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Abstract

In this thesis the Big Bang and inflation theory are reviewed. The success of inflation

is largely due to the predicted generation of inhomogeneities. We review the dynam-

ical equations of motion for an accelerating expansion of the Universe and the flow

equations which describe the evolution of the Hubble slow-roll parameters. We use

cosmological perturbation theory to find a new expression relating comoving curva-

ture perturbations generated during inflation to density perturbations responsible for

structure formation. Primordial black holes (PBHs) may formfrom primordial pertur-

bations. We compile and update constraints on the abundanceof PBHs. We then use

our new relationship to translate these abundance limits into constraints on the power

spectrum of primordial curvature perturbation. In addition we investigate the possi-

ble formation of ultracompact dark matter minihalos (UCMHs)which may also form

from primordial pertubations. If dark matter is in the form of weakly interacting mas-

sive particles (WIMPs) then WIMP annihilation may produce a detectable gamma-ray

signature. We calculate the potential constraints which would arise from a detection

by the Fermi satellite. Finally, we investigate single fieldmodels of inflation using a

stochastic technique to generate a large ensemble of models. Using a numerical ap-

proach along with a modified flow algorithm we find models of inflation compatible

with all cosmological data which have large perturbations on small scales. Signifi-

cant PBH formation occurs in models in which inflation can continue indefinitely and

is ended via a secondary mechanism. We use our PBH constraintsto eliminate such

models which overproduce PBHs. In this work we demonstrate that PBH constraints,

although weak, are effective at constraining models of inflation. We also demonstrate

that a gamma-ray detection from UCMHs could potentially constrain the power spec-

trum of curvature perturbation on small scales very tightlyin the near future.
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Chapter 1

Introduction

1.1 Cosmology

Observational cosmology has driven the study of the originsof the Universe from

speculative theories to testable models. In particular, the discovery of the Cosmic Mi-

crowave Background (CMB) has put the Big Bang theory on sound theoretical footing.

Subsequent observations have greatly enhanced our understanding of the Universe and

taken us into an era of precision cosmology. An important extension to the the Big

Bang model is the theory of cosmological inflation.

The paradigm of cosmological inflation during the early Universe was first proposed

in 1980 by Alan Guth [1]. It postulates that subsequent to theBig Bang there was

a period of accelerated expansion of the Universe. It is arguably the most successful

model for explaining several puzzling features of the Big Bangtheory which include

the horizon, flatness and monopole problems. One of the most interesting features of

inflation is that it naturally results in the generation of inhomogeneities in the Universe

in the form of scalar curvature perturbations and gravitational waves in the form of

tensor perturbations [2, 3, 4].

In the last two decades there has been much study in the area ofinflation model build-

ing. Particular models of inflation make predictions about the primordial perturbations

which are then compared to observational constraints. These constraints come from a

variety of cosmological and astrophysical observations. However, these observations
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generally only probe a very narrow range of large scales. Exceptions to this are con-

straints obtained from Primordial Black Holes (PBHs) [5, 6] and more recently, from

Ultra Compact Mini Halos (UCMHs) [7]. Although less well constrained than large-

scale observational data, these objects potentially probeperturbations over a very large

range of small scales.

In this thesis we review the ‘standard cosmology’ in chapter1 and perturbation theory

in Chapter 2. We then investigate constraints from PBHs and UCMHs in Chapter 3 and

Chapter 4. Finally we investigate PBH constraints on models ofinflation generated via

a stochastic method in Chapter. 5.

Throughout, we use greek subscript and superscript lettersto denote spacetime co-

ordinates and Latin letters to denote spatial coordinates.We adopt the summation

convention to imply a sum over pairs of identical superscript and subscript spacetime

indices. We also adopt the metric signature(−,+,+,+) and the usual convention of

labelling contravariant quantities using superscript indices and covariant quantities us-

ing subscript indices. We also set the speed of light and the Planck constant to one

throughout,c = ~ = 1. The Planck mass ismPl ≡ G−1/2 ≈ 1019GeV and is a factor

of
√
8π larger than the reduced Planck mass, which we do not use in this thesis.

1.2 The Big-Bang

In the early part of the 20th century Edwin Hubble performed methodical observations

of galaxy redshifts as a function of distance [8]. These observations revealed that

almost all galaxies in the Universe are travelling away fromus. Hubble discovered

that the more distant a galaxy the more rapid the recession. The relationship between

the separation of two galaxiesd and their relative recession velocityv is given by

Hubble’s law:

v = Hd , (1.1)

whereH ≡ H(t) is the Hubble parameter and is given by

H =
ȧ

a
, (1.2)
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where overdots represent derivatives with respect to timed/dt anda ≡ a(t) is the

scale factor which characterizes the expansion of the Universe. The measured value of

the Hubble parameter todayH0 is [9]

H0 = 71± 2.5 km s−1Mpc−1 , (1.3)

where throughout we will use a subscript ‘0’ to denote the current epoch.

The revelation of an expanding Universe naturally led to theconclusion that the Uni-

verse started from a much smaller early state. This then expanded to the present Uni-

verse with the expansion still continuing today. The initial state from which the entire

visible Universe expanded is known asthe Big Bang.

The standard mathematical description of an expanding Universe is constructed by the

consideration of distance measures. The distance between two nearby points in a four

dimensional space-time is given by the following line element:

ds2 =
∑

µ,ν

gµνdx
µdxν , (1.4)

wheregµν is the metric andµ andν are indices which can take values0, 1, 2 and3.

Herex0 is assigned the time coordinate andx1, x2 andx3 are the spatial coordinates.

If the Universe has a constant curvature which can be flat, hyperbolic or spherical on

the largest scales, then the most general line element in polar coordinates is given by

the Friedmann-Robertson-Walker (FRW) metric line element:

ds2 = −dt2 + a(t)2
[

dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (1.5)

whereK is the measure of spatial curvature withK = 0 corresponding to flat spatial

curvature,K = −1 to hyperbolic spatial curvature andK = 1 to spherical spatial

curvature. Here and throughout we have set the speed of lightto c = 1.

The evolution of the scale factor is described by the Einstein equations [10]:

Gµν ≡ Rµν −
1

2
Rgµν = 8πGTµν , (1.6)

whereRµν is the Ricci tensor,R is the Ricci scalar andTµν is the energy-momentum

tensor which can be writtenT µ
ν = diag(−ρ,P,P,P) whereρ is the energy density of

the Universe andP is its pressure. From the Einstein equations one can derive the
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Friedmann equation:

H2 ≡
(
ȧ

a

)2

=
8πGρ

3
− K

a2
. (1.7)

From Eq. (1.6) one can also derive the acceleration equation:
(
ä

a

)
= −4πG

3
(ρ+ 3P ) . (1.8)

One further useful equation is obtained by considering the conservation of energy to

give the fluid equation:

ρ̇+ 3H(ρ+ P ) = 0 . (1.9)

These equations together describe the expansion and geometry of the Universe in terms

of the density and pressure of material contained within it.One can solve Eq. (1.7) and

Eq. (1.9) for the case of a flat Universe (K = 0) to find the behaviour of a matter or

radiation dominated Universe:

For a matter dominated Universe:

ρm ∝ 1

a3
, a ∝ t2/3 . (1.10)

For a radiation dominated Universe:

ρr ∝
1

a4
, a ∝ t1/2 . (1.11)

A useful quantity to consider is the critical densityρcrit defined as the total energy

density required to make the Universe flat (K = 0). Using Eq. (1.7) this is given by

ρcrit(t) =
3H2

8πG
. (1.12)

1.3 Energy content of the Universe

It is convenient to define the energy densityρX of a particular substanceX in the

Universe as a fraction of the critical densityρcrit. The resulting density parameterΩ

for each component of the energy density is given by

ΩX =
ρX
ρcrit

. (1.13)

From Eq. (1.13) if the total density parameterΩtot = 1 then the Universe is spatially

flat (K = 0) with a density given by Eq. (1.12).
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The total energy within the Universe is made up from various components and soΩtot

can be divided into each component such as matterΩm and radiationΩr. These can

be further subdivided into the various different types of matter such asΩstars, Ωdust,

ΩPBH, ΩUCMH etc..

The current ‘standard cosmological model’ places values onthe energy content of the

Universe finding [9]

Ωb ≈ 0.04 , (1.14)

ΩDM ≈ 0.22 , (1.15)

ΩΛ ≈ 0.73 , (1.16)

whereΩb is the density parameter for baryonic matter,ΩDM for non-baryonic cold

dark matter andΩΛ for the cosmological constant (or dark energy) which is thought to

be responsible for the observed accelerated expansion of the Universe [11, 12]. (For a

review of dark energy see Refs. [13, 14]).

1.4 Cosmic Microwave Background

The Cosmic Microwave Background (CMB) radiation, discovered in1965 by Arno

Penzias and Robert Wilson [15], quickly led to the Big Bang theory becoming an ac-

cepted model for the early Universe. The near perfect thermal black body spectrum

has a temperature of 2.725 K with wavelength such that observations are in the mi-

crowave range. The significant point here is that the uniformblack body spectrum

implies the early Universe was in thermal equilibrium. Of particular interest to cos-

mologists, however, are the small variations (anisotropies) in this almost uniform tem-

perature at the level of approximately one part in105. These temperature anisotropies

were first detected in 1992 by the Russian RELIKT-1 experiment and soon after by

COsmic Background Explorer (COBE) satellite [16]. More recently the anisotropies

have been measured to high precision by the Wilkinson Microwave Anisotropy Probe

(WMAP) [9].

These observations imply that the Universe emerged from theBig Bang as a very hot

and dense expanding fluid. The current understanding is thatthis fluid was comprised



Introduction 7

of an ionized plasma of protons and electrons and photons. High energy photon inter-

actions through Thomson scattering prevented neutral atoms from forming. Due to this

photon scattering the Universe was, therefore, opaque. It is assumed that some initial

perturbations were present in this dense fluid. Overdense regions collapsed through

gravitational attraction until the photon pressure countered this collapse. This resulted

in the generation of acoustic oscillations within the plasma with regions of high density

plasma being hotter than low density regions.

As the Universe further expanded and cooled, the photon energy dropped until the ion-

izing interaction of photons with ionized atoms could no longer occur. Neutral atoms

could then form resulting in an epoch known asrecombination. The sudden drop in

photon scattering known asdecoupling resulted in these photons travelling uninter-

rupted ever since. Photons from this era therefore provide asnapshot of conditions just

prior to decoupling.

At decoupling, photons which were in overdense regions had to begin their uninter-

rupted journey after decoupling by first overcoming the gravitational potential energy

within this region. These photons therefore emerged from the decoupling epoch with

less energy (or lower temperature) than those photons in underdense regions. This is

known as the Sachs-Wolfe effect [17]. This along with the acoustic oscillations de-

scribed above and other effects are precisely the origin of the temperature anisotropy

that we observe today. The observed surface the CMB photons occupy on the celes-

tial sphere centred on our location is known as thesurface of last scattering. This

represent the earliest time accessible to us through observations. Information about

conditions prior to this epoch may be accessible through gravitational wave detection

in the future.

1.5 Problems with the Big-Bang

1.5.1 Horizon problem

The size of the observable Universe is given by the distance light could have travelled

during the lifetime of the Universe taking into account the entire expansion history. At
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any given instant, taking into account the dynamics of the expansion of the Universe

at that time, one can define a Hubble length asdH = H−1. This determines the size

of a region within which causality can operate. This length scale is often called a

horizon [18].

Observations of the CMB have shown that the Universe is highlyisotropic with all

parts of the sky being the same temperature to one part in105. This suggests that

the Universe must have been in thermal equilibrium at some point in its history. In

order for this to occur the entire visible Universe must havebeen in causal contact at

one time. Photons from the CMB were free to travel uninterrupted since the time of

decoupling approximately 400,000 years after the Big Bang. This means that the size

of the horizon at the time of decoupling was approximately 400,000 light years across.

This corresponds to a region on the sky today which subtends an angle of around 2

degrees across. The CMB photons from one part of the sky have taken almost the age

of the Universe to reach us and likewise with the CMB on the opposite part of the

sky. These regions are certainly greater than 2 degrees apart and so it is not possible,

within the standard Big Bang picture, for these two regions to have ever been in causal

contact to thermally equalize. One of the biggest problems with the Big Bang theory

is understanding why the temperature of the Universe is so uniform across such large

distances.

1.5.2 Flatness problem

The present day value for the total density parameterΩtot has been shown to be very

close to one (Ωtot = 1.0023+0.0056
−0.0054 [19]) i.e. that the energy density of the Universe is

very close to the critical energy density (see Sec. 1.3). From Eq. (1.13) this implies

that the Universe is spatially flat. The Friedmann equation given by Eq. (1.7) can be

rewritten in terms of the density parameter as

Ωtot − 1 =
K

a2H2
. (1.17)

Using the matter and radiation domination relations fora(t) given in Sec. 1.2,Ωtot −
1 ∝ t in a radiation dominated Universe andΩtot − 1 ∝ t2/3 in a matter dominated

Universe i.e.Ωtot = 1 is unstable. Even a small deviation fromΩtot = 1 at early
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times results in rapid departure away from one at late times.The question must then be

asked, why is the Universe so close to being flat today when anysmall deviation from

flatness at early times is greatly amplified in time.

1.5.3 Monopole problem

Within particle physics the concept of symmetry breaking leads to the production of

relics such as magnetic monopoles (also cosmic strings and topological defects) in the

early Universe. In an expanding Universe the energy densityof these relics reduces as

matter (ρ ∝ a−3). In the early radiation dominated Universeρ ∝ a−4, therefore one

would expect relics to rapidly dominate the Universe.

1.6 Inflation

Inflation seeks to resolve the problems discussed above by adding a period of rapidly

accelerating expansion soon after the Big Bang. In this scenario the scale factor is

accelerating:

ä > 0 . (1.18)

From Eq. (1.8), this requires

P < −1

3
ρ . (1.19)

This implies that for an accelerating expansion, the Universe must be dominated by

some substance with negative pressure.

The quasi-exponential expansion associated with inflationresults in regions which

were causally connected before the onset of inflation being stretched to scales far be-

yond the horizon after inflation. Our current horizon continually grows as photons

from more distant regions of the Universe have time to reach us. Despite this our

observable Universe is still contained within a region thatwas initially much smaller

before the onset of inflation and therefore causally connected. This resolves the hori-

zon problem as two regions of the Universe which appear beyond each others horizon

were, in fact, well within each others horizon in the early Universe and so were able to

reach thermal equilibrium.
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The flatness problem can also be confronted by inflation theory by considering the de-

nominator in Eq. (1.17). During inflationH remains almost constant whilsta increases

almost exponentially. From Eq. (1.17) any spatial curvatureK which exists initially is

quickly suppressed by the rapid expansion ofa. Therefore, rather than flat space being

unstable,Ωtot is now driven to one during inflation. Heuristically, one canimagine that

any spacetime curvature that existed before inflation is stretched to such a vast degree

(far beyond observable scales) that after inflation the observable Universe is effectively

flat.

The monopole problem is also solved by simply ensuring that any relics produced by

symmetry breaking are quickly diluted away during inflation.

Any theory of the early Universe must solve the above problems and also must provide

a means for generating the inhomogeneities observed in the Universe. The Big Bang

does not provide any natural explanation for these inhomogeneities (with the exception

of topological defect theories [20, 21, 22, 23]) and so must assume these were present

as part of the initial conditions.

As briefly mentioned in Sec. 1.1, the success of inflation theory derives, in a large part,

from the prediction of the generation of inhomogeneities. During inflation the quasi-

exponential expansion of the Universe results in the amplification of vacuum quantum

fluctuations. These perturbations are stretched to far beyond the horizon becoming

classical spacetime curvature perturbations in the process [2, 4, 24, 25]. Once outside

of the horizon, spatial curvature perturbations cannot evolve further as they are larger

than regions of causal contact. They are then said to be ‘frozen’ 1. Some time after

inflation has ended, perturbations re-entered the horizon where they are able to evolve

through gravitational collapse or expand through radiation pressure. The evolution

of these perturbations after inflation has ended is thought to eventually lead to the

rich structure we see in the Universe today. The exact natureof the inhomogeneities

generated by inflation is still not well understood. Many models of inflation have been

proposed, most with different predictions for the evolution of perturbations. With the

exception of PBHs and possible DM substructures, our only opportunity of testing

models of inflation come from a very narrow range of large-scale observations. These

1we ignore the possible generation of isocurvature perturbations throughout this thesis.
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observations do, however, provide strong constraints on the range of scales where they

are relevant.

1.7 Slow-roll inflation

A simple way to achieve an accelerated expansion of the Universe is with a scalar field

ϕ known as the inflaton field. This field evolves along a potential V (ϕ) given by a

particular model of inflation. Assuming homogeneity, the energy-momentum tensor of

the inflaton field is given by

Tµν = ∂µϕ∂νϕ− gµν

(
1

2
gαβ∂αϕ∂βϕ− V (ϕ)

)
, (1.20)

where the energy density and pressure of an homogeneous inflaton field are

ρϕ =
1

2
ϕ̇2 + V (ϕ) , (1.21)

Pϕ =
1

2
ϕ̇2 − V (ϕ) . (1.22)

The dynamics of an expanding FRW Universe are given by the equations of motion of

the background (Friedmann equations). Using Eq. (1.7) and Eq. (1.8) (settingK = 0)

along with Eq. (1.21) and Eq. (1.22), these are given by

H2 =
8π

3m2
Pl

[
1

2
ϕ̇2 + V (ϕ)

]
, (1.23)

(
ä

a

)
=

8π

3m2
Pl

[
V (ϕ)− ϕ̇2

]
, (1.24)

wheremPl ≡ G−1/2 ≈ 1019GeV is the Planck mass. The equation of motion of the

inflaton fieldϕ is given by the conservation of the energy-momentum tensor:

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0 , (1.25)

where primes represent derivatives with respect to the fieldϕ.

From Eq. (1.24) an accelerated expansion of the scale factor(ä > 0) is obtained if

ϕ̇2 < V (ϕ). If we take the limiting case

ϕ̇2 ≪ V (ϕ) , (1.26)
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then one obtains an almost exponential expansion with a limit approaching a constant

Hubble parameter. This limit is known as a de Sitter Universe. With this limiting case

the following approximation also becomes valid:

ϕ̈≪ 3Hϕ̇ . (1.27)

Substituting these approximations into the Einstein equations, Eq. (1.23) and Eq. (1.25),

the approximations are equivalent to

H2 ≈ 8πV (ϕ)

3m2
Pl

, (1.28)

3Hϕ̇ ≈ −V ′(ϕ) . (1.29)

We see from Eq. (1.25) that this second approximation can be interpreted as the fric-

tion term of Eq. (1.25) dominating resulting in the inflaton field rolling very slowly

down the potential. As a result Eq. (1.26) and Eq. (1.27) are known as theslow-roll

approximations and result inslow-roll inflation . For slow-roll inflation to occur these

slow-roll approximations must hold. It can be shown that theslow-roll approximations

are valid when

ǫV ≪ 1 , ηV ≪ 1 , (1.30)

whereǫV andηV are known as the potential slow-roll parameters and are defined as

ǫV =
m2

Pl

16π

(
V ′(ϕ)

V (ϕ)

)2

, (1.31)

ηV =
m2

Pl

8π

(
V ′′(ϕ)

V (ϕ)

)
, (1.32)

with ǫV = 1 being defined as the end of inflation. The potential slow-rollparameters,

therefore, describe the form of the potential which, in turn, determines the dynamics

of the inflaton field along this potential through Eqs. (1.28)& (1.29).

1.8 Hamilton-Jacobi Formalism

As discussed in the previous section, the condition for slow-roll inflation is an approx-

imation only valid in the limit approaching de Sitter expansion, or equivalently, where

Eqs. (1.28) & (1.29) apply. In a situation whereǫV . 1 andηV . 1, the slow-roll
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approximations given by Eqs. (1.30) are clearly violated. However, this does not im-

ply inflation has ceased as the conditionϕ̇2 < V (ϕ) and thereforëa > 0 may still be

valid. What this means is that slow-roll inflation is no longeroccurring but inflation

may continue, albeit not of the slow-roll variety. Indeed, since the end of inflation is

defined byǫV = 1, one would expect that any single field model of slow-roll inflation

must necessarily pass through this regime of slow-roll violation.

It is evident that to fully track the evolution of the inflatonfield to the end of infla-

tion with the formalism presented in Sec. 1.7 will be impossible. The description of

the dynamics given by Eq. (1.28) and Eq. (1.29) becomes insufficient asǫV ∼ 1 or

ηV ∼ 1 due to the breakdown of the slow-roll approximations given by Eq. (1.26)

and Eq. (1.27). This poses a problem when it comes to fully evolving and describing

particular models of inflation numerically as we do in Chapter5.

To overcome this, Eq. (1.23) and Eq. (1.25) can be simply re-written with H(ϕ) as

the fundamental quantity instead ofV (ϕ). Assuming a monotonic field evolution

Eq. (1.23) and Eq. (1.25) can be re-written as [26, 27]

[H ′(ϕ)]2 − 12π

m2
P l

H2(ϕ) = −32π2

m4
Pl

V (ϕ) , (1.33)

ϕ̇ = −m
2
Pl

4π
H ′(ϕ) , (1.34)

where Eq. (1.33) is called the Hamilton-Jacobi equation.

One can think of the Hamilton-Jacobi equation as providing adescription of the dy-

namics of inflation in terms of geometrical properties,H(ϕ), rather than the potential,

V (ϕ), motivated from particle physics. UsingH(ϕ) as the fundamental quantity the

following slow-roll parameters can be derived:

ǫH =
m2

Pl

4π

(
H ′(ϕ)

H(ϕ)

)2

, (1.35)

ηH =
m2

Pl

4π

(
H ′′(ϕ)

H(ϕ)

)
. (1.36)

These parameters are often called the Hubble slow-roll parameters to distinguish them

from the potential slow-roll parameters given by Eqs. (1.31) & (1.32). We emphasize

that despite the unfortunate name, the Hubble slow-roll parameters Eqs. (1.35) & (1.36)

are derived without invoking the slow-roll approximations[28]. Rather, the derivation
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of the Hubble slow-roll parameters is exact and does not relyon taking the limiting

case of exponential expansion as seen for the potential slow-roll parameters.

The acceleration equation given by Eq. (1.24), can now be rewritten in terms of the

Hubble slow-roll parameter:

(
ä

a

)
= H2(ϕ)[1− ǫH] . (1.37)

Hence, inflation (̈a > 0) occurs if the Hubble slow-roll parameter satisfies

ǫH < 1 . (1.38)

The inflationary dynamics described by Eq. (1.33) and Eq. (1.34) are valid even in a

regime where the slow-roll approximation given by Eq. (1.30) is violated.

To summarise, slow-roll inflation occurs if the conditions given by Eq. (1.30) are valid

with the inflationary dynamics being described by Eq. (1.28)and Eq. (1.29). How-

ever inflation (not necessarily of the slow-roll variety) occurs if the condition given by

Eq. (1.38) is valid with the inflationary dynamics being described by Eq. (1.33) and

Eq. (1.34) [28].

The potential slow-roll parametersǫV andηV are in fact the limiting case of the Hubble

slow-roll parametersǫH andηH where, in the slow-roll limit,ǫH −→ ǫV and ηH −→
ηV − ǫV.

It has been shown that Eq. (1.35) and Eq. (1.36) are the first two terms in an infinite

hierarchy of slow-roll parameters [27]. Higher order termsare given by

lλH ≡
(
m2

Pl

4π

)l
(H ′)l−1

H l

d(l+1)H

dϕ(l+1)
; l ≥ 1 , (1.39)

where the slow-roll parameterηH is reproduced by Eq. (1.39) forl = 1.

It can be seen that if the Hubble slow-roll parameters are specified to infinite order, this

is equivalent to specifying all the derivatives of the Hubble parameter (or equivalently

the potential) to infinite order. This would amount to fully describing the form for the

potential along which any particular model of inflation evolves.
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1.9 Power spectrum

In Sec. 1.6 we reviewed inflation as a possible method for the generation of perturba-

tions in the early Universe. In order to formalise the natureof these perturbations one

needs to consider their statistical properties.

It is well known that a wave or perturbationf(x) at any instant, no matter how com-

plicated, can be decomposed into a superposition of different wave vectorsk

f(k) =

∫
f(x)e−ik.xd3x , (1.40)

where wavenumbers are given byk = |k|, and eachk is inversely proportional to the

physical size of the corresponding perturbation of wavelength λ or comoving sizeR

whereR ≡ λ/a(t). Hence, a perturbation of wavelengthλ in an expanding Universe

has a corresponding comoving wavenumberk defined by

k ∝ a(t)

λ
. (1.41)

During inflation one is usually concerned with perturbations at horizon crossing. This

is the scale below which causality can operate, and subsequently, the evolution of

perturbations can occur. Hence, perturbations with physical wavelengths equal to the

horizon,λ = H−1, have a corresponding comoving wavenumber given by

k = aH . (1.42)

Perturbations with comoving wavenumberk < aH are said to be outside of the horizon

or super-horizon. Those withk > aH are said to be within the horizon or sub-horizon.

In cosmology the scalar perturbation of most interest is theprimordial comoving cur-

vature perturbationR. We continue this section working in terms of this quantity and

reviewR in more detail in Sec. 2.4. A commonly used measure of distribution of per-

turbations on any given comoving scalek is the power spectrum,PR(k). The power

spectrum for gaussian perturbations is defined by the two-point correlation function:

〈R(k1)R∗(k2)〉 = (2π)3PR(k)δ
3(k1 − k2) , (1.43)

where the angular brackets denote an ensemble average,R∗ is the complex conjugate

of R andδ3(k1−k2) is a Dirac delta function which constrainsk1 = k2. It is common
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to define a dimensionless quantityP also known as the power spectrum

PR(k) ≡
(
k3

2π2

)
PR(k) . (1.44)

Hence,

PR(k) ≡
(
k3

2π2

)
〈|R|2〉 . (1.45)

Qualitatively the power spectrum tells us how the amplitudeof perturbations varies

on different scales. If the Universe has lots of overdense and underdense regions on a

particular scale, the resulting power spectrum on this scale will be large.

For a particular given model of inflation the power spectrum can be approximated

by [29, 30]

P1/2
R (k) ≈

(
1

2π

)(
H2

|ϕ̇|

) ∣∣∣
k=aH

, (1.46)

where the inflation model dependency of the power spectrum enters theϕ̇ term through

either Eq. (1.29) or Eq. (1.34). We shall review a more accurate expression for the

power spectrum in Sec. 5.4.

Here we have concentrated on the relatively simple case of scalar curvature pertur-

bations as these are responsible for density fluctuations which lead to structure for-

mation in the Universe. We shall investigate scalar perturbations in more depth in

the next chapter, however, we now describe another type of perturbation which can

be treated independently from scalar perturbations known as tensor perturbations, or

gravity waves. Tensor perturbations can produce detectable distortions in the CMB,

hence, it is useful to define the power spectrum of tensor perturbationsPT in a similar

fashion to Eq.(1.43):

〈h(k1, τ)h
∗(k2, τ)〉 = (2π)3PT (k)δ

3(k1 − k2) , (1.47)

whereh represents tensor perturbations to the metricgµν and whereτ is conformal

time and is related to proper timet by

dτ =
dt

a
. (1.48)

One can also redefine the power spectrum of tensor perturbations as

PT (k) ≡
(
k3

2π2

)
PT (k) . (1.49)
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1.10 Cosmological observables

It is common to take the form of the power spectrum to be a power-law:

PR(k) = PR(k0)

(
k

k0

)ns−1

, (1.50)

wherek0 is a pivot point usually taken to be the scale where observations of the power

spectrum are most accurate andns is the scalar spectral index quantifying the ‘tilt’

of the power spectrum. In a Universe which has more structureon large scales than

on small scales, the spectral index isns < 1. The opposite is true forns > 1. For

the case ofns = 1 the power spectrum is the same on all scales and is known as a

scale-invariant (or Harrison-Zeldovich) spectrum.

From Eq. (1.50) the spectral index is

ns − 1 ≡ dlnPR(k)

dlnk
. (1.51)

From the WMAP 7 year data [9]

PR(k0) = (2.43± 0.11)× 10−9 , (1.52)

wherek0 = 0.002Mpc−1. In the case of a power-law power spectrum given by

Eq. (1.50), the WMAP 7 year data has constrained the spectral index to be [9]

ns = 0.963± 0.014 . (1.53)

However, a constant spectral index in Eq. (1.50) is an assumption only valid for a pure

power-law. In general the power spectrum can be parameterised by a Taylor expansion

about the pivot point

PR(k) = PR(k0)

(
k

k0

)ns(k0)−1+ 1

2(
dns
dlnk)ln

(

k
k0

)

+...

. (1.54)

Now considering the first 2 terms in the Taylor expansion, (the spectral indexns and

the running of the spectral indexdns/dlnk) the observational constraints onns become

significantly less constrained [9]

ns(k0) = 1.027+0.050
−0.051 , (1.55)

dns

dlnk
= −0.034± 0.026 . (1.56)
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where the running of the spectral index is

dns

dlnk
≡ d2lnPR(k)

dlnk2
. (1.57)

We see that to one sigma, the negative running in Eq. (1.56) suggests that small-scale

structure cannot not form in any significant abundance. Thisis only true if the higher

order terms in the Taylor expansion are zero. However, higher order terms in the Taylor

expansion are poorly constrained by the limited range of current observations. We shall

discuss this further in chapter 5.

One can define the scalar to tensor ratio

r ≡ PR

PT

, (1.58)

From WMAP 7 year data [19]

r < 0.36 (95% CL) . (1.59)

1.11 Number of e-foldings of inflation

The amount of inflationary expansion from some initial timet to the end of inflation

tend is given by the number of e-foldingsN defined as

N(t) ≡ ln

[
a(tend)

a(t)

]
=

∫ tend

t

Hdt , (1.60)

whereN decreases as a function of time until the end of inflation defined asN = 0.

The initial time is usually taken to be when the current Hubble scale left the hori-

zon during inflation. Current observations probe a range of scales corresponding to

approximately 10-15 e-foldings of inflation [31, 32].

The total number of e-foldings which elapsed between our currently observable scales

exiting the horizon during inflation and the end of inflationNcos is an important quan-

tity which we use in Sec. 5. To determine this one must assume amodel for the history

of the Universe. A common assumption is that following inflation there is a period

of reheating. Subsequent to this there is a period of radiation domination which gives

way to matter domination and finally to the current dark energy dominated epoch.

Here we assume the recent expansion due to dark energy has a negligible effect on the
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final results and so take the final epoch to be matter dominated. From this one can

write [28, 31]
k

a0H0

=
akHk

a0H0

=
ak
aend

aend
areh

areh
aeq

aeq
a0

Hk

Heq

Heq

H0

. (1.61)

where ‘end’ is the end of inflation, ‘reh’ is the end of reheating and ‘eq’ is the era of

matter-radiation equality. Hence, using Eq. (1.60)

k

a0H0

= e−N aend
areh

areh
aeq

aeq
a0

Hk

Heq

Heq

H0

. (1.62)

Using the relationsρm ∝ a−3 andρr ∝ a−4 for the matter and radiation dominated

epochs respectively, one finds [31]

N(k) = −ln

(
k

a0H0

)
+

1

3
ln

(
ρreh
ρend

)
+

1

4
ln

(
ρeq
ρreh

)

+ln

(
Hk

Heq

)
+ ln

(
aeqHeq

a0H0

)
. (1.63)

An upper bound to the number of e-foldings before the end of inflation that cosmo-

logical scales exited the horizon is given by maximizing Eq.(1.63). Assuming instant

reheating (ρreh = ρend) and substituting in measured values [31];aeqHeq/a0H0 =

219Ω0h, Heq = 5.25 × 106h3Ω2
0H0, H0 = 1.75 × 10−61hmPl, h ≈ 0.7 and using the

slow-roll approximation given by Eq. (1.28), one can write [31]

Ncos = 68.5 +
1

4
ln
V0
m4

Pl

. (1.64)

Using Eq. (1.28) and Eq. (1.31), the power spectrum given by Eq. (1.46) can be rewrit-

ten in terms of the potential slow-roll parameters as [28]

PR(k0) ≈
8V0
3m4

Pl

1

ǫV
. (1.65)

Using Eq. (1.52) this then gives [31]

Ncos ≈ 63.3 +
1

4
lnǫV . (1.66)

The potential slow-roll parameterǫV is expected to be small for most of the duration

of inflation except towards the end. Eq. (1.66), therefore, provides an estimate for

an upper bound on the number of e-foldings of inflation corresponding to observable

scales:

Ncos ≈ 63 . (1.67)
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Relaxing the assumption of instant reheating reducesNcos. However, the physics of

reheating is poorly understood. We use this calculation to estimate the number of

e-foldings of inflation for many inflationary models in chapter 5.

In this chapter we have reviewed the ‘standard cosmology’ with a brief description

of the Big Bang and inflation theory. We have outline slow-roll inflation and the

Hamilton-Jacobi formalism which we will use in chapter 5 to constrain models of

inflation. The tightest constraints on the observable quantities outlined in Sec. 1.10

come from WMAP and large-scale structure as discussed. We allude to the possibility

that these observational constraints may be significantly weakened if some assump-

tions about the form of the power spectrum are relaxed. In particular, on scales much

smaller than those probed by current observations, large departures from the observed

value of the power spectrum given by Eq. (1.52) may be possible. This may result in

significant formation of small-scale structure such as primordial black holes and ultra

compact minihalos. In this thesis we discuss the possible formation of these objects

along with constraints on models of inflation. We begin the next chapter by review-

ing cosmological perturbation theory which is essential inrelating perturbations from

inflation to density perturbations.



Chapter 2

Primordial Perturbations

2.1 Introduction

The dynamics of an expanding FRW spacetime can be neatly described by the Einstein

equations (see Sec. 1.2). This provides a mathematical description for the evolution

of an homogeneous and isotropic Universe from the Big Bang followed by radiation

domination through to matter domination. Inflation was proposed as a way of solving

key problems with the Big Bang, notably, the generation of homogeneity on extremely

large-scales. However, it is evident that our Universe is not exactly homogeneous or

isotropic. Rather there exist anisotropies as observed in the CMB and inhomogeneities

such as galaxy clusters, voids, solar systems and planets. Any successful theory of the

early Universe must explain how these inhomogeneities cameabout. Whilst there are

several competing theories [33, 34, 35], inflation has proved to be the most popular.

This is largely because it predicts the generation of inhomogeneities or primordial

perturbations in the early Universe .

According to quantum field theory empty space is not actuallyempty but filled with

virtual particles and anti-particle pairs. The pairs appear and almost instantaneously

annihilate setting up quantum fluctuations of the spacetimethat they fill. These fluc-

tuations can be thought of as physical waves or fields. On macroscopic scales these

fluctuations average to zero and so we perceive space to be an empty vacuum. Infla-

tion is defined as a period of accelerating expansion driven by an inflaton field (see
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Sec. 1.6). During inflation, a small patch of the Universe filled by quantum vacuum

fluctuations of the inflaton field is stretched to beyond the Hubble radius. In the process

the quantum fluctuations become classical perturbations. As the space expands, new

vacuum fluctuations are also generated and stretched creating classical perturbations

of all wavelengths. These classical perturbations in the field generate fluctuations in

the curvature of spacetime known as primordial curvature perturbations. These cur-

vature perturbations, in turn, seed perturbations in the matter density of the Universe.

Through gravitational infall, these regions eventually goon to form the structure that

we observe in the Universe today.

In the following chapter we briefly review cosmological linear perturbation theory.

Much of this topic was introduced and developed by Bardeen [36]. We concentrate on

scalar perturbations as these are largely responsible for structure formation in the Uni-

verse. For a more detailed description of linear perturbation theory there are numerous

reviews [28, 37, 38, 39].

2.2 Metric perturbations

In order to produce a mathematical description of perturbations in an expanding Uni-

verse we start with a spatially homogeneous and isotropic FRW background spacetime

metricg(0)µν . First order perturbationsδgµν are introduced to this background so that

gµν = g(0)µν + δgµν , (2.1)

where

g(0)µν = a2(τ)


 −1 0

0 γij


 , (2.2)

and whereγij = diag(1, 1, 1) is the spatially flat Euclidean metric. The unperturbed

background FRW line element in Cartesian coordinates is therefore given by

ds2 = a2(τ)(−dτ 2 + dx2 + dy2 + dz2) , (2.3)

The most general form for the perturbed metric line element is

ds2 = a2(τ){−(1 + 2φ)dτ 2 + 2Bidτdx
i + [(1− 2ψ)δij + 2Eij]dx

idxj} , (2.4)
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whereφ andψ are scalar perturbations,Bi is a vector perturbation andEij a tensor per-

turbation. One can decompose any vector or tensor quantity into components, which,

in linear theory, evolve independently of each other. In thefollowing, ‘;’ represents

covariant spatial derivatives with respect toγij. Hence, one can decompose any vector

perturbationXi into the sum of two components: a component constructed fromthe

gradient of a scalar quantity,A;i, and so is necessarily curl-free,A;[ij] = 0, and a com-

ponent constructed from an intrinsically vector quantity which we notateX(v)
i and is

therefore divergence-freeX(v)
i;j = 0. In an alternative notation commonly used in the

literature, any vector quantity can be decomposed as

Xi = X
(||)
i +X

(⊥)
i = A;i +X

(v)
i . (2.5)

The parallel and perpendicular notation arises because in Fourier space,X(||)
i is iden-

tified as a component which is parallel (or longitudinal) to the comoving wavevector

k. Similarly, X(⊥)
i is a component which is perpendicular (or transverse) to thek

direction.

From Eq. (2.4), one can apply this decomposition to the metric variableBi:

Bi = B
(||)
i + B

(⊥)
i = B;i +B

(v)
i , (2.6)

where the curl-free (parallel) part is given byB;i and is written as the gradient of

a scalar potentialB, and the divergence-free (perpendicular) part is written as B(v)
i .

We follow closely the notation used by Liddle and Lyth [28] and perform a Fourier

transformation. The curl-free part can then be written as

B
(||)
i = − iki

k
Bk , (2.7)

whereBk is the amplitude of the scalar potentialB for a given wave vectork. The

divergence-free property ofB(⊥)
i can be written as

kiB
(⊥)
i = 0 . (2.8)

Similar to the vector case, the tensor metric variableEij can be decomposed. This

results in a scalar constructed curl-free component, an intrinsically vector divergence-

free component and an intrinsically tensor divergence-free component. Again, in
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Fourier space, one can decompose and write the independent components ofEij as

E
(||)
ij =

(
−kikj
k2

+
1

3
δij

)
Ek , (2.9)

kiE
(⊥)
i = 0 , (2.10)

kiE
(T)
ij = 0 , (2.11)

whereEk is the amplitude of the scalar potentialE for a given wave vectork.

This decomposition proves to be very useful when investigating perturbations by re-

ducing the number of free parameters. One can isolate intrinsically tensor perturba-

tions to investigate gravitational wave production or intrinsically vector perturbations

to study vorticity. In the following, we consider only first order scalar perturbations in

order to investigate curvature perturbations produced during inflation.

2.2.1 Coordinate change

The introduction of perturbations to a homogeneous flat FRW background leads to

ambiguity in the choice of coordinates. In general relativity there is no preferred co-

ordinate system, so to obtain useful results that can be compared to existing literature,

we must be able to transform from one coordinate system to another. To do this it is

usual to introduce a first order change in the coordinates:

τ̃ = τ + ξ0 , x̃i = xi + ξi , (2.12)

where a tilde denotes a new coordinate system andξ0 = ξ0(τ, xi) andξi = ξi(τ, xi)

are small arbitrary scalar and vector functions respectively. As discussed previously,

we can decomposeξi = ξi(τ, xi) into the sum of curl-free and divergence-free compo-

nents:

ξi = ξi(||) + ξi(⊥) = ξi; + ξi(v) . (2.13)

Writing in terms of a Fourier expansion in comoving wave numbers, k, the curl-free

component is

ξi(||) = − ik
i

k
ξk . (2.14)

and the divergence-free component iskiξi(⊥) = 0. Perturbations to the flat FRW

background are, therefore, given by the following 4-vectorcoordinate shift

ξα ≡
(
ξ0, (ξi; + ξi(v))

)
. (2.15)
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We now consider the effect of a first order change of coordinates on the metric line el-

ement, Eq. (2.4), and obtain expressions for the metric variables in any new coordinate

system indicated by a tilde. We begin by considering a changein coordinates for an

arbitrary scalar quantityq:

q̃(x̃α) = q̃(xα + ξα) ≈ q̃(xα) + q;αξ
α , (2.16)

where we have used the Taylor approximation,

f(x+ a) ≈ f(x) + af ′(x) . (2.17)

For any scalar quantity

q̃(x̃α) = q(xα) . (2.18)

Equating this with Eq. (2.16), the resulting scalar quantity in the new coordinate frame

is

q̃(xα) = q(xα)− q;αξ
α . (2.19)

Omitting the coordinate labels, the perturbation in a scalar quantity in a new coordinate

reference frame is given in terms of the old reference frame by

δ̃q = δq − q;αξ
α . (2.20)

Similarly for vector quantities,Vβ, a change in coordinates results in the following

transformation

Ṽβ(x̃
β) = Ṽβ(x

β + ξβ) ≈ Ṽβ(x
β) + Vβ;ηξ

η . (2.21)

Also for vector quantities

Ṽβ(x̃
β) =

∂xη

∂x̃β
Vη(x

β) = (δηβ − ξη;β)Vη(x
β) = Vβ(x

β)− Vηξ
η
;β . (2.22)

Equating with Eq. (2.21) gives

Ṽβ(x
β) = Vβ(x

β)− Vηξ
η
;β − Vβ;ηξ

η , (2.23)

hence,

δ̃V β = δVβ − Vηξ
η
;β − Vβ;ηξ

η . (2.24)

For tensor quantities,gµν , a change in coordinates results in the following transforma-

tion

g̃µν(x̃
γ) = g̃µν(x

γ + ξγ) ≈ g̃µν(x
γ) + gµν;γξ

γ , (2.25)
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and

g̃µν(x̃
γ) =

∂xλ

∂x̃µ
∂xρ

∂x̃ν
gλρ(x

γ) = (δλµ − ξλ;µ)(δ
ρ
ν − ξρ;ν)gλρ(x

γ) , (2.26)

so that to first order in perturbations

g̃µν(x̃
γ) = (δλµδ

ρ
ν − ξλ;µδ

ρ
ν − ξρ;νδ

λ
µ)gλρ(x

γ) = gµν(x
γ)− gλνξ

λ
;µ − gµρξ

ρ
;ν . (2.27)

Equating this with Eq. (2.25) and changing dummy indices gives

δ̃gµν = δgµν − gγνξ
γ
;µ − gµγξ

γ
;ν − gµν;γξ

γ . (2.28)

For perturbations about a FRW spacetime we can deal with the00, 0i andij compo-

nents separately (n.b. on a flat space backgroundξ;i ≡ ξi; )

δ̃g00 = δg00 + 2a(aξ0)′ , (2.29)

δ̃g0i = δg0i − a2(ξ′;i + ξi(v)′) + a2ξ0;i , (2.30)

δ̃gij = δgij − 2aa′ξ0δij − a2[ξ
i(v)
;j + ξ

j(v)
;i + 2ξ;ij ] , (2.31)

where primes are derivatives with respect to conformal time∂/∂τ . By inspection of

the general perturbed metric, Eq. (2.4), we see that

δg00 = −2a2φ . (2.32)

Using Eq. (2.29), the coordinate transformation relation for the metric variableφ is

φ̃ = φ− ξ0
′ −Hξ0 , (2.33)

whereH = aH = a′/a is the conformal Hubble parameter. By inspection of Eq. (2.4)

δg0i = a2Bi . (2.34)

Using Eq. (2.30) the coordinate transformation relation for the metric variableBi is

given by

B̃i = Bi − (ξ′;i + ξi(v)′) + ξ0;i . (2.35)

Similarly, by inspection of Eq. (2.4),

δgij = a2[−2ψδij + 2Eij ] . (2.36)
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Using Eq. (2.31), ignoring divergence-free vector components, we can split the equa-

tions into two parts: the first dependent onδij, and the other dependent on ‘;ij ’. The

part dependent onδij yields

ψ̃ = ψ +Hξ0 , (2.37)

and the part dependent on ‘,ij ’ gives

Ẽij = Eij − ξ;ij . (2.38)

The general metric line element, given by Eq. (2.4), under a coordinate transformation

can be written

ds2 = a2(dτ̃){−(1 + 2φ̃)dτ̃ 2 + 2B̃idτ̃dx̃
i + [(1− 2ψ̃)δij + 2Ẽij]dx̃

idx̃j} . (2.39)

Using Eq. (2.7), Eq. (2.9) and Eq. (2.14) one can perform an expansion in Fourier

modes of Eq. (2.33), Eq. (2.35), Eq. (2.37) and Eq. (2.38). Ignoring all divergence-

free vector or tensor components, the resulting scalar metric perturbations in any new

coordinate frame are given by

φ̃ = φ− ξ0′ −Hξ0 , (2.40)

B̃ = B − ξ′ + kξ0 , (2.41)

ψ̃ = ψ +Hξ0 , (2.42)

Ẽ = E − kξ (2.43)

where we have omitted the subscriptk labels.

In order to obtain useful information about the evolution ofmatter and radiation pertur-

bations, we now consider the effects of a coordinate transformation on the density and

velocity perturbations of a single fluid within this perturbed FRW background. For

a perfect fluid with densityρ, pressureP and 4-velocityuµ, the energy-momentum

tensor is given by

T µ
ν = (ρ+ P )uµuν + Pδµν + πµ

ν , (2.44)

whereπµ
ν is the anisotropic stress tensor and the scalar quantityρ can be written in

terms of a background homogeneous partρ0 plus a small density perturbation

ρ(τ, xi) = ρ0(τ) + δρ(τ, xi) . (2.45)
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The perturbation in the density then transforms under a coordinate change according

to Eq. (2.19)

δ̃ρ = δρ− ρ′ξ0 . (2.46)

Similarly, the inflaton fieldϕ can be decomposed into a background part and a per-

turbed part:

ϕ(τ) = ϕ0(τ) + δϕ(τ, xi) , (2.47)

where the inflaton perturbation transforms as

δ̃ϕ = δϕ− ϕ′ξ0 . (2.48)

Using the energy conservation equation,∂µT
µ0 = 0, one can obtain, from Eq. (2.44),

the continuity equation

ρ′ = −3H(ρ+ P ) . (2.49)

Substituting this into Eq. (2.46) gives

δ̃ = δ + 3H(1 + w)ξ0 , (2.50)

whereω ≡ P/ρ is the equation of state andδ is the density contrast which, using

Eq. (2.45), is defined as

δ =
δρ

ρ
≡ ρ− ρ0

ρ0
. (2.51)

The 3-velocity,vi, given by the spatial part of the 4-velocity,uµ, can be decomposed

into curl-free and divergence-free components, as described previously. The curl-free

partvi(||) can be expanded into Fourier wave modes:

vi(||) = − ik
i

k
Vk , (2.52)

whereVk is the amplitude of the velocity potential (or peculiar velocity) for a given

wave vectork. Since the flow is irrotational for scalar perturbations [38, 28], we need

only consider the curl-free part. Using Eq. (2.12) and omitting the subscriptk labels,

the velocity potential transforms as

Ṽ = V + ξ′ . (2.53)

Eqs. (2.40)-(2.43) along with Eq. (2.50) and Eq. (2.53) are important equations which

allow us to work in any convenient coordinate system and transform to another coor-

dinate system by choosing appropriate values forξ andξ0. This is known as a gauge

transformation.
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2.3 Choice of gauge

For an unperturbed Universe the comoving gauge represents aunique choice of coor-

dinates. Here, a comoving observer is simply one which is ‘carried’ by the expansion

of the Universe. In this gauge the threading (hypersurfacesof constant spatial coor-

dinates) of comoving observers are free-falling (vanishing 4-velocity) and the slicing

(hypersurfaces of constant time) is orthogonal to the threading [28]. As these proper-

ties are true everywhere in an unperturbed Universe, the comoving observer is a pre-

ferred coordinate system. For a perturbed Universe, however, there exists no preferred

coordinate system. The introduction of perturbations means that different observers in

the Universe will measure different properties. One must therefore work with equa-

tions in a particular coordinate system and require that theequations must reduce to

those of flat space in the limit of vanishing perturbations. Aparticular set of coordi-

nates which satisfies this condition is called agauge[36]. Alternatively, one may work

in a coordinate system in which quantities are gauge-invariant by construction (this is

discussed further in Sec. 2.4).

The choice of gauge is equivalent to fixingξ andξ0 and is largely dependent on the

most convenient choice for any given problem. Gauge choice is only relevant for per-

turbations outside the horizon. On sub-horizon scales the differences between gauges

becomes negligible. There are several commonly used gaugesin the literature but we

focus on two in particular; the conformal Newtonian gauge, where the evolution equa-

tions take on a particularly simple form, and the comoving total-matter gauge which is

a specific example of a comoving gauge.

2.3.1 Conformal Newtonian gauge

The conformal Newtonian or Longitudinal gauge [36, 40] is a convenient and mathe-

matically simple choice of gauge. In this gauge, fixed time hypersurfaces (slicing) are

orthogonal to fixed spatial hypersurfaces (threading). Also, anisotropy in the expansion

rate on spatial hypersurfaces (shear) vanishes. The metricline element in the confor-

mal Newtonian gauge is given by setting the following metricvariables in Eq. (2.39)
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to zero:

B̃ = Ẽ = 0 . (2.54)

The metric line element in the conformal Newtonian gauge is then given by

ds2 = a2(τ)
[
−(1 + 2φN)dτ

2 + (1− 2ψN)δijdx
idxj

]
, (2.55)

where a subscript ‘N’ denotes the conformal Newtonian gauge. In this gauge the metric

variables coincide with the gauge-invariant Bardeen potentials [36] φN ≡ ΦA and

ψN ≡ −ΨH.

For a fluid with energy densityρ, pressureP and four velocityuµ, the components of

the energy-momentum tensor are given by Eq. (2.44). The Einstein equations, given

by Eq. (1.6), can be solved to first order in perturbations fora radiation dominated

Universe (ω = 1/3) giving the energy and momentum constraints as

−k2ψN − 3Hψ′
N − 3H2φN =

3

2
H2δN , (2.56)

−k(ψ′
N +HφN) =

3

2
H2(1 + ω)VN , (2.57)

where we have used the background solution to the Einstein equations:

H2 −H′ = 4πGa2(ρ+ P ) ≡ 3

2
H2(1 + ω) . (2.58)

Substituting Eq. (2.56) into Eq. (2.57), the density contrast for modes well inside the

horizon (k ≫ H) is given by the familiar Newtonian Poisson equation:

δ = −2

3

(
k

H

)2

ψ . (2.59)

The spatial component of the Einstein equations is

ψ′′
N + 2Hψ′

N +Hφ′
N + (2H′ +H2)φN = 4πGa2(δPN − 2

3
k2ΠN) , (2.60)

whereΠN is the scalar part of the decomposed anisotropic stress tensor. The pressure

perturbationδPN can be split into an adiabatic and a non-adiabatic partδPnad:

δPN =
P ′

ρ′
δρ+ δPnad . (2.61)

The spatial off-diagonal Einstein equation is

k2(ψN − φN) = 3H2(1 + ω)ΠN . (2.62)
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For isotropic fluidsΠN = 0 and soψN = φN. This implies that in the conformal

Newtonian gauge,φN corresponds to the familiar Newtonian gravitational potential.

Finally the continuity and Euler equations are given respectively by

3

4
δ′N = kVN + 3ψ′

N , (2.63)

V ′
N = −1

4
kδN − kφN +

2

3
kΠN . (2.64)

2.3.2 Comoving orthogonal gauge

A natural choice of gauge is that of a comoving observer. Comoving gauges are a

class of gauges in which an observer moves with the expansionand any perturbations

within the Universe. A subclass of this type of gauge is called the comoving orthogonal

gauge in which spatial coordinates are chosen so that the 3-velocity of a single fluid

vanishes,̃vi = 0. Orthogonality of the constant time hypersurfaces to the 4-velocity,

uµ, demands that the momentum vanishes also. To show this the 4-velocity is written

as

uµ =
dτ

dt

dxµ

dτ
=

1

a
(1, vi) . (2.65)

Usinguµ ≡ gµνu
ν and Eq. (2.4) gives

uµ = a
[
−1, (B̃

(||)
i + ṽ

(||)
i )

]
, (2.66)

to first order in perturbations. From Eq. (2.65) a vanishing 3-velocity and orthogonality

of the constant time hypersurfaces to the 4-velocity then implies

uµ = uµ = 0 . (2.67)

From Eq. (2.66) along with Eq. (2.7) and Eq. (2.52), the comoving orthogonal gauge

is then given by setting

B̃ + Ṽ = 0 . (2.68)

2.3.3 Comoving total matter gauge

A convenient multi-fluid extension to the comoving orthogonal gauge, as described

above, is to use the rest frame of the total matter where the total 4-momentum is or-

thogonal to the constant time hypersurfaces [39, 28]. We move to the Total-Matter
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gauge (TM) by displacing the slicing of the conformal Newtonian gauge so that it be-

comes comoving but leave the threading and the spatial coordinates unchanged. This

is done by imposing the following conditions: from Eq. (2.53), we see that in order

to prevent a relabelling of the threading we must setξ = 0. Also, the condition for a

comoving slicing given above is̃B + Ṽ = 0. From Eq. (2.41) and Eq. (2.53), we can

therefore write

B̃TM + ṼTM = B + V + kξ0 = 0 , (2.69)

Hence,

ξ0 = −1

k
(B + V ) . (2.70)

The conditions imposed in order to perform a gauge transformation from the conformal

Newtonian gauge to the Total-Matter gauge are

ξ = 0 , ξ0 = −VN
k

. (2.71)

Substituting Eq. (2.71) into Eqs. (2.40)-(2.43), the transformation equations are then

given by the following relations:

φ̃TM = φN +
H
k
VN , (2.72)

B̃TM = BN − VN = −VN , (2.73)

R ≡ ψ̃TM = ψN − H
k
VN , (2.74)

ẼTM = EN = 0 . (2.75)

Substituting Eq. (2.71) into Eq. (2.50) and Eq. (2.53), the density and velocity potential

transformation equations are

δ̃TM = δN − 3HVN
k

(1 + ω) , (2.76)

ṼTM = VN . (2.77)

2.3.4 Uniform curvature gauge

The uniform curvature gauge [39, 41] is one in which spatial hypersurfaces are chosen

so that the spatial part of the metric perturbation is zero. This requiresψ̃ = Ẽ = 0.

Eq. (2.42) and Eq. (2.43) then gives

ξ =
E

k
, ξ0 = − ψ

H . (2.78)
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In any comoving gaugẽδϕ = 0 [42]. From Eq. (2.48) one then finds for the comoving

gauge:

ξ0 =
δϕ

ϕ′
. (2.79)

Using Eq. (2.42) one can then write

R ≡ ψ̃com = ψ +Hδϕ

ϕ′
, (2.80)

where the subscript ‘com’ denotes the comoving gauge. Hereψ andδϕ can be defined

in any particular gauge. From Eq. (2.80) it is evident thatR represents the gravitational

potential on comoving hypersurfaces

R = ψ|δϕ=0 . (2.81)

Substituting Eq. (2.78) into Eq. (2.48), perturbations in the inflaton field in the uniform

curvature gauge are given by

δ̃ϕuniform = δϕ+ ϕ′ ψ

H , (2.82)

where a subscript ‘uniform’ denotes the uniform curvature gauge. Using Eq. (2.81)

perturbations in the inflaton field on uniform curvature hypersurfaces in terms of the

comoving curvature perturbation are given by

δ̃ϕuniform =
ϕ̇

H
R . (2.83)

2.4 Curvature perturbation

The spatial metric tensor at a given fixed conformal time slicing τ is given by the

coefficient ofdxidxj in Eq. (2.4). The spatial curvature scalarR(3) = gijRij is given

by a contraction of the spatial part of the Ricci tensorRij with the spatial part of

the metric. Similarly the spatial Ricci tensor is constructed from the spatial Riemann

curvature tensorRij ≡ Rk
ikj where the Riemann tensor is defined as

Ri
jkm = ∂kΓ

i
jm − ∂mΓ

i
jk + Γi

nkΓ
n
jm − Γi

nmΓ
n
jk (2.84)

and the Christoffel symbols are dependent on the metric:

Γi
jk =

1

2
gmi (∂kgmj + ∂jgmk − ∂mgjk) . (2.85)
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The resulting spatial curvature on constant conformal timehypersurfaces for a flat

FRW background Universe is [36, 39]

R(3) = −4
k2

a2
ψ . (2.86)

We recall thatψ is a gauge dependent variable which under a change of coordinates

transforms according to Eq. (2.42). In any comoving gauge itcan be defined by

Eq. (2.80). We see from Eq. (2.80) that althoughR is defined as the curvature per-

turbation in the comoving gauge, it can be constructed from variables which have not

yet been defined in any particular gauge. As suchR is often rather confusingly called

a gauge-invariant variable. To put it more accurately,R is a gauge-dependent variable

(comoving gauge) which is constructed from gauge-invariant quantities and so can be

described asgauge-invariant by construction[42].

We now wish to relate comoving curvature perturbations to metric perturbations in the

conformal Newtonian gauge. Using Eq. (2.57) along with Eq. (2.74) we can write

R = ψN +
2

3
Hψ′

N +HφN

(1 + ω)
. (2.87)

For an isotropic fluid (ψN = φN), Eq. (2.87) has the growing solution for any epoch

whereω is constant [28, 42]:

φN =
(3 + 3w)

(5 + 3w)
R . (2.88)

It can be shown by taking the first derivative of Eq. (2.87) andusing the Einstein

gravitational field equations that the comoving curvature perturbationR is constant on

superhorizon scales [29, 43]. This can also be shown withoutusing the gravitational

field equations by simply invoking the local conservation ofenergy-momentum [44]1.

The constancy ofR on superhorizon scales makes this quantity ideal as a tool for

investigating perturbations generated by inflation.

Using Eq. (2.59) for an isotropic fluid we can find a relationship between the density

contrast and the curvature perturbation on comoving hypersurfaces:

δ(k, t) = −2(1 + w)

(5 + 3w)

(
k

aH

)2

R(k) . (2.89)

1The curvature perturbation on comoving hypersurfaces is related to that on uniform density hyper-

surfaces byR = −ζ.
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Using Eq. (1.45) the power spectrum of density perturbations is then simply related to

the power spectrum of comoving curvature perturbations by

Pδ(k, t) =
4(1 + w)2

(5 + 3w)2

(
k

aH

)4

PR(k) , (2.90)

where

Pδ(k) ≡
(
k3

2π2

)
〈|δk|2〉 . (2.91)

As we can see from Eq. (2.89), the density perturbation is proportional to the comoving

curvature perturbation multiplied by(k/aH)2. Previous authors [45, 28] have treated

this by settingk/aH = 1 so thatδ ∝ R. This is an approximation which does not take

into account the evolution of density perturbations prior to and post horizon crossing.

It simply equates the value at horizon crossing (k = aH) to the entire evolution. As we

shall later see, this has important consequences for the study of structure formation in

the Universe. We therefore do not make this approximation but instead retain the time

dependent(k/aH)2 term in order to more accurately trace the evolution of density

perturbations away from horizon crossing.

Fig. 2.1 shows the ratio of the density to the comoving curvature perturbation as a

function ofk/aH. The dotted red line shows the case where, for each comoving wave-

mode, prior to and post horizon crossing, the ratioδ/R given by Eq. (2.89) is evaluated

with the k/aH prefactor set to unity throughout its evolution. The dashedblue line

shows the case where, for each comoving wavemode, the ratioδ/R is evaluated using

Eq. (2.89) retaining the time dependent(k/aH)2 term.

From Fig. 2.1, retaining the(k/aH)2 term in Eq. (2.89) results in an initial growth

in the ratioδ/R prior to horizon entry. However, as we see from Fig. 2.1, thisratio

continues to grow quadratically as the perturbation evolves in the sub-horizon limit

(k ≫ aH). This would imply that density perturbations grow indefinitely at late times.

Clearly Eq. (2.89) does not completely specify the evolutionof the density perturba-

tion on all scales. We therefore find a more accurate relationship between the density

contrast and comoving curvature perturbation in the next section.
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Figure 2.1: The ratio of the density perturbation to the comoving curvature perturbation as a
function ofk/aH. The dotted red line shows the relationship given by Eq. (2.89) evaluated with
thek/aH prefactor set to unity. The blue dashed line shows the ratio given by Eq. (2.89) retaining
the(k/aH)2 term. The black solid line shows the ratio given by Eq. (2.100).

2.5 Density perturbation evolution

Green, Hofmann & Schwarz [46] studied the density contrast on sub-horizon scales.

We use their analysis in order to derive expressions for primordial perturbations valid

on all scales during radiation domination. We first work in the conformal Newtonian

gauge using Eq. (2.55) and then perform a gauge transformation to the comoving total

matter gauge as described in Sec. 2.3.3. Using Eq. (2.56) andEq. (2.57) along with

Eqs. (2.60)-(2.64) for an isotropic fluid in a radiation dominated Universe, we find the

differential equation

φ′′
N +

4

x
φ′
N +

1

3
φN = 0 , (2.92)
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wherex ≡ kτ = k/aH and we have redefined primes′ ≡ d/dx. The solution to this

equation can be written in terms of spherical Bessel functions:

φN = ψN = C
j1(κ)√
3κ

, (2.93)

δN =
2√
3

(
2
j1(κ)

κ
− j0(κ)− κj1(κ)

)
C , (2.94)

VN =
(
j1(κ)−

κ

2
j0(κ)

)
C , (2.95)

whereC is a normalisation constant andκ ≡ x/
√
3. We normalise these expressions

using the curvature perturbation on comoving hypersurfacesR which in terms of the

gauge-dependent curvature perturbation,ψ, is defined by Eq. (2.74). Using Eq.(2.94)

and Eq. (2.95) we find

R =
1

2
√
3
j0(κ)C . (2.96)

Taking the superhorizon limit (k ≪ aH) we find

R(κ≪ 1) ≈ 1

2
√
3
C ≡ R0 , (2.97)

whereR0 is defined as the value ofR in the superhorizon limit. We substitute this

normalisation into Eqs.(2.93)-(2.95) and using Eqs. (2.76)-(2.77) for a radiation dom-

inated Universe, we find the density and velocity perturbations in the Total-Matter

gauge:

δTM = −4κj1(κ)R0 , (2.98)

VTM = −
√
3[κj0(κ)− 2j1(κ)]R0 . (2.99)

Substituting forκ ≡ x/
√
3 and normalising the comoving curvature perturbation in

the super-horizon limitR0 to the value found by WMAP (given byR in Sec. 1.10),

Eq. (2.98) can be rewritten as

δTM = − 4√
3

(
k

aH

)
j1(

k√
3aH

)R . (2.100)

In the super-horizon limitj1(κ) ≈
√
3/9x and so

δTM ≈ −4

9

(
k

aH

)2

R , (2.101)

in agreement with Eq. (2.89) forω = 1/3. In the sub-horizon limit we now find

δTM ≈ 4 cos

(
k√
3aH

)
R . (2.102)
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The solid black line in Fig. 2.1 shows the density to comovingcurvature perturba-

tion ratio given by Eq. (2.100). As can be seen, all three coincide at horizon crossing

k = aH as expected, however, large departures prior to and post horizon crossing

are evident. In particular, using Eq. (2.100), we have an initial growth in the ratio

δ/R prior to horizon entry but no longer have an indefinite increase in this ratio af-

ter horizon crossing. Ratherδ/R has an oscillatory nature in the sub-horizon regime.

This agrees with the current understanding of structure formation, whereby, on sub-

horizon scales, density perturbations grow through gravitational attraction. This even-

tually leads to a rise in radiation pressure and a subsequentexpansion. The result is

an oscillatory behaviour of perturbations on sub-horizon scales. Fig. 2.1 reflects this

oscillatory property.

Using Eq. (2.100) we can write the power spectrum of density perturbations in terms

of the power spectrum of comoving curvature perturbations as

Pδ(k, t) =
16

3

(
k

aH

)2

j21(k/
√
3aH)PR(k) . (2.103)

The above equation is a new, more accurate expression, whichtakes into account the

full time evolution of perturbations. As expected, it reduces to Eq. (2.90) in the super-

horizon limit, however, it also takes into account the evolution of perturbations in the

sub-horizon regime. We emphasize that to accurately relatethe power spectrum of

density perturbations to the power spectrum of comoving curvature perturbations, one

should use our new expression given by Eq. (2.103) rather than the approximate expres-

sion given by Eq. (2.90). This new expression will become relevant in later sections

where we will use it to calculate constraints on the power spectrum of comoving cur-

vature perturbations from observational bounds on the abundance of primordial black

holes and ultra compact mini halos.



Chapter 3

Primordial Black Holes

3.1 Introduction

The Universe contains inhomogeneities, as observed by the presence of galaxy clusters

and large-scale structure. This along with the discovery ofan expanding Universe

suggests that the structure observed today evolved from some initial inhomogeneities

early in the history of the Universe. This theory was supported by the later discovery

of the CMB. This prompted Zeldovich & Novikov [47] and Hawking &Carr [48,

49] to consider the possibility that very large amplitude inhomogeneities, or density

perturbations, may also have existed in the early dense Universe and may have been

sufficiently large to collapse and form black holes. These early Universe black holes

formed from initial perturbations are known asPrimordial Black Holes (PBHs).

Of particular interest in this thesis are PBH formation from perturbations generated by

inflation. There are many scenarios in which large amplitudeperturbations on small-

scales may arise. These include a simple power-law power spectrum of perturbations

with a blue tilted spectral index (ns > 1) (see Sec. 3.4 for further discussion) or a more

complicated form for the power spectrum of perturbations incorporating a running of

the spectral index (and possibly higher terms, see Sec. 1.10). PBHs may also form

from sharp peaks in the power spectrum on small-scales. These will be discussed in

more detail in chapter 5.

PBHs may also form via alternative mechanisms to inflation such as a softening of
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the equation of state [50, 51], the collapse of cosmic strings [52, 53], collapse of do-

main walls [54, 55] or bubble collisions [56, 57]. For a review of PBH formation see

Refs. [58, 59, 5, 60]. We do not consider these possibilities here.

Since the formation of PBHs was suggested, thorough searcheshave been undertaken

to find these objects. These involve possible detection of gamma-ray emissions [61, 62,

63, 64, 65] and other approaches such as gravitational lensing effects [66, 67, 68, 69].

PBHs have also been suggested as a possible candidate for darkmatter [70].

As PBHs form from large amplitude, small-scale primordial perturbations, the abun-

dance of PBHs in the Universe reveals information about the distribution of these per-

turbations. Although searches have so far found no evidencefor the existence of PBHs,

important information about the early Universe can still beobtained from them. Specif-

ically, that their abundance in the Universe must be relatively small in order to evade

detection. Constraints on PBH abundance [71, 6, 5] (see Ref. [5]for a recent review)

can then be translated into constraints on the primordial density or curvature perturba-

tions. Indeed, before detailed observations of the CMB from WMAP, PBHs provided

the strongest upper limits on the spectral index [72, 73, 74].

In the following work we review PBH formation and evaporation. We compile con-

straints on PBH abundance and use these to find constraints on the power spectrum of

primordial curvature perturbation.

3.2 Formation of PBHs

A PBH is formed if an overdense region is large enough to overcome the pressure force

resisting gravitational collapse. The criteria for PBH formation can be given in terms

of the density contrast defined in Eq. (2.51). A PBH will form athorizon crossing if

the smoothed density contrast in the comoving gauge is [49]

δc ≤ δhor(R) ≤ 1 , (3.1)

whereδc is a critical density contrast which can be estimated by the requirement that

the radius of the overdense region at maximum expansion mustbe larger than the Jeans
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length in a radiation dominated Universe [49, 75]. A simple calculation finds

δc ∼ ω =
1

3
. (3.2)

The upper limit in Eq. (3.1) arises as perturbations exceeding this would form a sep-

arate closed Universe [49, 75, 76]. The resulting mass of thePBH formed is usually

taken to be a fixed fractionfM = ω3/2 of the horizon mass [75, 73]:

MPBH = fMMH , (3.3)

=
fM√
gi⋆

(
t

tPl

)
mPl , (3.4)

whereg⋆ is the total number of effectively massless degrees of freedom.

With increasingly more sophisticated numerical hydrodynamical studies the value of

the fraction in Eq. (3.2) has fluctuated over the years (see [77] for a review). More re-

cent numerical simulations investigating near critical phenomena in gravitational col-

lapse [78, 79, 80] have suggested that the PBH mass may depend on the size of the

fluctuation from which it forms [81, 82, 77]. We discuss the possible effects of this in

Sec. 3.6. Shibata & Sasaki [83] used an alternative method for studying PBH forma-

tion using metric perturbations rather than focusing on density perturbations. Green et

al. [45] subsequently used this result to obtain the corresponding density perturbations

for PBH formation using peaks theory [84] rather than Press-Schechter theory. They

found that the critical density contrast is closest toδc ∼ 1/3 as originally found by

Carr [49]. Therefore, throughout, we use the critical value given by Eq. (3.2).

From Eq. (3.4) we see that PBHs can form with a wide range of masses, with those

that formed at the Planck time having a mass of the orderMPBH ∼ 10−2mPl (where

we have usedgi⋆ ≈ 100). In contrast black holes which form at the present epoch, from

the collapse of a stellar core, cannot have a mass less than∼ 1M⊙.

3.3 PBH lifetime

The possible existence of PBHs led Hawking to study their quantum mechanical prop-

erties. This lead to the discovery that black holes radiate thermally with a tempera-

ture [85, 86]:

TPBH =
~c3

8πGMPBHkB
≈ 1.06

(
1013 g

MPBH

)
GeV . (3.5)
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The current understanding of PBH evaporation [87] is that PBHsdirectly emit all par-

ticles which appear elementary at the energy scale of the PBH and have rest mass less

than the black hole temperature. Thus if the black hole temperature exceeds the QCD

confinement scale, quark and gluon jets are emitted directly. The quark and gluon

jets then fragment and decay producing astrophysically stable particles: photons, neu-

trinos, electrons, protons and their anti-particles. Using conservation of energy and

taking into account the number of emitted species the mass loss rate can be written

as [88]
dMPBH

dt
= −5.34× 1025φ(MPBH)M

−2
PBH g s−1 , (3.6)

whereφ(MPBH) takes into account the number of directly emitted species (φ(MPBH) =

0.267g0 + 0.147g1/2 + 0.06g1 + 0.02g3/2 + 0.007g2 wheregs is the number of degrees

of freedom with spins) and is normalized to one for PBHs with massMPBH ≫ 1017 g

which can only emit photons and neutrinos. For lighter PBHsφ(5×1014 g < MPBH <

1017 g) = 1.569. Integrating Eq. (3.6) the PBH lifetime is then given by [88]

τ ≈ 6.24× 10−27M3
PBHφ(MPBH)

−1 s . (3.7)

From the WMAP 5 year data [89] the present age of the Universe ist0 = 13.69± 0.13

Gyr 1. The initial mass of a PBHs which is evaporating today is therefore [90]

MPBH ≈ 5× 1014g , (3.8)

while less massive PBHs will have evaporated by the present day.

3.4 Inflation and PBHs

Inflation provides a mechanism for the generation of densityperturbations. If PBHs

form from these density perturbations, one can place limitson the spectrum of pertur-

bations by requiring that PBHs are not over-produced. Observational limits on the PBH

abundance can be translated into constraints on the primordial curvature perturbation.

This can then be used to constrain models of inflation which predict large amplitude

perturbations on small scales (see Chapter 5).

1Using the more recent WMAP 7 year data (t0 = 13.75± 0.13) does not change the results signifi-

cantly.
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The power spectrum of the primordial curvature perturbation,PR(k), on cosmological

scales is now accurately measured by observations of the cosmic microwave back-

ground (CMB) [89, 9] (see Sec. 1.9) and large-scale structure [91, 92]. These mea-

surements can be used to constrain, and in some cases exclude, inflation models (c.f.

Ref. [93]). Cosmological observations span a relatively small range of scales (comov-

ing wavenumbers betweenk ∼ 1Mpc−1 andk ∼ 10−3 Mpc−1), and hence probe a

limited region of the inflaton potential. The PBH constraintson the curvature power

spectrum are fairly weak; the upper limit is many orders of magnitude larger than the

measurements on cosmological scales. They do, however, apply over a very wide range

of scales (fromk ∼ 10−2 Mpc−1 to k ∼ 1023 Mpc−1) and therefore provide a useful

constraint on models of inflation [94]. The simplest assumption for the power spec-

trum is a scale-free power-law with constant spectral indexns as given by Eq. (1.50).

In this case the PBH abundance constraints requirens < 1.25− 1.30 [72, 73, 95, 96].

The spectral index on cosmological scales is, however, now accurately measured:

ns = 0.963+0.014
−0.015 [89]. In other words, if the power spectrum is a pure power-law then

the number of PBHs formed will be completely negligible. However, if the primor-

dial perturbations are produced by inflation then the power spectrum is not expected to

be an exact power-law over all scales [97]. This realises thepossibility that on small-

scales the amplitude of perturbations may be large resulting in the significant formation

of PBHs.

We focus in the following on the standard case of PBH formation, which applies

to scales which have left the horizon at the end of inflation. It has recently been

shown [98, 99, 100] that PBHs can also form on scales which never leave the horizon

during inflation, and therefore never become classical. We also only consider gaussian

perturbations and a trivial initial radial density profile,and refer to Ref. [101] for the

effects of non-gaussian perturbations and to Refs. [83, 102]for estimates on the effect

of deviations from a trivial initial density profile.
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3.5 Initial PBH abundance

Before we outline the observational constraints on PBH abundance to constrain prop-

erties of the early Universe, we must relate current PBH abundances to initial abun-

dances. Taking into account the cosmological expansion, the initial PBH mass fraction,

β(MPBH), is related to the present day PBH density,Ω0
PBH, by

β(MPBH) ≡
ρiPBH

ρicrit
=
ρeqPBH

ρeqcrit

(
ai
aeq

)
≈ Ω0

PBH

(
ai
aeq

)
, (3.9)

where ‘eq’ refers to the epoch of matter-radiation equalityandρcrit is the critical energy

density defined in Eq. (1.12). The entropy in a comoving volume,s, is given by

s = g∗sa
3T 3 , (3.10)

whereg⋆s refers to the number of entropy degrees of freedom andT is the temperature

of the Universe. In an isotropic Universe the entropy is constant [18] and so

a ∝ g−1/3
⋆s T−1 . (3.11)

Using the radiation density,ρ = π2

30
g⋆T

4, and horizon mass,MH = 4π
3
ρH−3, we obtain

β(MPBH) = Ω0
PBH

(
geq⋆
gi⋆

)1/12 (
MH

M eq
H

)1/2

, (3.12)

where we have takeng⋆s ≈ g⋆. The horizon mass at matter-radiation equality is given

by (c.f. Ref. [45])

M eq
H =

4π

3
ρeqH

−3
eq =

8π

3

ρ0rad
aeqk3eq

. (3.13)

Inserting numerical values given by Ref. [89]

Ω0
radh

2 = 4.17× 10−5 , (3.14)

ρcrit = 1.88× 10−29h2 g cm−3 , (3.15)

keq = 0.07Ω0
mh

2 Mpc−1 , (3.16)

a−1
eq = 24000Ω0

mh
2 , (3.17)

Ω0
mh

2 = 0.1326± 0.0063 , (3.18)

and usinggi⋆ ≈ 100 andgeq⋆ ≈ 3 [103] gives

M eq
H = 1.3× 1049(Ωmh

2)−2 g . (3.19)

Using Eq. (3.3) we find

β(MPBH) = 6.4× 10−19 Ω0
PBH

1

fM
1

2

(
MPBH

5× 1014 g

)1/2

. (3.20)
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3.6 PBH abundance constraints

PBH constraints can, broadly, be split into two classes: those that arise from their

present day gravitational consequences and those that arise from the products of their

evaporation. In both cases, in order to constrain the primordial density, we need to

translate the constraints into limits on the initial PBH massfraction.

Throughout we will assume that the PBHs form at a single epoch and their mass is a

fixed fraction of the horizon massMPBH = fMMH, wherefM ≈ (1/3)3/2 [75]. A

scale-invariant power spectrum produces an extended PBH mass function [104, 64]:

dnPBH

dMPBH

∝M
−5/2
PBH . (3.21)

However, as discussed previously, in this case the number density of PBHs would

be completely negligible [94, 105]. For scale-dependent power spectra which pro-

duce an interesting PBH abundance it can be assumed that all PBHs form at a sin-

gle epoch [106]. As a consequence of near critical phenomenain gravitational col-

lapse [78, 79, 80] the PBH mass may, however, depend on the sizeof the fluctua-

tion from which it forms [81, 82, 77, 107] in which case the mass function has finite

width. Most of the constraints that we discuss below effectively apply to the mass

function integrated over a range of masses. The range of applicability is usually sig-

nificantly larger than the width of the mass function produced by critical collapse, so

in the absence of a concrete prediction or model for the primordial power spectrum

in most cases it is reasonable to approximate the mass function as a delta-function.

The constraints from cosmic-rays and gamma-rays produced by recently evaporat-

ing PBHs are an exception to this [108]. These constraints depend significantly on

the PBH mass function and therefore need to be calculated on a case by case ba-

sis [109, 110, 111, 112, 113, 5]. We therefore do not include these constraints in our

calculation of generalised constraints on the curvature perturbation power spectrum.

We now compile, and where relevant update, the PBH abundance constraints. We

divide the constraints into two classes: those, for PBHs withMPBH > 5×1014g, arising

from their gravitational consequences (Sec. 3.6.1) and those forMPBH < 5 × 1014g

arising from their evaporation (Sec. 3.6.2).
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3.6.1 Gravitational constraints

3.6.1.1 Present day density

The present day density of PBHs withMPBH > 5 × 1014 g which haven’t evaporated

by today must be less than the upper limit on the present day cold dark matter (CDM)

density. Using the 5 year WMAP measurements [89],Ω0
CDMh

2 = 0.1099 ± 0.0062,

h = 0.719+0.026
−0.027, gives (95% upper confidence limit)2

Ω0
PBH < 0.25 , (3.22)

which, using Eq. (3.20), leads to

β(MPBH) < 1.6× 10−19 1

fM
1

2

(
MPBH

5× 1014 g

)1/2

for MPBH > 5× 1014 g . (3.23)

3.6.1.2 Lensing of cosmological sources

If there is a cosmologically significant density of compact objects then the probability

that a distant point source is lensed is high. This possibility was first investigated by

Press & Gunn [114] and has led to an extensive search for lensing signatures from

compact objects. Non-detection allows limits to be placed on the abundance of such

objects. The limits as given below have been calculated assuming an Einstein de Sitter

Universe,Ωm = 1, and a uniform density of compact objects. The recalculation of the

constraints for aΛ dominated Universe would be non-trivial. The constraints would,

however, be tighter (due to the increased path length and thelarger optical depth to a

given red-shift) [115], and the constraints given below aretherefore conservative and

valid to within a factor of order unity.

Gamma-ray bursts

Light compact objects can femtolens distant gamma-ray bursts (GRBs). The time de-

lay induced by such a lens is such that a characteristic interference pattern may be

2Using WMAP 7 year data results in a small change to this result findingΩ0
PBH < ΩCDM = 0.26

(95% upper confidence limit).
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produced [66]. A null search using BATSE data leads to a constraint [116]:

Ωc < 0.2 for 10−16M⊙ < MPBH < 10−13M⊙ , (3.24)

whereΩc is the density of compact objects, assuming a mean GRB red-shift of one.

Quasars

Compact objects with mass10−3M⊙ < MPBH < 300M⊙ can microlens quasars, am-

plifying the continuum emission without significantly changing the line emission [67].

Limits on an increase in the number of small equivalent widthquasars with red-shift

lead to the constraint [115]:

Ωc < 0.2 for 0.001M⊙ < MPBH < 60M⊙ , (3.25)

assumingΩtot = Ωc.

Radio sources

Massive compact objects,106M⊙ < MPBH < 108M⊙, can millilens radios sources

producing multiple sources with milliarcsec separation [68]. Using Very Long Base-

line Interferometry (VLBI) a null search of a sample of 300 compact radio sources

places a constraint [117]:

Ωc < 0.013 for 106M⊙ < MPBH < 108M⊙ . (3.26)

3.6.1.3 Halo fraction constraints

There are also constraints from the gravitational consequences of PBHs within the

Milky Way halo. They are typically expressed in terms of the fraction of the mass of

the Milky Way halo in compact objects:

fh =
MMW

PBH

MMW
tot

. (3.27)

These constraints require some modeling of the Milky Way halo (typically the density

and/or velocity distribution of the halo objects). Consequently there is a factor of a few

uncertainty in the precise values of the constraints.
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Assuming that PBHs make up the same fraction of the dark matterhalo as they do of

the cosmological cold dark matter, and ignoring the uncertainties in the CDM density

(since this is negligible compared with the uncertainties in halo fraction limit calcula-

tions), we can relate the halo fraction to the PBH cosmological density:

fh ≡ MMW
PBH

MMW
CDM

≈ ρ0PBH

ρ0CDM

=
Ω0

PBHh
2

Ω0
CDMh

2
≈ 5Ω0

PBH . (3.28)

Microlensing

Solar and planetary mass compact objects in the Milky Way halo can microlens stars

in the Magellanic Clouds, causing a temporary one-off brightening of the microlensed

star [118]. The relationship between the observed optical depth to gravitational mi-

crolensing,τ , (the probability that a given star is amplified by more than afactor of

1.34) and the fraction of the halo in MACHOs depends on the distribution of MACHOS

in the MW halo. For the ‘standard’ halo model used by the microlensing community

(a spherical cored isothermal sphere)τ ≈ 5×10−7fh [119, 120, 121], with the derived

value of limits onfh varying by factors of order unity for other halo models.

The EROS collaboration find a95% upper confidence limitτ < 0.36 × 10−7 which

they translate into limits on the halo fraction [121]:

fh < 0.04 for 10−3M⊙ < MPBH < 10−1M⊙ , (3.29)

or

fh < 0.1 for 10−6M⊙ < MPBH < M⊙ . (3.30)

Combined EROS and MACHO collaboration limits on short duration events constrain

the abundance of light MACHOs [122]:

fh < 0.25 for 10−7M⊙ < MPBH < 10−3M⊙ , (3.31)

while a dedicated search by the MACHO collaboration for long (> 150 days) duration

events leads to limits on more massive MACHOs [69]:

fh < 1.0 for 0.3M⊙ < MPBH < 30M⊙ , (3.32)

or

fh < 0.4 for MPBH < 10M⊙ . (3.33)
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Combined, these limits give

fh < 0.25 for 10−7M⊙ < MPBH < 10−6M⊙ , (3.34)

fh < 0.1 for 10−6M⊙ < MPBH < M⊙ , (3.35)

fh < 0.4 for M⊙ < MPBH < 10M⊙ . (3.36)

Wide binary disruption

Binary star systems are abundant in the solar system [123, 124]. Binaries with wide

separations are particularly susceptible to perturbations by galactic objects. More mas-

sive compact objects would affect the orbital parameters ofwide binaries [125, 126].

Comparison of the separations of observed halo binaries [127] with simulations of

encounters between compact objects and wide binaries lead to a constraint [128]:

fh < 0.2 for 103M⊙ < MPBH < 108M⊙ . (3.37)

Recently Quinn et al. [129] have re-analysed the radial velocity measurements of wide

binary systems sampled by Chaname & Gould [127] and used by Yoo, Chaname &

Gould [128]. They find that three of the candidate systems aregenuine binaries. How-

ever, one candidate is spurious at the 5-sigma level. Omitting this spurious candidate

leads to the somewhat weaker limit [129]:

fh . 0.4 for 103M⊙ < MPBH < 108M⊙ . (3.38)

Disk heating

Massive halo objects traversing the Galactic disk will heatthe disk, increasing the

velocity dispersion of the disk stars [130]. This leads to a limit, from the observed

stellar velocity dispersions, on the halo fraction in massive objects [131]

fh <
Mdisk,lim

MPBH

, (3.39)

whereMdisk,lim is the maximum mass of halo objects which can dominate the disk and

is given by [131]

Mdisk,lim = 3× 106
(

ρh
0.01M⊙pc−3

)−1 (
σobs

60 km s−1

)2 (
ts

1010 yr

)−1

M⊙ , (3.40)
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whereρh is the local halo density andσobs andts are the velocity dispersion and age of

the halo stars, respectively.

3.6.2 Evaporation constraints

3.6.2.1 Diffuse gamma-ray background

PBHs with masses in the range2×1013 g < MPBH < 5×1014 g evaporate betweenz ≈
700 and the present day and can contribute to the diffuse gamma-ray background [105,

132, 62, 64, 133, 109]. As discussed in Sec. 3.6, these constraints depend significantly

on the PBH mass function [108] and hence we will not consider them further.

3.6.2.2 Cosmic-rays

The abundance of PBHs evaporating around the present day can also be constrained by

limits on the abundance of cosmic-rays (in particular positrons and antiprotons) [64,

134]. The constraints from anti-protons have been calculated for several mass func-

tions and are essentially equivalent to those from the diffuse gamma-ray background [135,

112].

3.6.2.3 Neutrinos

Neutrinos produced by PBH evaporation contribute to the diffuse neutrino background.

The neutrino spectrum, and hence the resulting PBH abundanceconstraints, depend

strongly on the PBH mass function, but the constraints are typically weaker than those

from the diffuse gamma-ray background [110, 111].

3.6.2.4 Hadron injection

Using Eq. (3.7), PBHs with massMPBH < 1010 g have a lifetimeτ . 103 s and

evaporate before the end of nucleosynthesis. This can therefore affect the light element

abundances [136, 137, 138, 139]. In particular emitted quarks or gluons fragment

into hadrons which can interact with ambient protons and neutrons. This can increase
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the neutron abundance which, in turn, alters the abundance of Deuterium and4He.

Constraints can be obtained by comparing predictions with observed light element

abundances.

The constraints from hadron injection have been re-evaluated (see Ref. [140]), taking

into account the emission of fundamental particles [61] andusing more up to date

measurements of the Deuterium and4He abundances (D/H ≤ 4.0×10−5, Yp ≤ 0.252

respectively):

β(MPBH) < 10−20 for 108g < MPBH < 1010g , (3.41)

β(MPBH) < 10−22 for 1010g < MPBH < 3× 1010g . (3.42)

3.6.2.5 Photodissociation of deuterium

The photons produced by PBHs which evaporate between the end of nucleosynthesis

and recombination can photodissociate deuterium [141]. The resulting constraints on

the PBH abundance have been updated, in the context of braneworld cosmology in

Ref. [142]. They find that the PBH fraction at the time of evaporation βevap is given by

βevap . 0.1

(
tevap
teq

) 1

2

. (3.43)

Using the constancy of entropy given by Eq. (3.11) and the radiation density,ρ =

π2

30
g⋆T

4, and horizon mass,MH = 4π
3
ρH−3, we find (using Eq. (3.19))

β(MPBH) < 3× 10−22 1

fM
1

2

(
MPBH

1010g

)1/2

for 1010g < MPBH < 1013g . (3.44)

3.6.2.6 CMB distortion

Photons emitted by PBHs which evaporate betweenz ∼ 106 and recombination at

z ∼ 103 can produce distortions in the cosmic microwave backgroundradiation [143].

Using the COBE/FIRAS limits on spectral distortions of the CMB from a black body

spectrum [144], Ref. [145] finds

β(MPBH) < 10−21 , for 1011 g < MPBH < 1013 g . (3.45)
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3.6.2.7 (Quasi-)stable massive particles

In extensions of the standard model there are generically stable or long lived mas-

sive (O(100GeV)) particles. Light PBHs with massMPBH . 1011 g can emit these

particles and their abundance is hence limited by the present day abundance of stable

massive particles [146] and the decay of long-lived particles [147, 148]3.

Gravitinos in supergravity theories and moduli in string theories are generically quasi-

stable and decay after nucleosynthesis, potentially altering the light element abun-

dances. The effect of their decay on the products of nucleosynthesis leads to a con-

straint on the initial PBH fraction [147]:

β(MPBH) < 5× 10−19

(
gi⋆
200

)1/4 (α
3

)(
xφ

6× 10−3

)−1

× 1

fM
1

2

(
MPBH

109 g

)−1/2 (
Ȳφ

10−14

)

for MPBH < 109 g , (3.46)

wherexφ is the fraction of the luminosity going into quasi-stable massive particles,

gi⋆ is the initial number of degrees of freedom (taking into account supersymmetric

particles),α is the mean energy of the particles emitted in units of the PBH temperature

and Ȳφ is the limit on the quasi-stable massive particle number density to entropy

density ratio.

In supersymmetric models, in order to avoid the decay of the proton, there is often a

conserved quantum number R-parity, which renders the Lightest Supersymmetric Par-

ticle (LSP) stable and the present day density of such stableparticles produced via PBH

evaporation must not exceed the upper limit on the present day CDM density [146].

This leads to a constraint on the initial PBH fraction (c.f. Ref. [147]):

β(MPBH) < 6× 10−19h2
(
gi⋆
200

)1/4 (α
3

)(xLSP
0.6

)−1

× 1

fM
1

2

(
MPBH

1011 g

)−1/2 ( mLSP

100GeV

)−1

for MPBH < 1011 g

(
100GeV

mLSP

)
, (3.47)

3More massive PBHs can also emit these particles in the late stages of their evaporation, when their

mass drops below∼ 109 g. However the resulting constraints are substantially weaker than those from

hadron injection during nucleosynthesis.
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wheremLSP is the mass of the LSP andxLSP is the fraction of the luminosity carried

away by the LSP.

These constraints depend on the (uncertain) details of physics beyond the standard

model, and we therefore summarise them conservatively as

β(MPBH) . 10−18 1

fM
1

2

(
MPBH

1011g

)−1/2

for MPBH < 1011 g . (3.48)

3.6.2.8 Present day relic density

It was first suggested by MacGibbon [149] that black hole evaporation could leave a

stable Planck mass relic [150, 151, 149], in which case the present day density of relics

must not exceed the upper limit on the CDM density:

Ω0
rel < 0.25 . (3.49)

Assuming

ΩPBH =
MPBH

Mrel

Ωrel , (3.50)

where the relic mass is written as a fraction of the Planck massMrel = frelmPl and

using Eq. (3.20), this gives a tentative constraint4

β(MPBH) < 4
1

f
1/2
M frel

(
MPBH

5× 1014 g

)3/2

for MPBH < 5× 1014 g . (3.51)

The constraints described above are summarised in table 3.1and are displayed in

Fig. 3.1. As can be seen from Fig. 3.1 the constraints probe a very large range of scales

and in some cases several constraints overlap across particular mass ranges. The solid

black line indicates the strongest constraints for each mass scale and we consider only

these when constraining the primordial power spectrum.

4It has been suggested by Carr et al [5] that the upper mass limit of validity for the present day relic

constraint is lower than the value given here. This is because larger PBHs would come to dominate the

total energy density of the Universe before evaporating. Consequently, the associated PBH emission

would affect the observed baryon asymmetry. This correction would not affect our results as several

other constraints, discussed previously, overlap with a large portion of the relic density constraints. In

the following we only consider present relic constraints for low mass PBHs.
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Figure 3.1: The limits on the initial mass fraction of PBHs as a function of PBH mass (in grams).
The solid black lines represent the tightest limits for eachmass range and the dotted blue lines
are the weaker limits where there is an overlap between constraints. As discussed in Sec. 3.6 we
have not considered the diffuse gamma-ray background constraint which applies for2× 1013 g <
MPBH < 5× 1014 g as it depends significantly on the PBH mass function.
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Table 3.1: Summary of constraints on the initial PBH abundance,β(MPBH).

description mass range constraint onβ(MPBH)
Gravitational constraints

present day PBH density MPBH > 5× 1014 g < 2× 10−19 1

fM
1

2

(
MPBH

5×1014 g

)1/2

GRB femtolensing 10−16M⊙ < MPBH < 10−13M⊙ < 1× 10−19 1

fM
1

2

(
MPBH

5×1014 g

)1/2

Quasar microlensing 0.001M⊙ < MPBH < 60M⊙ < 1× 10−19 1

fM
1

2

(
MPBH

5×1014 g

)1/2

Radio source microlensing 106M⊙ < MPBH < 108M⊙ < 6× 10−20 1

fM
1

2

(
MPBH

5×1014 g

)1/2

Halo density

LMC Microlensing 10−7M⊙ < MPBH < 10−6M⊙ < 3× 10−20 1

fM
1

2

(
MPBH

5×1014 g

)1/2

10−6M⊙ < MPBH < M⊙ < 1× 10−20 1

fM
1

2

(
MPBH

5×1014 g

)1/2

M⊙ < MPBH < 10M⊙ < 5× 10−20 1

fM
1

2

(
MPBH

5×1014 g

)1/2

Wide binary disruption 103M⊙ < MPBH < 108M⊙ < 3× 10−20 1

fM
1

2

(
MPBH

5×1014 g

)1/2

Disk heating MPBH > 3× 106M⊙ < 2× 106 1

f
1/2
M

(
MPBH

5×1014 g

)−1/2

Evaporation
diffuse gamma-ray background2× 1013 g < MPBH < 5× 1014 g depends on PBH mass function

cosmic-rays similar to DGRB depends on PBH mass function
neutrinos similar to DGRB depends on PBH mass function

hadron injection 108 g < MPBH < 1010 g < 10−20

1010 g < MPBH < 3× 1010 g < 10−22

photodissociation of deuterium 1010 g < MPBH < 1013 g < 3× 10−22 1

fM
1

2

(
MPBH

1010g

)1/2

CMB distortion 1011 g < MPBH < 1013 g < 10−21

(Quasi-)stable massive particles MPBH < 1011 g <∼ 10−18 1

fM
1

2

(
MPBH

1011 g

)−1/2

present day relic density MPBH < 5× 1014 g < 4 1

f
1/2
M frel

(
MPBH

5×1014 g

)3/2
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A recent detailed review and update of PBH abundance constraints is given by Carr

et al. [5]. Here, evaporation constraints have been updatedusing the more modern

view of PBH evaporation into fundamental quark-gluon jets. PBH constraints have

also been calculated using the most recent data on the light element abundances [152,

153, 154, 155, 156, 157]. Ref. [5] also revise constraints arising from the most recent

observational data on the diffuseγ-ray background [158, 159, 160, 161] assuming that

all PBHs initially form with the same mass (i.e. approximate the PBH mass function

as a delta-function). The resulting limits over the mass rangeMPBH = 109 − 1017g

given in Ref. [5] are stronger than those outlined in this work(with the exception of

constraints from CMB distortion).

3.7 Press-Schechter theory

The fraction of the energy density of the Universe containedin regions dense enough

to form PBHs is given, as in Press-Schechter theory [162], by

β(MPBH) = 2
MPBH

MH

∫ 1

δc

P (δhor(R)) dδhor(R) , (3.52)

where the factor of 2 takes into account that on any smoothingscale half of the Uni-

verse is in the form of under-dense regions which will never exceed the threshold for

collapse into bound objects. This ‘ad-hoc’ factor of 2 agrees well withN -body simu-

lations [163, 164] and allows for the fact that these under-dense regions may be a part

of a larger over-dense region [28].

The horizon mass is related to the comoving smoothing scale,R, by [45]

MH =M eq
H (keqR)

2

(
g⋆,eq
g⋆

)1/3

, (3.53)

where the horizon mass at matter-radiation equalityM eq
H is given by Eq. (3.19). Taking

the initial perturbations to be Gaussian, the probability distribution of the smoothed

density contrast,P (δhor(R)), is given by (e.g. Ref. [28])

P (δhor(R)) =
1√

2πσhor(R)
exp

(
− δ2hor(R)

2σ2
hor(R)

)
, (3.54)

whereσ(R) is the mass variance

σ2(R) =

∫ ∞

0

W 2(kR)Pδ(k, t)
dk

k
, (3.55)
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andW (kR) is the Fourier transform of the window function used to smooth the density

contrast. We assume a Gaussian window function for whichW (kR) = exp (−k2R2/2).

This leads to a relationship between the PBH initial mass fraction and the mass vari-

ance,

β(MPBH) =
2fM√

2πσhor(R)

∫ ∞

δc

exp

(
− δ2hor(R)

2σ2
hor(R)

)
dδhor(R) ,

≈ fMerfc

(
δc√

2σhor(R)

)
, (3.56)

where we have used the fact that the probability distribution is a rapidly decreasing

function of δhor(R) so that the upper limit of integration is not important and can be

taken to infinity.

Constraints on the PBH initial mass fraction can therefore be translated into constraints

on the mass variance by simply inverting Eq. (3.56).

3.8 Constraints on the curvature perturbation power

spectrum

In order to calculate the constraints on the curvature perturbation power spectrum we

use the results of Sec. 2.5. Eq. (2.103) relates the density perturbation power spectrum

to the power spectrum of curvature perturbation accuratelytaking into account the full

time evolution of perturbations prior to and post horizon entry. Substituting this into

Eq. (3.55), and setting the comoving scale to correspond thethe size of the horizon

R = (aH)−1, gives

σ2
hor(R) =

16

3

∫ ∞

0

(kR)2 j21(kR/
√
3) exp(−k2R2)PR(k)

dk

k
. (3.57)

Since the integral is dominated by scalesk ∼ 1/R we assume that,over the scales

probed by a specific PBH abundance constraint, the curvature power spectrum can

be written as a power-law given by Eq. (1.50). This assumption is valid for general

slow-roll inflation models such as those considered in Refs. [165, 166, 32]. Using

Eqs. (3.56) & (3.57), we translate the PBH abundance constraints compiled in Sec. 3.6

into constraints on the amplitude of the power spectrum of curvature perturbation.
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For each constraint we take the pivot point,k0, to correspond to the scale of interest,

k0 = 1/R, and consider a range of values forns(k0) consistent with slow-roll inflation,

0.9 < ns(k0) < 1.1. The resulting constraints forns(k0) = 1 are displayed in Fig. 3.2.

For ns(k0) = 0.9 and1.1 the constraints are weakened or strengthened, respectively,

by an amount of the order of 2 percent. This indicates that, for slow-roll inflation

models, the constraints are not particularly sensitive to the exact shape of the power

spectrum in the vicinity of the scale of interest.

The large scale constraints (smallk) come from various astrophysical sources such

as Milky Way disk heating, wide binary disruption and a variety of lensing effects.

The small scale constraints generally arise from the consequences of PBH evapora-

tion, in particular on nucleosynthesis and the CMB. These evaporation constraints lead

to tighter constraints on the abundance of PBHs and thereforethe primordial power

spectrum is more tightly constrained on these scales. In general the constraints on the

amplitude of the primordial power spectrum span the range

PR(k) < 10−2 − 10−1 , (3.58)

with some scale dependence.
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Figure 3.2: Generalised constraints on the amplitude of the power spectrum of the primordial
curvature perturbation as a function of comoving wavenumber (in units of Mpc−1). We have
assumed that the power spectrum is scale-invariant over the(relatively small) range of scales which
contribute to a given constraint. Deviations from scale-invariance consistent with slow-roll inflation
lead to small changes in the constraints (see text for further details).



Chapter 4

Ultracompact minihalos

4.1 Introduction

The existence of dark matter was first proposed in 1933 by Fritz Zwicky [167]. Its com-

position is still unknown and has become one of the fundamental questions in cosmol-

ogy. In recent years a class of matter known as Weakly Interacting Massive Particles

(WIMPs) have become the most popular candidate for dark matter [168, 169, 170]. The

weak interaction of WIMPs with baryonic matter explains the difficulty in detection so

far. Within this class, a prime candidate which arises within supersymmetry theory

is the lightest supersymmetric particle (LSP) [171], usually the lightest neutralino. In

the early Universe these supersymmetric WIMPs were created and annihilated at equal

rates. Once the Universe expanded and cooled sufficiently, the creation of WIMPs

ceased. As the Universe continued to expand, the low cross-section of WIMPs resulted

in their abundance ‘freezing out’ producing a relic densityΩχ given by [168]

Ωχh
2 ∼ 3× 10−27cm3s−1

〈σv〉 , (4.1)

where〈σv〉 is the thermally averaged product of the WIMP annihilation cross-section

and speed. Since WIMPs have a very low cross section, the process of self-annihilation

that occurred in the early Universe may only occur today in regions of large density.

For PBH formation perturbations must be of the orderδc ≥ 1/3 (see Sec. 3.2). Ricotti

& Gould [172] have recently proposed that slightly smaller perturbations can collapse

beforez ∼ 1000 and seed the formation of dense dark matter structures called ul-
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tracompact minihalos (UCMHs). Due to their early formation,the central regions of

UCMHs would have a high dark matter (DM) density. If DM is in theform of Weakly

Interacting Massive Particles, WIMP annihilation within UCMHs may lead to an ob-

servable gamma-ray signal [172, 173].

Scott & Sivertsson [173] have investigated gamma-ray emission from UCMHs formed

from perturbations which enter the horizon at three different epochs in the early Uni-

verse:e+e− annihilation, and the QCD and electroweak (EW) phase transitions. They

find that an UCMH corresponding to thee+e− annihilation epoch, which has present

day massMUCMH(z = 0) ∼ 102M⊙, could be detected by theFermi satellite or cur-

rent Air Cherenkov telescopes (ACTs), at a distance of100 pc. If 1% of the DM is

in the form of UCMHs with this mass there would be∼ 3 UCMHs within 100 pc of

the Earth [173]. UCMHs formed at earlier epochs would be lighter, and hence more

challenging to detect.

It has been shown that there are single field models of inflation which are compatible

with cosmological observations and where the perturbationamplitude on small-scales

is large enough to produce a significant density of PBHs [32, 174] (see also references

therein). It is therefore possible that UCMHs may form from perturbations generated

by single field slow roll inflation. Phase transitions [172, 173] or features in the in-

flationary potential [175] could also lead to enhanced perturbations on small scales.

We do not fix the UCMH mass or abundance. Instead we calculate the constraints on

the UCMH halo fraction which would arise from the detection (or non-detection) of

gamma-rays from UCMHs byFermi as a function of UCMH mass. We then translate

the UCMH abundance constraints into constraints on the powerspectrum of the pri-

mordial curvature perturbation, as a function of scale. In Sec. 4.2 we summarize the

calculation of the properties of the UCMHs and the resulting gamma-ray flux, follow-

ing Scott & Sivertsson, in Sec. 4.3. In Sec. 4.4 we calculate the lower bound on the

UMCH halo fraction which would result from detection of an UCMHby Fermi. We

also calculate the upper bound which would result if no UCMHs are detected. Finally,

in Sec. 4.5 we translate the potential constraints on the abundance of UCMHs into

constraints on the power spectrum of the primordial curvature perturbation.
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4.2 UCMH formation

Ricotti & Gould [172] find that a density perturbation with amplitude at horizon cross-

ing δ > 10−3 will grow sufficiently during radiation domination that it collapses at

z ≥ 1000, seeding the formation a UCMH which then grows via spherical infall. It has

been argued that PBHs can also seed the formation of minihalos[176, 177, 172], and

the resulting gamma-ray emission (assuming that the remainder of the dark matter is

in the form of WIMPs) leads to constraints on the abundance of PBHs [178]. UCMHs

could also conceivably form from the clumping of several PBHs. We do not pursue

these possibilities here. Instead, we consider a simple model of UCMH formation.

At some initial time,zi, the mass of a region which eventually collapses to form a

UCMH M(zi) is given by

M(zi) =
ΩDM(zi)

Ωrad(zi)
MH(zi) , (4.2)

whereMH(zi) = (4π/3)ρH−3 is the horizon mass at redshiftzi corresponding to the

epoch when the scale of interest entered the horizon. At matter-radiation equality the

DM mass within a UCMH forming region,M(zeq), is then given by [173]

M(zeq) = fχ

(
1 + zeq
1 + zi

)
MH(zi) , (4.3)

wherefχ = ΩDM/Ωm = 0.834 [9] is the dark matter fraction andΩm = ΩDM +

Ωbaryons. After matter-radiation equality the UCMH mass,MUCMH(z), grows, due to

radial infall of matter, as [172]

MUCMH(z) =M(zeq)

(
1 + zeq
1 + z

)
. (4.4)

Following Scott & Sivertsson [173] we assume that UCMHs stop growing atz ≈ 10

as the onset of structure formation prevents further matterinfall. Using the constancy

of the entropy given by Eq. (3.11) and the the radiation density, ρ = (π2/30)g⋆T
4, the

horizon mass can be written as

MH(T ) =MH(Teq)

(
geq⋆
g⋆

)1/2 (
Teq
T

)2

. (4.5)

Using

T ∝ g−1/3
⋆s (1 + z) , (4.6)
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the horizon mass as a function of redshift is

MH(zi) =MH(zeq)

(
gi⋆
geq⋆

)1/6 (
1 + zeq
1 + zi

)2

, (4.7)

where we have takeng⋆s ≈ g⋆.

The UCMH dark matter density profile is by [172, 173]

ρUCMH(r, z) =
3fχMUCMH(z)

16πR
3

4

UCMH(z)r
9

4

, (4.8)

whereRUCMH(z) is the radius of the UCMH at redshiftz, given by

(
RUCMH(z)

pc

)
= 0.019

(
1000

1 + z

)(
MUCMH(z)

M⊙

) 1

3

, (4.9)

whereM⊙ is the mass of the sun.

Baryonic infall may lead to adiabatic contraction of the UCMH density profile [179].

Scott & Sivertsson considered a variable fraction of the total UCMH mass condensing

to form a constant density baryonic core. The dark matter density in the centre of the

halo does not rise significantly and hence the change in the resulting gamma-ray flux

is relatively small. This is true for dark matter in the form of standard WIMPs, with

the canonical annihilation cross-section deduced from themeasured dark matter den-

sity. Motivated by recent electron data [180, 181], Scott & Sivertsson also considered

a model with enhanced annihilation cross-section. In that case WIMP annihilation

leads to a larger constant density core and adiabatic contraction then has a larger ef-

fect. Given the uncertainties in the calculation we therefore do not consider adiabatic

contraction.

4.3 WIMP annihilation within UCMHs

WIMP annihilation reduces the density in the inner regions ofthe UCMH. We use the

standard estimate of the maximum density given by comparingthe dynamical infall

time with the timescale of WIMP annihilation,ρmax, [182, 173]

ρmax ≈
mχ

〈σv〉 (t0 − ti)
, (4.10)

wheremχ is the WIMP mass,t0 ≈ 13.7Gyr [9] the current age of the Universe and we

take the UCMH formation time asti(z = zeq) ≈ 77 kyr [103]. The UCMH present day
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density profile is thus given byρUCMH(r) = min {ρmax , ρUCMH(r, z = 10)}, where

ρUCMH(r, z = 10) is given by Eq. (4.8).

The gamma-ray flux above a threshold energyEth, Φγ(Eth), from WIMP annihilation

within an UCMH at a distanced from the Earth can be written as

Φγ(Eth) =
ΦastroΦparticle

2d2
. (4.11)

The particle physics term,Φparticle, is given by

Φparticle =
1

m2
χ

∑

f

∫ mχ

Eth

〈σfv〉
dNf

dE
dE , (4.12)

whereσf is the annihilation cross-section anddNf/dE the differential photon yield

of the f th annihilation channel. We use DarkSUSY [183] to computeΦparticle for a

range of models with present day DM densities compatible with the WMAP measure-

ment. When calculating the lower limit on the halo fraction ofUCMHs which would

arise from a detection byFermi we use the largest value ofΦparticle. Conversely when

calculating the upper limit which would result if no UCMHs aredetected we use the

smallest value. The astrophysical factor,Φastro, is given by

Φastro =

∫ Rh

0

r2ρ2UCMH(r, z = 10) dr . (4.13)

4.4 Potential UCMH halo fraction constraints

TheFermipoint source sensitivity above100MeV is [184]

Φγ(100MeV) = 6× 10−9cm−2s−1 . (4.14)

For a given UCMH mass,MUCMH(z = 0), we determine the distanced within which

a UCMH of this mass would be detectable at threshold sensitivity by Fermi. We then

calculate the fraction of the Universe in the form of UCMHs if there is a single UCMH

within this distance. This is the smallest UCMH halo fractionwhich could be detected

by Fermi. To do this we assume that the fraction of the DM in the form of UCMHs is

independent of position so that the local and global UCMH fractions are identical

fUCMH ≡ ΩUCMH

ΩDM

=
nUCMH,MW(r)MUCMH(z = 0)

ρDM,MW(r)

=
MUCMH(z = 0)

MDM,MW(< d)
, (4.15)
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whereρDM,MW(r) is the density profile of the Milky Way halo,nUCMH,MW(r) the num-

ber density of UCMHs andMDM,MW(< d) the mass of DM within a sphere of radius

d centred on the Earth. We assume a Navarro, Frenk & White (NFW) halo density

profile [185] for the Milky Way:

ρDM,MW(r) =
δcρ

0
crit

(r/rs)(1 + (r/rs))2
, (4.16)

wherer is the distance from the galactic centre,ρ0crit = 1.88 × 10−29h2gcm−3 is the

present day critical density,rs is the scale radius,

δc =
100c2g(c)

3
, (4.17)

and

g(c) =
1

ln(1 + c)− c
1+c

, (4.18)

wherec = rvir/rs is the concentration parameter andrvir is the virial radius. For the

Milky Way we takervir = 258 kpc andc = 12 [186]. From this we obtain the mass of

DM within a volume centred on the Earth using a numerical analysis.

Fig. 4.1 shows the lower limit (black solid line) on the UCMH halo fraction, as a

function of UCMH mass, which would result from the detection of a single UCMH by

Fermi at threshold sensitivity. It also shows the upper limit (blue dashed line) on the

UCMH halo fraction ifFermi does not detect gamma-rays from UCMHs, assuming

that the DM is in the form of self-annihilating WIMPs.

In order to understand the shape of the plot given in Fig. 4.1,we can analyse Eq. (4.15)

at various distances. Using Eq. (4.13) and Eq. (4.8) along with Eq. (4.9), we can

approximate the relationship between the mass of an UCMH andΦastro to be

Φastro ∝MUCMH(z = 0) , (4.19)

where we have ignored the constant density core given by Eq. (4.10). Hence, more

massive UCMHs have a larger gamma-ray flux. Using Eq. (4.11) more massive UCMHs

can therefore be detected at a larger distance:

d ∝MUCMH(z = 0)1/2 . (4.20)

For MUCMH(z = 0) . 103M⊙, d . 10 kpc so thatMDM,MW(< d), given by inte-

grating Eq. (4.16), increases more rapidly thanMUCMH(z = 0). From Eq. (4.15) this
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Figure 4.1: Constraints on the UCMH halo fraction,fUCMH, as a function of present day UCMH
mass,MUCMH(z = 0). The black solid line shows the lower bound on the halo fraction which
would result from the detection of gamma-rays from an UCMH byFermi. The blue dashed line
shows the upper limit on the halo fraction if gamma-rays fromUCMHs are not detected, assuming
DM is in the form of WIMPs.

results in a decreasing limit on the halo fraction asMUCMH(z = 0) is increased. For

more massive UCMHsd becomes significantly larger than the scale radius of the Milky

Way halo. Integrating Eq. (4.16) for large distances and using Eq. (4.20) gives

MDM,MW(< d) ∝ ln [MUCMH(z = 0)] . (4.21)

From Eq. (4.15) this results in a subsequent increase in the limit on the halo fraction

for MUCMH(z = 0) & 103M⊙. These features, in particular, the turning point in the

halo fractionfUCMH, are evident in Fig. 4.1.
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4.5 Potential constraints onPR

To translate the limits on the UCMH halo fraction into constraints on the primor-

dial curvature perturbation, we need to relate the present day UCMH halo fraction

to the primordial density perturbation distribution. The present day UCMH density,

ΩUCMH, is related to the UCMH halo fraction,fUCMH, by Eq. (4.15). Assuming

that UCMHs are not destroyed by dynamical processes during structure formation,

the present UCMH density is related to the fraction of the Universe at horizon entry

which is overdense enough to later form UCMHs,βUCMH, by

ΩUCMH = ΩDM
MUCMH(z = 0)

M(zeq)
βUCMH(MH(zi)) . (4.22)

As UCMHs are far more compact and dense than typical DM halos they will be far less

susceptible to disruption. Our lower bounds are conservative; if UCMHs are destroyed,

the initial abundance of UCMH forming perturbations, and hence the amplitude of the

primordial perturbations, will be under-estimated. The upper limit from non-detection

would, however, be weakened.

If the smoothed density contrast, in the comoving gauge,δhor(R), at horizon crossing

is in the range10−3 ≤ δhor(R) ≤ 1/3, the DM in the region will eventually collapse to

form an UCMH [172]. The horizon massMH(zi) is related to the smoothing scale,R,

by Eq. (3.53) where we usegeq⋆ ≈ 3 andgi⋆ ≈ 100 [103].

The fraction of the Universe in regions dense enough to eventually form UCMHs is

given by Press-Schechter theory (see Sec. 3.7),

βUCMH(MH(zi)) = 2

∫ 1/3

10−3

P (δhor(R))dδhor(R) , (4.23)

where, assuming that the initial perturbations are Gaussian, the probability distribution

of the smoothed density contrast,P (δhor(R)), is given by Eq. (3.54). The relationship

between the present UCMH density and the mass variance is then

ΩUCMH ≈ 2ΩDM√
2πσhor(R)

MUCMH(z = 0)

M(zeq)

∫ 1/3

10−3

exp

(
− δ2hor(R)

2σ2
hor(R)

)
dδhor(R) . (4.24)

The constraints on the present day UCMH density can thereforebe translated into

constraints on the mass variance by simply inverting this expression.
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The mass variance is given by Eq. (3.57), where we use Eq. (2.103) to relate the power

spectrum of density perturbations to the power spectrum of comoving curvature pertur-

bations taking into the full time evolution prior to and posthorizon entry. The integral

in Eq. (3.57) is dominated by scalesk ∼ k0 = 1/R. Following Chapter 3, in the

context of slow-roll inflation models we can assume that the power spectrum is con-

stant over these scales,PR(k) = PR(k0). Relaxing this assumption and assuming a

power-law power spectrum with spectral index in the range consistent with slow-roll

inflation,0.9 < n(k0) < 1.1, leads to changes by an amount of the order of3 percent

in the power spectrum limits. Using Eq. (4.24) and Eq. (3.57)we can translate the

UCMH abundance constraints shown in Fig. 4.1 into constraints on the amplitude of

the spectrum of the curvature perturbation. For each UCMH mass considered we take

the pivot point,k0, to correspond to the length scale of the perturbation (see Eq. (3.53))

which eventually forms the UCMH,k0 = 1/R.

Fig. 4.2 shows the resulting constraints on the power spectrum of the primordial cur-

vature perturbation forn(k0) = 1. The potential lower limit on the power spectrum

which would arise from the detection of gamma-rays byFermi from a single UCMH

is of the orderPR & 10−6.6 − 10−5.9 on scalesk ∼ 101 − 108 Mpc−1. If gamma-ray

emission from UCMHs are not observed, an upper limit can be placed on the power

spectrum of primordial curvature perturbation of the orderPR . 10−6.5 − 10−6 on

scalesk ∼ 101 − 106 Mpc−1. Constraints for larger wavenumbers than those shown in

Fig. 4.2 result infUCMH & 1 and so are not considered. The lower bound based on a

detection atFermi threshold sensitivity is a conservative limit (provided that the effects

of adiabatic contraction are insignificant). The upper limit from non-detection relies on

several assumptions, however, most significantly that the DM is in the form of WIMPs

and that significant disruption to UCMHs does not occur. If multiple UCMHs were de-

tected byFermi (or ACTs), or the flux was significantly above the detection threshold,

then this would imply a larger UCMH halo fraction, and hence the lower limits on the

power spectrum of the primordial curvature perturbation would be stronger.

These upper bounds are significantly stronger than those from primordial black hole

formation, where we found in Sec. 3.8,PR . 10−1 − 10−2, and would hence, provide

a tighter constraint on models of inflation (c.f. Sec. 5 and Ref. [32]). It does, however,
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Figure 4.2: Limits on the power spectrum of the primordial curvature perturbation as a function of
comoving wavenumber (in units ofMpc−1). The black solid line shows the potential lower bound
on the power spectrum resulting from the detection of gamma-rays from an UCMH byFermi at
threshold sensitivity. The blue dashed line shows the upperlimit on the power spectrum obtained
if gamma-rays from UCMHs are not detected byFermi, assuming DM is in the form of WIMPs
and UCMHs are not disrupted during structure formation.

rely on the assumptions that dark matter is in the form of WIMPsand UCMHs are not

disrupted during the formation of the Milky Way halo.



Chapter 5

Constraining models of inflation

5.1 Introduction

Inflation model building involves assuming an expansion history of the observable

Universe and evolving perturbations from the time when current observable scales

exit the horizon to the end of inflation. The generation of models of inflation can be

approached from two broad methods:

1) on a model case by case basis where one assumes a form for thepotentialV (ϕ).

This is usually motivated by some aspect of particle physics(phenomenological) or by

requiring that the potential takes on a simple form. The inflationary dynamics of the

model are then given by Eqs. (1.23)-(1.25). The model of inflation must predict values

for the observables which are consistent with current data (as given in Sec 1.10).

2) stochastic inflation model building where one uses the Hamilton-Jacobi formalism

(Sec. 1.8). Here a particular model of inflation is generatedby assigning initial values

for the Hubble slow-roll parameters (Eq. (1.35) and Eq. (1.36)) upto an arbitrary order

in derivatives ofH(ϕ) given by Eq. (1.39). With the Hamilton-Jacobi formalism the

condition for inflation is exact and so this model can be numerically evolved to the

end of inflation using the flow equations (described in Sec. 5.3). This method has two

distinct advantages, firstly a numerical treatment allows one to generate and test many

models of inflation simultaneously. Secondly, one is able totest models which cannot

be written in a neatly parameterized form. One can therefore, test a larger range of
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models not accessible using the more traditional approach described above. Stochastic

methods of model testing are therefore very useful in constraining the large range of

possible inflation models. Ultimately, however, one would like inflation to be described

from some theoretical motivation.

In most cases of inflation model building one is concerned with the properties of pertur-

bations corresponding to current observable scales exiting the horizon during inflation.

This is because models are largely tested by their predictions for the observable quan-

tities ns, r anddns/dlnk. The strongest observational constraints we have on these

quantities come from WMAP and large-scale structure data (see Sec 1.10). However,

these observations only probe a very small range of large scales. A large extrapolation

is involved in assuming that a particular model of inflation which satisfies the observa-

tional constraints can describe the entire evolution of theUniverse. On scales that are

beyond current observations, large departures inns, r anddns/dlnk are possible. This

opens the possibility of large amplitude perturbations on small-scales and therefore a

significant formation of PBHs. The running mass model, which was first proposed by

Stewart [187, 188], is a specific example of a model which predicts observables com-

patible with observational data and yet produces a significant PBH abundance. We

describe this model in more detail in Sec. 5.2. PBHs are formedon the smallest scales

and so are a powerful tool for constraining models of inflation beyond the observable

range of scales. Constraints from PBHs can be used in combination with large-scale

constraints to effectively constrain models of inflation [32].

In the following chapter we describe the flow equations whichare used to evolve the

Hubble slow-roll parameters from an initial state to the endof inflation. We compare

two methods of calculating the power spectrum of comoving curvature perturbations:

the standard analytical calculation using the Stewart-Lyth equation and a numerical

calculation using the Mukhanov variable. The difference between these two meth-

ods has important implications for the application of PBH constraints. Finally we

perform a numerical analysis generating 250,000 inflation models using a stochastic

technique [189, 190] finding models consistent with large-scale observations and con-

straints from PBHs found in Chapter 3.
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5.2 Running mass model

The running mass model [187, 188, 191] has been extensively explored within the

context of consistency with large-scale data [192, 193, 194, 195] and production of

PBHs [165, 166, 196, 197, 113]. The running mass model was proposed to overcome

certain problems with models of inflation formulated in supergravity theories [191].

Within supersymmetry, a natural feature that arises is a false vacuum dominated po-

tential given by

V (ϕ) = V0 ±
1

2
m2ϕ2 . (5.1)

In the context of supergravity the scale of supersymmetry breaking is such that slow-

roll inflation cannot occur [197] sinceηV = 1 on all scales. Stewart [187, 188] pro-

posed a solution to overcome this by including quantum corrections in order to flatten

the potential allowing slow-roll inflation to occur over thelimited range of scales cor-

responding to the current observable range. This correction effectively amounts to

modifying Eq. (5.1) to include a running mass termm(ϕ).

The relevant aspect here is that while on large-scales the potential is now flat allowing

one to recover a near scale-invariant spectrum, on all otherscales the slow-roll regime

typically breaks down asηV = 1. Inflation still continues asǫV < 1 and eventually the

potential is dominated by the false vacuumV0 where it is assumed a secondary mecha-

nism acts to end inflation. In this regime one would expect a significant departure from

scale-invariance with a sharp rise in the power spectrum on small scales. PBHs can

therefore potentially form in significant numbers in this model.

This example motivates a search for other models which may beconsistent with large-

scale observational data and result in a significant formation of PBHs on small scales.

5.3 Flow equations

A key quantity required to describe the time evolution of a particular model of inflation

is the number of e-foldings of inflation as described in Sec. 1.11. From Eq. (1.34) and

Eq. (1.60), the relationship between the evolution of the inflaton field and the number
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of e-foldings is

N ≡
∫ tend

t

Hdt =

∫ ϕend

ϕ

H

ϕ̇
dϕ =

2
√
π

mPl

∫ ϕ

ϕend

dϕ√
ǫH

(5.2)

therefore,
d

dN
=

mPl

2
√
π

√
ǫH

d

dϕ
. (5.3)

From Eq. (1.35) and Eq. (1.39), this allows us to write a set ofequations describing the

evolution of the Hubble slow-roll parameters in terms of thenumber of e-foldings of

inflation:

dǫH
dN

= ǫH(σH + 2ǫH) , (5.4)

dσH
dN

= −5ǫHσH − 12ǫ2H + 2(2λH) , (5.5)

d(lλH)

dN
=

[
l − 1

2
σH + (l − 2)ǫH

]
(lλH) +

l+1λH , l ≥ 2 , (5.6)

where

σH ≡ 2(1λH)− 4ǫH . (5.7)

Eqs. (5.4)-(5.6) together form theflow equationsof which there is an infinite hierar-

chy. These were first introduced by Hoffman and Turner [189] and later were gen-

eralised by Kinney [190]. They provide a way of evolving the Hubble slow-roll pa-

rameters from some specified initial condition (given by a particular inflation model or

chosen at random) to the end of inflation or any other requiredpoint. If taken to infinite

order these equations specifyH(ϕ),H ′(ϕ),H ′′(ϕ) etc... to infinite order in derivatives

with respect to the inflaton fieldϕ. This is equivalent to completely specifying the

form of the potential driving inflation.

The flow equations have been extensively investigated [198,199, 190, 200, 201, 202,

203, 204, 205, 32]. Although the flow equations do not make anygeneral predic-

tions about inflationary dynamics, they do provide an algorithm which allows one to

‘randomly’ generate a large number of models to confront with the PBH abundance

constraints [198]. This approach can be used to analyse single-field models of infla-

tion. Attempts have been made to develop and use a flow equation formalism for the

case of multiple field inflation models [206]. However, due tothe large uncertainties

in the initial conditions we do not consider this possibility in our work.
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5.4 Analytic power spectrum

The standard method of calculating the power spectrum of perturbations has been to

use an analytical method formulated by Stewart and Lyth [207]. We briefly outline this

calculation closely following the analysis of Ref. [208].

The expression for the inflaton perturbation in uniform curvature gauge, Eq. (2.82),

motivates the introduction of a quantity known as the Mukhanov gauge-invariant po-

tential or Mukhanov variable [40, 209, 210] defined by

u = a

[
δϕ+ ϕ′ ψ

H

]
. (5.8)

In the comoving gauge this becomes

u = zR , (5.9)

where

z ≡ a
ϕ̇

H
. (5.10)

If u is expanded into comoving Fourier modesuk, these modes evolve according to a

Klein-Gordon equation with a time-varying effective mass:

d2uk
dτ 2

+

(
k2 − 1

z

d2z

dτ 2

)
uk = 0 , (5.11)

where the effective mass term can be written as a function of the Hubble slow-roll

parameters [208]

1

z

d2z

dτ 2
= 2a2H2[1 + ǫH − 3

2
ηH + ǫ2H − 2ǫHηH +

1

2
η2H +

1

2
ξH] , (5.12)

where, using Eq. (1.39),ξH ≡ 2λH.

During inflation comoving wavemodes evolve from sub-horizon to super-horizon scales.

The standard choice for the initial conditions in the far sub-horizon limit is that defined

by the Bunch-Davies vacuum state [207]:

uk(τi) =
1√
2k
e−ikτi . (5.13)

This initial condition is applied when the mode is much smaller than the Hubble radius

(aH/k → 0) so that ordinary flat space-time quantum field theory is reproduced and
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any spacetime curvature caused by vacuum fluctuations is negligible. In the superhori-

zon limit, k2 ≪ z′′, and Eq. (5.11) has a growing mode solutionuk ∝ z, so that the

curvature perturbationRk = |uk/z| ‘freezes out’ and becomes constant. The power

spectrum of curvature perturbation is then (see Sec. 1.9)

PR(k) ≡
k3

2π2
|Rk|2 =

k3

2π2

∣∣∣uk
z

∣∣∣
2

. (5.14)

5.4.1 Power-law inflation

Stewart and Lyth [207] investigated the power spectrum for aspecial case known as

power-law inflation [211]. In this model the scale factor evolves asa(t) ∝ tp and the

Hubble parameter has the form [208]

H(ϕ) ∝ exp

(√
4π

p

ϕ

mPl

)
, p > 1 , (5.15)

wherep is a constant. This model is extremely useful as the Hubble slow-roll parame-

ters are constant and given by

ǫH = ηH =
1

p
= constant ,

l+1λH = ǫH(
lλH) l > 2 . (5.16)

This greatly simplifies Eq. (5.11) and using integration by parts, the conformal time is

τ =

∫
da

a2H
= − 1

aH
+

∫
ǫHda

a2H
= − 1

aH

1

1− ǫH
. (5.17)

Eq. (5.11) therefore becomes
[
d2

dτ 2
+ k2 − ν2 − 1/4

τ 2

]
uk = 0 , (5.18)

where

ν ≡ 3

2
+

1

p− 1
. (5.19)

When modes are in the superhorizon limit (k/aH → 0), Eq. (5.18) has the asymptotic

form

uk → ei(ν−1/2)π/22ν−3/2 Γ(ν)

Γ(3/2)

1√
2k

(−kτ)−ν+1/2 . (5.20)

whereΓ is the usual gamma function. Substituting this into Eq. (5.14) then gives the

power spectrum for the exact case of power-law inflation

PR
1/2(k) = 2ν−3/2 Γ(ν)

Γ(3/2)
(ν − 1/2)1/2−ν 2

m2
Pl

H2

|H ′|
∣∣∣
k=aH

. (5.21)
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5.4.2 Stewart-Lyth equation

Stewart and Lyth [207] obtained a more general solution thanEq. (5.21) by performing

an expansion about this exact case. The exact solution for the power-law case is valid

as long asǫH < 1 andǫH = ηH =
√
ξH. In order to obtain a solution for cases other

than power-law inflation one would like to considerǫH < 1 and ǫH 6= ηH 6=
√
ξH.

This is equivalent to the higher order Hubble slow-roll parameters picking up a time

dependence. Stewart and Lyth considered a small finite difference between the first

two Hubble slow-roll parametersζH = ǫH − ηH. If ǫH andηH are slowly varying (valid

if they are small [212]) around horizon crossing (k = aH) the time dependence is

shifted to higher order Hubble slow-roll parameters. One can then follow a similar

process to the power-law case writing the conformal time as

τ = − 1

aH

1

1− ǫH
−2ǫHζH

aH
+(expansion in higher order Hubble slow-roll parameters) ,

(5.22)

where this is consistent to orderξH ≡ 2λH. For small and slowly varyingǫH andηH the

conformal time can be written

τ ≈ − 1

aH
(1 + ǫH) . (5.23)

Using Eq. (5.18), this leads to the commonly used Stewart-Lyth equation for the power

spectrum of curvature perturbations to lowest order inǫH andηH:

PR(k) ≈
[1− (2C + 1)ǫH + CηH]

2

πǫH

(
H

mPl

)2 ∣∣∣
k=aH

, (5.24)

whereC = −2 + ln2 + γ ≈ −0.729 andγ is the Euler-Mascheroni constant. Any

scale dependence in the power spectrum is contained within the scale dependency of

the slow-roll parameters.

There are two crucial points to consider in the derivation ofthe Stewart-Lyth equation:

1) The expansion around the exact power-law case involves shifting the time depen-

dence of the Hubble slow-roll parameters to higher orders. This requiresǫH andηH to

be small and slowly varying around horizon crossing (from the flow Eqs. (5.4)-(5.6),

we see that ifǫH andηH are small, this is equivalent to the statement that they are

slowly varying).
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2) Despite appearances Eq. (5.24) does not give the value of the power spectrum at

horizon crossing, rather it gives the value in the asymptotic superhorizon limit written

in terms of the values which quantities had at horizon crossing [213]. Therefore for an

accurate determination of the power spectrum at a given scale, this asymptotic regime

must be reached.

As we will frequently refer to these approximations in the following discussion, we

call these two conditions theStewart-Lyth conditions. We discuss these two points and

the implications for PBH constraints in Sec. 5.7.

5.5 Numerical power spectrum

We wish to perform a numerical evaluation of the power spectrum of perturbations

so that, for the first time, a quantitative comparison can be made with the analytical

calculation described above. We ultimately wish to investigate any implications this

has for PBH constraints. In this and the following section, weclosely follow the work

by Chongchitnan and Efstathiou [200]. However, we adopt a different approach to the

evolution of the flow equations in Sec. 5.8.3.

A numerical analysis involves tracing the evolution ofuk for each wavemode using

Eq. (5.11) from an initial state well inside the horizon to the end of inflationτend.

As Eq. (5.11) has a dependence on the Hubble slow-roll parameters, this evolution is

dependent on the model of inflation assumed. This model is chosen by assigning initial

values of the Hubble slow-roll parameters. These parameters are then also evolved to

the end of inflation using the flow equations Eqs. (5.4)-(5.6).

In summary, analysing Eq. (5.11), the evolution of a given model defined by the Hubble

slow-roll parameters is given by the effective mass term andthe evolution of perturba-

tions within this model is described through theuk variable. To perform a numerical

analysis, we must specify initial conditions for bothuk and the Hubble slow-roll pa-

rameters.

Ideally one would like to initialize modes in the extreme short-wavelength limit by
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evaluating Eq. (5.13) in the infinite past i.e.

uk(k/aH → ∞) =
1√
2k
e−ikτ . (5.25)

In practise one must set a finite early time limit by imposing asub-horizon scale in

which to set the initial condition. It has been shown that theexact value of this early

time limit does not alter the final results significantly as long ask/aH is taken to be

sufficiently large [201]. We set the initial conditions, Eq.(5.13), for each mode at an

arbitrary sub-horizon scale given byk/aH = 50. We have confirmed that using the

larger scale limitk/aH = 100 does not change the results appreciably.

We change the time variable to the more convenient e-foldings variable (see Sec. 1.11).

Eq. (5.11) can then be rewritten as [200]

d2uk
dN2

+ (ǫH − 1)
duk
dN

+

[(
k

aH

)2

− f(ǫH, σH, ξH)

]
uk = 0 , (5.26)

where

f(ǫH, σH, ξH) = 2− 4ǫH − 3

2
σH − 2ǫ2H +

σ2
H

4
+ ξH . (5.27)

The initial conditions are normalized so that they satisfy the Wronskian condition [208]:

u∗k
duk
dτ

− uk
du∗k
dτ

= −i . (5.28)

The Mukhanov variable is initialized atk/aH = 50 to be [214, 200]

Re(uk(τi)) =
1√
2k

, Im(uk(τi)) = 0 ,

Re

(
duk
dN

(τi)

)
= 0 , Im

(
duk
dN

(τi)

)
= − k

aH

1√
2k

. (5.29)

Each mode is then evolved during inflation from this quantum vacuum ground state

through horizon crossing and then to the end of inflation defined byN = 0. The power

spectrum of curvature perturbations can then be calculatedusing Eq. (5.14) [200]

PR(k) = PR(k0)

(
k

k0

)3 ∣∣∣∣
uk
uk0

∣∣∣∣
2

end

, (5.30)

wherek0 is the scale corresponding to current observable scales. Some further useful

relations describing the inflationary evolution are given by

d(k/aH)

dN
= − k

aH
(ǫH − 1) , (5.31)
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dlnk

dN
= (ǫH − 1) , (5.32)

dH

dN
= ǫHH . (5.33)

We can use the equations reviewed in this section to numerically evolve any given

model of inflation to the end of inflation. We can then calculate the power spectrum of

perturbations without relying on the Stewart-Lyth equation by using Eq. (5.30).

5.6 Model dependent cosmological observables

Sec. 5.5 provides the necessary equations for calculating the power spectrum of per-

turbations for any given model of inflation numerically. This then allows us to apply

our PBH constraints (see Sec. 3.8) so that models which over-produce PBHs can be

eliminated. These models are then plotted according to their predictions forns, r and

dns/dlnk on large scales to allow comparison to observational data. To apply these

large-scale observational constraints we use the Stewart-Lyth equation, Eq. (5.24), to

obtain expressions for these observables in terms of the Hubble slow-roll parameters.

This is sufficiently accurate as long as the Stewart-Lyth conditions (see Sec. 5.4.2) are

obeyed on these scales and for a short time before these scales exited the horizon [215].

Using Eq. (5.24) the cosmological observablesns andr are given to first order [190]:

r ≡ PT

PR

= ǫH , (5.34)

ns − 1 ≡ dlnPR

dlnk
= −4ǫH + 2ηH ≡ σH . (5.35)

To second order in Hubble slow-roll they are given by [190]

r = ǫH[1− C1(σH + 2ǫH)] , (5.36)

ns − 1 = σH − (5− 3C1)ǫ
2
H − 1

4
(3− 5C1)σHǫH +

1

2
(3− C1)ξH , (5.37)

whereC1 = 4(ln2 + γ)− 5 ≈ 0.0814514 andγ ≈ 0.577.

The running of the spectral index is defined as the second derivative of the power

spectrum. Using the following relationship [190]:

d

dN
= −(1− ǫH)

d

dlnk
. (5.38)
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The running of the spectral index is

dns

dlnk
≡ d2lnPR

dlnk2
= −

(
1

1− ǫH

)
dns

dN
, (5.39)

which can be evaluated to second order in Hubble slow-roll byusing Eq. (5.37) and

the flow equations, Eqs. (5.4)-(5.6):

dns

dlnk
≈ −

(
1

1− ǫH

)[
2ξH − 12ǫ2H − 5ǫHσH − (3− 5C1)

2
ǫHξH +

(3− C1)

4
σHξH

]
.

(5.40)

With our limited knowledge of the inflationary potential based on large-scale observa-

tions, it is possible, with some confidence, to constrain thefirst two Hubble slow-roll

parameters,ǫH & ηH and to a much lesser extent, the third Hubble slow-roll param-

eter,ξH. As can be seen from Eq. (5.40),ξH is the leading order term for the value

of the running of the spectral index (see Eq. (1.56)). This uncertainty in the running

allows for the possibility that the power spectrum of curvature perturbation, given by

Eq. (1.54), may become large on small scales resulting in significant structure such

as PBH formation. Higher order Hubble slow-roll parameters are unconstrained by

current observations. If these parameters are significant,PBH formation may be even

more significant.

5.7 Numerical vs. analytical power spectrum

In the case of simple single-field inflation models, the Stewart-Lyth equation Eq. (5.24),

is a good approximation of the power spectrum of perturbations over a large range

of scales. However, it can break down any time the Stewart-Lyth conditions (see

Sec. 5.4.2) are violated. Specifically, the first condition may be violated if there

are features in the inflationary potential causing the Hubble slow-roll parameters to

change quickly [213]. The second Stewart-Lyth condition may be violated for modes

which exit the horizon close to the end of inflation [212]. These modes do not reach

the asymptotic large-scale limit before inflation ends and so can result in an under-

estimation of the power spectrum at the end of inflation. These can both have impor-

tant consequences for PBH formation. Fig. 5.1 shows an example model of inflation

which shows these features.
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Figure 5.1: The power spectrum of the primordial curvature perturbation generated during the
evolution of an example model of inflation as a function of thenumber of e-foldings. The black
solid line shows the power spectrum calculated using the Stewart-Lyth equation while the blue
dotted line is the result of a numerical mode by mode calculation.

This model begins with an inflationary expansion which closely follows power-law

inflation i.e. has a relatively constant power spectrum of perturbations. Here the Hub-

ble slow-roll parameters vary slowly and the power spectrumof perturbations calcu-

lated using the Stewart-lyth equation (solid black line) matches the numerical evalua-

tion (dotted blue line) very well. As the inflationary evolution progresses the Hubble

slow-roll parameters begin to differ significantly from each other and the first Stewart-

Lyth condition (see Sec. 5.4.2) breaks down. The resulting power spectrum acquires

a scale dependency. In this regime the Stewart-Lyth equation tends to under-estimate

the power spectrum compared to a numerical evaluation. The effect here is small but

may become large for certain inflationary potentials (for instance the model shown in

Fig. 5.2) or if there are peaks or features in the inflationarypotential [200]. Fig. 5.1
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Figure 5.2: The power spectrum of the primordial curvature perturbation generated during the
evolution of an example model of inflation as a function of thecomoving wavenumber. Here there
is a significant difference between an analytical evaluation of the power spectrum (solid black line)
from a numerical mode by mode evaluation (blue dotted line)

also shows an enhancement of the power spectrum close to the end of inflation caused

by the failure of the second Stewart-Lyth condition.

Fig. 5.3 shows the power spectrum of curvature perturbationas a function ofk/aH

as perturbations evolve from sub-horizon to super-horizonscales. As discussed pre-

viously, the use of the Stewart-Lyth equation requires modes to fully evolve to the

asymptotic super-horizon regime where the power spectrum becomes constant. As can

be seen in Fig. 5.3, if this asymptotic limit is not reached, such as for modes exiting

the horizon close to the end of inflation, the Stewart-Lyth equation leads to an under-

estimation of the power spectrum. From Fig. 5.3, we can also see that modes which

never exit the horizon before the end of inflation have much larger power spectrum am-

plitudes and could potentially form PBHs on sub-horizon scales. These effects have
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Figure 5.3: The power spectrum of the primordial curvature perturbation as a function ofk/aH
as perturbations evolve from sub-horizon scales to super-horizon scales for the case of a simple
chaotic inflation model (V (ϕ) ∝ m2ϕ2). The amplitude at horizon crossing(k = aH) is larger
than that in the asymptotic large-scale limit (k/aH → 0).

been investigated by several authors [98, 99, 100]. Our constraints, however, only con-

sider PBHs formed from perturbations which exited the horizon during inflation. Our

constraints on the power spectrum of perturbations are therefore conservative in this

respect.

The failure to reach an asymptotic super-horizon limit has been investigated by Leach

& Liddle [212]. They numerically calculated the power spectrum generated by a sim-

ple quadratic chaotic inflation model and compared the results with an analytical cal-

culation using the Stewart-Lyth equation. Their analysis involved evaluating modes at

three different stages; to horizon exit, to the end of inflation, to horizon re-entry for

each mode. Their results indicate that the amplitude at horizon exit is typically much

greater than the other two cases, both of which are closer to the Stewart-Lyth case.
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This is expected as evaluating wave modes to horizon exit would artificially amplify

the power spectrum for all modes (except those near the end ofinflation) compared

to evaluating at the asymptotic limit (see Fig. 5.3). For modes crossing the horizon

well away from the end of inflation, there is ample time for theasymptotic limit to be

reached and imposing a horizon exit cutoff in the power spectrum evaluation leads to

an over-estimation. Each comoving wavemode should, therefore, be evolved at least

to the end of inflation defined byN = 0.

PBHs form from perturbations which exit and re-enter the horizon close to the end of

inflation. Therefore, in order to apply our PBH constraints, it is prudent to calculate

the power spectrum numerically on a mode by mode basis as described in Sec. (5.5) in

order to account for any enhancement compared to the Stewart-Lyth approximation.

Fig. 5.4 shows an example inflation model selected due its proximity to our PBH

bounds and with a power spectrum on large scales that is compatible with the WMAP

7 year data. From Sec. 3.8 we use the more conservative constraint on the power spec-

trum from PBHs (PR < 10−1). We see that the Stewart-Lyth equation leads to an

acceptable power spectrum at the end of inflation with the PBH bound not violated. A

numerical evaluation of the power spectrum, however, leadsto this model of inflation

being eliminated due to the overproduction of PBHs.

5.8 Inflation model testing - A stochastic approach

Now that we have demonstrated the virtues of a numerical analysis to predict the power

spectrum of perturbations, we examine the ability of our PBH bounds to constrain

models of inflation. From Fig. 5.4 we see that our PBH constraint PR < 10−1 can be

used to eliminate this particular inflation model when the power spectrum is calculated

numerically rather than analytically. Rather than performing a case by case model

analysis, we now apply our PBH bounds to many inflation models using a stochastic

technique. This then allow us to compare the use of the Stewart-Lyth equation to a

numerical analysis for a large range of possible models.

Kinney [190] first used the flow equations along with a Monte Carlo approach to

stochastically generate 1,000,000 inflation models to compare models of inflation with
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Figure 5.4: The power spectrum of the primordial curvature perturbation generated during the
final few e-foldings for an example inflation model. The blacksolid line shows the power spectrum
calculated using the Stewart-Lyth equation while the blue dotted line is the result of a numerical
mode by mode calculation.

observational data. In the following we closely follow the method used by Kin-

ney [190] to numerically generate and evolve 250,000 modelsof inflation. We adopt

the following algorithm:

1) Select a point in the parameter spaceǫH, σH,
lλH up to arbitrary order inl and specify

the number of e-foldings of inflation from the current Hubblescale crossing the horizon

during inflationNcos to the end of inflationN = 0 (see Sec. 1.11).

2) Using the flow equations, Eqs. (5.4)-(5.6), evolve the Hubble slow-roll parameters

forward in time (dN < 0) from the chosen number of e-foldingsNcos until either a)

inflation endsnaturallywith ǫH = 1, or b) inflation ends withN = 0

3) If the evolution reachesN = 0, calculate the observablesr, ns − 1 anddns/dlnk
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using the values of the Hubble slow-roll parameters chosen initially.

4) If inflation ends withǫH = 1 beforeN = 0 is reached, evolve the Hubble slow-

roll parameters, using the flow equations, backwardNcos e-foldings and calculate the

observables at this new point. These points in the Hubble slow-roll parameter space

are equivalent to the class of models Kinney callsnon-trivial points[190].

5) In the case of inflation ending naturally at late times,ǫH = 1 asdN < 0, there is the

possibility that inflation also ends when evolving backwardto early times,ǫH = 1 as

dN > 0. These models are incapable of supportingNcos e-foldings of inflation and so

can be discarded.

This process can then be repeated for a large number of inflation models by using a

Monte Carlo approach to randomly generate combinations of initial Hubble slow-roll

parameters.

5.8.1 Hubble slow-roll hierarchy

The initial Hubble slow-roll parameters are chosen within arange of values collectively

known as ahierarchy. From Eq. (1.38) the range ofǫH is motivated by the requirement

for inflation to occur. From Eq. (5.37), the range ofσH is chosen so as to encompass

the observed value of the spectral index. The remaining parameters are chosen within

a range of values which decreases by a factor of ten each time so that the hierarchy

forms a closed convergent set. This amounts to choosing a finite, albeit large, subset

of an infinite number of possible initial conditions. Evolving the hierarchy using the

flow equations results in the model following a certain path in the Hubble slow-roll

parameter space as a function ofN .

Due to the unknown physics behind reheating, the number of e-foldings of inflation

between observable scales leaving the horizon during inflation and the end of inflation

is somewhat ambiguous (see Sec. 1.11). A range of e-foldingsis therefore also consid-

ered within the Monte Carlo approach. In our analysis we use the hierarchy suggested
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by Kinney [190] along with following range of e-foldings of inflation:

Ncos = [40, 60] ,

ǫH = [0, 0.8] ,

σH = [−0.5, 0.5] ,

2λH ≡ ξH = [−0.05, 0.05] ,

3λH = [−0.005, 0.005] ,

...

M+1λH = 0 . (5.41)

In principle, if the hierarchy is taken to infinite orderM = ∞ we can fully specify

the shape of the inflationary potential. In practise one musttruncate the hierarchy at

some level. We truncate the hierarchy atM = 6 so as to encompass a wide variety of

models. This is consistent with the work of Ramirez & Liddle [199] who show that

small changes in the value ofM has negligible impact on the flow analysis predictions.

As the flow equationsd(lλH)/dN only depend on the Hubble slow-roll parameters

upto order(l+1), evaluation of the flow equations is exact within this subsetof inflation

models [205].

5.8.2 Evolution to late-time asymptotic limit

Our algorithm (Sec. 5.8) differs from that originally proposed by Kinney [190] in how

we handle models chosen from the initial hierarchy that are destined to inflate forever,

ǫH → 0, but do not reach this limit withinNcos e-foldings (i.e. point 2 in the algorithm).

In the original flow algorithm suggested by Kinney the initial hierarchy is assigned at

an arbitrarily early point in timeNi = 1000 (c.f. our modified algorithm where each

model is evolved fromNcos). This is then evolved to either a)ǫH = 1 where the ob-

servables are then calculated at a pointNcos e-foldings prior to this point or b) to a

late-time attractor characterised byǫH → 0, σH → constant where the cosmological

observables are then calculated at this point i.e. the modelis forced to evolve to its

asymptotic limit where it is assumed that the entire evolution of the observable Uni-

verse lastingNcos e-foldings occurs. This is reasonable if one assumes many e-folds
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Figure 5.5: The parameter space of observables(ns, r) obtained from a sample of 250,000 infla-
tion models. Each model is evolved toǫH = 1 or to its asymptotic limit.

of inflation have passed prior to our observable scales leaving the horizon. However,

an entire class of models which include those that have not yet reached a late time

attractor are excluded with this algorithm. In the following work, we study the orig-

inal algorithm proposed by Kinney and how this algorithm excludes inflation models

which predict a significant formation of PBHs. We also use our new algorithm to

include these previously excluded models and apply our PBH constraints.

We stochastically generate and test 250,000 models of inflation using the hierarchy

given by Eq. (5.41) and this original algorithm suggested byKinney [190]. The re-

sults agree with those found in Refs. [190, 199, 204] finding the characteristic features

shown in Fig. 5.5 and Fig. 5.6.

In Fig. 5.5 two categories of fixed points can broadly be identified. Those resulting

from models in which inflation never ends,ǫH → 0, but reaches an asymptotic limit



Constraining models of inflation 89

Figure 5.6: The parameter space of observables(ns, dns/dlnk) obtained from the same sample
of 250,000 inflation models. Each model is evolved toǫH = 1 or to its asymptotic limit.

and those in which inflation ends naturally viaǫH = 1

Category 1: Models where inflation never ends,ǫH → 0. This category accounts

for 93 percent of all models tested. An asymptotic limit is identified with the inflaton

field being trapped in a local minimum of the potential. Here it is assumed a secondary

mechanism, such as hybrid inflation [216], acts to end inflation. The Hubble slow-roll

parameters in this asymptotic limit are given by

ǫH → 0 , σH > 0 , (5.42)

while the large-scale cosmological observables in this limit are

r → 0 , ns > 1 . (5.43)

In this limit the running of the spectral index as shown in Fig. 5.6 is negligible. There-

fore for models which are compatible with the WMAP 7 year measurement of the
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spectral index,ns = 0.963±0.014 [9], the amplitude of the curvature perturbations can

not be large on any scale and so PBHs are never formed in significant numbers [200].

Category 2: Models where inflation ends naturally,ǫH = 1. This category accounts

for 7 percent of all models tested. The Hubble slow-roll parameters evaluatedNcos

e-foldings before the end of inflation tend to two possible limiting values:

either 2a)

ǫH = lλH → 0 , σH < 0 , (5.44)

while the large-scale cosmological observables in this limit are

r → 0 , ns < 1 . (5.45)

or 2b)

ǫH = ηH =
√
ξH = constant ,

⇒ σH = −2ǫH , (5.46)

where the large-scale cosmological observables tend towards the diagonal swathe fea-

ture given by

r & 0 , ns < 1 . (5.47)

This diagonal swathe is identified as tending towards the thepower-law inflation solu-

tion (see Sec. 5.4.1).

The models within category 2 generally predict a red tilted spectral indexns < 1 across

all scales and so again PBHs are never formed in significant numbers.

The models within category 2 are entirely populated by thenon-trivial class of models

(i.e. models in whichǫH = 1 ends inflation and a backwards integration by an amount

Ncos is performed). The presence of this concentrated swathe of points has invited

some speculation as to whether the power-law line represents a general prediction of

an attractor solution for many models of inflation. However,as noted by Liddle [198]

since the inflationary dynamical equations of motion, Eq. (1.33), never enters into this

stochastic method of model testing, no general predictionsabout inflationary dynam-

ics can be made. Rather the flow equations provide an algorithmwhich allows us to

‘randomly’ generate and evolve a large number of models.
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However, it does appear from Fig. 5.5 that many models of inflation (specifically the

non-trivial points) are able to spend a long time in parts of the parameter space ap-

proaching power-law inflation [198]. Although an analytical argument can be found in

Ref. [204], a qualitative argument may be presented: The power spectrum, given by the

Stewart-Lyth equation, Eq. (5.24), originates from an expansion about the exact case

of power-law inflation (see Sec. 5.4.1). In this exact case the Hubble slow-roll parame-

ters have 2 important properties; they are all positive and constant (see Eq. (5.16)). For

those models chosen at random with initial parameter valueswhich are all positive,

one would expect from the flow equations, Eqs. (5.4)-(5.6), that ǫH → 1. Also for

parameters chosen at random with initial values that are close to the power-law values,

Eq. (5.16), one can see from the flow equations that each Hubble slow-roll parameter

will have only a very small time dependence. These two initial properties, therefore,

ensure that the non-trivial points necessarily share conditions which are close to the

properties found in power-law inflation. The scatter aroundthe power-law line arises

from models which have parameters with a slightly stronger time dependence so that

these models reachǫH = 1 more quickly. From our algorithm (Sec. 5.8) on evolving

backward by an amountNcos from this point, these models will then have more time

to evolve away from the exact power-law line.

In summary, if models start exactly on the power-law line, they will remain there since

the Hubble slow-roll parameters are constant and so have no time dependence. How-

ever, if the initial configuration is close to, but not exactly power-law, the model is able

to remain close to the power-law solution for an amount of time dependent on how far

from power-law the initial assigned values are. Hence, the region of Hubble slow-roll

parameter space around the power-law line can be viewed as a temporarily stable sad-

dle point in time. The width of the saddle (time spent in this region) depends on how

far from exact power-law the initial conditions are. Beyond the saddle point on either

side (forward and backward integration in time or e-foldings) the models asymptotes

to a stable solution along ther = 0 line [190, 198].

The key point to emphasize here is that by using this originalalgorithm, those mod-

els which predict the overproduction of PBHs at the end of inflation are not consis-

tent with WMAP bounds and so can be discounted. This lead Chongchitnan & Efs-
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tathiou [200] to conclude that it is unlikely that PBHs would have formed from infla-

tionary dynamics without some ad hoc feature or break in the inflationary potential.

This seemed at odds with predictions of the running mass model [187, 188] as de-

scribed in Sec. 5.2. Here cosmological parameters consistent with observational data

are achieved on large-scales and PBHs are over-produced on small-scales. Peiris and

Easther [32] have suggested the source of this difference lies in the treatment of models

which are destined to inflate forever. We therefore advocatethe algorithm as detailed

in Sec. 5.8 rather than Kinneys original algorithm as presented in Ref. [190].

5.8.3 Evolution toN = 0

Following Peiris and Easther [32], we do not force models which are destined to inflate

forever (ǫH → 0) to evolve to their asymptotic limit but instead terminate them once

Ncos e-foldings of inflation have occurred. At this point it is assumed that another

mechanism, for example a second-field such as in hybrid inflation, terminates inflation.

Using this approach on the same sample of 250,000 initial conditions, the resulting

observables are shown in Fig. 5.7 and Fig. 5.8

From Fig. 5.7 we see that the distinctive swathe (category 2b) of points are still present

and again account for around 7 percent of all models tested. These represent the non-

trivial points close to the power-law solution for which ourtreatment is identical to the

original algorithm by Kinney [190].

Those points in category 2a still largely lie on ther = 0, ns < 1 line. However,

some of these models, which would have ended naturally (ns = 1) if evolved further,

are now terminated atN = 0 before reachingǫH = 1. This results in these points

being spread over a larger area of parameter space with observablesr & 0, ns < 1.

Most interestingly however, we now see that those models destined to inflate forever

(category 1: 93 percent of models whereǫH → 0) which previously asymptoted to the

r → 0, ns > 1 line in Fig. 5.5, now populate a large region of the parameterspace.

From Fig. 5.8 many of these models, which in the original algorithm have negligible

running in the asymptotic regime (c.f. Fig. 5.6), now have large positive running. A

large proportion of these models are now also compatible with the WMAP bounds

given in Sec. 1.10.
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Figure 5.7: The parameter space of observables(ns, r) obtained from the same sample of 250,000
inflation models. Models are evolved to the end of inflation defined byN = 0 or ǫH = 1 as
discussed in the text.

Hence, with our algorithm described in Sec. 5.8, we find models which are consistent

with the WMAP measurements of the spectral index and its running, but have perturba-

tions on small scales which may be large enough to over-produce PBHs (in agreement

with the findings of Ref [32]). This modified algorithm incorporates models such as

the running mass model which were missed by the original algorithm.

PBH bounds can significantly constrain the variety of possible inflation models gen-

erated by this modified algorithm. Therefore, we proceed by applying our PBH con-

straint found in Sec. 3.8 and assessing the importance of a numerical evaluation of the

power spectrum compared to an analytical assessment.
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Figure 5.8: The parameter space of observables(ns, dns/dlnk) obtained from the same sample of
250,000 inflation models. Models are evolved to the end of inflation defined byN = 0 or ǫH = 1
as discussed in the text.

5.9 PBH constraints applied to stochastically generated

models of inflation

We use the modified flow algorithm described in Sec. 5.8 to generate the same ensem-

ble (250,000) of inflation models as in Sec 5.8.3. To apply thePBH constraints we use

the Stewart-Lyth expression for the power spectrum, Eq. (5.24), to identify inflation

models where the amplitude of the perturbations on small scales which exit the hori-

zon close to the end of inflation is large, and may lead to the over-production of PBHs.

For these models, we then carry out an accurate numerical evolution of the primordial

perturbations, as described in Sec. 5.5.

In Sec. 3.8 we compiled, and where relevant updated, the PBH abundance constraints
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Figure 5.9: The parameter space of observables (ns, r) obtained from the same sample of 250,000
inflation models. The power spectrum for each inflation modelis calculated using the Stewart-Lyth
equation and those which violate PBH bounds are excluded.

and translated these into constraints on the power spectrumof curvature perturbations.

We found thatPR < 10−2 − 10−1 in order to avoid the over production of PBHs.

We use the conservative constraintPR < 10−1 to constrain models of inflation nu-

merically. Figs. 5.9 and Figs. 5.10 show the cosmological observables for the models

which remain once those which over-produce PBHs are excluded.

The7% of original models for which inflation ends naturally (diagonal swathe) gen-

erally havens < 1 on all scales and so are unaffected by the PBH constraints. Of the

remaining models, in which inflation continues indefinitely(ǫH → 0) in the absence

of a secondary mechanism,92% are excluded by PBH overproduction. Hence, of the

models initially generated, only approximately1% end via a secondary mechanism and

do not overproduce PBHs. With an accurate numerical calculation of the perturbations,
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Figure 5.10: The parameter space of observables (ns, dns/dlnk) obtained from the same sample
of 250,000 inflation models. The power spectrum for each inflation model is calculated using the
Stewart-Lyth equation and those which violate PBH bounds are excluded.

we find that the number of these models decreases by approximately 10%.

Large positive running is now excluded as expected (see Fig.5.10). Cosmological con-

straints ondns/dlnk eliminate a significant fraction of the models generated using flow

algorithms [190]. A full MCMC analysis of cosmological data is beyond the scope of

this work. However a simple application of the observational constraints shows that a

significant fraction of cosmologically viable models are excluded by PBH constraints.

Of the models generated using our modified flow analysis whichhave cosmological

observables within the 3σ ranges found by WMAP7 [9],19% are excluded by PBH

over-production. This illustrates that in the era of precision cosmological measure-

ments PBH still provide a powerful constraint on inflation models.

We conclude that significant PBH formation can occur in modelsin which inflation can
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continue indefinitely and is ended via a secondary mechanism(such as hybrid infla-

tion). The algorithm presented in Sec. 5.8 finds models of inflation compatible with all

cosmological data and where the amplitude of perturbationsis large on small scales.

This differs from the original algorithm used by Kinney. We demonstrate that PBH

constraints provide a significant constraint on models of inflation. Furthermore to ex-

ploit their full power an accurate numerical calculation ofthe amplitude of primordial

perturbations on small scales, which exit the horizon closeto the end of inflation, is

required.



Chapter 6

Conclusions

WMAP and large scale structure surveys have taken us into an era of precision cosmol-

ogy. In Chapter 1 we review the Big Bang and shortfalls that arisewithin this theory.

We discuss how a period of rapidly accelerating expansion called inflation overcomes

these shortfalls. A simple way of generating a period of inflation is with a scalar field

(known as the inflaton field) evolving in a potential. A suitable form for the potential

results in a Universe dominated by negative pressure which drives an accelerated ex-

pansion. Scalar fields, although not yet observed, have longbeen an integral part of

particle physics. This connection between particle physics and cosmology has resulted

in a much studied area of physics. We review the slow-roll formalism which relates the

dynamics of the inflaton field in a potential to the dynamics ofan expanding Universe.

Inflation naturally predicts the generation of perturbations in the early Universe from

quantum vacuum fluctuations. This, along with the resolution of the problems associ-

ated with the Big Bang, has led to inflation becoming a part of the‘standard cosmologi-

cal model’ describing our Universe. In Chapter 2 we review cosmological perturbation

theory and the issue of gauge ambiguity. We use metric perturbations in the comoving

total matter gauge to derive a new expression relating the primordial curvature pertur-

bations generated during inflation to density perturbations. Here we take into account

the full time evolution of perturbations prior to and post horizon entry. We use this

new expression to calculate constraints on the power spectrum of perturbations based

on observational data from small-scale structure.
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WMAP and large scale structure surveys have strongly constrained the spectrum of

perturbations on very narrow range of large-scales. However, the spectrum of pertur-

bations on small-scales is poorly constrained. Two particular examples of small-scale

structure that we concentrate on are primordial black holesand ultra compact dark mat-

ter mini halos. PBHs can form from large density perturbations generated at the end of

inflation. Constraints on the abundance of PBHs can be translated to constraints on the

spectrum of perturbations on these small-scales. In Chapter3 we review the criteria

for PBH formation. We then compile, and where relevant, update the PBH abundance

constraints. We find that to avoid the over production of PBHs,the power spectrum of

curvature perturbations is constrained toPR < 10−2−10−1 across the relevant range of

scales. Compared to the latest WMAP 7 year data findingPR = (2.43± 0.11)× 10−9,

the PBH constraints are relatively weak. They are, however, applicable across a very

wide range of scales.

In Chapter 4 we discuss the possible formation of ultra compact dark matter mini

halos. These dark matter structures may form from primordial density perturbations

generated by inflation in a similar manner as PBHs. We describetheir formation and

possible detection. If dark matter is in the form of Weakly Interacting Massive Particles

(WIMPs) then WIMP annihilation may lead to a detectable gamma-ray signature. We

investigate constraints on the power spectrum of perturbation in the event of detection

or non-detection of gamma-rays from UCMHs by the Fermi satellite. We find that a

positive detection by Fermi would place very strong constraints on the power spectrum

on small scales of the orderPR & 10−6.6 − 10−5.9.

Finally in Chapter 5 we discuss a stochastic method of generating models of inflation.

This is an important development in the area of inflation model building and is com-

plementary to the more usual model by model approach. We apply our constraints on

the primordial power spectrum from PBHs to models of inflationgenerated by a mod-

ified flow algorithm. The power spectrum of perturbations is usually calculated using

the Stewart-Lyth expression. We demonstrate that the breakdown of the Stewart-Lyth

equation at the end of inflation has important consequences for the application of PBH

constraints. We therefore advocate a numerical approach along with our modified al-

gorithm in order to apply PBH constraints on models of inflation.
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Particle physics phenomenology has now become one of the largest areas of active

research. Experiments such as the newly built Large Hadron Collider (LHC) promise

to reach energies which existed during the very early Universe. However, observations

from WMAP and large-scale structure provide a unique opportunity to observe the

largest physics experiment. With the recent launch of the Planck satellite and continued

data gathering from Fermi, the era of precision cosmology will continue to improve our

understanding of the early Universe.
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