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Abstract

Long, thin, �exible cylindrical elements of large scale structures are heavily in�uenced

by the �uid �ow around them. Equally, their movement has an appreciable e�ect on

the �uid �ow. This two-way interaction leads to complex dynamic behaviour that can

cause fatigue and thus reduce operational lifetime. As demand for longer span bridges

and drilling in deeper marine environments increases, research into the best modelling

practice of this scenario gains importance.

The work described in this thesis establishes a suitable method to model in CFD

aero/hydro-elastic behaviour of slender cylindrical elements in large scale structures. In

order to achieve this outcome, the author has

� modelled the drag crisis on a static cylindrical element,

� developed a suitable FSI coupling program,

� combined the drag crisis model with the FSI coupling program and validate against

published experimental data

The turbulence formulation used was carefully chosen taking into account the �ow

features that are important to the onset of the drag crisis. An LES formulation capable

of adapting the model constant of the SGS model according to local shear conditions was

identi�ed as the best candidate to achieve this aim.

The �uid and structural solvers used were loosely coupled by an explicit method

that achieved a balance of kinetic energy aswell as matching displacement at the moving

�uid/solid interface. The integration method and implementation of this coupling strat-

egy was veri�ed by running a test case at low Reynolds number that produced a regular

sinusoidal lift function on the cylinder that was kept stationary. The displacement, ve-

locity, and acceleration response produced by the structural solver was compared against

a closed solution and found to match with an acceptable level of error.

A number of FSI simulations with the cylinder free to move in the cross-�ow direction

only was carried out. The displacement response was compared against published numer-

ical and experimental data and the importance of having a su�cient spanwise dimension

of �ow domain was highlighted.
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Simulations with the cylinder free to move in the along-�ow direction aswell as cross-

�ow direction were carried out. In some simulations where lock-in was observed, the

e�ect of the drag crisis was clearly seen. Energy entered into the system as a result

of low drag on the upstream motion of the cylinder caused by the drag crisis. More

simulations at di�erent velocities are recommended to de�ne a displacement response

curve and make further new observations.
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Chapter 1

Introduction

1.1 Background

In the civil engineering community it is now accepted that care has to be taken in

the design of slender elements, of long span bridges in particular. It is known that

these are susceptible to large de�ections caused by the interaction of the �uid �ow of

their environment with the inertial and elastic properties of the structure which can,

if unchecked, be destructive. This interaction, described as aeroelastic behaviour, was

initially studied as aeronautical engineering developed in the early to mid 20th century.

The link between aerodynamics and civil engineering structures was identi�ed after

the cause of the Tacoma Narrows Bridge collapse of 1940 was investigated and publi-

cised [3]. Before then, there had been similar disasters where structures collapsed in

stormy and windy conditions, such as the Tay Bridge Disaster of 1897 and the collapse

of the Brighton Royal Chain Pier of 1850. In these earlier cases the cause of collapse was

put down to substandard materials, substandard construction, and/or under-design of

the structure. The recognised cause of the Tacoma Narrows Bridge collapse however was

something else. Filmed footage of the collapse show the main deck in a twisting mode

of vibration taking energy from the steady cross wind until it oscillated with su�cient

force to cause structural failure and collapse.

This evidence of destructive aeroelastic behaviour led to a recognition of the need to

accurately predict dynamic behaviour in the design of long span bridges. Initially this was

ful�lled by the use of physical models in wind tunnels. As advances in numerical methods

and computing technology have occurred however, the use of computers to solve �uid

�ow problems, i.e. Computational Fluid Dynamics (CFD), has become an increasingly

important tool. This line of work has been pursued at the University of Nottingham in

recent years (Liaw [40]).

In many industries, CFD use was promoted by the appearance and rise in popularity

of commercial CFD software in the 1980s, facilitated by an increase in availability of

a�ordable computing resources. This allowed a wider range of engineers to have access
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CHAPTER 1. INTRODUCTION 5

to this technology than solely those who had the resources for in-house or bespoke code

development.

A reason for the growth in use of commercial CFD software is that its generic ar-

chitecture allows it to be relevant to a wide range of industries. At the heart of most

popular commercial CFD codes is a complex algorithm that iteratively solves non-linear

mathematical expressions that de�ne the fundamental equations of �uid �ow, heat and

materials transport. Thus all that is required from the engineer who wants a solved �ow

�eld is a knowledge of the geometry, the physics, the chemistry, and some initial �ow

conditions and boundary conditions of the problem they wish to investigate.

Despite these positive aspects, CFD has been slow to gain acceptance by the wind

engineering community. The prediction of steady and unsteady wind loading on build-

ings and structures, the prediction of structural response, and the prediction of air �ow

patterns in urban environments are demanding tasks. Wind tunnel testing is used to

address these challenges, and has long been an integral part of wind engineering. At the

same time the capabilities and bene�ts of CFD technology in this area has been somewhat

limited by the size of domain and range of length scales that need to be considered. These

are factors of far greater magnitude than for typical problems encountered in other �elds

of engineering. Thus for the moment CFD cannot be regarded as a potential replacement

for wind tunnel tests.

Nevertheless the development of CFD technology has meant that its use is increasing

to address problems which wind engineers struggle to simulate physically. Aeroelastic

behaviour is a di�cult phenomenon to reproduce in a wind tunnel. Firstly the materials

used in the model must be chosen carefully in order to re�ect the correct structural be-

haviour. Secondly, measurements of the �ow �eld in the immediate vicinity of a moving

structure are physically di�cult. As a consequence some aspects of aeroelastic behaviour

remain not fully understood. This has been the motivation for research using CFD tech-

nology to gain more insight in this area.

As a result of this and other types of problem that involve a coupling of �uid �ow with

structural dynamic behaviour, a new branch of CFD technology known as Fluid Struc-

ture Interaction (FSI) has developed. This is a new �eld of expertise that involves the

concurrent use of �uid and structure solvers, made possible because of increases in gen-

eral availability of computational resources and advances in numerical solver techniques.

There are a number of ways in which FSI capability can be achieved, each appropriate

to a certain type of engineering problem. The preference shown in recent work at the

University of Nottingham (Liaw [40], Sun et al. [76]) has been to adapt commercially

available CFD software to extend its capabilities to FSI. This is an approach that this

thesis can develop further, provided it is appropriate for the work presented.

Newman and Karniadakis have successfully simulated aeroelastic behaviour of cables

in cross �ow [57] [56]. However these have been at low Reynolds numbers in comparison

to what is experienced by cables in full scale structures like long span bridges and deep-

sea riser systems typically used for o�shore drilling. There is interest in a certain �ow
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phenomena that only occurs for high Reynolds number �ows known as the drag crisis. It

is so called because of an appreciable change in the drag experienced by a blu� object over

a certain range of Reynolds number. Such phenomena which a�ect drag are considered

important for the prediction of aeroelastic behaviour and fatigue life. Despite it having

been researched over a long time, it is still a phenomenon which has not been fully

explained. The drag crisis is di�cult to investigate physically because it has been shown

to be very sensitive to numerous physical parameters. For this reason, an extensive review

of experimental literature on the subject by Zdravkovich [92] shows a large amount of

observations that do not agree well. Numerical simulation of the drag crisis is di�cult

because of the range of length scales that need to be modelled. Recent numerical work

presented by Holloway et al. [29], and Catalano et al. [14] demonstrate the challenges

that remain to be addressed when using CFD to simulate this important phenomenon.

Thus it is hoped that this thesis adds to the momentum of the increase in CFD use by

wind engineers. It will achieve this by extending similar work carried out by others to

CFD simulations including greater Reynolds numbers. In so doing, progress will be made

in the understanding of the aeroelastic behaviour and �ow features in these relatively

unexplored �ow conditions.

1.2 Hypothesis

Aeroelastic behaviour of large-scale �exible, slender, cylindrical elements of engineering

structures can lead to problems of excessive de�ection, stress, and fatigue. The proposed

hypothesis is that CFD can be used to investigate dynamic behaviour of elements such as

risers and bridge cables in their typical �uid �ow environments and more generally the

physics of the drag crisis in static and dynamic modes.

1.3 Aims

This thesis aims to extend knowledge in the following areas:

� physics of the "drag crisis", a �ow phenomena common to blu� objects such as

cables;

� �ow mechanisms driving cable dynamics;

� the role of structural response on FSI.

1.4 Objectives

In order to achieve the aims given in � 1.3, the following objectives have been set out:

� Identify a suitable CFD software and turbulence formulation to use for the work

presented in this thesis.
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� Investigate the drag crisis.

� Extend functionality of CFD software to allow FSI capabilities and validate it.

� Using the FSI extended CFD software, carry out numerical simulations of �ow past

an elastically mounted circular cylinder, in particular in the region of the drag

crisis.

� Analyse the outcome of the numerical simulations above to propose an explanation

on the role of structural response on the drag crisis.

1.5 Methodology and Scope

The following points elaborate further on how each of the objectives stated in � 1.4 will

be achieved:

� Carry out a series of numerical simulations of �ow past a circular cylinder. Identify

what combination of CFD software and turbulence model perform well by comparing

results against published data by Zdravkovich [92] and Norberg [59].

� Numerically simulate the drag crisis, taking cognisance of the challenges encoun-

tered by Holloway et al. [29] and Catalano et al. [14] in their attempts to simulate

the drag crisis. Compare results with those given by Zdravkovich [92] and data

presented by Engineering Sciences Data Unit (ESDU) to con�rm validity.

� Implement an FSI coupling strategy found by a survey of literature. Determine

suitably by veri�cation and validation. Veri�cation will consist of running a test

numerical simulation for �ow conditions where the forcing on the structure is known

to be simple sinusoid. The structural response given by the FSI code is compared

with that calculated from a simple textbook equation predicting the same. Vali-

dation will consist of comparison against published numerical work by Saltara et

al. [66] and experimental work by Khalak and Williamson [38].

A successful veri�cation and validation of all the above work will build con�dence in

the �nal step of the thesis which is numerical simulation of cylinder cross�ow in region

of the drag crisis using FSI enabled code. Observations to be taken will include, but not

be limited to, the following:

� Time histories of lift and drag force experienced by the cylinder

� Time histories of cross �ow and in-�ow displacement by the cylinder

� Location of separation points on cylinder surface over a range of instants in time

� Local velocity at cylinder surface during movement indicating the local Reynolds

number.
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� Eddy viscosity distribution at discrete radial locations close to the cylinder, indi-

cating where transition from laminar to turbulent �ow takes place. Ultimately, a

review of these observations will be carried out and ideas for further work will be

discussed.

1.6 Thesis Plan

This section concludes the �rst chapter that introduces the thesis. The contents of

subsequent chapters are as follows.

� Chapter 2 presents an overview of CFD theory and practice that is relevant for the

work presented in subsequent chapters.

� Chapter 3 presents a literature review that provides a classi�cation of important

aspects of aeroelastic and hydroelastic behaviour, cable dynamics, details of rele-

vant numerical models and experiments, and covers specialist aspects of CFD that

applies to this body of work.

� Chapter 4 presents the work carried out by the author to simulate �ow past a

stationary cylinder. Results are presented that demonstrate the important �ow

features being captured. In particular the �drag crisis� and the challenges associated

with simulating this phenomenon are discussed.

� Chapter 5 presents work to extend the capabilities of a commercial CFD software to

handle moving blu� body objects. Simulation results are presented and compared

with experimental data for validation. Further new work is presented which involves

the combination of drag crisis simulation with FSI.

� Chapter 6 presents an extension to the work carried out in the previous chapter

to simulate cable dynamic behaviour. Results are presented that are compared

against published experimental data.

� Chapter 7 concludes the thesis by reviewing the work described in previous chap-

ters, discussing advantages this work achieves and areas that merit further investi-

gation.



Chapter 2

CFD Theory and Practice

Computational Fluid Dynamics (CFD) is the use of computers for solving �uid �ow

problems. This section covers CFD theory and practice commonly covered by textbooks

that provide and introduction to the subject, e.g. Versteeg and Malalasekera [87], Ferziger

and Peric [21]. For this reason the descriptions contained herein are not intended to be

exhaustive but to give an introduction to concepts and ideas that must be known in

order to use commercial CFD software e�ectively.

More speci�c concepts of CFD relevant for this thesis are given in subsequent chapters.

2.1 Introduction to CFD

CFD is a relatively recent development in the history of �uid dynamics, facilitated by

an increase in computing power available over the last few decades. Throughout this

time, CFD practice has been advanced by improvements in the numerical methods and

algorithms it employs in the solution process, aswell as improvements to the tools supplied

for pre and post processing. As a result, CFD theory and practice have now reached a

level of sophistication where it is regarded as an indispensable tool for engineers and

scientists working in numerous disciplines.

In the realm of scienti�c research, CFD provides insight into the physical processes of

�uids, some of which are still not fully understood today. Studies of increasing complexity

have been carried out in recent years and it would be reasonable to assume that if this

trend continued, further breakthroughs in the understanding of these processes would be

inevitable.

The use of CFD has become commonplace in a variety of engineering �elds. Originally

solely used in aeronautics, it has now spread to diverse areas such as chemical, civil,

mechanical, and nuclear engineering, and meteorology.

9
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2.2 Governing Equations

The set of equations that provide the cornerstone of CFD analysis are known collectively

as the Navier Stokes Equations (NSEs), named after two people who formulated them

independently in the 19th century. Despite these equations having been formulated so

long ago, their complexity is such that even today they cannot be solved directly for

most �uid �ow problems encountered in engineering.

The NSEs for a compressible Newtonian �uid are represented here by equations 2.1a,

2.1b, and 2.1c. They express the physical laws of conservation of mass, momentum, and

energy respectively.

∂ρ

∂t
+∇ · (ρu) = SA (2.1a)

∂(ρui)

∂t
+∇ · (ρuiu) = − ∂p

∂xi
+∇ · (µ∇ui) + SMi (2.1b)

∂(ρι)

∂t
+∇ · (ριu) = −p∇ · u +∇ · (κ∇T ) + Φ + SI (2.1c)

where ρ is density of the �uid, t is time, u is the velocity vector of the �uid (whose

components are ui), xi is the length dimension, µ is dynamic viscosity of the �uid, ι

is the internal energy of the �uid, κ is the thermal conductivity of the �uid, T is the

temperature of the �uid, and Φ is a dissipation function that describes the internal energy

e�ects due to viscous stresses in the �uid. SA, SMi and SI are source terms for mass,

momentum, and energy respectively. The i su�x means `in the ith dimension', hence for

a problem set in a three-dimensional cartesian coordinate system there will be three sets

of equation 2.1b, one for each orthogonal direction. The derivation of these equations

can be found in most CFD textbooks, notably Versteeg and Malalasekera [87].

This thesis is concerned with �uid �ow problems where the �ow speed is low enough

for the �uid to be considered incompressible, i.e. |u| is less than Mach 0·3. Also there

is no heat transfer in the problems considered. Thus the numerical work presented here

does not involve the solution of equation 2.1c. The �uid �eld is solely described by the

incompressible formulations of equations 2.1a and 2.1b, as given here:

∇ · u = SA (2.2a)

∂ui
∂t

+∇ · (uiu) = −1

ρ

∂p

∂xi
+∇ · (ν∇ui) + Si (2.2b)

where ν is the kinematic viscosity (ν = µ/ρ), and Si is a source term.

2.3 Discretisation

The NSEs are non-linear Partial Di�erential Equations (PDEs) which are too di�cult

to solve directly except in a few simple cases where the boundary conditions applied

su�ciently simplify the problem. Discretisation is the process of representing the �uid



CHAPTER 2. CFD THEORY AND PRACTICE 11

�ow at a �nite number of points. For the purpose of rendering the problem into a set

of Ordinary Di�erential Equations (ODEs) that are easier to solve, a variety of numerical

methods can be used.

It is worth noting that this process does not solve the NSEs directly but instead solves

a representation of them and thus error is introduced. In order to maintain con�dence

in the method, the nature of this error must be known and its magnitude estimated.

2.3.1 Numerical Methods

There are many di�erent numerical methods used for CFD. These include the Finite

Di�erence Method (FDM), the Finite Volume Method (FVM), the Finite Element Method

(FEM), the Control Volume based Finite Element Method (CVFEM), spectral methods,

boundary element methods and meshless methods. The work presented in this thesis

is based on solely the use of CFD solvers that are commercially available, so only the

numerical methods relevant to them are discussed here.

Finite Volume Method FVM is the most popular approach used in CFD. In this process,

each discrete node represents a volumetric region surrounding it. Each node carries a

value of the properties �owing through this region. The values are derived by considering

them as transported �uxes across the faces of the surrounding volumes and applying the

rule that the sum of in�owing properties are balanced exactly by those �owing out. An

advantage of this method is that it is more `intuitive' than other methods.

Figure 2.1: Grid topology for FVM

Finite Element Method FEM was developed initially for structural analysis problems, but

its use has since extended into other �elds of engineering, including CFD. It works on a

variational formulation of the PDEs and boundary conditions that describe the problem.

The volumetric region occupied by the �uid is split into a �nite number of interconnecting

elements. A simple basis function is given to each of these volumetric elements from

which, using the variational formulation of the problem, a piecewise function of the

solution is constructed. The basis function that is implemented and the solution function

that results from it can in theory be of any order. For the sake of simplicity of calculation
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however they are usually taken to be linear and if this is the case the solution can be

de�ned solely by the values found at the vertices of each element.

Figure 2.2: Grid topology for FEM

Control Volume based Finite Element Method CVFEM can be regarded as a hybrid of FVM and

FEM. Just as for FEM the �uid volumetric region is split into a number of interconnecting

elements. For each of the vertices, a control volume is constructed by linking the centroid

of each of the surrounding elements and the midpoints of the connecting faces.

Just as for FVM, the vertices carry the values of the solution �elds. In addition,

however, shape functions are applied to the elements to give the gradient of the solution

�elds. The �uxes through the surfaces of the control volumes are calculated on a per-

element basis.

This is the approach used in the commercial software used for the work presented in

this thesis.

2.3.2 Advection Schemes

There is a range of di�erent schemes that the solver can use to discretise the advection

term of the transport equations. Choices commonly found in commercial software include

upwind, central di�erence, and Quadratic Upstream Interpolation for Convective Kinetics

(QUICK). Some schemes have particular requirements for mesh topology in terms of

resolution, alignment of cell faces and nodes, and whether it is structured. The schemes

which have comparatively stringent requirements may have to be ruled out if the mesh

cannot be adapted to satisfy these.

It is important to choose a scheme that is well suited to the mesh and turbulence

model. An inappropriate scheme can lead to over-di�usion problems. For simulations

using an Large Eddy Simulation (LES) tubulence model in particular, it has been demon-

strated that a second order central di�erencing scheme is required to ensure turbulence

is sustained to an acceptable level (Montavon et al. [52]).

2.3.3 Meshing

Whichever numerical method is used there is a requirement of skill in assembling an

appropriate mesh. A mesh that is too coarse can lead to a quick solution but will not
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Unstructured Structured

Figure 2.3: Typical meshes commonly used for each type of solver

give good resolution. A mesh that is too �ne will take unnecessarily long to solve and

produce unnecessarily large volumes of output data. Often a �ne mesh will be required

in regions of interest where the variation of a �uid property is expected to be large within

a relatively short length scale. This is often found to be the case in the near-wall and

wake regions of blu� objects.

A variety of volumetric block shapes can be used to assemble a mesh. The two most

common of which are hexahedral and tetrahedral. Both of them can be used in the same

mesh, but commonly they are used separately and thus are inherent to two di�erent

types of solver: structured and unstructured (although hexahedral meshes can also be

unstructured).

Unstructured solvers

An unstructured solver is one which requires a list of connectivity in order to process the

geometry of a mesh. This means that they are highly capable of dealing with meshes

that consist of cells put together in an irregular pattern. Tetrahedral and triangular

shapes are well suited to �t complex geometries but they will usually form a mesh which

can only be dealt with by an unstructured solver. Thus unstructured solvers show more

versatility than structured solvers in terms of ability to deal with problems with complex

geometries. This extra ability however requires extra computational e�ort to deal with

the stored list of connectivity that comes with an unstructured mesh plus the need for

more tetrahedral elements to �ll a volume at a �xed resolution.

Structured solvers

A structured solver is able to infer connectivity solely by the geometry of a mesh. For this

to work however, the cells of the mesh must be put together in a regular pattern so that

the position of a cell can be referenced by a set of integers, i.e. (i,j) in two dimensions or

(i,j,k) in three dimensions. Thus the neighbours of a given cell reference are easily known
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by an increment or decrement to any of the integers. The geometric requirements de-

manded by a structured solver are more prohibitive than those of an unstructured solver,

therefore it can only deal with problems that have relatively uncomplicated geometries.

The simpler way in which structured solvers deal with geometries does however require

less computational e�ort.

The more popular of the range of commercial CFD software include unstructured

solvers because the ability to deal with complex geometries is important for commercial

success. Although there is the drawback of extra computational e�ort being necessary

for unstructured solvers, this has been mitigated by advances in numerical methods and

increased availability and cheapness computational of resources over time. It is worth

noting that hexahedral meshes can be used with unstructured solvers and this too can

produce savings in computational e�ort. Since a hexahedral cell can occupy more space

than a tetrahedral cell of similar dimensions, fewer cells of a hexahedral mesh are required

than a tetrahedral mesh of the same problem. Thus although hexahedral meshes would be

treated in an unstructured way, their use would keep computational e�ort to a minimum.

Regardless of the type of solver used and the shape of the cells used in the mesh,

a third type of shape is commonly used at the boundaries of a �uid domain where

near-wall resolution is important. They are �at slab-like elements made up of 6-noded

triangular prisms or 8-noded hexahedra which are stacked together and aligned with

their shorter dimension in the wall normal direction in order to achieve an appropriate

level of resolution close to the wall. In accordance with boundary layer theory discussed

further in this chapter, special treatment is applied to the modelling of �uid close to

solid boundaries. The nature of this near wall modelling is dependent on the turbulence

model used, of which there is a wide variety (as is also discussed further in this chapter).

2.3.4 Temporal Discretisation

Some �ow problems require a solution that is time varying in order to capture transient

phenomena, e.g. vortices shed intermittently from blu� objects. This is achieved by the

solver producing a solved �ow �eld at instants in time which are, e�ectively speaking, a set

of 'snapshots' of the transient solution. Each 'snapshot' is used as an initial condition for

the �ow �eld at the next instant to be solved. Thus the solver works through the problem

on a consecutive chronological basis. This approach to solving transient problems is

e�ectively a discretisation of those terms of the governing equations that include the

time variable. Thus it should be regarded as another source of error similar to those

introduced with other types of discretisation discussed in this chapter.

Resolution of the solution in the time dimension is controlled by the spacing of the

'snapshots' produced by the solver, i.e. the time step. As is similar to the choice of cell

spacing in a mesh, care should be taken in the choice of time step size. A time step

inappropriately small for the �ow problem will lead to unnecessary computational e�ort.

A time step size too large can cause the solver to miss out the transient �ow features
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that are needed to be captured, can introduce error to an extent where the solution is of

little or no value, and can threaten the stability of the numerical method used.

The way in which prior 'snapshots' are used to obtain a solution �eld to a time

instant is important to the stability of the solving process. There are numerous schemes

to choose from but all of them fall into two main categories: implicit and explicit.

Explicit methods calculate the solution of a �ow �eld at a given instant using the

solved �ow �elds of previous instants. Implicit methods calculate a solution using equa-

tions that include data from the current instant aswell as previous instants. To express

this mathematically, taking X(t) as a known �ow �eld state at time t, and X(t+ ∆t) as

an unknown �ow �eld state at an instant ∆t later than t, an explicit method takes the

form:

X(t+ ∆t) = F (X(t))

while for an implicit method, the form would be:

G(X(t), X(t+ ∆t)) = 0

Seeing as the variables to be solved are included in an implicit formulation, they are

harder to implement and require more computational e�ort to solve for each time step.

Many problems of engineering interest are 'sti�' i.e. they require a small time step to

solve within bounds of numerical stability. For these types of problem, explicit methods

require a much smaller time step than is required for implicit methods to keep error in

the result bounded. This di�erence in time step requirements is often so pronounced that

it takes less computational time to solve using an implicit method than for an explicit

method. Thus implicit methods tend to be more popular.

The mesh cell size is another consideration for the allowable size of time step. In

most cases it would be ideal to avoid the possibility of the time step being large enough

for a �uid particle to travel entirely through one or more cells from one solution step

to the next. The Courant number is the time step size divided by the residence time

of a �uid particle in a cell. Expressed mathematically for a one-dimensional case, the

Courant number would be
u·∆t
∆x

where u is the velocity, ∆t is the time step, and ∆x is the cell length dimension. Ideally

this number should never be above 1.

2.4 Near Wall Modelling

Special consideration of what happens in a �uid close to a solid boundary began over a

century ago. A German mathematician, Prandtl, developed what has come to be known

as Boundary Layer Theory . Up until then, a major drawback with �uid theory was that

it could not account for drag forces experienced by objects in a �ow �eld. Boundary layer

theory splits �uid �ow around an object into two regions. One region is the free-stream

where no appreciable variation of velocity caused by the object is observed. The other
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region is close to the boundary of the object where the local �uid velocity is very much

in�uenced by the object.

The shape of the velocity pro�le throughout the boundary layer is usually de�ned

in terms of two dimensionless variables u+ and y+, relating to local velocity scalar U

and distance from wall y respectively. Close to the wall the velocity is considered to be

only in�uenced by �uid density ρ, viscosity µ, and wall shear stress τw.Derived using

dimensional analysis, expressions for u+ and y+ are as follows:

u+ = U/uτ

y+ =
ρuτy

µ

where uτ is known as the friction velocity de�ned as uτ =
√
τw/ρ. The relationship

u+ = f(y+) is commonly referred to as the law of the wall. The function f(y+) varies

according to which predominates between viscous, turbulent and inertial forces. Between

the solid surface and the nearest position where the local velocity matches the free-stream

value, three layers are commonly identi�ed viz. the linear sub layer, the log-law layer,

and the outer layer. A separate law of the wall exists for each of these layers, their

de�nitions follow.

Figure 2.4: Typical layers found in a boundary layer

In the linear sub layer the �ow is dominated by viscous shear. In practice this is

extremely thin so the shear stress throughout is assumed to be the same as the wall

shear stress. This leads to the simple linear relationship de�ned by

u+ = y+

In the log-law layer, turbulent as well as viscous e�ects are important. Empirical

terms are included in the law of the wall relationship to account for turbulent e�ects and
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wall roughness, κ and B respectively. The log-law relationship is de�ned by

u+ =
1

κ
ln y+ +B

In the outer layer inertia e�ects are dominant. It is more convenient for the velocity

pro�le de�nition to be given in terms of how much it di�ers from the free stream velocity

Umax and for this reason it is known as the velocity defect law. Fluid viscosity µ no

longer plays a part in this relationship and it is replaced by the boundary layer thickness

δ as a dependent variable. The velocity defect law is thus de�ned by

Umax − U
uτ

=
1

κ
ln
y

δ
+A

where A is a constant.

Other wall functions exist for turbulent quantities and heat transfer. They vary

according to which turbulence model is used (see � 2.5).

Since the velocity gradient at a surface is usually very steep, a very re�ned mesh would

be required to resolve this properly. In earlier days of CFD, this would use up the limited

computer resources available and so was not practical. As an alternative the in�uence

of the wall is simulated with the use of wall functions. The choice of which function to

use is based on the distance of the �rst grid node away from the wall. Generally if the

y+ value of the �rst node is less than 11·63 then the functions relevant to the linear sub

layer are used and if greater than 11·63 the functions relevant to the log-law layer are

used. The y+ value of 11·63 is based on the point where the wall functions for the two

layers coincide.

A useful aspect of boundary layer theory is its ability to predict �ow separation. An

adverse pressure gradient can reduce the velocity gradient at a surface and in certain

�ow situations the velocity gradient can be reduced to zero.

Figure 2.5: Air�ow separating from a airfoil at a high angle of attack

When this occurs the boundary layer lifts o� the surface and rolls up into vortices

downstream. An example of this can be seen in Figure 2.5 which shows air�ow separating
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from the leading edge of the upper surface of an airfoil. This is an important �ow feature

since it is responsible for the drag signal experienced by blu� objects.

2.5 Turbulence Models

Many �ows in nature exhibit a degree of turbulence which can be observed easily. The

plume of a smoke stack or cumulus clouds are typical examples. Tennekes and Lumley [81]

give a very thorough introduction to the subject but concede that it is very di�cult to

give a precise de�nition of turbulence. It is easier to describe turbulence in terms of

its main characteristics which are irregularity, di�usivity, large Reynolds Numbers, and

dissipation.

The irregularity or randomness of turbulent �ows require that generally they are

treated in a statistical sense. Of course a direct solution process of the NSEs is a way

of treating turbulent �ows in a deterministic sense, but this approach known as Direct

Numerical Simulation (DNS) is not practical for general use because of the vastness of

resources required to solve even simple �ow problems. It is fortunate then that most CFD

users are not interested in the details of every swirl and eddy in a solution and are happy

to deal with turbulence characteristics in more general terms. Thus simpli�ed models to

simulate the e�ects of turbulence are allowed as a viable alternative to DNS.

Di�usivity is a feature of turbulence that causes rapid mixing and increased rates of

momentum, heat and mass transfer. For airfoils and blu� objects this is an important

concept because turbulent boundary layers tend to have a more even spread of momentum

across their thickness than laminar boundary layers. As a result turbulent boundary

layers are more resistant to adverse pressure gradients and are therefore less prone to

separation.

Turbulent �ows occur at high Reynolds Numbers. The Reynolds Number is the ratio

of the inertial force magnitude to viscous force magnitude in a given �ow condition.

Expressed mathematically, the Reynold number Re, is de�ned as Re = UD
υ , where U

is a reference velocity (usually freestream velocity), D is a reference length dimension

(cylinder diameter for the present work), and υ is the kinematic viscosity of the �uid.

When the Reynolds Number is low, viscous forces are large in comparison to inertial forces

and dampen any �ow instabilities, thus forcing the �ow to be laminar. As the Reynolds

number increases inertial forces become more dominant, leading to the production of

swirls, eddies and other �ow �uctuations. At a critical value of Reynolds number, these

�uctuations have enough momentum to overcome the viscous damping e�ect and so they

lead to the onset of turbulence.

Turbulent �ows require a constant supply of energy to keep them going. Without this

supply turbulence dies out quickly because of its dissipation characteristics. The energy

processes in turbulence are commonly regarded as a cascade which begins with the largest

swirls and eddies extracting kinetic energy from the main �ow. Viscous shear stresses

perform deformation work at the expense of this energy so some of it is dissipated as heat
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and the rest of it is passed on to swirls and eddies of smaller length scales. This process

continues for an ever decreasing set of length scales until all the energy is dissipated as

heat.

The following sections introduce the most common formulations used in external

aerodynamics, with a stronger emphasis on LES, used in the later work.

2.5.1 RANS

The NSEs can be reformulated with the velocity and pressure terms split into a steady

part∗ and a �uctuating part, i.e. u = u + u′, p = p + p′. This formulation, commonly

known as the RANS equations, can be found in most CFD textbooks, including Versteeg

and Malalasekera [87].

The RANS equations look very similar to the NSEs, with all the velocity and pressure

terms replaced by their steady components. The one important di�erence to observe

is the appearance of an extra term in the conservation of momentum member of the

NSEs which expresses the momentum �ux related to the �uctuating velocity. This extra

expression is a tensor whose components are all permutations of ρu′iu
′
j , known collectively

as Reynolds Stresses.

The appearance of Reynolds Stresses in the RANS equations mean that there are a

greater number of unknowns than the number of equations available to solve them, i.e.

there is a closure problem. Therefore the Reynolds Stresses have to be approximated in

some way. An equation used in the course of this approximation is as follows:

ρu′iu
′
j =

2

3
ρkδij − µt

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.3)

where k is turbulent kinetic energy, and µt is the eddy viscosity. In equation 2.3, the term

including the Kroneckler delta δij distributes an equal third of the kinetic energy across

the three normal components of the Reynolds stresses, implying isotropic turbulence. In

the case of �ow past cylinders, this assumption is not correct and thus will adversely

a�ectly the quality of prediction. To account for the anisotropy of the turbulence a

higher order formulation of equation 2.3 can be used. This has not been implemented in

all commercial CFD software however.

Two Equation Models

Two equation turbulence models achieve closure of the RANS equations by modelling two

scales relating to turbulence. One is a velocity scale q, and the other is a length scale L.

The variable used for velocity scale is commonly the turbulent kinetic energy k, de�ned

as k = 1
2u
′
iu
′
i. Thus q is set to q =

√
k. The variable used for length scale can vary

among two equation models.

∗Steady over the time frame it is averaged, however this value can still be a function of time in
unsteady Reynolds Averaged Navier Stokes (RANS) simulations. Time averaged variables are indicated
by an overline in this section.
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The de�nition of µt, the eddy viscosity, takes the following general form:

µt = CρqL (2.4)

where C is a model constant.

K-Epsilon Formulation The k ε model uses turbulent kinetic energy k for the velocity

scale, and turbulent dissipation ε for the length scale. Turbulent dissipation is related to

length scale L by L = k3/2/ε, thus equation 2.4 becomes:

µt = Cµρ
k2

ε
(2.5)

where Cµ is usually set to 0·09.

k and ε are de�ned in a �ow domain by the following two transport equations which

are solved alongside the RANS equations.

∂ (ρk)

∂t
+∇ · (ρku) = ∇ ·

[(
µ+

µt
σk

)
∇k
]

+ Pk − ρε (2.6a)

∂ (ρε)

∂t
+∇ · (ρεu) = ∇ ·

[(
µ+

µt
σε

)
∇ε
]

+ C1ε
ε

k
Pk − C2ερ

ε2

k
(2.6b)

where Sij is the rate of strain tensor as de�ned in equation 2.7, Pk is the production term

as de�ned in equation 2.8, and the model constants are usually set as follows: σk = 1·00,

σe = 1·30, C1ε = 1·44, C2ε = 1·92.

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.7)

Pk = 2µtSij · Sij −
2

3
ρk
∂ui
∂xj

δij (2.8)

It is stated in literature (e.g. [87]) that k ε models provide poor performance in �ows

with large extra strains, i.e. curved boundary layers, which is certainly the case for �ow

past circular cylinders.

K-Omega Formulation The k ω model proposed by Wilcox [88] uses turbulent kinetic

energy k for the velocity scale, and turbulent frequency ω for the length scale. Turbulent

frequency is related to length scale L by L =
√
k/ω, thus equation 2.4 becomes:

µt = ρ
k

ω
(2.9)

k and ω are de�ned in a �ow domain by the following two transport equations which

are solved alongside the RANS equations:

∂ (ρk)

∂t
+∇ · (ρku) = ∇ ·

[(
µ+

µt
σk

)
∇k
]

+ Pk − β?ρkω (2.10a)

∂ (ρω)

∂t
+∇ · (ρωu) =∇ ·

[(
µ+

µt
σω

)
∇ω
]

+ α

(
2ρSij · Sij −

2

3
ρω

∂ui
∂xj

δij

)
− βρω2

(2.10b)
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The model constants are usually set as follows: σk = 2·0, σω = 2·0, α = 0·556, β1 = 0·075,

β? = 0·09.

The k ω model provides a more accurate and robust model than the k ε model in near-

wall regions. However it is very sensitive to free stream conditions, so any alteration in

ω at the inlet can produce a large variation in results.

Shear Stress Transport (SST) Formulation In an attempt to blend the best and discard

the worst of the qualities of the k ε and the k ω models, Menter [49] introduced the SST

model. The k ε model is used in the free stream but approaching the wall the k ω is

gradually introduced with a blending function.

The transport equations for this formulation are as follows:

∂ (ρk)

∂t
+∇ · (ρku) = ∇ ·

[(
µ+

µt
σk

)
∇k
]

+ PkSST − β?ρkω (2.11a)

∂ (ρω)

∂t
+∇ · (ρωu) =∇ ·

[(
µ+

µt
σω

)
∇ω
]

+ α

(
2ρSij · Sij −

2

3
ρω

∂ui
∂xj

δij

)
− βρω2 + 2(1− FC)

ρ

σω,2ω

∂k

∂xk

∂ω

∂xk

(2.11b)

where FC is a function based on L/y and Rey the Reynolds Number based on y the

distance to the wall, and PkSST is the production term for kinetic energy de�ned in

equation 2.14.

It can be seen that the transport equation for k remains the same as for the k ω model

while the the transport equation for ω has slight di�erences, including the addition of

an extra term on the right hand side. The derivation of equation 2.11 is based on the

identities ε = Cµkω, and β? = Cµ = 0·09.

The blending function ensures a smooth transition of the value of µt as one passes

from the k ε region in the free stream to the k ω region close to the wall. It is applied

to the following model constants: α1 = 0·556, β1 = 0·075, σk1 = 1·176, σω1 = 2·0,
α2 = 0·44, β2 = 0·0828, σk2 = 1·0, σω2 = 0·856.

The general form of the blending function is as follows:

CSST = FCC1 + (1− FC)C2 (2.12)

where CSST is the blended model constant based on C1 and C2 the above respective

model constants with 1 and 2 included in their su�xes.

Limiters are applied to the expressions for µt and Pk to improve performance in �ows

with adverse pressure gradients, wake regions, and stagnation regions, all of which exist

in �ows past circular cylinders. Thus equations 2.8 and 2.9 are rewritten as follows:

µt =
a1ρk

max(a1ω, SF2)
(2.13)

where a1 is a constant and F2 is a blending function.

Pk = min

(
10β?ρkω, 2µtSij · Sij −

2

3
ρk
∂ui
∂xj

δij

)
(2.14)
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SAS Formulation The Scale-Adapting Simulation (SAS) model proposed by Menter et

al. [51] uses turbulent kinetic energy k for the velocity scale, and a variable Φ for the

length scale.

Variable Φ is related to length scale L by Φ =
√
kL, thus the expression for µt

becomes:

µt = C1/4
µ ρΦ (2.15)

Cµ is also used in equation 2.16a.

k and Φ are de�ned in a �ow domain by the following two transport equations which

are solved alongside the RANS equations:

∂ (ρk)

∂t
+∇ · (ρku) = ∇ ·

[
µt
σk
∇k
]

+ Pk − c3/4µ ρ
k2

φ
(2.16a)

∂ (ρΦ)

∂t
+∇ · (ρΦu) = ∇ ·

[
µt
σΦ
∇Φ

]
+ ζ1

Φ

k
Pk − ζ̂2µtSij |U ′′|

Φ2

k3/2
− ζ3ρk (2.16b)

where Pk, ζ̂2, |L′|, and |U ′′| are de�ned by equations 2.17a, 2.17b, 2.17c, and 2.17d

respectively

Pk = 2µtSij · Sij −
2

3
ρk
∂ui
∂xj

δij (2.17a)

ζ̂2 = ζ2 max

(
cSAS,

∣∣∣∣L′κ
∣∣∣∣) (2.17b)

|L′| =
√
∂L

∂xj

∂L

∂xj
(2.17c)

|U ′′| =
√

∂2ui
∂xj∂xj

∂2ui
∂xk∂xk

(2.17d)

The constants in equations 2.16a and 2.16b usually take the following values: ζ1 = 0·8,
ζ2 = 3·51, ζ3 = 0·0326, σk = 2/3, σΦ = 2/3, Cµ = 0·09, κ = 0·41, CSAS = 0·5.

The unique feature of this model is that the length scale L predicted is proportional

to the size of the resolved eddies in a �ow. On the other hand, the length scale of most

other two equation models is proportional to the thickness of the shear layer. Thus it is

claimed by Menter et al. [50] that the length scale in the SAS model can adjust to local

�ow topology where other models cannot. This results in the appearance of LES-like �ow

structures in unsteady parts of the �ow �eld.

SAS-SST Formulation Menter and Egorov [48] provide SAS functionality to the SST model

by reformulating equation 2.16b based on the identity Φ = c
−1/4
µ k/ω. The resulting

equation reads:

∂ (ρω)

∂t
+∇ · (ρωu) = ∇ ·

[
µt
σω
∇ω
]

+ αρS2 − βρω2 + FSST−SAS (2.18)
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where FSST−SAS is a function that imposes the SST model in steady parts of the �ow

while ensuring the SAS regime in unsteady �ow regions:

FSST−SAS = ρ · FSAS max

[
ζ̃2κS

2 L

LvK
− 2

σΦ
k ·max

(
1

ω2

∂ω

∂xj

∂ω

∂xj
,

1

k2

∂k

∂xj

∂k

∂xj

)
, 0

]
(2.19)

The von Karman length scale, LvK , in equation 2.19 is de�ned as follows:

LvK = κ

∣∣∣∣ ∂U/∂y∂2U/∂y2

∣∣∣∣ (2.20)

The model constants for the above equations usually take the following values: FSAS =

1·25, ζ̃2 = ζ2 · cSAS = 1·755, σΦ = 2/3.

2.5.2 LES

LES involves a full deterministic DNS type analysis of the large scale �uctuations of the

�ow and a RANS type model applied to the smaller scales. This is justi�ed by considering

that since the energy cascade generally only goes in one direction i.e. from the largest

scales to the smallest, applying a model to the smaller scales will not have an adverse

e�ect on the accurate simulation of the larger scales. Thus there is no approximation of

mass and momentum transfer since this mostly occurs in the larger scales of turbulence

and satisfactory results are achieved without the expensive cost of DNS.

The concept of �ltering determines which scales to resolve and which to model. A local

average ui of velocity ui in the vicinity of length coordinate xi is shown in equation 2.21,

ui =

∫ ∞
−∞

ui (xi − r)G (r)dr (2.21)

where G (r) is a �lter function that smooths the local variations of velocity based on local

spatial variable r.

There are a number of di�erent forms of �lter function, the two most common being

the box �lter and the Gaussian �lter. The box �lter is de�ned by equation 2.22,

G (r) = 1/L |r| < L/2

G (r) = 0 |r| > L/2
(2.22)

where L is the length limit over which the averaging is performed. The Gaussian �lter

is de�ned by equation 2.23.

G (r) =
exp

(
−r2/L2

)
π1/2L

(2.23)

Whatever �lter is used, L is commonly linked to the grid size when �nite volume or �nite

element methods are employed. Thus the �lter width is an additional consideration when

creating a mesh for LES. With this in mind it is generally considered undesirable to use

a mesh with irregularly sized cells. Fröhlich et al. [23] discuss the potential problems

of turbulent eddies advecting through a mesh of varying resolution. In the tests that

they carry out, they observe that as a �ow travels from a region of coarse resolution to
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a region of �ner resolution, turbulent eddy dissipation is under-estimated and turbulent

kinetic energy is over-estimated. Because of this it is considered better to introduce

gradual variations rather than abrupt changes in �lter width wherever possible. These

problems do not occur in the case of eddies travelling from �nely resolved regions to

coarser regions, which is encouraging when considering the meshes that will be used in

the wake of cylinders. Generally at high values of Reynolds number, turbulent eddies will

form in the �nely resolved boundary layer before travelling to a coarser mesh downstream.

The conservation of momentum member of the NSEs can be rewritten to include

spatially averaged terms for velocity and pressure, as shown in equation 2.24. From

this point forward, the overline in any equation indicates spatial averaging and not time

averaging.

∂(ρui)

∂t
+∇ · (ρuiu) = − ∂p

∂xi
+∇ · (µ∇ui)−∇ · (ρ [uiu− uiu]) + Si (2.24)

This equation appears very similar to the equivalent formulation used for RANS models

but it must be remembered that this equation consists of spatial averages whereas the

RANS equivalent contain time averaged properties. The largest di�erence between them is

the term that replaces the Reynolds Stresses. The new term now includes ρ [uiuj − uiuj ]
which are known as residual stresses or sub-grid scale Reynolds stresses. The application

of models to represent these stresses is known as Sub Grid Scale (SGS) modelling.

Smagorinsky Model

The most popular way to account for the residual stresses τij , is to use a form of eddy-

viscosity model known as the Smagorinsky model. This is de�ned by equation 2.25,

τij −
1

3
δijτkk = −2µRSij (2.25)

where Sij is de�ned by equation 2.26.

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.26)

The eddy viscosity of the residual motion (i.e. the motion of those eddies not explicitly

modelled) µR is given by equation 2.27,

µR = ρ(CSLS)2
∣∣S∣∣ (2.27)

where S =
√

2Sij Sij , LS is the �lter width, and CS is the Smagorinsky Coe�cient

which usually takes a value in the range 0·1− 0·2. This model over-dissipates turbulence

near walls [16] so to address this, variations on this model have been suggested where

the model constant is allowed to be a function of position and time.

Dynamic Models

The limitations of the Smagorinsky model has led to the formulation of dynamic models,

where the model constant is recalculated at each time step based on local �eld variables.
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Germano Formulation The dynamic model proposed by Germano et al. [25] uses two

spatial �lters that follow the form of equation 2.21 on page 23. One is called the grid

�lter, where the �lter width is based on the local grid dimension. The other is the test

�lter, whose �lter width is larger that than used for the grid �lter.

For all formulae in this section, a variable with an overline indicates that it has been

passed through the grid �lter and a variable in angle brackets indicates that it has been

passed through the test �lter.

If the grid �lter and test �lter are applied in succession, the equivalent to equation 2.24

on the preceding page would look like this:

∂(ρ 〈ui〉)
∂t

+∇· (ρ 〈ui〉 〈u〉) = −∂〈p〉
∂xi

+∇· (µ∇〈ui〉)−∇· (ρ [〈uiu〉 − 〈ui〉 〈u〉])+Si (2.28)

The residual stress that results from equation 2.28 is:

Tij = ρ [〈uiuj〉 − 〈ui〉 〈uj〉]

If the residual stresses from equation 2.24, τij are passed through the test �lter, and then

subtracted from Tij , this results in a tensor, Lij , representing the stresses created from

the turbulence whose length scales lie between the test �lter width and the grid �lter

width.

Lij = Tij − 〈τij〉 = ρ [〈ui uj〉 − 〈ui〉 〈uj〉] (2.29)

This identity can be used to derive a value of model constant Cdyn most appropriate to

the instantaneous state of �ow in a local region. The Smagorinsky Model is applied to

τij as described by equation 2.25 on the preceding page (note that Cdyn is equivalent to

C2
S). Let m

s
ij represent the model applied to τij , thus:

ms
ij = −2L2

S

∣∣S∣∣Sij (2.30)

In a similar way Tij is modelled thus:

Tij −
1

3
δijTkk = −2CdynρL

2
t

∣∣〈S〉∣∣ 〈Sij〉 =: Cdynm
t
ij (2.31)

where
〈
Sij
〉
is de�ned by equation 2.32,

〈
S
〉

=
√

2
〈
Sij
〉 〈
Sij
〉
, and Lt is the length scale

used for the test �lter. mt
ij is de�ned to give a terse expression of this model.〈

Sij
〉

=
1

2

(
∂ 〈ui〉
∂xj

+
∂ 〈uj〉
∂xi

)
(2.32)

Thus by combining equations 2.30 and 2.31 with equation 2.29 one obtains:

Laij := Lij −
1

3
δijLkk = Cdynm

t
ij −

〈
Cdynm

s
ij

〉
(2.33)

where Laij is de�ned as the asymmetric part of Lij . By taking Cdyn out of the 〈· · · 〉 �lter
and multiplying both sides by Sij one obtains:

Cdyn =
LaijSij
MijSij

(2.34)

where Mij = mt
ij −

〈
ms
ij

〉
.
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Lilly Variation Lilly improves on the Germano Model by proposing a least-squares ap-

proach in calculating Cdyn that minimises error. Thus the new formulation for Cdyn
is:

Cdyn =
LaijMij

MijMij
(2.35)

Dynamic Models overcome most of the drawbacks with the �xed Smagorinsky Model,

e.g. overdissipation in near-wall regions and length scale di�culties associated with

anisotropic grids. However care has to be taken with its use. Observations by Breuer [11]

appear to suggest that use of a Dynamic Model with an over-re�ned grid can lead to a

poorer quality of prediction than is possible with a �xed Smagorinsky Model. Also for

Dynamic Models, it is possible for negative values of eddy viscosity to appear indicating

the occurence of backscatter, i.e. a reverse of the energy cascade: eddies passing some of

their energy to other eddies of a larger length scale. If a region of negative eddy viscosity

is large it can introduce numerical stability problems. To counter this a lower limit of

zero is introduced to Cdyn to prevent the appearance of any negative eddy viscosity in

the �ow �eld. Stability is further enhanced with relaxation techniques applied to Cdyn
in time or space.

LES WALE Model

Nicoud and Ducros [58] had formulated this model to enable accurate modelling of tran-

sition in pipe �ows. But their claim to guarantee a zero eddy viscosity for laminar �ow

in wall regions makes this model an attractive prospect for the prediction of the drag

crisis.

Just as for the Smagorinsky model, the residual stresses τij , and the rate-of-strain

tensor for the resolved scale Sij , are accounted for by equations (2.25), and (2.26) re-

spectively.

TheWall Adapting Local Eddy-viscosity model (LES WALE) di�ers from the Smagorin-

sky model in the de�nition of eddy viscosity µR, as shown by equation (2.36),

µR = ρ(CWL)2
(SdijS

d
ij)

3/2

(Sij Sij)5/2 + (SdijS
d
ij)

5/4
(2.36)

where Sdij is the traceless symmetric part of the square of the velocity gradient tensor:

Sdij =
1

2

[(
∂ui
∂xj

)2

+

(
∂uj
∂xi

)2
]
− 1

3
δij

(
∂uk
∂xk

)2

(2.37)

The important feature of this model is the author's claim for proper near-wall scaling of

eddy viscosity which, according to them, is something the Smagorinsky model is unable

to achieve.

2.5.3 DES

For high Reynolds number �ows modelled using LES it was found that the amount of grid

re�nement necessary for boundary regions induced extra computational costs that were
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prohibitive [82]. Detached Eddy Simulation (DES) addresses this problem by applying a

RANS model, typically SST, to the boundary regions, thus reducing the mesh resolution

requirements of these areas. Beyond the boundary regions, LES is used to fully resolve the

time-dependent, large, three-dimensional eddies that develop in the wake of an object.

Very recently, Liaw [40] has used LES and DES for circular cylinders. His conclusions

generally point towards LES being able to produce results that agree better with experi-

mental work than DES. Thus DES is seen to be useful only in a qualitative sense since at

least it produces �ow features that cannot be captured by RANS models.

A problem in the use of DES is pointed out by Menter et al. [51]. The switch between

the use of a RANS based model to an LESmodel is based on a comparison of the turbulence

length scale produced by the RANS model with the local grid spacing. The potential

risk is that the grid spacing can be overly re�ned in near-wall regions so as to cause

the switchover to LES to occur within the boundary layer, not in seperated regions as

intended. This usually has the e�ect of producing separation prematurely.

2.6 Veri�cation and Validation

A very important concept when using CFD is credibility. There has to be a way of deter-

mining whether the uncertainty and error in a model is at an acceptable level. No strong

principle dictates how this is done and the degree of accuracy and credibility required

depends on the purpose of the simulation. In fact there have been many guidelines put

forward on this matter. The AIAA has published a guide [1] which de�nes veri�cation as:

�The process of determining that a model implementation accurately repre-

sents the developer's conceptual description of the model and the solution to

the model.�

and validation as:

�The process of determining the degree to which a model is an accurate rep-

resentation of the real world from the perspective of the intended uses of the

model.�

Veri�cation usually involves re�nement of the grid size and time step on a trial and error

basis to ascertain the discretisation error. This works on the principle of convergence

where, generally speaking, the smaller the grid size and time step, the closer the solution

of the numerical method will be to the exact solution of the conceptual model. This is

called consistency in mathematics. The practical limit of this is where round-o� errors in

the calculations prevent any further improvement in accuracy. This limit can be pushed

back by using more bytes to represent �oating point numbers (e.g. variables in Fortran

are declared as real*8 as opposed to real*4 to achieve this) if the further cost in terms

of storage is acceptable.

Validation involves comparison of the CFD simulation results against experimental

data. Important things to consider in this process are:
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� that all the �ow physics important to the problem are captured by the model

� that CFD simulation results and the experimental data to compare have been cre-

ated independently.

� that an analysis of the uncertainty of the CFD simulation results and the experi-

mental data is carried out.

The issue of veri�cation and validation not only dictates the level of con�dence in

CFD now but also has a strong in�uence on how much CFD will be used in the future.

It is therefore a very important concept which requires full consideration in any process

that makes use of CFD.

2.7 Concluding Remarks

This chapter sets out the CFD theory and practice that is relevant to the thesis. It is clear

from the complexity of the issues raised that to implement a satisfactory model is not a

straightforward task. The user of CFD has to have su�cient knowledge of the underlying

theory and experience to construct a model correctly. It is clear that the author needs to

have su�cient practice using CFD software to be able to use CFD e�ectively throughout

the project.

There are a variety of turbulence models available, each having advantages and dis-

advantages for the type of �ows they can model. An early challenge of this project is to

have a clear understanding of these pros and cons in terms of modelling cables, and thus

know which type is the most suitable.



Chapter 3

Literature Review

This chapter contains a review of literature relating to �uid �ows past a stationary cylin-

der and past a cylinder in motion. Each of these �ow conditions fall within the scope

of this thesis and so a review of experimental observations, and numerical work for each

of these �ow conditions is necessary. In the coverage of these subjects an introduction

to relevant aspects of aeroelastic behaviour and cable dynamic behaviour is given. Fur-

thermore, numerical methods and concepts unique to modelling this type of �ow found

in the literature are described.

3.1 Flow past a stationary cylinder

This section discusses experimental and numerical work related to �ow past a static

cylinder with particular focus on the drag crisis.

3.1.1 Experimental work

Flow characteristics

A large amount of literature exists that is devoted to the identi�cation, classi�cation and

measurement of characteristics of the �ow past a stationary cylinder.

Zdravkovich [92] reviewed in detail a large amount of literature on �ow past stationary

cylinders and gave a classi�cation to describe a set of �ow regimes. Each regime was

observed within a particular range of Reynolds Number∗, they are summarised here in

order of increasing Re value. A graphical depiction of some of these �ow states can be

found in Figure 3.1.

L Laminar (0 < Re < 180-200)

Viscous forces are prevalent in all parts of the �ow, preventing any transition to

∗Re = DU/ν where D is the cylinder diameter, U the free stream velocity, and ν the kinematic
viscosity.

29
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Figure 3.1: Flow patterns for �ow over a cylinder: (A) Reynolds number = 0.2; (B) 12;
(C) 120; (D) 30,000; (E) 500,000. Reproduced from Munson, Young and Okiishi [54]

turbulence from developing. The laminar �ow regime is divided into three sub-

categories:

L1 Non-Separation Regime (0 < Re < 4-5)

This �ow condition is sometimes described as `creeping �ow'. The streamlines

on the upstream and downstream side look exactly the same as there is no

separation in the wake of the cylinder (see Figure 3.1 (a)).

L2 Closed Near Wake Regime (4-5 < Re < 30-48)

The �ow separates from the cylinder producing free shear layers which meet

at a distance behind the cylinder. These shear layers appear as steady as the

approaching �ow. There is a weak recirculation in the wake between these

shear layers (see Figure 3.1 (b)).

L3 Periodic Laminar Regime (30-48 < Re < 180-200)

The free shear layers behind the cylinder start to �uctuate in a sinusoidal
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fashion, producing regular alternating swirls as they travel further downstream

(see Figure 3.1 (c)). Note that these swirls are laminar.

TrW Transition in wake (180-200 < Re < 350-400)

The transition-in-wake regime can be divided into two sub-categories:

TrW1 Transition of Laminar Eddies in the Wake (180-200 < Re < 220-250)

The swirls formed from the free shear layers are laminar but become unstable

and develop into turbulence further downstream. The point at which this

occurs approaches the cylinder with increasing Re.

TrW2 Transition of an Irregular Eddy During its Formation (220-250 < Re < 350-

400)

The transition to turbulence eventually reaches the point where the swirls

form. At this stage there is a markedly di�erent rate of swirl production.

This is due to the swirls being partly turbulent before they are shed and

carried downstream.

TrSL Transition in shear layers (350-400 < Re < 100k-200k)

The transition in shear layers regime can be divided into three sub-categories:

TrSL1 Development of Transition Waves (350-400 < Re < 1k-2k)

The free shear layers before the formation of the eddies start to undulate to

form transition waves.

TrSL2 Formation of Transition Eddies (1k-2k < Re < 20k-40k)

The transition waves become discrete swirls before becoming turbulent and

roll up in alternate eddies.

TrSL3 Burst to Turbulence (20k-40k < Re < 100k-200k)

Full turbulence occurs in the shear layers near the points of separation and

eddies are formed close to the downstream side of the cylinder (see Fig-

ure 3.1 (d)).

TrBL Transition in boundary layers (100k-200k < Re < 300k-340k)

The transition in boundary layers regime can be divided into �ve sub-categories:

TrBL0 Precritical Regime (100k-200k < Re < 300k-340k)

This is the �nal �ow condition before transition starts to occur in the boundary

layers on the cylinder surface. The point of separation begins to move towards

the rear side of the cylinder. This reduces the size of the wake region and thus

the value of drag starts to fall.

TrBL1 One-bubble Regime (300k-340k < Re < 380k-400k)

At a certain point in increasing Re, the TrBL0 state abruptly changes. A

�separation bubble� appears on one side of the cylinder where there has been

su�cient transition in the free shear layer to re-attach. This results in an
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asymmetric pressure distribution, a smaller wake and a discontinuous drop in

drag force.

TrBL2 Two-bubble Regime (380k-400k < Re < 0.5M-1M)

A �separation bubble� appears on the other side of the cylinder making the

�ow regime symmetric again. This results in another discontinuous drop in

the drag force and a change in the shedding frequency (see Figure 3.1 (e)).

TrBL3 Supercritical Regime (0.5M-1M < Re < 3.4M-6M)

Periodic eddy shedding stops as the line of separation along the span of the

cylinder breaks up causing disruption and fragmentation of the separation

bubbles.

TrBL4 Post-critical regime (3.5M-6M < Re < ?)

The transition to turbulence occurs in the boundary layer before the point of

separation all along the span of the cylinder. Seeing as the separation lines

are no longer disrupted, periodic eddy shedding reappears.

As Re further increases the transition point moves towards the stagnation

point. An upper value of Re for this state is not yet known.

T Turbulent (? < Re < ∞)

This is the condition when all �ow regions around the cylinder are turbulent. It is

not yet known for which value of Re this condition starts to occur. The theoretical

upper limit of Re for this state is in�nity.

The main focus of Zdravkovich's classi�cation was to recognise where the transition to

turbulence occurred for each �ow state. The position of the transition point was seen to

determine the �ow behaviour in the wake of the cylinder.

Sung and Yoo [78] describe in detail the wake behaviour and observe the secondary

vortices that occur in the immediate wake of the cylinder.

Wind Tunnel Size

Constraints on the width of the wind tunnel lead to undesired e�ects on the observed

�ow. Some literature is devoted to measurement of these e�ects.

Any blu� object placed within a con�ned �ow can be considered to be a partial

blockage. The �ow past the object will accelerate due to the narrowing of cross-sectional

space of the wind tunnel at the location of the object. This would not be the case for

�eld observations of �ow past cables since the �ow is not con�ned.

Blockage is a term often found in the literature to mean con�nement ratio, i.e. the

ratio of cylinder diameter to the cross section dimension of the wind tunnel. Richter

and Naudascher [64] investigated blockage e�ects on a long circular cylinder placed in a

narrow wind tunnel. They published data including mean drag coe�cient, Root Mean

Square (RMS) values of the drag and lift �uctuations, the Strouhal Number† of the

†see � 3.2.1 for de�nition of Strouhal Number
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dominant vortex shedding, and the value of Reynolds Number for which the drag crisis

occurs. They �nd that as the con�nement ratio increases:

� the Reynolds number for which drag crisis occurs decreases,

� the values of drag before and after the drag crisis increase and the di�erence between

them increases,

� the Strouhal number of the lift oscillations before and after the drag crisis increase

and the di�erence between them increases.

The experimental evidence produced by Richter and Naudascher [64] would suggest

that blockage is not an issue that would impede the onset of a drag crisis in a numerical

simulation. However Blackburn [8] has highlighted that spanwise correlation lengths

become longer with increasing blockage.

Anthoine [6] presents a method of blockage e�ect correction that can be applied to

drag coe�cient measurements of circular cylinders in wind tunnels. This is based on

theory developed by Maskell [45].

Trip Wires and Surface Roughness

A number of papers con�rm the e�ect that cylinder surface roughness has on the �ow. In

all cases the higher the roughness is, the lower the range of Reynolds Number for which

the drag crisis is observed. Some authors (Kareem and Cheng [36], Shih et al. [72])

achieve early transition to turbulence by placing tripping wires at locations to encourage

transition to turbulence and to delay separation of the boundary layer. The optimum

locations each paper reports is in general agreement. Mahbub Alam et al. [2] measured

the reduction of forces acting on a cylinder (and two cylinders) by using trippping rods at

a variety of locations on the circumference of the cylinder. They thus infer the in�uence

of surface roughness on the �ow characteristics past a stationary cylinder.

Approaching Flow Conditions

A recognised in�uence on the transition to turbulence is the level of turbulence intensity

in the approaching �ow. Higher turbulence intensity means more �uctuations in the

�ow approaching the cylinder that can persist within the boundary layer. This increases

the probability of transition to turbulence, and thus early onset of the drag crisis and

turbulence occurs. Kareem and Cheng [36], and Konstantinidis et al. [39] are but a

couple of examples of this concept shown in experimental literature.

The other variable in approaching �ow conditions prominent in literature is shear

�ow i.e. where the velocity pro�le varies linearly in one cross sectional direction. In the

case of cross diameter sheared �ow, Sumner and Akosile [75] is an example.
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Force measurements

A large amount of literature can be found providing force measurement data. Norberg [59]

carried out some force measurements and proposed empirical formulae to describe the

variation of Strouhal frequencies with Reynolds number. Norberg [59] emphasises the im-

portance of correlation length to capture the correct displacement response. Schewe [69]

carried out some force measurements and produced spectral frequency plots of lift force

at a range of �ow regimes through the initial stages of the drag crisis. ESDU presents

data that has been compiled from a range of experimental literature. The experimental

data included in their publication [83] comes from a wide range of sources, each having a

unique set of boundary conditions that in�uences the recorded data. The ESDU publica-

tion [83] identi�es which of the boundary conditions have the most signi�cant in�uence

and presents a method of normalising data to account for these e�ects. This method is

discussed in more detail in Chapter 4.

3.1.2 Numerical Work

Large Eddy Simulations

A variety of implementations of LES for the simulation of �ows past stationary cylinders

can be found in the literature. A survey of this literature can provide an understanding

of the important features of LES necessary to successfully capture drag crisis e�ects.

Catalano et al. [14] develop a wall model used with a Smagorinsky SGS model to

attempt to numerically simulate the drag crisis. The wall model alleviates the high

resolution requirements near to the surface of the cylinder for high Reynolds Number

�ows. By comparison with similar work carried out using RANS models, they identify

that a delayed point of separation is a feature that must be captured by a turbulence

model if it is to be useful for this task. It should be noted that their wall stress model

produces a resonably accurate level of drag for only a short range of Reynolds Number

beyond the drag crisis. They do not successfully capture the drag crisis itself, however.

Near wall resolution is an important issue to address. Ma et al. [42] make a comparison

of DNS simulations at low Reynolds number (3900) with a number of LES simulations

with di�erent levels of resolution. They emphasise how e�ective dynamic models are at

capturing vortex dynamics.

Selvam [71] attempts to numerically simulate the drag crisis using an FEM based

solver using an LES Smagorinsky model. On comparison with experimental data he �nds

that the drag is overpredicted in his simulation. It is interesting to note that his review

of similar work carried out by others states that overprediction of drag is commonplace.

In fact only the 3D numerical simulation by Tamura et al. [79] gives an accurate drag

value.

Nakayama and Vengadesan [55] have carried out simulation of �ow past a square

cylinder using a variety of combinations of subgrid stress models and �nite di�erence

(advection) schemes. They show that the performance of the SGS model is highly de-
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pendant on the advection scheme used with it. It is worth noting that the commercial

software used for this thesis (ANSYS CFX) recommends the use of the central di�erencing

scheme with all of their LES models for best performance.

Domain Size

Just as contraints on the width of the wind tunnel lead to undesired e�ects in experi-

mental work, the same principle applies to the domain size in numerical work.

Work by Okajima et al. [61] can be said to be the numerical equivalent of the Richter

and Naudascher [64] experimental work investigating blockage. It highlights e�ects block-

age has on results, which are qualitatively the same as those found by Richter and Nau-

dascher [64]. For practical purposes, blockage cannot be eliminated completely. Work

produced by Okajima et al. [61] and Richter and Naudascher [64] give an impression of

what kind of error and of what magnitude to expect with blockage.

E�ects caused by restriction of the spanwise domain dimension have been investigated

by Selvam [71]. Having carried out a LES 2D simulation of the drag crisis, he found that

he did not encounter as big a drop in drag as that found by experiment. The limitations

of 2D LES has been looked at in detail by Breuer [10] along with other numerical and

modelling aspects. This had been done for a Reynolds number of 3900, far below the drag

crisis range. Noting that the time averaged streamlines in the wake produced for a 2D LES

is non-symmetrical and signi�cantly di�erent to that produced by a similar 3D simulation,

Breuer [10] concludes that three-dimensional e�ects are crucial to a simulation capturing

the correct wake characteristics.

Small Scale Resolution Catalano et al. [14] identify the need for high grid resolution close

to the cylinder wall. In order to address this they use a wall stress model with produces

a resonably accurate level of drag for only a short range of Reynolds Number.

Kemenov and Menon [37] deal with this issue when they introduce a novel two level

simulation approach. No-one else has continued this work however.

3.2 Aeroelastic Behaviour of Structures

Up until the middle of the 20th century, wind load e�ects on structures were represented

in the design process as static loads of a certain assumed magnitude [68]. This was

considered to be a su�ciently safe assumption to make until the collapse of the Tacoma

Narrows Bridge in 1940. From the time it was opened, the deck of this bridge su�ered

signi�cant vertical movement caused by local winds blowing across it causing it to be

nicknamed �Galloping Gertie� by local people. Although this movement was uncomfort-

able for anyone crossing the bridge it was not considered to be serious enough for the

bridge to be closed. Barely six months after it was opened, a storm blew up around

the bridge which was to cause its catastrophic failure. The vertical movement of the

deck which was by then familiar to regular users of the bridge was replaced by a lon-
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gitudinal twisting mode of vibration that had never been seen before. This movement

became so intense that the bridge had to be evacuated. Eventually the intensity of this

vibration caused the failure of some of the cable tendons and the deck fell away. The

event was �lmed by local media and so the unique nature of the collapse could be seen

by generations of engineers to come.

Thus it came to be a turning point in the approach to designing long-span bridges as

it gave a clear warning of the risks in ignoring aeroelastic e�ects in a potential design.

From that time, wind loads on civil engineering structures began to be treated as a form

of blu�-body aerodynamics.

The de�nition of an aeroelastic phenomenon is where a structure is moved by a �ow

in such a way that it su�ers signi�cant additional forces. The various classi�cations of

this phenomenon are discussed in the following subsections.

3.2.1 Vortex Induced Vibration

Fluid �owing past a blu� object can be broken up into vortices that trail into the wake.

For a wide range of Reynolds numbers, the shedding of these vortices is periodic, which

itself applies a periodic loading on the structure. Vortex Induced Vibration (VIV) prob-

lems exist in water �ows around pilings, piers, o�shore tower legs, and deep-sea cables.

In wind �ows, VIV occurs on overhead power cables, �agpoles, chimneys, structural mem-

bers, bridge decks and cable tendons used in bridges.

Strouhal Number When a blu� object is stationary, the rate at which vortices are shed

is de�ned by a dimensionless coe�cient known as the Strouhal Number, St, as de�ned

by equation 3.1,

St =
fvD

U
(3.1)

where fv, D, and U are the shedding frequency, the diameter of the blu� object, and

free-stream velocity respectively. The Strouhal number is found by experiment to be

about 0·2 for a circular section, across a wide range of Reynolds number. Norberg [59]

proposes a set of empirical formulae to represent the variation of St with Re, reproduced

here in Table 3.1 on page 38 and plotted in Figure 3.2.

Lock-In When a blu� object is free to move, the lock-in phenomenon can occur. At most

�ow speeds the shedding frequency, fv, can be predicted by equation 3.1. If, however,

the �ow velocity reaches a point where the shedding frequency is close to the natural

frequency of the blu� object, resonance occurs. This causes an increase in the object's

oscillation to enough of an extent to allow the rate of vortex shedding to be controlled

by the rate of oscillation. This is the beginning of the lock-in e�ect, as shown by the

�at region in �gure 3.3 on the following page. In the literature this phemomenon is also

referred to as lock-on, vortex capture, and frequency capture, depending on the preference

of the author. If the �ow speed increases further, the rate of vortex shedding persists at

the natural frequency of the object. This is combined with large oscillations. At a wind
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Figure 3.2: Empirical variation of St with Re given by formulae in Table 3.1

speed a few percent higher than the value where lock-in begins, the �ow �eld disrupts the

oscillations to enough of an extent to cease lock-in, and the shedding frequency reverts

back to the Strouhal relationship (equation 3.1 on the previous page).
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U
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Figure 3.3: Plot of Vortex Shedding Frequency against Flow Velocity
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Table 3.1: Empirical formulae for St variation with Re

Re St

47− 190 0·2663− 1·019√
Re

165− 260 −0·089 +
22·9
Re

+ 7·8×10−4 ×Re

260− 325 0·2016

325− 1·6×103 0·2139− 4

Re

1·6×103 − 1·5×105 0·1853 + 0·0261× exp
[
−0·9× x2·3]

1·5×105 − 3·4×105 0·1848 + 8·6×10−4 ×
(

Re
1·5×105

)4·6

Hysteresis The extent of oscillation in the resonant range depends on how it was ap-

proached i.e. from a higher or from a lower velocity. This hysteresis behaviour results in

two branches of amplitude variation being seen within the lock-in region.

This has been observed by Carberry et al. [12] in their experiments using a cylinder

in cross �ow subject to a forced vibration at a �xed amplitude. They note that there

were two distinct types of vortex shedding behaviour in the near-wake associated with

a particular phase level between lift force and cylinder displacement (both varying sinu-

soidally in time). They present evidence that associated with a jump between one wake

state to the other are a range of e�ects including a phase jump between lift force and

cylinder displacement of approximately 180◦. In a subsequent paper [13], they describe

how their observations apply to cylinders allowed to oscillate freely in a cross �ow. Simi-

lar observations have been made by Hover et al. [30] who investigated �ow past cylinders

allowed to freely oscillate and subjected to forced oscillations. Additionally, in a subse-

quent paper, Hover et al. [31], observe the breakdown in spanwise correlation of the lift

force during the phase transition.

Mass Parameter Vandiver [85], who has produced a large body of work focusing on

VIV and lock-in behaviour of marine cables over many years, introduces a number of

dimensionless parameters important to predicting lock-in for deep-sea cables. These

include the mass ratio and the reduced damping parameter. The mass ratio, m?, is given

by equation 3.2,

m? =
mc

ρD2
(3.2)

where mc is mass of cable per unit length, ρ is density of �uid, and D is the diameter of

the cable. The lower the value of m? gets, the broader the range of velocities for which

lock-in occurs.
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Reduced Damping Parameter The reduced damping parameter is usually represented by

the Scruton number Sc, de�ned by equation 3.3 [24],

Sc =
4πmcζ

ρD2
(3.3)

where ζ is the critical damping ratio, a dimensionless measure of damping in the system.

ζ is de�ned as the ratio of damping to the level of critical damping (i.e. the minimum

value of damping at which no oscillations can occur).

As the value of Sc increases the lock-in behaviour decreases, i.e. smaller amplitudes

and narrower range of velocities. An empirical model that links the maximum response

amplitude y0, to the Strouhal and Scruton numbers is given by equation 3.4 [73].

y0

D
=

1·29

[1 + 0·43 (8π2S2
t Sc)]

3·35 (3.4)

Shear Flow Parameters In the context of deep-sea cables, Vandiver et al. [86] describe

two more parameters that may be useful for prediction of lock-in. These are speci�c

to sheared �ows, i.e. �ows where the velocity varies in the span direction. The �rst is

Ns, the number of potentially responding modes of cable vibration within a range of

vortex-shedding frequencies generated by the �ow. The second is ∆V/Vave, known as

the shear parameter is the ratio of change in velocity over the length of the cable to the

spatially averaged velocity. A number of experiments are carried out to ascertain values

of these parameters for which lock-in occurs.

Experimental Work

Comprehensive reviews of the progress of experimental work related to VIV are given

by Sarpkaya [67], Gabbai and Benaroya [24], and Williamson and Govardhan [90]. A

large portion of the experimental literature is devoted to the investigation of methods of

vortex suppression (e.g. Bearman and Brankovi¢ [7]) because there is high demand for

the control of VIV on risers used in o�shore drilling. In these environments VIV is often

the main cause of fatigue which determines the design life of a riser, and consequently

whether or not a new �eld discovery is worth developing.

Numerical Work

Twenty �ve years ago, Scanlan [68] reported that the state of predictive theory for VIV

was poor. Wind tunnel experiments alone do not su�ciently answer this challenge as

the achievable Reynolds number does not correspond to real world situations and so the

Strouhal number predicted may not be the same as that for full scale. This, coupled with

the fact that powerful computing is becoming more a�ordable in general, is why there is

interest in the use of CFD by the civil engineering community.

Unfortunately the range of Reynolds Number currently achievable by CFD falls short

of the range observed in the real world. Nevertheless, it is easier with CFD to observe the
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characteristics of the immediate wake and gain a better understanding of the processes

causing VIV. Thus much attention has been given on this matter as exempli�ed by [56],

[57], [18], [85], and [86].

Newman and Karniadakis [56], [57] simulate VIV of a �exible cable using DNS. They

achieve Reynolds numbers up to 300 and use a domain of a spanwise length up to 45

cable diameters. The movement of the cable was taken into account by using a body-

�tted coordinate system. Evangelinos and Karniadakis [18] continue this work further

and present results for VIV of a long �exible cylinder simulated using spectral methods.

Their simulations were for a Reynolds number of 1000 and they limited the cylinder span

to depth ratio to 4π. The maximum amplitudes they observed was about one cylinder

diameter. The body-�tted coordinate system which they use may be appropriate to

accommodate this amount of de�ection but for larger de�ections may be problematic (as

discussed in section 3.4.2).

3.2.2 Flutter

A number of types of �utter exist. The �rst type of �utter observed is known as classical

�utter, which occurs where vibration frequencies in two degrees of freedom, torsional and

pitching, are forced together by the �ow to form a coupled motion. This is most com-

monly seen in �at plates and airfoils. Classical �utter occurs rarely in civil engineering

structures.

A more commonly observed form of �utter on blu� bodies is known as stall or

separated-�ow �utter, where a single degree of freedom (notably torsion) is excited aeroe-

lastically. This is a prominent form of �utter found in bridge decks and can clearly be

seen in footage of the Tacoma Narrows bridge collapse.

As far as cables are concerned, torsional stability is not an issue and other types

of aeroelastic behaviour are more prominent. So �utter is not discussed any further in

this report, but the interested reader is referred to Frandsen [22], Robertson et al. [65],

and Simiu and Scanlan [73].

3.2.3 Galloping

Galloping is a form of aeroelastic behaviour most commonly associated with very slender

structures. A number of types of galloping exist. They are typically oscillations of very

large amplitude i.e. many times the diameter of a blu� object, and of low frequency.

Cross-wind galloping is where the direction of oscillation is normal to wind �ow

direction. A common example of this is power-line cables with an ice coating produced

by sleet. The e�ective section of the cable is changed with the addition of the ice making

it more susceptible to this kind of vibration. Because of the low frequency of vibration in

comparison to frequencies associated with VIV, local pressure �uctuations can be ignored

in this context and this kind of behaviour is analysable in terms of steady or average

aerodynamic coe�cients.
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Den Hartog [73] formulated a criterion to predict cross-wind galloping instability

given by equation 3.5,
dCL
dα

+ CD < 0 (3.5)

where CL is the steady lift coe�cient, CD is the steady drag coe�cient, and α is the angle

of attack of the wind. For circular sections dCL/dα is zero so cross-wind galloping can

never occur unless the circular pro�le of a cable is modi�ed. This is why the formation

of ice on the cable surface produces this type of vibration.

The Den Hartog condition, however, does not take into account skew winds, i.e. it

only considers wind directions in a plane normal to the cylinder axis. When the wind has

a longitudinal component relative to the cable axis, another type of excitation known as

dry inclined cable galloping can occur. The inclusion of �dry� in the name is because this

type of excitation has been observed for circular sections, i.e. there does not need to be

any precipitation of any kind for this to happen.

Macdonald and Larose [43, 44] o�er a complete theoretical model of this behaviour.

Not only do they take into account the variety of wind direction but also the fact that

the force coe�cients vary with Reynolds number. This is particularly important as

the drag crisis comprises of a signi�cant drop in drag force over a range of Reynolds

number achievable in cable structures. They observe that along-wind as well as cross-

wind vibrations can occur especially in the case of perfectly tuned systems, i.e. cables

whose natural frequencies in both orthogonal directions are the same. With this is mind,

a two-degree-of-freedom formulation is presented. In situations where this is not the case,

i.e. where the orthogonal frequencies vary by more than a few per cent, the vibration can

be idealised as a one degree of freedom problem.

Another type of galloping occurs where two slender structures are close to each other,

with one upstream of the other. The �rst structure encountered by the wind disrupts

the �ow approaching the second inducing wake galloping. A typical example is found

with bundled power-line cables. This phenomenon usually shows itself as a coupled

two-degree-of-freedom movement in the downstream cable in the along-wind and cross-

wind directions, oscillating in a elliptical orbit with the long axis of the ellipse oriented

approximately in the �ow direction. The direction of the oscillation is such that the

cable moves downstream near the outer edges of the wake and upstream near the centre

of the wake. This phenomenon has been invesitgated experimentally by Bokaian and

Geoola [9].

3.2.4 Bu�eting

Bu�eting is the unsteady loading on a structure caused by velocity �uctuations in the

�ow. If the �uctuations are due to turbulence shed in the wake of an upstream body,

the phenomenon is referred to as wake bu�eting. At the moment no analytical model of

wake bu�eting exists.
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3.2.5 Rain-Wind Excitation

As the name suggests, this form of excitation will only occur in rainy weather. Droplets

of water fall onto the cable surface to form rivulets that temporarily change the shape of

the cross section. The alteration of this shape can lead to galloping e�ects in a similar

way to ice formations on power lines as mentioned in section 3.2.3. Due to the rivulet

being very light, its position on the cable is very susceptible to change by the combined

e�ects of gravity, wind and the motion of the cable itself.

Although this form of excitation has only recently been identi�ed it is considered in

industry to be the one that causes the most problems for cables. Irwin [35] has proposed

empirical limits to the damping of cables to protect against this phenomenon. This is

due to the fact that a thorough numerical simulation of rain-wind excitation has not yet

been performed.

Seidel and Dinkler [70] have likened the e�ect of the rivulet to the e�ect of the tripwire

in a famous experiment by Prandtl where the drag force on a spherical object was seen

to be signi�cantly reduced by the tripwire inducing supercritical �ow. Thus if rain-wind

vibration is to be modelled correctly, then the ability to numerically model the `drag

crisis' on a cable section is very important.

3.3 Cable Dynamics

The suspended cable is a basic element of theoretical interest in applied mechanics and so

it has a long history as documented by Irvine [34]. Early work on cable dynamics began

in the eighteenth century where models for the vibration of taut strings and inextensible

cables carrying lumped masses were developed. This continued through to the nineteenth

century where equations of motion were developed to obtain natural frequencies for small

oscillations of an inextensible bare cable.

Cable dynamics obtained renewed interest after the Tacoma Narrows Bridge collapse

but it wasn't until 1974 when Irvine and Caughey [33] introduced the e�ect of cable elas-

ticity and proposed a parameter, λ2, which is fundamental to predicting cable behaviour.

This parameter is detailed in � 3.3.3 and � 3.3.4.

3.3.1 The Catenary Pro�le

x

z

l

Figure 3.4: Coordinate system used for cable equations
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Considering a suspended uniform inextensible cable of no �exural rigidity, hanging

from two �xed points at the same level as shown in �gure 3.4 on the preceding page, the

vertical coordinate of any point z is given by equation 3.6,

z =
H

mg

{
cosh

(
mgl

2H

)
− cosh

(
mg

H

(
l

2
− x
))}

(3.6)

where H is the horizontal component of the cable tension, mg is the self-weight of the

cable per unit length, l is the cable span, and x is the length coordinate along the span.

If mg, l, and cable length L0 are known then H can be found by equation 3.7.

sinh

(
mgl

2H

)
=
mgL0

2H
(3.7)

3.3.2 The Parabolic Pro�le

In the equations of section 3.3.1,mgl/H is small when the cable length is only fractionally

longer than the span. In such cases, the hyperbolic functions can be approximated by a

power series to represent a parabola. By doing so, the derivation of parameters related

to cable dynamic behaviour is made much easier without signi�cant loss of accuracy

provided the sag to span ratio is not excessive.

In their work leading up to the derivation of the λ2 parameter, Irvine and Caughey [33]

approximate the cable pro�le by equation 3.8.

z =
mgl2

2H

{
x

l
−
(x
l

)2
}

(3.8)

In this case, H is related to d, the sag of the cable, by equation 3.9.

H =
mgl2

8d
(3.9)

Irvine and Caughey [33] propose that the cut-o� in ratio of sag to span for which

the parabolic assumption is valid is 1:8, for then H ≥ mgl. However, a few years later

Irvine [34] claims that independent �nite element analyses have shown this assumption

to retain accuracy even with pro�les as deep as 1:4.

3.3.3 The λ2 Parameter

An important parameter relating to cable statics and dynamics is λ2, as proposed by

Irvine and Caughey [33]. The λ2 parameter is a measure of the relative importance of

the cable's elastic sti�ness and geometric sti�ness.

When the ends of a sagging cable are stretched apart, some of the resistance supplied

is geometric because the sag of the cable is being reduced. The rest of the resistance

is supplied by the axial strength of the cable. λ2 accounts for both of these e�ects in

equation 3.10,

λ2 =
(mgl/H)

2

H/EA
(3.10)
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where E is the cable Young's modulus, and A is the cable cross-sectional area. Small

values of λ2 relate to taut �at cables, larger values relate to heavier cables such as those

seen in suspension bridges.

3.3.4 Relationship Between λ2 and Modes of Vibration

The out of plane modes of vibration of a small sag cable are the same as those of a taut

string and their natural frequencies, ωn are given by equation 3.11.

ωn = nπ
l

√
H
m n = 1, 2, 3, . . . (3.11)

The frequency of the �rst transverse horizontal mode (i.e. n = 1) is the lowest natural

frequency of any given parabolic cable.

The way that in-plane modes of vibration are in�uenced by λ2 is described by

Irvine [34] in terms of crossover points. These crossover points are values of λ2 for which

the natural frequency of a symmetrical mode of vibration matches that of a nearby an-

tisymmetric (with respect to the centre point of the span) mode of vibration. Consider

�rst the case where λ2 ≈ 0. The cable is practically a taut string and the modes and

natural frequencies of the in-plane vibrations will match those of the out-of-plane vi-

brations. As the value of λ2 increases away from zero, the natural frequency of the �rst

symmetric mode of vibration increases. The associated mode shape is symmetric with no

internal nodes along the span (see Figure 3.5a). When λ2 = 4π2, the frequencies of the

(a) No internal nodes
(symmetric)

(b) One internal node
(antisymmetric)

(c) Two internal nodes
(symmetric)

(d) Three internal nodes
(antisymmetric)

Figure 3.5: Mode shapes

�rst symmetric and antisymmetric modes are equal. The shape of the symmetric mode

at this point will be such that the curve at the supports will be tangential to the static

pro�le. As λ2 goes above 4π2 the frequency of the symmetric mode will be above that

of the �rst antisymmetric mode. The associated symmetric mode shape at this point

will have 2 nodes along the span (see Figure 3.5c). A similar process can be observed

for higher values of λ2 with symmetric/antisymmetric mode shapes of higher order. The

crossover point at each of these transitions is given by equation 3.12.

λ2 = 4j2π2 j = 2, 3, . . . (3.12)
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3.4 Numerical Modelling

This section brie�y discusses numerical simulations carried out that bear some relevance

to this project, and the numerical techniques involved. As will be seen, the variety of

numerical techniques employed by di�erent authors demonstrates that there is a large

number of choices to be made when selecting a methodology.

An early choice to consider is whether the �uid and solid domain can be modelled

together in one algorithm employing one numerical method. Certainly early examples of

FSI simulations take this approach, such as the piston problem as described by Dowell and

Hall in their review [17]. These early examples are simple in that the number of degrees

of freedom of the structure are few, the degree of movement is limited and the shape of

the structure itself does not deform. FSI tutorials given in the literature of commercial

CFD software falls into this category [4], where the movement of the structure is easily

modelled by user routines allowed by the software. Thus the solution is monolithical

with no signi�cant increase in complexity from normal CFD problems.

When the movement of the structure is not so limited and there are many degrees of

freedom, as is the case for cables in general, a partitioned approach is more suitable, i.e. a

separate algorithm for the �uid and the structure domain with a numerical method that

is suitable for each. The �uid problem and the structural problem will have di�erent

requirements for meshing and time stepping so it would be di�cult to justify using a

monolithical solver.

The additional challenge that is introduced when using separate solvers is to ensure

compatibility between them. Compatibility in the sense that the shape of the common

interface between the �uid and solid domains match and that conservation of mass and

energy is maintained.

3.4.1 Discrete Vortex Method

The Discrete Vortex Method (DVM) is a numerical method in CFD that has received

increasing attention recently. For example Taylor and Vezza [80] have developed a DVM

solver and used it to model stationary and oscillating bridge decks. It works by modelling

the transport of vortices through the �uid domain. Saltara et al. [66] use DVM to model

�ow around an elastically mounted cylinder and compare their results against published

experimental results. The amplitude of vibration from their numerical model tends to

be far less than what had been observed experimentally but they suggest this is due to

di�erent �ow histories with regard to the way the velocity was incremented. It appears

the hysteretical behaviour of the cylinder motion (as also mentioned by Gabbai and

Benaroya [24]) is due further investigation. Yamamoto et al. [91] and Meneghini et al. [47]

arrive at a similar conclusion when they do a numerical experiment that is similar except

that it extends in the spanwise direction to simulate deep-sea riser cables.

Morgenthal and McRobie [53] discuss the potential bene�ts of DVM as compared to the

Finite Volume Method (FVM) to analyse the decks of long span bridges. They conclude
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that the main advantage of DVM is that it's computationally inexpensive compared to

FVM and for this reason is more likely to be used in industry. However they also point

out that FVM is better suited for changes in body shape. As discussed in section 3.2, rain

or sleet conditions can produce aeroelastic behaviour in cables based on e�ective shape

changes of the cable cross-section. So to simulate galloping and rain-wind excitation,

FVM is the better option.

Another big drawback in DVM is that it is currently only well suited to modelling

2-dimensional �ows. Gabbai & Benaroya [24] and Zdravkovich [92] discuss in their re-

spective texts the spanwise variation of vortices and therefore the three-dimensional

nature of turbulence in cable problems. Hence DVM requires further development so that

it can model three-dimensional vortices before it can be used with any con�dence for

numerical simulations of �ow around cables.

3.4.2 Arbitrary Lagrangian Eulerian Formulation

The Arbitrary Lagrangian Eulerian (ALE) formulation is a way of reconciling the con�ict-

ing characteristics of the reference frames commonly used in �uid and structural solvers.

Usually numerical methods used for solving �uids problems use an Eulerian reference

frame, i.e. a grid that is �xed in space through which the material passes. On the other

hand, numerical methods commonly used for structural problems use a Lagrangian ref-

erence frame, i.e. a grid that moves with the material so that the displacement of the

material is given by the displacement of the grid.

One way to accommodate the change in position of the �uid-solid boundary as the

structure moves is to remesh the �uid domain at each time step and interpolate the

�uid variables from the old mesh onto the new mesh. This is referred to by Souli et

al. [74] as �rezoning and remap� and they claim that it is �rst-order accurate, unlike the

ALE approach which is second-order accurate. In addition it is more computationally

expensive than ALE.

The ALE approach maintains the topology of the mesh between time steps by allowing

the �uid mesh to move and making a correction to the NSEs to allow for this movement.

Thus the conservation of momentum member of the NSEs includes an extra term for grid

velocity, wi, as shown in equation 3.13.

∂ (ρui)

∂t
+ (ui − wi)∇ · (ρu) = − ∂p

∂xi
+∇ · (µ∇ui) + Si (3.13)

With the ALE formulation a variety of meshing strategies is possible. Sun et al. [77]

implement this on their simulation of a bridge deck by allowing the mesh close to the

�uid-solid boundary to move but keeping the mesh in the far-�eld rigid. Thus in a

translation of the structure the �uid cells on one side of the structure will compress and

on the other side will expand. With this approach some a priori knowledge of the range

of displacements possible is required because if the ALE region around the deck section is

not su�ciently large there will be problems of mesh quality to the extent that some �uid

elements could even invert at the upper limits of displacement. In the case of cables,
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large displacements many times the diameter are possible in some examples of aeroelastic

phenomena [35] and so this meshing strategy is not suitable.

Newman and Karniadakis [57] employ a di�erent approach in their DNS model of a

cable at low Reynolds number �ows. Their �uid solver uses a frame of reference that

remains �xed throughout the whole solution time so there is no question of compromising

mesh quality. The ALE formulation is applied throughout the entire �uid domain so that

in e�ect the �uid frame of reference is following the cable. This approach would only

work well if the variation of the displacements along the span of the cable is not large.

One could envisage a large loss of accuracy in the solution if the de�ected shape deviated

largely from the shape used in the �uid solver frame of reference.

3.4.3 Coupling

When using a partitioned approach for an FSI simulation, the coordination of the running

of separate solvers and the exchange of information between them is controlled by a

coupling algorithm.

Explicit Methods

The simplest form of coupling is to run the �uid and structural solvers on a staggered

basis. This is known as explicit coupling. When the �uid solver completes a time step,

the pressure/force at the �uid-solid interface is interpolated to the structural grid and

supplied as an input to the structural solver. The structural solver in turn will supply

updated displacements to the �uid solver. Due to the di�erent physics and numerical

methods employed by each solver, it is possible for the time step requirements to be

di�erent. Because of this and the fact that there is no attempt to conserve energy and

momentum at the interface, explicit coupling is unstable.

A good introduction to the variety of explicit methods is given by Farhat and Lesoinne [19].

In this paper they describe the Conventional Serial Staggered (CSS) procedure and the

Conventional Parallel Staggered (CPS) procedure before suggesting improvements to

these, calling them the Improved Serial Staggered (ISS) procedure and the Improved

Parallel Staggered (IPS) procedure respectively. Their sketches of the �conventional� and

the �improved� procedures are reproduced in Figures 3.6 and 3.7 respectively. Each

sketch shows the communication steps between the �uid and structure solvers as they

advance by a single cycle through the solution. The subscript n designates the nth time

station, incrementing from left to right in the sketch. The top row indicates the state of

the �wetted� boundary where the �uid and structure domains intersect. On this common

boundary x indicates the position of a �uid grid point, u denotes the displacement of the

structure, and p denotes �uid pressure. The subsequent rows indicate the time dependent

state (in terms of displacement and velocity) of the �uid and structure domains, denoted

by W and U respectively.
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CSS Procedure

Figure 3.6a shows the steps involved in each cycle of the CSS procedure. This is a

very straightforward procedure but is only �rst order accurate in time and violates the

Geometric Conservation Law (GCL) which is the main motivation for the authors to

propose an improved procedure.

(a) Conventional Serial Staggered

(b) Conventional Parallel Staggered

Figure 3.6: �Conventional� coupling schemes presented by Farhat and Lesoinne [19]

CPS Procedure

Figure 3.6b shows the steps involved in each cycle of the CPS procedure. This allows the

�uid and structural solver to operate in parallel but the main limitation is that the time

step size has to be kept small for a stable solution to be possible.

ISS Procedure

The ISS Procedure is an improvement on the CSS Procedure that ensures continuity of

velocity as well as position of the �uid and structure meshes on the common boundary.
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The main feature is that the timing of both solvers are o�set by half a time step. Fig-

ure 3.7a gives a graphical depiction of this idea. A dot denotes a derivative with respect

to time. A description of the procedure in step-by-step form goes as follows.

(a) Improved Serial Staggered

(b) Improved Parallel Staggered

Figure 3.7: �Improved� coupling schemes presented by Farhat and Lesoinne [19]

1. Given initial conditions W0, u0 and u̇0 initialise the �uid mesh as follows

x− 1
2

= u0 −
∆t

2
u̇0 (3.14)

For n = 1, ···

2. Set ẋn = u̇n and update the �uid dynamic mesh as follows

xn+ 1
2

= xn− 1
2
−∆tẋn (3.15)

3. Solve the �ow problem to obtain the �uid state vector Wn+ 1
2



CHAPTER 3. LITERATURE REVIEW 50

4. Extract the pressure �eld on the common boundary and convert it into a structural

load

5. Advance the structural system using the second-order time accurate midpoint rule

This procedure has been adopted in a recent paper by Relvas and Suleman [63].

IPS Procedure

The IPS Procedure is an improvement on the CPS Procedure that ensures greater accuracy

by introducing feedback between the �uid and structural �elds within a time step. This

is done at the expense of an extra half-step taken by the �uid solver. Figure 3.7b on the

preceding page gives a graphical depiction of this idea. An overbar denotes predicted

quantities at the half time step.

Implicit Methods

Implicit coupling involves the exchange of information between the separate solvers at

each iteration to ensure conservation of energy and momentum. Both solvers are run

concurrently which according to Matthies and Steindorf [46] is just as e�cient as a

monolithic approach.

Block-Jacobi and Block-Gauss-Seidel Methods

Cervera et al. [15] provide an introduction to Block-Jacobi and Block-Gauss-Seidel Meth-

ods. These methods are improved on by Matthies and Steindorf [46] introducing a Block-

Newton Method which has superior stability and convergence properties. Fernández and

Moubachir [20] improve the Block-Newton method further by introducing expressions to

evaluate the exact Jacobians that were only approximated in [46]. Symbols and termi-

nology used in the following sections are as de�ned in � 3.4.3.

Assuming that the �uid and the structural problems are discretised appropriately we

have two sets of discrete equilibrium equations to solve for each time step. There are

the Navier-Stokes equations for the �uid domain (see eq. 3.16) and an appropriate set of

equations for the structural domain (see eq. 3.17).

N(Wn+1, Un+1) = 0 (3.16)

S(Un+1) = h(Wn+1) (3.17)

The �uid solver operates on an iterative basis performing a few subcycles for each time

step until a convergence criteria has been reached. The structural solver may or may

not operate on an iterative basis given the complexity of the structural model. For our

purposes however we can regard a simple structural solver as a very e�cient iterative

solver requiring just one iteration. With this in mind we can restate eqs. 3.16 and 3.17
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as �xed point iterations as seen in eqs. 3.18 and 3.19 respectively.

Wk+1 = F (Wk, Uk) (3.18)

Uk+1 = G(Wk(+1), Uk) (3.19)

Assuming eq. 3.18 is solved �rst, eqs. 3.18 and 3.19 represent one stage of either the

Block-Jacobi Method or the Block-Gauss-Seidel Method, depending on whether the �uid

variable term in eq. 3.19 is Wk or Wk+1 respectively. Cervera et al. [15] point out that

of the two methods, the Block Gauss Seidel method has the higher convergence rate.

Sun et al. [76] implement the Block Gauss Seidel Method in the FSI similations that

they carry out. A �ow diagram depicting the steps carried out in this process is shown

in �g. 3.8.

Block-Newton Method

Matthies and Steindorf [46] criticise the block Gauss-Seidel method of iteration as being

often too slow and sometimes not convergent at all. They propose the use of a Newton-

Raphson type of iteration where the derivatives are approximated by �nite di�erences.

Called the block-Newton method, they formulate a linear system to be solved at each

step given in equation 3.20.(
DW f(wk, uk) DUf(wk, uk)

DW g(wk, uk) DUg(wk, uk)

)(
∆wk

∆uk

)
= −

(
f(wk, uk)

g(wk, uk)

)
(3.20)

where,

∆wk = wk+1 − wk
∆uk = uk+1 − uk

f(wk, uk) = wk − F (wk, uk)

g(wk, uk) = uk −G(wk, uk)

By using only existing solvers for the structure and the �uid, there is no direct ac-

cess to the partial derivatives in equation 3.20, but Matthies and Steindorf propose an

iterative algorithm that approximates them. In the illustrative examples in their pa-

per they demonstrate that the block-Newton method requires fewer iterations than a

block Gauss-Seidel method to reach the same solution. However seeing as this is a

Newton-Raphson based scheme, it may be prone to convergence problems characteristic

of Newton-Raphson methods in general.

A �ow diagram of the process followed to obtain ∆wk and ∆uk is given in �g. 3.9.

For further understanding of the underlying mathematics the reader is referred to [46].
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Start of Time Step
(Wn, Un)

Wk = Wn

Uk = Un

k = 0

Iterate Fluid Solver
(Wk → Wk+1, Uk)

Iterate Structural Solver
(Wk+1, Uk → Uk+1)

k = k + 1

Convergence?
Wk+1 −Wk ≈ 0
Uk+1 − Uk ≈ 0

Wn+1 = Wk+1

Un+1 = Uk+1

End of Time Step
(Wn+1, Un+1)

Yes

Figure 3.8: Flow diagram of Block Gauss Seidel Method
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Chapter 4

Static Cylinder

4.1 Introduction

The aim of the work presented in this chapter is to �nd a reliable and e�ective way to

numerically simulate cross-�ow past a stationary circular cylinder for a range of Reynolds

Numbers that capture the drag crisis. There are important issues that have been en-

countered in the course of this work which are important to the subsequent work in the

thesis. Each of these challenges are presented and discussed in detail. The chapter closes

with a review of the e�ectiveness of all approaches investigated and chooses which is the

most appropriate for use in the work presented in later chapters.

4.2 Simulation description

All simulations were carried using a commercial software supplied by ANSYS called

CFX-10.0. The following subsections give a terse list of the salient features of these.

Domain geometry

Figure 4.1 on the next page shows the typical geometry used for the simulations.

Streamwise length of domain: 18·0 m

Transverse length of domain: 8·0 m

Spanwise length of domain: 2·5 m

Distance of cylinder from inlet: 4·0 m

Diameter of cylinder: 1·0 m

Blockage area ratio : 0·125

Maskell blockage correction (see � 4.5.2): 0·8275

54
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Figure 4.1: Domain Geometry

Figure 4.2: Domain cross-section of mesh
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Figure 4.3: Close up view of mesh in cylinder region

Fluid properties

Defined material: Air at 25�

Density: 1·185 kg/m3

Dynamic viscosity: 1·831× 10−5 kg/m/s

Kinematic viscosity: 1·54515× 10−5 m2/s

Turbulence model: LES

Subgrid scale models tested: Dynamic (Germano and Lilly)

Smagorinsky

Boundary conditions

Inlet boundary condition: Normal speed (no turbulence)
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De�ned Re
Inlet velocity

(m
s )

30000 0·463

50000 0·773

60000 0·927

70000 1·082

80000 1·236

90000 1·391

100000 1·545

150000 2·318

Outlet boundary condition: Opening pressure and direction

Pressure maintained at 0Pa

(relative to reference pressure 1 atm)

Direction maintained as normal to boundary face

Cylinder boundary condition: No slip wall (smooth)
Transverse side walls

(parallel to cylinder axis):
Free slip wall

Spanwise side walls

(normal to cylinder axis):
Periodic with opposite side (conservative interface

�ux)

Mesh details (for Re ≤ 100000 simulations)

Cell type: Hexahedral throughout
No. of cells: 2521100
No. of faces: 89222
No. of nodes: 2565905
First node distance at cylinder surface: 5·75× 10−5 m

No. of cell layers in cylinder boundary region: 46
No. of cells around circumference of cylinder

boundary region:
176

Geometric growth rate of cell layer thickness in

cylinder boundary region:
1·15

Total thickness of cylinder boundary region: 0·2062 m

Cell size in spanwise direction: 0·025 m

In the mesh generation, a surface is placed in the wake region behind the cylinder, in

the same plane as the cylinder axis and extending 10 m downstream. The purpose of

this surface is to attach a size function to it aswell as the outer surfaces of the cylinder

boundary region. This results in the cell size being small in the wake compared to the

free stream areas of the domain (as can be seen in Figure 4.2), and ensures an appropriate

gradual growth in cell size going away from the cylinder boundary and wake regions (as

can be seen in Figure 4.3).
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Geometric growth rate in cell size from source

faces:
1·06

Cell size at source faces: 0·025 m

Size limit in cell growth from source faces: 0·4 m

Mesh details (for Re = 150000 simulations)

The overall geometry including source faces for the Re = 150000 simulations is the same

as for the Re ≤ 150000 simulations.

Cell type: Hexahedral throughout
No. of cells: 3443300
No. of faces: 116866
No. of nodes: 3501973
First node distance at cylinder surface: 2·30× 10−5 m

No. of cell layers in cylinder boundary region: 52
No. of cells around circumference of cylinder

boundary region:
176

Geometric growth rate of cell layer thickness in

cylinder boundary region:
1·15

Total thickness of cylinder boundary region: 0·2196 m

Cell size in spanwise direction: 0·025 m

Geometric growth rate in cell size from source

faces:
1·04

Cell size at source faces: 0·025 m

Size limit in cell growth from source faces: 0·2 m

Solver settings

Time step size:

De�ned Re
Time step ∆t

(s)

30000 0·0060

50000 0·0040

60000 0·0035

70000 0·0035

80000 0·0020

90000 0·0015

100000 0·0015

150000 0·0010

Advection scheme: Central di�erence
RMS residual target: 1× 10−4

Transient scheme: Second order backward Euler
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4.3 Pre-processing recommendations

The following sections discuss recommendations, encountered in the literature and from

direct experience, in the setting up and de�nition of simulations where the main objective

is to simulate the drag crisis.

4.3.1 Turbulence Model

An important aspect in a numerical simulation is the way in which turbulence is modelled,

the choice of which is made here based on what expected �ow features are important to

capture. Zdravkovich's [92] summary of all �ow conditions that are physically possible

for a circular cylinder, presented earlier, can be used to eliminate some candidates for

turbulence methods. In the range of �ow conditions of interest, unsteadiness exists that

forms important features that must be captured in the simulations. Traditional RANS

models are considered unsuitable because of their inability to capture transient turbulent

features. Although there are some notionally unsteady RANS (URANS) models available,

these are not appropriate because it is still only the mean e�ects of turbulence, albeit in a

transient framework, that are modelled, not the unsteadiness of the �ow. Another feature

of RANS models to consider is that they are relevant to situations where turbulence is

present in the entire �ow �eld. At the Reynolds numbers of interest in this work, part

of the cylinder will have a laminar boundary layer. Unless there is a speci�c formulation

included in the RANSmodel to handle laminar to turbulent transition, it would be di�cult

to reproduce proper behaviour in this region.

The ratio between the largest to the smallest length scales of turbulence is such that

the number of grid nodes required to resolve a turbulent �ow is a function of Re9/4,

where Re is Reynolds number.

For the range of Re of interest this makes DNS prohibitively expensive. The turbulence

formulations that remain available in commercial CFD products, between RANS models

and DNS, are the LES and DES approach. Of these, DES can be dismissed due to time

�ltering e�ects that damp the development of resolved turbulence in the region of shear

layers close to the cylinder wall. The unsteadiness that is considered important occurs

in the near wall regions to which DES assigns a RANS method. That leaves LES, which

is the turbulence method employed for the work in this chapter. There are numerous

SGS models available for LES. This chapter will focus on two candidate methods: the

Smagorinsky model and the Dynamic (Germano and Lilly [41]) model.

4.3.2 Discretisation - time step requirements

Since the aim is to capture the drag crisis, a high level of discretisation is needed at the

cylinder surface. The time step size needs to be small enough to capture the develop-

ment of �ow instability which develops into turbulence at the boundary layer, however

not so small that super�uous solution steps are produced. For this reason and because
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of guidance related to the LES Dynamic model given in the ANSYS CFX user documenta-

tion [5], the target Courant number (a dimensionless measure of residence time in a cell)

is just below 1. The actual values of Courant number that occur in the simulations are

summarised in Table 4.1.

Table 4.1: Courant number encountered in simulations

De�ned Re
Courant number

(rms) (max)

30000 0·12 1·53
50000 0·14 1·70
60000 0·14 1·70
70000 0·17 2·06
80000 0·11 1·31
90000 0·09 1·11
100000 0·11 1·24
150000 0·11 1·61

4.3.3 Discretisation - meshing requirements

As mentioned in a previous chapter, the y+ statistic is a dimensionless number indicating

the distance of the �rst node from a boundary. According to guidance information, for the

LES models used the target value of y+ is less than 1. In addition to this requirement, the

mesh must be re�ned in the near cylinder boundary and wake to capture a high-gradient

of velocity and eddy viscosity. Table 4.2 shows mean y+ statistics for all simulations

considered.

Table 4.2: Maximum y+ encountered

De�ned Re y+

30000 0·339
50000 0·598
60000 0·761
70000 0·773
80000 0·914
90000 1·181
100000 1·129
150000 0·854

4.3.4 Domain dimensions

If the dimensions in the spanwise (i.e. parallel to cylinder axis), streamwise (i.e. normal to

inlet and outlet boundaries), and transverse (i.e. orthogonal to spanwise and streamwise)

directions are too short, it can have a dramatic e�ect on the quality of results obtained.

On the other hand if they are too long it can lead to super�uous use of computing
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resources. It is important to strike the correct balance in determining the most economic

yet e�ective length of dimension in each direction, and to have an appreciation of the

e�ects of varying each dimension.

In terms of spanwise dimension, the length required is determined by the likely �corre-

lation length" that will occur. This is explored and discussed in further detail in the next

chapter, but it is worth noting here that, according to data compiled and presented by

Norberg [59], a spanwise dimension of at least two cylinder diameters is seen as su�cient

for the range of Reynolds number considered.

Regarding the streamwise direction, there has to be su�cient domain to capture the

wake that has an e�ect on the �ow at the cylinder and upstream. Also, as will be

discussed in the next section, there has to be su�cient upstream area to see development

of turbulence in the �ow approaching the cylinder.

The transverse dimension determines the amount of blockage i.e. the measure of how

much of the domain cross-section is occupied by the blu� object in the direction of �ow.

Blockage is an e�ect common to wind tunnel experiments and numerical simulations with

�ow domains of the type shown above. It is undesired because of the often appreciable

level of error introduced to the results when compared to uncon�ned �ows. The e�ect of

blockage can be reduced by using a �ow domain of a larger transverse dimension, but for

most �ow domains of a practical size, it is never entirely eliminated. Thus the common

approach is to introduce a correction for blockage in the results. The Engineering Sciences

Data Unit has produced a publication that discusses blockage in detail and gives advice

on blockage correction methods [84]. The correction method employed for the simulations

considered in this chapter is discussed in more detail in the next section.

Figure 4.4: Uncon�ned Flow Streamlines

Figure 4.4 shows a drawing taken from [84] showing uncon�ned �ow streamlines

superimposed over the walls of a domain with high blockage. It is easy to see from

this diagram how the �ow can be changed by the presence of the walls of the domain.

The wake would be moved upwards to be within the domain and the separation bubbles

would be constricted. The streamlines would be further constricted at the sides of the

blu� object and so the mean velocity in this region would be increased. Consequently

the acceleration of �ow and the drop in pressure from upstream would be greater. These
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concepts are shown by the representative graphs reproduced in Figure 4.5.

Figure 4.5: Blockage e�ects on streamwise velocity and pressure

Richter and Naudascher [64] have long ago investigated the e�ects of blockage specif-

ically on �ows past circular cylinders in the region of the drag crisis. Some �gures from

their paper are reproduced below (�gures 4.6, 4.7, 4.8, 4.9). In order of appearance they

represent Strouhal Number, Mean Drag Coe�cient, Fluctuating Drag, and Fluctuating

Lift.

In all graphs reproduced from [64] the amount of blockage is reproduced by d/h where

d is the dimension of the blu� object and h is the wind tunnel dimension. The relevant

d/h value for the present work is 1
8 .

It can be seen by the reproduced graph in Figure 4.6 that the Strouhal number jumps

to an increased value as the Reynolds number increases through the drag crisis. The level

of blockage a�ects all points of this graph.

The jump in Strouhal number at the drag crisis is seen to occur at lower values of

Reynolds number as blockage increases. The height of the jump (i.e. di�erence between

maximum and minimum values of Strouhal number) increases from d/h = 0 to d/h = 1/4,

beyond which it appears to remain constant.

All values of Strouhal number are raised with increasing blockage. No data is plotted

for d/h = 1/8 but nonetheless it can be seen that the Strouhal number St for �ows with

Reynolds numbers lower than the critical range would be in the range 0·19 ≤ St ≤ 0·21
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Figure 4.6: Strouhal number fod/U for various con�nement ratios d/h vs. Reynolds
number Re for 104 < Re < 107, reproduced from [64]
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Figure 4.7: Mean drag CD for various con�nement ratios d/h vs. Reynolds number Re
for 104 < Re < 107, reproduced from [64]
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Figure 4.8: Fluctuating drag CD for various con�nement ratios d/h vs. Reynolds number
Re for 104 < Re < 107, reproduced from [64]
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Figure 4.9: Fluctuating lift CD for various con�nement ratios d/h vs. Reynolds number
Re for 104 < Re < 107, reproduced from [64]
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4.4 Runtime of simulations

Table 4.3 shows data associated with the length of time that each simulation has covered.

Transit times shown are simply the streamwise length of domain divided by the

inlet velocity for each simulation. This �gure divided by the timestep size will give the

minimum number of timesteps required to simulate a �uid particle travelling from the

inlet boundary to the outlet boundary. Most of the simulations at each de�ned Re have

used an initial �ow�eld from a simulation of a di�erent value of Re as a starting point.

Thus the transit time has been useful when a change to Re has been introduced because

it can indicate the earliest point from which to record data for post-processing.

The number of shed cycles shown for each simulation is the product of the shedding

frequencies given further on in this chapter and the total simulation time for which

signi�cant data is recorded.

A natural concern about run time of simulations is how long would be su�cient for

the purpose at hand. This is explored in � 4.4.1 with a discussion on stationarity.

Table 4.3: Runtimes for all static cylinder simulations

De�ned Minimum Total time Shedding No. of shed
Re transit time covered frequency cycles

(s) (s) (Hz)

30000 38·83 260·64 0·094 24·5
50000 23·30 252·30 0·176 44·4
60000 19·42 157·83 0·221 34·8
70000 16·64 137·36 0·265 36·4
80000 14·56 106·04 0·304 32·2
90000 12·94 111·95 0·352 39·4
100000 11·65 71·75 0·397 28·5
150000 7·77 117·09 0·596 67·4

4.4.1 Stationarity

For the purpose of these simulations, stationarity is de�ned by the variation of mean and

variance of a physical property with time. A process with a constant mean and variance

and can be described as stationary or random. This is a property which is described

in terms of probability. An in�nite number of tests for randomness is possible, each

testing for a speci�c unique pattern. Therefore the application of a �nite number of tests

can never be considered to give a de�nitive result. Thus the tests follow the concept of

statistical hypothesis testing, where a null hypothesis (H0) and alternate hypothesis (Ha)

is considered.

The null hypothesis is a statement of the assumed default property of the signal until

proved otherwise. The alternative hypothesis is a statement which is considered true on

the occasions when the null hypothesis is determined to be false. Thus there are only
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two possible conclusions from hypothesis testing, this is set out in Table 4.4 as a 2 × 2

array against the true unknown status of the data analysed.

Table 4.4: Possible error outcomes of hypothesis testing

True situation
Conclusion

Accept H0 Accept Ha (reject H0)

Data is random (H0 is true) No error Type I error
Data is not random (Ha is true) Type II error No error

It is possible in hypothesis testing that the wrong conclusion can be reached. As

shown in Table 4.4, a situation where the data is truly random but the null hypothesis

is rejected is known as a Type I error. A situation where the null hypothesis is accepted

but the data is truly non-random is known as a Type II error.

The probability of a Type I error is called the level of signi�cance of the test, and is

denoted by α. This is the probability of falsely rejecting a null hypothesis, and its value

can be chosen by the tester.

The probability of a Type II error, denoted by β, is more di�cult to determine. It is

the probability that a test will indicate that the data sequence is random when in fact it

is non-random. This can take on many di�erent values because there are many di�erent

ways that a sequence can be non-random, each relating to a unique value of β.

The tests undertaken minimise the probability of a Type II error by following the

procedures described in NIST Special Publication 800-22 Revision 1 [60]. Each test

described therein focusses on a particular randomness statistic which is used to determine

acceptance or rejection of the null hypothesis. For all tests presented, the null hypothesis

(H0) is that the drag signal is random. The alternate hypothesis (Ha) is that the drag

signal is non-random. With randomness assumed, this statistic will have a distribution

of possible values. A theoretical reference distribution is determined by mathematical

methods. From this reference distribution a critical value is determined. This value

is usually at the extreme tail ends of the distribution (e.g. at the 99% point). During

a test, a test statistic value is calculated on the data sequence, and compared against

the critical value. If the critical value is exceeded the null hypothesis for randomness is

rejected. Otherwise the null hypothesis is accepted.

For each test in NIST Special Publication 800-22 Revision 1 [60], the test statistic

is used to calculate a P-value that indicates the strength of evidence against the null

hypothesis. The P-value is the probability that a theoretically perfect random number

generator would have produced a less random signal than the sequence tested. If the

P-value is 1, this indicates that the sequence appears to have perfect randomness. A

P-value of zero indicates complete non-randomness.

The threshold P-value that determines the test conclusion is α, the signi�cance level.

If P-value ≥ α, then the null hypothesis is accepted, i.e. the data appears to be random. If

P-value < α, then the null hypothesis is rejected, i.e. the data appears to be non-random.
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The tests in [60] used for the simulations in this chapter are the Frequency (monobit)

test and the Runs Test on the cylinder drag signal over time. The value of α chosen

for the tests is 0·01, which indicates that one would expect one sequence in 100 to be

rejected by the test if the sequence was random. A P-value ≥ 0·01 would mean that the

data would be considered to be random with a con�dence level of 99%. A P-value < 0·01

would mean that the data would be considered to be non-random with a con�dence of

99%.

The input for each test described below is a sequence of ones and zeros, ε, consisting

of n observations, that has been derived from drag coe�cient vs. time data. For reasons

discussed further on, the drag coe�cient vs. time signal is split up into a number of

segments. A segment whose mean value is greater than then median value of the entire

sequence is represented by a 1 in the ε sequence. Conversely, a 0 appears in the ε sequence,

where the mean value of a segment is not greater than the median for the entire sequence.

To compute the P-value in each test, the complimentary error function (erfc) is used.

This is de�ned as follows:

erfc(z) =
2√
π

∫ ∞
z

e−u
2

du (4.1)

Frequency (monobit) test

The focus of this test is the proportion of zeros and ones for the whole sequence. The

purpose of this test is to determine whether this proportion is the same as would be

expected for a truly random sequence.

The steps undertaken for the frequency (monobit) test are as follows:

1. Conversion to ±1: Zeros and ones of input sequence ε are converted to values of

−1 and +1 respectively. The converted sequence is summed together, i.e. Sn =

X1 +X2 + . . .+Xn, where Xi = 2εi − 1.

2. Compute the test statistic sobs = |Sn|√
n
.

3. Compute P-value = erfc
(
sobs√

2

)
.

4. If P-value < 0·01, then the sequence is non-random. Otherwise, conclude that the

sequence is random.

Runs test

The focus of the runs test is the total number of runs in a sequence. A run is a sequence

of identical bits. The purpose of this test is to determine whether the number of runs is

as expected for a random sequence.

The steps undertaken for the runs test are as follows:

1. Perform the frequency (monobit) test described above. Only proceed to the next

step if the sequence passes this test. Otherwise the runs test is not applicable and

the conclusion should be that the sequence is non-random.
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2. Compute the proportion of ones in the sequence: γ =
∑

j εj

n .

3. Compute the test statistic,

Vn =

n−1∑
k=1

r(k) + 1

where r(k) = 0 if εk = εk+1, and r(k) = 1 otherwise.

4. Compute

P − value = erfc

( |Vn − 2nγ(1− γ)|
2
√

2nγ(1− γ)

)
5. If P-value < 0·01, then the sequence is non-random. Otherwise, conlude that the

sequence is random.

It is recommended in [60] that the sequence tested should have a minimum size of 100

bits, i.e. n ≥ 100.

Application of runs test

The runs test described above was applied to the drag coe�cient vs. time signal for all

simulations. The result from converting every value of drag coe�cient (i.e. no segmen-

tation and averaging) into ε was �non-random� for all simulations tested.

This would appear to suggest that all the simulations should be run further to achieve

stationarity in the drag coe�cient. The runs test is essentially a test of independence,

thus it is apt to pose the question: are successive observations independent of one another

or are they correlated? It is reasonable to consider that a �ow variable has dependance

to some extent on the state of the �ow�eld over previous timesteps. When viewed in this

light, it is unsurprising to encounter that a "non-random" conclusion for all simulations

tested since this indicates that the drag coe�cient at any instant is dependent on its value

in the previous timestep. The extent of dependence is found by splitting the sequence

of drag coe�cient observations into blocks of an optimal size, where the conclusion is

"random" but would be "non-random" for any smaller block.

Table 4.5: Runs test results for segmented drag observations

De�ned Period of Shedding
Re independence [s] period [s]

30000 7·04 10·63
50000 5·86 5·68
60000 3·76 4·53
70000 3·61 3·77
80000 2·41 3·29
90000 2·73 2·84
100000 2·05 2·52
150000 1·53 1·68
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The period of indepedence in Table 4.5 is the number of observations in an optimal

sized block × the time step size. The simulations presented here have been considered

to have been run long enough to achieve a stable state if the minimum period to achieve

a �random� conclusion from a runs test is less than the period of vortex shedding.

4.5 Results data

4.5.1 Turbulence model comparison

The key features of the Smagorinsky and the Dynamic (Germano and Lilly [41]) sub-grid

scale models have been discussed earlier in the thesis. Figure 4.10 shows the mean drag

produced by both of them for the range of Reynolds Number tested.

Figure 4.10: Mean drag produced by Smagorinsky and Germano-Lilly models

It can be seen from Figure 4.10 that the Dynamic model is able to show a drop in

mean drag consistent with the drag crisis which the Smagorinsky model is unable to

capture.

The reason for the improved performance of the Dynamic model over the Smagorinsky

SGSmodel can be seen by considering the �ow �elds in the near wake region, Figures 4.11a

and 4.11b. Zdravkovich [92] describes the process of the drag crisis in terms of the point

of transition to turbulence found in the cylinder wake. The transition to turbulence
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(a) Smagorinsky (Re = 256000) (b) Dynamic (Re = 100000)

Figure 4.11: Typical velocity �ow�eld vector plot at the downstream cylinder side

occurs closer to the rearward face of the cylinder as the Reynolds number increases.

At a Reynolds number just below that for the drag crisis two transition points can be

observed, one in each shear layer just beyond the point of separation on either side of the

cylinder. An increase in Reynolds number causes these points to move causing one or

both separation points to jump from a position at roughly 90◦ to a position 120◦ on the

perimeter measured from the upstream stagnation point. This results in a drop in drag

caused by the narrowing of the wake behind the cylinder. This happens, to an extent,

with the Dynamic model, Figure 4.11b, but it does not materialise with the Smagorinsky

model, Figure 4.11a. Plotting the turbulence viscosity in the �rst part of the boundary

layer, Figure 4.12, reveals why this is the case. The Smagorinsky closure does not recover

a sensible asymptotic behaviour of the sub-grid viscosity at the wall.

Figure 4.12: Plot of eddy viscosity ratio against y+ at cylinder wall normal

It can be seen that in the same location of the domain, for the same initial �ow con-
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ditions, the Smagorinsky model predicts a far greater amount of eddy viscosity than that

predicted by the Dynamic model. In fact the Smagorinsky model is commonly criticised

in the literature for over prediction of eddy viscosity in near-wall regions (cf. Nicoud and

Ducros [58] in their WALE model proposal). A way of addressing the problem in the

Smagorinsky model is the application of Van Driest damping. This was attempted for

the simulations above but was found to produce little di�erence in mean drag. Van Driest

damping has been criticised by in the literature as being a somewhat arbitrary correction

with no physical basis. Certainly it has not been useful in this case. If a model generally

predicts too much eddy viscosity in near wall regions, it is likely that small scale distur-

bances at the cylinder wall are e�ectively damped out in these simulations. These small

scale disturbances would otherwise lead to transition to turbulence in the boundary layer

which, by the description of the drag crisis given earlier, would be a necessary feature

to capture in the simulations. The origin of the di�erence in eddy viscosity prediction

is the model constant. For the Smagorinsky model it is a constant value de�ned as part

of the initial conditions. The Dynamic model calculates the model constant, so that it

can have a varying value throughout the domain, dependent on local conditions. Thus

for near-wall regions the model constant it calculates is lower than the value used for the

Smagorinsky model. Although the Dynamic model has more computing overhead than

the Smagorinsky model, it can be seen from the above that it is necessary for the work

in this thesis. All discussions of results from here to the end of this chapter shall relate

to the Dynamic model.

4.5.2 Blockage correction

It has been mentioned earlier that it is necessary to consider how blockage will a�ect

the results obtained from the simulations. ESDU publication 80024 discusses in detail

the e�ects of blockage and a variety of correction methods. The correction method used

for the simulation results presented here is presented in section 4.1 of this reference, the

Maskell/Cowdrey correction.
CFf
CF

= 1−mS/A (4.2)

where CF is a force parameter in con�ned �ow conditions, CFf is the equivalent force

parameter in free �ow conditions, S/A is the amount of blockage (12·5% for the simula-

tions considered here), and m is an empirical factor whose value depends on the shape

of the blu� object (1·38 for circular sections). In the case of the simulations presented

here, the ratio CFf

CF
is calculated to be 0·8275.

It should be noted that the above method is recommended for �ows where the point

of separation occurs at or upstream of the maximum cross-sectional area of the body.

Another method is presented in 80024, the Quasi-streamlined �ow method, recommended

for �ows where separation occurs downstream of the maximum cross-sectional area of

the body.
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4.5.3 Mean Drag

The drag data produced by the simulations is compared to data presented in ESDU

publication 80025 [83]. This publication compiles experimental data from a range of

literature. Each item of experimental literature will tend to have a level of free-stream

turbulence and cylinder surface roughness that is unique. Both turbulence and rough-

ness have an observable e�ect on drag, so the ESDU publication presents a method to

normalise the Reynolds number according to turbulence and roughness, thereby unifying

all experimental observations reviewed.

The method to calculate 'e�ective' Reynolds number Ree is summarised as follows:

1. Obtain a value of the surface roughness parameter, ε , from Table 10.1 in ESDU

publication 80025 [83] and evaluate ε/D, where D is cylinder diameter.

2. Determine λR from Figure 2 in ESDU publication 80025 [83].

3. Evaluate Re = V∞D/ν, where V∞ is free-stream velocity and ν is kinematic vis-

cosity. If Re > 2× 106 then the factor λT ≈ 1·0 and steps 4 to 8 can be ignored.

4. Obtain typical values of the intensity Iu and scale of turbulence rLu from Table

10.2 in ESDU publication 80025 [83] and evaluate Iu(D/rLu)1/5.

5. Determine λTcrit from Figure 3a in ESDU publication 80025 [83].

6. Evaluate Recrit = 4·5× 105/(λTcritλR).

7. Evaluate Re/Recrit.

8. Determine (λT −1)/(λTcrit−1) from Figure 3b in ESDU publication 80025 [83] and

hence evaluate λT .

9. Evaluate Ree = λTλRRe.

The following paragraphs describe how the above method was applied to the simulation

results.

Roughness parameter

Typical values of ε for various materials (e.g. metal, brickwork, glass,�) are given in table

10.1 of ESDU publication 80025 [83]. In the case of the simulations presented here, none

of these typical values can be used with con�dence since the cylinder surface is de�ned

as a smooth wall. There is a roughness to consider however, introduced by the fact the

mesh consists of cells with only planar facets, resulting in ridges formed by the positions

where cell faces meet together on the cylinder surface (see Figure 4.13).

The mesh used for all simulations has 176 nodes around the entire circumference,

thus the ridge height kp is determined in the following way: kp = r(1 − cos(π/n)) =

0·5× (1− cos(π/176)) = 7·96531× 10−5m. Although kp is known, no clear relationship

between ε and kp exists. ESDU publication 80025 [83] gives a table of ε/kp ratios for a
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Table 4.6: Surface roughness parameters from ESDU publication 80025 [83]

Description Sketch s/kp ε/kp

Rounded grooves 40 0·04

Fences 2·5 2

variety of types of surface �nish. Although none of the surface �nish types match exactly,

it is considered unlikely that the ε/kp ratio for the surface in the �gure below will be

less than 0·04 or greater than 2. The corresponding surfaces shown in table B.3 in ESDU

publication 80025 [83] are given here in Table 4.6.

It is considered unlikely that the cylinder surface in our simulations would perturb

the boundary �ow to a lesser extent than the rounded grooves shown in in Table 4.6,

nor would it perturb the boundary �ow to a greater extent than the fences shown in

Table 4.6.

Figure 4.13: Sketch showing surface facets of cylinder due to meshing

E�ective Reynolds numbers for a smooth condition, a 'least rough' condition, and a

'most rough' condition are calculated. Table 4.7 shows the di�erence between the smooth

and the 'most rough' condition.

It is clear from Table 4.7 that the e�ect of roughness diminishes as the Reynolds
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Table 4.7: Di�erence in corrected Re between smooth and 'most rough' condition

De�ned Re Di�erence

60000 11-14%
70000 10-12%
80000 9-11%
90000 8-10%
100000 8%

Table 4.8: Re values corrected for blockage

De�ned Re Re corrected for blockage

60000 65957·97
70000 76950·96
80000 87943·95
90000 98936·95
100000 109929·90

number increases. This is expected since the boundary �ow would be less susceptible to

perturbation as the momentum carrying the �ow over the ridges increases.

λR parameter

In ESDU publication 80025 [83], λR is determined from Figure 2, which is de�ned by the

following equations:

λR = 1 + (λ′R − 1){1− exp[−5(Ree × 10−4)2]} (4.3)

where λ′R = λR for Ree > 104 and is given by (4.4)

λ′R = 7− 6 exp[−0·11E] (4.5)

(4.6)

The above equations require the value of Ree to be known if it is less than 104. The

e�ective Reynolds number calculated by this procedure will always be above the input

value of Re determined at step 3, so for our purposes we can safely assume λR = λ′R in

for all simulations considered.

Re evaluation

The input value of Reynolds number is the value de�ned in the simulation but corrected

for blockage. Table 4.8 presents the corrected values used.

Turbulence intensity and length scale

No turbulence or length scale is de�ned at the inlet. Nonetheless turbulence still develops

upstream of the cylinder. The evidence for this is given by velocity data obtained from
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monitor points located upstream of the cylinder as shown in the sketch in Figure 4.14.

Figure 4.14: Monitor point positions (marked +) upstream of cylinder

A plot of velocity at a time instant for one of the Re = 60000 simulations in a plane

normal to the cylinder axis at mid span is shown in Figure 4.15. The scale ranges from

the de�ned inlet velocity to the blockage velocity determined by the Maskell/Cowdrey

correction de�ned earlier.

Figure 4.15: Instantaneous snapshot of velocity �eld for (Re = 60000) simulation

A �ow parameter corrected for blockage e�ectively uses a reference velocity that is

linked to where the wake occupies the largest cross section of domain instead of the

velocity at the inlet. If this reference velocity is considered to be the freestream velocity,
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Figure 4.15 shows that there is a large area upstream of the cylinder where the �ow is

retarded.

Figure 4.16 shows a sketch from Zdravkovich [92] that indicates how the �ow �eld

looks in a typical uncon�ned cross-�ow.

Figure 4.16: Sketch of typical �ow �eld from Zdravkovich [92]

The enumerated regions in Figure 4.16 are described (quoted directly) as follows:

(i) one narrow region of retarded �ow

(ii) two boundary layers attached to the surface of the cylinder

(iii) two sidewise regions of displaced and accelerated �ow

(iv) one wide downstream region of separated �ow called the wake

It can be seen that the upstream �ow region for the simulations is di�erent to a

cylinder in uncon�ned cross-�ow. The narrow region of retarded �ow shown in the

Zdravkovich sketch (Figure 4.16) is replaced by region of retarded �ow that is narrow at

the stagnation point but widens travelling upstream until it covers the entire domain cross

section at the inlet. The �ow in this region has instability introduced by the variation in

pressure caused by blockage. The upstream pressure includes a transient element caused

by vortex shedding, with a relatively higher pressure alternating from one side of the

cylinder to the other at the vortex shedding frequency. This has the e�ect of causing the

upstream �ow to have a randomly �uctuating element (u′) as can be seen in a typical

plot against time of streamwise velocity at one of the monitor points (Figure 4.17).

The turbulence intensity at each of the monitor points is calculated from the stream-

wise velocity trace according to the following formula:

Iu = σu/Vu (4.7)
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Figure 4.17: Velocity-time plot recorded at monitor point 1u for (Re = 60000) simulations

where σu is the standard deviation of the streamwise velocity, and Vu is the mean of the

streamwise velocity.

Table 4.9 presents the distribution of upstream turbulence intensities for all simula-

tions considered.

Table 4.9: Turbulence intensities

Label
Position Iu [%] per de�ned Re [×103]

x [m] y [m] 60 70 80 90 100

1u −2·5 −3·0 0·97 0·96 0·83 0·82 0·86
2u −2·5 −1·5 1·19 1·18 1·02 0·98 0·98
3u −2·5 1·5 0·99 0·99 0·96 0·88 0·87
4u −2·5 3·0 0·82 0·84 0·71 0·69 0·74
11u −1·0 −3·0 1·50 1·34 1·35 1·17 1·03
12u −1·0 −1·5 2·37 2·43 2·09 1·88 1·85
13u −1·0 1·5 2·80 2·72 2·55 2·31 2·52
14u −1·0 3·0 1·39 1·53 1·39 1·24 1·07

It can be seen in Table 4.9 that the turbulence intensity increases as the �ow progresses

downstream. Also the central monitor points report higher levels of turbulence intensity

than the outer monitor points, i.e. 2u, 3u > 1u, 4u and 12u, 13u > 11u, 14u.

It is worth noting that the common method of blockage correction, i.e. a factor applied

to the velocity, will not account for the variation of turbulence intensities shown above. It

can be seen from the formula for turbulence intensity that any factor applied to velocity

will divide out to unity. The above statistic is therefore solely a measure of the e�ect of

instability caused by vortex shedding and not the acceleration caused by blockage.

The lateral integral length scale, rLu, is determined for each monitor point using an
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autocorrelation function on the �uctuating component of the streamwise velocity, u, vs.

time, t, signal. The procedure for this calculation is as follows:

1. Evaluate autocovariance. This is obtained by taking the mean value of the product

of pairs of u at time t and t+ ∆t, i.e. utut+∆t. When the time lag, ∆t, is zero the

autocovariance is equal to the variance σ2(u).

2. Normalise the autocovariance by diving by the variance, the resulting quantity is

called the autocorrelation coe�cient, Ru(t), i.e. Ru(t) = utut+∆t/σ
2(u).

3. Repeat steps 1 and 2 for a range of time lags. The variation of Ru(t) with t is

called the autocorrelation function.

4. Integrate over the entire length of the graph and multiply by the mean free-stream

velocity, U . This will produce the longitudinal integral length scale Lx, i.e. Lx =

U
∫∞

0
Ru(t) dt.

5. Assuming the turbulence is isotropic at the monitor point, the lateral integral

length scale will be 1
2Lx (this assumption is based on the ESDU 71012 de�nition).

The isotropic assumption is made to enable the determination of rLu using a single

point. It should be noted that the isotropic assumption is di�cult to justify if the

monitor point is situated close (i.e. of the same order as Lx) to a boundary.

Following the above method, Table 4.10 summarises the length scales evaluated.

It can be seen in Table 4.10 that there is no obvious trend in the �gures for length

scale as exists for the turbulence intensities. This may be due in part to the length of

integration used. A typical plot of the autocorrelation function is shown in Figure 4.18.

It can be seen that there is a sinusoidal element to the autocorrelation plot in Fig-

ure 4.18 which signi�es the in�uence of the vortex shedding on the upstream �ow. An

integral summation over the entire graph results in a negligible value of length scale cal-

culated, consequently resulting in an over-estimated �gure for corrected Re (of the order

600000 and beyond). The �gures in the table above are based on a integration from

zero time lag to the �rst zero crossing. It can be argued that as the time lag increases,

the autocorrelation function becomes less statistically signi�cant because it is based on
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Table 4.10: Lateral integral length scales [m]

Label
Position rLu [m] per de�ned Re[×103]

x[m] y[m] 60 70 80 90 100

1u −2·5 −3·0 0·245369 0·265429 0·221137 0·259044 0·209989
2u −2·5 −1·5 0·141673 0·136743 0·119430 0·135612 0·141852
3u −2·5 1·5 0·148879 0·157505 0·138510 0·142517 0·136292
4u −2·5 3·0 0·193210 0·199530 0·182125 0·202706 0·184904
11u −1·0 −3·0 0·178378 0·167887 0·152913 0·144729 0·143195
12u −1·0 −1·5 0·205296 0·194253 0·115945 0·127051 0·199945
13u −1·0 1·5 0·097543 0·102750 0·093275 0·103567 0·094095
14u −1·0 3·0 0·156536 0·162056 0·153909 0·154917 0·165931

Figure 4.18: Autocorrelation plot for monitor point 1u for (Re = 60000) simulations
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fewer products in a given data sample. There is no clear principle in determining to

what extent to integrate, although there is one paper that makes a few suggestions and

discusses their e�ectiveness O'Neill et al. [62]. The integration method employed here

re�ects one of the possibilities mooted in this reference.

λTcrit evaluation

In ESDU publication 80025 [83], λTcrit is determined from Figure 3a, which is de�ned by

the following equations:

λTcrit = 13− 12 exp[−11·5Iu(D/rLu)1/5] (4.8)

λT evaluation

In ESDU publication 80025 [83], λT is determined from Figure 3b, which is de�ned as

follows:

For Re/Recrit ≤ 0·5,

λT − 1

λTcrit − 1
= 1·28 exp[−20(−R1)2·8]

where R1 = log10(2Re/Recrit).

For Re/Recrit ≥ 0·5,

λT − 1

λTcrit − 1
= 1·28 exp[−1·3(−R1)1·4 − 0·1(−R1)4]

.

Ree evaluation

The normalised values of Reynolds number Ree, for all simulations considered as reported

in Tables 4.11, 4.13, and 4.15. Three sets of �gures are reported due to the variability

of the roughness parameter, which indicates the sensitivity of Ree to roughness, and the

range of Ree possible for each simulation.

Table 4.11: Ree at monitor points for 'most rough' condition (E= 0.159306)

Label
Position Ree per de�ned Re [×103]

x [m] y [m] 60 70 80 90 100

1u −2·5 −3·0 224643·7 259774·2 276741·4 297861·7 339740·1
2u −2·5 −1·5 276557·4 314056·9 327810·0 347071·8 373648·3
3u −2·5 1·5 240621·0 276502·3 290982·5 316224·8 353829·5
4u −2·5 3·0 232223·7 269026·1 282601·2 305297·3 343842·5
11u −1·0 −3·0 234781·9 274484·4 287937·2 315741·0 352197·7
12u −1·0 −1·5 263963·0 302506·9 328790·9 349256·9 361995·9
13u −1·0 1·5 254598·5 290099·7 303346·2 326370·8 366230·9
14u −1·0 3·0 238993·9 275601·6 287738·2 313611·1 347363·3
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Table 4.12: Descriptive statistics for Table 4.11

Range Statistic
De�ned Re [×103]

60 70 80 90 100

1− 4u mean 243511·4 279839·9 294533·8 316613·9 352765·1
11− 14u mean 248084·3 285673·1 301953·1 326245·0 356947·0
overall mean 245797·9 282756·5 298243·4 321429·4 354856·0
overall stdev 17646·42 18123·22 20034·55 18487·71 11634·71

Table 4.13: Ree at monitor points for 'least rough' condition (E= 0.003186)

Label
Position Ree per de�ned Re [×103]

x [m] y [m] 60 70 80 90 100

1u −2·5 −3·0 199745·6 235075·5 252350·4 274044·7 314749·2
2u −2·5 −1·5 251446·2 290211·7 303586·4 322175·0 347770·9
3u −2·5 1·5 215840·6 251767·5 267198·1 292055·4 328461·5
4u −2·5 3·0 207396·1 244108·9 258456·6 281355·2 318740·9
11u −1·0 −3·0 209973·5 249683·2 264090·9 291582·4 326872·9
12u −1·0 −1·5 238862·7 278740·3 304547·9 324307·9 336414·5
13u −1·0 1·5 229736·3 266124·9 279528·5 301968·6 340540·6
14u −1·0 3·0 214208·3 250835·7 263884·8 289499·1 322167·1

Table 4.14: Descriptive statistics for Table 4.13

Range Statistic
De�ned Re [×103]

60 70 80 90 100

1− 4u mean 218607·1 255290·9 270397·9 292407·6 327430·6
11− 14u mean 223195·2 261346·0 278013·0 301839·5 331498·8
overall mean 220901·2 258318·5 274205·4 297123·5 329464·7
overall stdev 17539·51 18557·98 19985·13 18070·62 11330·21

Table 4.15: Ree at monitor points for smooth condition (E= 0)

Label
Position Ree per de�ned Re [×103]

x [m] y [m] 60 70 80 90 100

1u −2·5 −3·0 199198·5 234546·6 251815·3 273532·1 314218·6
2u −2·5 −1·5 250903·2 289698·4 303068·8 321645·3 347221·8
3u −2·5 1·5 215298·4 251229·3 266674·8 291539·3 327923·1
4u −2·5 3·0 206851·2 243576·4 257912·9 280842·2 318208·0
11u −1·0 −3·0 209429·4 249146·8 263552·7 291066·5 326335·4
12u −1·0 −1·5 238324·1 278224·3 304029·9 323777·1 335871·6
13u −1·0 1·5 229197·5 265566·5 279015·0 301448·5 339995·5
14u −1·0 3·0 213665·5 250298·3 263342·8 288983·9 321632·3
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Table 4.16: Descriptive statistics for Table 4.15

Range Statistic
De�ned Re [×103]

60 70 80 90 100

1− 4u mean 218062·8 254762·7 269867·9 291889·7 326892·9
11− 14u mean 222654·1 260809·0 277485·1 301319·0 330958·7
overall mean 220358·5 257785·8 273676·5 296604·4 328925·8
overall stdev 17541·43 18563·94 19994·42 18063·54 11323·86

It can be seen from the descriptive statistics given in Tables 4.14, 4.12, and 4.16

that the variation of Ree follows similar trends to those shown in the �gures for Iu.

This occurs even though the length scales used in the calculations above appear to be

randomly distributed. Given the distribution of Ree across the monitor points, it is

tempting to suggest an extrapolation of the measured values to obtain a �gure relevant

to near the cylinder surface. In order to do this, however, it would be necessary to gain

a more detailed view of the upstream variation of Ree which would require collection of

data from more monitor locations. The following graphs summarise the corrected mean

drag for all simulations considered:

Figure 4.19: Drag results comparison with ESDU publication 80025 [83]

The graph in Figure 4.19 shows the raw data obtained from the simulations (plotted as

X's), the same data corrected for blockage (plotted as +'s), and the same data corrected

for blockage and normalised following ESDU recommendations (plotted as boxplots). For

clarity, solely the data for the 'most rough' condition has been plotted. It can be seen

that the corrections move the points closer to the ESDU data as expected. The corrected

data, however, does not fall within the margin of error speci�ed for the ESDU data. Given
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the uncertainty in the calculation of roughness parameters, turbulent length scales and

turbulence intensities mentioned above, it is possible that the correction parameters

for turbulence and/or roughness have been underestimated. Of the two, it is more

likely that it is the turbulence normalisation parameter that needs further attention.

The entire bandwidth of possible values for λR has been determined, although the same

could not be said for λT . The accuracy of λT could be improved by using an extrapolated

value of turbulence intensity closer to the point of maximum blockage, although a fuller

description of the upstream turbulence and length scale produced by more monitor points

would be required. Also a longer interval of integration in the length scale calculation

could lead to smaller calculated length scales and consequently larger values of normalised

Re. However there needs to be a justi�cation for choosing one integration interval policy

over others beyond a desire to make the �gures agree nicely with published data.

Figure 4.20: Comparison of results with drag data in ESDU publication 80025 [83]

The box and whiskers plots shown in the close-up in Figure 4.20 are drawn as follows:

� the median drag as a horizontal line,

� the upper and lower quartiles of drag drawn as a box

� the width of the quartile box and median line corresponds to the maximum to

minimum range of normalised Reynolds number evaluated at the monitor points
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� the whiskers are located horizontally at the mean normalised Reynolds number

Ree, the vertical length of them correspond to either maxima/minima in the data

range or 1·5× interquartile range (IQR) from the box, whichever is the lesser

� any outliers (i.e. data points beyond 1·5× IQR from the nearest quartile) are plotted

as individual points

To illustrate the in�uence that the choice of integration limits in the length scale cal-

culation has on the normalised Reynolds number, Figure 4.21 is the same close-up as

shown in Figure 4.20 but using an integration from zero time lag up to the value where

the autocorrelation function is a minimum in the negative region.

Figure 4.21: In�uence of integration method on results

4.5.4 Separation

A common observation in experimental literature [92] about the drag crisis is the move-

ment of the separation points in the downstream direction, further towards the rear of the

cylinder. It is worth seeing if the simulation results show the same trend. Earlier in the

thesis, separation points have been de�ned as the point where the boundary layer leaves

the surface of the cylinder to form shear layers that roll up into vortices. A more precise

de�nition of separation point used in the processing of simulation results is the point on
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the cylinder surface where the velocity gradient is zero. Graphs showing the spanwise

averaged separation point through several shedding cycles for some of the simulations

are shown in Figure 4.22. The value of the separation point is the angle measured from

the upstream stagnation point of the cylinder. The time axis is non-dimensionalised by

cylinder diameter and free-stream velocity. On each graph the red and blue lines show

the separation points on either side of the cylinder, the black line is the average of both

separation points, and the green line is the time-average of both separation points.

Table 4.17: Time-average separation angles

De�ned Mean Angle Recorded Time Range
Re [degrees] [tU/D]

50000 85·59 6·21
60000 87·29 135·80
70000 88·43 136·21
80000 88·90 103·69
90000 90·47 91·66
100000 91·23 33·72
150000 93·47 5·04

Zdravkovich [92] has noted that the separation points move towards the back of the

cylinder with increasing Re through the drag crisis. The time period over which the

above data is sampled varies between simulations and are comparatively very short for

some values of Reynolds number. Thus the averaged values for separation angles must be

accepted with varying degrees of con�dence. Despite this it can be seen that the average

separation angle increases with Reynolds number as expected following the observations

by Zdravkovich [92].
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(c) Re = 80000
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(d) Re = 90000

Figure 4.22: Separation point vs. time plots
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4.5.5 Base Pressure

In a review of experimental data, Williamson [89] produced a compiled plot of the vari-

ation of base pressure, Cpb, (i.e. pressure at a point 180◦ from the upstream stagnation

point) with Re. The time avergaed base pressure coe�cients obtained in the simulations

are summarised in Table 4.18.

Table 4.18: Base Pressure Coe�cients

De�ned Re Cpb

50000 −0·886
60000 −0·764
70000 −0·695
80000 −0·533
90000 −0·550
100000 −0·528
150000 −0·476

If these coe�cients are included in Williamson's plot, using overall mean �gures in

Table 4.11 for values of Re, fairly close agreement to experimental data can be observed,

as can be seen in Figure 4.23.

Figure 4.23: Comparison of base pressures with Williamson [89] data

Graphs showing the spanwise and time averaged pressure coe�cient Cp are given in

Figure 4.24. The red line shows the maxima and the blue line shows the minima of the

data sample analysed.
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(a) Re = 50000

Figure 4.24: Cylinder surface pressure plots

It can be seen from the above data that Cpb decreases with increasing Re, in accor-

dance with Zdravkovich's [92] observation. It can be observed from the above plots that

all the minima occur in a circumferential position less than 90◦.
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(b) Re = 60000
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(c) Re = 70000

Figure 4.24: Cylinder surface pressure plots (cont.)
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(d) Re = 80000
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(e) Re = 90000

Figure 4.24: Cylinder surface pressure plots (cont.)
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(f) Re = 100000
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(g) Re = 150000

Figure 4.24: Cylinder surface pressure plots (cont.)
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4.5.6 Strouhal Number

In addition to the dramatic drop in drag, the drag crisis is marked by a change in strouhal

number. There is literature including Zdravkovich [92] and Schewe [69] that discusses a

discontinuous change in Strouhal number. However to obtain a clearer view of the change

in nature of vortex shedding, it is worth observing spectral frequency plots as shown in

Figure 4.25. These plots were created using Scilab, a numerical computational package

originally produced by researchers from Institut national de recherche en informatique

et en automatique (INRIA) and École nationale des ponts et chaussées (ENPC). This

software was chosen because of its free availability and capability to carry out Fast

Fourier Transforms (FFTs).

Table 4.19: Dominant Frequencies

De�ned Frequency Recorded Time Range
Re [fD/U] [tU/D]

30000 0·203 120·81
50000 0·228 194·92
60000 0·238 146·32
70000 0·245 148·58
80000 0·246 131·05
90000 0·253 155·74
100000 0·257 110·94
150000 0·257 262·04

In the experimental literature, Schewe [69] provides a description of what to expect

for frequency spectra plots through the progression of Re in the realm of the drag crisis.

Initially, there is a strong single frequency (non-dimensionalised by diameter and free-

stream velocity) of approximately 0·2 in increasing Re leading up to the drag crisis.

As the Reynolds number increases through the drag crisis itself the strength of the non-

dimensional frequency of 0·2 gradually dies to be replaced by a non-dimensional frequency

of 0·3. The �gures above showing frequency domain plots of the lift observed in the

simulations present a gradual change of non-dimensional frequency from approximately

0·203 to 0·257, as presented in Table 4.19 which lists the frequencies of greatest FFT

amplitude. For some of the plots presented in Figure 4.25 there is no single dominant

frequency. For example in the case of Figures 4.25g and 4.25h, there are signi�cant peaks

at frequencies above those given in Table 4.19.

Experimental observations show the switch from 0·2 to 0·3 to be a discontinuous

switch that relates to the appearance of a nearly turbulent boundary layer separating

from the surface, quickly becoming turbulent and reattaching to the cylinder surface -

the so-called �one-bubble� regime. This is following by a �two-bubble� regime when the

same thing occurs on the other side of the cylinder and the frequency then discontinuously

jumps to 0·4. The reason that these discontinuous jumps are not seen in the above results

is because of spatial averaging in the spanwise direction. A black and white shaded plot

of the separation on one side of the cylinder at Re = 50000 is given in Figure 4.26.
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Figure 4.25: Spectral frequency plots
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(d) Re = 70000

Figure 4.25: Spectral frequency plots (cont.)
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(e) Re = 80000
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(f) Re = 90000

Figure 4.25: Spectral frequency plots (cont.)
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(g) Re = 100000
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(h) Re = 150000

Figure 4.25: Spectral frequency plots (cont.)
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Figure 4.26: Timewise and Spanwise Variation of Lower Separation Angle Over a Shed-
ding Cycle (Re = 50k)

These plots show raw data without having been averaged and indicate how the sep-

aration angle can vary across the span and with time. From this it is easy to see how

there can be locally discontinuous jumps in data which can be somewhat masked by the

averaging process.

4.6 Conclusions

The aim of this chapter has been to simulate numerically the onset of the drag crisis. The

work presented here represents an initial attempt using LES. This has been achieved to

some degree of success as the results presented have been shown to follow traits consistent

with experimental observations made of the drag crisis.

Challenges however do come about, as have been identi�ed above. The two main

challenges in this work has been selection of an appropriate approach to deal with tur-

bulence, and selection of appropriate input parameters which keep resource costs low

while still enabling production of results of an acceptable quality. The latter challenge

includes domain and mesh geometry and size of time step integration as factors. The

requirement for smallness of time step and �neness of mesh resolution in the boundary

region of the cylinder has meant that long run times with appreciably large computing
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resources, at least in comparison with those found in industry, have been necessary. It is

the author's view that at the time of writing this chapter, it is possible with commercially

available software and computing resources to produce acceptable numerical simulation

of the drag crisis, albeit at a high cost.

The results presented and discussed in this chapter represent a small part of what

could be obtained from the simulations carried out. Further post-processing would likely

produce further interesting observations. Notably an investigation into the spanwise

variation of the lift force would be worthwhile to gain an insight into spanwise correlation

e�ects.



Chapter 5

Fluid Structure Interaction

5.1 Introduction

This chapter describes how the commercial solver used for the thesis is adapted to be

capable of numerical simulation of cylinders that are free to move in all directions perpen-

dicular to its axis. The objective is to implement a Fluid Structure Interaction capability

that is e�cient and reliable for the work presented in the �nal chapter of the thesis. The

importance of selecting the best coupling strategy is highlighted by a number of tests

that demonstrate the capability of the FSI implementation used.

5.2 Implementation

5.2.1 Solver modi�cation

The FSI implementation presented in this chapter makes use of the user de�ned routine

capabilities of ANSYS CFX. Two methodologies are available for the customisation of the

solver: CFX Expression Language (CEL) functions and Junction Box routines. Either

can be used on its own in a numerical simulation, or both can be used together. Their

comparative capabilities are set out in Table 5.1.

In comparison to Junction Box routines, CEL functions are relatively straightforward

to use because they can be set in the pre-processing Graphical User Interface (GUI)

tool supplied with the product and its use is covered comprehensively in the supporting

documentation. References to CEL functions can be made where any numerical value can

be entered in the GUI. During the solution process, whenever the solver would encounter

a CEL function reference instead of an input value, the CEL function would be executed

and its numerical result would be used. A feature of this method is that the user either

does not know or has only at best a conceptual sense of when the CEL functions will be

called by the solver. This can be seen as both a positive and negative feature. On the

positive side the user does not need an extensive knowledge of the internal workings of

101
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Table 5.1: Comparison of CEL functions with Junction Box Routines

CEL functions Junction Box routines

Used by the �uid solver on a variety
of unspeci�ed occasions during the run
process

Invoked by the �uid solver at a speci�ed
point during the run process

Argument lists are passed in by the �uid
solver. A return value (or list of values)
is expected, the type of which depends
on the context in which the function is
called.

No argument lists are used and no re-
turn value is expected.

Limited access to data structure Full access to data structure

the solver. Conversely the limitation of control over when the CEL functions are invoked

can be seen as a negative aspect.

Junction Box routines derive their name from the concept that they are executed by

the solver at predetermined points throughout the solution process, referred to by the

supporting documentation as �junction boxes�. The �ow diagram shown in Figure 5.1

shows the full list of predetermined points available throughout the solver process where

junction box routines can be placed. Knowledge of programming languages is required

by the user to create a junction box routine. The user documentation suggests there

are two main choices: C and FORTRAN, with a preference expressed for FORTRAN77

in particular. Macros are supplied by the software vendor to help in the process of

compiling the code into a format that is compatible with the solver. An advantage

that Junction Box routines have over CEL functions is that they o�er a wider access

to the solver internal data structure that stores variables in a hierarchical structure

similar to directories found in a modern computer �le storage system. In the case of

ANSYS CFX, the internal data structure is not well documented. An important reason

against good documentation is the internal architecture being likely to su�ciently change

with each release to cause di�culties. In this case there would be an expensive overhead

in documentation costs and users would be likely to su�er compatibility issues with code

that they had developed for prior releases. So users are discouraged from producing code

that accesses the internal data strucuture directly with a lack of su�cient detail given

in the documentation. Instead utility routines are supplied, collectively known as the

Memory Management System (MMS), with the software which provides a permanent way

of addressing the internal data structure.

Both junction box routines and CEL functions are used for work in this thesis in order

to bene�t from the best advantages of each approach. The full list of routines written

alongside a short description is given in Table 5.2 on page 106.
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Figure 5.1: Flow diagram of a typical ANSYS CFX solver run taken from the ANSYS CFX

user manual [5]

5.2.2 Flow Diagrams

The way that the user de�ned routines �t into the overall solver run process is shown in

Figure 5.2.

The important data produced by the user code is stored in the /USER_DATA area of

the data structure. Figure 5.3 shows how it is handled by the solver and user code.

5.2.3 Integration methods

The following subsections describe a range of integration methods examined and a closed

solution found in Harris and Piersol [27] that is used for validation purposes.
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Figure 5.2: Flow chart of overall solver process including user-routines
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Figure 5.3: Flow chart of user code interaction with data structure
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Table 5.2: Routines of the coupler program

Name(s) Type Description

convcheck Junction Box routine
Routine invoked at the end of each coe�cient
loop to determine whether or not to continue
iterating

getdisp_x

getdisp_y
CEL functions

Used by the �uid solver to look up the latest
calculated values of displacement

hybrid internal routine
Low level routine that performs an integration
to obtain the latest values of displacement

setdata Junction Box routine
High level routine invoked at the start of each
coe�cient loop to calculate the latest displace-
ment

setupdata Junction Box routine
Routine invoked at the start of run to initialise
variables and data areas

writedata Junction Box routine
Routine invoked at the end of run to write
output

Closed solution

The standard single degree of freedom equation of a lumped mass with damping is given

in equation (5.1).

mẍ+ cẋ+ kx = F (5.1)

where m is mass, c is damping constant, k is sti�ness, F is the applied forcing function,

and x is displacement. If the forcing function for equation (5.1) is taken to be a sinusoid

varying with time, and if the damping is taken to be negligible, the closed solution is as

follows:

x = A sinωnt+B cosωnt+
F0/k

1− ω2/ω2
n

sinωt (5.2)

where t is time, k is sti�ness, ωn is undamped angular natural frequency
√

k
m , ω is

angular frequency of forcing function, F0 is the amplitude of the forcing function, A is a

coe�cient derived from velocity at time t = 0 (see equation (5.3)), and B is a coe�cient

equal to displacement at time t = 0.

ẋ(0) = Aωn +
ω F0

k

1− ω2

ω2
n

(5.3)

Backward Euler method

For equation (5.1), a backward Euler approximation is taken for acceleration and velocity,

as follows:

ẍn+1 = 1
h (ẋn+1 − ẋn) (5.4a)

ẋn+1 = 1
h (xn+1 − xn) (5.4b)
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where h is time step size, the n+1 su�x indicates a variable from the current time

step, and the n su�x indicates a variable from the previous time step. Inserting these

approximations into equation (5.1) produces the following:

m
h ( 1

h (xn+1 − xn)− ẋn) + c 1
h (xn+1 − xn) + kxn+1 = Fn+1

or after rearrangement:

xn+1 =
Fn+1 + ẋn

m
h + xn

1
h (mh + c)

1
h (mh + c) + k

(5.5)

Trapezoidal method

For this method the following two approximations are used:

xn+1 − xn = h
2 (ẋn+1 + ẋn) (5.6a)

ẋn+1 − ẋn = h
2 (ẍn+1 + ẍn) (5.6b)

By rearranging equation (5.1) into an expression for acceleration we can substitute the

following two equations into equation (5.6b) above,

ẍn+1 = 1
m (Fn+1 − cẋn+1 − kxn+1)

ẍn = 1
m (Fn − cẋn − kxn)

thus

ẋn+1 − ẋn = h
2m [(Fn+1 − cẋn+1 − kxn+1) + (Fn − cẋn − kxn)] (5.7)

Substituting in equation (5.6a) into equation (5.7), we are left with only one unknown,

ẋn+1 − ẋn =
h

2m
[(Fn+1 − cẋn+1 − k{(ẋn+1 + ẋn)

h

2
+ xn})

+ (Fn − cẋn − kxn)]

or by rearrangment,

ẋn+1 =
h
(
Fn+1+Fn

2 − kxn
)

+ ẋn
(
m−

(
c+ kh

2

)
h
2

)(
m+

(
c+ kh

2

)
h
2

) (5.8)

Runge Kutta Method

The standard formulae for a 4th order Runge-Kutta integration are as follows:

yn+1 = yn + h
6 (k1 + 2k2 + 2k3 + k4) (5.9a)

k1 = f(tn, yn) (5.9b)

k2 = f(tn + h
2 , yn + h

2k1) (5.9c)

k3 = f(tn + h
2 , yn + h

2k2) (5.9d)

k4 = f(tn + h, yn + hk3) (5.9e)
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Two instances of equation (5.9) are used. In one case yn is the displacement and f(·, ·)
is velocity. In the other case yn is the velocity and f(·, ·) is the acceleration. In the

latter case, the acceleration is calculated by equation (5.1). In both cases a trapezoidal

approximation is used for the k2 and k3 coe�cients.

x1 = ẋnh (5.10a)

ẋ1 = h
m (Fn − cẋn − kxn) (5.10b)

x2 = h(ẋn + 1
2 ẋ1) (5.10c)

ẋ2 = h
m

[
1
2 (Fn + Fn+1)− c

(
ẋn + 1

2 ẋ1

)
− k

(
xn + 1

2x1

)]
(5.10d)

x3 = h(ẋn + 1
2 ẋ2) (5.10e)

ẋ3 = h
m

[
1
2 (Fn + Fn+1)− c

(
ẋn + 1

2 ẋ2

)
− k

(
xn + 1

2x2

)]
(5.10f)

x4 = h
(
ẋn + 1

2 ẋ3

)
(5.10g)

ẋ4 = h
m [Fn+1 − c (ẋn + ẋ3)− k (xn + x3)] (5.10h)

xn+1 = xn + 1
6 (x1 + 2(x2 + x3) + x4) (5.10i)

ẋn+1 = ẋn + 1
6 (ẋ1 + 2(ẋ2 + ẋ3) + ẋ4) (5.10j)

Of all the methods tested, this routine was shown to produce the least error. Initially

the setdata routine was placed at the �End of Coe�cient Loop� time step and a test

at the end of each loop for balance of energy was introduced. Unfortunately run times

were extended signi�cantly because of this and so a quicker method ensuring balance

of energy had to be found. The Geometric Conservation Law mentioned by Farhat and

Lesoinne [19] (mentioned in Chapter 3) ensures energy balance if it is obeyed. Their �Im-

proved Staggered Serial� method of coupling obeys the GCL thus obviating the need for

a calculation at the end of each coe�cient loop. In order for it to work the extrapolation

method for displacement has to be second order accurate. Thus the setdata routine is

placed at the end of time step junction box and the extrapolation method modi�ed as

described in the following section.

Hybrid Method

This method is thus named because the velocity integration follows the Runge-Kutta

method described above which is 4th order accurate whereas the displacement extrapo-

lation follows the trapezoidal method which is 2nd order accurate in order to obey the
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Geometric Conservation Law.

x1 = ẋnh (5.11a)

ẋ1 = h
m (Fn − cẋn − kxn) (5.11b)

ẋ2 = h
m

[
1
2 (Fn + Fn+1)− c

(
ẋn + 1

2 ẋ1

)
− k

(
xn + 1

2x1

)]
(5.11c)

ẋ3 = h
m

[
1
2 (Fn + Fn+1)− c

(
ẋn + 1

2 ẋ2

)
− k

(
xn + 1

4x1

)]
(5.11d)

x4 = h
(
ẋn + 1

2 ẋ3

)
(5.11e)

ẋ4 = h
m

[
Fn+1 − c (ẋn + ẋ3)− k

(
xn + 1

2x1

)]
(5.11f)

xn+1 = xn + h
2 (ẋn + ẋn+1) (5.11g)

ẋn+1 =
ẋn + 1

6 (ẋ1 + 2(ẋ2 + ẋ3) + ẋ4)

1 + (2− ch
2m ) kh

2

12m

(5.11h)

From the above formulae, it can be seen that the velocity extrapolation has had to be

adapted to contain the 2nd order formula for the displacement expression. The mathe-

matical background to this is given here: In the original 4th order Runge-Kutta (RK4)

scheme the displacement expression included four intermediate displacement variables x1,

x2, x3, and x4, viz. xn+1 = xn + x1

6 + x2

3 + x3

3 + x4

6 . For compatibility, the intermediate

variables take on the following values:

x1 = ẋnh

x2 = h
2 (ẋn + ẋn+1)

x3 = h
2 (ẋn + ẋn+1)

x4 = ẋn+1h

Proof of compatibility follows:

xn+1 = xn + 1
6 (x1 + 2(x2 + x3) + x4)

xn+1 = xn + h
6 (ẋn + 2(ẋn + ẋn+1) + ẋn+1)

xn+1 = xn + h
2 (ẋn + ẋn+1)

A reminder of how the equivalent velocity expressions are de�ned in RK4:

ẋn+1 = ẋn + 1
6 (ẋ1 + 2(ẋ2 + ẋ3) + ẋ4)

ẋ1 = h
m (Fn − cẋn − kxn)

ẋ2 = h
m

[
1
2 (Fn + Fn+1)− c

(
ẋn + 1

2 ẋ1

)
− k

(
xn + 1

2x1

)]
ẋ3 = h

m

[
1
2 (Fn + Fn+1)− c

(
ẋn + 1

2 ẋ2

)
− k

(
xn + 1

2x2

)]
ẋ4 = h

m [Fn+1 − c(ẋn + ẋ3)− k(xn + x3)]

Inserting x3 into ẋ4:

ẋ4 = h
m [Fn+1 − c(ẋn + ẋ3)− k(xn + h

2 (ẋn + ẋn+1))]
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Separate out ẋn+1:

ẋ4 = h
m [Fn+1 − c(ẋn + ẋ3)− k(xn + h

2 ẋn)]− h2k
2m ẋn+1

Inserting x2 into ẋ3:

ẋ3 = h
m

[
1
2 (Fn + Fn+1)− c

(
ẋn + 1

2 ẋ2

)
− k

(
xn + h

4 (ẋn + ẋn+1)
)]

Separate out ẋn+1:

ẋ3 = h
m

[
1
2 (Fn + Fn+1)− c

(
ẋn + 1

2 ẋ2

)
− k

(
xn + h

4 ẋn
)]
− h2k

4m ẋn+1

Simplify with the de�nition of a new variable, ẋ3m:

ẋ3 = ẋ3m − h2k
4m ẋn+1

Inserting this back into ẋ4:

ẋ4 = h
m [Fn+1 − c(ẋn + ẋ3m − h2k

4m ẋn+1)− k(xn + h
2 ẋn)]− h2k

2m ẋn+1

Separate out ẋn+1:

ẋ4 = h
m

[
Fn+1 − c(ẋn + ẋ3m)− k(xn + h

2 ẋn)
]
− h2k

4m ẋn+1

(
2− ch

m

)
Simplify with the de�nition of a new variable, ẋ4m:

ẋ4 = ẋ4m − h2k
4m ẋn+1

(
2− ch

m

)
Thus the expression for ẋn+1 can be written as follows:

ẋn+1 = ẋn + 1
6 ẋ1 + 1

3 ẋ2 + 1
3 ẋ3m + 1

6 ẋ4m − h2k
12m ẋn+1

(
2− ch

2m

)
Rearranging:

ẋn+1 =
ẋn + 1

6 (ẋ1 + 2(ẋ2 + ẋ3m) + ẋ4m)

1 + h2k
12m

(
2− ch

2m

)
5.2.4 Veri�cation

To help in the choice of integration method, and in order to verify that it is implemented

correctly, a simple test of the above methods is carried out. A spreadsheet simulating

the integraton methods is set up and compared against the closed solution described in

� 5.2.3. A terse summary of test values of important variables follows:

Mass, m: 0·2420 kg

Damping, c: 4·631× 10−4 Ns/m
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Figure 5.4: Range of displacements produced by all integration methods tested

Stiffness, k: 0·1268 N/m

Amplitude of forcing function, F0: 4× 10−4 N

Angular frequency of forcing function, ω: 2π
12·4 s = 0·5067 rad/s

Undamping angular natural frequency, ωn:
√
k/m = 0·7239 rad/s

Timestep size, ∆t: 1 s

The plot in Figure 5.4 shows the development of displacement with time following

the above integration methods in a spreadsheet. Divergence in displacement caused by

error inherent in each extrapolation scheme can clearly be seen as time increases. In

order to make the di�erences between each very apparent the time step used is larger

than that would be used in practice. It can be seen that judging by this graph alone

the RK4 scheme gives the best performance out of all the extrapolation schemes tested.

However this comes with an increased runtime cost because extra iterations for each

time step are necessary to ensure energy balance. This can be avoided by employing the

ISS coupling method recommended by Farhat and Lesoinne [19]. In order to make this

possible however, the extrapolation scheme for displacement has to be second order which

the RK4 is not in its traditional form. Thus it is modi�ed to a �hybrid� of the trapezoidal

method of extrapolation for the displacement and the RK4 method for velocity. There

follows a validation of this scheme with a simple One Degree of Freedom (1DOF) problem

run in ANSYS CFX. The solver settings are chosen to enable a forcing function that follows

F0 sin(t) as closely as possible. Equivalent properties are entered into a spreadsheet

application which simulates the algorithms and the trace of displacement compared. If

the two sets of results match closely, this indicates that the hybrid extrapolation scheme

is valid.
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5.3 Validation

A set of 1DOF problems are run with varying parameters for sti�ness and damping to

construct response curves of the sort found in Harris and Piersol [27].

5.3.1 Simulation description

All simulations were carried using a commercial software supplied by ANSYS Inc. called

CFX-10.0.

The domains of all models used for the purposes of this veri�cation have a short

spanwise dimension to the extent that they can be considered two dimensional. Also

the �ow conditions and turbulence selected produce the most consistent and regular

sinusoidal load pattern possible on the cylinder object.

The following subsections give a terse list of the salient features of the simulations.

Domain geometry

Streamwise length of domain: 2·3 m

Transverse length of domain: 1·0 m

Spanwise length of domain: 0·05 m

Distance of cylinder from inlet: 0·5 m

Diameter of cylinder: 0·1 m

Fluid properties

Defined material: Air at 25�

Density: 1·185 kg
m3

Dynamic viscosity: 1·831× 10−5 kg
ms

Kinematic viscosity: 1·54515× 10−5 m2

s

Turbulence model: SST

Boundary conditions

Inlet boundary condition: Normal speed = 0·1545 m/s

This speed ensures a de�ned Reynolds number of

1000, ensuring a �ow regime where the lift force

exerted has a sinusoidal shape when plotted against

time. Turbulence intensity = 5% Eddy viscosity

ratio (µt/µ) = 10
Outlet boundary condition: Average static pressure 0Pa

(relative to reference pressure 1 atm)
Cylinder boundary condition: No slip wall (smooth)

Speci�ed mesh displacement:

Mesh motion X component = 0 m

Mesh motion Y component = getdispY
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Mesh motion Z component = 0 m

Axes convention:

X is streamwise direction,

Y is transverse direction,

Z is spanwise direction.
Transverse side walls

(parallel to cylinder axis):
Free slip wall

Spanwise side walls

(normal to cylinder axis):
Free slip wall

Mesh details

Cell type: Hexahedral throughout
No. of cells: 107536
No. of faces: 22676
No. of nodes: 119016
First node distance at cylinder surface: 1× 10−3 m

No. of cell layers in cylinder boundary region: 9
No. of cells around circumference of cylinder

boundary region:
70

Geometric growth rate of cell layer thickness in

cylinder boundary region:
1·013

Total thickness of cylinder boundary region: 0·009482 m

Cell size in spanwise direction: 0·0045 m

In the mesh generation, a surface is placed in the wake region behind the cylinder, in

the same plane as the cylinder axis and extending 1 m downstream. The purpose of

this surface is to attach a size function to it aswell as the outer surfaces of the cylinder

boundary region. This results in the cell size being small in the wake compared to the

free stream areas of the domain, and ensures an appropriate gradual growth in cell size

going away from the cylinder boundary and wake regions.

Geometric growth rate in cell size from source faces: 1·05

Cell size at source faces: 0·0075 m

Size limit in cell growth from source faces: 0·8 m

Fluid solver settings

Time step size: Adaptive to RMS courant number = 2

Minimum = 0·01 s

Maximum = 40 s

Initial size = 0·1 s

Average size = 0·14 s

Advection scheme: High resolution
RMS residual target: 1× 10−4

Transient scheme: Second order backward Euler
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Expert parameter: Mesh displacement updates at every iteration

The inclusion of the expert parameter above is necessary to ensure the cylinder displace-

ment returned from the structural solver is fed into the mesh at every iteration. This

ensures a balance of force at the cylinder surface at the completion of every time step

calculation.

Structural solver settings

Mass, m: 0·1218 kg

(i.e. cylinder taken to be a steel tube of

2 mm wall thickess)
Critical damping ratios, ζ: 0·05, 0·1
Stiffnesses, k: 0·10, 0·20, 0·30, 0·40, 0·50, 0·56, 0·57,

0·58, 0·59, 0·60, 0·61, 0·62, 0·63, 0·64,

0·70, 0·80, 0·90, 1·00

All combinations of critical damping ratio and sti�nesses above were run to obtain su�-

cient results to compare against published the data in Harris and Piersol [27] discussed

in 5.3.2.

5.3.2 Reference data

Harris and Piersol [27] discuss in detail oscillation characteristics of damped One De-

gree of Freedom systems subject to a sinusoidal forcing function, represented by equa-

tion (5.12).

mẍ+ cẋ+ kx = F0 sinωt (5.12)

A reproduction of the response curves based on equation (5.12) is given in Figure 5.5 on

the next page. To appreciate the contents of Figure 5.5 a few de�nitions follow.

Critical damping ratio ζ In general the more damping present in a system the less ability

it has to freely oscillate. The minimum value of damping coe�cient c, at which no free

oscillations can occur is the critical damping coe�cient cc, which is
√

(km) or mωn.

The critical damping ratio ζ is the ratio of damping coe�cient to the critical damping

coe�cient cc.

Response parameters Rd, Rv, Ra The equation for displacement is given below.

x = R sin(ωt− θ) = A1 sinωt+B1 cosωt (5.13)

Initially it can be said that equation (5.2) could be applied to de�ne the displacement.

In damped systems all oscillations at the natural frequency tend to disappear quickly

however, to leave only oscillations at the forcing frequency. This is considered to be the



CHAPTER 5. FLUID STRUCTURE INTERACTION 115

Figure 5.5: Response Factors for a viscous damped single DOF system
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steady state response and this is what is represented in equation (5.13). If equation (5.13)

is inserted into equation (5.12)...

x

F0/k
=

sin(ωt− θ)√
(1− ω2/ω2

n)2 + (2ζω/ωn)2
= Rd sin(ωt− θ) (5.14)

where

θ = tan−1

(
2ζω/ωn

1− ω2/ω2
n

)
(5.15)

and Rd is a dimensionless response factor giving the ratio of the amplitude of oscil-

lation to the spring displacement that would occur if force F0 was applied statically.

A similar dimensionless response factor for velocity can be obtained by di�erentiating

equation (5.14).

ẋ

F0/
√
km

=
ω

ωn
Rd cos(ωt− θ) = Rv cos(ωt− θ) (5.16)

Finally, di�erentiating equation (5.16) would result in an expression that includes a

dimensionless acceleration response factor.

ẋ

F0/m
= −ω

2

ω2
n

Rd sin(ωt− θ) = −Ra sin(ωt− θ) (5.17)

Figure 5.5 on the preceding page has four curves plotted on a graph, each relating to

one �xed value of critical damping ratio . On the horizontal axis the ratio of forcing

frequency to undamped natural frequency is plotted, ω/ωn. On the vertical axis is plotted

the velocity response factor Rv. On the axis at a positive 45◦ slope is the acceleration

response Ra. On the axis at a negative 45◦ slope is the displacement response Rd. The

rest of this chapter details the attempt to reproduce the low damping response curves

for a critical damping ratio of 0·05 as shown in Figure 5.5 on the previous page and in

so doing, prove the validity of the FSI implementation.

5.3.3 Response Plots

Figure 5.6 on the following page, Figure 5.7 on the next page, and Figure 5.8 on page 118

give the displacement, velocity, and acceleration response curves respectively obtained

from the range of numerical simulations carried out to prove the validity of the FSI

implementation used. By inspection it can be seen that these curve compare well with

Figure 5.5 on the previous page.

5.3.4 Phase Plots

Figures 5.9 on page 118 and 5.10 on page 119 present a typical force-time and displacement-

time signal for a simulation. Phase plots showing normalised force on the vertical axis

and normalised displacement on the horizontal axis can be constructed from these signals,

and can be used to determine the phase angle di�erence between them. A theoretical

�gure for the angle is given by equation (5.15), which can be compared with the angles
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Figure 5.6: Displacement Response Rd

Figure 5.7: Velocity Response Rv
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Figure 5.8: Acceleration Response Ra
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Figure 5.9: Force-time signal for ζ = 0·1 and ω/ωn = 1·348
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Figure 5.10: Displacement-time signal for ζ = 0·1 and ω/ωn = 1·348

measured from the phase plots. In all simulations from the moment the cylinder is

released a few cycles of oscillation occur before stationarity in the response, i.e. a steady,

consistent amplitude in both signals, is achieved. Figure 5.11 on the following page gives

an example of a phase plot showing solely the approach to a steady state response. The

rest of the phase plots presented in this chapter show the results for the ζ = 0·1 set of

simulations. They include solely the steady state response for clarity. There is also a red

ellipse plotted on these diagrams that indicate the locus of points de�ned by the angle

calculated from equation (5.15). For all simulations carried out, Table 5.3 shows the L2

error norm of the measured angles compared with the theoretical angle.

Table 5.3: L2 Error Norms of Phase Angles

ω/ωn ζ = 0·05 ζ = 0·1
0·739 0·250% 0·315%
0·781 0·290% 0·347%
0·825 0·486% 0·574%
0·886 0·797% 0·655%
0·954 1·434% 0·554%
1·045 1·297% 0·749%
1·167 0·396% 0·468%
1·348 0·397% 0·315%
1·651 0·514% 0·337%
2·334 0·817% 0·334%

It is interesting to note in Table 5.3 that the amount of error reaches a maximum in

the region of ω/ωn ≈ 1. The range of error increase is more pronounced for ζ = 0·05
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Figure 5.11: Force-Displacement phase plot for ζ = 0·1 and ω/ωn = 1·348

than for ζ = 0·1. Some amount of error can be attributed to the level discretisation

but the variation observed in the range of ω/ωn would suggest that there are non-linear

in�uences that the theoretical �gures used for comparison have not captured.
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(a) ω/ωn = 0·739
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(b) ω/ωn = 0·781

Figure 5.12: Force-Displacement phase plots for ζ = 0·1 simulations
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(c) ω/ωn = 0·825
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(d) ω/ωn = 0·886

Figure 5.12: Force-Displacement phase plots for ζ = 0·1 simulations (cont.)
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Figure 5.12: Force-Displacement phase plots for ζ = 0·1 simulations (cont.)
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Figure 5.12: Force-Displacement phase plots for ζ = 0·1 simulations (cont.)
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Figure 5.12: Force-Displacement phase plots for ζ = 0·1 simulations (cont.)
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5.4 Conclusions

The aim of this chapter is to demonstrate the FSI capability added to a commercial �uid

solver via user-de�ned functions. This has been achieved with a veri�cation process that

has identi�ed the most suitable method of integration to use.

The validation process has shown that the implementation works in a controlled test

modelling a sinusoidal forcing function. Even in such conditions the non-linear nature of

the FSI problem tested is apparent.



Chapter 6

Elastically Mounted Cylinder

6.1 Introduction

This chapter describes the FSI simulations carried out by a commercial solver adapted

as described in Chapter 5. Two sets of simulations have been carried out. The �rst set

presented here is for a cylinder free to move in only the cross-stream direction (i.e. only

one degree of freedom) in a regime far below that for which the drag crisis is known

to occur. Comparison is made with numerical and experimental literature to assess the

performance of the simulations.

The other set is for a cylinder free to move in the along-steam and cross-stream

directions (i.e. two degrees of freedom). The range of �ow regimes tested is the same as

for some of those simulated in Chapter 4. The object of this work is to investigate the

e�ect of the cylinder response on the drag crisis, in comparison to �ndings from Chapter 4

in particular, but also to analyse the e�ect of the drag crisis on the response. Furthermore

the comparison of the response characteristics with those for the 1DOF simulations and

those given in literature can give an insight into the role that the drag crisis plays in

aeroelastic behaviour of cylinders.

6.2 One Degree of Freedom Simulations

6.2.1 Overview

The 1DOF simulations follow the same input parameters as those presented by Saltara et

al. [66] for light cylinders, i.e. whose mass-damping ratio m∗ζ = 0·013 and whose reduced

velocities are in the range for which lock-in occurs.

The reason for focusing on this method is because Saltara et al. [66] observed that they

were only able to achieve the lower branch of excitation response which is represented

clearly in Figure 6.1.

127
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Figure 6.1: Amplitude response achieved by Saltara et al. [66]

As mentioned in Chapter 3, Saltara et al. [66] used DVM which is solely a two-

dimensional based method.

6.2.2 Simulation description

All simulations were carried out using ANSYS CFX-10.0. The following subsections give

a terse list of the salient features of the simulations.

Domain geometry

Streamwise length of domain: 2·3 m

Transverse length of domain: 1·0 m

Spanwise length of domain: 0·003 m

Distance of cylinder from inlet: 0·5 m

Diameter of cylinder: 0·1 m

Fluid properties

Defined material: Water
Density: 997·0 kg

m3

Dynamic viscosity: 8·899× 10−4 kg
ms

Kinematic viscosity: 8·92578× 10−7 m2

s

Turbulence model: SST
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Boundary conditions

Inlet boundary condition: Velocity U component

De�ned Re
Velocity U U?

(m
s ) (UfnD )

4000 3·57× 10−2 3·246

5000 4·46× 10−2 4·057

6000 5·36× 10−2 4·869

6162 5·50× 10−2 5·000

7000 6·25× 10−2 5·680

8000 7·14× 10−2 6·491

9000 8·03× 10−2 7·303

. . . where fn is natural frequency of cylinder, fn =

0·11Hz.

Velocity V component: -getvelY

Velocity W component: 0 m/s

Axes convention:

U is streamwise direction,

V is transverse direction,

W is spanwise direction.

Turbulence intensity = 5%

Eddy viscosity ratio (µt/µ) = 10
Outlet boundary condition: Static pressure for entrainment 0Pa

(relative to reference pressure 1 atm)
Cylinder boundary condition: No slip wall (smooth)
Transverse side walls

(parallel to cylinder axis):
Opening with cartesian velocity components as set

for inlet boundary condition

Spanwise side walls

(normal to cylinder axis):
Symmetry

Specified mesh displacement: Applied to all boundaries and mesh domain

X component = 0 m

Y component = getdispY+getvelY×∆t/2

Z component = 0 m

Axes convention:

X is streamwise direction,

Y is transverse direction,

Z is spanwise direction.

Mesh details

Cell type: Hexahedral throughout
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No. of cells: 50236
No. of faces: 101580
No. of nodes: 101052
First node distance at cylinder surface: 1·5× 10−4 m

No. of cell layers in cylinder boundary region: 78
No. of cells around circumference of cylinder

boundary region:
264

Geometric growth rate of cell layer thickness in

cylinder boundary region:
1·04

Total thickness of cylinder boundary region: 0·007617 m

Cell size in spanwise direction: 0·003 m

In the mesh generation, a surface is placed in the wake region behind the cylinder, in

the same plane as the cylinder axis and extending 1·3 m downstream. The purpose of

this surface is to attach a size function to it aswell as the outer surfaces of the cylinder

boundary region.

Geometric growth rate in cell size from source faces: 1·04

Cell size at source faces: 0·003 m

Size limit in cell growth from source faces: 0·2 m

Fluid solver settings

Time step size: 0·1 s

Advection scheme: High resolution
RMS residual target: 1× 10−4

Transient scheme: Second order backward Euler

Structural solver settings

Mass, m: 2·41960× 10−1 kg

Damping, c: 4·63120× 10−4 Ns
m

Stiffness, k: 1·26803× 10−1 N
m

6.2.3 Results

The amplitude response plots for the 1DOF simulations are presented in Figure 6.2 along-

side the data points from Figure 6.1.

By comparison with Figure 6.1 it can be seen that the upper branch response observed

experimentally by Khalak and Williamson [38] is not captured. Also the size of the

amplitude response is less than Figure 6.1 by a factor of ≈ 2. This is because the domain

used for the 1DOF simulations is 2D.

The [U/(fnD)] = 6·5 simulation is repeated with the following changes:

� spanwise extent of the domain increased (set to the value recommended by Nor-

berg [59]),
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Figure 6.2: Amplitude response achieved by 1DOF simulations

� near wall grid resolution increased,

� timestep size reduced.

The simulation details are the same as given in the preceding section with the following

exceptions.

Mesh details

Cell type: Hexahedral throughout
No. of cells: 3834320
No. of faces: 211636
No. of nodes: 3940387
First node distance at cylinder surface: 2× 10−5 m

No. of cell layers in cylinder boundary region: 166
No. of cells around circumference of cylinder

boundary region:
323

Geometric growth rate of cell layer thickness in

cylinder boundary region:
1·001 up to 1·4 mm boundary

layer thickness, 1·04 beyond.

Total thickness of cylinder boundary region: 0·02785 m

Cell size in spanwise direction: 0·013 m
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In the mesh generation, a surface is placed in the wake region behind the cylinder, in

the same plane as the cylinder axis and extending 1·3 m downstream. A size function is

attached to this surface aswell as the outer surfaces of the cylinder boundary region.

Geometric growth rate in cell size from source faces: 1·08

Cell size at source faces: 0·001 m

Size limit in cell growth from source faces: 1·0 m

Fluid solver settings

Time step size: 0·04 s

Structural solver settings

Mass, m: 37·8679 kg

Damping, c: 8·02741× 10−2 Ns
m

Stiffness, k: 21·9792 N
m

Figure 6.3: Cross-stream displacement time signal for [U/(fnD)] = 6·5 simulation with
extended spanwise dimension

Figure 6.3 shows that the cross-stream displacement time signal achieves an amplitude

similar to the lower branch amplitude given in Figure 6.1. This closer agreement with

experimental data is likely due to the re�nement in near-wall grid resolution and timestep

size. Observations by Henderson [28] regarding the de-correlation of lift force as the

spanwise extent of a simulation domain is increased, suggests that inclusion of three

dimensional e�ects would not likely increase the lift force amplitude.

The boundary condition speci�ed for the transverse side walls for the above simu-

lations is another source of error. Ideally they should be set for static pressure and
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entrainment (as speci�ed in the simulations of the next section). It has been found, how-

ever, that they have had to be set with velocity components set the same as for the inlet

to ensure numerical stability throughout the simulation. This would increasingly disrupt

the wake as the extent of cross-stream displacement of the cylinder grows throughout

the simulation.

6.3 Two Degree of Freedom Simulations

6.3.1 Overview

Two of the simulations from Chapter 4 are continued with a freedom of the cylinder to

move in the along-stream (x) and cross-stream (y) directions. Thus the domain size and

the meshes used are the same as has been described in section 4.2. The two Reynolds

Numbers, (uncorrected for turbulence), that have been continued are 90000 and 100000.

Mass, sti�ness and damping parameters have been chosen to produce similar bound-

ary conditions, i.e. m∗ζ = 0·013, to those reported in section 6.2. The reduced velocity

is [U/(fnD)] = 4·635, and [U/(fnD)] = 5·150, for Re = 90000, and Re = 100000 respec-

tively.

The displacement of the cylinder in the along-stream and cross-stream directions, and

the lift and drag forces are recorded and reported in � 6.3.3.

6.3.2 Simulation description

All simulations were carried out using ANSYS CFX-10.0. The salient features of these

are mostly covered in � 4.2. The following sections describe the settings that are unique

to this part of the thesis.

Boundary conditions

Inlet boundary condition: Velocity U component: U-getvelX

Velocity V component: -getvelY

Velocity W component: 0 m/s

Axes convention:

U is streamwise direction,

V is transverse direction,

W is spanwise direction.

Outlet boundary condition: Static pressure for entrainment

Pressure maintained at 0Pa

(relative to reference pressure 1 atm)

Transverse side walls

(parallel to cylinder axis):
Static pressure for entrainment

Pressure maintained at 0Pa
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(relative to reference pressure 1 atm)

Specified mesh displacement: Applied to all boundaries and mesh domain

X component = getdispX+getvelX×∆t/2

Y component = getdispY+getvelY×∆t/2

Z component = 0 m

Axes convention:

X is streamwise direction,

Y is transverse direction,

Z is spanwise direction.

Structural solver settings

Mass, m: 21·6387 kg

Damping, c: 1·25101× 10−1 Ns
m

Stiffness, k: 93·4176 N
m

6.3.3 Results

Displacements

The cross-stream displacement time signals for all simulations are given in Figure 6.4.

In Figure 6.4a, it can be seen that the maximum amplitude response begins at a non-

dimensional time interval of 26[tU/D] after release. The maximum amplitude reached is

0·29[y/D].

In Figure 6.4b, it can be seen that the maximum amplitude response begins at a non-

dimensional time interval of 80[tU/D] after release. The maximum amplitude reached is

0·71[y/D]. It is worth noting that this exceeds any amplitude in the 1DOF simulations

reported in section 6.2.

The along-stream displacement time signals for all simulations are given in Figure 6.5.

In Figure 6.5a it can be seen that initially after release only one oscillation frequency

occurs. It is from 20[tU/D] onwards that a second frequency appears. A maximum

amplitude of 0·059[x/D] is reached at the end of the simulation which indicates that the

oscillation had not yet reached the maximum �gure acheivable.

In Figure 6.5b a change in oscillation frequency is observed from 60[tU/D] after release

and beyond. This indicates a change in nature of vortex shedding whose amplitudes are

continually building up to the end of the simulation. The maximum amplitude observed

in the simulation is 0·19[x/D].

An attempt to view the phase relationship between the cross-stream and the along-

stream displacements has been carried out in Figure 6.6.

For the sake of clarity solely the oscillations between 25[tU/D] and 50[tU/D] after

cylinder release have been included in Figure 6.6a, also the development of this �gure over

time is given in Figure B.1. An arc can be observed where the maximum cross-stream
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Figure 6.4: Cross stream displacement-time plots
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Figure 6.5: Along stream displacement-time plots
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Figure 6.6: Cross stream vs. along-stream displacement plots
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displacement occurs at the point of maximum along-stream displacement, and the zero-

crossing of the cross-stream displacement occurs at the point of minimum along-stream

displacement.

Figure 6.6b includes solely the oscillations from 60[tU/D] to [120tU/D] after cylinder

release. The development of this �gure over time is given in Figure B.5. An arc is observed

similar initially to the arc seen in Figure 6.6a. As the oscillations continue, the extent of

the along-stream displacements grow while that of the cross-stream displacements remain

constant.

In Figure B.5xvi the cylinder is seen to go upstream of its initial release position by a

signi�cant amount (compared to its along-stream movement up until that moment). This

coincides with the 0·05D minimum shown within the range 90−95[tU/D] in Figure 6.5b.

This is also the point in time from which the phase relationship between along-stream

and cross-stream displacement begins to vary wildly, and the extent of along-stream

displacment continues to be on a relatively large and increasing scale.

Forces

The drag coe�cient time signals for all simulations are given in Figure 6.7. In each of

these �gures, a green line is shown indicating the level of drag found in chapter 4 for the

same Reynolds Number.

Figure 6.7a shows a change in signal from 25[tU/D] after cylinder release consistent

with that shown in Figure 6.5a. The range of oscillations extend from CD = 0·5 to

CD = 1·6. The centre of the oscillations are at CD = 1·05, well above the �gure given in

Chapter 4.

Figure 6.7b shows a change in signal from 60[tU/D] after cylinder release consistent

with that shown in Figure 6.5b. The range of oscillations extend from CD = −0·8 to

CD = 3·0. The negative value of drag suggests that the cylinder travels faster than

the �ow in the +x direction. A modulation in amplitude can be seen to occur with

the minimum at 90[tU/D] after cylinder release. The centre of the oscillations are at

CD = 1·1, above the �gure given in Chapter 4.

Spectral frequency plots for lift coe�cient are given in Figure 6.8. The dominant fre-

quencies encountered are shown in Table 6.1. It can be seen that the dominant shedding

frequency for all Two Degrees of Freedom (2DOF) simulations is reduced, in comparison

to the simulations presented in Chapter 4.

Table 6.1: Dominant Frequencies

Reynolds Number
Static Dominant
Frequency (fD/U)

2DOF Dominant
Frequency (fD/U)

90000 0·253 0·194
100000 0·257 0·189
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Figure 6.7: Drag coe�cient-time plots
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Figure 6.8: Spectral frequency plots for lift coe�cient
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Plots of lift coe�cient vs. cross-stream displacement are given in Figure 6.9.
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Figure 6.9: Lift coe�cient vs. cross-stream displacement plots

Figure 6.9a shows that there is a gradual changeing phase angle between lift force

and cross-stream displacement that ranges between 0◦ and ≈ 10◦. A distortion of the

extreme ends of the trace from the +45◦ slope indicates the occurrence of non-linear

e�ects at the extreme limits of displacement.

Figure 6.9b shows the upper limit of the phase angle between lift force and cross-

stream displacement is ≈ 20◦. More distortion of the extreme ends of the trace compared

with Figure 6.9a indicates that the non-linear e�ects at the extreme limits of displacement
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for the Re = 100000 simulations is more pronounced than for the Re = 90000 simulations.

Plots of drag coe�cient vs. along-stream displacement are given in Figure 6.10. The

development of Figures 6.10a and 6.10b over time is given in Figures B.2 and B.6 respec-

tively.
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Figure 6.10: Drag coe�cient vs. along-stream displacement plots

Figures 6.10a and B.6 show the trace of drag coe�cient with along-stream displace-

ment beginning with a negative slope, with the maximum drag occurring at the upstream

extent and the minimum drag occuring at the minimum extent. It is worth noting that

the drag coe�cient shown in these plots is based on the inlet velocity i.e. a �xed value,



CHAPTER 6. ELASTICALLY MOUNTED CYLINDER 143

so any variation in CD shown is solely due to variation in drag force.

The drag coe�cient holds a relatively constant value for pre-critical �ow regimes,

thus an increase in velocity is re�ected by an increase in drag force (assuming all else is

constant). Thus a negative slope as described above is a simple re�ection of the relative

velocity experienced by the cylinder: higher when moving upstream, lower when moving

downstream.

The Reynolds number experienced by the cylinder varies with the e�ective velocity

which is the sum of the �ow velocity and velocity due to its movement. Thus the drag

coe�cient can drop if the e�ective Reynolds number of the upstream movement goes into

the critical regime. Such a drop is evident in Figure B.2v, the maximum drag occurs just

before the maximum upstream displacement is reached. Consequently, a relatively lesser

drag force at the upstream extent pushes the cylinder less far in its next downstream

motion, as can be seen in Figure B.2vi. Since the downstream displacement is less, the

spring pushes the cylinder less far upstream as shown in Figure B.2vii.

Continuing to Figure B.2ix it can be seen that the minimum drag force occurs after

the cylinder has reached its downstream extent, i.e. as it is moving upstream again. This

is allowing energy to enter the system, as can be seen by the further upstream extent

reached in Figure B.2xi. Thus it can be generally said that energy is entering the system

if the trace of drag vs. along-stream displacement follows a clockwise loop as the cylinder

passes through its downstream extent. The same can also be said if the trace follows a

clockwise loop at the upstream extent.

As the trace continues, a few ��gure of eight� loops develop albeit lopsided with

every stroke having a negative gradient, seen from Figure B.2xii to B.2xvii. Energy

is continually entering and leaving the system with each clockwise and anti-clockwise

stroke. Interestingly, each upstream anticlockwise stroke through this sequence occurs at

a progressively lower value of drag, causing the slope of the consequent upstream motion

of the trace progressively approach the vertical.

This trend continues until ultimately a postive gradient occurs, as can be seen in

Figure B.2xxix. This signi�es that there was unsu�cient drag at the upstream extent

to force the spring to push the cylinder back upstream, allowing the �ow to push the

cylinder further downstream than previously, as seen in Figure B.2xxx.

In Figure 6.10b and Figure B.6 a similar trace develops at the start. In this case

however it is interesting to note the negative drag and negative along-stream displacement

(i.e. further upstream of the release position) that occurs.

The negative drag occurring at the downstream extent of movement is produced

by the cylinder moving faster than the �ow to produce a reversal of drag force. A

negative drag force on the cylinder as it is moving upstream puts energy into the system,

pushing the cylinder further upstream, as can be seen in Figures B.6ii to B.6ix. From

Figure B.6x onwards, the upstream extent of the cylinder is beyond the initial release

position, allowing the spring to push the cylinder downstream. Thus energy is being fed

into the system at both extremes of along-stream movement of the cylinder.
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A positive gradient of the trace occurs in Figure B.6xiv as the cylinder is moving

downstream. This is similar to the positive gradient shown in Figure B.2xxx discussed

above. The �ow pushes the cylinder further downstream than previously, shown in

Figure B.6xv. Interestingly the drag force that develops on the consequent upstream

movement, shown in Figure B.6xvi, is signi�cantly less than that developed on previous

upstream motions. This is because the e�ective Reynolds number at this instant is in

the critical regime resulting in a drop in drag coe�cient. The reduced drag on the

upstream stroke allows the cylinder to push further upstream than previously . This

is clear evidence of the drag crisis having a signi�cant e�ect on the movement of the

cylinder.

Due to the e�ect of the drag crisis, more energy is in the system, as can be seen in the

extremes of along-stream motion from Figure B.6xvi onwards. Negative drag occurs on

the downstream extreme extent of motion as shown in Figures B.6xix, B.6xxii, B.6xxiv,

and B.6xxviii. Negative drag also occurs when the cylinder is upstream of its initial

position as show in Figures B.6xxiii, B.6xxv, and B.6xxix. Each time negative drag

occurs, further energy enters the system and the extents of along-stream displacements

increase. The result is a horizontal ��gure of eight� where the lower loops of the trace

enter the negative drag region. It is easy to imagine that if this simulation was allowed

to run further the along-stream displacement would increase further.

Wake characteristics

To visualise the wake in a range of instants for the 2DOF simulations, the Q-criterion

developed by Hunt et al. [32] and as described by Green et al. [26] is plotted in the

following �gures. The Q-criterion is a scalar that indicates regions where rotation dom-

inates strain in the �ow. Letting S and Ω denote the symmetric parts of the velocity

gradient ∇u, one de�nes Q as the second invariant of ∇u, given for incompressible �ow

by Q = 1
2 (||Ω||2 − ||S||2) where ||·|| is the Euclidean (or Frobenius) matrix norm. A

coherent vortex is de�ned as a region where Q > 0.

Figures 6.11, 6.12, 6.13, 6.14, and 6.15 show an isosurface whereQ = 50 Hz2 indicating

areas of strong vorticity in the �ow. In all of these plots, the iso-surfaces shown are very

segregated and it is di�cult to determine the shapes of vortical structures. An animated

sequence of these plots through a shedding cycle would improve the likelihood of achieving

this objective.

Figure 6.11 shows the state of the �ow �eld for the Re = 90000 simulation prior to

the cylinder being released, Figure 6.12 shows the �ow �eld for the same simulation after

release at the last recorded time frame. The movement of the cylinder is evident by the

increased width of the wake in Figure 6.12a compared to that shown in Figure 6.11a.

On the upstream face of the cylinder there is a strip of blue, the colour of the cylin-

der surface, showing through the green of the iso-surface that surrounds the rest of the

cylinder. This is a region where there is no signi�cant rotation element to the �ow on

the cylinder surface. This is where the �ow is incident to the cylinder surface, i.e. the
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stagnation point. The rotating element of �ow only begins to develop as it travels away

from this point and undergoes friction with the cylinder surface. It is interesting to ob-

serve that the blue strip/ stagnation point is o�set from the cylinder axis in Figure 6.12c,

whereas in Figure 6.11c there is no noticeable o�set. Thus this o�set can be seen to be

an indication of the extent of cross-stream velocity of the cylinder.

Figure 6.13 shows the �ow �eld of the Re = 100000 simulation prior to release of

the cylinder. The iso-surfaces indicating where Q = 50 Hz2 in the �ow extends further

in the wake of the cylinder in Figure 6.13a compared with that shown in Figure 6.11a.

This demonstrates the higher degree of vorticity produced in the wake as the Reynolds

number increases.

Figure 6.14 shows the state of �ow in a time instant within the initial period after

cylinder release (0[tU/D] to 60[tU/D] as shown in Figure 6.7b. There are no features in

this �gure that are strikingly di�erent to those shown in Figure 6.13.

Figure 6.15 shows the state of �ow at the last recorded instant for the Re = 100000

simulations. The cross-stream movement of the cylinder is obvious by the position of the

stagnation point in Figure 6.13c. Some of the blue strip of the cylinder surface in this

view is occluded by iso-surfaces, showing that the cylinder is entering its own wake as it

is moving. Also a degree of along stream movement is evident by the upstream position

(in the domain frame of reference) of the iso-surface that can be seen to the side of the

cylinder in Figure 6.15a.
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(a) view along cylinder axis

(b) isometric view with cylinder axis vertical

(c) view in streamwise direction

Figure 6.11: Q-criterion=50 Iso-surface for Re = 90000 simulation prior to release
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(a) view along cylinder axis

(b) isometric view with cylinder axis vertical

(c) view in streamwise direction

Figure 6.12: Q-criterion=50 Iso-surface for Re = 90000 simulation after release
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(a) view along cylinder axis

(b) isometric view with cylinder axis vertical

(c) view in streamwise direction

Figure 6.13: Q-criterion=50 Iso-surface for Re = 100000 simulation prior to release
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(a) view along cylinder axis

(b) isometric view with cylinder axis vertical

(c) view in streamwise direction

Figure 6.14: Q-criterion=50 Iso-surface for Re = 100000 simulation after release
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(a) view along cylinder axis

(b) isometric view with cylinder axis vertical

(c) view in streamwise direction

Figure 6.15: Q-criterion=50 Iso-surface for Re = 100000 simulation after release
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6.4 Concluding Remarks

Some interesting and new observations have been made in this chapter. The e�ect of

the response on the drag crisis has been to reduce the dominant shedding frequency, as

shown in Table 6.1. The movement of the cylinder has also had the e�ect of increasing

the average drag, as can be seen in Figures 6.7a, and 6.7b.

Considering the e�ect the drag crisis has had on the response, it has been shown

that in comparison to the same reduced velocities presented in Figure 6.1 the amplitude

response within lock-in is increased. It is the 2DOF Re = 100000 simulation which has

shown that the drag crisis has the e�ect of producing greater cross-stream oscillation

displacements than has been observed for the 1DOF simulations. Figure 6.10b in partic-

ular has shown that the drag crisis is in e�ect when the cylinder moves upstream. The

consequent reduction in drag allows energy to enter into the system which ultimately

leads to an increase in amplitude response.

It is the author's view that if the simulations carried out in this chapter were con-

tinued, further new observations regarding the drag crisis and aeroelastic response could

be made. The data samples produced so far by these simulations are not long enough to

be subject to the tests for stationarity presented in Chapter 4. Indeed, given the data

observed thus far, it is not possible to tell if a stationary response can be achieved due to

the presence of the drag crisis phenomenon. It would be interesting if future work could

attempt to answer this question.



Chapter 7

General Conclusions

This �nal chapter concludes the thesis by discussing the achievements and important

issues that have been highlighted by the work carried out.

The aim of Chapter 4 was to numerically simulate the drag crisis on a stationary

cylinder. It was decided early on that LES would be the best candidate for this purpose.

The onset of drag crisis was captured but it has been demonstrated that the choice of

SGS model is important. The Smagorinsky SGS model expectedly failed to capture the

drag crisis due to overprediction of eddy viscosity close to the cylinder surface. The

overprediction occurred because the model constant had a �xed value for the entire

domain. The alternative Dynamic model based on Germano and Lilly [41] overcomes

this problem by using a model constant that is calculated locally at every timestep based

on two �lterings of the �ow variables so that it varies in both space and time. The

di�erence in results from each SGS model was clearly demonstrated.

The importance of blockage and the e�ect of free-stream turbulence was discussed.

It was concluded that a correction for blockage and free-stream turbulence was necces-

sary to obtain close agreement with experimental data [83]. This was done following

recommendations set out by ESDU in [84] and [83].

The range of shedding frequencies, separation angles, drag coe�cients, and base pres-

sure coe�cients from the simulations are consistent with �gures given in the experimental

literature associated with the onset of the �one-bubble� regime. To the author's knowl-

edge there is no other work presented in literature that includes the use of LES to capture

the onset of the drag crisis and produce drag coe�cients within the �cli�-face� as pre-

sented in Figures 4.19, 4.20, and 4.21.

This work could be further extended by running simulations with the Dynamic SGS

model for higher Reynolds Numbers than have been achieved so far. This can extend

the drag crisis beyond the �one-bubble� regime towards the �two-bubble regime�, where

new observations can be made.

The work in Chapter 5 extended the capabilities of a commercial CFD solver to enable

FSI simulation to be possible. A comparison of integration methods were examined. The

152
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best perfoming integration method in terms of accuracy was not compatible with the

Geometric Conservation Law, which meant extra iterations were necessary for every

timestep to ensure energy balance was achieved. The overhead introduced by the extra

iterations increased solver runtimes to the point that it was impractical. So an adapted

method was employed that obeyed the GCL meaning no extra iterations were necessary.

The adapted method achieves the best advantages in terms of speed and accuracy from

all the methods investigated and was found to give satisfactory performance when tested.

There are further coupling methods in the literature which could be tested and eval-

uated to see if improvements can be made to improve solution time in particular. An

example of this could be to implement the Block-Newton proposed by Matthies and

Steindorf [46] that is summarised by the �ow diagram in Figure 3.9.

A validation procedure was followed that demonstrated that the FSI implementation

worked well. Even though the parameters of the test �ow simulations were chosen to

best produce a regular sinusoidal forcing function, the results showed some non-linear

features.

The work presented in Chapter 6 made use of the developed FSI capability in Chap-

ter 5 to run two sets of simulations. The main aim was to investigate the impact of the

cable response on the drag crisis and vice-versa.

The �rst set of simulations involved a cylinder free to move in only in a cross-stream

direction normal to its axis (1DOF). The mass, damping, and sti�ness parameters were

carefully chosen to match a similar numerical simulation carried out by Saltara et al. [66]

using a two-dimensional DVM method. The simulations presented in this thesis were

carried out on a solver that used the CVFEM with which three dimensional domains

capable of capturing spanwise correlation e�ects are possible.

Both the simulations performed by Saltara et al. [66] and the equivalent simulations

presented in this thesis failed to capture the �upper-branch� response reported in the

experimental literature (e.g. Khalak and Williamson [38]). Further work to provide

insight into this limitation could be done by performing simulations with spanwise lengths

greater than those proposed by Norberg [59], and with re�nements in grid resolution and

time step size to see if a response in the �upper-branch� can be acheived.

The second set of simulations included freedom of the cylinder to move in the along-

stream direction normal to its axis, in addition to the cross-stream direction 2DOF. The

simulations were run for Reynolds numbers simulated in Chapter 4, include the drag crisis

range. The mass, damping, and sti�ness parameters were chosen to produce reduced

velocities in the same range as the 1DOF simulations to allow comparisons to be made.

It was found that the amplitude response for the 2DOF simulations were di�erent to

the 1DOF simulations. Further 2DOF simulations would produce further insight into these

di�erences and could de�ne important features including the range of the lock-in region

and the response when lock-in occurs.

The drag crisis contributes to the increased response by allowing more energy to go

into the cable on the upstream stroke of the oscillations. In this motion the e�ective
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Reynolds Number is increased by the greater velocity of �ow at the cylinder surface,

to the extent that it is within the drag crisis range and thus produces less drag than

otherwise be possible.

In addition, it has been shown in Figure 6.10b that a reversal of drag can occur

in both upstream and downstream movements of the oscillation, respectively due to the

momentum of the �uid carried behind the cylinder, and the velocity of cylinder movement

being greater than that of the �ow.

This thesis has produced new insight into the role that the drag crisis plays in the

movement of a sprung cylinder in cross-�ow. It is the author's hope that this will be useful

in �uid structure interaction modelling of cables used in civil engineering structures.
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Appendix A

User Routine Overview

This appendix discusses in detail the user de�ned routines mentioned in Chapter 5.

A.1 Junction Box setupdata

This is the �rst routine invoked during the solver process. It is a junction box routine

executed at the �User Input� position shown in Figure 5.1. This is the recommended

position to use for setting up user-de�ned variables in an especially reserved area of the

data structure, named /USER_DATA. The reason for this is to ensure that the user does

not need to make special provision for whether a run is carried out on one processor

(serial) or multiple processors (parallel) when writing code for setting up user-de�ned

variables. In the case of parallel runs, code executed from the "User Input" position is

carried out solely on the master process. Furthermore, after code from the "User Input"

position is executed, the entire contents of the /USER_DATA section in the data structure

of the master process is copied to the data structure of all slave processes. The following

numbered list describes the tasks carried out by the routine, in order of execution:

1. Look-up and store internal data structure boundary names for the cylinder. The

data structure operates in a mock hierarchical directory format. Boundary names

de�ned in the problem de�nition ANSYS CFX Command Language (CCL) have an

equivalent name in used by the solver in data structure path names. At these

locations in the data structure, useful data including tangential and normal forces

experienced by the cylinder boundary will be stored.

2. Look-up and store the current accumulated time step number (referred to as ATSTEP

in the data structure), and the �nal accumulated time step number for the current

run. This information is useful for the next task.

3. Create a two-dimensional array in /USER_DATA for storing data from the user-

de�ned routines as the run progresses. Every column of the array is relevant to a

data variable. Every row of the array is relevant to a time step in the current run.
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4. Create an integer variable in /USER_DATA for storing the number of columns in the

aforementioned array. This is useful for data access purposes.

5. Look-up and store the values of user-de�ned variables given in the 'USER:' part

of the problem de�nition CCL. These can be found in an especially reserved area

of the data structure called /USER.

The values included are:

� Mass of cylinder

� Damping constant of cylinder

� Sti�ness constant of cylinder

� The timestep from which the cylinder is 'freed'.

The latter variable in the above list can be used to keep a cylinder stationary in the

initial stages of a simulation. This enables a �ow �eld to develop fully without the

possibility of cylinder movement adding an element of instability to the problem.

If the run is a continuation from a previous simulation, the following values should

also be included:

� Force from previous time step exerted on the cylinder in the along-stream and

cross-stream directions.

� Velocity from previous time step of the cylinder in the along-stream and cross-

stream directions.

� Displacement from previous time step of the cylinder in the along-stream and

cross-stream directions.

These values are necessary for the extrapolation routine that generates similar

data for the current time step to operate correctly. For intermediate time steps

in a run, it is easy access to such values. For the �rst and last time step in

a run, however, special provisions have to be made for the lack of ability to

store user-de�ned data as part of a ANSYS CFX results data �le. Thus at the

end of each run there is user code that generates a �le called �initF.ccl�

containing CCL that is intended to overwrite the original USER: part of a

problem de�nition �le. To enable this, the inclusion of � ccl initF.ccl� in

the command invoking subsequent runs is required.

A.2 Junction Box setdata

This is the next junction box routine executed in the solver process. It is a junction box

routine executed at the �End of Time Step� position shown in Figure 5.1. Alternatively

this routine can be placed at the �End of Coe�cient Loop� position if the displacement

of the mesh is set to be updated for each sub-iteration in a time step. This can be done



APPENDIX A. USER ROUTINE OVERVIEW 165

with an �expert parameter� called �meshdisp each coe�ter� set to �t�. By default this

option is set to false.

For parallel runs the main part of the source code of setdata is set to be executed

by the master node/process only. There is also code to ensure that the latest calculated

values of displacement and velocity are sent to the data structure of the slave processes.

The slave distribution code will always be executed after the main part of the source

code on the master/node process has been executed, thus ensuring the latest calculated

data is used.

The following numbered list describes the tasks carried out by the routine, in order

of execution:

1. Look-up and store time step related data, including

� Current accumulated time step

� Time step size

� Accumulated time

2. As long as the accumulated time step is greater than the limit speci�ed in the USER:

part of the problem de�nition CCL, retrieve forces, velocities and displacements

from the previous time step and extrapolate the forces, accelerations, velocities

and displacements for the current time step.

3. Store the latest calculated forces, accelerations, velocities and displacements for the

current time step in the output array in /USER_DATA.

A.3 Subroutine hybrid

This is the integration routine called by the setdata routine to calculate latest forces,

accelerations, velocities, and displacements. It is a separate routine to setdata for ease

of maintenance. More detail on the integration method is given in Chapter 5.

A.4 CEL functions getdata

getdisp_x, getdisp_y, getvel_x, and getvel_y functions are all CEL functions. These

functions are referenced in other parts of the CCL to de�ne the mesh and boundary mo-

tion. Since the �ow is uncon�ned the mesh can be moved as a whole with the cylinder

displacement. This is preferable to moving individual vertices of the mesh by di�ering

amounts because this incurs more computational e�ort and signi�cantly increases solu-

tion times. Thus to keep the direction of �ow correct relative to the moving boundaries

an additional component of �getdisp + getvel × time step size/2 is included in each

degree of freedom.

The four CEL functions execute the getdata routine which returns the appropriate

value of velocity or displacement existing in the memory of the user code at the time.
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A.5 Junction Box writedata

This is the �nal junction box routine to discuss. It is invoked at the �User Output�

position shown in Figure 5.1.

The �User Output� position is the recommended position to write out data at the end

of a run. For parallel runs it is executed on the master node/process only.

The following numbered list describes the tasks carried out by the routine, in order

of execution:

1. Write the contents of the output array stored in /USER_DATA to a text �le called

�coupler_output.csv�.

2. Write the latest values of force, velocity, and displacement to an external CCL �le

called �initF.CCL�. The intention is to read in �initF.CCL� in a subsequent run

to ensure continuity in user-de�ned calculations in subsequent runs.



Appendix B

Additional �gures from 2DOF

simulations

This appendix contains many reproduced graphs from Chapter 6 to show their devel-

opment through time. Each graph is split into a number of timeframes. Each frame

shows the trace of the current timeframe in red. The trace for all timeframes prior to

the current one are shown in black. The trace for all timeframes after the current one

are shown in grey.
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B.1 [Re=90000] simulations
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Figure B.1: Development of along-stream and cross-stream displacements over time
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Figure B.1: Development of along-stream and cross-stream displacements over time
(cont.)
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Figure B.1: Development of along-stream and cross-stream displacements over time
(cont.)
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Figure B.1: Development of along-stream and cross-stream displacements over time
(cont.)
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Figure B.1: Development of along-stream and cross-stream displacements over time
(cont.)
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Figure B.2: Development of along-stream displacement and drag over time
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Figure B.2: Development of along-stream displacement and drag over time (cont.)
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Figure B.2: Development of along-stream displacement and drag over time (cont.)



APPENDIX B. ADDITIONAL FIGURES FROM 2DOF SIMULATIONS 176

0.025 0.0300.015 0.040

Along-stream displacement [x/D]

0.0450.0350.020 0.0550.010 0.0600.050

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

D
ra

g 
C

oe
ffi

ci
en

t C
D

(xix)

0.025 0.0300.015 0.040

Along-stream displacement [x/D]

0.0450.0350.020 0.0550.010 0.0600.050

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

D
ra

g 
C

oe
ffi

ci
en

t C
D

(xx)

0.025 0.0300.015 0.040

Along-stream displacement [x/D]

0.0450.0350.020 0.0550.010 0.0600.050

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

D
ra

g 
C

oe
ffi

ci
en

t C
D

(xxi)

0.025 0.0300.015 0.040

Along-stream displacement [x/D]

0.0450.0350.020 0.0550.010 0.0600.050

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

D
ra

g 
C

oe
ffi

ci
en

t C
D

(xxii)

0.025 0.0300.015 0.040

Along-stream displacement [x/D]

0.0450.0350.020 0.0550.010 0.0600.050

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

D
ra

g 
C

oe
ffi

ci
en

t C
D

(xxiii)

0.025 0.0300.015 0.040

Along-stream displacement [x/D]

0.0450.0350.020 0.0550.010 0.0600.050

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

D
ra

g 
C

oe
ffi

ci
en

t C
D

(xxiv)

Figure B.2: Development of along-stream displacement and drag over time (cont.)
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Figure B.2: Development of along-stream displacement and drag over time (cont.)
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Figure B.3: Development of cross-stream displacement and lift over time
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Figure B.3: Development of cross-stream displacement and lift over time (cont.)
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Figure B.3: Development of cross-stream displacement and lift over time (cont.)
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Figure B.3: Development of cross-stream displacement and lift over time (cont.)
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Figure B.3: Development of cross-stream displacement and lift over time (cont.)
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Figure B.6: Development of along-stream displacement and drag over time



APPENDIX B. ADDITIONAL FIGURES FROM 2DOF SIMULATIONS 194

Along-stream displacement [x/D]

0.05-0.10 0.100.00-0.05 0.15 0.20

5

4

3

2

1

0

-1

D
ra

g 
C

oe
ffi

ci
en

t C
D

(vii)

Along-stream displacement [x/D]

0.05-0.10 0.100.00-0.05 0.15 0.20

5

4

3

2

1

0

-1

D
ra

g 
C

oe
ffi

ci
en

t C
D

(viii)

Along-stream displacement [x/D]

0.05-0.10 0.100.00-0.05 0.15 0.20

5

4

3

2

1

0

-1

D
ra

g 
C

oe
ffi

ci
en

t C
D

(ix)

Along-stream displacement [x/D]

0.05-0.10 0.100.00-0.05 0.15 0.20

5

4

3

2

1

0

-1

D
ra

g 
C

oe
ffi

ci
en

t C
D

(x)

Along-stream displacement [x/D]

0.05-0.10 0.100.00-0.05 0.15 0.20

5

4

3

2

1

0

-1

D
ra

g 
C

oe
ffi

ci
en

t C
D

(xi)

Along-stream displacement [x/D]

0.05-0.10 0.100.00-0.05 0.15 0.20

5

4

3

2

1

0

-1

D
ra

g 
C

oe
ffi

ci
en

t C
D

(xii)

Figure B.6: Development of along-stream displacement and drag over time (cont.)
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Figure B.6: Development of along-stream displacement and drag over time (cont.)



APPENDIX B. ADDITIONAL FIGURES FROM 2DOF SIMULATIONS 196

Along-stream displacement [x/D]

0.05-0.10 0.100.00-0.05 0.15 0.20

5

4

3

2

1

0

-1

D
ra

g 
C

oe
ffi

ci
en

t C
D

(xix)

Along-stream displacement [x/D]

0.05-0.10 0.100.00-0.05 0.15 0.20

5

4

3

2

1

0

-1

D
ra

g 
C

oe
ffi

ci
en

t C
D

(xx)

Along-stream displacement [x/D]

0.05-0.10 0.100.00-0.05 0.15 0.20

5

4

3

2

1

0

-1

D
ra

g 
C

oe
ffi

ci
en

t C
D

(xxi)

Along-stream displacement [x/D]

0.05-0.10 0.100.00-0.05 0.15 0.20

5

4

3

2

1

0

-1

D
ra

g 
C

oe
ffi

ci
en

t C
D

(xxii)

Along-stream displacement [x/D]

0.05-0.10 0.100.00-0.05 0.15 0.20

5

4

3

2

1

0

-1

D
ra

g 
C

oe
ffi

ci
en

t C
D

(xxiii)

Along-stream displacement [x/D]

0.05-0.10 0.100.00-0.05 0.15 0.20

5

4

3

2

1

0

-1

D
ra

g 
C

oe
ffi

ci
en

t C
D

(xxiv)
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Figure B.6: Development of along-stream displacement and drag over time (cont.)
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Figure B.7: Development of cross-stream displacement and lift over time
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Figure B.7: Development of cross-stream displacement and lift over time (cont.)
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Figure B.7: Development of cross-stream displacement and lift over time (cont.)
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Figure B.7: Development of cross-stream displacement and lift over time (cont.)
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Figure B.7: Development of cross-stream displacement and lift over time (cont.)
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Figure B.8: Development of drag and lift over time
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Figure B.8: Development of drag and lift over time (cont.)
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Figure B.8: Development of drag and lift over time (cont.)
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Figure B.8: Development of drag and lift over time (cont.)
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Figure B.8: Development of drag and lift over time (cont.)
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