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Abstract 

This thesis investigates the use of Discrete Element Modelling (DEM) to simulate the 

behaviour of a highly idealised bituminous mixture under uniaxial and triaxial 

compressive creep tests. The idealised mixture comprises single-sized spherical (sand­

sized) particles mixed with bitumen and was chosen so that the packing characteristics 

are known (dense random packing) and the behaviour of the mixture will be 

dominated by the bitumen and complex aggregate interlock effects will be minimised. 

In this type of approach the effect of the bitumen is represented as shear and normal 

contact stiffnesses. A numerical sample preparation procedure has been developed to 

ensure that the final specimen is isotropic and has the correct volumetrics. Elastic 

contact properties have been used to investigate the effect of the shear and normal 

contact stiffnesses on bulk material properties. The bulk modulus was found to be 

linearly dependent on the normal contact stiffness and independent of the shear 

contact stiffness. Poisson's ratio was found to be dependent on only the ratio of the 

shear contact stiffness to the normal contact stiffness. An elastic contact has been 

assumed for the compressive normal contact stiffness and a viscoelastic contact for 

shear and tensile normal contact stiffness to represent the contact behaviour in 

idealised mixture. The idealised mixture is found to dilate when the ratio of 

compressive to tensile contact stiffness increases as a function of loading time. 

Uniaxial and triaxial viscoelastic simulations have been performed to investigate the 

effect of stress ratio on the rate of dilation with shear strain for the sand asphalt. The 

numerical results have been validated with experimental data. The geometric factors 

that influence asphalt dilation are investigated. The level of dilation was found to be 

dominated by the proportion of frictional contacts in the sample. Simulations have 

been performed to investigate the effect of particle shape on asphalt dilation. Greater 

dilation was found in the sample with clumps under loading. 
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Chapter 1: Introduction 

1 Introduction 

1.1 Problem Definition 

Asphalt is a complex multi-phase material that compnses 3 phases: bitumen, 

aggregate and air. A range of asphalt mixtures can be produced depending on the 

proportions of these components and the grading of aggregate. A typical 

continuously graded mixture (e.g. bitumen macadam) relies on an interlocking 

aggregate skeleton for its strength with the binder primarily acting as a lubricant to 

aid compaction and "glue" the mixture together. At the other extreme, a typical gap­

graded mixture (e.g. stone mastic asphalt) will have a discontinuous aggregate 

grading (i.e. some stone sizes will not be present) and relies on a coarse aggregate 

skeleton bound by a bitumen/filler "mortar" for its strength. For both these mixture 

types the micromechanical behaviour, at the scale of an aggregate particle (e.g. 

particle size distribution, angularity), will be an important factor in terms of overall 

material performance. 

The traditional approach to modelling asphaltic materials is to treat them at the 

macro-scale using continuum-based models. This usually involves undertaking 

careful experiments over a range of conditions (e.g. stress levels, loading rates, 

temperatures etc), measuring the macroscopic response of the material and fitting 

continuum-based constitutive models to the measured behaviour. The continuum 

approach implemented into a Finite Element (FE) program can incorporate nonlinear 

constitutive equations that include anisotropic, dynamic, viscous and plastic effects. 

The micromechanical behaviour of the mixture is typically not explicitly included in 
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Chapter 1: Introduction 

this approach, which means that it is not easy to relate observed behaviour to the 

micromechanics of the material. 

In reality, the deformation of asphalt takes place mainly in the bitumen. The contact 

properties between aggregates in the asphalt mixture depend strongly on the 

thickness of bitumen film separating aggregates. It should be emphasised that an 

understanding of the physical mechanism of deformation is crucial in understanding 

and modelling the deformation behaviour of asphalt mixtures. With the Discrete 

Element Method (DEM), it is possible to model materials that consist of individual 

particles where a particle may roll or slide relative to other particles. 

The DEM offers a means of gaining an insight into the micromechanics of the 

deformation process. The program used in this thesis models a particle as a ball or a 

number of balls bonded together. The balls are non-deformable, but can overlap at 

the contact points and a contact law is used to calculate contact forces from the 

relative displacements. The aim of this project is to use the DEM program PFC3D 

(Particle Flow Code in Three Dimensions) to model the deformation behaviour of 

idealised asphalt mixtures. Previously gathered experimental data will be used for 

comparison with the modelling. An idealised asphalt mixture comprising relatively 

single-sized sand and bitumen has been chosen because of the relatively simple 

internal geometry compared to a more realistic asphalt mixture. This can be 

considered as a necessary first step towards understanding the micromechanics of 

the deformation behaviour in a real asphalt. 

1.2 Thesis Structure 

Chapter 2 provides an introduction to typical asphalt mixtures that are used in UK 

road construction. The major causes and the mechanics of permanent deformation 

are described. This is then followed by the review of recent research into permanent 

deformation of bitumen, idealised mixtures and realistic mixtures. Several 

continuum models for asphalt are described in this chapter. This chapter concludes 

with the review of micromechanical models for asphalt. 
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Chapter 1: Introduction 

Chapter 3 describes the DEM and the software package PFC3D (Particle Flow Code 

in Three Dimensions) used in the modelling. This is then followed by the review of 

the development and application of the DEM in soil and rock mechanics. This 

chapter also reviews the theory and background of modelling using PFC3D. The 

Burger's time-dependent contact model is described. 

Chapter 4 introduces the numerical sample preparation procedure used to create a 

sample that replicates the packing characteristics of an idealised asphalt mixture. A 

measurement method is established to quantify the deformation quantities of the 

asphalt specimens used in numerical simulations. 

Chapter 5 presents simulations used to model the elastic response of the idealised 

mixtures. The effects of sample size, loading rate and normal and shear contact 

stiffness on bulk elastic properties are examined. A mean field approach is presented 

to theoretically investigate the dependence of bulk modulus on normal contact 

stiffness. The effect of non-equal tensile and compressive normal contact stiffnesses 

on dilation is investigated. 

Chapter 6 presents uniaxial viscoelastic simulations. The Burger's contact model is 

used to simulate the time dependent shear and tensile normal contact behaviour of an 

idealised asphalt mixture and the normal compressive contact is taken to be elastic. 

The effects of the ratio of the various contact stiffnesses, sample density, deviator 

stress and bitumen film geometry factor on asphalt dilation are investigated. 

Chapter 7 presents triaxial viscoelastic simulations. The first part of this chapter 

reviews experimental work by previous researchers in describing the effect of stress 

ratio on asphalt dilation. A modelling procedure to simulate the triaxial test in the 

laboratory is developed. The effect of deviator stress on dilation is investigated. 

Chapter 8 describes the geometric factors that influence asphalt dilation. Two main 

effects are investigated. The effect of introducing a proportion of frictional contacts 

is investigated. Both the proportion of frictional contacts and the magnitude of the 

friction coefficient are investigated. The second part of this chapter simulates the 
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Chapter 1: Introduction 

effect of particle shape on asphalt dilation. A sample preparation procedure IS 

developed to prepare a numerical sample with non-spherical particles. 

Chapter 9 summarises conclusions from this research and presents recommendations 

for further work. 
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2 Reviewing the Deformation 
Behaviour of Bitumen and Asphalt 

2.1 Introduction 

The first part of this chapter presents a brief review of the defonnation behaviour of 

pure bitumen and asphalt mixtures. The second part presents a review of literature 

related to continuum and micromechanical modelling of asphalt mixtures. 

2.2 Permanent Deformation of Asphalt Mixtures 

Pennanent defonnation occurs when material from under the wheel path of a truck 

flows and compacts to fonn a groove or rut [112]. To describe pavement 

perfonnance under various loading conditions, experiments in the field and under 

controlled conditions in the laboratory have been undertaken by many researchers 

[19, 56, 92]. However, the methodologies for rutting prediction and its elimination 

are far from perfect. 

Pure bitumen behaves as an elastic solid at low temperatures and/or high loading 

rates, and a viscous fluid at high temperatures and/or low loading rates. It exhibits 

viscoelastic behaviour in the intennediate range. When a load is applied to an 

asphalt mixture, it defonns with an instantaneous elastic response after which the 

strain gradually increases with time. Upon removal of load, the initial elastic strain is 

recovered as is a further delayed elastic strain component leaving an irrecoverable 

small residual strain. This residual strain will be accumulated under many load 
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applications and will lead to pavement rutting. The phenomenon of pennanent strain 

accumulation is illustrated in Figures 2.1 and 2.2. 

The two major mechanisms in asphalt materials that contribute to rutting are 

densification and shear displacement. Densification occurs when the aggregate 

skeleton becomes more closely packed and tends to occur relatively early in the life 

of the pavement due to poor compaction during construction. Eisenmann and Hilmer 

[ 44] reported that if a pavement has been well compacted during construction, 

further densification is unlikely. Shear displacement is the process of lateral material 

flow, which can result in the development of shoulders on either side of a rut. 

Hofstra and Klomp [55] indicated that the shear displacement was the primary factor 

responsible for rutting. They emphasised that the material should be well compacted 

to a high density in order to minimise shear defonnation. They concluded that 

rutting could be controlled by a good compaction in the field. 

2.2.1 Permanent Deformation of Pure Bitumen 

Early experiments indicated that the mechanical behaviour of asphalt mixtures is 

strongly dependent on the bituminous binder even though the mixture contains 

typically less than 10% by volume of bitumen. Research into the mechanical 

behaviour of pure bitumen started around 1960' s when van der Poel reported that the 

stiffuess of bitumen at low strains could be correlated with the penetration 1 and 

softening point 2 of the bitumen [118, 120]. He summarised the mechanical 

behaviour of bitumen as a function of temperature and loading time in the well 

known van der Poel Nomograph [119]. Following this, several researchers have 

attempted to characterise bitumen as a linear viscoelastic material using rheological 

models based on combinations of springs and dashpots [63, 118, 122]. However, 

these approaches are only applicable for small strains and stresses. 

1 Penetration is the distance travelled into a bitumen sample by a standard needle under a standard 
load (lOOg) for a standard period of time (5s) measured in decimillimetres. 
2 The softening point is the temperature at which a bitumen sample contained in a brass ring under the 
loading of a steel ball will touch a base plate 25mm below the ring when the bath temperature is 
raised at 5 °C per minute. 
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Previous researchers have shown that pure bitumen exhibits very complex stress­

strain behaviour [22-25]. Cheung and Cebon [24] developed a deformation 

mechanism map (Figure 2.3) for bitumen over a wide range of temperatures, stresses 

and strain rates. They found that at temperatures above the glass transition 3 
, the 

deformation behaviour of the 50 pen grade of bitumen tested was linear viscous at 

low stress levels and power law creep at high stress levels with a creep exponent of 

approximately 2.3. The transition stress at which there is a change from linear to 

power law behaviour was found to be approximately 115kPa [22]. Early research 

also demonstrated that the steady state behaviour of bitumen is linear viscous at low 

stresses [14, 69, 97]. At higher stresses (O.lMPa to 1MPa), several experimental 

studies [47, 76, 102, 123] demonstrated that the bitumen behaves as a nonlinear 

viscous solid. 

Cheung and Cebon [24] suggested that the transition from linear viscous behaviour 

at low stresses to nonlinear viscous behaviour at high stresses could be captured by 

the Modified Cross Model (MCM) [30]. They described the steady-state uniaxial 

behaviour of pure bitumen for temperatures well above the glass transition 

temperature by a MCM [22] which relates steady-state stress (ass)' steady-state 

strain rate (8 ss), reference stress (0'0)' reference strain rate (8 p) and material 

constant (m): 

0'0 1 

8

p l+(~:r 
(2.1) 

Figure 2.3 shows the steady state stress/strain rate relationship of the 50 pen grade of 

bitumen at temperatures ranging from -10°C to 30°C. 

Ossa et al. [82] performed an extensive experimental study of the monotonic, 

recovery and cyclic behaviour of 50 and 100 pen grades of bitumen over a wide 

range of strain rates, stresses and temperatures. Based on these experiments, they 

3 The glass transition temperature, T g, is defined as the temperature range at which bitumens change 
from a glassy to a fluid condition. The usual range of T g for bitumens is between -40°C and O°C. 

,..., 
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proposed a phenomenological model which could be calibrated by a minimum of 

four uniaxial tensile experiments. A comparison between results from a constant 

stress creep test and their model is shown in Figure 2.4. It can be concluded that the 

phenomenological model can be used to predict the behaviour of pure bitumen. 

2.2.2 Permanent Deformation of Idealised Mixtures 

Deshpande [40] performed uniaxial and triaxial compression tests on various types 

of idealised mixtures under various stresses, strain rates and temperatures. Five types 

of mixture with different volume fractions of rigid inclusions (ranging from 40% to 

85%) and a 50 pen grade of bitumen were used. Different sand sized particle were 

used in different mixtures to examine the effect of particle size. A series of tests 

( creep and constant strain rate at various temperatures and strain rates) were 

performed on the mixture with 64% by volume inclusions (denoted mixture A). 

Tests on the other mixes were performed only at a single temperature to study the 

effects of volume fraction of aggregate. 

The steady state axial creep behaviour observed from the tests on mixture A for 

temperatures ranging from O°C to 40°C is shown in Figure 2.5. It can be seen from 

Figure 2.5 that the curve at 20°C has the same shape as the curve for pure bitumen at 

20°C obtained by Cheung [22] plotted using the Modified Cross Model (Equation 

2.1). Consequently, the model proposed by Cheung [22] was modified to describe 

the uniaxial steady state creep behaviour of the asphalt mixture by simply 

replacing 8 / 8
0 

in Equation 2.1 with S8/ 8
0 

: 

1 
(2.2) 

where S is the stiffening factor due to the presence of aggregate. From Figure 2.5, it 

can be seen that the stiffening factor for the mixture at 20°C is approximately 1000. 
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This indicates that at the same stress level, the mixture at 20°C has a steady-state 

strain rate about 1000 times lower than that of the pure bitumen at 20°C. Deshpande 

[40] reported that the stiffening effect is only dependent on the volume fraction of 

aggregate and is independent of the size and shape of aggregate used. The stiffening 

factor was found to increase with the volume fraction of the aggregate in the mixture. 

He also found that the idealised mixtures with a high volume fraction of aggregate 

dilated under uniaxial compressive loading. 

Khanzada [65] also investigated the deformation behaviour of idealised mixtures 

using simple laboratory deformation tests. Two types of idealised mixtures were 

used: Mixture A comprising single sized sand and Mixture AID comprising double 

sized sand. A 50 pen grade of bitumen was used as the binder. A typical plot of axial 

strain versus time for Mixture A from a creep test is shown in Figure 2.6. It can be 

seen from this figure that the creep curve can be divided into three regions: primary 

creep where the strain rate decreases, secondary creep where the strain rate is 

approximately constant and tertiary creep where the strain rate increases. The 

deformation in the secondary creep region is defined as 'steady-state' [65]. The 

relationship between radial strain and axial strain for mixture A is plotted in Figure 

2.7. It can be seen from this figure that the slope is approximately 1 in the region 

where steady state conditions are achieved. Consequently, Khanzada [65] concluded 

that the idealised mixtures dilate under uniaxial and triaxial compressive loading. 

Collop and Khanzada [26] performed wheel tracking tests on the idealised mixtures 

A and AID at three temperatures (20, 30 and 40°C) and three stress levels (500, 750 

and 1000kPa). The experimental results are shown in Figure 2.8. It can be seen from 

this figure that after an initial period where the rutting rate decreases, the rut depth 

increases approximately in proportion to the number of cumulative passes. They 

explained that the initial behaviour was thought to be associated with densification 

where the density of the material increases. The second part of the curve was 

characterised by a steady state rutting rate (gradient) which they used to characterise 

the permanent deformation behaviour of the idealised mixtures. 
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2.2.3 Permanent Deformation of Realistic Mixtures 

Khanzada [65] performed uniaxial tests, triaxial tests, Repeated Load Axial (RLA) 

tests and wheel tracking tests on an HRA mortar, a 30/10 HRA and a 10mm DBM 

mixture over a range of temperatures (20 to 40°C) and applied stress levels (200 to 

2000kPa). They were all found to have the same form as the steady-state 

deformation behaviour of the pure bitumen and idealised mixtures. Figure 2.9 shows 

the plot of the steady state deformation behaviour of the HRA mixture, HRA mortar 

and pure bitumen. It can be seen from this figure that the stiffening factor (S) of the 

HRA mortar has a lower value compared to the HRA mixture. Figure 2.10 shows the 

stiffening factor of all the mixtures that contained 50 pen grade of bitumen tested by 

Khanzada [65]. The stiffening factor was found to increase with the volume fraction 

of aggregate. Consequently, he concluded that increasing the volume of aggregate in 

the mixture results in stiffening of the mixture. 

Khanzada [65] further investigated the dilation for different idealised and realistic 

asphalt mixtures. Figure 2.11 shows the dilation gradients (defined as ratio of 

volumetric strain to distortional strain) measured for the various mixtures plotted as 

a function of volume fraction of the aggregates in the mixtures. It can be seen from 

this figure that the dilation gradients increase with increasing volume fraction of 

aggregate (aggregate proportion in the mixture). A higher dilation gradient was 

found to result in a higher stiffening factor for a mixture with the same volume 

fraction of aggregates subjected to the same stress ratio. 

2.3 Continuum Models for Asphalt Mixtures 

Constitutive modelling of the deformation behaviour of asphalt materials USIng 

continuum mechanics has been accepted for over fifty years (see Cheung [22]). 

Because of the complexity of the problem and limited understanding of the 

behaviour of heterogeneous materials, most of the current approaches are of a 

qualitative or empirical nature. The following sub-sections review the main types of 

continuum models that have been used for asphalt mixtures. 

10 
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2.3.1 Stiffness Representation 

The use of 'stiffness' for asphalt was first introduced by van der Poel [lIS] to 

describe the behaviour of pure bitumen as a function of loading time and 

temperature. This research resulted in the well known van der Poel Nomograph 

[lIS]. Van der Poel [120] extended the stiffness concept to describe the dynamic 

behaviour of asphalt mixtures under small strains where linear behaviour dominates. 

Subsequently, the use of stiffness for describing both the dynamic and quasi-static 

behaviour of asphalt mixtures became widely accepted. 

Van der Poel [120] assumed that the stiffness of an asphalt mixture was a function 

only of the stiffness of the bitumen and the volume fraction of the aggregate. Similar 

findings were reported by Heukelom and Klomp [52]. They stated that for a 

particular mix, there is a relationship between the stiffness of mixture, Smix and the 

stiffness of the binder, Shit irrespective of the combination of loading time and 

temperature. Consequently, Heukelom and Klomp [52] proposed the following 

relationship for predicting the stiffness of an asphalt mixture: 

(2.3) 

where Cv is the volume of concentration of the aggregate defined by: 

Volume of aggregates 

C v = Volume of (aggregates + bitumen + air) 
(2.4) 

and 

[
4 X 10

10 
] n=0.S310g ---

Sbi/Pa) 
(2.5) 

The above equations were derived from empirical fits to test data obtained from 

static and dynamic tests on well-compacted mixes having about 3% of air voids and 

CI' values ranging from 0.7 to 0.9. 
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Brown et al. [18] modified this approach by defining the mix stiffuess as a function 

of bitumen stiffuess and the percentage of voids in mixed aggregate (VMA). They 

proposed that: 

Smix = [1 + 275.5 - 2.5VMA]n 
Shit n(VMA - 3) 

(2.6) 

where n is the same function of Sbit as in Equation 2.5. 

Figure 2.12 shows a plot of mix stiffuess versus bitumen stiffuess for different 

values of VMA based on Equation 2.6. It should be noted that Equation 2.6 is valid 

for VMA values between 12% to 30% and Sbit > 5MPa. This is because the 

transition to a well-ordered, predictable relationship occurs at a bitumen stiffuess of 

5MPa [18] where the bitumen behaves as an elastic solid, whereas for lower values 

of Sbit, the stiffuess ratio becomes a function of the elastic, viscoelastic and viscous 

response of the material [22]. 

2.3.2 Elastic Model 

The simplest constitutive model for an asphalt mixture is based on the theory of 

linear elasticity. A material is described as elastic, where the loading curve is 

identical to the unloading curve, and all the strains are recovered upon the removal 

of the applied load. According 0 Hooke's law, the stress and strain relationship for 

an elastic material in three-dimensions is expressed as: 

{ 0- } = [D] x {&} (2.7) 

where [D] is the stiffuess matrix of elasticity including two material constants 

(Young's modulus, E and Poisson's ratio, v) expressed as: 

12 
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I-v v v 0 0 0 
I-v v 0 0 0 

[D]= E I-v 0 0 0 
(2.8) 

(1 + v)(1- 2v) 0.5-v 0 0 
SYM 0.5-v 0 

0.5-v 

For an asphaltic material, Young's modulus is replaced by a "stiffness modulus" 

[118] since the stiffness varies with loading time and temperature. It is well known 

that at low temperatures and short loading times, the prediction of asphalt pavement 

behaviour by using linear elastic method is accurate enough for engineering 

purposes. At present, elastic models are extensively used in computer design 

program such as BISAR4 for pavement structural analysis. A few researchers, such 

as Eisenmann et al. [45], Ulliditz [114] and Peutz et al. [87] have applied linear 

elastic models in flexible pavement design and performance evaluation in the past. 

Non-linear elastic models are also employed to solve the problem of non-linear 

behaviour of asphalt mixtures [53,108]. 

2.3.3 Linear Viscoelastic Models 

Materials that exhibit time-dependant behaviour in the relationship between stress 

and strain can be described as viscoelastic. The behaviour of asphalt materials 

subj ected to loading can be described as linear viscoelastic at low stress and strain 

levels [75]. The viscoelastic description of the behaviour of bitumen became popular 

in 1950's when van der Poel modified Young's modulus for an elastic solid to 

define the stiffness modulus of bitumen as a function of loading time and 

temperature [118]. Thereafter, linear viscoelastic models have been widely applied 

to describe the behaviour of asphalt. However, to fully describe the actual behaviour 

of the asphalt mixtures, research has been undertaken to develop more complicated 

models which consist of elastic, plastic, viscoelastic and viscoplastic components [5, 

86, 116]. Recent research has also focused on constitutive models that reflect the 

complex non-linear behaviour of asphalt materials [98, 106, 107, 115]. For 

4 BISAR (Bitumen Stress Analysis in Roads): A computer program developed by Shell which 
calculates stresses, strains and displacements in an elastic multi-layer system. 
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simplicity, the viscoelastic relationship described in this section is assumed to be 

linear. 

Johnson [62] suggested that the relationship for an incompressible viscoelastic 

material could be written in terms of the deviatoric stress (a) and the deviatoric 

strain (8): 

t a (t') 
aCt) = fY(t - t') 8 dt' 

at' a 

t a (t') 
8(t) = fJ(t - t') a dt' 

at' o 

(2.9) 

(2.10) 

where yet) is the relaxation modulus which expresses the stress response to a step 

change in strain and J(t) is the creep compliance which expresses the strain response 

to a step change of stress. 

The deformation behaviour of asphaltic materials exhibits initial elastic, delayed 

elastic and steady creep behaviour under constant loading. Johnson [62] showed two 

examples to demonstrate separately the effects of delayed elasticity and steady creep 

by using two idealised viscoelastic materials. The first material is represented by two 

springs of modulus k] and k2 together with a dashpot of viscosity C connected as 

shown in Figure 2.13(a). The creep response to a step change in stress ao is given by: 

(2.11) 

where 7]= C / k2• 

The second material, which is known as a Maxwell model is illustrated in Figure 

2.13(b) and is represented by a spring of modulus k in series with a dashpot of 

viscosity C. The creep response is given by: 
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8(t)=J(t)a =[!+~t]a 
o k C 0 

(2.12) 

The first material exhibits delayed elasticity but the ultimate strain is limited to a 

finite value whereas the second material exhibits steady-state creep under constant 

stress, hence the strains increase continuously with time. 

A Burger's model exhibits both delayed elasticity and steady creep behaviour for an 

asphalt material. It is a combination of four elements with a spring and dashpot in 

parallel (Voigt model) connected in series to a spring and dashpot in series (Maxwell 

model) as shown in Figure 2.14. The uniaxial creep response to a step change in 

stress 0'0 is given by: 

(2.13) 

The features of the viscoelastic behaviour represented by a Burger's model subjected 

to a square pulse application of stress are illustrated in Figure 2.15. It can be seen 

that there is an instantaneous elastic response (strain OA) when the stress is applied. 

A further delayed elastic strain AB is acquired in time as is a steadily increasing 

creep strain component Be. When the stress is removed, there is an instantaneous 

elastic recovery (same in magnitude as OA) and a delayed elastic recovery DE 

leaving a permanent strain at E. 

Pagen [84] analysed the viscoelastic behaviour of asphalt mixtures using rheological 

concepts [7, 85]. A phenomenological treatment of linear viscoelastic behaviour of 

asphalt mixtures was performed and a creep compliance function Jc (t) was proposed 

to describe the creep behaviour of the asphalt (see Pagen [84] for details). Pagen [83] 

extended his work to perform testing on dense asphalt mixtures prepared in the 

laboratory by gyratory compaction and field core test specimens. He reported that 

15 



Chapter 2: Reviewing the Deformation Behaviour of Bitumen and Asphalt 

the data obtained from these specimens indicated that linear viscoelastic theory can 

be applied to studies of asphalt mixtures to evaluate their engineering properties on a 

fundamental level. Consequently, it was concluded that linear viscoelastic models 

were applicable to the asphalt mixtures for low levels of applied stress. 

Monismith et al. [77, 78] evaluated the suitability of a simple four-element linear 

viscoelastic model (see Figure 2.16) to describe the behaviour of an asphalt by 

performing four types of triaxial compression tests (creep, stress relaxation, constant 

strain rate, repeated axial load) on one asphalt mixture. Monismith and Secor [78] 

demonstrated the ability of the model to express the rheological characteristics of an 

asphalt mixture. They reported that the use of a four-element model could provide a 

general approximation of the properties of the material under study over a wide 

range of load types and ambient conditions. It was concluded that the asphalt 

mixtures could be considered as linear viscoelastic for small amounts of deformation 

(0.1 % strain or less) [77]. However, the simple linear viscoelastic models have a 

limited applicability in predicting the real behaviour of asphalt mixtures. 

2.3.4 Nonlinear Viscoelastic Models 

It was noted in the last section that at high stress and strain levels, the response of 

asphalt mixtures cannot adequately be modelled by a linear viscoelastic 

approximation. Fitzgerald and Vakili [46] emphasised that linear viscoelasticity is 

not applicable for characterising asphalt materials under repeated loading. They 

performed experimental and theoretical investigations to demonstrate that extended 

nonlinear, homogeneous constitutive equations are readily applicable to defining the 

mechanical behaviour of a sand-asphalt mixture. 

Lai and Anderson [67] suggested that the nonlinear viscoelastic behaviour of asphalt 

mixtures can be represented by a non linear generalised Kelvin model that consists 

of a nonlinear dashpot connected in series with a nonlinear Kelvin chain, where the 

nonlinear dashpot accounts for the time dependent irrecoverable strain (viscous flow) 

and the nonlinear Kelvin chain accounts for the power law time dependent 

recoverable strain (see Lai and Anderson [67] for the constitutive equations). They 
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claimed that the accuracy in predicting the creep behaviour of an asphalt mixture 

under multiple-step loading and repeated loading using the proposed constitutive 

equation was very satisfactory. 

Judycki [64] applied nonlinear viscoelastic theories to model the nonlinear 

behaviour of asphalt mixtures under 3-point bending tests and he reported that the 

nonlinear effects increased with the stress level and loading time for test results at 

10°C. 

2.3.5 Elasto-visco-plastic Models 

Various research has been undertaken [5, 43, 86, 101, 124] to propose a model that 

accounts for elastic, plastic, viscoelastic and viscoplastic responses of the asphalt 

material. 

Perl et al [86] presented a constitutive model for an asphalt mixture subjected to 

repeated loading incorporating elastic, plastic, viscoelastic and viscoplastic strain 

components. They performed a series of repeated uniaxial creep and creep recovery 

tests under constant stresses of various magnitudes at a constant temperature of 25°C. 

From the tests results, they reported that the total strain has recoverable and 

irrecoverable elements, some of which are time-dependent and some are time­

independent. The total strain Sf was resolved in four components: 

where, 

Se = elastic strain (recoverable and time independent) 

S p = plastic strain (irrecoverable and time independent) 

S = viscoelastic strain (recoverable and time dependent) 
ve 

S = viscoplastic strain (irrecoverable and time dependent) 
vp 

(2.14) 
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A typical schematic cycle is shown in Figure 2.17. It can be seen from this figure 

that at t = to (when load is applied), the strain Eo comprises elastic Ee and plastic 

strain Ep components instantaneously. As the specimen undergoes creep (to ~ t ~ tl), 

viscoelastic Eve and viscoplastic Evp strains are built up. Once the load is removed (t 

= t 1), the elastic strain Ee is recovered. The viscoelastic strain is then recovered in the 

period (tl < t < t2). At the end of the cycle, the residual strain consists of the 

irrecoverable plastic and viscoplastic strain components. The elastic and plastic 

strains are time independent and the viscoelastic and viscoplastic strains are time 

dependent. 

Drescher et al [43] stated that the strains due to viscosity depend on the load 

duration and the loading/unloading rate whilst the plastic strains are independent of 

the loading/unloading rate. They performed a series of uniaxial compressive 

creep/recovery tests on one asphalt mixture and concluded that the plastic strains are 

proportional to the applied stress level, the elastic strains are a linear function of 

stress and the viscoelastic strains are slightly nonlinear with respect to stress level. 

2.4 Micromechanical Models of Asphalt Mixtures 

The traditional approach to modelling asphalt materials is to treat them at the macro­

scale using continuum based approaches [29]. This usually involves the undertaking 

of careful experiments over a range of conditions (e.g. stress levels, loading rates, 

temperatures etc), measuring the macroscopic response of the material and fitting 

continuum-based constitutive models to the measured behaviour. However, it is not 

easy to relate the observed behaviour of asphalt mixtures to the micromechanics of 

the material. A micromechanical model can predict fundamental material properties 

of a composite based upon the properties of the individual constituents and it allows 

a thorough examination of micro structure material behaviour. This section reviews 

the applications of micromechanical models in modelling asphalt. 
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2.4.1 Thin Film Bitumen Creep Model 

Hills [54] developed a model for creep behaviour of asphalt mixtures. He assumed 

that any deformations in the mixture are the result of relative sliding displacements 

between adjacent mineral particles separated by a thin film of bitumen (see Figure 

2.18). Thus, this model takes account only of the shear strains in the bitumen. In this 

approach, the internal structure of asphalt mixtures is described in terms of the 

bitumen film thickness and the evolution of this state variable as a function of the 

macroscopic straining of material. The rate of strain was dependent on the 

magnitude of stresses, the thickness of bitumen (changes as a function of time) and 

the bitumen properties. 

The creep behaviour of asphalt mixes indicates that their internal structure changes 

during the course of a test. Hence, Hills [54] proposed a theoretical model 

considering bitumen as forming the binder layer between a pair of adjacent particles 

and taking account of the thinning of the binder films and the gradation of the 

aggregate. He also proposed another theoretical model for frictional or boundary 

lubrication conditions. Further details on derivation of constitutive equations for 

these models are described in Hills [54]. He found that the models give good 

agreement with experimental results and are applicable to the linear, shear and 

volumetric strains in uniaxial compression tests. 

2.4.2 Microstructural Model 

Sadd et al [71] indicated that the load carrying behaviour in an asphalt mixture is 

strongly related to the local load transfer between aggregate particles, and this is 

taken as the microstructural response. They developed a microstructural model and 

simulated the microstructural response of the load carrying behaviour of the 

aggregateibinder system. An elliptical aggregate model as shown in Figure 2.19(b) 

was presented to represent the typical asphalt material (Figure 2 .19( a)). Two models 

were developed. The first model incorporates a network of frame elements with a 

special stiffness matrix to predict load transfer between cemented particles, as 

shown in Figure 2.19( c). A 6x6 stiffness matrix is derived as a function of the 
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micromechanical material variables including particle SIze and shape and 

cementation geometry and moduli (see Sadd et al [71] for details). The second 

model incorporates the commercial ABAQUS finite element code USIng user­

defined continuum elements for the binder and rigid elements for aggregate, as 

shown in Figure 2.19( d). This model employed four-noded quadrilateral elements to 

simulate the binder and two-noded rigid element to model the aggregate. 

An Indirect Tensile Test (IDT) was simulated using these models and the elastic 

compressive modulus and Poisson's ratio were predicted. An experimental 

verification was performed by conducting an IDT on a specially prepared cemented 

particulate system, which allowed measurement of aggregate displacement and 

rotations using video imaging and computer analysis. As a result, they stated that the 

differences between model prediction and experimental data are generally within 5%, 

thus indicating a good agreement. However, the modelling has been limited to two­

dimensional behaviour. 

2.4.3 Discrete Element Model 

The Discrete Element Method (DEM) is an approach capable of modelling the 

micromechanical behaviour of an asphalt mixture. This method has been widely 

applied in modelling of soil and rock material and is reviewed in detail in Chapter 3. 

This sub-section describes the few applications that have used DEM to simulate 

asphalt behaviour. 

Buttlar and You [20] used DEM to develop a two-dimensional model of an indirect 

tensile (IDT) test comprising 130 cylindrical stones (12.5mm in diameter) arranged 

in a hexagonal packing structure glued together with asphalt mastic (see Figure 2.20). 

They validated predictions with experimental data (for the same idealised mixture) 

obtaining good agreement. Buttlar and You [20] extended this approach to develop a 

two-dimensional IDT model of Stone Mastic Asphalt (SMA) using a micro fabric 

approach whereby the various material phases are modelled as clusters of discrete 

elements. The aggregate structure was captured using a high-resolution optical 

scanner. Predicted horizontal displacements were approximately 40% greater than 
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measurements which were attributed to the two-dimensional microstructural 

representation underestimating the actual amount of aggregate interlock. 

Rothenburg et al [95] presented a micromechanical model of asphalt in which the 

material is represented as a set of discrete elastic particles bounded by viscoelastic 

bitumen as shown in Figure 2.21. In this model, the binder is treated as an 

incompressible Newtonian fluid. A binder-aggregate interaction model was 

developed to account for the behaviour of asphalt concrete. The simulations were 

carried out by numerically solving Newton's equations of motion for individual 

particles incrementally in time. They performed a few creep test simulations and 

concluded that when the number of frictional contacts is below a certain minimum, 

asphalt can exhibit steady state creep which would lead to rutting in a pavement. 

However, the simulations were two-dimensional and no calibration with laboratory 

data was given. 

Chang and Meegoda [21] presented a microscopic model, ASBAL by modifying the 

microscopic model TRUBAL by Cundall [32] to include the bitumen binder 

between particles. The rheological analog of the viscoelastic bitumen binder is 

presented as a linear spring and a dashpot (Voigt element) as shown in Figure 2.22. 

They performed a few uniaxial simulations consisting of 152 spherical particles 

subjected to monotonic, constant strain rate and cyclic loading. However, the 

simulations were undertaken just to perform a study on important factors that can 

influence the simulation results by using ASBAL. Meegoda and Chang [74] 

extended the ASBAL model by replacing the Voigt element with a Burgers element 

to simulate the viscoelastic behaviour of bitumen binder. They then developed a 

microscopic model for Hot Mix Asphalt (HMA) using ASBAL. A few simulations 

were performed with different microscopic parameters under varied types of 

loadings such as monotonic and cyclic loading. They showed that under monotonic 

loading, a typical HMA test exhibits non-linear behaviours and under cyclic loading, 

permanent deformation was modelled. 

The few micromechanics approaches that have been undertaken to model the asphalt 

using DEM have been limited to two-dimensional behaviour. Hence, there is a need 
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to extend this to three dimensions so that the effect of sample volumetric strain and 

aggregate interlocking can be modelled more accurately. 

2.5 Thin Film Behaviour of Bitumen 

To simulate asphalt uSIng the Discrete Element Method, it is important to 

understand the behaviour of bitumen in the form of a thin film. This section reviews 

the thin film behaviour of bitumen in compression, shear and tension. For elastic 

contact behaviour in compression, Nadai [79] suggested that the effective Young's 

modulus for an incompressible material subject to axisymmetric deformation is: 

(2.15) 

where A is the aspect ratio, which is defined as the ratio of particle diameter to film 

thickness. Cheung [22] suggested that for compressible material subject to 

axisymmetric deformation: 

E ac 3 K / E 
[ ]

-1 

E :i = 1 - 1 + 8 (5 / 8) ~ 2 
(2.16) 

where K is the bulk modulus of film material. However, these approaches are only 

applicable for an elastic material that is subject to compression. For a viscous 

contact in compression, Cheung [22] proposed a "thin film stiffening factor (TF)" 

subjected to axisymmetric deformation: 

(2.17) 

where n is the power-law creep exponent and AR is the aspect ratio. The relationship 

between the thin film stiffening factor and the aspect ratio reproduced from Equation 
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2.17 is plotted in Figure 2.23. Harvey [50] further modified the "thin film stiffening 

factor" by introducing the thick film adjustment with following equation: 

(2.18) 

where Ao is a reference aspect ratio with a constant of 3.1. This is also shown in 

Figure 2.23. It can be seen from this figure that the bitumen film stiffness increases 

at a higher aspect ratio. Therefore, it can be concluded that the normal stiffness of 

bitumen film is dependent on the aspect ratio of bitumen film. 

Cheung and Cebon [24] performed an experimental study on pure bitumens tested in 

uniaxial tension, compression and shear over a wide range of temperatures, stresses 

and strain rates. They found that for isothermal conditions constitutive behaviour of 

pure bitumen in uniaxial tension is given by: 

(2.19) 

In general, the power-law constitutive behaviour In three dimensions can be 

expressed as: 

(2.20) 

where a:. = a .. -l8 .. akk is the deviator stress, 8 .. is the Kronecker delta, and 
lj lj 3lj lj 

a = (l.a:.a:. )112 is the von Mises effective stress. Equation 2.19 approximates the 
e 2 lj lj 

steady-state creep behaviour shown by many metals, polymers and ceramics (Bower 

et al. [13]). Cheung and Cebon [24] studied its applicability to bitumens by 

examining the measured behaviour of bitumen in pure shear. They indicated that the 

generalised power-law equation predicts that under pure shear, the steady strain rate 

is given by: 
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(2.21) 

It can be seen from Equation 2.21 that the bitumen behaviour in tension and in shear 

r;:; n+ 1 
are expected to be related by the factor of "1/ 3 . This indicates that for bitumen 

behaviour in linear region (n = 1), the shear strain rate is three times the tensile 

strain rate for a given applied stress throughout the stress range. Lethersich [69] 

performed a numerical analysis to investigate the mechanical behaviour of bitumen. 

He indicated that bitumen viscosities are associated with a shear stress which is 

equal to one third of the tensile stress in a plane where the shear and tensile strains 

are equal. Consequently, it can be concluded that in the linear region the tensile 

stiffuess of pure bitumen is approximately three times the shear stiffuess of pure 

bitumen. 

2.6 Summary 

The literature reVIew presented in this chapter indicates that the deformation 

behaviour of asphalt mixtures at the marco-scale is reasonably well understood. It is 

time, loading rate and temperature dependent and during deformation, dilation can 

occur. Asphalt materials are usually assumed to be linear viscoelastic at small strains. 

However they are generally nonlinear materials and visco-elasto-plastic constitutive 

relationships are capable of fully describing the behaviour of an asphalt mixture. 

A number of empirical continuum models are available to predict the behaviour of 

asphalt materials. These models have been reasonably successful although large 

calibration factors are needed in a quantitative analysis of pavement structures. No 

developed models at present are capable of describing comprehensively the 

behaviour of asphalt mixtures. 

Micromechanical models of asphalt mixture deformation behaviour are poorly 

developed at present. The physical mechanisms of deformation are not well 

understood. It should be emphasised that an understanding of the deformation 

mechanism is crucial in modelling the deformation behaviour of asphalt mixtures. 
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Further development should emphasise more specific descriptions of the 

microstructure of the asphalt mixtures. 

The reVIew also showed that the mechanical behaviour of pure bitumen in 

compression, shear and tension is well understood. This understanding will be 

applied to model contact behaviour in DEM simulation of asphalt. 
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Figure 2.1: Strain response of asphalt mixtures under single load [65]. 
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Figure 2.2: Accumulation of residual strain of asphalt mixtures under repeated load 
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bitumen at 10°C, after Ossa [82]. 
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Figure 2.12: Nottingham nomograph for the prediction of mix stiffuess, after Brown 
[18]. 
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Figure 2.13: Simple viscoelastic materials which display (a) delayed elasticity, (b) 

steady creep (Maxwell), after Johnson [62]. 

Figure 2.14: Burger's Model. 

32 



Chapter 2: Reviewing the Deformation Behaviour of Bitumen and Asphalt 33 

o. € 

D 

E 
------------

a(t) 

o t 
Time 

Figure 2.15: Viscoelastic response of stress and strain, after Johnson [62]. 

Figure 2.16: Four-element Model, after Monismith [78]. 
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Figure 2.17: Schematic representation of strain components, after Perl [86]. 
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Figure 2.18: Two particles separated by a film of bitumen, after Hill [117]. 
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(a) Typical Asphalt Material (b) Model Asphalt System 

(c) Network Finite Element Model (d) ABAQUS Finite EJernent Model 

Figure 2.19: Asphalt modelling concept, after Sadd [71]. 

Figure 2.20: Testing of synthetic specimen using IDT, after Buttlar [20]. 



Chapter 2: Reviewing the Deformation Behaviour of Bitumen and Asphalt 

Figure 2.21: Forces acting on aggregate and binder. (a) forces acting on particles (b) 

aggregate-aggregate interaction. (c) aggregate-binder interaction, after 

Rothenburg [95]. 

Nonnal 

Shear 

Figure 2.22: Analog of viscoelasticity, after Chang [21] 
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Figure 2.23: Thin film stiffening factor with think film adjustment, after Harvey [49]. 
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3 Introduction to Discrete Element 
Modelling 

3.1 Introduction 

The previous chapter reviewed different types of continuum and micromechanical 

models for the asphalt. It was concluded that DEM represents a promising method 

for modelling asphalt at the particle scale although previous research has focussed 

on 2-dimensional behaviour. This chapter describes DEM in more detail. 

The Discrete Element Method (DEM) was first introduced by Cundall [31] for the 

analysis of rock mechanics problems. A thorough description of DEM can be found 

in Cundall and Hart [33, 35, 48]. DEM is a numerical procedure capable of 

describing the mechanical behaviour of assemblies of discs and spheres. It is 

implemented in a computer program that allows finite displacement and rotation of 

discrete bodies including complete detachment, and recognises new contacts 

automatically as the calculation progresses. This method refers to the particular 

discrete element scheme that uses deformable contacts and explicit, time-domain 

solution of the equations of motion. The simulation of non-linear particle interaction 

can be performed without excessive memory requirements or the need for an 

interactive procedure. By tracing the movements of the individual particles, contact 

forces and displacement of a stressed assembly of particles can be determined. These 

movements are caused by the propagation of disturbance from wall and particle 

motion throughout the particle system. 
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Dynamic behaviour in DEM is represented by the timestep algorithm where 

velocities and accelerations are assumed to be constant in each timestep. The 

timestep is chosen to be so small that disturbance can only propagate to its 

immediate neighbours during a single timestep. Then, at all times, the forces acting 

on any particle are determined exclusively by its interaction with the particles with 

which it is in contact. The calculations performed in DEM alternate between 

application of Newton's second law and the force-displacement law. The calculation 

cycle is described in Section 3.3.1. 

3.2 Development and Application of DEM 

The Discrete Element Method has been widely applied in soil and rock mechanics. 

In the early 70's, Cundall [31] introduced a computer program to model the 

progressive failure of a discrete block system where interaction between blocks is 

governed by friction and stiffness. There is no limit to the amount of displacement or 

rotation in each block and any block is permitted to touch any other block. In his 

paper [31], the basic DEM theory such as force displacement law, law of motion and 

calculation cycle are introduced. 

In the late 70's, Cundall and Strack [37] developed a computer program, BALL in 

two dimensions by incorporating the DEM theory as described in [31]. BALL was 

used to model granular assemblies comprised of distinct particles that displace 

independently from one another and interact only at contact points. The effects of 

damping and speed of loading were included in this model. This model was then 

validated by comparing force vector plots with the corresponding plots obtained 

from the photo elastic analysis undertaken by de J osselin de J ong and Verruijt [38]; 

good agreement was found. The program BALL was further developed by Cundall 

and Strack [36] to model the behaviour of assemblies of discs under loading and 

unloading. 100 and 1000 disc tests were performed with computer interactive 

graphics to study the internal mechanism within a granular mass and the response to 

stress probes. The 100-disc test is shown in Figure 3.1. As a result, Cundall and 

Strack concluded that the DEM and BALL were valid tools for research into the 

behaviour of granular assemblies. In the early 80's, Cundall, Drescher and Strack 
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[34] further improved BALL by introducing methodologies for measurements of 

granular assemblies in simulation. Various forms of boundary conditions and 

definitions of average stresses and strains were described. A catalogue of observed 

mechanisms such as force chains, spins and locked-in-forces were presented. 

However, the program BALL was limited to model the behaviour of granular 

assemblies in two dimensions. 

In the late 80's, Cundall developed a DEM program called TRUBAL [32] to 

simulate three dimensional assemblies. TRUBAL was used to generate a dense 

random packed assembly of spheres to the desired porosity. A numerical "servo­

control" algorithm was introduced to bring the sample to equilibrium under the 

desired isotropic stress. Biaxial tests were performed and the numerical results 

agreed with physical results described by Ishibashi and Chen [59], except for the 

volume strain observed in triaxial extension tests. Cundall suggested that this 

discrepancy might indicate the presence of an initial fabric in the physical sample. 

However, this work extended DEM into three dimensional modelling. 

Thornton et al. [109] described a modified version of TRUBAL which they called 

GRANULE. This program is capable of modelling the fracture of an agglomerate of 

spherical balls bonded together. In their model, they attributed a surface energy to 

the balls in the agglomerates so that tensile forces between balls are auto-adhesive. 

The general methodology is described in Thornton et al. [111] and the theoretical 

basis of the algorithms can be found in Thornton and Yin [110]. 

The first version of Particle Flow Code in Three Dimensions (PFC3D) for DEM 

simulations was released in 1995 by Itasca Consulting Group Inc. [1-4]. Hazzard et 

al. [51] used PFC to analyse crack nucleation and propagation in brittle rock. Their 

paper outlines how the mechanical behaviour of different rock types can be 

reproduced by considering the micromechanical structure of different rocks. The 

cracking of rock models is examined and they concluded that the cracking pattern in 

their granite model agreed with the laboratory result. 

McDowell and Harireche [72] used PFC3D to model the fracture of soil grains. 

They modelled a soil particle as an agglomerate of balls bonded together with 
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contact bonds. Realistic particle parameters were used and gravity was applied to 

stabilise the agglomerate prior to loading in order to replicate a real soil particle 

crushing experiment. They demonstrated the possibility of obtaining the correct size 

effect on strength. McDowell and Harireche [73] further used PFC3D to model one 

dimensional normal compression of a sand. Each sand particle is modelled as an 

agglomerate of balls bonded together as shown in Figure 3.2. Oedometer tests were 

performed on small and large agglomerates and the yield stress found to be reduced 

by increasing the agglomerate size. The yield stress predicted by the model is lower 

than the experimental results probably due to the different shape of the agglomerate 

compared to real sand. As a result, they concluded that DEM with PFC3D is a 

powerful tool in modelling the behaviour of crushable soils and it is capable of 

providing a micromechanical insight into soil behaviour. 

Powrie et al. [89] demonstrated the ability of DEM using PFC3D to capture the 

essential macro-features of soil behaviour as observed from laboratory tests. Each 

soil particle was modelled as two spheres bonded together with a high strength bond 

so that each pair of spheres behaves as a single rigid particle, as shown in Figure 3.3. 

A sample, as shown in Figure 3.4, was prepared for biaxial simulations. The effects 

of loading platen friction, initial sample porosity and inter-particle friction angle 

were investigated. The peak effective angle of friction and volumetric dilation of the 

sample were found to be increased with the particle shape factor (defined as (R+ 

r)/R in Figure 3.3). They concluded that a numerical sample with 10,000 particles 

comprising pairs of bonded spheres of shape factor 1.5 and inter-particle friction 

angle of 26° have demonstrated the ability to model the behaviour of soil as 

observed in the laboratory. More details can be found from Ni [80]. 

Dolezalova et al. [42] used PFC3D to model medium dense Zbraslav sand. They 

calibrated the micro properties of a synthetic sand model to match the macro scale 

response of the physical sand. The comparison between the sand model and the 

laboratory result is shown in Figure 3.5. They showed that the predicted influence of 

stress path direction changes on the deformational response of synthetic sand was in 

good agreement with the laboratory test results. Furthermore, PFC3D has been used 

by many researches in a wide range of applications. For example, Wanne [121] 

modelled compressive strength testing of anisotropic hard rock, Konietzky et al. [66] 
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modelled cyclic fatigue under tension and Zhou and Chi [125] performed shear band 

simulations on synthetic sand based on the biaxial simulation. 

Although DEM has been applied to model the behaviour of soils and granular 

materials, it has not been widely used to investigate the mechanical behaviour of 

asphalt materials. It can be concluded that PFC3D is the best developed tool 

available for DEM; hence it will be used in this research for modelling the 

deformation behaviour of idealised asphalt material. A more detailed description of 

PFC3D follows. 

3.3 Particle Flow Code in Three Dimensions (PFC3D) 

PFC3D has been developed by ITASCA Consulting Group Inc. to model the 

movement and interaction of stresses in assemblies of rigid spherical particles using 

DEM. It is classified as a Discrete Element Code by Cundall and Hart [35] since it 

allows finite displacements and rotations of discrete bodies, including complete 

detachment and recognises new contacts automatically as calculation progresses. 

The PFC3D particle flow model simulates the mechanical behaviour of a system 

comprising of a collection of particles. A particle denotes a body that occupies a 

finite amount of space. In this model, distinct particles displace independently of one 

another and interact only at contacts between them. The particles are assumed to be 

rigid but can deform locally at contact points using a soft contact approach, in which 

finite normal and shear stiffuesses are taken to represent measurable contact 

stiffuesses. The contact force between two contacting particles is calculated based 

on the overlapping magnitude and the contact stiffuesses of two contacting particles 

at the contact. The PFC3D model refers to spherical particles as 'balls' and 

boundaries as 'walls'. Walls allow confinement and compaction by applying a 

boundary velocity. The balls and walls interact with each other via the contact forces 

between them. 

Softening behaviour of a bonded material can be modelled by introducing bonds at 

the contact points such that, the bond is broken when inter-particle forces at any 

contact exceed the specified bond strength. This allows tensile forces to be 
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developed between particles and enables the formation of micro-cracks in the system 

to be modelled. Bonded assemblies exhibit complex macroscopic behaviour such as 

strain softening, dilation, and fracture. PFC3D can be applied to the analysis of 

solids subjected to prescribed boundary and initial conditions. Continuum behaviour 

can be modelled by treating a solid as an assembly of many small particles and 

stresses and strains can be measured by averaging their quantities over a 

representative measurement volume in such a system. 

3.3.1 Basic Calculation Procedure 

The PFC3D calculation cycle is shown in Figure 3.6. It is based around a 

timestepping algorithm that requires the repeated application of the law of motion to 

each particle, a force-displacement law to each contact, and a constant updating of 

wall positions. The contacts (ball to ball and ball to wall) are traced during the 

simulation and they can be formed or removed automatically. At the start of the 

timestep, a set of contacts is updated from known particle and wall positions. The 

force-displacement law is then applied to update contact forces based on the relative 

motions between two particles in contact via a contact constitutive law. Next, the 

law of motion is applied to update the velocity and position at each particle based on 

the resulting force and moment arising from contact and body forces acting on the 

particle. Wall positions are also updated based on specified wall velocity. The force­

displacement law and the law of motion are described in the following sub-sections. 

Force-Displacement Law 

The force-displacement law is described for both ball to ball and ball to wall 

contacts. This law is applied at the start of each cycle to contacts to obtain new 

contact force. The contact forces vector Fi is resolved into normal and shear 

components with respect to the contact plane: 

F. =F.n +F.s 
I I I (3.1) 
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where Ft and F/ denote nonnal and shear component vectors respectively. The 

nonnal contact force vector is given by: 

(3.2) 

where J<!l is the nonnal stiffuess at contact, if is the overlapping magnitude of two 

contacting entities and ni is the unit nonnal vector. For ball-to-ball contact, the 

nonnal vector is directed along the line between ball centres. For ball-to-wall contact, 

the nonnal vector is directed along the line defining the shortest distance between 

the ball centre and the wall. 

It should be noted that the nonnal stiffuess is a secant modulus which relates total 

displacement and force, whilst the shear stiffuess is a tangent stiffuess which relates 

incremental displacement and force. When the contact is fonned, the total shear 

force is initialised to zero. Each subsequent relative shear displacement will cause an 

incremental shear force to be developed and added to its current value. The 

incremental shear force is calculated using: 

/1F. S = _KsVs fl.t 
I I (3.3) 

where Ks is the shear contact stiffuess, V/ is the shear component of contact velocity 

and Lit is the timestep. The new shear force is then calculated by summing the shear 

force vector existing at start of timestep with the incremental shear force vector. 

S _ {ps }current A 1::'s F. -. + Lll'/. 
I I (3.4) 

The current shear force {r: s yurrent is updated in each timestep by taking account of 

the motion of contact. These updated contact forces (and moment) will be used in 

the following timestep to calculate the acceleration using Newton's second law and 

then integrated to give velocity and displacement and hence the updated position. 

This is described in the law of motion in the next sub-section. 
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Law of Motion 

The motion of a rigid particle is detennined by the resultant force and moment 

vectors acting upon it. The Equations of motion are expressed as two vector 

quantities, one relates the resultant force to translational motion and the other relates 

the resultant moment to rotational motion of the particle. The equation for 

translational motion is written in vector fonn as: 

(3.5) 

where Fi is the sum of all externally applied forces acting on the particle, m is the 

total mass of the particle, Xi is the acceleration of particle and gi is the body force 

acceleration vector (e.g., gravity loading). 

The equation for rotational motion is written in the vector fonn as: 

M. = Jw. = (~mR2)w. 
I I 5 I 

(3.6) 

where Mi is the resultant moment acting on particle, J is the moment of inertia of a 

particle, Wj is the angular acceleration of a particle and R is the radius of a spherical 

particle whose mass is distributed unifonnly throughout its volume. 

The equations of motion, given by Equation (3.5) and (3.6) are integrated using a 

centred finite difference procedure involving a time step ill. The quantities Xj and {j)j 

are computed at the mid-intervals of t ± ill12, while the quantities xi' Xi' wi' Fj, and 

M
j 
are computed at the primary intervals of t ± ill. The translational and rotational 

accelerations at time t are calculated as: 
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x~t) = _1_ (xY+!:.t/2) _ x~t-'M/2)) 
I i1t I I 

dJ~t) = _1_{m~t+!:.t/2) _ m~t-tlt/2)) 
I i1t ~ I I (3.7) 

The translational and rotational velocities at time t+ &/2 can be solved by 

sUbstituting Equation (3.7) into Equations (3.5) and (3.6) giving: 

OJ~t+l1tI2) = OJ~t-l1t/2) + (Mi(t) Jl1t 
1 1 I (3.8) 

Finally, the position of the particle centre is updated by integrating velocities in 

Equation (3.8) giving: 

(3.9) 

In conclusion given the values ofx~t-11(12) OJ~t-I1t/2) x~t) F.(t) andM~t) Equation (3 8) 
, 1 'I '1'1 I' • 

is used to obtain X?+l1tI2) ,OJ?+l1tI2) • Then, Equation (3.9) is used to obtainx?+l1t) • The 

values of F';(t+l1t) andM?+I1t) , to be used in the next cycle, are obtained by application 

of the Force-displacement law. 

3.3.2 Mechanical Timestep 

The PFC3D timestepping algorithm assumes that velocities and accelerations are 

constant within each timestep. Therefore, the time step chosen in the PFC3D 

calculation cycle must be small enough so that the disturbance cannot propagate 

from any particle further that its immediate neighbour during a single timestep. The 

computed solution produced by Equations (3.8) and (3.9) will remain stable if the 
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timestep does not exceed a critical value. PFC3D has the ability to estimate the 

critical time step at the start of each calculation cycle. The actual timestep is then 

taken as a fraction of this estimated critical value. 

The estimation of the critical timestep is determined firstly by considering a one 

dimensional mass spring system described by a point mass (m) and spring stiffuess 

(k). The critical timestep is given by [9]: 

T 
tcrit =-

1r 

T = 21r~m/k (3.10) 

where Tis the period of the system. Now, consider the infinite series of point masses 

and springs in Figure 3.7, which illustrate the contacts in the system. The smallest 

period of this system will occur when the masses are moving in synchronised 

opposing motion such that there is no motion at the centre of each spring. The 

motion in a single point mass is described by two equivalent systems shown in 

Figure 3.7(b) and 3.7(c). Hence the critical timestep in this system is found by using 

Equation (3.10) to be: 

tcrit = 2~m/(4k) = ~m/k (3.11 ) 

3.3.3 Elastic Contact Model 

This section describes the elastic contact model for two particles in contact subjected 

to compression and/or shear. It should be noted that alternate contact models are also 

available to simulate more complex behaviour. The contact stiffuess relates the 

contact force and relative displacement in the normal and shear directions by the 

Force-Displacement Law described in Section 3.3.1. The normal contact stiffuess is 

described in Equation (3.12) and the shear contact stiffuess is described in Equation 

(3.13). The contact stiffnesses for the contact model are calculated assuming that the 

stiffnesses of two contacting entities act in series giving: 
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(3.12) 

(3.13) 

where superscript [A] and [B] denote the two entities in contact. The parameters of 

nonnal stiffness (kn) and shear stiffness (ks) of two contacting entities are specified 

in PFC3D, the contact stiffnesses of two contacting entities are then computed using 

Equation (3.12) and (3.13). This contact stiffness is multiplied by the magnitude of 

the overlap to obtain the contact force. 

3.3.4 Contact Bond 

This section describes the contact bond used to model a bonded material in PFC3D. 

The contact bonds have a specified tensile strength in the nonnal and shear 

directions. The particles bonded together with a contact bond cannot slip but they 

can roll over each other. Figure 3.8 shows the rolling of ball at a contact bond. It can 

be seen from this figure that two identical balls (A and B) are joined by a single 

contact bond. Ball A has rotated about ball B (fixed) without slipping and without 

breaking the contact bond. The contact bond will remain (as shown in Figure 3.8) at 

the new position of ball A. 

In the nonnal direction, contact bonds allow tensile forces to develop at a contact 

when the overlapping magnitude between a pair of contacting balls is less than zero. 

The contact bond binds the balls together and the magnitude of tensile nonnal 

contact force is limited by the nonnal contact bond strength. If the magnitude of the 

tensile nonnal contact force equals or exceeds the nonnal contact bond strength, the 

bond breaks and both nonnal and shear contact forces are set to zero. 

In the shear direction, if the magnitude of the shear contact force is equal to or 

exceeds the shear contact bond strength, the bond breaks, but the contact forces are 

not altered providing that the shear force does not exceed the friction limit. A 
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coefficient of friction is set so that the slip model will activate when the bond breaks, 

the shear force is resisted if it does not exceed the friction limit. 

3.3.5 Burger's Viscoelastic Contact Model 

A Burger's contact model is a user defined contact model implemented in PFC3D to 

simulate the time dependent behaviour of a material. This contact model is written in 

the C++ programming language. The Burger's contact model is shown in Figure 3.9. 

This model contains a Kelvin element and Maxwell element connected in series in 

the nonna1 and shear direction respectively at a contact point. The properties of the 

Burger's model are shown in Table 3.1. 

The total displacement of a Burgers' model U (sum of the displacement of the Kelvin 

element and the Maxwell element) and its first derivative are given by: 

(3.14) 

where Uk is the displacement of the viscoelastic component in the Kelvin element, 

Umk is the displacement of the elastic component in the Maxwell element and Umc is 

the displacement of the viscop1astic component in the Maxwell element. 

The contact force using stiffuess (Kk) and viscosity (Ck) of the Kelvin element is 

given by: 

(3.15) 

The contact forces using stiffuess (Km) and viscosity (Cm) of the Maxwell element 

are given by: 

f = Kmumk 

f = Cmumc 

(3.16) 

(3.17) 

(3.18) 
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From Equation (3.15) the velocity of the Kelvin element is given by: 

(3.19) 

Using a central difference approximation of the fmite difference scheme for the time 

derivative and taking average values for Uk and f gives: 

therefore: 

where 

Kkfl.t 
A = 1+------

2Ck 

B = 1- Kkfl.t 
2Ck 

For the Maxwell element, the displacement and velocity are given by: 

Urn = urnk +urnc 

Substituting Equations (3.17) and (3.18) into Equation (3.23) gives: 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 
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Using central difference approximation of the finite difference scheme and taking 

the average value for I gives: 

U~+l - u~ = I
t
+

1 
- It + I t

+
1 + It 

~t Km~t 2Cm 
(3.25) 

therefore: 

(3.26) 

The total displacement and velocity of the Burger's model are given by: 

(3.27) 

Using finite difference scheme for time derivative gives: 

t+l _ t _ t+l _ t + U t+l _ U t 
U U - Uk Uk m m (3.28) 

Substituting Equations (3.21) and (3.26) into (3.28), the contact force,l
t
+

1
, is given 

by: 

(3.29) 

where 

~t 1 ~t 
C= +-+--

2Ck A Km 2Cm 

~t 1 ~t 
D= --+--

2Ck A Km 2Cm 
(3.30) 

t+1 I d fr 1m I c: t+l t In conclusion, the contact force I can be calcu ate om own va ues lor u ,u , 

utk andl t• Verification of the Burger's contact model in PFC3D was performed by 
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IT ASCA [1]. A relaxation test was perfonned and the result was found to coincide 

with the analytical solution (see [1] for more details). 

3.3.6 Servo-Control Mechanism 

The compressive stress (or load) on a numerical sample in PFC3D is applied by 

moving the wall (or loading platen) with a specified velocity. For simulations that 

require constant loading throughout the test (e.g. constant stress creep test), the 

servo-control mechanism is implemented which is a function that is integrated in 

PFC3D to maintain a constant stress (axial and confining) throughout the simulation. 

This function is called in every calculation cycle to detennine the current wall 

stresses and it then adjusts the wall velocities in such a way to reduce the difference 

between measured stress and required stress. The calculation algorithm for the 

servo-control mechanism is given by: 

u(W) = G(ameasured _arequired) = G!J.a (3.31) 

where G is the 'gain' parameter estimated using the following reasoning. The 

maximum increment in wall force arising from wall movement in one time step is 

given by: 

(3.32) 

where N. is the number of contacts on the wall and kn is the average stiffness of , c 

these contacts. Hence the change in mean wall stress is given by: 

k(W) N u (w) !J.t 
!J.a(w) = n c 

A 
(3.33) 

where A is the wall area. For stability reasons, the change in wall stress must be less 

than the difference between the measured and required wall stress. To fulfil this 

stability requirement, a relaxation factor ex is introduced such that: 
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l~a(W)1 < al~(jl (3.34) 

Substituting Equations (3.31) and (3.33) into Equation (3.34) gives: 

k~W) NcGI~(jI~t I I 
---~----=---- < a ~(j 

A 

G= aA 
k(w) N ~t 

n c 

(3.35) 

where G is the 'gain' parameter to be substituted in Equation (3.31) for adjusting the 

wall velocity to achieve the required wall stress in numerical servo-control. 

3.4 Summary 

The traditional approach In modelling IS insufficient to simulate the 

micromechanical behaviour of asphalt. Recent developments in computer 

technology have allowed the behaviour of asphalt as a heterogeneous material to be 

investigated using DEM. DEM has been widely applied in soil and rock mechanics. 

Many DEM programming codes have been developed since the 1970's. PFC3D has 

been applied in a wide range of applications by many researchers. 

The PFC3D particle flow model and its calculation algorithms were described in 

Section 3.3. The calculation cycle in PFC3D is a timestepping algorithm involving 

the repeated application of the law of motion and a force displacement law. The 

determination of the mechanical time step and the elastic contact model were 

described. To model asphalt as a bound material, a contact bond is introduced. The 

Burger's contact model is implemented to simulate the time dependent behaviour of 

asphalt. The servo control mechanism was introduced for constant stress control in 

numerical simulations. In conclusion, PFC3D appeared to be most powerful DEM 

programming code available to model asphalt materials. 
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Tables: 

Table 3.1: Properties of Burger's Model 

Properties Notation 

Normal stiffuess for Kelvin element Kkn 

Normal viscosity for Kelvin element CIm 

Normal stiffuess for Maxwell element Kmn 

Normal viscosity for Maxwell element Cmn 

Shear stiffuess for Kelvin element Kks 

Shear viscosity for Kelvin element Cks 

Shear stiffuess for Maxwell element Kms 

Shear viscosity for Maxwell element Cms 

Friction coefficient fs 
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Figure 3.1: Initial state of lOO-disc test, after Cundall [36] 

Figure 3.2: Aggregate of 13 agglomerates in a cubic Oedometer after McDowell [73] 
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Figure 3.3: Schematic illustration of a bonded particle, after Powrie [89]. 

o 
\0 

sanlple 

stress controlled 
flexible boundary 

Figure 3.4: Typical sample with 10 000 particles, after Powrie [89]. 
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'I, 

Numerical Sample Preparation 

4.1 Introduction 

A procedure to prepare a synthetic sample using PFC3D to simulate a laboratory test 

is presented in this chapter. The mechanical behaviour of the synthetic material 

depends on physical parameters such as porosity, particle size distribution, stiffuess 

and the strength of contacts. It is important to generate a synthetic sample that 

mimics the test specimen in the laboratory. This chapter also describes the 

measurement methods for strains, porosity and number of contacts used in the 

numerical sample. 

It should be noted that the obj ective of this chapter is to develop a procedure that 

results in specimens that replicate the single-sized sand asphalt specimens tested in 

the laboratory. As noted in Chapter 1, this idealised mixture has been chosen 

because of the relatively simple internal geometry. Previous experimental work 

undertaken using this material demonstrated that the approximate volumetric 

proportions are as follows: 

• Sand (1.18 - 2.36mm) = 65% 

• Bitumen - 25% 

• Air voids - 10% 

The sand is approximately single-sized. The following section presents a review of 

the packing characteristic of spheres. 
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4.2 Review on Packing Characteristic of Spheres 

Packing of the particles is an important issue for sample preparation in DEM 

simulations. The basic parameter related to an array of spheres is the packing density, 

which is the ratio of the volume of the spheres to the total volume they occupy. Scott 

[100] defined dense random packing as the upper limit of packing density when 

spherical balls of equal size are poured into rigid containers. He claimed that it is 

unlikely that the packing of balls was significantly influenced by the friction. His 

experimental work showed that the packing density is 0.63 for dense random packed 

spheres. The same result was found by Sohn and Moreland [105] when they 

conducted a series of experiments using sands to investigate the effect of particle 

size distribution on packing density. Computational work by Adam and Matheson [6] 

showed a similar result. Therefore, it can be concluded that a dense random packing 

sample has a packing density of 0.63. 

The number of contacts between spheres is another important issue in packing of 

spheres. Bezrukov et al. [11] emphasised that contacts between spheres determine 

the topological connectivity of the system of spheres and the transfer of forces. They 

observed an average contact number of 6 for dense random packing spheres using a 

spatial statistic approach. For real packing of equal spheres, Bernal and Mason [10] 

observed an average contact number of 6.4 for a "random close" packing with a 

packing density of 0.62. 

In conclusion, to simulate asphalt comprising of single-sized sand using DEM, the 

sample generated should have a packing density of 0.63 and an average number of 

contacts of approximately six per particle. 

4.3 Numerical Sample Preparation Procedure 

To model the behaviour of a highly idealised asphalt mixture, it is necessary to 

artificially generate a numerical specimen that replicates the material. The idealised 

mixture comprises approximately single-sized spherical (sand-sized) particles mixed 

with bitumen. The principal reasons that this form of idealised asphalt was chosen 

are that the packing characteristics are known (dense random packing) and the 
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behaviour of the mixture will be dominated by the bitumen and complex aggregate 

interlock effects will be minimised. In this type of approach the effect of the 

bitumen is represented by shear and normal contact stiffnesses. It is important to 

generate an initially isotropic sample that exhibits approximately the same packing 

characteristics as the dense material being modelled. The following sub-sections 

describe the preparation of an isotropic cylindrical sample to simulate the triaxial 

and uniaxial tests. 

4.3.1 Boundary and Particle Generation 

To prepare a numerical sample, the particle assembly will be generated and 

compacted within a set of confining boundaries. Therefore, the first step in the 

sample preparation procedure is to generate a set of confining boundaries for the 

sample. The boundary (wall in PFC3D) is a plane that has arbitrarily defined contact 

properties for interaction with particles (balls in PFC3D). These finite walls act as 

boundary constraint for the assembly and restrict the movement of particles through 

the boundaries. Contact forces for the particle to boundary contacts are calculated 

via the force-displacement law as for particle to particle contact. For uniaxial and 

triaxial simulations, the top and bottom boundaries are used to simulate the loading 

platens of the sample. In triaxial simulations, the lateral cylindrical wall (nearly 

circular) is used to provide the lateral confinement to the sample, whilst in uniaxial 

simulation the lateral wall is removed after sample preparation. The typical 

boundaries generated for a cylindrical sample are shown in Figure 4.1. 

After preparation of boundaries, a dense random packing sample with an 

approximate volume fraction of solids equal to 64% is generated. The particle (or 

spherical ball) is the fundamental geometric entity for the discrete element 

calculation. The desired number of particles required to occupy the available space 

is calculated using the following equation: 

N=3V(I-n) 
4;rR3 

(4.1) 
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where N is the number of particles to be generated, V is the total volume of given 

space, n is the desired porosity and R is the mean radius. 

Particles are generated with random centroid coordinates to give an irregular 

packing type with no discernible pattern in the arrangement of particles. It should be 

noted that all particles are generated with the same radius. The particles are first 

generated to half of their final size randomly distributed such that no two particles 

overlap, as shown in Figure 4.2. Then, the particle radii are increased to their final 

values, as shown in Figure 4.3. 

It should be noted that the desired porosity in Equation 4.1 is not the true porosity of 

the sample. This is because overlapping particles at contacts under compression 

result in a "lost" volume of solids in the overlapping region. Consequently, the 

procedure above only serves as a guideline to generate the sample to a final porosity 

that is close to the required porosity. The true porosity of the sample is measured by 

using the 'Measurement Sphere' described in Section 4.4.1. 

4.3.2 Isotropic Equilibrium State 

To generate a numerical sample that replicates an idealised asphalt mixture, it is 

important that the sample is initially isotropic and essentially free from internal 

stresses. In the particle generation procedure (described above), the particles are 

expanded to their final radii and overlap as shown in Figure 4.3 which results in 

internal forces between overlapping particles. It should be noted that the magnitUde 

of overlap varies at every contact causing a non-uniform distribution of contact 

forces within the sample. 

To achieve an isotropic equilibrium condition, particles are allowed to re-orient 

themselves until the stresses on the sample are approximately isotropic. This is 

achieved by applying pre-load cycling where the particles are allowed to settle to 

equilibrium so that the contact forces of particles in the sample will be uniformly 

distributed, as shown in Figure 4.4. It should be noted that during pre-load cycling, 
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the wall and particle friction are set to zero temporarily to facilitate the re-orientation 

process. 

However, the sample prepared under these conditions has a high level of isotropic 

stress (typically ::::::10MPa). It should be noted that the sample must have a low (or 

negligible) internal stress prior to testing. To prepare a "stress free" sample, the 

radius of all particles is reduced uniformly and the sample is cycled to equilibrium. 

Reducing the particle radii causes a reduction in overlapping magnitude between 

particles, hence reduces the contact forces and isotropic stresses in the sample. 

During this process, the particles are again allowed to re-orient themselves so that 

the sample can be maintained at isotropic equilibrium state. Figure 4.5 shows the 

effect of reduction in particle radii on isotropic stress in the sample. It can be seen 

from this figure that if the particle radii are reduced by approximately 0.3% of their 

original size the isotropic stress reduces from 10MPa to O.lkPa. It is suggested [1] 

that the specified isotropic stress in the sample needs to be reduced to less than one 

percent of the uniaxial compressive strength. Therefore, an initial isotropic stress of 

O.lkPa is used in the simulations. 

The contact force distribution under the isotropic equilibrium state is shown in 

Figure 4.6. The lines represent compressive forces and the thickness of the lines 

corresponds to the magnitude of contact force generated. It can be seen from this 

figure that the contact forces are distributed uniformly which is expected under an 

isotropic equilibrium state. 

4.3.3 Preparation of a Bonded Sample 

The previous section described the preparation of "stress free" numerical sample. To 

represent asphalt as a bonded material, this section develops the procedure of 

preparing a bonded numerical sample. In DEM, the particles must have a real 

contact with a non-zero overlap so that a contact bond can be created. Therefore, a 

high coordination number (defined as the average number of contacts per particle) is 

required to create a good contact bond network in the dense bonded sample so that 

its behaviour can be fully represented in modelling. Rothenburg et al [95] suggested 
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that the particle assembly needs at least four contacts per particle on average to carry 

the load. 

To create a sample with good contact bond network, it is necessary to make sure that 

every particle in the sample has a minimum of four contacts with neighbour particles. 

This is done by first scanning every contact in the sample to detect the particles with 

less than four contacts. These particles are then expanded slightly (typically by 1 %) 

to create additional contacts with neighbouring particles. During this process, the 

particles are allowed to re-orient themselves so that the sample can be maintained in 

isotropic equilibrium. It should be noted that particles with less than four contacts 

are typically 5 to 8% of total particles in the sample. The location of these particles 

in a typical sample is shown in Figure 4.7. 

By adopting the procedures above, a sample is prepared in a dense randomly packed 

state with low isotropic internal stresses and a minimum of four contacts per particle. 

To prepare a bonded sample, normal and shear contact bonds are then added to all 

the contacts in the sample as shown in Figure 4.8. It should be noted that a new 

contact bond will be created automatically at new contact formed in the sample 

during the simulation. 

4.3.4 Preparation for Uniaxial and Triaxial Simulations 

This section develops a procedure to prepare the sample for the uniaxial and triaxial 

simulations. In the process of preparing the numerical sample, the particle assembly 

is confined by the top, bottom and lateral walls. The top and bottom walls simulate 

the loading platens while the lateral wall simulates any confinement (for example in 

a triaxial test). To prepare the bonded sample for a uniaxial simulation, the lateral 

wall must be removed (deleted in PFC3D) to give zero confinement to the sample. It 

should be noted that, as described in previous sections, the sample was prepared to a 

low isotropic internal stress condition before removing the lateral wall. 

Consequently, removing of the lateral wall causes some unloading resulting in a 

self-equilibrating set of compressive and tensile locked-in forces. The locked-in 

force distribution (tension and compression) in the sample is shown in Figure 4.9. It 
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should be noted that the typical locked-in forces are less than 0.01 % of the average 

contact force in the sample at peak strength. Hence, the locked-in forces can be 

considered to be negligible in the numerical simulations. 

4.4 Method of Measurement 

The method of measurement (e.g. for bulk stress, bulk strain and porosity) on a test 

sample is an important issue in the numerical simulation. This section describes a 

few measurement methodologies investigated. 

4.4.1 Measurement Sphere 

A measurement sphere is defined as a specified measurement volume in PFC3D and 

is capable of measuring properties such as the coordination number, porosity, stress 

and strain rate. This specified measurement volume is a sphere, so referred as "a 

measurement sphere". A measurement sphere with a specified radius can be 

installed at any point in the sample. In later simulations, two measurement spheres 

are used in the upper and lower parts of the sample to measure the air void content 

and average number of contacts during the simulation, as shown in Figure 4.10. 

Porosity 

This sub-section describes how a measurement sphere can be used to measure the 

porosity (void content) of a numerical sample. The porosity n is defined as the ratio 

of total void volume within the measurement sphere to measurement sphere volume. 

Vvoid n=---
Vsphere 

Vsphere - Vball = 1 _ Vball 

VsPhere Vsphere 

(4.2) 

where Vsphere is the volume of the measurement sphere, V void is the volume of voids 

within the measurement sphere and Vball is determined by: 
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(4.3) 

where Vball is the volume of the measurement sphere occupied by balls, Np is the 

number of balls that intersect the measurement sphere and Voverlap is the volume of 

particles overlapping contained within the measurement sphere. 

As seen from Equation 4.3, the volume of particles overlapping is accounted in the 

computation of porosity. Therefore, it can be concluded that the measurement sphere 

is able to measure the porosity of a synthetic material in a numerical simulation with 

great accuracy. This measurement method will be utilised in the later simulations to 

measure the porosity of the numerical sample. 

Coordination number 

The coordination number Cn is defined as the average number of contacts per 

particle. It is one of the important parameters that can be obtained from the 

measurement spheres. The coordination number will be calculated for particles with 

their centroids contained within the measurement sphere using: 

Ln?) 
C =_N....;,.b __ 

n N 
b 

(4.4) 

where Nb is the number of particles with centroids contained within the 

measurement sphere and n/b
) is the number of contacts between balls. 

The tracking of coordination number is important in the sample preparation 

procedure to ensure that the sample has a certain minimum number of contacts per 

particle (refer to section 4.3.3). The coordination number is also updated and plotted 

graphically during the simulation to track the number of new contacts formed. 
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4.4.2 Measurement of Bulk Strains 

Typically, in laboratory experiments the deformation of the sample is measured at 

the sample boundary using a Linear Variable Differential Transformer (L VDT) or a 

dial gauge. Those measurements are then used to calculate strain values. The 

objective of this section is to develop a method to measure the bulk strains in the 

numerical sample that mimics the measurement method used in the laboratory 

experiment. It should be noted that in PFC3D, the history of particle movement is 

tracked. The measurement methodologies are described in the following subsections. 

Bulk Radial Strain 

To measure the bulk radial strain in a numerical sample, artificial "measuring 

gauges" (replicating the function of the L VDT in the laboratory) are constructed 

from specified particles at the boundary of a numerical sample. The following 

measurement procedure has been adopted to measure the radial strain of a numerical 

sample: 

1. Particles located at the cylindrical boundary are assigned as measunng 

gauges. 

2. Original (or initial) coordinates of these particles are recorded in computer 

memory prior to loading. 

3. Updated coordinates of the particles are tracked during the simulation. 

4. The radial strain for each particle is calculated based on the difference 

between the updated coordinate and original coordinate. 

5. The bulk radial strain of the sample is determined by averaging the radial 

strains from all the particles. 

Initially all the particles on the circumference of the sample were used to measure 

the bulk radial strain in the numerical sample. However, this approach is 

computationally expensive because of the large number of particles to be monitored 

during the simulation. Consequently, to reduce the computation time, fewer 

measuring particles are used. This is achieved by specifying the height of the gauges 

on the circumference with respect to the sample height, defined as "gauge thickness". 
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Two samples with gauge thicknesses of 0.4 and 0.8 to are illustrated in Figures 4.11 

and 4.12. 

A number of simulations were performed to investigate the effect of gauge thickness 

on the sensitivity in measurement values. Two samples with elastic contact stiffness 

and contact bonds containing 6,000 and 12,000 particles were used. The radial 

strains were measured using different gauge thickness for the different samples. The 

percentage error with respect to the value calculated using all the particles on the 

perimeter was then calculated for different gauge thickness and is plotted in Figure 

4.13. It can be seen from Figure 4.13 that the percentage mean error reduces from 

4% to 1 % when the gauge thickness increases from 0.1 to 0.8. It can be concluded 

that a gauge thickness of at least 0.8 is needed to ensure that the radial strain is 

within 1 % of the value calculated using all the particles on the perimeter. 

Axial Strain 

The method of measurement for axial strain in a numerical sample is much more 

simple and direct compared to the method used for radial strain. The original 

coordinates of the top and bottom loading platens are first recorded in computer 

memory prior to testing. The platen coordinates are then updated regularly during 

the simulation. The axial strain of a numerical sample is calculated based on the 

relative displacement of the loading platens. It should be noted that the overlapping 

magnitude (under compression) of the wall and adjacent balls is small compared 

with the axial displacement of the sample and hence it is negligible. 

4.5 Conclusions 

The following conclusions can be drawn from this chapter: 

• A cylindrical sample can be generated replicating the testing specimen in the 

laboratory. 
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• The packing characteristic of the sample generated is dense random packing 

with volume fraction of solids equal to 64% which is approximately the same 

packing characteristics as an idealised mixture. 

• The numerical sample is prepared to an equilibrium state with low internal 

isotropic stresses. 

• A procedure has been adopted to confirm that every particle in the sample 

has a minimum of four contacts with neighbouring particles. 

• Normal and shear contact bonds are applied at each contact point to represent 

asphalt as bonded material. 

• The cylindrical boundary of the sample is removed for uniaxial simulation. 

• Measurement spheres are used to measure the porosity and coordination 

number of the sample. 

• Radial strain is measured by tracking the displacement of particles on the 

circumference of the sample (measuring gauges). 

• Axial strain is measured based on the relative displacement of the loading 

platens. 
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Figures: 

Figure 4.1: Boundaries generated in PFC3D. 

Figure 4.2: particles generated randomly in space to half of final size. 
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Figure 4.3: Particles expanded to final radii. 

Figure 4.4: Particle re-oriented to isotropic equilibrium state. 
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Figure 4.6: Contact force distribution under isotropic stress. 
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Figure 4.7: Location of particles with less than four contacts. 

Figure 4.8: Contact bond network. 
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Figure 4.9: Locked-in forces in tension and compression. 

Figure 4.10 : Measurement spheres in the sample. 

75 



Chapter 4: Numerical Sample Preparation 76 

Figure 4.11: Gauge thickness of 40% to sample height. 

Figure 4.12: Gauge thickness of 800/0 to sample height. 
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5 Elastic Simulations 

5.1 Introduction 

It was noted earlier that the response of the type of idealised asphalt mixture 

simulated in this thesis will be dominated by the bitumen. It is well known that 

bitumen is a viscoelastic material whose response depends on loading time and 

temperature. This section investigates the elastic part of the response by using linear 

elastic normal and shear contact stiffnesses. As noted earlier, in this type of 

approach the effect of the bitumen is represented as shear and normal contact 

stiffnesses and so other more complex theories for contact between elastic bodies (ie 

Hertzian contact) are not appropriate. Time dependent effects will be introduced in a 

later chapter. 

The following sections investigate the effects of sample size and the shear and 

normal contact stiffnesses on elastic bulk material properties (Young's modulus, 

Poisson's ratio, shear modulus, bulk modulus). The second part of this chapter 

investigates the effect of non-equal tensile and compressive normal contact stiffness 

on the dilation behaviour. 

5.2 Material Properties 

In a DEM elastic simulation, the effect of the bitumen is represented as elastic shear 

and normal contact stiffnesses and the aggregates are represented as spherical 

particles. All particles are bonded together with elastic normal and shear contact 

bonds to resist the tensile stresses between the particles. It should be noted that the 
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normal and shear contact stiffuesses are calculated relating the stiffuesses of two 

particles in contact as described in Equations 3.12 and 3.13. 

A contact bond breaks when the tensile stress it is carrying exceeds the particle 

strength, o"c or rc· The contact-bond normal and shear strengths, ¢n and (Ps, are 

expressed in units of force: thus the desired strength criterion relating contact-bond 

strengths and particle strengths is described in PFC3D manual [1] as: 

¢n = 40"cR2 

¢s = 4rcR2 (5.1) 

All samples are prepared according to the sample preparation procedure described in 

Chapter 4. The material properties that are used for the elastic simulation are 

summarised in Table 5.1. Single sized particles were used in the simulations and the 

friction coefficient between particles was set to zero. The shear stiffuesses and 

friction coefficients between the loading platens and the particles were also set to 

zero to avoid sample barrelling and hence ensure a uniform deformation of the 

sample when subjected to loading. To simulate the behaviour of asphalt as a bonded 

material, the particle normal and shear bond strengths were taken to be large to 

avoid bond breakage during the simulation. 

5.3 Effects of Number of Particles 

Since the DEM method is based on simulating individual particles, it is necessary to 

determine the effect of the sample size on bulk material properties. A series of 

uniaxial simulations was performed on six samples generated with different numbers 

of particles. The samples were generated according to the developed sample 

preparation procedure described in Chapter 4. The material properties are shown in 

Table 5.1. Figure 5.1 shows the example of three samples size. The dimensions of 

all samples are shown in Table 5.2. The ratio of sample height to sample diameter 

was kept constant at 2: 1 for all samples. In these simulations the absolute values of 

the shear and normal contact stiffuesses were taken to be 1.8MN/m and 20MNlm, 
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respectively. The ratio of the normal contact to the shear contact stiffness was 

chosen to give a reasonably realistic value of Young's modulus and Poisson's ratio. 

To simulate a uniaxial compressive creep test it is necessary to apply an axial load 

(stress) to the sample and measure the axial displacement (strain) and radial 

displacement (strain) during the test. The load was applied at a maximum velocity of 

O.lm1s to ensure that dynamic wave propagation effects within the sample are 

avoided (see section 5.4). The samples were loaded numerically and the simulation 

was terminated at an axial strain of 0.5%. No bond breakage was detected during the 

simulations. 

The compressive and tensile forces are approximately uniformly distributed in the 

sample under loading as shown in Figure 5.2. It should be noted that the thickness of 

the lines corresponds to the magnitude of contact force generated. In this figure, the 

red chains indicate the compressive forces, which transmit between the top loading 

platen and the bottom platen (fixed) in the sample under compression. The black 

chains indicate tensile forces, which developed almost laterally between the particles. 

This is because as the particles compress vertically they move laterally and hence 

tensile forces develop. 

During the simulation, the axial strain was calculated using the displacement of the 

top loading platen (the bottom loading platen was fixed) and the radial strain was 

taken to be the average radial strain for all particles on the circumference of the 

specimen. In all simulations, the relationships between axial stress and axial strain 

are found to be linear as plotted in Figure 5.3. Linear relationships are also found 

from the plot of radial strain against axial strain (Figure 5.4) for all samples. 

Young's modulus and Poisson's ratio for all samples are determined from the 

gradients of the curves shown in Figures 5.3 and 5.4 and are plotted in Figure 5.5. It 

can be seen from Figure 5.5 that the general trend is for Poisson's ratio to decrease 

and Young's modulus to increase as the sample size (number of particles) is 

increased, tending towards constant values of 0.34 and 3.6GPa respectively. It can 

also be seen from this figure that Young's modulus and Poisson's ratio calculated 
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from the sample containing only 300 particles are approximately 30% lower and 

28% higher than those calculated from the sample containing 6,000 particles. 

The main purpose of performing the sample size effect analysis was to choose a 

sample size which is large enough to fully represent the material behaviour but small 

enough to reduce the computation time. Therefore, it can be concluded from Figure 

5.5 that at least 4,500 particles are required for the results to be with 2% of those 

obtained using 12,000 particles. It should be noted that in later chapters, samples 

containing fewer particles have been used to speed up the computation. In these 

cases, Figure 5.5 can be used to give an indication of the likely error in prediction 

due to a smaller sample. 

5.4 Effects of Loading Rate 

In DEM, the contact forces and displacements of a stressed assembly of particles are 

found by tracing movements of the individual particles. Movements result from the 

propagation through the particle system of disturbances caused by specified wall and 

particle motion and/or body forces [3]. A higher wall velocity imposed on the 

sample can cause the dynamic stress wave to propagates within the sample. Hazzard 

et al [51] indicated that the loading velocity has little effect on the mechanical 

behaviour of the modelled sample as long as it is slow enough to ensure that no 

transient waves are being produced. 

The loading rate in the numerical simulation must be low enough to avoid dynamic 

effects but high enough to reduce the computation time. Therefore, an optimum 

loading rate is required to maintain the accuracy of simulation. To examine the 

effects of loading rate, a series of uniaxial simulations was performed by using 4,500 

particle samples with different loading rates. The loading rates were chosen 

arbitrarily range from 0.05 mls to 5 mls. It is should be noted that only the top 

loading platen was allowed to move and the bottom loading platen was fixed. The 

reaction stresses on top and bottom loading platens were recorded at 5%) axial strain 

in the simulations. 
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Figure 5.6 shows a plot of reaction stresses on the top and bottom platens at the 

different loading rates. It can be seen from this figure that the difference between the 

reaction stresses on top and bottom platens increases at the higher loading rates. The 

difference in stresses between platens was recorded as 12% at a loading rate of 1.2 

mls and 0.8% at a loading rate of 0.1 mls. This indicates that by applying a lower 

loading rate (0.1 mls) dynamic effects could be avoided. This effect can be further 

explained in Figure 5.7 and 5.8. It can be seen from Figure 5.7 that at a loading rate 

of 1.2 mis, the reaction stresses on both loading platens fluctuate. This clearly 

indicates the effect of transient or dynamic stress wave propagation within the 

sample at the higher loading rate. However, it can be seen from Figure 5.8 that the 

loading rate of 0.1 mls resulted in a virtually identical reaction stresses on the platens. 

Consequently, a loading rate of 0.1 mls was chosen as the optimum loading rate. 

5.5 Effects of Normal and Shear Contact Stiffness on Bulk 
Properties 

As noted earlier, the bulk properties (macro-response) of the sample depend on the 

micro-properties (contact stiffness etc.) of the particles in the sample. This section 

investigates how the bulk material properties depend on the shear and normal 

contact stiffnesses of the particles. To investigate this effect, a series of uniaxial 

simulations were performed over a range of contact stiffnesses and ratio of shear to 

normal contact stiffnesses of the particles in the sample. 

A sample containing 6,000 particles was used. Its micro-properties are shown in 

Table 5.1. Figure 5.9 shows a plot of Young's modulus corresponding to shear 

contact stiffnesses ofO.5MNlm, 5MNIm and 50MNlm. The normal contact stiffnesses 

were varied so that the ratios of shear to normal contact stiffnesses (Ks I KN) range 

from 0.2 to 1.0. It can be seen from this figure that the Young's modulus varies at 

different ratios of (Ks I KN)' This indicates that the value of Young's modulus 

depends on both shear and normal contact stiffnesses. It can also be seen from 

Figure 5.9 that at the same ratio of shear to normal contact stiffness (e.g. 0.6), 
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increasing the ratio of shear contact stiffnesses by a factor of ten results in an 

increment of Young's modulus by a factor often. 

Figure 5.10 shows the relationship between Poisson's ratio and the ratio of shear to 

normal contact stiffnesses for a range of shear contact stiffnesses. Poisson's ratio 

(defined as ratio of radial to axial strain) was found to increase as the ratio of (Ks / 

KN) is reduced. This indicates that the material is more incompressible at the smaller 

ratio of (Ks / KN)' It can be seen from Figure 5.10 that Poisson's ratio is only 

dependent on the ratio of shear to normal contact stiffness. This is the expected 

result since, by dimensional analysis, Poisson's ratio can only depend on the ratio of 

contact stiffnesses and not their absolute values. It can be concluded from Figure 

5.10 that a (Ks / KN) ratio of 0.1 gives a reasonably realistic Poisson's ratio of 

approximately 0.35 for the idealised mixtures. However, no experimental data is 

available for justification. 

The relationships between shear and normal contact stiffnesses and bulk material 

properties (Young's modulus and Poisson's ratio) have been established. There is 

also a possibility to establish a relationship between the shear and normal contact 

stiffnesses and the bulk modulus of the material. It should be noted that the bulk 

modulus is defined as the ratio of mean stress increment to volumetric strain 

increment. The standard elastic equation for relating bulk modulus K to Young's 

modulus E and Poisson's ratio v is: 

K= E (5.2) 
3(1- 2v) 

Figure 5.11 shows a plot of bulk modulus versus normal contact stiffness for a range 

of shear contact stiffnesses. It can be seen from this figure that the bulk modulus is 

linearly related to the normal contact stiffness and is approximately independent of 

the shear contact stiffness. 

To explain this, a mean field approach has been adopted to theoretically investigate 

the dependence of bulk modulus on normal contact stiffness [27]. The response in 
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isotropic compression of a triaxial sample containing a random array of identical 

spheres has been considered. General details relating to the mean field approach can 

be found in Jenkins and Strack [60]. 

For a general pair of spherical particles of radius R in contact, a is taken to be the 

unit vector from the centre of a particle to the contact point. Assuming that particle 

centres move in accordance with a uniform displacement field, the displacement u of 

a contact relative to the centre of a sphere can be calculated from the average strain 6 

of the aggregate (taking compressive strain as positive): 

u. = -RB .. a. 
I Ij } 

(5.3) 

where Bij is the strain tensor. The underlying assumption in this statement is that the 

average particle spin is equal to the rigid body rotation of the particle [60]. The force 

F( a) exerted on a sphere at a contact with orientation a is given in terms of its 

components parallel and perpendicular to a: 

F. =-Pa. +T. 
I I I 

(5.4) 

with T· a = 0 . P and T are the normal and tangential components of forces. The key 

step in the mean field approach is the application of the principle of virtual work, 

with an arbitrary set of compatible strains and displacements: 

(5.5) 

where aij is the stress tensor, Ns is the number of spheres per unit volume and 

dO) = sinO dB d¢ is the element of solid angle centred at a. A(a) is the 

orientational distribution of contacts defmed such that A(a)dOJ is the probable 

number of contacts in an element of solid angle dOJ centred at a. For an isotropic 

distribution of contacts, 
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C 
A(a)=-

4JZ" 
(5.6) 

where C is average number of contacts per particle (co-ordination number). 

Substituting Equation 5.3 and 5.6 into Equation 5.5 gives: 

(J .. = - NsCR ffF.a. dOl 
Ij 4JZ" I ) 

(5.7) 

For isotropic conditions, the mean field approach predicts no tangential 

displacements at particle contacts, and no tangential contact forces. In this case, 

substituting Equation 5.4 into Equation 5.7 gives: 

(5.8) 

The mean stress p is then given by: 

(5.9) 

The normal contact force in the PFC3D aggregate is related to the contact overlap 8 

and the normal contact stiffness kn by the equation: 

P=k8 n 
(5.10) 

and the mean field approach gives the normal displacement &2 as a function of 

volumetric strain as: 

(5.11) 

Substituting Equation 5.10 and 5.11 into Equation 5.9, and integrating over all 

contacts gives: 
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(5.12) 

so that the bulk modulus K is related to normal contact stiffuess according to the 

equation: 

(5.13) 

The number of spheres per unit volume Ns is related to the percentage volume of air 

voids in the sample (V v) and the radius of a sphere R by the equation: 

N = 3(100- Vv ) 

s 400JrR 3 (5.14) 

so that for an isotropic sample, the bulk modulus is related to the percentage volume 

of air voids in the sample and particle radius according to the following equation: 

K = (100 - Vv)c k 
600JrR n 

(5.15) 

The predicted relationship using Equation 5.15 is also shown in Figure 5.11 (solid 

line) using the following parameters Vv = 36%, C = 6, R = 0.9mm. It can be seen 

that agreement is generally very good with the predicted bulk modulus using 

Equation 5.15 (for a given normal contact stiffuess) being slightly greater than the 

predicted bulk modulus using PFC3D [28] . 

It should be noted that Young's modulus and the shear modulus could be calculated 

from the bulk modulus and Poisson's ratio using the standard elastic equations 

(Equation 5.2 and 5.16). 

G _ 3K(I-2v) 
- 2(1 +v) 

(5.16) 
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It can be seen from Equations 5.2 and 5.16 that, since Young's modulus and the 

shear modulus depend on both the bulk modulus and Poisson's ratio, they will be 

functions of the ratio of the shear to normal contact stiffness as well as their absolute 

values. 

5.6 Modelling Dilation of an Asphalt Mixture 

The mechanism of dilation in asphalt is not well understood. Deshpande and Cebon 

[ 41] stated that an important factor in modelling the deformation behaviour of a 

particulate granular material such as asphalt is the phenomenon of "dilatancy", 

which causes an increase of volumetric strain with distortional strain. This 

phenomenon was first revealed by Reynold [91] where he stated that for a granular 

material in a state of maximum density, any contraction in one direction is 

accompanied by equal extensions in mutual perpendicular directions. It was later 

adopted in Rowe's "stresss-dilatancy" theory [96]. Previous researchers [40, 65] 

indicated that the dilation gradient of an asphalt material is dependent on the volume 

fraction of aggregate in the mixture. Deshpande [40] and Khanzada [65] performed 

experimental work on single sized sand asphalt with 64% volume fraction of 

aggregate under uniaxial and triaxial constant stress compression creep tests. They 

concluded that the single sized sand asphalt dilates significantly under loading. 

As noted above, in previous simulations the normal contact stiffnesses in tension 

and compression are assumed to be equal. This results in high overlapping 

magnitude at every contact in compression because the identical normal contact 

stiffnesses (in compression and tension) are forcing the particles to overlap in 

compression rather than roll past each other giving no volumetric dilation of the 

sample. This can be seen in Figure 5.10 where the Poisson's ratio values are less 

than 0.5. 

Cheung [22] and Harvey [49] suggested that a thin film bitumen exhibits a different 

"effective" stiffness in tension and compression as a function of the geometry of the 

thin film. For mechanical modelling of the asphalt mixture, there are two sets of 

normal contact stiffnesses to be considered. The first set are the conlpression contact 
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stiffnesses, which are defined as the stiffnesses at contacts where pairs of particles 

are subjected to compressive forces. The second set are the tension contact 

stiffnesses, which are defined as the stiffnesses at contacts where pairs of particles 

are subjected to tensile forces. In the default PFC3D modelling code, these two 

contact stiffnesses are assumed to be the same. Therefore, for micromechanical 

modelling of the asphalt mixture, the normal contact stiffnesses are given by: 

where, 

Fe = [Ke]x Ue (compression) 

Fe = Magnitude of contact force in compression 

F T = Magnitude of contact force in tension 

Uc = Magnitude of overlapping at contact point 

UT = Distance of particle separation at contact point 

[KcJ = Compressive contact stiffness 

[KT] = Tensile contact stiffness 

(5.17) 

The default PFC3D code was modified to enable the definition of different sets of 

contact stiffnesses in tension and compression. The in-built algorithms have been 

designed to recognise contacts in compression and tension, and then use the force­

displacement law to calculate the particle displacement. For compressive contact, 

the particle overlapping magnitude is calculated based compressive contact stiffness. 

Whilst for tensile contact, the separation distance between two particles is calculated 

based on tensile contact stiffness. This modified code is then introduced to simulate 

the sample with elastic contacts to investigate the effect on bulk properties. 

5.7 Effect of non-equal tensile and compressive normal contact 
stiffnesses 

The previous sections investigated the effect of normal and shear contact stiffness on 

bulk properties where the tensile and compressive normal contact stiffuesses were 
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taken to be equal. The objective of this section is to investigate the effect of non­

equal tensile and compressive normal contact stiffnesses on bulk material properties. 

5.7.1 Effect of the ratio of compressive to tensile contact 
stiffness (Kef Kr) where Ks = Ke 

This sub-section investigates the effect of the ratio of compressive to tensile contact 

stiffnesses on dilation where the shear contact stiffness is taken to be equal to the 

compressive contact stiffness. A dense random packing sample of 1000 particles 

was generated according to previously developed sample preparation procedures. A 

very high contact bond strength is applied to all contacts to prevent bond breakage. 

The compressive and shear contact stiffnesses are taken to be equal to 0.6 MNlm 

(chosen arbitrarily) and the tensile contact stiffnesses have been reduced so that the 

ratio of compressive to tensile contact stiffness ranges from 1 to 200. Five elastic 

simulations were perfonned. From the observations of contact force distribution in 

PFC3D, most of the compressive contact forces were found to be vertical due to the 

applied compressive loading, whereas most of the tensile contact forces were found 

to be horizontal. 

Figure 5.12 shows the dilation gradient plotted as a function of the ratio of 

compressive to tensile contact stiffness for the case where the shear contact stiffuess 

has been taken to be equal to the compressive contact stiffuess (diamond symbols). 

The dilation gradient (s) is defined as the ratio of the volumetric strain (ll) divided 

by the distortional strain (E) and has been used to quantify dilation. The volumetric 

strain (H) and distortional strain (E) are defined for a cylindrical specimen as: 

H = 2811 + 8 33 

E = 8
33 

- H = 2 (833 - 8 Il ) 

3 3 

(5.18) 

where 8 is defined as the radial strain and 8 33 is defined as the axial strain. It 
II 

should be noted that, using this sign convention for a compression test, the radial 

strain is tensile and positive and hence the distortional strain is negative since the 
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axial strain is compressive and negative. In all the figures presented in this thesis, 

the magnitude of the distortional strain has been plotted. 

A negative value of dilation gradient implies that the material is reducing in volume 

(contracting) whereas a positive dilation gradient means that the material is 

increasing in volume (dilating). It can be seen from Figure 5.12 that the dilation 

gradient increases as the ratio of compressive (and shear) to tensile contact stiffness 

is increased. It can also be seen from this figure that the general trend is for the 

dilation gradient to increase tending towards an approximately constant value of 0.7 

at high stiffness ratios indicating a significant amount of dilation which was not 

found when the tensile and compressive contact stiffnesses were taken to be equal. 

This is because the relatively high compressive contact stiffnesses (compared to the 

tensile contact stiffness) are forcing the particles to roll past each other rather than 

simply overlap in compression resulting in dilation. Skinner [104] stated that rolling 

must be accompanied by a volume change and, if the aggregate is in its most dense 

arrangement, this volume change would be a dilation. 

When the ratio of compressive (and shear) to tensile contact stiffness is reduced to 

one, a dilation gradient of -1.0 is observed indicating contraction in the sample. In a 

compressive test, the average contact forces in compression are much higher than 

the average contact forces in shear and tension. By defining an identical value for all 

contact stiffnesses in compression, shear and tension on a bonded material, the 

overlapping magnitude (displacement in compression) is much larger compared to 

the particle displacement in shear and tension. Hence, the particles tend to overlap 

instead of moving in shear and tension directions. 

5.7.2 Effect of the ratio of compressive to shear and tensile 
contact stiffnesses, (Kcl Kr) where Ks= Kr 

This sub-section investigates the effect of the ratio of compressive to tensile contact 

stiffnesses on dilation where the shear contact stiffness is taken to be equal to the 

tensile contact stiffness. For all simulations in this section, the value of compressive 
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contact stiffness is taken to be 0.6 MNlm and the ratio of compressive to shear (and 

tensile) contact stiffness was varied between 1 and 200. 

Figure 5.12 (rectangular symbols) shows the dilation gradients from these 

simulations plotted against the ratio of compressive to the shear (and tensile) contact 

stiffness. It can be seen from this figure that, above the stiffuess ratio of 

approximately 10, the values of dilation gradients are positive indicating dilation. 

The dilation gradient increases as the ratio of compressive to shear (and tensile) 

contact stiffness increased, tending towards a constant value of approximately 0.8. It 

should be noted that the general shape of the curve is the same as shown previously 

(diamond symbols) although, for the same stiffuess ratio, the value of dilation 

gradient is greater. This is because for a given ratio of compressive to tensile contact 

stiffuess, the shear contact stiffuess is lower than in the previous case resulting in 

higher levels of shear deformation giving greater dilation. 

5.7.3 Effect of the ratio of compressive to shear contact stiffness 
(Kel Ks) where Kr= Ke 

This sub-section investigates the effect of the ratio of compressive to shear contact 

stiffuess on dilation where the tensile contact stiffuesses are taken to be equal to the 

compressive contact stiffuesses. For all simulations in this section, the contact 

stiffnesses in compression and tension were taken to be equal to 0.6 MNlm and the 

ratio of compressive ( and tensile) to shear contact stiffness was varied between 1 

and 200. 

Figure 5 .12 (triangular symbols) shows the dilation gradients plotted against the 

ratio of compressive ( and tensile) to shear contact stiffness. It can be seen from this 

graph that the dilation gradient tends to increase as the ratio of compressive (and 

tensile) to shear contact stiffness is increased. However, it can also be seen from this 

figure that above a stiffness ratio of approximately 20, the dilation gradient is 

approximately constant at a value of -0.20 indicating that the material is contracting. 
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It can also seen from Figure 5.12 (triangular symbols) that the dilation gradient 

increases from -1.0 to -0.4 when the ratio of compressive (and tensile) to shear 

contact stiffness increases from 0 to 10. This indicates that the material is less 

compressible when the ratio of compressive (and tensile) to shear contact stiffuess is 

higher. However, increasing this ratio can only reduce the compressibility of the 

material but not the dilation level. No experimental verification is available to justify 

this effect hence further experimental work is needed. 

5.8 Conclusions 

The following conclusions can be drawn from this chapter: 

• Elastic contact properties have been used to investigate the effect of sample 

size (number of particles) and the effect of the values of shear and normal 

contact stiffnesses on bulk material properties (Young's modulus, bulk 

modulus and Poisson's ratio). 

• A sample containing at least 4,500 particles is required for Young's modulus 

of Poisson's ratio to be within 2% of the values calculated using a much 

larger number of particles. 

• 

• 

• 

• 

Poisson's ratio was found to be dependent on only the ratio of shear contact 

stiffness to the normal contact stiffuess. 

The bulk modulus was found to be linearly dependent on the normal contact 

stiffness and independent of the shear contact stiffuess. A mean field 

approach was used to develop a theoretical model that predicted this 

behaviour. 

The sample was found to dilate under non-equal normal compressive and 

tensile contact stiffuesses. 

The level of dilation was found to be dominated by the ratio of normal 

compressive to normal tensile contact stiffuesses. 
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• The dilation gradient was found to increase when the ratio of nonnal 

compressive to nonnal tensile contact stiffnesses increases. 
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Tables: 

Table 5.1 Micro-properties of material used for elastic simulation 

Symbol Description Magnitude 

R Particle radius 0.885 mm 

p Particle density 2630 kg/mj 

Jl Particle friction coefficient 0 

o"c Particle normal strength 200MPa 

'tc Particle shear strength 200MPa 

knw Platen normal stiffness 200MPa 

ksw Platen shear stiffness 0 

Jlw Platen friction coefficient 0 

Table 5.2: Dimensions of the samples with different numbers ofpartic1es. 

Number of particles Sample height (mm) Sample width (mm) 

300 19.6 9.8 

1,000 29.2 14.6 

3,000 42.0 21.0 

4,500 48.0 24.0 

6,000 52.0 26.0 

12,000 66.0 33.0 
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Figures: 
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6 Viscoelastic Simulations of 
~ .. Uniaxial Tests 

6.1 Introduction 

It was noted earlier that the behaviour of the idealised asphalt mixture is likely to be 

dominated by the bitumen and complex aggregate interlock effects are minimised in 

this type of mixture. It is well documented that asphaltic materials are both loading 

rate and temperature dependent exhibiting elastic, delayed elastic and viscous 

behaviour [39]. The simplest option to introduce these effects is to use a Burger's 

model to represent the shear and normal contact stiffnesses. 

This chapter presents viscoelastic simulations used to model the behaviour of an 

idealised asphalt mixture under uniaixal loading conditions. The predicted 

deformation and dilation behaviour is compared with previously obtained 

experimental data on the same material [40, 65]. 

6.2 Burger's Contact Model 

As noted earlier, a viscoelastic model is required to capture the time dependent 

behaviour of bitumen. The most appropriate option is to use a Burger's model to 

represent the contact stiffnesses. A Burger's model (for the shear contact stiffness) is 

shown in Figure 6.1. It can be seen that this model comprises a spring (Kt) and 

dashpot (ct) in parallel (delayed elastic component) connected in series to a spring 

(K; , elastic component) and a dashpot (c~, viscous component). It can readily be 

shown that the time dependent shear stiffuess of the Burger's model is given by: 

101 



Chapter 6: Viscoelastic simulations of Uniaxial Tests 

k = [_1 +_t +_1 (l_e-t/rs)~-l 
S K S CS K S 

0001 
(6.1) 

where t is the loading time and r S 
= C: / K: is the relaxation time. It can be seen 

from Equation 6.1 that the contact stiffness will reduce as a function of loading time. 

In reality, the time dependent bond properties will be significantly more complicated. 

However, this simple approach is a necessary step before introducing additional 

complexities that require purpose written contact stiffness algorithms (user-defined 

subroutine in PFC3D). 

The Burger's contact model is significantly more complex than its elastic 

counterpart requiring much more computation time. To increase the computation 

speed, a sample 7.3mm in diameter and 29.2mm in height, comprising 1,000 

particles was used in the simulation. It should be noted that the sample was prepared 

using numerical sample preparation procedure described in Chapter 4. The model 

parameters are given in Table 6.1 and were chosen arbitrarily so that the shape of the 

predicted axial strain curve was similar to measured data for a similar material. The 

normal contact parameters were chosen to be a factor of 10 larger than the shear 

contact parameters so that the ratio of the initial (elastic) radial strain to the initial 

(elastic) axial strain (i.e. Poisson's ratio) would be similar to the results for the 

elastic case presented in Chapter 5. A very high contact bond strength is applied to 

all contacts to prevent the bond breakage. It should be noted that a Burger's contact 

model will automatically be created at any new contact formed during the simulation. 

A constant stress (creep) of 400kPa was applied to the loading platen and 

maintained by the PFC3D servo control mechanism (described in Section 3.3.6) over 

a period of time. 

Figure 6.2 shows the predicted axial strain plotted as a function of loading time. It 

can be seen from this figure that, as expected for this type of contact model, the 

strain response is a function of loading time comprising elastic, delayed elastic and 

viscous components. The Burger's contact parameters (Table 6.l) can be readily 

adjusted to best fit the experimental data. It should be noted that for simplicity, the 
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bulk properties shown are based on sample size comprising of 1.000 particles. 

However, the results based on sample sizes comprising of 1,000 and 6,000 particles 

are shown in Section 6.4.9 where the comparison with experimental results is 

reported. 

The particle contact forces in compression, tension and shear are updated regularly 

during the simulation. Figure 6.3 shows an example of contact force distribution in a 

1,000 particles sample. The red lines represent compressive forces and the black 

lines represent tensile forces. The thickness of the lines connecting the spheres 

corresponds to the magnitude of contact force generated. It can be seen from this 

figure that the compressive forces (distributed in vertical direction) are formed due 

to the axial compressive loading, whilst the tensile forces (distributed in lateral 

direction) are formed at contacts in tension which resisted by a very high bond 

strength. 

6.3 Computation Time Optimisation 

It was noted earlier that the DEM simulation using viscoelastic contacts is a time 

consuming process. This section describes the methods of reducing the computation 

time in DEM simulation. 

It was thought that the computation time is likely to be dominated by the magnitude 

of timestep in the simulation. To reduce the computation time, the magnitude of the 

timestep was increased artificially by 8% in one second of loading time during the 

simulation. Figure 6.4 shows a plot of the incremental timestep magnitude during 

the simulation. It can be seen from this figure that the magnitude of timestep 

increases by the factor of two (from 3xl0-7 to 6xl0-7
) in a 12-second simulation. 

However, this approach was not able to significantly reduce the computation and an 

alternative approach was required. 

It was noted in Chapter 3 that the magnitude of timestep in PFC3D is determined by 

t . = J M/K [3]. This means that using a higher value of particle mass (M) will 
cnf 

result in a larger magnitude of timestep in the simulation, hence reducing the 
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computation time. Six viscoelastic simulations were performed on an identical 

sample as used in Section 6.1 with the exception that each sample was generated 

with different particle density ranging from 2.63xl03 to 2.63xl08 kg/m3. The effects 

of particle density on bulk properties of the sample were investigated. 

Figure 6.5 shows the plot of axial strain as a function of time for simulations on the 

samples with different particle densities. It can be seen from this figure that after an 

initial period the simulations are all very similar in shape. The initial differences 

caused by different loading times to reach the target stress cased by the large inertia 

associated with the high mass particles which results in a slower acceleration of the 

loading platen. 

The variation of radial and axial strain for simulations on the samples with different 

particle densities is shown in Figure 6.6. It can be seen from this figure that there 

was no difference in response between the samples. This can be explained by the 

fact that the magnitude of the particle density should not have any effect on the 

deformation mechanism in a sample under constant stress creep loading. The 

unbalanced forces for all simulations are shown in Figure 6.7. It was found that the 

unbalanced forces are higher in the simulation with a higher particle density. 

However, the unbalanced force is still reasonably low (i.e. less than 1 x 10-4 N) and 

can be considered negligible compared with the magnitude of contact forces 

between particles. 

Figure 6.8 shows the computation time required for a 20-second creep simulation on 

the samples with particle density ranging from 2.63xl03 to 2.63xl07 
kg/m

3
. It was 

found that the computation time for a simulation on a sample with a particle density 

of 2.63xl07 kg/m3 is reduced by the factor of 300 compared with a simulation on a 

sample with a particle density of 2.63x 103 kg/m3. Consequently, in order to reduce 

the computation time, the sample generated with a particle density of2.63xl07 kg/m
3 

will be used in all simulations in this thesis. It should be noted that the gravity was 

set to be zero in all simulations. 
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6.4 Effect of Bond Breakage 

It was noted above by previous researchers that asphalt dilates under uniaxial and 

triaxial loading. The previous elastic simulations have shown that the dilation of an 

asphalt mixture is greatly influenced by the ratio of compressive to tensile contact 

stiffness. However, the effect of bond breakage on dilation is unknown. This section 

performs a uniaxial viscolastic simulation to investigate the effect of bond breakage 

on dilation. 

A series of simulations were performed on an identical sample as that used in 

Section 6.2, with the exception that a fraction of contact bonds (range from 5 to 25%) 

were removed for each sample prior to loading. A constant stress of 400kPa was 

applied. Figure 6.9 shows a plot of radial versus axial strains for these simulations. It 

can be seen from this figure that the slopes of radial to axial strains increase from 0.3 

to 1.0 as the percentages of bonds removed increase from 5% to 25%, which 

indicates that the volumetric dilation is greater in the simulations with higher 

percentage of bonds removed. This is because a lower number of bonds in the 

sample cause lower constraint in the particle system, hence giving greater 

volumetric dilation. Consequently, it was thought that dilation could be modelled by 

breaking bonds progressively (simulate micro-cracking in a real sample) during the 

simulation. 

It was noted earlier that the contact bond breaks when the tensile force exceeds the 

bond strength. The tensile contact force distribution in the simulation above (fully 

bonded) is plotted in Figure 6.10. It can be seen from this figure that the tensile 

contact forces within the particles are distributed between O.IN and 1.9N with an 

average value of 0.53N. A random contact bond strength distribution with a mean of 

1.45N and a standard deviation of 0.03 (as shown in Figure 6.11) was chosen 

arbitrarily for a simulation containing 1,500 particles. The sample was again loaded 

with a constant stress of 400kPa. 

The resulting axial strain plotted as a function of time is shown in Figure 6.12. It can 

be seen from this figure that the axial strain curve looks similar to the curve where 

no bonds have been removed until an axial strain of approximately 50/0 where a 
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dramatic increment in strain was observed indicating failure of the sample. The 

percentage of bonds broken with respect to axial strain is plotted in Figure 6.13. It 

was found that approximately 6% of contact bonds were broken progressively over 

the first 5% axial strain and thereafter failure occurred. Figures 6.14 and 6.15 show 

the locations of broken bonds in the sample at 5% axial strain and at failure. It can 

be observed from Figure 6.15 that at failure, most of the broken bonds occurred at 

the top region of the sample which indicates localisation. The variation of radial and 

axial strain is plotted in Figure 6.16. It was found that the ratio of radial to axial 

strain remained at 0.4 at up to 5% axial strain, which indicates no dilation. This ratio 

increased dramatically at failure, which does not indicate dilation. Consequently, it 

was concluded that this approach alone can not be used to simulate dilation. 

6.5 Simulation with Default Burger's Contact Model 

Results from Chapter 5 showed that dilation in an elastic sample is dominated by the 

ratio of the contact stiffness in compression to the tension contact stiffness. This 

section investigates the effect of ratio of compressive to tensile nonnal contact 

stiffness using the Burger's contact model applied to all contacts in compression, 

shear and tension. 

A sample containing 1,000 particles was generated according to previously 

developed sample preparation procedures. A high contact bond strength was applied 

to all contacts to prevent bond breakage. Five viscoelastic simulations were 

performed by applying a constant vertical compressive stress of 400kPa to the 

sample. In all simulations, the contact stiffnesses in compression and shear were 

taken to be equal (value given in Table 6.2) whilst the tensile contact stiffnesses 

(elastic, viscoelastic, viscoplastic components) have been reduced so that the ratio of 

compressive (and shear) to tensile contact stiffness (Ke/ Kr) ranges from 1 to 100. It 

should be noted that the compressive and tensile contact stiffnesses are time 

dependent and reduce simultaneously with time, hence the ratio of (Ke / Kr) is 

always constant throughout the simulation. 
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The graph of axial strain as a function of time is shown in Figure 6.17. It can be seen 

from this figure that, as expected for this type of contact model, the strain response 

is a function of loading time comprising elastic, delayed elastic and viscous 

components. A higher level of axial strain is found in the simulations with higher 

initial ratios of compressive to tensile contact stiffuess (Ke/ Kr) because of the lower 

absolute value of the tensile contact stiffuesses. 

Figure 6.18 shows a plot of volumetric strain versus distortional strain for 

simulations with different ratios of compressive (and shear) to tensile contact 

stiffuesses (Ke / Kr). It can be seen from this figure that the general trend is for a 

higher level of dilation from simulations with higher ratios of (Ke/ Kr). For example, 

the dilation gradient is 0.3 in the simulation with ratio of (Ke / Kr) equal to 10, 

whilst the dilation gradient is 1.0 in the simulation with ratio of (Ke / Kr) equal to 

100. This is because in the simulation with higher ratio of (Ke / Kr), the particles are 

allowed to roll past each other hence giving in higher level of dilation (as in the 

elastic case discussed in the previous chapter). The dilation gradient is negative 

(contracting) in the simulation where the tensile and compressive contact stiffnesses 

are taken to be equal (Ke / Kr = 1) because the particles are forced to overlap instead 

of being allowed to roll past each other. 

Consequently, the Burger's model featured in PFC3D is able to model dilation in an 

asphalt mixture by introducing a higher ratio of compressive to tensile contact 

stiffuess. However, in reality, the compressive stiffuess does not reduce as a function 

of time under compression. As noted earlier, a viscoelastic model (Burger's model) 

is required to capture the time dependent behaviour of bitumen. For this type of 

model, the contact stiffuess will reduce as a function of loading time. Whilst this is a 

reasonable approximation for the shear and normal tensile contact stiffnesses where 

particles are essentially moving away from each other, the normal compressive 

contact stiffuess should increase as particles move towards each other tending 

towards the contact stiffuess resulting from direct contact between two particles. As 

an approximation to this, elastic behaviour has been assumed for the compressive 

normal contact stiffuess whereas viscoelastic behaviour has been assumed for the 

tensile normal contact stiffuess and the shear contact stiffuess. The default Burger's 
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contact model in PFC3D was modified uSIng C++ language based on these 

assumptions to simulate the correct contact mechanism in the asphalt mixture. 

6.6 Simulation with Modified Burger's Contact Model 

This section performs a uniaxial simulation based on a modified Burger's contact 

model as mentioned above. A sample containing 1,000 particles was generated 

according to previously developed sample preparation procedures. A very high 

contact bond strength is applied to all contacts to prevent the bond breakage. The 

values of contact stiffnesses used in the simulations are given in Table 6.3. A 

uniaxial creep test simulation is performed by applying a constant vertical 

compressive stress of 400kPa to the sample. The axial strain plotted against loading 

time is shown in Figure 6.19. It can be seen from this figure that the axial strain 

response exhibits the deformation behaviour of a Burger's model. 

Figure 6.20 shows a plot of the simulated volumetric strain versus distortional strain. 

It can be seen from this figure that early in the test at distortional strain levels less 

than approximately 0.3% the volumetric strain is negative indicating compaction of 

the material. The volumetric strain then increases approximately in proportion to the 

distortional strain as the material dilates, ie: 

if = slBI (6.2) 

where (if) is the volumetric strain rate, (B) is the distortional strain rate. The 

parameter s can be interpreted as the steady-state dilation gradient which can be 

directly compared to the dilation gradient introduced earlier in the elastic 

simulations. 

Since an elastic compressive contact stiffness and a viscoelastic shear and tensile 

contact stiffness have been used, the ratio of compressive to tensile contact stiffness 

will increase during the simulation as described by: 
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(6.3) 

where Ke is the compressive contact stiffness, KT is the tensile contact stiffness and 

Ee is the elastic stiffness for contacts under compression. 

Since the ratio of compressive to tensile contact stiffness will increase during the 

simulation, by analogy to the results from the elastic simulation, it is likely that the 

dilation gradient will also change during the simulation. This can be seen from a 

careful inspection of the data shown in Figure 6.20 where the slope is not constant 

and is shown in Figure 6.21 where the dilation gradient is plotted as a function of the 

ratio of compressive to tensile normal contact stiffness calculated from Equation 6.3. 

It can clearly be seen from this figure that, as with the elastic case, the dilation 

gradient tends to increase as the ratio of compressive to tensile normal contact 

stiffness increases during the simulation. 

In conclusion, it is possible to model the dilation behaviour of asphalt by assuming 

elastic behaviour for contacts under compression and viscoelastic behaviour for 

contacts under shear and tension. 

6.7 Effect of Sample Density on Dilation 

The previous section showed that the dilation gradient is a function of ratio of 

compressive to tensile contact stiffness. However, it is well understood in soil 

mechanics that soil dilation will reach a critical state, at which shear deformation (or 

distortional deformation) can continue in the absence of a volume change [93]. 

Bolton [12] stated that if the soil were denser than critical then it would tend to 

dilate when disturbed, so that the void ratio at a dense state can increase to a 

preordained void ratio at a critical state, in which the normal effective stress is fixed. 

This section investigates the effect of sample density on dilation. 
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A uniaxial creep simulation was performed on a sample containing 1,000 particles. 

A constant stress loading of 400kPa was applied over a long period of time of 

approximately 3000 seconds. It was expected that the dilation gradient will increase 

in proportion to the ratio of compressive to tensile contact stiffness as a function of 

time during the simulation. Figure 6.22 shows a plot of volumetric strain versus 

distortional strain. It can be seen from this figure that at a distortional strain of 

approximately 8% the dilation gradient is at a maximum of 0.8, thereafter it reduces. 

The dilation gradient then decreases gradually as the simulation continues to a larger 

distortional strain. 

The change of dilation gradient corresponding to sample density in the simulation 

was investigated and plotted in Figure 6.23. It can be seen from this figure that 

during the simulation, the dilation gradient increases to a maximum value of 

approximately 0.8, whilst the sample density reduces from 0.64 to 0.62. This agrees 

with Bolton [12] where he stated that the initially dense soil sample dilates due to 

the reduction in density. Thereafter, the dilation gradient reduces to 0.6 

simultaneously with the reduction in sample density from 0.62 to 0.58. This is 

because the packing characteristic of the sample has changed from dense to a looser 

packing state, giving a lower level of dilation. 

Consequently, it can be concluded that the dilation gradient reaches a maximum 

value of 0.8 at approximately 8% distortional strain. 

6.8 Effect of Contact Stiffnesses on Dilation 

It was noted in Section 6.6 that the dilation gradient of an asphalt mixture should 

increase with the ratio of compressive to tensile contact stiffness as a function of 

time. However, the previous section has shown that the effect of sample "loosening" 

(reduction in sample density) limits the maximum amount of dilation at very high 

ratios of compressive to tensile contact stiffness. 

This section develops a method to investigate the effect of contact stiffness ratio 

(compression, shear and tension) on dilation. A series of uniaxial simulations were 
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perfonned to investigate the effect of nonnal contact stiffness ratio on dilation. The 

sample preparation procedure was the same as that for the uniaxial simulation in the 

previous section. It should be noted that all simulations were carried on to a 

maximum distortional level of 4% to ensure that the simulated samples were in a 

dense packing state. The contact stiffnesses in compression and shear were taken to 

be equal to the value in Table 6.4, whilst an artificial factor [F rJ has been introduced 

to vary the initial tensile contact stiffnesses (elastic, viscoelastic, viscoplastic 

components) so that the initial ratio of compressive (and shear) to tensile contact 

stiffnesses range from 1 to 100. The main reason for introducing the artificial factor 

[F rJ into the tensile contact stiffness is to simulate the dilation at a very high ratio of 

compressive to tensile contact stiffness. For instance, introducing a factor [F rJ of 

11100 results in an initial ratio of compressive (and shear) to tensile contact stiffness 

of 100 (see Table 6.4). 

Figure 6.24 shows the relationship between volumetric strain and distortional strain 

for simulations with different factor [FrJ under a constant compressive stress of 

400kPa. It was found that the dilation gradient is higher in the simulation with a 

lower factor [FrJ. This is because in simulation with a lower factor [FrJ, the initial 

ratio of compressive to tensile contact stiffuess is higher, therefore the particles are 

not allowed to overlap but forced to roll past each other and hence giving greater 

dilation. However, it is necessary to quantify the dilation gradient with the ratio of 

compressive to tensile normal contact stiffuess. 

The dilation gradients at specific distortional strains were obtained by careful 

inspection of the data shown in Figure 6.24. The ratio of (Ke / Kr) is then calculated 

based on Equation 6.3 by substituting the values of the parameters in Table 6.4 and 

the loading times at specific distortional strains. The relationship between the 

dilation gradient and the ratio of compressive to tensile normal contact stiffness (Ke/ 

Kr) is plotted in Figure 6.25. It can clearly be seen from this figure that, the dilation 

gradient tends to increase approximately in proportion to the ratio of compressive to 

tensile normal contact stiffness. This behaviour is expected since during the 

simulation, the tensile contact stiffness reduces as a function of time whilst the 

compressive contact stiffness remains constant. 
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6.9 Effect of Deviator Stress 

Previous researchers [40, 65] have found that the dilation gradient (ratio of 

volumetric strain to distortional strain) of an asphalt mixture under uniaxial and 

triaxial loading is independent of strain rate, stress or temperature. To investigate the 

effect of deviator stress on dilation, five uniaxial simulations were performed at 

stress levels ranging from 400kPa to 1000kPa on an identical sample containing 

1,000 particles. 

The axial strain responses as a function of loading time are shown in Figure 6.26. It 

can he seen from this figure that, as expected, the axial strain is larger in the 

simulation with the higher deviator stress. Figure 6.27 shows a plot of the 

corresponding volumetric strains versus distortional strains. The dilation gradients at 

distortional strains of 0.015 to 0.02 were measured and found to be the same in all 

simulations independent of deviator stress level. This indicates that the dilation 

gradient of an asphalt mixture in a uniaxial test is independent of the deviator stress. 

It can also he seen from Figure 6.27 that in simulations with higher deviator stress 

levels, the initial compaction phase at the beginning of the test is greater. However, 

no experimental data is available to justify the magnitude of the strain response 

under different deviator stresses. 

6.10 Effect of Bitumen Film Geometry Factor 

Results from previous studies [22, 49] have shown that the stiffness of a thin film of 

bitumen depends on the geometry (aspect ratio) of the film. For example, a thicker 

film was found to he less stiff compared to a thinner film. This section investigates 

the importance of this "geometric factor" on the predicted behaviour of sand asphalt 

mixtures. 

Assuming that a thin film between two sand particles can be characterised as a disc 

of thickness 2T and diameter d, the aspect ratio is given by d / T. Assuming that 

bitumen is incompressible, the volume of bitumen is constant giving: 
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d 2 x 2T = constant 

Therefore, the aspect ratio is given by: 
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(6.4) 

(6.5) 

Therefore, provided the distance between particles is known during the simulation, 

the aspect ratio of the bitumen films between particles can be updated using the 

following equation: 

l T ]~ A -A 
t+!J.t - t T + t1.U /2 (6.6) 

where At+& is the aspect ratio at time t + ~t , At is the aspect ratio at time t and f:,.U 

is the change in normal displacement. It should be noted that an initial aspect ratio of 

approximately 10 was used in Equation (6.6) which was determined using a bitumen 

film thickness calculated using the procedure described in Shell Bitumen Handbook 

[90]. During the simulation, Equation (6.6) is used to update the "effective" aspect 

ratio at each contact. The "effective" thin film stiffening factor (TF) as a function of 

aspect ratio is then determined from Figure 6.28 and used as a factor in reducing the 

tensile contact stiffness parameters ( Ko, Coo, KJ and CJ) in Burger's contact model. 

Therefore, the contact stiffness in tension reduces as the aspect ratio decreases, i.e. 

as particles move further apart. 

Two viscoelastic uniaxial simulations (one simulation incorporating this factor) were 

performed to investigate the effect of the geometry factor on the deformation of the 

sample. Figure 6.29 shows the predicted volumetric and distortional strain of the 

sample under a constant stress of 400kPa. It can be seen from this figure that for a 

given distortional strain, the volumetric strain in the simulation including the 

geometry factor is higher than in the simulation excluding the geometry factor. This 
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is because the aspect ratio of bitumen films In tension decreases during the 

simulation causing a reduction in stiffness reSUlting in higher levels of volumetric 

strain. It should be noted that the geometric factor is not included in previous 

simulations and will be included in all further simulations presented in this thesis. 

6.11 Comparison with Experimental Results 

The objective of this section is to investigate the deformation and dilation of sand 

asphalt under simulated uniaxial tests. Two samples containing 1,000 and 6,000 

particles were used. A high contact bond strength was applied to all contacts to 

prevent bond breakage. The model parameters are detailed in Table 6.5 and were 

calibrated to give sensible levels of axial strain and a similar shape creep curve 

compared to previously gathered experimental data [65]. Previous researchers [24, 

69] have shown that the stiffnesses of pure bitumen in tension and in shear are 

expected to be related by the factor of 3 in the linear region of behaviour (refer to 

section 2.5). Hence, the value of shear contact stiffness in Table 6.5 is taken to be 

one third of the value of normal tensile contact stiffness. 

Figure 6.30 shows the predicted axial strain plotted as a function of loading time for 

an axial stress of 400kPa. The measured curve is also shown in Figure 6.30 from 

where it can be seen that the predicted and measured curves are similar in magnitude 

and shape demonstrating the applicability of this approach. 

Previous research has shown that at least 4,500 particles are required for the bulk 

elastic material properties ( eg Young' s Modulus) calculated from a DEM simulation 

to be within 2% of the values calculated using a much larger number of particles 

(see Collop et al. [27] for further details). To investigate whether this effect is 

similar in a viscoelastic simulation, results from a sample containing 6,000 particles 

were used for comparison with those from the sample containing 1,000 particles. 

Also shown in Figure 6.30 is the plot of predicted axial strain as a function of time 

for the sample containing 6,000 particles. It can be seen from this figure that at a 

particular loading time, the axial strain calculated from the sample containing 1,000 

particles is higher than the axial strain calculated from the sample containing 6,000 
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particles. For example, at a loading time of 100 seconds the sample containing 1,000 

particles results in an over-prediction of approximately 12% compared to sample 

containing 6,000 particles which is consistent with previous results from the elastic 

simulations [27]. It should be noted that for practical reasons (computation time), 

results presented in this thesis are based on samples containing 1,000 particles which 

will result in an over-prediction of the axial strain. 

Figure 6.31 shows a plot of the simulated volumetric strain versus distortional strain. 

It can be seen from this figure that early in the test at distortional strain levels less 

than approximately 0.3% the volumetric strain is negative indicating compaction of 

the material. The volumetric strain then increases approximately in proportion to the 

distortional strain as the material dilates. For the case shown in Figure 6.31 the 

dilation gradient is approximately 0.8 (ie s = 0.8). Experimental data for the same 

idealised mixture tested at 20°C taken from Deshpande [40] is shown in Figure 6.31 

for comparison. It can be seen by comparing the measured with the predicted data 

that, although the general shapes of the curves are similar, the measured dilation 

gradient is slightly higher and the simulation tends to over-predict the initial 

compaction phase at the beginning of the test. The under-prediction of the dilation 

gradient is likely to be because the particles in the numerical sample are perfectly 

spherical whilst in reality the sand particles are more angular, resulting in greater 

dilation. From the data shown in Figure 6.21 it can be concluded that the maximum 

dilation gradient for perfectly spherical particles under uniaxial stress conditions is 

approximately 0.8. To increase the dilation gradient further, more complex particle 

shapes are required. Also shown in Figure 6.31 is the result from a simulation 

undertaken using a sample containing 6,000 particles. It can be seen from this figure 

that the result from the simulation undertaken using 1,000 particles tends to slightly 

over-predict the volumetric strain at a given level of distortional strain although it 

should be noted that the effect is smaller than for the axial strain (see Figure 6.30). 
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6.12 Conclusions 

The following conclusions can be drawn from this chapter. 

• DEM has been used to simulate the behaviour of idealised asphalt mixture 

under uniaxial compressive loading. 

• A computation time optimisation was performed resulting in a higher particle 

density being used. 

• The dilation gradient was found to increase with bond breakage in the 

sample due to lower constraint in the particle system. However, failure of the 

sample was observed in simulation with progressive bond breakage. 

• A viscoelastic Burger's model was introduced to give time-dependent shear 

and normal tensile contact stiffuesses, whilst the normal compressive contact 

stiffness was assumed to be elastic. 

• The dilation gradient under uniaxial conditions was found to increase with 

time as the ratio of compressive to tensile contact stiffuess increases. 

• The maximum dilation gradient was found to be 0.8 at 8% distortional strain. 

• The dilation gradient was found to be independent of the deviator stress level. 

• The effect of changing bitumen film geometry during the simulation on 

contact stiffuesses has been investigated. 

• The simulation results have been compared with experimental data and 

demonstrated the ability of this type of approach. 
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Tables: 

Table 6.1: Burger's contact model parameters. 

Shear Contact Normal Contact 

Property Value Property Value 

K; (MN/m) 0.1 K; (MN/m) 1.0 

C~ (MNs/m) 0.5 C; (MNs/m) 5.0 

K; (MN/m) 0.1 Kt (MN/m) 1.0 

C; (MNs/m) 0.5 Cj

n (MNs/m) 5.0 

Table 6.2: Burger's contact model parameters for simulation with default Burger's 

contact model. 

Shear Contact Tension Contact Compression contact 

Property Value Property Value Property Value 

K; (MN/m) 0.1 K; (MN/m) variable K~ (MN/m) 1.0 

C~ (MNs/m) 1.0 C~ (MNs/m) variable C~ (MNs/m) 10.0 

K; (MN/m) 0.1 K; (MN/m) variable Kt (MN/m) 1.0 

C; (MNs/m) 0.5 C; (MNs/m) variable ct (MNs/m) 5.0 

Table 6.3: Burger's contact model parameters for simulation with modified Burger's 

contact model. 

Shear Contact Tension Contact Compression contact 

Property Value Property Value Property Value 

K; (MN/m) 0.60 K; (MN/m) 0.60 E; (MN/m) 0.60 

C~ (MNs/m) 4.50 C; (MNs/m) 4.50 

Kt (MN/m) 0.45 Kt (MN/m) 0.45 

ct (MNs/m) 3.50 Cj

n (MNs/m) 3.50 

117 



Chapter 6: Viscoelastic simulations of Uniaxial Tests 118 

Table 6.4: Burger's contact model parameters with factor [Pr]. 

Shear Contact Tension Contact Compression contact 

Property Value Property Value Property Value 

K; (MN/m) 0.60 K; (MN/m) [PrJ x 0.60 E; (MN/m) 0.60 

c~ (MNs/m) 4.50 c~ (MNs/m) [PrJ x 4.50 

Kt (MN/m) 0.45 KIn (MN/m) [PrJ x 0.45 

ct (MNs/m) 3.50 ct (MNs/m) [PrJ x 3.50 

Table 6.5: Burger's contact parameters for uniaxial viscoelastic simulation. 

Shear Contact Tension Contact Compression contact 

Property Value Property Value Property Value 

K; (MN/m) 0.12 K; (MN/m) 0.36 E; (MN/m) 0.70 

c~ (MNs/m) 0.80 c~ (MNs/m) 2.40 

Kt (MN/m) 0.03 Kt (MN/m) 0.09 

ct (MNs/m) 0.80 c}n (MNs/m) 2.40 
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Figures: 

Figure 6.1 : Burger's viscoelastic model. 
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Figure 6.2: Axial strain versus time in preliminary simulation. 
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Figure 6.3: Compressive (red) and tensile (black) contact forces distribution in 1,000 

particles sample. 
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Figure 6.15: Distribution of broken bonds at catastrophic failure. 
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7 Viscoelastic Simulations of 
~~ Triaxial Tests 

7.1 Introduction 

The triaxial test has been recognised as a useful experimental tool for evaluating 

shearing resistance, stress-strain characteristics and strength properties of soils under 

various stress states. This test has been widely developed in soil mechanics. Brown 

and Cooper [16, 17] extensively studied the behaviour of asphalt mixtures through 

triaxial tests and showed that mixture behaviour was a function of the hydrostatic as 

well as deviatoric stresses. More recent applications of modelling of experimental 

results from triaxial tests to study the behaviour of asphalt mixtures can be found in 

[15, 70, 82]. 

The deformation behaviour of a pavement under a wheel load is highly dependent on 

the state of triaxial stresses in the asphalt layers. Thus, it is necessary to understand 

the behaviour of deformation and dilation of the asphalt under various stress states. 

This chapter describes the modelling of triaxial tests on asphalt mixtures using DEM. 

7.2 Review of Triaxial Tests on Asphalt Mixtures 

In a triaxial test, an axial load Q and a cell pressure P are related to the principal 

stresses (Figure 7.1) by: 
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(7.1) 

where A is the cross-sectional area of the specimen. Thus, the mean stress Land 
m 

the deviator stress L are given by: 

(7.2) 

The stress ratio, 'YJ is defined as the ratio of the mean stress to the deviator stress. 

Deshpande and Cebon [41] conducted triaxial compression tests on idealised asphalt 

mixtures. They found that the defonnation behaviour was dependent on the mean as 

well as deviatoric stresses. They concluded that for triaxial tests conducted on dense 

mixtures, the dilation gradient, s varied between 0.75 and 0.85 and was independent 

of the stress ratio, the deviatoric stress and the axial strain rate. 

Figure 7.2 shows experimental data taken from Khanzada [65] where volumetric 

strain is plotted against distortional strain for deviator stresses of 400kPa and 

1000kPa at stress ratios of 0.6 and 0.8. It can be seen from this figure that the 

dilation gradients from the tests with a stress ratio of 0.6 are slightly higher than the 

dilation gradients from the tests with a stress ratio of 0.8. It can also be seen from 

Figure 7.3 that at deviator stresses of 400kPa and 1000kPa, the same dilation 

gradient is observed at the same stress ratio. This indicates that the dilation gradient 

is only dependent on the stress ratio. More details on the experimental work can be 

found in Khanzada [65]. 

It should also be noted that a similar finding was found by Huang [57] in his 

experimental work on the triaxial compression testing of the sand asphalt mixtures at 
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temperature of 20°C. He found that for a given deviator stress of 620kPa (90psi), the 

volume change increased from O.S% at a confining pressure of 138kPa (20psi) 

(Figure 7.3 (c)) to 6.S% at a confining pressure of 69kPa (lOpsi) (Figure 7.3 (b)) 

under the same loading time. This indicates that the volume change (dilation) is 

higher at a lower confining pressure. He also showed that at a given stress ratio of 

0.S3, the volume change at a deviator stress of 34SkPa (SOpsi) (confining pressure 

69kPa) is 1 % and the volume change at a deviator stress of 689kPa (lOOpsi) 

(confining pressure 138kPa) is 1.S%. This indicates that the volumetric dilation of 

the sand asphalt is only dependent on the stress ratio. 

Sitharam [103] used DEM to model the effect of confining pressure on the 

constitutive behaviour of granular materials. Seven biaxial simulations at a constant 

axial strain rate of 2.SX 10-4 mm/cyc1e with different lateral pressures ranging from 

0.6MPa to 6MPa were performed on an identical sample. He stated that under low 

confining pressure (e.g. O.6MPa and 0.8MPa), the assembly is not strongly held to 

resist the dilating tendency under the deviatoric stress. Hence the assembly is more 

susceptible to dilation. Consequently, he found that with an increase in the confining 

pressure there is an increase in the shear strength and a decrease in the dilation. 

In summary, Deshpande and Cebon [41] stated that the dilation is independent of 

stress ratio. However, in contrast, the experimental studies performed by Khanzada 

[6S] and Huang [S7] showed that dilation is highly dependent on the stress ratio. 

Their findings are further supported by Sitharam [103] in numerical modelling. 

Therefore, it is necessary to perform the triaxial simulation using DEM to study the 

effect of stress ratio on dilation behaviour of sand asphalt. 

7.3 Numerical Sample Preparation and Modelling Procedure 
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Since the objective of this chapter is to simulate simple laboratory tests using DEM, 

it is necessary to artificially generate a test specimen that replicates an idealised 

mixture. The numerical sample preparation procedure for triaxial simulations used in 

this chapter is the same as that used for the uniaxial simulations with the exception 

that the cylindrical boundary was not removed but was used to provide lateral 
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confinement to the sample. To decrease the computation time, a sample of 16.Smm 

in diameter and 33mm in height, containing 1,000 particles (1.88mm diameter) 

sample used in all simulations in this chapter. A high bond strength was applied to 

all contacts to prevent bond breakage. 

As noted in the sample preparation procedure described in Chapter 4, the numerical 

sample is prepared to a low isotropic stress (less than lkPa). In order to simulate the 

confining pressure, the numerical sample is then loaded isotropic ally using the 

numerical servo control (see Section 3.3.6) on the top, bottom and cylindrical 

boundaries to achieve the target confining stress. It should be noted that the 

boundary walls shear stiffness and friction coefficient were set to be zero. Figure 7.4 

shows the contact force distribution in a numerical sample containing 1,000 particles 

under a confining stress of 100kPa. It can be seen from this figure that the 

distribution of contact forces is isotropic, which simulates the uniform confining 

pressure applied on the triaxial specimen in the laboratory prior to loading. 

In should be noted that in a triaxial experiment, the confining pressure must be 

maintained at a constant value during testing. To simulate this condition, the servo 

control mechanism in PFC3D is applied on the lateral (cylindrical) boundary to 

maintain a constant confining stress to the sample. Figure 7.S shows the magnitude 

of stresses on top, bottom and lateral boundaries in a triaxial simulation at a 

confining pressure of 100kPa and stress ratio of 0.6. At the beginning of the test, the 

top, bottom and lateral boundaries are subjected to the confining stress of 100kPa. 

During the test, an axial load was applied on the sample to an axial stress of 

approximately SOOkPa (deviator stress 400kPa). It is shown in Figure 7.S that during 

the loading period, the stress distribution on the top and bottom are equal throughout. 

The lateral stress is maintained at 100kPa during the simulation. 

7.4 Effect of Stress Ratio 

As mentioned earlier, previous researchers [S7, 6S, 103] have shown that the dilation 

gradient of the sand asphalt is a function of the ratio of mean stress to deviator stress 

in a triaxial test. The objective of this section is to investigate the effect of stress 
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ratio on the dilation behaviour of sand asphalt by using DEM simulations. It should 

be noted that the modified Burger's contact model is used for all triaxial simulations. 

Elastic behaviour has been assumed for the compressive normal contact stiffness 

whereas viscoelastic behaviour has been assumed for the tensile normal contact 

stiffuess and the shear contact stiffness. 

A series of triaxial simulations was performed to investigate the effect of stress ratio 

and deviator stress on the predicted dilation gradient of the sand asphalt mixture. A 

sample containing 1,000 particles was used. A high contact bond strength was 

applied to all contacts to prevent bond breakage. The contact parameters are given in 

Table 7.1. Figure 7.6 shows the predicted axial creep strains plotted as a function of 

time for a deviator stress of 400kPa and stress ratios of 0.33, 0.6 and 0.8. It can be 

seen from this figure that the axial strain response is a function of loading time 

comprising of elastic, viscoelastic and viscop1astic components. The axial strain in 

the uniaxial simulation (stress ratio of 0.33) is higher than that axial strain in triaxial 

simulations with stress ratios of 0.6 and 0.8. This indicates that the axial strain is 

lower in the simulation with a higher confining stress on the sample. Similar 

behaviour was observed by Sitharam [103] from biaxial DEM modelling with 

different confining pressures, where he found an increase in the failure stress with an 

increase in the confining pressure. This indicates that the sample bulk modulus is 

higher with an increase in the confining pressure, hence a lower axial strain. Also 

plotted in Figure 7.6 is an experimental result obtained for a similar idealised asphalt 

mixture tested at the same deviator stress and stress ratio of 0.6 taken from 

Khanzada [65]. It can be seen that agreement is reasonable although the DEM tends 

to over-predict the steady-state dilation gradient although it should be noted that, as 

discussed earlier, the effect of using 1,000 particles will be to over-predict the axial 

strain response. 

Three triaxial simulations were performed at a deviator stress of 400kPa with stress 

ratios of 0.33 (uniaxial), 0.6 and 0.8. Figure 7.7 shows the predicted volumetric 

strain plotted against the distortional strain. It can be seen from this figure that early 

in the test, the volumetric strain is negative (initial compaction of material) after 

which it increases approximately in proportion to the distortional strain as the 

material dilates. It can also be seen from Figure 7.7 that, as the stress ratio is 
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increased, the dilation gradient reduces. The dilation gradients between distortional 

strains levels of 5.5% and 6% for simulation with different stress ratios were 

calculated and plotted in Figure 7.8. It can be seen from this figure that the dilation 

gradient decreases from 0.8 at a stress ratio of 0.33 (uniaxial conditions) to 0.6 at 

stress ratio of 0.8. This indicates that the dilation gradient is lower at higher stress 

ratios, which is in agreement with the experimental data shown in Figure 7.2 (where 

the dilation gradients are taken at the same distortional strain levels). 

Figure 7.9 shows a plot of average number of contacts (coordination number) versus 

axial strain for simulations with different stress ratios. It can be seen from this figure 

that the coordination number is higher for higher stress ratios (e.g. a stress ratio of 

0.8). This indicates that with an increase in confining pressure, the particles pack 

more closely, hence resulting a higher coordination number. It was found that an 

increase in coordination number (under high confining pressure) in a bonded sample 

decreases the dilatancy of material due to the higher constraints on the particles. 

Consequently, the dilation gradient is lower in simulations with a higher stress ratio. 

Similar results were found by Sitharam [103] where he stated that with an increase 

in the coordination number, the assembly at high confining pressures can sustain 

significant interparticle forces since there is no dilatancy in the system. 

The DEM simulation results in this section clearly indicate that the stress ratio has a 

significant effect on the dilation of the sand asphalt mixture. However, the model 

was not able to predict the correct level of dilation gradient as measured by previous 

researchers [40, 65]. As mentioned earlier in section 6.11, more complex particle 

shape is required to simulate the correct level of dilation gradient. 

7.5 Effect of Deviator Stress 

The experimental result shown in Figure 7.2 [65] indicates that the dilation gradient 

of the sand asphalt is independent of deviator stress but only dependent on the stress 

ratio. The objective of this section is to simulate the dilation gradient of the sand 

asphalt subjected to different deviator stresses at the same stress ratio. 

140 



Chapter 7: Viscoelastic Simulations of Triaxial Tests 

A series of triaxial simulations was performed with deviator stresses ranging from 

100kPa to 800kPa. The confining stress varied so that the stress ratio remained at 

0.6 (chosen arbitrarily) in all cases. Figure 7.10 shows the predicted volumetric 

strain plotted against the deviator strain. It can be seen from this figure that 

approximately the same dilation gradients are observed for different deviator 

stresses indicating that the dilation gradient is only dependent on the stress ratio, 

which agrees with previous research [57, 65]. In the simulation with the higher 

deviator stress (e.g. 800kPa), the confining pressure is higher under the same stress 

ratio of 0.6, therefore the material dilates at the same rate of volumetric strain to 

distortional strain compared to the simulations with lower deviator stresses at the 

same stress ratio. Hence the dilation gradient is only dependent on the stress ratio 

regardless of the magnitude of deviator stress and confining pressure. 

It can also be seen from Figure 7.10 that for simulations with a higher deviator stress 

(higher confining pressure), the initial compaction phase (negative in volumetric 

strain) is larger. This is because a higher confining pressure results in greater 

compaction of the sample at the beginning of the test. However, the material then 

dilates with a same dilation gradient in all simulations. 

In conclusion, the study based on DEM simulation results in this section has 

emphasised that the dilation gradient is only dependent on the stress ratio. 

7.6 Conclusions 

The following conclusions can be drawn from this chapter. 

• 

• 

A modelling procedure has been developed to simulate the condition of 

triaxial loading. 

The dilation gradients were found to be dependent only of stress ratio. The 

dilation gradient was found to increase as the stress ratio decreases. 
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• A higher coordination number was found in the sample subjected to a higher 

confining pressure. 

• The dilation gradients were found to be independent of deviator stress under 

the same stress ratio. 

• The comparison between the predicted and measured results has shown that 

the model is able to predict the effect of stress ratio on dilation. 

• Future work will concentrate on correctly modelling the dilation gradients in 

order to achieve even better agreement between DEM and experimental data. 
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Tables 

Table 7.1: Burger's contact parameters for triaxial viscoelastic simulation 

Shear Contact Tension Contact Compression contact 

Property Value Property Value Property Value 

K; (MN/m) 0.12 K; (MN/m) 0.36 E; (MN/m) 0.70 

C~ (MNs/m) 0.80 C~ (MNs/m) 2.40 

K: (MN/m) 0.03 Kt (MN/m) 0.09 

C: (MNs/m) 0.80 C1
n (MNs/m) 2.40 
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Figure 7.4: Isotropic stress distribution under confIning pressure. 
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:e~ 

~~<: Other Factors Influencing 
~.' Asphalt Dilation 

8.1 Introduction 

The viscoelastic simulations of uniaxial and triaxial tests reported in Chapters 6 and 

7 have highlighted some of the important factors that influence asphalt dilation (e.g. 

contact stiffnesses and stress ratio). However, the simulated dilation gradients were 

slightly under-predicted compared to the experimental data. 

In reality, it is likely that a fraction of the total contacts in an asphalt mixture are 

directly between two aggregate particles resulting in frictional behaviour. Therefore, 

a proportion of the viscoelastic bonds should be replaced by frictional bonds. The 

magnitude of the friction coefficient is also likely to be important. Furthennore, the 

numerical samples comprise perfectly spherical particles which, although a 

reasonable assumption is unrealistic as the sand particles are more angular. 

The main objective of this chapter is to investigate the effects of these factors on 

asphalt dilation and to try and replicate the measured level of dilation in the sand 

asphalt. 

8.2 Influence of Bond Absence and Interparticle Friction on 
Asphalt Dilation 

It is well known in soil mechanics that the defonnation behaviour of a sand sample 

is significantly influenced by the interparticle friction [68, 80, 99]. Ni [80] 
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perfonned shear box simulations using PFC3D and found that at 16.7% shear strain, 

the volumetric dilation for a sample with an interparticle friction angle (0JL) of 450 

was approximately 12 times larger than that for a sample with 0JL = 50. 

Consequently, he concluded that interparticle friction had a significant effect on the 

overall volumetric dilation of the sample. For asphalt mixtures, Huschek [58] stated 

that internal friction due to the aggregate contacts is one of the components that 

contributes to the defonnation resistance of asphalt. However, the friction 

component was not introduced in the previous viscoelastic simulations. Therefore, 

the aim of this section is to investigate the influence of bond absence and 

interparticle friction on the asphalt dilation. 

In the previous viscoelastic simulations, the shear stiffnesses at all contacts in a 

numerical sample were assumed to be viscoelastic. As noted above, this 

approximation is simplistic and direct contact between two aggregates should be 

represented by the slip model featured in PFC3D, which is defined by a friction 

coefficient at the contact (11,). In PFC3D, this model is active when there is no 

contact bond specified. The contact is checked for slip conditions by calculating the 

maximum allowable shear contact force described by F:rnx = ,ul~nl· 

Three series of uniaxial simulations were performed on samples containing 1,000 

particles generated according to the sample preparation procedure described in 

Chapter 4. The contact parameters are stated in Table 8.1. Very high contact bond 

strength was used to prevent bond breakage. The first series of the simulations 

assumed that 20% of total contacts in the sample are frictional with friction 

coefficients of 0, 0.5 and 1. Figure 8.1 shows a plot of volumetric strain versus 

distortional strain under a uniaxial compressive stress of 400kPa for the three 

friction coefficients. It can be seen from this figure that the volumetric strain is 

predicted to be greater as the friction coefficient is increased. The second series of 

the simulations was the same as the first series with the exception that 50% of the 

contact bonds were replaced by frictional contacts in the numerical sample. The 

results of volumetric plotted against distortional strain for simulations with different 

friction coefficients are shown in Figure 8.2. It can be seen by comparing the results 

with Figure 8.1 that, as before, the volumetric strain is predicted to be greater as the 
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friction coefficient is increased with greater differences between the curves. The 

third series of the simulations was performed on an unbound sample where all shear 

contact stiffnesses are represented by frictional behaviour. It should be noted that in 

this simulation, a very low confining pressure of 1kPa was applied as lateral 

confinement. However, the stress ratio was very low (approximately 0.336) which is 

considered comparable to a uniaxial stress with a stress ratio of 0.33. Figure 8.3 

shows the plot of volumetric against distortional strains for simulations with friction 

coefficients of 0.5 and 1. It can be seen from this figure that, as before, the predicted 

volumetric strain is greater as the friction coefficient is increased. 

It was noted earlier in Section 6.7 that the maximum dilation gradient occurred at 

distortional levels of 6 to 8%. Therefore, to analyse the results from three series of 

simulations, the dilation gradients between the distortional levels of 6 to 8% were 

taken and plotted in Figure 8.4. It can be seen from this figure that for simulations 

with the friction coefficient equal to zero, the dilation gradient increases as the 

percentage of bonds replaced increases. For example, the dilation gradient increases 

from 0.8 to approximately 0.85 (6% increase) when the percentage of bonds 

replaced increases from 0% to 50%. Similar trends were observed from simulations 

with interparticle friction coefficients of 0.5 and 1.0 in Figure 8.4. This is because 

fewer contact bonds in a sample reduces the constraints (coordination number) 

allowing more freedom for them to roll over each other reSUlting in a higher level of 

dilation. 

Figure 8.4 shows that in simulations on a sample with 20% of bonds replaced. The 

dilation gradient increases from 0.82 to 1.05 when the friction coefficient increases 

from 0 to 1.0. This clearly indicates that higher interparticle friction results in greater 

dilation. Similar behaviour is observed in the simulations with 50% of bonds 

removed. Skinner [104] stated that when the interparticle friction is increased, more 

particles roll rather than slide, in order to keep the energy balance the same. 

Therefore, higher interparticle friction increases the ability for particle rolling, hence 

resulting in greater volumetric dilation. For the simulations with the unbound sample, 

it can be seen from Figure 8.4 that the dilation gradient increases from 

approximately 1.05 to 1.15 when the friction coefficient increases from 0.5 to 1.0. 

The magnitudes of the dilation gradients are within a reasonable range for unbound 
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simulations where researchers have found a linear dependence of the volumetric 

strain on the shear strain, with values of dilation gradient ranging from 0.7 to 1.8 [8, 

126]. 

Consequently, it can be concluded from this section that a greater level of asphalt 

dilation can be modelled by reducing the number of contact bonds (higher 

percentage of bonds absent) and increasing the interparticle friction at the frictional 

contacts. 

8.3 Comparison with Experimental Results 

The viscoelastic simulations presented in Chapters 6 and 7 under predicted the 

dilation gradient for the idealised asphalt mixture. It was shown above that a greater 

level of dilation can be obtained if frictional behaviour is included. The main 

objective of this section is to simulate the dilation of the idealised asphalt mixture 

and compare with the experimental results. 

As noted earlier, a higher level of asphalt dilation can be simulated by replacing a 

proportion of the bonds with friction at the contacts. It can be seen from Figure 8.4 

that in simulations with 20% of bonds removed, the dilation gradients lie in between 

0.95 and 1.05 for friction coefficients between 0.5 and 1.0. Therefore, it can be 

concluded that a dilation gradient of approximately 1 can be modelled by using a 

friction coefficient of 0. 7 (corresponding to an interparticle friction angle of 35°) in 

the contacts where the bonds have been removed. 

A series of uniaxial and triaxial simulations were performed on samples containing 

6,000 particles. The sample preparation procedures for uniaxial and triaxial samples 

are described in Chapter 4 and Section 7.3. The contact parameters are given in 

Table 8.1. As noted above, 20% of bonds in the sample were removed prior to 

testing and a friction coefficient of 0.7 was introduced to those contacts. Figure 8.5 

shows the variation of volumetric and distortional strains under a deviator stress of 

400kPa and stress ratios of 0.33 (uniaxial), 0.6 and 0.8. It can be seen from this 

figure that as expected, the volumetric strain is negative indicating initial 
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compaction at the beginning of the test. The volumetric strain then increases 

proportionally with the distortional strain. As noted above, the experimental results 

[40, 65] obtained for a similar idealised asphalt mixture tested at 200 e and the same 

stress level are also shown in Figure 8.5. It can be seen from this figure that the 

predicted and measured curves are similar in magnitude and shape demonstrating 

that the correct level of asphalt dilation can be modelled successfully. 

Consequently, it can be concluded that in order to model the correct level of asphalt 

dilation using a single size sphere sample, it is necessary to remove 20% of the total 

bonds in the sample and introduce a friction coefficient of 0.7 to the contacts where 

bonds are absent to simulate the shear behaviour of aggregate to aggregate contact. 

8.4 Influence of Particle Shape on Dilation 

In soil mechanics, numerous researchers [61, 81, 88, 94, 113] have perfonned DEM 

simulations to investigate the effect of particle shape on the defonnation behaviour 

of soil samples concluding that it has significant influence on volumetric dilation. 

Rothenburg and Bathurst [94] perfonned DEM simulations on assemblies of 

elliptical particles. They investigated the stress-strain behaviour during biaxial 

compression and found that at the same level of shear strain, the volumetric strain is 

greater in simulations with elliptical particles with larger eccentricity. Ting et al. 

[113] found similar results. Ni [80] perfonned DEM simulations of a biaxial test on 

soil. In his soil sample, each soil particle was modelled as two spheres bonded 

together with a high strength bond so that each pair of spheres behaves as a single 

rigid particle. He found that at an axial strain of 15%, the volumetric strain in the 

sample with spheres was 2% which increased to 10% in the simulation with more 

angular particles. 

Consequently, researchers have shown that in soil mechanics, a greater volumetric 

dilation can be observed in the sample with more angular particles. Howeyer, no 

literature was found on simulations of bonded materials showing the effect of 

particle shape. The main objective in this section is to investigate the effect of 

particle shape on the asphalt dilation using DEM simulations. 
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8.4.1 Modelling Procedure 

This subsection develops a procedure to prepare a sample using non-spherical 

particles in order to simulate the effect of particle shape on the dilation of asphalt 

mixture. A non-spherical particle is represented by the clump feature in PFC3D. A 

clump behaves as a rigid body where the particles comprising the clump remain at a 

fixed distance from each other. Contact forces are not generated within a clump and 

contacts within a clump are skipped during the calculation thus reducing the 

computation time. More details on clumps can be found in [3]. 

In order to prepare a numerical sample containing clumps, a sample comprising of 

spheres was first generated according to the sample preparation procedure as 

described in Chapter 4, with the exception that the lateral wall remained. After the 

sample settled with an equilibrium condition, the spheres in the sample were 

eliminated and replaced by the clumps. In this dissertation, a simple clump 

containing two spheres is used, where the ratio of the diameter of the small to large 

sphere was 2/3. The small sphere is bonded to the large sphere with the centroid of 

small sphere located on the surface of the large sphere, overlapping as shown in 

Figure 8.6. The clumps generated were randomly orientated. The sample generated 

with clumps was then allowed to settle to equilibrium. 

To ensure that the sample generated is as dense as possible, a compacting stress of 

20MPa (chosen arbitrarily) was applied axially (the lateral wall was fixed), which 

simulates specimen compaction in the preparation of a real asphalt mixture. It should 

be noted that the sample must be prepared at low stress prior to loading. To simulate 

this, the top and bottom platen were released with a very low platen velocity so that 

the isotropic stress reduces to 1kPa. Finally, the numerical sample was trimmed by 

removing the balls outside a certain range to ensure that the ratio of the sample's 

height to width is 2: 1, the lateral wall was removed for the uniaxial tests. 

Consequently, the sample generated with clumps was then at a dense random 

packing state (typical density 0.68) under a low stress and ready for testing. The 

numerical sample comprising of 1,000 clumps prior to testing is illustrated in Figure 

8.7. 
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8.4.2 Dilation with Bonds Removed 

As discussed earlier in Section 8.2, the percentage of bonds removed has a 

significant influence on the dilation of the asphalt mixture using a sample containing 

spherical particles. It was also noted earlier that particle shape has a large influence 

on volumetric dilation. This section investigates the effect of bond removed on 

dilation of an asphalt sample containing non-spherical particles (clumps). 

A series of uniaxial simulations was performed on a sample containing 1,000 clumps. 

The sample preparation procedure for clumps is described in the previous section 

and the contact parameters are given in Table 8.1. A constant compressive stress of 

400kPa was applied. Figure 8.8 shows the variation in volumetric and distortional 

strains for simulations where 0%, 20%, 50% and 100% of the bonds have been 

removed. An interparticle friction coefficient of 0.5 was used at these contacts. It 

should be noted that in the simulation with the unbound sample, a very low lateral 

confining stress (lkPa) was applied to ensure that the sample is subjected to an 

approximately uniaxial stress with a stress ratio of approximately 0.336. It can be 

seen from Figure 8.8 that the general trend is for the dilation gradient to increase as 

the percentage of bonds removed increases. To quantify this effect, the dilation 

gradients calculated at distortional strain levels between 6 and 8% are plotted in 

Figure 8.9. 

Figure 8.9 shows that the dilation gradient increases as the percentage of bonds 

removed increases from 0.75 in the simulation with the fully bonded sample (00/0 

bonds absent) to 1.3 in the unbound sample (100% of bonds removed). Also shown 

in Figure 8.9 are the simulation results taken from the samples with spheres (taken 

from Figure 8.4) for comparison. It can be seen from this figure that in the 

simulation with a fully bonded sample, the dilation gradient is 0.75 in the sample 

with clumps, which is smaller compared to the dilation gradient in the sample with 

spheres (at the same friction coefficient). However, in simulations with 20% of 

bonds removed, the dilation gradient of the sample with clumps is close to that of 

the sample with spheres and in the simulation with 500/0 of bonds removed, the 

dilation gradient in the sample with clumps is 1.15, which is higher than the dilation 

gradient in the sample with spheres. The simulation results on unbound samples 
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showed a significant difference In dilation gradients between the two types of 

samples. 

It was noted earlier that for the fully bonded sample, the dilation gradient of the 

sample with clumps was found to be lower than that of the sample with spheres. To 

explain this, the coordination numbers in both types of samples was investigated. 

Figure 8.10 shows the coordination number for both types of sample. It can be seen 

that for the sample with clumps, the coordination number is higher (approximately 

25%) than for the sample with spheres. This is because the clump has a larger 

surface area compared to the sphere which results in a greater number of contacts 

with neighbouring particles. As explained earlier, a higher coordination number 

causes greater constraints for particles, hence results in lower levels of dilation. 

In the simulation with 20% bonds removed, the dilation gradient of the sample with 

clumps is approximately 0.92. However, the difference is small compared with the 

dilation gradient in the sample containing spheres. A bigger difference in dilation 

gradients on both samples was observed from the simulations with 50% bonds 

removed and a significant difference in dilation gradients was observed in 

simulations for the unbound samples. 

8.5 Conclusions 

The following conclusions can be drawn from this chapter: 

• 

• 

• 

Friction was introduced to simulate the shear contact behaviour at aggregate 

to aggregate contacts. 

The dilation increases as the percentage of bonds replaced by frictional 

contact is increased. 

The dilation gradient was found to increase with the coefficient of friction at 

the contacts where bonds were removed. 
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• Experimental results were successfully modelled by removing 20% of the 

bonds and using a friction coefficient of 0.7. 

• A sample preparation procedure was developed to prepare a numerical 

sample comprising of non-spherical particles ( clumps). 

• Greater levels of dilation were found in samples with clumps under loading, 

providing the number of contact bonds is low. 

• The dilation of asphalt seems to be controlled by the number of contact 

bonds and the shape of particles in the sample. 
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Tables: 

Table 8.1: Burger's contact parameters for viscoelastic simulation. 

Shear Contact Tension Contact Compression contact 

Property Value Property Value Property Value 

K; (MN/m) 0.12 K; (MN/m) 0.36 E; (MN/m) 0.70 

C~ (MNs/m) 0.80 C~ (MNs/m) 2.40 

K: (MN/m) 0.03 KIn (MN/m) 0.09 

C: (MNs/m) 0.80 ct (MNs/m) 2.40 
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Figure 8.7: A numerical sample comprising 1,000 clumps prior to loading. 
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9.1 Conclusions 

A three dimensional computer program (PFC3D) has been used to investigate the 

mechanical behaviour of an idealised asphalt mixture under uniaxial and triaxial 

loading. This chapter summarises the main conclusions from this thesis and provides 

recommendations for future research in this area. 

9.1.1 Literature Review (Chapter Two) 

The constitutive relationships proposed for describing asphalt behaviour include 

linear viscoelastic, nonlinear and elasto-visco-plastic. The literature review on the 

deformation behaviour of bitumen and asphalt showed that an elasto-visco-plastic 

constitutive relationship is capable of fully describing the behaviour of an asphalt 

mixture. The review of micromechanical models for asphalt mixtures has shown that 

these types of models are poorly developed at present. Therefore there is a need to 

perform research by using micromechanical modelling to better understand the 

deformation mechanism of the asphalt. 
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9.1.2 Introduction to Discrete Element Modelling (Chapter Three) 

Recent developments in computer technology have allowed the simulation of asphalt 

behaviour as heterogeneous material using DEM. It was found that PFC3D has been 

applied in a wide range of applications by many researchers, therefore it was chosen 

as the DEM programming code for this thesis. Some of the features in PFC3D 

including the contact model, contact bond and servo control mechanism were 

reviewed and the Burger's contact model was chosen to simulate the time dependent 

behaviour of asphalt material in the DEM simulations using PFC3D. 

9.1.3 Numerical Sample Preparation (Chapter Four) 

A procedure for preparing a numerical sample that replicates a laboratory test 

specimen was developed in this chapter. A dense randomly packed sample was 

prepared with a volume fraction of solids equal to 64%. A procedure has been 

developed to prepare the numerical sample to an equilibrium state with a low 

isotropic stress. Normal and shear contact bonds were used at each contact to 

simulate asphalt as a bonded material. A method was developed to measure the 

radial strain by tracking the displacement of particles on the circumference of the 

sample. The axial strain was measured using the relative displacement of the loading 

platens during the simulation. 

9.1.4 Elastic Simulations (Chapter Five) 
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The elastic response of an idealised asphalt mixture was modelled in this chapter. It 

was found that a sample containing at least 4,500 particles is required for Young's 

modulus and Poisson's ratio to be within 2% of the values calculated using a much 

larger number of particles. poisson's ratio was found to be dependent on only the 

ratio of shear contact stiffness to the normal contact stiffness and the bulk modulus 

was found to be linearly dependent on the normal contact stiffness and independent 

of the shear contact stiffness. A mean field approach was used to develop a 

theoretical model that predicted this behaviour. To simulate asphalt dilation, non­

equal tensile and compressive nonna! contact stiffuesses were used. The le\'el of 
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dilation was found to be dominated by the ratio of nonnal compressive to nonnal 

tensile contact stiffnesses. Most importantly, it was found that the dilation gradient 

increases proportionally to this ratio. 

9.1.5 Viscoelastic Simulations of Uniaxial Tests (Chapter Six) 

The Burger's contact model was found to be reasonably good at simulating the 

deformation behaviour of idealised asphalt mixture. To reduce the computation time, 

a higher particle density was used. The nonnal compressive contact stiffness was 

assumed to be elastic to represent aggregate to aggregate contact, whilst the shear 

and normal tensile contact stiffnesses were assumed to be viscoelastic. From the 

uniaxial simulations, the dilation gradient was found to increase proportionally to 

the ratio of compressive to tensile contact stiffness as a function of time. It was 

found that the maximum dilation gradient of the asphalt sample occurred at between 

6 and 8% distortional strain with a value of 0.8. The simulation results also showed 

that dilation gradient is independent of the deviator stress. The model is calibrated 

well and the predicted axial strain gives good agreement with the experimental data 

whilst the dilation gradient was under-predicted. 

9.1.6 Viscoelastic Simulations of Triaxial Tests (Chapter Seven) 

From simulations of triaxial tests, the dilation gradient was found to be dependent 

only on stress ratio and increases as the stress ratio decreases. However, the dilation 

gradient was found to be independent of deviator stresses at a given stress ratio. Also, 

a higher coordination number was found in the sample subjected to a higher 

confining pressure. Consequently, a comparison between the predicted and 

measured results was made and the model has shown the ability to predict the effect 

of stress ratio on dilation. However, the dilation gradients were still under-predicted. 
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9.1.7 Geometric Factors Influencing Asphalt Dilation (Chapter 
Eight) 

The level of dilation was found to be dominated by the proportion of frictional 

contacts in the sample. Furthermore, the dilation gradient was found to increase as 

the coefficient of friction at these contacts is increased. Based on these findings, the 

dilation gradients from the experimental results were successfully modelled by 

introducing a friction coefficient of 0.7 at contacts replacing 20% of the bonds in the 

sample. To simulate the effect of particle shape, a procedure was developed to 

prepare a sample comprising non-spherical particles (clumps). The simulations on 

the sample with clumps demonstrated that the dilation gradient is greatly influenced 

by the percentage of frictional contacts. Greater dilation was found in the sample 

with clumps under loading, providing the number of absent bonds is high. 

Consequently, it was found that the dilation of the asphalt mixture seems to be 

controlled by the number of contact bonds and the shape of particles in the sample. 

9.2 Recommendations for Further Work 

9.2.1 Limitations of the Numerical Simulations 

Numerical modelling relies on mathematical models based on certain assumptions to 

approximate reality. A good understanding of the physics of the problem is required 

so that a suitable numerical method can be chosen to represent the behaviour and 

physical structure of the problem being modelled. However for mathematical 

simplicity, the assumptions always result in lack of precision in describing the real 

behaviour of a problem. In a DEM simulation, a particle is modelled as a non 

deformable sphere. This assumption is reasonable at low stresses. However, this 

assumption is not true at high stresses, where particle deformation may occur. 

Consequently, it is important to realise that the numerical simulations only playa 

role in understanding the reality. 
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9.2.2 Modelling of Asphalt Dilation 

The simulations carried out in this study assumed that the sample consists of single 

sized particles. However, this approximation is aimed at reducing the complexity in 

the simulations and it cannot represent a real size distribution of the aggregates in an 

asphalt mixture. The particle size distribution was not taken into consideration. 

Consequently, future research could be aimed at investigating the effect of particle 

size distribution on the dilation of asphalt mixture. 

It should be noted that the simulations carried out in this study focussed on the 

deformation behaviour of asphalt in steady-state creep. The effect of fracture and 

damage was not considered, which will occur in the tertiary region of creep 

deformation. It is important to establish an understanding of fracture and damage 

mechanics of asphalt to model this behaviour by using numerical simulation. Future 

work should be focussed on research into this area. 

Numerous researchers have performed experiments to investigate the effect of 

temperature on asphalt dilation. Further work can be performed by modelling the 

effect of temperature on the dilation of asphalt, maybe by establishing a relationship 

between the temperature effects and viscoelastic contact stiffnesses in the Burger's 

model. 

9.2.3 Particle Shape 

The simulations carried out in this study only touched on one type of particle shape. 

It should be noted that real sand particles are much more complicated and cannot be 

easily represented by a clump constructed from two spheres. It is possible to bond 

more particles together to form a more realistic shaped particle. Particle shape 

dramatically affects particle rotation and overall sample strength. Further work can 

be focussed on modelling dilation of asphalt by using different particle shapes. 

Experimental data for uniaxial and triaxial tests on realistic mixtures are widely 

available. Further work can be performed by simulating the deformation behaviour 

of realistic mixtures such as DBM and HRA by using much more complicated 
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shaped particles with different angularity and grading. However, it might still 

impractical to model due to the limitation in computing power. 

The clumps in PFC3D assumed no breakage in the shaped particle. However in 

reality, particle crushing could occur under high levels of loading stress. Future 

research could be aimed at considering the strength and crushing effects of the 

aggregate particles in the modelling. 

9.2.4 Modelling of Wheel Tracking Test 

Experimental data from wheel tracking tests is widely available from previous 

researchers. In order to create a better understanding of the deformation behaviour of 

asphalt mixtures, further works can be carried out by modelling the wheel tracking 

test. To reduce the computation time, modelling can be performed on a small strip of 

asphalt slab in the transverse direction where the wheel travels. The passing wheel 

load on a small strip of asphalt slab in a laboratory experiment can be represented by 

the repeated axial load from a wall on the small strip of asphalt slab in numerical 

modelling. Rut depths can be measured at several points at transverse distance and 

compared with the rut profile captured with a Mechanical Profilemeter from the 

experimented data. 

More experimental works can be conducted to provide a better understanding of 

behaviour of thin film bitumen. A simple laboratory test can be performed by using 

two semi-spherical steel balls to represent the aggregates, bonded by a layer of thin 

film bitumen. The relationships of stiffnesses in compression, tension and shear can 

be established by performing the tests with these three loading actions. This also 

leads to defining the magnitude of parameters in Burger's contact model. 

Recent development of X-ray tomography allows scanning into the internal structure 

of asphalt mixtures in three dimensions. The changes of internal structure of the 

asphalt mixtures at different stages when subjected to loading can be observed. The 

directions and magnitudes of particle rotations in an asphalt mixture can be 

compared and validated with DEM modelling. 

170 



References 

References: 

1. "Particle Flow Code in Three Dimensions, FISH', Minnesota: Itasca 

Consulting Group Inc. 2003. 

2. "Particle Flow Code in Three Dimensions, Optional Features", Minnesota: 

Itasca Consulting Group Inc. 2003. 

3. "Particle Flow Code in Three Dimensions, Theon,' and Background." 

Minnesota: Itasca Consulting Group Inc. 2003. 

4. "Particle Flow Code in Three Dimensions, User's Guide", Minnesota: Itasca 

Consulting Group Inc. 2003. 

5. Abdulshafi, A. and K. Majidzadeh, "Combo Viscoelastic-Plastic Modelling 

and Rutting of Asphaltic Mixtures". Asphalt Mixtures and Perfonnance, 

Transportation Research Records, 968 p. 19-31, 1984. 

6. Adam, D.J. and AJ. Matheson, "Computation of Dense Random Packing of 

Hard Spheres". The J. of Chemical Physics, 56(5) p. 1989-1994, 1972. 

7. Baker, R.F. "Pavement Design Using Rheologic Concepts". in Proc. Int. 

Con! on the Structural Design of Asphalt Pavements. 1962. 

8. Bashir, Y.M. and J.D. Goddard, "A Novel Simulation Method for the Quasi­

Static Mechanics of Granular Assemblages". Journal of Rheology, 35 p. 5, 

1991. 

9. Bathe, K.J. and E.L. Wilson, "Numerical Methods In Finite Element 

AnalysiS": Englewood Cliffs: Prentice-Hall. 1976. 

10. Bernal, J.D. and J. Mason, "Co-ordination of Random~v Packed Spheres". 

Nature, 188 p. 910-911, 1960. 

11. Bezrukov, A., D. Stoyan, and M. Bargiel, "Spatial Statistics for SImulated 

Packings of Spheres". Image Anal. Stereol., 20 p. 203-206, 2001. 

12. Bolton, M., "A Guide to Soil Mechanics". 1979. 

171 



References 

13. 

14. 

15. 

16. 

Bower, A.F., et aI., "Indentation of a Power Law Creeping Solid". Proc. of 

the Royal Society of London, A441 p. 97-124, 1993. 

Brown, A.B. and J.W. Sparks, "Viscoelastic Properties of a Penetration 

Grade Paving Asphalt at Winter Temperature". Proc. Association of Asphalt 

Paving Technologists, 27 p. 35-51, 1958. 

Brown, E.R. and K.Y. Foo, "Comparison of Unconfined and Confined Creep 

Tests For Hot Mix Asphalt". J. of Materials in Civil Engineering, 6(2) p. 307-

326, 1994. 

Brown, S.F. and K.E. Cooper, "A Fundamental Study of the Stress-Strain 

Characteristics of a Bituminous Material". Proc. Association of Asphalt 

Paving Technologists, 49 p. 476, 1980. 

17. Brown, S.F. and K.E. Cooper, "The Mechanical Properties of Bituminous 

Materials for Road Bases and Basecourses". Proc. Association of Asphalt 

Paving Technologists, 53 p. 415, 1984. 

18. Brown, S.F. and Co-workers, "Bituminous Pavements: Materials, Design 

and Evaluation". Residential Course Lecture Notes: School of Civil 

Engineering, University of Nottingham. 2002. 

19. Buseck, H. and H. Hurtgen. "A Design Procedure Based on Experimental 

Results". in Proc. 6th Int. Con! on the Struc. Design of Asphalt Pavement. 

1987. 

20. Buttlar, W.G. and Z. You, "Discrete Element Modelling of Asphalt Concrete: 

A Microfabric Approach". Transportation Research Record, 1757 p. 111-118, 

2001. 

21. Chang, G.K. and N.J. Meegoda. "Simulation of the Behaviour of Asphalt 

Concrete Using Discrete Element Method". in 2nd Inti. Con! On Discrete 

Element Methods. M.LT. 1993. 

22. Cheung, C.Y., "Mechanical Behaviour of Bitumens and Bituminous Mixes", 

Ph.D Thesis, Department of Engineering, University of Cambridge, 1995. 

172 



References 

23. 

24. 

25. 

26. 

Cheung, C.Y. and D. Cebon, "Deformation Mechanisms of Pure Bitumen". J. 

of Materials in Civil Engineering, 9(3) p. 117-129, 1997. 

Cheung, C.Y. and D. Cebon, "Experiment Study of Pure Bitumen in Tension. 

Compression and Shear". Journal of Rheology, 41(1) p. 45-73, 1997. 

Cheung, C.Y. and D. Cebon, "Thin Film Deformation Behaviour of POlver­

law Creeping Materials". ASCE Journal of Engineering Mechanics, 123( 11 ) 

p. 1138-1152, 1997. 

Collop, A.C. and S. Khanzada. "Permanent Deformation Behaviour of 

Idealised Bituminous Mixtures". in Proc. 3rd European Symp. 011 

Performance and Durability of Bituminous Materials and Hydraulic 

Stabilised Composites. 1999. 

27. Collop, A.C., G.R. McDowell, and Y. Lee. "Modelling the Behaviour of an 

Idealised Asphalt Mixture Using The Distinct Element Method". in Presented 

in TRB83rd Annual Meeting. 2003. 

28. Collop, A.C., G.R. McDowell, and Y. Lee, "Use of the Distinct Element 

Method to Model the Deformation Behaviour of an Idealised Asphalt 

Mixture". Paper submitted to Int. J. of Pavement Engineering, 2003. 

29. Collop, A.C., et aI., "Development and Finite Element Implementation of a 

Stress Dependent Elasto-visco-plastic Constitutive Model with Damage for 

Asphalt". Transportation Research Record, (In Press). 

30. Cross, M.M., "Rheology of Non-Newtonian Fluids: A New Flow Equation for 

Pseudo-plastic System". J. of Colloid Science, 20 p. 417-437, 1965. 

31. Cundall, P.A. "A Computer Model for Simulating Progressive, Large-scale 

Movement in Blocky Rock System". in Proc. Symp. Int. Soc. Rock Meclz. 

Nancy. 1971. 

32. Cundall, P.A., ed. "Computer Simulation of Dense Sphere Assemblies". 

Micromechanics of granular materials, ed. M. Satake and J.T. Jenkins. 

Elsevier Science Publishers B.Y.: Amsterdam. pp. 113-123. 1988. 

173 



References 

33. Cundall, P.A., "Formulation of a Three-Dimensional Distinct Element ~\fodel 

- Parti. A Scheme to Detect and Represent Contacts in a System Composed 

of Many Polyhedral Blocks". Int. J. Rock Mech.,Min. Sci. & Geomech. 

Abstr., 25(3) p. 107-116, 1988. 

34. Cundall, P.A., A. Drescher, and O.D.L. Strack, eds. "Numerical Experiment 

on Granular Assemblies; Measurements and Observations". Defonnation 

and Failure of Granular Materials, ed. P.A. Venneer and H.J. Luger. A.A. 

Balkema: Rotterdam. pp. 355-370. 1982. 

35. Cundall, P.A. and R. Hart, "Numerical Modelling of Discontinua". J. Engr. 

Comp., 9 p. 101-113, 1992. 

36. Cundall, P.A. and O.D.L. Strack. "The Development of Constitutive Lawsfor 

Soil Using the Distinct Element Method". in Third International Conference 

on Numerical Methods in Geomechanics. Aachen. 1979. 

37. Cundall, P.A. and O.D.L. Strack, "A Discrete Element Model for Granular 

Assemblies". Geotechnique, 29(1) p. 47-65, 1979. 

38. De Josselin de Jong, G. and A. Verruijt, "Etude photo-elastique d'un 

empilement de disques". Cahiers du Groupe Francais de Rheologie, 2(1) p. 

73-86, 1969. 

39. Desai, C. "Mechanistic Pavement Analysis and Design uszng Unified 

Material and Computer Model". in Proc. 3rd Int. Symp. on 3D Finite 

Elements for pavement Analysis, Design and Research. Amsterdam, The 

Netherlands. 2002. 

40. Deshpande, V.S., "Steady-State Defonnation Behaviour of Bituminous 

Mixes", Ph.D. Thesis, Engineering Department, University of Cambridge, 

1997. 

41. Deshpande, V.S. and D. Cebon, "Steady-state Constitutil'e Relationship for 

Idealised Asphalt Mixes". Mechanics of Materials, 31 p. 271-287,1999. 

174 



References 

42. 

43. 

Dolezalova, M., P. Czene, and F. Havel, eds. "Micromechanical Modeling of 

Stress Path Effects Using PFC2D Code". Numerical Modeling in 

Micromechanics via Particle Methods, ed. H. Konietzky. A.A. Balkema: The 

Netherlands. 173-181. 2003. 

Drescher, A., J.R. Kim, and D.E. Newcomb, "Permanent Deformation in 

Asphalt Concrete". J. of Materials in Civil Engineering, 5(1) p. 112-127, 

1993. 

44. Eisenmann, J. and A. Hilmer. "Influence of Wheel Load and Inflation 

Pressure on the Rutting Effect at Theoretical Investigations". in Proc. 6th Int. 

Con! on the Structural Design of Asphalt Pavements. Ann Arbor, Michigan, 

USA. 1987. 

45. Eisenmann, J., U. Lempe, and G. Leykauf. "Methods for the Structural 

Design of Asphalt Pavement". in 4th Int. Con! on the Structural Design of 

Asphalt Pavements. University of Michigan. 1977. 

46. Fitzgerald, J.E. and J. Vakili, "Nonlinear Characterization of Sand-asphalt 

Concrete by Means of Permanent-memory Norms". Experimental Mechanics, 

13 p. 504-510, 1973. 

47. Gaskins, F.H., et aI., "The Rheology of Asphalt: Flow Characteristics of 

Asphalt". Transaction of the Society of Rheology, 4(435) p. 265-278, 1960. 

48. Hart, R., P.A. Cundall, and J. Lemos, "Formulation of a Three-Dimensional 

Distinct Element Model - Part2. Mechanical Calculation for Motion and 

Interaction of a System Composed of Many Polyhedral Blocks". Int. J. Rock 

Mech.,Min. Sci. & Geomech. Abstr., 25(3) p. 117-125, 1988. 

49. Harvey, J.A.F., "Bitumen Film in Tension", Ph.D Thesis, Department of 

Engineering, University of Cambridge, 2000. 

50. Harvey, J.A.F., "Failure Mechanism in Viscoelastic Films", 1. of Materials 

Science, 38, p. 1021-1032, 2003. 

175 



References 

51. 

52. 

53. 

Hazzard, J.F., R.P. Young, and S.C. Maxwell, "Micromechanical Modelling 

in Cracking and Failure of Brittle Rocks". J. Geophysical Research, 1 05(B 7) 

p.16683-l6697,2000. 

Heukelom, W. and AJ.G. Klomp, "Road Design and Dynamic Loading". 

Proc. Association of Asphalt Paving Technologists, 33 p. 92-125,1964. 

Hicks, R.G. and C.L. Monismith. "Prediction of Resilient Response oj 

Pavements Containing Granular Layers using non-linear Elastic Theory". in 

Proc. 3rd Int. Con! on the Struct. Design of Asphalt Pavements. 1972. 

54. Hills, J.F., "The Creep of Asphalt Mixes". 1. of. Institute of Petroleum, 

59(570) p. 247-262, 1973. 

55. Hofstra, A. and A.J.G. Klomp. "Permanent Deformation of Flexible 

Pavements under Simulated Road Traffic Conditions". in Proc. 3rd Int. Conf 

on the Structural Design of Asphalt Pavements. London. 1972. 

56. Hofstra, A. and C.P. Valkering. "The Modulus of Asphalt Layers at High 

Temperatures: Comparison of Laboratory Measurements under Simulated 

Traffic Conditions with Theory". in Proc. 3rd Int. Con! on the Struc. Design 

of Asphalt Pavement. 1972. 

57. Huang, Y.H., "Deformation and Volume Change Characteristics of a Sand 

Asphalt Mixture Under Constant Direct Triaxial Compressive Stresses". 

Highway Research Record, 178 p. 60, 1967. 

58. Huschek, S., "The Deformation Behaviour of Asphaltic Concrete Under 

Triaxial Compression". Proc. Association of Asphalt Paving Technologists, 

54 p. 407, 1985. 

59. Ishibashi, I. and Y.C. Chen, eds. "Dynamic Shear Moduli and Their 

Relationship To Fabric of Granular Materials". Micromechanics of granular 

materials, ed. M. Satake and J.T. Jenkins. Elsevier Science Publishers B.V.: 

Amsterdam. 95-102. 1988. 

176 



References 

60. 

61. 

Jenkins, J.T. and O.D.L. Strack, "Mean Field Inelastic Behaviour of Random 

Arrays of Identical Spheres". Mechanics of Materials, 16 p. 25-33, 1993. 

Jensen, R.P., et a1., "DEM Simulation of Granular Media - StnlclUre 

interface: Effects of Surface Roughness and Particle Shape". Int. J. for 

Numerical and Analytical Methods in Geomechanics, 23 p. 531-547, 1999. 

62. Johnson, K.L., "Contact Mechanics": Cambridge University Press. 1985. 

63. Jongepier, R. and B. Kuilman, "Characteristics of the Rheology of Bitumens". 

Proc. Association of Asphalt Paving Technologists, 38 p. 98-112, 1969. 

64. Judycki, J., "Nonlinear Viscoelastic Behaviour of Conventional and Modified 

Asphaltic Concrete Under Creep". Materials and Structures, 25 p. 95-101, 

1992. 

65. Khanzada, S., "Permanent Deformation in BItuminous Mixtures", Ph.D 

Thesis, Department of Civil Engineering, University of Nottingham, 2000. 

66. Konietzky, H., L. te Kamp, and G. Bertrand, eds. "Modeling of Cyclic 

Fatigue Under Tension with P.F. c." Numerical Modeling III 

Micromechanics via Particle Methods, ed. H. Konietzky. A.A. Balkema: The 

Netherlands. 101-105.2003. 

67. Lai, J.S. and D. Anderson, "Irrecoverable and recoverable Nonlinear 

Viscoelastic Properties of Asphalt Concrete". Highway Research Record, 

468 p. 73-88, 1973. 

68. Lee, K.L. and H.B. Seed, "Drained Strength Characteristics of Sands". J. of 

The Soil Mechanics and Foundation Division, ASCE, 93(SM6) p. 117-141, 

1967. 

69. Lethersich, W., "The Mechanical Behaviour of Bitumen". J. of the Society of 

Chemical Industry, Transactions and Communications, 61 p. 101-108, 1942. 

70. Low, B.H., S.A. Tan, and T.F. Fwa, "Analysis of Marshall Test Behaviour 

With Triaxial Test Determined Material Properties". J. of Testing and 

Evaluation, 21(3) p. 192, 1993. 

IT 



References 

7l. 

72. 

73. 

74. 

Martin, H.S., et al. "Microstructural Simulation of Asphalt Materials: 

Modelling and Experimental Verzijizcation" l'n 15th ASC'L' E· . 
• .'"1 L ngllleenng 

Mechanics Conference. New York. 2002. 

McDowell, G.R. and O. Harireche, "Discrete Element Modelling of Soil 

Particle Fracture". Geotechnique, 52(2) p. 131-135,2002. 

McDowell, G.R. and O. Harireche, "Discrete Element Modelling of Yielding 

and Normal Compression of Sand". Geotechnique, 52(4) p. 299-304, 2002. 

Meegoda, N.J. and G.K. Chang. "Modeling of Viscoelastic Behaviour of Hot 

Mix Asphalt (HMA) Using Discrete Element Method". in Proc. 3rd ASCE 

Materials Engineering Conference. San Diego. 1994. 

75. Moavenzadeh, F. and J. Soussou, "Viscoelastic Constitutive Equation for 

Sand Asphalt Mixtures". Highway Research Record, 256 p. 36-52, 1968. 

76. Moavenzadeh, F. and R.R. Stander, "Effect of Aging on Flow Properties of 

Asphalt". Highway Research Record, 178 p. 1-29, 1967. 

77. Monismith, C.L., R.L. Alexander, and K.E. Secor, "Rheologic Behaviour of 

Asphalt Concrete". Proc. Association of Asphalt Paving Technologists, 35 p. 

400-450, 1966. 

78. Monismith, C.L. and K.E. Secor. "Viscoelastic Behaviour of Asphalt 

Concrete Pavements". in Proc. 1st Int. Conf on the Structural Design of 

Asphalt Pavements. 1962. 

79. Nadai, A., "Theory of Flow and Fracture of solids". Vol. 2: McGraw-Hill. 

1963. 

80. Ni, Q., "Effect of Particle Properties and Boundary Conditions on Soil Shear 

Behaviour: 3-D Numerical Simulations", Ph.D. Thesis, Faculty of 

Engineering and Applied Science, University of Southampton, 2003. 

81. Ni, Q., et aI., "Effect of Particle Properties on Soil Behaviour: 3-D 

Numerical Modelling of Shearbox Tests". ASCE Geoteclmical Special 

Publication, 96 p. 58-70, 2000. 

178 



References 

82. 

83. 

84. 

Ossa, E.A., V.S. Deshpande, and D. Cebon, "A Phenomenological Jfodel for 

the Monotonic and Cyclic Behaviour of Pure Bitumen", in Paper submitted 

to J. of Material in Civil Engineering. 2003. 

Pagen, C.A., "Dynamic Structural Properties of Asphalt Pavement Mixtures". 

Proc. 3rd Int. Conf. on the Structural Design of Asphalt Pavements, 1 p. 290-

316,1972. 

Pagen, C.A., "Rheological Response of Bituminous Concrete". Highway 

Research Record, 67 p. 1-26, 1965. 

85. Papazian, H.S. "The Response of Linear Viscoelastic Materials in the 

Frequency Domain". in Proc. Int. Conf on the Structural Design of Asphalt 

Pavements. 1962. 

86. Perl, M., J. Uzan, and A. Sides, "Visco-Elasto-Plastic Constitutive Law for a 

Bituminous Mixtures under Repeated Loading". Asphalt Materials, Mixtures, 

Construction, Moisture Effects and Sulfur, Transportation Research Record, 

911 p. 20-27, 1983. 

87. Peutz, M.G.F., H.P.M. van Kempen, and A. Jones, "Layered Systems under 

Normal Surface Loads". Highway Research Record, 228 p. 34-45, 1968. 

88. Powrie, W., et aI., "Effect of Particle Properties on Soil Behaviour: 3-D 

Numerical Modelling of Shearbox Tests", ASCE Geotechnical Special 

Publication, 96, pp58-70, 2000. 

89. Powrie, W., et aI., "Numerical Modelling of Plane Strain Tests on Sands 

Using a Particulate Approach". Geotechnique, 55(4) p. 297-306,2005. 

Read, J.M. and D. Whiteoak, "The Shell Bitumen Handbook, 5th Edition". 90. 

Thomas Telford Publishing, 2003. 

91. Reynolds, 0., "On the Dilatancy of Media Composed of Rigid Particles ill 

Contact". Phil. Mag., 20 p. 469-481, 1885. 

179 



References 

92. 

93. 

94. 

95. 

Roque, R. and B.E. Ruth. "Materials Characterisation and Response of 

Flexible Pavement at Low Temperatures". in Proc. 2nd Int. Con! on the 

Struc. Design of Asphalt Pavement. 1967. 

Roscoe, K.H., "The Influence of Strains in Soil Mechanics". Geotechnique, 

20(2) p. 129-170,1970. 

Rothenburg, L. and R.J. Bathurst, "Micromechanical Features of Granular 

Assemblies with Planar Elliptical Particles". Geotechnique, 42(1) p. 79-95, 

1992. 

Rothenburg, L., et al. "Micromechanical Modelling of Asphalt Concrete ill 

Connection with Pavement Rutting Problems". in 7th International 

Conference on Asphalt Pavements. 1992. 

96. Rowe, P.W., "The Stress-Dilatancy Relation for Static Equilibrium of an 

Assembly of Particles in Contact". Proc. Royal Society London A, 269 p. 

500-529, 1962. 

97. Saal, R.N.J. and W.A. Labout, "Rheologycal Properties of Asphaltic 

Bitumens". J. of Applied Chemistry, 44 p. 149-165, 1940. 

98. Scarpas, A., et al. "Finite Element Simulation of Damage Development in 

Asphalt Concrete Pavements". in Proc. 8th Int. Con! on Asphalt Pavement. 

Seattle. 1997. 

99. Schanz, T. and P.A. Vermeer, "Angles of Friction and DilatanCJ! of Sand". 

Geotechnique, 46(1) p. 145-151,1996. 

100. Scott, G.D., "Packing of Spheres". Nature, 188 p. 908-909, 1960. 

101. Sides, A., J. Uzan, and M. Perl, "A Comprehensil'€ Viscoelastic-plastic 

Charaterization of Sand-asphalt Compressive and Tensile Cyclic Loading". J. 

of Testing and Evaluation, 13(1) p. 49-59, 1985. 

Sisko, A.W., "Determination and Treatment of Asphalt Viscosit1' Data". 
102. 

Highway Research Record, 67 p. 27-37, 1965. 

ISU 



References 

103. 

104. 

105. 

106. 

107. 

Sitharam, T.G., "Micromechanical Modelling of Granular Materials: Effect 

of Confining Pressure on Mechanical Behaviour". Mechanics of Materials. 

31 p. 653-665, 1999. 

Skinner, A.E., "A Note on The Influence of Interparticle Friction of The 

Shearing Strength of a Random Assembly of Spherical Particles". 

Geotechnique, 19(1) p. 150-157, 1969. 

Sohn, H.Y. and C. Moreland, "The Effect of Particles Size Distribution 011 

Packing Density". The Canadian J. of Chemical Engineering, 64 p. 162-167. 

1968. 

Sousa, J.B. and S.L. Weissman, "Modelling Pavement Deformation of 

Asphalt-aggregate Mixes". Asphalt Paving Technology, 63 p. 224-257, 1994. 

Sousa, J.B., et al. "A Non-Linear Elastic Viscous with Damage Model to 

Predict Permanent Deformation of Asphalt Concrete Mixes". in Presented at 

72nd Annual TRB Meeting. Washington DC. 1993. 

108. Starodubsky, S., I. Be1chman, and M. Livneh, "Stress-strain Relationship for 

Asphalt Concrete in Comp,:ession". RILEM, Materials and Structures, 27 p. 

474-482, 1990. 

109. Thornton, C., M.T. Ciomocos, and K.K. Yin, eds. "Fracture of Particulate 

Solids". Powders and Grains, ed. R.P. Behringer and J.T. Jenkins. Balkema: 

Rotterdam. 131-134. 1997. 

110. Thornton, C. and K.K. Yin, "Impact of Elastic Spheres With and rVithout 

Adhesion". Powder Technology, 65 p. 153-166, 1991. 

111. Thornton, C., K.K. Yin, and MJ. Adams, "Numerical Simulation of the 

Impact Fracture and Fragmentation of Agglomerates". J. Phys. D: Appl. 

Phys., 29 p. 424-435, 1996. 

112. Thr E N "A Parametric Studv of Fatigue Prediction Afodel for ower, .., . 

Bituminous Road Pavements", in TRRL Laboratory Report No. 892. 1979. 

lSI 



References 

113. 

114. 

Ting, J.M., et al., "An Ellipse-Based Discrete Element Model for Granular 

Materials". Int. J. for Numerical and Analytical Methods in Geomechanics. 

17 p. 603-623, 1993. 

Ulliditz, P., et al. "Verification of Analytical-empirical Method of Pavement 

Evaluation Based on FWD Testing". in Proc. 6th Int. Conf on the Stnictural 

Design of Asphalt Pavements. 1987. 

115. Uzan, J., "Asphalt Concrete Characterisation for Pavement Performance 

Prediction". J. Asphalt Paving Technology, 65 p. 573-607, 1996. 

116. Uzan, J., A. Sides, and M. Perl, "Viscoelastoplastic Model for Predicting 

Performance of Asphalt Mixtures". Pavement System Analysis, 

Transportation Research Record, 1043 p. 78-89, 1985. 

117. van der Loo, P.J., "The Creep Test: A Key Tool in Asphalt Mix Design and In 

The Prediction of Pavement Rutting". Proc. Association of Asphalt Paving 

Technologists, 47 p. 523-557, 1978. 

118. Van der Poel, C., "A General System Describing the Visco-elastic Properties 

of Bitumens and its Relation to Routine Test Data". J. of Applied Chemistry, 

4 p. 221-236, 1954. 

119. Van der Poel, C. "Representation of Rheological Properties of Bitumen Over 

a Wide Range of Temperatures and Loading Times". in Proc. 2nd Int. 

Congress on Rheology. 1954. 

120. Van der Poel, C., "Time and Temperatures Effects on the Deformation of 

Asphaltic Bitumens and Bitumen-Mineral Mixtures". J. Society of Petroleum 

Engineers, p. 47-53, 1955. 

W T ed "PFC3D Simulation Procedure for Compressive Strength 
121. anne,.,. 

Testing of Anisotropic Hard Rock". Numerical Modeling in Micromechanics 

via particle Methods, ed. H. Konietzky. A.A. Balkema: The Netherlands. 

241-249.2003. 

182 



References 

122. Ward, LM., "Mechanical Properties of Solid Polymers": Wiley Interscience. 

1971. 

123. Welborn, J.Y., E.R. Oglio, and J.A. Zenewitz, "A Study of Viscocity Graded 

Asphalt Cements". Proc. Association of Asphalt Paving Technologists, 35 p. 

19-60, 1966. 

124. Zheng, L., "Temperature-dependent Visco-elastic-plastic Analysis of 

Pavement Deformation in Bituminuos Pavements", Ph.D. Thesis, South 

Bank University, 1994. 

125. Zhou, J. and Y. Chi, eds. "Shear-band of Sand Simulated by Particle Flolr 

Code". Numerical Modeling in Micromechanics via Particle Methods, ed. H. 

Konietzky. A.A. Balkema: The Netherlands. 205-210. 2003. 

126. Zhuang, X., A.K. Didwania, and J.D. Goddard, "Simulation of the Quasi­

Static Mechanics and Scalar Transport Properties of Ideal Granular 

Assemblages". J. of Computational Physics, 121 p. 331,1995. 

183 


	430521_0000
	430521_0001
	430521_0002
	430521_0003
	430521_0004
	430521_0005
	430521_0006
	430521_0007
	430521_0008
	430521_0009
	430521_0010
	430521_0011
	430521_0012
	430521_0013
	430521_0014
	430521_0015
	430521_0016
	430521_0017
	430521_0018
	430521_0019
	430521_0020
	430521_0021
	430521_0022
	430521_0023
	430521_0024
	430521_0025
	430521_0026
	430521_0027
	430521_0028
	430521_0029
	430521_0030
	430521_0031
	430521_0032
	430521_0033
	430521_0034
	430521_0035
	430521_0036
	430521_0037
	430521_0038
	430521_0039
	430521_0040
	430521_0041
	430521_0042
	430521_0043
	430521_0044
	430521_0045
	430521_0046
	430521_0047
	430521_0048
	430521_0049
	430521_0050
	430521_0051
	430521_0052
	430521_0053
	430521_0054
	430521_0055
	430521_0056
	430521_0057
	430521_0058
	430521_0059
	430521_0060
	430521_0061
	430521_0062
	430521_0063
	430521_0064
	430521_0065
	430521_0066
	430521_0067
	430521_0068
	430521_0069
	430521_0070
	430521_0071
	430521_0072
	430521_0073
	430521_0074
	430521_0075
	430521_0076
	430521_0077
	430521_0078
	430521_0079
	430521_0080
	430521_0081
	430521_0082
	430521_0083
	430521_0084
	430521_0085
	430521_0086
	430521_0087
	430521_0088
	430521_0089
	430521_0090
	430521_0091
	430521_0092
	430521_0093
	430521_0094
	430521_0095
	430521_0096
	430521_0097
	430521_0098
	430521_0099
	430521_0100
	430521_0101
	430521_0102
	430521_0103
	430521_0104
	430521_0105
	430521_0106
	430521_0107
	430521_0108
	430521_0109
	430521_0110
	430521_0111
	430521_0112
	430521_0113
	430521_0114
	430521_0115
	430521_0116
	430521_0117
	430521_0118
	430521_0119
	430521_0120
	430521_0121
	430521_0122
	430521_0123
	430521_0124
	430521_0125
	430521_0126
	430521_0127
	430521_0128
	430521_0129
	430521_0130
	430521_0131
	430521_0132
	430521_0133
	430521_0134
	430521_0135
	430521_0136
	430521_0137
	430521_0138
	430521_0139
	430521_0140
	430521_0141
	430521_0142
	430521_0143
	430521_0144
	430521_0145
	430521_0146
	430521_0147
	430521_0148
	430521_0149
	430521_0150
	430521_0151
	430521_0152
	430521_0153
	430521_0154
	430521_0155
	430521_0156
	430521_0157
	430521_0158
	430521_0159
	430521_0160
	430521_0161
	430521_0162
	430521_0163
	430521_0164
	430521_0165
	430521_0166
	430521_0167
	430521_0168
	430521_0169
	430521_0170
	430521_0171
	430521_0172
	430521_0173
	430521_0174
	430521_0175
	430521_0176
	430521_0177
	430521_0178
	430521_0179
	430521_0180
	430521_0181
	430521_0182
	430521_0183
	430521_0184
	430521_0185
	430521_0186
	430521_0187
	430521_0188
	430521_0189
	430521_0190
	430521_0191
	430521_0192

