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Abstract

The near edge X-ray absorption �ne structure and infrared spectroscopy of

acetylene and benzene adsorbed on C(100)-2x1, Si(100)-2x1 and Ge(100)-2x1

surfaces is studied with density functional theory calculations. Time depen-

dent density functional theory calculations of the near edge X-ray absorption

�ne structure with a modi�ed exchange-correlation functional agree well with

experiment, and show that the spectral features arise from excitation to π∗,

σ∗C−H and σ∗X−C orbitals, where X represents C, Si or Ge. The σ∗X−C excitation

energies are dependent on the surface, and for acetylene, the location of the

π∗ band also varies with the surface. Calculations of the vibrational modes

show the C-H stretching frequencies for carbon atoms bonded directly to the

surface vary signi�cantly between the three surfaces, while those for carbon

atoms not bonded to the surface do not change signi�cantly.

The investigation on the near-edge X-ray absorption �ne structure of benzene

in the gas-phase and adsorbed on the Au(111) and Pt(111) surfaces is also in-

vestigated with time dependent density functional theory. Excitation energies

computed with hybrid exchange correlation functionals are too low compared

with experiment. However, after applying a constant shift the spectra are in

good agreement with experiment. For benzene on the Au(111) surface, two

bands arising from excitation to the e2u(π∗ ) and b2g(π∗) orbitals of benzene

are observed for photon incidence parallel to the surface. On the Pt(111)

surface, a broader band arising from excitation to benzene orbitals that are

mixed with the surface that have both σ∗(Pt-C) and π∗ character is predicted.



ii

The calculation of near-edge X-ray absorption �ne structure with a simple-

size consistent doubles correction to single excitation con�guration interaction,

CIS(D) method, is also performed. Core excitation energies computed with

time-dependent density functional theory using standard exchange-correlation

functionals are systematically underestimated. CIS(D) predicts core excita-

tion energies that are closer to experiment. However, excitation energies for

Rydberg states are too low with respect to valence states, and for some sys-

tems spectra that are qualitatively incorrect are obtained. A scaled opposite

spin only approach is proposed that reduces the error in the computed core

excitation energies, and results in spectra that are in good agreement with

experiment.

Lastly I report our recent work on the development of accurate calculations

of X-ray emission spectra with time-dependent density functional theory and

equations of motion coupled cluster theory. The calculation of the spectra of

small molecules is described, and highlights problems with standard exchange-

correlation functionals.
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Chapter 1

Quantum Mechanics

Quantum chemistry applies quantum mechanics to address problems in chem-

istry. It arises as a consequence of the failure of classical Newtonian mechanics

in describing interactions on the atomic scale. Quantum mechanics describes

a system by a wavefunction that completely characterizes all of the physi-

cal properties of the system.1 In particular, there are quantum mechanical

operators corresponding to each physical observable that, when applied to

the wavefunction, allow one to predict the probability of �nding the system

exhibiting a particular value or range of values for that observable. Computa-

tional chemists are concerned with models which mimic real chemical systems

or reactions. Any successful model must ultimately �nd its basis in quantum

mechanics. The starting point of any discussion of quantum mechanics is, of

course, the Schrödinger equation.

1.1 Schrödinger Equation

In 1926, the Austrian physicist Erwin Schrödinger proposed the concept of the

wavefunction and the equation governing its change with time. This equation

was then known as the time�dependent Schrödinger equation or the

Schrödinger wave equation.2 The time-dependent Schrödinger equation
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contains the �rst derivatives of the wavefunction with respect to time, and al-

lows the calculation of the future wavefunction at any time if the wavefunction

at time t0 is known. The Schrödinger wave equation has the form:

ĤΨ = i~
∂Ψ

∂t
(1.1)

where Ψ is the wavefunction and Ĥ is the operator corresponding to the total

energy of the system. This operator is called the Hamiltonian and Ψ describes

the state of the system. Since the state will, in general, change with time, Ψ is

also a function of time. In short, the wavefunction contains all the information

we can possibly know about the system it describes. Many applications of

quantum mechanics do not use the time�dependent Schrödinger equation and

use the time�independent Schrödinger equation instead. The time�

independent Schrödinger equation can be written as

ĤΨ = EΨ, (1.2)

where the E in equation 1.2 has the dimension of energy.

Quantum chemistry is concerned with describing the behaviour of molecules.

For a molecular system, neglecting relativistic e�ects , the Hamiltonian is

Ĥ =
K∑
A

− 1

2MA

∇2
A −

1

2

n∑
i

∇2
i −

n∑
i

K∑
A

ZA

riA

+
n∑

i>j

1

rij

+
K∑

A>B

ZAZB

RAB

(1.3)

where i and j refer to each of the n electrons, A and B refers to each of

the K nuclei, and ZA is the charge on nuclei A, MA denotes the mass of the

nuclei A, and atomic units are used. The �rst term of equation 1.3 is the
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term for the nuclear kinetic energy. The second term is the description of the

electron kinetic energy. The third term Coulombic attraction of electrons to

nuclei, and the fourth and �fth terms are electron-electron and nuclear-nuclear

repulsions. ∇2 is the Laplacian operator, which in Cartesian coordinates is

de�ned as

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(1.4)

The wavefunction is a function of the nuclear positions R and the electron

positions r. The Schrödinger equation can be simpli�ed using the Born-

Oppenheimer approximation.3 This idea suggests separation of the total

molecular wavefunction ΨT (R, r) into an electronic wavefunction Ψ(r) and

nuclear wavefunction Φ(R), although Ψ(r) depends parametrically on the po-

sition of the nuclei, R. The assumption behind this is that since electrons

are much lighter than nuclei, and therefore move much more rapidly, elec-

trons can instantaneously respond to any changes in the relative positions of

the nuclei. This allows for the separation of the nuclear variables from the

electron variables

ΨT (R1,R2...RN , r1, r2, ...rn) = Φ(R1,R2...RN)Ψ(r1, r2, ...rn) (1.5)

The Hamiltonian obtained after applying the Born-Oppenheimer approxima-

tion is the electronic Schrödinger equation.

Ĥ = −1

2

n∑
i=1

∇2
i −

n∑
i=1

K∑
A

ZA

riA

+
n∑

i>j

1

rij

+
K∑

A>B

ZAZB

RAB

(1.6)
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where the �rst, second, and third terms of the r.h.s are electron kinetic en-

ergy, Coulombic attraction of the electron to the nuclei, and electron-electron

repulsion, respectively. In this case, the nuclei-nuclei repulsion term of the

equation 1.3 is a constant and is trivial to evaluate. The coordinates xi of

electron i comprise space coordinates ri and spin coordinates si. We may

rewrite equation 1.6 more compactly as

Ĥ = T̂ + V̂n,e + V̂e,e (1.7)

where

T̂ = −1

2

n∑
i

∇2
i , (1.8)

is the kinetic energy operator,

V̂n,e = −
n∑

i=1

K∑
A

ZA

riA

= −
n∑

i=1

v(ri) (1.9)

is the electron-nucleus attraction energy operator, and

V̂e,e =
n∑

i>j

1

rij

(1.10)

is the electron-electron repulsion energy operator. The v(ri) of equation 1.9

is called the external potential which acts on electron i, since it is produced

by charges external to the system of electrons. Equation 1.2 must be solved

subject to appropriate boundary conditions. Ψ must be well-behaved every-

where and since electrons are fermions, Ψ mus be antisymmetric with respect

to interchange of the coordinates (both space and spin) of any two electrons.

There are many acceptable solutions for the equation 1.2. Let us say that



1.1. Schrödinger Equation 5

the eigenfunctions Ψk, with corresponding eigenvalues Ek are acceptable so-

lutions, and the set Ψk is also complete. Then Ψk may always be taken to be

orthogonal and normalized, as in accordance with the probability density of

the wavefunction, ∫
Ψ∗

kΨldx
n = 〈Ψk|Ψl〉 = δkl (1.11)

where δ is the Kronecker delta. From here, we can denote the ground state

wavefunction and energy by Ψ0 and E0. Here
∫
dxn means integration over

all spatial and spin coordinates.

Expectation values of observables are given by the formula of

〈Ô〉 =

∫
Ψ∗ÔΨdx

Ψ∗Ψdx
=
〈Ψ|Ô|Ψ〉
〈Ψ|Ψ〉 (1.12)

where Ô is the Hermitian linear operator for the observable O. Many measure-

ments all average to 〈Ô〉, although particular measurements give particular

eigenvalues of Ô.

An approximate ground-state energy and wavefunction can be found using the

variational method. This method states that the energy expectation value ε is

greater than or equal to the true ground-state energy, E0, system. The equal-

ity occurs only when the trial wavefunction is the true ground-state wavefunc-

tion of the system.

ε ≥ E0, for any ψtrial (1.13)

The �rst step of the method is to choose a group of possible approximate wave

functions. The second step is to calculate the expectation value of the energy

using the di�erent members of the group of functions. This expectation value,
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ε, is called the variation energy. The �nal step is to �nd the member of the

group that gives a lower (more negative) value of ε than any other member

of the group. This value of ε is a better approximation to the ground-state

energy than is obtained from any other member of the group of functions. The

theorem does not guarantee that this function is a better approximation to

the correct wave function than any other member of the group, but it is likely

to be so. A typical group of functions is represented by a formula containing

one or more variable parameters.

The electronic Schrödinger equation cannot be solved exactly for systems with

more than one electron due to the electron-electron interaction. Consequently,

approximations have to be introduced. The most prominent approximation is

the Hartree-Fock approach4,5 introduced by D.R. Hartree and V.A. Fock in

the 1930's.

1.2 The Hartree-Fock Method

The wavefunction Ψ(x) depends on the coordinates of all of the electrons in the

molecule. Hartree proposed the separation of variables whereby the electronic

wavefunction can be separated into a product of functions that each depend

only on one electron

Ψ(x1,x2, ...xn) = ψ1(x1)ψ2(x2)...ψn(xn) (1.14)

By reconsidering the electron-electron repulsion term of the Hamiltonian in

equation 1.6, Hartree rewrote this term as an expression that describes the
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repulsion an electron feels from the average position of the other electrons,

i.e the exact electron-electron repulsion is replaced with an e�ective �eld,

Veff
i , produced by the average position of the remaining electrons. Hence, the

separable functions ψi satisfy the Hartree equations

(
−1

2
∇2

i −
K∑
A

ZA

rAi

+ V eff
i

)
ψi = Eiψi (1.15)

Fock recognized that the wavefunction in equation 1.14 does not satisfy the

Pauli Exclusion Principle. He suggested using a Slater determinant instead.

Suppose that Ψ is approximated by antisymmetrized product of n orthonormal

spin orbitals ψi(x), each a product of a spatial orbital φk(r) and a spin function

σ(s) = α(s) or β(s), the Slater determinat

ΨHF =
1√
n!

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(x1) ψ2(x1) · · · ψn(x1)

ψ1(x2) ψ2(x2) · · · ψn(x2)

... ... . . . ...

ψ1(xn) ψ2(xn) · · · ψn(xn)

∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1√
n!
det[ψ1ψ2 · · ·ψn] (1.16)

If the normalization integral of equation 1.16 is equal to 1, the energy expec-

tation value is written as

EHF = 〈ΨHF |Ĥ|ΨHF 〉 =
n∑

i=1

hii +
1

2

n∑
i=1

n∑
j=1

(Jij −Kij) (1.17)
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where

hii =

∫
ψ∗i (x)

[
−1

2
∇2 −

K∑
A

ZA

riA

]
ψi(x)dx (1.18)

Jij =

∫ ∫
ψi(x1)ψ

∗
i (x1)

1

r12

ψ∗j (x2)ψj(x2)dx1dx2 (1.19)

Kij =

∫ ∫
ψ∗i (x1)ψj(x1)

1

r12

ψi(x2)ψ
∗
j (x2)dx1dx2 (1.20)

Jij and Kij are called the Coulomb and exchange integrals, respectively. The

Coulomb energy arises from the interaction of the smeared-out electron po-

tential with an electron density. The exchange energy has no classical inter-

pretation as it takes into account the e�ects of spin correlation. Minimization

the equation 1.17 subject to the orthonormalization conditions

∫
ψ∗i (x)ψj(x)dx = δij (1.21)

gives the Hartree-Fock di�erential equations

F̂ψi(x) =
n∑

j=1

εijψj(x) (1.22)

where

F̂ = −1

2
∇2 + v + ĵ − k̂ (1.23)

Here

ĵ(x1)f(x1) ≡
n∑

k=1

∫
ψ∗k(x2)ψk(x2)

1

r12

f(x1)dx2 (1.24)

and

k̂(x1)f(x1) ≡
n∑

k=1

∫
ψ∗k(x2)f(x2)

1

r12

ψk(x1)dx2 (1.25)
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with f(x1) an arbitrary function. The matrix ε consists of Lagrange multipli-

ers (in general complex) associated with the constraints of the equation 1.21.

Also,

ε∗ij = εij (1.26)

so that ε is Hermitian . Multiplying equation 1.22 by ψ∗i and integrating, one

obtains the formula for orbital energies,

εi ≡ εii = 〈ψi|F̂ |ψi〉 = hii +
n∑

j=1

(Jij −Kij) (1.27)

Summing over i and comparing with the equation 1.17, we �nd

EHF =
n∑

i=1

εi − Ve,e (1.28)

where the symbol Ve,e stand for the total electron-electron repulsion energy

Ve,e =

∫
Ψ∗

HF (xn)

(∑
i<j

1

rij

)
ΨHF (xn)dxn

=
1

2

n∑
i,j=1

(Jij −Kij) (1.29)

Solution of the equation 1.22 must proceed iteratively, since the orbitals ψi

that solve the problem appear in the operator F̂ . Consequently, the Hartree-

Fock method is a nonlinear "self-consistent" method.

For a system having an even number of electrons, the n orbitals ψi are taken

to comprise n/2 orbitals of form φk(r)α(s) and n/2 orbitals of form φk(r)β(s).
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Thus, the energy of the equation 1.17 become

EHF = 2

n/2∑

k=1

hkk +

n/2∑

k,l=1

(2Jkl −Kkl) (1.30)

where

hkk =

∫
φ∗k(r)

[
−1

2
∇2 + v(r

]
φk(r)dr (1.31)

Jkl =

∫ ∫
|φk(r1)|2 1

r12

|φl(r2)|2dr1dr2 (1.32)

Kkl =

∫ ∫
φ∗k(r1)φl(r1)

1

r12

φk(r2)φ
∗
l (r2)dr1dr2 (1.33)

while Hartree-Fock equation in 1.22 now reads

F̂ φk(r) =

n/2∑

l=1

εklφl(r) (1.34)

Consequently, the operator F̂ given in the equations 1.23, 1.24 and 1.25 are

replaced by

ĵ(r1)f(r1) ≡ 2

n/2∑
m=1

∫
|φm(r2)|2 1

r12

dr2f(r1) (1.35)

k̂(r1)f(r1) ≡
n/2∑
m=1

∫
φ∗m(r2)f(r2)

1

r12

dr2φm(r1) (1.36)

and the determinant wavefunction of the equation 1.16 is also followed for this

"even number electrons" or all electrons paired case.

The objective is to minimize the total energy as a function of the molec-

ular orbitals, subject to the orthogonality constraint. To do so, a unitary

transformation of the wavefunction is invoked. This important property guar-

antees that transformation of the occupied orbitals φk (or ψi) to another set
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of orbitals θm leaves the wavefunction unchanged except possibly by an incon-

sequential phase factor. The operators ĵ, k̂ and F̂ are also invariant to such

a transformation. If we let,

θm =
∑

k

Umkψk (1.37)

where U is a unitary matrix ,

UtU = 1 (1.38)

then for the even number electron case

F̂ θm =

n/2∑

l=1

εθ
mlθl (1.39)

where

εθ = UεUt (1.40)

Since the matrix ε is Hermitian, one may choose the matrix U to diagonalize it.

The corresponding orbitals φm, called the canonical Hartree-Fock molecular

orbitals which satisfy the canonical Hartree-Fock equations,

F̂ φm(r) = εφ
mφm(r) (1.41)

This equation is, for the same case, considerably more convenient for cal-

culation than the equation 1.34. The canonical HF molecular orbitals are

convenient for the physical interpretation of the Lagrange multipliers.

For an n-electron system with identical molecular orbitals, the energy di�er-
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ences by removing one electron from orbital number k

En − Ek
n−1 = hk +

n∑
i=1

(Jki −Kki) = εk (1.42)

which is exactly the orbital energy εk in equation 1.27 and is considered as the

ionization energy. A principle to produce an orbital energy from ionization

energy within frozen molecular orbital approximation is known as Koopmans'

theorem.6 Similarly, the electron a�nity of a neutral molecule is given as

the orbital energy of the corresponding anion as a consequence of attaching

additional electron, or as the energy of the kth unoccupied orbital energy in

the neutral species.

Ek
n+1 − En = εk (1.43)

There is more than one possible way to solve the Hartree-Fock equation. For

small highly symmetric system, such as atoms and diatomic molecules, the HF

equation may be solved by mapping the orbitals on a set of grid points, and

referred to as the numerical Hartree-Fock methods.7 However, the basis set

approximation method can be used instead. This approximation, essentially,

employs some set of �xed one-electron basis functions and then expanding

them to many-electron wave functions. The expansion of each of molecular

orbitals, φi, is through linear combinations of atomic orbitals in term of basis

functions χα(r).

φi(r) =

η∑
α=1

cαiχα(r) (1.44)



1.2. The Hartree-Fock Method 13

where cαi are the molecular orbital coe�cients and η is the number of basis

functions. Thus the Hartree-Fock equation can be written as

F̂i

η∑
α

cαiχα = εi

η∑
α

cαiχα (1.45)

These are the Hartree-Fock equations in the atomic orbital basis. Rewriting

equation 1.45 through collecting all of the η equations in matrix notation gives

FC = εSC (1.46)

where

Fαβ = 〈χα|F̂ |χβ〉 (1.47)

Sαβ = 〈χα|χβ〉

The S matrix contains the overlap elements between basis functions, and the

F matrix contains the Fock matrix elements. Equation 1.46 is called the

Roothaan-Hall matrix equation.8 Generalizing to an unrestricted formalism

by introducing separate spatial orbitals for α and β spin in equation 1.16

yields the Pople-Nesbet9 equations.

FαCα = εαSCα

(1.48)

FβCβ = εβSCβ

Solving equation 1.46 and 1.48 yields the restricted and unrestricted �nite

basis Hartree-Fock approximation.
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If we consider once more the Roothaan-Hall equations or the Pople-Nesbet

equations which can be traced back to the integro-di�erential equation in

1.22, where the e�ective potential, veff , depends on the SCF methodology.

In the case of an even number electrons or all paired electrons, the e�ective

potential can be written as

veff =

n/2∑

k

[2Ĵk(r1)− K̂k(r1)]−
K∑

A=1

ZA

r1A

(1.49)

where the Coulomb and exchange operators are de�ned as

Ĵk(r1) =

∫
ψ∗k(r2)

1

r12

ψk(r2)dr2 (1.50)

K̂k(r1)ψl(r1) =

[∫
ψ∗k(r2)

1

r12

ψl(r2)dr2

]
ψk(r1) (1.51)

respectively. From here, we can obtain Fock matrix elements in the atomic

orbital basis, χ(r)

F̂pq = Hcore
pq + Jpq −Kpq (1.52)

where the core Hamiltonian matrix elements

Hcore
pq = Tpq + Vpq (1.53)

consist of kinetic energy elements

Tpq =

∫
χp(r)

[
−1

2
∇2

]
χq(r)dr (1.54)
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and nuclear attraction elements

Vpq =

∫
χp(r)

[
−

∑
A

ZA

|RA − r|

]
χq(r)dr (1.55)

The Coulomb and exchange elements are given by

Jpq =
∑
rs

Prs(pq|rs) (1.56)

Kpq =
1

2

∑
rs

Prs(pr|qs) (1.57)

where the density matrix elements are

Ppq = 2

n/2∑

k=1

CpkCqk (1.58)

and the two electron integrals are

(pq|rs) =

∫ ∫
χp(r1)χq(r1)

[
1

r12

]
χr(r2)χs(r2)dr1dr2 (1.59)

Subtituting the matrix element of the equation 1.52 back into the Roothaan-

Hall equation and solving until self-consistency is achieved will yield the re-

stricted Hartree-Fock (RHF) energy and wavefunction. Alternatively, one

could have adopted the unrestricted form of the wavefunction by de�ning an
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alpha and beta density matrix

Pα
pq =

nα∑

k=1

Cα
pkC

α
qk

(1.60)

P β
pq =

nβ∑

k=1

Cβ
pkC

β
qk

and the total electron density matrix P T is simply the sum of the alpha and

beta density matrices. The unrestricted alpha Fock matrix

F̂α
pq = Hcore

pq + Jpq −Kα
pq (1.61)

di�ers from the restricted one only in the exchange contributions where the

alpha exchange matrix elements are given

Kα
pq =

n∑
r,s

Pα
rs(pr|qs) (1.62)

The Hartree�Fock�Roothaan algorithm is implemented by the following steps:

1. Specify the nuclear position, the type of nuclei, the number of electrons,

and multiplicity.

2. Choose a basis set.

3. Calculate all of the integrals necessary to describe the core Hamiltonian,

the Coulomb and exchange terms, and the overlap matrix.

4. Diagonalize the overlap matrix S to obtain the transformation matrix

X.
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5. Make a guess at the coe�cient matrix C and obtain the density matrix

P.

6. Calculate the Fock matrix and then the transformed Fock matrix F′.

7. Diagonalize F′ to obtain C and ε.

8. Obtain the new coe�cient matrix with the expression C=XC′ and the

corresponding new density matrix.

9. Decide if the procedure has converged. There are typically two criteria

for convergence, one based on the energy and the other on the orbital

coe�cients. The energy convergence criterion is met when the di�erence

in the energies of the last two iterations is less than some preset value.

Convergence of the coe�cients is obtained when the standard deviation

of the density matrix elements in successive iterations is also below some

preset value. If convergence has not been met, return to Step 6 and

repeat until the convergence criteria are satis�ed.

The molecular orbitals that are produced in this procedure are such that the

energy matrix ε will be diagonal, with the diagonal elements being interpreted

as the molecular orbital energies.

1.2.1 Restricted and Unrestricted Hartree-Fock

Most polyatomic molecules have a closed-shell ground state. This closed-

shell state is occupied by two electron with opposite spins in each occupied

molecular orbital. For an open-shell state, in contrast, there are molecular
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orbitals containing one electron. If the number of electrons is even, the system

does not necessary have to be closed-shell. If the number of electrons is odd,

the system will always be open-shell.

A molecular orbital is a product of a spatial orbital and a spin function, α

or β. For a closed-shell system, each orbital is occupied of two electrons

with opposite α and β spin. These systems can be treated using a restricted

Hartree-Fock (RHF) formalism, whereby each orbital is doubly occupied with

electrons of opposite spin. For open-shell systems, restricted open-shell or

unrestricted (UHF) Hartree-Fock formalism can be adopted. In ROHF the

spatial parts of the doubly occupied orbitals for the electrons of di�erent spin

are the same, and in UHF this constraint is lifted. This is illustrated in Figure

1.1. Variationally, the UHF wavefunctions is better since it will give a lower

energy. However, UHF wavefunctions are no longer eigenfunction of the total

spin operator (S2).

1.2.2 Basis sets

As described above, solution of the Hartree-Fock-Roothaan equations requires

the introduction of a basis set. If the set of basis functions is in�nite, then

the variational principle tells us that we will obtain the lowest possible en-

ergy within the Hartree-Fock Self-consistent �eld (HF�SCF) method. This is

called the Hartree�Fock limit. This is not the actual energy of the molecule.

Because an in�nite set of atomic orbitals is impractical, a choice must be made

on how to truncate the expansion and the type of basis functions to use. This
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Figure 1.1: Illustrating an RHF singlet, and ROHF and UHF doublets states
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choice of atomic orbitals de�nes the basis set.

A natural starting point is to use functions from the exact solution of the

Schrödinger equation for the hydrogen atom. These orbitals have the form

χ = Cxiyjzke−ζ(r−R)Yl,m(θ, φ) (1.63)

where R is the position vector of the nucleus upon which the function is

centred and C is normalization constant. Yl,m(θ, φ) are spherical harmonic

functions and describe the angular part of the function. Basis functions of this

type are called Slater-type orbitals (STOs). The value of ζ for every STO for

a given element is determined by minimizing the atomic energy with respect

to ζ. These values are used for every atom of that element, regardless of

the molecular environment. STOs are primarily used for atomic and diatomic

systems where high accuracy is required, and in semi-empirical methods where

all three and four centre integrals are neglected. They can also be used with

density functional methods that do not include exact exchange and where

the Coulomb energy is calculated by �tting the density into a set of auxiliary

functions. Conceptually, the STO basis is straightforward as it mimics the

exact solution for the single electron atom. Unfortunately, with STOs many

of the integrals that need to be evaluated to construct the Fock matrix can

only be solved using an in�nite series. Truncation of this in�nite series results

in errors, which can be signi�cant.17

In 1950, Boys18 proposed an alternative to the use of STOs. That is the radial

decay of the STOs can be changed from e−r to e−r2 , in which the atomic

orbital-like functions are chosen to have form of a Gaussian function. The
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advantage of the Gaussian-type orbitals (GTOs) is that with this function,

the integrals required to build the Fock matrix can be evaluated exactly. The

form of GTO as shown in equation 1.64.

χ = Cxiyjzke−α(r−R)2Yl,m(θ, φ) (1.64)

The r2 dependence in the exponential makes the GTO inferior to the STOs

in two aspects. At the nucleus the GTO has zero slope, in contrast to the

STO which has a "cusp" or discontinuous derivative, and GTOs have prob-

lems representing the proper behaviour near the nucleus. This can be seen

in Figure 1.2. The other problem is that the GTO falls o� too rapidly far

from the nucleus compared with an STO, and the "tail" of the wavefunction

is consequently represented poorly.

In order to address these problems, the �rst basis sets developed with GTOs

used them as building blocks to approximate STOs. This leads to the ba-

sis function χ used for calculations being not individual GTOs, but a linear

combination of GTOs �tted to reproduce as accurately as possible a STO.

The basis functions generated as a linear combination of GTOs are called

contracted basis functions. Whereas the individual Gaussians from which it

is formed are called primitive Gaussian functions. The degree of contraction

refers to the total number of primitives used to make all of the contracted

functions. Hehre, Stewart and Pople19 were the �rst to systematically deter-

mine optimal contraction coe�cients and exponents for mimicking STOs with

contracted GTOs for a large number of atoms in the periodic table.

The minimum basis set is usually inadequate, failing to allow the core elec-
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Figure 1.2: Plot of radial component of a Slater-type orbital (red line) and a
Gaussian-type orbital (blue line).

trons to get close enough to the nucleus and valence electrons to delocalize.

An obvious solution is to double the size of the basis set, creating a double-zeta

(DZ) basis. Thus for carbon, for example, the DZ basis set has four s basis

functions and two sets of p basis functions, for a total of ten basis functions.

Further improvement has made by choosing a triple zeta (TZ) or even larger

basis sets.

As most of chemistry focuses on the action of the valence electrons, Pople

et al20,21 developed the split-valence basis sets, single zeta in the core and
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double zeta in the valence region. A double-zeta split-valence basis set for

carbon has three s basis functions and two p basis functions for a total of nine

functions, a triple-zeta split valence basis set has four s basis functions and

three p functions for a total of thirteen functions, and so on. One concern is

that even large multi-zeta basis sets will not provide su�cient �exibility to

adequately describe the electron distribution. An example of this de�ciency

is the inability to describe bent bonds of small rings. Extending the basis

set to include a set of functions that mimic the atomic orbitals with angular

momentum one greater than in the valence space greatly improves the ba-

sis �exibility. These added basis functions are called polarization functions.

Thus for carbon atom, adding polarization means adding a set of d GTOs,

whereas for hydrogen, polarization functions are a set of p functions. Addition

of polarization functions is labelled with +P . DZ+P indicates a double-zeta

basis set with one set of polarization functions. 6-31G* is an example of a

split-valence basis sets, where the asterix denotes adding a set of polarization

functions to all atoms but hydrogen and helium.

Chemistry also focuses on ionic systems. For anions, the basis set must be

augmented with di�use functions to allow the electron density to expand into

a larger volume. It is designated as +, such as 6-31+G(d) for split-valence

basis sets. The di�use functions added are a full set of functions of the same

type as are present in the valence space. So, for carbon, the di�use function

would be an added s function and a set of p basis functions . The correlation-

consistent basis sets developed by Dunning are popular alternatives.22�24 The

correlation-consistent were constructed to extract the maximum electron cor-

relation energy for each atom. They are designated as cc − pV ξZ, read as
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correlation-consistent polarized split-valence ξ-zeta, where ξ indicates the de-

gree to which the valence space is split. As ξ increases, the number of po-

larization functions are also increased. The addition of di�use functions to

the correlation-consistent basis sets is designated with the pre�x aug, as in

aug-cc-pVDZ.

Hartree-Fock theory is the most prominent approximation because it provides

an exact treatment of exchange functional. The cost of a Hartree-Fock calcu-

lation formally scales as the fourth order of molecular size16 (or basis set size)

and depending on implementation, the scaling can be reduced. However, it is

insu�ciently accurate for quantitative predictions of the properties of many

compounds, although, it is useful for determining information such as trends

in structural parameters with system size.

Hartree-Fock theory treats each electron independently moving in an average

�eld of all other electrons and the nuclei. This leads to an uncoupling of

the many-body Schrödinger equation to many single particle equations, and

subsequently mimics single-particle picture of molecular orbitals. However,

the HF scheme does not cover electron correlation caused by instantaneous

repulsion between the electrons. The error of the Hartree-Fock model due to

neglecting electron correlation is de�ned as correlation energy

Ecorr = Eexact − EHF (1.65)

where Eexact is the exact energy within the given basis set. The correlation en-

ergy tends to remain constant for atomic and molecular changes that conserve

the numbers and types of chemical bonds, but it can change drastically and
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become determinative when bonds change. There are two contributions to

the Ecorr, dynamical and non-dynamical electron correlation. The dynamical

electron correlation means that the Ecorr is a�ected by the proportion of the

electron-electron repulsion term 1/r12 in the Hamiltonian. The non-dynamical

electron correlation is related to the fact that in certain circumstances the

ground-state Slater determinant is not a good approximation. The electron

correlation in a helium atom is almost purely dynamic, while the correlation

in the hydrogen molecule at the dissociation limit is purely non-dynamic.25

Much e�orts have been undertaken to recover the missing electron correlation,

and a profusion of quantum chemical ab initio methods called wavefunction-

based methods have emerged. Examples of these methods are Moller-Plesset

(MP),10,11 con�guration interactions12,13 and coupled-cluster approaches.14,15

Even though powerful in describing electron-electron corelations, these meth-

ods are expensive for the sake of computational calculations. Density func-

tional theory, on the other hand, is able to capture correlation energy. How-

ever, the cost of the computational calculations using this method is inexpen-

sive compared to the correlated wavefunction-based methods.
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Density Functional Theory

It is well known that HF theory neglects electron correlation. The disregard

of electron correlation can result in computed properties that are inaccurate

or predictions that are qualitatively incorrect. The most computationally ef-

�cient method of incorporating electron correlation is density functional the-

ory (DFT). It has practical utility and is highly valuable to most electronic

structure calculations in quantum chemistry and condensed matter physics.

Consequently, DFT has become the most popular quantum chemical method.

DFT is a quantum mechanical method used in physics and chemistry to inves-

tigate the electronic structure of many-body systems, in particular molecules

and condensed phases. It describes an interacting system of fermions,26 via

its density and not by its many-body wavefunction. In other words, there

exists a one-to-one correspondence between the electron density of a system

and the energy. Therefore, a functional can be designed to connect the elec-

tron density with the energy. Instead of the dependence on 3n variables of

the many-body electronic wavefunctions, i.e. three spatial variables for each

of the n electrons, the density is merely a function of three variables, and is

a simpler quantity to deal with both conceptually and practically. In short,

DFT is a remarkable theory that allows one to replace the complicated n-

electron wavefunction Ψ(x1,x2, . . . ,xn) by the much simpler electron density
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ρ(r).

2.1 The Hohenberg-Kohn Theorem
In 1964, Hohenberg and Kohn declared an appropriate theorem of DFT in

a seminal publication.26 They proved that every observable of stationary

quantum mechanics system (including energy), can be calculated, in principle

exactly, from the ground-state density alone, i.e., every observable can be

written as a functional of the ground state density. They also established that

the ground state density can be calculated, in principle exactly, using the

variational method involving only the density. The simpli�cation of the proof

of the Hohenberg-Kohn theorem is as follows. Since the electronic Schrödinger

equation in equation 1.6 is solved for �xed location of the nuclei, the nuclear

coordinates are not variables for the electronic Schrödinger equation. Once

the external potential v(ri) and the number of electrons n are speci�ed, the

electronic wavefunctions and allowed energies of the molecule are determined

as the solution of the electronic Schrödinger equation. Hohenberg and Kohn

proved that for systems with a nondegenerate ground state, the ground-state

electron probability density ρ0(r) determines the external potential and the

number of electrons. Hence, the ground-state wavefunction and energy are

determined by the ground-state electron density.

The ground-state electronic energy E0 is thus a functional of ρ0(r), which can

be written as

E0 = Ev[ρ0] (2.1)
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Each term of the equation 1.7 can be written as a functional of ρ0:

E0 = Ev[ρ0] = T̂e[ρ0] + V̂n,e[ρ0] + V̂e,e[ρ0] (2.2)

where

V̂n,e = 〈ψ0|
n∑

i=1

v(ri)|ψ0〉 =

∫
ρ0(r)v(r)dr (2.3)

and

V̂e,e =
1

2

∫ ∫
ρ0(r1, r2)

r12

dr1r2 (2.4)

Hohenberg and Kohn also introduced the variational principle to change

the equation 2.2 from a formal relation to a practical tool which gave birth

to the second theorem of Hohenberg-Kohn. They proved that for every trial

density function ρtr(r) that satis�es

∫
ρtr(r)dr = n (2.5)

with ρtr(r) ≥ 0 for all r, the following inequality holds

E0 ≤ Ev[ρ0] (2.6)

where ρ0 is the true ground-state electron density obtained from minimizing

the energy functional Ev[ρtr]. This is very similar to the usual variational

principle for wavefunctions. From here, the expectation value of a Hamiltonian

with a trial wavefunction ψtr that corresponds to a ρtr for a molecule can be
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written as

〈ψtr|Ĥ|ψtr〉 = 〈ψtr|T̂e + V̂e,e +
n∑

i=1

v(ri)|ψtr〉 ≥ E0 = Ev[ρ0] (2.7)

where this energy can never below the true ground state energy. Using the fact

that the average kinetic and potential energies are functionals of the electron

density, and using equation 2.3 with ψ0 replaced by ψtr, the last equation

becomes

T̂e[ρtr] + V̂e,e[ρtr] +

∫
ρtrv(r)dr ≥ Ev[ρ0] (2.8)

Hohenberg and Kohn proved their theorems only for nondegenerate ground

states. However, the theorem does not tell us how to calculate E0 from ρ0,

nor does it tell us how to �nd ρ0 without �rst �nding the wavefunction. This

leads us to the discussion of the Kohn-Sham method.27,28

2.2 The Kohn-ShamMethod and Exchange-Correlation

Functionals

Additional progress was made by Kohn and Sham when they suggested the

use of an auxiliary non-interacting system, the Kohn-Sham (KS) system, to

assay the use of the interacting system. They suggested a brilliant method

of combining of wavefunction and density approaches. They re-separated the

total energy functional into following parts27

E[ρ] = T [ρ] +

∫
[υext(r) + υcl(r)]ρ(r)dr + Exc[ρ] (2.9)
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where T [ρ] is the kinetic energy of the electron in a system which has the same

density, ρ, as the real system with no electron-electron interactions. υcl(r)

is the pure Coulomb interaction between the electrons or classical electron

interactions.

υcl(r) =

∫
ρ(r′)
|r′ − r|dr

′ (2.10)

υext(r) is the external potential, i.e, the potential that arises from nuclei:

υext =
∑

α

−qa
|Rα − r| (2.11)

The last term, Exc[ρ] is called exchange-correlation energy. All the energy

contributions that are not accounted for are incorporated in Exc[ρ].

Derivation of the KS equation, which is not discussed in detail here, was done

by assuming that energy functional is reasonable. Applying the variational

principle, one can be found

δE[ρ(r)]
δρ(r) =

δT [ρ(r)]
δρ(r) + υeff (r) (2.12)

in which

υeff (r) = υext(r) + υcl(r) + υxc(r) (2.13)

From here, the exchange correlation potential υxc(r) is de�ned as the func-

tional derivative of the exchange correlation energy:

υxc(r) =
δExc[ρ(r)]
δρ(r) (2.14)
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The form of the equation 2.12 allows for a solution as a Schrödinger equation

for non-interacting particles

[−1

2
∇i + υeff (r)]φKS

i (r) = εiφi(r)KS (2.15)

This equation is similar to the eigenequation of the HF method. The KS

orbitals can be used to compute the total density

ρ(r) =
n∑
i

|φKS
i (r)|2 (2.16)

where this equation is then used to calculate an improved potential υeff (r),

and leads to a new cycle in the self-consistent �eld process.

The total energy can be calculated economically using orbital energies as

E[ρ] =
n∑

i=1

εi − 1

2

∫
drdr′

ρ(r)ρ(r′)
|r− r′| −

∫
υxc(r)ρ(r)dr + Exc[ρ] (2.17)

in which
n∑

i=1

εi = Ts[ρ] +

∫
drρ(r)υeff (r) (2.18)

Even though in an arti�cial way, equation 2.15 shows that the electron in-

teraction is included into υeff (r). It is possible to prove that the exchange-

correlation potential is a unique functional, valid for all systems, but an ex-

plicit functional form of this potential has been elusive, except for special cases

such as a uniform electron gas. Kohn and Sham also proposed a simple ap-

proximation to υxc, the local density approximation (LDA ). This functional

uses the knowledge of the exchange-correlation energy of the homogeneous



32 Chapter 2. Density Functional Theory

electron gas. The form of LDA in atomic units is29

ELDA
x = −Cx

∑
σ

∫
ρ4/3

σ (r)dr, (2.19)

Cx = 3
2
[ 3
4π

]1/3

where σ denotes either up or down electron spin, and the integrand is essen-

tially the volume exchange-energy density of a uniform spin-polarized electron

gas of spin density ρσ.

In the case for which α and β spins are not equal, LDA has been virtually

abandoned and replaced by the Local Spin Density Approximation (LSDA ).

The simplest form of the LSDA is30

ELSDA
xc =

∫
εxc[ρα(r), ρβ(r)]dr (2.20)

where the integrand εxc is the exchange-correlation energy density of a uniform

electron gas with spin densities ρα(r) and ρβ(r) equal to their local atomic or

molecular values. For closed-shell systems LSDA is equal to LDA. Of course,

an atomic or molecular density is not homogeneous and the improvement of

the LSDA has to be considered.

Improvements over the LSDA approach that considers a non-uniform electron

gas have been made. This includes making exchange correlation energies de-

pendent not only on the value of the electron density, but also on derivatives

of the density. Such methods are known as Gradient Corrected or General-

ized Gradient Approximation (GGA) methods. Perdew and Wang (PW86)31

proposed modifying the LSDA exchange expression to that shown in equa-
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tion 2.21, where x is a dimensionless gradient variable, and a, b, and c being

suitable constants and summation over equivalent expression for the α and β

densities implicitly assumed.

Ex = ELDA
x (1 + ax2 + bx4 + cx6)1/5, (2.21)

x = |∇ρ|
ρ4/3

Becke proposed a widely used correction,32 B or B88, to the LSDA exchange

energy, which has the correct −r−1 asymptotic behaviour for the energy den-

sity

EB88
x = ELDA

x + ∆EB88
x , (2.22)

∆B88
x = −βρ1/3 x2

1+6βxsinh−1x

In which the β parameter is determined by �tting to known atomic data and

x de�ned in equation 2.21.

Handy and Cohen33 have also investigated several forms related to equation

2.21 where the parameters were optimized with respect to exchange energies

calculated at the Hartree-Fock level. The best resulting model had two param-

eters and was labelled OPTX (OPTimized eXchange). It was also found that

no signi�cant improvement could be made by including higher order deriva-

tives. Hamprecht, Cohen, Tozer and Handy34 have further extended the B97

model using only the pure density components, i.e. no exact exchange, to a

functional containing 15 parameters which were �tted to experimental and ab

initio data, known as the acronyms of HCTH93, HCTH14, and HCTH407.

The most successful class of functional is hybrid functionals , where Hartree-
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Fock exchange is introduced. The exact de�nition of B3LYP exchange corre-

lation functional is35

Exc = aEDS
x + (1− a)EHF

x + bEB88
x + cELY P

c + (1− c)EV WN
c (2.23)

where30 a = 0.8, b = 0.72, c = 0.81, and the superscript DS, HF, B88, LYP,

and VWN refer to the Dirac-Slater,29 Hartree-Fock, Becke,32 Lee-Yang-Parr,36

and Vosko-Wilk-Nusair37 exchange correlation functionals.

Further extensions to the GGA methods were also introduced. The exchange

and correlation functionals were allowed to depend on the higher order deriva-

tives of the electron density, with the Laplacian (∇2ρ) being the second-order

term. Alternatively, it can be taken to depend on the orbital kinetic energy

density τ , for single orbital

τ(r) =
1

2

occ∑
i

|∇φi(r)|2 (2.24)

τw(r) =
|∇ρ(r)|2
8ρ(r)

where τw is the von Weizsäker39 kinetic energy. The orbital kinetic energy

density and the Laplacian of the density essentially carry the same informa-

tion, since they are related via the orbitals and the e�ective potential can be

written as

τ(r) =
1

2

occ∑
i

εi|φi(r)|2 − νeff (r)ρ(r) +∇2ρ(r) (2.25)
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Inclusion of either the Laplacian or kinetic energy density as a variable leads

to the so-called meta-GGA functionals and the two functions in equation 2.24

are the common components of meta-GGA functionals.

DFT is accurate, if we know how to derive necessary relations between density

and energy. Unfortunately, energy functionals relating electronic density to

energy are unknown, and there is no general way to improve them beside

trying new ones and judging their quality by the results. However, DFT

provides a hope for an accurate method which scales with fourth power of

molecular size in the worst case, and possibly linearly for larger molecules.40



Chapter 3

Excited State Calculations

The development of HF and DFT in the previous chapters has focused on

the electronic ground state. As for ground state calculations, performing an

adequate excited state calculation involves making an appropriate choice of

method and basis set. In dealing with excited state, it always useful to distin-

guish two di�erent cases. These are the dependency on the same or a di�erent

symmetry than the lower state(s). Excited states of di�erent symmetry can

be treated as the lowest energy state of a given symmetry may handled anal-

ogously to the ground state. However, excited states where there is a lower

energy solution of the same symmetry are somewhat more di�cult to treat.

It will be di�cult to generate a HF type wavefunction, for instance, for those

states as a consequences of the variational collapse to the lowest energy solu-

tion of the given symmetry. This leads to a number of alternative methods

for studying excited states.

It is a challenge to acquire a reliable description of the electronic excited states.

This is because there is a great diversity of excited states−some involve one-

electron valence excitations from the ground state, such as an n → π∗ state

in carbonyl groups, while others involve excitations into very di�use Rydberg

orbitals, such as lower excited state of atoms and saturated molecules, some

involve charge transfer from on region to another, some involve signi�cant
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contributions from promotion of 2 (or even more) electrons, such as the so-

called dark states of polyenes, etc. Thus it is di�cult to build economical

and yet accurate theoretical chemical models that can describe this diversity.

Most popular at present are approaches based on time-dependent extensions

to DFT, although this still su�ers from signi�cant limitations. Coupled cluster

theory provides an alternative framework that is useful for smaller molecules.

Complete active space-based methods are another alternative, although the

selection of the active space is a tremendous challenge. The lowest level of the-

ory for a qualitative description of excited state is a con�guration interaction

with singly excited determinants, CIS.

3.1 Con�guration Interaction Singles, CIS

Con�guration interaction singles (CIS)41 is the computationally, as well as

conceptually, simplest wavefunction based ab initio method for the calculation

of electronic excitation energies and excited-state properties. The starting

point of the derivation of the CIS equations is the Hartree�Fock ground state,

ΨHF , which corresponds to the best single Slater determinant describing the

electronic ground state of the system. This determinant is shown in equation

1.16 and represents only one of several possible determinants for an electronic

wavefunction of the system. For the n number of electrons with η number

of basis functions , there are n(η − n) possible singly excited determinants

made by replacing an occupied spin orbital with a virtual spin orbital. Such

wavefunctions and associated energies can be written

ψia = (n!)−1/2det[ψ1ψ2 · · ·ψaψi · · ·ψn] (3.1)
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Eia = EHF + εa − εi − (ia||ia) (3.2)

The following subscript notation will be used throughout; µ, ν, λ, σ, ..., denote

atomic basis functions; i, j, k, l, ... denote molecular orbitals which are occu-

pied in the ground state; a, b, c, d, ... denote virtual molecular orbitals, unoc-

cupied in the ground state; p, q, r, s, ... denote generic molecular spin orbitals.

Introducing the antisymmetrized two-electron integrals in the molecular or-

bital basis

(pq||rs) =
∑

µνλσ

cµpcνqcλrcσs(µν||λσ) (3.3)

The singly excited wavefunction in equation 3.1 and energies can be considered

�rst approximation to the molecular excited states of the system. However,

there are several disadvantages in using equation 3.1 as a wavefunction:

1. It is not an eigenfunction of the S2 operator and therefore does not yield

pure spin states for closed-shell systems.

2. The spin orbitals involved in transition have been variationally deter-

mined for the ground state. Forcing the virtual orbital to be occupied

is more closely related to ionization rather than excitation.

3. It is not at all appropriate for excitations into degenerate spin orbitals.

For instance, the π to π∗ excited states of benzene can be understood

only as a mixture of four singly excited determinants.

These objections are partially overcome if the excited-state wavefunction is

written as a linear combination of all possible singly excited determinants41

ΨCIS =
∑
ia

Ciaψia (3.4)
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These con�guration interaction (CI) coe�cients can be deduced as normalized

eigenvectors of the Hamiltonian matrix

< ψia|H|ψjb >= [EHF + εa − εi]δijδab − (ja||ib) (3.5)

This procedure is known as full con�guration interaction in the space of substi-

tutions or "CI singles". Eigenvalues, ECIS, of equation 3.4 are the CI-singles

total energies for various excited states .

ECIS = EHF +
∑
ia

a2
ia(εa − εi)−

∑

ijab

aiaajb(ja||ib) (3.6)

The ΨCIS is properly orthogonal to the ground-state ΨHF by virtue of Bril-

louin theorem, i.e, the matrix elements between HF reference and singly ex-

cited state are zero.42

〈Ψia|H|ΨHF 〉 = 0 (3.7)

The variational determinant of the CIS coe�cients allows the overall wave-

function to relax so that ΨCIS more properly represents an excited state rather

than an ionized state. CIS leads to a well-de�ned wavefunction and di�eren-

tiable energy, thus analytical gradient techniques to determine properties and

optimized excited-state geometries are relatively straight to apply.

3.2 CIS(D)
CIS(D) is a second-order perturbative approximation to coupled cluster sin-

gles and doubles (CCSD) method. It is based on a single state excitation

con�guration interaction (CIS) reference,43,44 and can be considered as an ex-
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cited state analogue to MP2. CIS(D) is size-consistent and scales with the

�fth power of molecular size in the canonical orbital basis. For vertical exci-

tation energies of closed-shell molecules, CIS(D) typically reduces by a factor

of two or so, the quite large error obtained at the CIS level.43 A general views

CIS(D) is as follows. When the Hartree-Fock ground state of a system is

described by a single determinant ψ0 and when its single substitution of any

occupied spin orbital i to any unoccupied spin orbital a is denoted as ψa
i , the

CIS excitation energy ω is obtained as the solution to an eigenvalue equation

〈ψa
i |Ĥ|U1ψ0〉 = ωbai (3.8)

where Ĥ = H −EHF and U1 is an operator that generates the CIS wavefunc-

tion from ψ0

ΨCIS = U1ψ0 =
∑
ia

baiψ
a
i (3.9)

The correlation energy of the excited state corrected through second-order

perturbative theory is then given by

ECISD = 〈ΨCIS|V |U2ψ0〉+ 〈ΨCIS|V |T2U1ψ0〉 (3.10)

where V is the �uctuation potential due to electron correlation, and T2 is the

operator that generates the �rst-order Møller-Plesset wavefunction from ψ0

T2ψ0 =
1

4

∑

ijab

aab
ij ψ

ab
ij = −1

4

∑

ijab

(ij||ab)
εa + εb − εi − εj

ψab
ij (3.11)



3.2. CIS(D) 41

U2 is the operator that generates the �rst-order excited state pair correlations

U2ψ0 =
1

4

∑

ijab

bab
ij ψ

ab
ij = −1

4

∑

ijab

〈ψab
ij |V |U1ψ0〉

εa + εb − εi − εj

ψab
ij (3.12)

The �rst term in equation 3.10, accounts for electron correlation e�ects that

involve one electron that is active in the CIS excitation plus a second electron,

which thereby generates a double excitation. The second term accounts for

the e�ect of electron correlation between pairs of the electron that are not

directly involved in the CIS excitation. The �rst and second terms are called

direct and indirect, respectively.

It can be shown that equation 3.10 can be transformed into43

ECIS(D) − EMP2 = −1

4

∑

ijab

(uab
ij )2

εa + εb − εi − εj − ω
+ (3.13)

∑

iab

bai b
b
iRab +

∑
ijc

bcib
c
jRij +

∑
ia

baiw
a
i

where

(uab
ij ) =

∑
c

[(ab||cj)bci − (ab||ci)bcj] +
∑

k

[(ka||ij)bbk − (kb||ij)bak] (3.14)

Rab = −
∑

jkbc

(jc|kb)aca
jk (3.15)

Rij = −
∑

jkab

(ja|kb)aab
ik (3.16)

wa
i =

∑

jkbc

(jk||bc)aac
ikb

b
j (3.17)
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Equation 3.13 de�nes the second-order correction to the CIS excitation en-

ergy, ωCIS(D), leading a total excitation energy that is ωCIS + ωCIS(D).

Recently, Rhee and Head-Gordon reported a resolution of the identity (RI)

implementation of CIS(D) in addition to spin component scaled and scaled

opposite spin versions of CIS(D), denoted SCS-CIS(D) and SOS-CIS(D), re-

spectively.45 SCS-CIS(D) is an extension of the SCS-MP2 method,46,47 where

the opposite and same spin components of the energy are scaled separately.

Within SCS-CIS(D) the excitation energy can be considered as

ωSCS−CIS(D) = cOS
U wOS

U + cOS
T wOS

T + cSS
U wSS

U + cSS
T wSS

T (3.18)

where OS and SS denote opposite and same spin, and wU and wT are the

direct and indirect terms of equation 3.10, respectively. For SOS-CIS(D), only

the opposite spin components of equation 3.18 are considered.

3.3 Time-dependent Density Functional Theory

Time dependent density functional theory (TDDFT )48,49 is an extension of

DFT to study excited states. TDDFT calculates the poles in the response

of the ground state density to a time-varying applied electric �eld. These

poles are the Bohr frequencies or excitation energies. The advantage of this

approach is that TDDFT provides an accurate prediction of excitation ener-

gies and oscillator strengths at relatively low computational cost. TDDFT,

formally, is based on the Kohn-Sham formulation (KS-DFT). However, tra-

ditional KS-DFT is limited to time-independent systems. If one wants to
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establish an analogous time-dependent theory, time-dependent versions of the

�rst and second Hohenberg-Kohn theorems must be formulated and proven,

and a time-dependent Kohn-Sham equation must be derived. The �rst task

has been formulated by Runge and Gross, who proposed so the-called Runge-

Gross Theorem.48 This theorem serves as the time-dependent analogue of the

�rst Hohenberg-Kohn theorem and constitutes the cornerstone of the formal

foundation of the time-dependent Kohn-Sham formalism.

The formalism of the Runge-Gross theorem is

A[ρ] = B[ρ]−
∫ t1

t0

dt

∫
drρ(r, t)v(r, t) (3.19)

where A[ρ] is the action density to obtain the exact density, B[ρ] is the uni-

versal functional which is independent of the potential v(r, t),

B[ρ] =

∫ t1

t0

dt

〈
Ψ[ρ](r, t)

∣∣∣∣i
∂

∂t
− T̂ (r)− V̂e,e(r)

∣∣∣∣ Ψ[ρ](r, t)

〉
(3.20)

and

ρ(r, t) =

∫
|Ψ(r1, r2, r3, . . . rn, t)|2dr2dr3 . . . drn (3.21)

v(r, t) = Ve,n(r) + V (r, t) (3.22)

Subsequently, the time-dependent Kohn-Sham equation can be derived as fol-

lows. If we assume that a time-dependent noninteracting reference system ex-

ists with external one-particle potential vs(r, t) of which the electron density

ρs(r, t) is equal to the exact electron density ρ(r, t) of the real interacting sys-

tem, then the existence of a time-dependent noninteracting reference system

is usually ensured. Thus, the density, after applying single Slater determinant
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is

ρ(r, t) = ρs(r, t) =
n∑
i

|ψi(r, t)|2 (3.23)

The details of this derivation has been examined elsewhere.50 In short, the

time-dependent Kohn-Sham equations can be conveniently expressed in ma-

trix notation in a basis of η time-independent single-particle wavefunctions

χ(r)

ψp(r, t) =

η∑
j

cpj(t)χj(r) (3.24)

Then, the time-dependent Kohn-Sham equation reads

i
∂

∂t
C = FKSC (3.25)

where the ith column of the matrix C contains the time-dependent expan-

sion coe�cients of ψi(r, t) and FKS is the matrix representation of the time-

dependent Kohn-Sham operator in the given basis. Thus, the Dirac form of

the time-dependent Kohn-Sham equation in density matrix is

∑
q

FpqPqr −PpqFqr = i
∂

∂t
Ppr (3.26)

in which the density matrix Ppr is in general related to the electron density.

Pursuing the equation 3.26 is to obtain excitation energies and oscillator

strengths. There are two di�erent strategies can be followed. The �rst possi-

bility is to propagate the time-dependent Kohn-Sham wavefunction in time,

which is referred to as real-time TDDFT.51,52 The second possibility is the so-

called linear-response TDDFT equation. In principle, the excitation energies
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can be obtained from linear time-independent ground-state electron density

to a time-dependent external electric �eld. The condition is that before the

time-dependent electric �eld is applied, the system is assumed to be in its elec-

tronic ground state, which is determined by the standard time-independent

Kohn-Sham equation. The TDDFT equation can be written50




A B

B∗ A∗







X

Y


 = ω




1 0

0 −1







X

Y


 (3.27)

This is the non-Hermitian eigenvalue equation where the two-electron integrals

are given in Mulliken notation. The element of the matrices A and B are given

as

Aaiσ,jbτ = δijδabδστ (εaσ − εiτ ) + (iaσ|jbτ) + (iaσ|fXC |jbτ)−KHF
iaσ,jbτ (3.28)

Baiσ,jbτ = Kaiσ,jbτ + (aiσ|fXC |jbτ) (3.29)

where

(iaσ|jbτ) =

∫ ∫
ψ∗iσ(r1)ψ

∗
aσ(r1)

1

r12

ψjτ (r2)ψbτ (r2)dr1dr2 (3.30)

(iaσ|fXC |jbτ) =

∫
ψ∗iσ(r1)ψaσ(r1)

∆2EXC

∆ρσ(r1)∆ρτ (r2)
ψjτ (r2)ψ

∗
bτ (r2)dr1dr2

(3.31)

TDDFT is well established for computing valence excited states. The advan-

tage to use this approach is that it provides an accurate prediction of excitation
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energies and oscillator strengths at relatively low computational cost. Within

the Tamm-Damco� approximation53 (TDA) of TDDFT, B is assumed to be

zero giving the simpler eigenvalue equation50

AX = ωX (3.32)

where the elements of A are the same as in equation 3.28 and ωi are the

excitation energies, EXC is the exchange correlation functional and KHF
iaσ,jbτ is

the HF exchange term. TDDFT is becoming very popular as a method for

studying excited states because the computational cost is roughly similar to

the simple CIS method, but a description of a electron correlation e�ects is

implicit in the method. The excitation energies for low-lying valence excited

states of molecules (below ionization threshold) are often remarkably improved

relative to CIS, with an accuracy of roughly 0.3 eV being observed with either

gradient corrected or local density functional.16

However, standard density functionals do not yield a potential with the correct

long-range Coulomb tail (due to the so-called self-interaction problem), and

therefore excited states which sample this tail, Rydberg states for instance, are

not described accurately.54,55 Hence it is advisable to only employ TDDFT

for low-lying valence excited state that are below the �rst ionization potential

of the molecule.
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3.4 Equation of Motion-Coupled Cluster The-

ory

Another tool for calculating electronic excitation energies of polyatomic molecules

is the Equation-of-Motion Coupled Cluster method (EOM-CCSD ). This ap-

proach was originally proposed by Monkhorst56 and has been developed by

many others57�61 in the recent years. Most practical implementations of

this method have been based on coupled cluster singles and double (CCSD)

ground-state wavefunctions.62�65 However, due to the high computational cost

including triple excitations, their application is limited to systems with only

few electrons. The EOM-CCSD procedure usually gives reasonable agreement

with full con�guration interaction (FCI) results for those states that are ade-

quately described by the promotion of a single electron from ground state.

Since the EOM-CCSD method has been extensively described by many au-

thors (see Refs.61,63,66), we give only short introduction to this approach. In

the EOM-CCSD method the kth excited state is obtained by applying a linear

wave operator Ûk to the CC ground-state wavefunction,

Ψk = ÛkeT̂ψ0, (3.33)

where ψ0 is usually the (normalized) closed-shell HF determinant for the

ground state. After inserting the expression for Ψk into the time-independent

Schrödinger equation one gets the following equation for the operator Ûk and

the excitation energy is

ωk = Ek − E0 (3.34)
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where Ek and E0 are the energies of the kth excited state in the EOM-CC

approximation and of the ground-state energy in the CC approximation, re-

spectively:

[ ˆ̄H, Ûk]Ψ0 = ωkÛkψ0, (3.35)

where ˆ̄H is a similarity transformed Hamiltonian,

ˆ̄H = e−̂T ĤeT̂ (3.36)

The equation 3.35 represents a generalized eigenvalue problem for ωk and Ûk.

Restricting operators T̂ and Ûk to at most double excitations,

T̂ = T̂1 + T̂2 (3.37)

and

Ûk = Ûk
0 + Ûk

1 + Ûk
2 (3.38)

yield the EOM-CCSD method. The detailed expression for the elements of

the H̄ matrix in the spin-orbital form can be found in Refs.61 and.63

3.5 Multireference Methods

The HF wavefunction often is a good starting point for correlated treatments

of molecular electronic structure. However understanding the true nature of

the chemical bond requires a more general mathematical formulation at the

mean-�eld level. The insu�cient account of static electron correlation is the
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reason behind the failure of the HF reference wavefunction in many situations.

Systems such as molecules with un�lled valencies in their electronic ground

state e.g, radicals and diradicals or molecules containing atoms with low-lying

excited states that possess a number of near degenerate electronic con�gura-

tions and therefore exhibit strong static correlation e�ects. More generally,

at the dissociation limit for chemical bonds, along reactions paths in chemical

and photochemical reactions, and often for excited electronic states, a qual-

itatively correct description of the wavefunction is possible only if the most

signi�cant electronic con�gurations are included.

The natural way to extend the HF model to account for static correlation

e�ects is therefore to construct the mean-�eld electronic wavefunction from

multiple Slater determinants. This approach results in a multicon�gurational

self-consistent �eld (MCSCF) wavefunction. The increased complexity of the

MCSCF wavefunction is accompanied by a sizable increase in computational

cost compared to the HF wavefunction. The computational cost can be kept

at a reasonable level by selecting a small number of electrons and orbitals, the

so-called active space, and include in the MCSCF wavefunction all possible

electronic con�gurations obtained by distributing these active electrons into

the active orbitals. This leads to the complete active space self-consistent

�eld wavefunction (CASSCF).67 Given a physically correct active space, the

CASSCF wavefunction o�ers maximum �exibility for a qualitative description

of the electronic structure of even the most exotic types of chemical bonds.68

The dynamical correlation required for a quantitative description can be re-

covered by a subsequent second-order perturbative correction (CASPT2 ).69

The success of this approach has been documented by a number of studies
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on electronic ground70,71 and excited states.72�74 In addition, the CASSCF

wavefunction has been instrumental for understanding photochemical pro-

cesses.75,76



Chapter 4

Computation of NEXAFS and IR

Spectra

The work in this thesis is concerned primarily with the calculation of the spec-

troscopy of core electrons, including near-edge X-ray absorption �ne structure

(NEXAFS) and X-ray emission spectroscopy (XES). This work incorporates

improving the accuracy of NEXAFS calculations and application to study the

NEXAFS of molecules adsorbed on surfaces. For these systems, we have also

studied the infrared (IR) spectroscopy. In this chapter, quantum chemical cal-

culations of NEXAFS and IR spectra are described. In the following chapters

the NEXAFS spectroscopy of organic molecules adsorbed on metal and semi-

conductor surfaces is described. Subsequently, the calculations of NEXAFS

spectra using the CIS(D) method and XES spectra are described.

Even though less familiar than the analogous techniques for valence electrons,

studying and exploiting the spectroscopy of core electrons has a long history.77

The spectroscopy of core electrons is attractive for several reasons. The spa-

tially local nature of the core orbitals and large energy di�erence between

core orbitals of di�erent elements means that the spectroscopic techniques

can provide an atom speci�c probe of electronic structure. A drawback of
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these techniques is the high energy X-ray light source required and this has

hindered the wide spread use of core-electron spectroscopic methods. How-

ever, in recent years there have been considerable advances in the quality and

availability of X-ray sources.

There are a number of commonly used X-ray spectroscopic techniques. Figure

4.1 shows a schematic of an absorption spectrum in the X-ray region. The

structure near the absorption edge is referred to as NEXAFS or X-ray ab-

sorption near edge structure (XANES) and corresponds to the excitation of

a core excitation to give a bound state below the ionization continuum. This

part of the X-ray absorption spectrum provides information on the unoccu-

pied orbitals. At the higher energy, usually beyond 20-30 eV of the absorption

edge, are weak oscillations which correspond to extended X-ray absorption �ne

structure (EXAFS) and arise from excitation to states above the ionization

continuum and subsequent scattering of the photoelectron by its environment.

For some systems, pre-edge features are observed that arise from excitation

from the core orbitals to singly occupied orbitals. In addition to these absorp-

tion processes, X-ray emission can also occur. Excitation of a core electron

creates a singly occupied core orbital, referred to as a core hole. XES results

from the subsequent decay of a valence electron to the core orbital with the

emission of a photon. XES is dependent on the nature of the occupied valence

orbitals, and thus provides complementary information to NEXAFS.

Surface science is a �eld of research that has exploited X-ray spectroscopy

extensively, providing information on the structure and orientation of the

adsorbed molecules and the nature of their bonding to the surface.77,78 In
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Figure 4.1: Schematic of a X-ray absorption spectrum.

comparison, the number of studies focusing on the calculation of core-excited

states is modest. However, such calculations can play a crucial role in aiding

the interpretation and understanding of experimental spectra, and the devel-

opment of accurate calculations remain important to future progress in the

application of X-ray spectroscopic methods.

4.1 Computation of NEXAFS Spectra

Experimental NEXAFS spectroscopy is used extensively in surface science to

probe the bonding and orientation of molecules adsorbed on surfaces. Despite

the experimental importance of NEXAFS, theoretical calculations of NEX-

AFS are relatively uncommon in comparison with the more familiar ultra-



54 Chapter 4. Computation of NEXAFS and IR Spectra

violet spectroscopy. However, a small number of groups have addressed this

problem.89�94 Horsley et al.90 studied the NEXAFS of ethene on the Pt(111)

surface, and Petterson and co-workers have studied the X-ray absorption and

x-ray emission spectra of small molecules on the Cu(110) surface using STEX

and transition potential methods.89,92,95�97

Within density functional theory, core-excited states can be computed with a

∆Kohn-Sham self-consistent �eld approach. In this method, the core-excited

state is computed by imposing a constraint of a single occupancy of a core

orbital within the self-consistent �eld calculation to prevent the variational

collapse. For calculations of NEXAFS spectra comprising many core-excited

states, this method is ine�cient since it requires individual Kohn-Sham calcu-

lations for each excited state. The problem of optimizing individual states is

avoided in the transition potential method.89 In this approach the ground and

excited states are determined within a single calculation in which the core level

has half an electron removed, capturing a balance between �nal and initial

states. Alternatively, NEXAFS spectra can be computed using TDDFT.98,99

Recently, a resonant converged complex polarization propagator method has

been implemented100 and applied to study NEXAFS.101,102

Within standard implementations of TDDFT, the calculation of core excited

states can become prohibitively expensive even for relatively small molecules.

One solution is to restrict the single excitation space to include only excita-

tions from the relevant core orbital(s). This makes the computation of core

excited states of comparable expense as for computing valence excited states.

The nature of exchange-correlation functionals of TDDFT dictates the accu-
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racy of the computed core excitation energies and NEXAFS spectra. Unfor-

tunately, standard generalized gradient approximation and hybrid function-

als fail dramatically for core excitations resulting in large underestimation of

the excitation energy. Furthermore, the extent of this underestimation in-

creases with the nuclear charge of the nuclei on which the core orbitals are

localized.103 This failure stems from the approximate exchange within the

exchange-correlation functionals and is associated with the self interaction er-

ror,99,105,105�108 and self-interaction corrections have been explored to correct

for this error.107,108 There is an analogy between the calculation of core-excited

states and the calculation of charge transfer states. The failure of TDDFT to

describe the charge transfer states is well understood,109 and can be predicted

by the Λ diagnostic.110 This diagnostic is a measure of the overlap between

donating and accepting orbitals, and given by

Λ =

∑
i,a κ

2
iaoia∑

i,a κ
2
ia

(4.1)

where oia is a measure of the spatial overlap between occupied orbital ψi and

virtual orbitals ψa

oia =

∫
|ψi(r)||ψa(r)|dr (4.2)

and within the Tamm-Danco� approximation

κia = Xia. (4.3)

Table 4.1 shows computed values Λ for a range of core excitation energies.

These values are automatically generated when one compute the excitation

energies using QCHEM software package. The compactness of the core orbital
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makes the value of Λ small, and comfortably in the regime where GGA or hy-

brid functionals fail.110 For nuclei with higher nuclear charge, the core orbitals

will be more compact and greater failure of the functional would be antici-

pated. In general, this underestimation is roughly constant of about 0.06 eV

across di�erent excitations from a given core orbital, and a pragmatic approach

is to simply apply a constant shift to the computed spectra.111,112 However, it

remains desirable to compute accurate core excitations within TDDFT , and

several groups have developed new exchange-correlation functionals designed

for NEXAFS calculations.99,104�106,113,114 Nakai and co-workers reported the

Table 4.1: Values of the Λ diagnostic for core excitations from BLYP/6-
311(2+,2+)G(d,p) calculations.

Excitation Λ
CO C(1s)→ π∗ 0.18
CO C(1s)→3s 0.04
CO O(1s)→ π∗ 0.14
CO O(1s)→3s 0.03
HF F(1s)→ σ∗ 0.08
SiH4 Si(1s)→ σ∗ 0.03
H2S S(1s)→ σ∗ 0.04
H2S S(1s)→4p 0.01
HCl Cl(1s)→ σ∗ 0.02
HCl Cl(1s)→ 4pπ 0.01

�rst attempts to improve the description of core-excited states within TDDFT.

The BmLBLYP exchange-correlation functionals113 was developed from the

observation that the modi�ed Leeuwen-Baerends (mLB) exchange functional

performed better for core excitations and Becke88 (B) exchange was better

for valence excitations. The resulting functional combined these two exchange

functionals by adopting LB94 in the core and asymptotic regions and Becke88



4.1. Computation of NEXAFS Spectra 57

in the valence regions, and gave an average error of about 1.5 eV for a set of

core excitations compared to over 13 eV for B3LYP. Subsequently, the CV-

B3LYP105 and CVR-B3LYP104,106 functionals were introduced. These func-

tionals were designed to be accurate for all types of excitation, including core

excitations, and worked by using an appropriate fraction of HF exchange

depending on the type of excitation. These functionals were applied to core-

excitations from �rst and second row nuclei and showed a substantial improve-

ment in accuracy, yielding mean absolute errors below 1 eV.

Following this work, a hybrid functional was optimized for carbon K-edge ex-

citations which was used to study the NEXAFS spectroscopy of hydrocarbon

adsorbed on the Si(100)-2x1 surface.99 In this functional, the fraction of HF

exchange in B3LYP was increased to predict the 1s→ π∗ excitation energies

in acetylene, ethylene and benzene correctly. This led to the following func-

tionals with 57% HF exchange, with the fraction of Becke exchange reduced

proportionately

BH0.57LY P = 0.57HF + 0.35B + 0.08S + 0.81LY P + 0.19VWN (4.4)

where HF, B and S are Hartree-Fock , Becke,32 and Slater29 exchange function-

als, respectively, and LYP and VWN are Lee-Yang-Parr36 and Vosko-Wilk-

Nusair,37 respectively. We have also tested this functional to the excitations

from other nuclei with a signi�cantly di�erent nuclear charge, and it shows less

satisfactory performances. From here, it can be assured that this functional

is operated well only for carbon K-edge excitations.
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4.2 Computation of Infra-red Spectra

Quantum chemical calculations of IR spectra are well established as useful

tools that can aid the deciphering of experimental spectra. Due to com-

putational expense, vibrational frequencies are usually computed within the

harmonic approximations. In this approximation, vibrational modes and fre-

quencies are obtained from the eigenvectors and eigenvalues of the Hessian

matrix in the mass-weighted coordinates,38 where the Hessian matrix contains

the second derivatives of the electronic energy with respect to the nuclear co-

ordinates. The harmonic frequencies are then determined by constructing and

diagonalizing the full Hessian matrix. This produces all the normal modes of

the molecule under consideration including modes that experimentally identi-

�ed. Furthermore, the intensities are evaluated through the derivative of the

dipole moment with respect to the normal coordinates.

The evaluation of harmonic frequencies through computation of energy second

derivatives can be done either numerically or analytically. Q-CHEM79 applies

analytical evaluation of the energy second derivatives and then subsequently

evaluates it e�ciently via the coupled-perturbed Hartree-Fock (or coupled-

perturbed Kohn-Sham) equations using the iterative procedure introduced by

Pople et al.80

Application of a standard harmonic frequency calculation to the problem of

studying the IR spectroscopy of large systems, such as a molecule on a sur-

face, is computationally expensive. This is because the large number of atoms

necessary to model the semiconductor makes the calculation too expensive.

Strategies for reducing the cost of these calculations can arise from recognizing
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that while standard harmonic frequency calculations compute all vibrational

modes, often only a small fraction of these modes are of interest. Reiher

and co-workers have developed a mode-tracking approach which allows a pre-

selected vibration modes to be determined.81 Using a suitable estimate of the

normal mode, an iterative Davidson approach82 is used to construct the exact

normal modes and frequency. An advantage of this approach is the Hessian

is not approximated. This approach has been applied to study a number of

problems, and shown to reduce the computational cost signi�cantly.83�85

Partial Hessian methods provide an alternative approach to this problem. If

the vibrational modes of interest are localized within a distinct region of the

system, the corresponding normal modes and frequencies can be evaluated by

computing only the sub-block of the Hessian matrix comprising the derivatives

of the energy with respect to the coordinates of the atoms within this region.

Physically, this approximation corresponds to attributing an in�nite mass to

the atoms not included within the partial Hessian. This approximation is valid

for normal modes in which the atoms excluded from the partial Hessian are

stationary. Consequently, vibrational modes that are amenable to a partial

Hessian approach can be identi�ed from analysis of the normal modes. For

such vibrational modes, the partial Hessian approximation introduces a small

error in the computed frequencies and intensities whilst signi�cantly reducing

the computational cost.

A partial Hessian method that exploits the partial Hessian approximation has

been implemented in the Q-CHEM program package. The partial Hessian

approximation has been used to study a range of systems, from amide I band
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in polypeptides to the IR spectroscopy of molecules on surfaces.86�88

4.3 Computation of XES Spectra using Maxi-

mum Overlap Method

Experimental observations using the X-ray emission technique provides an-

other possibility for investigating reactions on surfaces and interfaces. The

calculation of XES can be done in several ways including with TDDFT and

equation of motion coupled cluster theory (EOM-CCSD).63,66 Either TDDFT

and EOM-CCSD can be applied to study XES by invoking the Maximum

overlap method (MOM ),194,195 a simple protocol for choosing which orbitals

to occupy at each iteration of an SCF calculation.

In SCF procedures with an Aufbau protocol, the occupancy of the orbitals are

chosen with the lowest orbitals energies and tend to converge to the lowest

SCF solution. However, MOM provides an alternative approach by selecting

such that they have the largest projections into the space of orbitals occupied

on the previous SCF cycle.

On each iteration of the SCF procedure, the current MO coe�cient matrix

Cold is used to build a Fock (or Kohn-Sham ) matrix F and generalized eigen-

value problem

FCnew = SCnewε (4.5)
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where S is the basis function overlap matrix. Equation 4.5 is then solved to

obtain a new MO coe�cient matrix Cnew and orbitals energies ε. One usually

follows the Aufbau protocol, which dictates that one simply occupies the n

orbitals with the lowest orbitals energies εj.

MOM gives an alternative to the Aufbau protocol. It states that the new

occupied orbitals should be those that overlap most with the span of the old

occupied orbitals.194 The orbital overlap matrix, then, can be de�ned as

O = (Cold)‡SCnew (4.6)

(4.7)

then Oij is the overlap between the ith old orbital and the jth new orbital,

and the projection of the jth new orbital onto the old occupied space is

pj =
n∑
i

Oij =
N∑
ν

[
N∑
µ

(
n∑
i

Cold
iµ )Sµν ]C

new
νj (4.8)

In this way, the full set of pj values can be found by three matrix-vector mul-

tiplications, at O(N2) cost, and this adds negligibly to the cost of each SCF

cycle. One then occupies the orbitals with the largest projections pj.

The MOM begins the SCF calculation with orbitals that lie within the area

of attraction of the target excited solution. In the case of the guess is su�-

cient to perform a ground-state calculation, then simply promote an electron

from an occupied to a virtual orbital. If it is su�ciently close to the target

solution, the MOM will retain the excited con�guration as the orbitals relax

during the SCF. If, on the other hand, the guess lies outside of the area of
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attraction, the SCF will converge to another solution of the same symmetry.

In di�cult cases, the quality of the guess may be improved by using orbitals

that are optimal for the (n − 1)-electron system, or by using orbitals from

another excited-state calculation.

The advantage of using MOM over other excited-state methods is having the

possibility to single out a particular state without computing all lower energy

states of the same symmetry. In particular, when targeting excited states of

molecules in the presence of explicit solvent or when adsorbed onto a surface.

This approach is also applicable to both HF and DFT calculations.

For the calculation of XES spectrum, MOM can be used to obtain an SCF so-

lution with an unoccupied core orbital which can then be used in a subsequent

TDDFT or EOM-CCSD calculation.



Chapter 5

IR and NEXAFS Spectroscopy of

Acetylene and Benzene on Group

IV Semiconductor Surfaces

The study of hydrocarbon chemistry on semiconductor surfaces has been the

focus of much interest in recent years. This interest is motivated by devel-

opments in the area of new semiconductor-based materials and devices.115

Surface phenomena have always been a cornerstone of the microelectronic in-

dustry. Processes such as epitaxy,116,117 chemical vapor deposition, etching,

oxidation and passivation118 have been routinely used in silicone-based man-

ufacturing development. These processes involve chemical or physical action

at the surface of the semiconductor wafer. However, with the rapid miniatur-

ization of devices, understanding of the atomic-level phenomena underlying

these processes becomes more critical. This importance of atomic-level is

highlighted in the growing �eld of organic functionalization of semiconductor

surfaces.

Problems that have been addressed include the reaction of organic molecules

with the surface, and the structure of the resulting adsorbed molecule. Most
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of this work has focused on the Si(100)-2x1 surface. This surface undergoes

a characteristic (2× 1) reconstruction in which adjacent atoms pair, and the

resulting silicon dimers make the surface particularly amenable to organic

functionalization. The Si=Si double bonds of the Si(100) surface are much

weaker than molecular Si=Si double bonds and C=C double bonds. These

weak bonds make the surface reactive toward the adsorption of molecules

because stronger bonds are formed, resulting in an energetically favorable

process.119 Detailed studies have been reported for a wide range of molecules,

from small molecules such as butadiene120�122 to much larger systems such as

C60.123�125

In comparison to Si(100)-2x1, the related Ge(100)-2x1 and C(100)-2x1 sur-

faces have received less attention. However, several studies have been re-

ported, and much of this work has been reviewed elsewhere.115,126,127 Hydro-

carbons adsorbed on Ge(100)-2x1 reveal similar chemistry to the reactions

on Si(100)-2x1, but the products are less strongly bound due to the weaker

C−Ge bond.128,129 The structure of acetylene on Si(100)-2x1 has been studied

by a number of groups.130�132 Recent work has used multireference wavefunc-

tions with dynamic correlation.133 This work found the most stable binding

site to correspond to acetylene bonded to a single surface dimer, with an

acetylene carbon-carbon bond length of 1.36 Å. A comprehensive investiga-

tion of benzene adsorbed on the Si(100)-2x1 surface has been reported, and

showed the favoured binding site to correspond to a butter�y structure aris-

ing from a 4 + 2 addition.134 DFT calculations have been used to study the

adsorption of acetylene and benzene on the Ge(100)-2x1 surface.135 These

calculations were consistent with the observation that there is weaker binding
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to the Ge(100)-2x1 surface. Theoretical studies have also investigated the ad-

sorption of several small molecules, such as acetylene, the methyl radical and

carbon dimer on diamond surfaces.136�140

Investigation of the IR spectrum of benzene deposited on Si(100)-2x1 at 100

K has been reported.141 Strong IR absorption peaks were observed at 3086,

3067, 3036 and 3030 cm−1 which correspond to the vibrational features of

molecular benzene, and the adsorption product was subsequently identi�ed as

physisorbed benzene. For benzene chemisorbed on the surface, the hybridiza-

tion of the carbon directly bonded to the surface change from sp2 to sp3. At

room temperature, benzene is chemisorbed on the surface and two peaks at

3044 and 2945 cm−1 are observed, and assigned to the C-H stretching of the

sp2 and sp3 hybridized carbons, respectively. This was consistent with earlier

work.142 Another study showed several C-H stretching bands in the frequency

range 2899-3042 cm−1, and determined the dominant adsorption product to

correspond to a 1,4-cyclohexadiene like structure.143 More recently, the vibra-

tional spectroscopy of benzene was re-examined. Three di�erent chemisorbed

phases were indenti�ed, which corresponded to the 1,4-cyclohexadiene struc-

ture but bonded to a single Si-Si dimer or bridging between two dimers.144

Measurement of the IR spectrum of ethylene on Ge(100)-2x1 showed the sym-

metric and antisymmetric C-H stretching modes occurring at 2913 and 2961

cm−1, respectively.129

A number of theoretical calculations of the vibrational frequencies of organic

molecules on the Si(100)-2x1 surface have been reported.120,121,145�149 These

calculations usually use DFT and adopt small cluster models of the surface,
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however, larger surface clusters have been using in conjunction with semi-

empirical calculations.143 The vibrational frequencies of acetylene on the

Si(100)-2x1 surface have been computed at the MCSCF + MRMP2 level of

theory.133 Recently, a partial Hessian approach was employed to compute

the IR spectroscopy of a range of organic molecules, including acetylene and

benzene , on Si(100)-2x1 using DFT.150 The use of the partial Hessian method-

ology reduced the cost of the calculations and allowed larger cluster models

of the surface to be used.

In a NEXAFS study of acetylene on the Si(100)-2x1 surface, Matsui and co-

workers observed peaks at 284.7, 286.0 and 287.6 eV, which were assigned to

excitations from the carbon 1s orbitals to π∗C−C , σ∗Si−C and σ∗C−H orbitals,

respectively.151,152 Above threshold, a broad peak at 300 eV was observed

and assigned to the σ∗C−C orbital. In a later study Pietzsch et al. reported

a fully polarization resolved NEXAFS investigation of acetylene on the sur-

face.153 Acetylene adsorbed on the surface showed four resonances at 283.8,

286.7, 288.4 and 299 eV, in broad agreement with earlier work. Interestingly,

the π∗C−C feature was evident in spectra with the incident radiation paral-

lel or perpendicular to surface silicon dimers, indicating that two adsorption

products are present. NEXAFS spectra of benzene adsorbed on Si(100)-2x1

have been reported by Kong et al.141 At 100 K benzene is predominantly ph-

ysisorbed to the surface and the resulting spectra have two peaks at 285.0 and

288.8 eV due to C(1s)→ π∗(e2u) and C(1s)→ π∗(b2g) transitions. In contrast,

at room temperature chemisorption is favoured. The π∗ excitation was found

at 285 eV, with weaker bands at 287.7 and 289.5 eV arising from excitation to

σ∗C−H and σ∗Si−C orbitals. In polarized NEXAFS measurements for benzene,
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the π∗ feature was evident at more than one polarization, indicating that ben-

zene is no longer �at on adsorption.154

The application of NEXAFS to study Ge(100)-2x1 and C(100)-2x1 is much

less common. Studies of sulphur atoms adsorbed on Ge(100)-2x1,155 and hy-

drogenated C(100)-2x1 surface156 have been reported, but the NEXAFS of

acetylene or benzene on these surfaces has not been measured. Time de-

pendent density functional theory (TDDFT ) calculations of the NEXAFS

of acetylene and benzene have also been reported.99 This calculation used a

small cluster model and an optimized HF exchange of hybrid functional to

give accurate 1s → π∗ excitation energies . They found that the spectra of

acetylene on the surface is dominated by intense 1s→ π∗ bands with weaker

bands at higher energies arising from excitation to Rydberg states. For ben-

zene adsorbed on the surface, an intense π∗ bands that arose from core orbitals

localized on the carbons not bonded to the surface was observed. Here, we

report the calculation of the IR and NEXAFS of acetylene and benzene on

the semiconductor surfaces.

5.1 Computational Details

Experimental measurements of the IR spectroscopy of organic molecules ad-

sorbed on semiconductor surfaces focus on the C-H stretching region, and

this work was also concentrated on these vibrational modes. C9H12, Si9H12

and Ge9H12 clusters are used to model the surfaces and are shown in Figure

5.1. The harmonic frequency calculations using the full Hessian can be per-

formed for molecules on the C(100)-2x1 and Si(100)-2x1 surfaces.150 However,
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for the Ge(100)-2x1 surface, the calculation of the vibrational frequencies be-

comes computationally expensive. Therefore, it is quite useful to adopt a

partial Hessian framework to reduce the cost of these calculations, and for

consistency this approach is used for all three surfaces. For the vibrational

frequency calculations the B3LYP functional was used in conjunction with

the 6-311G** basis set. The exception was for the Ge(100)-2x1 surface, where

to reduce the cost of the calculation, the 6-31G* basis set was used for the

atoms of the surface cluster not bonded to the adsorbant. The structures were

fully optimized at the same level of theory prior to the frequency calculations,

and the resulting vibrational frequencies are scaled by the standard factor of

0.96.157

For NEXAFS calculations, a mixed basis set comprising the 6-311++G* basis

set for the atoms of the adsorbed molecule and the 6-311G* basis set for the

atoms of the surface cluster was used for the same semiconductor clusters.

Molecules are treated as binding to one surface dimer, with the 'butter�y'

binding con�guration considered for benzene. These binding con�gurations

are often referred to as the 'di-σ' structures and have been shown to be the

favored binding site for acetylene and benzene on Si(100)-2x1 and Ge(100)-

2x1.87,135 Structures were optimized at the B3LYP/6-31G* level of theory,

and Figure 5.1 shows acetylene and benzene bound to the Si(100)-2x1 surface

cluster. Spectra are generated by representing each computed core excita-

tion and associated intensity with a Gaussian function with full width at half

maximum of 0.3 eV. The optimized hybrid exchange-correlation function in

equation 4.4 was used. All calculations were performed with a development

version of the QCHEM software package.79



5.2. Results and Discussion 69

Figure 5.1: Models of acetylene and benzene adsorbed on Si(100)-2x1. Black
and light-red colours represent carbon and silicon atoms, respectively.

5.2 Results and Discussion

5.2.1 Partial Hessian Harmonic Frequencies

Earlier work showed that the partial Hessian approximation introduced a very

small error for the C-H stretching modes of organic molecules on the Si(100)-

2x1 surface.150 Since carbon is lighter than silicon, it is necessary to examine
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this approximation for the adsorbants on the C(100)-2x1 surface. For acety-

lene on the C(100)-2x1 surface, a full Hessian calculation predicts the sym-

metric C-H and antisymmetric C-H stretching vibrations to have (unscaled)

frequencies of 3183.7 cm−1 and 3152.3 cm−1 with associated intensities 49.0

km mol−1 and 18.4 km mol−1, respectively. This compares with 3183.7 cm−1

and 3152.3 cm−1 with intensities 49.8 km mol−1 and 17.4 km mol−1 for the

partial Hessian calculation. Thus, even for the C(100)-2x1 surface, the par-

tial Hessian approximation introduces essentially no error for the computed

frequencies and a very small change in the computed intensities. For the

Si(100)-2x1 surface the unscaled vibrational frequencies for the symmetric C-

H, antisymmetric C-H stretching and C-C stretching mode are 3128.6, 3105.6

and 1572.0 cm−1. These can be compared to corresponding frequencies of

3324, 3302 and 1575 cm−1 computed at the MCSCF + MRMP2 level of the-

ory.133 This shows the C-H stretching frequencies to be signi�cantly lower in

the present calculations.

Table 5.1 shows the computed frequencies of the relevant vibrational modes.

For acetylene, the C-H stretching region of the spectrum shows an intense

band corresponding to the symmetric stretching mode and a weak band cor-

responding to the antisymmetric stretch. There is only a small di�erence

of approximately 5 cm−1 between the computed frequencies on the Si(100)-

2x1 and Ge(100)-2x1 surface, but for the C(100)-2x1 surface the predicted

frequencies are signi�cantly higher. This is consistent with experimental mea-

surements of C-H stretching modes of butadiene, which found a di�erence

of less that 15 cm−1 between Si(100)-2x1 and Ge(100)-2x1 surfaces.128 An-

other mode of interest is the C-C stretch, the computed frequencies increase in
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the order Si(100)-2x1<Ge(100)-2x1<C(100)-2x1. This is consistent with the

analysis of the NEXAFS spectra (see later), and indicates that the C-C bond

is strongest on the C(100)-2x1 surface, and weakest on Si(100)-2x1. The IR

Table 5.1: Computed vibrational frequencies (in cm−1) and intensities in
parenthesis (in km mol−1) for the C-H stretching modes. Calculated fre-
quencies have been scaled by 0.96. Experimental results from reference141
.

Mode C(100)-2x1 Si(100)-2x1 Ge(100)-2x1 Exp. (Si(100)-2x1)
Acetylene

Symmetric C-H 3056.3 (49.8) 3003.5 (65.4) 3009.8 (62.3)
Antisymmetric C-H 3026.2 (17.4) 2981.4 (6.1) 2985.3 (3.5)

C-C stretch 1606.6 (2.8) 1509.1 (0.5) 1520.8 (5.2)
Benzene

C-H stretch (sp2) 3069.0 (16.2) 3065.1 (13.7) 3062.2 (16.3) 3044
C-H stretch (sp2) 3066.3 (20.6) 3062.7 (16.2) 3059.6 (18.1)
C-H stretch (sp2) 3045.4 (14.4) 3044.0 (3.9) 3041.7 (5.2)
C-H stretch (sp2) 3044.0 (0.0) 3042.8 (0.0) 3040.2 (0.0)
C-H stretch (sp3) 2957.7 (0.6) 2971.9 (6.3) 2993.4 (7.4) 2945
C-H stretch (sp3) 2958.0 (62.3) 2970.8 ( 11.1) 2992.1 (9.1)

spectra of benzene adsorbed on the surface shows two C-H stretching bands

arising from the sp2 hybridized carbon atoms not bonded to the surface and

sp3 carbon atoms bonded directly to the surface. The vibrational frequencies

for the C-H stretching modes of the sp3 carbon atoms are computed to lie at

approximately 2971 cm−1 compared to an experimental value of 2945 cm−1.141

For the sp2 carbon atoms, the C-H stretching band is predicted to lie at ap-

proximately 3063 cm−1, compared to an experimental value of 3044 cm−1.141

Both of the predicted frequencies are in good agreement with the experiment.

For the sp3 carbons that are bonded directly to the surface, the predicted

frequencies increase in the order C(100)-2x1<Si(100)-2x1<Ge(100)-2x1. The
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magnitude of the di�erence in frequencies between Si(100)-2x1 and Ge(100)-

2x1 is approximately 20 cm−1, which is a little greater than the 15 cm−1

observed for butadiene. The calculations indicate a decrease in frequency for

the C(100)-2x1 surface compared with the Si(100)-2x1 surface, which con-

trasts with acetylene for which an increase in the C-H stretching frequencies

is predicted.

5.2.2 NEXAFS Spectroscopy

Figure 5.2 shows the computed x,y and z-polarized NEXAFS spectra for

acetylene adsorbed on the surfaces. The computed spectrum for acetylene

on Si(100)-2x1 is similar to previous work,99 although a di�erent basis set is

used here. The spectrum is dominated by an intense transition that appears

with y polarization. This corresponds to excitation to the π∗C−C orbital, which

is shown in Figure 5.3. At higher energy, weaker bands are evident in the x

and z polarized spectra. These correspond to excitation to σ∗Si−C and σ∗C−H

orbitals, these orbitals are also shown in Figure 5.3. This is consistent with

experiment, the π∗C−C, σ∗Si−C and σ∗C−H bands are observed at 284.7, 286.0 and

287.6 eV, respectively,151,152 which compare well with the computed values of

283.8, 286.7 and 288.2 eV, and indicates that the modi�ed hybrid exchange-

correlation functional used provides a good description of these excitations.

The predicted spectra for acetylene on the C(100)-2x1 and Ge(100)-2x1 sur-

faces appear similar, although there is variation in the position of the spectral

bands. Table 5.2 summarizes the computed excitation energies on the three

surfaces. The C(1s)→ π∗C−C excitation energy is dependent on the surface,

and increases in the order Si(100)-2x1 < Ge(100)-2x1 < C(100)-2x1. This or-
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Figure 5.2: Computed BH0.57LYP x,y and z-polarized spectra for acetylene
adsorbed on C(100)-2x1, Si(100)-2x1 and Ge(100)-2x1.

dering can be rationalized by the C-C bond length of the adsorbed acetylene

molecule. This bond length is shortest on the C(100)-2x1 surface and longest

on the Si(100)-2x1 surface. Shortening of the C-C bond length will lead to

a destabilization of the π∗C−C orbital, and result in an increase in the associ-

ated core excitation energy. There is little change in the computed excitation

energy for the C(1s)→ σ∗C−H excitation. This is reasonable since the σ∗C−H or-

bital is located on the carbon and hydrogen of the acetylene molecule, and has

little interaction with the surface. The σ∗X−C (where X denotes C, Si or Ge)
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Figure 5.3: Virtual orbitals of acetylene adsorbed on Si(100)-2x1.



5.2. Results and Discussion 75

Figure 5.4: Computed B3LYP x,y and z-polarized spectra for acetylene ad-
sorbed on C(100)-2x1, Si(100)-2x1 and Ge(100)-2x1.

orbital has a large contribution from the surface, and the associated excitation

is the most sensitive to the surface. The excitation energy is much higher for

the C(100)-2x1 surface, and results in a change in the order of the σ∗C−H and

σ∗X−C bands. This is likely to be a consequence of the greater strength of the

adsorbate-surface C-C bonds compared to Si-C and Ge-C bonds.

It is interesting to compare the spectra computed with the BH0.57LYP func-

tional with the more standard B3LYP functional. Figure 5.4 shows NEXAFS

spectra for acetylene on the three surfaces computed with the B3LYP func-

tional and the computed excitation energies for the π∗C−C , σ∗C−H and σ∗X−C

excitations are shown in Table 5.2. It is well known that the B3LYP functional
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underestimates core excitation energies for carbon 1s excitations by about 10

eV, and this is observed for the excitations considered here. However, �gure

Table 5.2: Computed excitation energies and C-C bond lengths of acety-
lene adsorbed on the surfaces. Experimental results for the Si(100)-2x1 sur-
face.151,152

Surface π∗C−C (eV) σ∗C−H (eV) σ∗X−C (eV) rC−C (Å)
BH0.57LYP
C(100)-2x1 284.3 288.0 289.5 1.340
Si(100)-2x1 283.8 288.2 286.7 1.352
Ge(100)-2x1 284.1 288.1 286.4 1.344

B3LYP
C(100)-2x1 274.4 276.1 279.3 1.340
Si(100)-2x1 273.8 276.5 274.9 1.352
Ge(100)-2x1 274.1 276.4 274.9 1.344
Experiment 284.7 287.6 286.0

5.5 shows the computed spectra for benzene adsorbed on the three surfaces.

Several bands are observed in the spectra, which correspond to excitation to

π∗, σ∗C−H and σ∗X−C orbitals. These orbitals are shown for the Si(100)-2x1

surface in Figure 5.6. For the Si(100)-2x1 surface excitation to the π∗ or-

bitals results in an intense band in the z-polarised spectrum. A weaker π∗

band is also observed in the y-polarized spectrum indicating that benzene is

no longer planar on adsorption. The π∗ band is computed to lie at 284.6 eV,

which agrees well with the value of 284.8 eV measured in experiment.154 An

additional feature at 286.9 eV was also observed in experiment. The calcula-

tions show two further bands at higher energies corresponding to excitation

to σ∗Si−C and σ∗C−H orbitals, and are computed to lie at 286.8 eV and 287.9

eV. Based on these results, the additional band observed in experiment corre-

sponds to the σ∗Si−C excitation, although this does not agree with assignments
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Figure 5.5: Computed BH0.57LYP x,y and z-polarized spectra for benzene
adsorbed on C(100)-2x1, Si(100)-2x1 and Ge(100)-2x1.

made in earlier experimental work,141 where it was assigned as to additional

π∗ excitation. The excitation energies for benzene on the three surfaces are

summarized in Table 5.3. Unlike acetylene, the π∗ excitation energies do not

show a dependence on the surface. This is physically intuitive since the π∗

orbitals are associated with the sp2 carbons that are not bonded directly to

the surface, and as a result will not be a�ected by the change of surface to

the same extent. The σ∗C−H and σ∗X−C excitations show a similar behaviour to

that observed for acetylene. The σ∗C−H excitation is localized on the benzene
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Figure 5.6: Virtual orbitals of benzene adsorbed on Si(100)-2x1.

molecule, and the corresponding excitation energy does not vary signi�cantly

between the three surfaces. The σ∗X−C excitation is signi�cantly higher for the

C(100)-2x1 surface, and results in a change in the order of the σ∗C−H and σ∗X−C

bands.
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Table 5.3: Computed excitation energies of benzene adsorbed on the surfaces.

Surface π∗C−C (eV) σ∗C−H (eV) σ∗X−C (eV)
C(100)-2x1 284.4 287.6 289.6
Si(100)-2x1 284.6 287.9 286.8
Ge(100)-2x1 284.6 287.8 286.3

5.3 Conclusions

DFT calculations of the NEXAFS and IR spectroscopy of acetylene and ben-

zene have been described. Within TDDFT, core-excitation energies computed

with a modi�ed hybrid exchange-correlation functional with an increased frac-

tion of HF exchange are in good agreement with values measured in experi-

ment. Although it should be noted that this functional has been optimized for

carbon 1s excitations, and a di�erent fraction of HF exchange would be opti-

mal for other types of core excitation. For acetylene, the π∗ excitation energy

is dependent on the nature of the underlying surface, and correlates with the

length of the C-C bond length of the adsorbed molecule, with a shorter bond

leading to a higher excitation energy. For benzene, π∗ orbitals are associated

with carbon atoms that are not bonded directly to the surface, and no sig-

ni�cant variation of the excitation energy between the surfaces is predicted.

Weaker features at higher energy arising for σ∗C−H and σ∗X−C excitations are

also predicted. These bands show a similar behaviour for acetylene and ben-

zene. The σ∗C−H band shows little dependence on the surface, while the σ∗X−C

band is much higher for the C(100)-2x1 surface than both Si(100)-2x1 and

Ge(100)-2x1 surfaces, re�ecting the greater strength of the adsorbate-surface

bond.
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Calculations of the IR spectra using partial Hessian approach show the C-H

stretching frequencies for carbon atoms bonded directly to the surface have

signi�cant variation between the three surfaces. The frequencies are predicted

to be 4 to 20 cm−1 higher on the Ge(100)-2x1 surface compared to the Si(100)-

2x1 surface. For acetylene, an increase in frequency is predicted, while for

benzene a decrease in frequency is predicted for the C(100)-2x1 surface com-

pared to the Si(100)-2x1 surface. Overall, DFT calculations can provide an

accurate description of the NEXAFS and IR spectra of these systems, and

can be a useful tool to aid the interpretation of experiment.



Chapter 6

NEXAFS Calculations of Benzene

in Gas Phase and on Metallic

Surfaces

The adsorption of benzene on metal surfaces is a prototypical problem in sur-

face science that has been studied extensively, and NEXAFS spectra have

been reported for benzene adsorbed on several metal surfaces.158�162 The

NEXAFS spectroscopy of benzene is dominated by an intense π∗ resonance.

From measurements with the polarization of the incident radiation orthogonal

and parallel to the surface, it has been established that benzene lies parallel

to the surface. However, the measured spectra vary between di�erent sur-

faces. For example, the NEXAFS spectra of benzene adsorbed on Pt(111)

and Au(111) di�er signi�cantly, re�ecting the di�erent natures of the bonding

to the surface.161,162

Benzene is physisorbed on the Au(111) surface, and the spectrum for benzene

adsorbed on Au(111) is similar to the spectrum for a benzene multilayer. The

π∗ resonance occurs at 285.1 eV and is intense at grazing photon incidence

and absent at normal photon incidence. A second weaker band at 289.3 eV is
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Figure 6.1: Variation in the angle of incident radiation.

also evident. At normal photon incidence, as shown in Figure 6.1, weak fea-

tures at 287 eV can be distinguished. Benzene is chemisorbed on the Pt(111)

surface, and the resulting spectrum shows a broad, less intense feature with

two distinct peaks. This change has been attributed to the hybridization of

the π∗ orbitals with the metal electronic states.161 The variation in intensity

of this feature with the photon angle of incidence indicated a bending of the

C-H bonds out of the plane of the benzene ring. For normal photon incidence,

a weak broad feature centred at approximately 287 eV can be distinguished.

In a study of n-octane, it was shown that resonances arising from excitation to

Rydberg states were strongly quenched and there is signi�cant hybridization

of molecular valence states with the metal bands.96 In this chapter, we in-

vestigate the calculation of the NEXAFS spectra of benzene in the gas phase

and adsorbed on Au(111) and Pt(111) surfaces with TDDFT.
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6.1 Computational Details

In this study, two types of small surface cluster of metal atoms, comprising

one and three layers, were modeled. The simple one layer cluster has 12

atoms, and the three layer cluster has 22 atoms. While relatively small, the

calculation of NEXAFS spectra for molecules adsorbed on the 22 atom clus-

ter is computationally demanding because of the very large number of excited

states required. However, earlier work has shown that NEXAFS spectra are

less sensitive to cluster size than other properties such as binding energy.163

Bilic et al.164 have reported a detailed study of the adsorption of benzene

on a range of metal surfaces, including Au(111). For the calculations pre-

sented here, the most stable structure predicted for benzene on Au(111) by

Bilic et al. corresponding to benzene in a threefold hollow site is used. When

physisorbed on Au(111), benzene retains its planar structure. On Pt(111),

benzene can occupy a three-fold hollow or bridge. Structures for benzene in

both threefold and bridge sites were adapted from the work of Morin et al .165

For both binding sites, the surface atoms are �xed in position and benzene is

strongly chemisorbed to the surface with six metal-carbon bonds formed. In

both threefold hollow and bridges sites the hydrogens are distorted upwards

from the plane of the carbon ring. For the threefold site, the adsorbed ben-

zene retains its sixfold rotational symmetry. For the bridge site, the hydrogens

bonded to the "end" carbons are distorted upwards to a greater extent than

the other hydrogen atoms, and the sixfold rotational symmetry is lost. All of

these structures are illustrated in Figure 6.2.

All calculations were performed with the Q-Chem software package,79 except
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Figure 6.2: Cluster models of benzene adsorbed on Au(111) and Pt(111)
surfaces.
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the calculations with the CS00 functional,54,166 which used the NWChem soft-

ware.167 The 6-311G* basis set was used for benzene, which was augmented

with a set of Rydberg basis functions168 placed at the centre of the ring for

some calculations. For the NEXAFS calculations of adsorbed benzene, the

LANL2DZ basis set169,170 was used for the gold and platinum atoms. Theo-

retical spectra are generated by representing the computed excitation energy

and intensity of each electronic transition by a Gaussian function, a full width

at half maximum of 0.4 eV was used for the spectra of gas phase benzene.

Spectra for benzene adsorbed on the surfaces used a full width at half maxi-

mum of 1 eV.

6.2 Results and Discussions

6.2.1 Benzene - gas phase

Before considering benzene, the e�ect of restricting the excitation space to

include only excitations from core orbitals is examined. Table 6.1 shows the

e�ect of introducing this restriction compared to the full excitation space for

the 10 lowest core excited states for a range of molecules at the B3LYP/6-

31+G∗ level of theory. The results show that this restriction introduces a very

small error in the computed excitation energies and oscillator strengths. The

average error is very small and is negligible relative to other errors inherent

in the calculations. The largest error observed is for excitation from the 2s

orbital of phosphorous in PH3. In general, larger errors are observed for exci-

tations from core 2s orbitals compared to the corresponding core 1s orbitals.

This is expected since there is likely to be more mixing between excitations
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from this orbital and those from other occupied orbitals. However, even the

largest errors are relatively small. For benzene the excitations from the carbon

1s orbitals do not appear in the lowest 1000 roots. Therefore it is di�cult to

assess directly the e�ect of restricting the excitation space, however, it would

be expected that a similarly small error would be observed. Thus, imposing

the restriction of only including excitations from the relevant core orbitals

represents a practical and e�cient method for computing NEXAFS spectra

that can be incorporated easily into standard TDDFT codes.

In the experiment four prominent bands are observed below the ionization

threshold.171 These are referred to as A, B, C and D, and occur at 285.2,

287.2, 287.9 and 289.2 eV, respectively in Figure 6.3. Peak A is the most

intense peak and is assigned to excitation to e2u orbitals, which correspond to

the lowest π∗ orbitals. However, there is less consensus in the literature over

the assignment of the remaining peaks. Peak B has been assigned to Rydberg

3s171 or σ∗ orbitals.172,173 Similarly, peak C has been assigned to Rydberg 3p

or 3d171,174 or σ∗ orbitals.172,173 Furthermore, peak D has been assigned to

b2g(π∗) or Rydberg 3d, 4s or 4p excitations.171�174 That said, most authors

acknowledge these orbitals are of mixed character, and the assignment of the

nature of these excitations will depend on the details of the calculation and

on the precise de�nition of a Rydberg orbital adhered to.

TDDFT spectra computed with a range of basis sets and exchange-correlation

functionals are shown in Figure 6.3. The experimental spectrum adapted

from reference171 is also shown. It has been observed previously that core-

excitation energies computed with TDDFT with conventional functionals are
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Figure 6.3: Experimental and computed NEXAFS spectra of benzene in the
gas-phase. Experimental spectrum adapted from reference.171
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Table 6.1: The largest and average error in the excitation energies in eV
and oscillator strengths (in parenthesis) of the 10 lowest core excited states
resulting from the truncation of the single excitation space.

Molecule Largest Error Average Error
N2 0.01 (0.013) 0.00 (0.003)

C2H2 0.01 (0.009) 0.00 (0.002)
C2H4 0.02 (0.011) 0.01 (0.002)
H2CO 0.01 (0.009) 0.00 (0.002)
H2CO 0.01 (0.004) 0.00 (0.001)
HCl - 1s 0.00 (0.000) 0.00 (0.000)
HCl - 2s 0.05 (0.004) 0.01 (0.004)
SiH4 - 1s 0.00 (0.000) 0.00 (0.000)
SiH4 - 2s 0.04 (0.001) 0.01 (0.000)
PH3 - 1s 0.01 (0.000) 0.01 (0.000)
PH3 - 2s 0.07 (0.001) 0.02 (0.000)

too low.104,106 For the B3LYP/6-311G∗ calculation, all excitation energies

have been shifted by +10.7 eV to match experiment. The shifted spectrum

is in good agreement with experiment, with an intense π∗ band with three

weaker bands predicted at higher energies. The 6-311G∗ basis set does not

contain di�use basis functions , and is not designed for describing Rydberg

states. Inclusion of a set of s,p and d Rydberg basis functions located at

the centre of the benzene ring, denoted 6-311G∗+R, does not a�ect the in-

tense π∗ band. However, the energies and intensities of the weaker bands

are changed signi�cantly, indicating some Rydberg character of these bands.

For the B3LYP/6-311G∗+R calculation, three weaker bands occur at 286.7,

287.2 and 289.1 eV (shifted by +10.7 eV). Orbitals derived from the B3LYP/6-

311G∗+R calculation are shown in Figure 6.4. The intense band at 285.3 eV

(shifted by +10.7 eV) corresponds to excitation to the e2u orbitals, which are

clearly π∗ orbitals. The next band in the spectrum is much weaker and arises
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from an excitation to the a1g orbital and corresponds to peak B. Previous

work has assigned this orbital as 3s,171 σ(C−C) bonding with antibonding

C−H character172 and σ∗(C−C).173 Overall, we �nd this orbital is most ap-

propriately labelled a 3s orbital. The orbital has the correct symmetry and

Figure 6.4 shows that it looks like a 3s orbital, although it is perhaps not as

di�use as one might expect for a Rydberg orbital. The 3s orbital has two

spherical nodal surfaces (not shown in Figure 6.4). One of these surfaces does

occur between the carbon and hydrogen atoms, which would re�ect σ∗(C−H)
character. However, there is no σ∗(C−C) character since there is no node

between the carbon atoms. Peak C is weaker than peak B, and is calculated

to arise from excitations to the e1u orbitals. These orbitals are also shown in

Figure 6.4, and are best described as the in-plane Rydberg 3p orbitals. Again

the orbitals also have a nodal surface along the C−H bonds, which re�ects

some σ∗(C−H) character. Above peak C a weak band arising from excitation

to e2g orbitals and a more intense band corresponding to excitation to an a2u

orbital. The e2g orbitals are best described as Rydberg 3d orbitals, while the

transition to the a2u orbital corresponds to peak D and is best described as

an out-of-plane Rydberg p orbital. Previous work has assigned peak D to the

b2g(π
∗) orbital. However, in our calculations this orbital is found at a sig-

ni�cantly higher energy. For the B3LYP/6-311G∗+R calculation, the weak

(Rydberg) bands are too low in energy with respect to the π∗ band. It is well

known for valence excited states that functionals such as B3LYP underesti-

mate the excitation energies of Rydberg states. This can be corrected by the

use of the CS00 asymptotically corrected (AC) functional.166 The NEXAFS

spectrum computed with B3LYP with an asymptotic correction is also shown
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Figure 6.4: Virtual orbitals of benzene in the gas-phase with the computed
orbital energies (in a.u.).
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Figure 6.5: Experimental and computed NEXAFS spectra of benzene ad-
sorbed on Au(111)
(a) B3LYP/6-311G∗+R calculation with a one-layer surface cluster. (b)
B3LYP/6-311G∗calculation with a one-layer surface cluster. (c) B3LYP/6-
311G∗calculation with a three-layer surface cluster. Solid lines: grazing pho-
ton incidence, broken lines: normal photon incidence. All calculated spectra
have been shifted by +10.7 eV. Experimental spectrum for grazing photon
incidence adapted from reference.161
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in Figure 6.3. The AC functional does not correct the large underestimation

of the excitation energies, but does shift the Rydberg bands to higher energies

relative to the π∗ band. Once shifted by +10.4 eV, the resultant spectrum

is in reasonable agreement with experiment. The peaks at B, C and D are

computed to lie at 287.1, 287.7 and 288.6 eV, respectively. This compares to

experimental values of 287.2, 287.9 and 288.9 eV. The largest deviation from

experiment is the intensity of band D is underestimated.

The origin of the error that results in the large underestimation of the com-

puted core excitation energies is analogous to the error observed for charge

transfer states, and is not corrected by a AC functional. This error has been

discussed extensively in the literature, and has been termed the electron trans-

fer self-interaction error175 and arises when there is little spatial overlap be-

tween the occupied and virtual orbitals involved in the excitation. Since core

orbitals are compact and localized on the nuclei, there is little overlap be-

tween these orbitals and typical valence orbitals, such as π∗. Consistent with

this analysis, greater accuracy can be achieved by increasing the proportion

of Hartree-Fock exchange in the functional. A spectrum was computed with

the BH0.57LYP functional.99 This functional was developed to reproduce the

1s→ π∗ excitations in acetylene , ethylene and benzene . The calculation

predicts the π∗ band to lie at 284.7 eV, which is in good agreement with ex-

periment and it is no longer necessary to shift the spectrum. However, the

weaker bands at higher energy are not described less well by this functional,

and are predicted to lie at energies that are too high relative to the π∗ band.
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6.2.2 Benzene on Au(111) and Pt(111)

Figure 6.5 shows experimental and computed spectra for benzene adsorbed

on the Au(111) surface. The experimental spectrum for incident radiation

parallel to the surface shows an intense peak at 285.3 eV with a weaker band

at 289.2 eV. For this system, the lowest lying virtual orbitals correspond to

the orbitals of the metal cluster. To reduce the cost of the calculation, the

excitation space is reduced further, and excitation to the lowest ten virtual

orbitals are excluded. This has a negligible e�ect on the position and intensity

of the lowest π∗ band. In order to aid comparison with experiment, the com-

puted spectra are shifted by +10.7 eV, the value derived from the gas phase

calculations. Computed spectra are shown for incident radiation parallel and

perpendicular to the surface.

All calculations use the B3LYP exchange-correlation functional and the LANL2DZ

basis set for the gold atoms. The 6-311G∗+R basis set for benzene in conjunc-

tion with the one layer surface calculation, predicts an intense band arising

from excitations to the e2u(π∗) orbitals of benzene at 285.4 eV (when shifted by

+10.7 eV) with a weaker band arising from excitation to the b2g(π∗) orbitals of

benzene at 290 eV. The relative positions and intensities of these bands are in

good agreement with experiment. In comparison with the spectra of benzene

in the gas phase there is no evidence of excitation to Rydberg states in the

spectrum for grazing photon incidence. The absence of Rydberg states in the

spectrum is likely to be a result of the presence of the surface, resulting in the

Rydberg states being destabilized relative to the valence states as, observed

for molecules in solution.176,177 Removing the Rydberg basis functions from
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the basis set and using the larger cluster surface model has little e�ect on the

computed spectra, although there is a little reduction in the intensity of the

b2g(π∗) band. For incident radiation normal to the surface, the calculations

predict a weak band at about 288.5 eV. For the three layer cluster, this band

occurs at a slight lower energy of 285.1 eV. In the experiment, there is some

evidence for a weak feature in this region for normal incidence. In terms of

gas phase benzene, this band arises from excitation to the a1g orbital, which

is best described as the Rydberg 3s orbital, although it does have some σ∗C−H

character. The relative compactness of this Rydberg state results in its con-

tinued presence in the NEXAFS region on adsorption. Figure 6.6 shows

the experimental and calculated spectra for benzene adsorbed on the Pt(111)

surface. Spectra have been calculated for both bridge and 3-fold binding sites.

All calculations use the B3LYP exchange-correlation functional in conjunction

with the 6-311G∗ basis set for benzene and LANL2DZ basis set for the plat-

inum atoms. For grazing photon incidence, the calculations predict a broad

band centered at 285.8 eV (shifted by +10.7 eV). For the one-layer surface

cluster, two distinct peaks can be distinguished in this band. A further band

at higher energy is also evident in the computed spectra. Overall, the pre-

dicted spectra between the bridge and 3-fold sites are similar. Some small

di�erences are predicted, in particular, the higher energy band occurs at a

slightly higher energy for the 3-fold site. The broad band arises from excita-

tion to a number of low lying virtual orbitals, the predominant contributions

involve excitation to the orbitals shown in Figure 6.7. The orbitals are clearly

mixed between the benzene and surface, consistent with previous work on this

system.161 For ethene chemisorbed on Pt(111), the features observed in the
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Figure 6.6: Experimental and computed NEXAFS spectra of benzene ad-
sorbed on Pt(111) .
(a) bridge site on a one-layer surface cluster. (b) 3-fold site on a one-layer
surface cluster (c) bridge site on a three-layer surface cluster. (d) 3-fold site
on a three-layer surface cluster. Solid lines: grazing photon incidence, broken
lines: normal photon incidence. All calculated spectra have been shifted by
+10.7 eV.Experimental spectrum for grazing photon incidence adapted from

reference.161
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NEXAFS spectra and underlying molecular orbitals have been discussed in

detail.90 Surprisingly, it was found that despite being bonded to the surface,

the π∗ orbital retained its identity. The resulting orbital was described as

an antibonding combination of the ethene π∗ orbital and the Pt d orbitals.

Providing de�nitive labels for these orbitals is di�cult, but chemically σ∗Pt−C

orbitals would be expected. The orbitals would lie along the Pt-C bonds and

should be observed for grazing photon incidence. The upper orbital in Figure

6.7 is consistent with this. However, in terms of the benzene molecule, the

lower two orbitals do have π∗ character. So similar to ethene, some π∗ orbital

characters is retained. At normal photon incidence, experiment predicts a

weak feature at 286.5 eV.161 All the computed spectra show a weak feature

at this energy. Overall, the agreement with experiment is not as good as for

benzene on the Au(111) surface. This re�ects the much more complex bond-

ing to the surface that occurs on the Pt(111) surface. However, the general

features of the experimental spectrum are reproduced.

6.3 Conclusions

The adsorption of benzene on metal surfaces is a prototypical problem in sur-

face science, and high quality NEXAFS spectra have been reported in the lit-

erature.161 Consequently, it provides a useful system to assess the performance

of TDDFT for the calculation of NEXAFS spectra of molecules adsorbed on

metal surfaces. For gas phase benzene, the excitation energies computed with

TDDFT with hybrid functionals are too low compared to experiment. How-

ever, applying a constant shift to all excitation energies results in spectra that

are in good agreement with experiment. The source of this discrepancy is not
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corrected by the use of an asymptotically corrected functional and is associ-

ated with the approximate local exchange in the hybrid functional. The use of

a functional that has an increased fraction of Hartree-Fock exchange, results

in a spectrum for which the application of a shift is not required, however,

the agreement for the higher lying Rydberg bands is less good.

The NEXAFS spectra of benzene adsorbed on the Au(111) and Pt(111) sur-

faces has been computed with cluster models of the surface. For benzene

adsorbed on the Au(111) surface, the computed spectra are in good agree-

ment with experiment. For grazing photon incidence, the spectrum show two

bands that arise from excitation to the π∗ orbitals of benzene and an absence

of Rydberg bands. For normal photon incidence, a weaker band at 285.8 eV,

which corresponds to excitation to the 3s orbital of benzene. Benzene ad-

sorbed on the Pt(111) is a much more complex system, and the agreement

between experiment and theory is less good. For grazing photon incidence,

the computed spectra show a broad band that is less intense than the π∗ band

observed on Au(111). These bands arise from excitation to virtual orbitals

of benzene that are mixed extensively with the orbitals of the surface, and

have both σ∗Pt−C and π∗ character. Overall, while the accurate calculation of

NEXAFS spectra for adsorbed molecules remains a challenge, TDFFT can

provide a useful tool for understanding and interpreting NEXAFS spectra.
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Figure 6.7: Virtual orbitals of benzene adsorbed on Pt(111) in the 3-fold
bonding site.



Chapter 7

CIS(D) Calculation of NEXAFS

As demonstrated in the previous chapters NEXAFS spectra can be computed

using TDDFT. While the computed spectral pro�le is often in good agree-

ment with experiment, the predicted excitation energies are much too low

compared with experiment. The amount by which the excitation energies are

underestimated increases with the nuclear charge of the atomic centres on

which the core orbitals are localised. The source of this error is associated

with the approximate exchange within the exchange-correlation functionals.

The CIS(D) approximation, on the other hand, comprises exact exchange HF

and often provides similar spectral pro�le of valence excited state to TDDFT.

Since CIS(D) is based on exact exchange, it would expected to provide accu-

rate core excitation energies. In this chapter, the performance of the CIS(D)

method for the calculation of core-excitation energies and NEXAFS spectra

is investigated.

7.1 Computational Details

We have calculated core excitation energies of 54 core excited states. These

states are drawn from the following molecules CO, H2CO, CO2, CH4, C2H2,

C2H4, N2, N2O, SiH4, H2S, SO2, PH3, HCl and Cl2, and a list of the excita-
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Table 7.1: Core excited states studied.

Molecule Excitation
CO C(1s)→ π∗, C(1s)→ 3s, C(1s)→ 3pπ, C(1s)→ 3pσ

O(1s)→ π∗, O(1s)→ 3s, O(1s)→ 3pπ

H2CO C(1s)→ π∗, C(1s)→ 3sa1, C(1s)→ 3pb2, C(1s)→ 3pb1
O(1s)→ π∗, O(1s)→ 3sa1, O(1s)→ 3pa1

CO2 C(1s)→ π∗, C(1s)→ 3s, C(1s)→ 3p
CH4 C(1s)→ 3s, C(1s)→ 3p
C2H2 C(1s)→ π∗, C(1s)→ 3sσ, C(1s)→ 3pπ, C(1s)→ 3pσ

C2H4 C(1s)→ π∗, C(1s)→ 3sσ

N2 N(1s)→ π∗ , N(1s)→ 3s, N(1s)→ 3pπ, N(1s)→ 3pσ

N2O Nt(1s) → π∗, Nt(1s)→ 3s, Nt(1s)→ 3p, Nc(1s)→ π∗ , Nc(1s)→ 3s, Nc(1s)→ 3p
SiH4 Si(1s)→ σ∗ , Si(2p)→ σ∗

H2S S(1s)→ σ∗ , S(1s)→ 4p, S(1p)→ σ∗, S(1p)→ 4s
SO2 S(1s)→ π∗, S(1s)→ 4p, S(2p)→ π∗, S(2p)→ 4s
PH3 P(1s)→ σ∗, P(2p)→ σ∗

HCl Cl(1s)→ σ∗ , Cl(1s)→ 4pπ, Cl(2p)→ σ∗ , Cl(2p)→ 4pπ

Cl2 Cl(1s)→ σ∗u, Cl(1s)→ 4p, Cl(2p)→ σ∗u

tions is shown in Table 7.1. We considered excitation from 1s and 2p orbitals

for SiH4, H2S, SO2, PH3, HCl and Cl2 molecules. Whereas for others, only

excitation from 1s orbitals are included. All structures were optimized at

the MP2/cc-pVTZ level of theory. The RI-CIS(D) implementation of CIS(D)

was used, and excitation energies were computed for a range of basis sets to-

gether with the auxiliary basis set of aug-cc-pVTZ.178 All these calculations

were performed with the Q-Chem software package.79 Relativity has the e�ect

of lowering the energy of core orbitals. In the calculation of core excitation

energies, these e�ects are signi�cant particularly for second row nuclei. In

this work, the e�ect of relativity was estimated from the lowering of the core

orbital energy between non-relativistic and relativistic HF/cc-pCVTZ calcu-
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lations, with the relativistic e�ects computed with the Douglas-Kroll-Hess

Hamiltonian.179 For these calculations, the MOLPRO software package180

was used.

7.2 Results and Discussion

The lowering in energy of the core orbital due to relativistic e�ects is found to

be 0.10 eV for the carbon 1s orbital in CO, H2CO, C2H2 and C2H4, and 0.11

eV in CO2 and CH4. For the nitrogen 1s orbital, values of 0.20, 0.19 and 0.22

eV are found for N2, and the end (Nt) and central (Nc) nitrogen atoms in N2O.

For the oxygen 1s orbital, a value of 0.37 eV for CO and H2CO is obtained.

For the 1s orbitals of the second row elements, values of 3.44, 4.60, 5.90, 5.90,

7.88 and 7.99 eV are found for SiH4, PH3, H2S, SO2, Cl2 and HCl, respectively.

Similarly, for the 2p orbitals, values of 0.63, 0.88, 1.18, 1.18, 1.58 and 1.60 eV

are found. As expected, this e�ect increases with the nuclear charge of the

atom on which the core orbital is localised. Furthermore, this e�ect shows

a weak dependence on the molecule in which the atom is located. Table 7.2

Table 7.2: MAE (in eV) in the computed core excitation energies .

Method MAE
CIS(D)/aug-cc-pCVQZ 2.6
CIS(D)/aug-cc-pCVTZ 2.5
CIS(D)/aug-cc-pCVDZ 2.7

cSOS-CIS(D)/aug-cc-pCVQZ 1.2
cSOS-CIS(D)/aug-cc-pCVTZ 1.2
cSOS-CIS(D)/aug-cc-pCVDZ 2.3

shows the mean absolute error (MAE) in the computed CIS(D) core excitation
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energies with a range of augmented core/valence basis sets181,182 for the full

set of 54 core excited states, and incorporating the correction due to relativity.

MAE is taken as an average of the absolute errors of core excitation energies

of the computed and experiment. For the largest basis set, aug-cc-pCVQZ,

the MAE in the computed excitation energies is found to be 2.6 eV. This error

is similar for the �rst and second row molecules, and does not change signif-

icantly with the smaller basis sets aug-cc-pCVTZ and aug-cc-pCVDZ. The

magnitude of this error shows that CIS(D) does not have the systematic large

underestimation of the excitation energy observed with TDFFT,99,104,106 and

an average error of about 2.5 eV is relatively good. However, closer inspec-

tion of the computed core excitation energies reveals severe problems with the

predicted spectra. For a number of molecules, the Rydberg bands are com-

puted to lie below a low-lying valence band, which is qualitatively incorrect

compared to experiment. This is illustrated in Table 7.3, which shows the

computed excitation energies for H2CO, C2H2 and H2S. More generally, for

most molecules studied the Rydberg state excitation energies are underesti-

mated. Hence, while TDDFT predicts �correct spectra in the wrong place�,

CIS(D) gives �incorrect spectra in the right place�. The underestimation of

Rydberg state excitation energies has been noted to be a generic problem,

and was addressed by adopting SCS-CIS(D) and SOS-CIS(D) approaches.45

Optimizing the coe�cients in equation 3.18 to reproduce excitation energies

from experiment resulted in an improved performance. The application of

this parameterization to core excited states is not successful since a damping

factor was also introduced. This results in the omission of the CIS excitation

energy from the denominator of the direct term in equation 3.18. Core ex-
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Table 7.3: Computed excitation energies with error in parenthesis with the
aug-cc-pCVQZ basis set (in eV).

Molecule Excitation Expt.1 (∆ R)2 CIS(D) cSOS-CIS(D)
C2H2 C(1s)→ π∗ 285.8 0.10 288.5 (+2.7) 286.8 (+1.0)

C(1s)→ 3sσ 287.7 0.10 290.3 (+2.6) 289.9 (+2.2)
C(1s)→ 3pπ 288.7 0.10 287.9 (-0.8) 289.1(+0.4)
C(1s)→ 3pσ 288.8 0.10 287.5 (-1.3) 288.7 (-0.1)

H2CO O(1s)→ π∗ 530.8 0.37 531.8 (+ 1.0) 529.6 (-1.2)
O(1s)→ 3sa1 535.4 0.37 530.5 (-4.9) 533.6 (-1.8)
O(1s)→ 3pa1 536.3 0.37 531.7 (-4.6) 534.4 (-1.9)

H2S S(1s)→ σ∗ 2473.1 5.90 2470.4 (-2.7) 2472.5 (-0.6)
S(1s)→ 4p 2476.3 5.90 2469.9 (-6.4) 2474.9 (-1.4)

1References183�186 2Relativistic correction at HF/cc-pCVTZ level, and the values taken
from the previous page

citation energies are much larger than valence excitation energies, and their

absence leads to a large error in the computed value. To �nd a version of

CIS(D) that is applicable to core-excited states, we have adopted an opposite

spin only formalism.

ωSOS−CIS(D) = cOS
U wOS

U + cOS
T wOS

T (7.1)

For the core-excited states studied, the direct term is negative, leading to a

lowering of the CIS excitation energy, while the indirect term is positive. Focus

on improvement of the parameters in the direct term is crucial, and would

expect to increase the CIS excitation energy. We have observed that including

only the direct term can lead to a signi�cant correction the calculated core

excitation energies. This is denoted cSOS-CIS(D), and can be expressed as

ωcSOS−CIS(D) = cOS
U wOS

U (7.2)
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with the parameter cOS
U determined to be 1.42 from optimization of the core

excitation energies with aug-cc-pCVTZ and aug-cc-pCVQZ basis sets.

Mean absolute errors computed with cSOS-CIS(D) with augmented core/valence

basis sets are also shown in Table 7.2. The mean absolute error for the aug-cc-

pCVQZ and aug-cc-pCVTZ basis sets are reduced to 1.2 eV. For the aug-cc-

pCVQZ basis set this corresponds to errors of 1.5 eV and 0.7 eV for �rst and

second row molecules, respectively. This represents a signi�cant reduction

in the error compared to standard CIS(D) calculations. For cSOS-CIS(D)

with the aug-cc-pCVDZ basis set, there is a signi�cant increase in the ob-

served error. However, the error remains lower than for CIS(D). In general,

sSOS-CIS(D)/aug-cc-pCVDZ are too high and can be improved by a larger

cOS
U coe�cient. However, it is not desirable to have many parameterizations

that are dependent on the basis set. It would also be possible to optimize

the method by reintroducing the indirect term and optimizing both cOS
U and

cOS
T coe�cients. However, our preliminary studies indicate that this would

not lead to a large increase in accuracy, and including only the direct term

leads to a reduction in the computational cost.45 There is a considerable im-

provement in the predicted excitation energies for the Rydberg states. This

is illustrated in Figure 7.1, which shows the distribution of errors in the com-

puted excitation energies. For CIS(D), there is a broad distribution of errors,

with some large negative errors corresponding to Rydberg states. For cSOS-

CIS(D), the error distribution is much narrower and is peaked at an error of

less that 0.5 eV. The cSOS-CIS(D) excitation energies for H2CO, C2H2 and

H2S are also included in Table 7.3 and show the resulting spectra to be in

much better agreement with experiment. Figure 7.2 shows experimental and
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Figure 7.1: Distribution of errors in the computed core excitation energies .
Lower panel - CIS(D), top panel - cSOS-CIS(D)
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Figure 7.2: Experimental (bold line) and computed cSOS-CIS(D) (stick rep-
resentation) NEXAFS spectra.
Experimental data adapted from references187 for ethane,188 for butadiene
and189 for CS2.
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computed cSOS-CIS(D) NEXAFS spectra for three molecules not included

in the original data set. In general, the theoretical spectra do reproduce the

experimental features. For butadiene, the calculations predicts the pattern of

the experimental bands well, but are a little too high in energy. For ethane,

the low energy features are reproduced, but again are a little too high in en-

ergy. The discrepancy in these computed core excitation energies is consistent

with the average error of approximately 1 eV. For CS2, the broad band at 2470

eV is predicted well, with the weaker band at higher energy found to be a little

too high.

7.3 Conclusions

Core excitation energies computed with TDDFT show a large underestima-

tion, which increases with the nuclear charge of the relevant atoms. Conse-

quently, while the spectra are often correct, they need to be shifted in energy

to match experiment. The origin of this error is associated with the approx-

imate local exchange used in most exchange-correlation functionals. CIS(D)

provides a natural alternative approach that avoids this problem. Core exci-

tation energies computed with CIS(D) do not show a systematic underesti-

mation, but the predicted spectra are often qualitatively incorrect with the

Rydberg states predicted to lie too low in energy. Adopting a scaled spin

only formalism, denoted cSOS-CIS(D), in which only the direct contribution

to the excitation energy is retained, results in a much improved agreement

with experiment.

Overall, the computed NEXAFS spectra represent an improvement over stan-
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dard CIS(D) calculations, and provide a reliable basis for interpreting exper-

imental spectra. However, there remains an average error of over 1 eV in

the computed core excitation energies. This is larger than level of accuracy

achieved with calculations of valence excited states. Ultimately, it is desirable

for a similar level of accuracy to be obtained for core excited states. Errors in

CIS(D) are corrected by the EOM-CCSD approach, and it is likely that this

approach would provide accurate core-excitation energies. However, there

is currently no implementation that can compute core-excitations e�ciently

using EOM-CCSD.



Chapter 8

XES Calculation with MOM

A large number of surface sensitive spectroscopic techniques are available for

studying of the electronic structure of adsorbed molecules on the surfaces.190

However, it is often important to enhance the local information around the

adsorbed entity. XES provides a method to locally study the electronic prop-

erties centered around one atomic site. This is particularly important when

investigating complex systems such as molecular adsorbates with many di�er-

ent atomic sites.

The investigation of reactions on the surfaces and interfaces aims to estab-

lish fundamental knowledge of how atoms and molecules interact with the

surfaces. With a third-generation synchrotron radiation source, in combi-

nation with high-resolution photon spectroscopy, has emerged information

about electronic structure and excitation dynamics including interaction of

the molecules on the surfaces.

Fortunately, one of the applications of the quantum chemistry is to describe

the electronic behaviour of atoms or molecules. Theoretical calculations of

XES were reported by Mukoyama et al.191 They simulated XES by com-

puting the transition energy and intensity, which is evaluated through the

transition dipole moment. The simplest approach to computing the intensity
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is to evaluate the transition dipole moment using the ground state orbitals,

and this has been shown to give a surprisingly good agreement with experi-

ment.78,192 A physically more realistic approach is to use orbitals that account

for the relaxation in the core-excited state. These can be obtained through

∆Kohn-Sham or transition potential approach. An illustration of this type

of approach is a recent study of the XES of manganese coordination com-

plexes.193

The calculation of the XES can be done in several ways, including with

TDDFT and equation of motion coupled cluster theory (EOM-CCSD).63,66 Ei-

ther TDDFT and EOM-CCSD is applied to a Kohn-Sham determinant with a

core hole, which is obtained using the Maximum overlap method (MOM)194,195

procedure.

A brief outline for the protocol for these calculations is summarized as follows:

1. Perform calculation on the neutral ground state molecule.

2. Use the resulting molecular orbitals as the starting point for a further

Kohn-Sham SCF calculation on the cation with a core hole in the rel-

evant orbital, invoking MOM to prevent the collapse of the core hole

during the SCF process.

3. Perform a TDDFT calculation.

In this work, we report the calculations of XES of a set of small molecules

with TDDFT and EOM-CCSD using the MOM scheme.
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8.1 Computational Details

The calculation of XES was performed in two e�orts. First, we computed

the X-ray emission energies using CIS, CIS(D), EOM-CCSD, ∆SCF with

the B3LYP exchange-correlation functional and TDDFT with the BLYP and

B3LYP functionals. Secondly, we used these methods to predict the accu-

racy of intensity by comparing to the experimental spectra of methanol and

ethanol. For the �rst task, the 6-311G** basis set was used, and the cal-

culations were performed using the ground state structure optimized at the

MP2/cc-pVTZ level. For the second task, X-ray emission spectra are com-

puted with CIS, TDDFT using B3LYP functional and EOM-CCSD in con-

junction with the 6-311G** basis set for methanol and ethanol. For EOM-

CCSD spectra, excitation energies computed with EOM-CCSD have been

combined with intensities from the TDDFT calculations. Spectra were gener-

ated by representing the transitions with gaussian functionals with a full-width

at half maximum of 1 eV.

8.2 Results and Discussion

Table 8.1 shows computed X-ray emission energies. The Mean absolute error

is de�ned in the previous chapter. The orbital labels describing the transi-

tion refer to the ground state of the molecule and not those of the cation

with a core hole. The ∆Kohn-Sham approach with the B3LYP functional

has a MAE of 0.6 eV, which represents a satisfactory level of accuracy that is

comparable to the accuracy achieved with ∆Kohn-Sham calculations of core

excitations.195 Turning to the methods based on response theory, the MAEs
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for CIS and TDDFT are much higher, with errors of many electron volts.

The emission energies computed with CIS are systematically underestimated,

while those for TDDFT with BLYP and B3LYP functionals are systematically

too large. The errors for TDDFT with the B3LYP functional are closer to

the experiment than with the BLYP functional, but remain too large. These

results illustrate that X-ray emission energies computed with TDDFT are

also sensitive to the fraction of HF exchange in the functional and indicate

that the large errors observed are associated with the self-interaction error.

However, in contrast to the NEXAFS calculations, increasing the fraction of

HF exchange results in an increase in the emission energies. Also shown are

results for correlated ab initio methods CIS(D) and EOM-CCSD. The CIS(D)

emission energies are improved signi�cantly with respect to CIS. The MAE

of 7.3 eV for CIS reduced to 1.1 eV. The most accurate emission energies

are predicted by EOM-CCSD with a MAE of 0.5 eV. However, for this ap-

proach we have found within our implementation of EOM-CCSD that it can

be problematic to converge the CCSD calculation for a wavefunction with a

core hole. The origin of this convergence problem has been discussed else-

where.202 Despite this current limitation, EOM-CCSD does provide accurate

X-ray emission energies where it can be applied. Figure 8.1 shows a test of

these methods against experimental spectra of methanol and ethanol in or-

der to predict the intensity accurately. High quality carbon-K and oxygen-K

experimental spectra which have been reported elsewhere,196 are shown in �g-

ure 8.2. The assignment of the bands in these spectra has been discussed in

detail in the earlier theoretical work of Larkins and co-workers who studied

X-ray emission of methanol and ethanol molecules using transition energies
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Table 8.1: Computed X-ray Emission energies (in eV). Experimental data
from references.196�201 aMean absolute Error.

Excitation Exp. CIS CIS(D) EOM-CCSD∆B3LYPTD-BLYPTD-B3LYP
CH4 1t2 →1a1 276.3 269.8 275.6 276.2 276.8 286.4 283.3
C2H2 1πu → 1σg 278.9 272.6 280.5 279.7 280.4 289.5 286.2
C2H2 3σg → 1σg 274.1 267.0 273.8 273.7 275.5 284.1 280.8
CO 5σ → 2σ 282.0 279.6 281.4 282.7 282.9 292.9 290.3
CO 1π → 2σ 278.4 271.9 281.7 278.6 280.0 288.9 285.3
CH3OH 2a"→2a′ 281.2 271.6 278.9 280.0 282.0 291.7 287.4
CH3OH 7a"→2a′ 279.5 271.5 278.1 278.7 280.4 290.1 286.1
CH3OH 6a'→2a′ 277.4 268.5 277.8 276.6 278.0 287.5 284.1
NH3 1e→1a1 388.8 380.3 387.1 388.0 388.2 399.5 395.8
NH3 2a1 →1a1 395.1 389.7 394.6 395.6 395.3 406.3 403.0
H2O 1b1 →1a1 521.0 512.5 519.4 521.0 520.9 534.3 530.0
H2O 3a1 →1a1 525.1 518.2 524.2 525.4 525.0 538.2 534.3
H2O 1b2 →1a1 527.0 521.1 526.6 527.8 527.2 540.0 536.2
CH3OH 2a"→1a′ 527.8 521.0 527.4 528.0 528.2 541.3 536.7
CH3OH 7a"→1a′ 526.1 518.3 525.4 526.0 526.6 540.3 535.1
CH3OH 6a'→1a′ 523.9 513.0 522.3 522.7 524.1 537.9 532.4
CH3F 5a1 →1a1 675.6 667.1 675.4 674.9 675.5 691.7 686.1
CH3F 2e1 →1a1 678.6 671.1 678.0 678.4 679.5 696.1 689.5
MAEa - 7.3 1.1 0.5 0.6 12.2 8.1

and orbitals from HF calculations.203,204 The X-ray emission of methanol has

also been studied using optimized multicon�gurational wavefunctions.205 Ini-

tially, we will discuss the results for the O-K spectrum. For methanol the

experimental spectrum has four distinct peaks at 527.8 eV, 526.1 eV, 523.9

eV and 521.5 eV which are assigned to 2a", 7a′, 6a′ and 5a′, respectively. The

1a" band is weaker and lies at 522.4 eV. The EOM-CCSD based spectrum

reproduces the experiment well, with computed excitation energies of 528.0

eV, 526.0 eV, 522.7 eV, 521.2 eV 520.4 eV for the 2a", 7a′, 6a′, 1a" and 5a′

orbitals. The spectra based on CIS and B3LYP are shifted from the experi-



114 Chapter 8. XES Calculation with MOM

Figure 8.1: Computed C-K (top panels) and O-K (lower panels) X-ray emis-
sion spectra for methanol (black line) and ethanol (red line).

mental spectra. More signi�cantly the CIS method provides a spectral pro�le

that is close to the experiment. Similar to experiment, the predicted spec-

tra for ethanol show only small deviations from methanol. In experiment the

C-K spectrum shows four distinct peaks at 282.9 eV, 281.2 eV, 279.5 eV and

276.6 eV. The computed EOM-CCSD spectra has only three peaks and di�ers

signi�cantly from experiment. However, the computed spectrum does agree

well with the computed spectrum of Larkins and Senn,203 and in this work it

was suggested that deviation from experiment is most likely due to satellite

contributions and the presence of impurities.
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Figure 8.2: Experimental C-K (top panel) and O-K (lower panel) X-ray emis-
sion spectra for methanol (black line) and ethanol (red line). Adapted from
reference.196

8.3 Conclusions

We have shown that the MOM scheme can be used to perform XES cal-

culations. This can be achieved by applying CIS, TDDFT or EOM-CCSD

methods to the wavefunction or a Kohn-Sham determinant with a core hole.

Within TDDFT, standard exchange-correlation functionals predict emission

energies that are signi�cantly di�erent from experiment. The EOM-CCSD

method does provide accurate X-ray emission energies and when applied to

the X-ray emission spectra of methanol and ethanol, good agreement with

experiment and previous theoretical work is obtained.



Concluding Remarks

Quantum chemical calculations of X-ray absorption and X-ray emission spec-

tra over many years have been a great challenge. We have shown that, in

principle, these spectra can be computed using the current quantum chemical

packages. We have also highlight de�ciencies and areas for further develop-

ment, such as new development in functionals of TDDFT to predict correct

emission energies which are required. In the future, we would like to bring

our concern to broaden TDDFT functionals to achieve an accurate predic-

tion of the emission energies. We would also like to study core excitation

using EOM-CCSD, and deal with problematic of converging of CCSD for the

wavefunction with core hole.
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