, domains, etc, on one hand and help pave the way to faster andgrettin function

inference, annotation and protein structure prediction and assessméimé, ather hand.

1.4 General Methodology

The work presented in this dissertation follows several methodologies,lyjame
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1. Wide and deep literature survey and analysis:there is a plethora of literature available
on the use of parallel and distributed approaches for a variety of afiplisan the field of
life sciences. The comprehensive survey and analysis of theseaappsoprovides not only
the state-of-the-art knowledge in terms of the technological developmgrgido helps in
learning the lessons from others experiences and selecting the pygweshahes for further

investigation.

2. An engineering approach to distributed and Grid computing: this type of methodology
provides the insight in terms of setting-up the distributed and grid computingsinércture
based on the lessons learned from the first methodology. Starting fromfthstructure of
a local cluster and testing it with a variety of options to working on a National Gervice

requires all the nitty gritty technical skills of engineering the Grid.

3. An experimental approach for evaluating the implementations:the implementations of
the proposed parallel and distributed approaches for the solution oPBIC-problem are
evaluated based on the results of the the experiments by using standattieaeaml metrics

being used in the community.

4. A self-reflective commentary on the easiness or otherwise of wking with the Grid: the
design, implementation, and evaluation of each approach is discussedeiatiee sections

in terms the complexity of working with the Grid.

1.5 Thesis Organization

The design, implementation and evaluation of the newly built distributed archiéeatong with

related case studies and background material is presented in the foetf-obistained chapters as
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outlined bellow:

Chapter 2: Survey of Web and Grid Technologies in Life Sciences

This chapter provides a broad survey of how the life science communityvdmke has benefited
from the proliferation of web and grid technologies. The reason thatttiay ©f theworld wide
web (www) or simply thewebis carried out along with the grid technology lies in the fact that the
direction of current development in both of these technologies is coatgtmirards an integrated
and unifiedWeb-based grid servicer Grid-based web servicenvironment [58]. That is, proper
understanding of the current state-of-the-art in grid computing resjairdhorough understanding
of many concepts, standards and protocols related to web technolodiesefdre, this chapter
reports on the developments in both of these technologies as they pertaigéméral landscape of
Life Sciences. As many of the problems pertaining to different fields of tferces usually share
a common set of characteristics in terms of their computational requirementfyraéaid survey
was essential for investigating the most common technological solution to theepraiscussed
in section 1.2. The major focus of this technological review was to collate dgteanformation
regarding the design and implementation of various bioinformatics Webs, ,G¥els-based grids
or Grid-based webs in terms of their infrastructure, standards, pristcssrvices, applications and
other tools. The review, besides surveying the current state-ofrthalso provides a road map
for future research and open questions. However, due to the flobtk@ture prevailing under
the heading of this chapter the need for another chapter focusing bpecidahe narrow field of

structural proteomics aroused, as described in the next section.
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Chapter 3: Overview of the Grid and Distributed Computing for Structural Proteomics

This chapter aims to provide a distilled overview of some of the major projectsdémgies and re-
sources employed in the area of structural proteomics. The major emphasisiement on various
approaches related to the gridification and parallelization of some flagshipjegplications, tools
and data resources related to key structural proteomics problems spobt@is structure predic-
tion, folding and comparison. The comments are based on theoretical iaraflgeme interesting
parameters such as performance gain after gridification, user leveddtitar environments, work-
load distribution and the choice of deployment infrastructure and techieslo§urthermore, this
chapter also provides the detailed description of the ProCKSI servéssng architecture which
is essential for the comprehensive understanding of the major contritftiins dissertation as

presented in the following chapters.

Chapter 4: Materials and Methods

This chapter provides the description of some basic principles and pneethat have been used to
carry out this research. In particular it explains the representatioregiritblem space and various
approaches used for its partitioning. It also provides the descriptioiffefeht infrastructures and

datasets used for the experimental analysis of the newly proposed eratéte

Chapter 5: High-throughput Distributed Framework for MC-PSC

This chapter describes the design and implementation of a high-throughipiltlded re-implementation
of ProCKSI for very large data sets. The core of the new frameworkrigse design of an innova-

tive distributed algorithm that runs on each compute node in a cluster/gricbement to perform
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structure comparison of a given subset of input structures using sérte enost popular PSC
methods (e.g. USM, MaxCMO, Fast, DaliLite, CE and TMalign). This is followgdhe proce-
dure of distributed consensus building. Thus the new algorithms propesedchieves ProCKSI’s
similarity assessment quality but with a fraction of the time required by it. Expetahessults
show that the proposed distributed method can be used efficiently to coaj@aparticular protein
against a very large protein structures data set (target-against-albcisiom),b) a particular very
large scale dataset against itself or against another very large sta¢etdgll-against-all compar-
ison). The overall speedup and efficiency of the system is further ogdtnaath different load
balancing strategies that reduce the percentage of load imbalance oncech A comparative
picture of these load balancing strategies is also described in full detailg witmtheir empirical
results. Performance evaluation of the new system with different alteenatical Resource Man-
agement System (LRMS)’s and MPI implementations was also carried outlén tor choose the

right enabling technologies from several different alternatives asried in the next chapter.

Chapter 6: Performance Evaluation under Integrated Resource Management Environment

This chapter evaluates the effect on the performance of MC-PSC jobs thie MPI environment
is integrated with a Local Resource Management System (LRMS) sualmnaG 181 Engine (SGE)
and Portable Batch System (PBS) using different implementations of MRIasthsuch as MPICH
and OpenMPI. Experiments with different ways of integration provideraparative picture of the
possible approaches with the description of resource usage informatieadh parallel job on each
processor. Understanding of different ways of integration shedsdiglhe most promising routes

for setting up an efficient environment for very large scale protein gtracomparisons.
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Chapter 7: On the Scalability of the MC-PSC in the Grid

Based on the lessons learned in previous chapters by evaluating tloenparEe of the high-
throughput distributed framework for MC-PSC, the next step would be tkenuge of the Grid
computing to overcome the limitations of a single parallel computer/cluster. It isaalaot that
the use of the Grid computing also introduces additional communication owkvwitaah needs to
be taken into consideration. This chapter describes the experimentspedfon the UK National
Grid Service (NGS), to evaluate the scalability of the distributed algorithnsacrltiple sites. The
results of the cross-site scalability are compared with single-site and singleimegperformance

to analyze the additional communication overheard in a wide-area network.

Chapter 8: On the Storage, Management and Analysis of (Multi) Similarity Data for Large Scale

Protein Structure Datasets in the Grid

This chapter briefly describes some of the techniques used for the estiroBtwssing/invalid val-
ues resulting from the process of multi-comparison of very large scalsetatm a distributed/grid
environment. This is followed by an empirical study on the storage capadityjaery processing
time required to cope with the results of such comparisons. In particulagstopzery overhead of
two commonly used database technologies such alligrarchical Data Format(HDF) (HDF5)
and Relational Database Management Sys{@&@DBMS) (Oracle/SQL) is investigated and com-

pared. These experiments were conducted on the National Grid S&NGS)( UK.
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Chapter 9: Consensus based Protein Structure Similarity Clustering

This chapter compares the results of two competing paradigms for cossgeselopment i.e., the
Total evidencend theTotal consensudt uses the Protein Kinase Dataset to perform the classifica-

tion with both of these approaches and discuses the pros and conhafgmaoach.

Chapter 10: Conclusions and Future Work

This chapter builds on the aggregation of individual conclusions frorofatlie chapters and pro-
vides a holistic view of the overall conclusions of this thesis. It also prevetene directions for

the future work.

1.6 List of Contributions

This thesis is a direct contribution to the field of bio-sciences in generalaidii-Criteria Protein
Structure Comparison and Analysis in particular. It focuses on the dawvelot of a novel compu-
tational framework for MC-PSC based on grid-styled distributed computhagegies. To this end,

a number of contributions were made, which are listed bellow:

e State-of-the-art literature review
Technological evolution has brought upon converging effects in ctingpand hence a thor-
ough understanding of one paradigm requires the knowledge andstanaiding of many other
paradigms which are interrelated and are interweaving to form a single whb&escope of
distributed computing is broadening from parallel to Grid computing on one,heamd, on
the other hand the architecture of the Grid computing is moving towards intagssitio the

world wide web to form what is called thé/orld Wide Grid This dissertation contributes
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in presenting a comprehensive survey of the scholarly articles, baokspther resources
related to the evolution and application of the Grid/distributed computing in the fiddtbo
sciences in general and structural proteomics in particular. Besidesfyilemthe areas of

prior scholarship, this review also points the way forward for futureagsh.

Design, implementation and evaluation of a novel distributed framewrk for MC-PSC
The solution framework for the enormous computational challenge inhigrdéin¢ nature of
MC-PSC is the major contribution of this dissertation. The framework is basedovel dis-
tributed algorithm that scales to any number of available nodes in a clustegfyihnment.
It uses the local storage/memory of each node to store the multi-similarity datésimibuded
environment and hence tackles both data and compute intensive natu@zB8@ and makes

the processing of large scale datasets possible.

Empirical analysis of different load balancing strategies for MC-PSC

Given the fact that the size/length of protein structures varies from adiegvof amino acids
to several hundreds, the execution time is hugely different for diffgyainwise comparisons.
This variation in the execution time renders the simple decomposition based oqguak e
number of pairwise comparisons per node inefficient due to heavy loaddndsa This
thesis presents an empirical analysis of this load imbalance and proposégciemt load

balancing strategy that distributes the load based on the number of residues

Studies on the integration of parallel and local resource managenmt environments
In order to reflect on the engineering aspects of the distributed envirnthés dissertation
provides an empirical analysis of different integrated environmentsdmallel and local re-

source management systems. The results of this analysis would significamttipate in the
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design and implementation of an optimal distributed computing infrastructureeddedthe

execution of distributed algorithms/applications.

e Grid scalability evaluation for distributed MC-PSC
The deployment of the distributed application on the UK’s National Grid Sern(iNGS)
infrastructure and evaluation of its scalability across multiple clusters prevatge scale
analysis of the effect of gridification. This analysis provides insights @m to overcome
the limitations of a single site/cluster and further enhance the performance system by

leveraging the resources from multiple sites.

e Comparison and evaluation of different database technologies formpposed MC-PSC
science center
The proposal of a science center for MC-PSC based on the pre-tedmsults of multi-
similarity data is another contribution of this dissertation. To this aim, a surveyysis and

evaluation of different database technologies is presented in the cohtdg-PSC.

e Comparison and evaluation of different consensus-based approbes for MC-PSC
The overall goal of the MC-PSC is to provide a consensus-based ¥ithe protein structure
similarity. Since, there are many different approaches for building theersus, this disser-
tation contributes in providing a comparative picture of the two most widely paeaddigms

i.e. Total Evidenc€TE) andTotal ConsensuélC).

1.7 Publications

During the course of this thesis, the following peer reviewed publicatioms aleo contributed:

Peer Reviewed Conference Papers:
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1. G. Folino,A. A Shah, and N. Krasnhogor.: On the Scalability of Multi-Criteria Protein Struc-
ture Comparison in the Grid, In: Proceedings of The Euro-Par 201&3op on High Per-
formance Bioinformatics and Biomedicine ( HiBB), August 31-Sep 3, 2046hia, Naples,

Italy.

2. G. Folino,A. A Shah, and N. Krasnogor.On the Storage, Management and Analysis of
(Multi) Similarity for Large Scale Protein Structure Datasets in the Giitt Proceedings
of IEEE CBMS 2009, the 22nd IEEE International Symposium on Comzased Medical

Systems, August 3-4, 2009, Albuquerque, New Mexico, USA.

3. A. A Shah, G. Folino, D. Barthel and N. KrasnogomRerformance Evaluation of Protein
(Structure) Comparison Algorithms under Integrated Resource Emviemt for MPI Jobs
In: Proceedings of International Symposium on Parallel and DistributeckeBsing with Ap-
plications (ISPA '08), ISBN: 978-0-7695-3471-8, pp. 817-82REE Computer Society,

2008.

4. A.A. Shah, D. Barthel and N. KrasnogorGrid and Distributed Public Computing Schemes
for Structural Proteomicsin: P. Thulasiraman et. al. (Eds.): Frontiers of High Performance
Computing and Networking ISPA 2007 Workshops, Lecture Notes in Comfatence, Vol.

No. 4743, pp. 424-434, Springer-Verlag Berlin Heidelberg, 2007.

5. A.A. Shah, D. Barthel and N. Krasnogor.: Protein Structure Comparison, Clugtexid
Analysis: An overview of the ProCKSI decision support system. In:c@edings of Inter-
national Symposium on Biotechnology (ISB2007), University of Sindikiftan, Nov 4-8,

2007
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Peer Reviewed Journal Papers:

1. A. A Shah, G. Folino, and N. KrasnogorTowards a High-Throughput, Multi-Criteria Pro-
tein Structure ComparisQriEEE Transactions on NanoBioscience, Vol. 9(2), pp.144-155,

2010. [d0i:10.1109/TNB.2010.2043851]

2. A. A Shah, D. Barthell, P. Lukasiak, J. Blacewicz and N. Krasnogdfeb and Grid Tech-
nologies in Bioinformatics, Computational Biology and Systems Biology: &eReWw: Cur-

rent Bioinformatics, Vol 3 (1), pp.10-31(22), Bentham Publisher3820

1.8 Conclusions

This chapter provided the general introduction to the thesis. It started vathabkground of the
MC-PSC and described in detail the dimensions of the problem (computatbalnge) that it
faces and the main objectives of this research. The general methodolabg proposed solution
has been described along with the outline and scope of the material poegenbe rest of the
thesis. The chapter also mentions some key contributions of this dissertatian with list of

publications. The next couple of chapters provide the comprehensgiveydreview of the literature

which becomes foundations for the building of successive chapters.
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CHAPTERZ2

SURVEY OF WEB AND GRID TECHNOLOGIES IN LIFE

SCIENCES

Chapter 1 provided a succinct description of the research topic ancestsained the objectives
and structure of the thesis in general. This chapter and the one that fah@wsould review the
relevant literature. The review presented in these two chapters stamsafiwide perspective of
the field and finally converges and focuses on the specific topic of teangsand summaries the
potential findings that could help in conducting the research.

This chapter was published as a peer reviewed journal articBuiment Bioinformatics

Vol. 3(1), pp.10-31, 2008. [doi:10.2174/157489308783329850].

2.1 Introduction

"The impact of computing on biology can fairly be considered a paradiggangdas bi-
ology enters the ZLcentury. In short, computing and information technology applied
to biological problems is likely to play a role for 2icentury biology that is in many
ways analogous to the role that molecular biology has played across adl dihio-
logical research for the last quarter century and computing and informetatnology
will become embedded within biological research itself" [59].

As an example of the above referred conclusion regarding the embeodamgnputing
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and information technology (IT) in biological research, one can lookeasthte-of-the-art in web
and grid technologies as applied to bioinformatics, computational biology ystdrss biology.
The World Wide Web or simply the web has revolutionized the field of IT, afated disciplines,
by providing information-sharing services on top of the internet. Similarly ¢githnology has
revolutionized the field of computing by providing location-independentuesosharing-services
such as computational power, storage, databases, networks, instrusodtmiare applications and
other computer related hardware equipment. These information and cesshatring capabilities
of web and grid technologies could upgrade a single user computer intdal glopercomputer
with vast computational and communication power, storage capacity. Atecegsy large-scale
datasets, application programs and tools are also some of the benefitsarfisvghid. The so called
upgraded web and grid-enabled global super computer would make itgetkatial candidate to
be used in resource-hungry computing domains. For example, it coulddukta efficiently solve
complex calculations such as parameter sweep scenario with Monte Carlotgimatad modeling
techniques, which would normally require several days, months, yeax®a decades of execution
time on a traditional single desktop processor.

A quick look at the literature reveals that web and grid technologies atioausly be-
ing taken up by the biological community as an alternate to traditional monolithic leigbrmance
computing mainly because of the inherent nature of biological resoutistgljuted, heterogeneous
and CPU intensive), smaller financial costs, better flexibility, scalability #ficlency offered by
the web and grid-enabled environment. An important factor that providegighification behind
the ever growing use of web and grid technologies in life sciences is th@aons and rapid in-

crease in biological data production. It is believed thalypical gene laboratory can generate
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approximately 100 terabytes of information in a y¢@@], which is considered to be equivalent to
about 1 million encyclopedias. The problem of managing these rapidly ggolamge datasets is
further compounded with their heterogeneous and distributed naturgr(@en terms of storage
and access technologies). Currently there are no uniform standaratsiéast not yet been adopted
properly by the biological community as a whole) to deal with the diverse @atype, location
and storage formats of this data. On the other hand, in order to obtain thecomoptehensive
and competitive results, in many situations, a biologist may need to accesal shfferent types
of data which are publicly available in more than 700 [61] biomolecular da¢gbha®ne way to
handle this situation is to convert the required databases into a single fanth#ten store it on a
single storage device with extremely large capacity. Considering the tremesthe and growth of
data this solutions is infeasible, inefficient and very costly. The applicafidvied and Grid tech-
nology provides an opportunity to standardized the access to these dat&fiiceent, automatic
and seamless way by providing an intermediary bridge architecture asmshdvigure 2.1. The so
called intermediary bridge makes use of appropriate web and grid techeslmgd standards such
as grid middleware specific Data Management Service (DMS), distributeaiggt@nvironments
such as Open Grid Service Architecture-Data Access and Integra@BACDAI) (ht t p: / / www.
ogsadi a. or g) with Distributed Query Processor (DQP), Storage Resource Br&@Bj [62] and
IBM DiscoveryLink [63] middleware etc.

Furthermore, it is also very common for a typical biological application thabliras
very complex analysis of large-scale datasets and other simulation reldteddaemand for high
throughput computing power in addition to seamless access to very larggibadldatasets. The

traditional approach towards this solution was to purchase extremely cpsityas-purpose super
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‘ Biolog =l applietons ‘

DataiGnd Middlewars

Disease Cormpound i
Grid and Web
Wemdata
Tednology

0GSA-DA 0i554-DA 0GSA-DA OGIA-DA]
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FIGURE 2.1: Major architectural components of a biological DataGrigiemnment (reproduced from [64]
and annotated). The middle layer, which consists of gridwaal technologies, provides interoperatibility
between biological applications and various types of data.

computers or dedicated clusters. This type of approach is both costly $mnkwited as it locks
the type of computing resources. Another problem associated with thisagpwould be that of
poor utilization of very costly resources, i.e. if a particular application fiegsits execution then
the resources could remain idle.

Grid technology on the other hand provides more dynamic, scalable andra@al way
of achieving as much computing power as needed through computationahfgaistructures con-
nected to a scientist's desktop machine. There are many institutional, orgamsganational and
international Data/Computational/Service Grid testbeds and well establisbddgbion grid en-
vironments which provide these facilities free of charge to their respestientific communi-
ties. Some of these projects include Biomedical Research Informatics E2eliby Grid Enabled
Services (BRIDGE)tt p: // www. brc. dcs. gl a. ac. uk/ proj ect s/ bri dges, EGEE( http://public.eu-
egee.org) [65], Biomedical Informatics Research Network (BIRM) p: / / www. nbi r n. net), Na-

tional Grid Service UK [66], OpenBioGrid Japan [64], SwissBioGrid][6Xsia Pacific BioGrid
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(http://wwv. apgrid. org), North Carolina BioGrid Ift t p: / / wwv. nchi ot ech. org), etc. All

these projects consist of an internet based interconnection of a largbenwf pre-existing in-
dividual computers or dedicated clusters located at various distributétuiimmal and organiza-
tional sites that are part of the consortium. Figure 2.2 illustrates some maluteataral com-
ponents for such a computational setup. Each grid site in the network kafiyua pool of
compute elements managed by some local resource managing softwaress8cin &rid En-
gine (SGE: http://gridengine.sunsource.net), (PBSt p: // www. openpbs. or g), (Load Sharing
Facility (LSF): wwv. pl at f orm conf Product s/ Pl at f or m LSF) and Condor\ww. cs. wi sc. edu/

condor) etc. Similarly grid storage elements are accessed via data managemergssandgroto-

cols such as GridFTP, Reliable File Transfer Protacol (RFTP) and GGSketc.

¥

Web and Grid
technology

—

HRC Server

-
-

wiorkstations

Cedicated cluster

FIGURE 2.2: Computational grid architecture: internet-based inteneztion of heterogeneous and dis-
tributed individual workstations, dedicated clustergihhperformance computing (HPC) servers and clusters
of distributed PCs (Desktop PC Grid)

Some other large scale bioinformatics grid projects have provided a platidrene a
biologist can design and run complexsilico experiments by combing several distributed and het-

erogeneous resources that are wrapped as web-services. Egashphese are myGrid [68, 69],
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BioMOBY [70-72], Seghoundh{ t p: / / www. bl uepri nt. or g/ seghound) and Biomart it t p: //
www. bi omart. or g) etc., which allow for the automatic discovery and invocation of many bioin-
formatics applications, tools and databases such as European Mole@lzyyBOpen Software
Suite (EMBOSS) [73] suite of bioinformatics applications and some other pylafi@ilable ser-
vices from the National Center for Biomedical Informatics (NCB)t(p: / / www. nchi . nl m ni h.
gov) and European Bioinformatics Institute (EB#Ww. ebi . ac. uk). These projects also provide
some special toolkits with necessary application programming interfaces)Afich can be used
to transform any legacy bioinformatics application into a web-service thmebealeployed on their
platforms.

The availability of these BioGrid projects brought into sharp focus the fardabtter user
interfaces as to provide the biologist with easier access to these webkpigrees. This has led to
the development of various web based interfaces, portals, workfloageament systems, problem
solving environments, frameworks, application programming environments]lemdre toolkits,
data and resource management approaches along with various waygralling grid access and
security. Figure 2.3 provides a pictorial view of these technologies in theexbof the BioGrid
architecture. This review attempts to provide an up-to-date coherentuaated overview of the
most recent advances in web and grid technologies as they pertain tadifiess. The review aims
at providing a complementary source of additional information to some prevexiews in this
field such as [74, 75].

Among the many advances that the computational sciences have providedife #ti-
ences the proliferation of web and grid technologies is one of the mospicoiesis. Driven by

the demands of biological research these technologies have moved &omol#ssical and some-
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FIGURE 2.3: Major components of a generic BioGrid infrastructure: ehare three main layers; the ap-
plication, the middleware and the physical layer. The agpion layer focuses on APIs, Toolkits, Portals,
Workflows etc., the middleware layer focuses on the apptinatiata and resource management and services
while the physical layer provides the actual compute and degources.

what static architecture to more dynamic and service-oriented architeGtueadirection of current
development in these technologies is coalescing towards an integratedified Web-based grid
service [58] or Grid-based web service environment as shown in &igur. Accompanying this
rapid growth, a huge diversity of approaches to implementation and depfaymges have been
investigated in relation to the use of various innovative web and grid tecgiesldor the solution

of problems related to life sciences. The following sections provide arvigveiof some of these
works as per orgnaziation of Figure 2.5; sections 2.2 and 2.3 presemhprehensive review of
the web and grid technologies respectively; sedtion 2.4 describes thieeatare, implementation
and services provided by a selection of flagship projects. Finally, se2tiopresents concluding
remarks on the reviewed literature with a clear indication of certain key opagms with the

existing technological approaches and provides a road-map and apstiogs for the future.
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FIGURE 2.4: Review of technological infrastructure for life sciencetassical HTML based web started
in 1991 and traditional Globus based grid was introducedawy Foster in 1997. With the introduction
and development of semantic web, web-services and websageand after 2001, the new web and grid
technologies are being converged into a single uniformfquiiat termed as 'service-oriented autonomous
semantic grid’ that could satisfy the needs of HT (high tlgtgout) experimentations in diverse fields of life
sciences as depicted above.

2.2 Web Technologies

2.2.1 Semantic Web Technologies

One of the most important limitations of the information shared through classeatechnology is
that it is only interpretable by human and hence it limits the automation requirecldier advanced
and complex life science applications that may need the cascaded exedwmrel analytical

tools with access to distributed and heterogeneous databases. Theurpsigepof semantic web
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FIGURE 2.5: Hierarchical organization of the state-of-the-art ovewiof web and grid technologies. The
number in brackets point to related references that has fevewed.

technology is to eliminate this limitation by enabling the machine (computer) to interpdettun
stand the meaning (semantics) of the information and hence allow artificial intelédgeased ap-
plications to carry out decisions autonomously. It does so by adding sonoetanpfeatures to the
basic information-sharing service provided by the classical web tecgyoldese features provide
a common format for interchange of data through some standard languadjdata models such as
eXtensible Markup Language (XML), Resource Description FrameWRDXF) along with several
variants of schema and semantic based markup languages such as, \dlelgydranguage (OWL)
and Semantic Web Rules-Language (SWRL) etc. Wang et al. [76] atgaeslthough initially
XML was used as a data standard for platform independent exchageharing of data, because

of its basic syntactic and document-centric nature, it was found limited, iedlgefor the rep-
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resentation of rapidly increasing and diverse 'omic’ data . Therefoweently RDF along with
some new variants of OWL such as OWL-Lite, OWL-DL and OWL-Full arsngeadopted as to
implementation shown in Figure 2.6. Various attempts towards the use of semabtiomiée
sciences have been reported in the literature mainly focusing on data/éipplicdegration, data
provenance, knowledge discovery, machine learning and mining etexeaonple, Satya et al. [77]
discusses the development of a semantic framework based on publichbévaitaologies such as
GlycO and ProPreO that could be used for modeling the structure antidaref enzymes, gly-
cans and pathways. The framework uses a sublanguage of OWL callédlD [78] to integrate
extremely large ( 500MB) and structurally diverse collection of biomolecul@se of the most
important problems associated with the integration of biological databaseg iof tiheir varying
degree of inconsistencies. Because of this, there have also bedn e#ugs for providing some
external semantic-based tools for the measurement of the degree dfisteonies between differ-
ent databases. One such effort is discussed in [79], which desenbentology-based method that
uses a mathematical function to determine the compatibility between two databaedsobathe
results of semantically matching the reference.

The autonomous and uniform integration, invocation and access to bidlogitzaand
resources as provided by semantic web have also created an envitdhatesupports the use of
in-silico experiments. Proper and effective use of In-silico experimeagaires the maintenance
of user specific provenance data such as record of goals, hymtheserials, methods, results
and conclusions of an experiment. For example, Zhao et al. [81] slseswdhe design of a RDF
based provenance log for a typical in-silico experiment that performé B&fuence analysis as

a part of myGrid [68, 69] middleware services. The authors have regdhe use of Life Sci-
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FIGURE 2.6: A biologist's view of classical and semantic web. The clealsiveb does not provide the
automated (computational) integration and interopeitdyitbetween various sources of data/application-
s/services and the biologist needs to do all of this manudlhe semantic web on the other hand frees the
biologist from lot of manual work. (Reproduced from [80]).

ence Identifiers (LSID) for achieving location-independent accedistabuted data and meta-data
resources, RDF and OWL have been used for associating uniforrnienrdormation and re-
lationships between resources, while Haystack [82], a semantic welsérolhas been used for
delivering the provenance-based web pages to the end-user. &lod ROF model as compared
to XML provides more flexible and graph-based resource description lagidtion independent
resource identification through URIs (Universal Resource Identifier

There are various other significant contributions that illustrate the userofustic web
technology for the proper integration and management of data in the caftéivinformatics,
computational biology and systems biology. For example, The Gene Ontotmggo@ium [83,84],

make use of semantic web technologies to provide a central gene ontosmgyce for unification
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of biological information. [85, 86] uses OWL-DL to develop a data exgegiormat that facilitates
integration of biological pathway knowledge. [87, 88] uses semantic weboidde a resource for
the development of tools for microarray data acquisition and query aiogptaol the concepts spec-
ified in Minimum Information About a Microarray Experiment (MIAME) a stard [89]. Further
information about some semantic web and ontology based biological applEatiwintools for life

sciences is provided in Table 2.1.

TABLE 2.1: Semantic-web and ontology based resources for life science

Semantic web based application/tool Usage

Biological Pathway Exchange Data exchange format for biological pathway data
(BioPAX [82,83]) http:// ww. bi opax. org/

Microarray for Gene Expression Data Data standard for Systems Biology

(MGED [84,85]) http:// ww. nged. or g/

Transparent Access to Multiple Bioinformatics | Biological Data Integration

Information Sources ( TAMBIS [86]) http://ing.cs. man.ac. uk/tanbis

Software Development Kit for cancer informatigs Semantically integrated bioinformatics software system
(caCORE SDK [87]) http://ncich.nci.nih.gov/infrastructure/cacoresdk
AutoMatic Generation of Mediator Tools for Tools for assisting transformation and integration of
Data Integration (AutoMed Toolkit [88]) distributed datét t p: // ww. doc. i c. ac. uk/ aut oned/
Gaggle [90] An integrated environment for systems biology

http://gaggl e. syst ensbi ol ogy. or g/ docs/

Encyclopedia of Escherichia coli K-12 Genes | Molecular catalog of the E. coli cell

and Metabolism (EcoCyc [91]) http://ecocyc.org

Systems Biology Markup Language Computer-readable models of biochemical reaction networks|.
(SMBL [92]) http://sbni.org/index. psp

Cell Markup Language Storage and exchange of computer-based mathematical models
(CelIML [93]) for biomolecular simulationsft t p: / / www. cel I m . org/)

Open Biomedical Ontology (OBO [90]) Open source controlled-vocabularies for

(OBO [90]) different biomedical domain$(t p: / / obo. sour cef or ge. net)
Gene Ontology (GO [68]) Controlled-vocabulary for genes

Gene Ontology (GO [68]) http: // ww. geneont ol ogy. or g/

Generic Model Organism Database An integrated organism database

(GMODS [94]) http:// ww. gmod. or g/ home

Proteomics Standards Initiative: Data standard for proteomics

Molecular Interactions (PSI-MI [95]) http:// psidev. sour cef or ge. net
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2.2.2 Web Service Technologies

Web-service technology further extends the capabilities of classicalbwelsemantic web by al-
lowing information and resources to be shared among machines even inlautistiheterogeneous
environment (such as a grid environment). Therefore, applicatiorslalsd as web services can
interoperate with peer applications without taking care of particular largulg system, oper-
ating system, processor or network. Web services are defined thideghService Description
Language!(WSDL) and deployed and discovered through Univ&satription, Discovery and
Integration[(UDDI) protocol. They can exchange XML based messagesgh Simple Object Ac-
cess Protocol (SOAP) over different computer platforms. Furthermatie the introduction of Web
Service Resource Framework (WSRF), now web services have benonescapable of storing the
state information during the execution of a particular transaction. Theserdsaof web-services
have made them extremely important to be applied to life science domain.

Today many life science applications are being developed as web serfioegxam-
ple, the National Center for Biotechnology Information (NCBI) provideg@de range of biological
databases and analytical tools as web services such as all the Entilées-including Einfo, ES-
earch, EPost, ESummary, EFetch, ELink, MedLine, and PubMed. Similael¥BI provides many
biological resources as web services such as SoapLab, WSDbfégflasta, WSBLast, WSinter-
ProScan, EMBOSS amongst others. A comprehensive list of all publelyable and accessible
biological web services developed by different organizations, institsitgomd groups can be found
at myGrid websitel{t t p: / / t aver na. sour cef or ge. net ).

All these web services can be used as part of complex application sgeoifi@ms. I1BM

provides WebSphere Information Integrator (WS Il) as an easy wayeieelopers to integrate indi-
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vidual web-service components into large programs. As an example, Rartiina BioGrid [96]

in collaboration with IBM uses web services to integrate several bioinforsafiplications to
high performance grid computing environment. This BioGrid also provide®k(WSDL2Perl)
to facilitate the wrapping of Perl based legacy bioinformatics applicationsehsservices. Other
open source projects that provide registry, discovery and use ofsemfices for bioinformatics,
computational biology and systems biology include myGrid [68, 69], BioMOBY-{/2], and
caBIGhttps://cabig.nci.nih.gov/) etc. The integration and interoperatibility of distributed
and heterogeneous biological resources through web servicepdr@sdan important niche for data
mining and knowledge discovery. For example, Hahn U et al. [97] intreglueeb based reusable
text mining middleware services for bio-medical knowledge discovery.nitaelleware provides a
Java based API for clients to call searching and mining services. Similaolyg ldt al. [98] uses
web services for the implementation of a microarray data mining system fordisagvery.

Due to the success of web services to provide flexible, evolvable alabkearchitectures
with interoperability, between heterogeneous applications and platfornggidhmiddleware is also
being transformed from its pre-Web Service versions to the new oned lbas\eb Services. There
are several initiatives in this direction such as Globus [34, 35], an operce grid middleware,
has adopted web service architecture in its current version of Glohuikiffd, thel EGEE project
is also moving from its pre-web service middleware LHC Computing Grid (LCG2) new web
service based middleware gLite (http://glite.web.cern.ch/glite/) [65], and simil&ENI [99] and
myGrid which are also adopting the web services through the use of Jini], Q&¥FA and other

technologies [100].
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2.2.3 Agent-based Semantic Web Services

Agents are described as software components that exhibit autonomioagidseand are able to
communicate with their peers in a semantically defined high-level languageasuElPA-ACL
(Foundation of Intelligent Physical Agents- Agents Communication Largua§ince the main
focus of agent technology is to enable the software components to pectotain tasks on behalf
of the user, this somewhat relates and supports the goals of web-sem@tmology and hence
the two technologies have started converging towards the developmentefamonomous web-
services that exhibits the behavior of both web-services as well agsagen

There have been many attempts regarding the use of agents in bioinforroatigs,ita-
tional biology and systems biology. Merelli et al. [101], reports the usegehts for the automation
of bioinformatics tasks and processes, Phylogenetic analysis of diseastein secondary structure
prediction, stem cell analysis, and simulation among others. In their papeauthors also high-
light key open challenges in agents research: analysis of mutant prdedosatory information
management system (LIMS), cellular process modeling, formal and semafonethods in bioin-
formatics. Similarly the use of mobile agents for the development of a deceattadielf-organizing
peer-to-peer grid computing architecture for computational biology has bemonstrated in [97].

Another important use of agents in combination with semantic web and webeshés
in the provision of service-oriented semantic grid middleware. For example,et. al. [102],
suggests the use of agentamyGrid [68, 69] middleware in order to best fit the ever-dynamic and
open nature of biological resources. In particular they propose th@fuagents for 'personaliza-
tion, negotiation and communication’. The personalization agent can acwiftof the user to

automatically provide certain preferences such as the selection of qgetfesources for a work-
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flow based in-silico experiment and other user related information. Theagsat can store these
preferences and other user related information from previously adedwser activities and thus
freeing the user from tedious repetitive interactions. The user-agend @lso provide a point of
contact for notification and other services requiring user interactiomgltine execution of a par-
ticular experiment. Other experiences related to the use of agents for iballdgta management

and annotations have been discussed in [103, 104].

2.3  Grid Technologies

Right from its inception, the main focus of grid technology has been to peguatform independent
global and dynamic resource-sharing service in addition to co-ordinatianageability, and high
performance. In order to best satisfy these goals, its basic architdwarendergone substantial
changes to accommodate other emergent technologies. As shown in Edjutreeyrid has moved
from its initial static and pre-web service architecture to a more dynamic WelicBeResource
Framework(WSRF) based Open Grid Service Architecture (OGSA)][ftGG combines existing
grid standards with emerging Service Oriented Architectures(SOAs)yative web technologies
such as the semantic web, web services and web agents. This organiatinataf the grid seeks
a unified technological platform that is known as service-oriented sengitdic

The main characteristics of this service-oriented semantic grid would be to naimta
telligent agents that act as software services (grid services) cappkerforming well-defined
operations and communicating with peer services through uniform stapdaimtols such as used
for web services (XML, SOAP, WSDL, UDDI, etc.). This paradigm shifthe grid’s architecture

is gaining relevance due to its impact on the usability of bioinformatics, compushtidmiogy and
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systems biology. We find various successful demonstrations of the gatitific of biological re-
sources indicating the effect and power of grid-based executionrimfiuglife science applications
with different technological approaches. For example, Jacq et. @] [&ports the deployment of
various bioinformatics applications on the European Data Grid (EDG) tegttogect. One of the
deployed applications was PhyloJava, a Graphical User Interfach t@ked application that calcu-
lates the polygenetic trees of a given genomic sequence using fastDNBRIdiorithm that uses
bootstrapping (a reliable albeit computationally intensive technique thatiatdsa consensus from
a large number of repeated individual tree calculations (about 500-4Ep&ats). The gridification
of this application was carried out at a granularity of 50 for a total of lidd@pendent sequence
comparison jobs (20 independent packets of 50 jobs each) and theimgntirg individual job re-
sults to get the final bootstrapped tree. The selection of the appropriateafggranularity depends
upon the proper consideration of the overall performance becaubd ligrallelized jobs can be
hampered by resource brokering and scheduling times whereas paoaljetized jobs would not
give significant CPU time gain [106]. The execution of this gridified applicedio the EDG testbed
required the installation of a Globus [34,35] based EDG user interfaed_omux RedHat Machine,
the use of Job Description Language (JDL) and the actual submissior péthllel jobs through
Java Jobs Submission Interface (JJSI). It is reported that the grideeltion of this application
provided 14 times speedup compared against a non-grid based stanesbontion. The deviation
in gain from ideal (speed up of 20) is considered to be the effect ofarktand communication
overhead (latencies). Similarly, the gridification of other applications saéhgrid-enabled bioin-
formatics portal for protein sequence analysis, grid-enabled methosefaurely finding unique

sequences for PCR primers, and grid-enabled BLAST for ortholotgs rdetermination has also
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been discussed in [106] with successful and encouraging results.

The gridification of biological databases and applications is also motivatetebfact
that the number, size and diversity of these resources are continauaslyapidly) growing. This
makes it impossible for an individual biologist to store a local copy of any ndgtabases and
execute either data or computer-intensive application in a local envirorewentif supported with
a dedicated cluster or high performance computing resources. This inabilitgality demands for
the grid-enablement of the resources. However, an important factonitiders the deployment of
existing biological applications, analytical tools and databases on grettmwironments is their
inherent pre-grid design (legacy interface). This is so because #igndsuits the requirements
of a local workstation environment in terms of input/output capabilities and siakery difficult
for these applications to be gridified. The gridification of such applicatiegsires a transparent
mechanism to connect local input/output with a grid-based distributed inpptfotihrough some
intermediatary tools such as grid middleware specific DMS and distributedysteravironments.

One such mechanism, discussed in [108], provides a transparerageésf legacy bioin-
formatics applications, tools and databases to be connected to computatidriafrgstructures
such as EGEE [65], without incurring any change in the code of thgslécafions. Authors have
reported the use of modified Parrot [109] as a tool to connect a legaicffdrmatics application to
the EGEE database management system. The EGEE database managdamargrsisies location
and replication of databases needed for the management of very lafgbutksl data reposito-
ries. With Parrot-based connection, the user is freed from the owtiifgaerforming file staging
and specifying in advance an application’s data need. Rather, an audoagget launched by

the Parrot takes care of replicating the required data from the remote sitsugiplying it to the
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legacy application as it would have been accessing data with local inputfaapabilities. The
agent resolves logical file name to the storage file name, selects the béstdoareplication and
launching the program for execution on the downloaded data. For tpegeiof demonstration, au-
thors have reported the deployment (virtualization) of some biological dagssuch as Swiss-Prot
and TrEMBL [110] by registering these databases with the replica manajeameice (RMS) of
EGEE. Similarly, programs for protein sequence comparison such as B[4 ], FASTA [112],
ClustalW [113] and SSearch [114] have been deployed by registerarg thith the experiment
software management service (ESM). The deployed programs wemnrargrid environment and
their access to the registered databases was evaluated by two methodatioep{iy copying the
required database directly to the local disk) and remote input/output (astétobdocal input/out-
put stream of the program to the copied data in cache or on-the-fly mdHe)evaluation of these
methods show that both methods perform similarly in terms of efficiency e.gdatahase of about
500,000 protein sequences (205 MB) each method takes about 6@sdoolownloading from
any grid node and about four times less than this time in case the data nodetlsensarker node.
It is important to note, however, that the replication method creates anaaaih terms of free
storage capacity on the worker node. This problem may be particularly dizkeeof the database to
be replicated is too high or if the worker node has many CPUs sharing thestarage and each ac-
cessing a different set of databases. This is the reason why remot®irtput method overweighs
the replication method for accessing large distributed biological datab&gasm the real selection
depends on the nature of program (algorithm). For compute-intensbgegms such as SSearch
remote input /output is always better (as it works on copying progress#vblocks) where as for

data-intensive programs such as BLAST and FASTA the replication methgpavori better [108].



2. SURVEY OF WEB AND GRID TECHNOLOGIES IN LIFE SCIENCES 41

In fact there are a very large number of contributions that report tperénces of using
grid technology for bioinformatics, computational biology and systems bioldgg have tried
to summarize the findings of some of these contributions under the relevagodas of large
projects including BioGrid infrastructure, middleware, local resourceagament systems, data
management, application programming environments, toolkits, problem solviirp@ments and

workflow management systems and are presented in the following sections.

2.3.1 BioGird Infrastructure

Mostly BioGrid infrastructure is based on the simple idea of cluster computidgsaleading to-

wards the creation of a globally networked massively parallel superctmgpinfrastructure that

connects not only the computing units along with their potential hardwareya®f and data re-
sources, but also expensive laboratory and industrial equipmentjlagditous sensor device in
order to provide unlimited computing power and experimental setup requredddern day bio-

logical experiments. Moreover, this infrastructure is also being custonmizedvay that it becomes
easily accessible by all means of an ordinary general purpose déaktop machine or any type
of handheld devices. Some of the major components of a generic BioGrédtinfcture has been
illustrated in Figure 2.3. The overall architectural components are orgdrizthree major levels
(layers) of services. The focus of application layer services is toigeawser-friendly interfaces to
a biologist for carrying out the desired grid-based tasks with minimum stieysadility and inter-

action (enhanced automation and intelligence). Similarly the focus of grid middéeservices is
to provide seamless access and usability of distributed and heteroggigisal layer resources
to the application layer services. In the following sections we discuss &cimuiributions related

to the development and use of some of these services at both applicationduteware level.
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The design and implementation of a typical BioGrid infrastructure varies mairtgrins
of the availability of resources and demands of the biological applicationnsateasupposed to
use that particular grid. There are many infrastructures starting froimsgitutional/organizational
grids consisting of simple PC based clusters or combination of clusters1&pto national and
international BioGrid projects with different architectural models such@sfiting Grid architec-
ture (providing basic services for task scheduling, resource disgoa#ocation and management
etc), Data Grid architecture (providing services for locating, accessitegrating and management
of data ), Service Grid architecture (services for advertising, regigt@nd invocation of resources)
and Knowledge Grid architecture (services for sharing collaboratiensfic published or unpub-
lished data). The infrastructure details of some major BioGrid projects asepted in Table 2.2.
It may be observed that the same infrastructure may be used to serve raorerth application
models based on the availability of some additional service and resoumesxdmple a compute

grid with the help of some additional services and resources can be setk@s/a data grid.

2.3.2 Grid-enabled Applications and Tools

As discussed in the following sections, there have been some effortefdetielopment of bioin-
formatics specific grid programming and problem solving environments, topfkaisieworks and
workflows that can help to develop grid-enabled applications easily diwicafly; however they
are still, to a degree, in a prototype or demonstration state. The actuasprafateveloping (writing
the code), deploying (registering, linking and compiling), testing (chedkiagesults and perform-
ing debugging if necessary) and executing (scheduling, coordinatshgantrolling) an application
in a grid-based environment is far from trivial. Mainly, the difficulties fadey developers arise

because of incapability of traditional software development tools and itpodsto support the de-
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TABLE 2.2: BioGrid infrastructure projects

BioGrid project

Grid Infrastructure

Main applications

Asia Pacific BioGrid
http://ww. apgrid.org

Globus1.1.4
Nimrod/G, LSF. SGE.
5 nodes, 25+ CPUs, 5 sites.

FASTA, BLAST, SSEARCH, MFOLD
Virtual Lab DOCK, EMBASSY,
PHYLIB and EMBOSS.

Open BioGrid Japan
OBIGRID Japan [64]
http://ww. obigrid.org

Globus 3.2.

Ipv6 for secure communication.
VPN over internet for
connecting multiple sites.

363 nodes, 619 CPUs, 27 sites.

Workflow based distributed
bioinformatics environment.
BLAST search service.
Genome annotation system.

Biochemical network simulator.

Swiss BioGrid [67]
http://ww. sw sshiogrid.org

NorduGrid's ARC and GridMP.
heterogeneous hardware platforms
including both clusters and
Desktop-PC grids

High throughput compound docking
into protein structure binding

sites and analysis of

proteomics data

Enabling Grids for E-
scienck (EGEE) [65]
http://ww. eu- egee. org

gLite middleware.

30,000 CPUs and 20 Petabytes stora
20,000 concurrent jobs on average.
90 institutions in 32 countries.

WISDOM: drug discovery.
geGATE: radio therapy planning.
SiMRI3D: parallel MRI simulator.
GPS@: Grid Protein Sequence
@Analysis and other applications

North Carolina BioGrid
http://ww. nchi ot ech. org

Avaki data grid middleware
and Virtual File System
across grid nodes.

Bioinformatics datasets and

applications installed on native file

system and shared across the grid.

43

velopment of some sort of virtual application or workflows, whose coreptscan run on multiple

machines within heterogeneous and distributed environment. Despite ofdiffeséties there are

several grid-enabled applications for life sciences [75], mostly deeeldyy using either standard

languages such as Java along with message passing interfaces (e@H/MPbr web services.

A brief description of some major grid-enabled applications is presentedhie 2a3. Still there

might be many legacy applications that could take advantage of grid basmdees; however, the

migration of these applications to grid environment requires more sophistittadbdthan what is

currently available [117].
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TABLE 2.3: Some Major Grid-enabled Applications related to life scemwith the effect of gridificatiton

Grid-enabled application
Task and source

Grid middleware tools,

services and languages

Effect of gridification

GADU/GNARE [118]

Task: Genome Analysis and
Database Update
http://compbio.mcs.anl.gov

Globus Toolkit and Condor/G for
distributing DAG based workflows.
GriPhyN Virtual Data System for
workflow management.

User interface to standard database

Analysis of 2314886 sequences on a
single 2GHz CPU can take 1061 days
A grid with an average of 200
nodes took only 8 days and 16

s hours for the above task.

(NCBI, JGI etc.) and analysis tools
(BLAST, PFAM etc.)
Globus GRAM, SSH, NetSolve, PB

for remote job starting/monitoring.

MCell [119]
Task: Computational biology

5 A typical r_disk MCell simulation on
a single 1.5 GHz CPU can take 329 days
A grid with an average of 113 dual

simulation framework based on GrdiFTP and scp for moving

Monte Carlo algorithm application data to grid. CPU nodes took only 6 days and 6

http://ww. ncel I, cnl. sal k. edu/ | Java based GUI, Relational Databagehours for the above task.
(Oracle), Adoptive scheduling.
Globus, Apache Axis, GridX-Meta

Scheduler.

Grid Cellware [120]
Task: Modeling and Simulation for

Different stochastic (Gillespie,
Gibson etc.), deterministic (Euler

systems biology GUI based jobs creation editor Forward, Runge-Kutta) and MPI

http://ww. cel | ware. org Jobs mapped and submitted as wely based swarm algorithms have been

services. successfully implemented in a way to

distribute their execution on grid.

2.3.3 Grid-based BioPortals

As mentioned earlier, the actual process of developing and deployinglasdunal application on
grid requires significant level of expertise and considerable peridona. This issue hinders the
usage of available grid infrastructures. Therefore, in order to esehtine use of different grid infras-
tructures, some individuals, groups, institution and organizations hanedta provide the most
frequently used and standard domain specific resources as griteérsavices which can be ac-
cessed by any or authenticated researcher through a common br@ssédrdingle-point-of-access,
without the need of installing any additional software. In this context a girthpis considered to

be an extended web-based application server with the necessaryreafypabilities to communi-
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cate with the backend grid resources and services [121]. This typwivbament provides full level
of abstraction and makes it easy to exploit the potential of grid seamlesstitb&sed portals are
normally developed using some publicly available grid portal constructioniteaich as GridPort
Toolkit [122, 123], NinF Portal Toolkit [121], GridSpherét(t p: / / ww. gri dspher e. or g), IBM
WebSphereviwr 306. i bm cont sof t war e/ webspher e) etc. Most of these toolkits follow the Java
portlet specification (JSR 168) standard and thus make it easy for thodevto design the portal
front-end and connect it to the backend resources through middieesarnees.

For example, [121] enables the developer to specify the requirements pbttal front-
end (e.g. authentication, user interaction fields, job management, reseticté terms of a XML
based file which automatically generates a JSP file (through Java basegaistr), that provides
an HTML based web page for front-end and a general-purposeSkwdets that can communi-
cate to grid-enabled backend applications and resources though GB#hES] based GridRPC
mechanism. The toolkit also helps the developer for the gridification of apiplitsaand resources
needed at the backend. It is because of this level of ease for theaoreagrid-based portals that
in [124] it is claimed that portal technology has become critical for future impletation of the
bioinformatics grids.

Another example is that of BRIDGE®t(t p: / / www. br c. dcs. gl a. ac. uk/ proj ect s/
bri dges) project which provides portal-based access to many biological ress(federated databases,
analytical and visualization tools etc) distributed across all the major UK cewiér appropriate
level of authorization, convenience and privacy. It uses IBM WeleBp based portal technology,
because of its versatility and robustness. The portal provides a sepankspace for each user that

can be configured by the user as per requirements, and the configusattings are stored using
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session management techniques. This type of environment can help in mamaimfields of life
sciences such as the field of exploratory genetics that leads towardsdaestanding of complex
disease phenotypes such as heart disease, addiction and canaebasistof analysis of data from
multiple sources (e.g. model organism, clinical drug trials and researdlestd). Similarly [125],
presents another instance of system that is easy to use, scalable amsibéxteroviding among
others, secure, and authenticated access to standard bioinformatisgatand analysis tools such
as nucleotide and protein databases, BLAST, CLUSTAL etc.

A common portal engine was developed with the reusable components ameksérom
Open Grid Computing Environment Toolkit (OGCE) [126] that combine the aomapts of three in-
dividual grid portal toolkits such as CompreHensive Collaborativeeksork (CHCEF) It t p: //
adsabs. har var d. edu/ abs/ 2002AGUFMOS61C. . 13K), Velocity Toolkit (ht t p: //j akart a. apache.
org/vel oci ty) and JetSpeed Toolkit{t p: // portal s. apache. org/j et speed- 1). This com-
mon portal engine was integrated with a biological application frame work mguRISE [127]
(web interface generator for molecular biology). The portal providegss to around 200 applica-
tions related to molecular biology and also provides the way to add any othkcaton through

the description of a simple XML based file.

2.3.4 BioGrid Application Development Toolkits

Although some general purpose grid toolkits such as Globus [34, 35]SNC(t t p: / / wwww.

mthral.con projects/cosm and GridLab fttp://ww. gridl ab. org), provide certain tools
(APIs and run time environments) for the development of grid-enablelicatipns, they are pri-
marily aimed at the provision of low level core services needed for the impletiem of a grid

infrastructure. Therefore, it seems to be difficult and time consumingrfardinary programmer
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to go through the actual process of developing and testing a grid engtydidagion using these
toolkits; instead there are some simulation based environments such as EDI@Smv ( www.
hep. ucl . ac. uk/ ~pac/ EDGSi im), extensible grid simulation environment [128] ,GridSim [129] and
GridNet [130], that could be used at initial design and verification stage.

As different application domains require certain specific set of tools thaltlanake the
actual process of grid-enabled application development life-cycles{dment, deployment, test-
ing and execution) to be more convenient and efficient. One such @iofjooshe development of
a Grid Life Science Application Developer (GLAD) was presented in [13is publicly avail-
able toolkit works on top of the ALICE (Adaptive scalLable Internet-baSethputing Engine), a
light weight grid middleware, and provides a Java based grid applicat@@ramming environment
for life sciences. It provides a list of commonly used bioinformatics algorithnm programs as
reusable library components along with other software components nemdettracting (fetching,
parsing etc) with remote distributed and heterogeneous biological dasafFdeetoolkit also assists
in the implementation of task level parallelism (by providing effective paraltecation control
system) for algorithms and applications ranging from those having regoaptational structures
(such as database searching applications) or irregular patternsaspblylogenetic tree) [28]. Cer-
tain limitations of GLAD include the non-conformance of AliCE with OGSA standard the use
of socket based data communication which might not be good for perfaeaitical applications.

Another grid application development toolkit for bioinformatics that providigth level
user interface with a problem solving environment related to biomedical detigséss has been
presented in [132]. The toolkit provides a Java based GUI that entd@asser to design a Direct

Acyclic Graph (DAG) based workflow selecting a variety of bioinformatiait@nd data (wrapped
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as java based JAX-RPC web services) with appropriate dependendieslationships.

2.3.5 Grid-based Problem Solving Environments

The Grid-based Problem Solving Environment (PSE) is another wayoefding a higher level of
interface such as graphical user interface or web interface to anamydiser so that he/she could
design, deploy and execute any grid-enabled application related to aupmrtitass of specific do-
main and visualize the results without knowing the underlying architectuchfumrctional details
of the backend resources and services. In fact grid-based R&Is ltine grid application program-
ming at the level of drawing, that is, instead of writing the code and worrgimgut the compiling
and execution, the user can just use appropriate GUI componentsguidsdhe PSE to compose,
compile and run the application in a grid environment. PSEs are developeagl higimlevel lan-
guages such as Java and are targeted to transforms the user desiglededdnapplication into an
appropriate script (distributed application or web service) that couldibmited to a grid resource
allocation and management service for execution and on completion of tbetiexethe results are
displayed through appropriate visualization mechanism.

There are several different grid-based PSEs available for bion#tcs applications e.g.
[133] describes the design and architecture of a PSE (Proteus) tvédes an integrated environ-
ment for a biomedical researchers to search, build and deploy distribigedormatics applica-
tions on computational grids. The PSE uses semantic based ontology (ov@dDAMIL+OIL
languageltt p: / / ww. dani . or g)) to associate the essential meta-data such as goals and require-
ments to three main classes of bioinformatics resources such as datass@ugc&wissProt and
PDB database), software components (e.g BLAST, SRS, Entrez anddS9Bn open source suite

of bioinformatics applications for sequence analysis) and tasks/pexésg. sequence alignment,
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secondary structure prediction and similarity comparison) and stores thisriafion in a meta-
data repository. The data sources are specified on the basis of kindlagibal data, its storage
format and the type of the data source. Similarly, the components and t&sksodeled on the
basis of the nature of tasks, steps and order in which tasks are to lenpedf algorithm used,
data source and type of the output etc. On the basis of this ontology therB@égs a dictionary
(knowledge-base) of data and tools locations allowing the users to cortimis@pplications as
workflows by making use of all the necessary resources without \Wwayrgbout their underlying
distributed and heterogeneous nature. The modeled applications are tcatipnaanslated into
grid execution scripts corresponding to GRSL (Globus Resource Spimh Language) and are
then submitted for execution on grid through GRAM (Globus Resource Allmtdanager). The
performance of this PSE was checked with a simple application that used/lbéht t p: / / www.,

ebi . ac. uk/resear ch/ cgg/ tribe), for clustering human protein sequences which were extracted
from SwissProt database by using segret program of the EMBOSSasuiteompared all against
all for similarity though BLAST program. In order to take advantage of thd gFsources and en-
hance the performance of similarity search process the output of ggqgeam was split into three
separate files in order to run three instances of BLAST in parallel. Theithdil BLAST outputs
were concatenated and transformed into a Markov Matrix required asfioiptiribeMCL. Finally
the PSE displayed the results of clustering in a opportune visualization fdtmaegts observed that
total clustering process on grid took 11h50°'53” as compared to 2664812 standalone machine.
It was also noted on the basis of another experimental case (taking jysbo®in sequences for
clustering) that the data extraction and result visualization steps in the ahgspeocess are nearly

independent of the number of protein sequences (i.e. approximately sameasmdserved in the


http://www.ebi.ac.uk/research/cgg/tribe
http://www.ebi.ac.uk/research/cgg/tribe

2. SURVEY OF WEB AND GRID TECHNOLOGIES IN LIFE SCIENCES 50

case of all protein Vs 30 protein sequences). Another PSE for bionatics has been proposed
in [134]. It uses Condor/G for the implementation of PSE that provides agratexd environment
for developing component based workflows through commonly used bioiattics applications
and tools such as Grid-BLAST, Grid-FASTA, Grid-SWSearch, GridAigh and Ortholog-Picker
etc. Condor/G is an extension to grid via Globus and it combines the inter-doasginrce man-
agement protocols of Globus Toolkit with intra-domain resource managemethiods of Condor
to provide computation management for multi-institutional grid. The choice ofiGWdG is justi-
fied on the basis of its low implementation overhead as compared to other gnitbltegies. The
implementation of a workflow based PSE is made simple by the special functiona{tgrmor
meta-scheduler DAGMan (Directed Acyclic Graph Manager) which stppbe cascaded execu-
tion of programs in a grid environment. The developed prototype model wgedtby integrated
(cascaded) execution of the above mentioned sequence search antealigools in grid environ-
ment. In order to enhance the efficiency, the sequence databasasesied gvere split into as much

parts as the number of available nodes, where the independent tagkexgeuted in parallel.

2.3.6 Grid-based Workflow Management Systems

As already discussed in the context of PSE, a workflow is a processngbasing an application
by specifying the tasks and their order of execution. A grid-based fleevknanagement system
provides all the necessary services for the creation, execution analizegion of the status and
results of the workflow in a seamless manner. These features make waxldleal for the design
and implementation of life science applications that consists of multiple steps quider¢ghe in-

tegrated access and execution of various data and application resoUrcerefore one can find

various domain specific efforts for the development of proper workfimamnagement systems for
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life sciences (Table 2.4). There have been several important demonstrafidifferent types of
life science applications on grid-based workflow management systemsexkomple, the design
and execution of a tissue-specific gene expression analysis expefanboman has been demon-
strated in a grid-based workflow environment called 'WildFire’ [135].eTWorkflow takes as an
input 24 compressed GeneBank files corresponding to 24 human chlooressand after decom-
pression it performs exon extraction (through exonx program) froch éige in parallel resulting in
24 FASTA files. In order to further increase the level of granularityheB&STA file is split into
five sub-files (through dice script developed in Perl), making a total 0fsh2all files ready for par-
allel processing with BLAST against a database of transcripts ('16tr@8scripts obtained from
Mammalian Gene Collection’). The execution of this experiment on a cluste2®Pentium I
nodes took about 1 hour and 40 minutes, which is reported to be 9 times lagh¢htame required
for the execution of its sequential version. The iteration and dynamic daiesbof WildFire has
also been demonstrated through the implementation of a swarm algorithm éongt@r estimation
problem related to biochemical pathway model based on 36 unknownsdifidr8ntial equations.
Similarly, the effectiveness of Taverna [136] workflow has been destnated by construction of a
workflow that provides genetic analysis of the Graves’ disease. Timeistrated workflow makes
use of Sequence Retrieval System (SRS), mapping database sedvatbamprograms deployed as
SoapLab services to obtain information about candidate genes whictbhamadentified through
Affymetrix U95 microarray chips as being involved in Graves’ diseasee iflain functionality of
the workflow was to map a candidate gene to an appropriate identifier ponéisg to biological
databases such as Swiss-Prot and EMBL in order to retrieve the seqaed published literature

information about that gene through SRS and MedLine services. Th# #fSBLAST search
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against the PDB provided identification of some related genes where addheation about the
molecular weight and isoelectric point of the candidate gene was providdwelPepstat program
of EMBOSS suite. Similarly, Taverna has also been demonstrated with thessfigicexecution of
some other workflows for a diversity of in-silico experiments such as pathwap retrieval and

tracking of data provenance.

TABLE 2.4: Examples of commonly used Grid-based workflow managemetesys for life sciences

Workflow management system Supported grid middleware Main features
technologies and platforms

Wildfire [135] Condor/G, SGE, PBS, LSF GUI-based drag-and-drop environment.
http://wildfire.bii.a-star.edu.sg/ Workflows are mapped into Grid Workflow construction by EMBOSS.

Execution Language (GEL) script.| Complex operations (iteration
Open source and extensible. and dynamic parallelism).
Runs on Windows and Linux.

Taverna [136] myGrid middleware GUI-based workbench.
http://taverna.sourceforge.net/ SCULF language for workflows. In-silico experiments using
Workflows mapped to web services [EMBOSS, NCBI, EBI,
Open source and extensible. DDBj, SoapLab, BioMoby
Cross platform. and other web services.
ProGenGrid [137] Globus Toolkit4.1 UML-based editor.
http://ww. cact.unile.it/projects/ | GridFTP and DIME for data. RASMOL for visualization.
iGrid information service for AutoDoc for drug design.

resource and web service discovery.
Java Axis and gSOAP Toolkit.

2.3.7 Grid-based Frameworks

In software development, a framework specifies the required strudttive environment needed for
the development, deployment, execution and organization of a softwalieadiopm/project related
to a particular domain in an easy, efficient, standardized, collaboratitgefproof and seamless

manner. When becoming fully successful and widely accepted and ossd, of these frame-
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works are also made available as Toolkits. There are some general foaksefor grid-based
application development such as Grid Application Development SoftwareGyA138], Cac-
tus [139] and IBM Grid Application Development Framework for Java (@ARht t p: // www.
al phawor ks. i bm conl t ech/ GAF4J)). Similarly, some specific grid-based frameworks for life sci-
ences have also been proposed and demonstrated such as Grid Bialsifedmatics Application
Framework|(GEBAF) [140], that proposes an integrated environnegmjrid-enabled bioinformat-
ics application using a set of open source tools such as Bioperl Tooldit,[Globus Toolkit [34,35],
Nimrod/G [142] and Citrina (database management totdt [§: / / www. grod. or g/ ci tri na)). The
framework provides a portal based interface that allows the user to salguéry of any number of
sequences to be processed with BLAST against publicly available semjdatabases. The user op-
tions are stored in a hash data structure by creating a new directorycloegperiment and a script
using the BioPerl::SeqlO module divides the user query into sub-quebsceasisting of just a
single sequence. The distributed query is then submitted through Nimrod/Gilpldor parallel
execution on the grid. Each grid node maintains an updated and formattonvef the sequence
database through Citrina. The individual output of each sequenceg isygarsed and concatenated
by another script that generates the summary of the experiment in the femmxML and Comma
Separated Value (CSV) files containing the number of most significant bits éach query. The
contents of these files are then displayed through the result interfactiéytar demonstration for
BLAST was carried out with 55,000 sequences against SwissProtadatab

With 55,000 parallel jobs the grid has been fully exploited within the limits of its free
nodes and it has been observed that the job management overheadwass dompared to the

actual search time for BLASTing of each sequence. Although summarizingsémds of results
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is somewhat slow and nontrivial, its execution time remains insignificant whexpaed with the
experimenting time itself. The developed scripts were also tested for reusabilitpther similar
applications such as ClustalwWwW and HMMER, with little modification. A web servicefade has
been proposed for future development of GEBAF in order to make usshefr bioinformatics
services such as Ensemble. Similarly, for better data management StorsmedeeBroker (SRB)
middleware is also proposed as an addition for the future.

GEBAF is not the only grid-enabling framework available. For example, Adial. [143]
describes the benefits of using the Grid Architecture Development Seff@&ADS) framework
for the gridification of bioinformatics applications. Though there alreadgtes an MPI-based
master-slave version of the FASTA but it used a different approadtept the reference database
at the master side and made the master responsible for equal distributiotalofskato slaves and
the subsequent collection and concatenation of the results. In contithsttt@srADS based im-
plementation makes reference databases (as a whole or as a portio)le\atikome or all of the
worker nodes through database replication. Thus the master at fidt semessage to workers
for loading their databases into memory and then it distributes the search apercollects the
results back. This type of data-locality approach eliminates the communicatishead associ-
ated with the distribution of large scale databases. Furthermore, througfiteélyeation of various
software development and grid middleware technologies (such as CaffiguObject Program,
Globus Monitoring and Discovery Service (MDS) and Network Weathevie (NWS)), GrADS
framework provides all the necessary user, application and middleweavecss for the compo-
sition, compilation, scheduling, execution and real time monitoring of the applicata a grid

infrastructure in a seamless manner.
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2.3.8 BioGrid Data Management Approaches

Most of the publicly available biological data originates from differentrses of information, i.e.

it is heterogeneous and is acquired, stored and accessed in diffemgatat different locations
around the world, i.e. it is distributed. The heterogeneity of data may bedimiz. difference

in file formats, query languages and access protocols etc, semantic i.emigesnd proteomic
data etc, or schematic i.e. difference in the names of database tables ascefeldin order

to make an integrative use of these highly heterogeneous and distributedatdeices in an easy
and efficient way, an end-user biologist can take advantage of somédisata Grid infrastruc-
ture and middleware services such as BRIDGES : / / www. br c. dcs. gl a. ac. uk/ proj ect s/

bri dges),/BIRNI(htt p: // ww. nbi rn. net) and various other European Union Data Grid projects
e.g. EU-DataGridft t p: / / wwv. edg. or g/ ) and EU-DataGrid for Italyi(t t p: / / web. dat agri d.
cnr.it/Tutorial Rone) etc. These Data Grid projects make use of standard middleware tech-

nologies such as Storage Resource Broker (SRB), OGSA-DAI akdDBcovery Link.

2.3.9 Computing and Service Grid Middleware

In the same way that a computer operating system provides a user-friatetiiace between user
and computer hardware similarly Grid middleware provides important servieeded for easy,
convenient and proper operation and functionality of grid infrastrecturhese services include
access, authentication, information, security and monitoring serviceslbasagata and resource
description, discovery and management services. In order to fugtace the difficulties involved
in the process of installation, configuration and setting-up of grid middlewlaees have also been

proposals for the development of Grid Virtual Machines (GVM) and Gri@ting Systems [144—
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148]. The development of specific grid operating systems or even erimgegidd middleware as a
part of existing operating systems would greatly boost-up the use of gnighating in all computer
related domains, but this is yet to be seen in the future. The important featiioeirrently used

computing and service grid middleware are listed in Table 2.5.

TABLE 2.5: Commonly used computing and service grid middleware

Grid middleware Brief description of architecture and services

Globus Toolkit GT4 [34, 35] OGSA-WSRF based architecture

Goal: To provide a suit of services Credential management services (MyProxy, Delegation, SiG#le

for job, data, and resource mgt. Data management services (GridFTP, RFT, OGSAIDAI, RLS, DRS)
Developer: Argonne National Resource management services (RSL and GRAM)

Laboratory, University of Chicago Information and monitoring services (Index, Trigger and WéhB)
http://ww. gl obus. or g/ Instrument management services (GTCP)

LCG-2/ gLite LCG-2: a pre-web service middleware based on Globus 2

Goal: To provide Large scale data gLite: an advanced version of LCG-2 based on web servicdstacture

handling and compute power infrastructure.Authentication and security services (GSI, X.509, SSL, CA)

Developer: EGEE project in Information and monitoring services (Globus-MDS, R-GMA, &IBDII)
collaboration with VTD, US and partners. | Resource management services (GUID, SURL)
http://glite.web.cern.ch/glite/ Data management services (WMS, SLI)
Platform: Linux and Windows
UNICORE UNICORE: a pre-web service grid middleware based on OGSAdstiah
Goal: Light weight grid middleware. UNICORE 6: based on web service and OGSA architecture.
Security services (X5.09, CA, SSL/TLS)
Developer: Fujitsu Lab EU Execution management engine (XNJS)
and UniGrid. Platform: Unix/Linux platform
http://ww. uni core. eu/ Data management services (WMS, SLI)

Platform: Linux and Windows

2.3.10 Local Resource Management System (LRMS)

The grid middleware interacts with different clusters of computers througfalLResource Man-
agement System (LRMS) also known as Job Management System (JMS)RMS (such as Sun
Grid Engine, Condor/G and Nimrod/G) is responsible for submission, stingdand monitoring

of jobs in a local area network environment and providing the results tatalssinformation to the
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grid middleware through appropriate wrapper interfaces. Some of the iemideatures [149] of

commonly used LRMS software are listed in Table 2.6.

TABLE 2.6: Commonly used Job Management Systems (Local Resource Miaresg Systems (LRMS))

Local Resource Manager

General features
Platform, GUI and APIs

Job support
description, type and MPI support

Sun Grid Engine 6
Sun Micro Systems

gri dengi ne. sunsour ce. net

Platform: Solaris, Apple Macintosh,

Linux and Windows

User friendly GUI, portal and DRAMA API.
Open source and extensible.

Integration with globus through GE-GT Adopte

Shell scripts for job description.
Standard and complex job types.
Integration with MPI.
5 Million jobs on 10,000 hosts.

r

Condor-G
University of Wisconsin

ww. ¢s. Wi sc. edu/ condor

Platform: Solaris, Apple Macintosh,
Linux and Windows

DRAMA and Web-service interface
Open source and extensible.

Globus-enabled.

Job description: Classified Advertisemen
Standard and complex job types

Integration with MPI

Nimrod-G 3.0.1
Monash University

wwy. csse. nonash. edu. au/

Platform: Solaris, Linux,

Mac with x86 and sparc architecture
web portal and API

Open source and extensible.
Globus-enabled.

Job description: Nimrod Agent Language
GRAM interfaces to dispatch

jobs to computers.

2.3.11 Fault Tolerant Aproaches in the Context of BioGrid

ts

Like any other Grid computing infrastructure, the BioGrid environment issaered to be dy-

namic [150]. In the context of a dynamic BioGrid infrastructure, the avdilgland constraints of

resources keeps changing with respect to time. The capability of the afpliead the system as

a whole to withstand the effect of change in the state of resources atidumits normal func-

tionality/execution is known afault tolerance Though initially fault tolerance was not addressed

much in the context of BioGrid as the very idea of Grid itself was under thegb#proof of con-

cept. However, now that the Grid has moved towards the era of robust stiirdon (post 2005
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web-service based architecture), one could find many approachdsfimplementation of fault
tolerance at different levels of BioGrid infrastructure. For examplegYsun et. al. [151], make
use ofbackup tasknechanism to add fault tolerance to their application for bioinformatics com-
puting grid (ABCGrid). Thebackup taskapproach takes its inspiration from Google's MapReduce
Model [152], and performs monitoring of all the tasks in progress. dsuke results of monitoring
to determine if any task has not finished in its normal (expected) time on arg (coe to fail-
ure/poor performance of that node/resource) and assigns the sdafagasbackup task) to other
node. When the task returns its results (either from the primary executibe tmackup execution),
the task’s status gets changed to ‘completed’ and all remaining backuptiexecget terminated.
The authors demonstrate evaluation of their application (using bioinformatits ¢ach as NCBI
BLAST, Hmmpfam and CE [47]) on a testbed consisting of 30 workstationsexted in a local
environment. They mainly report on the speedup of the application andtdwesent/discuss any
results in terms of fault tolerance. It should also be noted that though theradabel their appli-
cation with the term 'Grid’ but they do not report any use of the Grid. Atke,method they use for
fault tolerance could not be applied in general because because obheerns. First this approach
requires that the normal execution time of the tasks be known in advanash might not be the
case in many applications which either use heuristic based computationahteehior make use
of data with varying size etc. Second, though this approach might be mpgieofor fine-grained
tasks but for heavily coarse-grained tasks whose normal executionakeyery long, such a ap-
proach would result in very poor performance. Nevertheless, thisoaph might be tested in a real
grid environment with different applications. Stockinger H. et. al. [138paise similar approach

but no statistics on the quality of fault tolerance is reported. For workflaged applications, the
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myGrid [69] project provides checkpoint/rollback interfaces which cdugdimplemented to de-
velop applications/services with inherent fault tolerant support. Similarhapplications based on
parallel programming model, various MPI implementations provide mechanisthdomplemen-
tation of fault tolerance e.g., MPICH-V [154], MPI-FT [155], and Beldy Lab Checkpoint/Restart
(BLCR) [156] etc. All of these implementations provide some sort of cheickimg and message
logging mechanism which could be used by the applications to migrate/resydtikaa process/-
task. The message logging enables the application to restart the computatioth& previous

fault-safe state and hence not causing much overhead in terms of failure.

2.4 Some Flagship BioGrid Projects

We present here some selected flagship case studies which have eliditsithe public response
from bio-scientists for their special role and contribution to the life scieceain. The description
of most important implementation strategies along with some main services is pravittethe

help of appropriate illustrations.

2.4.1 |EGEE Project

Thel EGEE project was initially named as Enabling Grid for E-science in Euang then it was
renamed as Enabling Grid for E-scienceE) in order to enhance its soapeHuropean to inter-
national level [65]. This project builds on its predecessor EDG prdjearopean Data Grid)
and provides an international level grid infrastructure for multi-scierod iadustry community
ranging from high-energy physics to life sciences and nanotechnolgy.overall infrastructure
consists of more than 30,000 CPUS with 20 petabytes of storage capaciigdgutdoy various

academic institutes and other organizations and industries around the walel iorm of high-
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speed and high-throughput compute clusters which are being updatést@mperated through its
web-service based light-weight, more dynamic and inter-disciplinary gridlevdde named gLite.
Like EGEE, gLite also builds on a combination of various other grid middlewesggts such as
LCG-2 (http://cern.ch/LCG), DataGrich{(t p: / / ww. edg. or g), DataTag (http://cern.ch/datatag),
Globus Alliance (it t p: / / www. gl obus. or g), GriPhyN ftt p: //ww. gri phyn. org) and iVDGL
(http://wwmv. i vdgl . or g). Several bio-applications have been implemented on top of EGEE plat-
form [108] and various other resource-hungry biological projestgli as BiolnfoGridht t p: //

www. bi oi nfogri d. eu/ ), Wide In Silico Docking On Malaria (WISDOM) (http://wisdom.eu-egee.fr)
and European Model for Bioinformatics Research and Community Edud&MBRACE) (htt p: //
www. enbr acegri d. i nf 0)) are also continuously making use of EGEE infrastructure. In order to
provide an illustration and understanding of how to make use of EGEE griakinficture and ser-

vices for life sciences, we provide here an overview of the latest verdidgs grid middleware.

Authentication and Security Services:

EGEE uses Grid Security Infrastructure (GSI) for authentication (tjinadigital X.509 certificate)
and secure communication (through SSL: Secure Socket Layer pratittoenhancements for
single sign-on and delegation). Therefore, in order to use the EGEEngridtructure resources,
the user has to register first and get a digital certificate from appro@itificate Authority (CA).

When the user signs in with the original digital certificate which is protected withivate key

and a password, the system then creates another passwordless tgropdificate called proxy
certificate that is then associated with every user request and activitydén to maintain the user
security at high level, the proxy certificates are kept valid for small inter{@efault 12 hours),

however, if user jobs require more time then appropriate age of the perkificate can also be set
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though My Proxy Server.

Information and Monitoring Services:

The gLite 3 uses Globus MDS (Monitoring and Discovery Service) fauese discovery and status
information. Additionally, it uses Relational Grid Monitoring Architecture (RAG) for accounting
and monitoring. In order to provide more stable information services, the @itk Information
Indexing Server (GlIS) uses BDII (Berkeley Database Informatimiek Server) that stores data in

more stable manner than original Globus based GIIS.

Data Management Services:

Like in traditional computing the primary unit of data management in EGEE grid esthks file.
gLite provides a location independent way of accessing files on EGEBRhgodgh use of Unix
based hierarchical logical file naming mechanism. When a file is registeratedirst time on
the grid it is assigned a GUID (Grid Unique Identifier that is created frorarWmique Identifier;
MAC address and a time stamp) and it is bound with an actual physical locatiwesented by
SURL (Storage URL). Once a file is registered on/the EGEE grid it carmatdwified or updated
because the data management system creates several replicas of theidierito enhance the
efficiency of subsequent data access. Thus, updating any singleofillel wreate the problem of

data inconsistency which has not as yet been solved in EGEE.

Workload Management System (Resource Broker):

The new gLite based work load management system (WMS or resourkerpie capable of re-

ceiving even multiple inter-dependent jobs described by Job Descripaoguage (JDL) and it
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dispatches these jobs to most appropriate grid sites (selection of appeggith site is based on
the dynamic process of match-making) and then keeps tract of the statuesjobghand retrieves
the results back when jobs are finished. While dispatching the jobs thercedmmoker uses Data
Location Interface (DLI) service to supply input files along with job to thekeo node. The flow

of job is illustrated in Figure 2.7.

Job Status
- b L
4 i

c

Match

Maker/

¥ Broker
C

R —

"Grid enabled"
data transfers/

i+ - DO CREERE: o

¥

FIGURE 2.7: Job flow in the EGEE grid. The user request goes to the resduoteer node (RB node)
which assigns the job to a particular node based on the sesiuthe match maker, work load manager and
other status information. (reproduced framrt p: // gl i te. web. cern. ch/

2.4.2 Organic Grid: Self Organizing Computational Biology on Desktop Grid

The idea of Organic Grid [157] is based on the decentralized functionaldybahavior of self or-
ganizing, autonomous and adaptive organisms (entities) in natural conyglexrs. The examples

of natural complex systems include functioning of biological systems anavimatof social insects
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such as ant and bees. The idea of the organic grid leads towards lagnidviafrastructure that
could eliminate the limitations of traditional grid computing. The main limitation of traditiondl g
computing lies in their centralized approach. For example, a Globus basgalitational grid may
use a centralized meta-scheduler and thus it would be limited to smaller numbecioihesonly.

Similarly, Desktops Grid Computing based on distributed computing infrasteistiech as BOINC
may use centralized master/slave approach and thus would be only suitabbafee-grained in-
dependent jobs only. The idea of Organic Grid is to provide a ubiquitouspgpeto-peer grid
computing model capable of executing arbitrary computing tasks on a vgy tarmber of ma-
chines over network of any quality, by redesigning the existing desktogpating model in a way
that it supports distributed adaptive scheduling through the use of molelg#sagin essence it
means that, a user application submitted on such type of architecture woulichpsalated in
some type of a mobile agent containing the application code along with the dicilgechde. After

encapsulation, the mobile agent can decide itself (based on its scheduliegied the network
information) to move to any machine that has appropriate resources nkedbed proper execu-
tion of the application. This type of mechanism provides the same type ofax@rabstractness
as provided by traditional Globus-based grid but additionally it builds aredigalized schedul-
ing approach that enables the grid to span to very large number of madhiaesore dynamic
peer-to-peer computing model. The use of mobile agents (which are basetbmechanism
that is built on top of client/server architecture) as compared to their alteseatece based archi-
tecture, provides higher level of ease and abstractedness in termbdatiea (experimentation)
of different types of scheduling, monitoring and migration schemes. Althahg project uses

a scheduling scheme that builds on tree-structured overlay network, itde adaptive based on
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some value of application specific performance metric. For example, therpenfice metric for a
data-intensive application such as BLAST would give high consideratibandwidth capacity of
the communication link before actually scheduling the job on a particular nodela8y, it will
select a high-speed node for another application that comes under $seotleompute-intensive
applications. Furthermore, in order to provide uninterrupted executiondyitlamic and transpar-
ent migration features the project makes use of strongly mobile agents indtieaditional weakly
mobile agents (Java based mobile agents that cannot access their statatiofoy. Following the
common practice in grid computing research, the proof-of-conceptd®s tlemonstrated with the
execution of NCBI BLAST (that falls in the class of independent task agiptin) on a cluster of 18
machines with heterogeneous platform and ranked under the categbféess, asnedium and slow
through the introduction of appropriate delays in the application code. Jéralbtask required the
comparison of a 256 KB sequence against a set of 320 data churtkefesize 512 KB. This gave
rise to 320 sub tasks, each responsible for matching the candidate 256d<Bree against one
specific 512 KB data chunk. The project successfully carried outxbeution of these tasks and
it has been observed that by adopting the scheduling according to thenthaof the architecture
greatly improves performance and quality of results. The project is beiriger extended to pro-
vide the support for different categories of applications and enablimgder to configure different

scheduling schemes for different applications through some easy toRIse A

2.4.3 Advancing Clinico-Genomic Trials on Cancer (ACGT)

ACGT is a Europe wide integrated biomedical grid for post-genomic researcancerht t p: //
WM. eu- acgt. org) [158]. It intends to builds on the results of other biomedical grid projects

such as caBIG, BIRN, MEDIGRID and myGrid. The project is based menosource and open
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access architecture and provides basic tools and services requireddaal knowledge discovery,
analysis and visualization. The overall grid infrastructure and sendcesimed to provide an
environment that could help scientists to: a) Reveal the effect of geratations on oncogenesis b)
Promote the molecular classification of cancer and development of indivfdrapies c) Modeling
of in-silico tumor growth and therapy response. In order to create thé@reshenvironment that
supports the implementation of these objectives, ACGT focuses on the it of a virtual
web that interconnects various cancer related centers, organizatidnsdividual investigators
across the Europe through appropriate web and grid technologieslyMairses semantic web and
ontologies for data integration and knowledge discovery and Globus toalkitits WS-GRAM,
MDS and GSiI services for cross organization resource sharingxgugon, monitoring and result
visualization. Additionally, ACGT also uses some higher level grid servioes Gridge framework
developed at Poznan Supercomputing and Networking Centre (PSB) [hese services include
GRMS (Grid Resource Management System), GAS (Grid Authorization ®ysted DMS. These
additional services provide the required level of dynamic and policgdassource management;
efficient and reliable data handling; and monitoring and visualization ofteegtigure 2.8 provides

a usage scenario of these services in the context of ACGT environment.

2.5 Conclusions

This part of the review has presented a scrupulous analysis of theottite-art in web and grid
technology for bioinformatics, computational biology and systems biology inrearahat provides
a clear picture of currently available technological solutions for a veryewahge of problems.

While surveying the literature, it has been observed that there are miaRyaged PSEs, Workflow
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Avallable Resources; 13, Transfer Data; 32, Submit Job to Resource; 13, RunJob

FIGURE 2.8: ACGT integrated environment usage scenario. The systes fgo@ step 1 to 13 in order to
run a particular job. (reproduced from [158])

Management Systems, Portals and Toolkits under the name of Bioinformatinstbas many for
Systems or Computational Biology. However, in each case a mix of projedtagpiications has
been found overlapping from bioinformatics to computational and systenwggioBased on the

analysis of the state-of-the-art we identify bellow some key open problambe distinguished:

e The use of semantic web technologies such as domain ontologies for lifessisrstill not
at its full level of maturity, perhaps because of semi-structured naturvif and limited

expressiveness of ontology languages [68].

e Biological data analysis and management is still quite a difficult job becaute déck of

development and adaptation of optimized and unified data models and quergeng

e Some of the existing bioinformatics ontologies and workflow management syatersisnply
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in the form of Directed Acyclic Graphs (DAGs) and their descriptions ackifay expressive-

ness in terms of formal logic [135].

Lack of open-source standards and tools required for the develdmhiresaurus and meta-

thesaurus services [77].

Need of appropriate query, visualization and authorization mechanisthdamanagement

of provenance data and meta-data in in-silico experiments [68, 135].

Some of the BioGrid projects seem to be discontinued in terms of informatioriingddhis

might arise from funding problems or difficulties associated with their implementatio

There is a lack of domain specific mature application programming models, tooikitaRls

for grid-enabled application development, deployment, debugging andgestin

Still there seems to be a gap between the application layer and middleware flaygymo
ical BioGrid infrastructure because existing middleware services doullgt facilitate the
demands of applications such as there is no proper support in any gridematd for auto-

matic application deployment on all grid nodes.

It is not trivial to deploy existing bioinformatics applications on available gradlded (such
as NGS| EGEE etc), as this requires the installation and configuration cifispmperating
system and grid middleware toolkits, which is not at least easy from a bivkngisuser point

of view.

It has been observed that there are still many issues with grid baseflomorkanagement
systems in terms of their support for complex operations (such as loogagyl®ioinformat-

ics applications and tools, use of proper ontology and web serviced 8. |



2. SURVEY OF WEB AND GRID TECHNOLOGIES IN LIFE SCIENCES 68

e The job submission process on existing grid infrastructures seems to becquoifgex be-

cause of inappropriate maturity of resource broker services.

e Lack of appropriate implementation initiative regarding knowledge grid itfnature for life

sciences.

Some of the key lessons/findings learned from the review presented irhtdpsec appli-

cable in the context of MC-PSC are:

¢ Identification of the availability of resources at national and international I&or example,
the successful deployment of several bioinformatics related applicaitise UK National
Grid Service (NGS) and the European Grid for EScience-E (EGER)jged an impetus that
these resources could also be used for the case of MC-PSC. This elglyd in getting
access to NGS through its various training programs target at grid-lggdidation develop-

ment.

¢ Identification of several methods and tools for setting up a local, natiomateynational grid
infrastructure. The review provided a comprehensive picture of thédadle technological
avenues which could be selected for further analysis with MC-PSC. Inabard different
resource management and parallel environments were taken as a ahséostevaluation

with MC-PSC as reported in the following chapters.

¢ |dentification of the key features/characteristics for the developmenipytapnt and evalua-
tion of grid-enabled application. For example, the literature presented infthpger explains
the pros and cons of the level of granularity in terms of work load distribugion corre-

sponding communication overhead. It also helps in identifying the key esioce measures
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which could be used for the evaluation of distributed approaches foP8C-

¢ Identification of appropriate web technologies which could be used inditudevelop user-

friendly web interfaces for the analysis and visualization of the MC-PSC sityitasults.

Because of the wide scope of this review, the literature that has beerte@po this
chapter is not yet complete, and therefore, the next chapter proviteseafocused review/survey
of the literature that is closely related to the field of structural proteomics andehinforms more

on the subject of this thesis.
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CHAPTER 3

OVERVIEW OF GRID AND DISTRIBUTED PUBLIC

COMPUTING SCHEMES FOR STRUCTURAL PROTEOMICS

As described in the previous chapter, grid and distributed computing @sigublic computing
schemes) has become an essential tool for many scientific fields includinfphicatics, compu-
tational biology and systems biology. The adoption of these technologiegiasrise to a wide
range of projects and contributions that provide various ways of settirigage environments and
exploiting their potential resources and services for different domdiapglications. This chapter
aims to further extend the survey presented in previous chapter by sp#gifocusing on some
of the major projects, technologies and resources employed in the a&eucfural Proteomics
The major emphasis would be to briefly comment on various approachedrédatiee gridifica-
tion and parallelization of some flagship legacy applications, tools and datarces related to key
structural proteomics problems such as protein structure prediction, ¢olditd comparison. The
comments are based on theoretical analysis of some interesting parameteis querformance
gain after gridification, user level interaction environments, workload idigion and the choice

of deployment infrastructure and technologies. The study of theseneéees would provide a ba-
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sis for some motivating justification needed for further research andaf@went on the subject of
this thesis i.e., the case Bfotein (Structure) Comparison, Knowledge, Similarity and Information
(ProCKSsI).

Parts of this chapter were published as a peer reviewed conferepeeipaheProceed-
ings of the Frontiers of High Performance Computing and Networking BSIX Workshopd.NCS

Vo1.4743 pp.424-434, 2007. [doi:10.1007/978-3-540-74767-B_44

3.1 Introduction

It is believed that, the rapidly evolving field of Structural Proteomics havegedla role in the ¥
decade of 2% century in terms of protein 3D structure determination and analysis that is quite
equivalent to the role played by théuman Genome ProjedHGP) in the last decade of 90
century, in terms of sequence determination and analysis [160]. This is nimobuse a very
large number of protein primary structures (sequences) are knowth®utumber of their corre-
sponding 3D-structures (secondary or tertiary structures) is laggingehind. For example, as of
writing of this dissertation there are 127 303 known protein sequences (UniProtKB/TrEMBL
entries) as compared to just @86 protein structures (PDB holdings). The reason behind this
sequence-structure gap is due to the difficulties associated with experimtotaure determi-
nation methods such as X-ray crystallography and NMR spectroscopysedondary and ter-
tiary structures are more helpful in tracing the evolution and function of toéem as well as

in rational drug design, in order to reduce the gap between known segsi@nd known struc-
tures, computational approaches have been proposed for the predittivzese structures from a

given protein sequence. As all these approaches are based on @@meffmodeling (such as
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ab-initio or de-novo protein modeling and comparative protein modeling techsiguch as ho-
mology modeling and protein threading etc ) and rely on multi-scale optimizationitpe®to
optimize various model parameters (e.g. energy minimization), the availabilityveénia com-
puting facilities is essential. That is, structural proteomic methodologies eelquiye computational
power and reliable access to various distributed and (often) hetermgeb@logical databases and
analytical tools in order to properly and accurately predict the strucnom fa given sequence
or compare thousands of models against a target structure. Therafany research groups in
this field such as Baker Laboratory at University of Washingtait §: / / dept s. washi ngt on.
edu/ baker pg/ ), The Scripps Research Institute (TSRI) at Califorhiet @: / / www. scri pps. edu/
e_index. ht m ), Pande Group at Stanford Universityt ( p: // f ol di ng. st anf or d. edu/ Pande/
Mai n), High Throughput Computing Group at Osaka University [64] andrgthave started to make
use of the Grid and distributed computing environments. While the grid-basgztts make use of
standard middleware services and institutionally-owned resources,djfeetsrbased on distributed
public computing schemes build their infrastructure setup around publichedwnused computing
resources which are voluntarily provided throughout the world sud¢he$Vorld Community Grid
(http: //www. wor | dcomuni tygri d. org/) that supports the Human Proteome Folding Project,
Folding@Home [161], Predictor@Home [162] and Rosseta@Hdnriep(/ / boi nc. baker | ab.
org/rosettal) etc.

This chapter focuses on some of these projects in order to find out amgace various
approaches related to the gridification/parallelization of some flagship legagaications, tools
and data resources by analyzing key parameters such as job/data tiistridnad management,

user level interaction environments, deployment technologies and inftastes, and the effect of


http://depts.washington.edu/bakerpg/
http://depts.washington.edu/bakerpg/
http://www.scripps.edu/e_index.html
http://www.scripps.edu/e_index.html
http://folding.stanford.edu/Pande/Main
http://folding.stanford.edu/Pande/Main
http://www.worldcommunitygrid.org/
http://boinc.bakerlab.org/rosetta/
http://boinc.bakerlab.org/rosetta/
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gridification on overall performance of the system.

The organization of this chapter is as follows: sections 3.2/and 3.3 provitke sle-
tailed overview in the fields of protein folding and prediction respectivelyijessection 3.4 besides
presenting the review of the literature, discusses in detail the main topic ofifisiertation i.e.,
Protein Structure Comparisgiits current state and future directions in terms of the "The ProCKSI
Server: a decision support system for Protein (Structure) Compatigmowledge, Similarity and

Information”; finally, section 3.5 concludes this chapter.

3.2 Protein Folding

The process of folding, first described by Anfinsen [5-7], is a thelynamically driven process
taking a few micro seconds, in which a protein adopts its native state. Fafltinésrocess re-
sults in several lethal diseases in human and animal [163-165]. A puppkerstanding of this
process sheds light into many issues at the core of biotechnology, stioh design of new proteins
with a desired functionality, the understanding of some incurable diseasksas cancer or neu-
rodegenerative diseases (e.g. Alzheimer’s, Creutzfeldt-JakobsdiggiD), Cystic fibrosis (CF),
Huntington disease (HD) and many other practical implementations of nanotegly. To this
aim, several models have been established. These models make use of sinfndaéd compu-
tational techniques that require extremely high computational power, jambethe limits of any
single traditional super computer or local cluster. It has been demorkiratee Folding@Home
project [161] that this requirement can be met with a world wide distributdai@uesource com-
puting network that interconnects thousands of loosely coupled heteroge publicly-owned and

voluntarily devoted PCs. Folding@Home uses an ‘ensemble dynamics’ atpadtitt performs
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M independent simulations with the same amino acids coordinates but with diffexecities on
M distributed processors such that each simulation starts with a slightly diffeviéal condition
and pushes the system through a free energy minimization process. Thighaiggives an M
times speedup for the simulation of folding dynamics and thus avoids the owexidithg in free
energy minima. Similarly, the process can be repeated in order to effechi@aljle multiple free
energy barriers (multiple translations for complex folding dynamics). Usingdified version of
the Tinker molecular dynamics cod@-hairpin and villin were simulated and their folds success-
fully determined. Based on the diversity of the simulation results for a varietyobecules (from
the non-biological PPA helices to the 36-residue villin headpiecea [166§sitbeen observed that
there is no single universal folding process and even sequenceh faficto the same structure
may have different folding processes. Further details on a selectiatidegégabled protein folding

applications are presented in Table 3.1.

3.3 Protein Structure Prediction

Based on Anfinsen theory of protein folding [7], the aim of protein stmecprediction is to predict
the native conformation (tertiary structure) of a protein from its primarycstme (sequence). It
has remained an open problem in the field of structural proteomics [169}. iNethods are being
explored and investigated at various research institutes and groupgiioat the world. Evalu-
ation of the quality and performance of these methods is carried out everydars through the
Critical Assessment of Techniques for Protein Structure Prediction EJA8mpetition. In order to
provide best predicted results for a target protein, the use of grid strbdted computing public

schemes has been successfully demonstrated through various preatsample, researchers at
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TABLE 3.1: Grid-enabled applications for protein folding

Project/Application Grid Technologies Distribution techniques
and Speedup
CHARMM [167] Legion grid operating system 400 CHARM jobs
(Chemistry at HARvard| that provides process, distributed with different
Molecular Mechanics) | files system, security initial conditions over
services and resource managementL020 grid nodes.
Simple command line 15% speedup in
interface with basic computational time.

commands for job submission,

monitoring and result

visualization.
CHARM [168] United Devices (UD) The Task: folding of src-SH3 protein
MetaProcessor (MP) with different algorithms(
platform for DesktopGrid. best-first, depth-first and breadth-first).
Master (MP Server) controls Job distributed into 50 work units;
and manages all the tasks each work-unit having 100,000
and uses IBM DB2 for storage. simulation steps.
Each worker runs a UD Agent Experiments performed on
with task API to run the heterogeneous platform of 45

task module and communicate desktop machines.
with the server.

TSRI (The Scripps Research Institute) have developed a distributéid palmputing based protein
structure prediction super computer (Predictor@Home) [162] using 8e@pen Infrastructure for
Network Computing (BOINC) software. The predictor itself consists oftaseomplex protocols
with increasingly sophisticated models that rely on standard software tatisssUBLAST, SAM-
T02, PSIPRED, MFOLD simulation (for conformational sampling) and CHARKfor molecular
simulations). It is reported that during the 6th Critical Assessment of Pr8teircture Prediction
Methods (CASP) competition 6786 users participated in the Predictor@Hoojecpand con-
tributed a total compute time of about 12 billion seconds, the equivalent aft @& years of
computation on a single desktop machine, within just 3 months time. This computati@n pad

been exploited for appropriate conformational sampling and refinemeheqgiredicted structures
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of 58 CASP6 targets.

The quality of the predicted structures utilizing the public computing infrastractas
compared with results using a dedicated local cluster (64 nodes, 2.4 GilarReXeon processors,
1GB RAM, 1GB Ethernet network). The results of the comparison indicatettie vastly larger
distributed computing power afforded by the BOINC implementation resulted incfiier predic-
tions than using the dedicated cluster. A similar grid based approach thahethe quality
and performance of structure prediction has been demonstrated in®4djlds on the standalone
web server named ROKKY (designed at Kobe University) that waseh@kd best prediction web
server in the fold recognition category of CASP6 experiment. ROKKY asgsmbination of stan-
dard analysis tools (PSI-BLAST and 3D-Jury) and the Fragment AdgeSiilmulated Annealing
(FASA) technique using the SimFold [170] software package. In ordirtber enhance the qual-
ity of prediction and performance, a grid-based workflow design amirabtool was added that
allows the end-user to create/design a structure prediction experimestiant it for execution on
the Grid. That is, the user can modify input parameters and/or methods tiagkd real-time in-
spection/monitoring of the current predicted results. It has been reb@déthat for target T0198,
the workflow-based prediction gave a faster result that was closer te tarthet structure compared
to employing a non-workflow based prediction, which uses simple batch fitgelf submission.
This illustrates the importance of allowing the user to dynamically interact with thedUgtion
pipeline” even when the software is being distributed across the grid.

Another ambitious project, Encyclopedia of Life (EoL), attempts to prediacsiral in-
formation for all the proteins in all known organisms. The estimated computationrémered

for annotation of about 1.5 million sequences (as of 2003) using a pipdlicentgputational tools
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(such as TMHMM, PSORT, SignalP, WU-BLAST, PSI-BLAST and 1282} been approximated
to be 1.8 Million CPU hours (more than 300 years!) on a single 1.8 GHz CPatder to facilitate
this task, a grid-based workflow management systems has been pr@pasddmonstrated [171],
which builds on the AppLeS Parameter Sweep Template (APST) technologigiolg an appro-
priate application deployment logistic and an adoptive scheduling andtex@emvironment. The
workflow was tested by running more than 54,000 proteome annotation jgbging 13670.5
CPU hours during the four days of the Super Computing Conferenc@3)Sh a grid testbed. This
consisted of 215 CPU nodes managed at ten different sites havingedifigperating systems and
local resource management software. Further details of some grid-pastein structure prediction

applications are presented in Table 3.2.

TABLE 3.2: Grid-based applications for protein structure prediction

Project/Application Grid Technologies Distribution techniques
and Speedup

ProtFinder [172,173]| Globus based GridWay Framework | Prediction of 88 sequences

that uses adaptive scheduling was carried out in parallel by
for dynamic grids. submitting an array job with 88
Condor/G based GRAM. parallel tasks specified in a

GIIS Server for resource discovery, | Job Template File.

GASS and GridFTP for data handling. The entire experiment took
User interaction with job about 43 minutes on 64
submission agent through heterogeneous nodes.

API or command line.

PSA/GAC [174] NetSolve based client-server Simulated annealing distributed
(Parallel Simulated application model on NetSolve servers.
Annealing using through GridRPC API. GA crossover performed at
Genetic Crossover) | API for user interaction. the client side to reduce

the communication delays.
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3.4 Protein Structure Comparison

The comparison of protein three-dimensional structures based on &yvafrigimilarity measures
is a key component of the most challenging structural proteomic tasks,asuchderstanding the
evolution of protein networks, protein function determination and, of eGgypsotein folding and
protein structure prediction. These structures are determined thropghimrental techniques such
as X-ray crystallography or NMR spectroscopy as well as througbwsicomputational techniques
involved in the process of protein structure prediction. The atomic codesirad each structure are
stored in publicly available database repositories such as Protein DatgBaBk (www.pdb.org).
PDB stores the information about each structure in a separate file. ItdiffEent file formats
such as PDB, PDBML/XML, mmCIF and FASTA among others. Each file is nawitd four
lettered alphanumeric identifier and its contents consist of so many recuidiells. Each record
in the file may consist of single or multiple lines. With current number of structiitages about
22 hours to download the complete database (www.pdb.org/pdb/statisticsgisotttin on a local
machine and it requires more than 36 GB of free disk space for its storagesize (length) of each
protein structure could be as simple as consisting of 40-50 residues ongdex as consisting
of several thousand residues (e.g. in multi-functional proteins). Pob/maving less than 40
residues are referred as peptide rather than protein. However, ¢hnagavprotein structure length
is estimated to be around 300 amino acids (residues) per structure. Intorde comparable,
protein tertiary structures as available in the PDB are usually further gsedeto be represented
in some coordinate-independent space. The choice of suitable rnefatise plays an important
role in the development of an efficient and reliable protein structure casgraalgorithm. Most

commonly used coordinate-independent representations include Didtatds (DM), Contact
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Map (CM), Absolute Contact (AC), Relative Contact (RC), and Cortaghber (CN). There are
several different methods (e.g., see Appendix .1), that use one & tepgesentations to provide
several measures of similarity /divergence between pairs of proteirtugtesc

Though the process of comparison of a single pair of protein struct@e$®éen found
to be solvable in polynomial time [175], but every individual method takes rdiffetime based
on its individual complexity. Furthermore, as the number of known proteircttres grows the
size of their corresponding databases (such as PDB) also increekksrece, the process of struc-
ture comparison requires more efficient algorithms, which could exploitdhepof web and grid
computing technologies to provide accurate and optimal results with enhealigality and fault
tolerance. One such approach has been demonstrated in [176], wiyidbys a distributed grid-
aware algorithm with indexing techniques based on geometric propertiassedt a Globus and
MPICH based Grid testbed consisting of four nodes (each with 300 MHZ) (BXperiments were
performed comparing a target against 19,500 PDB structures in ab@eicb@ds. Another related
approach is presented in [27] describing a meta-server for Protein &tsop, Knowledge, Simi-
larity, and Information (ProCKSI), integrating multiple protein structure comgpa methods such
as the Universal Similarity Metric (USM), the Maximum Contact Map Overla@X@MO), and
an algorithm for the alignment of distance matrices (DALI), amongst oth&dslitionally, it pro-
duces a consensus similarity profile of all similarity measures employed. hieatn runs on a
mini-cluster and provides a web-based interfdae p: / / www. pr ocksi . net /) for job submission
and result visualization. As the study of this dissertation is based on the g@btilp®f ProCKSI,
its further details are provided in section 3.4.1. Some other grid-enablditapms for protein

structure comparison are presented in Table 3.3.


http://www.procksi.net/
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TABLE 3.3: Grid-based protein structure comparison

Project/Application Grid Technologies Distribution techniques
and Speedup

FROG [177,178] Ninf Grid RPC based Master generates the initial
Fitted Rotation and master/slave model. population and then copies
Orientation of protein Asynchronous parallel programming three non-redundant parents
structure by means of in C language. on each node in the grid repeatedly.
real-coded Genetic algorithm, Web based GUI through Speed-up of 5.70 was achieved

NinfCalc tool. for the comparison of a single pair

of proteins on a grid testbed of

16 nodes.
PROUST [179] PROTEUS problem solving The PROUST application is divided
Ontology and workflow based environment with into three independent phases:

grid-enablement of PROUST | Globus-based grid infrastructure. pre-processing, similarity search

application for protein UML-based GUI for workflow and structural alignment.
structure comparison. composition, browsing, selection Each phase is implemented as
and result visualization. an independent sub-workflow/componerpt.
3.4.1 ProCKSI

ProCKSl is an online automated expert system that aims at helping an enblialsgist to compare
any given set of protein structures using an ensemble of structure dgmpanethods (e.g. as
listed in Table 1.1) and to visually analyze the consensus based relationshiyy dhe compared
structures with a variety of heuristics and statistical clustering methods sttble &nweighted Pair
Group Method with Arithmetic megiluPGMA) [180] and the Wards Minimum Varianc@VMV)
method [181], all using an easy, intuitive and unified web interface asrshoFigure 3.1.
ProCKSI’'s web interface also works as a gateway and a knowledgelb#se entire pro-
tein universe as it provides hyper links to further important and most-ofted sources of informa-
tion needed for the exploration of specific details of any individual strecflihese sources include

various links to IHOP Ihformation Hyperlinked Over Protejri51], SCOP §tructural Classifica-
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tion of Protein$ [52], and CATH Class Architecture Topology and Hierargh$3].

www.procksinet
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FIGURE 3.1: Flow diagram of ProCKSlI'’s front-end. Initially the user ggpthe URL (www.procksi.net),
ProCKSI responds with a welcome page prompting for stamieyy experiment. The experiment requires
the use to select the comparison mode and methods to be useshiparison; provide the data and select
the models and chains from the list of new files extracted ICRISI. Finally ProCKSI asks for notification
options and email address of the user for sending the ndiditaegarding the results. The experiment is
performed at ProCKSI’s back-end [27] and web-based reboked with clustering and visualization tools
are made available at the front-end
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As demonstrated in [27], and previously suggested in [54] and [55]etisemble and
consensus based approach adopted by ProCKSI yields more reliables ref biological signifi-
cance as compared to the results obtained with any single structure compagtitod developed
so far. This is mainly because previously developed methods used to 8égdealing with either
very divergent structures or very similar structures; however, thgiated approach of ProCKSI
enables it to deal well with both types of structures simultaneously. For dgatopdeal with the
divergent structures ProCKSI uses the top level of its protocol (Ei§u2), namely, th&niversal
Similarity Metric (USM) [48]. This method uses the contact map representation of two protein
structures, saygy and$, to heuristically approximate the Kolmogorov complexity by using any
compression algorithm such asmpress, gzip, bzip gtclt then uses thé&ormalized Compres-
sion Distancg(NCD) (see equation 3.1) to express the pairwise similarities among the cainpare
proteins. NCD, being an effective and problem-domain independent siyitaetric works well
particularly for divergent protein structures [48] and sequenc@g][1

_ max{K(si|sp),K(sz[s1)}

NCDSL %) = ™ oK (s K ()} G-

where K(s)) is the Kolmogorov complexity of obje¢esid K(s |s;) is the conditional com-

plexity.

On the other hand, for more similar structures, ProCKSI uses a more dafie¢hod
namely, theMaximum Contact Map OverlafMaxCMO) method [46], which is able to detect the
topological similarities among the compared proteins. This method employees orittibeo

count the number of equivalent residues (alignment) and contactdgpyar the contact map rep-
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FIGURE 3.2: ProCKSI's multi-method protocol and workflow: ProCKSI with multiple similarity com-
parison methods: Universal Similarity Metric (USM), Maxim Contact Map Overlap (MaxCMO), and
other local and external methods. Currently, these are #i iz and TM-align methods, the Combinatorial
Extension (CE) of the optimal path, and the FAST Align andr8ledool (FAST): extracted from: [27]

resentation of a given pair of structures in the following way:

"An amino acid residuey from one protein is aligned to an amino acid residue
from a second protein if a contact af in the first protein(C(a;)) can also be aligned
to a contact oby in the second proteifC(az)) closing a cycle of size 4 in the graph
representation of the contact map. A further restriction for the overlagsaisthey
should not produce crossing edges. That isy ifs aligned toay, C(a;) is aligned to
C(ap) and, without loss of generalitgl < C(a;) (i.e. the atom or residue al appears
before tharC(a;) in the sequence) thes < C(az). Thus, an overlap in this model is
a strong indication of topological similarity between the pair of proteins as istake
consideration the local environment of each of the aligned residuek” [27

A Fuzzy Sets based generalization of contact map has been propo$88aJiafd methods
of comparing proteins based on them in [184,185]. However, this wdrased on only the discrete
version. As each additional method complements the results of other metno@G& $ uses some

other external methods such as the Distance Alignment (DaliLite) methodthds;ombinatorial
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Extension (CE) method [47], the TM-align method [49], and the FAST metBO{l jn order to
develop more robust and reliable consensus.

Following subsection provides an overview of major functional activitiesk@pacarried
out by ProCKSI for each user request in terms of its existing architdaasign and infrastructure
resources.This description is mainly aimed to provide an overall functieomaptexity of the system
and hence to better understand the major challenges whose solution issexplaugh the rest of

this dissertation.

3.4.2 ProCKSlI’s Existing Architecture and Limitations

Currently ProCKSI runs on a PBS (Portable Batch System) based mini-atostgisting of 5 nodes
(one head and 4 compute) with 14 cpu slots in total (Figure 3.3(a)) and rémpase services as
illustrated in Figure 3.3(b). When a new request is submitted through the sitepleas illustrated
in Figure 3.4(a), the request is registered in the database and is assigmigde ID. The registration
of the request also involves the registration of tasks and structuresisgdxy the user in his/her
request (see Figure 3.4(b)). With current setup user could spegifpany as 8 different tasks
(methods as listed in Table 1.1) and as many as 250 protein structures (with masizel of
100 MB) to be compared and analyzed. The specified structures needeithbr uploaded from
users local machine or downloaded from the PDB repository (whichduitits the number of
structures down to 50 so as to avoid prolonged latency involved in Intbasetd communication
with PDB server). These structures are further extracted into modelsheiigls as per users choice.
Once the request is registered it is further processed by a softwamgorent calledask
Managerthat runs on the master node of the cluster. The main role of the Task Maisaige

extract the information from request and prepare individual tasksuflbbmission to queuing system
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(PBS). In its current architecture, the Task Manager of ProCK&hames a separate task for each
comparison method to be executed on a single processors using complsét datspecified by the
user. Depending on the load of the queuing system, the task (or job in terqueoing system)
might have to wait for some time before getting started on any slave node.tlénjods gets started
on the slave node, it might go through a long execution time depending on ¢hef siataset and the
speed of particular structure comparison method (executable) as itmiynsroa single processor.
It is therefore, the current distribution mechanism of the Task Managgatsito be scaled
to some optimal fine-grained level, so as to allow more efficient comparisambdeie current lim-
itations of 250 protein structures. The change in the distribution mechanisine diask Manager
would also have to take into account the computational load of pre/postgsiog and result visu-
alization that is currently being carried out only on the master node (seeBigib(a) and (b)). The
post-processing involves the complex and time consuming process of istatian (conversion
of all results into a single format and normalization of all the values) andapatipn of clusters to
be visualized with different software for understanding the relationstiprey the compared set of

proteins.
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3.5 Conclusions

It has been observed from the reviewed literature that both Grid andbdistd public computing
schemes have been used successfully in the field of structural protdomicgh compute and data
intensive applications. The former is powered by standard grid middlewahadégies such as
Globus, Legion, NetSolve, Ninf, myGrid, Condor/G, etc., whereas the latfmwered by BOINC,
UD MetaProcessor etc. In fact, the diversity of enabling technologiegrid and distributed com-
puting makes it difficult for the developer to select most appropriate téobival infrastructure
with proved technological standards and tools. Various demonstrativiesvesd in this chapter are
aimed at providing a road map in this dilemma.

It has been observed that selection of an appropriate grid/distributeguting approach
mainly depends on the nature of the application. For example, applications wittdependent
and parallel nature of jobs are more suitable for distributed computing asedblicly-owned
resources. For example, majority of the projects based on the investigfiwatein folding pro-
cess and protein structure prediction use this type of infrastructure asvidps huge number of
resources free of cost. The availability of huge resources contributeetbetter predicted results
of the simulations as compared to results obtained on the limited resources lavailabdedicated
cluster or grid environment.

However, on the other hand, if the application involves some sort of irdegss com-
munication along with huge amount of I/0O data then organizational or crgsstiaational grid in-
frastructure with above mentioned standard middleware would serve in awaiteThis is mainly
because, the interprocess communication and 1/O overhead in terms ofudestrublic comput-

ing schemes would be very large owing to significant latencies over loosalyled networks. In
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the case of MC-PSC, though, there is no interprocess communication dhéangitial phase of

comparison but the subsequent phase of standardization and normalfatsults requires some
data to be shared among all the processes. In addition to the requiremanéfprocess commu-
nication, the MC-PSC also involves distribution and collection of significanteramount of 1/O

data. Therefore, in the light of the material presented in this chapter, hiders identified that the
later approach (i.e., the organizational or cross-organizational grasiméicture with standard grid
middleware) would be more appropriate in the case of MC-PSC. Interestthglygh not required

but almost all of the single method based protein structure comparisoneagoreviewed in this
chapter are also based on the use of standard grid and parallel progrg environments. Build-
ing on this knowledge the next chapter provides further details of actolahtdogy used for the

solution of MC-PSC problem.
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CHAPTER4

M ATERIALS AND METHODS

Chapters 2 and 3 provided the comprehensive review of the literatutengtinom the wide per-
spective of the field to more specific perspective of the research topiepllirpose of this chapter
is to address the questions such as "how this research is designedwWhacid methodology will

be used for the implementation and evaluation of the proposed solution?".

4.1 Introduction

The problem of large scale multi-criteria protein structure comparison (C)Rnd analysis could

be represented as a 3D cube (Figure 4.1). ¥hedy axis of the cube representing the different
proteins being compared, while tizeaxis representing different comparison methods being used.
While processed, each cell of this 3D cube holds the output of each cempanethod in terms

of different measures and metrics. That is, each cell of the 3D culveseqnts both the processing
as well as the storage perspective of the problem space while cell @vesdpecify the communi-
cation overhead. Given the ever growing number of protein structurgadson methods as well

as the number of protein structures being deposited in the PDB; the dimenéithiis cube go on
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increasing and making its computation, in our opinion, to be one of the GraalleGge Appli-
cations (GCAS) in the field of structural biology. GCAs are defined asd&mental problems in
science and engineering with great economic and scientific impact, whhg®oisads intractable
without the use of state-of-the-art parallel/distributed systems " [186nyM&amples of the use
of parallel/distributed systems for the solution of GCAs in the field of life scisiceeneral and
structural proteomics in particular have been showcased in previoushamtars. Based on the
lessons learned from these examples, we propose a distributed frakreswesolution to the grand
challenge of MC-PSC. This chapter provides the description of the mdtigdal approach that
we used for the design of proposed distributed framework (section k&) aith the description of
the programming environment used for its implementation (section 4.3), testt@dferimentation
(section 4.4), datasets (section 8.1) and the performance measures/oedder the evaluation

of the proposed system (section 4.6) .
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FIGURE 4.1: 3D-cube representation of the MC-PSC problem space. Edfenatitly colored cube illus-
trate the comparison of a set of structures with itself (mthar set of structures) using a particular algorithm
(method).
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4.2 Methodological Approach

Itis believed that most of the GCAs may have several parallel solutiongftiie, a methodological
approach based on an exploratory nature will help in finding the beBablasolution [187]. An

example of such approach that is widely used for the design of paratediatributed algorithms
is the PCAM Partitioning, Communication, Agglomeration, and Mappimistributed problem

solving strategy as illustrated in figure 4.2.

Initial tasks

Communication

¢

Combined Tasks

Final Program

FIGURE 4.2: "PCAM: a design methodology for parallel programs. Startivith a problem specification,
we develop a partition, determine communication requimgsieagglomerate tasks, and finally map tasks to
processors" [187]

Introduced by lan Foster in his book "Designing and Building ParallejRmms" [187]],

the beauty of this approach is that it enables the designer to consider thmmawlependent issues
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(e.g. concurrency, scalability and communication) first and machinéfgpesues (e.g granularity
and load-balancing) later in the design process. This strategy consistg ofiain stages which are

summarized bellow:

Partitioning: The focus of this stage lies in exposing the opportunities for parallel éoecu
in order to decompose the problem into large numbdina-grainedtasks. The partitioning
could be applied to decompose tbemputation(i.e functional decomposition) and/or the
data (i.e domain decomposition). Different options were considered thrthedomainand
functionaldecomposition strategies to partition the 3D cube and analyze the pros andfcon
each partition in terms of efficiency and scalability. The outcome of this stagppied to

our problem of MC-PSC is explained in section 5.3.

Communication: This stage determines the need of information to be exchanged among the
parallel process resulting from the partitioning. It also specifies if thexeaay dependen-

cies among the processes and if synchronization and dynamic communidediegiss are
needed. Appropriate communication structure is selected and theorestalnadysis is per-
formed in order to obtain the optimal solution. The analysis of the communicatioivet

in sharing the input/output and other local/global data needed in the profcessmalization

as applied to MC-PSC problem is discussed in section5.3.

Agglomeration : The theoretical cost evaluation of the partitioning and communication
stages would suggest if there is any way of grouping the fine-grainkslitasrder to make the
system more optimal. This stage focuses on the different options forigiapd finding out
the best working model. Different methods of agglomeration for MC-P®Gee explained

in section 5.3.
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Mapping: This stage considers the assignment of processes/tasks for exequteatio
processor in a way to enhance the overall processor utilization ande¢idel communication
overhead. Depending upon the number of available processors thésialyl suggest to
adjust the agglomeration and introduce some load balancing approactsssgio same unit

of work to each processor/node.

4.3 Programming Environment

Table 4.1 provides an overview of some commonly used systems for the imple¢imenfgparallel
algorithms. Each of these tools serves different purpose and henseddar a particular class of
applications. We selected thdessage Passing Interfa¢®Pl) model of parallel programming as
it is particularly used for the applications having the structure of ei8iegle Program Multiple
Data (SPMD) orMultiple Program Multiple Data(MPMD). The MPI itself is a library of stan-
dard functions for exchanging messages and performing collectivatipes (i.e operations which
send/receive data from many nodes simultaneousiybeogdcast(to send same data to all nodes),
gather(to collect data from all nodes), asdatter(to divide the data into pieces and send a different
piece on all node)) (see Table 4.2 for the list of commonly used MPI fursitiofhe standards for
MPI are defined and maintained MPI Forum, which is an open group consisting of representa-
tives from many organization$t(t p: / / www. npi - f orum or g/ ). MPI Forum introduced the very
first standard (MPI1 1.0 / MPI-1) on May 5, 1994 and the second (erd@ standard (MPI-2) on
July 18, 1997. Some of the major features introduced in MPI-2 include iolee-sommunications
operations (e.g. Put, Get, and Accumulate etc.), Collective extensionsNH4.Alltoallw and

MPI1_Exscaretc.), and Dynamic process management (&gl_Comm_spawrMPI_Comm_join


http://www.mpi-forum.org/
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andMPI_Comm_accefi¥iPI_Comm_conneeitc.). Table 4.3 provides the list of both free available
and vendor-supplied implementations of MPI standards. We tested the impléimenfaur appli-
cation using three freely available implementation namely, MPICH2 [188] [18p¢n MPI [190]

and MPIg [191,192].

TABLE 4.1: Overview of commonly used systems for parallel programmihlpte: * indicates that this
variant has becomede-factostandard in the community.

System Available Variants Purpose
Parallel C++ Compositional C++ (CC++)* [193], All these languages and tools are extensions
parallel C++ (pC++) [194], to C++. These extensions provide basic

Concurrent Object-Oriented Language (COOL) [195],parallel programming features and

Mentat [196], High-Performance C++ (HPC++) [197]. abstractions. Used for algorithms requiring
dynamic task creation and having irregular
computation/communication patterns.
Fortran Fortran M (FM)* [198] [199], Fx [200], These languages provide all the

programming constructs for 'task parallelism,

deterministic execution, and modularity’.

HPF High Performance Fortran (HPF)* [201], These are data parallel languages.
Connection Machine Fortran (CM Fortran) [202], They provide array operations to express parallelism.
Data Parallel Fortran (Fortran D) [203] Mostly used for numeric algorithms.

Message Passing Message Passing Interface (MPI)* [204], p4 [205] | These systems provide standard functions for
Portable Instrumented Communication Library [206], sending/receiving messages and are

Parallel Virtual Machine (PVM) [207] particularly used for algorithms having

regular SPMD/MPMD structures.

4.4 Testbed and Production Level eScience Infrastructure

Experiments were run on three different levels of infrastructuresfitsteone being a simple testbed
comprising of a singleBeowulfcluster consisting of 6 nodes(with a total of 9 slots) connected
through Gigabyte Ethernet. As this testbed was self-built and under badfministrative control

we were able to configure and install different LRMS’s 8un Grid Engind SGE),Portable Batch

System(PBS) and_oad Sharing FacilitLSF) along with different implementations of MPI such
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MPI Routine | Description

MPI_Init Initializes the MPI environment

MPI_Comm_rank | Determines the rank of the calling process within a group
MPI_Comm_size | Determines the size of the group

MPI_Bcast Broadcasts a message from "root" process to all other presess
MPI_Send Sends messages

MPI_Recv Receives messages

MPI_Status Provides information about received message in terms of eodgs
MPI_Barrier Blocks until all process have reached this routine

MPI_Allreduce Combines values from all processes and distribute the reaak to all
MPI_Finalize Terminates the MPI environment

TABLE 4.2: Description of MPI Routines

TABLE 4.3: Overview of commonly used MPI implementations

Implementation Description
MPICH/MPICH2 [208,209] | Developed by Argonne National Laboratory and Mississigpt&University,
MPICH/MPICH?2 is the freely available and portable impleméotaof
MPI-1/MPI-2 standard for most of the flavors of Unix and MS Wamd.

SCore MPI [210] Originally developed by Real World Computing (RWC); SCoreasvn
taken care by PC Cluster Consortium and is freely availadrienfany different platforms.
MPIL.NET [211] Developed at Indiana University; the MPI.NET is an open seur

implementation that allows parallel programming in .NET tedbgies such as

C# and the Common Language Infrastructure (CLI).

Platform MPI [212] Platform MPI (aka Scali MPI and HP-MP) is a commercial implemigoma

of MPI developed by Platform Computing Inc. It claims to pravietter performance

as compared to open source or other commercial counterparts.

Open MPI [213] Open MPI as the name reflects is an open source MPI develope@dsisia

of taking best ideas from several other MPIl implementatiogs e.

FT-MPI (University of Tennessee), LA-MPI (Los Alamos Nat&haboratory),
LAM/MPI f (Indiana University), and PACX-MPI (Universityfdstuttgart).

It is widely used by many TOP500supercomputers across theglob
MacMPI [214] MacMPI is the implementation of MPI by Dauger Research, Inat pinovides

parallel programming environment for Macintosh.

MPJ Express [215] MPJ Express is developed at the Centre for Advanced CompatiddEmerging

Technologies (ACET). It provides an environment to develagaflel programs in Java.

as MPICH, MPICH-G2, MPIg and OpenMPI in order to evaluate diffepmssible alternatives.

Furthermore, we also used this testbed to configure and install GlobusitT@dlk35], in order to
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confirm the operation of our application before deploying it on produdgweal infrastructure. The
secondevel of infrastructure comprised of a production lei#¢ih Performance ComputingdPC)
Linux cluster, namedpaciand placed at ICAR-CNR institute in Italy, with 64 dual-processors
Itanium2 14GHz nodes each having 4GB of main memory and being connected by &alijgmne
performance network. The main purpose for using this infrastructusetavioster the collaborative
relationship between Nottingham and ICAR-CNR in order to mutually shareileand expertise
needed at the interface of two complicated and inter-disciplinary subjeBisioformatics and Grid
Computing. Thehird level of infrastructure consisted of tle&cienceénfrastructure provided to all
United Kingdom(UK) scientists free of cost biNational Grid ServicdNGS), UK [66]. In this
case we used Globus-based MPIg [191, 192] (grid-based implemerétidinl) to spawn the jobs
across two NGS sites; one at Leeds and the other at Manchester. fEhekesites have 256 cores
(AMD Opterons) with 26GHz and 8GB of main memory. Succinct description of the software tools
and services used for each of these infrastructures along with schetizagiams are presented in

the corresponding chapters that report on the empirical results fereiift cases.

4.5 Datasets

Different datasets were used to perform experiments. These datametpreviously used in the
literature [27, 48, 185, 216-220] e.g. Chew-Kedem (CK34) dat22df][, Rost and Sander dataset
(RS119) [222], and Kinjo et al. [223] and because our group hpsreénce using these datasets.
The first two of these datasets i.e CK34 and RS119 were used as an exdrspiall datasets
consisting of 34 and 119 protein structures respectively, while the thtetdai.e Kinjo et al. was

used as an example of large dataset consisting of 1012 protein structboese other datasets
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were also prepared for the sake of different case studies. Thdséenihree datasets consisting
of regularly increasing number of proteins i.e. SFBK-250, SFBK-56®BIS-1000 datasets having
250, 500 and 1000 protein structures which were randomly selectecosmdaided from the PDB.
The main purpose for the preparation of these datasets was to investigatiethef the increasing
number of proteins on the overall execution time. Lad8igB SELECT3@ataset was prepared
and used as an example of biologically significant dataset. It is a repatiserdataset (subset
of PDB) consisting of all hon-redundant protein structures havingnclemgth greater than 50
and sequence identity less than 30%. This dataset has been prepargddihePDB_SELECT
algorithm designed by Uwe Hobohm and Chris Sander [224]. All the P tsires of these
datasets were parsed into simple files containing single PDB chains and thiictcmap (CM)

counterparts.

4.6 Performance Metrics

Two metrics are usually used for testing the computational scalability of a Jat&iigbuted sys-

tem: the speedu$and the efficiency.

Speedup:

The speedup of a parallel algorithm is the ratio between the time taken by treelgegntial imple-
mentation of an application measured on one proceksamd the execution time taken by the same

applicationT,, running onp processors.

S=_2 (4.1)
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The optimal case is given by a linear speedup, i.e. If we run the same djgplica p
processors, then we can expect at best a reduction in tipeasfd therefore that the speedup will
be at mosp. In fact, this is only a theoretical condition because the parallel algorithwdotes an
overhead, mainly due to the communication times among different procedgbesproblem is not
sufficiently complex, and the communication times are not negligible with respectiputational
time, then the speedup might be noticeably smaller. Another factor that limits thdigphkes in the
level of granularity of a particular piece of the program that Can't sthir parallelized. This fact
is known as Amdahl’s law and it states that if the proportion of a programctirabe parallelized
is P and the proportion that can not be parallelized (i.e., remains serid)}-g$>) then the speedup
on N processors is limited as per following expression, no matter how much valNasofurther

increased:

T
aP)iE

4.2)
Equation 4.2 shows that as the valuehbfends towards infinity, the maximum speedup

will be limited to 1%,3 and hence the benefit of further parallelization shows a saturatiort.effec

example, if the proportion of the program that can be parallelized is 95%tkigeproportion that

can not be parallelized (1-P) will be 5% and hence the maximum speedupenithiied to the

factor of 20 irrespective of how much value Nfis further increased. This is depicted in figure|4.3.

Efficiency:

Efficiency is given by the ratio between the spee&and the number of processqrs
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Amdahl's law
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FIGURE 4.3: lllustration of Amdahl’s law: the case when the proportidrtiee program that can be par-
allelized is 95% and the proportion that can not be parabeli(1-P) is 5% then the maximum speedup is

limited to the factor of 20.

S
= (4.3)

and it represents an index of the fraction of time usefully spent by eadesgsor. In this
case, the highest value of efficiency (equals to 1) is attained when alfdbegsors are utilized to

the maximum (communication times and other overheads equal to zero).

4.6.1 Grid speedup and efficiency

The theoretical analysis of the scalability of tikemputation-centric’parallel applications on the
grid appears in [225] with a prompt to the Grid community for the demonstratidhisfidea in
terms of real Grid computing environments. This theoretical analysis is masdte idea ofHo-

mogeneous Computational Grid’ (HC@&nd fits well with the real Grid computing infrastructure
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provided by the UK National Grid Service (NGS) [66] that we use for ISE. The HCG model
is based on the concept tlierarchical Resource Managef226] and assumes that the Grid con-
sists ofC number of identical Computing ElementSH's) and eachCE (being a HPC system)
has p number of identical processors along with identical means of interconddw. workload
decomposition on such a system consists of two-level hierarchy: athfgsin-decomposed work
(W expressed e.g. in Mflops) is equally distributeddrCE’s (i.eW/C decomposition) and then
within eachCE the portion of the work is assigned to each of therocessors (i.6W/C)/p de-
composition). Consequently, this two-level hierarchy gives rise to twocesuwf communication
overhead i.e the communication overhead betwe@&t'’s Q,(W,C) and the communication over-
head betweem processors of each Cg&;(W/C, p). With this formalism, the execution time on

HCG could be defined as:

Te W) = &+ QalW/C. P)+ QuWLC) @4

WhereA indicates the computing capacity of a processor e.g Mflops/s. Please rdfe tha
C=1andifQi(W,1) =0 then the overhead of equation 4.4 returns to the standard parallel case i.e
Q2(W, p) = QW, p).

Equation 4.4 makes it clear that running the parallel application on more tteCgis
introduces an additional communication overhead in term@@¥W,C) which increases the ex-
ecution time. However, this increase in the execution time could be masked byltie of C,
which decreases the execution time by increasing the number of progessbalso by reducing
the communication overhead in terms@f(W/C, p) as compared tQ(W, p) on one CE.

In order to analyze the added value of parallelism we normally compare takgbaxecu-
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tion time onP processors with the sequential execution time on 1 processor. Hovaevarggested
by [225], in a Grid environment, we need to compare the parallel executioroti@eCE’s with the
parallel execution time on 1 CE. This comparison is name@ris Speedu@and is mathematically

defined as:

rC Tla p(W)
P TC) p(W)

(4.5)

where,l’% is the 'Grid Speedup’ (withp processors an@ CE’s), T; is the execution time
on a single CE andl: is the execution time 0@ CE’s.

The Grid Speedup (equation 4.5) is one of the scalability metrics for the japfiica-
tions on the Grid. Its value indicates how better a parallel application perfatms decomposed
onC CE’s as compared to its performance on a single CE in terms of execution tiora.gguation

we could also derive the expression for the Grid efficiency as:

Ty, p(W)
i = CTe, p(W) (4.6)

where,\Fp is the 'Grid efficiency’ andp, C, T, andT¢ represent the same parameters as
described in eq. 4.5.

The description of the 'Grid Efficiency’ in ed. 4.6 follows Amdahl’'s popusaatement
that "for a given instance of a particular problem, the system efficieacyedises when the number
of available processors is increased " [227]. In the case of the Giiadegicy, in addition to the
number of processors, it is the value of tB¢number of CE’s) that affects the system efficiency.

Based on these concepts of scalability, this dissertation performs empiratgsisrof our

parallel algorithm for MC-PSC as described in the following chapters. aifwve formalism could
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also be extended to the heterogeneous systems as proposed in [228{udiof the scalability in a
heterogeneous environment is based on the assumption that each nedgystém gets a workload
related to its computational power and that the overhead time of differecégsors is also known.
Equations 4.7 and 4.8 present the expressions for speedup andefficie heterogeneous system.

Ts

Swet = .ITR (4-7)

whereTs is the sequential time of the algorithify = ma>{\‘:1'l'i, is the response time of the
last nodel; (among a pool oN nodes) in the cluster to finish the application. Thafistepresents
the total time elapsed between the launching and termination of the applicatiorsateditdepends
on the the time of the node that finishes in the last. This description dirtbeuld also be applied

to eq. 4.5 for achieving the Grid Speedup in the heterogeneous system.

W B W
TrxSN,A TrxPr(N)

Ehet = (4-8)

whereW represents the total workloadr represents the response time of the slowest
node (i.e the node that finishes in the laB{) represents the total power of the heterogeneous system
(sum of the individual powers of the the nodes) &hdepresents the total number of processors in
the system. Th@owerin this case means the amount of work that a node/system can perform in a

unit time while executing a particular algorithm.

4.7 Conclusions

This chapter is based on the description of the specific research metgigdolehich have been

used for the design, implementation and evaluation of various parallel amithatisd approaches
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for the solution of the MC-PSC’s computational challenge. Based on this awtygy, the next
chapter presents the design, implementation and evaluation of the distribaneefork for MC-

PSC and the subsequent chapters further build upon it by addressieglsother issues related to

this framework.
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CHAPTERDS

A HIGH-THROUGHPUT DISTRIBUTED FRAMEWORK FOR

MC-PSC

This chapter, presents a novel distributed framework for the efficiempaitation of large scale
MC-PSC. The design, implementation and evaluation of this distributed frarkes/presented.
Based on the succinct description of multi-criteria protein structure congrafi$C-PSQ as pro-
vided in the previous chapter through an overview of ProCKSI; and -atejth description of the
computational challenge at the core of real-tiM€-PSCas explained in the first chapter; this
chapter describes the high-throughput implementation of the entire pratbowin in Figure 1.1,
whereby very large protein structure dataset comparisons are dongsilhepusing several methods
and exploiting the intrinsic MIMD Nultiple Instructions Multiple Datastructure of the problem.
Thus, the work presented in this chapter takes a step forward towardHithate goal of real-time
multi-criteria similarity assessment of very large protein datasets.

This chapter was published as a peer reviewed journal paper in IE&ES3ctions on

NanoBioscience, Vol. 9(2), pp.144-155, 2010. [doi:10.1109/TNB02B043851]
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5.1 Introduction

Recent advances in high-throughput techniques have led to a data dieliggms of the availabil-
ity of biological and biomedical data such as 1D sequences (flat files3trBiOtures, microscopic
images, videos and motifs, etc. [28]. This has put considerable strain icothgutational re-
sources that are routinely used to store, manage, process and ahelyast amount of data being
generated. As to cope with the increase in computational demands instigatedybiarge data
sets, many existing applications are being ported to distributed/grid enviranriken example,
the BLAST (Basic Local Alignment Search Tool [229]) algorithm hasrbearallelized/distributed
through a variety of ways [38, 42, 230—-236]. Some of these appesagse combinations of MPI
(Message Passing Interface) [237], Grid and Public Computing basbidegtures to distribute
either the query sequence (which could be as long as 80 billions of basg2&8]) or the target
dataset/database(which could have up to 76 million records [238] ) or Aththese approaches use
a simple master/slave task scheduling strategy with coarse-grained levdigagdution for mini-
mizing communication overheads [28]. Coarse-grained approache®aadvays suitable: given
the variable length of the sequences to be compared and the differeaspiiog power of individual
nodes in a heterogeneous cluster/grid environment, deciding the actuaf work to be assigned
to a particular node is a non-trivial matter for which efficient dynamic loaltdhcing strategies
are needed. Martino et al. [239], describe a simple, inexpensiveftauliee strategy that divides
the target dataset/databasenirbuckets of fixed size (where n represents the number of available
processors). The load-balancing in this case is achieved by ordegrsgtiuences by their length
(number of bases or residues) and assigning them to each bucket ynthavéhe longest sequence

is assigned to the segment having smallest sum of sequence lengths timdiicgihis process in a
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round-robin fashion until all sequences are assigned to bucketstypkisf load-balancing strategy
reduces thgercentage of work load imbalanegthin homogeneous computing architectures but
does not take into account the heterogeneity of cluster and grid enviraamerelles et al. [240]
present another load-balancing approach based on variable silmcks$ ifbuckets). This strategy
initially distributes blocks with small sizes so as to reduce the latency time for estehto receive
its first unit of work. It then increases the size of blocks (in the same wayassicabelf Guided
Scheduling[SGS) reduces their size) until the first half of dataset/database isssext@nd then
again starts decreasing their size. The smallest size of final blocksneesahat alh processors
will terminate either at a same time (ideal case) or with a maximum time differencegpands on
the size of the final block (i.e its execution time). This strategy has been tastedlaster of 15
nodes with significant enhancement in the performance.

Proteins 3D structure comparison algorithms (e.g. those listed in Table 1sErpeesim-
ilar structure to algorithms for sequence comparison (e.g BLAST, FASTAGIostalW etc) and
hence sometimes similar parallel/distributed strategies can be used [28]. éfpagecompared to
their sequence counterpart, there are very few instances of the djgplioaparallel computing for
3D structure comparison methods (e.g., Ferrari et al. [176] and Pak gt77]). None of these
methods, however, deal with the much more complex issue of efficient afabse distributed im-
plementations for Multi-Criteria Protein Structure Comparison. This chapteretbre, presents
a novel distributed framework for the efficient computation of large scaleR&EC. The design,
implementation and evaluation of this distributed framework is presented asljzsvihg organi-
zation: sections 5.2, 5.3 and 5.4 provide the architectural design angmsnafiyhe newly proposed

framework. Experimental results and their analysis are presented angsksl in section 5.5 and
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finally section 5.7 concludes the findings of this chapter.

5.2 Design and Implementation

In this section we present the algorithmic framework we use to compute in a disttibnvironment
solutions to the MC-PSC problem. Figure 5.1 illustrates the overall architeofuttee proposed
system. The top module performs the distribution (through two differentrdposition approaches
as explained in the following sections) of pairwise comparisons and alldb&tesover the available
nodes. Then, using the assigned (bag) proteins, each node perforpasallel and without the
need for synchronization, the pairwise comparisons required by itsiassd protein bag using
each of the available PSC methods. That is, each compute node computematey from the
all-against-all similarity matrices associated to each method. Afterwards,se jpfi@ormalization
and estimation of missing/invalid values is executed. This phase exchangasatibn among
nodes, as it needs the global minimum and maximum similarities for the normalizativellaes
for the estimation of missing/invalid cells. All the results concerning the cumede are stored
on a local matrix. Note that no global and centralized matrix is maintained by thensysd that
all the communication among the nodes are performed using the MPI (MeRBaagilg Interface)
libraries for a cluster of computers and using the MPlg libraries [19],it3Be case of a grid-based
implementation.

The pseudo-code shown in Algorithm 1 illustrates the main steps performeadbynode
in the distributed framework. Lines 1} 7 perform the pairwise comparison avitthe methods for
all of the proteins assigned to a particular node. Because the systematapaintain a global and

centralized matrix, the process of finding the extrema (maximum and minimum similafitgs/
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needed for the subsequent step of normalization) takes place in two Biegisthe local extrema
are found (lines 8- 11) for all the methods. These are then shared aatldhg nodes to find the
global extrema (line 12). Once the extrema are found, the next step (lineall8 a subroutine
that replaces all the invalid and missing values with their corresponding estiveltezs. Finally,
line(21 calls the subroutineormalize diagonalthat performs the normalization of self-similarity
values (across the diagonal of the matrix) and line 22 calls the subrcudaimealize extremathat

uses the previously calculated extrema to perform the normalization of alathes:

5.3 Decomposition Strategies

The efficiency of the distributed framework strongly depends on the wayhiich proteins are
assigned to compute nodes.

A good load balancing strategy should considerably reduce the exetimtierand the
memory necessary to store the main matrix and other data structures ng¢egharoverall com-
putation of MC-PSC.

Consider a set of resources (nodes of the clusters or machines ondhBligN,, ..., N
and the main matrixgroteinsx proteinsx method¥storing the result of the computation and of the
normalization (and estimating invalid/missing values) phasesplbetthe total number of proteins
andm the total number of methods computed. Note that, inddeddicates the total number of
indices computed by the differenth methods; in factM = Zﬂlle, whereMy is the number of

indices computed by the meth&dsee Table 5.1 for complete nomenclature).
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FIGURE 5.1: Software architecture of the distributed framework. Theteodule tries to estimate and dis-

tribute the workload equally to each node available in thl pboesources. Each node runs the distributed part
of the algorithm to perform comparison with all methods deled by data post processing (standardization
& normalization) and produces the sub-matrix of the results

Algorithm 1 Pseudo-code executed from each nadmncerning the multi-comparison part and
the normalization/replacing invalid missing values part. Line 1 iterates for eatfodhewithm
representing the total number of methods. Lines-14 scan through the results and replace the
missing self-similarity (SS) and non-self similarity (NSS) values (for more dgikdlsse see section
8.3). Lines 18- 22 use the extrema values to compute the normalization of the MC-PSC similarity

va

lues stored in the distributéahatrix’.
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. for all methodk such that I< k < mdo
for all proteini in row (x) do
for all proteinj in column &) do
compute_metho# on the couple of proteinisand j {on nodex}
end for
end for
end for
for all k such that KX k< mdo
find_local_min
find_local_max
end for
. exchange and find all globatinandmax
. replace_invalid_missing_values:
: for all ksuchthat < k<mdo
missing_SSmaxvalue in the cross-section
missing_NSSminvalue in thematrix
. end for
: for all methodk such that I< k < mdo
for all proteini in row (x) do
for all proteinj in column &) do

normalize_diagonaimatrixi][j][k] = matrixi][j][K]/max
normalize_extremamatrix[i][j][k] = (matrix[i][j][k] — min)/(max— min)
end for
end for
: end for
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In order to distribute the overaM among the nodes, there may be four possible parti-
tioning schemes. Each of these schemes uses a different level ofagignior assigning the jobs

as:

1. Comparison obne pairof proteins withone methodThis will createp x p x mjobs

2. Comparison obne pairof proteins withall methods This will createp x p jobs

3. Comparison oéll pairs of proteins withone methodThis will createm jobs

4. Comparison of aubset of pairef proteins with aset/subset of methad$his will create as

many number of jobs as the number of available processors (or as desired

The suitability of any of the above listed partitioning schemes could be analyzedns
of its workload distribution. Considering the case of all-against-all compared PDB (64036
structures) using six comparison methods, partitioning 1 will geneta?d.6 billion jobs. Obvi-
ously, all of these jobs can not be assigned to processors with ormeetoyapping and hence most
of the jobs will have to remain in the queue which needs to be managed propksdy the major
problem with this scheme would be that the processors will remain idle whilatmegdhe out-
put for each finished job and getting the details of the next job and fetchimglati®d input files.
This means that the partitioning 1 would be towe-grainedto be considered for the distributed/-
grid environment. The case of partitioning 2 is also same because it has iy dtigiher level of
granularity than partitioning 1 and would results in as many number of jobs44 billion. Par-
titioning 3 on the otherhand, would generate only 6 jobs and hence wouldblmarse-grained
to be considered for the distributed/grid environment. The issues of too fineslgrained or too

much coarse-grained level of granularity associated with these 3 partgisniremes could be well
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balanced with partitioning 4. This scheme suggests to create a job packegjgtiog of many pair-
wise comparisons with either one or all methods to be dispatched as a singte pte€ution on a
node. The number of pairwise comparisons in a package could be detdrimiae intelligent way
so that equal amount of work gets assigned to each processor.

We investigate the# partitioning scheme by applying two different approaches. The
first decomposition adopted is shown in figure!5.2. The main matrix that staza®shilts is de-
composed among the available nodes along the two proteins axis, so eadrisompmong two
proteins for all the methods is performed on the same node, better balaneiddfénent methods.
This decomposition is the more efficient in terms of inter-jobs communication eadrtas it min-
imizes the number of information exchanges amongst compute nodes. Fotbethe matrix is
perfectly partitioned as each node is responsible for the computation aagestaf same number of
proteinspsz. In the next subsection these results will be analyzed in more detail. Hovireitial
experiments suggested that execution times for different couples ofnmatan largely fluctuate
(see table 5.3), making the load among the different nodes not really kdlanc

A second strategy is to balance the total execution time per compute nodethaihéne
number of pairwise comparisons. Thus, this strategy takes into accounhtbraogeneities in the
size of the proteins being compared and is shown in figure 5.3. In ordetup a bag of proteins
having the same overall number of residues on each node, the followgejylarsed strategy was
followed. Consider the case of proteins to be assigned tq/theow processors (but the procedure
is analogous for the column processors). First of all, proteins aredsbytéhe number of residues.
Then, they are assigned, from the longest to the shortest one, to tadaaig the current lowest

sum of residues. This procedure is not really time consuming, as it resquicg pfor sorting the
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proteins andb(y/n)? = pnfor assigning them to the correct node. The same distribution obtained for
the row is also chosen for the column, so that the order of rows is notetiffef that of the columns
and the operation of normalization and removing invalid/missing values couldriEmed without
other overheads.

Each of the two proposed load balancing approaches result in a difféRUJ and mem-
ory usage. In what follows we analyze the benefits and drawbackedebch of them. Unless
otherwise stated, a given analysis/argument applies to both of the stratelgieseforth, the first

decomposition will be referred to & enand the second one aseven

A

Proteins

I
|

11 Proteins
Methods

FIGURE 5.2: Even distribution of the problem spageréteinsx proteinsx methods Each node is respon-
sible for the same computation, i.e. same portion of their)atr

5.4 Cost Analysis

5.4.1 Space Analysis

In what follows we do not take into account transient memory requiremegntetdifferent methods

(e.g. internal data structures) as these have, on the one hand, sty analyzed in the original
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FIGURE 5.3: Uneven distribution of the problem spacgrgteinsx proteinsx methods Note that the
different sizes take different protein sizes into accoeng.(one node only for a few big proteins, which take
quite long to calculate; and one node for many smaller pmeteishich are quicker to calculate).

article where each method was originally introduced and, on the other treas® transient space
requirements are released as soon as a particular pairwise comparismeisihe nomenclature
used in our analysis is summarized in Table 5.1.

The entire matrix, storing the comparison/normalization results, is decomptsegl a
each of the two proteins axis amongodes. So, in the case of even distribution, each node handles
a matrix of sizepzTm and of size= maxrow_proty x col_proty) x m for the uneven distribution,
wherep is the number of proteing, the number of nodesnthe total number of computed methods
androw_proty andcol_prot_x are respectively the proteins stored on the row and on the column
of the matrix assigned to the node In this case the space: %” if maxrow_prot, — ﬁp and

maxcol_proty, — ‘—; i.e. almost the same number of proteins is stored on each node.
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Description

Number of proteins

Number of nodes (processors)

Number of methods used (i.e. MaxCMO, FAST, etc..)
Kk Number of indices computed by the method k

£Z3°>27T

Total number of indices computed by all the methods

I‘OW_pI’O'[X Number of row proteins present on noxle

C0|_pl’0tx Number of col proteins present on noxie

Number of evaluation conducted on nod@ow_protk x col_proty)

average size of proteins

average execution time of all the methods over all the couglpsoteins on node

ELg
g

average execution time of all the methods over all the couglpsoteins

TABLE 5.1: Nomencalutre used for the analysis.

The space necessary to store the proteiﬁgﬁ? for even distribution anchax(row_proty x
col_prot,)mS, for uneven distribution, wherg, is the average size of proteins. This is the worst
case as in many cases row proteins and column proteins are overlapped.

Obviously, in the case of the uneven distribution, the memory space is bdlanteif

the number of proteins stored on a node are not much different frona gtosed in the others.

5.4.2 Time Analysis

Let Tmbe the average execution time of all the methods over one pair of proteins mptie
average execution time of all the methods over one protein pair stored exnod

So, only for the computation part of the algorithm, in a single node executiertpthl
execution time will beTs = p? x Tm As for the distributed case, formulation is not so simple as,
depending on the distribution of the proteins, average execution times coualty different from

node to node. In such case, in the even distribution the parallel executiomtinbe T, = pZT“‘

and T, = max(row_proty x col_proty x Tm) < maxrow_prot, x col_proty) x maxTmy) for the
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uneven distribution. So, one has to balance this product as to obtain arfgiutation; in the case
of even distribution only iff m, < Tmfor each node, a balanced load is achieved.

In addition to considering different execution times over different npdesmunication
overheads must also be taken into consideration. This overhead Isaippie first phase, when
proteins are distributed over the nodes (udifigl_Bcastroutine) and in the latter phase, when nor-
malization and invalid/missing value replacement must be conducted (MdhgAllreducerou-
tine).

Moving the proteins to different nodes does not require an excegieen comparison
with the large computation time of the computing phase. Naturalhgndecomposition needs
slightly less overhead thamnevenone as almost the same number of protein must be send to
each node. The amount of data exchanged is, as discussed ﬁ’ezﬁ%rmr even distribution and
maxrow_proty x coI_protx)§p for uneven.

As for the normalization phase, we need to compute the glatigimumand maximum
for all the methods for a total of & values exchanged. For the correction of invalid or missing
values we need thminimumor maximunfor each row and column and method in which we got an
invalid value. Thus, in the worst case, we have to exchamdm2but typically invalid values are
found only for a few methods and not for many cells.

Although the same amount of information is exchanged by the two decompogitbe s
gies, the communication overhead is higher fordheverstrategy. This is mainly due to the worse
efficiency for collective communication in an environment in which there #ferdnt number of

rows and columns for each processor.
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5.4.3 Discussion of the Theoretical Cost Analysis

The two decomposition strategies adopted present different pros asd Atthough the even de-
composition better utilizes memory both in terms of cells of the ma@zﬁéx and proteins ané),

it does not balance well the execution time on the different nodes, elipéicias usual, proteins
have very different structures (or number of residues) . On theaonthe uneven distribution, pay-
ing the cost of a larger memory requirementsaf(row_proty x col_proty) x m for the matrix and
maxrow_prot, x col_proty)S, for proteins), is the only approach usable for obtaining appreciable

reduction in execution times for small-medium and not well balanced datagatsteins.

5.5 Experimental Results and Discussions

Different experiments were conducted to validate the quality of the two deasitign strategies.
Two metrics are usually used for testing the computational scalability of a Jadiiigbuted sys-
tem: the speedupand the efficienc. The "speedup” is a measure that indicates the improvement
in the execution time of a parallel algorithm as compared to its sequential cparitethere as the

"efficiency” indicates the utilization of each processor in a parallel system.

5.5.1 Datasets and Test Suite

All the experiments were performed on a Linux cluster, nammpdciand placed at ICAR-CNR
institute in Italy, with 64 dual-processors Itanium2GHz nodes each having 4GB of main memory
and being connected by a Qsnet high performance network.

In our experiments, we used the first chain of the first model both for ds &d Sander

dataset (RS119) and for the Chew-Kedem (CK34) data set (see/d@bfer the characteristics
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of these datasets). As an example of a large dataset, we used the ooseprtyy Kinjo et al.
[223]. This dataset has been prepared by using PDB-REPRDB §@g&ijithm to select 1012 non-
redundant protein chains. The length of each chain in this dataset teigitean 50 with a sequence
identity less than 30%. Furthermore, the dataset does not contain anywittainon-standard
residues or chain breaks and all of its chains have resolution better thaan? R factor better than

20%.

TABLE 5.2: Overview of the datasets used in the experiments. The hashdy(#) is an abbreviation for
Number of

Dataset # Chains # Comparisons # Residues

per Datasets per Datasets per Datasets

CK34 [221] 34 1,156 6,102
RS119 [222] 119 14,161 23,053
Kinjo et al. [223] 1012 1,024,144 252,569

5.5.2 Scalability of the Even Decomposition

To evaluate the quality of the even decomposition, the previously introduceitsnef scalability
and efficiency were used, together with the execution time on different exsnath processors. The
speed-up values obtained for the two medium datasets CK34 and RS ktarein figure 5.4.
For both datasets, the speed-up remains good using up to 16 pro¢cessarsing more
processors does not help to speed up the total execution time to the same. ddys is due to the
structural differences of the proteins, as each protein is composediffgr@nt number of residues.
Indeed, inspite of having the same number of proteins on each node, sotemp could have a
large number of residues on a node and a few on another one. Thide@t®n is confirmed by the
large variance in the execution times of the different methods (Table 5.3pr s execution time,

for the RS119 (CK34) dataset, the entire execution time was reduced froum @ days (& hours),
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FIGURE 5.4: Speedup of the even decomposition using the CK34 and RS149ats ors pacicluster. The
graphs shows that with CK34 dataset the speedup of thetdittd algorithm (based on even decomposition)
is around 2&x with efficiency of 41% while the values of speedup and efficieimcrease to around 30
and 46% respectively for the larger dataset i.e., RS119.

using the sequential implementation on one machine8bdurs (1415 minutes) on 64 processors.
This means that the new distributed algorithm performs 2Z&ith CK34 dataset) and 30 (with
RS119 dataset) better than its current sequential counterpart. Howess improvements are still
far from the ideal improvement of 64and hence on 64 processors, the efficiency degrades to the
values of 41% and 46% respectively for CK34 and RS119. The follogs&agjons provide analysis
of this effect in detail and introduce another approach that furtheamcds the speedup as well as
the efficiency of the system.

It is important to understand whether the execution times of the different niette-

scribed in the previous sections depends on the number of proteins, parttieers of residues, or
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TABLE 5.3: Average execution times and standard deviation (minutefheodifferent methods for the
CK34 and RS119 datasets averaged over 60 tries.

Dataset USM FAST TM-ALign Dali CE MaxCMO
CK34 | 0.52+0.28 | 0.14+0.07 | 0.28+0.11 3494153 3.20+0.66 0.99+0.34
RS119 | 3.68+0.31 | 2.16+1.05 | 5.78+2.86 | 4459+2051 | 41.05+2041 | 20.13+9.69

on both of them. To this end we randomly divided the proteins composing thedtasats CK34
and RS119 among 64 nodes (a 8x8 grid of processors) and we rure al/dilable methods and
measured the execution time, the overall number of residues and of prptesent on each node.
This procedure was repeated for 20 times for a total of 120 differensunea of time.

Then, we plotted the execution time vs the number of proteins (figures 5.5 la) amdi
the execution time vs the overall number of residues (figures 5.6 a anddser@éng the figures,
it is clear that the execution time depends mainly on the overall number of essfmesent on a
node, i.e. the dependence of time as a function of residues number is livezaty while it does not
exhibit a linear dependence on the number of proteins.

The largely usedearson product-moment correlation coefficiéPMCC) was computed
to better assess the dependency between time and residues versus the jimededns. In the first
case, we obtained a coefficient aP02 and 95 respectively for th€ K34 and RS119dataset,
while in the latter case we obtained only82 and (685.

Further analysis aimed to explore whether this linear dependence wasodtlby one
or more slowest methods or is verified for all the methods. Figures 5.7 argh6v8the execution
time vs the number of residues for each method for CK34 and RS119. AkHeA8T, USM and
MacCMO perform faster as compared to Dali, CE, TM-Align, but the ddpane is quite evident

for each of them.
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FIGURE 5.5: Execution time (s) vs number of proteins present on the nodihé (a) CK34 and (b) RS119
dataset. The graph shows that the execution times exhibibgdinear pattern in terms of the change in the
number of proteins.
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FIGURE 5.6: Execution time (s) vs number of residues present on the radéé (a) CK34 and (b) RS119
dataset. The graph shows that the execution times exhilditsar relationship with the change in the number
of residues.
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FIGURE 5.7: Execution time (s) vs number of residues present on the rodbé different methods with
CK34 dataset. Each method has different execution time xhibis linear relationship with number of
residues.
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FIGURE 5.8: Execution time (s) vs number of residues present on the rodbé different methods with
RS119 dataset. Each method has different execution timexhibits linear relationship with number of
residues. Additionally, with this slightly large datas&S119) the linear dependence becomes even more
vivid.
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5.5.3 Scalability of the Uneven Decomposition

From the previous section, it is clear that the execution time strongly demsntlee number of
residues per node. Thus, scalability experiments for the same dataseteasmdistribution were

also conducted witlunevendecomposition and results are reported in figure 5.9. For the RS119
(CK34) dataset, the entire execution time was reduced from about 6 @&ysours), using the se-
guential implementation on one machine, té Bours (1165 min.) on 64 processors. In comparison
with the even strategy, we obtained an improvement on 64 processorsutf B89 for the CK34
dataset and of about 29% for the RS119 dataset. Furthermore, omé&dspors, the efficiency is
maintained at a quite good value of 64% for RS119. For the CHK34, we eltaivalue of 50%

that is not a bad result, given the small grain of the dataset.
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FIGURE 5.9: Speedup of the uneven decomposition using the CK34 and R&dth8ets orspaciclus-
ter. The graphs shows that with CK34 dataset the speedupedigitributed algorithm (based on uneven
decomposition) is around 28 with efficiency of 50% while the values of speedup and efficjeimcrease
to 423x and 64% respectively for the larger dataseti.e., RS119.



5. AHIGH-THROUGHPUT DISTRIBUTED FRAMEWORK FOR MEPSC 127

5.6 A Further Experiment on a Large Dataset

The last experiment was performed using the the uneven strategy ruonidg 16, 25 and 64
processors applied to the Kinjo dataset, comprising of 1012 non-redtipdatein chains. Using
this dataset, the algorithm performed about 1 million of comparisons for all thieaus.

As the execution time on a single processor is extremely large, this case iamnsal-
ered, instead, scalability was measured based on an estimated base lineooes&qrs running
the faster of all the methods, namely, the FAST algorithm. For referencahmatt€AST takes ap-
proximately 11 days to execute on a single processor for such a largeenaiproteins. Table
shows that method USM will take approximately 2 the execution time of the FAST method
(the factor 27 for USM and subsequently for other methods is based on the avertyetohes for
CK34 and RS119 datasets as compared to method FAST). Likewise, the edtexetation time
for TM-Align is 2.33x, Dali 2278x, CE 2293x, and for MaxCMO 819x, giving the aggregate
factor of 5893. As method FAST takes approximately 11 days on a single processestimated
time for all the methods on 1 processor would be<138.93~ 648 days or: 162 days on 4 proces-
sors. The execution time of the algorithm applied to this huge dataset warefilom 162 days on
4 processors, to 39.7 days on 16 and finally to 10.7 days on 64 prose$be scalability obtained
is very close to the ideal case, as can be seen in figure 5.10. In fact,mo&essor, respectively a

scalability value of 5% and an efficiency value of 89% were measured.

5.7 Conclusions

A high-throughput/grid-aware distributed Protein structure comparisasmdwvork for very large

datasets is proposed, based on an innovative distributed algorithm guratimin a cluster and grid
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FIGURE 5.10: Speedup of the uneven decomposition using the Kinjo datesgpacicluster. The graph
shows that with this large dataset the distributed algorifbased on uneven decomposition) achieves an
increased speedup of 57and an efficiency value of 89%.

environment. This framework is able to perform structure comparison @giiog a selection of the
available methods. The design of this algorithm have been analyzed in tespac#, time, and
communication overhead. Based on this analysis two different load badpmgproaches have been
used to improve the overall performan@enanduneverstrategies. The former permits to obtain
the best distribution in terms of memory, while the latter performs better in termsegti&rn time
and scalability on cluster computers. Experiments conducted on medium gedrésal datasets
prove that the algorithm permits to reduce execution time (i.e. for the RS118ad#tevas reduced
from 6 days on a single processor to about 5 hours on 64 procgssutto cope with problems

otherwise not tractable on a single machine as the Kinjo dataset, which took Hbdays on a
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64-processors cluster.
The next chapter provides further evaluation of this distributed framewoterms of

different integrated environments for MPI jobs.
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CHAPTER®G

PERFORMANCE EVALUATION OF THE MC-PSC

ALGORITHMS UNDER IRME FOR MPI JOBS

Chapter 5 presented the design, implementation and evaluation of the distritaresivork for
MC-PSC. This chapter evaluates the effect of diffelategrated Resource Management Environ-
ments(IRMESs) on the performance of this framework in order to find the envirarintieat could
provide optimal results.

This chapter was published as a peer reviewed conference papendeedings of the
IEEE International Symposium on Parallel and Distributed Processing Wjtplications ISPA

'08,ISBN: 978-0-7695-3471-8, pp.817-822, 2008. [d0i:10.1109XI3608.41]

6.1 Introduction

As explained in chapter 5, in order to achieve the high-end computatiowakrpeeded for compute-
intensive applications such as Protein Structure Comparison, the opeoétibase applications
needs to be decomposed using some parallel programming libraries thas@e dn the imple-

mentations of Message Passing Interface (MPI) model. Commonly used M&idiinclude
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MPICH/MPICH2 [188] [189] and LAM/MPI [241] [242] which has recty been merged into a
global project under the name of OpenMPI [190]. Given that the sobparallelism is extending
from supercomputers to personal computers, workstations and net{d@¥K]; aconvergingeffect
on the fields oparallel anddistributedcomputing is being observed. Itis in this perspective that the
operation (submission, execution and monitoring) of MPI based jobs tebdsautomated through
some suitable resource management middleware (see Figlre 6.1) suah@s®dEngine (SGE),
Portable Batch System (PBS), Load Sharing Facility (LSF) etc. The dizedditerature refers to
the functionality provided by these software using various names for icstaital Resource Man-
agement Syste(thRMS), Queuing SystenpBatching SystenWorkload ManagerJob Management
SystenmandDistributed Resource Managetc as described in chapter 2 and 3.

Normally, when MPI based parallel jobs are submitted to LRMS, it calls somenaxkte
framework to launch the MPI environment for the execution of jobs [2K3here is no appropriate
coordination between the external framework and LRMS, then the ladijehe may get dispatched
on somewhat different resources than what had been allocated byrM& L creating, on the one
hand, resource overloading and conflicting problems, on the other pemdding inaccurate or no
resource usage and monitoring information. Both of these problems cowdlinfieated if certain
means are used to integrate the operation of LRMS and MPI environmedit [24

If the integration is achieved in such a way that it removes only the firsigmobamely
the launching of parallel jobs doesn’t create overloading and resmanflicts, then the integration
is said to belLoose Integration In Loose Integration, the LRMS only sends information to MPI
environment regarding which resources a particular job should rurubthb job runs in isolation

from LRMS and hence no resource usage and monitoring information isnettay the LRMS.
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Queue Manager

Administrator
Policies

FIGURE 6.1: Three main components of laocal Resource Management SystrRMS). Each newly
submitted request for the execution of user jobs is taker bgrtheQueue Managefe.g. sge_gmaster
daemon of SGE which stores these jobs in a queue and requests the Sehédlg. sge_schedd daemon
of SGE) for their execution. The Scheduler gets job infoiorafrom the Queue Manager and optimally
decides when and where to execute these jobs based on theaitifin obtained from the Resource Manger
(e.g.sge_execd/sge_shepherd daenar8GE) and system administrator’s policies. This type d¢bmated
system frees the user from manually looking if the requikszburces for the execution of a job are available
and to manually start the job on each node.

However, if the integration is achieved in such a way that it removes bothegbriblems then it
is said to be dight Integration which enables the LRMS to run the MPI jobs under the control
of its Job Controlling Agenso as to avoid the problem of resource overloading and getting full
resource usage information. This chapter aims to evaluate the performbR&Cgobs running
under such an integrated architecture configured with different appes in order to provide a
scientific basis for decision making while building a large scale e-Scienasinficture that meets
with the requirements of today high-impact scientific applications.

The remainder of this chapter is organized as follows: section 6.2 promiteserview

of the parallel libraries and LRMS that has been used in this study; it atsadas the details of
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the implementation and results of the integration; section 6.3 provides the detihitstestbed and

datasets used for the experimentations; finally section 6.5 concludes fitercha

6.2 Integrated Resource Management Environment (IRME) for MR Jobs

This study is based on the use of two different implementations of MPI libragasely MPICH2
[188] [189] and Open MPI [190]. The description of these librariesréspnted in Table 4.3. The

local resource management system is described in the following section.

6.2.1 Sun Grid Engine (SGE)

SGg provides management solutions fduster grids SGE uses Unix as its native environment
and implements most of its services and other entities as Unix daemons. Thé Uskx @s a
native environment allows SGE to make use of already developed staatstable services and
protocols for communication and computation suctgasureShell (SSH),RemoteShell (RSH),
Network File System (NFS), and Remote Procedure Call (RPC) etc. Notrsgl based cluster
grid consists of four types of hosts and different daemons keep rgronneach host. A brief

description of these hosts is given bellow:

Job Server (execution name/command 'sge_gmaster’):

This daemon controls the overall operation of SGE. It interacts with otfeandas to provide
job management and monitoring services and information. In case of amg é&nmecords the

diagnostics messages in the direct88E_ROOT/ <qmast er _spool _di r >/ messages.

Job Executor (execution name/cammand 'sge_execd):

1SGE; the Sun Grid Engine is an open source and cross platform resmamagement system developed and main-
tained by Sun Microsystems. It also has a commercial version nanuedN$ Grid Engine (SN1GE)’


SGE_ROOT/<qmaster_spool_dir>/messages
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This daemon reads the local queue and places the job for execution imctajuwith Job
Controller daemon. In case of errors, the daemon records the diagnossgages in the

directorySGE_ROOT/ <execd_spool _di r >/ <host nane>/ nessages .

Job Controller (execution name/cammand 'sge_shepherd’):

This daemon provides parent process functionality for a single job, amcEenables the SGE
to get the resource usage information after the job finishes. It gets threniation from Job
Executor regarding which job to execute and starts up to 5 child processssch job. These
child processes include the prologue (if enabled) , startup of the paszall@bnment (if the
job is parallel), startup of the job itself, shutdown of the parallel environraadtfinally one
process for epilogue (if enabled). The prologue, epilogue, andigagavironment startup
and shutdown scripts are site specific and are provided by the administtaterconfiguring

the cluster. In case of any errors it record the messages in the Jobt&pedirectory.

Job Scheduler (execution name/command 'sge_schedd’):

For each new job the Job Server contacts the Job Scheduler daemodag&inien reads the
job’s profile, gets the site’s policy information as configured by the admindstneequests the
resource information from Job Executor and finally communicates the desitidob Server
regarding which queue this job be submitted for execution. In case oframg ¢he daemon
records diagnostic messages in the direct®® ROOT/ <qmast er _spool _di r>/ schedd/

messages.

In addition to different daemons, the SGE infrastructure consists of anetttity called

'queué A queusds used as a container for jobs. There may be several types of querasterizing


SGE_ROOT/<execd_spool_dir>/<hostname>/messages
SGE_ROOT/<qmaster_spool_dir>/schedd/messages
SGE_ROOT/<qmaster_spool_dir>/schedd/messages
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different types of resources and environments. The SGE schedagenah performs assignment
of jobs to appropriate queues based on the information from job’s prcfiledl as the system
load distribution. In order to accommodate those jobs which need to be deteatuthe same
time and which require to communicate among themselves ( the parallel jobs), IB@Hes an
interface to define parallel environments (PE). Different ways of imtiégm of the SGE and parallel
environments are further described in the following section.

According to [244], though MPICH2 provides different process ngamaent methods
such aggFoker, MPD, andSMPD only the later could be used for tight integration as it satisfies
the requirement of aingle process groupn each node of the cluster. The SMPD method by itself
could be used in two different ways i. 8MPD daemon-bas€@MPD-DB) andSMPD daemon-less
(SMPD-DL). With SMPD-DB a single daemon per node is used to manage altdbesses running
at that node. In case of multi-processor node the resource usagaéation of all other processors
is aggregated to the one and same daemon and hence the SGE would recordrétl resource
usage information per node through a sinQleeue Remote Shetirsh) invocation when the job
finishes its execution. Whereas, with SMPD-DL each process starts onritem each node and
SGE needs to record eagmshinvocation for each process separately. For the sake of comparison
we used both SMPD-DB and SMPD-DL to perform Loose and Tight latimm using the distinct

configuration parameters as listed in Table 6.1.

6.3 Testbed and Datasets

In order to evaluate the performance of PSC jobs under bathl{oose and Tight) ways of inte-

gration, a testbed consisting ofh@terogeneoukinux cluster (resources shown in Table |6.2) has
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TABLE 6.1: Distinct configuration parameters for Loose Vs Tight intggm of SGE and MPICH2.

Parameter Loose Integration Tight Integration

start_proc_arg | /sge/mpich2_smpd/startmpich2.sh /sge/mpich2_smpd/startmpich2.sh
$pe_hostfile /local/mpich2_smpd $pe_hostfile -catch_rsh /local/mpich2_smpd

stop_proc_arg | /sge/mpich2_smpd/stopmpich2.sh /sge/mpich2_smpd/stopmpich2.sh

/local/mpich2_smpd -catch_rsh /local/mpich2_smpd
control_slaves FALSE TRUE
job_is_first_task TRUE FALSE

TABLE 6.2: Hardware Configuration of the Cluster Grid. All hosts comigate through 100 Mbps
Ethernet cards

Host CPU(GHz) Cacheaks) RAM (GB) HD(GB)
compl | 2x P4-1.86 4096 2.0 250
comp2 | 2x P4-3.0 512 1.0 80
comp3 P4-2.4 512 0.5 20
comp4 P4-1.7 256 1.0 40
comp5 | 2x P4-3.6 1024 2.0 80
comp6 P4-2.4 512 0.5 40

been used. The cluster consists of 6 nodes with a total of 9 slots givinggragated CPU power

of 25.82 GHz and main memory of 7 GB.

6.3.1 Datasets

Chapter 5, worked with datasets which have already been used in the lieerBveloped by dif-

ferent authors; these datasets do not exhibit any regularity in termsnatberuof structures. The
regularity would however be useful in observing the continuous reldtiprizetween the execution
time of PSC jobs and the size of the dataset under different softwareemeénts and configura-
tions. To this aim, three subsets of regularly increasing number of strgdiaree been randomly
selected from the dataset of Kinjo et al. [223]. These datasets wegrarprbwith the same algorithm

and characteristics as described in section 5.2. Table 6.3 providesrfdetadls of these datasets



6. EVALUATION OF THE MC-PSC ALGORITHMS UNDER IRMES

TABLE 6.3: Datasets used in the experiments. Hash sign (#) repre$entgrd’Number of’

Dataset # of Chains | # of comparisons | Size in MB
SFBK-250 250 62,500 33.1
SFBK-500 500 250,000 66.5
SFBK-1000 1000 1,000,000 137.5

137

and Figure 6.2 shows the effect of the increasing number of protein<loaithe computational

time taken by FAST [50], one of the structure comparison methods we useid stuhly.

6.4 Results and Discussions

In order to evaluate the goodness and weakness of the integratednemeitbdescribed in the pre-
vious section, we run the FAST algorithm using three datasets listed in[Tabl&He3xperiments
were performed on 6 heterogeneous nodes (9 processors) ofaClaster with the characteristics
described in Table 6.2. Figure 6.3A, gives an illustration of a PSC job rgnRAST algorithm
under loose integration, whereas Figure 6.3B illustrates the operation s&ithe MPI job running
under tightly integrated environment.

Table/ 6.4 shows the computational time in termsaafl clock time, usertime, system
time and CPU time required for the execution of one of the protein structurear@sop algorithms
named FAST [50] with different datasets under the integrated resournagement environment
for MPI jobs that has been configured with different approacheasll Clocktime is the real time
taken by the algorithm as perceived by the user and includes CPU time, I/Orttm@amunication
time e.g. between different nodddser time is part of the cpu time taken by the user application
(i.e. FAST algorithm) itself;System timeas the part of cpu time taken by the system software;

and CPU time is the sum ofiserandsystentimes. It can be seen in Table 6.4, that in terms of
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FIGURE 6.2: Computational time for PSC algorithm (FAST) on P4-2.4GHepnocessor machine with in-
creasing number of proteins (single chain based PDB filebdnlataset. The graph shows that the execution
time increases with respect to increase in the number oéjraithowever, the change is not linear because
of the different number of residues i.e. length of the sties.

wall clock time, the algorithm finishes earlier under Loose integration as cadpa the Tight
integration. The reason beyond this large variance is the fact that witk lategration we only
get the accounting information for the master process which runs on oelpmrtessor and hence
it seems to be a fraction of the total wall clock time as reported in tight integratdso, with
Loose integration theser, systemandcputimes (accounting information) can not be noted as the
mpi job doesn’t run under the control of job controlling agegé-shephetd-urthermore, in Loose
integration the SGE is unable to get proper monitoring (state) information init#se mpi job
goes through any problems. An example of such job that SGE was unaldeitdagrmation about
is one suffering with an mpi related error:

"unable to read the cmd header on the pmi context, socket connectioml,cirser

stack: MPIDU_Socki_handle_read(607): connection closed by.p&er

This job took far beyond its expected execution time and the SGE did not nodifysibr
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and the job was killed manually afterward. Being able to keep track of whigk p&structures
have been (un)successfully compared and by which method is an ekfeattiee of modern robust
comparison servers such as [27]. Hence, this is a potential weakinkegeseintegration.

Referring to Table 6.4 again, it could also be observed that for a small euaflpro-
teins (e.g. SFBK-250 datasgthe performance of both SMPD-DB and SMPD-DL types of tight
integrations is almost same, however, for larger datasets $&BK-500andSFBK-1000, the for-
mer outperforms the later one. This is because in case of SMPD-DL, S&ds he record each
grshinvocation and hence incurs an extra overhead. Tables 6.5 and 6.6 tBustrae interesting
differences betwee8MPD-DBand SMPD-DLtypes of tight integrations. Table 6.5 shows that
SMPD-DB integration doesn'’t expose the dual-processor natureneé sd the nodes (e.gompl
comp2 andcomp4 Table[6.2). However, it utilizes both of the processors of all dual-gssor
nodes implicitly as can be seen from the values of CPU times for comp2 and daoriipble 6.5,
which are even greater than the value of their correspondadbclocktimes. Table 6.6 shows that
the overall performance of the SMPD-DL tight integration gets degradeduse of the longer CPU
time taken by the slowest nodeomp4 Table 6.2). This longer CPU time could be because of the
slowest speed of certain hodes in subject as well as because of tiee lengths of protein chains
being compared by FAST algorithm at that node. It is because of this lomgrrg node that faster

CPUs also go through long idling cycles.
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TABLE 6.4: Resource usage comparison for FAST algorithm [50] withedéht datasets using Loose and
Tight integration of SGE and MPICH2 with SMPD daemon-basePD-DB) and daemon-less (SMPD-
DL) startup methods.

Dataset Time Loose Integration [Tight Integration
[hhmm:ss] | SMPD-DB | SMPD-DL | SMPD:DB | SMPD:DL

SFBK-250 | wallclock | 00:10:43 | 00:13:51 | 00:59:18 | 00:52:27
User - - 00:50:18 00:45:46

System - - 00:08:05 00:06:25

CPU - - 00:58:23 | 00:52:11

SFBK-500 | wallclock | 00:51:12 | 01:01:29 | 01:38:28 | 02:11:48
User - - 01:22:11 01:50:25

System - - 00:13:18 00:18:51

CPU - - 01:35:39 | 02:09:16

SFBK-1000| wallclock | 02:22:25 | 02:22:36 | 05:39:36 | 07:44:04
User - - 04:34:06 06:28:56

System - - 00:49:15 01:08:34

CPU - - 05:23:22 | 07:37:30

TABLE 6.5: Time distribution for FAST algorithm wittsFBK-100Gdataset over nine processor using tight
integration with SMPD daemon-based (SMPD-DB) method.

compl comp2 comp3 comp4 comp5 comp6
Wall Clock jhh:mm:ss] | 05:39:37 | 05:39:37 | 05:39:37 | 05:39:37 | 05:39:37 | 05:39:37

Userfhh:mm:ss] 03:43:17 | 05:05:48 | 02:56:23 | 03:40:22 | 07:21:00 | 04:37:37
Systemhh:mm:ss] 00:33:37 | 01:02:10| 00:32:29 | 00:41:13 | 01:09:55| 00:56:36
CPU [hh:mm:ss] 04:16:28 | 06:08:07 | 03:28:52 | 04:21:35| 08:30:55 | 05:34:13

Mem mB] 31.06 66.08 60.87 43.53 95.83 104.53




TABLE 6.6: Time distribution for FAST algorithm wittBFBK-1000dataset over nine processor using tight integration

(SMPD-DL) method.

compl compl comp2 comp2 comp3 comp4 comp5 comp5 compb6
cpu-1 cpu-2 cpu-1 cpu-2 cpu-1 cpu-2
Wall Clock (hhimm:ss] | 07:44:05 | 07:44:05 | 07:44:05| 07:44:05| 07:44:05| 07:44.05| 07:44:05| 07:44:05| 07:44:05
Userfhh:mm:ss] 01:29:22 | 02:01:50 | 03:55:15| 03:00:35 | 02:31:28 | 06:28:56 | 02:57:52 | 02:14:24 | 03:20:42
Systemhh:mm:ss] 00:14:33 | 00:17:54 | 00:40:19 | 00:29:51 | 00:29:50 | 01:08:34 | 00:30:41 | 00:24:15| 00:45:00
CPU [hh:mm:ss] 01:43:56 | 02:19:44 | 04:35:34 | 03:30:26 | 03:01:18 | 07:37:30| 03:28:33 | 02:38:39 | 04:05:42
Mem [mB] 10.66 29.42 63.66 41.75 22.69 161.77 24.65 30.56 48.44

withPBMdaemon-less

SINYI 43ANN SWHLIHO9TVY OSd-OW IHL 40 NOILVNIVAT "9

134"



A

6. EVALUATION OF THE MC-PSC ALGORITHMS UNDER IRMES 142

PO

2723
5168
5386
5331

COMMMAND

S GEGbinflxad-z86/sge execd

\ sge shepherd-113 -bg
Y bazh fusn’S GES/default/spoolicomp 1ok scripts/113
Y mpiexec -n 9 -machinefile ftmpd113.1 all gfmachine

2666
5251
5255
5392
5393
21429
5394
21426

xinetd -stayalive -pidfile fvarfrun/zinetd pid

\inrshd

\_themefaasflocal/mpich? smpdibin/smpd -port 20113 -d
Y fhomefaazflocal'mpich? smpdibinfsmpd -port 20113

\_thomefaasfpar_procksi Alone

| \_ .Jifast fhomefaasiwaotkepace

» SGE Job
Controlling
Agent

» MFITob

\_thomefaasfpar_procksi_Alone
Y Jftast fhomefaasiworlospace

B

P

14252
30342
31127
31132
31084
31086
31085
3108s
31133
31134

307

COMMATID

fust/S GEGbin/lu24-xE6fsge_execd

Y sge shepherd-138 -bg
| ' bash fust/SGES/defanltispooliaragornijob_scripts/138
| % mpiexec -n P -maclinefile fmp/138. Lall. g/machine
\_sge shepherd-138 -bg

l

» SGE Job

Vs B GESfutilbinlx2d-x86/rshd -1

VfusnfBGESMutilbin/lz24-m86lgrsh starter fussfS GEG
VW fhomefaasflocallmpich? smpdibin/smpd -port
\_fthomefaasilocalimpich? _smpdibin/smpd -port

\_thomefaasfpar_procksi_Alone
\_ fast themelaasiwork space

Controlling
Apgent

—* WPITob

FIGURE 6.3: Parallel jobs running under integrated resource manageeironment for SGE and
MPICH2. A: Loose Integration; SGE launches the parallel job throtsgjob controlling agentge_shepherd
usingmpiexeacommand by specifying the resources to be used (throuaghinefile) and hence eliminating
the problem of resource conflicting. However, the actual Bl (FAST algorithm) doesn't run under the
control of sge_shepherdnd hence no resource usage (accounting) information deubtthievedB: Tight
Integration; SGE uses two instances of its job controlliggrasge_shepherane for launching the parallel
job by specifying the resources to be used and other for ollinty (monitoring) the operation of the running
MPI job (FAST algorithm) and hence providing the full rescaiusage (accounting) information.
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6.5 Conclusions

Performance of the distributed framework f@rotein (Structure) Comparison, Knowledge, Simi-
larity and Information(ProCKSI) has been evaluated (using FAST algorithm as an example) und
integrated resource management environment for MPI jobs. Results evdheation indicate that
Loose Integratiormethod is not much reliable in terms of accounting and monitoring information
to be used for PSC jobs. Furthermore, for larger datasets, Tight &tiegwith SMPD daemon-
based method outperforms its counterpart i.e. SMPD daemon-less methad.aliso been learned
that in a heterogeneous cluster where some nodes have double thenpede as that of others,
the slowest node could become a bottleneck for the overall performdrhe system. This per-
formance degradation could deteriorate further when that slowestis@dsigned PSC jobs with
longer protein chains. This type of problem could be solved with the dewedapof some intelli-
gent heuristics to perform better load balancing among the nodes.

Furthering the process of evaluation, the next chapter presents thits resevaluation
under the Grid environment that consists of more than one clusters asidnitenabled version of

MPI library to spawn the jobs across the sites.
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CHAPTER7

ON THE SCALABILITY OF MULTI-CRITERIA PROTEIN

STRUCTURE COMPARISON IN THE GRID

The effect of different integrated environments on the performandaetistributed framework
was discussed in chapter 6. This chapter, considers the procesaloéten of the distributed
framework under the Grid environment consisting of more than one clustersler to analyze the
effect of inter-cluster communication overhead and other issues relatied €rid.

Parts of this chapter were published as a peer reviewed conferepee ipathe Pro-
ceedings of The Euro-Par 2010 Workshop on High Performance Biaiatics and Biomedicine

(HiBB), August 31-Sep 3, 2010, Ischia, Naples, Italy.

7.1 Introduction

In order to achieve the consensus-driven decision making, the MCr&f@es to execute a given
set of methods on the set of protein structures to be compared. Giveortiftational require-
ments of each method and the ever growing number of entries in the PDBatisticecomputation

of the MC-PSC becomes a grand challenge and hence requires the@sd obmputing to over-
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come the limitations of a single parallel computer/cluster. The use of the Grid ¢omgpn the
other hand also introduces additional communication overhead and hergtaidard parallel com-
puting measures and metrics suclsageduandEfficiencyneed to be redefined [225]. This chapter
uses the grid-based definition of the speedbpd Speedu) and efficiency Grid Efficiency intro-
duced by Hoekstra et al. [225] (as described in chapter four, set#ioh), to measure the scalability
of our distributed algorithm on thgK National Grid ServicNGS) [66] architecture. The code of
the distributed algorithm is same as has been used in chapter 5. The resutisw&ite scalabil-
ity would be compared with single-site and single-machine performance tozantilg additional
communication overheard in a wide-area network.

The remainder of this chapter is organized as under: section 2 desttribesperimental

setup; section 3 presents the results and discussions and finally sectasedtp the conclusion.

7.2 Deployment on the NGS Infrastructure

TheNational Grid ServicéNGS), provides theSciencénfrastructure to all the UK-based scientists
free of cost [66]. For our case we used the Globus-based MPIy [P2] (grid-based implemen-
tation of MPI) to spawn the jobs across two NGS sites; one at Leeds andhtiread Manchester.
Like its predecessors (e.g MPICH-G [245] and MPICH-G2 [191]) Mg library extends the Ar-
gonne MPICH implementation of MPI to use services provided by the Globni&iT¢GT) [34] for
cross-site job execution using IP-based communication for inter-clusteagieg. However, being
the latest implementation, the MPIg includes several performance enhantsesueh as in the case
of inter-cluster communication it uses multiple threads as compared to the singgdel ttommu-

nication of the previous implementations. Furthermore, besides being batkampatible with
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the pre-web service Globus, the MPIg also makes use of the new webesepvovided by Globus
version 4 [35]. By making use of the new web services, the MPIg previdech more enhanced
functionality, usability and performance. The use of the MPIg for cBitgsruns requires advanced
resource reservation so that jobs (processes) can run simultanesussg all the sites. To facili-
tate this, NGS provides thdigh-Available Resource Co-allocatidflARC) [246] as a command
line utility to perform automatic reservation. Each of the two NGS sites (Leeddvianchester)
consists of 256 cores (AMD Opteron with6&Hz and 8GB of main memory) interconnected with
Myrinet M3F-PCIXD-2. However, the NGS policies allow the advancemestion of maximum
of 128 cores at each site for the maximum duration of 48 hours. Once $kevation is done,
then the Globus-based job submission could be achieved witRakeurce Specification Language
(RSL) scripts and other Globus services could be used for job monitondgeantrol. For the MPI
based jobs to run on different sites, the source code of the applicatiols tede compiled with
MPIg libraries at each site and the executable placed in the appropriakingi@irectory under
the respective local file system. The compilation of the MPI based applicatibriM#lg does not
require any change in the source code and hence from the usesjseptive the deployment is as
straight forward as running the parallel application on a single site/clusterthae exception that
the RSL scripts specifies the resources of the additional site to be usade Fid, shows the overall
architecture and setup of deploying the MC-PSC application on the Grid.

The dataset used in these experiments is the one introduced by Kinjo 28ht{hsisting
of 1012 non-redundant protein chains having a total of, 362 residues. The 1012 chains result
in as many as , 024,144 pairwise comparisons for each method/algorithm. While using all the

six methods (e.g. th&niversal Similarity Metric(USM) [48], Maximum Contact Map Overlap
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FIGURE 7.1: Deployment of the MC-PSC application on the Grihe application takes protein 3-D structures as
input and prepares the balanced workl®¥do be distributed on the Grid. Half of the total workload (W/2)
is assigned to each site (CE). Each site further distribiite$V/2 intop number of cores.

(MaxCMO) [46], Distance Alignment Matrix DaliLite) [45], Combinatorial Extensio(CE) [47],
Fast Alignment And Search To@fAST) [50] and TM-Align [49]), the total number of pairwise
comparisons becomes4, 144 x 6 = 6,144, 864. Given that the average time for the comparison
of 1 pair using all the six methods on a single processor machine is aboos 8lsis computation
requires about 569 days to complete on a single processor and it tookldhd days to complete on

a 64-node cluster [247]. The results achieved for this dataset on thénBastructure are reported
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in the next section.

7.3 Results and Discussions

Both the single-site and cross-site experiments for MC-PSC were counldwittevarying number
of processors using the Kinjo et al [223] dataset. The Grid speeddi@ficiency [(4.6.1) were
calculated based on the results of these experiments and are shown én7figumd 7.3. Figures
7.2 shows that initially (for less number of processors), running the MC-Bxperiments across
two sites almost doubles the performance to that of the single-site. Hovasséine number of
processors increases (thereby decreasing the level of granuladiipereasing the communication
overhead), the speedup decreases slightly and finally reaches tdla&ur here is also same trend
in the Grid efficiency as shown in figure figure 7.3.

Figures 7.4 provides the comparison of the algorithmic speedup on a siteg(&shav-
ing 128 processors) and the speedup obtained while running the expesiorethe two sites,,
having a total of 256 processors). The speedup in this case is taker aatith of the execu-
tion time on single-machine (single processds)) ¢o the execution time op processorsTp) (i.e
S=S5= %). As indicated by Figure 7.4, though initially, the cross-site speedup is slifgvily
as compared to the single-site speedup; however, given the large nahgsecessors available on
the later, the overall speedup increases by almost a factor of 2. Thénwebr the computation of
the given dataset on 256 cores (2.4GHz each) was reduced@t88rs. Comparing this with the
569 days on the single-machine and7.8ays required on a 64-node (though having less processor
power i.e 1.4GHz each) cluster we observe a good scalability and perfoenad our algorithm on

the Grid. The boost in the speedup and performance is two folds i.e thenlangieer of processors
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(physical speedycoupled with high speed of each individual procespormfer scalability. Figure
7.5, shows the corresponding efficiency of the algorithm on single-sitecanss-site architecture.
The efficiency, in this case measures the effective use of the hardwaiis equal to the ratio of the
speedup om processors te (i.e E = %). Figure 7.6 shows the cross-site communication overhead
in terms of running the MC-PSC application in the Grid. The cross-site commntioricaverhead
is measured as the difference in execution time when the MC-PSC is run d& aimtjdouble sites
with same number of processors. For exampld; ifs the execution time on one site with 4 pro-
cessors andy is the execution time on two sites with 4 processors (i.e., 2 processors pesitgc
then the cross-site communication overhead wouldibe T,. Figure 7.6 shows that when a few
processors are used the load of the processors and consequeatiyahst of data to be exchanged
is high and consequently there is considerable communication overheagvelpwhen we use a

larger number of processors, the overhead is negligible in comparisorthgitomputation time.

—— 3rid Speedup

1.95 \

Speedup
oo

S

4+ 25+25 49+48 121+

Mumber of processors (S+5;)

FIGURE 7.2: Performance of the MC-PSC on the Grid: grid speedup (eq 4n#jally the speedup is
almost ideal for less number of nodes but as the number ofsnimdeeases on each site the corresponding
level of granularity decreases while the the level of comivation overhead increases and hence it causes the
speedup to degrade slightly. Nevertheless, the overatidsgeis much greater ( 1.6) as compared to speedup
on the single site (<1).
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FIGURE 7.3: Performance of the MC-PSC on the Grid: grid efficiency (ec);4as expected the slight
degradation of speedup causes the degradation in the effjcad the system.
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FIGURE 7.4: Single-site and cross-site speedup; the graph shows thaglhnitially, the cross-site speedup
(R2) is slightly low as compared to the single-site speedl; however, given the large number of processors
available on the later, the overall speed@)(increases by almost a factor of 2.
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FIGURE 7.5: Single-site and cross-site efficiency; as expected thesegits efficiency [E2 is slightly less
as compared to the single-site efficienB4 (due to extra communication overhead.
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FIGURE 7.6: Cross-site communication overhead. The graph shows thamatew processors are used
the load of the processors and consequently the amount aftddte exchanged is high and consequently
there is considerable communication overhead. Howeveenwte use a larger number of processors, the
overhead is negligible in comparison with the computatioret
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7.4 Conclusions

The quality of our parallel algorithm for MC-PSC has been measured in tefrasid Speedup
and efficiency. The results of the single-site and cross-site experimeiitata that by making use
of the Grid resources, the algorithm scales well and that the cross-sitegnication overhead is
not much significant. The current cross-site experiments were corttlantenly two sites based
on the HCG model of the National Grid Service (NGS), UK. As the NGS is still eptocess
of adding more sites, in future we would like to extend this study by increasigtimber of
sites as well as incorporating the heterogeneous architecture of the Ba@huse, at present the
maximum time allocated for continuous execution of a job/process at NGS is limitel lours
and hence does not allow evaluating the performance of the application erifHarge datasets,
hence the software developed so far could be upgraded by addingulihéoferance mechanism in
the form of checkpoint/restart. The checkpoint/restart mechanism cewdded without changing
the code of the application by using some libraries such a8#rkeley Lab Checkpoint/Restart
(BLCR) [156]. With these improvements, it would be possible for the MC-R&@erform real
time computation with even large datasets and to develop a database of pretedngsults.

The next chapter is going to discuss the storage, management and analfmsigiti)

similarity data resulting from the comparison of large scale protein structuasets in the Grid.
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CHAPTERS8

ON THE STORAGE, MANAGEMENT AND ANALYSIS OF
(MULTI) SIMILARITY DATA FOR LARGE SCALE

PROTEIN STRUCTURE DATASETS IN THE GRID

So far, in the previous chapters the design, implementation and evaluatiaadisthbuted frame-
work for MC-PSC has been described in terms of its execution time, commumicateshead and
load balancing strategies in different cluster and Grid environments. THhster and the one that
follows, present the discussion on the storage, management and anélysidti) similarity data
resulting from the comparison of large scale protein structure datasets @ritheThis chapter, in
particular evaluates two of the most commonly used data technologies in theéfectimain and
recommends the one most suitable to the requirements of the MC-PSC.

This chapter was published as a peer reviewed conference papeydeedings of 22nd
IEEE International Symposium on Computer-Based Medical SysteBhd$eD9 ISBN:978-1-4244-

4879-1, pp.1-8, 2009. [doi:10.1109/CBMS.2009.5255328]
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8.1 Introduction

As the size of commonly used scientific datasets is growing beyond tera tmdqade bytes, the
corresponding algorithmic complexity of the application programs used far @inalysis is also
increasing very fast. This has made it very difficult for a typical sciemtistse local and ordinary
resources to perform deep, systematic analysis of these very largetatdo ameliorate this situ-
ation, many scientific domains have establiskei@nce data centefservice stations) that provide
easy and efficient access to both the data as well as related applicatipampsmneeded for the anal-
ysis [248]. Furthermore, most of these science data centers also@mmiisonal workspace to each
scientist for storing the results of their analysis. Though this paradigrifetel the end-user scien-
tist from the burden of managing the data and applications; however,aheek the complexity for
service providers by many folds as the size of data and number of useeases. In order to cope
with this situation many institutional, national and international distributed and grithating in-
frastructures have been established e.g the BIR&ional Grid ServicdNGS) in UK, TeraGridin
US, Enabling Grids for E-sciencBEGEE) in Europe and across the world. These high-end infras-
tructures provide most of the computing, storage, data and softwanercesdor a wide variety of
scientific disciplines. These resources are available to both categoseignfist i.eend-userswho
use the already deployed applications and data to perform certain araigsipplication develop-
ers (who also becomservice providerst the end of their application development phase in order
to make their newly developed application usable by the respective commusigydie computing
resources to develop and test their novel applications requiring th@gugdghat infrastructure.

From the perspective of a scientific computing engineer, the provisioreddtibve men-

tioned infrastructures facilitates the development of scalable applicationsahla perform large
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scale data and compute intensive in-silico calculations. This chapter repoois findings on the
storage, management and analysis of data resulting from the newly desteligpributed algorithm
for MC-PSC (see chapter 5) for large scale protein structure dataSietsn the large volume and
complexity of data involved in the experimentation the selection and use of aoiape suite of
technologies becomes quite important. We report on our experienceggfame database tech-
nologies such aklierarchical Data Format{HDF) (HDF5) andRelational Database Management
Systen{RDBMS) (Oracle/SQL) on the Ul ational Grid ServicéNGS) infrastructure.

The organization of the rest of this chapter is as follows. A brief suréélyeorelated work
is presented in section 8.2. This is followed by the description of the data edaivthe process
of multi-comparison and the techniques used for the estimation of missing/invélidsvatc in
section 8.3. Section 8.4, introduces the main technologies used for the dagestmanagement
and analysis and compares their features with other related technologiegsstiaditional RDBMS
and XML. Details of the experimental design and implementation are descrilsedtion 8.5, while

section 8.6 provides the results and discussions.

8.2 Motivations

Due to the exponential growth in the number of protein structures in PDB, ohtst online servers
for protein structure comparison have started to build a database obprputed results for their
applications and use it as a quickest way to respond to user queries @thilwise would have
taken many hours or even days of processing time. Some examples of émeses svhich use
pre-computed databases include [249-252]. These servers pimefldeoptions to users i.e the

user could either select a query structure that is already available in tBeiREhis case the list
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of similar structures will be displayed within the time of a click using the informatie@mfipre-
computed database, or the user could select a novel query struct@edonpared to all structures
in the PDB. In the later case the existence of the pre-computed knowledgeshased to prune
the search space once any strong match is found for the query strogtlingiting the comparison
to only the neighbors of the strong match whose list is maintained in the knowlstkge The
design and implementation of such knowledge bases seems to be quite eatwigiforward as
they only deal with a single structure comparison method. However, aslEsm the subsequent
sections of this chapter there are so many issues and complexities in thd pagé-oomparison,

and to the best of our knowledge, there exists no other solution in the litengtir

8.3 Protein Structure (Multi) Similarity Data

When applying a similarity comparison algorithm to a set of proteins comparing it in an
all-against-all fashion, one obtains a matrix that describes the similarity/disstgnddireach pair
of proteins. This matrix is called similarity matrix (SM) when the similarity measure is a type of
scoring function (such asumber of alignmenjghat starts with zero (no similarity at all) and that

gives higher values for better agreement between any two proteingleceds. Mathematically,

0, No similarity at all
S = (8.1)

>0, No upper bound

As different algorithms apply different scoring schemes that do notssrily correlate
with any physical property (e.g. protein size), it is not possible to giveigmer bound for SM
values (equation 8.1). On the other hand, there are algorithms that doodoce a scoring function

but express similarity in terms of distances. In this case the resulting matrixfal-against-all
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comparison is called aissimilarity matrixor distance matriYDM). In terms of distance matrix, a
value of zero means that two proteins are identical, whereas higher watlieate a higher degree

of dissimilarity. Mathematically,

0, Identical proteins
Da,b = (8-2)

>0, No upper bound

Theroot mean square deviatiogfiRMSD) value is a typical example of a (poor) distance
measure for protein structure comparison. More recent and more sopted protein structure
comparison methods rely on a variety of similarity/distance definitions. Someobatirof them

are:

NA: Number of Alignments (DaliLite, CE, MaxCMO, TM-Align, FAST): indicates how
many elements/residues of a query protein structure are aligned to the elkesiies of

the target structure. A higher value indicates more similarity.

Z-score (DaliLite, CE): indicates the statistical significance of the similarity result with re-
spect to the random comparison of structures. Its value should be 3.iglweror two

proteins to be similar i.e. having same fold.

RMSD: Root Mean Square DistancgDaliLite, CE, TM-Align, FAST): indicates the diver-
gence between two protein structures. Its value should be less than Sddfstructures to

be similar i.e. belonging to same family.

TM-score (TM-Align): this score is based on the improvement of RMSD i.e. to be indepen
dent of protein length. Its value lies in between 1 (identical) and O (no similawity) 0.5

being used as a threshold to identify fold level relationships.
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SN: Normalized Score (FAST): indicates the significance of an alignment. Its value of 1.5

or greater indicates significant structural similarity.

USM distance (USM): this measure is based on the calculation of Kolmogorov complexity
between two structures. The lowest the distance, the more similar the steuahdevice-

versa.

Usually the similarity/dissimilarity values are used for further processing seegsclus-
tering the distance matrix in order to obtain family relationships between diff@reteins. Such
methods require a complete and valid matrix as input and usually do not copemgising or
ill-defined data. Though, similarity comparison algorithms usually produce ricah@alues to de-
scribe the degree of similarity between two protein structures, but they eflsonmon-numerical

characters in some cases as defined bellow:

e N Indicates that no significant similarity was found between the given pairodéins
e E Indicates that an error occurred during the comparison

e #Indicates that the input data was missing or not appropriate

When dealing with big datasets with just a few missing data points, it is often move-co
nient to account for them by estimation instead of submitting them for recalculadigditionally,
we must correct for invalid self-similarit$Svalues that may occur if heuristic similarity methods
are used (e.g.MaxCMO [46]) that do not guarantee to find the optimdtrésence, the SS value
of a protein can be worse than any of its non-self-similarity (NSS) valuésiradd from compar-
ing the protein with any other proteins in the dataset. The techniques us#tefestimation of

missing/invalid SS and NSS values are briefly described in the following suinss.
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8.3.1 Estimation of Self-Similarity Values

Estimation of SS values could exploit the fact that these values shouldsalkealetter than any
other NSS values for the protein considered. However, there is a skgidtion of the special
requirement when dealing with normalized data: we know that the best alser(ound) for any

distance measumnust be zero, but we cannot give an upper boundifoilarity measuregscoring

functions) as it depends on the length of proteins. In the latter case, wefdteestimate any
missing or invalid SS value by the best (highest) NSS value of any compavitiothis protein. If

no value can be found at all due to irrecoverable problems during thelatém, we adopt a worst
case approach and take the worst (smallest) value of the entire similarity niBhiscmakes sure
that this value does not interfere with any better (higher) values in atiyefuanalysis step, but is
not as drastic as setting the SS value to zero as it would make the standandit@tiompossible

(resulting in a division by zero). The pseudocode for this procedwskasn in Algorithm 2.

Algorithm 2 Pseudo-code for the estimation of missing/invalid self-similarity (SS) valuese 8iie
self similarity value would always reflect high similarity, therefore, for in thse of the similarity
matrix (SM) the maximum value either from the cross-section of the matrix whiclagts the
similarity value for the current proteirisand j compared with any other proteky(Sx|S;;) is taken
or (if Sx|Sj not available then) the maximum value from the entire matrix is taken. Similarly, if
the value being estimated belongs to a distance matrix (DM), then the minimum valkerisiih
the same approach.

1: for all methodk such that I< k< mdo

2. forall proteiniinrow (x) do

3 for all proteinj in column &) do

4: if matrixi][j][k] = MISSINGINVALID&& i= j then
5: if matrix type= SMthen

6: Si = maxSx|Sj)|maxmatrix))
7. else ifmatrix_type= DM then

8: Si = min(Sx|Sy;j)|min(matrix))
9 end if

10: end if

11: end for

12:  end for

13: end for




8. STORAGE MANAGEMENT AND ANALYSIS OF (MULTI) SIMILARITY DATA 160

Furthermore, similarity values can depend on the size of the proteins invaBatsider
for instance the comparison of a protein with itself counting the number of aligismasrthe given
similarity measure. When we compare identical proteins, the number of aligeetles will be
the number of residues in this protein, but the number will be lower for a snmaiteein than for
a larger protein. We therefore have to take the size of the proteins inta@icand normalize a
similarity valueSj comparing protein& andP; by dividing it by the highest self-similarity value

of both proteins [185]:

o Sj
S|J,norm— 7ma){3i7sjj}

(8.3)
When applying Equation 8.3 to self-similarity valugs one obtains normalized values
Si norm= 1 asmaxS;,Si} = Si. Although this satisfies the first requirement for similarity matrices
at the same time, the range of values will not necessarily start with zero.e§vére this for all
matrices in order to be compared and combined in order to produce a soissgmilarity, thus,
another Normalisation step has to be performed for all similarity/dissimilarity mattisieg the

simple approach. As a result, all self-similarity values remain normalized,eakexll values of the

entire matrix lie betweefD and 1.

8.3.2 Estimation of Non-Self-Similarity Values

When estimating non-self-similarity values, we first try to exploit the symmetricraeatfl any
similarity/dissimilarity matrix. Usually, the comparison of proté&inwith proteinP; gives the same
results as when comparirigy with F. So we could substitut§; by S; as they will be more similar

than any other estimation can produce. However, the symmetric nature ofilerisy/dissimilarity
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matrix might already have been exploited during the calculation procedunegséme by only
calculating the NSS values in one triangle of the matrix (and the SS values)isloate, ifS;
contains an error and its "backufji was not calculated, we need to estim@fevith the worst value
that can be found in the cross-secti§n/Sj, of the matrix. This is the highest value in the cross-
section for dissimilarity matrices, and the lowest one for similarity matrices. Addilignthere

is one special case when the comparison methods claims not to have fonifidasig similarities
between a given pair of proteins. In this case, we know that the similaritg waillibe very small
and therefore substitute it with zero as the worst value for similarity matrices.pSeudocode for

this procedure is shown in Algorithm 3.

Algorithm 3 Pseudo-code for the estimation of missing/invalid non-self-similarity (NSS)egalu
For similarity matrix (SM) the minimum value (i.e., the worst value) either from thesisection
or from the entire matrix is taken. Similarly, for the distance matrix (DM), the maxinaalue (the
worst value) is taken in this case.

1: for all methodk such that I< k< mdo

2: forall proteiniinrow (x) do

3 for all proteinj in column &) do

4 if matrixi][j][k] = MISSINGINVALID&& i! = | then
5: if matrix_type= SMthen

6: Sj = min(Sx|Sj) |min(matrix))
7 else ifmatrix_type= DM then

8 Sj = maxSx|Syj)|maxmatrix))
9: end if

10: end if

11: end for

12:  end for

13: end for

8.4 Overview of the Core Data Storage, Management and AnalisTechnologies

Scientific disciplines use much simple, convenient and self-describing datelsredtch adier-

archical Data Format(HDF, HDF4 or HDF5) [253],Flexible Image Transport SysteRiTS and
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NetCDF [254]. This is because most of the scientific data goes beyond thedinigzlitional re-
lational databases and XML documents in terms of its size, complexity and geteity and is in
the form of numeric arrays and images requiring more programming sufipderms of libraries,
APIs and tools) for statistical analysis, manipulation, processing andliziatian. All these re-
guirements are easily accommodated by scientific data models along with addit@redlts of
being open source, supporting multi-object data format (i.e each data cmddlsupport different
primitive data types as well as multi-dimensional arrays, tables and groypsiata definition (in
terms of metadata), efficient access (in terms of random/parallel/partialdasbptimal storage
(in terms of compressed and binary file format), and ease of sharing bysnoédheir platform
independent nature (Figure 8.1).

Though there exist many scientific data models but HDF5 is being commonlyausash
a wide variety of scientific domains, projects and applicatiabs{: / / ww. hdf gr oup. or g/ HDF5/
users5. htm ). HDF5 refers to a suite of open source technologies including data mig,
libraries, utilities and tools used for the storage, management and analysispfex and large
scale scientific datasets. Originally createdNgtional Center for Supercomputing Applications
(NCSA), it is now maintained by¥he HDF Group253]. The ease of dealing with HDF5 lies in the
multi-object file format that allows data of different type, nature and sizeetetbred in the same
file with suitable data structure ranging from simple variables, multi-dimensiorets tables (the
table object of HDF5 is also in the form of multidimensional array and henoéges much more
quicker access as compared to the rows of SQL database), imagesye gralpallets (Figure 8.2.
Working with all of these different formats becomes easy while using higél-iaterfaces such as

HDF5TB interface, which could be used to work with tables (listing 8.1 shows a cdgpetrfor
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HDF5 table programming model).

LISTING 8.1: Code snippet for HDF5TB high level interface

/+ Define HDF5 table dimensions */
#define NFIELDS (hsize_t) 18
#define NRECORDS (hsize t) 4000000
#define TABLE_NAME "COMPARISON_RESULTS"

/+ Define field information x/

hid_t field_type [NFIELDS];
hid_t string_type;

hid_t file_id;

hsize_t chunk_size = 100;
int «fill_data = NULL;
int compress = 0;
herr_t status;

int w;

/% Initialize field_type %/
string_type = H5Tcopy( H5T_C_S1 );
string_type = H5Tcopy( H5T_C_S1 );
H5Tset_size (string_type , 32);
field_type[0] = H5T_NATIVE_INT;

I/« Create a new file using default propertiesx/
file_id = H5Fcreate( "pdb_select30_2000.h5", H5F_ACCUNE, H5P_DEFAULT, H5P_DEFAULT);

/« Create HDF5 table and write the datax/
status=H5TBmake_table( "Tabldaitle", file_id , TABLE_ NAME ,NFIELDS,NRECORDS,
dst_size ,field_names, dst_offset, field_type,
chunk_size, fill_data, compress, comparison_results );

I« Close the file x/
H5Fclose ( file_id );

It is important to note that unlike HDF5, which provides support for all datanats
including images, arrays, tables etc, FITS and NetCDF only support inaagesray-oriented data
types respectively. Each of these data items could be additionally desurithecklated metadata,
allowing further ease in terms of data discovery. Furthermore, chunkidgcampression along
with binary file format of HDF5 provides high performance access amtiges less space and
takes less time to be transmitted over the network. In order to provide Intatafiy with XML
(to leverage its additional benefits of working with web/grid services) HRAIBb provides some
tools to translate the data from HDF5 format to XML and vice-versa.

In the following sections we present the design and implementation of a gaiolexh
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HDF5-based architecture for the storage, management and analysisteiihpstructure multi-

comparison results and compare its performance with a traditional relatiatatbase using Or-

acle/SQL.

Organizations use HDFS if their...
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FIGURE 8.1: This figure illustrates the important reasons beyond thecsieh and use of the HDF i.e., to
deal with the complexity, heterogeneity and size of the datan efficient, reliable and low-cost manner.

[extracted from [253]]

FIGURE 8.2: HDF5 file format (.hdf) could store different types of datar(ding from 3d array to raster
images and tables) in a single file [extracted from [253]]
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8.5 Design and Implementation of the Proposed Architecture

Figure! 8.3 shows the architectural design for the storage, managenetranatysis of (multi)
similarity for large scale protein structure datasets using the infrastruatsmirces provided by
NGS. The overall computational load of pair-wise similarity computations is tmifodistributed
through a grid-enableilessage Passing InterfagMPl) [191] based algorithm. The use of grid-
enabled MPI based model makes it easy to exchange global informatidedfee the computation
of missing/invalid values; thereby, facilitating the process of standardizatidmormalization to
be performed on-the-fly in a distributed environment.

The MPI based job packages are submitted for execution on a crossigitgigstructure
provided byNational Grid ServicdNGS), UK [255]. A brief description of the NGS tools and

services used for our experimentation is given below:

GSI-SSHTerm: An applet as well as an standalone application that provides seamless acce
to NGS resources i.e it offers web/command-line interface to securelyecotmNGS sites
from any machine having the UK e_Science digital certificate installed. Digittficates (or
X.509 certificates) are being used as an alternate to user-name andphgsauthenticate

the user in a wide range of eSciene projects. The NGS runs its own Ceidifigsuthority

(CA; ) which issues certificates to UK eScience community. The NGS’s CAeatitates the
users through its representative Registration Authorities (RAS) situatediatis universities
across the UK. These RAs in turn authenticate the users based on peatodDther personal

details.

GT4: Globus Toolkitversion 4 (GT4), a grid middleware that on the one hand enables the

service providers to bind grid applications together for ease of acogssmanagement; and
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on the other hand it provides many services for job submission, monitorshghranagement.

We used Globus to submit RSL scripts and perform monitoring of jobs.

MPIg: Grid-enabled Message Passing InterfgbP1g) is the latest version of MPICH-G2
that works with web services based version of Globus and enables &badBd applica-
tion to spawn jobs across multiple clusters in a WAN environment. We used thisylitora

distribute our jobs across two NGS clusters as illustrated in Figure 8.3.

SRB: Storage Resource BrokeraData Grid middleware developed byata Intensive Cy-
ber Environmentsesearch group at thgan Diego Supercomputing Cen(&DC). It enables
users to access files using logical names or attributes from any locationANaot WAN
environment without actually worrying about the physical location of €#eh It achieves
this through the use of a metadata catalog (MCat), that holds information gigopiysical
location of each file, its logical name and and attributes. As we used MPIgtouujobs
across different clusters of NGS, which have different file systematibies, we had to use

this facility to provide uniform naming of files.

HARC: Highly-Available Robust Co-scheduler is a framework that providesdualer based
resource reservation. We used this module to make advance resenfatiemrmumber of

CPUs we wanted to be used solely for our application.

The (multi) similarity values produced by parallel jobs on each processerstered both

in HDF5 and Oracle using the following schema shown in listing 8.2 and 8.3ctaglg.
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LISTING 8.2: HDF5 DDL Schema

HDF5 "Protein_Multiverse .h5" {
GROUP "/" {
DATASET "COMPARISON_RESULTS" {
DATATYPE H5T_COMPOUND {
H5T_STRING {
STRSIZE 32;
STRPAD H5T_STR_NULLTERM;
CSET H5T_CSET_ASCII;
CTYPE H5T_C_S1;
} "Structurel”;
H5T_STRING {
STRSIZE 32;
STRPAD H5T_STR_NULLTERM;
CSET H5T_CSET_ASCII;
CTYPE H5T_C_S1;
} "Structure2";
H5T_IEEE_F32LE "F_sn";
H5T_IEEE_F32LE "F_zscore";
H5T_IEEE_F32LE "F_rmsd";
H5T_IEEE_F32LE "C_zscore";
H5T_STD_I32LE "C_align";
H5T_IEEE_F32LE "C_rmsd";
H5T_IEEE_F32LE "D_zscore";
H5T_STD_I32LE "D_align";
H5T_IEEE_F32LE "D_rmsd";
H5T_STD_I32LE "T_align";
H5T_IEEE_F32LE "T_tmscore";
H5T_IEEE_F32LE "T_rmsd";
H5T_STD_I32LE "M_align";
H5T_STD_I32LE "M_overlap";
H5T_IEEE_F32LE "U_usmd";

LISTING 8.3: Oracle table description

Name Type
PAIR_ID NUMBER(8)
STR1 VARCHAR2(32)
STR2 VARCHAR2(32)
F_SN NUMBER (5 , 2)
F_ZSCORE NUMBER(5 ,2)
F_RMSD NUMBER(5 ,2)
C_ZSCORE NUMBER(5 ,2)
C_ALIGN NUMBER(5)
C_RMSD NUMBER(5 ,2)
D_ZSCORE NUMBER(5 , 2)
D_ALIGN NUMBER(5)
D_RMSD NUMBER(5 ,2)
