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ABSTRACT

The creep behaviour of welds in service-aged pipes are studied. The aims of the
research have been achieved using analytical, numerical and experimental approaches
to the relevant subjects. Several features of the work are presented: (i) a systematic
parametric study of the creep of two-material test specimens including a stress
singularity analysis, (i) an impression creep testing method using a rectangular
indenter, which can be applied to study the creep properties in welds, and (iii) methods
used for damage constitutive equation generation involving FE-damage modelling of
the rupture tests of cross-weld specimens.

General observations on the creep of two-material structures have been made using
analytical solutions derived from four simple structures. The effects of geometries and
relative creep properties on the creep stress or strain-rate distributions have been
investigated using the finite element approach with idealised, two-material,
axisymmetric models. The stress variations have been extensively studied on the
centre-line and in the singularity regions of the models.

An impression creep testing technique with a “long” rectangular indenter has been
developed for the study of the creep properties in the narrow zones within weldments.
The effect of varying the geometric test parameters has been fully analysed. The
application and the possible advantages of the technique for determining the creep
properties in welded components have been highlighted.

Experimental testing has been performed for the purpose of verifying the impression
creep testing technique and to provide the creep and rupture information required for
the generation of creep and damage parameters for the exposed materials. The results
obtained have further validated the applicability of the impression creep testing
technique.

Creep continuum damage investigations have been performed in order to generate the
material parameters in a continuum damage constitutive equation and to model
practical weldments. The methods used for material data generation have been
established. The failure analysis and prediction for the service-aged welded pipes using
steady-state analysis, damage modelling and extrapolation technique have been
addressed.

ix
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CHAPTER |

INTRODUCTION

Creep is the time-dependent deformation of a material under a stress which is lower
than the yield point (Power [1986]). Whilst creep can occur over the whole
temperature range, with engineering metals and alloys creep is generally only of
practical importance at high temperature. The phenomenon of creep is the source of
many problems in engineering design. Foremost amongst these is the need for the
generation of methods to predict whether components operating in the creep range will

safely function for the life required (Penny and Marriott [1992]).

Welds are an essential feature of large-scale plants for pressurised piping and vessels
as, for example, in electric power generation, chemical installations and the oil and gas
industries. Welded joints usually are used to join component parts of the assembly,
which often operate at elevated temperature for long periods of time, i.e. they operate
under predominantly creep conditions. Indeed, the performance of welds is often the
life limiting factor in many components and structures, particularly under service
conditions where creep failure may occur. Yet, in general, design codes do not
specially identify welds as an important parameter (Evans and Wilshire [1985]). For
example, present UK and European design codes do not include a high temperature
allowance for welds. In design terms, welds are normally accounted for simply by

postulating a “weld-efficiency factor”. In many cases, this merely involves down-rating



the allowed stress calculated for a homogeneous component and by stipulating that the

ductility of any part of the weldment should be adequate for the application envisaged.

The long-term integrity of high temperature engineering structures is of considerable
economic importance, particularly in electricity power generation plants, where failure
can lead to expensive plant outages. In practice the majority of problems associated
with high temperature components are caused by or associated with cracking in
weldments. Experience suggests that the life of the components and the plant as a
whole may be governed by the behaviour of welds which are locally inhomogeneous in
structure and properties.  During service, components are often subjected to
combinations of cyclic and steady loading periods at elevated temperature. Such
service histories can induce defects in these components or cause pre-existing defects
to propagate. These problems primarily arise because the welded zone is a region of
inhomogeneity. One feature of these kinds of failure is that the rupture of the
components is associated with time-dependent accumulation of damage (e.g. Lee and

Muddle [1986]).

The prediction of the behaviour of welds is difficult not only because of the complex
microstructure and therefore properties involved, but also because of the wide range of
weld geometries usually found in practice. Qm;ing,the welding of low-alloy ferritic
steels, which are widely used in power generation plants and other high temperature
plants, regions of the steel component immediately adjacent to the fusion boundary are
heated rapidly to temperatures which approach the melting temperature of the weld

metal and then cooled by conduction at rates determined by heat flow considerations.

D



In the parentrmatreriral the region where the microstructure is modified by the welding
process is termed the heat-affected zone (HAZ). Since the peak temperature attained
and the subsequent cooling rates decrease from the fusion interface, the welding
process leads to a variety of non-equilibrium microstructures in the HAZ of low-alloy

ferritic steels.

From the above, it can be appreciated that the prediction of the performance of
weldments in high temperature plants is considerably more complicated than the
problems associated with homogeneous structures.  Essentially, the failure
characteristics of weldments under elevated temperature creep conditions can be
determined by large-scale testing of individual components or by laboratory testing of
suitably designed so called “cross-weld” test specimens. Because of the cost and time
required for full-scale or large-scale testing, the creep testing of cross-weld specimens
is usually preferable. It should be noted that the creep data from the cross-weld
specimen tests are difficult to interpret to use to describe the creep behaviour of
practical welded structures or components; one of the reasons is the lack of knowledge

of the effect of specimen geometries.

The prediction of the deformation of and stress variations within welds due to creep is
not a straightforward task. This is due to many reasons such as the uncertainty of the
mathematical models used to describe the material behaviour and the need to
extrapolate the relatively short term experimental data to real component life times.
Detailed information of stress and strain distribution cannot be derived by analytical

methods except for very simplified structures with simple geometries. In the case of



complex structures, closed-form analytical solutions from which the creep deformation
and stress can be predicted do not exist. For this reason, numerical simulation

techniques are often adopted.

So_far, many numerical methods, such as the finite element (FE) method, finite
difference method and boundary element method (BE), have made it possible to model
very complicated components (Becker et al [1994]). For the modelling of weldments,
the finite element method is the most used tool. Standard commercial FE packages,
such as ABAQUS [1994] and PAFEC [1974][1984], have been extensively used for
steady-state creep analysis. Since standard FE packages do not currently include the
capability of damage analysis, creep rupture modelling has to be performed by
specialised non-commercial packages. Reliable creep and damage material properties,
which are usually obtained from experimental testing, should be determined before

costly and time-consuming creep damage analyses are carried out.

Service experience suggests that the welds in a structure are the weakest parts and
failure usually occurs within or near the HAZ of the weldments. This indicates that,
for modelling purposes, the generation of the proper material constitutive equations
which correctly describe the creep and damage behaviour of all of the material zones is
essential. Material properties of parent and weld metals can be generated by using the
information of single material uniaxial tests incorporated within the FE modelling of
uniaxial creep rupture tests of notched specimens (Hyde et al [1996]). The generation
of HAZ material properties is much more complicated. For a virgin weldment, it may

be possible to obtain the HAZ material properties form tests using thermally simulated



HAZ material. However, in the case of service-aged material, since the material
behaviour may have been changed significantly during long-term service at elevated
temperature, the exact thermal simulation of such material is nearly impossible. For
this reason, the impression creep testing technique, which can be used to obtain the
creep properties of a relatively small volume of material, has been developed (e.g.
Hyde et al [1993]). Using the primary and secondary creep properties of the HAZ
material, determined from impression tests, it is possible to determine the damage
parameters for the HAZ material by modelling the behaviour of rupture tests

performed on uniaxial cross-weld specimens.

The impression creep testing technique is a modified hot hardness testing method
which involves the application of a steady load to a flat-ended indenter, placed on the
surface of a material, at elevated temperature. Creep allows the indenter to push its
way into the surface of the material. The displacement-time record from such a test is
related to the creep properties of a relatively small volume of material in the immediate
vicinity of the indenter. With the aid of a mechanics-based approach, using the
reference stress method, the conversion factors (reference parameters), which are used
to convert the impression creep behaviour to that of an equivalent uniaxial creep test,

can be obtained.

The work to be introduced in this thesis will cover some aspects of the topics
described above. The subject of the study is a service-aged weldment which was
removed from the main steam pipe line of a power generation plant, after 174,800 hour

service, at nominally 568° C, steam pressure 16.55 MPa, OD (outer diameter) 355.6



mm, and wall thickness 63.5 mm. Compared with the study of a virgin weldment, the
research work on the service-exposed material is more difficult because of the
uncertainty of the material properties after long-term operation and the lack of
information available on such materials. However, the methods used for this study, in
general, are similar to those used for the new materials. Although the work introduced
in this thesis has included some metallurgical aspects, the study mainly focuses on the

mechanical aspect of the creep analysis of welded components.

Chapter II of the thesis contains a literature review which is divided into three main
parts. The first one (Section 2.2) gives a brief review on some general topics
encountered in the study of creep in welds, such as the metallurgical and mechanical
behaviour, the failure mechanisms of weldments and the methods used in research. In
the latter sections, several specific subjects which are closely linked to the current
research work are introduced. Section 2.3 presents a detailed review of the main
aspects of the creep analysis of cross-weld specimens, while Section 2.4 provides a
general description of the impression creep testing technique. Finally, a brief

introduction on creep continuum damage analysis is given in Section 2.5.

Chapter III mainly deals with the creep analysis of two-material components. In order
to understand the general behaviour of two-material components, Section 3.2
introduces the theoretical solutions and analyses for the creep stress distributions in
four, simple, two-material structures, for which the closed-form solutions can be
derived. The general observation on the creep of two-material structures and the

applicability of simple design rules, established for single-material structures, to two-



material structures, are discussed. Sections 3.3 and 3.4 present the results of a
parametric study of an axisymmetric, idealised, two-material, creep test specimen,
using the finite element method; the influence of specimen geometry and material
properties were investigated. The stress or strain-rate distributions on the centre-line
of the specimen and the application of a simple interpolation technique are first
covered and then stress singularity behaviour at the free surface of the specimen is
dealt with. The physical significance and the implication of the singularity results
obtained for practical situations are described.

In Chapter IV an impression creep testing technique, specially developed for the study
of welds, 1s fully analysed. The results of a theoretical and finite element investigation
of the impression creep test method, using a long rectangular indenter under plane
strain conditions, rather than the conventional cylindrical indenter, are discussed. The
application of the impression creep testing technique, for determining the creep
properties of the various zones within welds, is considered. The finite element method
is used to obtain the accurate (creep) or approximate (elasto-plastic limit load)
reference stress solutions for the rectangular indenter, placed at different positions in
the parent material, HAZ and weld metal. The effect of varying the geometric test
parameters is reported. The possible advantages of the technique for determining

some of the important creep properties in welded structures are identified.

Chapter V of the thesis introduces the experimental aspects of this research. Firstly,
the objectives of the experimental work, together with a fully defined test program, are

given. Then, the test materials and the specimens preparation, as well as the



experimental procedures, are described in details. A full set of the test results is
presented in a later section. Based on these results, further verification of the
impression creep testing technique, with a rectangular indenter, is achieved. Finally,
several discussion points such as the validity of the experimental results and the
generation of the creep properties for the tested weldment materials as well as the
examination of the fracture surfaces of the tested cross-weld specimens are addressed.
It should be mentioned that in order to shorten the duration of the experimental work
the temperature used in the creep tests of this study is higher than the practical

operation temperature in plants.

In Chapter VI the methods used for the generation of creep damage constitutive
equations for the aged parent, weld and HAZ materials are introduced and a full set of
damage constants for the aged materials is presented. The FE continuum damage
failure modelling for single-material notched bars and cross-weld notched and waisted
creep test specimens was performed for this purpose. The effect of the damage
parameters on the rupture lives of the test specimens was studied and the procedure

for the damage parameter generation has been fully described.

Chapter VII introduces the steady-state stress analysis and its application for the
practical notched and waisted creep test specimens used in this work. The steady-state
stress distributions in single-material and cross-weld notched and waisted specimens
were investigated using the realistic dimensions and material properties, and the tri-
axiality of the notched and waisted specimens\&as identified. By defining a steady-

state effective failure stress, it has been shown that an approximate method for failure



life prediction can be employed. The applicability of the approximate method was
confirmed by comparing the steady-state results and damage modelling results. On this
basis, further applications of the steady-state rupture stress analysis were

recommended.

In Chapter VIII the investigation of the failure prediction for the practical service-aged
weldment~is introduced. The FE creep continuum damage failure modelling for the
aged weldment was performed, using the realistic dimensions, loading and material
properties obtained at 640° C. For comparison purposes, the steady-state analysis was
also conducted, which was found to be conservative. Since the test temperature used
in this research is higher than the real temperature in plants, a simplified extrapolation
technique was used to estimate the failure life of the aged weldment at the practical

operating temperature of 568° C.

Chapter IX presents a general discussion and main conclusions of the current research,
which aims to summarise the methodology used in this study and to emphasise the
advantages and applications of the work. In Section 9.3, the main features of this
work which mainly covers the steady-state parametric analysis, impression creep test
technique, experimental testing for the aged materials and the creep continuum damage
investigation, etc. w\&rje highlighted. Several specific topics such as steady-state failure
prediction, Type IV failure of the aged weldment and the failure life extrapolation wzre

discussed. The limitations of the current research methods were also addressed. In

Section 9.3, the general conclusions of this study were summarised.



Finally, in Chapter X of this thesis future work based on the current research is

recommended.

10




CHAPTER I

LITERATURE REVIEW

2.1 INTRODUCTION

Welded joints are among the most important construction elements in power
generation plants; it is estimated that there are over 40,000 to 50,000 weldments for a
300-MW unit (Kussmaul [1993]). Safe and reliable service of welds at elevated
temperature 1s, therefore, of crucial importance for the performance of power and
other plants. For this reason, research work on the creep behaviour of welds has been

carried out extensively.

The welding process introduces a feature of material inhomogeneity. During service at
elevated temperature, the materials in different zones of a weldment exhibit different
creep behaviour, which usually causes a reduction in the structure’s integrity. In fact,
the service performance of high temperature welded structures depends greatly on the
material joining efficiency. Therefore, on this basis, the prediction of the performance
and the prediction of the failure mechanism of the weldments are more difficult than

the problem associated with homogeneous components.

11



A large number of creep failures have been found to be located in the weldments and
therefore the creep behaviour and material properties of the weldments are of
particular interest in order to assess residual life and improve design principles. The
complexity of the creep properties in a weldment requires that methods for creep
testing of a weldment and interpretation of the resulting test data have to be devised
before predictions of creep in welded components can be modelled. In this context,
the most common way to determine creep data from weldments is the uniaxial cross-
weld creep test. For the purpose of interpreting the test data, an understanding of the
stress distribution in cross-weld specimens and the influence of different factors which

could affect the stress distribution is of great importance.

In order to study the creep properties of weldments, the impression creep testing
technique , which has been used in the work, can be employed. Based on a mechanics-
based approach using the reference stress method, the technique can be applied to
determine the creep properties in the narrow zones, for example, the HAZ, which

\

occurg, in weldments.
R\

The work to be described in this thesis deals with the creep behaviour of welds in
service-aged pipes. This Chapter contains a literature review in which previous
research work in the field is introduced, aiming to demonstrate the main problems
associated with the creep analysis of welds and the ways in which they are tackled at

present.
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In the first section of this Chapter, some general topics such as the metallurgical and
failure behaviours of the weldments under high temperature conditions, and the
research methods used to investigate them, are discussed briefly. The later sections
include several specific topics, namely, the creep analysis of the cross-weld specimens,
the impression creep testing technique and creep damage analysis, which are closely

related to the current work described in this thesis.

2.2  CREEP ANALYSIS OF WELDS

2.2.1 Introduction

This section deals with the effects of the welding process on the creep properties of the
welded components. The performance and failure mechanisms of welded joints under
creep conditions will be discussed. The research work carried out to cope with the

problems arising due to creep of welded structures will be reviewed briefly.

There are many publications concerned with investigations of the effect of the welding
process on the welded components, mechanical and creep properties and performance
during service at elevated temperature. One of the most comprehensive accounts has
been documented by Price and Williams [1982], in which 127 papers were reviewed, in
an attempt to present a clear picture of the problems associated with welding and the

performance of welds in the creep range. In this section, only those aspects of the
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problems which are directly related to the current research work will be highlighted:
any further detailed information can be easily obtained from the extensive literature

available 1n this field.

2.2.2 Metallurgical and Mechanical Features of Weldments

Welded components differ from forged and cast structures. During welding, a hot
weld metal is deposited onto a relatively cool parent material. The first weld bead laid
generates a temperature gradient in the parent material which can be represented, at a
particular time, as a series of isotherms centred on the weld bead. The extent and
magnitude of the isotherms is determined by the heat input, thermal properties of the
materials, and time, amongst other parameters (Williams [1982-2]). The material local
to the weld bead is subjected to a heating and cooling cycle and the resulting structure
in this region, defined as the heat affected zone, HAZ, will be controlled by the peak
temperature, time at that temperature, cooling rate, the material and its metallurgical
state. This is illustrated in Fig. 2.1(a) for a ferritic 1/2Cr1/2Mo1/4V steel welded with
1/2Cr1Mo weld metal. The Figure shows a schematic representation of the variation
in grain size produced by a typical thermal cycle. In addition, various transformation
products may be formed during the cooling cycle. Subsequent weld beads subject the
weld metal, HAZ and parent material to further heating and cooling cycles leading to
further modification of the metallurgical structure, see Fig. 2.1(b). Thus, the important
characteristic of a weld is that it is inhomogeneous and shows a repetitive, definable
distribution of metallurgical structures, each of which has different deformation, failure

strain and stress rupture behaviour. The magnitude of any structure and property
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difference depends primarily on the particular parent material considered and the

welding conditions.

One of the detrimental effects of the welding process is the residual stresses generated
due to the differences in the thermal material properties of various parts of the
weldment and the different cooling rates according to the location of the fusion zone
and the heat source. Phase transformation on cooling when accompanied by volume
change (shrinking) also causes residual stresses to build up in the joint. For a welded
pipe, these stresses, when measured at room temperature, will have a characteristic
macroscopic distribution, typically a high hoop stress in the weld metal and high axial
stresses in the weld metal/parent metal interface. Post weld heat treatment, PWHT,
needs to be applied to welded joints in an attempt to relieve (i.e. smooth out these
local peak stresses) the residual stresses, to decrease the general stress level and, in

addition, to temper the microstructure.

The mechanical properties of the welded material are significantly changed after
welding. Generally, the UTS (ultimate tensile stress), the yield stress and the ductility
are substantially changed due to welding. The values for these properties vary at
different locations within a weld, in the parent material, at various locations in the
HAZ and in the weld metal, for austenitic and ferritic austenitic welds (Price and
Williams [1982]). Creep properties, e.g. minimum creep strain rate, creep ductility and
creep rupture times, also vary. Many test results have shown that (Parker [1995]) the
mismatch in the creep strain-rate between parent and weld metals can be higher than 5

times. The HAZ also exhibits different creep and creep rupture properties. As
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compared with the parent metal, the coarse grain HAZ (see Fig. 2.1) generally has a
smaller creep strain-rate and higher creep rupture strength and better ductility. The

welding process also affects the creep crack growth-rate at high temperature, when it
can be very fast in brittle regions, as may be the case in the weld metal, whereas it may

be relatively slow in parent metal, where ductility is retained.

Any failure analysis on the creep of weldments must take these special features,
described in this section, into account where necessary and only an examination of

actual failures can determine their importance.

2.2.3. Weldment Performance and the Failure Mechanisms

Service experience suggests that whilst the majority of high energy components
operating in electricity-generating plants exhibit satisfactory performance, problems
have been identified with the presence of weldments (Price and Williams [1982]). For
the piping systems of these plants low alloy steels are frequently used. These steels are
selected since they offer the necessary creep strength at optimal cost. A number of
different alloys have been developed based on chromium/molybdenum steels, however,
much existing high energy piping in the UK is fabricated from 1/2Cr1/2Mo1/4V steel.
This alloy derives its excellent creep strength from a dispersion of vanadium carbide
precipitates. Experience shows that although satisfactory operation can normally be
achieved in the component parent metal, long-term failures have been documented in
weldment heat affected zones (HAZ) (Toft and Yeldman [1972]). These failures are

associated with either a region of high strength microstructure with low ductility, i.e.
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reheat cracking, or low strength microstructure with high ductility, i.e. the so called

Type IV cracking.

Recent evidence suggests that a broad range of steels are susceptible to long term
cracking where relatively low ductility failures occur within the HAZ. Damage of this
type has been reported in 1/2Cr1/2Mo1/4V (Gooch and Kimmins [1987]), 1Cr1/2Mo
(Wu et al [1992]) and many others. The fact that similar damage has been observed in
different steels used in various plants world-wide has resulted in this cracking being
given an international designation of Type IV (Schuller et al [1974]). The form of
damage developed in Type IV cracking is illustrated by consideration of a 1/4Cr1/2Mo
component which operated for approximately 88,000 hours at normally 538° C and
44.6 MPa (Westwood et al [1990]). In this situation a major macroscopic defect
developed at the edge of the HAZ adjacent to the base material. Detailed examination

revealed that extensive grain boundary damage was associated with the main defect.

The performance of a welded structure is highly affected by the circumstances
described in Section 2.2.2. Unexpectedly, failures do not always occur at the location
where the weakest material is, as a result of the redistribution of stresses and strains
according to the strength of the weldment (Price and Williams [1982]). The creep
rupture or failure primarily depends on the strength and ductility of various material

zones and the interaction effects between them.

All the creep failures of weldments are associated with the formation of cracks which

are related to poor welding practices, inadequate post weld heat treatment, PWHT,
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and material compositions as well as creep damage accumulated in service. The
cracking that has been experienced in welded components has been classified (Schuller
et al [1974]), as shown in Fig. 2.2. This classification relates only to the location and
orientation of cracking in a weldment and not necessarily to the cracking mechanism

involved.

In Fig. 2.2, Type I cracking represents the failure mode of a homogeneous component.
Transverse weld material cracking, i.e. Type II cracking, is similar, being due to an
interaction of residual welding stresses with low ductility regions in the weld metal. It
is primarily a consequence of inadequate PWHT, and the time for microcracks to occur
is usually 25,000 to 40,000 hours. The mechanism can be thought of as an early stage
cavity nucleation which is followed by link up and macroscopic cracking over an

extended period, under the pressure and residual stresses in service.

Circumferential heat affected zone cracking, i.e. Type III cracking, is mainly due to the
interaction of welding residual stresses with the brittle, coarse grained bainite in the

ferritic HAZ. It can be detected after PWHT and at an early stage in service life.

Type IV cracking occurs as a result of the interaction of system stresses,
predominantly axial or bending, with the soft overtempered region near the HAZ in
ferritic alloys. The circumferential cracking in the HAZ immediately adjacent to the
parent material can be observed after service times of about 50,000 to 80,000 hours.
The mechanism of failure is again creep cavitation, leading to macroscopic growth and

failure.
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The Type IV cracking in CtMoV weldments forms in the low temperature part of the
HAZ, i.e. intercritical/tempered regions where the properties are reduced below those
of the parent and high temperature HAZ. This position, where the damage and cracks
form, is weaker in creep strength and probably has a higher local ductility, although the
full properties have not been unambiguously defined, particularly the ductility. Thus in
very general terms, this form of cracking will occur in the low temperature regions of
the HAZ where creep properties are lower than those for the adjacent parent and high

temperature HAZ regions.

2.2.4 Study of Creep of Welded Structures

From the above description it is clear that many problems exist when a welded
component operates in the creep condition. This has made the problem of creep of
weldments a field of interest for many researchers. Extensive research work has been
carried out on the subjects of weldment creep involving the welding technology,
simulation of the weldment performance, assessment of the remaining life and the
design methods of weldments. A large number of papers have been published on these
subjects, for example, welding processes and residual stress (Masubuchi [1981]), post
weld heat treatments (Prager and Leyda [1988]), stress distributions (Parker [1988]),
metallurgical studies (Senior [1990]), crack initiation and growth (Dole [1991]),
weldment assessment strategy (Coleman and Miller {1994]), weldment strength and
design (Corum [1990] and Samuelson et al [1992]), and creep continuum damage

analysis (Hall and Hayhurst [1991]).
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The finite element method is a useful tool for the purpose of modelling the creep
performance of weldments. Walters and Cockcroft [1972] were possibly the first to
use the finite element method in analysing the creep of weldments; weldments were
considered as a combination of only two materials. Coleman et al [1985] incorporated
a three-material model and used a parametric approach to cover a wide range of
weld/parent metal creep properties. The published FE analyses also cover the creep
behaviour of cross-weld test specimens (Storesund et al [1992]), which is one of the

main topics of the present thesis and will be discussed in detail later.

Another aspect of the study of creep in welds is the experimental creep testing. In
theory, it seems to be possible to predict component life analytically, using stress
analysis together with material data and an appropriate damage model. In practice,
limitation of numerical analysis in the creep range and current uncertainties in multi-
axial material data, preclude rigorous assessments for all but the simplest situations.
For this reason, laboratory creep testing of welded components is often desirable.
However, full scale components tests are very costly, and in most cases, uniaxial cross-
weld testing is adopted as an alternative, using specimens cut from the welded
structure (e.g. Chilton et al [1984]). In some cases, thermally simulated

materials/specimens can be used (Cane [1981]).

2.3 CREEP ANALYSIS OF CROSS-WELD SPECIMENS
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2.3.1 Introduction

Methods for assessing the creep performance of welded joints have been studied by
many researchers. The techniques have ranged from an examination of simple uniaxial
creep rupture data on all weld metal or all parent material to cross-weld specimens
containing a complete section of the weldment, in addition to modelling welded tube

tests.

The most common way to determine creep data from weldments is uniaxial cross-weld
testing of weld metal, parent metal and cross-weld test specimens from the weldment.
Creep curves, creep rupture data and the failure position can be obtained from cross-

weld specimen testing.

A uniaxially loaded cross-weld specimen may have a complex tri-axial stress state due
to the differences of material properties of the various constituents of the weldment.
Although some analytical work has been carried out based on simple models (e.g.
Williams [1982-1] and Nicol [1985]), there is still a lack of detailed understanding of
the creep behaviour of the cross-weld specimens, and hence it is difficult to apply the
results to practical situations. To evaluate the stress/strain distribution in cross-weld
specimens, the finite element method is an effective tool. Strictly speaking, th‘eﬁL éréss-
weld specimen cannot be considered as an axisymmetric structure when weld angles

are present. However, both numerical and analytical analyses (Storesund et al [1992])

have indicated that the influence of the weld angle is not significant on the stress state
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and the total strain of the specimen. Hence, in many cases it is appropriate to model

the specimen using a two-dimensional axisymmetric analysis.

In order to interpret the data obtained from uniaxial cross-weld specimens for a

practical welded structure, geometrical effects of cross-weld specimens have been

considered (Storesund and Tu [1995]). Also, the problem of the stress singularity

which may exist at the free surface of the specimen due to the material dissimilarity

needs to be understood since the existence of such a singularjty point may affect the
\

integral strength of the specimen.

Creep testing of cross-weld specimens has been widely used. The data obtained can be
used to assess the detrimental effects of welds on the life of elevated temperature
components, such as those used in power plants. Interpretation of the test results still
remains a difficult task since there may be interactiogs eﬁ‘ectsémong the different parts

of the weldment.

In this section, the above aspects of the creep analysis of the cross-weld specimens will

be briefly reviewed.

2.3.2 Analytical Work

Very few publications have been found on the theoretical study of cross-weld creep
test specimens. Williams [1982-1] developed a simplified approach to examine the

creep behaviour of a two-material axisymmetric specimen with a soft weld, using the
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limit load reference stress method. Later, a special theoretical investigation which used
a refined plate theory, i.e. Cosserat plate theory (Green et al [1968]), was used to
obtain the strains accumulating in steady-state creep for butt-welded joints (Nicol
[1985]). The weldments were modelled by a semi-infinite plate of thickness h. The
cross-section of the plate was subjected, at infinity, to a constant tensile force, see Fig.
2.3, Appropriate constitutive equations were developed for the plate theory which
correspond to standard uniaxial and three-dimensional equations. In particular,
Norton’s Law, &° = Aoc", was adopted. Three assumptions were made for the
simplification of the problem:

1) the model is a plane strain problem;

1) no bending on the centre surface of the plate occurs with time t; and

1i1) the stress index, n, was taken to be the same for all zones.

The work on this theoretical method was initially carried out by Nicol [1985], who
studied the plane strain creep problem for a thin plate with parent material and weld
material only ( see Fig. 2.3(a)). The creep strain rates were obtained for different
creep strength ratios of the two materials, the stress indices and the size of weld zone.
Hawks [1989] and Craine and Hawks [1993] developed the model by firstly including
the narrow type IV region and HAZ (see Fig. 2.3(b)) and secondly investigating how
the relative sizes of all the regions influenced the strain rates. Newman [1993] and
Craine and Newman [1991][1992][1996] further developed the method by
incorporating a simple version of the Kachanov-Rabotnov damage equation (Rabotnov
[1969]) into the model to study the rupture time and the position of rupture for the

plate with a butt weld or a V-shaped weld under tensile loading (see Fig. 2.3(c)).
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The results of this theoretical approach reveal that in a weldment the interaction effects
are extremely important, i.e. the strain rate at a position in a region not only depends
on the properties of the region but can be significantly affected by those of the other

regions.

2.3.3 Experimental Investigations and Finite Element Analyses

Creep testing of cross-weld specimens are used to obtain data which can be used to
assess the detrimental effects of welds on the life of elevated temperature components.
Experimental work has been conducted by some researchers, involving such aspects as
the failure mechanisms (e.g. Ivarsson and Sandstrom [1980]), deformation and strain
localisation (e.g. Parker and Straford [1995]) and the effects of geometry of the cross-
weld specimens (e.g. Henry and Eills [1990] and Storesund et al [1995]). Uniaxial
round bar specimens have been popularly adopted. Other shape specimens, such as
rectangular or square cross-section specimens and plate specimens have also been used
(e.g. Muramatsu et al [1992] and Endo and Sakon [1980]).. In many cases, these
laboratory tests can provide reasonable evaluations of fracture behaviour, i.e. the
damage developed is considered representative of that obtained in service. In a recent
work by Parker et al [1995], the fracture process in typical ex-service 2-1/4Cr1Mo-
1/2Cr1/2Mo1/4V weldment was investigated. The specimens were examined both
macroscopically and microscopically after failure. Their results have shown that the
deformation was concentrated in the fine grained intercritical region of the HAZ of the

weldments.
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The finite element method has often been used to model creep tests and to study the
detailed stress and strain distributions in cross-weld specimens The weldment can
usually be assumed to consist of three constituents, i.e. parent metal, HAZ and weld
metal. In some cases, the HAZ was divided into two zones, namely, a coarse grain
zone and a fine grain zone (e.g. Roode et al [1980] and Storesund et al [1992]), or
more zones (Kussmaul et al [1993]). The material properties and dimensions of
metallurgical zones of cross-weld specimens must be carefully determined for the FE
analysis in order to obtain the most reliable results. Details of the finite element

analysis work can be found in some relevant publications.

2.3.4 Effect of Specimen Geometry

One of the most important problems associated with the creep testing of cross-weld
specimens is the fact that the results obtained with specimens cut from welded
components do not necessarily describe the actual behaviour of the structure. For
specimens consisting of a nominally homogeneous material with no anisotropy, the test
results will be affected by the following factors: the gauge length, the cross-sectional
area of the specimen and the shape of grips. However, in an inhomogeneous
specimen, such as a cross-weld specimen, there is also the effect of restraint at the

inhomogeneous interfaces.

The geometrical effects of cross-weld specimens have been studied (Storetund and Tu

[1995]), but very few publications which are closely related to this subject can be
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found. Williams [1982-1] generated a simple analytical model of an axisymmetric
tensile specimen consisting of parent and weld metals only, where the weld material
was weaker than the parent metal. The model was based on the limit load approach to
define a reference stress which could be used in the creep regime. The effect of weld
width to specimen diameter ratio on the stress rupture behaviour of cross-weld
specimens was examined. In later analytical work on cross-weld plate models by Nicol
[1985], Hawks [1989], Newman [1993] and Craine and Newman [1996], the effect of
various material zone lengths has been used to determine the interaction behaviour of
strain accumulation and rupture of the specimens. However, a full understanding of
the influence of the dimensions of a cross-weld specimen cannot be obtained from the

results of simple analytical models.

Experimental work and finite element investigation of the geometrical effects of cross-
weld specimens have been performed by a number of researchers (see, for example,
Muramatsu et al [1992]). Horton and Lai [1980] used cross-weld specimens cut from
Type 316 weld metal butt-welded plate to perform uniaxial rupture testing. The
specimens were of 5 mm and 12 mm diameter round bars, cut transversely and
longitudinally and tested at 625° C and an initial stress of 186.2 MPa. The results were
found to be extensively scattered for all 5 mm diameter specimen tests, and no
significant improvement or difference was observed from the results of thicker
specimens. However, other experimental results clearly indicated that life increased
with increasing diameter. Ellis and Brosche [1993] performed rupture tests of cross-

weld specimens of conventional size (6.4 mm gauge diameter) and large rectangular

bars (50.8 mm x 25.4 mm). The results show that the large specimen creep-rupture
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time was approximately 2.5 times greater than that for the conventional size of rupture
specimens. This is probably due in part to an oxidation effect previously observed in

small specimens caused by the smaller section thickness and testing in air.

Computational investigations using the finite element method to study the geometrical
effects can also be found in several publications (e.g. Storesund and Tu [1992]).
Kussmaul et al [1993] conducted FE calculations taking into account the creep
properties of parent, weld and HAZ (being divided into three sub-zones) materials with
the intention of explaining the different rupture times of small and large scale
specimens exhibited in their experimental work for a dissimilar weldment of
12%Cr/1%CrMoV. They used axisymmetric models for the small scale round bar
specimens and plane strain and plane stress flat specimens. The results show that for
the same test duration, the maximum values of axial and equivalent stresses are higher
in the small scale specimens than those in the large scale ones. The reason for this is a
slower stress and strain redistribution in the large scale specimens due to higher

constraint, which finally leads to their longer rupture times.

Muramatsu et al [1992] used three-dimensional FE meshes to study the size and shape
effects of welded joint specimens, in order to clarify whether specimens cut from
welded joints can produce the creep behaviour of actual components. The effect of
grip shape and gauge length were considered and the relationships between cross-
sectional areas and strains in different sectional specimens were investigated. They
concluded that considerably different creep strain behaviour can be obtained due to

different shape of grip, shape and size of the cross-section and position of the weld
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metal within the specimen, even if the same nominal stress is applied. They also
mentioned that in some cases, even the use of a very large specimen is not sufficient to
reproduce the creep behaviour of actual components, although the size influence on

the creep life was not covered.

In a later publication, Storesund and Tu [1995] used axisymmetric methods to study
the influence of the diameter of the specimen and fraction of each constituent (coarse
grain HAZ, fine grain HAZ and weld metal). The creep properties were evaluated for
the different zones of the specimen, to simulate a 1Cr1/2Mo weldment. They found
that there is a significant life enhancement with increasing diameter and that for some
weldments the cross-weld specimen of a large diameter may have a creep strength
comparable with that of a pure parent metal or weld metal specimen. They also
indicated that the location of the maximum stress enhancement in the specimen can be
altered when the diameter is changed. Changing the HAZ width also influences the
creep life of the specimen, whereas the change of weld width in a practical range does

not show such an influence.

2.3.5 Interfacial Stress Singularities

For a structure or component consisting of more than one material it has been widely
accepted that at the corners, between bonded-edge (interface) and free-edge, a stress
singularity region exists. The singularity behaviour usually depends on the material
properties, the geometry and the boundary conditions of the structure for a specified

type of applied load (mechanical or thermal).
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The singularity problem of a two-material structure sustaining elastic or elastic-plastic
deformation has been studied using analytical methods (e.g. Rudge [1993]). Generally,
the theoretical study assumes that a power law for the stress singular field can be
applied, i.e.

Cj . (N<O0) (2.1
where o;; are the stress components and r is the distance from the singular point. The
singularity behaviour of two-edge bonded elastic wedges of different material and
different wedge angle has been extensively studied by Bogy [1971], who showed that
different types of solution are possible for stress and displacement at the intersection
between the free edge and the bonded edge of the two materials. Lan and Delale
[1988] studied the plastic stress variation in a two material plane strain model for
different material ratios and angular positions. They indicated that their solution would
be applicable to the corresponding power-law creep situation if displacements and
strains were interpreted as their time rates instead. However, the range of properties
for which power-law solutions are available is limited and these solutions are strictly

applicable to plane strain situations only.

There have been no published reports so far which provide either theoretical or
numerical analysis of the singularity problem in multi-material creep structures. The
stress singularity feature in a cross-weld specimen needs to be studied in order to
determine whether it significantly influences the behaviour of a weld. For this purpose,

a parametric study of the stress singularity behaviour of a two-material, axisymmetric
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creep test specimen has been conducted, the results of which will be described in

Chapter III.

The existence of a stress singularity in a welded structure has been described by Ryder
[1990]. The singularity is dependent on the difference in material properties and the

angle made by the weld interface with the free surface. One of the reasons which
demonstrates the existence of the singularity is that when an inelastic finite element
analysis is performed, extremely high local stress/strain concentration will usually be

predicted even in a joint which is known to have lasted in service for over 30 years.

2.4  IMPRESSION CREEP TECHNIQUE

2.4.1 Introduction

Impression creep testing (e.g. Chu and Li [1977]) is the name given to the technique in
which a flat-ended indenter is placed on the flat surface of a material, at elevated
temperature, and is subjected to a steady load, as illustrated in Fig. 2.4. Initial
deflection takes place when the load is first applied, which may be elastic or elastic-
plastic, followed by time-dependent creep deformation. The displacement vs time
record from such a test is related to the creep properties of a relatively small volume of
material in the immediate vicinity of the indenter. The creep test, if performed to

obtain the material creep properties, usually requires the deformation (indenter depth)
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obtained to be very small, so that after the test, only a shallow impression on the test

material surface is left; hence the name “impression creep”.

Since conventional creep testing requires many specimens to establish stress and
temperature effects, the hot indentation hardness test is sometimes used as é substitute.
Various ways have been proposed to relate the creep rate to the time-dependent
hardness, but none seemed to work well until flat end indenters were adopted. The
reason is simple: when the hardness decreases with time, the stress also decreases, and
no steady-state can be achieved (Chu and Li [1977]). There were early attempts to
make indentations using flat-ended indenters but these attempts were limited to
hardness testing only. The impression creep technique was first used by Chu and Li

[1977] and was proposed as an alternative method for obtaining creep properties,

instead of the conventional method. Previous work by Li and others [1977-1980]

noted that:

(1) Impression depth versus time curves are similar to those of conventional,
uniaxial creep tests, having primary and secondary regions. However, tertiary
creep is not exhibited by impression creep test data.

(i1) The steady-state indentation rate has the same stress and temperature
dependence as conventional, uniaxial creep data, with the same “stress
exponent”.

(iii)  The steady-state indentation rate of the punch, at the same stress level, is

proportional to the diameter of the indenter.
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Most authors (e.g. Chu et al [1977], Gibbs [1983] and Yu et al [1985]) have
effectively used a trial-and-error approach to correlate the impression creep data with
conventional uniaxial creep data. This requires conversion factors to be obtained

which relate the average indenter pressure, p, to the equivalent uniaxial stress level, o,
and the steady-state impression depth rates, A‘;s, to the equivalent uniaxial steady-state
strain rates, €, i.e.,

G=NXp (2.2)
and

£ =A° /Bd (2.3)
where 3 and n are experimentally determined constants and d is the indenter diameter.

Table 2.1 summarises the values of B and n obtained by several researchers, from

which it can be seen that there is a general agreement that 3 and m values of about 1.0
and 0.3, respectively, are applicable to most of the materials tested. Gibbs [1985]
states that 3 and m are geometric correction factors, whereas other researchers (Yu et

al [1986] and Tasnadi et al [1988]) describe them as material constants.

Based on the above work, Hyde et al [1993] developed a mechanics-based approach
using the finite element method to clarify the nature of n and B factors in Equs. (2.2)
and (2.3); the values of n and B of 0.296 and 0.755, respectively, were obtained from a
two-dimensional, single material, axisymmetric model. For the purpose of studying the
creep properties in welds, in this work, a new impression creep testing technique, using

rectangular indenters and two-dimensional plane strain models, was developed and
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used to investigate the multi-material indentation behaviour and the size effect of the

specimens.

Table 2.1 Summary of n and B factors obtained from experimental tests

Reference Material Testtemp. (°C) | Stress exponentn 1 B

Chu & Li 1977 Succinonitrite (single crystal) 37 4 0.303 1.0

Chu & Li 1979 BTin (single crystal) 60-203 4-5 0.256-0.357 1.0

Yu & Li 1977 LiF (single crystal) - — 0.1493 2.6

Gibbs 1983 Al 99.999% 300-400 6.1 0.415-0.416 1.0
1018 steel — — 0.345 0.67

Al — — 0.287 1.0

Yu et al * 1985 Cu - — 0.347 1.0
Ni — — 0.345 0.625

Tasnadi et al *1988 Al 90.74% alloy — — 0.303-0.333 1.0

* The results are based on elastic-plastic tests, not creep tests.

2.4.2 The Reference Stress Method

On first loading of a component at elevated temperature, an initial deformation at a
point of interest, A; is produced; A; may be a strain, displacement or rotation. This
deformation will depend on the component dimensions and the initial multi-axial stress-
strain (elastic or elastic-plastic) behaviour of the material. At elevated temperature, if
the load is held constant, the material will creep, stress redistribution will occur and
further creep deformation will take place. For materials obeying a Norton (power law)

creep constitutive equation,
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£° =Bo" (2.4)

the stress distribution will approach a steady state and the displacement rate will
approach a steady-state value, Ass . Therefore, the total deflection, A, at time t is given
by:

A=A +A_t+A (2.5)

where A. is the initial (elastic + plastic) component of a deformation and A, is the

component of deformation associated with stress redistribution, which is usually small
compared with initial and steady-state creep deformations (Penny and Marriott [1971])

(see Fig. 2.5).

For some components, it is possible to obtain analytical expressions for Ass (e.g

Anderson et al [1963] and Johnsson [1973]). These show that the general form of the
solution is:

A, = f,(n) fy(dimension) BGnom" (2.6)
where f; (n) is a function of the stress index, n, of Equ. (2.4), f; (dimensions) is a

function of the component dimensions and Gpom is @ conveniently determined nominal

stress for the component and loading.

By introducing an appropriate scaling factor, a, for the nominal stress, Equ. (2.6) can

be rewritten as:

A= fy(n) f2(dimension) B(0tGnom)" 2.7)

55 n
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Choosing o (= ag) so that fl(n)/(onR)n is independent (or approximately independent) of
n, then Equ. (2.7) can be further simplified, i.e.

A, ~Dé*(0g) (2.8)
where D is the so-called reference multiplier [D = (fl(n)/(OLR)n )2 (dimensions)] and €,

(or) 1s the creep strain rate obtained from a uniaxial creep test at the so-called

reference stress, Gr (= ORGrnom).

If an analytical solution can be obtained, substituting two values of n in the expression

f (n)/a” and equating the two resulting expressions allow the value of or to be

determined. Hence, or (= OlrGnom) and D can be obtained. This approach was
proposed by MacKenzie [1968]. However, analytical solutions only exist for a small
number of relatively simple components and loading. Therefore, computational
methods (Sim [1970][1971] and Sim and Penny [1971]) and approximate methods
based on limit load solutions (Penny and Marriott [1971] and Sim [1968}) have been

devised.

If computed (e.g. finite element) solutions to a creep problem are obtained using
several n values, but keeping all other material properties, loading and component
dimensions the same, then og can be obtained (Sim [1970][1971] and Sim and Penny

[1971]). This is done by taking several values of o, normalising the steady-state value

of displacement rate, A, with respect to B(0lGqom)" and hence finding the value of a

which renders [A, /(B(ao,,,)")] independent of n. This process is most easily

visualised by plotting log [AsS / (B(ao,)")] for various values of o against n, as
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illustrated in Fig. 2.6. It can be seen that the straight lines produced, using all of the o
values, have the same intercept on the log [A_ / (B(ao,_)")] axis. This intercept is

equal to the logarithm of the reference multiplier, D.

Using the similarity between elastic and elastic-perfectly-plastic stress distributions
with creep solutions having n = 1 and n = o, Sim [1968] was able to devise an
approximate method for determining reference stresses based on elastic and limit load

solutions. Sim [1968] showed that:

Og ® EGY (2.9)
and
A
e — 2.10
©x /E) ¢19

where P is the limit load for a component with a yield stress, 6y, and A® is the initial

(elastic) deflection for the same component with a Young's modulus, E (a Poisson's
ratio, v, of 0.5 should also be used to maintain similarity with the multi-axial creep

constitutive equations).

The reference stress method has been successfully used in the analysis and design of
components operating in the creep range (e.g. Goodall [1990] and Boyle [1983]).
However, ‘until now the method has only been applied to components or structures
made of a single material, and the physical basis of the method for such cases is well
understood. Although a clear physical basis for applying the reference stress method

to two or more material components has not been established, results obtained by
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Hyde et al [1996] show that the technique can be used to obtain reasonably good

predictions for two-material components.

2.4.3 Impression Creep Testing of Welds

Impression creep tests have been performed by a number of researchers. Most
publications state that impression creep testing is a new method for obtaining creep
properties, which has advantages over conventional methods. However, only a few of
the researchers noted that the impression creep testing technique could be of practical
value in obtaining the creep properties in the various regions (parent material, HAZ
and weld metal) of a weldment (Gibbs [1983], Gibbs et al [1985, 1990] and Lisin et al
[1989]). Gibbs [1983] and Gibbs et al [1985] studied the relative creep properties
within a welded joint and found that the technique is very useful in evaluating the
position dependence of the creep properties. For the particular weld investigated by
Gibbs, he showed that the minimum creep resistance occurs in the HAZ near the fusion

line.
Detailed review of the impression creep testing can be found in some relevant

publications (for example, Yehia [1994]).

2.5  CREEP CONTINUUM DAMAGE STUDY OF WELDMEMTS
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2.5.1 Introduction

Structural components operating at high temperature often suffer from creep damage,
which results from metallurgical inhomogeniety or the nucleation and coalescence of
micro-cavities. Creep deformation and/or creep rupture is often the main cause of
failure of these components. To assess the safe lifetime of such components, it is

important to accurately predict the extent of creep damage and creep rupture life.

Over recent years, significant progress has been made in the development of design
procedures in the creep ranges (see, for example, Penny and Marriott [1971], Kraus
[1980] and Hayhurst et al [1975, 1984]). Much of the research work has been
directed towards the determination of the life of components, under given loading

conditions, at elevated temperature.

Creep damage localisation in weldments has been observed in both engineering
practice and laboratory simulation. Experience shows that many component failures
arise as the result of localised damage in welds. On this basis, an understanding of

creep continuum damage, or creep failure behaviour, may provide guidance for the

design of welded components in the future.

2.5.2 Damage Equations

A conventional way to describe tertiary creep is to use Kachanov’s damage equation

[1960]. Kachanov introduced the damage parameter, o, the value of which is equal to
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zero for no damage and unity for rupture or failure. The damage parameter was meant
to represent the internal cavitation and rupture of the material. The effect of the
damage parameter, ®, on stress is to magnify it by a factor of 1/(1 - ®) due to a loss in

load bearing cross-section. Thus, the modified uniaxial stress-strain equation becomes:

€:QJLYW 2.11)

-0
where the rate of damage increase, o , is

O-'X
—t
(1-0)*

" (2.12)

where B, ¢ and ¢ are material constants, which can be determined from experimental
creep rupture data. A multi-axial creep equation can be written in terms of the von-

Mises equivalent stress, G.q, and the deviatoric stress, Sj;, as follows (Kraus [1980]):

n-1
c S.
qzi{ ”} T 2.13)

2 |1-0
where the rate of change of damage parameter, @, can be expressed in terms of a
“rupture stress”, oy, 1.€.
Gr'X.

The rupture stress, G, is often assumed to be a function of the maximum principal

stress, G, and the equivalent stress, G, as follows:
o, =ad +(l-a)o,, (2.15)
where o is a multi-axial rupture parameter (0 < o < 1), which can be determined by bi-

axial material testing (Hayhurst [1972]).

2.5.3 Damage Analysis of Weldments
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Although some analytical work (for example Newman [1993]) has incorporated a
damage parameter in the models used to represent a weldment, the first paper that
presented a thorough study of the creep damage in a weldment was published by Hall
and Hayhurst [1991]. In their work, the physical mechanism model of the weldment
was defined and then a mathematical creep continuum damage model, suitable for FE
numerical calculations, was created. Stress and strain redistributions as well as details
of localised damage within the pipe weldment were obtained and the failure life of the
weldment was estimated. By comparing the calculated results with the data from a full
size pressure vessel weldment test, they concluded that the numerical predictions were
reliable provided that the material characterisation was carried out correctly and that
the constitutive equations which control the evolution of creep strain and damage

could represent the dominant physical mechanisms present.

More recently, other work which involved finite element damage analysis of welds was
carried out (e.g. Tu et al [1993, 1994]), for the purpose of studying the creep strength
of welds. For the weldment in a 1/2Cr1/2Mo1/4V pipe which they modelled, it was
found that the damage caused severe strain concentration in the weld metal (Tu et al
[1994]). Although the individual weld metal exhibited higher creep strength, the
damage occurred preferentially in the weld metal as a result of stress redistribution.
They concluded that under normal operating conditions, the creep lifetime could be

reduced by a factor of 3 due to the presence of a weld.
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Fig. 2.1 Schematic representation of the microstructure in
(a) single bead and (b) multiple bead weldments (Williams [1982-2]).
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Fig. 2.2 Classification of cracking in weldments (Schuller et al [1974]).
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Fig. 2.3 Plane strain analytical models of cross-weld specimen.
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Fig. 2.4 Schematic diagram of an impression test.
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Fig. 2.5 Schematic diagram showing the contribution of deformation.

log(A_. /[B(as,..)"])

Y

Fig. 2.6 Schematic diagram illustrating the method used to obtain

reference parameters from FE-analysis.
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CHAPTER Il

STEADY-STATE CREEP ANALYSIS OF

TWO-MATERIAL STRUCTURES AND TEST SPECIMENS

3.1 INTRODUCTION

A weld is an inhomogeneous structure. The weld metal can have different physical,
mechanical and creep properties from those of the parent metal. In addition, the very
act of welding changes the metallurgical properties of the metals in a heat affected

zone (HAZ) around the weld.

When such an inhomogeneous structure is subjected to realistic loading at elevated
temperature, the resulting deformation and cracking distribution can be very complex.

Detailed theoretical analysis of welds is difficult because welded zones tend to have
highly irregular shapes. However, one of the basic problems is the effect of different
creep properties and the sizes of HAZ’s. Although considerable work has been carried
out on this subject, there is still a lack of detailed understanding of the stress and strain
distributions within the welded structures under creep conditions. Therefore, it is

difficult to apply the information, from the available results, to actual weld situations.
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Creep testing of cross-weld specimens is frequently used to obtain data which can be
used to assess the detrimental effects of welds on the life of elevated temperature
components. In order to have a better understanding of the creep behaviour of cross-
weld specimens, the creep stress distributions in some typical two-material structures,
and idealised axisymmetric specimens, were investigated in detail using both analytical

and numerical methods.

The research work to be described in this Chapter is considered in three main sections.

The first one (Section 3.2) mainly deals with the general characteristics of the creep
stress variations, based on the results from four typical two-material structures, using
analytical solutions. Results obtained using these solutions can be used to assess the
applicability of simple design rules, established for single-material structures, to two-
material components and structures. Based on this analysis, some general observations

on the creep stress distributions in two-material structures are made.

Section 3.3 introduces the stress distributions on the centre line of an idealised,
axisymmetric, two-material, creep test specimens. Finite element creep analyses were
performed using models with various geometrical and material property ratios. Using
the results obtained, it has been shown that a simple interpolation technique can be
used to obtain the stress/strain-rate distribution of any geometry and relative creep

properties.

In Section 3.4 the more specific problem of the stress singularity behaviour at the free

surface of the same idealised, two-material, axisymmetric specimen is described. Using
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the finite element method, the stress singularity parameters for different geometries and

creep properties and the effect of angular position were fully studied. The physical

significance and the implications of the results for practical situations are discussed.

3.2  OBSERVATIONS ON THE CREEP OF ONE-MATERIAL

AND TWO-MATERIAL STRUCTURES

3.2.1 Introduction

For single-material structures with simple geometric shapes and loading modes, closed
form analytical solutions can be obtained for the stress distributions and deformations (e.g.
Anderson et al [1963], MacKenzie [1968], Sim [1970], Johnsson [1973] and Boyle and
Spence [1983]). For more complex geometries and loading situations, computational
methods (e.g. the finite element method) can be used to obtain stress distributions and
deformations (e.g. Sim [1970][1971] and Sim and Penny [1971]). Also, for single-material
structures, simple design rules, based on the reference stress method (e.g. Anderson et al
[1963] and Sim [1970]) and on the approximately linear variation of the stress at a point in

a structure with 1/n, have been developed (Goodall [1990]), where n is the stress exponent

in the material creep constitutive equation (¢° = Bo™").

By comparison with the single-material case, relatively little information is available for

predicting the behaviour of structures which consist of more than one creeping material.
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An example of a situation in which more than one creeping material exists is that of a weld:
the creep properties of the base, weld and heat-affected zone (HAZ) materials may all be
different. Therefore the existence of the weld may significantly affect the local stress and
strain distributions, increase the rate of damage accumulation and cause creep cracks to
initiate and grow. Also, the simple design rules for single-material structures are not

directly applicable to structures with more than one material.

The main purpose of the work introduced in this section is to present the analytical
solutions for four simple two-material structures, i.e. a two-bar structure (Fig. 3.2.1(a)),
two beams in bending (Figs. 3.2.1(d) and 3.2.1(e)) and a thick cylinder (Fig. 3.2.1(g)).

These solutions are then used to assess the applicability of the approximately linear
variations of stress with 1/n and reference stress methods, developed for single-material
structures, to two-material situations. For comparison, the results obtained for the

corresponding single-material cases are also presented.

In this work only the stress distributions of the structures investigated are presented. The
corresponding deformation behaviour investigated using a reference stress approach can be
found in Hyde et al [1996].

3.2.2 Single-Material Structures

(D Two-bar structure
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The steady-state creep behaviour (i.e. when stress redistribution is effectively completed)

of the two-bar structure shown in Fig. 3.2.1(a) is fully defined by the load-point

displacement rate, As, and the stresses, 67 and O», in the two bars.

From the equilibrium (i.e., 5; A; + 6; A, =P), compatibility (i.e. €, = A/l; and €, = A/l,) and

material creep behaviour (i.e. € = Bo", taking both bars to be made of the same material)

equations, it can be shown that in the steady-state

~ -
1+ A
A — Al n
Ass - 1 ll B(O'nom) (321)
il
Ar \1z/ |
1 + &) O nom
o1 = (3.2.2(a)
1 + ==
(1 + ﬁ) O nom
and o, = (3.2.2())

e A (1)

A: \1
where Gpom = P/(A1 + Ao).
Using equations (3.2.2(a)) and (3.2.2(b)) it can be seen that if 1, > 1;, then 61 > Gpom and o,
< Gpom. Also, as n —> o0, then G = G2 = Crom.  Taking the case of b >1;, the variations of &
(the greater of the two stresses) with 1/n were obtained, for a range of 1i/l, and A/A,

values, shown in Figs. 3.2.2. From Figs. 3.2.2 it can be seen that the vanation of stress

with 1/n is in general non-linear. The degree of non-linearity depends on the 1,/1, and A)/A,
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ratios. However, for fairly wide ranges of AyA; and 1/1, the relationship can be
represented reasonably well by straight lines. However, as 1/l — 0, the linearity becomes

poor. The case of 1/, — 0 is not a practical two-bar case because, as equation (3.2.1)

indicates, when 1, — 0 then Aq — 0 and the structure does not creep. These results
indicate that although the stress varies approximately linearly with 1/n for a wide range of
geometries, the approximately linear relationship breaks down for highly constrained

situations (i.e. when |; <<1,).

(2) Beams in bending

The steady-state creep behaviour of the rectangular cross-sectional beam and the I-

sectioned beam, shown in Figs. 3.2.1(b) and 3.2.1(c) are fully defined by the rate of change

of curvature, K, and the variation of bending stress, c,(y), with position y on the cross-

section.

For the rectangular cross-sectioned beam, the equilibrium (i.e, M = 2b 52 y ox(y) dy),

compatibility (i.e. £, (y)=Ky) and material creep behaviour (i.e. £°=Bc") equations can

be used to show that in the steady-state

1)\" 2
. = R n 323
Kss (1 + 2n) ] B(6nom) ( )
_ 1 2_Y)% 324
Ux(y) (1 + 2n) (d O nom ( )

where Guom = 4aM/bd?
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A similar analysis for the I-sectioned beam, shown in Fig. 3.2. 1(c), leads to

(o)
2n 2

KSS = 1 ’ ‘B(Gnom)n (325)

(3.2.6)

where Gpom = 4M/bod,2,

For the rectangular cross-sectioned beam, the normalised maximum stress, (/S\X/O'mm, which

occurs at the surface, varies exactly linearly with 1/n, i.e., c/s\x/onom =1+ 1/2n. However, it

should be noted that the bending stresses at other positions (i.e. y < d/2) do not vary exactly
linearly with 1/n. The deviations from linearity, as indicated in Fig. 3.2.3 (for y < d/2), are
not large and are most significant for the lowest values of y, which correspond to the low

stress values and are hence of least significance.

Unlike the rectangular cross-sectioned beam, the maximum stress for the I-section beam

does not vary exactly linearly with 1/n; in this case

Ox (1 ' ZLn) (3.2.7)

Gnom 2+ %
98
b2/ \d:
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However, for particular values of by/b, and d,/d, it is found that the variation of c?x/csmm

with 1/n 1s practically linear. Fig. 3.2.4 shows the variations of 6,/G, With 1/n for by/b, =
0.2 and dy/d, = 0.8, at various 2y/d, values, which indicate that practically linear variations
occur except at the lowest stress positions. These results are typical of those obtained with

any by/b, and d,/d; ratios.

(3)  Intemally pressurised, closed-ended thick cylinder

The steady-state creep behaviour of the internally pressurised thick cylinder shown in Fig.
3.2.1(f) 1s fully defined by the variation of the radial displacement rate, 1 (r), and the

variations of the hoop, axial and radial stresses (Go(r), 64(r) and o,(r)) with radial position r.

From the equilibrium (i.e. do/dr = (oe - ©,)/r), compatibility (i.e. de, /dr=(&, —&,) /1)
and multi-axial material creep behaviour (e, £;=3 B (ce)™" Siy/2, where g = (1.5 S;

S;)*° and S; is the deviatoric stress) equations, together with the boundary conditions (i.e.

o, =-p atr=R; and 6, = 0 at r =R,), it can be shown that in the steady-state

a(r) = (ﬁjl (Z) ( 1 Ro g (3.2.8)

2

I

208 - P 71+(1—_-—"-)[R°] (3.2.9)

o (1) ((Ro /R — 1)

DN e




Also, the variation of the effective stress, c.¢(r), with radial position, in the steady-state is

given by

2

Oer (1) = ‘f (}?j ((Ro/;)%_l) (3.2.10)

Figs. 3.2.5(a) and 3.2.5(b) show the variations of 6 and ¢ with radial position, for a thick

cylinder having R/R; = 2, for a range of values of n. From Fig. 3.2.5 it can be seen that for

n < 2 the maximum hoop stress occurs at the bore of the cylinder, but for n > 2 the
maximum hoop stress occurs at the outer surface of the cylinder. As n — o, 'Hopitals rule
can be used, with equation (3.2.10), to show that .« becomes independent of r, having a
value of V3p/(2ln (RY/R;)). Using equations (3.2.9), the variations of hoop stress with 1/n
were obtained at various radial positions, for R/R; = 2 and 4, as shown in Fig. 3.2.6(a) and
3.2.6(b), respectively. For R/R; =2 it can be seen that the stresses vary practically linearly
with 1/n but the deviations from linear behaviour are more pronounced with the higher
values of R/R;. Similar variations of stress with 1/n can also be obtained for the other

stress components (equations (3.2.9)) and for other radius ratios, R/R;.

From Fig. 3.2.6 it can also be seen that at certain combinations of n and R/R; it is possible
to have negative hoop stresses near the bore of the cylinder. The combinations of n and
RJ/R; resulting in negative hoop stresses can be obtained from equation (3.2.9), i.e. they
occur when 1+ (2 - n) (Ry/R;)” /n < 0. Similarly, it is also possible to have negative axial

stresses for some combinations of n and R/R;.

3.2.3 Two-Matenal Structures
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(a) Material behaviour

In two-material structures (or structures comprising of more than two materials such as
welds), the creep properties can often be reasonably represented by Norton creep laws,

ie.e° =Bo". For many engineering materials in their practical stress ranges, the stress
exponents, n, are in the range 2 to 8 and are usually close to 4. Also, the stress exponents
of materials being joined are often about the same (e.g. Hall and Hayhurst [1991]).

However, there can be large variations in the B-values for the different materials being
joined. For these reasons, and in order to simplify the analyses of two-material structures, it
will be assumed that the n-values are the same for the two materials but that the B-values

can be different.

(b)  Two-bar structure

As in the single-material case, the steady-state creep behaviour of a two-bar structure,

consisting of two materials (material 1 and material 2), shown in Fig. 3.2.1(a), is fully

defined by the load-point displacement, A, and the stresses, 6, and o, in the two bars.

Using the equilibrium (ie. 61 A, + 0, A, = P), compatibility (ie. & =A/l, and
£, = A /1,) and material creep behaviour (i.e. £ =B o" for bar 1 and &° = B, &" for bar

2) equations, it can be shown that in the steady-state,
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A

1 +
Ass = A 1 L Bl(O'nom)n

1 + A, (Blll);
i A \B:ly/ |
(1 + &) O nom
Al
1
1+&(&g"
A1 \B:1;
(1 + ﬁ) O nom
A>

1
1+g@%"
A2 \Bi I

o1

and o2 =

where Gpom = P/(A; + A)).

(3.2.11)

(3.2.12(2))

(3.2.12(b))

By comparing equations (3.2.11) and (3.2.12) with equations (3.2.1) and (3.2.2),

respectively, it can be seen that in the equations for the two-material structure the quantities

B, I; and B; I, simply replace 1; and 1,, respectively, in the equations for the corresponding

single material structure. Hence the behaviour of the single-material, two-bar structure, as

depicted in Fig. 3.2.2, can also be used to describe the behaviour of the two-material, two-

bar structure simply by replacing B, 1, for I, and B; |, for L. As with the single-material,

two-bar structure, the situation in which B; ; = 0 is not a practical two-bar case, because

under these conditions A — 0, i.e. the structure would not be creeping. Therefore, it can

be inferred that for a wide range of geometries the stresses vary approximately linearly with

1/n. However, the approximately linear relationship breaks down in situations when By I

<<B, L.
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(c)  Beams in bending

Two examples of rectangular cross-sectioned, two-material .beams in bending are shown in
Figs. 3.2.1(d) and 3.2.1(e); these are referred to as case 1 and case 2, respectively. In case
1 (Fig. 3.2.1(d)) the division of the beam is such that each of the materials spans the full
depth of the beam but only occupies part of the breadth of the beam. In case 2 (Fig.
3.2.1(e)) each of the materials occupies the full breadth of the beam but only part of the

depth of the beam.

1) Case 1

The steady-state creep behaviour is fully defined by the rate of change of curvature, Ky, and
the variations of bending stress, 5, (y) and 6,*(y), with position y, on the cross-section, of

the parts of the beam made from materials 1 and 2, respectively.

From the equilibrium (i.e. M = 2b, £ yo. (y) dy + 2(b, - bl)oJM o (y) dy), compatibility

(le. & (y) = Ky) and material creep behaviour (i.e. £&°= B, ¢" for material 1 and &= B,
o" for material 2) equations, it can be shown that in the steady-state

b3
2n

- 3B (o) (32.13)

Ss n

el
b2 { \ B
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D)y
60(y) = A (Ed_) o
by (1 ] Q) (&)“ (3.2.14(a))
b2 b2/ \B;
1+ 1 .
and oy (y) = 2nl : (%) G nom (3.2.14(b))

where G, = 4M/b,d>.

From equations (3.2.14(a)) and (3.2.14(b)) it can be seen that as n — o, both 6, and 6@
become independent of y and equal to G, irrespective of the by/b, and By/B, ratios. This
is the same as the single-material stress distribution as n — oo (see equation (3.2.4)). It can
also be seen from equations (3.2.14(a)) and (3.2.14(b)) that 5,"/o,® = (B/B1)"™, and if B,
> B, then 6,2 > 6", at any value of y > 0, and if B, < B, then o, > ,?, at any value of y
> 0. Fig. 3.2.7 illustrates the form of the stress distributions in the two parts of the beam
with different stress exponents, n, for the example of by/b, = 0.5 and By/B; = 5. From Fig,
3.2.7 it can be seen that for the material 2 part of the beam the stresses generally increase as
n increases, whereas for the material 1 part of the beam the stresses for low 2y/d values
increase but those for high 2y/d values decrease. For a number of combinations of bi/b;
and two By/B, ratios, the variations of the maximum bending stresses with 1/n are shown in
Fig. 3.2.8(a) and 3.2.8(b) (for the combinations chosen the maximum stress occurs in
material 1, i.e. By/B; > 1). It can be seen that when the most creep resistant material

occupies the largest volume (e.g. bi/b, = 0.9) the maximum stress varies approximately
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linearly with 1/n irrespective of the By/B; ratio (1 <By/B; < 100). When both materials
occupy similar volumes (i.e. by/b, = 0.4 to 0.6) the maximum stress varies approximately
linearly for Bo/B1 = 10; whereas for By/B, = 100, a linear relationship is not so accurate.

When the most creep resistant material occupies the smallest volume (e.g. by/b, = 0. 1), a

reasonable linear relationship only exists for values of By/B, close to unity.
i) Case 2

As with Case 1, the steady-state creep behaviour is fully defined by the rate of change of

curvature, K, and the variations of bending stress, o, (y) and o, >(y) , with position y, on
the cross-section (Fig. 3.2.1(e)), for the parts of the beam made from materials 1 and 2,

respectively.

From the equilibrium (i.e. M = 2b (f 1/Zy o Ay) dy + (2 y 6 2(y) dy)), compatibility

(le. €, (y)= Ky) and material creep behaviour (i.e. &° =B, ¢" for material 1 and &°=B, ¢"
for material 2) equations, it can be shown that in the steady-state

(15
2n

2 n
Ko = - . = . B, (Goom) (3.2.15)

2+l l 2
()G
d» Bi

[+ 5 o
oY) = 2n (—yj Orom  (3:2.16(2))

1 241 ! d:
SRR
B: d; B,
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(3.2.16(b))

where G = 4M/bd,>.

From equations (3.2.16(a)) and (3.2.16(b)) it can be seen that as n — o, both 6, and @
become independent of y, irrespective of the d,/d, and B,/B ratios. This is the same as the
single-material stress distribution as n — o (see equation (3.2.4)) and case 1 of the two-

material beam (see equation (3.2.14(a)) and (3.2.14(b))).

Typical variations of the maximum stress with 1/n (this may be in either material 1
or material 2) are shown in Figs. 3.2.9(a) to (d), for a range of B,/B; values (0.01 <By/B; <
100) and d,/d, values (0.1 <d;/d, < 0.9). When the highest stress is at the interface in
material 1 (e.g. Figs. 3.2.9(a) and 3.2.9(b)), reasonably linear variations of maximum stress
with 1/n are obtained for the higher d,/d, ratios for By/B, = 0.01. For By/B, = 0.1, the
intermediate values of di/d, result in the most non-linear results. When the highest stress is
in material 2 (e.g. Figs. 3.2.9(c) and 3.2.9(d)), the deviations from linearity are more
pronounced as B)/B, is increased and d,/d, is increased. This indicates that as the volume
of material 2 is decreased and/or its relative creep resistance is increased the deviation from

linearity becomes more pronounced.

1v) Internally pressurised, closed-ended thick cylinder
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As in the case of the single-material thick cylinder, the behaviour of the two-material
cylinder (Fig. 3.2.1(g)) is fully defined by the variation of the radial displacement rate,
u(r), and the variations of the hoop, axial and radial stresses (Go(r), 0.(r) and o)) with

radial position, r.

From the equilibrium (i.e. do/dr = (s - 6,)/r), compatibility (i.e. d eg/dr = (& - €)/r) and

material creep behaviour (i.e. & = 3B, (Gea)™" Sjy/2 for material 1 and & = 3B, (Ga)™" Si/2
for material 2) equations, together with the boundary conditions (i.e. 6, =-patr=R;, o, =

0 at r =R, and u is the same for materials 1 and 2 at the interface radius, R;), it can be

shown that in the steady-state

"o = (—\91 (%) ((RI/Rj% i 1)n ltlz e N
1218 )
:98 _ P <( _&)[H(l““)(ﬁ)?(l—(&/Rl)i)L(3.2.18)
& (1) [1—(Ri/R1);] P o 2r )
(1—‘:) 1—(—r—*); —(1—(R,/R1)§)

for material 1 and

i) - [ﬁl ) — Ry (3219)

2
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0 (1) 1 R 2
—-n n
o, ()= Py - <1+(Tj( r°) > (3.2.20)
o, (r) ((Ro /R)" - lj 2
S
1_
r
for material 2, where p;, which is the interface pressure, is given by
p, = P (3.221)

L 2
v (B | /R
B/ 1-R//Ro)n
Also, the variations of the effective stress, G (r), with radial position are given by

() |5 -

_ B (&f
oer (1) p " > | 2
R [ Y|
(3.2.22)
for material 1 and
G (1) = ‘f (%)2 P (3.2.23)

for matenal 2.

From equations (3.2.22) and (3.2.23), using I'Hopitals rule, it can be shown that as n — o,
Oeg in both cylinders becomes independent of radial position and is the same in both
cylinders, irrespective of the By/B, ratio, having a value of V3 p/[2 In (R/R;)] which is the

same as that in a single-material cylinder having the same overall dimensions and internal
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pressure. Therefore, a two-material thick cylinder under internal pressure, with the same
creep stress exponent, n, for both materials, will have the same distribution of effective
stress, Oe, When n — oo, as that for a single-material cylinder as n — oo, Hence, the
similarity of the limit load equivalent stress distribution to the stress distribution for a single-

material structure, as n — oo, is also applicable to two-material structures as n — .

Typical variations of the Geg/p (at the inside radius, at the interface between the two
materials and at the outer radius) with 1/n, for R/R; = 1.5 and To/T, ratios of 0.1 and 10,

where To/T; = (R, - R)/(R; - R;), are shown in Figs. 3.2.10(a) - (f); these are typical

examples of the behaviour for other T/T, ratios in the range 0.1 < TyT; < 10. The
variations of Ge/p with 1/n are similar to the corresponding Gea/p versus 1/n variations.

When To/T, is relatively small (e.g. To/T; = 0.1, see Figs. 3.2.10(a) - (c)), the stresses in
material 2 are relatively uniform and are greater than those in material 1 when B, <By, i.e.
when material 2 is more creep resistant. When T,/T; is relatively large (e.g. To/T; = 10, see
Figs. 3.2.10(d) - (f)), the stresses in material 1 are relatively uniform and are greater than
those in material 2 when B, > B,, i.e. when material 1 is more creep resistant. Figs.
3.2.10(a) - (f) indicate that in the important, highest stress regions of the two-material
cylinder the variations of the effective stress with 1/n can be reasonably accurately

represented by straight lines, especially for values of By/B; near unity.

3.2.4 General Behaviour of One and Two-Matenal Structures

(a) Single-material
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From the similarities of some of the results of the above analyses of the three examples of

single material structures, it is possible to make some general observations:

The variation of the stress at a point in a component with 1/n can often be accurately
represented by a linear relationship. This is particularly the case for the peak stress position
in a structure. This linear relationship was observed for a number of creep situations and
has been used to assist with the development of design codes for high temperature
applications (e.g. Goodall (editor) [1990]). The fact that the stress distributions for n = 1

and n = oo are analogous to the elastic and limit-load stress distributions allows approximate

peak stresses to be obtained from a knowledge of the peak elastic stress, 8", and the limit

load, Py, for a structure, i.e.

. P 1(.. P
o~ — oy t — (0 - O'Y) (3.2.24)
PL n Py

However, it should be noted that there are situations in which the linear approximation is
not sufficiently accurate (e.g. when I;/1; ~ 0 for the two-bar structure, or R/R; >> 1 for the
internally pressurised thick cylinder). Hence, care should be taken when using this

approach for estimating the peak stress under stationary state stress conditions.

(b) Two-material

Although the behaviour of two-material structures is more complex than that of single-
material structures, by making the simplifying assumption that the stress exponents, n, for
the two parts of the structure are the same, it is possible to make some general

observations:
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(i) As n — oo, the stress distribution within a two-material structure, for any B,/B,

ratio, is the same as that for a single-material structure, as n — oo, having the same overall

dimensions.

(i) The peak stress position can be in either of the two materials and depends on the
relative dimensions of the two parts of the structure and on the B,/B, ratio. However, for
wide ranges of dimensions and By/B; ratio, the peak stress seems to vary approximately
linearly with 1/n.  Therefore, the peak stationary-state stress can be estimated using
equation (3.2.24). In this case, Py, is the limit load for the equivalent single material
structure with a yield stress of 6, and a peak elastic stress of o° is the elastically calculated
peak stress with the two materials having Young's moduli of E, and E,, such that E\/E, =
By/B; (v = 0.5 should be used for the elastic solutions). However, it should be noted that
the ranges of dimensions for linear behaviour are more restricted than those in the
corresponding single-material structures. Hence, even greater care should be taken when

using this approach for estimating the peak stress.

(i)  Since the stress states for n — oo for single-material and two-material structures are
the same, the stress distribution in a creeping structure, with an infinite value of n, can be
represented by a similar (i.e. having the same overall dimensions) single-material structure

at collapse even if the creeping structure is a two-material structure.

Analytical solutions are presented for the deformations of and stresses in two-bar

structures, beams in bending and thick cylinders, under creep conditions. Single-matenal
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and two-material cases were investigated. Results obtained using these solutions were used
to assess the applicability of reference stress and other simple design rules, established for
single-material structures, to two-material components and structures. In this thesis only
the stress distributions of the structures studied are presented. The corresponding

deformation behaviour can be found in the relevant Reference (Hyde et al [1996]).

33 AMETHOD FOR ESTIMATING THE STRESS DISTRIBUTIONS
ON THE CENTRE LINE OF AXISYMMETRIC

TWO-MATERIAL CREEP TEST SPECIMENS

3.3.1 Introduction

A schematic diagram of a typical weld is shown in Fig. 3.3.1; it generally consists of base
metal (BM), weld metal (WM) and heat affected zones (HAZ). Creep testing of cross-
weld specimens, see Fig. 3.3.2, provides data which can be used to assess the detrimental
effects of welds on the life of elevated temperature components (Nicol and Williams [1985]
and Etienne and Heerings [1993]). However, the information obtained from cross-weld
creep tests is difficult to directly apply to the life assessment of welded components. One of

the main problems associated with the application of the data is the specimen size effect

which is observed.
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The results of many attempts to determine the stress and strain distributions in cross-weld
specimens have been published (e.g. Storesund et al [1992]). However, it is difficult to
generalise the results of these analyses in order to predict the stress state in a cross-weld
specimen from a knowledge of the creep properties of the constituent parts. In this section,
a method which allows the stationary state stress and hence strain-rate distributions to be
quickly obtained from a knowledge of the creep properties of the constituent materials, is
presented. To simplify the presentation of the method, the idealised, two-material

specimen, shown in Fig 3.3.3, is used.

The general behaviour of the specimen (Fig. 3.3.3) is characterised by the stress and strain-
rate distributions on the centre-line. Hence only the results for the centre line are presented
in this section. The stress singularities which may exist near the specimen surface (position

S in Fig. 3.3.3) where the material boundaries occur, will be discussed in Section 3 .4.

Finite element creep analyses have been performed for an axisymmetric two-material
specimen.  Stationary-state stress and strain-rate results were obtained for various
geometries and relative material properties. Using these results, it has been shown that a
simple interpolation technique can be used to obtain the stress distributions of any geometry

and relative creep properties.

3.3.2 Problem Definition and Finite Element Analysis
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The idealised, axisymmetric specimen is assumed to consist of two materials, defined as

material types A and B in Fig. 3.3.3; material type A is between two pieces of material type

B. Both materials are assumed to obey power-law creep, i.e.

£=Ag" (3.3.1())
for material A, and

£=Bg" (3.3.1(b))
for material B. It can be seen that the stress exponent, n, is assumed to be the same for
both materials; this is the case for many practical weld situations (e.g. Storesund et al
[1992]). However, the constants A and B are different so that if A > B, material B is more

creep resistant than material A and vice-versa.

The axial load (Gnom) is applied remotely from material A so that the geometry can be fully

defined by the diameter, d, and the axial length, w, of the zone occupied by material A.

Stress and strain-rate distributions along the centre-line of the specimen, i.e. r = 0 (see Figs.
3.3.3), and in the vicinity of the singularity point, S (see Fig. 3.3.3), were investigated in
detail. A typical finite element mesh used to obtain general stress and strain-rate
distributions is shown in Fig. 3.3.4; it consists of eight-noded, axisymmetric, isoparametric
elements. Various mesh refinements were used to establish the accuracy of the results
obtained, on the basis of the differences in stresses between one mesh and another and the
magnitudes of the stress discontinuities at element boundaries. It should be noted that
discontinuities in stress actually occur in some stress components on the interface between
materials A and B, as indicated in Appendix I in which the relationships between stress and

strain-rate on the centre line are given. The investigation of the stress singularities which
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occur at position S, shown in Fig. 3.3.3, requires a much more refined mesh in this region.

This will be described in Section 3 4.

Finite element creep calculations, using the ABAQUS [1994] finite element software
system, were continued until a stationary-state stress distribution was achieved. The
achievement of a stationary-state was established by checking the stress distribution along
the centre line at different time increments, using the FEMVIEW [1992] post processing
facilities. It should be noted that when A/B << 1 the stresses near the centre of the
specimen approach the stationary-state very slowly. However, since the stresses at these

positions are relatively low, small errors in these results are not considered to be significant.

3.3.3 Stress Variation on the Centre Line and the Effects of Material Properties

and Specimen Geometries

(a) General behaviour

Normalised, stationary-state stress contours for a situation in which w/d = 1, n = 4 and
A/B = 10 are shown in Fig. 3.3.5. These results were obtained with the mesh shown in Fig.

3.3.4, and hence the stresses in the vicinity of point S (Fig. 3.3.3) are not accurate.
It is evident from Fig. 3.3.5 that the two extremes of stress state occur on the centre-line

(ie.r=0) and on the specimen surface (i.e. r = d/2). Therefore, the rest of the results

presented in this section will be restricted to the variations of stress with x forr=0.
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(b)  Centre-line stress and strain-rate distributions

1) Effect of n

The centre-line (r = 0) variations of Gx/Guom, G/Cnom (= C¢/Cpom) and Oeq/Orom With X, for a
range of n-values, with w/d =1 and for A/B = 0.1 and 10, are shown in Figs. 3.3.6(a) and
3.3.6(b). As expected, the G./Cu Stress is continuous across the interface, but the O/Crom
and Gey/Cnom distributions are discontinuous.  Although closed-form solutions for the
stresses and strain-rates cannot be obtained, the ratio of the o, values on either side of the
interface can be determined; this ratio is given by equation (A1.11), see Appendix I. The
finite element o4 ratios were found to be very close to the theoretical ratios, being generally

well within 1%.

From Figs. 3.3.6(a) and 3.3.6(b) it can be seen that as n — oo, 6 becomes independent of
x and equal to Gy, Which is the same stress distribution as would be obtained for A = B,
i.e. for a single-material specimen. Uniform o, distributions, independent of the A/B value,

were also obtained for a number of simple, two-material components for which analytical

solutions can be obtained (Hyde et al [1996]).

When material A is more creep resistant than material B (i.e. A/B < 1) the maximum

centre-line axial stress, &, in material A occurs at the interface (x = w/2), whereas the

maximum centre-line axial stress, &, in material B occurs away from the interface (x >

w/2). Under the same conditions, i.e. A/B < 1, the maximum centre-line equivalent stress,
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0., > in materials A and B occurs at the interface (x = w/2) and away from the interface (x

> w/2), respectively. When material A is less creep resistant than material B (i.e. A/B > 1),
the maximum centre-line axial stress, &, , occurs at the centre of material A (i.e. x=0) and
away from the interface for material B (i.e. x> w/2); the magnitude of the maximum
centre-line axial stress in material B is close to nominal stress, Gpm. Also, when A/B > 1,

the maximum centre-line equivalent stress, & «q » OCCUTS at the centre of material A (i.e. x =

0) and at the interface for material B (i.e. x = w/2). The o, (= o) distributions are also
discontinuous at x = w/2 but the stress magnitudes at any x-value are generally significantly

less than those of oy and G.,. The variations of &, /Gum and &, /Gum With 1/n, for

various A/B values, with w/d = 1, are shown in Fig. 3.3.7. It can be seen that under most
circumstances, for a practical range of n-values (e.g. 4 < n < 10), the data shown in Fig.
3.3.7 can be closely approximated by straight line fits. Reasonably accurate linear fits to the
variations of stress with 1/n were also obtained at other positions on the centre-line and for
other geometries (0.2 < w/d < 3.0). Similar behaviour has also been observed for other
two-material structures (Hyde et al [1996]). The straight line fits to the data can be

characterised by two quantities, K and G (i.e. 6 /Gpom = K + G/n).

i) Effect of A/B

The centre-line (r = 0) variations of G/Guom, G¢/Gnom (= O8/Cnom) aNd Ge/Gnom With X, for a

range of A/B values, with w/d = 1 and n = 4, are shown in Fig. 3.3.8.

70



It can be seen (Fig. 3.3.8(a)) that maxima in 6,/Gy.m Curves occur at the centre of material A
(ie. at x = 0) for A/B > 1 and away from the interface in material B (i.e. x > w/2) when

A/B <1. The variations of these maxima in G,/Gnom With A/B are shown in Fig. 9 for a
range of w/d values. The maxima in 6,/Gnom in material A are fairly strongly dependent on

w/d, particularly for the higher A/B values, whereas the maxima in 6,/Cpm in material B are
weakly dependent on w/d and to a lesser extent they are relatively weakly dependent on

A/B.

Maxima in Gey/Crom Occur in the same places as those in 6./Gu (Fig. 3.3.7(b)). In addition
to these maxima, the discontinuities in G at the interface between materials A and B result
in high stresses in material A at x = w/2 (at the interface) when A/B <1 and high stresses in
material B at x = w/2 (at the interface) when A/B > 1. The vanations of the maxima and
high interface values of G, with A/B are shown in Figs. 3.3.10 for a range of w/d values.

From Fig. 3.3.10(a) it can be seen that the maxima in Gey/Gnom for material A (at x = 0)
when A/B > 1 are strongly dependent on w/d, particularly for small w/d and high A/B
values. However, these maxima are less than unity indicating that if material A is less creep
resistant than material B, then there is a beneficial reduction in the equivalent stress even
though the corresponding maximum axial stress increases with A/B (Fig. 3.3.9(a)). Fig
3.3.10(d) shows that the maxima in Ge/Gpm for material B (x > w/2) are practically
independent of both w/d and A/B, the value being only slightly greater than unity. The high
equivalent stresses at the interface (x = w/2) in both materials A and B (Figs. 3.3. 10(b) and
3.3.10(c)) are strongly dependent upon A/B but for w/d > 0.4 they are relatively
independent of w/d. However, Fig. 3.3.10(c) indicates that as w/d becomes small (i.e. 0.2

or less ) the equivalent stress at the interface becomes very sensitive to the w/d value.

71



i)  Effect of w/d

The centre-line (r = 0) variations of Gy/Grom, G/Gnom (= G6/Grom) and Oe/Onom With X, for a
range of w/d values, with n =4, and for A/B = 0.01 or 100 are shown in Figs. 3.3.11(a) and

3.3.11(b).

The variations in G,/Gnom With 2x/w, for n = 4, shown in Figs. 3.3.11(a)l and 3.3.11(b)I
show that maxima occur in material A (at x = 0) when A/B > 1 and in material B (at x >
w/2) when A/B < 1. The vanations of these maxima in 6,/Guom, With w/d, are shown in
Figs. 3.3.12 for a range of A/B values. The maximum stress in material A, when A/B > 1
(at x = 0), is sensitive to w/d, particularly for low w/d values and high A/B values, see Fig.
3.3.12(a). However, the maximum stress in material B, when A/B < 1 (x > w/2), is
relatively insensitive to w/d for all A/B values and is also practically independent of A/B for

A/B <0.01, see Fig. 3.3.12(b).

From Fig. 3.3.11(a)IIl it can be seen that when A/B < 1 the highest centre-line equivalent
stress in material A occurs at the interface (i.e. x = w/2) and the highest centre-line
equivalent stress in material B occurs away from the interface (i.e. x > w/2). When A/B >
1, Fig. 3.3.11(b)III shows that the highest centre-line, equivalent stress in material A occurs
at the centre of material A (i.e. x = 0) and the highest centre-line, equivalent stress in

material B occurs at the interface (i.e. x = w/2). The variations of the & . /Gaom With W/d,

for n = 4 and a range of A/B values, are shown in Figs. 3.3.13. When A/B > 1, G, /Goom in

material A (at x = 0) is less than 1 for w/d < 0.6 but is greater than 1 for w/d > 0.6.
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However, when w/d > 0.6 the c}eq /Grom Value is relatively insensitive to both w/d and A/B

(Fig. 3.3.13(a)). Also when A/B> 1, &, /Guom in material B (at x = w/2) can be seen to be

relatively insensitive to w/d (see Fig. 3.3.13(b)) but is sensitive to A/B. When A/B < |

G oq /Onom In material A (at x = w/2) is relatively insensitive to w/d, except at low w/d
values, but is sensitive to A/B. However, when A/B < 1, &eq /Grom in material B (x > w/2)

is practically independent of both w/d and A/B.

From Figs. 3.3.11(a)ll and 3.3.11(b)II it can be seen that significant tensile radial (and
hoop) stresses occur on the centre line (r = 0) in material A when w/d is small and A/B > 1
and that significant compressive radial (and hoop) stresses occur on the centre line (r = 0) in
material A when w/d is small and A/B < 1. The variation in the ratio of the hydrostatic
stress component, (O, + G + Gx)/3, to the equivalent stress, G, at x =0 and r =0, for n =
4, with w/d is shown in Fig. 3.3.14, for a range of A/B values. It can be seen that for A/B >

1 and w/d < 0.6 this ratio may be significantly greater than unity.

3.3.4 Estimating Centre-line Stress and Strain-Rate Distributions

In section 3.3.3 it was shown that over practical ranges of the stress exponent, n, the axial
and equivalent stresses at a point on the centre-line, () and G (X), vary approximately
linearly with 1/n, such that

ea(®¥)/ Orom ® Keq(X) + Ge(x)/ (3.32(2))

and

x(X)/ Onom = Ki(X) ¥ Gx(x)/n (3.3.2(b))
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On the centre-line, G{x) = Go(x) = Gx(X) - Geg(X), hence if G,(x) and Ge(x) are determined

then o,(x) and og(x) can be easily obtained.

Examples of the variations of Ky, Gy, Keq and Geq with 2x/w for w/d = 0.2, 1.0 and 3.0 are
shown in Figs. 3.3.15(a)-(c), for a range of A/B values. Using Fig. 3.3.15 and similar
results for other w/d values, the Gx(X)/Gnom and Ge(X)/Grom distributions can be determined
from any particular n-value. If results for the w/d and A/B values of interest are not
available then results for the w/d and A/B values spanning the values of interest can be
determined and interpolated to obtain the required values. Figs. 3.3.9 and 3.3.10 show that
linear interpolation of the Gx/Gpm and Geyf/Guom Versus log (A/B) will give reasonably
accurate stresses over one decade. Also, as Figs. 3.3.12 and 3.3.13 show, linear

interpolation between two w/d values, spanning the required value will give reasonably
accurate results. It should be noted that for combinations of high A/B with low w/d the

linear assumption is less accurate.

Results show that when w/d is very large (= 3.0) the stress variations along the centre line

become symmetrical about the interface. This indicates that from values of w/d > 3.0, the

stress variations across the interface should be the same as those of w/d = 3.0.

Having determined the Gy/Gnm and Ge/Grom distributions, then the G/Guom and Ge/Cuom
distributions can be obtained (equations Al1.2 and Al.3). Also, using the material
constants, A, B and n, for the two materials, the effective strain-rates can be determined

(te. £ =A ceg for material A and £_ = B o for material B) at any position, x, and

hence ¢ ¢ and £, can be obtained (equations A1.4 and Al.5).
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33.5 Conclusions

Although cross-weld specimens (Fig. 3.3.2) and the idealised two-material components
(Fig. 3.3.3) for which results are presented in this section, are geometrically simple, the
stress distributions within them are very complex. The stress distributions are strongly
dependent upon the geometry (w/d) and the relative creep properties (A/B) and the stress
exponent (n). However, on the centre line (r = 0) of the specimen, the complete stationary-
state stress and strain-rate distributions can be determined from a knowledge of the axial

and equivalent stress distributions (see Appendix I).

The axial stress on the centre line is continuous but the radial, hoop and equivalent stresses
are discontinuous at x = w/2. As n — o, the equivalent stress becomes independent of
position and A/B; this is similar to the behaviour observed with the other two-material

components (Hyde et al [1996]).

Over relatively large ranges of stress exponent the stresses (0x and Gq) Were found to vary
linearly, to a close approximation, with 1/n; see Figs. 3.3.7 (note that the stress axes in Fig.
3.3.7 are not drawn starting zeros, which exaggerates any small non-linearities which may
exist). In general, the differences between the actual stresses and those from straight line
fits to the plots of stress versus 1/n are within 2%. These good approximations to linear
behaviour, taken together with the smooth variations of stress with log (A/B), see Fig.
3.3.10, allow accurate interpolation of results to obtain the centre-line stress distributions

for any material properties (n and A/B) for a particular w/d. Hence the sensitivity of the
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behaviour of the two-material specimen (Fig. 3.3.3) to material and geometric variables can
be easily assessed from the results presented. In particular, variations of maximum principal
stress, effective stress and hydrostatic stress with position, x, can be determined; these
quantities affect the failure times for the specimens. Stresses determined can also be used
to determne the strains, which when used in conjunction with the stress-state can be used
to obtain failure ductilities; again this may be useful in determining the failure times for the

specimen.

Using the parametric study described above, the effect of geometric and material property
ratios on the minimum test gauge length of the specimen can be determined. It has been
found that the minimum gauge length depends on the geometry only, i.e. w/d values, and is
independent of n and A/B (see Figs. 3.3.6 and 3.3.8). Fig. 3.3.16 presents an example of

the variation of the minimum gauge length against w/d on a logarithm scale.

34 STRESS SINGULARITIES AT THE FREE SURFACE OF AN

AXISYMMETRIC TWO-MATERIAL CREEP TEST SPECIMEN

3.4.1 Introduction

Creep tests of cross-weld specimens, see Fig. 3.3.2, are used to obtain data which can be
used to assess the detrimental effects of welds on the life of elevated temperature

components, such as those used in power and chemical plants. However, due to a lack of
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detailed understanding of the stress and strain distributions within cross-weld specimens
under creep conditions, it is difficult to apply the information obtained from these tests to
actual weld situations. A method for estimating the stress distributions on the centre-line of
axisymmetric two-material creep test specimens has been described in Section 3.3. In this
section, the stress singularity which occurs at the free surface, in the vicinity of the
interface, of an axisymmetric, two-material, creep test specimen is described. As in Section

3.3, an idealised, two-material specimen, shown in Fig. 3.4.1, is used for this purpose.

The stress and strain singularities at dissimilar material interfaces have been the subject of a
number of papers (e.g. Bogy [1968], Dundurs [1969], England [1971] and Kelly et al
[1992]). Most of the previous work relates to the singularities caused by dissimilar elastic
material properties (Young's moduli and Poisson's ratios) under the plane strain conditions.
The effect of the wedge angles between the interface and free surfaces, on the nature of the
singularities, has been included in these investigations. Differences in the plastic flow
resistance for bi-material wedges can also cause stress and strain singularities (e.g. Lau and
Delale [1988] and Rudge [1993]). Power-law hardening material behaviour models were
assumed and plane strain solutions were obtained. Lau and Delale [1988] also pointed out
that their solutions would be applicable to the corresponding power-law creep situation if
displacements and strains were interpreted as their time rates instead. However, the range
of properties for which power-law solutions are available is limited and these solutions are
strictly applicable to plane strain situations only. In this section the effects of the geometric
variable, w/d (Fig. 3.4.1), and the relative creep properties of the two materials (A and B in

Fig. 3.4.1), on the stress singularity under axisymmetric conditions are reported, and the

physical significance of the singularity is discussed.
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The nature of the singularity which occurs at the surface of an axisymmetric two-material
creep test specimen has been investigated. It was found that the stress state in the vicinity
of the singularity is of the form 6 = Gpom K (i/d)™. The exponent N was found to be
practically the same for all angular positions and stress components, for given n and A/B
values, and does not depend on the geometry (i.e. w/d). The functions K ; define the
variations of the stresses with angular position, 0; these were found to depend upon w/d as

well as n and A/B. The implications of the results for practical situations are also discussed.

3.4.2 Problem Definition

The idealised, axisymmetric specimen is assumed to consist of two materials, defined as
material types A and B in Fig. 3.4.1(a). Both materials are assumed to obey power-law
creep, i.e.,

E=Ag" (3.4.1(2))
for material A, and

&= Bg" (3.4.1(b))

for matenal B.

The stress exponent, n, is assumed to be the same for both materials; this is a reasonable
assumption for many practical weld situations (e.g. Hall and Hayhurst [1991]). The relative

creep properties are therefore conveniently characterised by the ratio A/B.
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The axial load is applied remotely from material A so that the geometry can be fully defined
by the diameter, d, and the axial length, w, of the zone occupied by material A. The stress
state is defined in terms of the r, 6 co-ordinate system, as shown in Fig, 3.4.1(b). The
expressions of the stress components and the method used to obtain the singularity
parameters are given in Appendix II. A typical finite element mesh used to obtain the stress
distributions in the vicinity of the singularity point S (Fig. 3.4.1) is shown in Fig. 3.4.2; it
consists of six-noded and eight-noded, isoparametric elements. Various mesh refinements
were used to establish the accuracy of the results obtained, on the basis of the differences in
stress between one mesh and another and the magnitudes of the stress discontinuities at

element boundaries.

Finite element calculations, using the ABAQUS [1994] finite element software system,
were continued until a stationary-state stress distribution was achieved. The achievement
of a stationary-state was established by checking the stress distribution along the interface

at different time increments, using the FEMVIEW [1992] post processing facility.

3.43 Singularity Parameters K and N and the Effects of Creep Properties

and Specimen Geometries

(a) Typical behaviour

Typical variations of the normalised stationary-state stress components (i.e. O/ Oom,
G06/Coom aNd Tr/Gnom) and the normalised equivalent stress (Cog/Onom) With the normalised

radial position, r/d, for a range of angular positions, 8, are shown in Figs. 3.4.3 and 3.4.4 (r
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and O are defined in Fig. 3.4.1(b)). These results were obtained for w/d = 0.5 and n = 2
with A/B = 0.1 (Fig. 3.4.3) and A/B = 10 (Fig. 3.4.4). It can be seen that, in general, as r
— 0, the stresses increase rapidly. The variations of stress with radial position are singular

and it is assumed that the stresses can be represented by an equation of the form:

Gij/ Onom = Kii(r/d)™ (3.4.2())
and

Oeq /Onom = Keg(r/d)™ (3.4.2(b))
where the Njj and N, are positive exponents and the K;; and K, which are functions of 6,
describe the variations of the stresses with 6. Equations (3.4.2) can be seen to be valid
from the linear relationships between log (6/6.m) and log (r/d) which are obtained, as
shown in Figs. 3.4.5 and 3.4.6; the gradients of these straight lines are equal to -Nj; and -Ng,

and the K; and K., values are obtained from the intercepts on the log (0i/Gnm) and log

(Oeq/Onom) When log (r/d) = 0.

(b) Effects of n and A/B for w/d =1

The variations of Nj; and N, with 6, forn=1, 2, 4 and 8, with A/B = 0.1 and 10 are shown
in Figs. 3.4.7 and 3.4.8. It can be seen that for each n-value, the Nj; and N, values appear
to be only weakly dependent on 0. Also, the Nj; and N, values for each stress component
and for the equivalent stress are practically the same. The Nj values reduce with increasing
n-value such that as n — oo then N and N, — 0. The variations of the average Nj and Neg

with 1/n for a range of A/B values, for w/d = 1, are shown in Fig. 3.4.9.
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The variations of K; and K, with 6, for n =1, 2, 4 and 8, with A/B = 0.1 and 10, are
shown in Figs. 3.4.10 and 3.4.11. It can be seen that Kg and Ky are continuous functions
whereas K and K are discontinuous at the interface (6 = 0°). Also, Kee appears to be
continuous in slope as well as magnitude, at 8 = 0°, but K is only continuous in magnitude.

For a given A/B value, the general forms of each of the K; vs 8 and K, vs 6 plots are
similar for all n values with the absolute magnitudes of the Kj and K, values being
dependent on n. Also, as Fig. 3.4.12 shows, the variations of K;; and K., with 6 (for A/B =

0.01, 0.1,10 and 100, with n = 2) are strongly dependent on A/B.

The maximum K,, value occurs at the surface of material A (i.e. 0 = 90°) when A/B <1 and

at the surface of material B (i.e. 6 = -90°) when A/B > 1. The variation of the maximum
value of K, 1.e. I/(\,,, with 1/n, for w/d = 1, is shown in Fig. 3.4.13(a). It can be seen that
I/(\,, increases as A/B increases above unity or decreases below unity and is greatest when n

~ 8 (NB. results for higher n-values were not obtained). The I/(\,, results for a given A/B

ratio are the same as those for the same B/A ratio (see Fig. 3.4.13(a)).

The maximum K value occurs at 6 ~15° (i.e. in material A) when A/B > 1 and at 6 ~-15°
(i.e. in material B) when A/B < 1. The ﬁ% values also appear to be greatest when n ~ 8

(Fig. 3.4.13(b)). Variations of K| and If(\eq with 1/n, for w/d = 1, are shown in Figs.

3.4.13(c) and 3.4.13(d). The | K| values which occur at § ~30° for A/B < 1 and at 6 ~-

30° for A/B > 1, are less than unity (except for n = o and for A/B = 1) and reduce with

increasing 1/n for a given A/B value. The I/(\eq values are similar to the corresponding K
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N
values. However, the K values at the interface (i.e. © = 0°) are practically the same as the

values at 6=-90° for A/B > 1.

(©) Effect of w/d

By comparing the Kj; and K distributions for w/d = 1 (Fig. 3.4.12) with those for w/d =
0.5 (Fig. 3.4.14) and 0.1 (Fig. 3.4.15), it can be seen that the results for w/d = 0.5 and 1.0
are practically the same, but the w/d = 0.1 results are significantly different. This indicates
that the w/d = 0.5 and 1.0 results are effectively applicable to remote conditions, i.e. the
singularities at one of the interfaces are unaffected by the existence of the other interface.

Hence, the w/d =0.5 or 1.0 results are applicable for any w/d value greater than 0.5.

However, when A/B < 1, the K; and K distributions for w/d = 0.1, 0.5 and 1.0 are all
practically the same. Hence, the results for w/d = 0.1, 0.5 and 1.0 are effectively applicable

to remote conditions for w/d > 0.1 provided A/B <1.

(d)  General forms of the singularity equation

When w/d = 0.1, the K; and K, variations with 8, for A/B > 1, are different from those

with w/d = 0.5 or 1.0. However, the average N;; and N, values for a particular A/B value,
are practically independent of w/d, as shown in Fig. 3.4.16. This indicates that the general

forms of equations 3.4.2 are as follows:
o | Grom= Kj (0, A/B, w/d)(r/d)"*? (3.4.3(a))
and

O | Ooom = Ke(n, A/B, w/d)(r/d)"™*"™ (3.4.3(b))
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However, when A/B < 1 for w/d > 0.1, or when A/B > 1 for w/d > 0.5, then

o | Onom =Kj (0, A/B)r/d) ™4™ (3.4.4(a))
and

Oeq/ Onom = Keq (0,A/B)(r/d)N®A4® (3.4.4(b))
It should be noted that the exponent, N, in equations 3.4.3 and 3.4.4 is practically the same

for any stress component and for the equivalent stress, when the n and A/B values are the

same, (i.e., Ny (n, A/B) =Neo (1, A/B) =Ny (n, A/B) = N, (n, A/B)).

3.4.4 Physical Significance of Stress Singularity

In reality the interfaces between weld material and HAZ material and between base material
and HAZ material will not be as distinct as those represented by the idealised models
analysed in this section. Hence there may be a gradual variation of creep properties across
a small interface zone between the weld material and HAZ material and between the base
material and the HAZ material. Also, on a small scale, the material cannot be regarded as a
continuum, as represented by the creep constitutive equations (e.g. equations (3.4.1)).

Hence, if the "singularity zone" is not significantly larger than metallurgical features such as
the grain size etc., and larger than the interface zone width, then the calculated singularity

will have no physical significance.

If the "singularity zone" is defined as the radial distance, r*, from the singularity point S,
inside which the equivalent stress is greater than 2 x Ggom, then the conditions under which
the singularity is physically significant can be estimated. In Section 3.3, which presents the

centre-line stresses, the Ge/Cnm Values are generally significantly less than 2 and hence
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USING Ce/Cnom = 2 tO Obtain r* seems reasonable. Table 3.4.1 gives r*/d values forn=1 to
8 and A/B = 0.01 (or 100) and 0.1 (or 10). If r*/d > 0.01, then it is likely that the

singularity would have physical significance for practical specimen diameters (typically 7 to

20 mm). Hence the results in Table 3.4.1 indicate that for n values greater than about 4, the

singularity is unlikely to have physical significance except for the A/B >> 100 (or << 0.0 1).

Table 3.4.1  r*/d values for various n and A/B values

(r* is defined as the radial position at which .o/ Guom = 2)

A/B n 1 2 4 8
0.01(100) 0.1234 0.1028 0.0276 1.0066 x 10™
0.1(10) 0.0364 0.0201 4.0898 x 10° | 4.2595 x 102

3.4.5 Conclusions

The stress singularity in the vicinity of the surface at the interface of an axisymmetric two-
material creep test specimen was found to be of the form G = Guom Ky (/d)™ (and Geq =
Gnom Keq (r/d)™). The exponent N was found to be practically the same for all stress
components and for the equivalent stress and it was found to be independent of angular
position, 6. The N value was found to be dependent upon the material creep constants, i.e.
n and A/B, but was not a function of geometry, i.e. w/d. The Kjj and K functions, which
describe the variations of stress with angular position, 8, were found to be functions of n,

A/B and w/d. However, for w/d > 0.5, K; and K, are independent of w/d.
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For practical purposes, the singularity is unlikely to be important for n-values greater than

about 4, unless A/B is very large (>>100) or very small (<<0.01).
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Fig. 3.3.1 Schematic diagram of a typical weld.
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(a) the specimen axis is at an oblique angle to the HAZ

(b) the specimen axis is perpendicular to the HAZ

Fig. 3.3.2 Uniaxial cross-weld creep test specimens.
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(a) axial stress

(b) equivalent stress

Fig. 3.3.5 Typical normalised stationary-state stress contours

(w/d=1, n=4 and A/B=10).
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