Constraints on the power spectrum of
primordial perturbations from small-scale
structure

Amandeep Singh Josan

w The Uniyersitgof
M | Nottingham

Thesis submitted to the University of Nottingham
for the degree of Doctor of Philosophy, September 2010



“We are all in the gutter, but some of us are looking at the star

— Oscar Wilde

Supervisor: Dr Anne M. Green

Examiners: Professor Edmund J. Copeland
Professor Bernard J. Carr



Abstract

In this thesis the Big Bang and inflation theory are reviewede Jinccess of inflation
is largely due to the predicted generation of inhomogezitiVe review the dynam-
ical equations of motion for an accelerating expansion eflilmiverse and the flow
equations which describe the evolution of the Hubble slolvparameters. We use
cosmological perturbation theory to find a new expressidatirgy comoving curva-
ture perturbations generated during inflation to densityupleations responsible for
structure formation. Primordial black holes (PBHs) may féram primordial pertur-
bations. We compile and update constraints on the abunddrieBHs. We then use
our new relationship to translate these abundance limitsdonstraints on the power
spectrum of primordial curvature perturbation. In additiwe investigate the possi-
ble formation of ultracompact dark matter minihalos (UCMMa)ich may also form
from primordial pertubations. If dark matter is in the forfmveeakly interacting mas-
sive particles (WIMPs) then WIMP annihilation may produce ged&ble gamma-ray
signature. We calculate the potential constraints whichldvarise from a detection
by the Fermi satellite. Finally, we investigate single fielddels of inflation using a
stochastic technique to generate a large ensemble of mddsisg a numerical ap-
proach along with a modified flow algorithm we find models ofatiin compatible
with all cosmological data which have large perturbationssmall scales. Signifi-
cant PBH formation occurs in models in which inflation can curg indefinitely and
is ended via a secondary mechanism. We use our PBH consti@ielisninate such
models which overproduce PBHSs. In this work we demonstrateRBH constraints,
although weak, are effective at constraining models of tioita \We also demonstrate
that a gamma-ray detection from UCMHSs could potentially t@ms the power spec-

trum of curvature perturbation on small scales very tightlhe near future.
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Chapter 1

Introduction

1.1 Cosmology

Observational cosmology has driven the study of the origihthe Universe from
speculative theories to testable models. In particulardibcovery of the Cosmic Mi-
crowave Background (CMB) has put the Big Bang theory on soundétieal footing.
Subsequent observations have greatly enhanced our uanadirgy of the Universe and
taken us into an era of precision cosmology. An importané®sion to the the Big

Bang model is the theory of cosmological inflation.

The paradigm of cosmological inflation during the early 4mse was first proposed
in 1980 by Alan Guth [1]. It postulates that subsequent toBlgeBang there was
a period of accelerated expansion of the Universe. It isasiyuthe most successful
model for explaining several puzzling features of the Big BHrepry which include
the horizon, flathess and monopole problems. One of the mtesesting features of
inflation is that it naturally results in the generation di@amogeneities in the Universe
in the form of scalar curvature perturbations and grawtel waves in the form of

tensor perturbations [2, 3, 4].

In the last two decades there has been much study in the amgftatibn model build-
ing. Particular models of inflation make predictions abbetprimordial perturbations
which are then compared to observational constraints. efbesstraints come from a

variety of cosmological and astrophysical observationswéler, these observations
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generally only probe a very narrow range of large scalesepixans to this are con-
straints obtained from Primordial Black Holes (PBHS) [5, 64 anore recently, from
Ultra Compact Mini Halos (UCMHS) [7]. Although less well corahed than large-
scale observational data, these objects potentially grelterbations over a very large

range of small scales.

In this thesis we review the ‘standard cosmology’ in chafitend perturbation theory
in Chapter 2. We then investigate constraints from PBHs and USEMI€hapter 3 and
Chapter 4. Finally we investigate PBH constraints on modeisflaition generated via

a stochastic method in Chapter. 5.

Throughout, we use greek subscript and superscript leibedenote spacetime co-
ordinates and Latin letters to denote spatial coordinai®s. adopt the summation
convention to imply a sum over pairs of identical supersa@ipd subscript spacetime
indices. We also adopt the metric signatGre +, +, +) and the usual convention of
labelling contravariant quantities using superscriptdad and covariant quantities us-
ing subscript indices. We also set the speed of light and taeckR constant to one

throughoute = h = 1. The Planck mass isip; = G~/ ~ 10'%GeV and is a factor

of /87 larger than the reduced Planck mass, which we do not usesithibsis.

1.2 The Big-Bang

In the early part of the 20th century Edwin Hubble performeathmodical observations
of galaxy redshifts as a function of distance [8]. These oladmns revealed that
almost all galaxies in the Universe are travelling away fresn Hubble discovered
that the more distant a galaxy the more rapid the recessioa.rdlationship between
the separation of two galaxiesand their relative recession velocityis given by
Hubble’s law:

v=Hd, (1.2)

whereH = H(t) is the Hubble parameter and is given by

H=2 (1.2)
a
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where overdots represent derivatives with respect to tith# anda = a(t) is the
scale factor which characterizes the expansion of the Wsevel he measured value of

the Hubble parameter today, is [9]
Hy=714+25km s "Mpc !, (1.3)

where throughout we will use a subscriptto denote the current epoch.

The revelation of an expanding Universe naturally led todtweclusion that the Uni-
verse started from a much smaller early state. This thennelgzhto the present Uni-
verse with the expansion still continuing today. The iniiate from which the entire

visible Universe expanded is knownte Big Bang

The standard mathematical description of an expandingddsevis constructed by the
consideration of distance measures. The distance betweensarby points in a four

dimensional space-time is given by the following line elame

ds? = g datda” (1.4)

v
whereg,,, is the metric ang: andv are indices which can take valuesl, 2 and3.
Herez" is assigned the time coordinate and 2> andz? are the spatial coordinates.
If the Universe has a constant curvature which can be flagitigdic or spherical on
the largest scales, then the most general line element &r pobrdinates is given by
the Friedmann-Robertson-Walker (FRW) metric line element:

dr?

2 2 2

+ 72(d6? + sin? 0d¢?) | (1.5)

whereK is the measure of spatial curvature with= 0 corresponding to flat spatial
curvature,K = —1 to hyperbolic spatial curvature and = 1 to spherical spatial

curvature. Here and throughout we have set the speed otdight 1.

The evolution of the scale factor is described by the Einsgtguations [10]:
1
G =Ry — §ng =87GT,, , (1.6)

whereR,,, is the Ricci tensorf is the Ricci scalar and),,, is the energy-momentum
tensor which can be writtefi* = diag(—p, P, P, P) wherep is the energy density of

the Universe andP is its pressure. From the Einstein equations one can déreve t
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Friedmann equation:

LN\ 2
K
= (4) Z8Gr K (1.7)
a 3 a?
From Eqg. (1.6) one can also derive the acceleration equation
a drG
- =— P). 1.8
()= am) (1.8)

One further useful equation is obtained by considering tireservation of energy to
give the fluid equation:

p+3H(p+P)=0. (1.9)

These equations together describe the expansion and ggahttie Universe in terms
of the density and pressure of material contained withi®ite can solve Eqg. (1.7) and
Eq. (1.9) for the case of a flat Univers& (= 0) to find the behaviour of a matter or

radiation dominated Universe:

For a matter dominated Universe:

1
Pm X — aox 23, (1.10)
a

For a radiation dominated Universe:
1
Pr X —, aox /2. (1.11)
a
A useful quantity to consider is the critical densjiy;; defined as the total energy
density required to make the Universe flat & 0). Using Eq. (1.7) this is given by

 3H?
- 8rG

Perit (1) (1.12)

1.3 Energy content of the Universe

It is convenient to define the energy density of a particular substanc& in the
Universe as a fraction of the critical denspy;;. The resulting density parameter

for each component of the energy density is given by

Oy = X (1.13)
Perit

From Eqg. (1.13) if the total density paramefer, = 1 then the Universe is spatially
flat (K = 0) with a density given by Eq. (1.12).
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The total energy within the Universe is made up from varicusgonents and Q.
can be divided into each component such as méatieand radiatior(2,. These can
be further subdivided into the various different types oftterasuch as) .., Qqust,

Qppn, Qucemn etc..

The current ‘standard cosmological model’ places valuetherenergy content of the

Universe finding [9]

Oy ~ 0.04, (1.14)
Opn ~ 022, (1.15)
Oy ~ 0.73, (1.16)

where(),, is the density parameter for baryonic matt@g,,; for non-baryonic cold
dark matter and, for the cosmological constant (or dark energy) which is gidudo
be responsible for the observed accelerated expansioe afrilverse [11, 12]. (For a

review of dark energy see Refs. [13, 14]).

1.4 Cosmic Microwave Background

The Cosmic Microwave Background (CMB) radiation, discovered 965 by Arno
Penzias and Robert Wilson [15], quickly led to the Big Bang tiidsmcoming an ac-
cepted model for the early Universe. The near perfect thielbhaak body spectrum
has a temperature of 2.725 K with wavelength such that ohgens are in the mi-
crowave range. The significant point here is that the unifbtack body spectrum
implies the early Universe was in thermal equilibrium. Oftjmailar interest to cos-
mologists, however, are the small variations (anisot®prethis almost uniform tem-
perature at the level of approximately one parti. These temperature anisotropies
were first detected in 1992 by the Russian RELIKT-1 experimeadtsoon after by
COsmic Background Explorer (COBE) satellite [16]. More recettie anisotropies
have been measured to high precision by the Wilkinson Miax@\Anisotropy Probe
(WMAP) [9].

These observations imply that the Universe emerged fromBitpdang as a very hot

and dense expanding fluid. The current understanding ightsafiuid was comprised
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of an ionized plasma of protons and electrons and photorgh &hergy photon inter-
actions through Thomson scattering prevented neutralsabam forming. Due to this

photon scattering the Universe was, therefore, opaqus.aésumed that some initial
perturbations were present in this dense fluid. Overdergeng collapsed through
gravitational attraction until the photon pressure coredehis collapse. This resulted
in the generation of acoustic oscillations within the plassith regions of high density

plasma being hotter than low density regions.

As the Universe further expanded and cooled, the photorggieopped until the ion-
izing interaction of photons with ionized atoms could nogenoccur. Neutral atoms
could then form resulting in an epoch knownrasombination. The sudden drop in
photon scattering known aecoupling resulted in these photons travelling uninter-
rupted ever since. Photons from this era therefore provetapshot of conditions just

prior to decoupling.

At decoupling, photons which were in overdense regions bdakgin their uninter-
rupted journey after decoupling by first overcoming the getnal potential energy
within this region. These photons therefore emerged fraediécoupling epoch with
less energy (or lower temperature) than those photons ierdedse regions. This is
known as the Sachs-Wolfe effect [17]. This along with theustic oscillations de-
scribed above and other effects are precisely the origihetémperature anisotropy
that we observe today. The observed surface the CMB photangpypon the celes-
tial sphere centred on our location is known as sheface of last scattering This
represent the earliest time accessible to us through odisamg. Information about
conditions prior to this epoch may be accessible throughitgitaéonal wave detection

in the future.

1.5 Problems with the Big-Bang

1.5.1 Horizon problem

The size of the observable Universe is given by the distagbédould have travelled

during the lifetime of the Universe taking into account tinire expansion history. At
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any given instant, taking into account the dynamics of theaesion of the Universe
at that time, one can define a Hubble lengthias= H~!. This determines the size
of a region within which causality can operate. This lengthls is often called a
horizon [18].

Observations of the CMB have shown that the Universe is higddyropic with all
parts of the sky being the same temperature to one pai®in This suggests that
the Universe must have been in thermal equilibrium at sonmet po its history. In
order for this to occur the entire visible Universe must hbgen in causal contact at
one time. Photons from the CMB were free to travel uninteedggince the time of
decoupling approximately 400,000 years after the Big Bangs iiteans that the size
of the horizon at the time of decoupling was approximatel§),@00 light years across.
This corresponds to a region on the sky today which subtendmgle of around 2
degrees across. The CMB photons from one part of the sky hkee tamost the age
of the Universe to reach us and likewise with the CMB on the sfpgart of the
sky. These regions are certainly greater than 2 degreesaphso it is not possible,
within the standard Big Bang picture, for these two regionsateelever been in causal
contact to thermally equalize. One of the biggest probleritis the Big Bang theory
is understanding why the temperature of the Universe is goramacross such large

distances.

1.5.2 Flatness problem

The present day value for the total density param@tgrhas been shown to be very
close to oneWQ,, = 1.002370002% [19]) i.e. that the energy density of the Universe is
very close to the critical energy density (see Sec. 1.3)mHgaq. (1.13) this implies
that the Universe is spatially flat. The Friedmann equatigargby Eg. (1.7) can be

rewritten in terms of the density parameter as

K
a?H? "

Qtot - 1 — (117)

Using the matter and radiation domination relationsdi@) given in Sec. 1.2, —
1 « t in a radiation dominated Universe af,, — 1 « t¥3 in a matter dominated

Universe i.e. ), = 1 is unstable. Even a small deviation frdm,, = 1 at early
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times results in rapid departure away from one at late tifiks.question must then be
asked, why is the Universe so close to being flat today whersaraji deviation from

flatness at early times is greatly amplified in time.

1.5.3 Monopole problem

Within particle physics the concept of symmetry breakirgpketo the production of
relics such as magnetic monopoles (also cosmic stringsogadiatgical defects) in the
early Universe. In an expanding Universe the energy depéityese relics reduces as
matter p < a~3). In the early radiation dominated Universex «—*, therefore one

would expect relics to rapidly dominate the Universe.

1.6 Inflation

Inflation seeks to resolve the problems discussed abovediyigad period of rapidly
accelerating expansion soon after the Big Bang. In this soetiae scale factor is

accelerating:

a>0. (1.18)
From Eq. (1.8), this requires
1
P < —3P- (2.19)

This implies that for an accelerating expansion, the Usienust be dominated by

some substance with negative pressure.

The quasi-exponential expansion associated with inflatesults in regions which
were causally connected before the onset of inflation beigched to scales far be-
yond the horizon after inflation. Our current horizon coundfly grows as photons
from more distant regions of the Universe have time to reach Despite this our
observable Universe is still contained within a region thas initially much smaller
before the onset of inflation and therefore causally comuecthis resolves the hori-
zon problem as two regions of the Universe which appear lbgach others horizon
were, in fact, well within each others horizon in the earlyiwénse and so were able to

reach thermal equilibrium.
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The flatness problem can also be confronted by inflation thiepconsidering the de-
nominator in Eq. (1.17). During inflatioA remains almost constant whilstncreases
almost exponentially. From Eq. (1.17) any spatial cunefiirwhich exists initially is
quickly suppressed by the rapid expansiom.of herefore, rather than flat space being
unstable2.; is now driven to one during inflation. Heuristically, one ¢aragine that
any spacetime curvature that existed before inflation &ted to such a vast degree
(far beyond observable scales) that after inflation therbgée Universe is effectively

flat.

The monopole problem is also solved by simply ensuring thgtralics produced by

symmetry breaking are quickly diluted away during inflation

Any theory of the early Universe must solve the above probland also must provide
a means for generating the inhomogeneities observed iniheetde. The Big Bang
does not provide any natural explanation for these inhomeiges (with the exception
of topological defect theories [20, 21, 22, 23]) and so mastiene these were present

as part of the initial conditions.

As briefly mentioned in Sec. 1.1, the success of inflationrhderives, in a large part,
from the prediction of the generation of inhomogeneitiesiridy inflation the quasi-

exponential expansion of the Universe results in the aroptifin of vacuum quantum
fluctuations. These perturbations are stretched to farrzkyiee horizon becoming
classical spacetime curvature perturbations in the psd@#l, 24, 25]. Once outside
of the horizon, spatial curvature perturbations cannolveviurther as they are larger
than regions of causal contact. They are then said to beeffrdz Some time after

inflation has ended, perturbations re-entered the horizwerevthey are able to evolve
through gravitational collapse or expand through radmpoessure. The evolution
of these perturbations after inflation has ended is thouglaventually lead to the
rich structure we see in the Universe today. The exact naiutiee inhomogeneities
generated by inflation is still not well understood. Many mlsdf inflation have been
proposed, most with different predictions for the evolaotaf perturbations. With the
exception of PBHs and possible DM substructures, our onlyodppity of testing

models of inflation come from a very narrow range of largdeso@servations. These

lwe ignore the possible generation of isocurvature pertimbsthroughout this thesis.
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observations do, however, provide strong constraints enahge of scales where they

are relevant.

1.7 Slow-roll inflation

A simple way to achieve an accelerated expansion of the ts®vs with a scalar field
¢ known as the inflaton field. This field evolves along a potéritiay) given by a
particular model of inflation. Assuming homogeneity, thergly-momentum tensor of

the inflaton field is given by

1
T,ul/ = u@ﬁu@ — Guv (§gaﬁaa9085§0 - V(‘P)) ) (120)

where the energy density and pressure of an homogeneousiirileld are

1

be = 55 +V(0), (1.21)
Py = 5~ Vi(e). (1.22)

The dynamics of an expanding FRW Universe are given by thatems of motion of
the background (Friedmann equations). Using Eq. (1.7) apnqIEB) (settingk’ = 0)
along with Eq. (1.21) and Eqg. (1.22), these are given by

o _ 8m 11,
H* = 2 [290 +V(g0)] : (1.23)
a 8T 9
(%) - sz V-4, (124

wheremp, = G2 ~ 10%GeV is the Planck mass. The equation of motion of the

inflaton fieldy is given by the conservation of the energy-momentum tensor:
O+3Ho+V'(p) =0, (1.25)

where primes represent derivatives with respect to the field

From Eq. (1.24) an accelerated expansion of the scale f&ctor 0) is obtained if

0 < V(p). If we take the limiting case

O < V(p), (1.26)
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then one obtains an almost exponential expansion with & &#ipproaching a constant
Hubble parameter. This limit is known as a de Sitter Unive¥ggh this limiting case

the following approximation also becomes valid:
O <K< 3HY . (2.27)

Substituting these approximations into the Einstein @éqnat Eq. (1.23) and Eq. (1.25),

the approximations are equivalent to

H? SWW;”) , (1.28)
3mgp,
3Hy ~ —V'(y). (1.29)

We see from Eq. (1.25) that this second approximation camteepreted as the fric-
tion term of Eq. (1.25) dominating resulting in the inflatoeldi rolling very slowly
down the potential. As a result Eq. (1.26) and Eq. (1.27) aeenk as theslow-roll
approximations and result irslow-roll inflation . For slow-roll inflation to occur these
slow-roll approximations must hold. It can be shown thatsiogv-roll approximations
are valid when

ev K ]-7 nv <1 ) (130)

whereey andry are known as the potential slow-roll parameters and areetbas

omiy V() 2
v 162<V<¢>) ’ =D
- ompy (V'(p)

with ey = 1 being defined as the end of inflation. The potential slowpalameters,
therefore, describe the form of the potential which, in futetermines the dynamics

of the inflaton field along this potential through Egs. (1.28)L.29).

1.8 Hamilton-Jacobi Formalism

As discussed in the previous section, the condition for siolinflation is an approx-
imation only valid in the limit approaching de Sitter expems or equivalently, where

Egs. (1.28) & (1.29) apply. In a situation where < 1 andny < 1, the slow-roll
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approximations given by Egs. (1.30) are clearly violatedwver, this does not im-
ply inflation has ceased as the conditiph< V(¢) and thereforei > 0 may still be
valid. What this means is that slow-roll inflation is no longecurring but inflation
may continue, albeit not of the slow-roll variety. Indeeihce the end of inflation is
defined byey = 1, one would expect that any single field model of slow-rollatitin

must necessarily pass through this regime of slow-rollatioh.

It is evident that to fully track the evolution of the inflatdield to the end of infla-
tion with the formalism presented in Sec. 1.7 will be impbksi The description of
the dynamics given by Eq. (1.28) and Eqg. (1.29) becomesfinomuft asey, ~ 1 or

ny ~ 1 due to the breakdown of the slow-roll approximations givgnBy. (1.26)
and Eqg. (1.27). This poses a problem when it comes to fulljvéwyp and describing

particular models of inflation numerically as we do in Chapter

To overcome this, Eq. (1.23) and Eg. (1.25) can be simply nigem with H () as
the fundamental quantity instead ©f(¢). Assuming a monotonic field evolution

Eqg. (1.23) and Eq. (1.25) can be re-written as [26, 27]

127 3272
[H' ()] — —-H*(p) = ——V(9), (1.33)
m%z m4P1
m2
4

where Eqg. (1.33) is called the Hamilton-Jacobi equation.

One can think of the Hamilton-Jacobi equation as providirtescription of the dy-
namics of inflation in terms of geometrical propertiégy), rather than the potential,
V(¢), motivated from particle physics. Usind(y) as the fundamental quantity the

following slow-roll parameters can be derived:

omd (H'(p)\®

o T:(HM) ’ (1.35)
B m2 H”((p)

= —4;1 ( H(@) . (1.36)

These parameters are often called the Hubble slow-rolhpaters to distinguish them
from the potential slow-roll parameters given by Egs. (1811.32). We emphasize
that despite the unfortunate name, the Hubble slow-rodpaters Eqgs. (1.35) & (1.36)

are derived without invoking the slow-roll approximatid@8]. Rather, the derivation
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of the Hubble slow-roll parameters is exact and does notaelyaking the limiting

case of exponential expansion as seen for the potentiatrsitbwarameters.

The acceleration equation given by Eq. (1.24), can now beittew in terms of the

Hubble slow-roll parameter:

(é):;H%wﬂl—EM. (1.37)

a

Hence, inflation¢ > 0) occurs if the Hubble slow-roll parameter satisfies
eg < 1. (1.38)

The inflationary dynamics described by Eq. (1.33) and E@4(lare valid even in a

regime where the slow-roll approximation given by Eq. ().80violated.

To summarise, slow-roll inflation occurs if the conditiongam by Eq. (1.30) are valid
with the inflationary dynamics being described by Eq. (1.28) Eqg. (1.29). How-
ever inflation (not necessarily of the slow-roll varietyacs if the condition given by
Eq. (1.38) is valid with the inflationary dynamics being désed by Eq. (1.33) and
Eq. (1.34) [28].

The potential slow-roll parametets andry are in fact the limiting case of the Hubble
slow-roll parametersy andny where, in the slow-roll limiteg — ey and ny —
v — €v.

It has been shown that Eq. (1.35) and Eq. (1.36) are the ficstéwns in an infinite

hierarchy of slow-roll parameters [27]. Higher order teremns given by

2\ ! N=1 3(141)
o (mp\ (H) AV H
AH:(4W) gar ¢ 12l (1.39)

where the slow-roll parametey; is reproduced by Eq. (1.39) for= 1.

It can be seen that if the Hubble slow-roll parameters areipé to infinite order, this
is equivalent to specifying all the derivatives of the Hubparameter (or equivalently
the potential) to infinite order. This would amount to fullgstribing the form for the

potential along which any particular model of inflation exes.
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1.9 Power spectrum

In Sec. 1.6 we reviewed inflation as a possible method for #meation of perturba-
tions in the early Universe. In order to formalise the natirthese perturbations one

needs to consider their statistical properties.

It is well known that a wave or perturbatigf{x) at any instant, no matter how com-

plicated, can be decomposed into a superposition of diftevave vectork

f(k) = / f(x)e a3y | (1.40)

where wavenumbers are given by= |k

, and eaclk is inversely proportional to the
physical size of the corresponding perturbation of wawgtlenn or comoving sizeR
whereR = \/a(t). Hence, a perturbation of wavelengttin an expanding Universe
has a corresponding comoving wavenumbeefined by

k o @ . (1.41)

During inflation one is usually concerned with perturbasiam horizon crossing. This
is the scale below which causality can operate, and subs#dguthe evolution of
perturbations can occur. Hence, perturbations with payswavelengths equal to the

horizon,\ = H~!, have a corresponding comoving wavenumber given by
k=aH . (1.42)

Perturbations with comoving wavenumldex. « H are said to be outside of the horizon

or super-horizon. Those with> «H are said to be within the horizon or sub-horizon.

In cosmology the scalar perturbation of most interest isptfordial comoving cur-
vature perturbatiofR. We continue this section working in terms of this quantitgla
reviewR in more detail in Sec. 2.4. A commonly used measure of digioh of per-
turbations on any given comoving scalés the power spectruntz (k). The power

spectrum for gaussian perturbations is defined by the tviatporrelation function:
(R(k1)R*(ka)) = (27)°Pr (k)0 (k1 — k2) , (1.43)

where the angular brackets denote an ensemble avéRdgs the complex conjugate

of R andé?(k; —k») is a Dirac delta function which constraiks = ks. Itis common
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to define a dimensionless quantf®yalso known as the power spectrum

Pr(k) = (;—;) Pr(k) - (1.44)
Hence, ,
Pr(t) = (5 ) (R (1.45

Qualitatively the power spectrum tells us how the amplitofi@erturbations varies
on different scales. If the Universe has lots of overdenskuemlerdense regions on a

particular scale, the resulting power spectrum on thisesedl be large.

For a particular given model of inflation the power spectruaem e approximated

by [29, 30] . o
P2 (k) ~ <§) (m) ’k:aH , (1.46)

where the inflation model dependency of the power spectruarethep term through
either Eq. (1.29) or Eq. (1.34). We shall review a more adeuexpression for the

power spectrum in Sec. 5.4.

Here we have concentrated on the relatively simple caseabdrscurvature pertur-
bations as these are responsible for density fluctuationshwbad to structure for-
mation in the Universe. We shall investigate scalar pedtimbs in more depth in
the next chapter, however, we now describe another type rtdirpation which can
be treated independently from scalar perturbations knavie@sor perturbations, or
gravity waves. Tensor perturbations can produce detectiibtortions in the CMB,
hence, it is useful to define the power spectrum of tensougetionsP+ in a similar

fashion to Eq.(1.43):
(h(ky,7)h*(ke, 7)) = (27m)°Pr (k)5 (kg — ka) , (2.47)

whereh represents tensor perturbations to the mefricand wherer is conformal

time and is related to proper timdoy

ar= 3 (1.48)
a

One can also redefine the power spectrum of tensor pertansadis

Pr(k) = (Qk—;) Pr(k) . (1.49)
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1.10 Cosmological observables

It is common to take the form of the power spectrum to be a péawver
k™!

Pl = Palio) (1) (150
wherek is a pivot point usually taken to be the scale where obsemsif the power
spectrum are most accurate amgdis the scalar spectral index quantifying the ‘tilt’
of the power spectrum. In a Universe which has more struauarkarge scales than
on small scales, the spectral indexis < 1. The opposite is true for, > 1. For
the case oh, = 1 the power spectrum is the same on all scales and is known as a

scale-invariant (or Harrison-Zeldovich) spectrum.

From Eq. (1.50) the spectral index is

dInPr (k)
_ 1= SRV 1.51
s dlnk (1.51)

From the WMAP 7 year data [9]
Pr(ko) = (243 £0.11) x 1077, (1.52)

wherek, = 0.002Mpc~'. In the case of a power-law power spectrum given by
Eq. (1.50), the WMAP 7 year data has constrained the spegtiakito be [9]

ns = 0.963 £ 0.014 . (1.53)

However, a constant spectral index in Eq. (1.50) is an assamenly valid for a pure
power-law. In general the power spectrum can be parametkbiga Taylor expansion

about the pivot point

e ns(ko)—143 (%)ln(%)-ﬁ--
) (1.54)

Pr(k) = Palio) (-

0

Now considering the first 2 terms in the Taylor expansiore @pectral index., and
the running of the spectral indeb, /dInk) the observational constraints apbecome

significantly less constrained [9]

ns(ko) = 1.02725503 (1.55)
dn,
dInk

— —0.034+0.026 . (1.56)
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where the running of the spectral index is

dn, _ d’InPr(k)
dink ~  dlnk?

(1.57)

We see that to one sigma, the negative running in Eq. (1.5f)esis that small-scale
structure cannot not form in any significant abundance. iBhigly true if the higher

order terms in the Taylor expansion are zero. However, higiger terms in the Taylor
expansion are poorly constrained by the limited range aktuiiobservations. We shall

discuss this further in chapter 5.

One can define the scalar to tensor ratio

r

Pr

— 1.58
B (1.58)
From WMAP 7 year data [19]

r <036 (95% CL) . (1.59)

1.11 Number of e-foldings of inflation

The amount of inflationary expansion from some initial titn® the end of inflation

tena 1S given by the number of e-foldings defined as

CL(tend)

a(t)

where N decreases as a function of time until the end of inflation eefiasN = 0.

N(#) = In { } (" har, (1.60)

The initial time is usually taken to be when the current Hebbtale left the hori-
zon during inflation. Current observations probe a range alesccorresponding to

approximately 10-15 e-foldings of inflation [31, 32].

The total number of e-foldings which elapsed between owectlly observable scales
exiting the horizon during inflation and the end of inflati®dp,, is an important quan-
tity which we use in Sec. 5. To determine this one must assumedz| for the history
of the Universe. A common assumption is that following indatthere is a period
of reheating. Subsequent to this there is a period of radiatomination which gives
way to matter domination and finally to the current dark epatgminated epoch.

Here we assume the recent expansion due to dark energy hgbgiahe effect on the
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final results and so take the final epoch to be matter domindteam this one can

write [28, 31]
k B apHy, Qg Gend Qreh Qeq Hy Heq

= = . 1.61
agHy apHy Qend Qreh Qeq Ao Heq Hy ( )

where ‘end’ is the end of inflation, ‘reh’ is the end of rehaegtand ‘eq’ is the era of

matter-radiation equality. Hence, using Eq. (1.60)

k__ N end Greh Geq Hi Hoq (1.62)
CL()HO Qreh Qeq Q0 Heq HO

Using the relationg,, « a2 andp, o« a~* for the matter and radiation dominated

epochs respectively, one finds [31]

k 1 Preh 1 Peq
N(k) = -1 -1 -1 —
) n(aoHo) +3n(pend> +4n(preh
Hk Qg H,
| | e 1.63
+n(Heq)+n(aoH0> (1.6%)

An upper bound to the number of e-foldings before the end ftdition that cosmo-

logical scales exited the horizon is given by maximizing @8963). Assuming instant
reheating f..n = pena) @nd substituting in measured values [3&]; Heq/aoHy =
219Q0h, Heq = 5.25 x 10°h3Q2Hy, Hy = 1.75 x 10~ hmp), h &~ 0.7 and using the

slow-roll approximation given by Eqg. (1.28), one can wri3&]

1V
Neos = 68.5 + ~In—p- . (1.64)
4 my,

Using Eq. (1.28) and Eq. (1.31), the power spectrum givendpy(E46) can be rewrit-

ten in terms of the potential slow-roll parameters as [28]

8V 1
Pr(ko) ~ —. 1.65
= (ko) Sml oy (1.65)
Using Eqg. (1.52) this then gives [31]
1
Neos = 63.3 + Zlnev ) (1.66)

The potential slow-roll parametey; is expected to be small for most of the duration
of inflation except towards the end. Eg. (1.66), thereforeyides an estimate for
an upper bound on the number of e-foldings of inflation cqoesling to observable
scales:

Neos = 63 . (1.67)
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Relaxing the assumption of instant reheating reduégs. However, the physics of
reheating is poorly understood. We use this calculationstorate the number of

e-foldings of inflation for many inflationary models in chap5.

In this chapter we have reviewed the ‘standard cosmologth waibrief description
of the Big Bang and inflation theory. We have outline slow-ralflation and the
Hamilton-Jacobi formalism which we will use in chapter 5 wnstrain models of
inflation. The tightest constraints on the observable gtiestoutlined in Sec. 1.10
come from WMAP and large-scale structure as discussed. Weealb the possibility
that these observational constraints may be significandgikened if some assump-
tions about the form of the power spectrum are relaxed. Itiquéar, on scales much
smaller than those probed by current observations, largartiges from the observed
value of the power spectrum given by Eq. (1.52) may be passibhis may result in
significant formation of small-scale structure such as prafial black holes and ultra
compact minihalos. In this thesis we discuss the possilsladtion of these objects
along with constraints on models of inflation. We begin thet mdapter by review-
ing cosmological perturbation theory which is essentiakiating perturbations from

inflation to density perturbations.



Chapter 2

Primordial Perturbations

2.1 Introduction

The dynamics of an expanding FRW spacetime can be neatlyibedby the Einstein
equations (see Sec. 1.2). This provides a mathematicatipiésc for the evolution
of an homogeneous and isotropic Universe from the Big Bangv@t by radiation
domination through to matter domination. Inflation was jpsgd as a way of solving
key problems with the Big Bang, notably, the generation of hgemeity on extremely
large-scales. However, it is evident that our Universe isaxactly homogeneous or
isotropic. Rather there exist anisotropies as observeai@€MB and inhomogeneities
such as galaxy clusters, voids, solar systems and planeyssu#ccessful theory of the
early Universe must explain how these inhomogeneities amat. Whilst there are
several competing theories [33, 34, 35], inflation has pideebe the most popular.
This is largely because it predicts the generation of inhgeneities or primordial

perturbations in the early Universe .

According to quantum field theory empty space is not actuathpty but filled with
virtual particles and anti-particle pairs. The pairs apeal almost instantaneously
annihilate setting up quantum fluctuations of the spacetimaethey fill. These fluc-
tuations can be thought of as physical waves or fields. Onasaopic scales these
fluctuations average to zero and so we perceive space to baty eacuum. Infla-

tion is defined as a period of accelerating expansion driyearbinflaton field (see
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Sec. 1.6). During inflation, a small patch of the Universedilby quantum vacuum
fluctuations of the inflaton field is stretched to beyond thélble radius. In the process
the quantum fluctuations become classical perturbatiossthé space expands, new
vacuum fluctuations are also generated and stretchedrgyedéissical perturbations
of all wavelengths. These classical perturbations in tHd Generate fluctuations in
the curvature of spacetime known as primordial curvaturéugeations. These cur-
vature perturbations, in turn, seed perturbations in thigemdensity of the Universe.
Through gravitational infall, these regions eventuallyagoto form the structure that

we observe in the Universe today.

In the following chapter we briefly review cosmological laveperturbation theory.
Much of this topic was introduced and developed by Bardeeh |88 concentrate on
scalar perturbations as these are largely responsiblérémtsre formation in the Uni-
verse. For a more detailed description of linear pertuobetieory there are numerous

reviews [28, 37, 38, 39].

2.2 Metric perturbations

In order to produce a mathematical description of pertuwhatin an expanding Uni-
verse we start with a spatially homogeneous and isotropy BRckground spacetime

metric g,(f)y) First order perturbationgy,,,, are introduced to this background so that

Guw = 9 + Oy (2.1)
where
-1 0
gLOV) =a*(1) , (2.2)
U

and wherey;; = diag(1, 1,1) is the spatially flat Euclidean metric. The unperturbed

background FRW line element in Cartesian coordinates ietber given by
ds? = a®(7)(—d7? + da? + dy* + d2?) | (2.3)
The most general form for the perturbed metric line element i

ds? = a®(7){—(1 + 2¢)d7? + 2B,drda’ + [(1 — 2¢)6;; + 2E;;]dz’da’} ;. (2.4)
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whereg andy are scalar perturbationB; is a vector perturbation and;; a tensor per-
turbation. One can decompose any vector or tensor quantaycomponents, which,

in linear theory, evolve independently of each other. Infdilwing, ‘;’ represents
covariant spatial derivatives with respecttp. Hence, one can decompose any vector
perturbationX; into the sum of two components: a component constructed tham
gradient of a scalar quantity,;, and so is necessarily curl-fred,;; = 0, and a com-
ponent constructed from an intrinsically vector quantityieth we notateXi(V) and is
therefore divergence-freﬁi(;) = 0. In an alternative notation commonly used in the

literature, any vector quantity can be decomposed as
X, = x4 x = 4,4+ xM (2.5)

The parallel and perpendicular notation arises becauseundf spaceXi(“) is iden-
tified as a component which is parallel (or longitudinal) he tomoving wavevector
k. Similarly, X\*) is a component which is perpendicular (or transverse) tokthe

direction.

From Eq. (2.4), one can apply this decomposition to the me#iiableB;:

B; =B+ BY = B, + B (2.6)

%

where the curl-free (parallel) part is given 88, and is written as the gradient of
a scalar potentiaB, and the divergence-free (perpendicular) part is writterBH).
We follow closely the notation used by Liddle and Lyth [28]daperform a Fourier

transformation. The curl-free part can then be written as

B = g, (2.7)

where By is the amplitude of the scalar potentidlfor a given wave vectok. The

divergence-free property GBZ.(“ can be written as

kBY =0. (2.8)

Similar to the vector case, the tensor metric variabje can be decomposed. This
results in a scalar constructed curl-free component, amantally vector divergence-

free component and an intrinsically tensor divergence-fremponent. Again, in
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Fourier space, one can decompose and write the indeperatapbaents ofr;; as

S|
LE®Y = 0, (2.10)
kES =0, (2.11)

whereF) is the amplitude of the scalar potentialfor a given wave vectok.

This decomposition proves to be very useful when investiggberturbations by re-
ducing the number of free parameters. One can isolate $itetly tensor perturba-
tions to investigate gravitational wave production orimgically vector perturbations
to study vorticity. In the following, we consider only firstder scalar perturbations in

order to investigate curvature perturbations producechdunflation.

2.2.1 Coordinate change

The introduction of perturbations to a homogeneous flat FR\Wkground leads to
ambiguity in the choice of coordinates. In general relgtitinere is no preferred co-
ordinate system, so to obtain useful results that can be amdpo existing literature,
we must be able to transform from one coordinate system tthanoTo do this it is

usual to introduce a first order change in the coordinates:
T=1+¢, A (2.12)
where a tilde denotes a new coordinate systemédnd £°(7, z%) and&? = &i(r, x?)
are small arbitrary scalar and vector functions respdgtives discussed previously,
we can decomposg = £(, z¢) into the sum of curl-free and divergence-free compo-
nents:
¢ = gl 4 ¢ith) = 51 + ¢ (2.13)
Writing in terms of a Fourier expansion in comoving wave nursbk, the curl-free
component is '
¢l = —%ﬁk . (2.14)
and the divergence-free componentkig™) = 0. Perturbations to the flat FRW

background are, therefore, given by the following 4-vectmordinate shift

¢ = (L, (g + M) . (2.15)



Primordial Perturbations 25

We now consider the effect of a first order change of coordman the metric line el-
ement, Eq. (2.4), and obtain expressions for the metrialsées in any new coordinate
system indicated by a tilde. We begin by considering a chamgeordinates for an

arbitrary scalar quantity:
q(z%) = q(z* + &%) = q(z) + ¢..&~ | (2.16)
where we have used the Taylor approximation,

flx+a)= f(z)+af'(x) . (2.17)

For any scalar quantity
(%) = q(x%). (2.18)
Equating this with Eq. (2.16), the resulting scalar quantithe new coordinate frame
is
q(z%) = q(2%) = gal™ - (2.19)
Omitting the coordinate labels, the perturbation in a sagl@antity in a new coordinate

reference frame is given in terms of the old reference frayne b

0q = 0q — qal™ . (2.20)
Similarly for vector quantities}s, a change in coordinates results in the following
transformation
Vs(#%) = Vi(a” + &%) m Va(a) + Vgl . (2.21)
Also for vector quantities

ox"

Vs(i”) = 938

Vo(a”) = () — €LV, (") = Va(a®) = Vgl . (2.22)
Equating with Eq. (2.21) gives
‘7[3(955) = V,B(lﬁ) - annﬂ — V€, (2.23)

hence,
0V = Vs — Vi€l — V€' . (2.24)

For tensor quantities,,,,, a change in coordinates results in the following transterm
tion

G (") = G (27 + &) = G (27) + Guvin ™ (2.25)
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and

SO ox> OxP
Gul3) = ST (1) = (5 - £)00 - o) . (2:26)

so that to first order in perturbations
G (87) = (805 — £,00 = €00 90(27) = g (27) = gaiyy — 9ol - (2.27)
Equating this with Eq. (2.25) and changing dummy indiceggiv
09 = 090 = 93E0 = i€l — G - (2.28)

For perturbations about a FRW spacetime we can deal withth@& and:; compo-

nents separately (n.b. on a flat space backgrgur« g;’)

67;00 = dgoo + 2a(a§0)’ , (2.29)
390; = 0gos — a*(€; + €M) + a?e”, (2.30)
0gi; = 0gij — 20a'€%6;; — a*[€") + & + 28], (2.31)

where primes are derivatives with respect to conformal ti@r. By inspection of

the general perturbed metric, Eq. (2.4), we see that
5g00 = —2a*6 . (2.32)
Using Eq. (2.29), the coordinate transformation relatmmtiie metric variable is
o=0—¢& —HE (2.33)
where = aH = o' /a is the conformal Hubble parameter. By inspection of Eq. (2.4)
8g0i = a’B; . (2.34)

Using Eg. (2.30) the coordinate transformation relationtfe metric variableB; is
given by
Bi=B;— (£, +&M) + & . (2.35)

Similarly, by inspection of Eq. (2.4),

8gij = a’[—2¢d;; + 2E;5] . (2.36)
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Using Eq. (2.31), ignoring divergence-free vector compsiewe can split the equa-
tions into two parts: the first dependent @n, and the other dependent opy”: The
part dependent of}; yields

=1+ HE (2.37)

and the part dependent op " gives

Eij - Eij - f;i]’ . (238)

The general metric line element, given by Eq. (2.4), undexadinate transformation

can be written
ds? = a*(d7){—(1 4 2¢)d7* + 2B,;d7d#" + [(1 — 2)d;; + 2E;;]d7'di’} . (2.39)

Using Eq. (2.7), Eq. (2.9) and Eq. (2.14) one can perform gaesion in Fourier
modes of Eq. (2.33), Eq. (2.35), Eq. (2.37) and Eq. (2.38hotimg all divergence-
free vector or tensor components, the resulting scalaren@rturbations in any new

coordinate frame are given by

0=0— " —HE (2.40)
B=B—¢+ke, (2.41)
=+ HE (2.42)
E=FE— k¢ (2.43)

where we have omitted the subscriplabels.

In order to obtain useful information about the evolutiomtter and radiation pertur-
bations, we now consider the effects of a coordinate tramsfion on the density and
velocity perturbations of a single fluid within this pertecbFRW background. For
a perfect fluid with density, pressure” and 4-velocityu”, the energy-momentum
tensor is given by

T = (p + P)uru, + POt + «t | (2.44)

wherer” is the anisotropic stress tensor and the scalar quantign be written in

terms of a background homogeneous pamlus a small density perturbation

IO(Tv xz) = pO(T) + 5/)(7-7 Xi) : (2.45)
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The perturbation in the density then transforms under adioate change according
to Eq. (2.19)

op=dp—pE". (2.46)
Similarly, the inflaton fieldp can be decomposed into a background part and a per-

turbed part:
(1) = wo(7) + dp(7,x') (2.47)

where the inflaton perturbation transforms as
5 = 80— €" . (2.48)
Using the energy conservation equatiop7® = 0, one can obtain, from Eq. (2.44),
the continuity equation
p'=-=3H(p+P) . (2.49)
Substituting this into Eq. (2.46) gives
0 =0+3H(1+w)e", (2.50)

wherew = P/p is the equation of state andis the density contrast which, using
Eq. (2.45), is defined as

s _r=r (2.51)
P Po

The 3-velocity,v?, given by the spatial part of the 4-velocity!, can be decomposed
into curl-free and divergence-free components, as destiibeviously. The curl-free
partv*(l) can be expanded into Fourier wave modes:

ik

vl = -V (2.52)

whereVj is the amplitude of the velocity potential (or peculiar \@tg) for a given
wave vectork. Since the flow is irrotational for scalar perturbations,[28], we need
only consider the curl-free part. Using Eq. (2.12) and angtthe subscripk labels,

the velocity potential transforms as

V=V+¢. (2.53)

Egs. (2.40)-(2.43) along with Eq. (2.50) and Eqg. (2.53) arpartant equations which
allow us to work in any convenient coordinate system andstaam to another coor-
dinate system by choosing appropriate valuestfand£®. This is known as a gauge

transformation.
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2.3 Choice of gauge

For an unperturbed Universe the comoving gauge represemtgjae choice of coor-
dinates. Here, a comoving observer is simply one which isied by the expansion
of the Universe. In this gauge the threading (hypersurfate®nstant spatial coor-
dinates) of comoving observers are free-falling (vanightrvelocity) and the slicing
(hypersurfaces of constant time) is orthogonal to the thingg[28]. As these proper-
ties are true everywhere in an unperturbed Universe, theoeimg observer is a pre-
ferred coordinate system. For a perturbed Universe, hawthere exists no preferred
coordinate system. The introduction of perturbations ra¢hat different observers in
the Universe will measure different properties. One mustdfore work with equa-
tions in a particular coordinate system and require thatthetions must reduce to
those of flat space in the limit of vanishing perturbationspaiticular set of coordi-
nates which satisfies this condition is callegleaige[36]. Alternatively, one may work
in a coordinate system in which quantities are gauge-iamaby construction (this is

discussed further in Sec. 2.4).

The choice of gauge is equivalent to fixiggand Y and is largely dependent on the
most convenient choice for any given problem. Gauge chsioally relevant for per-
turbations outside the horizon. On sub-horizon scales itferehces between gauges
becomes negligible. There are several commonly used gangfes literature but we
focus on two in particular; the conformal Newtonian gaugeere the evolution equa-
tions take on a particularly simple form, and the comovirtgltoatter gauge which is

a specific example of a comoving gauge.

2.3.1 Conformal Newtonian gauge

The conformal Newtonian or Longitudinal gauge [36, 40] isoavenient and mathe-
matically simple choice of gauge. In this gauge, fixed timpdrgurfaces (slicing) are
orthogonal to fixed spatial hypersurfaces (threading)o Adsisotropy in the expansion
rate on spatial hypersurfaces (shear) vanishes. The ntiaielement in the confor-

mal Newtonian gauge is given by setting the following metaciables in Eq. (2.39)
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to zero:

B=E=0. (2.54)

The metric line element in the conformal Newtonian gaugbeéstgiven by
ds® = a*(7) [~ (1 4 2¢n)d7* + (1 — 2¢n)d;dz'da?] | (2.55)

where a subscript ‘N’ denotes the conformal Newtonian galrghis gauge the metric

variables coincide with the gauge-invariant Bardeen p@kEn{36] o = ¥, and
¢N = —\I/H

For a fluid with energy density, pressure” and four velocityu”, the components of
the energy-momentum tensor are given by Eq. (2.44). Thedtimequations, given
by Eqg. (1.6), can be solved to first order in perturbationsaf@adiation dominated

Universe ( = 1/3) giving the energy and momentum constraints as

—k*pn — 3HYL — 3H*pn = 27-[251\1 , (2.56)
3
—k(Yy +Hon) = 57%2(1 +w)W (2.57)

where we have used the background solution to the Einsteiatieqs:
H? —H =47Ga*(p+ P) = g?—[z(l +w) . (2.58)

Substituting Eqg. (2.56) into Eq. (2.57), the density caosttfar modes well inside the

horizon ¢ > H) is given by the familiar Newtonian Poisson equation:

2 (k\’
=— = . 2.
i--2(LY 259
The spatial component of the Einstein equations is
2
XA 2HYG + Hoy + QH + H)on = 4nGa®(§ Py — gkzﬂN) : (2.60)

wherelly is the scalar part of the decomposed anisotropic stressrtefise pressure

perturbation) Py can be split into an adiabatic and a non-adiabatic @&rt,:
P/
The spatial off-diagonal Einstein equation is

E*(Yn — én) = 3H*(1 + w)Ily . (2.62)
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For isotropic fluidslly = 0 and soyy = ¢n. This implies that in the conformal

Newtonian gaugepn corresponds to the familiar Newtonian gravitational ptgn
Finally the continuity and Euler equations are given retipely by

3

151@ = kVx+ 3¢y, (2.63)

1 2

2.3.2 Comoving orthogonal gauge

A natural choice of gauge is that of a comoving observer. Cangogauges are a
class of gauges in which an observer moves with the expaasidany perturbations
within the Universe. A subclass of this type of gauge is cHillee comoving orthogonal
gauge in which spatial coordinates are chosen so that tledo8ity of a single fluid
vanishesyp® = 0. Orthogonality of the constant time hypersurfaces to thveldeity,

u*, demands that the momentum vanishes also. To show this\tbdiy is written

as
drdz* 1 ,
b= 2 — Z(1.0Y) . 2.
dt dr a< v) (2.65)
Usingu, = g,,u” and Eq. (2.4) gives
W:a—JAEM+QM], (2.66)

to first order in perturbations. From Eq. (2.65) a vanishing®city and orthogonality

of the constant time hypersurfaces to the 4-velocity thegvlies
u =wu, =0. (2.67)

From Eg. (2.66) along with Eq. (2.7) and Eq. (2.52), the compwrthogonal gauge
is then given by setting
B+V=0. (2.68)

2.3.3 Comoving total matter gauge

A convenient multi-fluid extension to the comoving orthogbgauge, as described
above, is to use the rest frame of the total matter where tiad4emomentum is or-

thogonal to the constant time hypersurfaces [39, 28]. Weeniovhe Total-Matter
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gauge (TM) by displacing the slicing of the conformal New&mngauge so that it be-
comes comoving but leave the threading and the spatial owies$ unchanged. This
is done by imposing the following conditions: from Eq. (2.5&e see that in order
to prevent a relabelling of the threading we musté&et 0. Also, the condition for a
comoving slicing given above iB + V = 0. From Eq. (2.41) and Eq. (2.53), we can

therefore write

B+ Vin=B+V +k& =0, (2.69)
Hence,
1
€ =—2(B+V). (2.70)

The conditions imposed in order to perform a gauge transdtom from the conformal
Newtonian gauge to the Total-Matter gauge are
W
-
Substituting Eq. (2.71) into Egs. (2.40)-(2.43), the tfarmmation equations are then

£=0, €0 = (2.71)

given by the following relations:

drv = on + %VN ; (2.72)
By =Bxy — Va =Wy, (2.73)
R = v = YN — %VN , (2.74)

Ery=Ex=0. (2.75)

Substituting Eq. (2.71) into EqQ. (2.50) and Eq. (2.53), teesity and velocity potential

transformation equations are

~ SHW;
brse = 0y = "= (L4 w) (2.76)
Vin = W . (2.77)

2.3.4 Uniform curvature gauge

The uniform curvature gauge [39, 41] is one in which spatyalidisurfaces are chosen
so that the spatial part of the metric perturbation is zerois Tequires) = E = 0.
Eq. (2.42) and Eq. (2.43) then gives

&= ¢ = —% : (2.78)
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In any comoving gaugéN,p = 0[42]. From Eq. (2.48) one then finds for the comoving
gauge:
€0 = 0p : (2.79)

Using Eq. (2.42) one can then write
~ 4]
R=Yum =0 +H_; (2.80)

where the subscript ‘com’ denotes the comoving gauge. Henedd can be defined
in any particular gauge. From Eq. (2.80) it is evident tRatpresents the gravitational

potential on comoving hypersurfaces
R = |50 - (2.81)

Substituting Eq. (2.78) into Eq. (2.48), perturbationshia inflaton field in the uniform

curvature gauge are given by

g\g—/ouniform - 590 + SOIE ) (282)
H
where a subscript ‘uniform’ denotes the uniform curvatuaeige. Using Eq. (2.81)
perturbations in the inflaton field on uniform curvature hngoefaces in terms of the

comoving curvature perturbation are given by

S\(/puniform = %R . (283)

2.4 Curvature perturbation

The spatial metric tensor at a given fixed conformal timeirgdic is given by the
coefficient ofdz’dx? in Eq. (2.4). The spatial curvature scald®) = g R;; is given
by a contraction of the spatial part of the Ricci tenggy with the spatial part of
the metric. Similarly the spatial Ricci tensor is constrddi®m the spatial Riemann

curvature tensoR;; = R;,; where the Riemann tensor is defined as

;lkm = akr;lm — amrgik + F;krym — r;mryk (2.84)

and the Christoffel symbols are dependent on the metric:

T
I = §9mz (OkGmj + 0jGmk — OmGjk) - (2.85)
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The resulting spatial curvature on constant conformal thppersurfaces for a flat
FRW background Universe is [36, 39]

k2
R®) = —4=4 . (2.86)

a?

We recall that) is a gauge dependent variable which under a change of catedin
transforms according to Eqg. (2.42). In any comoving gaugeait be defined by
Eq. (2.80). We see from Eq. (2.80) that althoughs defined as the curvature per-
turbation in the comoving gauge, it can be constructed framables which have not
yet been defined in any particular gauge. As sRcis often rather confusingly called
a gauge-invariant variable. To put it more accurat®lys a gauge-dependent variable
(comoving gauge) which is constructed from gauge-invagaiantities and so can be

described agauge-invariant by constructidd2].

We now wish to relate comoving curvature perturbations ttrimperturbations in the

conformal Newtonian gauge. Using Eqg. (2.57) along with 2qg74) we can write

B 2, UN + Hoén
R =Yn+ SH—(l o) (2.87)

For an isotropic fluid{x = ¢n), EQ. (2.87) has the growing solution for any epoch
wherew is constant [28, 42]:

(3 + 3w)

oN =

It can be shown by taking the first derivative of Eq. (2.87) aisthg the Einstein
gravitational field equations that the comoving curvategyrbationR is constant on
superhorizon scales [29, 43]. This can also be shown withsiig the gravitational
field equations by simply invoking the local conservatiomoérgy-momentum [44]

The constancy ofR on superhorizon scales makes this quantity ideal as a tool fo

investigating perturbations generated by inflation.

Using Eq. (2.59) for an isotropic fluid we can find a relatiapsbetween the density

contrast and the curvature perturbation on comoving hypfrses:

5(k,t) = —% (%) R(k). (2.89)

1The curvature perturbation on comoving hypersurfacedase® to that on uniform density hyper-
surfaces byR = —(.
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Using Eq. (1.45) the power spectrum of density perturbatietthen simply related to

the power spectrum of comoving curvature perturbations by

A+ w)? k!
Ps(k,t) = 5+ 3w) (E) Pr(k) , (2.90)
where
3
Path) = (s ) ) 2.9)

As we can see from Eq. (2.89), the density perturbation isgtnal to the comoving
curvature perturbation multiplied biy: /a H)?. Previous authors [45, 28] have treated
this by settingc/aH = 1 so thaty «« R. This is an approximation which does not take
into account the evolution of density perturbations preooahd post horizon crossing.
It simply equates the value at horizon crossihg- a H) to the entire evolution. As we
shall later see, this has important consequences for thg sfistructure formation in
the Universe. We therefore do not make this approximatidnnstead retain the time
dependentk/aH)?* term in order to more accurately trace the evolution of dgnsi

perturbations away from horizon crossing.

Fig. 2.1 shows the ratio of the density to the comoving cumeaperturbation as a
function ofk/aH. The dotted red line shows the case where, for each comoang-w
mode, prior to and post horizon crossing, the rafi® given by Eq. (2.89) is evaluated
with the & /aH prefactor set to unity throughout its evolution. The dasbke line

shows the case where, for each comoving wavemode, thejydtias evaluated using

Eqg. (2.89) retaining the time dependéhfa H)?* term.

From Fig. 2.1, retaining thék/aH)? term in Eq. (2.89) results in an initial growth
in the ratiod /R prior to horizon entry. However, as we see from Fig. 2.1, thifo
continues to grow quadratically as the perturbation ewivethe sub-horizon limit
(k> aH). This would imply that density perturbations grow indetfty at late times.
Clearly Eq. (2.89) does not completely specify the evolubbthe density perturba-
tion on all scales. We therefore find a more accurate relgtipnbetween the density

contrast and comoving curvature perturbation in the nestice
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6(k.t)/R(K)|

log,, (k/aH)

Figure 2.1: The ratio of the density perturbation to the comoving cwrkatperturbation as a
function of k/aH. The dotted red line shows the relationship given by Eq.9QRe¥aluated with

thek/aH prefactor set to unity. The blue dashed line shows the ratendoy Eq. (2.89) retaining
the (k/aH)? term. The black solid line shows the ratio given by Eq. (2)100

2.5 Density perturbation evolution

Green, Hofmann & Schwarz [46] studied the density contrassub-horizon scales.
We use their analysis in order to derive expressions forgnuial perturbations valid
on all scales during radiation domination. We first work ie ttonformal Newtonian
gauge using Eq. (2.55) and then perform a gauge transfamitithe comoving total
matter gauge as described in Sec. 2.3.3. Using Eq. (2.56gn(2.57) along with
Egs. (2.60)-(2.64) for an isotropic fluid in a radiation doated Universe, we find the
differential equation

N+ %% + %¢N =0, (2.92)
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wherex = kt = k/aH and we have redefined primes: d/dz. The solution to this

equation can be written in terms of spherical Bessel funstion

. k)
n=tYn=C 3 (2.93)
On = % (2jlff) — ol — mﬁ(@) C (2.94)
V= (jaw) = Sio()) €. (2.95)

whereC is a normalisation constant arc= z/v/3. We normalise these expressions
using the curvature perturbation on comoving hypersusgf@evhich in terms of the
gauge-dependent curvature perturbationis defined by Eq. (2.74). Using Eq.(2.94)
and Eg. (2.95) we find

1
R=——j0(r)C . 2.96
2\/5170(/{’) ( )
Taking the superhorizon limiti(< aH) we find
1
Re<l)~ —C=R,y, 2.97
("i ) 2\/3 0 ( )

whereR is defined as the value @& in the superhorizon limit. We substitute this
normalisation into Egs.(2.93)-(2.95) and using Eqgs. (R(2677) for a radiation dom-
inated Universe, we find the density and velocity pertudratiin the Total-Matter
gauge:

dorm = —4k71(K)Ry (2.98)

Vin = —V3[kjo(k) — 251 (k)] Ro - (2.99)

Substituting forx = 2/+/3 and normalising the comoving curvature perturbation in
the super-horizon limiR, to the value found by WMAP (given bR in Sec. 1.10),

EqQ. (2.98) can be rewritten as

4 k k
o= ——7|— | h1(——)R . 2.100
T™ 3 (aH) ]1(\/§aH> ( )
In the super-horizon limif, (k) ~ v/3/9z and so
40k
~N——|— 2.101
i~ (27) % (2:101)

in agreement with Eq. (2.89) far = 1/3. In the sub-horizon limit we now find

drm ~ 4 cos < (2.102)

\/§kH) K
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The solid black line in Fig. 2.1 shows the density to comovingvature perturba-
tion ratio given by Eq. (2.100). As can be seen, all threea@daat horizon crossing

k = aH as expected, however, large departures prior to and pogtonocrossing
are evident. In particular, using Eq. (2.100), we have ataingrowth in the ratio
d/R prior to horizon entry but no longer have an indefinite insgean this ratio af-
ter horizon crossing. RathéyR has an oscillatory nature in the sub-horizon regime.
This agrees with the current understanding of structurm&tion, whereby, on sub-
horizon scales, density perturbations grow through gaienal attraction. This even-
tually leads to a rise in radiation pressure and a subsegux@ainsion. The result is
an oscillatory behaviour of perturbations on sub-horizosles. Fig. 2.1 reflects this

oscillatory property.

Using Eg. (2.100) we can write the power spectrum of dengtyuyobations in terms

of the power spectrum of comoving curvature perturbatians a

Ps(k,t) = % (%) 32(k/V3aH)Pr (k) . (2.103)

The above equation is a new, more accurate expression, wakek into account the
full time evolution of perturbations. As expected, it redad¢o Eq. (2.90) in the super-
horizon limit, however, it also takes into account the etiolu of perturbations in the
sub-horizon regime. We emphasize that to accurately réh@gower spectrum of
density perturbations to the power spectrum of comovingature perturbations, one
should use our new expression given by Eqg. (2.103) ratharttieapproximate expres-
sion given by Eqg. (2.90). This new expression will becomevaht in later sections
where we will use it to calculate constraints on the powecspen of comoving cur-

vature perturbations from observational bounds on the @doure of primordial black

holes and ultra compact mini halos.



Chapter 3

Primordial Black Holes

3.1 Introduction

The Universe contains inhomogeneities, as observed by#sepce of galaxy clusters
and large-scale structure. This along with the discovergroexpanding Universe
suggests that the structure observed today evolved frone guitral inhomogeneities
early in the history of the Universe. This theory was supgmbiiy the later discovery
of the CMB. This prompted Zeldovich & Novikov [47] and Hawking &arr [48,
49] to consider the possibility that very large amplitudeamogeneities, or density
perturbations, may also have existed in the early denseesgvand may have been
sufficiently large to collapse and form black holes. Thesé/dadniverse black holes

formed from initial perturbations are known Bemordial Black Holes (PBHS).

Of particular interest in this thesis are PBH formation froentprbations generated by
inflation. There are many scenarios in which large amplifpeieurbations on small-
scales may arise. These include a simple power-law powetrsipe of perturbations
with a blue tilted spectral index( > 1) (see Sec. 3.4 for further discussion) or a more
complicated form for the power spectrum of perturbatiom®riporating a running of
the spectral index (and possibly higher terms, see Sec).1RBHs may also form
from sharp peaks in the power spectrum on small-scales.eTiisbe discussed in

more detail in chapter 5.

PBHs may also form via alternative mechanisms to inflatiorhsag a softening of
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the equation of state [50, 51], the collapse of cosmic s#r{Bg, 53], collapse of do-
main walls [54, 55] or bubble collisions [56, 57]. For a ravief PBH formation see

Refs. [58, 59, 5, 60]. We do not consider these possibilitezs.h

Since the formation of PBHs was suggested, thorough seahelvesdbeen undertaken
to find these objects. These involve possible detectionmihga-ray emissions [61, 62,
63, 64, 65] and other approaches such as gravitationahigesiects [66, 67, 68, 69].

PBHs have also been suggested as a possible candidate fonatek [70].

As PBHs form from large amplitude, small-scale primordiaitpdoations, the abun-
dance of PBHs in the Universe reveals information about theilution of these per-
turbations. Although searches have so far found no evidentle existence of PBHs,
important information about the early Universe can stilbb&ined from them. Specif-
ically, that their abundance in the Universe must be redgtigmall in order to evade
detection. Constraints on PBH abundance [71, 6, 5] (see Rebi[3] recent review)

can then be translated into constraints on the primordiasitieor curvature perturba-
tions. Indeed, before detailed observations of the CMB from A¥VPBHs provided

the strongest upper limits on the spectral index [72, 73, 74]

In the following work we review PBH formation and evaporatioiVe compile con-
straints on PBH abundance and use these to find constrainte @ower spectrum of

primordial curvature perturbation.

3.2 Formation of PBHs

A PBH is formed if an overdense region is large enough to oveectne pressure force
resisting gravitational collapse. The criteria for PBH fation can be given in terms
of the density contrast defined in Eqg. (2.51). A PBH will formhatizon crossing if

the smoothed density contrast in the comoving gauge is [49]
de < Opor(R) < 1, (3.1)

whered, is a critical density contrast which can be estimated by dggirement that

the radius of the overdense region at maximum expansiontedatger than the Jeans
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length in a radiation dominated Universe [49, 75]. A sim@éalation finds

1
Y = — . . 2
Oc ~ W 3 (3.2)

The upper limit in Eq. (3.1) arises as perturbations exeegthis would form a sep-
arate closed Universe [49, 75, 76]. The resulting mass oP#id formed is usually

taken to be a fixed fractiofi,, = w?/? of the horizon mass [75, 73]:

Mgy = fuMnu, (3.3)
= \J}\; (tipl) mpy (3.4)

whereg, is the total number of effectively massless degrees of eed

With increasingly more sophisticated numerical hydrodgital studies the value of
the fraction in EqQ. (3.2) has fluctuated over the years (Ségf¢r a review). More re-
cent numerical simulations investigating near criticatpbmena in gravitational col-
lapse [78, 79, 80] have suggested that the PBH mass may depethe size of the
fluctuation from which it forms [81, 82, 77]. We discuss thesgible effects of this in
Sec. 3.6. Shibata & Sasaki [83] used an alternative methostdiolying PBH forma-
tion using metric perturbations rather than focusing orsdgmperturbations. Green et
al. [45] subsequently used this result to obtain the comegdimg density perturbations
for PBH formation using peaks theory [84] rather than Pregdse€hter theory. They
found that the critical density contrast is closestto~ 1/3 as originally found by

Carr [49]. Therefore, throughout, we use the critical valiveig by Eq. (3.2).

From Eq. (3.4) we see that PBHs can form with a wide range of @sassgith those
that formed at the Planck time having a mass of the oidggy ~ 10~ 2mp; (Where
we have used! =~ 100). In contrast black holes which form at the present epocim fr

the collapse of a stellar core, cannot have a mass lesstHai ©.

3.3 PBH lifetime

The possible existence of PBHs led Hawking to study their turammechanical prop-
erties. This lead to the discovery that black holes radia¢entally with a tempera-
ture [85, 86]:

he? 1083 ¢
T =——— ~1.06 GeV . 3.5
PBH 87TGMPBHI{ZB < ) ¢ ( )
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The current understanding of PBH evaporation [87] is that P&ikectly emit all par-
ticles which appear elementary at the energy scale of the PBHhave rest mass less
than the black hole temperature. Thus if the black hole teatpee exceeds the QCD
confinement scale, quark and gluon jets are emitted diredthe quark and gluon
jets then fragment and decay producing astrophysicalbjestzarticles: photons, neu-
trinos, electrons, protons and their anti-particles. gsionservation of energy and
taking into account the number of emitted species the massrliie can be written

as [88]
dMppn
dt

wherep( Mppy ) takes into account the number of directly emitted speciéd/epy) =

= —5.34 x 10*°¢(Mppy) Mppy g5, (3.6)

0.267go + 0.147g, /2 4 0.06g; + 0.02g5/2 + 0.007g, Whereg; is the number of degrees
of freedom with spirs) and is normalized to one for PBHs with magsgy > 1017 g
which can only emit photons and neutrinos. For lighter PBHsx 104 ¢ < Mpgpy <

10'7 g) = 1.569. Integrating Eq. (3.6) the PBH lifetime is then given by [88]
T2 6.24 x 107 M2puo(Mppn) 's. (3.7)

From the WMAP 5 year data [89] the present age of the Univerge=s13.69 +0.13
Gyr 1. The initial mass of a PBHs which is evaporating today is tfoeeg[90]

Mppn ~ 5 x 10'g (3.8)

while less massive PBHs will have evaporated by the present da

3.4 Inflation and PBHs

Inflation provides a mechanism for the generation of derségurbations. If PBHs
form from these density perturbations, one can place liontthe spectrum of pertur-
bations by requiring that PBHs are not over-produced. Olbsenal limits on the PBH
abundance can be translated into constraints on the priahardvature perturbation.
This can then be used to constrain models of inflation whiedlipt large amplitude

perturbations on small scales (see Chapter 5).

1Using the more recent WMAP 7 year datg & 13.75 & 0.13) does not change the results signifi-

cantly.
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The power spectrum of the primordial curvature perturlmatiRy (k), on cosmological
scales is now accurately measured by observations of theicasicrowave back-
ground (CMB) [89, 9] (see Sec. 1.9) and large-scale structe92]. These mea-
surements can be used to constrain, and in some cases exofiat®n models (c.f.
Ref. [93]). Cosmological observations span a relatively smaalge of scales (comov-
ing wavenumbers betweén~ 1 Mpc' andk ~ 1073 Mpc™'), and hence probe a
limited region of the inflaton potential. The PBH constraiatsthe curvature power
spectrum are fairly weak; the upper limit is many orders ofmaude larger than the
measurements on cosmological scales. They do, howevdy,@mp a very wide range
of scales (fromk ~ 1072 Mpc ' to k ~ 10?* Mpc ') and therefore provide a useful
constraint on models of inflation [94]. The simplest assuomptor the power spec-
trum is a scale-free power-law with constant spectral indeas given by Eqg. (1.50).
In this case the PBH abundance constraints require 1.25 — 1.30 [72, 73, 95, 96].
The spectral index on cosmological scales is, however, nowrately measured:
ne = 0.96379:011 [89]. In other words, if the power spectrum is a pure powerdlaen
the number of PBHs formed will be completely negligible. Huese if the primor-
dial perturbations are produced by inflation then the powecsum is not expected to
be an exact power-law over all scales [97]. This realiseptssibility that on small-
scales the amplitude of perturbations may be large reguttithe significant formation
of PBHs.

We focus in the following on the standard case of PBH formatiwhich applies
to scales which have left the horizon at the end of inflatiohhds recently been
shown [98, 99, 100] that PBHs can also form on scales whichriesee the horizon
during inflation, and therefore never become classical. Méa@nly consider gaussian
perturbations and a trivial initial radial density profiend refer to Ref. [101] for the
effects of non-gaussian perturbations and to Refs. [83, ftdstimates on the effect

of deviations from a trivial initial density profile.
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3.5 Initial PBH abundance

Before we outline the observational constraints on PBH aluwreléo constrain prop-
erties of the early Universe, we must relate current PBH adooes to initial abun-
dances. Taking into account the cosmological expansiennttial PBH mass fraction,

B(Mpgr), is related to the present day PBH denditys, by
o a; a4
(M) = 20— o () o gp () 39)

Crlt pcrit Cleq eq

where ‘eq’ refers to the epoch of matter-radiation equalitglp..;; is the critical energy

density defined in Eqg. (1.12). The entropy in a comoving vausnis given by
s = gusa®T? | (3.10)

whereg,, refers to the number of entropy degrees of freedom7argithe temperature

of the Universe. In an isotropic Universe the entropy is tamy18] and so
a g;;/?’T_1 . (3.11)

Using the radiation density, = g—;g*T4, and horizon mass\/y = %pH_S, we obtain

112 7 ar N\ 1/2
M) = Q9 [ 9 2 12
-1 (5) (1)

where we have takeqy, ~ g,. The horizon mass at matter-radiation equality is given

by (c.f. Ref. [45])

AT 8t o
M = eqHeg' = — 2. 3.13
H 3 p q 3 aequq ( )
Inserting numerical values given by Ref. [89]

Q0 h* = 417 x 1077, (3.14)

Pt = 1.88x107¥h2gem™ (3.15)

ke = 0.07Q°h*Mpc™' (3.16)

ey = 2400090 1% (3.17)

QY h? = 0.1326 £ 0.0063 , (3.18)

and usingy! ~ 100 andg®® ~ 3 [103] gives

M =1.3x 10 Quh?)?g . (3.19)
H
Using Eq. (3.3) we find
1 Mpgn  \'"?
Mpgy) = 6.4 x 1071 O} : 3.20
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3.6 PBH abundance constraints

PBH constraints can, broadly, be split into two classes: dltbat arise from their
present day gravitational consequences and those thatfeoma the products of their
evaporation. In both cases, in order to constrain the pdmbdensity, we need to

translate the constraints into limits on the initial PBH mxastion.

Throughout we will assume that the PBHs form at a single epadhlzeir mass is a
fixed fraction of the horizon masklpgy = fi My, Where fy, ~ (1/3)3/2 [75]. A

scale-invariant power spectrum produces an extended PBBHlfonastion [104, 64]:

dnppy —5/2
o< M . 3.21
dMppn PBH ( )

However, as discussed previously, in this case the numbwsitgieof PBHs would
be completely negligible [94, 105]. For scale-dependemntgraspectra which pro-
duce an interesting PBH abundance it can be assumed that all RBid at a sin-
gle epoch [106]. As a consequence of near critical phenonmegeavitational col-
lapse [78, 79, 80] the PBH mass may, however, depend on theosihe fluctua-
tion from which it forms [81, 82, 77, 107] in which case the m&snction has finite
width. Most of the constraints that we discuss below efietyi apply to the mass
function integrated over a range of masses. The range oicappity is usually sig-
nificantly larger than the width of the mass function proaubyg critical collapse, so
in the absence of a concrete prediction or model for the pdbpower spectrum
in most cases it is reasonable to approximate the mass dnnas a delta-function.
The constraints from cosmic-rays and gamma-rays produgectdently evaporat-
ing PBHs are an exception to this [108]. These constraintemtkgignificantly on
the PBH mass function and therefore need to be calculated @se lty case ba-
sis [109, 110, 111, 112, 113, 5]. We therefore do not inclindse constraints in our

calculation of generalised constraints on the curvatureigeation power spectrum.

We now compile, and where relevant update, the PBH abundamtsraints. We
divide the constraints into two classes: those, for PBHs Withy; > 5x 10'*g, arising
from their gravitational consequences (Sec. 3.6.1) ansettior Mppy < 5 x 10*g

arising from their evaporation (Sec. 3.6.2).
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3.6.1 Gravitational constraints
3.6.1.1 Present day density

The present day density of PBHs witlippy; > 5 x 10** g which haven’t evaporated
by today must be less than the upper limit on the present ddydesk matter (CDM)
density. Using the 5 year WMAP measurements [88],,,/* = 0.1099 + 0.0062,

h = 0.7191053¢, gives 5% upper confidence limi)
Dy < 0.25 (3.22)

which, using Eq. (3.20), leads to

MPBH
5 x 10

1 1/2
B(Mppy) < 1.6 x 1019f R ( g) for Mpgy > 5 x 10 g. (3.23)
M?2

3.6.1.2 Lensing of cosmological sources

If there is a cosmologically significant density of compagjeats then the probability
that a distant point source is lensed is high. This possibilas first investigated by
Press & Gunn [114] and has led to an extensive search fomigrssgnatures from
compact objects. Non-detection allows limits to be placedhe abundance of such
objects. The limits as given below have been calculatedhaissuan Einstein de Sitter
Universe (2, = 1, and a uniform density of compact objects. The recalculaticthe
constraints for a8\ dominated Universe would be non-trivial. The constraintsild,
however, be tighter (due to the increased path length anthther optical depth to a
given red-shift) [115], and the constraints given belowtaerefore conservative and

valid to within a factor of order unity.

Gamma-ray bursts

Light compact objects can femtolens distant gamma-rayt®(@&RBs). The time de-

lay induced by such a lens is such that a characteristicfangarce pattern may be

2Using WMAP 7 year data results in a small change to this resudirfg Q% < Qcpm = 0.26

(95% upper confidence limit).
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produced [66]. A null search using BATSE data leads to a caim$t{116]:
0. <02 for 107M, < Mppy < 107°M,, , (3.24)

where(). is the density of compact objects, assuming a mean GRB ré&bsbne.

Quasars

Compact objects with mad®—>M., < Mppy < 300M,, can microlens quasars, am-
plifying the continuum emission without significantly cluang the line emission [67].
Limits on an increase in the number of small equivalent wiglisars with red-shift

lead to the constraint [115]:
Q. <02 for 0.001Ms < Mppy < 60M, | (3.25)

assuming2y,; = Q..

Radio sources

Massive compact objectd(®M, < Mppy < 108M,, can millilens radios sources
producing multiple sources with milliarcsec separatio8][8Jsing Very Long Base-
line Interferometry (VLBI) a null search of a sample of 300 gt radio sources

places a constraint [117]:

Q. <0.013 for 10°M, < Mppy < 10°M,, . (3.26)

3.6.1.3 Halo fraction constraints

There are also constraints from the gravitational consecpse of PBHs within the

Milky Way halo. They are typically expressed in terms of thection of the mass of

the Milky Way halo in compact objects:

_ Mpgi
Mg

Ju

(3.27)

These constraints require some modeling of the Milky Wa [Ggipically the density
and/or velocity distribution of the halo objects). Conseaglyethere is a factor of a few

uncertainty in the precise values of the constraints.
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Assuming that PBHs make up the same fraction of the dark nfadderas they do of
the cosmological cold dark matter, and ignoring the unasrés in the CDM density
(since this is negligible compared with the uncertaintrebalo fraction limit calcula-

tions), we can relate the halo fraction to the PBH cosmoldgieasity:

£ = MII;/{BVIVJ _ POPBH _ QOPBHhQ ~ 500

- MW ~ 0 0 2 PBH -
Mecpu PCoM Qepmh

(3.28)

Microlensing

Solar and planetary mass compact objects in the Milky Wag bah microlens stars
in the Magellanic Clouds, causing a temporary one-off beghtg of the microlensed
star [118]. The relationship between the observed optieptldto gravitational mi-
crolensing,r, (the probability that a given star is amplified by more thalacior of

1.34) and the fraction of the halo in MACHOs depends on theildigton of MACHOS

in the MW halo. For the ‘standard’ halo model used by the ni@rsing community
(a spherical cored isothermal spherey 5 x 1077 f;, [119, 120, 121], with the derived

value of limits onf;, varying by factors of order unity for other halo models.

The EROS collaboration find @% upper confidence limit < 0.36 x 107 which

they translate into limits on the halo fraction [121]:
frn<0.04 for 10°Mg < Mppy < 107" Mg, (3.29)

or
fh < 0.1 for 10_6M@ < Mppny < M@ . (330)

Combined EROS and MACHO collaboration limits on short duragwents constrain

the abundance of light MACHOs [122]:
frn<025 for 107"Mgy < Mppy < 1073M,, (3.31)

while a dedicated search by the MACHO collaboration for longl 60 days) duration

events leads to limits on more massive MACHOs [69]:
fh <10 for 03M@ < Mppu < 30M®, (332)

or
fh <04 for MPBH < 1OM@ . (333)
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Combined, these limits give

fn < 025 for 107"Mg < Mpgy < 107°M,, (3.34)
fh < 0.1 for 1076M® < Mppg < M@, (335)
fn < 04 for My < Mppy < 10M, . (336)

Wide binary disruption

Binary star systems are abundant in the solar system [123, Bedaries with wide
separations are particularly susceptible to perturbatiygalactic objects. More mas-
sive compact objects would affect the orbital parametersidé binaries [125, 126].
Comparison of the separations of observed halo binaries M2 simulations of

encounters between compact objects and wide binariesdemddnstraint [128]:

fn<02 for 10°M, < Mpgy < 10°M,, . (3.37)

Recently Quinn et al. [129] have re-analysed the radial igloceasurements of wide
binary systems sampled by Chaname & Gould [127] and used by Gbaname &

Gould [128]. They find that three of the candidate systemganeiine binaries. How-
ever, one candidate is spurious at the 5-sigma level. Omithis spurious candidate

leads to the somewhat weaker limit [129]:

frn<04  for 10°Mg < Mpgy < 10%M, . (3.38)

Disk heating

Massive halo objects traversing the Galactic disk will hibat disk, increasing the
velocity dispersion of the disk stars [130]. This leads taonait] from the observed

stellar velocity dispersions, on the halo fraction in massibjects [131]

Mdisk lim
< fim 3.39
In Y- (3.39)

whereM g 1im 1S the maximum mass of halo objects which can dominate thieashd

is given by [131]

—1 2 -1
Ph Oobs ts
Muigoim = 3 x 100 [ — L1 s ) (=) M., (3.40
sk 8 (0.01M@pc_3) <60kms—1) (1010yr) o, (340)
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wherepy, is the local halo density and,,; andt, are the velocity dispersion and age of

the halo stars, respectively.

3.6.2 Evaporation constraints
3.6.2.1 Diffuse gamma-ray background

PBHs with masses in the range 10'3 g < Mppy < 5x 10 g evaporate betweenx
700 and the present day and can contribute to the diffuse gamagnbackground [105,
132, 62, 64, 133, 109]. As discussed in Sec. 3.6, these eamistdepend significantly

on the PBH mass function [108] and hence we will not considemtfurther.

3.6.2.2 Cosmic-rays

The abundance of PBHs evaporating around the present dayscameaconstrained by
limits on the abundance of cosmic-rays (in particular poag and antiprotons) [64,
134]. The constraints from anti-protons have been caledl&ir several mass func-
tions and are essentially equivalent to those from the siffyamma-ray background [135,
112].

3.6.2.3 Neutrinos

Neutrinos produced by PBH evaporation contribute to theigé@fneutrino background.
The neutrino spectrum, and hence the resulting PBH abundamstraints, depend
strongly on the PBH mass function, but the constraints areallp weaker than those

from the diffuse gamma-ray background [110, 111].

3.6.2.4 Hadron injection

Using Eq. (3.7), PBHs with mas&/ppy < 10°g have a lifetimer < 10%s and
evaporate before the end of nucleosynthesis. This carfthher&fect the light element
abundances [136, 137, 138, 139]. In particular emitted kguar gluons fragment

into hadrons which can interact with ambient protons androes. This can increase
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the neutron abundance which, in turn, alters the abundahBeaterium and‘He.
Constraints can be obtained by comparing predictions wigeonked light element

abundances.

The constraints from hadron injection have been re-evatugtee Ref. [140]), taking
into account the emission of fundamental particles [61] asithg more up to date
measurements of the Deuterium &tk abundanced)/H < 4.0 x 107°,Y, < 0.252

respectively):

B(MPBH) < 10_20 for ]_OSg < Mppny < 1010g, (341)

B(Mppy) < 107%  for 10"g < Mppy < 3 x 10"g. (3.42)

3.6.2.5 Photodissociation of deuterium

The photons produced by PBHs which evaporate between thefendtleosynthesis
and recombination can photodissociate deuterium [141¢ réBulting constraints on
the PBH abundance have been updated, in the context of brddesasmology in
Ref. [142]. They find that the PBH fraction at the time of evafioras...,, is given by

%
Bevap S 0.1 (tevﬂ) . (3.43)

eq
Using the constancy of entropy given by Eq. (3.11) and théat@ad density,p =
g—;g*T4, and horizon mass\/y = 4T pH %, we find (using Eq. (3.19))

1/2
1010g> for 10"g < Mppy < 10%g . (3.44)

3.6.2.6 CMB distortion

Photons emitted by PBHs which evaporate between 10° and recombination at
2 ~ 10® can produce distortions in the cosmic microwave backgroadihtion [143].
Using the COBE/FIRAS limits on spectral distortions of the CM8nfra black body
spectrum [144], Ref. [145] finds

B(Mppn) < 10724, for 10" g < Mppy < 107 g . (3.45)
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3.6.2.7 (Quasi-)stable massive particles

In extensions of the standard model there are genericallylestor long lived mas-
sive (O(100 GeV)) particles. Light PBHs with masa/ppy < 10'! ¢ can emit these
particles and their abundance is hence limited by the ptetgnabundance of stable

massive particles [146] and the decay of long-lived patigll47, 148).

Gravitinos in supergravity theories and moduli in stringdhes are generically quasi-
stable and decay after nucleosynthesis, potentiallyiagiethe light element abun-
dances. The effect of their decay on the products of nuclgbsgis leads to a con-

straint on the initial PBH fraction [147]:
19 (9, Ve Lo o
M, 5x 1077 | == — )| —
P(Mepn) < 5 x (200) (3)(6x10—3>

1 MPBH —1/2 Y¢
farz \10°g 1014

for Mppp < 109 g, (346)

wherez, is the fraction of the luminosity going into quasi-stablessige particles,
g is the initial number of degrees of freedom (taking into agtcsupersymmetric
particles)« is the mean energy of the particles emitted in units of the RBhperature
andY, is the limit on the quasi-stable massive particle numbersitgrio entropy

density ratio.

In supersymmetric models, in order to avoid the decay of théop, there is often a
conserved quantum number R-parity, which renders the Lsgjisepersymmetric Par-
ticle (LSP) stable and the present day density of such spaiteles produced via PBH
evaporation must not exceed the upper limit on the presenCdsM density [146].
This leads to a constraint on the initial PBH fraction (c.f. R&#7]):

i 1/4 -1
Mt < s (25" (2) (1)
B(Mppn) < 6> 1077h (200 3) 06

1 (Mppu\ * ( mysp )1
far2 W10 g 100 GeV
100 Ge\/)

mrsp

for Mpgy < 10' g ( (3.47)

3More massive PBHSs can also emit these particles in the lagestof their evaporation, when their
mass drops below 10° g. However the resulting constraints are substantially we#kan those from

hadron injection during nucleosynthesis.
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wherem;sp IS the mass of the LSP andsp is the fraction of the luminosity carried

away by the LSP.

These constraints depend on the (uncertain) details ofigghy®yond the standard

model, and we therefore summarise them conservatively as

T Mppn
M, <1078 —
B(Moon) S (o

—1/2
f T ) for Mppy < 1011g. (348)
2

3.6.2.8 Present day relic density

It was first suggested by MacGibbon [149] that black hole evafon could leave a
stable Planck mass relic [150, 151, 149], in which case tesgmt day density of relics

must not exceed the upper limit on the CDM density:

QY <0.25. (3.49)
Assuming
MPBH
Qppn = Dl 3.50
PBH Mrel 1 ( )

where the relic mass is written as a fraction of the Plancksmdg, = f.qmp; and

using Eqg. (3.20), this gives a tentative constraint

1 Mpgn
B(Mppn) < 4575 B (5 x 104

3/2
) for Mppg < 5 X 1014g. (351)
Y g

The constraints described above are summarised in tablarigllare displayed in

Fig. 3.1. As can be seen from Fig. 3.1 the constraints proleeyal&rge range of scales
and in some cases several constraints overlap acrossybarticass ranges. The solid
black line indicates the strongest constraints for eaclsrseale and we consider only

these when constraining the primordial power spectrum.

It has been suggested by Carr et al [5] that the upper magsofivlidity for the present day relic
constraint is lower than the value given here. This is beztarger PBHs would come to dominate the
total energy density of the Universe before evaporatingnsgéquently, the associated PBH emission
would affect the observed baryon asymmetry. This corractiould not affect our results as several
other constraints, discussed previously, overlap withrgel@ortion of the relic density constraints. In

the following we only consider present relic constraintsléov mass PBHSs.
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Figure 3.1: The limits on the initial mass fraction of PBHs as a functid®?8H mass (in grams).
The solid black lines represent the tightest limits for eawss range and the dotted blue lines
are the weaker limits where there is an overlap between i@nts. As discussed in Sec. 3.6 we
have not considered the diffuse gamma-ray background reomisivhich applies foR x 103 g <
Mpgy < 5 x 10* g as it depends significantly on the PBH mass function.



Table 3.1: Summary of constraints on the initial PBH abundamt{@/ppx).

=]

=)

description \ mass range constraint on3(Mpgg)
Gravitational constraints
1/2
present day PBH density Mppg > 5 x 10M g <2x1071 f;% (5;‘”11’01312‘%)
1/2
GRB femtolensing 10719M, < Mppg < 1073 M, | <1x 1071 f;% (Sﬁﬂ%ﬁilg)
1/2
Quasar microlensing 0.001My < Mppu < 60Mg <1x10°19 f;% (5];[11”0%‘}%)
/2
Radio source microlensing 10Mg < Mppn < 108Mg <6x10720 f;% (5JX‘4lPOBlgfg)
Halo density
. , 1/2
LMC Microlensing 107 Mo < Mppis < 107°Mo | <3 107201y (s2p; )
1/2
107SMg < Mppn < Mg <1x10720 f;% (Sﬁﬂ*’o}%‘zg)
1/2
My < Mppy < 10M;, <5x 1072 (s )
, 172
Wide binary disruption 10°Ms < Mpgn < 108 M, <3x10%0 f;% (&%ﬁi‘g)
—1/2
Disk heating Mpgr > 3 x 105M, <2 x 1054, (5%1”01‘?;%)
Evaporation
diffuse gamma-ray background2 x 10"3 g < Mppy < 5 x 10 g [ depends on PBH mass functio
cosmic-rays similar to DGRB depends on PBH mass functio
neutrinos similar to DGRB depends on PBH mass functio
hadron injection 108g < Mppp < 10'0¢ <102
1010 g < Mppu < 3 X 1010g < 10722
1/2
photodissociation of deuterium  10'°g < Mppy < 1013 g <3 x 10—22f L (J‘f(;fg;)
M2
CMB distortion 10" g < Mppy < 103 g <1072t
—1/2
(Quasi-)stable massive particles Mppy < 1011 g <~ 10—18]%% (%ﬁ?‘g‘)

present day relic density

Mppy < b X 1014g

2
372
<o (M)
]\4/ frel 5x10'% ¢

S9|0H 2e|g [elpJolid

GS
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A recent detailed review and update of PBH abundance contsriai given by Carr

et al. [5]. Here, evaporation constraints have been updaged) the more modern
view of PBH evaporation into fundamental quark-gluon jet8HRconstraints have
also been calculated using the most recent data on the lgyneat abundances [152,
153, 154, 155, 156, 157]. Ref. [5] also revise constraintsragifrom the most recent
observational data on the diffuseray background [158, 159, 160, 161] assuming that
all PBHs initially form with the same mass (i.e. approximdte PBH mass function
as a delta-function). The resulting limits over the masgealpgy = 10° — 10'7g
given in Ref. [5] are stronger than those outlined in this wiavkh the exception of

constraints from CMB distortion).

3.7 Press-Schechter theory

The fraction of the energy density of the Universe containaggions dense enough

to form PBHSs is given, as in Press-Schechter theory [162], by

My

where the factor of 2 takes into account that on any smootsdade half of the Uni-

B(Mpp) = 22008 /5 P(Shor(R)) b (R) (3.52)

verse is in the form of under-dense regions which will neweeed the threshold for
collapse into bound objects. This ‘ad-hoc’ factor of 2 agreell with N-body simu-
lations [163, 164] and allows for the fact that these undsrse regions may be a part

of a larger over-dense region [28].

The horizon mass is related to the comoving smoothing séaley [45]

1/3
My = M (kg R)? (QQQ) , (3.53)

where the horizon mass at matter-radiation equalify is given by Eq. (3.19). Taking
the initial perturbations to be Gaussian, the probabiligtridbution of the smoothed

density contrastP (d,..(R)), is given by (e.g. Ref. [28])
1 5 . (R) )
P(0ue(R)) = ——— —_hortZ ) 3.54
(uor( ) Voror(R) T ( 201, (R) (3:54)
whereo (R) is the mass variance

0*(R) = /OOO W2(kR)Ps(k, t)% : (3.55)
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andW (kR) is the Fourier transform of the window function used to srhdabée density
contrast. We assume a Gaussian window function for wiich R) = exp (—k*R?/2).

This leads to a relationship between the PBH initial masgia@nd the mass vari-

ance,
_ 2/m ¥ oo [ (1) )
PMeen) = 5= R / ¢ p( 202, (7)) Prer )
e
< () (859

where we have used the fact that the probability distrilbuttoa rapidly decreasing
function of d,.,(R) so that the upper limit of integration is not important and be

taken to infinity.

Constraints on the PBH initial mass fraction can thereforediestated into constraints

on the mass variance by simply inverting Eq. (3.56).

3.8 Constraints on the curvature perturbation power

spectrum

In order to calculate the constraints on the curvature gestion power spectrum we
use the results of Sec. 2.5. Eq. (2.103) relates the deresityrpation power spectrum
to the power spectrum of curvature perturbation accurasédyg into account the full
time evolution of perturbations prior to and post horizotrgnSubstituting this into
Eq. (3.55), and setting the comoving scale to correspondhtheize of the horizon

R = (aH)™', gives

16

dk
2 (R) = =
oha(R) = 5

/0 h (kR)? j2(kR/V/3) exp(—k*R*)Pg (k) - (3.57)

hor

Since the integral is dominated by scales- 1/R we assume thagver the scales
probed by a specific PBH abundance constrathe curvature power spectrum can
be written as a power-law given by Eq. (1.50). This assumpBovalid for general
slow-roll inflation models such as those considered in Rdf65] 166, 32]. Using
Egs. (3.56) & (3.57), we translate the PBH abundance consireaompiled in Sec. 3.6

into constraints on the amplitude of the power spectrum ofature perturbation.
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For each constraint we take the pivot poiky, to correspond to the scale of interest,
ko = 1/R, and consider a range of values fa(k,) consistent with slow-roll inflation,
0.9 < ny(ko) < 1.1. The resulting constraints far,(k,) = 1 are displayed in Fig. 3.2.
Forns(ko) = 0.9 and1.1 the constraints are weakened or strengthened, respgctivel
by an amount of the order of 2 percent. This indicates thatskaw-roll inflation
models, the constraints are not particularly sensitivehéoexact shape of the power

spectrum in the vicinity of the scale of interest.

The large scale constraints (sm&)l come from various astrophysical sources such
as Milky Way disk heating, wide binary disruption and a varief lensing effects.
The small scale constraints generally arise from the caresemes of PBH evapora-
tion, in particular on nucleosynthesis and the CMB. Theseaedion constraints lead
to tighter constraints on the abundance of PBHs and theréfier@rimordial power
spectrum is more tightly constrained on these scales. largéthe constraints on the

amplitude of the primordial power spectrum span the range
Pr(k) <1072 - 107", (3.58)

with some scale dependence.
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Figure 3.2: Generalised constraints on the amplitude of the power gpacof the primordial
curvature perturbation as a function of comoving wavenunglreunits of Mpc—!). We have
assumed that the power spectrum is scale-invariant ovéretaively small) range of scales which
contribute to a given constraint. Deviations from scal&itance consistent with slow-roll inflation
lead to small changes in the constraints (see text for fudails).



Chapter 4

Ultracompact minihalos

4.1 Introduction

The existence of dark matter was first proposed in 1933 by Ewicky [167]. Its com-
position is still unknown and has become one of the fundaatepiestions in cosmol-
ogy. In recent years a class of matter known as Weakly Iniegadassive Particles
(WIMPs) have become the most popular candidate for dark njaé8, 169, 170]. The
weak interaction of WIMPs with baryonic matter explains tiféallty in detection so
far. Within this class, a prime candidate which arises withuipersymmetry theory
is the lightest supersymmetric particle (LSP) [171], usutile lightest neutralino. In
the early Universe these supersymmetric WIMPs were creatkdm@nihilated at equal
rates. Once the Universe expanded and cooled sufficiehdyctteation of WIMPs
ceased. As the Universe continued to expand, the low cexgga of WIMPSs resulted
in their abundance ‘freezing out’ producing a relic densitygiven by [168]

3 x 1072 ecm3s!
(ov) ’

where(ov) is the thermally averaged product of the WIMP annihilatioossrsection

Q2 ~ (4.1)

and speed. Since WIMPs have a very low cross section, theggo€self-annihilation

that occurred in the early Universe may only occur today giaes of large density.

For PBH formation perturbations must be of the ordler 1/3 (see Sec. 3.2). Ricotti
& Gould [172] have recently proposed that slightly smallertprbations can collapse

beforez ~ 1000 and seed the formation of dense dark matter structuresdcalie
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tracompact minihalos (UCMHSs). Due to their early formatitre central regions of
UCMHs would have a high dark matter (DM) density. If DM is in theem of Weakly
Interacting Massive Particles, WIMP annihilation within UEg may lead to an ob-

servable gamma-ray signal [172, 173].

Scott & Sivertsson [173] have investigated gamma-ray eongsom UCMHs formed
from perturbations which enter the horizon at three difiéepochs in the early Uni-
verse:ete™ annihilation, and the QCD and electroweak (EW) phase transitiThey
find that an UCMH corresponding to tkee~ annihilation epoch, which has present
day massMycuu(z = 0) ~ 102M,, could be detected by tHeermi satellite or cur-
rent Air Cherenkov telescopes (ACTs), at a distance0dfpc. If 1% of the DM is

in the form of UCMHSs with this mass there would be3 UCMHSs within 100 pc of
the Earth [173]. UCMHSs formed at earlier epochs would be éghdnd hence more

challenging to detect.

It has been shown that there are single field models of inflatibich are compatible
with cosmological observations and where the perturbatmplitude on small-scales
is large enough to produce a significant density of PBHs [32] (s€e also references
therein). It is therefore possible that UCMHs may form fronntpebations generated
by single field slow roll inflation. Phase transitions [1723) or features in the in-
flationary potential [175] could also lead to enhanced pbétions on small scales.
We do not fix the UCMH mass or abundance. Instead we calculatedhstraints on
the UCMH halo fraction which would arise from the detection ijon-detection) of
gamma-rays from UCMHSs blermias a function of UCMH mass. We then translate
the UCMH abundance constraints into constraints on the pepectrum of the pri-
mordial curvature perturbation, as a function of scale. é0.2.2 we summarize the
calculation of the properties of the UCMHSs and the resultiagnga-ray flux, follow-
ing Scott & Sivertsson, in Sec. 4.3. In Sec. 4.4 we calcula¢elawer bound on the
UMCH halo fraction which would result from detection of an UCMiy Fermi. We
also calculate the upper bound which would result if no UCMHKsdetected. Finally,
in Sec. 4.5 we translate the potential constraints on theddnce of UCMHSs into

constraints on the power spectrum of the primordial cuneaperturbation.
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4.2 UCMH formation

Ricotti & Gould [172] find that a density perturbation with aliyde at horizon cross-
ing & > 1073 will grow sufficiently during radiation domination that iblapses at
z > 1000, seeding the formation a UCMH which then grows via spheridalli. 1t has

been argued that PBHs can also seed the formation of minifiedés 177, 172], and
the resulting gamma-ray emission (assuming that the reteaiof the dark matter is
in the form of WIMPSs) leads to constraints on the abundanceéBéfd178]. UCMHs

could also conceivably form from the clumping of several PBM#& do not pursue

these possibilities here. Instead, we consider a simpleehuddJCMH formation.
At some initial time,z;, the mass of a region which eventually collapses to form a
UCMH M (z) is given by

M(z) = gzl\j((j:)) My(2), (4.2)

where My (z) = (47/3)pH 3 is the horizon mass at redshiftcorresponding to the

epoch when the scale of interest entered the horizon. Aemegtiation equality the

DM mass within a UCMH forming region}/(z.q), is then given by [173]

1 + Zeq
1‘|‘Zi

M) = £ (120 ) M), (4.3)

where f, = Qpn/Qm = 0.834 [9] is the dark matter fraction an@,, = Qpy +
Qparyons. After matter-radiation equality the UCMH mas®ycvn(2), grows, due to

radial infall of matter, as [172]

MUCMH(Z) = M(Zeq) (11‘:—qu) . (44)

Following Scott & Sivertsson [173] we assume that UCMHSs stapwing atz ~ 10
as the onset of structure formation prevents further matfall. Using the constancy
of the entropy given by Eq. (3.11) and the the radiation dgnsi= (72/30)g, 7%, the

horizon mass can be written as

Mu(T) = My(Tiy) (g—) " (TeC‘)Q . (4.5)

Jx T

Using
T g*_sl/?’(l +2), (4.6)
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the horizon mass as a function of redshift is

i 1/6 2
n 1+Zeq
My (2) = Mi(zeq) | -2 Sl 4.7
H(Z> H(’Z Q) (g*q> ( 1 +Zi ) ( )

where we have takeq; ~ g,.
The UCMH dark matter density profile is by [172, 173]
3foUCMH(Z)

puemn(r, z) = 3 5 (4.8)
167 R opm (2)r 7
where Rycmu(2) is the radius of the UCMH at redshift given by
Rucmnu(z) 1000 Mycnu(z) s
——= ] =0.019 4.9
( pc 1+ 2 Mg ’ (4.9)

wherel/, is the mass of the sun.

Baryonic infall may lead to adiabatic contraction of the UCMeéhdity profile [179].
Scott & Sivertsson considered a variable fraction of thaltdtCMH mass condensing
to form a constant density baryonic core. The dark mattesitgem the centre of the
halo does not rise significantly and hence the change in gwdtigy gamma-ray flux
is relatively small. This is true for dark matter in the forrhstandard WIMPs, with
the canonical annihilation cross-section deduced fromrbasured dark matter den-
sity. Motivated by recent electron data [180, 181], Scottig¢e8sson also considered
a model with enhanced annihilation cross-section. In tlaged/VIMP annihilation
leads to a larger constant density core and adiabatic atiminethen has a larger ef-
fect. Given the uncertainties in the calculation we thexefdo not consider adiabatic

contraction.

4.3 WIMP annihilation within UCMHSs

WIMP annihilation reduces the density in the inner regionthefUCMH. We use the
standard estimate of the maximum density given by compahaglynamical infall
time with the timescale of WIMP annihilatiop,,.., [182, 173]

My
e N X 4.10
p (00) (t — 1) (4.10)

wherem,, is the WIMP mass, ~ 13.7 Gyr [9] the current age of the Universe and we

take the UCMH formation time ag(z = z.,) ~ 77 kyr [103]. The UCMH present day
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density profile is thus given byycvu(r) = min {pmax , puomu(r, 2 = 10)}, where

puemn(r, z = 10) is given by Eq. (4.8).

The gamma-ray flux above a threshold enefgyy, ©.,( £y, ), from WIMP annihilation

within an UCMH at a distanceé from the Earth can be written as

(I)as roq) article
O (Ey) = T"“. (4.11)

The particle physics tern®,,tice, iS given by

partlcle - 2 Z/ O-fv _dE (412)

Eu,
whereo; is the annihilation cross-section addV,/dE the differential photon yield
of the fth annihilation channel. We use DarkSUSY [183] to compbig.ic. for a
range of models with present day DM densities compatiblb thié WMAP measure-
ment. When calculating the lower limit on the halo fractiondd&@MHs which would
arise from a detection biyermiwe use the largest value @f,,,;.... Conversely when
calculating the upper limit which would result if no UCMHs atetected we use the

smallest value. The astrophysical factdyy,.,, IS given by

Ry
Buo= [ bl =10)dr. (4.19
0

4.4 Potential UCMH halo fraction constraints

The Fermipoint source sensitivity abov@0 MeV is [184]
®.,(100MeV) = 6 x 10 %em 27", (4.14)

For a given UCMH massMycun(z = 0), we determine the distanckewithin which
a UCMH of this mass would be detectable at threshold sergityi Fermi. We then
calculate the fraction of the Universe in the form of UCMHd#éte is a single UCMH
within this distance. This is the smallest UCMH halo fractwinich could be detected
by Fermi. To do this we assume that the fraction of the DM in the form GMHS is
independent of position so that the local and global UCMHtioas are identical

_ Qucmn - nucmuMw (1) Muomn (2 = 0)
Juomn = =
Qpm poMmw (7)

Mycvn(z = 0)
_ , 415
Mpymw (< d) ( )
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whereppy vmw () is the density profile of the Milky Way hal@, ey vw () the num-
ber density of UCMHs and/py vw (< d) the mass of DM within a sphere of radius
d centred on the Earth. We assume a Navarro, Frenk & White (NF\®) density
profile [185] for the Milky Way:

o 56pgrit
o) = G0 (P #40)

wherer is the distance from the galactic centpd,, = 1.88 x 1072°h2gem 2 is the

present day critical density, is the scale radius,

2
5, = 100cg(e) (4.17)
3
and
1
= 4.1
g<c> 111(1 _|_ C) _ lj_c Y ( 8)

wherec = r;, /7, is the concentration parameter ang is the virial radius. For the
Milky Way we taker,;, = 258 kpc andc = 12 [186]. From this we obtain the mass of

DM within a volume centred on the Earth using a numericalysisl

Fig. 4.1 shows the lower limit (black solid line) on the UCMHIddraction, as a
function of UCMH mass, which would result from the detectidacingle UCMH by
Fermi at threshold sensitivity. It also shows the upper limit éotlashed line) on the
UCMH halo fraction if Fermi does not detect gamma-rays from UCMHSs, assuming

that the DM is in the form of self-annihilating WIMPs.

In order to understand the shape of the plot given in Fig.wWelcan analyse Eq. (4.15)
at various distances. Using Eq. (4.13) and Eg. (4.8) alortg ®q. (4.9), we can

approximate the relationship between the mass of an UCMHbang to be
(I)astro X MUCMH(Z - 0) ) (419)

where we have ignored the constant density core given by£&#0). Hence, more
massive UCMHSs have a larger gamma-ray flux. Using Eq. (4.11¢massive UCMHs

can therefore be detected at a larger distance:
d o< Mycyu(z = 0)Y2 . (4.20)

For Mycyu(z = 0) < 103My, d < 10kpe so thatMpyavw (< d), given by inte-
grating Eq. (4.16), increases more rapidly tidpcyvu(z = 0). From Eq. (4.15) this
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Figure 4.1: Constraints on the UCMH halo fractioffiycuvsy, as a function of present day UCMH
mass,Muycmu(z = 0). The black solid line shows the lower bound on the halo faactvhich
would result from the detection of gamma-rays from an UCMHHBYmIi. The blue dashed line
shows the upper limit on the halo fraction if gamma-rays fld@MHs are not detected, assuming
DM is in the form of WIMPs.

results in a decreasing limit on the halo fractionMscyn(z = 0) is increased. For
more massive UCMHS8 becomes significantly larger than the scale radius of thiyMil

Way halo. Integrating Eq. (4.16) for large distances andgiEiq. (4.20) gives
MDM,MW(< d) x In [MUCMH(Z = O)] . (421)

From Eq. (4.15) this results in a subsequent increase inrtliedn the halo fraction
for Mycym(z = 0) 2 102M,,. These features, in particular, the turning point in the

halo fractionfycwvn, are evident in Fig. 4.1.



Ultracompact minihalos 67

4.5 Potential constraints onPx

To translate the limits on the UCMH halo fraction into constta on the primor-
dial curvature perturbation, we need to relate the presaptWCMH halo fraction
to the primordial density perturbation distribution. Thegent day UCMH density,
Qucomn, IS related to the UCMH halo fractionfycyvu, by EQ. (4.15). Assuming
that UCMHSs are not destroyed by dynamical processes durmgtste formation,
the present UCMH density is related to the fraction of the Erge at horizon entry
which is overdense enough to later form UCMKHs o\, by

Mycwnu(z = 0)

M (Zeq)

As UCMHs are far more compact and dense than typical DM hakyswhil be far less

Qucemu = Qo Buenn (Mu(z)) - (4.22)

susceptible to disruption. Our lower bounds are conser/atiUCMHs are destroyed,
the initial abundance of UCMH forming perturbations, anddeetihe amplitude of the
primordial perturbations, will be under-estimated. Theerdimit from non-detection

would, however, be weakened.

If the smoothed density contrast, in the comoving gadgg(R), at horizon crossing
isin the rangd 02 < d,,,(R) < 1/3, the DM in the region will eventually collapse to
form an UCMH [172]. The horizon masty(z) is related to the smoothing scale,
by Eg. (3.53) where we usg? ~ 3 andg. =~ 100 [103].

The fraction of the Universe in regions dense enough to eadlgtform UCMHS is
given by Press-Schechter theory (see Sec. 3.7),
1/3
Buemu(Mu(z)) = 2 /10_3 P(0nor(R))doper (R) , (4.23)
where, assuming that the initial perturbations are Gansgia probability distribution
of the smoothed density contrast(dy..(R)), is given by Eq. (3.54). The relationship

between the present UCMH density and the mass variance is then

Quen 20py Myomu(z = 0) /1/3 (_ Opor ()
AV, QWahor(R) M(Zeq) 1 20-2 (R)

)déhOr(R). (4.24)
hor
The constraints on the present day UCMH density can therdferganslated into

0—3

constraints on the mass variance by simply inverting thigession.
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The mass variance is given by Eq. (3.57), where we use EQ3Pta relate the power
spectrum of density perturbations to the power spectruromioving curvature pertur-
bations taking into the full time evolution prior to and pbstrizon entry. The integral
in Eq. (3.57) is dominated by scalés~ k, = 1/R. Following Chapter 3, in the
context of slow-roll inflation models we can assume that tbwegy spectrum is con-
stant over these scaleBg (k) = Pr (ko). Relaxing this assumption and assuming a
power-law power spectrum with spectral index in the rangesistent with slow-roll
inflation, 0.9 < n(ky) < 1.1, leads to changes by an amount of the orde} pércent
in the power spectrum limits. Using Eq. (4.24) and Eg. (3\&)can translate the
UCMH abundance constraints shown in Fig. 4.1 into conssantthe amplitude of
the spectrum of the curvature perturbation. For each UCMHsroassidered we take
the pivot pointk,, to correspond to the length scale of the perturbation (seé3¥53))
which eventually forms the UCMH;, = 1/R.

Fig. 4.2 shows the resulting constraints on the power spectf the primordial cur-
vature perturbation fon(k,) = 1. The potential lower limit on the power spectrum
which would arise from the detection of gamma-raysHeymi from a single UCMH

is of the orderPz > 10766 — 107> on scaleg: ~ 10" — 10® Mpc ™. If gamma-ray
emission from UCMHSs are not observed, an upper limit can beeplan the power
spectrum of primordial curvature perturbation of the orfler < 107%5 — 107 on
scales: ~ 10' — 10° Mpc ™. Constraints for larger wavenumbers than those shown in
Fig. 4.2 result infucmu = 1 and so are not considered. The lower bound based on a
detection aFermithreshold sensitivity is a conservative limit (providedtthe effects

of adiabatic contraction are insignificant). The uppertiimam non-detection relies on
several assumptions, however, most significantly that thle<in the form of WIMPs
and that significant disruption to UCMHSs does not occur. Iftipié UCMHs were de-
tected byFermi(or ACTSs), or the flux was significantly above the detectioreshold,
then this would imply a larger UCMH halo fraction, and henceltwer limits on the

power spectrum of the primordial curvature perturbatiomildde stronger.

These upper bounds are significantly stronger than those pramordial black hole
formation, where we found in Sec. 3Bz < 10~ — 1072, and would hence, provide

a tighter constraint on models of inflation (c.f. Sec. 5 and B]). It does, however,
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Figure 4.2: Limits on the power spectrum of the primordial curvaturepdration as a function of
comoving wavenumber (in units dipc ). The black solid line shows the potential lower bound
on the power spectrum resulting from the detection of gamaya-from an UCMH byFermi at
threshold sensitivity. The blue dashed line shows the ulapéron the power spectrum obtained
if gamma-rays from UCMHSs are not detected grmi, assuming DM is in the form of WIMPs
and UCMHs are not disrupted during structure formation.

rely on the assumptions that dark matter is in the form of WiR$ UCMHSs are not

disrupted during the formation of the Milky Way halo.



Chapter 5

Constraining models of inflation

5.1 Introduction

Inflation model building involves assuming an expansioradnysof the observable
Universe and evolving perturbations from the time when entrobservable scales
exit the horizon to the end of inflation. The generation of eledf inflation can be

approached from two broad methods:

1) on a model case by case basis where one assumes a form footémtiall (¢).

This is usually motivated by some aspect of particle phygbsnomenological) or by
requiring that the potential takes on a simple form. The iidiery dynamics of the
model are then given by Egs. (1.23)-(1.25). The model oftioflamust predict values

for the observables which are consistent with current detaiven in Sec 1.10).

2) stochastic inflation model building where one uses the iHamrJacobi formalism
(Sec. 1.8). Here a particular model of inflation is generatedssigning initial values
for the Hubble slow-roll parameters (Eq. (1.35) and Eq.&)).8pto an arbitrary order
in derivatives ofH (¢) given by Eq. (1.39). With the Hamilton-Jacobi formalism the
condition for inflation is exact and so this model can be nucady evolved to the
end of inflation using the flow equations (described in S&). T his method has two
distinct advantages, firstly a numerical treatment allons @ generate and test many
models of inflation simultaneously. Secondly, one is ablesb models which cannot

be written in a neatly parameterized form. One can thergtest a larger range of
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models not accessible using the more traditional approastribed above. Stochastic
methods of model testing are therefore very useful in caistrg the large range of
possible inflation models. Ultimately, however, one woikd inflation to be described

from some theoretical motivation.

In most cases of inflation model building one is concerned thié properties of pertur-
bations corresponding to current observable scales gxtimhorizon during inflation.
This is because models are largely tested by their pred&fior the observable quan-
tities ng, r anddn,/dlnk. The strongest observational constraints we have on these
guantities come from WMAP and large-scale structure daw@a $&= 1.10). However,
these observations only probe a very small range of lardesca large extrapolation
is involved in assuming that a particular model of inflationieh satisfies the observa-
tional constraints can describe the entire evolution ofuh&erse. On scales that are
beyond current observations, large departures jm anddn,/dInk are possible. This
opens the possibility of large amplitude perturbations malsscales and therefore a
significant formation of PBHs. The running mass model, whiels #rst proposed by
Stewart [187, 188], is a specific example of a model whichiptedbservables com-
patible with observational data and yet produces a signifie88H abundance. We
describe this model in more detail in Sec. 5.2. PBHs are foromethe smallest scales
and so are a powerful tool for constraining models of inflati@yond the observable
range of scales. Constraints from PBHs can be used in comirinaith large-scale

constraints to effectively constrain models of inflatio2][.3

In the following chapter we describe the flow equations wlaoh used to evolve the
Hubble slow-roll parameters from an initial state to the ehdflation. We compare
two methods of calculating the power spectrum of comovinyature perturbations:
the standard analytical calculation using the Stewarklgquation and a numerical
calculation using the Mukhanov variable. The differenceMeen these two meth-
ods has important implications for the application of PBH steaints. Finally we
perform a numerical analysis generating 250,000 inflati@uehs using a stochastic
technique [189, 190] finding models consistent with largales observations and con-

straints from PBHSs found in Chapter 3.
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5.2 Running mass model

The running mass model [187, 188, 191] has been extensixglpred within the
context of consistency with large-scale data [192, 193, 195] and production of
PBHSs [165, 166, 196, 197, 113]. The running mass model wasopsapto overcome
certain problems with models of inflation formulated in sigpavity theories [191].
Within supersymmetry, a natural feature that arises issefahcuum dominated po-
tential given by

1
Vip) =V £ §m2g02. (5.1)

In the context of supergravity the scale of supersymmetegking is such that slow-
roll inflation cannot occur [197] sincg, = 1 on all scales. Stewart [187, 188] pro-
posed a solution to overcome this by including quantum ctioes in order to flatten
the potential allowing slow-roll inflation to occur over thmited range of scales cor-
responding to the current observable range. This corredftectively amounts to

modifying Eqg. (5.1) to include a running mass terniy).

The relevant aspect here is that while on large-scales ttemial is now flat allowing
one to recover a near scale-invariant spectrum, on all sttees the slow-roll regime
typically breaks down ag,, = 1. Inflation still continues as,, < 1 and eventually the
potential is dominated by the false vaculipwhere it is assumed a secondary mecha-
nism acts to end inflation. In this regime one would expecgiaiicant departure from
scale-invariance with a sharp rise in the power spectrumnuall scales. PBHs can

therefore potentially form in significant numbers in thisdeb

This example motivates a search for other models which mapbsistent with large-

scale observational data and result in a significant folnaif PBHs on small scales.

5.3 Flow equations

A key quantity required to describe the time evolution of gipalar model of inflation
is the number of e-foldings of inflation as described in Setl1From Eg. (1.34) and

Eqg. (1.60), the relationship between the evolution of thikaian field and the number
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of e-foldings is

tend Pend H 2 ¥ d
N = Hdt :/ By 2T Ld (5.2)
t ¥ ()0 mPl Pend \/a

therefore,
d o mp] d
N~ ayrY g
From Eq. (1.35) and Eq. (1.39), this allows us to write a sefqufations describing the

(5.3)

evolution of the Hubble slow-roll parameters in terms of thenber of e-foldings of

inflation:
j% — enlon + 2en) (5.4)
C(l;% = —Segon — 12¢55 + 2(*hu) | (5-5)
dg?\?) =[S e )+, 122 (56)
where
on = 2(" i) — den - ®.7)

Egs. (5.4)-(5.6) together form tHew equationsof which there is an infinite hierar-
chy. These were first introduced by Hoffman and Turner [18%] kater were gen-
eralised by Kinney [190]. They provide a way of evolving thakible slow-roll pa-
rameters from some specified initial condition (given by dipalar inflation model or
chosen at random) to the end of inflation or any other requooaat. If taken to infinite
order these equations specil(p), H' (), H" () etc... to infinite order in derivatives
with respect to the inflaton fielg. This is equivalent to completely specifying the

form of the potential driving inflation.

The flow equations have been extensively investigated [198, 190, 200, 201, 202,
203, 204, 205, 32]. Although the flow equations do not make garyeral predic-
tions about inflationary dynamics, they do provide an atgamiwhich allows one to
‘randomly’ generate a large number of models to confronhwhie PBH abundance
constraints [198]. This approach can be used to analyséediie¢d models of infla-
tion. Attempts have been made to develop and use a flow equatimalism for the
case of multiple field inflation models [206]. However, dudtlie large uncertainties

in the initial conditions we do not consider this possilgilit our work.
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5.4 Analytic power spectrum

The standard method of calculating the power spectrum dbifgeations has been to
use an analytical method formulated by Stewart and Lyth[[20/& briefly outline this

calculation closely following the analysis of Ref. [208].

The expression for the inflaton perturbation in uniform atove gauge, Eq. (2.82),
motivates the introduction of a quantity known as the Muldwagauge-invariant po-

tential or Mukhanov variable [40, 209, 210] defined by

u=a {&p + @’%} . (5.8)

In the comoving gauge this becomes

u=z2R, (5.9)
where
p— 2
P= gy (5.10)

If u is expanded into comoving Fourier modes these modes evolve according to a
Klein-Gordon equation with a time-varying effective mass:

d? 1d?
(= ) u =0, (5.11)
dr2 zdr

where the effective mass term can be written as a functiomefHubble slow-roll

parameters [208]

1d%z 3 1 1
— = 20 H?[1 + ey — o+ €2 — 2epny + 57712{ + §§H] , (5.12)

where, using Eq. (1.39% = 2)\y.
During inflation comoving wavemodes evolve from sub-hamimmsuper-horizon scales.

The standard choice for the initial conditions in the far-siabizon limit is that defined

by the Bunch-Davies vacuum state [207]:

1
uy(m) = T

This initial condition is applied when the mode is much serathan the Hubble radius

e T (5.13)

(aH/k — 0) so that ordinary flat space-time quantum field theory isaépced and
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any spacetime curvature caused by vacuum fluctuations igitdg. In the superhori-
zon limit, £? < 2, and Eq. (5.11) has a growing mode solutigne z, so that the
curvature perturbatioR,, = |u/z| ‘freezes out’ and becomes constant. The power
spectrum of curvature perturbation is then (see Sec. 1.9)
k3 k3
Pr(k) = 5 |Rsl* =

~ on? "~ on?

qu

z

(5.14)

5.4.1 Power-law inflation

Stewart and Lyth [207] investigated the power spectrum fepecial case known as
power-law inflation [211]. In this model the scale factor lkes asa(t) « ¢? and the

Hubble parameter has the form [208]

H(p) o exp ( 4—7Ti> , p>1, (5.15)

p mpr
wherep is a constant. This model is extremely useful as the Hubblg-sbll parame-

ters are constant and given by

= constant

T

€H = TH =

l+1)\H — EH(

~

Air) 1>2. (5.16)

This greatly simplifies Eqg. (5.11) and using integration bytg, the conformal time is

da 1 egda 1 1
— - - , 5.17
g /aQH aH + a’H aH1— ey ( )
Eq. (5.11) therefore becomes
d? , vi—1/4
where
3 1
=+ —. 5.19
v 5 + 1 ( )
When modes are in the superhorizon linkif ¢ — 0), Eq. (5.18) has the asymptotic
form
. . () 1 _
i(v—1/2)7/26v—3/2 v+1/2
U — € 2 ——(—kT . 5.20
k e v (520

wherel is the usual gamma function. Substituting this into Eq.4pthen gives the
power spectrum for the exact case of power-law inflation

I'(v) 1/2-p 2 o’
I'(3/2) md, |H'| lk=ar

P2 (k) = 2073/ (v—1/2) (5.21)
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5.4.2 Stewart-Lyth equation

Stewart and Lyth [207] obtained a more general solution E@r(5.21) by performing
an expansion about this exact case. The exact solutiondqudiver-law case is valid
as long asy < 1 andeg = 7y = /4. In order to obtain a solution for cases other
than power-law inflation one would like to consider < 1 andey # ny # /E&u.
This is equivalent to the higher order Hubble slow-roll paesers picking up a time
dependence. Stewart and Lyth considered a small finitereliftee between the first
two Hubble slow-roll parametets; = ey — nu. If e andny are slowly varying (valid

if they are small [212]) around horizon crossing £ aH) the time dependence is
shifted to higher order Hubble slow-roll parameters. One tteen follow a similar
process to the power-law case writing the conformal time as

1 1 2€HCH
aH1l—eg aH

+(expansion in higher order Hubble slow-roll parameters
(5.22)

where this is consistent to ordgy = ?\y. For small and slowly varyingy andny the

conformal time can be written

1
T~ —E<1+€H). (5.23)

Using Eg. (5.18), this leads to the commonly used Stewaitt-eguation for the power

spectrum of curvature perturbations to lowest ordefiiandry:

Pn(k) ~ [1 - <2C —+ 1)€H -+ CYUH]2 ( H )2 )k:aH ’ (524)

TEH mpy

whereC' = —2 + In2 + v =~ —0.729 and~ is the Euler-Mascheroni constant. Any
scale dependence in the power spectrum is contained withisdale dependency of

the slow-roll parameters.
There are two crucial points to consider in the derivatiothefStewart-Lyth equation:

1) The expansion around the exact power-law case invohiiinghthe time depen-
dence of the Hubble slow-roll parameters to higher ordelsgs flequiresy andny to

be small and slowly varying around horizon crossing (from flow Egs. (5.4)-(5.6),

we see that ity andny are small, this is equivalent to the statement that they are

slowly varying).



Constraining models of inflation 77

2) Despite appearances Eq. (5.24) does not give the valueegidwer spectrum at
horizon crossing, rather it gives the value in the asympiperhorizon limit written

in terms of the values which quantities had at horizon cnos13]. Therefore for an
accurate determination of the power spectrum at a giver sitas asymptotic regime

must be reached.

As we will frequently refer to these approximations in thédeing discussion, we
call these two conditions thetewart-Lyth conditions\Ve discuss these two points and

the implications for PBH constraints in Sec. 5.7.

5.5 Numerical power spectrum

We wish to perform a numerical evaluation of the power speatof perturbations
so that, for the first time, a quantitative comparison can leerwith the analytical
calculation described above. We ultimately wish to ingete any implications this
has for PBH constraints. In this and the following section clesely follow the work

by Chongchitnan and Efstathiou [200]. However, we adoptfe@int approach to the

evolution of the flow equations in Sec. 5.8.3.

A numerical analysis involves tracing the evolutionwgf for each wavemode using
Eq. (5.11) from an initial state well inside the horizon t@ tand of inflationr,,q.
As Eq. (5.11) has a dependence on the Hubble slow-roll pdaeasjehis evolution is
dependent on the model of inflation assumed. This model isazhby assigning initial
values of the Hubble slow-roll parameters. These parasaterthen also evolved to

the end of inflation using the flow equations Eqgs. (5.4)-(5.6)

In summary, analysing Eq. (5.11), the evolution of a givereidefined by the Hubble
slow-roll parameters is given by the effective mass termthadvolution of perturba-
tions within this model is described through thevariable. To perform a numerical
analysis, we must specify initial conditions for bath and the Hubble slow-roll pa-

rameters.

Ideally one would like to initialize modes in the extreme gheavelength limit by
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evaluating Eq. (5.13) in the infinite past i.e.

up(k/aH — o0) = \/%e_“”. (5.25)

In practise one must set a finite early time limit by imposingud-horizon scale in
which to set the initial condition. It has been shown thatekact value of this early
time limit does not alter the final results significantly asdaask/aH is taken to be
sufficiently large [201]. We set the initial conditions, E§.13), for each mode at an
arbitrary sub-horizon scale given lByaH = 50. We have confirmed that using the

larger scale limit:/a H = 100 does not change the results appreciably.

We change the time variable to the more convenient e-fofagiable (see Sec. 1.11).

Eq. (5.11) can then be rewritten as [200]

d2uy, duy, k2
el (e — 1)d_N tW\og) — flem,om,én) | ur =0, (5.26)
where
3 2 ‘712{
f(EH, UH,fH) =2 —4eg — §O'H — 2€p + I + & . (527)

The initial conditions are normalized so that they satik&/\WVronskian condition [208]:

duy, duj,

*

The Mukhanov variable is initialized &y« H = 50 to be [214, 200]

1
Re(ux(r;)) = ﬁ’ Im(ug (1)) =0,
Re (%(n)) 0. Im (%(n)) _ —£\/% (5.29)

Each mode is then evolved during inflation from this quantwowm ground state
through horizon crossing and then to the end of inflation @elffioy N = 0. The power
spectrum of curvature perturbations can then be calculated) Eq. (5.14) [200]

2
U

Uk

Pr(k) = Pr(ko) (%)3 (5.30)

end
wherek, is the scale corresponding to current observable scalese 3arther useful

relations describing the inflationary evolution are givegn b

d(kjaH) K
—dN = _E(EH - 1) s (531)
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dlnk
v (en —1), (5.32)
dH

We can use the equations reviewed in this section to nuniigrie@olve any given
model of inflation to the end of inflation. We can then calcaithie power spectrum of

perturbations without relying on the Stewart-Lyth equatny using Eq. (5.30).

5.6 Model dependent cosmological observables

Sec. 5.5 provides the necessary equations for calculdimgadwer spectrum of per-
turbations for any given model of inflation numerically. $lhen allows us to apply
our PBH constraints (see Sec. 3.8) so that models which oweelupe PBHs can be
eliminated. These models are then plotted according to pinedictions forn, » and
dn,/dInk on large scales to allow comparison to observational dateapply these
large-scale observational constraints we use the Stéwtrtequation, Eq. (5.24), to
obtain expressions for these observables in terms of théldwow-roll parameters.
This is sufficiently accurate as long as the Stewart-Lythddams (see Sec. 5.4.2) are

obeyed on these scales and for a short time before thess sgéked the horizon [215].

Using Eq. (5.24) the cosmological observabilesandr are given to first order [190]:

r= Pr_ €M (5.34)
R
1
ng— 1= dInPr = —deg+2ng = oq . (5.35)
dlnk

To second order in Hubble slow-roll they are given by [190]
T = GH[l — Ol(O'H -+ QEH)] > (536)
1 1
ng—1=on— (5—3C))e4 — 1(3 —5C))onen + = (3 — C1)én, (5.37)

2
whereC; = 4(In2 + ) — 5 ~ 0.0814514 and~y ~ 0.577.

The running of the spectral index is defined as the secondalise of the power

spectrum. Using the following relationship [190]:

d

BT (5.38)

d
ay ~ —en)
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The running of the spectral index is

dns  d*InPg 1 dn
dink — dnk?2 (1 — eH> AN’ (5-39)

which can be evaluated to second order in Hubble slow-rolising Eg. (5.37) and
the flow equations, Egs. (5.4)-(5.6):

dn, | (3 - 5C) (3
Aok ~ — (1 — GH) {25}{ — 12612{ — 5€HO'H — TlﬁHfH + 4

ouén

(5.40)

With our limited knowledge of the inflationary potential le@son large-scale observa-
tions, it is possible, with some confidence, to constrainfitisé two Hubble slow-roll
parametersey & ny and to a much lesser extent, the third Hubble slow-roll param
eter,{y. As can be seen from Eq. (5.4@) is the leading order term for the value
of the running of the spectral index (see Eq. (1.56)). Thiseutainty in the running
allows for the possibility that the power spectrum of cuavatperturbation, given by
Eg. (1.54), may become large on small scales resulting mfggnt structure such
as PBH formation. Higher order Hubble slow-roll parametees unconstrained by
current observations. If these parameters are signifiedt formation may be even

more significant.

5.7 Numerical vs. analytical power spectrum

In the case of simple single-field inflation models, the Stégth equation Eq. (5.24),
is a good approximation of the power spectrum of perturibatiover a large range
of scales. However, it can break down any time the Stewadtt-kpnditions (see

Sec. 5.4.2) are violated. Specifically, the first conditioaynbe violated if there

are features in the inflationary potential causing the Hetsbw-roll parameters to
change quickly [213]. The second Stewart-Lyth conditioryrba violated for modes
which exit the horizon close to the end of inflation [212]. $Banodes do not reach
the asymptotic large-scale limit before inflation ends anmat@n result in an under-
estimation of the power spectrum at the end of inflation. €he both have impor-
tant consequences for PBH formation. Fig. 5.1 shows an examptel of inflation

which shows these features.
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Figure 5.1: The power spectrum of the primordial curvature perturlvaienerated during the
evolution of an example model of inflation as a function of tluenber of e-foldings. The black
solid line shows the power spectrum calculated using the/@te yth equation while the blue
dotted line is the result of a numerical mode by mode calmriat

This model begins with an inflationary expansion which dipgellows power-law

inflation i.e. has a relatively constant power spectrum ofysbations. Here the Hub-
ble slow-roll parameters vary slowly and the power spectdirperturbations calcu-
lated using the Stewart-lyth equation (solid black lineechas the numerical evalua-
tion (dotted blue line) very well. As the inflationary evarn progresses the Hubble
slow-roll parameters begin to differ significantly from gaxther and the first Stewart-
Lyth condition (see Sec. 5.4.2) breaks down. The resultmgep spectrum acquires
a scale dependency. In this regime the Stewart-Lyth equédiads to under-estimate
the power spectrum compared to a numerical evaluation. feetdere is small but

may become large for certain inflationary potentials (fatamce the model shown in

Fig. 5.2) or if there are peaks or features in the inflationaotential [200]. Fig. 5.1
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Figure 5.2: The power spectrum of the primordial curvature perturlvatienerated during the
evolution of an example model of inflation as a function of tbenoving wavenumber. Here there
is a significant difference between an analytical evaluadicthe power spectrum (solid black line)
from a numerical mode by mode evaluation (blue dotted line)

also shows an enhancement of the power spectrum close todra enflation caused

by the failure of the second Stewart-Lyth condition.

Fig. 5.3 shows the power spectrum of curvature perturba®a function oft/a H
as perturbations evolve from sub-horizon to super-horgmales. As discussed pre-
viously, the use of the Stewart-Lyth equation requires rsaefully evolve to the
asymptotic super-horizon regime where the power spectecsuarnes constant. As can
be seen in Fig. 5.3, if this asymptotic limit is not reachag;lsas for modes exiting
the horizon close to the end of inflation, the Stewart-Lytbatepn leads to an under-
estimation of the power spectrum. From Fig. 5.3, we can asotlsat modes which
never exit the horizon before the end of inflation have murdielapower spectrum am-

plitudes and could potentially form PBHs on sub-horizon egalThese effects have
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Figure 5.3: The power spectrum of the primordial curvature perturlmagie a function ok /aH

as perturbations evolve from sub-horizon scales to superdn scales for the case of a simple
chaotic inflation model\((¢) oc m?p?). The amplitude at horizon crossig = aH) is larger
than that in the asymptotic large-scale lindy ¢ H — 0).

been investigated by several authors [98, 99, 100]. Ourtings, however, only con-
sider PBHs formed from perturbations which exited the haridaring inflation. Our
constraints on the power spectrum of perturbations arefive conservative in this

respect.

The failure to reach an asymptotic super-horizon limit hesrbinvestigated by Leach
& Liddle [212]. They numerically calculated the power spaat generated by a sim-
ple quadratic chaotic inflation model and compared the tesuth an analytical cal-
culation using the Stewart-Lyth equation. Their analysilived evaluating modes at
three different stages; to horizon exit, to the end of irdlatito horizon re-entry for
each mode. Their results indicate that the amplitude azborexit is typically much

greater than the other two cases, both of which are closdrettewart-Lyth case.
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This is expected as evaluating wave modes to horizon exitdvaificially amplify
the power spectrum for all modes (except those near the emdlation) compared
to evaluating at the asymptotic limit (see Fig. 5.3). For e®drossing the horizon
well away from the end of inflation, there is ample time for &symptotic limit to be
reached and imposing a horizon exit cutoff in the power spatevaluation leads to
an over-estimation. Each comoving wavemode should, tbexebe evolved at least

to the end of inflation defined by = 0.

PBHSs form from perturbations which exit and re-enter theZwriclose to the end of
inflation. Therefore, in order to apply our PBH constraintss iprudent to calculate
the power spectrum numerically on a mode by mode basis asliegin Sec. (5.5) in

order to account for any enhancement compared to the Stewthrapproximation.

Fig. 5.4 shows an example inflation model selected due itgiqity to our PBH
bounds and with a power spectrum on large scales that is ddoigpaith the WMAP

7 year data. From Sec. 3.8 we use the more conservative amistn the power spec-
trum from PBHs Pr < 107!). We see that the Stewart-Lyth equation leads to an
acceptable power spectrum at the end of inflation with the P&hd not violated. A
numerical evaluation of the power spectrum, however, l¢adsis model of inflation

being eliminated due to the overproduction of PBHSs.

5.8 Inflation model testing - A stochastic approach

Now that we have demonstrated the virtues of a numericayaisab predict the power
spectrum of perturbations, we examine the ability of our PRHruls to constrain
models of inflation. From Fig. 5.4 we see that our PBH constrajn < 10~! can be
used to eliminate this particular inflation model when thev@ospectrum is calculated
numerically rather than analytically. Rather than perforgna case by case model
analysis, we now apply our PBH bounds to many inflation modsitsgua stochastic
technique. This then allow us to compare the use of the Stdw#r equation to a

numerical analysis for a large range of possible models.

Kinney [190] first used the flow equations along with a Montel€approach to

stochastically generate 1,000,000 inflation models to @mmodels of inflation with
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Figure 5.4: The power spectrum of the primordial curvature perturlvatienerated during the
final few e-foldings for an example inflation model. The bladkd line shows the power spectrum
calculated using the Stewart-Lyth equation while the blottedl line is the result of a numerical
mode by mode calculation.

observational data. In the following we closely follow theetimod used by Kin-
ney [190] to numerically generate and evolve 250,000 moaleisflation. We adopt

the following algorithm:

1) Select a point in the parameter spagery;, ‘ \i up to arbitrary order inand specify
the number of e-foldings of inflation from the current Hubd&dale crossing the horizon

during inflation N to the end of inflationV = 0 (see Sec. 1.11).

2) Using the flow equations, Egs. (5.4)-(5.6), evolve the belslow-roll parameters
forward in time (I/V < 0) from the chosen number of e-folding§,; until either a)

inflation endsaturally with ey = 1, or b) inflation ends withV = 0

3) If the evolution reached = 0, calculate the observablesn, — 1 anddn,/dlnk
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using the values of the Hubble slow-roll parameters chosially.

4) If inflation ends withey; = 1 before N = 0 is reached, evolve the Hubble slow-
roll parameters, using the flow equations, backwalg e-foldings and calculate the
observables at this new point. These points in the Hubblg-sbli parameter space

are equivalent to the class of models Kinney catis-trivial points[190].

5) In the case of inflation ending naturally at late timgs—= 1 asdN < 0, there is the
possibility that inflation also ends when evolving backwar@éarly timesgy = 1 as
dN > 0. These models are incapable of supporting, e-foldings of inflation and so

can be discarded.

This process can then be repeated for a large number of anflatbdels by using a
Monte Carlo approach to randomly generate combinationsitiliffubble slow-roll

parameters.

5.8.1 Hubble slow-roll hierarchy

The initial Hubble slow-roll parameters are chosen withiarsge of values collectively
known as aierarchy. From Eq. (1.38) the range ef; is motivated by the requirement
for inflation to occur. From Eq. (5.37), the rangedgf is chosen so as to encompass
the observed value of the spectral index. The remainingpaters are chosen within
a range of values which decreases by a factor of ten each tintteas the hierarchy
forms a closed convergent set. This amounts to choosingte,faibeit large, subset
of an infinite number of possible initial conditions. Evaigithe hierarchy using the
flow equations results in the model following a certain pathhie Hubble slow-roll

parameter space as a functionof

Due to the unknown physics behind reheating, the numberfoldeags of inflation
between observable scales leaving the horizon duringimiaind the end of inflation
is somewhat ambiguous (see Sec. 1.11). A range of e-foldsribsrefore also consid-

ered within the Monte Carlo approach. In our analysis we usdidrarchy suggested
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by Kinney [190] along with following range of e-foldings affiation:

Neos = [40,60],
ex = [0,0.8],
on = [-0.5,0.5],
Au=&n = [-0.05,0.05],
*Au = [-0.005,0.005],
M+iNg = 0. (5.41)

In principle, if the hierarchy is taken to infinite ordéf = oo we can fully specify
the shape of the inflationary potential. In practise one rtrusicate the hierarchy at
some level. We truncate the hierarchyldt= 6 so as to encompass a wide variety of
models. This is consistent with the work of Ramirez & LiddI®$9] who show that
small changes in the value 8f has negligible impact on the flow analysis predictions.
As the flow equationsl(‘\;;)/dN only depend on the Hubble slow-roll parameters
upto order(/+1), evaluation of the flow equations is exact within this sulb$étflation
models [205].

5.8.2 Evolution to late-time asymptotic limit

Our algorithm (Sec. 5.8) differs from that originally pregeal by Kinney [190] in how
we handle models chosen from the initial hierarchy that astided to inflate forever,

eq — 0, but do not reach this limit withiiv,., e-foldings (i.e. point 2 in the algorithm).

In the original flow algorithm suggested by Kinney the ifditigerarchy is assigned at
an arbitrarily early point in timéV; = 1000 (c.f. our modified algorithm where each
model is evolved fromV,). This is then evolved to either a) = 1 where the ob-

servables are then calculated at a pa¥ag, e-foldings prior to this point or b) to a
late-time attractor characterised gy — 0, oy — constant where the cosmological
observables are then calculated at this point i.e. the medetced to evolve to its

asymptotic limit where it is assumed that the entire evolubf the observable Uni-

verse lastingV,,s e-foldings occurs. This is reasonable if one assumes mdolle-
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Figure 5.5: The parameter space of observaliles ) obtained from a sample of 250,000 infla-
tion models. Each model is evolveddg = 1 or to its asymptotic limit.

of inflation have passed prior to our observable scalesrgaie horizon. However,
an entire class of models which include those that have notegehed a late time
attractor are excluded with this algorithm. In the follogiwork, we study the orig-
inal algorithm proposed by Kinney and how this algorithmleges inflation models
which predict a significant formation of PBHs. We also use oew ralgorithm to

include these previously excluded models and apply our PBistcaints.

We stochastically generate and test 250,000 models ofiorflaising the hierarchy
given by Eq. (5.41) and this original algorithm suggestedibyney [190]. The re-
sults agree with those found in Refs. [190, 199, 204] findimgdmaracteristic features
shown in Fig. 5.5 and Fig. 5.6.

In Fig. 5.5 two categories of fixed points can broadly be idiext Those resulting

from models in which inflation never ends; — 0, but reaches an asymptotic limit
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Figure 5.6: The parameter space of observahles, dn,/dIlnk) obtained from the same sample
of 250,000 inflation models. Each model is evolvedgo= 1 or to its asymptotic limit.

and those in which inflation ends naturally via= 1

Category 1 Models where inflation never endsg; — 0. This category accounts
for 93 percent of all models tested. An asymptotic limit isntified with the inflaton
field being trapped in a local minimum of the potential. Helie assumed a secondary
mechanism, such as hybrid inflation [216], acts to end imftatThe Hubble slow-roll

parameters in this asymptotic limit are given by

eg — 0, og >0, (5.42)
while the large-scale cosmological observables in thig ke

r—0, ne>1. (5.43)

In this limit the running of the spectral index as shown in.Ed is negligible. There-

fore for models which are compatible with the WMAP 7 year measient of the
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spectral indexp, = 0.963+0.014 [9], the amplitude of the curvature perturbations can

not be large on any scale and so PBHs are never formed in sartificmbers [200].

Category 2 Models where inflation ends naturally; = 1. This category accounts
for 7 percent of all models tested. The Hubble slow-roll paeters evaluated,

e-foldings before the end of inflation tend to two possibidting values:

either 2a)

en="\g—0, on <0, (5.44)

while the large-scale cosmological observables in thig e

r—0, ne<1. (5.45)
or 2b)
en = 7Nu = /&y = constant ,
= oy = —2€q s (546)

where the large-scale cosmological observables tend tsthe diagonal swathe fea-
ture given by
r 20, ng <1. (5.47)

This diagonal swathe is identified as tending towards th@tweer-law inflation solu-

tion (see Sec. 5.4.1).

The models within category 2 generally predict a red tiljgelcsral index:, < 1 across

all scales and so again PBHSs are never formed in significanbatsn

The models within category 2 are entirely populated byrive-trivial class of models
(i.e. models in whiclkk; = 1 ends inflation and a backwards integration by an amount
N.os is performed). The presence of this concentrated swath@iafphas invited
some speculation as to whether the power-law line represegeneral prediction of
an attractor solution for many models of inflation. Howeweernoted by Liddle [198]
since the inflationary dynamical equations of motion, EqB3), never enters into this
stochastic method of model testing, no general predictadumait inflationary dynam-
ics can be made. Rather the flow equations provide an algorithich allows us to

‘randomly’ generate and evolve a large number of models.
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However, it does appear from Fig. 5.5 that many models oftinfiaspecifically the
non-trivial points) are able to spend a long time in partshef parameter space ap-
proaching power-law inflation [198]. Although an analytiaEgument can be found in
Ref. [204], a qualitative argument may be presented: The pspextrum, given by the
Stewart-Lyth equation, Eq. (5.24), originates from an @&gi@n about the exact case
of power-law inflation (see Sec. 5.4.1). In this exact casdthbble slow-roll parame-
ters have 2 important properties; they are all positive amstant (see Eqg. (5.16)). For
those models chosen at random with initial parameter valbash are all positive,
one would expect from the flow equations, Egs. (5.4)-(51&t ¢y — 1. Also for
parameters chosen at random with initial values that asedimthe power-law values,
Eg. (5.16), one can see from the flow equations that each dwdbblv-roll parameter
will have only a very small time dependence. These two ingraperties, therefore,
ensure that the non-trivial points necessarily share ¢@mdi which are close to the
properties found in power-law inflation. The scatter arotir&lpower-law line arises
from models which have parameters with a slightly strongee tdependence so that
these models reach; = 1 more quickly. From our algorithm (Sec. 5.8) on evolving
backward by an amounY.., from this point, these models will then have more time

to evolve away from the exact power-law line.

In summary, if models start exactly on the power-law lineyttwill remain there since

the Hubble slow-roll parameters are constant and so havieneodependence. How-
ever, if the initial configuration is close to, but not exggibwer-law, the model is able
to remain close to the power-law solution for an amount oétohependent on how far
from power-law the initial assigned values are. Hence, ¢éiggon of Hubble slow-roll

parameter space around the power-law line can be viewedesmspmtarily stable sad-
dle point in time. The width of the saddle (time spent in tidgion) depends on how
far from exact power-law the initial conditions are. Beyohd saddle point on either
side (forward and backward integration in time or e-foldinthe models asymptotes

to a stable solution along the= 0 line [190, 198].

The key point to emphasize here is that by using this origatgbrithm, those mod-
els which predict the overproduction of PBHs at the end of fioftaare not consis-
tent with WMAP bounds and so can be discounted. This lead Chatngn & Efs-



Constraining models of inflation 92

tathiou [200] to conclude that it is unlikely that PBHs woula\vie formed from infla-
tionary dynamics without some ad hoc feature or break in ifiationary potential.
This seemed at odds with predictions of the running mass hjc8&, 188] as de-
scribed in Sec. 5.2. Here cosmological parameters consisith observational data
are achieved on large-scales and PBHs are over-producedalihssales. Peiris and
Easther [32] have suggested the source of this differeasérlithe treatment of models
which are destined to inflate forever. We therefore advottegelgorithm as detailed

in Sec. 5.8 rather than Kinneys original algorithm as presstm Ref. [190].

5.8.3 EvolutiontoN =0

Following Peiris and Easther [32], we do not force modelsoivtaire destined to inflate
forever €g — 0) to evolve to their asymptotic limit but instead terminatern once
N e-foldings of inflation have occurred. At this point it is assed that another
mechanism, for example a second-field such as in hybridimrfigierminates inflation.
Using this approach on the same sample of 250,000 initiadliions, the resulting

observables are shown in Fig. 5.7 and Fig. 5.8

From Fig. 5.7 we see that the distinctive swathe (categoyp®hoints are still present
and again account for around 7 percent of all models testedsd represent the non-
trivial points close to the power-law solution for which drgatment is identical to the

original algorithm by Kinney [190].

Those points in category 2a still largely lie on the= 0, n, < 1 line. However,
some of these models, which would have ended naturally<1) if evolved further,
are now terminated a¥V = 0 before reachingy = 1. This results in these points
being spread over a larger area of parameter space withvalbéesr > 0,7, < 1.
Most interestingly however, we now see that those modelsndekto inflate forever
(category 1: 93 percent of models whege— 0) which previously asymptoted to the
r — 0,ns > 1 line in Fig. 5.5, now populate a large region of the paramspeice.
From Fig. 5.8 many of these models, which in the original atgm have negligible
running in the asymptotic regime (c.f. Fig. 5.6), now hawgéapositive running. A
large proportion of these models are now also compatibla thié WMAP bounds

given in Sec. 1.10.
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Figure 5.7: The parameter space of observalfles ) obtained from the same sample of 250,000
inflation models. Models are evolved to the end of inflatiofirdel by N = 0 oreg = 1 as
discussed in the text.

Hence, with our algorithm described in Sec. 5.8, we find modadich are consistent
with the WMAP measurements of the spectral index and its ngjiiut have perturba-
tions on small scales which may be large enough to over-ge8BHSs (in agreement
with the findings of Ref [32]). This modified algorithm incomates models such as

the running mass model which were missed by the originalrdigo.

PBH bounds can significantly constrain the variety of possibflation models gen-
erated by this modified algorithm. Therefore, we proceedppiyéng our PBH con-
straint found in Sec. 3.8 and assessing the importance anamcal evaluation of the

power spectrum compared to an analytical assessment.
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Figure 5.8: The parameter space of observalfles dn/dInk) obtained from the same sample of
250,000 inflation models. Models are evolved to the end adiioih defined byV = 0 oreg = 1
as discussed in the text.

5.9 PBH constraints applied to stochastically generated

models of inflation

We use the modified flow algorithm described in Sec. 5.8 to igea¢he same ensem-
ble (250,000) of inflation models as in Sec 5.8.3. To applyRBé&l constraints we use
the Stewart-Lyth expression for the power spectrum, EQ4(5.to identify inflation
models where the amplitude of the perturbations on smalésaa@hich exit the hori-
zon close to the end of inflation is large, and may lead to tlee-pvoduction of PBHSs.
For these models, we then carry out an accurate numericaitewvoof the primordial

perturbations, as described in Sec. 5.5.

In Sec. 3.8 we compiled, and where relevant updated, the PBRidaince constraints
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Figure 5.9: The parameter space of observables {) obtained from the same sample of 250,000
inflation models. The power spectrum for each inflation mdglehlculated using the Stewart-Lyth
equation and those which violate PBH bounds are excluded.

and translated these into constraints on the power spedioorvature perturbations.
We found thatPr < 1072 — 107! in order to avoid the over production of PBHSs.
We use the conservative constraitt < 10~! to constrain models of inflation nu-
merically. Figs. 5.9 and Figs. 5.10 show the cosmologicakolables for the models

which remain once those which over-produce PBHs are excluded

The 7% of original models for which inflation ends naturally (diagd swathe) gen-
erally haven, < 1 on all scales and so are unaffected by the PBH constraintsheOf t
remaining models, in which inflation continues indefinitédyy — 0) in the absence
of a secondary mechanis®92% are excluded by PBH overproduction. Hence, of the
models initially generated, only approximatef} end via a secondary mechanism and

do not overproduce PBHs. With an accurate numerical calounlaft the perturbations,
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Figure 5.10: The parameter space of observables {n,/dInk) obtained from the same sample
of 250,000 inflation models. The power spectrum for eachtinflanodel is calculated using the
Stewart-Lyth equation and those which violate PBH boundseacluded.

we find that the number of these models decreases by appriakyma%.

Large positive running is now excluded as expected (se&Fig). Cosmological con-
straints onln,/dInk eliminate a significant fraction of the models generatedgiiow
algorithms [190]. A full MCMC analysis of cosmological dataieyond the scope of
this work. However a simple application of the observati@mmstraints shows that a
significant fraction of cosmologically viable models arelexied by PBH constraints.
Of the models generated using our modified flow analysis whalke cosmological
observables within thes3ranges found by WMAP7 [9]19% are excluded by PBH
over-production. This illustrates that in the era of prieeiscosmological measure-

ments PBH still provide a powerful constraint on inflation ratsd

We conclude that significant PBH formation can occur in moafelghich inflation can
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continue indefinitely and is ended via a secondary mecha(ssich as hybrid infla-
tion). The algorithm presented in Sec. 5.8 finds models ddtiloih compatible with all
cosmological data and where the amplitude of perturbai®ifage on small scales.
This differs from the original algorithm used by Kinney. Wendonstrate that PBH
constraints provide a significant constraint on models téiion. Furthermore to ex-
ploit their full power an accurate numerical calculatiortiod amplitude of primordial
perturbations on small scales, which exit the horizon ctosie end of inflation, is

required.



Chapter 6

Conclusions

WMAP and large scale structure surveys have taken us intceaof @recision cosmol-
ogy. In Chapter 1 we review the Big Bang and shortfalls that avitiein this theory.
We discuss how a period of rapidly accelerating expansidaccanflation overcomes
these shortfalls. A simple way of generating a period of trdtais with a scalar field
(known as the inflaton field) evolving in a potential. A sul&aform for the potential
results in a Universe dominated by negative pressure whighsdan accelerated ex-
pansion. Scalar fields, although not yet observed, have bereg an integral part of
particle physics. This connection between particle plsyaied cosmology has resulted
in a much studied area of physics. We review the slow-rothiaism which relates the

dynamics of the inflaton field in a potential to the dynamicamexpanding Universe.

Inflation naturally predicts the generation of perturbasgian the early Universe from
guantum vacuum fluctuations. This, along with the resotutibthe problems associ-
ated with the Big Bang, has led to inflation becoming a part ofdteendard cosmologi-
cal model’ describing our Universe. In Chapter 2 we reviewnalegical perturbation
theory and the issue of gauge ambiguity. We use metric goations in the comoving
total matter gauge to derive a new expression relating tinegpdial curvature pertur-
bations generated during inflation to density perturbatidthere we take into account
the full time evolution of perturbations prior to and postiaon entry. We use this
new expression to calculate constraints on the power spaaif perturbations based

on observational data from small-scale structure.
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WMAP and large scale structure surveys have strongly cansttahe spectrum of
perturbations on very narrow range of large-scales. Howdve spectrum of pertur-
bations on small-scales is poorly constrained. Two pderoexamples of small-scale
structure that we concentrate on are primordial black rexdelultra compact dark mat-
ter mini halos. PBHs can form from large density perturbatigaenerated at the end of
inflation. Constraints on the abundance of PBHs can be traaddiatconstraints on the
spectrum of perturbations on these small-scales. In Ch&pter review the criteria
for PBH formation. We then compile, and where relevant, updae PBH abundance
constraints. We find that to avoid the over production of PBRs power spectrum of
curvature perturbations is constrainedg < 10~2—10"! across the relevant range of
scales. Compared to the latest WMAP 7 year data finfigg= (2.434+0.11) x 1077,
the PBH constraints are relatively weak. They are, howeygli@able across a very

wide range of scales.

In Chapter 4 we discuss the possible formation of ultra comgack matter mini
halos. These dark matter structures may form from primbagasity perturbations
generated by inflation in a similar manner as PBHs. We destniie formation and
possible detection. If dark matter is in the form of Weakliehacting Massive Particles
(WIMPs) then WIMP annihilation may lead to a detectable gannayasignature. We
investigate constraints on the power spectrum of pertimbat the event of detection
or non-detection of gamma-rays from UCMHSs by the Fermi s&gelWe find that a
positive detection by Fermi would place very strong comstsaon the power spectrum

on small scales of the ord@t; > 10766 — 10759,

Finally in Chapter 5 we discuss a stochastic method of geingratodels of inflation.
This is an important development in the area of inflation nhddéding and is com-
plementary to the more usual model by model approach. Wey applconstraints on
the primordial power spectrum from PBHs to models of inflag@merated by a mod-
ified flow algorithm. The power spectrum of perturbationsssally calculated using
the Stewart-Lyth expression. We demonstrate that the liteak of the Stewart-Lyth
equation at the end of inflation has important consequercekd application of PBH
constraints. We therefore advocate a numerical approaciy avith our modified al-

gorithm in order to apply PBH constraints on models of inflatio
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Particle physics phenomenology has now become one of thedaareas of active
research. Experiments such as the newly built Large Hadrdid@o(LHC) promise
to reach energies which existed during the very early Us&eHowever, observations
from WMAP and large-scale structure provide a unique opmistuto observe the
largest physics experiment. With the recent launch of taaéX satellite and continued
data gathering from Fermi, the era of precision cosmolodiyoantinue to improve our

understanding of the early Universe.
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