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Abstract 
The effects of copper and magnesium on the precipitation characteristics of Al-Li-Mg, Al-Li- 

Cu, and Al-Li-Cu-Mg alloys have been investigated during isochronal and isothermal ageing. In 

AI-Li-Mg alloys, increasing the magnesium concentration results in stimulation of S' 

precipitation by a shift of the a16' solvus boundary to higher temperatures. It was shown that for 

each wt%Mg present in the alloy the a/S' solvus boundary shifts by 7.0°C. In Al-Li-Cu alloys 

the concentration of copper has no effect on the position of the alS' solvus boundary. The 

significant stimulation of S' observed in Al-Li-Cu alloys was shown to be due to the formation 

of GPI� zones that act as heterogeneous nucleation centres. TEM analysis showed that this 

heterogeneous nucleation produced composite precipitates consisting of an inner plate of GPI� 

zone and an outer cylindrical shell of 8'. At high copper concentrations (Cu? 2.0%) and long 

ageing times at 150°C, significant retardation of 8' precipitation takes place due to precipitation 

of the equilibrium T1 and T2 phases. 

The mechanisms by which copper and magnesium affect the precipitation characteristics of Al- 

Li-Cu-Mg alloys are different than those operating in the ternary AI-Li-Mg alloys and Al-Li-Cu 

alloys. In 1.7Lil. 2CuXMg alloys, increasing the magnesium concentration beyond 1.2% causes 

significant stimulation of S' precipitation through the formation of Li-Cu-Mg clusters 

(mechanism referred to as CLS') that are capable of rapidly developing into S'. It is proposed 

that in 1.7Lil. 2CuXMg alloys the initial 1.2%Mg added is consumed in the formation of GPB 

zones that have very little effect on S' precipitation. As the magnesium concentration increases 

to levels higher than 1.2%, the magnesium is free in the matrix to gather both copper and 

lithium thus forming Li-Cu-Mg clusters which are extremely effective at nucleating S'. 

In 1.7Li1.2MgXCu alloys the mechanisms by which stimulation of S' precipitation takes place 

are again by formation of Li-Cu-Mg clusters (CLS'), and by nucleation on GPB zones 

(mechanism referred to as GPS'). During ageing at 70 and 100°C, and for copper concentrations 

in the range 0-1.2%, the dominant precipitation mechanism is GPS'. For higher copper 

concentrations (1.2<Cuß. 0) the dominant process is CLS'. Increasing the ageing conditions to 

150°C causes precipitation of S' through classical nucleation and growth for low copper 

concentrations. For high copper concentrations, the precipitation of S' comes about through the 

GPS' mechanism. Using Kissinger's method, it was found that the activation energy for a' 

formation in AI-Li-Cu-Mg is equal to 62 kJ/mol, suggesting that the kinetics of the S' 

precipitation process are also controlled by the presence of excess vacancies quenched-in from 



solution heat treatment. It is likely that the Li-Cu-Mg clusters that develop in the alloy also 

gather excess vacancies thus making the clusters vacancy-rich. 

For all the alloy systems (Al-Li-Cu, Al-Li-Mg, and Al-Li-Cu-Mg alloys) and independently of 

the concentrations of copper and magnesium, the largest volume fraction of S' precipitates form 

during ageing at 100°C where there is an optimum combination of thermodynamics and 
kinetics. 

Ageing the alloys at 150°C (standard heat treatment for lithium containing alloys) and 

subsequently exposing at 70°C (to simulate service conditions for an aerospace alloy) resulted 
in embrittlement due to precipitation of additional (fine) S'. This embrittlement was shown to be 

closely related to the volume fraction of S' that precipitates during exposure. In Al-Li-Mg and 
AI-Li-Cu ternary alloys, increasing the concentration of magnesium and copper respectively, 

resulted in increased volume fractions of 8' precipitated during exposure and hence increased 

degrees of embrittlement. For Al-Li-Cu-Mg alloys the maximum volume fraction of S' 

precipitated during exposure occurred in the 1.7Li1.2Cu1.2Mg alloy. It was shown that this 

alloy composition also showed the maximum degree of embrittlement. 



INTRODUCTION 

Competition between materials to decrease the structural weight of aircraft 

vehicles is intense. Reducing the density of the alloy used to construct the aircraft 

is the most effective factor for achieving this aim. 

Lithium is the lightest metallic element (density 0.54 g/cm3) and one of relatively 

few elements that shows high solid solubility in aluminium, this being 

approximately 4wt% (16at%) at 610 OC. This high solubility is significant 

because for each 1% addition of lithium, the density of an aluminium alloy is 

decreased by 3%. Not only does lithium cause a decrease in the density of 

aluminium alloys, but also it causes a marked increase in the elastic modulus of 

aluminium (6% increase for each 1% added). 

The Al-Li alloys listed in table 1 [1] have the potential to save up to 10% of the 

weight of an aircraft by direct substitution of conventional aluminium alloys and 

up to 18% in weight if the increased specific stiffness (modulus/density) can be 

used. This means that Al-Li alloys can be potential alternatives to composite 

materials. The specific mechanical properties of composites are somewhat 

superior but Al-Li alloys have the great advantage that conventional structural 

design principles and fabrication processes can be used. 

Figure 1 [2] summarises the influences of improvements in various properties, 

including density and stiffness, on the potential weight savings for aircraft 

structures. 

1 



Introduction 

It is obvious that reducing density is the most effective way of saving weight. 

Less effective are increasing strength and stiffness. Improvements in damage 

tolerance properties (fracture, fatigue and stress corrosion resistance) have the 

least capacity for saving weight. 

Binary and more complex aluminium alloys containing lithium respond to age 

hardening and develop their strength principally from the precipitation of small 

spherical particles of S'(Al3Li), which have an ordered L12 structure. 

Unfortunately, S' precipitates also result in poor ductility and low fracture 

toughness when the alloys are aged to peak strength. This disadvantage can be 

controlled by underageing to below peak strength. However, in this lightly-aged 

condition, exposure to moderate elevated temperatures in service (e. g 70-100°C) 

results in an increase in strength and a reduction in toughness. This instability of 

mechanical properties is a significant problem to the aerospace industry. One of 

the objectives of the present research work is to investigate the ways of 

minimising this instability by microstructural control of the alloys. 

Some initial work has been done about the problem of thermal instability and 

various metallurgical effects have been suggested. In 8090 (Al-Li-Cu-Mg) alloys, 

these reasons include the segregation of lithium atoms to grain boundaries, the 

precipitation of small S'(Al3Li) precipitates, and GP zone formation [3]. 

In 2090 alloys the thermal instability has been attributed to precipitation of 

T1(Al2CuLi) phase or GP zones. In all of these studies the determination of the 

reasons that cause the thermal instability is made difficult by the fact that during 

2 



Introduction 

exposure a combination of phases are produced that are based on the Al-Li, Al- 

Cu-Mg, Al-Li-Cu, Al-Li-Mg and Al-Li-Cu-Mg systems [3]. 

The present work has focused on the influence of magnesium and copper on the 

behaviour of ternary Al-Li-Mg, Al-Li-Cu and quaternary Al-Li-Cu-Mg alloys. A 

low lithium concentration (1.7 wt%) has been used in order to reduce the volume 

fraction of S', the formation of which tends to mask any effects due to the copper 

and magnesium additions. 

3 



Table 1: Families of Al-Li alloys intended to replace conventional aluminium alloys [11 

Conventional alloys Al-Li based alloys 

to be replaced 
Alcoa Alcan Cegedur- 

Pechiney 

7075-T6 2090 8091 
(5.6Zn2.5MgI. 6CuO. 23Cr) (2.2Li2.7CuO. 12Zr) (2.6Li1.9CuO. 9MgO. I2Zr) 

High strength 
2014-T6 8090 8090 8090 
(4.4Cu0.5AfgO. 9SiO. 8Mn) (2.4Li 1.3('uO. 9MgO. IOZr) 

Medium-high strength 
2024-T3 8090 8090-T81 2091 
(4.4Cul. 5MgO. 6Mn) 

2091 
Damage tolerant (2. OLi2. ICul. 5Mg 0.1 OZr) 
7075-T73 8092 

(2.4LiO. 65('uI. 2MgO. 12Zr) 
Corrosion resistant 
Minimum density 8192 
general purpose (Composition not given) 

16 

14 

12 

IC 

2.: 

3ý 

Praperiy ergromn r1(°/0 

Figure 1: Effects of property improvements on aircraft structural weight savings [21 
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CHAPTER 1 

Development of Al-Li based alloys - General characteristics 

1.1 Retrospection of Al-Li based alloys 

Although lithium was used as early as 1924 in small additions to improve the 

mechanical properties of AI-Zn-Cu alloys (Scleron alloys), it was two decades 

later (1945) when LeBaron discovered that lithium could be a major 

strengthening species in Al-Cu alloys containing small amounts of cadmium. 

Based on LeBaron's discovery, Alcoa developed in 1957 the Al-1.1Li-4.5Cu- 

0.5Mn-0.2Cd alloy (X2020) with application in the production of wing covers 

and horizontal stabilisers for RA-5C Vigilante aircraft. Unfortunately, 

mechanical tests indicated that the fracture toughness of this alloy was the lowest 

among all the commercially used aerospace alloys and its further usage was 

abandoned. 

In the 1960s significant research in Al-Li alloys took place in the former Soviet 

Union. This led to the development of a 2020-series alloy (VAD-23) with 

nominal composition Al-1.1Li-5.3CuO. 6Mn-0.17Cd. A lower-strength ageing 

treatment was used on this alloy that resulted in improved fracture toughness. In 

the late 1960s a new alloy was announced by the Soviets with nominal 

composition Al-2. OLi-5.3Mg-0.5Mn designated as 01420. This alloy had very 

similar characteristics to modem Al-Li alloys as it had a considerably lower 
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density than other conventional aerospace aluminium alloys. Alloy 01420 found 

wide use on Soviet aircraft structures. 

Extensive research and development of Al-Li based alloys with advanced 

engineering properties commenced in the mid-1970s to early 1980s by Alcan, 

Alcoa and Pechiney. The main reasons that motivated the development of this 

new generation of alloys was the potential threat of replacement of aluminium 

aerospace alloys by resin-matrix composites, and the acceptance that reducing 

density is the most effective way for saving structural weight of an aerospace 

vehicle. In the late 1980s the development work led to the design of Al-Li type 

alloys with additions of copper, zirconium, and/or magnesium in order to attain 

the optimum combination of mechanical properties. These commercial alloys are 

designated as weldalite 049,2090,2091,8090, and CP276 with nominal 

compositions given in table 1.1 [5]. 

Figure 1.1 presents an overview of the main factors that have marked the 

development of Al-Li based alloys [4]. 

1.2 Selection criteria of lithium as the alloying element for the 

development of low density aluminium based alloys. 

As described previously, the most effective way of saving weight for aircraft 

structures is by reducing density. For aluminium alloys, additions of lithium and 

beryllium are two of the most effective elements for decreasing density (figure 

1.2). Lithium, as the lightest metal, causes a significant decrease in the density. 

6 
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Each 1% of lithium (maximum solubility 4wt% or 16at% at 610°C) reduces 

density by about 3% and increases the elastic modulus by about 6%. 

Furthermore, small amounts of lithium cause the precipitation strengthening of 

aluminium due to the formation of an homogeneous distribution of coherent 

8'(Al3Li) particles. Conversely, beryllium additions do not cause significant 

precipitation strengthening in aluminium [5]. The combination of density- 

decrease and precipitation hardening was the main reason for choosing lithium as 

the metallic element for the development of low density aluminium alloys. We 

have to mention that heavier elements, such as copper, are also present in more 

complicated Al-Li systems, which reduces the effectiveness of lithium on the 

alloy density. Figure 1.2 shows the influence of some other alloying additions on 

the density of aluminium, and figure 1.3 gives a comparison of densities for 

several Al-Li based alloys and conventional aluminium alloys [4]. 

An equation developed by Peel [6] gives the density of an alloy in terms of its 

composition in weight percent: 

Density (g/cc)=2.71+0.024%Cu+0.018%Zn+0.022%Mn-0.079%Li-0.01%Mg- 

0.004%Si 

1.3 Further solute additions to Al-Li based alloys 

Improvement to mechanical properties such as ductility and toughness is 

achieved by the addition of further alloying elements. Copper and magnesium 

cause precipitation of the intermetallic phases A12CuLi(Tl) and A12CuMg(S) 

7 
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which impede the movement of dislocations more effectively than the coherent 

S'(Al3Li) precipitates. The last are sheared by dislocations causing heterogeneous 

planar slip and low fracture toughness. Moreover magnesium and copper can 

decrease the formation of precipitate free zones (PFZs) near the grain boundaries. 

Zirconium forms fine cubic A13Zr coherent dispersoids which assist in controlling 

recrystallization and grain size during casting and hot working. The phases 

precipitated in Al-Li based alloy systems after various heat treatments are 

presented in figure 1.4 [4]. 

The various commercial Al-Li based alloys can be classified in terms of their 

response to heat treatment; these are the high strength (2090), medium strength 

(8090), and damage tolerant (2091 and 8090) grades of alloy. In table 1.1 are 

given the compositions of current Al-Li commercial alloys. 

1.4 Production of Al-Li based alloys 

The special properties of lithium, such as high reactivity (lithium is a highly 

reactive element forming oxides and nitrides very easily), low density, low 

melting point and its high price require special techniques to be used for the 

production of the commercial Al-Li alloys. 

Ingot metallurgy is the most common route for the production of Al-Li alloys on 

an industrial scale. The high reactivity of lithium led to the use of the Vacuum 

Induction Melting Furnace (VIM) that is well established in the special metals 

industry. The VIM furnace allows melting and casting of superalloys and 

nonferrous alloys under vacuum or inert gas conditions. The low cost of 
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production, the large ingot sizes and the use of standard production equipment 

has made ingot metallurgy the main route for the production of Al-Li alloys. 

However, due to segregation problems the maximum concentration of lithium 

that can be produced by ingot metallurgy is 2.5%. This, together with the coarse 

grain structure, led to the development of Al-Li alloys by rapidly solidified 

powder metallurgy (RS-PM). This technology made possible the structure control 

and an increased concentration of lithium. However, considerable oxygen 

contamination resulted in the presence of oxide stringers in the hot worked alloys 

with deleterious effects on the mechanical properties [7,8]. 

In order to overcome the problems of ingot metallurgy (lithium segregation, 

coarse microstructure, formation of intermetallic particles) and RS-PM (oxygen 

contamination) the spray-casting process was developed. This process involves 

atomisation of an alloy melt into a spray of liquid droplets and impingement of 

these droplets onto a substrate. The significantly higher rates of solidification 

compared with those during conventional casting, causes refinement of the grain 

size (fine, equiaxed grains of size 30-50 µm) and intermetallic particles (--0.5 

µm) [9,10,11]. This has the result of eliminating the anisotropic properties 

observed in die-cast ingots, thereby resulting in improved ductility and fracture 

toughness in the short-transverse direction [10,11], and the faster dissolution of 

particles during homogenisation or solution treatment [10]. However, the 

improved mechanical properties due to the more isotropic properties are limited 

by the precipitation of second phase particles on the grain boundaries during the 

ageing treatment [10]. 

9 
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1.4.1 The role of alkali impurities 

The presence of alkali impurities (notably sodium and potassium) in grain 

boundaries cause a decrease of ductility and fracture toughness in Al-Li alloys. In 

other aluminium systems these elements are incorporated into less deleterious 

solid compounds by other elements such as silicon. 

Investigators observed on the fracture surface of partially or fully recrystallized 

Al-Li based alloys, the presence of intergranular brittle islands. The size and the 

number of these islands increase with increasing concentration of sodium and 

potasium above 3 ppm [12]. 

Conventional methods of melting and casting result in the presence of alkali 

impurities in the range 3-10 ppm. The concentration of the alkali impurities can 

be decreased to below 1 ppm by vacuum melting and refining, and this improves 

the fracture toughness at room temperature. 

The intergranular fracture which takes place in Al-Li based alloys can also be 

attributed to the presence of hydrogen, grain boundary precipitate-free zones, and 

the equilibrium grain boundary phase S(AILi). 

The last two factors (PFZs and S(AlLi)) are examined more extensively in later 

chapters. 

1.5 Applications of current Al-Li based alloys 

Al-Li based alloys were developed primarily for weight savings due to the 

decreased density and increased stiffness in comparison with conventional 

10 
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aluminium alloys. However, in spite of the unique properties of Al-Li based 

alloys, their use is limited due to their high cost of production. It has been 

estimated that the cost of Al-Li alloys is three to five times higher than that of 

conventional aluminium alloys because of the use of specialised casting 

equipment and the high cost of lithium. For these reasons the use of Al-Li alloys 

is limited to applications where weight reduction is crucial [5]. 

Commercial applications 

The commercial applications are associated with aircraft parts such as leading 

and trailing edges, access covers, seat tracks and wing skins. 

Military applications 

The Al-Li based alloys replace conventional alloys in the form of superplastic- 

formed sheet parts and conventionally formed 2090,2091,8090 sheets for 

structures, wing skins and plate parts. 

Space applications 

In space applications the weight savings is the first priority. Al-Li alloys are used 

for integrally stiffened primary structures and tankage. They are also used for 

sheet and stringer constructions of rocket shrouds, formings and adapters. The 

alloy 2090 is a candidate material for the cryogenic tankage of rocket booster 

systems. 
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Table 1.1: Compositions (wt%1 of commercial Al-Li based alloys [51 

Composition 

Element 2090(a) 2091(a) 8090(a) Weldalite049 CP276(b) 
Silicon 0.10 0.20 0.20 

Iron 0.12 0.30 0.30 - - 
Copper 2.4-3.0 1.8-2.5 1.0-1.6 5.4 2.7 

Manganese 0.05 0.10 0.10 - - 
Magnesium 0.25 1.1-1.9 0.6-1.3 0.4 0.5 

Chromium 0.05 0.10 0.10 - 
Zinc 0.10 0.25 0.25 - 
Lithium 1.9-2.6 1.7-2.3 2.2-2.7 1.3 2.2 

Zirconium 0.08-0.15 0.04-0.16 0.04-0.16 0.14 0.12 
Titanium 0.15 0.10 0.10 
Other, each 0.05 0.05 0.05 (Ag: 0.4) - 
Other, total 0.15 0.15 0.15 - 
Aluminium Bal. Bal. Bal. Bal. Bal. 

(a): Registered limits (b): Nominal 
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" New Alcoa, Moan. Pechvney Alloys 

" Unprecedented Expansion of R&D Activit 

" Navy/Alcoa Ingot AI-U Casting and Alloy Develo 

" AFWAUBoeing P/M Al-U Alloy Development 

" DARDA/AFWAUtockheed, PIM R&D 

" NavylReynolds, AI-U VM R&0 

" Navy/Alcoa AI-U Fracture Toughness Studies 

" Withdrawal o12020 
" Navy/Alcoa. Al-Mg-U Alloy Development 

" Fulmar Ra n-h Ind nennt on ALUn-l I All- 

' 1978 

1976 

1982 

1974 
" Fulmer Research Inst., R&D studies began on Al-Mg-U alloys 1972 

" Soviet Patent on At-Mg-U Alloy 01420 1971 
" Soviet Studies on Al-Cu-U-ton-Cd Alloys, 

1965 1969 VA023 Introduced 
1960's 

A -U research at Nottingham University 

1961 
1958 " Soviet Reports on AI-Mg-U Research 

" Introduction of X2020 (Alcoa), Use on RA-5C Vigilante 
t950'a 

" Patent, Melting At-LI Alloys (Pechiney) 
1942 

" Phase Diagram Studies on Al-Li At" (Great Britain) 
1927 

1924 " U. S. Patent Application Al-Cu-LI-X Alloys (AkoaJLe Baron) 

" U. S. Patents, AI-BI Alloys (Al. < 40% U ti Al- < 0.5% Li) 
Small Amounts of LI Added b AM2roCu Al" (Germany) 

Figure 1.1: Overview of the main facts that marked the development of Al-Li alloys 
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CHAPTER 2 

Fundamental principles of age-hardening 

2.1 Decomposition in age-hardening systems 

The essential requirement for an alloy system to develop age-hardening is a 

decrease in the solid-solubility of one or more of the alloying elements with 

falling temperature. The age-hardening process involves the following steps: 

1. Solution heat treatment (solutionizing). The alloy is heated to a relatively 

high temperature between the solvus and solidus temperatures and kept 

there until a uniform solid solution is produced e. g. point K in figure 2.1. 

2. Rapid cooling or quenching. The sample is rapidly cooled from the 

solutionizing temperature to a low temperature, usually room temperature 

so that a supersaturated solid solution is obtained e. g. point L in figure 

2.1. 

3. Ageing. The solution heat-treated and quenched alloy undergoes 

controlled decomposition by ageing for reasonable times at one or 

sometimes two intermediate temperatures (e. g. point M in figure 2.1) so 

that a finely dispersed precipitate forms. The formation of a fine 

dispersion of precipitates is the aim of age-hardening. These precipitates 

impede the movement of dislocations during deformation resulting in 

strengthening of the alloy. 
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The decomposition process of the supersaturated solid solution during ageing 

usually involves more than one stage. In the supersaturated solid-solution 

condition a precipitation-hardenable alloy is unstable and tends to lower its 

free energy by the spontaneous decomposition of the supersaturated solid 

solution into metastable phases or the equilibrium phases. When a 

supersaturated solid solution is aged at a relatively low temperature e. g. room 

temperature, ordered solute-rich clusters of atoms called Guinier-Preston 

(GP) zones form instead of the equilibrium phase. GP zone formation requires 

diffusion of atoms over relatively small distances so that a very fine 

dispersion forms of extremely high density (1017-10'8 cm 3). 

The direct precipitation of the equilibrium phase would result in a much 

larger lowering of the free energy of the system, but such phases usually have 

incoherent interfaces with the matrix and therefore a large activation energy 

for nucleation. GP zones on the other hand, have a very low interfacial energy 

resulting in a much smaller relative activation energy barrier for nucleation 

compared with the equilibrium phase. In addition, GP zones minimize their 

strain energy by selecting a needle or disc-shape perpendicular to the 

elastically soft directions of the matrix causing further decrease of the energy 

barrier for nucleation. 

As the ageing conditions (time and/or temperature) increase, the formation of 

GP zones is followed by the precipitation of transition or intermediate phases. 

The transition phases precede the formation of the equilibrium phase because, 

like GP zones, their nucleation energy barrier is lower than that of the 
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equilibrium phase. The transition phases have a crystal structure that is 

related to that of the matrix and therefore there is a high degree of coherence 

between matrix and precipitate that results in low levels of interfacial energy. 

A schematic of the products during the decomposition process of an age- 

hardened alloy system is given in figure 2.2. 

2.2 Strengthening mechanisms in age-hardening systems 

The strength of an age-hardenable alloy depends on the interaction of moving 

dislocations with the internal stresses around precipitates (GP zones) and the 

precipitates themselves. It has been estimated that the maximum impediment 

to the movement of dislocations occurs when the spacing between 

precipitates is equal to the limiting radius of curvature of dislocation lines, 

which is approximately 10 nm. GP zones can be easily sheared by moving 

dislocations and therefore are not very effective obstacles to the movement of 

dislocations. Thus, the moderate increase in yield strength that follows the 

formation of GP zones is attributed to their high number-density. As 

dislocations shear the GP zones the number of solute-solvent bonds increases 

tending to reverse the clustering process. For this, further work must be done 

by the applied stress (chemical hardening) that makes a contribution to the 

overall strengthening. Once GP zones are sheared, dislocations continue to 

pass through them resulting in intense localized planar slip which in turn 

leads to stress concentration at the grain boundaries and intergranular failure. 
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The formation of intermediate precipitates that are large in size and widely 

spaced results in significant work-hardening as the dislocations can easily 

bow out between them and form dislocation loops (Orowan theory). 

However, the yield strength remains low as these precipitates can be readily 

bypassed by the dislocations. 

Peak strength in a precipitation-hardenable alloy is achieved by the formation 

of precipitates that resist shearing by dislocations and are also too closely 

spaced to be bypassed by dislocations. 

Figure 2.3 presents the schematic of a hardness-ageing time curve of an age- 

hardened alloy at a particular ageing temperature. 

2.3 Precipitate free zones 

Precipitate free zones (PFZs) are defined as zones adjacent to grain boundaries 

that are depleted of precipitate. The PFZs are developed due to the following 

reasons: 

" The formation of relatively large precipitates on the grain boundaries 

resulting in the local diffusion of solute from regions adjacent to the 

grain boundaries. 

" Grain boundaries acting as sinks for vacancies. The vacancy 

concentration adjacent to the grain boundary is then reduced to such a 

low level that nucleation of precipitates cannot take place in these 

regions. 

The PFZs are relatively weak regions compared with the remainder of the 
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precipitation-hardened matrix and therefore can undergo preferential 

deformation causing high stress concentrations at triple points that in turn 

leads to premature cracking. 

Methods for the decrease of the width of PFZs involve solution heat treatment 

at higher temperatures, faster quenching rates and lower ageing temperatures. 
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CHAPTER 3 

Al-Li binary alloys 

3.1 The Al-Li phase diagram 

Chapter 3: Al-Li binary alloys 

The most important phases that form in binary Al-Li alloys are the equilibrium 8 

(A1Li) and the metastable 8' (Al3Li) phases. The region of interest of the phase 

diagram, with regard to the present project, is that position extending up to 

6.6wt% (25at%) Li where the 6' phase is situated. The phase boundaries 

contained in this region are the a/6 equilibrium solvus line, the c L/8' metastable 

solvus line and the ((x+S'/8') boundary. 

Because the maximum limit of lithium solubility in aluminium at 610 °C is about 

4. Owt% (16at%) it is not possible to extend the experimental 0x/8' solvus line to 

beyond this composition. However, this limit does not apply to theoretical 

calculations. The theoretical phase diagrams of Sigli and Sanchez [13] showing 

the cc/8' solvus, the a+S' phase field and a low temperature miscibility gap 

(figure 3.1) and that of Khachaturyan et at [14] showing the a+8' phase field 

(figure 3.2) are the two most important studies of this kind. These theoretical 

phase diagrams show substantial differences. The Sigli-Sanchez phase diagram 

predicts a low temperature miscibility gap, metastable with respect to the 8' 
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phase, while the Khachaturyan phase diagram predicts that the whole a+b' phase 

field is effectively a miscibility gap and the S' forms by a spinodal ordering 

process. 

According to Khachaturyan's phase diagram (figure 3.2) the metastable a+8' 

miscibility gap contains four sub-phase fields. A solid solution quenched into 

regions A or D is metastable and decomposes by homogeneous nucleation and 

growth. In regions B and D[1]C the system can decrease its free energy by a 

congruent ordering reaction. This means that lithium atoms move to the 

appropriate sublattice sites of the ordered L12 superlattice, without any change of 

local composition, i. e. without decomposition. The difference between subfield B 

and C is one of solid solution stability. In field B the disordered solid solution is 

metastable in terms of an ordered phase of the same composition and as a result 

ordering proceeds through nucleation of ordered domains. In subfield C the solid 

solution is completely unstable and follows continuous or spinodal ordering 

without nucleation. In both fields (B and C) the theoretical calculations predict a 

secondary process, spinodal decomposition which occurs in the congruently 

ordered solid solution. When the concentration of the lithium-depleted regions 

decreases beyond a certain value, spontaneous disordering occurs in these 

regions, resulting in L12 long-range ordered S' precipitates in a disordered solid 

solution matrix [14]. 

A more accurate a/S' metastable solvus line was established by Noble and Bray 

[16]. By means of electrical resistivity measurements and differential scanning 
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calorimetry, the experimental a/8' metastable solves boundary was defined in Al- 

Li alloys containing 2-13at% Li and was described by the equation: 

1nCe(at%) = 4.176 - 9180/RT 

where Ce is the equilibrium concentration of lithium in solid solution at 

temperature T(K). The experimental a/8' metastable solvus line is in good 

agreement with that predicted by the theoretical phase diagram of Khachaturyan 

described in the last paragraph. 

3.2 Characteristics of ö'(AI3Li) 

In the L12 unit cell of A13Li, the aluminium and lithium are positioned at specific 

locations. The eight corner sites are occupied by lithium, and the six face-centred 

positions are occupied by aluminium. The geometrical similarity between the 

lattice of the 8' precipitates and the face-centred cubic matrix facilitates the 

observed cube/cube orientation dependence between precipitate and matrix. The 

lattice parameters of the precipitate are closely matched to those of the matrix 

resulting in a very small lattice mismatch. The values of misfit strains, which 

were obtained by TEM studies, scatter between -0.3% and -0.08%. X-Ray line 

profile analysis determined even smaller values. Similarly, the surface free 

energy of the S'/a interface is very low, of the order of 10 mJ/m2 and 

consequently the precipitates retain their spherical shape over an extremely wide 

size range, up to several hundred nanometers [15]. 

24 



Literature 

3.3 Precipitation of S' 

Chapter 3: Al-Li binary alloys 

Noble and Thompson [17] reported on the structural ageing characteristics of 

aluminium alloys containing 2 and 4wt% lithium. Electron microscopy and 

electrical resistivity showed that the only phases present in quenched and aged 

alloys were 8 and 8'. From their results we can summarise that: 

" The age hardening in Al-Li alloys is a two stage process: 

solid solution -)5'(Al3Li)-->8(AILi) . 

" Formation of 6' at ageing temperatures below 60°C is accompanied by an 

anomalous increase in resistivity that was attributed to electron scattering from 

very small particles of 8' (1-2 nm). 

" The 8 phase has a fcc or bcc structure and forms as plates on (I II} planes. 

" The precipitation density of S' is much higher than that of S, and consequently 

hardening is caused by 8' precipitation. Maximum strengthening in a 2wt% 

lithium alloy is associated with a S' of size 0.03 µm and number-density 

2.6x1015cm-3. 

" Ageing at temperatures above 200 °C resulted in rapid coarsening of the S'; the 

coarsening obeyed the Lifshits-Wagner (LW) theory. The activation energy for 

the coarsening of 8' was found to be 140±2 kJ/mol. Since the 8' precipitates 

obey the LW coarsening theory, coarsening occurs by selective growth of the 

larger precipitates, the process being controlled by the diffusion of lithium to 

the S'. 
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9 In the higher-lithium alloys, which contain a very high volume fraction of b', 

coalescence of particles occurred (figure 3.3). 

" At ageing temperatures just below the S' solvus, precipitation occurs 

completely on dislocations in both alloys (figure 3.4). 

In more recent work, Noble and Trowsdale [18] studied the early stages of low- 

temperature ageing of an Al-3.7wt%Li alloy by differential scanning calorimetry, 

X-ray diffraction and transmission electron microscopy. According to their 

results, 6' precipitation occurs in this alloy with an activation energy of 86kJ/mol, 

which is considerably lower than the activation energy for diffusion of lithium in 

aluminium (130kJ/mol). This indicates that S' precipitation is controlled by a 

slow reaction involving excess vacancies from the quench. Exothermic events in 

the DSC trace show the presence of S' precursor structures in the alloy which 

have been interpreted as congruent ordering followed by spinodal decomposition. 

The activation energy of these precursor structures was measured and found to be 

54kJ/mol. This value is equal to the energy for the movement of quenched-in 

vacancies in the alloy. Consequently, the precursor events are controlled by the 

hold time at room temperature, the quench rate, and small amounts of cold work, 

since these processes govern the number of excess vacancies in the alloy. 

The decomposition of an Al-1.85wt% Li alloy during isothermal ageing has also 

been studied by Schmitz and Haasen [19] using High Resolution Electron 
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Microscopy (HREM). The size distributions of the precipitates and the 

decomposition parameters such as mean radius, particle density and precipitated 

volume fraction were measured. 

In the as quenched specimen, many small L12 ordered domains with a somewhat 

diffuse interface were observed. Apart from a few larger ordered particles, which 

appeared during the first minutes of ageing, this diffuse domain structure remains 

during 1-2 min. ageing at 190°C. Presumably the few larger particles are due to 

heterogeneous nucleation. After 4min. at 190°C a large number of nearly 

spherical 8' particles with a clear sharp interface were observed. With further 

ageing these spherical particles grew whereas the ordered domains, observed in 

the as quenched state, disappeared. 

The decomposition sequence described above produced, for intermediate ageing 

times, a bimodal size distribution defined by one distribution peak at r=lnm 

belonging to the small ordered domains and a second distribution peak at larger 

radii belonging to the spherical precipitates with sharp interfaces. The 

distribution peak at small radii disappears in later stages of ageing. 

Baumann and Williams [20] have made an important study of the influence of 

nucleation temperature and pre-ageing thermal history on 8'(A13Li) distributions 

in a binary Al-2. Owt%Li alloy. All samples were given an initial solution 

treatment of 20 minutes at 570°C. Following this, one of three different 

processing sequences was employed: 
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I) Water-quench procedure (WQ): Samples were water quenched to room 

temperature from the solution treatment temperature and then transferred to a 

furnace at the ageing temperature. 

II) Direct -quench procedure (DQ) : Samples were directly transferred from the 

solution treatment furnace to an oil bath at the ageing temperature. 

III) Step-quench procedure (SQ): Samples were transferred from the solution 

treatment furnace to a furnace at 350°C for 20min to anneal out excess vacancies 

and then transferred to an oil bath at the ageing temperature. 

Two ageing temperatures were studied (200 and 220°C) and after heat treatment 

all the samples were examined by TEM. The results obtained by Baumann & 

Williams can be divided into S' nucleation and S' growth events: 

8'nucleation 

Under the conditions tested, the W. Q samples always showed a higher particle 

number density (Nv) and smaller average radius (R) of S' compared to the D. Q 

and S. Q procedures. 

Examination of the W. Q samples prior to ageing revealed that 8' had already 

precipitated as a very fine dispersion (1.5 nm diameter). 

At an ageing temperature of 200 °C which corresponds to an undercooling AT of 

60°C there was no significant difference between the D. Q. and the S. Q. samples. 

8' nucleation in both cases was coherent and homogeneous showing no 

preference for nucleation near dislocations. 
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When nucleation and growth occurred at 220°C (OT=40°C), the S' particles in the 

S. Q. samples were significantly fewer in number and larger in size than those in 

the D. Q. samples. The D. Q. samples (figure 3.5a, b) were characterised by a 

predominantly coherent, homogeneous, particle distribution. The S. Q. samples 

(figure 3.5c, d) were characterised by a coarser dispersion of S' particles which 

are almost all associated with dislocations. 

Baumann and Williams concluded from these results that: 

" Homogeneous nucleation occurs at relatively low undercooling in this alloy 

(AT=60°c) 

" Nv increases rapidly with increasing undercooling. 

9 Heterogeneous nucleation occurs at very low degree of undercooling. 

8' rg owth 

The D. Q. sample showed a higher particle growth rate than the S. Q. sample over 

the growth period investigated. Particles nucleated at high levels of undercooling 

tended to retain their spherical morphology, whereas at lower undercooling they 

observed dendritic particle shapes when particles nucleated homogeneously and 

were widely spaced, or plate-like when they nucleated along the length of a 

dislocation. 

For bulk diffusion-controlled growth of a spherical particle in an infinite matrix 

supersaturated with solute, it was shown that the particle radius R increased 

parabolically with time t according to the equation: 
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where the proportionality constant ? is a function of the degree of 

supersaturation and D the interdiffusion coefficient. 

3.4 Coarsening of S' 

The first study of coarsening of S' in Al-Li alloys was undertaken by Noble and 

Thompson [171 and they showed that the coarsening process followed the 

Lifshits-Wagner theory. Many studies on coarsening behaviour of S' have 

followed, but the most comprehensive study has been done by Mahalingam et al 

[21]. These workers studied the coarsening process of the metastable S' phase in 

a series of binary Al-Li alloys containing between 2.4 and 4.5 wt% Li using 

TEM. The isothermal ageing times were varied from 12 h to 10 days at 200 and 

225 °C. 

During the isothermal ageing process the 8' precipitates coarsen according to the 

Lifshits-Wagner theory, in agreement with the results of Noble and Thompson 

[17]. Their results were fitted to the relation: R3- R03 = kt where k is the 

coarsening constant and Ra the S' size at the start of coarsening. The authors 

suggest the following empirical equation which relates the lithium content, 

ageing time and ageing temperature T to the coarsening constant k: 

1nkT=b/t +c 

b=-2545.73(wt%Li) - 4749.06 
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c=5.88(wt%Li) - 36.87 

3.5 S' precipitate free zones 

The growth kinetics of S' precipitate free zones (PFZs) at the grain boundaries 

have been investigated by Jha, Sanders, and Dayananda [22]. Several Al-Li alloys 

were examined at a large range of ageing temperatures (168-225°C) and ageing 

times. 

In recrystallised alloys the growth of PFZ's takes place by a solute depletion 

mechanism. The solute is consumed during the growth of equilibrium 8 

precipitates at grain boundaries. The 8 phase begins to nucleate on the grain 

boundaries from the early stages of ageing. The number-density of 8 particles 

increases with ageing time. The PFZ width increases with the ageing time and the 

thickness of 8 particles also increases. 

The growth of the PFZ is diffusion controlled and it grows parabolically with 

time according to the equation: 

h=Kpt"2 

where h is the half PFZ width and t the ageing time at a given temperature. 

In unrecrystallized Al-Li-Zr alloys, the PFZ width depends upon the nature of the 

grain boundaries and the distribution of 8 particles amongst the various grain 

boundaries. Small angle grain boundaries (misorientation<10°) and twist 

boundaries had narrow or no PFZs associated with them. The high angle grain 

boundaries have larger energy and therefore are potential sites for the nucleation 
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of the equilibrium 8 particles. The growth rate of the PFZ is higher in 

unrecrystallised zirconium containing alloys than in recrystallised alloys of 

similar lithium content. A higher concentration of lithium also accelerates the rate 

of PFZ growth and this observation suggests a possible change in the 

interdiffusion coefficient as the lithium content increases. 

3.6 Stability of 6' at low service temperatures 

When aged Al-Li alloys are exposed to temperatures of 70-130 oC during 

service, continued ageing can take place, i. e. further S' precipitation occurs. 

Noble et al [3] have made an extensive study on this effect and shown the 

following: 

" Exposure for long periods of time at 70-130 °C causes further decomposition 

of aged alloys containing 1.7-3.05 wt% Li. 

* Exposure at 70 °C causes the formation of extremely fine S' particles. The 

absence of quenched-in vacancies in aged alloys results in very slow kinetics 

of precipitation at 70°C, and consequently the 8' precipitates had a size of only 

a few nanometers and a volume fraction of 0.028 after 1000 h exposure. 

" As the exposure temperature is raised from 70 to 130 °C there is a gradual 

change in the decomposition process from the formation of small S' particles 

to the growth of existing S' particles present from the preage at 150°C. 
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3.7 Zirconium incorporated as a dispersoid-forming element 

Zirconium is used to produce grain refinement of cast structures and to inhibit 

recrystallization in wrought structures. Typical additions range between 0.05 and 

0.2wt%. The zirconium produces fine (20-30nm diameter) dispersions of 

coherent Al3Zr (ß) precipitates with a metastable cubic L12 structure. The 

dispersions are very stable due to the low zirconium solubility in aluminium, the 

small misfit and the low diffusion rate of zirconium in aluminium. The (ß') 

particles also provide heterogeneous sites for S' nucleation. The reduction in both 

strain and surface energy terms associated with S'-nucleation are held to be 

responsible for the effectiveness of the ß' precipitates as nucleation sites with the 

S'-coated ß' precipitates behaving as a population of larger S'-precipitates. In 

figure 3.6 we can see the ß'-cores within the composite 6'-ß' precipitates [23]. 

3.8 Mechanical properties of binary Al-Li alloys 

As we have already seen, the age hardening of Al-Li alloys involves the 

continuous precipitation of S' (Al3Li) from a supersaturated solid solution. Noble 

et al [24] have examined how this precipitation of S' affects the mechanical 

properties of alloys containing up to 5.3 wt% lithium. 

A linear relation was found between the proof stress of aged alloys and the 

lithium concentration up to 3.7 wt% Li, which is the maximum solid solubility of 

lithium in aluminium. 
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At lithium concentrations higher than 3.7 wt% the equilibrium 8 phase appears in 

the microstructure. The 8 precipitates are soft (160 HV) compared with 

intermetallics that appear in other aluminium alloys (400-700 HV). 

Consequently, the presence of 8 does not have any important effect on the proof 

stress of the Al-Li alloys. However, the 8 particles are brittle and this is the 

reason that the elongation falls to very low levels at a lithium concentration of 5.3 

wt%. 

When in solid solution, lithium atoms produce only a small degree of 

strengthening (6.5 MN m72/ at%). However, in the aged condition, volume 

fractions of S' exceeding 20% can be produced and this is accompanied by a 

considerable increase in strength. For an alloy containing 3.7 wt% Li the 

maximum proof stress and tensile strength are 370 and 450 MN/m2 respectively. 

Alloys which have been aged to just before the peak hardness contain S' particles 

that are sheared by dislocations moving on {111) slip planes. Additional 

confirmation of particle shearing is provided by the presence of dislocations pairs 

and areas of intense localized slip, both of which must be produced by 

dislocations cutting through the S' particles. The dislocation-cutting process 

involves a number of mechanisms which can contribute to strengthening. Such 

mechanisms include strengthening from coherency strains around the 

precipitates, increased surface area of the sheared precipitates, differences in 

elastic modulus between matrix and precipitate, and creation of antiphase 

boundary as dislocations cut the ordered precipitates. 
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The two first mechanisms contribute very little to the observed strength. The 

main strength is attributed either to order hardening (development of antiphase 

boundary) or a combination of order plus modulus hardening (figure 3.7). 

The strengthening increment due to modulus hardening is given by the equation: 

L tg = AG/4, K2(3 AG/G b)1/2[0.8 - 0.1431n(r/b)13/2 r1/2 f1/2 

where AG is the difference in modulus between precipitate and matrix. 

G is the shear modulus of the matrix 

b is the magnitude of the Burgers vector of dislocations in the matrix. 

r is the effective planar radius of particles. 

f is the volume fraction of S'. 

The strengthening increment due to order hardening is given by the equation: 

Otio= (y/2b) [(4yrf/itT)112 - fJ for iTf/4y <r< T/y 

Otio= (y/2b) [(4f/i)1 /2 
- fJ for T/y <r 

where y is the energy of the antiphase boundary and T the line tension of the 

dislocation. 

This latter equation is derived from the fact that dislocations in ordered alloys 

glide in pairs. The leading one, D1, destroys the order in the precipitates along 

the glide plane and creates antiphase boundaries. The trailing dislocation, D2, 

which glides in the same plane, restores the order and eliminates the boundaries. 

Figure 3.8 shows a schematic of the mechanism. 

The shearing of the S' precipitates causes not only high strength but also intense 
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planar slip. Because cross slip is difficult in Al-Li alloys, dislocations travel in 

pairs resulting in coarse heterogeneous slip. This kind of slip leads to stress 

concentration where the slip bands meet the grain boundaries and the result is 

brittle intergranular failure. The higher the volume fraction of S' the more intense 

is the planar slip and the higher the degree of intergranular brittleness in the 

alloy. 

3.9 Mechanical properties after long term service exposure 

Noble et al [3] have investigated the mechanical properties of binary Al-Li alloys 

containing 1.7,2.5 and 3.05 wt% Li which have been aged for 24 h at 150°C and 

then exposed for a long period of time at 70,100 and 130 °C. From these results 

it is clear that the changes in mechanical properties resulting from exposure of 

the 1.7 and 2.5 Li alloys are the result of additional S' precipitation. Exposure at 

70°C causes a bimodal microstructure which consists of very fine exposure-S' 

forming between coarse S' particles from the pre-age. This fine precipitation 

causes only a very small change in the strength and the fracture energy. Larger 

changes in mechanical properties result from exposure at 100 and 130 °C and this 

can be attributed to either the formation of additional S' precipitation of relatively 

large size or growth of pre-existing S' particles from the pre-age, or a 

combination of the two effects. 

For the 2.5 Li alloys 30% of the changes in mechanical properties resulting from 
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exposure at 100°C for 1000 h can be attributed to the growth of pre-existing S' 

particles. The remaining changes are due to the formation of an additional 

dispersion of S' between the coarse S' particles produced during the pre-age. 

For the 1.7 Li alloy the volume fraction of 8' produced during the 150°C pre-age 

is very small and consequently the growth of these precipitates contributes very 

little to exposure embrittlement. As a result, the largest contribution to 

embrittlement at 100 and 130 °C is attributed to the formation of a fresh 

dispersion of S'. 

Noble et al [25] have also studied exposure embrittlement in recrystallised and 

unrecrystallised Al-Li binary alloys. Binary Al-Li alloys containing 2.6 wt% Li 

(recrystallised microstructure) and 3.2 wt%Li (unrecrystallised microstructure) 

after solution treatment and ageing for 24 h at 150°C were exposed for up to 

1000h at 130°C. Exposure of both alloys yielded increments in the proof stress 

and tensile strength, and decrements in ductility and fracture energy. The strength 

increases and fracture energy decreases were marginally higher in the 

unrecrystallised alloy. 
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Figure 3.1: Theoretical phase diagram of Sigh and Sanchez showing the or, /8 solvus, the 
a+8' phase field and the low temperature miscibility gap [13]. 

cLI ' lX)U dar. 
( onizt ordering bo nday 

---- Ordering spmodal 
(7i znical 9pinoda) 

-((1+6)16 boundary 
Ann 
YVV 

350 

300 

25C 

20( 
1ý1 

ý I51 

S 

a 

' A S 

D ; 

D 
0123456 

Li (wt%) 

Figure 3.2: Theoretical phase diagram of Khachaturyan et al [14]. The a/S' boundary is 
as defined by Noble and Bray [16]. 
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100 

Figure 3.3: 8' coalescence in an Al-4. Owt%Li after ageing for 80 h at 220°C [17]. 
Zone axis: <100>. 
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Figure 3.4: 8' precipitated on dislocations in an Al-2. Owt%Li after ageing at 220°C 
[17]. 

(a) Age for 2 h. Zone axis: <110>. 
(b) Age for 12 h. Zone axis: <310>. 
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Figure 3.5 (a) BF image and (b) 8' CDF image showing the coherent S' distribution 

observed in an Al-2.2wt%Li alloy directly quenched to 220°C. (c) BF image and (d) 8' 
CDF image showing the 8' precipitates associated with dislocations in the material step 
quenched to 220°C [20]. 

40 

(a) I µm 

1 µm 



Literature 

S' develope 
ß' particles 

P, co' 

Chapter 3: Al-Li binary alloys 

Figure 3.6: DF image of an 1.7Li 0.07Zr alloy after ageing for 1000 hat 150°C showing 
the development of 8' around a core of ß' particle. 
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Figure 3.8: Schematic of paired dislocations Dl and D2. The image plane is their 
common { Ill } -slip plane. The antiphase boundaries are shown hatched. 
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Figure 4.1 [23,26] shows an isothermal section of the Al-Li-Mg system at 

200°C. This isothermal section shows the presence of a, 

a+S (AILi), a+TM (Al2LiMg) and a+y (A112Mg17) fields. 

4.2 Precipitation characteristics 

Magnesium has a high solid solubility in aluminium and this is relatively 

unaffected by the presence of lithium. Consequently, in practical alloy 

compositions supersaturation of magnesium remains low and no additional 

metastable phases form besides S'. The only phase containing magnesium found 

in commercial Al-Li-Mg alloys is the equilibrium phase A12LiMg (TM) which 

nucleates heterogeneously giving rise to coarse particle dispersions without 

benefit to mechanical properties [23]. 

Trowsdale et al [27] studied alloys containing A14%LiO-2%Mg. TEM diffraction 

patterns indicated the presence of very fine S' at low ageing temperatures and 

short ageing times. Very small (30-40nm) particles of ß' (Al3Zr) were also 

present in as-quenched alloys containing >0.1% Zr. In all the alloys the 
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mechanical properties were controlled by the S' particles; no Al2LiMg phase was 

detected. 

4.3 Effect of magnesium on the a/8' solvus 

Two groups of workers have looked at this question and both have concluded that 

magnesium additions raise the S' solvus. Baumann and Williams [28] showed 

that magnesium reduced the solubility of lithium in aluminium resulting in an 

increase in the S' solvus of 20°C/wt% Mg. Valentine and Sanders [29] measured 

an increase of 5°C/wt%. 

4.4 Mechanical properties 

Provided that alloy chemistry and heat treatment are controlled to inhibit the 

formation of A12LiMg on ageing, magnesium additions can produce significant 

improvement to the properties of binary Al-Li alloys. Magnesium contributes to 

strength by solution hardening, a reduction in lithium solubility which increases 

the volume fraction of S', and possibly by incorporation into S' itself. 

Trowsdale et at [27] have shown that the mechanical properties of A14%LiO- 

2%Mg alloys are critically dependent on grain structure and state of 

recrystallisation. Unrecrystallised ingot alloys had higher fracture energies than 

recrystallised alloys as a result of transgranular failure in the former and 

intergranular failure in the latter. The intergranular fracture in the recrystallised 

alloys is the result of the presence of large particles of 8 at grain boundaries in 
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the solution treated condition and smaller particles of 8 produced during ageing. 

6 precipitates were also produced during ageing in the unrecrystallised alloy but 

they did not lead to intergranular failure due to the highly elongated grain 

structure of the unrecrystallised alloy. 
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Figure 4.1: Isothermal section of Al-Li-Mg system at 200°C. 
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Figure 5.1 shows an isothermal section of the Al-Li-Cu system at 350°C [31, 

33]. The isothermal section shows the a+9, a+Tß, a+Tl, a+T2 and the phase 

a+S fields. The various phases are as follows :0= Al2Cu, TB = Al7Cu4Li, T1= 

A12CuLi, and T2 = A16CuLi3. 

5.2 Precipitation characteristics 

In a critical assessment published by Flower and Gregson [23] the microstructure 

of the ternary system Al-Li-Cu is reviewed. Investigations on Al-Li alloys 

containing > 3wt% Cu showed that the metastable percursors to 0 (Al2Cu) which 

occur in binary Al-Cu alloys also occur in the ternary system. The lithium 

additions in the solid solution range (4.5%Cu, 0.4-1.5%Li) modify the structure 

of the homogeneously nucleated GP zones and 0" can be suppressed with a 

consequent enhancement of 0' precipitation in alloys containing up to 5%Cu and 

2.5%Li. 
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The presence of lithium can also cause precipitation of the ternary phase Tl 

(Al2CuLi) and Thompson and Noble [30] have shown that this phase exhibits a 

very high electrical resistivity. Further studies by Noble and Tompson [31] have 

shown that the Tl phase precipitates either at GP zones in alloys with high Cu/Li 

ratios (3.5%Cu, 1.5%Li) or at matrix dislocations in alloys of lower Cu/Li ratio 

(2.5%Cu, 2%Li). 

The plate-shaped Tl phase has a {111} habit plane and a hexagonal structure 

[31]. The orientation relationship to the aluminium matrix is: 

(0001)T1 // (111)M 

110 1 O]Tl 11111 OIj 

T2 (A16CuLi3), is another ternary phase precipitated in the Al-Li-Cu system, and 

this has an icosahedral bcc structure. The T2 phase forms predominantly above 

190°C. It has been proposed [23] that T2 has a metastable precursor T'2 formed 

by incorporation of lithium into 0' phase. This proposal is under dispute. The T2 

phase, along with 8 (AILi), is often observed to precipitate at grain boundaries. 

Suresh et al [32] have made an important study on three different Al-Li-Cu-Zr 

alloys (table 5.1). In alloy A, the major precipitates present in the matrix were 

T1,0', and Y. The T1 phase was observed to be distributed both within the 

matrix and at low angle boundaries. It should be noted that no 8', T2, or 8 was 

observed in alloy A. 
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In alloy B, in the under aged and peak aged tempers the matrix phases 

precipitated were 8', T1,0', and ß'. The S' showed a trimodal distribution 

consisting of small spherical S' particles, S' coating the 0' and S' which had 

ecapsulated the ß'. Precipitation of T2 phase was first detected after 2.25h of 

ageing at a temperature of 191°C and the volume fraction of this phase increased 

with ageing time. Gross over-ageing caused precipitation of T2 on the low-angle 

grain boundaries and within the matrix. 

Although the precipitation characteristics of alloy C follows the same trend as 

alloy B, the volume fraction of the various precipitates were notably affected by 

the high Li/Cu ratio in this alloy. Considerably more 8' and T2 precipitates are 

formed and copious precipitation of T2 occurs at lower ageing times. The tri- 

modal S' distribution is still observed. However, the most important point is that 

the dominant 8' morphology at peak age is spherical particles which is markedly 

different to that found in alloy B at the same ageing condition. 

5.3 Effect of copper on the a/S' solvus 

There is disagreement about the influence of copper on the S'-solvus. Baumann 

and Williams [28] suggest that the copper does not modify the S' solvus, whereas 

Hardy and Silcock [33] indicated that copper decreases the lithium solid 

solubility in aluminium and consequently increases the 8' solvus. 

Mondolfo [34] shows a ternary isothermal section of the Al-Li-Cu system which 
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indicates that Cu does not influence the solid solubility of lithium. 

5.4 Mechanical properties 

Sanders and Starke [35] have reviewed the influence of the metastable and 

equilibrium phases on the mechanical properties of Al-Li-Cu alloys. When the Tl 

phase is the only one present in the microstructure, it is usually looped and by- 

passed by dislocations. However, when S' is present the Tl phase may be sheared 

by dislocations. This results from the superdislocations, associated with S', 

having a pileup force sufficient to shear the partially coherent Tl precipitates. 

By combining the effects of stretch, ageing time, and ageing temperature, the 

strength and toughness of Al-Li-Cu alloys can be considerably improved. By 

stretching, the number-density of phases such as Tl and 0' is increased. By 

lowering the ageing temperature the supersaturation is increased and 

consequently there is an increased driving force for the nucleation of Ti. 

Furthermore, by lowering the ageing temperature the diffusion distances are 

reduced, thus refining both the matrix precipitates and the grain boundary phases. 

The formation of T2 (Al2CuLi3) precipitates (which have a high lithium 

concentration) along the grain boundaries can lead to the development of S' PFZs 

adjacent to these boundaries. These PFZs cause a reduction in ductility and 

fracture toughness. 
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According to Suresh et al [32] microstructures which contain S' (matrix) 

particles, lead to slip planarity. This then leads to strain localization at grain 

boundary S/T2 precipitates, promoting grain boundary failure and reduction in 

fracture toughness. These authors conclude that the overall fracture process in all 

lithium-containing alloys is dictated by competition between deformation within 

the matrix and grain boundary failure. 
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Table 5.1: Compositions of alloys (wt%) studied by Suresh et al [32] 

alloy/element Li Cu Zr Al 

A. 1.1 4.6 0.17 balance 

B. 2.1 2.9 0.12 balance 

C. 2.9 1.1 0.11 balance 
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Figure 5.1: Isothermal section of Al-Li-Cu system at 350 and 500°C. 
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Figure 6.1 shows the isothermal section at 190°C of Al-Cu-Mg alloys 

containing 2-3 wt% Li. The diagram shows the presence of the S', S, Tl and 0' 

phases [23]. 

6.2 Precipitation characteristics 

Starink and Gregson [36] have studied the thermodynamic and precipitation 

characteristics of 8090 (2.5Li-1.2Cu-0.7Mg) alloy using DSC and TEM. 

According to these authors the hardening of 8090 alloys is the result of two 

precipitation sequences: 

I. Li in Al-rich phase->8'->8 

II. Cu, Mg in Al-rich phase-+GPB zones-->S'-> S 

where GPB zones are Guinier -Preston zones containing both Cu and Mg, and S' 

is a slightly strained semi-coherent version of the incoherent S (A12CuMg) phase. 

The S and S' phases have the same morphology and orientation relationship and 

only slightly different lattice parameters. It must be mentioned that there have 
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been no TEM observations of GPB zones in lithium containing alloys, but the S' 

and S phases are frequently observed [23]. 

The most important precipitation reactions in Al-Li-Cu-Mg alloys of commercial 

importance involve S', T1(low magnesium, low copper), S(high magnesium, high 

and low copper) and 0' (low magnesium, high copper). 

The addition of small amounts (0.5-1.0%) of magnesium to a high copper- 

containing alloy such as 2090 (Al-2.7Cu-2.2Li-0. l2Zr) suppresses the formation 

of 0' and introduces the S' phase [35]. Because S' contains no lithium, 8' 

precipitation is not significantly affected by the magnesium addition and Tl 

remains the dominant secondary phase. 

In low-lithium alloys, such as AI-1.6Li-3Cu-0.8Mg little or no S' forms and there 

appears to be equal amounts of Tl and S' phases present. 

In higher-lithium, lower copper alloys such as 8090 (Al-2.5Li-1.2Cu-0.7Mg), S' 

along with a small amount of Tl forms together with 8'. 

As the copper/lithium ratio is further increased, the precipitation of Ti is fully 

suppressed and S' becomes the major secondary phase. A representative alloy, 

which shows this behaviour, is 2091 (A1-2Li-2.2Cu-1.5Mg). 

The precipitation of Tl is similar to that which takes place in Al-Li-Cu alloys. 

However this Tl precipitation is affected by competition with S for both 

heterogeneous nucleation sites and available copper atoms. 

The precipitation of S phase is of principal importance in commercial Al-Li-Cu- 
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Mg alloys. In these alloys nucleation of S usually takes place on dislocations. 

The density of dislocation nucleation sites can be increased by giving the alloy a 

pre-ageing stretch. Under these conditions widespread heterogeneous 

precipitation of S phase occurs. The high density of S particles that are produced 

disperses the slip when the alloy is deformed, thus improving the fracture 

toughness of the alloy. 

A uniform distribution of S phase can also be produced by simultaneously 

increasing the copper and magnesium concentration and increasing the free 

vacancy concentration. The latter can be controlled by both solution treatment 

temperature and a low temperature pre-age before heat treatment at 190°C. 

During the first stages of precipitation the vacancies are strongly bound to lithium 

atoms. As the S' particles grow at low temperatures the vacancies are released 

and then can aid the precipitation of S phase. This model is supported by 

observations of the formation of dislocation loops and helices during the ageing 

of Al-Li-Cu and Al-Li-Cu-Mg alloys. The mechanism of how vacancies promote 

homogeneous precipitation of S is not clear. A widespread distribution of 

vacancy clusters (before their condensation into loops) probably provide sites for 

the precipitation of S laths. Another possibility is the vacancy clusters become 

enriched with copper and magnesium and then develop into S precipitates via 

GPB-type zones. In both cases, a high vacancy concentration is required for 

nucleation of S and to accelerate the diffusion required for precipitate growth. 
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In addition to S', Tl and S phases a copper-rich icosahedral grain boundary phase 

can occur during ageing. It has the composition A16Cu(Li, Mg)3 and has a similar 

structure to T2 (Al6CuLi3) which precipitates in Al-Li-Cu alloys. Investigations 

have shown that precipitation of this phase is likely to take place only at high- 

angle boundaries and triple points. The density of such sites is low in highly 

textured unrecrystallised zirconium-containing alloys and therefore the 

icosahedral phase is more prominent in recrystallised alloys. 

6.3 The effect of combined additions of copper and magnesium on the 

a/S' solvus 

Very little work has been done on the effect of combined additions of copper and 

magnesium on the position of the S' solvus. Valentine and Sanders [29] studied 

the effect of increasing copper concentrations on the 8' solvus of an Al-2. OLi- 

2.7Mg alloy. The single addition of 2.7% Mg addition increased the S' solvus by 

14 °C which which is consistent with that described in section 4.4.3. Addition of 

copper to the Al-2. OLi-2.7Mg alloy in the range 0.3 to 3% produced no further 

change in the position of the S' solvus. This is an important result and indicates 

that the 8' solvus in alloys of 8090 composition is approximately 5°C above that 

of an equivalent Al-Li binary alloy. 
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The main strengthening phase in Al-Li-Cu-Mg alloys is 8'. The role of S phase is 

to disperse slip and thus improve the fracture toughness. Crooks and Starke 1371 

have reported that when S' is present in Al-Li-Cu-Mg alloys, strain localisation is 

suppressed, indicating that the precipitate is not sheared by dislocations. Their 

observations were confirmed by Flower and Gregson [38] who showed that the S' 

precipitates do not have densely packed slip planes parallel to the aluminium 

matrix planes and consequently they are not penetrated by dislocations. 

Gilmore and Starke [39] have studied the effects of magnesium on the 

mechanical properties of an Al-4.22Cu-1.31Li-0.16Zr alloy. According to these 

authors 0.5% Mg increased the peak yield strength by 30%. The increase in 

strength in the early stages of ageing is due to the precipitation of a high number- 

density of 0" particles and GP zones. As ageing proceeds, significant amounts of 

Tl form preferentially near dislocations and subgrain boundaries. 

Noble et al [40] have investigated the low temperature embrittlement of 8090 

alloys. According to their results when 8090 is exposed at 70°C for 1000 h after 

prior ageing at 150°C, a 28% reduction in fracture energy and 6% increment in 

proof stress occurs. A possible reason for the embrittlement of 8090 during 

exposure at 70°C is the formation of a mixture of fine S' and GPB zones, but 

further work is needed to investigate this possibility. 
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Figure 6.1: Isothermal section at 190°C of the quaternary AI-Cu-Mg alloys containing 2- 

3wt%Li [23]. 
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The alloys studied in this research work had the composition shown in table 7.1. 

The actual composition was checked to be very near to nominal by measurement 

of electrical resistivity in the as-quenched state. All the alloys were melted and 

cast under argon to produce 35mm diameter ingots. The alloys were then 

homogenised at 510 °C for 8h to remove any segregation and to dissolve the 

intermetallic phases. The ingots were then scalped, extruded to bar, followed by 

hot and cold rolling to 1.6 mm strip. In the next paragraphs are described the 

experimental techniques and methods used to examine the phase transformations 

which occurred during ageing of the alloys. 

7.1 Differential scanning calorimetry (DSC) 

The DSC measurements used a power compensated differential scanning 

calorimeter. The power compensation DSC uses separate furnaces for the sample 

under study and for the reference sample. Any heat evolved or absorbed by a 

phase transformation is compensated by a power input to one of the two furnaces. 

By measuring this power input, the exothermic and endothermic events can be 

detected in the sample. 

The as-quenched DSC-samples were punched out of the 1.6 mm strips giving 6 
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mm diameter discs. The samples were then solution treated in a salt bath at 540 

°C for 15 min. and quenched into ice-brine at -20°C. The discs were then ground 

to 0.5 mm thickness taking care to avoid heating of the sample. The grinding is 

very important for removing the depleted-lithium layers from the surfaces of the 

sample. The discs were then stored in liquid nitrogen to prevent decomposition of 

the supersaturated solid solution taking place at room temperature. Before placing 

into the into the Perkin-Elmer series 7 power compensation DSC, the samples 

were carefully dried to remove any condensation. The DSC furnace temperature 

was -20°C, and the temperature range used for each scan was from -10°C to 

400°C. When the DSC scan had finished the sample was weighed on a Mettler 

AE 163 balance with an accuracy of 0.01 mg. 

For the aged samples the weight was measured before the DSC run. The test 

procedure is as described above. 

7.2 Electrical resistivity 

The resistivity samples were machined to dimensions 80 mm (length)x 2 mm x 

1.6 mm and resistance measurements were taken using a Cropico D05 digital 

ohmmeter employing a four-potentiometric technique. The resistance range was 2 

mfl and the accuracy was ±0.0001 milliohms. 

The resistivity p was calculated from the equation : 

p=Rbw/1 7.1 
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where :R is the measured resistance 

1 the length of gauge 

b the thickness of the gauge 

w the width of the gauge 

Chapter 7 

The resistance was measured with the current flowing through the sample in two 

directions to eliminate thermal emfls. The average of the measurements was 

taken. 

Two different resistivity methods were used to determine the precipitation 

characteristics; isothermal measurements and isochronal measurements. 

7.2.1 Isochronal resistivity 

Samples were solution treated in a salt bath at 540°C for 15 min. and quenched in 

ice brine (-20°C). The samples were placed in liquid nitrogen immediately after 

the quench to enable the as-quenched po value to be measured. 

The resistivity samples were step-aged for a constant time (10 min) at increasing 

temperatures. The temperature range was from 0°C to 560°C employing 20°C 

temperature intervals. Directly after each step ageing treatment, the samples were 

quenched into liquid nitrogen. 

The 0°C temperature was produced by ice water. For all the other temperatures 

an air circulation furnace was used. 

The resistance measurements were taken in liquid nitrogen using the four point 

potentiometric technique. The resistivity was calculated by equation 7.1 
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After solutionizing, the samples were quenched in ice brine and then immediately 

transferred into liquid nitrogen in order to measure the as-quenched po value. 

Subsequently the samples were aged for increasing times at a constant 

temperature. After each ageing time, the resistance was measured in liquid 

nitrogen applying the four-point potentiometric technique. By using equation 7.1, 

the resistivity was measured. 

7.3 X-Ray Diffraction (XRD) 

For XRD analysis, samples with dimensions 10 mm x 20 mm were used. The 

samples were solution treated and subsequently isothermally aged. The ageing 

temperatures used were 350°C, 150°C. The first temperature was performed in an 

air circulation furnace and an oil bath was used for the 150°C age. 

After ageing, a thickness of 0.5 mm was ground from each side of the 1.6mm 

strip in order to remove the lithium-depleted surface layers. The samples were 

then polished to a 1µm finish using diamond paste. 

For the XRD analysis, a Siemens D500 dif-ractometer with Cu Ka radiation 

(wavelength 1.5406A) was used. The 20 angle scanned was in the range 10-100° 

using a step size of 0.01 deg and a dwell time of 5 sec. 
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7.4 Mechanical tests 
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Specific alloys were subjected to tensile and tear tests in order to evaluate the 

0.2% proof stress and fracture energy respectively after particular heat 

treatments. For the tensile tests, a Mayes DM/U10 testing machine was used. An 

external extensometer was used for recording the corresponding strain. 

Tear testing was carried out on a Mayes FSH-250 machine. The fracture energy 

was measured by integrating the area under the stress-strain curve. 

It should be noted that for the study of the as-quenched alloys, the samples were 

kept in liquid nitrogen up to the time they were tested. 

7.5 Electron microscopy 

7.5.1 Transmission Electron Microscopy (TEM) 

From the 1.6 mm alloy sheet, 2 mmx 1 mm rectangular samples were cut and 

aged. The aged samples were ground down from both sides to 0.5 mm. Then 3 

mm diameter discs were punched out which, in turn, were further ground to a 

final thickness of 70-100 gm. Electropolishing of the thin discs was carried out in 

a Metalthin MK3 twin jet electropolishing aperture using a 30% HNO3+methanol 

solution. The samples were examined as soon as possible in a JEM-2000FXII 

electron microscope using an acceleration voltage of 120kV. 

7.5.2 Scanning Electron Microscopy 

The study of the fracture surfaces (fractography) of the samples after tensile 
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testing was carried out in a JSM-6400 Scanning Electron Microscope. All 

fracture surfaces were ultrasonically cleaned in methanol before examination. 
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Table 7.1 : Nominal compositions (wt%) of the alloys studied 

Chapter 7 

Alloy Nr Li Cu Mg Zr Al 
267 1.7 1.2 0 0.07 bal. 
268 1.7 1.2 0.7 0.07 bal. 
269 1.7 1.2 1.0 0.07 bal. 
270 1.7 1.2 1.4 0.07 bal. 
271 1.7 1.2 2.0 0.07 bal. 
272 1.7 1.2 3.0 0.07 bal. 
278 1.7 0 1.2 0.07 bal. 
279 1.7 0.6 1.2 0.07 bal. 
280 1.7 1.2 1.2 0.07 bal. 
281 1.7 2.0 1.2 0.07 bal. 
282 1.7 3.0 1.2 0.07 bal. 
283 1.7 0 3.0 0.07 bal. 
284 1.7 3.0 0 0.07 bal. 
381 0 1.2 1.2 0.07 bal. 
382 0 1.2 2.0 0.07 bal. 
383 1.3 1.2 1.2 0.07 bal. 
3 84 1.3 1.2 2.0 0.07 bal. 
385 0 2.0 1.2 0.07 bal. 
386 1.3 2.0 1.2 0.07 bal. 
380 0 3.0 0 0.07 bal. 
319 0 3.0 1.0 0.07 bal. 
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CHAPTER 8 

Precipitation in Al-Li-Mg Alloys 

Chapter 8: Effect of magnesium on Al-Li-Mg alloys 

For the interpretation of the effect of magnesium concentration on the 

precipitation characteristics in the quaternary Al-Li-Cu-Mg system, it is of great 

importance to first understand the effect of separate additions of magnesium and 

copper on the binary Al-Li system. In this chapter, the addition of 0.7%, 1.2% 

and 3% Mg to the binary Al-Li system is considered. The chapter is divided into 

two main parts: 

" Isochronal precipitation characteristics 

" Isothermal precipitation characteristics 

8.1 Isochronal precipitation characteristics 

8.1.1: DSC (as-quenched plots) 

DSC thermograms of the as-quenched alloys are shown in figure 8.1. In the 

binary Al-Li alloy with no addition of magnesium, no thermal events were 

detected. The addition of 1.2% Mg results in the appearance of a small 

exothermic event (A) due to S' precipitation followed by an endothermic event 

(B) as the S' dissolves. As the composition of magnesium increases to 3% the 

areas under the exothermic and endothermic peaks increase showing that 

magnesium stimulates the precipitation of 8'. 
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The 8' metastable solvus temperature can be equated to the temperature where 

the S' endotherm returns to the baseline (T°SCý. d) The end temperatures of the 

endotherms are equal to 205 and 220 °C for alloys 1.7Lil. 2Mg and 1.7Li3. OMg 

respectively. 

For the binary 1.7Li alloy the thermodynamic 8' metastable solvus is calculated 

to be 200°C [16]. The addition of magnesium has therefore increased the TDSCend 

temperature by approximately 7°C/wt%Mg. This shift of TDSee, d to a higher 

temperature can be attributed either to an increase of the S' metastable solvus, or 

to an increase of the 8' particle size. It will be shown later in this chapter that the 

shift in the end temperature of the endotherm is due to a change in the metastable 

S' solvus. 

8.1.2 Isochronal resistivity 

Figure 8.2 shows isochronal plots for Al-1.7Li alloys with 0,1.2 and 3.0% Mg. 

The binary 1.7Li alloy shows a gradual increase in resistivity from 0°C to 40°C 

which is associated with the formation of S' particles that are smaller than the 

critical size for electron scattering. The following decrease after 40°C can be 

attributed to the growth of S' particles, which are now larger than the critical size. 

The resistivity decrease extends below the as-quenched value (baseline) and then 

slowly returns to the baseline at 200°C. This temperature (TR'end) can be equated 

to the 8' solvus temperature for the binary 1.7Li alloy. 
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The addition of magnesium to the alloy does not prevent the formation of the 

initial resistivity peak but it is delayed to a higher temperature and the height of 

the peak increases with magnesium concentration (figure 8.3). 

After S' growth, the resistivity returns to baseline at approximately 200°C for the 

1.7Lil. 2Mg alloy and 220°C for the 1.7Li3.0Mg alloy. These values represent 

the 8' solvus temperature for these alloys and they are in excellent agreement 

with the DSC data (Table 8.1). 

Note that 1.7Li3.0Mg alloy does not quite reach the as-quenched value because 

of the onset of precipitation of the equilibrium phases. The TRes'e, d for this alloy 

was obtained from the extrapolation of the resistivity plot to the baseline. The 

equilibrium phases that cause the strong decrease in resistivity in the 1.7Li3. OMg 

alloy at 325°C was shown by XRD to be AlLi (8) and A12LiMg (TM) (figure 

8.4). 

Table 8.1: S' solvus temperatures estimated by DSC thermograms and resistivity changes. 
Alloy T es. 

end T 
end 

1.7Li 200 200 
1.7Lil. 2M 200 205 
1.7Li3. OMg 220 225 

*Calculated from Noble & Bray [16] 

8.2 Isothermal precipitation characteristics 

The isothermal precipitation characteristics of the Al-Li-Mg system are 
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considered in this section. Five different heat treatments have been used: 

" Ageing at 70,100 and 150°C for 1000h. 

" Ageing at 150°C for 24h. This simulates the damage tolerant heat treatment 

commonly given to alloys based on the Al-Li system. 

" Prior ageing at 150°C for 24h following by exposure at 70°C for 1000h. This 

simulates the conditions that a commercial Al-Li aerospace alloy would be 

expected to encounter whilst in service. 

8.2.1 Ageing at 70°C 

Figure 8.5 shows comparative plots of the DSC thermograms after ageing at 

70°C for 1000h. As can be seen the addition of magnesium has stimulated the 

formation of S'. The temperature at which the dissolution of 8' is completed 

(TDSCena)increases by 5°C with the addition of 1.2%Mg to the binary 1.7Li alloy. 

Raising the magnesium concentration to 3% increases the TDSCend by a further 

10°C. 

Isothermal resistivity measurements allow the precipitation characteristics of the 

Al-Li-Mg alloys to be examined during ageing at 70°C, (figure 8.6). The 

resistivity of the binary 1.7Li alloy shows a continuous increase up to 1000h. The 

isothermal resistivity behaviour of binary Al-Li alloys containing 1.4-2.0 %Li 

has been investigated by Noble and Bray [41]. According to their results a 1.8Li 

alloy aged at 70°C shows an initial increase followed by a plateau and then a 

second increase. The binary 1.7Li alloy studied in the present work exhibits a 

similar trend suggesting that the mechanism of precipitation is similar. Noble and 
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Bray showed that for alloys containing around 1.8% Li, when aged at 70°C, the 

8' precipitation mechanism is not classical nucleation and growth of 8'. There is a 

transition stage that involves the nucleation of ordered regions with no change of 

composition. The initial resistivity increase was attributed to the formation of a 

high density of fine ordered regions (or domains) which scatter the conduction 

electrons. The second increase of the resistivity was attributed to the spinodal 

decomposition of the ordered domains to S' which then become more effective 

scattering centres for the conduction electrons. The continuous increase of 

resistivity observed in the present work for a 1.7Li alloy implies that spinodal 

decomposition carries on for a long time and at a slow rate since the 8' particles 

do not reach the critical size of electron scattering. The slow kinetics can be 

attributed to quenched-in vacancies becoming trapped by the nucleation ordered 

regions and consequently there is a reduced concentration of vacancies to assist 

the diffusion of lithium to the spinodally decomposing regions. 

The addition of 0.7% Mg results in similar resistivity behaviour to the binary 

1.7Li alloy up to 50h. Beyond 50h the resistivity increase is more rapid 

indicating that spinodal decomposition is faster. A resistivity peak is reached 

after 400h which is followed by a decrease showing that the 8' has now attained 

the critical size for electron scattering. The accelerated kinetics of the 

1.7LiO. 7Mg alloy can be explained by the small increase in the S' solvus 

temperature which will result in a higher driving force for S' precipitation. 
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Increasing the concentration of magnesium to 1.2% produces a resistivity plot 

that peaks at an earlier time, which again will be due to the increased driving 

force for 8' precipitation. 

Higher levels of magnesium (3.0%) produce a further increase in the rate of S' 

precipitation. The resistivity peak is reached after 4h ageing which means that 

spinodal decomposition is very rapid. The following decrease in resistivity is 

dramatic. 

From the above discussion it can be concluded that the addition of magnesium to 

a binary Al-Li alloy increases the driving force for S' precipitation. This causes 

more rapid spinodal decomposition to take place resulting in a higher volume 

fraction of S' in the alloy. 

8.2.2 Ageing at 100°C 

DSC thermograms are shown in figure 8.7 after ageing 1000h at 100°C. 

Comparison of the peaks shows that there is a small increase of the 8' dissolution 

enthalpy as the magnesium concentration is increased. The T°SCend of the 

1.7Li3.0Mg alloy is shifted by about 10°C, to a higher temperature compared 

with the dissolution end of the 1.7Li 1.2Mg alloy. 

The isothermal resistivity plots for ageing at 100°C are given in figure 8.8. All 

the alloys show an initial increase in resistivity which is followed by a marked 
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decrease to well below the as-quenched value suggesting nucleation ordering 

followed by spinodal decomposition to 8'. As the magnesium concentration 

increases the peak occurs sooner indicating, as for 70°C ageing, that the 

magnesium promotes enhanced kinetics of S' precipitation. 

8.2.3 Ageing at 150°C 

DSC dissolution plots after ageing at 150°C for 24h and 1000h are presented in 

figures 8.9 and 8.10 respectively. Figure 8.9 shows that once magnesium is 

added to the binary alloy the S' dissolution enthalpy exhibits a marked increase, 

i. e. there is a significant increase of 8' volume fraction. This suggests that at short 

times of ageing at 150°C the addition of magnesium significantly enhances the 

nucleation of 8'. 

Isothermal resistivity plots of these alloys are given in figure 8.11. Alloys 

containing 0-1.2% Mg show a well defined incubation period which is followed 

by a large decrease of resistivity. This indicates that the mechanism of 8' 

formation is following a nucleation and growth process. Because there is no 

increase in resistivity we can conclude that the critical size for nucleation is 

greater than the critical size for electron scattering. The 1.7Li3.0Mg alloy does 

not show a measurable incubation period. This is because the driving force for 8' 

precipitation is very large in this alloy, hence the kinetics are very fast and the 

incubation period has been exceeded by the time the first resistivity measurement 
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8.2.4 Effect of magnesium on the a/S' solvus 

The isothermal resistivity plots in figure 8.11 show that ageing at 150°C for 

times >100h will produce the equilibrium volume fraction of S'. This observation 

means that figure 8.10 can be used to calculate the effect of magnesium on the 

a/8' solvus using the following procedure: 

" At 150°C, the volume fraction (Vf) of S' can be written as 

0.063 -w Vf 
0.25-w (8.1) 

where co is the composition of lithium (atom fraction) at the a/6' solvus at 

150°C, 0.063 is the analysed lithium composition (atom fraction) of the 

alloys, and 0.25 is the atom fraction of lithium in 8'. Equation (8.1) follows 

from the lever rule applied to the Al-Li phase diagram and using the fact that 

the specific volumes of S' and the a solid solution are very nearly equal. 

" The equilibrium volume of fraction of S' can be calculated from figure 8.10 

using a relation obtained by Noble [42]: 

Vf=dH(J/g) /140 (8.2) 

The values are given in table 8.2. 

" Hence co, the atom fraction of lithium at the a/8' solvus at 150°C can be 

calculated by equation (8.1). The resulting values are given in table 8.2. 
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Table &. 2: larameters useu to caicuiate the po sition of the acid, soivus at i u'c. 
ALLOY CODE AH (J/g) Vr co (at%) 

1.7Li 9.50 0.0679 4.93 

1.7Li0.7Mg 10.20 0.0729 4.83 

1.7Lil. 2Mg 11.67 0.0834 4.60 

1.7Li3. OMg 13.32 0.0952 4.33 

" It can be seen from table 2 that increasing the magnesium from zero to 3.0% 

causes a reduction in Co of 0.6at%. 

" Noble and Bray [16] have shown that the a/8' solvus in binary Al-Li alloys is 

given by the relation: 

In Ce (at %) = 4.176 - 
9180 (8.3) 
RT 

The differentiated form of this equation is: 

dL? i=11O4. (4176_1flC)-2 " C. -I (8.4) ldCe 

In the vicinity of 150°C (w= 4.78at%) the derivative dT/dCe equals 33.72 

°C/at%. 

Thus, a reduction in atomic fraction of lithium of 0.6at% corresponds to an 

increase in the a/8' solvus temperature of 20.2°C. This increase in a/S' solvus 

temperature is in excellent agreement with the directly measured value 

(Tnscmd) from figure 8.1, which was -20°C. 
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" It can be concluded that the addition of magnesium to an 1.7Li alloy increases 

the a/S' solvus temperature by 6.7°C /wt%Mg. This value is in good 

agreement with the value of 5°C/wt%Mg measured by Valentine and Sanders 

[29]. It also suggests that the value of 20°C/wt%Mg measured by Baumann 

and Williams [28] is far too high. 

8.2.5 Effect of ageing temperature 

This section brings together the effect of the ageing temperature on the 

precipitation characteristics of Al-Li-Mg alloys. 

DSC thermograms of the binary alloy (figure 8.12) shows that increasing the 

ageing conditions from 1000 h at 70°C to 1000 h at 150°C does not change the 

final S' volume fraction significantly. The isothermal resistivity plots (figure 

8.13) show that an increase of temperature from 70°C to 150°C not only causes a 

dramatic decrease of the resistivity but also changes the S' formation mechanism 

from nucleation ordering to classical nucleation and growth. From the 

observation that the final S' volume fraction is the same after 1000h at 70°C and 

1000h at 150°C we can conclude that the 70°C ageing causes a high volume 

fraction of very fine spinodally decomposed regions with a size smaller than the 

critical size for electron scattering. 

The effect of temperature is similar for the 1.7LiO. 7Mg alloy (figure 8.14). 

For the 1.7Lil. 2Mg alloy, the fraction of S' that precipitates at 70°C and 150°C is 

again similar, but figure 8.15 clearly shows that the maximum amount of 8' is 
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produced at 100°C. Thermodynamically, it would be expected that the volume 

fraction should increase as the ageing temperature goes from 150 to 100 to 70°C. 

However, the diffusion coefficient decreases as the temperature is reduced, so 

that at 70°C the amount of S' that forms is limited by kinetic considerations. 

Figure 8.16 shows the isothermal resistivity curves for the 1.7Lil. 2Mg alloy 

which, when taken in conjunction with figure 8.15, show that the magnitude of 

the total resistivity decrease at low ageing temperatures cannot be equated to the 

volume fraction of S' that has formed. The small decrease of resistivity to just 

below the baseline at 70°C indicates that the growth rate of the spinodally 

decomposed regions is very small and therefore we can conclude that 70°C 

ageing causes a high volume fraction of fine 8' particles. 

Finally, figures 8.17 and 8.18 show the DSC and resistivity plots for the 

1.7Li3.0Mg alloy. The trends are the same as those for the 1.7Lil. 2Mg alloy, but 

the kinetics are faster and the growth of S' particles much larger at all ageing 

temperatures. It should also be noted that at 150°C the precipitation of S' is 

largely complete by 24h at 150°C (figure 8.17). Thus the period 24h to 1000h at 

150°C is concerned mainly with S' coarsening. 

Figure 8.19 summarizes the combined effects of magnesium concentration and 

ageing temperature on the volume fraction of 6'. The volume fraction was 

calculated by measuring the dissolution enthalpy and using relation 8.2 given in 
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the previous section. It can be clearly seen that at all ageing temperatures 

increasing the magnesium concentration stimulates the formation of S'. The 

effect of the ageing temperature for the binary 1.7Li and 1.7Li1.2Mg alloys can 

be explained by the competition between the thermodynamic driving force and 

the kinetics of precipitation. The large driving force but slow kinetics for S' 

precipitation at 70°C produces a volume fraction almost equal to that at 150°C 

where the driving force is lower but the kinetics are faster. The largest volume 

fraction is produced at 100°C where there is an optimum combination of driving 

force and diffusivity. 

The 1.7Li3.0Mg alloy exhibits a different trend in that the volume fraction of S' 

at 150°C is lower than expected. XRD analysis showed this was due to 

precipitation of significant amounts of TM phase (figure 8.20). The formation of 

such a phase requires lithium; therefore a significant fraction of S' will dissolve 

after long term ageing at 150°C. 

8.2.6 Size of the S' precipitates at 150°C 

Increasing the ageing temperature in a given alloy was observed to cause a 

marked shift of T°SCend to higher temperatures (figure 8.21). Because the 

magnesium concentration remains constant it is likely that the above shift is 

caused by an increase in the S' particle size. In this section evidence will be given 

that confirms this hypothesis. 
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Figures 8.22-8.25 show TEM micrographs of 1.7Lil. 2-3. OMg alloys after 

ageing at 150°C for 24h and 1000h. On these micrographs a large number of 

particles was measured in order to obtain the normal (Gaussian) particle size 

distribution of 8'. Figures 8.26(a, b) and 8.27(a, b) show these normal 

distributions. According to these results, increasing the time of ageing at 150°C 

from 24h to 1000h caused the mean particle radius to increase from 6 nm to 14 

nm for both alloys. Noble and Bray [43] have shown that an increase of 8' radius 

from 6 nm to 14 nm in a binary 1.7Li alloy will produce a shift of TDSCend of 

about 20°C. Applying this result to the present work predicts that increasing the 

ageing time from 24 h to 1000 h at 150°C should produce a shift in the end 

temperature of the 8' endotherm of 20°C; figures 8.15 and 8.17 show this to be 

the case. 

From the above discussion two important things can be noted for figure 8.21: 

(a) Increasing the ageing temperature for a given alloy produces an increasing 

shift of TDSCend This is due to the increasing size of the S' precipitates. 

(b) The magnitude of the shift increases with increasing magnesium 

concentration. It is known from TEM that the size of 8' is independent of 

magnesium concentration, and therefore the additional shift in high 

magnesium alloys is due to displacement of the a/S' solvus (by approximately 

7°C/wt%Mg). 
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Isochronal reversion resistivity plots after ageing for 1000h at 70°C are given in 

figure 8.28. The binary 1.7Li alloy exhibits a small initial decrease in resistivity 

(0.4 nf2m) which is attributed to the dissolution of small 8' precipitates. After 

100°C the larger S' precipitates grow during the isochronal heating. Because their 

size is still smaller than the critical size for electron scattering a resistivity 

increase is observed followed by a decrease to below the baseline when the S' 

precipitates exceed the critical size. At 175°C the resistivity starts increasing 

again due to the dissolution of S' which is completed at 200°C (S' solvus 

temperature). The reversion resistivity plots of the 1.7Li 1.2Mg and 1.7Li3.0Mg 

alloys are similar. Dissolution of the small S' particles takes place up to 150°C. 

Growth of the larger 8' precipitates occurs up to approximately 180°C. Higher 

temperatures cause an increase in resistivity due to dissolution of the large 

S' particles and this is complete at 210 and 220°C respectively. The 1.7Li3. OMg 

alloy exhibits a marked decrease in resistivity beyond 245°C which can be 

attributed to the precipitation of large amounts of TM. 

Figure 8.29 presents the comparative reversion plots after isothermal ageing at 

150°C. The increase in resistivity observed for all the alloys corresponds to the 

dissolution of the 8' that has formed at 150°C. The 1.7Li3. OMg alloy exhibits a 

decrease in resistivity beyond 240°C due to precipitation of the equilibrium TM 

phase. 

As with the DSC dissolution thermograms, the temperature where the reversion 
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resistivity returns to the baseline (TRe" end) can be equated to the 8' metastable 

solvus. Because of the very low equivalent heating rate during reversion 

(1°C/min) compared with the DSC heating rate (20°C/min) the TR°"'e, d is 

observed to be lower than the TDSCend. Table 8.3 presents the TReV' nd of the alloys 

after different heat treatments. The effect of ageing temperature on the 8' solvus 

temperature as measured by TRý"'e, d is shown in figure 8.30. It can be clearly 

seen that increasing the magnesium concentration from 0 to 3% produces a 20°C- 

shift of the S' solvus temperature which is very close with the results obtained 

from the DSC dissolution thermograms (figure 8.21) and verifies the conclusion 

that the addition of magnesium to a 1.7Li binary alloy increases the S' metastable 

solvus temperature by about 7°C/wt%Mg. Increasing the ageing temperature for 

a given alloy from 70 to 150°C produces a 30°C-shift of TR"'e, d to a higher 

temperature due to increasing size of 8' precipitates. 

Table 8.3: S' solvus temperatures estimated by reversion resistivity changes. 

TRev. 
end 

CC) 

Alloy 70°C direct age 150°C direct age 
I. 7Li binary alloy 200 230 
1.7Li1.2M 210 240 
1.7Li3. OMg 220 250 

8.2.8 Exposure at 70°C after prior ageing at 150°C for 24h 

This work has been carried out to simulate the service conditions that an Al-Li 

aerospace alloy may experience. It is known that binary Al-Li alloys undergo a 
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small amount of embrittlement when alloys are aged 24h at 150°C and then 

exposed 1000h at 70°C. At the present time no information is available on how 

the presence of magnesium in the alloy affects the degree of embrittlement. This 

section is an initial contribution to this lack of knowledge. 

All alloys have first been given a standard age of 24h at 150°C. This produces a 

dispersion of 8' particles of radius 6 nm (figures 8.26a, 8.27a). The alloys have 

then been exposed for up to 1000 h at 70°C. Figure 8.31 shows the change in 

resistivity that occurs during exposure at 70°C. In the 1.7Li binary alloy and the 

1.7LiO. 7Mg alloy the resistivity increases during exposure, indicating that during 

exposure very fine S' precipitates are forming of a radius <2 nm. In the 

1.7Lil. 2Mg and 1.7Li3. OMg alloys the resistivity decreases which either 

indicates S' of a larger size is being nucleated or, in these higher magnesium- 

containing alloys some of the lithium is adding onto the pre-existing 8' particles 

from the 150°C age. 

After exposure the alloys were subjected to DSC analysis. Figures 8.32,8.33, 

8.34 and 8.35 show that the exposure has resulted in an increase in the size of the 

S' endotherm. The increase is very small in the 1.7Li binary alloy and the 

1.7LiO. 7Mg alloys, but is significant in the higher 1.2% and 3% magnesium 

alloys. The increase in enthalpy can be converted to an increase in volume 

fraction of S' using the relationship obtained by Noble [42] which was referred to 

in the previous section. The values obtained are plotted in figure 8.36 and they 
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show that as the magnesium concentration increases the amount of S' produced 

during exposure increases. 

It is interesting to compare these increases in volume fraction with those 

calculated from the change in the position of the alb' solvus caused by the 

presence of magnesium. In section 8.2.4 it was shown that at 150°C the solubility 

of lithium was decreased from 4.93 to 4.33at% by the addition of 3.0%Mg. Using 

equations 8.3 and 8.4 this corresponds to a decrease from 2.6at% to 2.1 at% at 

70°C. Use of equation 8.1 shows the volume fraction of 8' should increase from 

0.161 to 0.183, ie by a fraction of 0.022. Figure 8.36 shows the measured 

increase in S' volume fraction for the 1.7Li3. OMg alloy to be 0.029. It can be 

concluded that the increased amounts of 8' observed during exposure in high 

magnesium-containing alloys can be largely accounted for by the change in 

position of the a/ö' solvus boundary caused by the magnesium addition. 

8.2.9 Reversion after exposure 

Exposure of the binary 1.7Li alloy after prior ageing 24 h at 150°C results [3] in 

a bimodal distribution of S' particles, ie a distribution with r=6 nm (from the 

150°C age) and a distribution with r=2nm (from the exposure). The resistivity 

results from figure 8.31 suggest a similar result for the 1.7LiO. 7Mg alloy, but the 

situation is much less clear for the 1.7Lil. 2Mg and 1.7Li3. OMg alloys. In these 

alloys some growth of the pre-existing S' precipitates may occur, or the exposure 

8' is much coarser than in the binary 1.7Li alloy (see figure 8.31). It proved 
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extremely difficult to observe the smaller sized distribution in these alloys with 

TEM and therefore the relative importance of amount and size of the two 

distributions are unknown in the high magnesium alloys. 

An attempt was made to overcome this problem by dissolving the S' in the alloys 

after exposure, by isochronal reversion. It was hoped that a two step curve would 

be produced, the first step corresponding to the dissolution of the exposure 6' and 

the second step corresponding to dissolution of the S' from the 150°C prior age. 

Figures 8.37-8.39 give the reversion resistivity plots of the alloys and these are 

compared with the equivalent plots after a direct age for 1000h at 70°C and a 

direct age of 24h at 150°C. The isochronal heating of the 1.7Li binary alloy 

produces a rather complex curve (figure 8.37). Taking into consideration the 

isothermal resistivity change after exposure (figure 8.31) the initial decrease of 

resistivity during reversion can be attributed to the dissolution of very small S' 

precipitates with a size smaller than that for critical electron scattering. The 

dissolution is completed at 145°C. The coarse 150°C pre-age S' particles start 

dissolving at 150°C and the resistivity returns to the baseline at NOT where 

complete dissolution of S' has taken place. The reversion curves for the 

1.7Lil. 2Mg and 1.7Li3. OMg alloys are shown in figures 8.38 and 8.39. In the 

1.7Lil. 2Mg alloy the reversion of the exposure 6' is complete at 160°C. This 

temperature is 15°C higher than the equivalent temperature in the binary alloy 

(145°C) and this can be explained in three ways: 

" the exposure 8' is larger in the 1.7Lil. 2Mg alloy 
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" the exposure 8' may grow during reversion in the temperature range 140- 

160°C 

" the S' precipitates from the 150°C pre-age may coarsen slightly during 

exposure in the 1.7Li 1.2Mg alloy and hence will dissolve more slowly. 

The magnitude of the reversion change due to dissolution of the exposure S' is 2 

nQm which is the same as the resistivity decrease during exposure (figure 8.31). 

This suggests that the higher dissolution temperature is probably due to an 

increase in size of the exposure S' (relative to the binary alloy). 

In the 1.7Li3.0Mg alloy the reversion of the exposure S' is again complete at 

160°C. In addition, the magnitude of the reversion change due to dissolution of 

the exposure 5' is 5.0 n nm, which is approximately the same as the resistivity 

decrease observed during exposure (4.5n )m, figure 8.31). 

In both 1.7Li1.2Mg and 1.7Li3. OMg alloys direct aged at 70°C a decrease in 

reversion resistivity was observed in the temperature range 150-175°C. This drop 

in resistivity can be attributed to the growth of large 8' during isochronal heating. 

It can be clearly seen from figures 8.38 and 8.39 that no analogous decrease is 

observed for the exposed alloys and this can be explained by the lower 

supersaturation after the 150°C prior age. 

The effect of the magnesium concentration on the reversion resistivity curves 

after exposure at 70°C are given in figure 8.40. The increased magnesium 
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concentration results in a shift of the TR'e, d. Figures 8.40 and 8.41 show that the 

additions of 1.2 and 3% magnesium cause a displacement of TRevend of 15°C and 

25°C respectively. As shown in section 8.2.4 and was verified in figure 8.30 the 

magnesium causes a shift of the S' solvus by 6.7°C/wt%Mg which is translated 

into a displacement of about 10 and 20°C for 1.7Li 1.2Mg and 1.7Li3.0Mg alloys 

respectively. Thus, after exposure the S' solvus has been shifted an extra 5°C and 

this can be attributed to the presence of large S' particles caused by the prior age 

24h at 150°C. 

The exposure curve of the 1.7Li3.0Mg alloy (figure 8.39) shows that the as- 

quenched value is not quite reached after reversion. This is attributed to the 

formation at 150°C of very small amounts of equilibrium TM which is, according 

to the isochronal resistivity changes given in figure 8.2, stable up to about 

320°C. Reversion temperatures >230°C produce further precipitation of TM. 

For the 1.7Li binary and 1.7Li1.2Mg alloys the baseline is reached after 

reversion indicating that all the lithium has returned to the matrix and therefore 

the only phase precipitated during the 150°C pre-age and subsequent exposure is 

S' in these low magnesium alloys. 

8.3 Effect of exposure on the mechanical properties of Al-Li-Mg alloys 

The changes in proof stress and fracture energy after exposure of the 1.7U 

binary, 1.7Li 1.2Mg and 1.7Li3. OMg alloys are shown in figure 8.42. The 
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addition of 1.2%Mg to the binary alloy causes a very small increase in the proof 

stress (-0.5MPa) whereas the fracture energy exhibits a significant decrement 

(-16kJ/m). Higher levels of magnesium (3%Mg) cause a relatively high 

increment in the proof stress (4.5MPa) and a marked decrease in fracture energy 

(48 kJ/m2). As shown in figure 8.36, increasing the magnesium concentration 

from 1.2 to 3%, the volume fraction of S' precipitated during exposure increases 

approximately two fold. Noble et. al [3] studied the effects of exposure on the 

mechanical properties of binary Al-Li alloys with different lithium contents. 

According to their results the change in mechanical properties as a result of 

exposure is the consequence of either the formation of an additional S' 

dispersion, or to the growth of pre-existing S' particles from the pre-age, or a 

combination of the two effects. It has already been shown in a previous section 

that magnesium additions to the 1.7Li binary alloy do not cause any change in 

the size of the S' precipitates at a given heat treatment. In addition, the reversion 

resistivity measurements (figures 8.38,8.39) indicate that the exposure does not 

cause any significant change in the size of pre-age 8' precipitates (no changes in 

the TR"*end are observed). Therefore, it can be concluded that the increase in the 

proof stress as the magnesium increases from 1.2 to 3% is the result of the 

formation of larger amounts of fine 8' precipitates in the matrix between the 

coarse S' particles from the pre-age. 

The SEM fractographs taken from the 1.7Li3. OMg alloy aged 24 h at 150°C and 

after subsequent exposure at 70°C are shown in figure 8.43. It can be seen that 
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the exposure at 70°C has not caused a significant increase in the amount of grain 

boundary failure. However, there are less fracture dimples on the fracture surface 

of the exposed sample indicating increased brittleness. This could be the direct 

result of the increase in proof stress caused by exposure. 

Summary 

From the above discussion, the following can be summarised: 

" At all ageing temperatures increasing the magnesium concentration 

stimulates the formation of S' due to an increase of the a/S' solvus 

temperature, which in turn results in a higher driving force for S' 

precipitation. It was shown that the a/8' solvus temperature increases by 

6.7°C/wt%Mg. 

" During isothermal ageing at 70 and 100°C the process of 8' precipitation 

is nucleation ordering followed by spinodal decomposition. Increasing 

magnesium concentration from 0 to 3.0% results in more rapid spinodal 

decomposition and in turn a higher volume fraction of 6'. As the ageing 

temperature increases from 100 to 150°C the mechanism of S' 

precipitation follows the classical nucleation and growth process. 

" For a given alloy, increasing the ageing temperature causes an increase in 

the mean size of S' particles. 

" During exposure a fine distribution of very small S' precipitates forms. As 

the magnesium concentration increases from 0 to 3.0% the volume 
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fraction of exposure 8' increases as a result of the increase of the a/6' 

solvus temperature. This additional S' that is precipitated causes enhanced 

embrittlement. 
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Figure 8.24(a): TEM image of 1.7Li-3. OMg alloy aged at 150°C for 24h, x80K 
<100> zone axis. 
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Figure 8.33: Effect of exposure at 70°C on the DSC characteristics 
of the 1.7LiO. 7Mg alloy. 
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Figure 8.34: Effect of exposure at 70°C on the DSC characteristics 
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Figure 8.35: Effect of exposure on the DSC characteristics 
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Figure 8.43(a): SEM fractograph of 1.7Li3. OMg alloy after ageing for 24 h at 150 °C 

1U µm 

Figure 8.43(b): SEM fractograph of 1.7Li3. OMg alloy after exposure for 1000 h at 70 °C 
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CHAPTER 9 

Precipitation in Al-Li-Cu alloys 

Chapter 9: Effect of copper on AI-Li-Cu alloys 

In the previous chapter, the effects of the addition of magnesium on the ageing 

characteristics of the binary Al-Li system were examined. In the present chapter 

the effects of the addition of copper on the ageing characteristics of the same 

system are studied. The addition of 1.2% and 3% Cu is considered. 

The chapter is divided into two main parts: 

9 Isochronal precipitation characteristics 

9 Isothermal precipitation characteristics 

9.1 Isochronal precipitation characteristics 

9.1.1: DSC (as-quenched plots) 

Figure 9.1 are gives DSC thermograms of the as-quenched alloys. In the binary 

1.7Li alloy no thermal events were detected. The addition of 1.2% copper results 

in the appearance of an exothermic peak (C) at 350°C which, according to XRD 

(figure 9.2), is due to precipitation of the equilibrium Tl and T2 phases. 

Increasing the addition of copper from 1.2% to 3.0% results in the appearance of 

an additional exothermic peak (A) at 80°C which is followed by an endothermic 
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event (B) at 165°C. To assist in the interpretation of the DSC plots a binary Al- 

3.0%Cu alloy was prepared and subjected to DSC analysis. The DSC plot of this 

binary 3. OCu alloy exhibits the presence of an exothermic peak (A') at 80°C 

which according to the Al-Cu metastable phase diagram corresponds to the heat 

evolved during the formation of GPc zones. Dissolution of the GPI, zones 

results in the development of an endothermic event (B') at 160°C. Comparing the 

areas under peaks A and A' and the temperature range where these peaks take 

place it is readily evident that they are coincident. Peak A is slightly larger and 

therefore it is likely to be a mixture of GPI� and S' precipitation. 

The area under the exothermic peak (C) increases significantly with copper 

concentration, showing that the high copper addition stimulates the formation of 

the equilibrium Tl and T2 phases. XRD verifies extensive precipitation of Tl and 

T2 (figure 9.3). 

9.1.2 Isochronal resistivity 

The isochronal plots for 1.7Li alloys with 0,1.2 and 3.0% Cu and the binary 

3.0% Cu alloy are shown in figure 9.4. The isochronal plot of the binary 1.7Li 

alloy has already been discussed in the previous chapter. The initial gradual 

increase in resistivity up to 40°C observed in the binary alloy is associated with 

the formation of S' particles that are smaller than the critical size for electron 

scattering. The decrease after 40°C is attributed to the formation or growth of S' 
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particles which are larger than the critical size. The resistivity decrease extends 

below the baseline and then slowly returns to the baseline at 200°C (T' d) 

which is equated to the S' solvus temperature for the binary 1.7Li alloy. 

The addition of 1.2% Cu results in a small reduction of the height of the initial 

resistivity peak (figure 9.5). The as-quenched resistivity value is attained at 

NOT (figure 9.4), showing that the addition of 1.2%Cu does not shift the S' 

metastable solvus boundary. The fact that the resistivity of the 1.7Li1.2Cu alloy 

does not decrease below the baseline suggests a slower rate of growth of 8' 

compared to the binary alloy. This is also supported by the position of peak A" 

which is reached at a temperature 20°C higher in the 1.7Lil. 2Cu alloy (figure 

9.5). As the temperature increases from 200°C to 370°C a decrease in resistivity 

is observed which consists of two stages, 200-300°C (stage I) and 300-370°C 

(stage II). Stage I corresponds to a slow decrease in resistivity which may be the 

result of the precipitation and growth of Tl plates. In stage II, precipitation of Tt 

continues but this is accompanied by the formation and growth of T2. This latter 

phase (Al6CuLi3) requires 3 times the amount of lithium for each molecule of 

precipitate compared to the T, phase (Al2CuLi) and this results in a large 

decrease of resistivity. X-Ray diffraction analysis of the 1.7Lil. 2Cu alloy 

confirmed the presence of the equilibrium Tl and T2 phases after ageing for 24h 

at 350°C (figure 9.2). Higher temperatures result in the dissolution of Tl and T2. 

Increasing the copper concentration to 3% increases the size of the initial 
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resistivity peak significantly without changing its position (figure 9.5). The 

resistivity plot of the binary Al-3. OCu alloy indicates that a small fraction of the 

resistivity increase in the 1.7Li3. OCu alloy is due to the formation of GPcu zones. 

Calculation from the relative heights of peak A" (figure 9.5) shows that 25% of 

the height is due to GPI, zones, 37% to S', leaving a remainder of 38% that has 

to be attributed to the stimulation of either S' or GPI,,. It will be shown later in 

the chapter that it is due to stimulation of 8'. 

In the previous section it was shown by means of DSC that very little stimulation 

of S' took place. This discrepancy can be explained by the significantly higher 

heating rate during the DSC run (20°C/min) compared to the mean heating rate 

of the isochronal resistivity experiment (2.0°C/min) and the higher sensitivity of 

the latter. 

The resistivity drop after peak A" extends below the baseline as growth of S' and 

GPc� takes place, but does not return to the baseline due to the commencement of 

precipitation of another phase. 

A .s the temperature increases beyond 200°C up to 260°C a resistivity increase is 

observed in the 1.7Li3. OCu alloy. Temperatures >260°C result in a dramatic 

decrease in resistivity which ends at 360°C. Noble and Thompson [31] have 

investigated the precipitation characteristics of the Al-Li-Cu system. According 

to their results, ageing of a 1.5Li3.5Cu alloy at 190°C caused precipitation of T1 

from very early times. The temperature stability of this phase was estimated to be 
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180-350°C. Thus the increase in resistivity at 200-260°C observed in the present 

1.7Li3. OCu alloy can be attributed to the formation of small Tl plates. Further 

evidence is provided by TEM analysis of the 1.7Li3. OCu alloy after ageing for 

0.5h at 260°C. The bright field images (figure 9.6) show very clearly the 

precipitation of Tl plates. The fringes observed in micrograph 9.6 (b) correspond 

to Tl precipitates with an inclined habit plane relative to the foil surface. The 

marked decrease of resistivity over the range 260-350°C is caused by co- 

precipitation of Tl and T2 phases. X-Ray diffraction analysis of the 1.7Li3. OCu 

alloy verified the presence of T1 and T2 phases after ageing for 24h at 350°C 

(figure 9.3). Temperatures higher than 350°C cause dissolution of Tl and T2. 

9.2 Isothermal precipitation characteristics 

In this section the isothermal precipitation characteristics of the AI-Li-Cu system 

are considered. Five different heat treatments have been used: 

" Ageing at 70,100 and 150°C for 1000 h 

" Ageing at 150°C for 24 h. This is the damage tolerant heat treatment 

commonly given to alloys based on the Al-Li system. 

" Prior ageing at 150°C for 24 h following by exposure at 70°C for 1000 h. 

This is intended to simulate the condition that a commercial Al-Li aerospace 

alloy would be expected to encounter whilst in service. 
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9.2.1 Ageing at 70°C 

Chapter 9: Effect of copper on Al-Li-Cu alloys 

Figure 9.7 shows comparative DSC thermograms after ageing at 70°C for 1000 

h. In the binary 1.7Li alloy the large endotherm at 190°C represents the 

dissolution of the S' phase. The addition of 1.2% Cu to the binary 1.7 Li alloy 

produces a small increase in the area of the dissolution peak. However, the 

addition of 3% copper results in a dramatic increase in the size of the endotherm. 

This increase in the size of the endotherm could be due to three effects: 

"A significant contribution to the endotherm from the dissolution of GPc,, 

zones. 

9 Dissolution of an enhanced volume fraction of S' that has resulted from 

the copper addition. 

"A combination of the above two effects. 

TEM of the 1.7Li3. OCu alloy after ageing 1000 h at 70°C showed the presence of 

8' (figure 9.8 a) and electron diffraction analysis showed continuous streaking 

through (001) diffraction spots, thus confirming the presence of GPc,, zones 

(figure 9.8 b). 

To determine the size of the contribution of GPI, zones to the dissolution 

endotherm in figure 9.7, a binary Al-3. OCu alloy was aged for 1000h at 70°C and 

DSC analysis carried out. The plot is shown on figure 9.7 from which it can be 

calculated that the increase in the size of the endotherm in the 1.7Li3. OCu alloy 

relative to the 1.7Li alloy is the combined result of 

" precipitation of GPc zones (45%) 

125 



Results and Discussion 

" copper stimulating S' precipitation (55%) 

Chapter 9: Effect of copper on Al-Li-Cu alloys 

Isothermal resistivity plots for ageing at 70°C are given in figure 9.9. 

The resistivity plot of the binary 1.7Li alloy consists of an initial increase 

followed by a plateau and then a second increase. The initial resistivity increase 

can be attributed to the formation of a high density of fine ordered regions (or 

domains) which scatter the conduction electrons. The second increase can be 

attributed to the spinodal decomposition of the ordered domains which produce 

more effective scattering centres for the conduction electrons. The continuous 

increase of resistivity implies that the spinodal decomposition carries on for a 

long time and at a slow rate since the 8' particles do not reach the critical size for 

electron scattering even after ageing for 1000h. The slow kinetics can be 

attributed to quenched-in vacancies becoming trapped by the ordered regions and 

therefore there is a reduced concentration of vacancies to assist the diffusion of 

lithium to the spinodally decomposing regions. 

The resistivity behaviour changes slightly with the addition of 1.2% Cu. After 

1000 ha large resistivity increase is observed but the resistivity peak is still not 

reached. This implies a slightly increased number-density of small-sized S' 

particles compared to the binary Al-1.7Li alloy. 

The addition of 3% Cu to the binary alloy results in a large two-step increase of 

resistivity. 

Based on the DSC results of the previous section, this enhanced resistivity 

change is due to a combination of enhanced S' precipitation and GPI, zone 
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formation. Resistivity measurements of the binary Al-3. OCu alloy aged at 70°C 

show little change in resistivity and therefore it can be surmised that the majority 

of the enhanced resistivity change is due to stimulation of S' precipitation. 

The question now arises as to why 8' precipitation should be stimulated by the 

presence of copper in the alloy. It has already been shown (figure 9.8) that GPC, 

zones are present in the 1.7Li3. OCu alloy aged at 70°C and that copper does not 

move the a/8' boundary (figure 9.4). Furthermore, TEM observation (figure 

9.10) showed that no such zones are present in the 1.7Li 1.2Cu alloy (as 

evidenced by the absence of <001> streaking in figure 9.10b). This suggests that 

it is the presence of GPI, zones and not simply the presence of copper, that is 

stimulating 8' formation. A careful examination of the dark field image of figure 

9.8a shows that the 8' precipitates are elongated in the <001> directions. This 

suggests that S' may be forming (heterogeneously) on GPc, zones in the 

1.7Li3. OCu alloy. At this stage, it is difficult to be certain of this interpretation 

since the S' and GPI, zones that form at 70°C are extremely small (- 4nm 

diameter). In the following sections ageing at a higher temperature is considered 

and this casts more light on the precipitation mechanism. 

9.2.2 Ageing at 100°C 

DSC thermograms are presented in figure 9.11 after ageing for 1000h at 100°C. 

Comparison of the peaks from the different alloys shows that, as at 70°C, there is 

a small increase in the 8' dissolution enthalpy with the addition of 1.2%Cu. 

Further addition of copper (3%) results in a large increase of the peak area. DSC 
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analysis of a binary Al-3. OCu alloy aged for 1000 h at 100°C shows that all the 

increase in the size of the endotherm in the 1.7Li3. OCu alloy relative to the 1.7Li 

alloy can be accounted for by the dissolution of GPI, zones. The resistivity plots 

in figure 9.14 show that after 1000 h almost the same amount of S' has been 

precipitated in 1.7Li and 1.7Li3. OCu alloys which again indicates that there has 

been no stimulation of 8' in the 1.7Li3. OCu alloy after ageing for 1000h at 

100°C. 

The question now arises as to why the volume fraction of 8' is increased by the 

addition of copper when the alloy is aged 1000 h at 70°C but not when the alloy 

is aged 1000 h at 100°C. This can be explained by the following observations: 

" The equilibrium fraction of S' precipitated at a given temperature is the 

same in 1.7Li, 1.7Lil. 2Cu and 1.7Li3. OCu alloys since copper does not 

affect the position of the a/8' boundary. 

" The kinetics of S' precipitation are speeded-up by the addition of copper 

since this produces GPI, zones which act as heterogeneous nucleation 

centres. 

" With ageing at 70°C, the equilibrium volume fraction of S' is not attained, 

hence, after 1000h ageing, the volume fraction of 8' in the 1.7Li3. OCu 

alloy is considerably higher than that in the 1.7Li alloy. 

" With ageing at 100°C, the equilibrium volume fraction of S' is reached (or 

closely approached) after 1000h, hence, the volume fractions of S' in the 

1.7Li3. OCu and 1.7Li alloys are identical. 
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TEM analysis showed the presence of S' in the 1.7Lil. 2Cu and 1.7Li3. OCu 

alloys, (figure 9.12,9.13). The size of the S' in the 1.7Lil. 2Cu and 1.7Li3. OCu 

alloys is approximately the same (-'10nm diameter). In the 1.7Li3. OCu alloy, in 

addition to S', streaking in <001> directions on the diffraction pattern indicated 

the presence of GPcu zones. Evidence for GPc, zones in the 1.7Lil. 2Cu alloy was 

much less strong. As at 70°C, the S' in the 1.7Li3. OCu alloy was elongated in the 

<001> directions, again indicating the possibility of heterogeneous nucleation of 

S' on GPc,, zones. 

Figure 9.14 shows the isothermal resistivity plots for ageing at 100°C. All the 

alloys exhibit an initial increase of resistivity which is followed by a marked 

decrease to well below the as-quenched value. According to the sub-phase 

regions of the Al-Li phase diagram determined by Noble and Bray [441, the 1.7Li 

binary alloy lies in the nucleation-ordered region of the phase diagram when the 

alloy is aged at 100°C. The initial increase in resistivity of the binary alloy can 

therefore be attributed to the electron scattering from ordered regions developing 

in the matrix. Addition of 1.2%Cu to the alloy produces a small increase in the 

magnitude of the resistivity and the resistivity remains positive for a longer 

period. This may be the result of a finer dispersion of S' particles being produced 

by nucleation on Cu clusters or GPc� zones. 

For the period 300-1000 h ageing, the resistivity curves for the 1.7Li and 

1.7Li1.2Cu alloys are identical which, as mentioned earlier, indicates that after 
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long ageing times (>300h) the amount of 8' produced in the two alloys is the 

same. 

Addition of 3%Cu to the alloy results in a significant change to the isothermal 

resistivity characteristics (figure 9.14). A well defined peak in resistivity occurs 

after ageing lh at 100°C and the magnitude of the peak is significantly higher 

than the resistivity increase observed in the 1.7Li and 1.7Lil. 2Cu alloys. It is 

proposed that 8' nucleates heterogeneously on GPc� zones similar to that 

described for the 1.7Lil. 2Cu alloy but with increased number density; this then 

explains the larger resistivity increase. After long ageing times, >300h, the 

resistivity decrease falls to that observed in the 1.7Li and 1.7Li1.2Cu alloys. 

9.2.3 TEM analysis of the effect of GPI,, zones on the precipitation of S' 

during ageing at moderate temperatures. 

In the previous sections it was shown that the addition of 3% copper (and 

possibly 1.2%Cu) results in the formation of GPI, zones during ageing at 70 and 

100°C which, in turn, affect the kinetics of 8' precipitation. In this section the 

role of the GPI, zones on the enhanced precipitation of 8' in a 1.7Li3. OCu alloy 

is considered in more detail after ageing at the above temperatures. It has already 

been shown that ageing at 70 and 100°C results in continuous streaking in the 

<001> directions of electron diffraction patterns (figures 9.8b, 9.13b) confirming 

the presence of GPI� zones. These zones cannot be seen in the dark field image 
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but it is noted that not all S' particles are spherical in shape. It can be observed 

that some of the larger 8' particles are elongated in <001> directions, suggesting 

that S' may have nucleated on the GPc, zones producing composite precipitates 

consisting of an inner plate of GPcy, and an outer shell of W. Further TEM 

analysis was carried out in an attempt to investigate this further. It was hoped that 

a second ageing treatment at a temperature higher than 100°C would result in an 

increase of the size of 8' and enable the elongated particles to be seen more 

easily. Therefore, TEM thin foils were prepared after treating the 100°C sample 

for 48h (2days) and 192h (8 days) at 130°C. This temperature was selected in 

order to avoid possible co-precipitation of Tl which is known to occur at 150°C. 

The micrographs are presented in figures 9.15 and 9.16. At the longer ageing 

time, the GPI, zones can be clearly seen in the bright field image (figure 9.16b) 

together with their <001> streaking in figure 9.16c. In dark field imaging (figure 

9.16a) using a S' superlattice spot, composite particles consisting of plates of 

GPI, zones surrounded by a sheath of S' can be clearly seen. Between these 

composite particles are spherical 8' particles that have either nucleated in the 

matrix without the aid of GPI, zones, or nucleated on small GPc, zones and 

subsequently coarsened into a spherical shape. 

A similar effect can be seen at the shorter age time of 48h at 130°C but, due to 

the smaller size of particle, the effect is less obvious (figure 9.15). 

It can therefore be concluded that 8' nucleates on GPI, zones after secondary 
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ageing at 130°C. It is therefore likely that similar heterogeneous nucleation takes 

place at the lower ageing temperatures, i. e. 70 and 100°C, thus explaining the 

enhanced kinetics of S' formation that is observed in copper-containing Al-Li 

alloys when aged at low temperatures. 

9.2.4 Ageing at 150°C 

DSC plots after ageing at 150°C for 24h and 1000h are given in figures 9.17 and 

9.18 respectively. Figure 9.17 shows that with increase of the copper 

concentration from 0 to 3%, the S' dissolution peak exhibits a marked increase in 

area. TEM micrographs of 1.7Li 1.2Cu and 1.7Li3. OCu alloys after ageing for 

24h at 150°C (figures 9.19 and 9.20 respectively) showed the presence of 8'. In 

addition the 1.7Li3. OCu alloy showed the formation of a small number of coarse 

GPc zones (figure 9.20). The low density of the GPI� zones is consistent with 

the Al-Cu phase diagram which predicts a very small driving force for GPI, 

formation at 150°C. 

The XRD spectra of 1.7Lil. 2Cu and 1.7Li3. OCu alloys are shown in figures 9.21 

and 9.22. The intensity of the Tl peaks suggest that as copper increases from 

1.2% to 3.0% the precipitation of Tl is stimulated. TEM analysis confirmed the 

precipitation of Tl plates with habit plane { 111 } (figures 9.20a, b). 
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The precipitation characteristics change dramatically after ageing at 150°C for 

1000h. An addition of 1.2%Cu to the binary alloy produces a small decrease in 

the dissolution peak (figure 9.18). According to the X-Ray diffraction data of 

figure 9.23 this small decrease is due to the formation of Tl, the precipitation of 

which causes dissolution of some S' during the age at 150°C. Increasing the 

copper addition to 3% produces a large decrease in the area of the 8' endotherm 

peak, i. e. there is now a significant decrease of 8' volume fraction (figure 9.18). 

X-Ray diffraction analysis of the 1.7Li3. OCu alloy showed that after ageing for 

1000h at 150°C formation of a significant fraction of equilibrium Ti and T2 has 

taken place (figure 9.24) and therefore the large decrease in S' volume fraction 

can be attributed to 8' dissolution during the age at 150°C. The exothermic event 

in the DSC plot of figure 9.18 at about 3 10°C is caused by further precipitation 

of Tl and T2 phases as evidence by the X-ray data of figure 9.3. 

Isothermal resistivity plots for ageing at 150°C are presented in figure 9.25. All 

the alloys exhibit an incubation period which is followed by a decrease of 

resistivity. This suggests that the mechanism of S' formation is occurring by a 

nucleation and growth process. The incubation period becomes shorter as the 

copper concentration increases from 0 to 3%, indicating that the copper promotes 

enhanced 8' precipitation kinetics. No increase in resistivity is observed during 

the early stages of precipitation and therefore it can be concluded that the critical 

size for nucleation is larger than the critical size for electron scattering. In the 
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binary 1.7Li alloy the S' precipitation reaction is complete by -100h ageing at 

150°C. Similarly, in the 1.7Li1.2Cu alloy the S' precipitation reaction is complete 

after 100h ageing but this is followed by a small increase in resistivity due to 

precipitation of Ti phase which is known to cause appreciable electron scattering 

[30]. 

In the 1.7Li3. OCu alloy, before the S' reaction is complete, significant Tl 

precipitation occurs so that the total resistivity drop is reduced and this is 

followed by a large increase in resistivity from precipitation of a large volume 

fraction of TI. 

9.2.5 Effect of ageing temperature 

This section discusses the effect of ageing temperature on the precipitation 

characteristics of Al-Li-Cu alloys. 

The effect of the ageing temperature on the 1.7Li binary alloy has already been 

considered in section 8.2.5. This can be summarised as follows: 

" An increase of ageing temperature from 70°C to 150°C changes the S' 

formation mechanism from nucleation-ordering to classical nucleation and 

growth. 

9 70°C ageing causes a high volume fraction of very fine spinodally 

decomposed regions with a size smaller than the critical size for electron 

scattering. 
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" Changing the ageing conditions from 1000h at 70°C to 1000h at 150°C does 

not change significantly the final volume fraction of S' that is precipitated. 

Figure 9.26 presents the DSC thermograms of the 1.7Li1.2Cu alloy after ageing 

at different temperatures. It can be clearly seen that the maximum amount of S' is 

precipitated at 100°C. Thermodynamically, it would be expected that the volume 

fraction would increase as the ageing temperature decreases from 150 to 100 to 

70°C. However, the diffusivity decreases as the temperature drops, so that at 

70°C the amount of S' that forms is limited by kinetic considerations. 

The isothermal resistivity curves for the 1.7Lil. 2Cu alloy are shown in figure 

9.27. These resistivity plots show: 

" Very small 8' particles are produced at 70°C of a size <2 nm, ie a 

resistivity peak is not reached. 

" Small S' particles are also produced at 100°C but, in this case, a size of 2 

nm is exceeded after ageing for approximately 30h. 

" At 150°C a long incubation period indicates that classical nucleation and 

growth of 8' is the dominant process. 

These results suggest that at 70°C and 100°C, 8' is forming on fine GPI, zones 

but, at 150°C, the dispersion of GPI, zones is so coarse that their influence on 8' 

precipitation is minimal. 

When the isothermal resistivity curves in figure 9.27 are considered along with 
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the DSC plot of figure 9.26, it can be seen that the magnitude of the total 

resistivity decreases at 100°C and 150°C cannot be equated to the volume 

fraction of S' that has formed at 100°C and 150°C. The highest volume fraction 

of S' is produced at 100°C but this does not correspond to the largest decrease of 

resistivity, which is observed to occur for ageing at 150°C. By means of TEM the 

diameter of S' particles was measured after ageing for 1000 h at 100°C (figure 

9.12) and for 24h at 150°C (figure 9.19) and were found to be -10 nm and -40 

nm respectively. Therefore, the reason for the smaller decrease in resistivity 

during ageing at 100°C is due to the considerably smaller S' particle size which 

will make a positive contribution to the electrical resistivity; the resistivity at 

100°C will therefore fall more slowly than that at 150°C. 

DSC thermograms and resistivity curves for the 1.7Li3. OCu alloy are presented 

in figures 9.28 and 9.29, respectively. It can be seen from figure 9.28 that ageing 

1000h at 70 and 100°C produces almost the same amount of 8'. After ageing 

1000h at 150°C the amount of S' that forms is reduced dramatically due to 

precipitation of Tl during the age. The resistivity plots at 150°C in figure 9.29 

indicate that at 70°C and 100°C very fine S' is formed during the early stages of 

ageing probably nucleated on GPc� zones. At 150°C classical nucleation and 

growth of S' appears to be taking place. 

Figure 9.30 summarises the combined effects of copper concentration and 

136 



Results and Discussion Chapter 9: Effect of copper on Al-Li-Cu alloys 

ageing temperature on the S' volume fraction that is developed after ageing 

1000h. The volume fraction was calculated by measuring the dissolution 

enthalpy, correcting for the presence of GPc zones, and using relation 8.2 given 

in chapter 8. The trend in figure 9.30 is that the volume fraction of 8' increases 

with copper concentration when alloys are aged at 70°C and 100°C, and there is a 

decrease in S' volume fraction when ageing is at 150°C. The trends at 70°C and 

100°C are the result of copper additions affecting the kinetics of S' precipitation 

(as described earlier). The trend at 150°C is the result of progressively higher 

rates of Tl precipitation with increasing copper concentration. 

9.3 Exposure at 70°C after prior ageing at 150°C for 24h 

This part of the work simulates the service conditions that an Al-Li aerospace 

alloy may experience i. e. prolonged exposure to 70°C during flight or whilst 

standing on a runway in the hot sun. It is known that binary Al-Li alloys undergo 

a small amount of embrittlement when alloys are aged 24h at 150°C and then 

exposed 1000h at 70°C [3]. In this section the effects of copper additions on 

exposure embrittlement are studied. 

The DSC thermograms of 1.7Li, 1.7Li1.2Cu and 1.7Li3. OCu alloys after ageing 

24h at 150°C and exposing 1000h at 70°C are presented in figures 9.31,9.32 and 

9.33. Exposure has not caused an increase in the dissolution endotherm of the 

1.7Li binary alloy (figure 9.31) but there are clear increases in area of the 
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endotherm in the 1.7Lil. 2Cu and 1.7Li3. OCu alloys (figures 9.32,9.33). It 

should be noted that the DSC thermogram of the 1.7Li3. OCu alloy displays a 

clear double peak (A and B) after exposure (figure 9.33). Peak (A) represents 

dissolution of the fine distribution of precipitates produced during exposure, and 

peak B represents dissolution of a coarse fraction of S' particles resulting from 

the 24h ageing at 150°C. The earlier work described in this chapter has shown 

that a considerable amount of GPI, zones can be produced in the 1.7Li3. OCu 

alloy during ageing at 70°C. Therefore, the endothermic peak A will represent 

dissolution of both fine 8' and GPI, zones. To determine the enthalpy due to 

dissolution of 8' only, the area of the dissolution peak of an Al-3. OCu alloy aged 

24h at 150°C followed by 1000h at 70°C has been subtracted from the area of the 

peak caused by the `exposure precipitates'. The area under the dissolution peak 

of the Al-3. OCu alloy was found to be 4.0 J/g. This amount of energy represents 

1/3 of the heat absorbed by dissolution of the exposure precipitates and therefore 

the other 2/3 of the energy can be attributed to S' dissolution. This S' enthalpy 

can be converted to an increase in volume fraction of 8' produced by exposure at 

70°C by using relation 8.2 referred to in the previous chapter. The volume 

fractions obtained are displayed in figure 9.34 and they show that as the copper 

concentration increases from 1.2 to 3% the amount of S' precipitated during 

exposure increases significantly. 
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TEM on samples of 1.7Li3. OCu alloy aged 24h at 150°C and samples exposed at 

70°C showed the presence of coarse 8' (-15nm diameter), coarse GPI� zones 

(-65nm diameter) and Tl phase (figure 9.35). Also, in the matrix of the exposed 

alloy, very fine precipitation of S' and GPI, zones can just be resolved. In order 

to study this exposure precipitation, and in particular to see if exposure S' had 

been formed by nucleation on GPI, zones, the exposed 1.7Li3. OCu alloy was 

aged for a week at 100°C in order to coarsen the exposure precipitates. Figure 

9.36 shows the result of this additional ageing. The exposure precipitation can 

now be clearly seen and it appears to be S' precipitated on fine GPI, zones of 

13nm diameter (see section 9.2.3). 

Isothermal resistivity curves for alloys during exposure at 70°C are shown in 

figure 9.37. The resistivity increase in the 1.7Li binary alloy indicates that very 

small S' precipitates are forming during exposure, of a diameter <2nm (critical 

size for electron scattering). No increase is observed for the 1.7Li1.2Cu alloy; the 

resistivity decreases smoothly as exposure progresses. Assuming that 8' is 

forming on GPI, zones, then this resistivity behaviour suggests that at the 

1.2%Cu level, the size of the GPc zones on which the 8' nucleates is larger than 

the critical size for electron scattering. 

The 1.7Li3. OCu alloy exhibits a different resistivity behaviour. Here the 

exposure causes an initial increase in resistivity followed by a relatively large 

decrease. The DSC and TEM results described earlier showed that in this alloy a 
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large number-density of GPcu zones are produced, on which the S' phase is 

nucleated. The resistivity behaviour suggests that at the 3.0%Cu level the size of 

the GPc zones on which the S' nucleates is now less than the critical size for 

electron scattering. 

9.4 Mechanical properties after long term service exposure 

The effects of exposure for 1000h at 70°C on the mechanical properties of the 

1.7Li, 1.7Li l . 2Cu and 1.7Li3. OCu alloys are shown in figure 9.38. It can be 

clearly seen that exposure causes only a very small change in the proof stress of 

the binary 1.7Li alloy whereas no change is observed for the fracture energy. 

Increasing the copper addition from 0 to 3% results in a marked increment of 

proof stress and a corresponding decrement in the fracture energy. This exposure 

embrittlement must be caused by either S' forming during exposure, GPc, zones 

forming during exposure, or a combination of the two effects. It is known from 

the literature that GPc� zones cause little or no embrittlement in Al-Cu alloys; 

this leaves S' to consider. Figure 9.34 shows that as the copper addition increases 

from 0 to 3.0% the volume fraction of S' formed during exposure increases 

significantly. In addition, from the DSC thermograms in figures 9.32 and 9.33 it 

is clear that exposure does not produce a shift of TDSCend of the dissolution 

endotherm indicating that little or no growth of the pre-age 8' particles has taken 

place during exposure. This was also confirmed by TEM (figures 9.20,9.35). 

Thus we can conclude that the changes in proof stress and fracture energy are 

due only to the formation of large amounts of fine S' between the coarse S' 
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precipitates produced by the prior age at 150°C for 24h. The high volume 

fraction of S' produced by exposure results an increase in proof stress and a 

corresponding decrease in fracture energy. It may also cause an intensification of 

planar slip in the copper-containing alloys causing stress concentrations at grain 

boundaries and an increasing tendency for grain boundary failure. SEM has 

therefore been carried out to see if the degree of grain boundary fracture 

increases in the exposed alloy. Figure 9.39 compares SEM fractographs taken 

from the 1.7Li3. OCu alloy aged 24h at 150°C and after subsequent exposure at 

70°C. These do not show a marked increase in the amount of grain boundary 

failure, but they do indicate an increased brittleness in that there are less ductile 

fracture dimples on the fracture surface of the exposed sample. This is probably 

the direct result of the increase in proof stress caused by exposure. 

9.5 Summary and comparison of copper additions with those of 

magnesium 

In the previous chapter it was shown that at all ageing temperatures, increasing 

the magnesium concentration stimulated the formation of S' due to an increase of 

the a/8' solvus temperature which in turn results in a higher driving force for S' 

precipitation. It was found that the a/8' solvus temperature increased by 

6.7°C/wt%Mg. 

Copper additions to an 1.7Li alloy have a different effect. It has been shown in 

the present chapter that copper has no effect on the a18' solvus temperature. 
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However, the addition of copper results in the formation of GPc% zones which 

can act as very effective nucleation centres for S' phase. This has the effect of 

increasing the rate of 8' precipitation. The increased rate of 8' precipitation is 

clearly apparent even after ageing times of 1000h at 70°C. At 100°C the 

increased rate of S' precipitation is observed only during the early stages of 

ageing. 

In both the Al-Li-Cu and Al-Li-Mg alloys the increased rate of 8' precipitation 

resulting from copper and magnesium additions, causes an increased volume 

fraction of fine S' to form during exposure at 70°C. This means that the higher 

the copper concentration or magnesium concentration in the alloy, the greater the 

degree of embrittlement during exposure. 
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Figure 9.6 (a, b): TEM image of 1.7Li3. OCu alloy after ageing for 0.5h at 260°C. 
Zone axis <1 12 >. 

(c) 

" T, spot 

Figure 9.6 (c): SAl) pattern of l 
. 
7Li3. OCu alloy after ageing for 0.511 at 260°C. 

Zone axis <1 12>. 

146 

Matrix spots 

200 nm 

BF image 



Results and Discussion 

0.15 

00 

0.05 

Chapter 9: Effect of copper on AI-Li-Cu alloys 

0.10 

0.00 

Age for 1000hat70°C 
I. 7Li3. OCu 
1.7Li l . 2Cu 
1.7Li (binary alloy) 
3. OCu (binary alloy) 

stimulating by copper : 55% 
GPC, zones : 45% 

0 50 100 150 200 250 300 350 400 

Temperature (°C) 

Figure 9.7: DSC comparative plots of the alloys aged at 70°C for 1000h. 

147 



Results and Discussion 

100 nm 

DF image 

`; 
Y 
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Figure 9.12 (a): TEM image of 1.7Lil. 2Cu alloy after ageing for 1000h at 100°C. 
Zone axis <001>. 
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Figure 9.13 (a): TM image of 1.7Li3. OCu alloy after ageing for I000h at 100°C. 
Zone axis <001>. 
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Figure 9.15 (a): TEM image of I. 7Li3. OCu alloy after ageing for 48h at 130°C. 
Zone axis <011>. 
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Figure 9.16 (a), (b): TEM image of 1.7Li3. OCu alloy after ageing for 192h at 130°C. 
Zone axis <001>. 
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Figure 9.17: DSC comparative plots of alloys aged at 150°C for 24h. 
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Figure 9.19: TEM image of 1.7Li 1.2Cu alloy after ageing for 24h at 150°C. 
Zone axis <011>. 
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Figure 9.20 (a, b): TEM image of 1.7Li3. OCu alloy after ageing for 24h at 150°C. 
Zone axis <011>. 
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Figure 9.21: XRD spectrum of 1.7Li1.2Cu alloy after ageing for 24h at 150°C. 
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Figure 9.22: XRD spectrum of 1.7Li3. OCu alloy after ageing for 24h at 150°C. 
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Figure 9.23: XRD spectrum of 1.7Li1.2Cu alloy after ageing for 1000h at 150°C. 
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Figure 9.24: XRD spectrum of 1.7Li3. OCu alloy after ageing for 1000h at 150°C. 

a 

161 



Results and Discussion Chapter 9: Effect of copper on Al-Li-Cu alloys 

2 

0 

-2 
G \: 

cad 

4. 

  
A 

Age at 150°C fA 

- -1.7Li 
-"-1.71, i1.2Cu 

-A-1.71. i3. OCu 
-8 ". " 

  -  

-10 Ii=i. 

-12 
0.01 0.1 1 10 100 1000 

Time (h) 

Figure. 9.25: Isothermal resistivity changes during ageing at 150°C 

0.35 

0.30 

0.25 

'au 0.20 

0.15 

0.10 

0.05 

0. M 
0 lwo 150 200 250 300 350 

Tanpenuiue (°C) 

Figure. 9.26: Effect of the ageing temperature on the DSC thermogram. 
of an 1.7Lil. 2Cu alloy. 

400 

162 



Results and Discussion 

2 

0 

-2 

G 

I 

-6 
'I 

-F 

-12+- 
0.01 

0. I5 

0.10 

co 

0.05 

0. (X1 

-0.0, 

Chapter 9: Effect of copper on AI-Li-Cu alloys 

0 50 100 150 200 250 300 350 400 

Ta»pcn CC) 
Figure. 9.28: Effect of the ageing temperature on the DSC thermogram 

of anl. 7Li3. OCu alloy. 

163 

0.1 1 10 100 1000 
Time (h) 

Figure. 9.27: Effect of the ageing temperature on the resistivity 
of an 1.7Lil. 2Cu alloy. 



Results and Discussion 

2 

0 
C 

z 

5 
-4 Y 

9 
-k 

0.01 

20 

15 

Chapter 9: Effect of copper on AI-Li-Cu alloys 

Figure. 9.29: Effect of ageing temperature on the resistivity of an 1.7Li3. OCu 
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Figure. 9.32: Effect of exposure on the 1.7Lil. 2Cu alloy. 
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Figure 9.35 (a): TEM images of 1.7Li3. OCu alloy after exposure for 1000h at 70°C . 
Zone axis <013>. 
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Figure 9.35 (b): SAD pattern of I. 7Li3. OCu alloy after exposure for 1000h at 70°C . Zone axis <013>. 
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Figure 9.36 (a, b): TEM images of 1.7Li3. OCu alloy aged for 7 days at 100°C after 
exposure for 1000h at 70°C 
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Figure 9.36 (c): SAD pattern of 1.7Li3. OCu alloy aged for 7 days at 100°C after 
exposure for 1000h at 70°C 
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Figure. 9.37: Isothermal resistivity changes during exposure at 70°C after prior ageing at 
150°C 24h. 
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Figure 9.38: Effect of exposure at 70°C on the mechanical properties 
of the Al-Li-Cu alloys. 
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10 µm 

Figure 9.39 (a): SEM fractograph of 1.7Li3. OCu alloy for 24h at 150°C. 

10 µm 

Figure 9.39(b): SEM fractograph of 1.7Li3. OCu alloy after exposure for 1000h at 70°C. 
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Results and discussion 

CHAPTER 10 

Chapter 10: Effect of copper and magnesium on Al-Cu-Mg alloys 

Precipitation characteristics in Al-Cu-Mg alloys 

In the previous chapters the effects of copper and magnesium on the precipitation 

characteristics of the ternary Al-Li-Cu and Al-Li-Mg systems were examined. 

The present chapter considers the effects of copper and magnesium on the ageing 

characteristics of the AI-Cu-Mg system. This analysis, in combination with those 

of the previous two chapters, forms the basis for the interpretation of the 

complicated phase transformations that take place in quaternary Al-Li-Cu-Mg 

alloys. 

The chapter is divided into two main sections: 

" Isochronal precipitation characteristics 

" Isothermal precipitation characteristics 

10.1 Brief review on the latest studies of phase transformations in Al- 

Cu-Mg alloys 

Before the interpretation of the results exhibited in the following paragraphs, it is 

important to outline the positions of different researchers on the phase 

transformations taking place in dilute AI-Cu-Mg alloys. 

Ringer et al [45,46,47,48] have proposed that the initial very rapid increase in 
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hardness in a 2.8Cu2.26Mg alloy at 150°C is due to the clustering of solute 

atoms that precedes GPB zone formation, and that further ageing up to 100 h 

causes the formation of rod-like GPB zones and heterogeneously precipitated S. 

Their HREM and CTEM results showed that GPB zones are present only after 

ageing for greater than 50 h at 150°C, i. e. clustering dominates the first 50 h of 

ageing. 

Zahra et al [49,49(4,5,6)] using DSC, HREM, and EDS experiments on a 

similar alloy to that used by Ringer et al showed that GPB zones can form at very 

short ageing times at all temperatures below 200°C. They accepted that an early 

clustering reaction took place, but this lasted only for the first few seconds of 

ageing. They also confirmed the presence of the metastable S" phase. 

Although Ringer et al continued to argue against the early formation of GPB 

zones and the existence of S" [50], the latest, most complete work carried out by 

Charai et al [511 gives strong evidence for the early appearance of GPB zones 

and the existence of S". It also suggests that the early clusters that form during 

the first few seconds of ageing are rich in magnesium. The results and 

conclusions of this latest study will be used as a basis for the interpretation of the 

results presented in the remainder of the chapter. 

172 



Results and discussion Chapter 10: Effect of copper and magnesium on Al-Cu-Mg alloys 

10.2 Isochronal characteristics 

10.2.1 The effect of different copper additions 

To study the effect of copper concentration, the magnesium content has been 

kept constant at approximately 1.2% and the copper varied from 1.2 to 3.0%. 

10.2.1.1 DSC (as-quenched plots) 

Figure 10.1 gives comparative DSC plots of the as-quenched alloys. The 

1.2Cul. 2Mg DSC plot exhibits a very early exothermic peak (A) of which only 

the end-part is detected. This exothermic peak is attributed to the formation of 

magnesium rich Mg-Cu clusters [51]. Further heating results in the development 

of an exothermal effect at about 110°C (peak E) that is due to the formation of 

copper-rich clusters, i. e. GPB zones. As the temperature increases a series of 

endothermic and exothermic effects arise in the temperature range 170-260°C. 

The endothermic effect B, at approximately 180°C is attributed to the dissolution 

of Mg-Cu clusters. At about 220°C the dissolution of fine GPB zones takes place 

(peak G) but the coarser fraction of these grows during DSC heating into S" 

(exotherm 0). Dissolution of this S" phase occurs at 250 °C (peak H). 

Exothermic peak U is attributed to the precipitation of the semicoherent phase S' 

(-285°C) and the equilibrium phase S (-'320°C). 

As the copper concentration increases from 1.2 to 2.0% (2. OCul. 2Mg alloy) 

changes in the size and position of all thermal events are observed. The degree of 
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each change is given in table 10.1. For peak A, no firm conclusions can be 

extracted because only part of the peak is visible. However, the corresponding 

cluster dissolution peak B suggests an increase in the volume fraction of these 

clusters. These clusters are considered rich in magnesium [51] but the present 

results suggest the copper content of the clusters also has an important role to 

play in their development. Exothermic peak E exhibits a displacement to a lower 

temperature by 10°C indicating that acceleration of the GPB zone kinetics has 

taken place. This can be explained by figure 10.2 which shows the section of the 

ternary Al-Cu-Mg phase diagram at 190°C. It can be easily seen that the increase 

in copper concentration from 1.2 to 2.0% results in a larger supersaturation 

relative to the S phase which, in turn, suggests a higher driving force for the rate 

of nucleation of GPB zones. The GPB zone dissolution endotherm and the S" 

dissolution endotherm are both increased in size as the copper increases from 

1.2% to 2.0%, thus indicating an increase in volume fraction of GPB zones and 

the S" which forms from these zones during DSC heating. There is little or no 

change in the positions of these peaks. Finally, the small enlargement of 

exothermic peak U indicates that the larger supersaturation has caused a higher 

volume fraction stimulation of S' and S precipitation. 

A copper increase beyond 2.0% (3. OCul. 2Mg alloy) caused a marked increase in 

heat effect E and its position exhibits a 10°C shift to a lower temperature. This 

behaviour can be attributed to the further increase of supersaturation (figure 

10.2) which results in a higher driving force for GPB zone formation. The cluster 

dissolution peak B suggests that further stimulation of the Mg-Cu clustering 
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process has been caused by the increase of copper. The endothermic event which 

accompanies the dissolution of GPB zones (peak G) exhibits a significant 

increase as would be expected. This increased volume fraction of GPB zones has 

caused an increase in the amount of S" (peak H). In this high copper-containing 

alloy the exothermic events corresponding to S' precipitation and S precipitation 

(peak U) have increased in size, again consistent with increased supersaturation. 

10.2.1.2 Isochronal resistivity 

The resistivity plots of 1.2Cul. 2Mg, 2. OCu1.2Mg and 3. OCul. OMg alloys are 

presented in figure 10.3. The 1.2Cul. 2Mg alloy exhibits a resistivity peak (A') at 

140°C which, following the DSC results, can be attributed to the formation of 

GPB zones that are smaller than the critical size for electron scattering (2 nm). 

Higher temperatures than 140 °C cause a decrease in resistivity as growth of the 

zones takes place. The decrease of resistivity continues up to 340°C due to 

precipitation of S", S'and S. Further heating causes dissolution of these phases 

which is accompanied by an increase of resistivity towards the baseline. By 

increasing the copper concentration to 2.0% (2. OCul. 2Mg alloy), the height of 

peak A' rises significantly without any change in its position (figure 10.4). This 

suggests that a higher number density of GPB zones form. This result is in good 

agreement with the DSC results presented in the last section. Surprisingly, the 

resistivity measurements do not appear to detect formation of the Mg-Cu clusters 

which are suspected to form at temperatures lower than 0 °C. 
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As the copper addition increases beyond 2% (3. OCu1.2Mg alloy), a further 

increase in the height of peak A' is observed and there appears to be an 

additional earlier peak at 80°C, peak A", which could be the result of GPc� zones 

since the alloy is in (or very near) the a+S+O phase field (figure 10.2). The 

decrease in resistivity in the temperature range 140-230°C is again attributed to 

the growth of GPB zones. In this high copper alloy precipitation of S", S' and S 

phases cause a dramatic drop of resistivity in the temperature range 230-290 °C 

followed by an increase in resistivity at temperatures higher than 290°C as 

dissolution of these phases takes place. 

It will be noted that no reference has been made during the discussion of the 

isochronal resistivity results about the phase transformations that correspond to 

heat effects B, G, 0, and H observed in the DSC traces. The form of the 

isochronal resistivity plots in figure 10.3 makes it very difficult to draw any 

conclusions about these phase transformations. In order to overcome this 

difficulty the resistivity plots have been differentiated to enable a direct 

comparison to be made with the DSC thermograms. Any minimum or maximum 

on a differentiated plot corresponds to the highest rates of resistivity increase or 

decrease, whereas each baseline point corresponds to a maximum or minimum in 

the conventional resistivity plot. Figures 10.5,10.6, and 10.7 give the 

comparative DSC/differentiated resistivity plots of 1.2Cu1.2Mg, 2. OCu1.2Mg, 

and 3. OCul. OMg alloys. The differentiated plot of the 1.2Cu1.2Mg alloy exhibits 

two maxima at 80 and 390°C (peaks E' and Y') and a minimum at approximately 
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280°C (peak U'). Peaks E' and U' correspond to the DSC peaks E and U which 

were attributed to the formation of GPB zones and precipitation of S' and S 

respectively. Peak Y' is the result of the dissolution of the latter phases. It can be 

readily seen that the resistivity peaks described above are shifted to lower 

temperatures compared with the corresponding DSC peaks. This can be 

explained by the lower mean heating rate of the isochronal resistivity experiment 

(2 °C/min) compared with that of the DSC run (20°C/min). The small resistivity 

inflection that is observed at a temperature of 220°C could be the result of the 

formation of S" from GPB zones. The increase of copper concentration from 

1.2% to 3% (2. OCul. 2Mg and 3. OCul. OMg alloys) produced stronger inflections 

on the differentiated plots. In the 3. OCul. 0Mg alloy these resistivity inflections 

can be related to the DSC peaks B, G, 0 and H (figure 10.7). Figure 10.8 

compares the differentiated resistivity plots for the various alloys. It can be easily 

seen that the increase of copper has caused an increase in the area of peak E' and 

its position has shifted to lower temperature. This mirrors the DSC results and 

indicates that the increase in copper supersaturation has resulted in an increase in 

the driving force for GPB zone formation which in turn has accelerated its 

formation kinetics. The changes in the area and position of peak U' exhibit a 

similar trend, confirming that increasing copper concentration has increased the 

volume fraction and rate of formation of S' and S. Finally, as the copper 

concentration increases, the reactions relating to cluster dissolution, GPB 

dissolution, GPB-+S" transformation and S" dissolution, are all shifted to a 

177 



Results and discussion Chapter 10: Effect of copper and magnesium on AI-Cu-Mg alloys 

lower temperature. 

10.2.2 The effect of magnesium concentration 

To study the effect of magnesium concentration on precipitation in AI-Cu-Mg 

alloys, the concentration of copper was fixed at 1.2% and the magnesium varied 

from 1.2 to 2.0%. 

10.2.2.1 DSC (as-quenched plots) 

The as-quenched plots of 1.2Cu1.2Mg and 1.2Cu2. OMg alloys are given in 

figure 10.9. 

Exotherm A is significantly increased in size suggesting that the increased 

magnesium concentration has stimulated the formation of Mg-Cu clusters. No 

changes were detected for exothermal peak E in respect to its size and position. 

This is expected as GPB zones are rich in copper and therefore an increase in 

magnesium concentration should not have a significant effect on their formation. 

Endothermic peak B is increased in size which is in keeping with the higher 

volume fraction of Mg-Cu clusters formed at lower temperatures. Although the 

overlapping effects of peaks G, 0, and H make difficult the determination of the 

size of peak G it is believed that there is little change in its size, ie consistent 

with no change in exothermic peak E. The apparent increased height of this peak 

is attributed to overlapping effects. The case appears to be the same for 

endothermal effect H. The characteristics of this peak (height and position) 

remain the same with the increase of magnesium and this is in agreement with 
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previous experimental results [51]. GPB zone formation is a necessary step 

before the zones transform to S" during DSC heating. Thus if there is little 

change in GPB zone formation there should be little change in S" formation. 

10.2.2.2 Isochronal resistivity 

Figure 10.10 shows the isochronal resistivity plots of 1.2Cul. 2Mg and 

1.2Cu2. OMg alloys. As discussed in the previous sections the initial increase in 

resistivity is attributed to the formation of GPB zones with size smaller than the 

critical size for electron scattering (2 nm). The resistivity reaches a peak at 140°C 

(peak A'). The plots show that the increase in magnesium addition to 2.0% 

results in a small increase of peak A' without any changes in its position. This 

suggests that a slightly larger volume fraction of GPB zones has formed in the 

1.2Cu2. OMg alloy. This result is not consistent with the DSC results where no 

change in the size of the GPB exothermic peak E was detected (figure 10.9). 

However this can be explained by the higher sensitivity of the resistivity 

technique. The marked drop of resistivity beyond 240°C is attributed to the 

precipitation of S", S' and S. It can be seen that the high magnesium alloy 

exhibits a larger decrease of resistivity suggesting a larger volume fraction of S", 

S' and S precipitates. Higher temperatures cause dissolution of these phases 

which increases the resistivity towards the baseline. 

Differentiation of the resistivity plots produced clear peaks corresponding to the 

precipitation of GPB zones, S' and S but inflections corresponding to cluster 

dissolution, GPB dissolution, GPB-+S" transformation and S" dissolution were 

179 



Results and discussion Chapter 10: Effect of copper and magnesium on Al-Cu-Mg alloys 

not detected in the 1.2Cu2. OMg alloys (figure 10.11). Figure 10.12 compares the 

differentiated resistivity plot of 1.2Cu1.2Mg and 1.2Cu2. OMg alloys where it can 

be seen that the increase in magnesium concentration results in a small increase 

in the area of peak E' suggesting a larger volume fraction of GPB zones due to 

the larger driving force. The area of peak U' is also enlarged with increasing 

magnesium concentration indicating that stimulation of S' and S has occurred. 

From the above results the following can be outlined for the effect of copper and 

magnesium on the isochronal precipitation characteristics of Al-Cu-Mg alloys: 

Effect of copper concentration 

" Increase of copper additions results in significant stimulation of GPB- 

zones, S' and S formation, resulting from an increase in supersaturation. 

" The DSC results indicate that as copper increases from 1.2 to 3.0% the 

temperature of GPB zone formation decreases by approximately 

10°C/wt%Cu. 

" The resistivity results indicate that increase of copper from 1.2 to 3.0% 

produces a higher number density of GPB zones and faster precipitation 

kinetics. 

Effect of magnesium concentration 

" Increase of magnesium additions stimulates the Mg-Cu clustering process. 

" The effect on GPB-zone formation is smaller than that observed with 

increasing copper concentration. 
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10.3 Ageing at 70°C 

10.3.1 Varying copper concentration 

Figure 10.13 gives the comparative DSC plots of 1.2Cul. 2Mg, 2. OCu1.2Mg and 

3. OCul. OMg alloys after ageing 1000 h at 70 °C. 

The DSC thermogram of 1.2Cu1.2Mg alloy exhibits a broad endotherm in the 

temperature range 150-270°C. Careful observation leads to the conclusion that 

the endotherm consists of three endothermic events, peaks B, G, H at 175,210, 

and 250°C respectively and an exothermic peak 0 at approximately 240 °C. 

Endothermic peaks B, G are attributed to the dissolution of Mg-Cu clusters and 

GPB zones that have formed during the age at 70°C. Exothermic peak 0 is due to 

the transformation of large GPB zones into S" during DSC heating, and the 

endotherm H is caused by dissolution of this S". The high-temperature 

exothermal effect U (290 °C) is attributed to the precipitation of S' and S phases 

followed by their dissolution at temperatures >350°C. 

An increase of copper from 1.2 to 2.0 % results in an enlargement of exothermal 

effect G together with a 10°C shift to a lower temperature. The increase in the 

area under peak G suggests that stimulation of GPB zones has taken place as a 

result of the higher driving force caused by the larger supersaturation of copper 

(figure 10.2). The 10°C shift to a lower temperature indicates a smaller size of 

the zones. Endothermal effect H also exhibits an increase in its size which is 

expected to occur as a result of the stimulation of GPB zones. 
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The high temperature exothermic peak U exhibits an increase in its size 

suggesting an increase in the volume fraction of S' and S phases. 

Higher copper concentrations (3. OCu1.0Mg alloy) resulted in a further increase in 

the size of exothermal effect G. Also, there is a further shift of 20°C to a lower 

temperature. The above behaviour indicates that the increase in copper 

concentration to 3% caused the precipitation of a higher volume fraction of 

smaller-sized GPB zones. A corresponding increase in the size of endotherm H 

(S" dissolution) was also noted. Exothermal effect U exhibits a large increase in 

its size indicating a further increase in the volume fraction of S' and S phases 

occurred with increasing copper concentration. 

Figure 10.14 presents comparative resistivity plots of 1.2Cu1.2Mg, 2. OCul. 2Mg 

and 3. OCul. OMg alloys. Alloy 1.2Cul. 2Mg exhibits an initial increase in 

resistivity up to 2h of ageing that is attributed to the nucleation and growth of 

GPB zones with size smaller than the critical size for electron scattering. 

According to the DSC results a small amount of Mg-Cu clusters may have 

formed during ageing at 70°C. Therefore, it is believed that in the first minutes of 

ageing the resistivity increase is due to a combination of Mg-Cu clusters and 

GPB zones. 

After 2 h, the rate of increase becomes very low and, after 6 h, a plateau is 

reached. No further changes are observed even after 1000 h of ageing at 70°C. 

This resistivity behaviour suggests that after 6h the rate of growth of GPB zones 

is very small. 
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As the copper addition increases from 1.2 to 2% the increase in resistivity is 

enhanced, indicating faster GPB zone kinetics, supporting the DSC results 

(figure 10.13). The resistivity attains a plateau after 10 h and thereafter there is 

little or no further growth of GPB zones. The resistivity difference between the 

two plateaus after 1000 h of ageing is the result of an increase in the volume 

fraction of GPB zones, which is consistent with the DSC results (figure 10.13). 

An increase of copper concentration beyond 2% (3. OCul. 0Mg alloy) results in a 

further increase of resistivity, suggesting that the rates of nucleation and growth 

of GPB zones are again accelerated. Similar to the other two alloys the resistivity 

reaches a plateau, this time after 1h of ageing which is much faster than that 

observed in the 2. OCu1.2Mg alloy where the plateau was attained after 10 h. This 

suggests that the GPB zone reaction was completed much earlier. There is again 

a resistivity difference after 1000h of ageing between 2. OCul. 2Mg and 

3. OCul. OMg alloys indicating that a higher volume fraction of GPB zones has 

been formed; this is in agreement with the DSC results presented in figure 10.13. 

10.3.2 Varying magnesium concentration 

The comparative DSC plots of 1.2Cul. 2Mg and 1.2Cu2. OMg alloys after ageing 

1000 h at 70°C are given in figure 10.15. 

The DSC thermogram of 1.2Cul. 2Mg alloy has already been discussed in the 

previous section. It was shown that the thermal event appearing in the 

temperature range 150-270°C consists of three endothermic peaks (B, G, H) and 
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an exothermic peak (0). Peaks B, G correspond to the dissolution of Mg-Cu 

clusters and GPB zones that have formed during the 70°C age. Peak 0 is caused 

by the transformation of GPB zones to S"during DSC heating and peak H is the 

dissolution of this S". The high-temperature exothermic peak U at 290°C was 

attributed to the precipitation of S' and S. 

Increase in magnesium concentration from 1.2 to 2.0% causes a very small 

enlargement of peak B. This behaviour would be expected as these clusters are 

rich in magnesium and therefore an increase in magnesium supersaturation will 

cause further clusters to develop during the 70°C age. The remainder of the peaks 

appeared to be little affected by magnesium concentration. 

The comparative resistivity plots of 1.2Cul. 2Mg and 1.2Cu2. OMg alloys during 

ageing at 70 °C alloys are given in figure 10.16. The resistivity plot of 

1.2Cu1.2Mg alloy has already been discussed in the previous section. The 

increase in resistivity up to 2h of ageing was attributed principally to the 

formation of GPB zones with size smaller than the critical size for electron 

scattering. However it is believed that the increase in resistivity in the very early 

stages of ageing may be due to a combination of Mg-Cu clusters and GPB zones. 

After 6h of ageing, the resistivity reaches a plateau and there are no further 

significant changes observed even after 1000 h of ageing. As the magnesium 

concentration increases from 1.2 to 2.0% a small decrease in the rate of 

resistivity increase is observed up to 10 min of ageing indicating that the 
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nucleation and growth of GPB zones is slower. It is well known that the binding 

energy between magnesium atoms and vacancies is higher than that between 

copper atoms and vacancies. Therefore the slower kinetics for GPB zone 

formation in the 1.2Cu2. OMg alloy during the first 10 min of ageing can be 

attributed to the reduced number of mobile vacancies available for copper 

diffusion. After 10 min, the resistivity continues to increase for the 1.2Cu2. OMg 

alloy whereas it slows down for the 1.2Cu1.2Mg alloy. After 6h of ageing both 

alloys reach a plateau and a resistivity difference of -0.5 nQm is developed. The 

higher resistivity in the 1.2Cu2. OMg alloy may be the result of a larger number of 

Mg-Cu clusters co-existing with GPB zones in the higher magnesium alloy. 

10.4 Ageing at 100°C 

10.4.1 Varying copper concentration 

The DSC plots of 1.2Cu1.2Mg, 2. OCu1.2Mg, and 3. OCu1. OMg alloys are shown 

in figure 10.17 after ageing 1000 h at 100°C. 

The DSC thermogram of 1.2Cu1.2Mg alloy exhibits a broad endotherm in the 

temperature range 190-270°C that consists of two endothermic peaks, peaks G 

and H, at 220 and 255 °C respectively and an exothermic peak, peak 0, at 

approximately 240 T. The endotherm B present after ageing at 70°C is now 

absent. 
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Increasing the copper concentration to 2% results in a significant increase in the 

size of peak G indicating that a larger volume fraction of GPB zones is being 

produced during ageing. This stimulation can be explained by the increase in 

copper supersaturation that results in a larger driving force for GPB zone 

formation. The position of this peak is shifted by '5°C to a lower temperature 

suggesting a decrease in the size of the zones. Endothermal effect H exhibits an 

enlargement of its size suggesting an increase in S" volume fraction; this is to be 

expected since a larger volume fraction of GPB zones have been produced in the 

alloy. The significant increase of the size of peak U indicates that the larger 

copper concentration has resulted in a larger volume fraction of S' and S. No 

changes in the position of this peak were detected. 

Higher additions of copper (3. OCul. 0Mg alloy) results in a very small increase of 

the area under peak G. The size of peak H was essentially unchanged. This 

follows from the effect of 3.0% copper on the size of the GPB zone peak which 

showed only a very small increase relative to the 2.0% copper alloy. 

The comparative resistivity plots of 1.2Cul. 2Mg, 2. OCul. 2Mg, and 3. OCul. OMg 

alloys aged at 100°C are presented in figure 10.18. The 1.2Cu1.2Mg alloy 

exhibits an increase in resistivity in the first hour of ageing that is attributed to 

the formation of GPB zones of size smaller than the critical size for electron 

scattering. After 1h of ageing the rate of resistivity increase is very low 

suggesting that growth of GPB zones at 100°C is very sluggish. As the copper 
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addition increases from 1.2 to 2.0 and 3.0 % (2. OCul. 2Mg and 3. OCul. OMg 

alloys) the early resistivity increase accelerates indicating that enhancement of 

GPB zones kinetics has occurred. Similar to the 1.2Cul. 2Mg alloy the 

resistivities in the 2. OCul. 2Mg and 3. OCul. OMg alloys attain a plateau after 

ageing 1h suggesting little growth of GPB zones after this ageing period. 

10.4.2 Varying magnesium concentration 

The DSC thermograms of 1.2Cul. 2Mg and 1.2Cu2. OMg alloys after ageing 1000 

h at 100°C are shown in figure 10.19. As already shown in the previous sections 

the two endothermic peaks G and H appearing in the 1.2Cul. 2Mg alloy 

correspond to the dissolution of GPB zones and S" respectively. As the 

magnesium increases from 1.2 to 2.0% there is minimal change in both peaks. 

In figure 10.20 are given the resistivity plots of 1.2Cul. 2Mg and 1.2Cu2. OMg 

alloys aged at 100°C. The resistivity plot of the 1.2Cul. 2Mg alloy has already 

been discussed in the previous section. As the magnesium concentration 

increases from 1.2 to 2.0% the general resistivity changes are similar to those 

observed at 70 °C; extrapolating the curves to very short ageing times shows that 

the increased magnesium concentration reduces the rate of GPB zone formation 

in the very early stages of ageing. As with the results at 70°C the height of the 

resistivity plateau is increased in the 1.2Cu2. OMg alloy, possibly due to the 

presence of Mg-Cu clusters co-existing with the GPB zones. 
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10.5 Ageing at 150 °C 

10.5.1 Varying copper concentration 

Figure 10.21 shows DSC comparative plots of 1.2Cul. 2Mg, 2. OCul. 2Mg and 

3. OCul. OMg alloys after ageing for 24 h at 150°C. The DSC thermogram of the 

1.2Cul. 2Mg alloy exhibits a large endothermic peak, peak G, at approximately 

230°C which is attributed to the dissolution of GPB zones formed during ageing. 

The S" dissolution peak H is present but is much smaller than that observed in 

the DSC thermograms of 1.2Cu1.2Mg alloy after ageing for 1000 h at 70 and 100 

°C (figure 10.13 and 10.17) 

Increasing the copper concentration from 1.2 to 2.0% and 2.0% to 3.0% results in 

an increase in the area under peak G indicating that a larger volume fraction of 

GPB zones has been produced. The same remarks apply to the exothermal effect 

U, the marked enlargement of its size suggesting that the volume fraction of S' 

and S has also been increased. 

The resistivity results in figure 10.23 show a resistivity difference of about 1 

nQm is developed after 24 h of ageing as the copper concentration increases 

from 1.2 to 2.0%. This indicates the formation of a higher volume fraction of 

GPB zones with size smaller than the critical size for electron scattering, which is 

in agreement with the DSC results. 

The DSC comparative plots of the above alloys after ageing for 1000 h at 150°C 

are presented in figure 10.22. The DSC thermogram of the 1.2Cul. 2Mg alloy 
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illustrates endothermal effects in the temperature range 190-275°C that consists 

of peaks G and H, at 235 and 260°C respectively. Peak G is again attributed to 

the dissolution of GPB zones whereas peak H is due to the dissolution of S" 

formed during ageing (see next section). The small exothermic peak U at 

approximately 285°C corresponds to the precipitation of S' and S. Heating to 

temperatures higher than 385°C causes dissolution of these precipitates resulting 

in an endothennal effect. It can be easily seen that the size of this endotherm is 

larger than the size of exotherm U this being the result of precipitation of S' and 

S taking place during ageing. 

Increasing the copper concentration from 1.2 to 2.0% did not cause an increase in 

the size of the GPB dissolution peak or the S" dissolution peak. A further 

increase in the copper addition from 2.0 to 3.0% results in a decrease in the size 

of the GPB dissolution peak which will be the result of enhanced S' precipitation 

in the 3. OCu1. OMg alloy during ageing at 150°C. This is further confirmed by the 

reduced size of the exotherm U in the 3. OCu1. OMg alloy. 

10.5.2 Varying magnesium concentration 

The comparative DSC plots of 1.2Cu1.2Mg and 1.2Cu2. OMg alloys after ageing 

for 24 h at 150°C are presented in figure 10.24. Increasing magnesium 

concentration from 1.2 to 2.0% results in only a very small increase in the GPB 

dissolution peak showing that the increase in magnesium supersaturation does 
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not have any significant effect on the formation of GPB zones. This is to be 

expected since GPB zones are rich in copper atoms. The apparent increase in the 

size of peak H is due to the displacement of peak G to higher temperatures (as 

result of larger GPB zones) thus causing an overlap with peak H. The resistivity 

plots shown in figure 10.26 show that after ageing 24 h at 150°C the resistivity 

increase is higher in the 1.2Cu2. OMg alloy suggesting a larger population of GPB 

zones (less than the critical scattering size) exists in the higher magnesium alloy. 

This may be the result of the lower mobile vacancy concentration in the 

1.2Cu2. OMg alloy. 

Figure 10.25 presents the comparative DSC plots of 1.2Cu1.2Mg and 

1.2Cu2. OMg alloys after ageing for 1000 h at 150°C. As the magnesium 

concentration increases from 1.2 to 2.0% (1.2Cu2. OMg alloy) the endothermic 

peak G and endothermic peak H merge into an "apparent" single peak. The 

increase in magnesium results in an increase in the area of the combined G and H 

peaks. Finally, the enlarged peak U suggests that a larger amount of S' and S 

forms during DSC heating. 

10.6 Effect of ageing temperature 

DSC thermograms of 1.2Cul. 2Mg alloy (figure 10.27) show that the largest 

volume fraction of GPB zones is produced at 100°C where there is an optimum 

combination of driving force and diffusivity. As the ageing temperature goes 
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from 70 to 100 to 150°C the position of the GPB dissolution peak G shifts to 

higher temperatures indicating that the size of GPB zones increases with ageing 

temperature. Increase of ageing temperature from 70 to 100°C does not produce 

any significant change in the size of the S" dissolution peak H, although it would 

be expected to increase following the increase in GPB zone volume fraction. This 

can be explained by the larger-sized GPB zones requiring a higher temperature to 

dissolve and therefore giving less opportunity for the zones to transform to S". 

As the ageing conditions increase to 24h/150°C the transformation into S" is 

dramatically suppressed by the even larger size of GPB zones which therefore 

now transform to S'. Based on this interpretation, after 1000 h at 150°C 

endothermic peak H would be expected to be absent. However figure 10.27 

shows the presence of a significant sized S" peak. This suggests that S" is now 

forming during the prior ageing at 150°C. The isothermal resistivity plots (figure 

10.28) show that after 1000h of ageing at 70 and 100°C the resistivity increase is 

approximately the same. However, from the DSC results it is known that at 

100°C a significantly larger volume fraction of GPB zones has formed (AH=4.1 

J/g compared with 3.6 J/g at 70°C). A possible reason for this difference is that 

resistivity measurements are measuring the number of sub-critical precipitates for 

electron scattering (5 2 nm) and not their total volume fraction. Increasing the 

ageing temperature to 150°C results in a drop of resistivity below the baseline 

after 90 h of ageing due to the formation of S", S', and S phases. 
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The 2. OCu1.2Mg, and 3. OCu1.0Mg and 1.2Cu2. OMg alloys exhibit similar trends 

to the 1.2Cu1.2Mg alloy (figures 10.29-10.34). The largest volume fraction of 

GPB zones is formed during ageing at 100°C. As in the 1.2Cu1.2Mg alloy, the 

effect of ageing temperature on S" appears to be more complicated. Figure 10.35 

presents the combined effects of ageing temperature on the enthalpy absorbed 

(0H) during the dissolution of S" (peak H). Although exact values of AH cannot 

be extracted because peak H is an overlapping peak, the general trends can be 

easily seen. For all the alloys, changing the ageing conditions from 70°C/1000h 

to 150°C/24h reduces the S" enthalpy, implying that a smaller amount of S" 

forms. As shown earlier in this paragraph this can be explained by the larger- 

sized GPB zones that require higher temperatures for their dissolution thus 

decreasing the temperature range where transformation into S" can take place, 

and therefore GPB zones transform to S' instead of S". The plots also show that 

ageing the 2. OCul. 2Mg and 3. OCul. 0Mg alloys for a 1000 h at 150°C causes a 

reduction in the S" enthalpy. This could be the result of either less S" forming 

during DSC heating (due to the larger size of GPB zones) or to S' forming during 

the age at 150°C. However, with the 1.2Cul. 2Mg alloy, ageing for a 1000 h at 

150°C causes an increase in the S" enthalpy and this can only be explained by S" 

forming during the age (along with S'). It is therefore likely that some S" forms 

at 150°C in the 2. OCul. 2Mg and 3. OCul. OMg alloys, but the optimum alloy 

composition for forming S" at 150°C (after 1000 h age) appears to be the dilute 

1.2Cul. 2Mg alloy. 
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Increase of ageing time at 150°C from 24 to 1000 h causes a dramatic decrease of 

peak U (figures 10.27,10.29,10.31,10.33) indicating that S' and S has been 

precipitated during ageing. Further confirmation comes from the results of Charai 

et al [51] where after 96 h (4 days) at 150°C considerable amounts of S' had 

precipitated in a 2. OCul. 2Mg alloy. It is believed that either clusters or regions 

rich in magnesium and copper remain after GPB zone and S" reversion and these 

regions act as nucleation sites for S' [51 ]. 

From the above results the following can be concluded: 

9 The largest volume fraction of GPB zones is formed during ageing at 

100°C where there is an optimum combination of thermodynamic driving 

force and diffusivity. 

" Increasing the ageing conditions from 70°C/1000h to 150°C/24h causes a 

retardation of S" formed during the DSC run. This is attributed to larger- 

sized GPB zones that form during ageing which require higher 

temperatures for their dissolution thus decreasing the temperature range 

where their transformation into S" can take place. As the ageing 

temperature increases there is therefore an increasing tendency for less S" 

and more S' to form during the DSC run. 

" As the ageing time at 150°C increases there is an increasing tendency for 

S" and S' formation to take place during ageing. 

0 
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10.7 Effect of exposure at 70°C 

In this section the effect of exposure at 70°C after prior ageing 24 h at 150°C has 

been studied. The conclusions reached for these simple Al-Cu-Mg alloys will 

help for the better understanding of the role of GPB zones in the embrittlement 

that occurs in commercial Al-Li-Cu-Mg alloys after exposure at low 

temperatures [40]. 

10.7.1 Varying copper concentrations 

Figures 10.36-10.38 display the DSC thermograms of 1.2Cu1.2Mg, 2. OCul. 2Mg 

and 3. OCul. 0Mg alloys exposed for 1000 h at 70°C after pre-ageing for 24 h at 

150°C. 

None of the alloys exhibit a significant increase in the size of endothermal effect 

G indicating that any GPB zone formation that may be taking place during 

exposure is not being detected by the DSC technique. However, a very small 

increase in resistivity in 1.2Cul. 2Mg and 2. OCul. 2Mg alloys (figure 10.39) 

suggests that GPB zones with size smaller than 2 nm (critical size for electron 

scattering) is forming during exposure, but the volume fraction is very small. 

An interesting observation can be made if the DSC plots of the exposed 

1.2Cul. 2Mg and 2. OCul. 2Mg alloys are compared with those after a straight age 

of 1000 h at 70°C (figures 10.36,10.37, and 10.13). In both cases the GPB 

dissolution peak occurs at 10-20°C higher in the exposed case. This is because 

the GPB zones in the exposed alloy have been nucleated at 150°C and therefore 
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have a larger size. The area of the GPB peak in the straight aged (70°C) alloy and 

in the exposed alloy are approximately the same. However, the area of the S" 

peak is much smaller in the exposed alloy compared to the straight aged alloy. 

This is consistent with results described earlier in this chapter, i. e. the larger the 

GPB zone diameter the less chance there is for it to transform to S" during DSC 

heating. 

10.7.2 Varying magnesium concentration 

Increasing magnesium concentration from 1.2% (1.2Cul. 2Mg alloy) to 2.0% 

(1.2Cu2. OMg alloy) does not cause any changes in the effect of exposure on the 

formation of GPB zones i. e. only a very small amount of GPB zones precipitate 

during exposure (figures 10.40,10.41). 

It should be noted by comparing the DSC plots for the 1.2Cu2. OMg alloy in the 

straight aged and exposed conditions, the same effects appear as in the 

1.2Cul. 2Mg and 2. OCul. 2Mg alloys. That is, the exposed alloy exhibits a larger 

diameter of GPB zone and reduced S" peak size. 
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Summary 

From the above analysis the following is proposed: 

Effect of copper 

9 The as-quenched DSC and isochronal resistivity results suggest that 

increasing copper addition from 1.2% to 3.0% causes significant 

stimulation of GPB zone formation and enhanced kinetics. The increase 

of copper also leads to a higher number-density of GPB zones. 

" Ageing for 1000 h at 70 and 100°C and 24 h at 150°C causes stimulation 

of GPB zones as copper concentration increases from 1.2 to 3.0%. 

However increasing the ageing conditions to 1000 h at 150°C results in 

retardation of GPB zones with increasing copper concentration from 1.2 

to 3.0% due to enhanced precipitation of S'. 

" Copper concentration in the range 1.2-3.0% appears to have no effect on 

the amount of GPB zones formed during exposure at 70°C. 

Effect of magnesium 

9 The as-quenched DSC and isochronal resistivity plots indicated that 

increasing magnesium concentration stimulates the Mg-Cu clustering 

process. The effect of magnesium on GPB-zone formation is smaller than 

that observed with increasing copper concentration. 

" At all ageing temperatures (70,100,150°C) magnesium appears to have 
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little effect on the formation of GPB zones. 

" The concentration of magnesium in the range 1.2-2.0% has no effect on 

the amount of GPB zones formed during exposure. 

Effect of ageing temperature (for all the alloys) 

" The largest volume fraction of GPB zones is formed during ageing at 

100°C. 

" Changing the ageing conditions from 70°C/1000h to 150°C/24h results in 

retardation of S" formed during ageing due to the formation of larger- 

sized GPB zones that require higher temperatures for their dissolution, 

thus decreasing the temperature range where transformation into S" can 

occur. Increasing the ageing time at 150°C from 24 h to 1000 h results in 

an increasing tendency for S" and S' formation during ageing. The dilute 

1.2Cul. 2Mg alloy appears to have the optimum composition for forming 

S" during ageing at 150°C/1000 h. 
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Table 10.1: Changes in the size and position of the thermal effects during heating of the 
as-quenched Al-Cu-Mg alloys 

PEAKS 
Copper A E B G 0 H U 
increase 

Size 
- SI SI SI SI SI 

changes 1.2-º2.0% 
Shift(°C) - -10 -10 -10 

h ft 
-20 s i 

Size 
- LI LI LI LI SI 

changes 2.0-º3.0% - 
Shift(°C) - -10 -10 -10 

No 
-10 ft shi 

SI : Small Increase 
LI : Large Increase 

198 



Results and discussion 

0.20 

0.15 

, -. 00 
3 
30.10 
0 

0.0f 

0.00' 0 50 100 150 200 250 300 350 400 
Temperature ( °C ) 

Figure 10.1: DSC comparative plots of the as-quenched alloys with varying copper 
addition. 
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Figure 10.5: Comparative DSC/Differentiated resistivity plots of 1.2Cul. 2Mg alloy. 
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Figure 10.11: Comparative DSC/Differentiated resistivity plots of 1.2Cu2. OMg alloy. 
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Figure 10.13: DSC comparative plots of the alloys with varying copper concentration 
after ageing for 1000 h at 70°C. 
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Figure 10.14: Isothermal resistivity changes of the alloys with varying copper 
concentration during ageing at 70°C. 

207 



Results and discussion 

0.30 

0.25 

0.20 

00 

0.15 
0 

x 0.10 

0.05 

0.00 L 
0 

Temperature ( °C ) 

Figure 10.15: DSC comparative plots of the alloys with varying magnesium 
concentration after ageing for 1000 h at 70°C. 
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Figure 10.16: Isothermal resistivity changes of the alloys with varying magnesium 
concentration during ageing at 70°C. 

208 



Results and discussion 

0.2 

0.1 

0 

0.0 

ChapterlO: Effect of copper and magnesium on Al-Cu-Mg alloys 

-0.1 0 5U 100 15U 2UU 25U 300 350 400 

Temperature (°C ) 

Figure 10.17: DSC comparative plots of the alloys with varying copper concentration 
after ageing for 1000 h at 100°C. 
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Figure 10.18: Isothermal resistivity changes of the alloys with varying copper 
concentration during ageing at 100°C. 
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Figure 10.20: Isothermal resistivity changes of the alloys with varying magnesium 
concentration during ageing at 100°C. 
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Figure 10.21: DSC comparative plots of the alloys with varying copper concentration 
after ageing for 24 h at 150°C. 
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Figure 10.22: DSC comparative plots of the alloys with varying copper concentration 
after ageing for 1000 hat 150°C. 
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Figure 10.23: Isothermal resistivity changes of the alloys with varying copper 
concentration during ageing at 150°C. 
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Figure 10.24: DSC comparative plots of the alloys with varying magnesium 
concentration after ageing for 24 h at 150°C. 
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Figure 10.25: DSC comparative plots of the alloys with varying magnesium 
concentration after ageing for 1000 h at 150°C. 
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Figure 10.27: Effect of the ageing temperature on the DSC thermogram of an 
1.2Cul. 2Mg alloy. 
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Figure 10.28: Effect of the ageing temperature on the resistivity of an 1.2Cul. 2Mg 
alloy. 
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Figure 10.31: Effect of the ageing temperature on the DSC thermogram of an 
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Figure 10.32: Effect of the ageing temperature on the resistivity of an 3. OCul. OMg 
alloy. 
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Figure 10.33: Effect of the ageing temperature on the DSC thermogram of an 
1.2Cu2. OMg alloy. 
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Figure 10.34: Effect of the ageing temperature on the resistivity of an 1.2Cu2. OMg 
alloy. 
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Figure 10.36: Effect of exposure at 70°C on the 1.2Cul. 2Mg alloy. 
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Figure 10.38: Effect of exposure at 70°C on the 3.0Cul. 0Mg alloy. 
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Figure 10.39: Isothermal resistivity changes of the alloys with varying copper 
concentration during exposure at 70°C. 

0.10 

0.09 

0.08 

0.07 

0.06 

0.05 
0 

0.04 

0.03 

0.02 

0.01 

0.00 
u ýu luu 150 200 250 300 350 

Temperature (°C) 

Figure 10.40: Effect of exposure at 70°C on the 1.2Cu2. OMg alloy. 

Yvv 

220 



Results and discussion Chapter] 0: Effect of copper and magnesium on Al-Cu-Mg alloys 

0.08 

0.06 
E 
G 

0.04 

s 

'r. 
0.02 

. ýi 

-0.02 

Exposure at 70 °C after prior age for 24h at 150°C 

-U- 1.2Cul. 2Mg 

-4- I. 2Cu2. OMg 

/ 

0.00 

10 1uu 1000 
Time(h) 

Figure 10.41: Isothermal resistivity changes of the alloys with varying magnesium 
concentration during exposure at 70°C. 

221 



Results and discussion Chapter 11: Effect of magnesium on Al-Li-Cu-Mg alloys 

CHAPTER 11 

Effect of magnesium concentration on the ageing 
characteristics of Al-Li-Cu-Mg alloys 

Chapters 8,9 and 10 have examined the effects of copper and magnesium in the 

ternary Al-Li-Mg, Al-Li-Cu, and Al-Cu-Mg systems. The conclusions extracted 

from these chapters will be the basis for the interpretation of the precipitation 

characteristics that take place in the more complicated quaternary Al-Li-Cu-Mg 

system. The following sections analyse the role of magnesium on the 

precipitation reactions occurring in 1.7Li1.2CuXMg alloys. For this, six different 

alloys with increasing magnesium additions from 0 to 3% were used. The chapter 

is divided into three main parts: 

9 State of the as-quenched solid solutions. 

" Isochronal precipitation characteristics. 

9 Isothermal precipitation characteristics. 

11.1 General survey of the as-quenched solid solutions 

The A1-1.7Li-1.2Cu-XMg-0.07Zr alloys have first been examined in the as- 

quenched state. XRD traces showed only the aluminium peaks indicating that the 

solution treatment and quenching procedure had dissolved and kept in solution 

all the majority of the solute. 
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The next step was to determine whether any association of magnesium atoms 

with other solute atoms was taking place in the as-quenched solid solution, e. g. 

Mg-Li, Mg-Cu, or Mg-Li-Cu associations. This was done by measuring the as- 

quenched resistivity, p0, and applying Matthiessen's rule to the po values. 

11.1.1 Resistivity of as-quenched alloys 

The electrical resistivities of pure metals and dilute alloys can be described in 

terms of Matthiessen's rule. Matthiessen's rule states that the total resistivity is 

the sum of two independent contributions; the residual resistivity po caused by 

scattering of electrons from alloying elements/impurities and structural 

imperfections, and the thermal resistivity p; produced by scattering from 

phonons. The electrical resistivity arising from structural imperfections, e. g. 

dislocations and grain boundaries, is much smaller than that produced by a 

concentration, C, of solute atoms. Hence, we can express Matthiessen's rule by 

the relation: 

p(T, C) = P1(T) + P0(C) 11.1 

For the as-quenched measurement, the alloy is in the solid solution state and 

because the samples are kept in liquid nitrogen the alloy remains in the solid 

solution state. All measurements are taken in liquid nitrogen so the thermal 

resistivity is very low. 

Matthiessen's rule can therefore be written: 

P(T, C) = pa(C) 11.2 
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For i different solute atoms equation 11.2 has the form: 

p(T, C) = Epo(Ci) 11.3 

For the Al-Li-Cu -Mg-Zr system, equation 11.3 has the analytical form : 

p(T, C) =EPo(Ci) = Po(CAI) + Po(CLi) + Po(Ccu) + Po(CMg) + Po(Czr) 11.4 

Equation 11.4 will now be used to calculate the theoretical resistivity of the 

various AI-Li-Cu-Mg-Zr alloys, and this value will then be compared with the 

experimentally measured values. 

The change in the resistivities of binary alloys of Al-Li, Al-Cu, Al-Mg and Al-Zr 

as a function of solute addition are available in the literature [531. The values are: 

Al-Li: 8.73 nQ2m/at%Li 

Al-Cu: 8.19 nQm/at%Cu 

Al-Mg: 4.86 nQm/at%Mg 

Al-Zr: 58.6 n[Im/at%Zr 

In order to use these values the compositions of the Al-Li-Cu-Mg-Zr alloys have 

to be converted from wt% to at%. This has been done using the relation: 

2637916656wi 
at%i - (977730.4137wA1 + 1085115.86wß + 6981119.563) Ai 

11.5 

where i: Al, Li, Cu, Li, Mg, Zr 
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A; : atomic mass of i 

w1 : weight percent of i 

Equation 11.4 can take the form: 

Chapter 11: Effect of magnesium on AI-Li-Cu-Mg alloys 

p(T, C) =Epo(Ci) = Po(CAI) + p*ux at%Lj + 

+p*c. x at%Cu+p*Mg x at%Mg + p*Zr X at%Zr 11.6 

where: 

p* is the contribution each single element (nQm/at%) makes to the resistivity. 

Po(CAI) is the resistivity value for pure aluminium in liquid nitrogen and is equal 

to 2.30 nflm. 

The resistivity calculations of atomic percent and the resistivity contribution 

from each element are given in table 11.1. By adding all the individual 

contributions the theoretical resistivities of the alloys are obtained and these are 

shown in table 11.2. 

The experimental and theoretical resistivity data of the Al-Li-Cu-Mg-Zr alloys 

are plotted as a function of magnesium concentration in figure 11.1. 

It can be seen that the experimental plot is in good agreement with the theoretical 

data. This means that in the quenched solid solution the magnesium atoms are 

behaving as though they were in a simple Al-Mg solid solution, i. e. immediately 

after the quench the magnesium atoms do not appear be associating with other 

solute atoms, i. e Li, Cu, Zr. 
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11.2 Isochronal precipitation characteristics 

The isochronal results presented in this section show that increasing 

concentrations of magnesium in the Al-Li-Cu-Mg alloys produce increasing 

amounts of S' phase. The mechanism by which this comes about could be one of 

the following: 

" Increasing magnesium concentration shifts the S' metastable solvus line to 

higher temperatures by - 7.0°C/wt%Mg (see chapter 8). 

" In magnesium-containing alloys, GPB zones will be produced (see chapter 

10). If S' were to be forming on the GPB zones in a manner similar to that 

described for 8' growing on GPc, zones (chapter 9), then this could also 

cause an increase in the volume fraction of 8' observed during a DSC run. 

" In magnesium-containing alloys, ageing may cause the formation of Li- 

Cu-Mg clusters capable of nucleating 8'. Increasing the concentration of 

magnesium would increase the number of such clusters and therefore 

increase the amount of 8' produced during ageing. 

At this stage of the thesis it is impossible to say which is the correct mechanism. 

However, as the results are presented in the chapter, each mechanism will be 

considered and it is hoped that by the end of this chapter there will be a body of 

evidence that indicates which is the correct mechanism. 

11.2.1 DSC (as-quenched plots) 

Figure 11.2 presents DSC comparative plots of the as-quenched alloys. 
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The 1.7Li1.2Cu alloy exhibits only a small high temperature exothermic peak at 

approximately 340°C (peak 0) that is attributed on the basis of XRD results to 

the precipitation of Tl (Al2LiCu) and T2 (AI6Li3Cu) phases (figure 11.12). 

Although this alloy will precipitate 8' phase during isothermal ageing, the fast 

heating rate used for the DSC run does not allow sufficient time for the 

precipitation of detectable amounts of S'. Increasing the magnesium addition 

from 0 to 3% results in the appearance of exothermic peaks in the temperature 

range 120-130°C and 330-370°C with endothermic peaks at intermediate 

temperatures. The initial exothermic peak I according to TEM and XRD results is 

due to the precipitation of S' (figures 11.7-11.11). It will be shown later that a 

significant amount of the heat evolved during peak I is also due to the formation 

of GPB zones; these zones are not detected by TEM or XRD analysis. The high 

temperature exotherm 0 is attributed to the precipitation of phase T2 on the basis 

of XRD analysis (figures 11.13-11.16). 

Careful observation of the intermediate endothermal effect leads to the 

conclusion that it consists of three overlapping endothermic peaks, designated K, 

G, and H. The size and position of these endotherms varies with increasing 

magnesium concentration. To assist in the identification of these overlapping 

peaks, DSC and resistivity measurements have been made on two low lithium 

alloys (1.3Lil. 2Cu1.2Mg and 1.3Lil. 2Cu2. OMg) in the as-quenched condition. 

The low lithium concentration reduces the amount of S' that forms and therefore 

there is less masking of the peaks from this phase. These results are now 

considered. 
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11.2.2 Investigation of low lithium alloys 

Figure 11.18 presents as-quenched DSC plots of 1.2Cul. 2Mg, 1.3Li1.2Cu1.2Mg 

and 1.7Lil. 2Cul. 2Mg alloys. The DSC plot of 1.2Cu1.2Mg alloy has already 

been discussed in the last chapter. The initial exothermic peak E is attributed to 

the formation of Mg-Cu clusters and GPB zones whereas the overlapping 

endothermal effects B, G, and H correspond to the dissolution of Mg-Cu clusters, 

GPB zones, and S" (the latter forming during the DSC heating). The addition of 

1.3Li to the 1.2Cul. 2Mg alloy (1.3Lil. 2Cul. 2Mg alloy) results in a larger initial 

exothermic event, peak I and the appearance of a larger overlapping endothermal 

effect, peak K, that has substituted for peak B. These changes in the 

1.3Li1.2Cul. 2Mg alloy are likely to be caused by the precipitation of a small 

amount of S' (since this is the temperature range where S' precipitation is 

expected). Such 8' precipitation would have to have been stimulated in some way 

since DSC analysis does not detect any S' precipitation in as-quenched binary Al- 

1.3Li alloys. This S' stimulation could be the result of any of the three 

mechanisms outlined in the previous section, i. e. shift of the S' solvus due to the 

presence of magnesium, precipitation of S' on GPB zones, and precipitation of S' 

from Li-Cu-Mg clusters. 

As the addition of lithium increases from 1.3 to 1.7% (1.7Li1.2Cu1.2Mg alloy) 

significant stimulation of peaks I and K has taken place. This behaviour can be 

explained by the increased supersaturation of lithium that results in a higher 

driving force for S' precipitation. It should be noted that the size of the GPB 
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dissolution peak G has decreased in the 1.7Lil. 2Cul. 2Mg alloy. This could be 

explained if S' is nucleating from Li-Cu-Mg clusters since in this case less copper 

and magnesium atoms would be available for GPB zone formation. 

The isochronal resistivity plots of the low lithium alloys are shown in figure 

11.19. Also included is the isochronal resistivity plot of a 1.7Li binary alloy. The 

resistivity peak A' at about 140°C observed in the 1.2Cul. 2Mg alloy is due to the 

formation of Mg-Cu clusters and GPB zones that are smaller than the critical size 

for electron scattering (see previous chapter). Taking into consideration the DSC 

results (figure 11.18) the significant increase in the height of peak A' caused by 

adding 1.3%Li to the 1.2Cu1.2Mg alloy (1.3Li1.2Cul. 2Mg alloy) can be 

attributed to the formation of fine S' that co-exists with the GPB zones. The fine 

S' and GPB zones then make approximately the same contributions to the 

resistivity (figure 11.20). Increasing the temperature beyond 140°C causes the 

resistivity to start decreasing due to growth of the fine S' and GPB zones. As the 

S' solvus temperature (-'200°C) is approached the fine S' starts dissolving and 

GPB zones continue to grow. At about 250 °C, dissolution of the small GPB 

zones occurs whereas the larger ones transform into S" as described in the 

previous chapter for 1.2Cu1.2Mg alloys. 

Increasing the lithium addition to 1.7% (1.7Lil. 2Cul. 2Mg alloy) results in the 

formation of a double resistivity peak at 70 and 200°C, peaks B' and C' 

respectively. The early peak B' corresponds to the formation of fine S' that grows 

through the critical electron scattering size very fast due to the large driving force 
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for S' precipitation (large supersaturation of lithium). However, the positive 

contribution to resistivity from the presence of GPB zones prevents the resistivity 

from dropping below the baseline. As the temperature increases beyond 100°C 

the GPB zones grow and become more effective scattering centres for electrons 

resulting in a second increase of resistivity. As the temperature approaches the S' 

metastable solvus temperature (-200°C) dissolution of S' commences, until at 

200°C only GPB zones remain. Temperatures higher than 200°C result in 

dissolution of GPB zones and formation of S". 

Finally, comparison of the 1.7Lil. 2Cul. 2Mg alloy with the 1.7Li binary alloy 

shows that the increase of resistivity observed in the binary alloy at 0°C, which 

can be attributed to the formation of ordered domains, is absent (figure 11.19). It 

can be concluded that in Al-Li-Cu-Mg alloys the nucleation ordering is likely to 

have been suppressed and S' formation now takes place either from Li-Cu-Mg 

clusters or is nucleated on GPB zones. 

The effect of lithium on the precipitation characteristics of the higher 

magnesium alloy (1.2Cu2. OMg alloy) appears to be very similar to that described 

above i. e. the increase in lithium concentration from 0 to 1.7% causes stimulation 

of fine S' precipitation with enhanced kinetics (figures 11.21 and 11.22). The 

only change is on the isochronal resistivity plot of 1.3Lil. 2Cu2. OMg. This alloy 

exhibits a double resistivity peak at 110 and 180°C, peaks B' and C' respectively, 

which was not observed for the lower magnesium alloy (1.3Lil. 2Cul. 2Mg alloy) 

(figure 11.23). This could be explained by assuming a slightly higher lithium 
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concentration in the 1.3Lil. 2Cu2. OMg alloy. 

The results from the low lithium Al-Li-Cu-Mg alloys have shown: 

" The presence of copper and magnesium in these alloys enhances the 

kinetics of S' formation. The mechanism by which the kinetics are 

enhanced is not clear at this stage of investigation. 

" Increasing the lithium concentration from 1.3 to 1.7% results in a further 

increase of fine 8' precipitation with enhanced reaction kinetics. 

11.2.3 Investigation of 1.7Lil. 2CuXMg alloys 

Referring back to figure 11.2, it can be seen that increasing magnesium 

concentration from 0.7 to 2.0% results in a significant increase in the size of peak 

K indicating that stimulation of S' has taken place. The GPB zone dissolution 

peak G also appears to increase in size and this will be discussed later since it is 

an unexpected result (it was found in the last chapter that in lithium-free alloys 

magnesium did not effect GPB zones). By subtracting the enthalpy for GPB zone 

formation in an as-quenched 1.2Cu1.2Mg alloy (peak E, figure 11.18) from the 

enthalpy of exothermal effect I and using equation 8.2 it is possible to estimate 

the volume fraction of S' precipitated in 1.7Lil. 2CuO. 7-3. OMg alloys (figure 

11.4). It should be noted that the 1.2Cul. 2Mg alloy was chosen because, as 

shown in the last chapter, the amount of Mg-Cu clusters formed in this alloy is 

very small and therefore the results of the subtraction are more accurate. The 

calculations were based on the exothermal effect I because there are less 

overlapping effects to influence the calculation of S' volume fraction. According 
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to figure 11.4 the 8' volume fraction exhibits only a small increase with 

increasing magnesium concentration from 0 to 1.2%. As the magnesium 

concentration increases further from 1.2 to 1.4% to 2.0% the S' volume fraction 

increases sharply. Further increase of magnesium beyond 2.0% causes a drop in 

the volume fraction of 8'. From figure 11.4 it can be seen that the volume 

fraction of S' precipitated in 1.7Li1.2CuXMg alloys is slightly larger compared 

with 1.7LiXMg alloys for concentrations up to 1.2%. The difference increases 

dramatically with a further increase in magnesium concentration from 1.2 to 1.4 

and 2.0%. 

These results enable the following comments to be made on the mechanism by 

which magnesium stimulates S' precipitation in 1.7Li1.2CuXMg alloys. 

9 Shift of the S' solvus boundary to a higher temperature is not the primary 

cause of 8' stimulation (compare the plots of All. 7LiXMg with Al- 

1.7Li 1.2CuXMg). 

9 The small amount of 8' enhancement over the range 0-1.2%Mg in the 

1.7Lil. 2CuXMg alloys could be caused by precipitation on GPB zones 

since it is known that the number of GPB zones will be increasing over 

this composition range. 

" The very large stimulation of 8' that occurs over the range 1.4-3.0% in the 

1.7Li 1.2CuXMg alloys cannot be the result of precipitation on GPB zones 

since it is known from the previous chapter that the number of GPB zones 

is not increasing over this composition range. This means that the 
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stimulation of Win Al-Li-Cu-Mg alloys containing >_1.4Mg is probably 

the result of the formation of Li-Cu-Mg clusters which are capable of 

rapidly developing into 8' precipitates (hereafter referred to as CLS'). It is 

interesting to note that this cluster development occurs only after 

> 1.2%Mg has been added. It may be that up to 1.2%Mg most of the 

magnesium is used in producing GPB zones; beyond 1.2%Mg "free" 

magnesium is available in the matrix to gather both copper and lithium 

thus forming Li-Cu-Mg clusters. This implies that Mg is the dominating 

species that controls Li-Cu-Mg cluster formation. 

" Although the primary cause of the increased volume fraction of S' in Al- 

Li-Cu-Mg alloys is not due to shift of the S' solvus boundary, the shift of 

the boundary may have a contributory effect on S' precipitation. A shift in 

the boundary will cause an increase in the driving force for S' 

precipitation, i. e. an increased driving force for the Li-Cu-Mg clusters to 

transform to CLS'. 

The precipitation characteristics change as the level of magnesium reaches 3.0% 

(1.7Li1.2Cu3. OMg alloy). From figure 11.2 it can be clearly seen that the 

decrease in the size of peak I is accompanied by a 20°C-shift to a higher 

temperature. Endothermic peak G exhibits also a decrease in its size, suggesting 

that retardation of both S' and GPB zones has occurred. At about 270°C a new 

endothermic peak (peak J) has been developed. The double peak at 3 10°C and 
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340°C is attributed on the basis of XRD results to TM (Al2LiMg) and T2 phases 

(figure 11.17). From the above the following changes can be summarised with 

increasing magnesium concentration from 2.0 to 3.0%: 

" Retardation of S' and GPB zones. 

" Development of a new endothermic peak at approximately 270°C, peak J. 

" Precipitation of the equilibrium phase Al2LiMg (TM) at about 310°C. 

It is believed that all these changes relate to each other. Figure 11.3 gives the 

isothermal section of the Al-Li-Mg system at 200°C. It can be seen that the 

3.0Mg alloy lies well within the a+TM area suggesting that the thermodynamic 

state is different from that in lower magnesium alloys. The high driving force for 

TM precipitation is confirmed by the XRD results. It is postulated that a precursor 

of the equilibrium TM Phase (T'M) may co-precipitate with S' and GPB zones 

during the early stages of the isochronal heating (peak I) that consumes lithium 

and magnesium atoms at the expense of S' and GPB zones. This can also explain 

the 20°C-displacement of peak I to a higher temperature as now the activation 

energy for the formation of both 8' and GPB zones is larger. 

11.2.4 Determination of the activation energy for S' formation 

In order to cast more light on the process of CL 8' nucleation, it is useful to 

determine the activation for 8' formation in these alloys. This has been done 

using DSC analysis and assuming that the majority of the initial exotherm is the 

result of 8' precipitation. 
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Kissinger [52] has shown that the activation energy of a reaction occurring 

during heating at a constant rate can be measured. For DSC experiments (non- 

isothermal heating) it can be shown, that the relation between the temperature for 

a fixed stage of transformation, Tf, and the heating rate, (D, is given by the 

following equation: 

ln(T? /(D) = (EA/kBTf) + lnß f 11.1 

where :ßf is the state variable fully determining that fixed state of transformation 

EA is the activation energy of the process 

kB is Boltzmann's constant 

Thus, the activation energy for S' formation can be obtained from the slope of 

the plot: 

In(Tf /cD) vs 1/Tf 11.2 

where Tf is the temperature of the exothermic peak in K and cD the heating rate 

of the DSC run in deg/sec. 

Table 11.3 records the Tf data for each (D and the ln(Tf / (D) , 1/Tf values for the 

1.7Li 1.2Cu2. OMg alloy. 

From linear regression of the data in table 11.3 it was found that the activation 

energy of 8' formation is equal to 62 kJ/mol (figure 11.5). This value is much 

lower than that associated with diffusion of lithium in aluminium (130 id/mol) 

but is in the range of activation energies measured for the movement of vacancies 

in aluminium alloys, that is 45-65 kJ/mol. Therefore, it can be concluded that S' 

precipitation in Al-Li-Cu-XMg alloys is controlled by the presence of excess 
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vacancies quenched-in from solution heat treatment. It is postulated that these 

vacancies bind with "free" magnesium in solid solution; these Mg-vacancy pairs 

then diffuse and gather copper and lithium atoms thus producing Li-Cu-Mg 

clusters which are capable of nucleating 8'. 

11.2.5 Isochronal resistivity 

Comparative resistivity plots of all the alloys are presented in figure 11.24. The 

1.7Li1.2Cu alloy exhibits a small resistivity peak at 40°C that is attributed to the 

formation of a small volume fraction of 8' with size smaller than the critical size 

for electron scattering. Higher temperatures result in growth of S' and the 

resistivity drops towards the baseline (-120°C). In the temperature range 120- 

NOT the resistivity traces the baseline as S' dissolution occurs. As the 

temperature increases from NOT to 370°C the resistivity decreases below the 

baseline due to the precipitation of Tl and T2 phases. 

The addition of magnesium to the alloy results in the appearance of two well 

developed peaks at approximately 80 and 200°C, peaks B' and C'. As already 

shown in the section on low lithium alloys, peak B' is due to the formation of 

fine S', probably CLS', that occurs rapidly at low temperatures and peak C' is due 

to GPB formation. There must be a contribution to peak B' from GPB but figures 

11.19 and 11.22 suggest that their contribution at low temperatures is small. As 

the temperature increases beyond 80°C CL6' grows causing a resistivity drop. At 

these higher temperatures the contribution from GPB zones becomes dominant 
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and the resistivity starts increasing again. As the temperature approaches the 

metastable solvus temperature of 8' (200°C) dissolution of CL 8' occurs. More 

copper and magnesium atoms therefore become available to grow the GPB 

zones. GPB zones attain the critical size for electron scattering at 200°C (peak 

C'). This suggests that GPB zones follow a low rate of growth due to the fact 

that the majority of copper and magnesium atoms are captured by the initial 

development of Li-Cu-Mg clusters. 

As the magnesium concentration increases from 0.7 to 2.0% the height of peak B' 

increases (figure 11.25) suggesting that stimulation of CLS' has occurred, this 

being in agreement with the DSC results. The position of this peak remains 

unchanged indicating that no changes in the reaction kinetics have taken place. 

As the magnesium increases to 3.0%, peak B' exhibits a marked decrease in its 

size and a 20°C-shift to a higher temperature. This behaviour indicates that 

significant retardation of 8' has occurred and that the kinetics for CLS' 

precipitation are slowed down which is in perfect agreement with the DSC 

results. As discussed earlier this is probably due to movement from a 

8-containing phase field into the a+TM phase field thereby resulting in the 

formation of pre-cursor T'M phases. Further work is required to confirm these 

ideas. 

Peak C' is attributed to the formation of GPB zones with size smaller than the 

critical size for electron scattering, and surprisingly this exhibits an increase in its 
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height with increasing magnesium, suggesting that stimulation of GPB zones has 

occurred (figure 11.26). In lithium-free alloys, such stimulation of GPB zones by 

magnesium was not observed. It may be that in lithium-containing alloys, Mg-Cu 

clusters do not form (they are replaced by Li-Cu-Mg clusters which evolve into 

S'). The absence of Mg-Cu clusters may have the effect of increasing the driving 

force for GPB zones, with their volume fraction therefore increased. 

Additionally, as the C L5' dissolves, the copper and magnesium atoms that are 

released are available for the formation of further GPB zones. 

11.3 Isothermal precipitation characteristics 

This section examines the effect of magnesium on the isothermal precipitation 

characteristics of Al-Li-Cu-Mg alloys. In order to overcome the problem of 

overlapping DSC effects that makes difficult the identification of the phases that 

precipitate during isothermal ageing, low lithium alloys (1.3Lil. 2CuXMg) were 

also examined. 

Five different heat treatments have been used: 

" Ageing for 1000 h at 70,100 and 150 T. 

" Ageing for 24 h at 150 °C. This simulates the damage tolerant heat 

treatment applied to alloys based on the Al-Li system. 

" Prior ageing for 24 hat 150 °C following by exposure for 1000 hat 70 °C. 

This double heat treatment simulates the conditions that a commercial 

aerospace alloy encounters under service conditions. 
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11.3.1 Age at 70°C 

11.3.1.1 Investigation of low lithium alloys 

Figure 11.27 presents the DSC comparative plots of 1.2Cul. 2Mg and 

1.2Cu2. OMg alloys with lithium concentrations of 1.3 & 1.7%. The addition of 

1.3% Li to the 1.2Cul. 2Mg alloy results in the appearance of a well developed 

endotherm (peak K) at approximately 190°C that is the result of the formation of 

S' during the age at 70°C. The addition of lithium has also caused a shift of 

endothermic peak G to a higher temperature by 15°C indicating that larger-sized 

GPB zones have formed. This can be explained by the high binding energy 

between lithium atoms and vacancies that results in a decrease in the 

concentration of excess free vacancies and in turn to a lower nucleation rate of 

GPB zones in the early stages of ageing. As the concentration of lithium 

increases from 1.3% to 1.7% additional S' precipitation takes place (enlargement 

of peak K) as a result of the higher supersaturation of lithium. In addition, peak K 

exhibits a 10°C-shift to a lower temperature which will be the result of a finer 

dispersion of S' due to the larger driving force for S' precipitation. 

The resistivity measurements on 1.2Cul. 2Mg alloys with additions of 1.3,1.7%Li 

during ageing at 70°C (figure 11.28(a)) show that GPB zones make a significant 

contribution to the total resistivity changes in the lithium-containing alloys, 

partly masking the effect of S'. By subtracting the effect of GPB zones it can be 

seen (figure 11.28(b)) that in the 1.3Li1.2Cul. 2Mg alloy the resistivity attains a 

peak after 4h of ageing due to the precipitation of fine S' of size <_2 nm (critical 
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size for electron scattering). Longer ageing times cause a drop of resistivity 

below the baseline as growth of 8' over the critical electron scattering size 

occurs. As the lithium concentration increases to higher levels (1.7Lil. 2Cul. 2Mg 

alloy) the resistivity reaches the critical size for electron scattering in much 

shorter ageing times due to the larger supersaturation of lithium that causes 

significant enhancement of S' precipitation reaction kinetics. 

The situation is not significantly different for the higher magnesium alloys. The 

addition of 1.3% Li to 1.2Cu2. OMg alloy causes an increase in the endothermal 

effect K at about 180°C due to the dissolution of 8'. Again, the addition of 

lithium has resulted in a displacement of the endothermic peak G to a higher 

temperature by 10°C indicating that a coarser distribution of GPB zones has 

formed. Increasing the lithium addition from 1.3 to 1.7% results in additional 

S' precipitation as a result of the higher driving force for S' precipitation. 

The resistivity plots (figure 11.28(b)) show that the 1.3Lil. 2Cu2. OMg alloy 

attains a resistivity peak after about 2.5 h of ageing. As the lithium concentration 

increases from 1.3% to 1.7% (1.7Lil. 2Cu2. OMg alloy) a resistivity peak is 

attained at much earlier ageing times (-0.4 h) suggesting that considerable 

acceleration of 6' precipitation reaction kinetics has occurred. 

The isothermal resistivity plots of 1.3Lil. 2Cul. 2Mg and 1.3Lil. 2Cu2. OMg 
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alloys show that during the first hour of ageing at 70°C the reaction kinetics for 

precipitation is reduced as the magnesium concentration increases from 1.2% 

to 2.0% (figure 11.28(b)). This suggests that the additional magnesium has not 

significantly changed the position of the a/8' solvus boundary (this would 

increase the S' precipitation rate). A possible explanation is that clusters of Li- 

Cu-Mg rapidly form during the early stages of ageing resulting in a short delay in 

the formation of 6' (which form from the clusters). Once S' starts evolving from 

the clusters a fine dispersion of 8' results with higher volume fraction than that 

observed in the 1.3Lil. 2Cul. 2Mg alloy, i. e. as evidenced by the DSC results 

after ageing 1000 h. 

From the above the following can be summarised: 

9 The phases that precipitate during ageing at 70°C in the lithium- 

containing alloys are S' and GPB zones. 

41 As the lithium concentration increases from 1.3 to 1.7% the driving force 

for S' precipitation becomes larger, producing a higher volume fraction of 

finer 8'. The precipitation reaction kinetics of S' are also significantly 

enhanced. 

" The addition of lithium to 1.2Cul. 2Mg and 1.2Cu2. OMg alloys produces a 

coarser distribution of GPB zones. This can be explained by a decrease in 

the concentration of free vacancies due to the high binding energy with 

lithium atoms that results in a lower nucleation rate of GPB zones. 
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" The increase of magnesium concentration from 1.2% to 2.0% in the low 

lithium alloys slows the reaction kinetics of S' precipitation during the 

early stages of ageing at 70°C. This suggests that magnesium is not 

significantly increasing the a/S' solvus temperature, but is promoting the 

formation of Li-Cu-Mg clusters. After 1000 h of ageing a larger volume 

fraction of finer S' has formed in the higher magnesium alloy. This may be 

the result of nucleation of 8' on Li-Cu-Mg clusters. 

11.3.1.2 Investigation of 1.7Lil. 2CuXMg alloys 

The DSC comparative plots of the 1.7Lil. 2CuXMg alloys after ageing for 1000 h 

at 70°C are given in figure 11.29. The 1.7Li 1.2Cu alloy exhibits an endothermic 

peak at 180°C, peak K, due to the dissolution of 8'. 

The addition of 0.7%Mg causes a marked increase in the size of endothermal 

effect K indicating significant stimulation of S' precipitation. The overlapping 

endothermal effects G and H correspond to the dissolution of GPB zones and S" 

(the latter having formed during the DSC run). DSC heating to higher 

temperatures results in the appearance of a broad exotherm (260-380°C) with 

peaks at 280 and 350°C, that correspond to the precipitation of equilibrium 8 and 

T2 phases respectively. 

Increasing magnesium concentration from 0.7% to 3.0% causes enlargement of 

the area of peak K, suggesting that further stimulation of 8' has taken place. By 

measuring the dissolution enthalpy (area of peak K) and applying equation 8.2, 
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the volume fraction of 8' was estimated for each alloy. The results obtained are 

presented in figure 11.30 where the volume fraction of S' is plotted versus the 

magnesium concentration. Also included is the corresponding plot for 1.7LiXMg 

alloys (i. e. no copper addition). It can be seen that the addition of 0.7%Mg causes 

a very small increase in the volume fraction of S' suggesting that slight 

stimulation of S' precipitation has occurred. This could be explained by the 

presence of GPB zones that act as sites for heterogeneous nucleation of S' in a 

manner similar to GPcu zones in Al-Li-Cu alloys (see chapter 9). As the 

magnesium concentration increases from 0.7% to 1.2% there is little change in 

the S' volume fraction. On the basis of the DSC results, it is believed that in this 

concentration range all the magnesium is consumed by GPB zone formation, 

resulting in a slight increase in their size without having any effect on their 

number density and therefore on the nucleation rate of S'. 

Increasing magnesium concentration from 1.2% to 1.4% results in a sharp rise in 

the volume fraction of 8'. It is postulated that all the magnesium added beyond 

1.2% enters solid solution rather than forming GPB zones and now forms 

vacancy rich Li-Cu-Mg clusters that are capable of nucleating S' much more 

effectively than GPB zones. Levels of magnesium higher than 1.4% do not 

produce further increments in S' volume fraction indicating that the maximum 

volume fraction of S' (as determined by the oc/S' solvus boundary) has already 

been attained for 1.4% Mg additions. 

Comparison with the 1.7LiXMg alloys plot leads to the conclusion that up to 
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1.2% magnesium the volume fraction of S' precipitated in the 1.7Li1.2CuXMg 

alloys is very close to that formed in the 1.7LiXMg alloys, suggesting that the 

shift of the a/S' solvus line to higher temperatures results in almost the same 

stimulation of S' precipitation as that from GPB zones. However, the presence of 

copper in the 1.7Lil. 2CuXMg alloys for magnesium concentrations higher than 

1.2% appears to cause a dramatic stimulation of S' precipitation, via the 

formation of Li-Cu-Mg clusters, that cannot be achieved in the non-copper 

1.7LiXMg alloys by a shift of the S' metastable solvus line to higher 

temperatures. 

The resistivity plots of the 1.7Li1.2CuXMg alloys during ageing at 70°C and the 

same plots after subtraction of the effect of GPB zones are presented in figures 

11.31(a) and 11.31(b) respectively. The resistivity plot of 1.7Li1.2Cu alloy has 

already been discussed in chapter 9. The initial increase of resistivity in this alloy 

can be attributed to ordered domains which scatter the conduction electrons. 

Spinodal decomposition of the ordered domains produces more effective 

scattering centres for the conduction electrons causing a second increase of 

resistivity. A resistivity peak is not reached even after 1000 h of ageing as the 

spinodal decomposition occurs at a slow rate. It is believed that quenched-in 

vacancies becoming trapped by ordered domains and therefore the diffusion of 

lithium atoms to the spinodally decomposing regions is difficult. 

Increasing the magnesium concentration from 0 to 0.7% results in a resistivity 

peak (peak A') after 0.4 h of ageing suggesting that the reaction kinetics of S' 
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precipitation are significantly enhanced. As the magnesium concentration 

increases from 0.7% to 1.0% to 1.2% no further changes are observed with 

respect to the position and magnitude of peak A'; this is in agreement with the 

DSC results (figure 11.29). As the magnesium concentration increases from 

1.2% to 1.4% the height (but not position) of peak A' exhibits a dramatic 

increase. This suggests that significant stimulation of S' has taken place 

producing a large volume fraction of fine S' (higher number density) that can 

scatter the conduction electrons much more effectively. This stimulation of S' is 

attributed to the formation of Li-Cu-Mg clusters that result in an increase in the 

nucleation rate of S'. The fact that the position of peak A' does not change 

suggests that Li-Cu-Mg clusters do not affect the growth rate of S' precipitation 

and consequently the critical size for electron scattering is reached after the same 

ageing time. A further increase in magnesium concentration from 1.4% to 2% 

does not cause any additional change in the magnitude and position of peak 

A', indicating that the number of Li-Cu-Mg clusters does not increase further and 

therefore the same number density of S' is produced. 

Higher levels of magnesium beyond 2.0% (1.7Lil. 2Cu3. OMg alloy) cause a 

dramatic change in the resistivity behaviour. The early stages of ageing show a 

clear double peak (at 1 and 10h ageing) figure 11.31(a). The reasons for this 

behaviour need further investigation with TEM but it is thought that the cause of 

this behaviour is connected with a shift from a phase field containing 5 into the 

a+TM phase field as the level of magnesium reaches 3%. 
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11.3.2 Age at 100°C 

Chapter 11: Effect of magnesium on Al-LI-Cu-Mg alloys 

11.3.2.1 Investigation of low lithium alloys 

According to figure 11.32, the addition of 1.3% Li to 1.2Cul. 2Mg 

(1.3Li1.2Cul. 2Mg alloy) results in the appearance of an endothermic peak at 

about 210°C (peak K) that is due to the dissolution of 8'. Increasing the lithium 

concentration to higher levels (1.7Li1.2Cu1.2Mg alloy) causes enlargement of 

the size of peak K due to additional S' precipitation as the lithium supersaturation 

becomes larger. No changes are observed for endothermal peak G. 

The resistivity plots of the above alloys are presented in figure 11.33(a) and in 

figure 11.33(b) after subtracting the effect due to GPB zones. The 

1.3Lil. 2Cul. 2Mg alloy exhibits an initial increase of resistivity and a peak is 

reached after 2h of ageing that is due to the formation of S' of size equal to that 

for the critical size for electron scattering (<2nm) (figure 11.33(b)). 

Increasing the lithium concentration to 1.7% (1.7Lil. 2Cul. 2Mg alloy) causes a 

rapid drop of resistivity to below the baseline at very short ageing times (0.1 h) 

indicating that the reaction kinetics of S' precipitation have been dramatically 

accelerated. 

The same trends are observed for the higher magnesium alloys 

(XLi1.2Cu2. OMg). As expected, higher levels of lithium (1.7Lil. 2Cu2. OMg 

alloy) cause a significant increase in the size of endothermic peak K as additional 

precipitation of S' occurs. Comparison of the resistivity plots of 
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1.3Lil. 2Cul. 2Mg and 1.3Lil. 2Cu2. OMg alloys (figure 11.33(b)) suggests that S' 

precipitation kinetics are slower in the higher magnesium alloy in the early stages 

of ageing (up to -1 h) and this could again, be due to the formation of Li-Cu-Mg 

clusters in the early stages of ageing. These clusters subsequently develop into S' 

precipitates giving enhanced S' precipitation after moderate times of ageing (i. e. 

CL 5'). However after 1000 h ageing at 100°C the DSC results (figure 11.32) 

show that the S' volume fraction is the same in both alloys, showing that 

magnesium is influencing the kinetics of S' precipitation and not the 

thermodynamics i. e. the position of the a/S' solvus boundary. 

From the above the following can be summarised: 

" The phases that precipitate in Al-Li-1.2Cu-Mg alloys containing 1.3-1.7Li 

and 1.2-2.0Mg during ageing for 1000 h at 100°C are CLB' and GPB 

zones. 

" Independently of the magnesium levels, the increase in lithium 

concentration results in additional 8' precipitation and enhanced kinetics 

due to the larger driving force for S' precipitation as the lithium 

supersaturation increases. 

" The addition of lithium to the ternary Al-Cu-Mg alloys causes an increase 

in the size of the GPB zones that is attributed to a decrease in their 

nucleation rate. 

" Comparison of the low lithium alloys reveals that magnesium causes a 
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retardation of the S' precipitation kinetics in the very early stages of 

ageing that can be attributed to the prior formation of Li-Cu-Mg clusters. 

11.3.2.2 Investigation of 1.7Lil. 2CuXMg alloys 

The DSC comparative plots of 1.7Lil. 2CuXMg alloys are shown in figure 11.34. 

The 1.7Lil. 2Cu alloy exhibits an endothermic peak, peak K, at 200°C that is 

caused by the dissolution of S'. As the magnesium concentration increases from 0 

to 0.7 % the endothermic event K becomes broader due to the additional 

dissolution of GPB zones and S" (the latter being formed during the DSC 

heating). Because the dissolution events overlap it is extremely difficult to 

determine the positions and the areas of the endothermal effects that correspond 

to GPB zones and S". Nevertheless, based on the DSC results of chapter 10 it 

was feasible, by subtracting the enthalpy of GPB zones and S" from the whole 

endotherm K, to estimate the heat absorbed by the dissolution of 8' only. Then, 

by using equation 8.2, the volume fraction of 8' was calculated. The data 

obtained were plotted as a function of magnesium concentration (figure 11.35). 

As can be seen, increasing magnesium concentration from 0 to 1.2% produces 

only a very small increase in the volume fraction of S', probably the result of the 

shift of the a! 8' solvus boundary or possibly formation of S' on GPB zones. As 

the magnesium concentration increases from 1.2% to 1.4%, excess magnesium 

(over that to form GPB zones) becomes available for the formation of Li-Cu-Mg 

clusters resulting in significant stimulation of 8' precipitation. A further increase 
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in magnesium concentration to 2.0% does not result in a further increase in the 8' 

volume fraction, suggesting that the equilibrium 8' volume fraction (as 

determined by the a/S' solves boundary) has already been reached at the 1.4% 

Mg level. An increase in magnesium from 2.0 to 3.0% causes a decrease in the 

volume fraction of 8' indicating that retardation of 8' precipitation has happened. 

This is probably the result of TM or precursor to TM forming during the age at 

100°C; such phases would consume a significant amount of lithium atoms at the 

expense of S'. 

Comparing the S' volume fraction plots of 1.7Li 1.2CuXMg and 1.7LiXMg alloys 

(figure 11.35), it can be seen that, as with ageing at 70°C, as the magnesium 

concentration increases from 1.2% to 1.4% the presence of copper causes a 

marked stimulation of 8' precipitation through the formation of Li-Cu-Mg 

clusters; such stimulation is considerably greater than that caused by the shift of 

the a/S' solvus to higher temperatures (that takes place in the non-copper alloys). 

The resistivity plots of the 1.7Lil. 2CuXMg alloys are presented in figures 11.36 

a, b. The resistivity plot of 1.7Lil. 2Cu alloy has already been discussed in 

chapter 9. The increase of resistivity is attributed to the combined effect of 

ordered regions and fine S' particles being produced on GPI, zones. After 50 h of 

ageing the critical electron scattering size is attained and the resistivity drops 

below the baseline. Once magnesium is added to 1.7Lil. 2Cu (1.7Li1.2Cu0.7Mg 

alloy) a dramatic enhancement of the kinetics of S' precipitation takes place and 
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the critical size for electron scattering is reached at or before the first resistivity 

measurement taken. The other magnesium containing alloys (1.0-2.0 Mg) exhibit 

a similar trend. The form of the 1.7Lil. 2Cu3. OMg resistivity plot is different 

from the lower magnesium alloys in that a pronounced resistivity peak appears 

after ageing for 0.5 h at 100°C. This could be caused by a precursor to TM; a 

TEM investigation is required to research this further. 

11.3.3 Age at 150°C 

11.3.3.1 Investigation of low lithium alloys 

Comparative DSC plots are given in figure 11.37. The addition of 1.3% Li to 

1.2Cu1.2Mg alloy causes a very small increase in the size of the initial 

endotherm (200-265°C) due to the dissolution of a small amount of S' in addition 

to GPB zones. This is to be expected because at 150°C a concentration of 1.3% 

Li lies on or very near to the S' metastable solvus line and therefore there is only 

a very small driving force for S' precipitation. 

Increasing the lithium addition to beyond 1.3% (1.7Li1.2Cul. 2Mg alloy) results 

in considerable enlargement of the endotherm due to the dissolution of a 

significantly larger volume fraction of S' (endothermic peak K). No conclusions 

can be extracted for GPB zone formation because endothermal effect G is totally 

overlapped by endothermic peak K. 

Figure 11.38a presents the resistivity plots of the alloys during ageing at 150°C. 

Ater the subtraction of the effect of GPB zones (1.2Cu1.2Mg alloy) (figure 
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11.38b), it can be seen that the 1.3Lil. 2Cul. 2Mg alloy exhibits an increase in 

resistivity that is due to the formation of a small volume fraction of 8' with size 

smaller than that for the critical size for electron scattering (S 2 nm). A resistivity 

peak is attained only after 24 h indicating that the kinetics are very slow, as 

expected by the very small driving force for S' Precipitation. Higher levels of 

lithium (1.7Lil. 2Cul. 2Mg alloy) causes the resistivity to commence decreasing 

after ageing approximately 1 h. This behaviour is attributed to the significant 

acceleration of the kinetics due to the increased driving force for S' precipitation; 

this is in perfect agreement with the DSC results. 

The higher magnesium alloys (1.3,1.7Li 1.2Cu2. OMg) exhibit very similar trends 

as the lithium concentration increases from 0 to 1.3 to 1.7% (figures 11.38a, b) 

i. e. additional 8' precipitation takes place with enhanced kinetics. 

Finally, comparison between the resistivity plots of 1.3Lil. 2Cul. 2Mg and 

1.3Lil. 2Cu2. OMg alloys suggests that the increase in magnesium concentration 

from 1.2% to 2.0% has not caused any changes in the reaction kinetics of 

S' precipitation. 

It should be noted that the study of the above alloys was limited to ageing at 150 

for 24 h because, as shown in the last chapter, longer ageing times at 150°C 

produce extensive precipitation of equilibrium phases. 

From the above results the following can be summarised for ageing for 24h at 

150°C: 
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9 The phases that precipitate in 1.3,1.7Lil. 2Cul. 2,2. OMg alloys for ageing 

up to 24h at 150°C are CLS' and GPB zones. 

" Increasing the lithium addition from 1.3% to 1.7% results in a large 

increase in the volume fraction of S' that is produced. 

9 No changes were observed for the reaction kinetics of S' precipitation in 

1.3Li1.2CuXMg alloys as the magnesium concentration was increased 

from 1.2 to 2.0%. 

11.3.3.2 Investigation of 1.7Lil. 2CuXMg alloys 

The DSC comparative plots of 1.7Lil. 2CuXMg alloys are shown in figure 11.39. 

The 1.7Lil. 2Cu alloy exhibits an endothermic peak (peak K) at about 245°C that 

is due to the dissolution of S'. Increasing magnesium concentration from 0 to 

0.7% results in a wider endothermal effect (170-275°C) due to the additional 

dissolution of GPB and S" phase. The amount of energy that corresponds to the 

dissolution of S' was calculated by subtracting the contribution of GPB zones and 

S" given by the DSC results of the lithium-free alloys given in the last chapter. 

By applying equation 8.2 to the data obtained the volume fraction of 8' was 

calculated for each alloy and plotted as a function of the magnesium 

concentration (figure 11.40). The 1.7Lil. 2CuXMg alloys do not exhibit any 

increase in the volume fraction of S' for magnesium concentrations up to 1.2%. 

As the magnesium concentration increases from 1.2% to 1.4% the 8' volume 

fraction increases considerably suggesting that stimulation of 8' precipitation has 
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occurred. Again, this is attributed to the formation of Li-Cu-Mg clusters that are 

capable of nucleating b' much more effectively than GPB zones. A further 

increase of magnesium concentration to 2.0% does not produce any further 

increase in S' volume fraction suggesting that the equilibrium volume fraction of 

S' has already been attained for the 1.4% Mg level. Higher levels of magnesium 

(1.7Li1.2Cu3.0Mg alloy) result in a significant decrease in S' volume fraction. As 

already referred in the previous section, this decrease is probably related to the 

precipitation of TM precursors that consume lithium atoms at the expense of S'. 

The resistivity plots for ageing up to 24 h at 150°C show that in the presence of 

magnesium the 8' precipitation kinetics are greatly enhanced (figure 11.41a, b). 

At low magnesium concentrations the enhancement of kinetics is likely to be the 

result of precipitation of 8' on GPB zones, but at higher magnesium 

concentrations it is likely to be the result of CU I formation. A more detailed 

comparison of the resistivity data is difficult since the magnitude of the 

resistivity decrease is a function not only of S' volume fraction, but also of S' 

precipitate size. 

11.4 Effect of ageing temperature 

This section considers the effect of ageing temperature on the precipitation 

characteristics of 1.7Lil. 2CuXMg alloys. The effect of ageing temperature on 

1.7Lil. 2CuO. OMg alloy has already been discussed in detail in chapter 9 (section 
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9.2.5). In this alloy the DSC thermograms showed that the maximum amount of 

S' is precipitated at 100°C (figure 11.42). This was attributed to the optimum 

combination of thermodynamics and kinetics at this ageing temperature. The 

isothermal resistivity curves (figure 11.51) indicated that at 70°C and 100°C, 8' 

forms on fine GPcu zones (resistivity increases) whereas at 150°C the dispersion 

of GPI, zones is so coarse that their influence on S' precipitation is minimal and 

the dominant process is classical nucleation and growth (long incubation period). 

It should also be noted that the highest volume fraction of S' is produced at 

100°C but this does not correspond to the largest decrease of resistivity (largest 

decrease is at 150°C). TEM examination showed that this was due to the much 

finer distribution of S' that forms during ageing at 100°C and this makes a 

positive contribution to the electrical resistivity. 

Figures 11.43-11.47 give the DSC plots of 1.7Li1.2CuO. 7-2. OMg alloys. As can 

be seen from figure 11.49 the largest volume fraction of 8' (peak K) is formed at 

100°C. Again, this is the result of the optimum combination of thermodynamics 

and kinetics. The displacement of peak K to higher temperatures with increasing 

ageing temperature (figure 11.50) is the result of the formation of a coarser 

dispersion of S'. 

The 1.7Lil. 2Cu3. OMg alloy does not follow the trend of the rest of the alloys i. e. 

the amount of S' decreases as the ageing temperature increases from 70°C to 

100°C (figure 11.48). Once again, it is believed that the reason for this behaviour 
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is the precipitation of TM precursors at temperatures 2100°C resulting in a 

reduction of the volume fraction of S' precipitation. 

The resistivity plots of the 1.7Li1.2CuO. 7-2. OMg alloys are presented in figures 

11.52-11.56. All the alloys exhibit during ageing at 70 °C an initial resistivity 

increase ending after short ageing times (-0.4 h) in a resistivity peak. This is the 

result of the formation of very fine S' of size smaller than the critical size for 

electron scattering. Longer ageing times cause a drop of resistivity below the 

baseline as growth of 8' occurs. As the ageing temperature increases from 70 to 

100 to 150°C, due to the enhanced ageing kinetics, the electron scattering critical 

size is attained before the first measurement can be taken. 

The resistivity plots of 1.7Lil. 2Cu3. OMg alloy are shown in figure 11.57. As can 

be seen the resistivity peak B', that is attained after a small drop of resistivity 

below the baseline, shifts to earlier ageing times as the ageing temperature 

increases from 70°C to 100°C. Presumably a similar peak occurs at 150°C after 

very short ageing times but this has not been detected due to the extremely rapid 

ageing kinetics at this temperature. A detailed TEM analysis needs to be carried 

out on this alloy in order to determine the cause of the resistivity peak. 

11.5 Exposure at 70°C after prior ageing at 150°C for 24 h 

This section examines the effects of varying magnesium concentrations on the 

embrittlement that an aged (24 h 150°C) Al-Li-Cu-Mg aerospace alloy 
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undergoes after prolonged exposure at 70°C during service. 

The DSC comparative plots, after ageing for 24 h at 150°C and after exposure for 

1000 h at 70°C of each 1.7Li 1.2CuXMg alloy are shown in figures 11.58-11.64. 

In order to measure the enthalpy that corresponds to the dissolution of 8' formed 

during exposure, the area of the dissolution peak after ageing for 24 h at 150°C 

was subtracted from the area of the peak after exposure for 1000 h at 70°C. By 

using equation 8.2, this enthalpy was converted to volume fraction of 8'. The 

volume fractions obtained are displayed in figure 11.65. It can be seen that as 

magnesium concentration increases from 0 to 1.2 % the volume fraction of S', 

that is produced during exposure, increases. However, further increase of 

magnesium from 1.2% to 1.4% results in a reduced volume fraction of 8' after 

exposure. 

For magnesium concentrations higher than 1.4% (1.7Lil. 2Cu2. OMg alloy) the S' 

volume fraction is actually reduced after subsequent exposure at 70°C. This 

behaviour could be explained by: 

Dissolution of S' caused by the formation of another Li-rich phase during 

exposure at 70°C. 

" Li-Cu-Mg clusters form at 150°C. Due to the high binding energy 

between Li Cu Mg atoms, these clusters require a high amount of 

enthalpy for their dissolution. It is postulated that during subsequent 

exposure at 70°C these clusters transform into 8' which in turn requires a 

reduced amount of enthalpy for dissolution. 
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11.6 Effect of exposure on the mechanical properties of 

1.7Lil. 2CuXMg alloys 

Figure 11.66 shows the changes in proof stress and fracture energy after 

exposure for 1000 h at 70°C. It can be clearly seen that for magnesium levels up 

to -1.0% the proof stress exhibits a significant increase that is accompanied by 

an analogous decrease in fracture energy. As the magnesium concentration 

increases beyond 1.0% the proof stress starts decreasing and finally for 

magnesium levels z2% no increase in proof stress is observed. In the same 

composition range (1.0-2.0%) the fracture energy increases indicating less 

embrittlement during exposure. This behaviour is in good agreement with the 

DSC results presented in the last paragraph where the largest volume fraction of 

exposure 8' was observed at 1.2%Mg. As the magnesium concentration increases 

beyond 1.2% the amount of 8' precipitated during exposure decreases resulting in 

a softer more ductile material. 

Summary 

The following is a summary of the results found in the present chapter. 

As quenched alloys 

" In the as-quenched condition magnesium atoms behave as though they are 

in a simple binary Al-Mg solid solution, i. e. the magnesium atoms do not 
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associate with other solute atoms, i. e. Li, Cu, Zr. 

9 In the low lithium Al-1.3Li-Cu-Mg alloys the presence of copper and 

magnesium enhances the kinetics of 8' formation. Increasing the lithium 

concentration from 1.3% to 1.7% results in an increase of fine S' 

precipitation with enhanced reaction kinetics. 

" In the 1.7Lil. 2CuXMg alloys the dominant mechanism for b' stimulation 

is not the shift of 8' solvus boundary to a higher temperature. 

" The small stimulation of 8' in 1.7Lil. 2CuXMg alloys over the range 0- 

1.2%Mg can be attributed to heterogeneous nucleation and growth on 

GPB zones. 

9 The marked enhancement of S' precipitation in the 1.7Li 1.2CuXMg alloys 

over the composition range 1.4-3.0%Mg is due to the formation of Li-Cu- 

Mg clusters which are capable of rapidly developing into 8' precipitates. It 

is important to be noted that the clustering process starts only after 

>1.2Mg has been added. It is believed that for magnesium levels up to 

1.2% the magnesium is used in producing GPB zones; beyond 1.2%Mg 

`free' magnesium is available in the matrix to gather both lithium and 

copper thus developing into Li-Cu-Mg clusters. 

" The activation energy for S' formation in 1.7Lil. 2Cu2. OMg alloy was 

62kJ/mol, which is in the range of activation energies measured for the 

movement of vacancies in aluminium. This suggests that S' precipitation 

in Al-Li-Cu-XMg alloys is controlled by the presence of excess vacancies 
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that have been quenched-in after solutionising. 

9 It is postulated that the retardation of S' and GPB zone formation that 

occurs in 1.7Lil. 2Cu3. OMg alloy is due to the formation of a precursor of 

the equilibrium TM phase (T'M). 

Isothermal ageing 

" At all ageing temperatures, increasing the lithium concentration in Al-Li- 

Cu-Mg alloys from 1.3 to 1.7% results in stimulation of 8' precipitation 

due to the increased supersaturation of lithium. During ageing at 70°C and 

100°C, an increase in magnesium concentration from 1.2 to 2.0% in the 

low lithium alloys (1.3Lil. 2CuXMg) results in a delay in the precipitation 

of 8' due to the rapid formation of Li-Cu-Mg clusters in the early stages of 

ageing. 

9 Isothermal ageing at 70,100, and 150°C causes significant enhancement 

of S' precipitation in 1.7Lil. 2CuXMg alloys as the magnesium 

concentration increases beyond 1.2%. 

9 At all ageing temperatures (70,100,150°C) retardation of S' takes place in 

the 1.7Lil. 2Cu3. OMg alloy. 

" The largest volume fraction of S' forms at 100°C where there is an 

optimum combination of thermodynamics and kinetics. Increasing the 

ageing temperature from 70 to 100 to 150°C results in a coarser dispersion 

of S'. 
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" The volume fraction of 6' that is produced in the 1.7Lil. 2CuXMg alloys 

during exposure at 70°C increases as the magnesium concentration 

increases from 0 to 1.2%. A further increase of magnesium results in a 

reduced volume fraction of 8' after exposure. 

" The maximum embrittlement after exposure at 70°C is observed for the 

1.7Lil. 2Cul. 2Mg alloy and is attributed to the maximum volume fraction 

of S' that precipitates in this alloy during exposure. 
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Table 11.1: Compositions of the alloys in at% and the corresponding contribution to 

rPc; ct; v; ty frnm each element 
Alloy Nr 267 268 269 270 271 272 

Mg wt% 0 0.7 1 1.4 2 3 

at% 0 0.75 1.01 1.50 2.14 3.21 

4.86 nS m/at% 
Li wt% 1.7 1.7 1.7 1.7 1.7 1.7 

at% 6.35 6.35 6.35 6.36 6.36 6.37 

8.73 nOm/at% 
Cu wt% 1.2 1.2 1.2 1.2 1.2 1.2 

at% 0.49 0.49 0.49 0.49 0.49 0.49 

8.19 nS m/at% 
Zr wt% 0.07 0.07 0.07 0.07 0.07 0.07 

at% 0.02 0.02 0.02 0.02 0.02 0.02 
58.6 nOm/at% 

Table 11.2: The experimental resistivity values (po exper. ) and the theoretical values 
extracted from equation 11.6. 

%Mg po Theor. po exp. 
0 60.57 63.59 

0.7 64.23 63.3 
1 65.82 63.22 

1.4 67.93 68.79 
2 71.08 72.96 
3 76.34 77.13 

`po: n. ohm. m 

Table 11.3: Data used in Kissinger method (see text) 
Tf (K) cp min In Tf ftb 1 /Tf 
487.013 5.0 10.767 0.00205 
494.062 10.0 10.103 0.00202 
501.454 20.0 9.439 0.00199 
513.222 40.0 8.793 0.00195 
520.157 60.0 8.414 0.00192 
529.204 80.0 8.161 0.00189 
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data obtained by using Kissinger analysis [77]. 
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Figure 11. 11: XRD spectrum of 1.7Lil. 2Cu3 . OMg alloys after ageing for 24 at 150°C. 
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Figure 11.12: XRD spectrum of 1.7Lil. 2CuO. OMg alloy after ageing for 24 h at 350°C. 
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Figure 11.13: XRD spectrum of 1.7Li1.2Cu0.7Mg alloy after ageing for 24 h at 350°C. 
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Figure 11.15: XRD spectrum of 1.7Lil. 2Cul. 4Mg alloy after ageing for 24 h at 350°C. 
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Figure 11.16: XRD spectrum of 1.7Lil. 2Cu2. OMg alloy after ageing for 24 hat 350°C. 
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Figure 11.28 (b): Comparative isothermal resistivity plots of 1.2Cul. 2Mg and 
I. 2Cu2. OMg alloys with lithium concentrations of 1.3% and 1.7% during ageing at 

70°C after the subtraction of the effect of GPB zones. 

0.35 

u. 30 

0.25 

0.20 

0.15 

0.10 

0.05 
°' (). (X) 

-0. ()5 

-(). IO 

-0.15 

4). 2O 

-0.25 

400 

I- 

h 

.. K. 
I 

F. 

1 

Age at 70°( br 1000 A 
1.7IiI. 2CuX1% alloys 

-0 ON* 
o. 7 
I, ON* 
1.2Mg 
14Mß 
2. ON 
30Mg 

0 50 100 150 2(X) 250 300 350 4(X) 

. 1. apure ( 0c 

Figure 11.29: Comparative DSC plots of I. 7Lil. 2CuXMg alloys after ageing for 1000 h 
at 70°C. 

277 

0.1 1 10 100 1000 
Time (h) 



Results and discussion 

20 

Chapter 11: Effect of magnesium on Al-Li-Cu-Mg alloys 

Afters eiE for 1000 hat 7ff C 

-A- I. 7Li I. 2QtXMg alloy s 
- -1.71il. N alloys 

15 

O 

10 

?, p 

5 

0 

u. v U. -') 1. V 1. D Z. u 2.5 3.0 
W% Mg 

Figure 11.30: S' volume fraction produced in 1.7Li1.2CuXMg and 1.7LiXMg alloys 
after ageing for 1000 h at 70°C. 

278 



Results and discussion 

4 

3 

2 

z 
co 

bS 
'°5 

-5 

-E 

Chapter 11: Effect of magnesium on Al-Li-Cu-hfg alloys 

Time (h) 

Figure 11.31 (a): Isothermal resistivity changes of 1.7Lil. 2CuXMg alloys during ageing 
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Figure 11.31 (b): Isothermal resistivity changes of 1.7Lil. 2CuXMg alloys during ageing 
at 70 °C after the subtraction of GPB zones. 
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Figure 11.32: Comparative DSC plots of 1.2Cul. 2Mg and 1.2Cu2. OMg alloys with 
lithium concentrations of 1.3 and 1.7% after ageing for 1000 h at 100°C. 
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Figure 1 1.33 (a): Comparative isothermal resistivity plots of 1.2Cul. 2Mg and 
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CHAPTER 12 

Effect of copper concentration on the ageing characteristics of 

Al-Li-Cu-Mg alloys 

In the previous chapter, the effect of magnesium on the precipitation 

characteristics of Al-Li-Cu-Mg alloys was investigated. Magnesium stimulated 

significantly the precipitation of S' over the concentration range 1.4%-2.0%. The 

analysis of the results showed that this stimulation came about via the formation 

of Li-Cu-Mg clusters. GPB zones appeared to have only a small effect on 

S'. Stimulation of S' precipitation by a shift of the a/8' solvus line to higher 

temperatures with increasing magnesium concentration, was of secondary 

importance. 

In the present chapter, the role of copper on the precipitation reactions taking 

place in 1.7Li1.2MgXCu alloys is investigated. For this, five different alloys 

with increasing copper additions from 0 to 3.0% were used. The chapter is 

divided into two main parts: 

9 Isochronal precipitation characteristics. 

" Isothermal precipitation characteristics 
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12.1 Isochronal precipitation characteristics 

The isochronal results to be displayed in this section indicate that increasing 

copper concentration produces increasing volume fractions of 8'. Taking into 

consideration the results of chapter 9 where it was shown that copper had no 

effect on the a/S' metastable solvus line, the mechanisms by which the 

stimulation of S' takes place could be one of the following: 

" Formation of 8' on GPB zones. As shown in chapter 10, copper stimulates 

the formation of GPB zones. If S' were to form heterogeneously on GPB 

zones then stimulation of S' will result. 

" Formation of Li-Cu-Mg clusters that are capable of nucleating S' in a 

manner similar to that described in the previous chapter. As the 

concentration of copper increases a larger number of these clusters may 

form and consequently increase the volume fraction of S'. 

12.1.1 DSC (as-quenched plots) 

The DSC comparative plots of the 1.7Lil. 2MgXCu alloys are presented in figure 

12.1. The fast heating rate does not allow sufficient time for S' precipitation in 

1.7Li1.2MgO. 0-0.6Cu alloys. The high-temperature exothermic peak 0 at 

approximately 320°C is due to the precipitation of the equilibrium phase T2 

(figure 12.2). Increasing the copper concentration from 0.6% to 1.2% results in 

the appearance of an exothermal effect (peak I) at approximately 110 °C that is 
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followed by a broad endotherm that consists of three overlapping peaks, K, G, M1, 

and H. The DSC plot of the 1.7Li1.2Cul. 2Mg alloy has already been discussed 

in detail in the last chapter. It was concluded that exothermic peak I is caused by 

the precipitation of S' and GPB zones, whereas endothermic peaks K, G, and H 

correspond to the dissolution of S', GPB zones and S" respectively. As the 

copper concentration increases from 1.2% to 2.0% the initial exotherm becomes 

much broader forming a double exotherm, peaks I' and V. Changes are also 

observed for the broad endotherm (150-270°C) where endothermic peak K has 

been replaced by two endothermic overlapping peaks, at about 170 and 200°C 

designated F and L respectively. 

In order to assist the identification of the overlapping peaks referred to above, 

resistivity measurements were made on two low lithium alloys 

(1.3Lil. 2Mgl. 2,2. OCu) (figure 12.4). It can be clearly seen that increasing the 

copper concentration from 1.2 to 2.0% results in the formation of two resistivity 

peaks (B' and C') superimposed on the GPB resistivity peak X. This must mean 

that S' is being produced by two mechanisms, and it is proposed that these are the 

formation from Li-Cu-Mg clusters and formation on GPB zones. It is believed 

that during peak B', precipitation of S' occurs via the formation of Li-Cu-Mg 

clusters (CLS') similar to the processes described for the Al-1.7Li-1.2Cu-XMg 

alloys, whereas peak C' corresponds to the nucleation and growth of S' on GPB 

zones (GPS'). The reason that peak B' (low temperature peak) was attributed to 
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CLS' and not to GPS' is because Li-Cu-Mg clusters can form much easier than 

GPB zones i. e. no interface has to be created between the clusters and the matrix 

and therefore there is a lower activation energy barrier for their formation. 

As the lithium concentration increases from 1.3% to 1.7%, peak B' shifts to a 

lower temperature indicating that growth of CLS' to the critical size for electron 

scattering is faster due to the enhanced kinetics caused by the higher lithium 

supersaturation. 

Finally, comparison of the 1.3,1.7Lil. 2Mgl. 2,2. OCu alloys with the Al-1.7Li 

binary alloy shows that the mechanism of S' precipitation in the copper and 

magnesium containing alloys is quite different from that in the 1.7Li alloy. The 

increase in resistivity observed in the binary alloy over the range 0-100°C is 

caused by the formation of ordered domains. A resistivity increase over this 

temperature range is absent in the copper and magnesium-containing alloys 

indicating that the nucleation ordering is suppressed and that S' precipitation 

occurs in a different way, i. e. via Li-Cu-Mg clusters and heterogeneous 

nucleation on GPB zones. 

Referring back to the DSC plots in figure 12.1, the exothermic peaks I' and 

I" can now be attributed to the precipitation of CL8' and GP8' respectively. 

Peaks F and L will then be caused by the dissolution of CLS' and GPS'. As the 

dissolution of GPS' proceeds, the original GPB zone on which the S' nucleated is 
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exposed and thus becomes free to grow producing the overlapping exothermal 

effect R. This is followed by GPB zone dissolution at about 230°C (peak G). 

Further DSC heating causes transformation of the larger sized fraction of GPB 

zones into S". Finally, dissolution of S" takes place at approximately 250°C 

(peak H). DSC heating to even higher temperatures causes a double exothermic 

peak at 290°C and 320°C, peaks Y and 0, that are attributed on the basis of XRD 

analysis to the precipitation of equilibrium phases S and T2 respectively. 

As the copper concentration rises beyond 2.0% (1.7Lil. 2Mg3. OCu alloy), 

enlargement of the size of all the DSC peaks is observed. This suggests that 

further stimulation of 8' has occurred as a result of the formation of a larger 

number of Li-Cu-Mg clusters and GPB zones. 

By integrating the area of exothermal effect I for 1.7Li1.2Cu1.2Mg alloy and I'+ 

I" for 1.7Li 1.2Mg2.0,3. OCu alloys, the enthalpy evolved during S' precipitation 

was measured. Applying equation 8.2, enabled the calculation of 8' volume 

fraction that precipitates in each of the 1.7Lil. 2MgXCu alloys. These data are 

plotted as a function of magnesium concentration in figure 12.3. It can be seen 

that for copper concentrations higher than 0.6% the volume fraction of 8' is 

increased relative to that in 1.7LiXCu alloys. It can be concluded that the 

presence of 1.2% magnesium in 1.7LiXCu alloys for copper concentrations 

higher than 0.6% results in significant stimulation of S' through the formation of 
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Li-Cu-Mg clusters which are capable of rapidly developing into 8', and GPB i 

zones that act as sites for heterogeneous nucleation of S'. 

12.1.2 Isochronal resistivity 

Comparative isochronal resistivity plots of the 1.7Li1.2MgXCu alloys are shown 

in figure 12.5. The 1.7Lil. 2MgO-0.6Cu alloys exhibit very little increase in 

resistivity suggesting that only very small amounts of 8' has formed, confirming 

the DSC results. As the copper increases from 0.6 to 1.2% two resistivity peaks 

form at 80 and 200°C, peaks B' and C', that respectively correspond to the 

formation of CLS' and GPS'. As the copper concentration increases from 1.2% to 

2.0% to 3.0% the height of peak B' increases without any changes in its position 

(figure 12.6). This suggests that increasing the copper concentration produces a 

larger number of Li-Cu-Mg clusters that in turn produces a higher number- 

density of CLS' particles. 

Peak C' exhibits similar trends (figure 12.7). The height of the peak increases 

with increasing copper concentration beyond 0.6%. This is attributed to the 

formation of an increased number of GPB zones that act as precipitation sites for 

8' (GP6'). The position of peak C' exhibits a gradual shift to lower temperature as 

the copper concentration increases indicating that a higher number density of 

finer GPS' particles has been produced. 
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12.2 Isothermal precipitation characteristics 

This section investigates the effect of copper on the isothermal precipitation 

characteristics of Al-Li-Cu-Mg alloys. 

Five different heat treatments have been used: 

" Ageing for 1000 hat 70,100 and 150 °C. 

" Ageing for 24 h at 150 °C. This simulates the damage tolerant heat 

treatment applied to alloys based on the Al-Li system. 

" Prior ageing for 24 h at 150 °C following by exposure for 1000 h at 70 °C. 

This double heat treatment simulates the conditions that a commercial 

aerospace alloy would encounter whilst in service. 

12.2.1 Age at 70°C 

12.2.1.1 Investigation of low lithium alloys 

DSC and resistivity comparative plots for 0,1.3,1.7Li 1.2Mg1.2,2. OCu alloys are 

presented in figures 12.8 and 12.9 respectively. The effects of the additions of 

1.3% and 1.7% Li to 1.2Mgl. 2Cu alloy have already been discussed in the last 

chapter and can be summarised as follows: 

" Addition of 1.3%Li to a 1.2Mgl. 2Cu alloy results in the formation of 8' 

during ageing at 70°C (dissolution peak K). This addition of lithium also 

causes an increase in the size of GPB zones (dissolution peak G) that is 

attributed to a lower GPB zone nucleation rate. Increasing the lithium 
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addition from 1.3% to 1.7% (1.7Li1.2Mg1.2Cu-'alloy) produces a larger 

volume fraction of finer S' (endothermic peak K becomes larger and shifts 

to a lower temperature) due to the higher driving force for S' precipitation. 

" Isothermal resistivity plots (figure 12.9) show the addition of 1.3%Li to a 

1.2Mgl. 2Cu alloy (1.3Lil. 2Mgl. 2Cu alloy) results in a peak after 4h of 

ageing due to the precipitation of fine 8'. As the lithium concentration 

increases from 1.3% to 1.7% (1.7Lil. 2Mgl. 2Cu alloy) a resistivity peak is 

attained at earlier times due to the acceleration of S' precipitation reaction 

kinetics. 

The situation is not very different for the higher copper alloys 

(1.3,1.7Lil. 2Mg2. OCu). The addition of 1.3% Li to 1.2Mg2. OCu alloy results in 

the development of endothermic peak K that corresponds to the dissolution of S'. 

As the lithium concentration increases form 1.3% to 1.7% (1.7Li1.2Mg2. OCu 

alloy) enlargement of peak K occurs (figure 12.8). 

The resistivity plots (figure 12.9) show that the addition of 1.3%Li to 

1.2Mg2. OCu alloy causes the development of a resistivity peak after -2 h of 

ageing. Longer ageing times (>2 h) result in further growth of b' beyond the 

electron scattering critical size and the resistivity starts decreasing. Increasing the 

lithium addition from 1.3% to 1.7% (1.7Lil. 2Mg2. OCu alloy) accelerates the 

kinetics but causes a decrease in the height of the resistivity peak, as was the case 

for the alloys containing 1.2% copper. 
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Finally, comparison of the DSC plots of 1.3Lil. 2Mgl. 2Cu and 1.3Lil. 2Mg2. OCu 

alloys (figure 12.8) indicates that the higher copper alloy (1.3Lil. 2Mg2. OCu) has 

precipitated a larger volume fraction of finer S' (endothermic peak K is larger and 

exhibits a 5°C-shift to a lower temperature). Furthermore, the isothermal 

resistivity plots of these two alloys (figure 12.9) suggest that as copper 

concentration increases from 1.2% (1.3Lil. 2Mgl. 2Cu alloy) to 2.0% 

(1.3Lil. 2Mg2. OCu alloy) a finer distribution of 8' is precipitated with enhanced 

kinetics (a larger resistivity peak is attained at earlier ageing times). This 

behaviour can be explained by the formation of a larger number of Li-Cu-Mg 

clusters and GPB zones that assist the nucleation of S'. 

It can therefore be concluded that for ageing AI-Li-Mg-XCu alloys at 70°C: 

" The addition of 1.3%Li to 1.2Mg1.2,2. OCu alloys causes precipitation of 

S' and an increase in the size of GPB zones. 

" Increasing lithium concentration from 1.3% to 1.7% causes significant 

acceleration of the precipitation reaction kinetics of S' in the early stages 

of ageing. 

12.2.1.2 Investigation of 1.7Lil. 2MgXCu alloys 

DSC comparative plots of 1.7Lil. 2MgXCu alloys are presented in figure 12.10. 

The DSC plot of 1.7Li1.2Mg alloy exhibits an endothermic peak (peak K) at 

approximately 175°C caused by the dissolution of 8'. As copper concentration 
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increases from 0% to 0.6% (1.7Lil. 2MgO. 6Cu alloy) three new overlapping I 

thermal events appear at 215°C, 230°C and 245°C, i. e. exotherm R, endotherm 

G, and endotherm H. Exothermal effect R cannot be clearly seen on the DSC 

trace but evidence will be presented for its existence later in the chapter; it is 

associated with the growth of GPB zones during DSC heating. It is postulated 

that heterogeneous nucleation of ö' takes place on GPB zones during the age at 

70°C. When subsequent dissolution of S' takes place during DSC heating, the 

GPB zones become exposed and grow during the DSC heating giving rise to 

exothermal effect R. Endothermal effects G and H are then attributed to the 

dissolution of GPB zones and S" (the latter being formed during the DSC 

heating). Finally, the broad high temperature exotherm (290-370°C), with peaks 

at 310°C and 350°C is due to precipitation of the equilibrium phases Tl and T2 

respectively (figure 12.2) 

Increasing the copper concentration from 0.6% to 3.0% 

(1.7Lil. 2Mgl. 2,2.0,3. OCu alloys) results in enlargement of peak K suggesting 

that stimulation of S' precipitation has occurred. Peaks G and H also exhibit an 

increase in their size which is in agreement with the results of chapter 10 where it 

was found that copper stimulates the precipitation of GPB zones and in turn the 

formation of S". In order to estimate the volume fraction of S' precipitated in 

each alloy, the area under peak K was integrated and equation 8.2 applied. Then, 

the calculated volume fraction was plotted versus copper concentration (figure 

12.11). As can be seen, over the concentration range 0-1.2% no stimulation of S' 

310 



Results and discussion Chapter 12: Effect of copper on AI-Li-Cu-Mg alloys 

precipitation takes place. However, increasing the copper concentration beyond 

1.2% does result in an increase in the volume fraction of W. Based on the 

isochronal results of the last section it is postulated that this stimulation of S' 

comes about by nucleation from Li-Cu-Mg clusters and heterogeneous nucleation 

on GPB zones. 

Comparison of the volume fraction plots of 1.7Lil. 2MgXCu and 1.7LiXCu 

alloys in figure 12.11 indicates that for copper concentrations higher than 1.2% 

the presence of 1.2% Mg in the 1.7Li1.2MgXCu alloys produces significantly 

larger volume fractions of S' than in magnesium-free, 1.7LiXCu, alloys. Taking 

into consideration the results of chapter 9 where stimulation of S' in 1.7LiXCu 

alloys was shown to be the result of heterogeneous nucleation on GPC, zones and 

surmising that the effect of GPB zones on S' precipitation in 1.7Li 1.2MgXCu 

alloys is unlikely to be greater than that of GPcu zones, it can be concluded that 

the largest amount of S' stimulation in 1.7Lil. 2MgXCu alloys aged at 70°C 

comes about by nucleation from Li-Cu-Mg clusters. 

Figure 12.13 shows the isothermal resistivity plots of 1.7Lil. 2MgXCu alloys 

during ageing at 70°C. The isothermal resistivity plot of 1.7Lil. 2MgO. OCu alloy 

has already been discussed in detail in chapter 8. The resistivity exhibits a two- 

stage increase. The initial increase was attributed to the formation of a high 

density of fine ordered domains and the second increase of resistivity to spinodal 
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decomposition of the ordered domains. The critical size for electron scattering is 

reached after 24 h indicating that the kinetics of 8' precipitation are very slow. 

Increasing the copper concentration from 0.0% to 0.6% to 1.2% causes the 

resistivity peak to be attained in progressively shorter ageing times suggesting 

that enhancement of the reaction kinetics of S' precipitation has occurred. The 

resistivity peak also exhibits an increase in its magnitude. It is known that for 

copper concentrations up to 1.2% (1.7Lil. 2MgO-1.2Cu alloys) the copper atoms 

are consumed in the nucleation and growth of GPB zones and therefore the 

formation of Li-Cu-Mg clusters is expected to be difficult. Given this, the above 

enhancement of the reaction kinetics of S' precipitation in low copper alloys can 

be attributed to the formation of a larger number of GPB zones that can 

accelerate the rate of S' nucleation producing a finer dispersion of 8' particles 

(GPS'). However, it should be noted that after 1000 h ageing the effect of the 

mechanism is smoothed out so that 1.7Lil. 2MgO-0.6-1.2Cu alloys precipitate the 

same volume fraction of S' (figure 12.11). 

As the copper concentration increases from 1.2 to 2.0% the magnitude of the 

resistivity peak exhibits a slight increase and the resistivity peak is shifted to 

longer age times (-l h) indicating the precipitation reaction kinetics of 8' have 

slowed down. This change in behaviour may be the result of a change in 

precipitation mechanism, i. e. 51.2%Cu the dominant process is GPS' and _2. OCu 

the dominant process is C. 8'. A possible reason for the slowing down of the 
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kinetics is that before CLS' can form, the Li-Cu-Mg clusters have to first develop 

and this takes a finite time. 

Increasing the copper concentration beyond 2% (1.7Lil. 2Mg3. OCu alloy) results 

in a dramatic increase in resistivity indicating that significant stimulation of 

precipitation has happened producing a high number density of very fine 

8' particles. 

In order to cast more light onto the effect of GPB zones and Li-Cu-Mg clusters 

on the nucleation and growth of S' during ageing at 70 °C, a 1.7Lil. 2Mg3. OCu 

alloy was aged for different times and subjected to DSC analysis. The DSC 

thermograms obtained (figure 12.12) were examined in conjunction with the 

isothermal resistivity plot of the 1.7Lil. 2Mg3. OCu alloy (figure 12.13). The DSC 

plots show that for ageing times up to 6 min (0.1 h) little or no S' forms during 

the age i. e. the size of exothermic peak I equals the total size of endothermal 

effects F (CL8') and L (GPS'). However, the isothermal resistivity plot shows 

that a significant increase in resistivity has taken place in the same period of 

time. This could mean that Li-Cu-Mg clusters are making a positive contribution 

to resistivity in the early stages of ageing, or alternatively, the nucleation of S' in 

the early stages of ageing can only be detected by the more sensitive resistivity 

measurements. Ageing for times 20 min-16 h at 70°C cause the alloy to be fully 

precipitated, i. e. exotherm I disappears. At the same time, two strong 

endothermic peaks F and L are present corresponding to the dissolution of CLS' 
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and GPS'. As the ageing time increases from 20 min to 16 h the size of 
1 

endotherm L is approximately constant but endotherm F (CLS') both increases in 

size and is displaced to a higher temperature. This indicated that the dominant 

event in 1.7Lil. 2Mg3. OCu alloy during the early stages of ageing at 70°C is 

development of CL8'. Over this same period (20 min- 2 h) the resistivity passes 

through its maximum value showing that the C, 8' has grown through the critical 

size of 2 nm. A further increase of ageing time to >16 h at 70°C causes 

overlapping of the endothermal effects F and L, and finally after 100 h they 

merge into a single endothermic event, peak K. 

12.2.2 Age at 100°C 

12.2.2.1 Investigation of low lithium alloys 

Figure 12.14 exhibits DSC comparative thermograms of 

1.3,1.7Lil. 2Mgl. 2,2. OCu alloys. The addition of 1.3% Li to 1.2,2. OCu1.2Mg 

alloys results in the development of endothermic peak K at about 210°C which is 

caused by dissolution of S'. In addition, peak G shifts to a higher temperature 

suggesting that a coarser distribution of GPB zones has precipitated. This can be 

explained by lithium causing a decrease in the nucleation rate of GPB zones. 

Further increase of lithium concentration from 1.3% to 1.7% 

(1.7Lil. 2Mgl. 2,2. OCu alloys) causes stimulation of S' precipitation as a 

consequence of the higher supersaturation of lithium. 
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The isothermal resistivity plots during ageing at 100°C are presented in figure 

12.15. The addition of 1.3% lithium to 1.2Mgl. 2Cu alloy leads to the formation 

of a resistivity peak after 2h that is attributed to the formation of very fine S' of 

size smaller than the critical size for electron scattering. The same addition of 

lithium to 1.2Mg2. OCu alloy (1.3Lil. 2Mg2. OCu alloy) also produces a resistivity 

peak but at earlier times (0.4 h) showing that the reaction kinetics of S' are much 

faster in the 1.3Lil. 2Mg2. OCu alloy compared to 1.3Lil. 2Mgl. 2Cu alloy. It is 

believed that the higher copper concentration causes a significant increase in the 

concentration of GPB zones and Li-Cu-Mg clusters which in turn stimulate the 

formation of S'. Higher levels of lithium (1.7Lil. 2Mg1.2,2. OCu alloys) result in 

an additional shift of the resistivity peak to earlier ageing times showing that 

further enhancement of 8' precipitation has occurred due to the increased 

supersaturation of lithium. 

12.2.2.2 Investigation of 1.7Li1.2MgXCu alloys 

The DSC comparative plots of 1.7Lil. 2MgXCu alloys are given in figure 12.16. 

The 1.7Lil. 2MgO. OCu alloy exhibits an endothermic peak, peak K, at about 

200°C due to the dissolution of S'. As the copper concentration increases from 

0.0% to 0.6%, the endothermic peak K is followed by two small overlapping 

endothermal effects that are caused by the dissolution of GPB zones and S". 

Increasing copper concentration from 0.6% to 3.0% (1.7Lil. 2Mgl. 2,2.0,3. OCu 

alloys) results in enlargement of the endotherm K. By measuring the area of 
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endotherm K and subtracting the effect of GPB zones and S", the enthalpy 

corresponding to the dissolution of 8' was estimated. Then, by using equation 

8.2, the S' volume fraction that precipitates in each alloy was calculated. The data 

obtained are plotted as a function of copper concentration in figure 12.17. It can 

be seen that for copper concentrations up to 1.2% no changes in the volume 

fraction of 8' occur in the 1.7Lil. 2MgXCu alloys. However, as the copper 

concentration increases from 1.2% to 3.0% significant stimulation of S' 

precipitation takes place leading to a larger volume fraction of S'. This can be 

explained by the formation of a larger number of GPB zones and Li-Cu-Mg 

clusters that causes significant enhancement in the nucleation rate of S'. Finally, 

comparison between the S' volume fraction plots of 1.7Lil. 2MgXCu and 

1.7LiXCu alloys indicates that over the concentration range 0.0-1.2% the 

presence of 1.2%Mg in 1.7Li 1.2MgXCu alloys produces only a small increase in 

the amount of S' precipitated. However, as the copper concentration reaches 

3.0% the presence of 1.2%Mg results in significant stimulation of S'. 

The isothermal resistivity plots of 1.7Li1.2MgXCu alloys during ageing at 100°C 

(figure 12.18) exhibit trends very similar to those during ageing at 70°C. 

The 1.7Li I. 2MgO. OCu alloy exhibits an initial increase of resistivity followed by 

a decrease below the baseline, suggesting nucleation ordering followed by 

spinodal decomposition. As the copper concentration increases from 0.0 to 1.2% 

(1.7Lil. 2MgO. 6,1.2Cu alloys) the initial resistivity peak becomes larger and is 
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attained at earlier ageing times. This behaviour suggests that stimulation of S' 

precipitation has taken place together with enhanced kinetics. Knowing that for 

copper concentrations : 51.2% the copper atoms are consumed in the nucleation 

and growth of GPB zones, thus making very difficult the formation of Li-Cu-Mg 

clusters, the above enhancement of the reaction kinetics of S' precipitation is 

probably caused by a larger number of GPB zones that accelerate the nucleation 

rate of S' producing a finer dispersion of S' (GPS'). 

For copper concentration higher than 1.2% (1.7Lil. 2Mg2.0-3. OCu alloys) the 

resistivity exhibits a significant increase and shifts to longer ageing times. As 

already discussed in the last section this change of the resistivity behaviour can 

be attributed to C. 8' that now is the dominant mechanism for 8' precipitation. 

It can be concluded that during ageing at 100°C the dominant mechanism for S' 

precipitation is GPS' for copper concentrations s1.2%, whereas for copper 

concentrations >1.2% the dominant mechanism is CLS'. 

12.2.3 Age at 150°C 

12.2.3.1 Investigation of low lithium alloys 

DSC comparative plots of 1.3,1.7Lil. 2Mgl. 2,2. OCu alloys after ageing for 24 h 

at 150°C are shown in figure 12.19. The addition of 1.3% lithium to 

1.2Mgl. 2,2. OCu alloys causes a minimal increase in the area of the endotherm G 

showing that only a very small amount of S' has formed. This is the result of the 

317 



Results and discussion Chapter 12: Effect of copper on Al-Li-Cu-Mg alloys 

very small driving force for S' precipitation as the 1.3% Li composition lies very 

close to the S' metastable solvus line. Increasing the lithium concentration to 

1.7% causes considerable enlargement of the endotherm (designated K because 

of the presence of S') as a result of the higher supersaturation of lithium. 

The isothermal resistivity plots (figure 12.20) show some interesting trends: 

" In the 1.2Mgl. 2Cu alloy the resistivity follows a plateau up to 300 h 

ageing and this is due to the formation of GPB zones. 

" Addition of 1.3Li to the 1.2Mgl. 2Cu alloy increases the level of the 

plateau due to the presence of both fine 8' and GPB zones. The plateau 

also ends at an earlier time (80 h) due to the onset of 8' growth which 

more than outweighs the positive resistivity contribution from GPB zones. 

" Addition of 1.7Li to the 1.2Cul. 2Mg alloy does not increase the level of 

the plateau observed in the 1.3Li1.2Cu1.2Mg alloy and the plateau ends at 

a very short ageing time (<0.1 h). This suggests that the increased driving 

force for S' precipitation (due to the higher lithium concentration) causes 

S' to form on GPB zones. If it is assumed that the GPB zones are already 

at the critical size for electron scattering (reasonable, since the resistivity 

does not increase beyond the plateau) then the additional shell of S' 

around the GPB zones will cause the resistivity to fall; i. e. the behaviour 

observed in figure 12.20. 

"A similar trend is observed in the 0,1.3,1.7Lil. 2Mg2. OCu alloys, 

although here the plateau in the 1.7Li1.2Mg2. OCu alloy ends at 1 h, i. e. a 
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larger ageing time that that observed in the 1.7Lil. 2Mgl. 2Cu alloy 

(<0.1h). 

12.2.3.2 Investigation of 1.7Lil. 2MgXCu alloys 

The DSC comparative plots of 1.7Lil. 2MgXCu alloys are illustrated in figure 

12.21. As has already been discussed in chapter 8 the endothermic peak K that 

appears in the DSC plot of 1.7Lil. 2MgO. OMg alloy is due to the dissolution of 8'. 

Increasing copper concentration from 0.0% to 3.0% results in an increase in the 

magnitude of the endotherm. In a way similar to that described in the previous 

sections the enthalpy associated with the dissolution of S' was measured by 

subtracting the contribution of GPB zones and S" from the whole endotherm. 

Then, by applying equation 8.2 the volume fraction of 8' was calculated and 

plotted as a function of the copper concentration (figure 12.22). It can be seen 

for copper concentrations up to 1.2% the volume fraction of 8' in 

1.7Li 1.2MgXCu alloys does not exhibit any changes. Increasing the copper 

concentration beyond 1.2% (1.7Li1.2Mg2.0,3. OCu alloys) produces a moderate 

increase in the volume fraction of S'. It is believed that for copper concentrations 

higher than 1.2% a larger number of GPB zones form that result in a higher rate 

8' nucleation. 

The isothermal resistivity plots of the above alloys are given in figure 12.23. The 

1.7Lil. 2MgO. 0,0.6Cu alloys show a well defined incubation period which is 
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followed by a decrease in resistivity indicating that the mechanism of S' 

precipitation is a nucleation and growth process. The fact that there is no increase 

in resistivity suggests that the critical size for nucleation is greater than the 

critical size for electron scattering. Increasing the copper concentration from 0.6 

to 3.0% (1.7Li1.2Mgl. 2,2.0,3. OCu alloys) initially causes a resistivity increase 

that is attributed to the formation of an increasing number-density of GPB zones 

that can scatter the conduction electrons. The trend in these higher copper alloys 

is for the resistivity to initially follow a plateau, suggesting that GPB zones have 

formed early in the ageing cycle. The plateau ends after 1-2 h of ageing, i. e. 

much earlier than in the Li-free alloys which suggests that 8' commences to grow 

on the GPB zones. 

12.3 Effect of ageing temperature 

In figures 12.24-12.28 are shown the DSC thermograms of 1.7Lil. 2MgXCu 

alloys after ageing at different temperatures. From these plots the volume 

fraction of S' was calculated and plotted as a function of the ageing temperature 

for each alloy (figure 12.29). It can be seen that for all the alloys the maximum 

volume fraction of S' is formed after ageing for 1000 h at 100°C. 

Thermodynamically, it would be expected that the amount of S' would increase 

as the ageing temperature decreases from 150°C to 100°C to 70°C. However, the 

diffusivity becomes lower as the temperature drops, so that the precipitation of S' 

is limited by kinetic considerations. The DSC results also show that for all the 
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alloys the size of S' increases with increasing ageing temperature i. e. the position 

of endothermic peak K shifts to higher temperatures (figure 12.30). This is 

expected from theory since the smaller undercooling and higher diffusivity at 

higher ageing temperatures results in a coarser precipitate dispersion. 

The isothermal resistivity plots of 1.7Li 1.2MgO-0.6Cu alloys (figures 

12.31,12.32) show that the increase of ageing temperature not only causes a 

dramatic decrease in resistivity but also changes the mechanism of S' 

precipitation from nucleation ordering to classical nucleation and growth, i. e. a 

well defined incubation period is present at an ageing temperature of 150°C. 

Increasing the copper concentration to 1.2% (figure 12.33) causes the incubation 

period to be replaced by a resistivity plateau in the early stages of ageing over the 

period 0-1 h. This plateau is likely to be caused by development of GPB zones. 

Once formed, S' forms on these GPB zones and causes the resistivity to fall after 

ageing for -1 h at 150°C. Evidence for this mechanism comes from comparing 

the resistivity trace of the 1.7Li1.2Mg1.2Cu alloy at 150°C with the trace from 

the lithium-free alloy (1.2Mgl. 2Cu) where the resistivity at 150°C remains at a 

plateau for 200 h, before decreasing (figure 12.20). In this later case, of course, 

there is no 8' growing on the GPB zones i. e. the resistivity does not decrease until 
long ageing times are attained. 

The 1.7Li 1.2Mg2.0,3. OCu (figures 12.34,12.35) alloys follow similar trends at 

321 



Results and discussion Chapter 12: Effect of copper on AI-Li-Cu-Mg alloys 

150°C but in these alloys the resistivity changes at 70 and 100°C are also 

interesting. At 70 and 100°C the resistivity clearly increases during the early 

stages of ageing suggesting that Li-Cu-Mg clusters are forming and developing 

into S' (i. e. CLS'). However at 150°C the resistivity follows a plateau and then 

decreases, indicating that S' is growing on GPB zones (i. e. GP8'). These 

observations suggest that at high copper supersaturations in All. 7Li 1.2Mg3. OCu 

alloys the mechanism of S' formation is C. 8', whereas at low copper 

supersaturations the mechanism of 8' formation is GP8'. 

12.4 Exposure at 70°C after prior ageing at 150°C for 24 h 

It is well known that Al-Li-Cu-Mg alloys undergo a significant embrittlement 

when exposed for a long period at 70°C after a prior standard age of 24 h at 

150°C. This work examines the effect of copper concentration on the 

precipitation and embrittlement characteristics of 1.7Li1.2MgXCu alloys during 

exposure at 70°C. 

Figures 12.36-12.40 give the DSC comparative thermograms after ageing for 24 

h at 150°C and after subsequently exposing for 1000 h at 70°C for each of the 

1.7Li 1.2MgXCu alloys. In order to estimate the volume fraction of 8' formed 

during exposure, the area of endotherm K developed after ageing 150°C/24h was 

subtracted from the area of endotherm K after subsequent exposure for 1000 h at 

70°C. By using equation 8.2 the 8' volume fraction forming during exposure was 

calculated and plotted versus copper concentration (figure 12.41). It can be 

easily seen that as the copper concentration increases from 0% to 1.2% the 
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volume fraction of S' precipitated during exposure at 70°C is increased. 

However, increasing the copper concentration beyond 1.2% causes the volume 

fraction of S' to start decreasing. Practically no S' has precipitated during 

exposure when the copper concentration reaches 3.0% (1.7Li1.2Mg3. OCu alloy). 

Taking into consideration the results of paragraph 12.2.3.2 according to which 

increasing copper concentration to levels higher than 1.2% caused an increase in 

the volume fraction of S' precipitated after ageing 150°C/24 h, it is postulated 

that a possible reason for the decrease in S' volume fraction during exposure for 

copper >1.2% is the lower supersaturation of lithium in the matrix after the pre- 

age at 150°C. 

The isothermal resistivity plots (figure 12.42) indicate that the largest drop of 

resistivity is observed for the 1.7Lil. 2Mgl. 2Cu alloy, which is in good 

agreement with the DSC results. The question that comes up at this point is why 

the volume fraction of S' precipitated during exposure in 1.7Lil. 2MgO, 0.6Cu 

alloys is not similar to the volume fraction produced in 1.7Lil. 2Mgl. 2Cu alloy, 

since it is known (figure 12.29) that after ageing 24 h at 150°C the volume 

fraction of S' is similar in all these three alloys. It is surmised that the stimulation 

of 8' by Li-Cu-Mg clusters and GPB zones carries on during exposure and that 

this effect becomes stronger as copper concentration increases from 0 to 1.2%. 

The above results on exposure heat treatment have suggested that the maximum 

amount of S' is precipitated during exposure in the 1.7Lil. 2Mgl. 2Cu alloy. This 
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alloy should therefore show maximum embrittlement during exposure. This 

hypothesis is now be tested by measuring the proof stress and fracture energy 

after exposure of the 1.7Lil. 2CuXCu alloys for 1000 h at 70°C. 

12.5 Effect of exposure on the mechanical properties of 

1.7Lil. 2MgXCu alloys 

The proof stress and fracture energy changes of the 1.7Lil. 2MgXCu alloys after 

exposure for 1000 h at 70°C are presented in figure 12.43. Increasing the copper 

concentration from 0.0 to 1.2% causes the proof stress to exhibit a significant 

increase and the fracture energy to decrease. For copper levels higher than 1.2% 

(1.7Lil. 2Mg2.0,3. OCu alloys) the mechanical behaviour reverses i. e. the proof 

stress starts decreasing and the alloys exhibit a significantly improved fracture 

energy. The above are in perfect agreement with the DSC results presented in the 

last section where it was shown that the 1.7Lil. 2Cul. 2Mg alloy produces the 

largest volume fraction of S' during exposure, and therefore this alloy would be 

expected to show the maximum embrittlement. 

Summary 

From the above investigation the following points have emerged: 

" Isothermal ageing of 1.7Lil. 2MgXCu alloys at 70,100, and 150°C results 

in the formation of mixtures of S' and GPB zones. 
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" For all the alloys the maximum volume fraction of 8' is formed at 100°C 

where there is an optimum combination of thermodynamics and kinetics. 

9 At low lithium supersaturations the mechanism of S' precipitation during 

isothermal ageing is the growth of S' on GPB zones (GPS'). 

At high lithium supersaturations the mechanism of 8' precipitation during 

isothermal ageing is the formation of Li-Cu-Mg clusters which 

subsequently develop into S'(CLS'). 

" For alloys with low copper concentrations (0%<Cu<_1.2%)aged at 70°C 

and 100°C, GP8' formation is the dominant process. 

For alloys with high copper concentrations (1.2%<Cu53.0%) aged at 

70°C and 100°C, CL V formation is the dominant process. 

" For alloys with low copper concentrations (Cu<_0.6%) aged at 150°C, 

classical nucleation and growth of 8' takes place. 

For alloys with high copper concentrations (Cu>0.6%) aged at 150°C, 

GPS' formation is the dominant process. 

" Maximum exposure embrittlement at 70°C is observed to occur in the 

1.7Li1.2Mgl. 2Cu alloy. Smaller or larger concentrations of copper in the 

alloy result in less S' being formed during exposure and therefore less 

embrittlement. 
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Figure 12.23: Isothermal resistivity changes of 1.7Lil. 2MgXCu alloys during ageing at 
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CHAPTER 13 

General Summary and Comparison of the different alloy 

systems 

The precipitation characteristics of Al-Li-XMg, Al-Li-XCu, Al-Li-Cu-XMg and 

Al-Li-Mg-XCu alloys have been studied in this thesis. The results for each of the 

alloy systems have been thoroughly discussed in the appropriate chapter and 

mechanisms of 8' precipitation proposed for each alloy system. These can be 

summarised as follows: 

" Al-Li-XMg alloys. Increasing magnesium concentration stimulates 6' 

precipitation due to an increase in the a/8' solvus temperature. It has been 

shown in the thesis that each 1 wt%Mg increases the solvus temperature 

by - 7.0°C. At low ageing temperatures (70,100°C) the mechanism of S' 

precipitation is one of nucleation ordering followed by spinodal 

decomposition. At high ageing temperatures (150°C) the mechanism of S' 

precipitation is classic nucleation and growth. 

" Al-Li-XCu alloys. Increasing copper concentration stimulates 8' 

precipitation but this is not the result of an increase in the a/6' solvus 

temperature; the thesis has shown that copper has no effect on the position 

of the solvus boundary. At low ageing temperatures (70,100°C) the 

mechanism of S' precipitation is the nucleation on GPI, zones. At higher 
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ageing temperatures (150°C) the mechanism is again, classic nucleation 

and growth. 

" Al-Li-Cu-XMg alloys. Stimulation of S' again takes but the mechanism of 

S' precipitation in these alloys is quite different from that in Al-Li-XMg 

alloys. The addition of magnesium, again, produces a shift in the a/S' 

solvus boundary but this is not the prime cause of 8' stimulation in Al-Li- 

Cu-XMg alloys. For low magnesium additions (0-1.2%Mg) the 

stimulation of S' is the result of heterogeneous nucleation on GPB zones 

(in a manner similar to nucleation on GPI, zones in Al-Li-XCu alloys). At 

high magnesium concentrations (1.4-3.0%Mg) the enhancement of 8' 

precipitation is the result of the formation of Li-Cu-Mg clusters which are 

capable of rapidly developing into S' precipitates (CLS'). In all Al-Li-Cu- 

XMg alloys the higher the ageing temperature the greater the tendency for 

the mechanism to be nucleation on GPB zones (GPS'). 

" Al-Li-Mg-XCu alloys. Stimulation of S' again takes place and for alloys 

of low copper concentration (0-1.2%Cu) aged at 70 and 100°C the 

mechanism of this stimulation is similar to that in Al-Li-XCu alloys, 

heterogeneous nucleation on GPB zones (compared to GPcu in Al-Li-Cu) 

i. e. GPS'. In alloys of high copper concentration (_2.0%Cu) aged at 70 

and 100°C the mechanism of 8' stimulation is similar to that in Al-Li-Cu- 

XMg alloys, i. e. development of Li-Cu-Mg clusters and their evolution 

into 8' (CU'). As with Al-Li-Cu-XMg alloys the higher the ageing 
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temperature the more likely the mechanism of 8' stimulation is GP8' 

rather than CL8'. 

The question now arises as to which of the various mechanisms in the different 

alloy systems produces the greatest amount of S'. To answer this question, the 

volume fractions of 8' produced in the four alloy systems (AI-Li-XMg, Al-Li- 

XCu, AI-Li-Cu-XMg, and AI-Li-Mg-XCu) have been compared for heat 

treatment conditions of as-quenched, 1000 h at 70°C, 1000 h at 100°C, and 24 h 

at 150°C in figures 13.1,13.2,13.3 and 13.4. For all the heat treatments, 

magnesium and copper concentrations up to 1.2% result in a very close band of 

S' volume fractions suggesting that all the mechanisms that operate in the 

concentration range 0%<Mg or Cu<_1.2%, i. e. shift of S' solvus to higher 

temperatures (AI-Li-XMg alloys), heterogeneous nucleation on GPI, zones (Al- 

Li-XCu alloys), and GP8' (AI-Li-Cu-XMg alloys and Al-Li-Mg-XCu alloys), 

have approximately the same effectiveness. 

At concentrations of magnesium and copper >1.2% there are significant 

differences between the various alloy systems. The least effective S' stimulating 

mechanism in this concentration range is heterogeneous nucleation on GPI 

zones (Al-Li-XCu alloys). The next most effective 8' stimulation mechanism is 

shift of the aJS' solvus boundary (Al-Li-XMg alloys). The most effective S' 

stimulation comes about in Al-Li-Cu-XMg and Al-Li-Mg-XCu alloys at high 

magnesium and copper concentrations. Of the two alloy systems the greatest 

volume fraction of S' occurs in Al-Li-Cu-XMg alloys at concentrations of 1.4- 
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CHAPTER 14 

Conclusions and further work 

14.1 Conclusions 

Analysis of the results that has been carried out in each of the chapters in the 

thesis has led to the following conclusions about the effects of copper and 

magnesium on the precipitation characteristics of Al-Li-Mg, Al-Li-Cu, AI-Cu- 

Mg and Al-Li-Cu-Mg alloys: 

Al-Li-Mg alloys 

" Independently of the ageing temperature, increase of the magnesium 

concentration stimulates the precipitation of S' by increasing the a/8' 

solvus temperature by -7.0°C/wt%Mg. 

" The S' precipitation process during ageing at 70°C and 100°C is 

nucleation ordering followed by spinodal decomposition. As the 

magnesium concentration increases from 0 to 3.0% the spinodal 

decomposition speeds-up resulting in larger amounts of S'. Increasing the 

ageing from 100°C to 150°C causes the mechanism of S' formation to 

change from nucleation ordering/spinodal decomposition to the classical 

nucleation and growth process. 

" The maximum volume fraction of S' is produced during ageing at 100°C 

where there is an optimum combination of driving force and diffusivity. 
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9 For all the alloys studied, the mean size of S' particles increases with 

increasing the ageing temperature. 

"A fine dispersion of S' is formed during exposure at 70°C. The amount of 

exposure S' increases with increasing concentration of magnesium due to 

the increase of the a/S' solves temperature. The increased amount of 

exposure S' causes increasing amounts of embrittlement after exposure at 

70°C. 

Al-Li-Cu alloys 

9 The addition of copper results in acceleration of the reaction kinetics of S' 

precipitation through the formation of GPI, zones that act as 

heterogeneous nucleation centres. 

" Copper has no effect on the position of the a/8' boundary, hence the 

equilibrium volume fraction of S' precipitated at a given temperature is 

independent of the copper concentration. 

" During ageing at 70°C the volume fraction of S' is stimulated with 

increasing copper concentration. This is due to the fact that even after 

1000 h of ageing the equilibrium volume fraction of S' is not attained. 

" With ageing at 100°C the equilibrium volume fraction of 8' is reached 

more rapidly, so that after ageing for 1000 h at 100°C copper has no effect 

on the volume fraction of S'. 

" With increasing ageing time at 150°C and increasing copper 
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concentration, there is a significant reduction of S' precipitation. This is 

attributed to the precipitation of large amounts of the equilibrium Tl and 

T2 phases. 

"A significant volume fraction of very fine S' is formed on GPI, during 

exposure at 70°C as the copper concentration increases from 1.2 to 3.0%. 

This causes a considerable increase in the degree of embrittlement. 

Al-Cu-Mg alloys 

Effect of copper 

" Increasing copper concentration from 1.2 to 3.0% causes stimulation and 

enhanced kinetics of GPB zone formation during ageing for 1000 h at 

70°C and 100°C and 24 h at 150°C. As the ageing conditions increase to 

150°C/1000 h, the increase of the copper concentration results in a 

reduction in the volume fraction of GPB zones due to significant 

precipitation of S'. 

" Copper in the concentration range 1.2-3.0% does not affect the volume 

fraction of GPB zones formed during exposure at 70°C. 

Effect of magnesium 

" The as-quenched DSC and isochronal resistivity results showed that 

magnesium stimulates the clustering of Mg-Cu atoms. 

" Magnesium concentration has only a small effect on GPB zone formation 

at all ageing temperatures i. e. 70,100,150°C. 
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" Magnesium has no effect on the amount of GPB zones formed 

during exposure at 70°C. 

Effect of ageing temperature 

" The largest volume fraction of GPB zones is formed during ageing at 

100°C. 

" Increasing the ageing time at 150°C from 24 h to 1000 h results in an 

increasing tendency for S" and S' precipitation. 

Al-Li-Cu-XMg alloys 

a In the as-quenched condition, magnesium atoms are behaving as though 

they were in a simple binary Al-Mg solid solution, i. e. the magnesium 

atoms do not associate with other solute atoms, i. e. Li, Cu, Zr during or 

immediately after the quench. 

" Isothermal ageing at 70,100, and 150°C causes significant enhancement 

of S' formation in 1.7Li1.2CuXMg alloys as the magnesium concentration 

increases beyond 1.2%. It is postulated that the mechanism by which this 

comes about is the formation of clusters of Li-Cu-Mg atoms that are 

capable of rapidly developing into S' (CL8'). It is important to note that 

the clustering process takes place only when the concentration of 

magnesium is z1.2%Mg. It is believed that up to 1.2%Mg the magnesium 

is consumed in the formation of GPB zones; as the concentration of 

magnesium increases to levels higher than 1.2% `free' magnesium is 
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available in the matrix to gather both copper and lithium thus forming Li- 

Cu-Mg clusters. This implies that magnesium is the dominating species 

that controls Li-Cu-Mg cluster formation. 

" The kinetics of S' precipitation in Al-Li-Cu-Mg alloys is controlled by the 

presence of excess vacancies that have been quenched-in from the solution 

treatment temperature. 

" At all ageing temperatures (70,100,150°C) retardation of 8' precipitation 

takes place in the 1.7Li1.2Cu3.0Mg alloy. It is surmised that this due to 

the formation of a precursor of the equilibrium TM phase. 

9 The maximum volume fraction of S' forms at 100°C where there is an 

optimum combination of thermodynamics and kinetics. As the ageing 

conditions increase from 70°C to 150°C, a coarser dispersion of S' forms. 

" The volume fraction of S' that is precipitated in 1.7Lil. 2CuXMg alloys 

during exposure at 70°C increases with increasing. magnesium 

concentration from 0 to 1.2%. A further increase of magnesium beyond 

1.2% results in a reduced volume fraction of S' after exposure. 

" The 1.7Li1.2Cul. 2Mg alloy exhibits the greatest degree of embrittlement 

after exposure at 70°C because this alloy precipitates the maximum 

volume fraction of S' during exposure. 

Al-Li-Mg-XCu alloys 

" The mechanisms by which stimulation of S' precipitation takes place in 
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1.7Li1.2MgXCu alloys with increasing copper concentration are 

formation of Li-Cu-Mg clusters that can develop into 8' (CL8') and 

heterogeneous nucleation on GPB zones (GPS'). The contribution of each 

mechanism depends on the ageing temperature and the copper 

concentration. 

" During ageing at 70 and 100°C and for low copper concentrations 

(0%<CuS1.2%) the dominant process is GPS'. For higher copper 

concentrations (1.2%<Cu<_3.0%) and the same ageing conditions the 

dominant process is CU'. 

" Ageing at 150°C results in precipitation of 8' through classical nucleation 

and growth for copper concentration up to 0.6%. For copper 

concentrations in the range 1.2-3.0% the dominant process is GP8'. 

" For all the 1.7Lil. 2MgXCu alloys the maximum volume fraction of S' 

occurs at 100°C where there is an optimum combination of diffusivity and 

S' driving force. 

0 The 1.7Li1.2Mgl. 2Cu alloy exhibits the greatest degree of embrittlement 

after exposure at 70°C as a result of the maximum volume fraction of 8' 

that this alloy precipitates during exposure. 

" The most effective mechanism for S' stimulation in Al-Li-1.2Mg-XCu 

alloys is the formation of Li-Cu-Mg clusters (CLS'). 
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14.2 Future Work 

Chapter 14 

1. More extensive TEM analysis is required on the various alloy systems in 

order to support/develop the mechanisms of precipitation that have been 

proposed in the thesis. In particular, high resolution TEM is required to 

confirm the mechanisms of S' precipitation on GPB zones and Li-Cu-Mg 

clusters. 

2. Small angle X-ray and neutron scattering experiments would be extremely 

beneficial to monitor the size and volume fraction of fine S' and GPB 

zones during the early stages of ageing. 

3. DSC analysis, isochronal reversion resistivity measurements and hardness 

testing are also required after very short ageing times in order to cast more 

light onto the role of Li-Cu-Mg clusters and GPB zones in the early stages 

of ageing of Al-Li-Cu-Mg alloys. 

4. A series of systematic DSC investigations are required after various 

ageing times, spanning the range 2 min-1000 h. This will give further 

information on the development of Li-Cu-Mg clusters, GPB zones, and S' 

during the ageing process. 

5. Further investigation into the reasons that cause the decrease in the 

volume fraction of S' during exposure at 70°C in 1.7Lil. 2CuXMg and 

1.7Li1.2MgXCu alloys when, respectively, the concentration of 

magnesium and copper is increased beyond 1.2%. 
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6. DSC analysis and resistivity measurement showed that the 

1.7Li1.2Cu3.0Mg alloy exhibits completely different precipitation 

characteristics compared with the lower magnesium (Mý2.0%) 

1.7Lil. 2CuXMg alloys. It is surmised that in this high magnesium alloy a 

precursor of TM phase forms. This needs to be further investigated using 

DSC, resistivity and in particular TEM analysis. 
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