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Abstract

This thesis presents a programme of research which investigated a genetic programming

hyper-heuristic methodology to automate the heuristic design process for one, two and

three dimensional packing problems.

Traditionally, heuristic search methodologies operate on a space of potential solu-

tions to a problem. In contrast, a hyper-heuristic is a heuristic which searches a space of

heuristics, rather than a solution space directly. The majority of hyper-heuristic research

papers, so far, have involved selecting a heuristic, or sequence of heuristics, from a set pre-

defined by the practitioner. Less well studied are hyper-heuristics which can create new

heuristics, from a set of potential components.

This thesis presents a genetic programming hyper-heuristic which makes it pos-

sible to automatically generate heuristics for a wide variety of packing problems. The

genetic programming algorithm creates heuristics by intelligently combining components.

The evolved heuristics are shown to be highly competitive with human created heuris-

tics. The methodology is first applied to one dimensional bin packing, where the evolved

heuristics are analysed to determine their quality, specialisation, robustness, and scalability.

Importantly, it is shown that these heuristics are able to be reused on unseen problems.

The methodology is then applied to the two dimensional packing problem to determine if

automatic heuristic generation is possible for this domain. The three dimensional bin pack-

ing and knapsack problems are then addressed. It is shown that the genetic programming

hyper-heuristic methodology can evolve human competitive heuristics, for the one, two,

and three dimensional cases of both of these problems. No change of parameters or code is

required between runs. This represents the first packing algorithm in the literature able to

claim human competitive results in such a wide variety of packing domains.

ii



Acknowledgements

My sincere thanks go to my two supervisors, Professor Edmund Burke, and Professor Gra-

ham Kendall, for the encouragement and flexibility they have given to me over the last

three years. Through their support and trust, I have had the opportunity to direct my part

in an interesting and very challenging project, and to enjoy myself along the way.

Secondly, I have no doubt that this thesis is stronger because of the working

relationship I have had with Dr John Woodward, on the Engineering and Physical Sciences

Research Council (EPSRC) project that has funded this PhD. I greatly valued our meetings,

and his advice. I would like to also thank Dr. Gabriela Ochoa, for her support in the final

stages of the PhD, especially helping me to ensure that I have included all the relevant

literature.

My thanks also go to the EPSRC, whose funding made this project possible. In

addition, many thanks go to the rest of the academic and administrative staff at the Auto-

mated Scheduling, optimisAtion and Planning (ASAP) research group. I cannot imagine a

more interesting, diverse, and friendly group of people to work alongside, and I have learned

a lot from all of you.

iii



iv

Contents

List of Figures viii

List of Tables xii

1 Introduction 1
1.1 Structure of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Academic Publications Produced . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Literature Review 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Hyper-Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Hyper-Heuristics to Choose Heuristics. . . . . . . . . . . . . . . . . . 14
2.2.2 Hyper-Heuristics to Create Heuristics. . . . . . . . . . . . . . . . . . 21

2.3 One Dimensional Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.1 Problem Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Two Dimensional Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.1 Problem Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.2 Exact Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.3 Heuristic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.4 Metaheuristic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Three Dimensional Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.1 Problem Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.2 Exact Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5.3 Heuristic and Metaheuristic Methods . . . . . . . . . . . . . . . . . . 38

2.6 Complexity Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.7 Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.7.1 Program Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.7.2 Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.7.3 The Five Preparatory Steps . . . . . . . . . . . . . . . . . . . . . . . 43
2.7.4 Genetic Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.7.5 Theoretical Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.7.6 Achievements of Genetic Programming . . . . . . . . . . . . . . . . . 49
2.7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



CONTENTS v

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Evolving Heuristics for the One Dimensional Bin Packing Problem 52
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 The First-Fit Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 How The Heuristic is Applied . . . . . . . . . . . . . . . . . . . . . . 54
3.3.2 Structure of the Heuristics . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.3 Simple Example of a Heuristic Constructing a Solution . . . . . . . 57
3.3.4 Heuristics Producing Illegal Solutions . . . . . . . . . . . . . . . . . 59
3.3.5 How the Heuristics are Evolved . . . . . . . . . . . . . . . . . . . . . 61

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.4.1 Individual Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.4.2 Statistical Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4.3 Comparison with First-Fit and Best-Fit, Employing the Basic Fitness

Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4.4 Comparison with First-Fit and Best-Fit, Employing the Second Fit-

ness Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4.5 Comparison with First-Fit and Best-Fit, Removing the ≤ Function . 74

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 The Reusability of Evolved Online Bin Packing Heuristics 79
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 The Best-Fit Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.1 How The Heuristic is Applied . . . . . . . . . . . . . . . . . . . . . . 82
4.3.2 Structure of the Heuristics . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.3 Simple Example of a Heuristic Constructing a Solution . . . . . . . 85
4.3.4 How the Heuristics are Evolved . . . . . . . . . . . . . . . . . . . . . 87

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.4.1 Example of an Evolved Heuristic . . . . . . . . . . . . . . . . . . . . 90
4.4.2 The Quality of Evolved Heuristics . . . . . . . . . . . . . . . . . . . 92
4.4.3 Specialisation of Evolved Heuristics . . . . . . . . . . . . . . . . . . 93
4.4.4 Robustness of Evolved Heuristics . . . . . . . . . . . . . . . . . . . . 95

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 The Scalability of Evolved Online Bin Packing Heuristics 99
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2.1 How the Heuristic is Applied . . . . . . . . . . . . . . . . . . . . . . 100
5.2.2 Structure of the Heuristics . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2.3 How the Heuristics are Evolved . . . . . . . . . . . . . . . . . . . . . 104

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3.1 Performance past the training range . . . . . . . . . . . . . . . . . . 107
5.3.2 Performance over the training range . . . . . . . . . . . . . . . . . . 109



CONTENTS vi

5.3.3 Two Evolved Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6 Evolving Heuristics for Two Dimensional Strip Packing 120
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3.1 How the Heuristic is Applied . . . . . . . . . . . . . . . . . . . . . . 125
6.3.2 The Structure of the Heuristics . . . . . . . . . . . . . . . . . . . . . 127
6.3.3 Example of the Packing Process . . . . . . . . . . . . . . . . . . . . 130
6.3.4 How the Heuristics are Evolved . . . . . . . . . . . . . . . . . . . . . 134

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.4.1 Explanation of Benchmark Algorithms . . . . . . . . . . . . . . . . . 136
6.4.2 Comparison with Metaheuristics and the Best-Fit Heuristic . . . . . 139
6.4.3 Comparison with Reactive GRASP . . . . . . . . . . . . . . . . . . . 139
6.4.4 Example Packings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.4.5 Results with Parsimony Pressure and Cache of Heuristic Evaluations 142

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7 A Hyper-Heuristic for 1D, 2D and 3D Packing Problems 147
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.2 Problem Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.2.1 The Knapsack Problem . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.2.2 Knapsack Packing in Two and Three Dimensions . . . . . . . . . . . 149
7.2.3 The Bin Packing Problem . . . . . . . . . . . . . . . . . . . . . . . . 150
7.2.4 Bin Packing in Two and Three Dimensions . . . . . . . . . . . . . . 150

7.3 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.3.1 Bin and Corner Objects . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.3.2 Valid Placement of Pieces . . . . . . . . . . . . . . . . . . . . . . . . 153
7.3.3 Extending a Corner’s Surfaces . . . . . . . . . . . . . . . . . . . . . 153
7.3.4 Filler Pieces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.3.5 Bin Packing, and Packing in Lower Dimensions . . . . . . . . . . . . 155

7.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.4.1 How the Heuristic is Applied . . . . . . . . . . . . . . . . . . . . . . 156
7.4.2 The Structure of the Heuristics . . . . . . . . . . . . . . . . . . . . . 159
7.4.3 How the Heuristics are Evolved . . . . . . . . . . . . . . . . . . . . . 160

7.5 The Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.5.1 One Dimensional Instances . . . . . . . . . . . . . . . . . . . . . . . 163
7.5.2 Two Dimensional Instances . . . . . . . . . . . . . . . . . . . . . . . 164
7.5.3 Three Dimensional Instances . . . . . . . . . . . . . . . . . . . . . . 165

7.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.6.1 An Example Calculation . . . . . . . . . . . . . . . . . . . . . . . . . 167
7.6.2 Bin Packing Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.6.3 Knapsack Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172



CONTENTS vii

8 Conclusion 175
8.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
8.2 Summary of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

8.2.1 Chapters 3 - 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
8.2.2 Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
8.2.3 Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

8.3 Extensions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 180
8.3.1 Evolving Reusable Heuristics for Two and Three Dimensional Packing 180
8.3.2 Specialisation and Robustness of Two Dimensional Packing Heuristics 181
8.3.3 Intelligently Select which Allocations to Consider . . . . . . . . . . . 181
8.3.4 Improve the Three Dimensional Packing Representation . . . . . . . 181
8.3.5 Employ Higher Level Functions and Terminals . . . . . . . . . . . . 182
8.3.6 Evolving one General Packing Heuristic . . . . . . . . . . . . . . . . 182

8.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

References 184



viii

List of Figures

1.1 A diagram which clarifies one of the key themes of this thesis. One of the
motivations for hyper-heuristic research is to automate the heuristic design
process. This thesis presents methodologies which allow the human to be
replaced by genetic programming at the algorithm design stage, while cur-
rently a human must still specify the potential components of the heuristic
to be built. Such an automated system means that human involvement in
heuristic design can stop earlier in the process. . . . . . . . . . . . . . . . . 3

1.2 A conceptual graph of the potential advantage of hyper-heuristic systems
which generate heuristics. A metaheuristic system can begin to obtain solu-
tions to instances immediately. The hyper-heuristic cannot during the evo-
lution, but once a heuristic is evolved it can obtain solutions to problem
instances quickly. In the long run, the hyper-heuristic system as a whole
requires less time because it produces one quick constructive heuristic. . . . 5

1.3 The structure of the thesis over the chapters 3 through to 8. The diagram
shows that the thesis progresses from evolving non-reusable heuristics, to
evolving reusable heuristics, and then back again to systems which evolve
one heuristic per instance. The diagram also shows which chapters relate
to which problem domains, and that chapter 7 presents results on all three
domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 The relationship between a hyper-heuristic, the domain specific heuristics,
and a problem instance [252] . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 A diagram showing where the heuristics from table 2.1 would place a piece
of size 60. Next-fit only has access to the highest indexed bin and an empty
bin, and it chooses the empty bin in this case because the piece does not fit
into the highest indexed bin . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 An example tree structure representing a program that calculates the space
left in the bin in figure 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 The features of a one dimensional bin to which the tree in figure 2.3 could
be applied to . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5 An example of a genetic programming crossover operation being performed
on two parent trees to create two child trees . . . . . . . . . . . . . . . . . . 47



LIST OF FIGURES ix

2.6 An example of a genetic programming mutation operation being performed.
Only one parent tree is necessary, and one child tree is produced. The subtree
rooted at the circled node is deleted, and a new subtree is grown at the same
point, by randomly selecting each node . . . . . . . . . . . . . . . . . . . . . 48

3.1 Pieces remaining to be packed, and a partial solution . . . . . . . . . . . . . 54
3.2 The first piece is put into the third bin because it is the first bin with enough

space to accommodate it . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 The second piece is put into the fourth bin . . . . . . . . . . . . . . . . . . 54
3.4 The final two pieces are put into the first and fifth bins . . . . . . . . . . . 54
3.5 An example heuristic used in the analysis in section 3.3.3, to pack the pieces

in figures 3.6 to 3.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6 A partial solution. We will use the heuristic in figure 3.5 to pack the four

remaining pieces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.7 The piece of size 70 is packed into the first bin for which the heuristic returns

a positive number, the fifth bin . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.8 The piece of size 85 is packed into the sixth bin . . . . . . . . . . . . . . . . 58
3.9 The piece of size 30 is packed into the third bin . . . . . . . . . . . . . . . . 58
3.10 A heuristic that puts every piece in the first bin . . . . . . . . . . . . . . . . 60
3.11 A heuristic that puts no pieces in any bin . . . . . . . . . . . . . . . . . . . 60
3.12 A heuristic that puts no pieces in any bin . . . . . . . . . . . . . . . . . . . 60
3.13 Tree A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.14 Tree B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.15 Tree C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.16 Tree D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.17 Tree E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.18 Tree F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1 The start of the example of section 4.2, the piece of size 70 will be packed
next by the best-fit heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 The piece of size 70 is packed into the fourth bin because it has the least free
space of all the bins that the piece fits into . . . . . . . . . . . . . . . . . . 81

4.3 The next piece is packed into the third bin after all the bins are considered 81
4.4 The final two pieces are packed into the second and first bins . . . . . . . . 81
4.5 An example heuristic, used in the example packing described in section 4.3.3

and figures 4.6 to 4.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.6 The initial partial solution from section 4.3.3. The heuristic in figure 4.5 will

pack the first three pieces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.7 All of the bins are scored by the heuristic, the bin on the far right scores

the highest with 34500. A new empty bin is opened because the existing one
receives the piece. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.8 The newly opened bin on the far right scores the highest with 32250. Again,
a new empty bin is opened because there must always be one available. . . 86

4.9 For the third time, the empty bin receives the piece. The heuristic appears
to prefer to place each piece into a new bin. . . . . . . . . . . . . . . . . . . 86



LIST OF FIGURES x

4.10 Diagram of the piece size distributions of each class of instances created for
the experiments of chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.11 An example heuristic, evolved on T10−90 . . . . . . . . . . . . . . . . . . . . 91

5.1 The results for H100, H250, and H500 on the validation instances. The vertical
axis shows the amount of bins by which the 30 heuristics from each group
beat best-fit on average. The horizontal axis shows the number of pieces
packed. The results shown are the average amount of bins required by the
heuristics over the 20 validation instances. . . . . . . . . . . . . . . . . . . . 107

5.2 The results for the heuristics evolved on 100, 250, and 500 pieces of the train-
ing instances, on the first 500 pieces of each of the 20 validation instances.
This is a ‘zoomed in’ view of the same data displayed in figure 5.1. The
vertical axis shows the amount of bins by which the 30 heuristics from each
group beat best-fit on average. The horizontal axis shows the number of
pieces packed. The results shown are the average results of the 30 heuristics
over the 20 instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3 The function C/(E−S), which represents the best-fit heuristic when applied
in the fixed framework used in this chapter. The defining feature is the ‘wall’
which exists on the boundary of where the piece size matches the ‘emptiness’
of the bin. Behind this wall the piece size is larger than the emptiness, so
the piece does not fit in the bin. The bin which receives the maximum score
will be the bin with the least emptiness out of all of the bins that the piece
fits into. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4 A heuristic requiring 41448.4 bins on average over the validation set, thus
outperforming best-fit. The graph is in the same format as figure 5.3, but
rotated to put the ‘high emptiness’ side in the foreground. The heuristic has
much the same structure as best-fit, however the corner curls up at the end as
the piece size gets small and the emptiness gets large. There is also a ‘ridge’
in the landscape running in front of the wall, where certain combinations of
piece size and emptiness are rated higher than those adjacent to the ridge on
both sides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.5 A heuristic requiring 40573.3 bins on average over the validation set, thus
outperforming best-fit. This is the same heuristic as is displayed in figure 5.6 115

5.6 A heuristic requiring 40573.3 bins on average over the validation set. This is
the same heuristic as is displayed in figure 5.5 . . . . . . . . . . . . . . . . . 116

6.1 Bin structure after two pieces have been packed . . . . . . . . . . . . . . . . 123
6.2 The middle bin of figure 1 has been replaced by two new bins due to the

third piece being packed into it . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.3 As no piece can fit into bin three of figure 2, the base of bin three has been

raised, to combine it with bin two . . . . . . . . . . . . . . . . . . . . . . . 123
6.4 When the fourth piece is packed into the second bin, the heights of bin two

and three are the same and they have been combined . . . . . . . . . . . . . 123
6.5 An example heuristic, which is analysed in section 6.3.3 by packing the pieces

of figure 6.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130



LIST OF FIGURES xi

6.6 The pieces that the heuristic in figure 6.5 will pack for the example described
in section 6.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.7 The current partial solution, the heuristic will choose a piece from figure 6.6
to be placed in this solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.8 All of the locations where piece one from figure 6.6 can be placed . . . . . . 131
6.9 Allocation A from figure 6.8 in detail . . . . . . . . . . . . . . . . . . . . . . 131
6.10 Allocation C from figure 6.8 in detail . . . . . . . . . . . . . . . . . . . . . . 131
6.11 Both of the potential allocations for piece two . . . . . . . . . . . . . . . . . 133
6.12 The new partial solution after the allocation which received the highest score

has been performed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.13 Packing of instance c5p3 to a height of 91. Packed by the heuristic evolved

with population 64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.14 Packing of instance c5p3 to a height of 91. Packed by the heuristic evolved

with population 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.15 The heuristic that packed figure 6.13 . . . . . . . . . . . . . . . . . . . . . . 141
6.16 The heuristic that packed figure 6.14 . . . . . . . . . . . . . . . . . . . . . . 141

7.1 An initialised bin with one ‘corner’ in the back-left-bottom corner of the bin 152
7.2 A bin with one piece placed in the corner from figure 7.1 . . . . . . . . . . . 152
7.3 The three surfaces defined by the corner that is in the Y direction of the piece152
7.4 The three surfaces defined by the corner that is in the X direction of the piece152
7.5 An invalid placement of a new piece, because it exceeds the limit of the

corner’s XZ surface in the Z direction . . . . . . . . . . . . . . . . . . . . . 153
7.6 An invalid placement of a new piece, because it exceeds the limit of the

corner’s YZ surface in the Z direction . . . . . . . . . . . . . . . . . . . . . 153
7.7 A piece which reaches the limit of two surfaces of the corner that it was put

into . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.8 The three surfaces of the corner with the smallest available area . . . . . . 155
7.9 A filler piece is put into the corner from 7.8, the surfaces of two corners are

updated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155



xii

List of Tables

1.1 A summary of the implementation details for the genetic programming sys-
tem presented in each chapter. The parameters subtly change over time due
to experience, experimentation, and the capabilities of freely available genetic
programming code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 A description of existing constructive heuristics for one dimensional bin packing 27

3.1 The functions and terminals used in chapter 3, and descriptions of the values
they return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Genetic programming initialisation parameters for chapter 3 . . . . . . . . . 61
3.3 The performance of 20 heuristics, each evolved on all 20 instances using the

basic fitness function which is shown in equation 3.3, section 3.3.5 . . . . . 71
3.4 The performance of 20 heuristics each evolved on one instance, using the

basic fitness function which is shown in equation 3.3, section 3.3.5 . . . . . 72
3.5 The performance of 20 heuristics each evolved on all 20 instances using the

second fitness function which is shown in equation 3.4, section 3.3.5 . . . . 73
3.6 The performance of 20 heuristics each evolved on one instance, using the

second fitness function which is shown in equation 3.4, section 3.3.5 . . . . 74
3.7 The performance of 20 heuristics each evolved on all 20 instances, without the

≤ function included in the function set, and with the second fitness function,
which is shown in equation 3.4, section 3.3.5 . . . . . . . . . . . . . . . . . . 75

3.8 The performance of 20 heuristics each evolved on one instance, without the
≤ function included in the function set, and with the second fitness function,
which is shown in equation 3.4, section 3.3.5 . . . . . . . . . . . . . . . . . . 77

4.1 The functions and terminals used in chapter 4, and descriptions of the values
they return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 Genetic programming initialisation parameters for chapter 4 . . . . . . . . . 88
4.3 Summary of the results obtained by the heuristic shown in figure 4.11 com-

pared to the results of best-fit. The result shown is the total bins used over
the 20 instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4 The performance of each set of evolved heuristics tested against best-fit . . 93



LIST OF TABLES xiii

4.5 A comparison of the performance of six sets of evolved heuristics with the
heuristic sets evolved on their respective super-class and super-super-class.
The entries in the table state whether the set is better, worse, or the same as
its super-class (or super-super-class) set. The values in brackets represent the
probabilities that the performance values of both heuristic sets come from
underlying populations with the same mean. For example, row 4 (labelled
H10−29) shows that the H10−29 set is better on the V10−29 instances than the
set evolved on its super-class (H10−49) and the set evolved on its super-super-
class (H10−89) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6 Summary of the illegal results when heuristic sets are each tested on three
unrelated validation sets, containing piece sizes they did not pack in their
evolution. A cross represents at least one illegal result, a circle represents no
illegal results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.1 The functions and terminals used in chapter 5, and descriptions of the values
they return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 The values returned by the standard protected divide function and the mod-
ified protected divide used in the experiments of this chapter. . . . . . . . . 103

5.3 Genetic programming initialisation parameters for the experiments of chapter 5105
5.4 The number of bins used on average by the three groups of 30 evolved heuris-

tics over the set of problems with 100,000 pieces, compared to the number
used by best-fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.1 The functions and terminals used in chapter 6, and descriptions of the values
they return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2 The values returned by the standard protected divide function, the modi-
fied protected divide used in the previous chapter, and the further modified
function used in this chapter. . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3 Initialisation parameters of the experiments of chapter 6 . . . . . . . . . . . 134
6.4 The benchmark problem instances used in this chapter . . . . . . . . . . . . 136
6.5 Results of our evolved heuristics compared to recent metaheuristic and con-

structive heuristic approaches, and the reactive GRASP approach. The re-
sults are highlighted, in bold type, where the hyper-heuristic system finds a
heuristic which has equal or better results than the metaheuristic approaches
and the best-fit algorithm for that instance. The GRASP algorithm is gener-
ally the best approach, the bold values are intended to show how the evolved
heuristics compare to the other approaches . . . . . . . . . . . . . . . . . . 137

6.6 Difference in performance of the best evolved heuristics for each instance and
the reactive GRASP, the figures represent the extent to which the GRASP
performs better than the evolved heuristics. . . . . . . . . . . . . . . . . . . 140

6.7 A comparison of the time taken to evolve the heuristics using the previous
implementation, and the improved implementation. . . . . . . . . . . . . . . 143

7.1 The functions and terminals used in chapter 7, and descriptions of the values
they return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159



LIST OF TABLES xiv

7.2 Initialisation parameters of the experiments of chapter 7 . . . . . . . . . . . 161
7.3 A summary of the 18 data sets used in the experiments of this chapter . . . 163
7.4 The individual instance results for the Thpack9 bin packing data set . . . . 168
7.5 Summary of bin packing results, and the percentage improvement over the

best results in the literature . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.6 Summary of knapsack results, and the percentage improvement over the best

results in the literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170



1

Chapter 1

Introduction

Many combinatorial problems of practical interest are intractable, which, put quite simply,

means that the search space they create is too large to search exhaustively. For this reason,

heuristics are created to obtain reasonably good solutions in a reasonable amount of time.

Heuristics provide no performance guarantees, but, when well designed and implemented,

they are methods which are generally recognised as able to produce good solutions most of

the time. The research into metaheuristics, over the last few decades, has shown that more

advanced search technology is often required to obtain the high levels of solution quality.

The term metaheuristic refers to a class of heuristic methods [50]. The term was first used

by Glover in [122] to describe tabu search, and is subsequently defined in 1997 as “a master

strategy that guides and modifies other heuristics to produce solutions beyond those that

are normally generated in a quest for local optimality” [123]. In other words, they utilise

various methods to avoid the search being drawn into local optima at the expense of finding

the global optimum. Genetic algorithms, simulated annealing, and tabu-search are three

well known examples of metaheuristics.

To develop a (meta)heuristic search system, one could analyse the problem and

choose the best search paradigm to use from the literature. Another option would be to

utilise knowledge of the structure of the problem to create a new heuristic. Often, it is not

obvious which heuristic to choose because of either the complexity of the problem, or the

lack of knowledge of the circumstances in which the existing heuristics are effective.

In addition to the difficulty of selecting an appropriate heuristic, a (meta)heuristic

implementation often cannot be applied to problem domains other than those which they

are specifically created for, or even to different instances of the same problem [47]. For

example, a (meta)heuristic methodology developed for the university course timetabling
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problem may not perform well on the exam timetabling problem. Furthermore, a system

developed for the course timetabling problem in one university, may not work well for the

same problem in a different university. There are features of the problems (and problem

instances) that make them fundamentally different from each other, such as the number

of students, the size of rooms and other available resources. The methodologies effective

for one set of constraints may not be effective when the constraints are changed. In other

words, the implementation of these search methodologies is often bespoke in nature, and

this makes them potentially expensive systems, as they cannot be reused once developed

for a given application. The relative expense of bespoke systems, and the difficulty involved

in the selection of an appropriate heuristic, both serve as motivations for hyper-heuristic

research.

A hyper-heuristic can be defined as a heuristic which searches a space of heuristics,

rather than a solution space directly [47, 52, 74, 239]. In other words, it is a heuristic which

chooses between a set of heuristics. The aim is to automate the decision of which heuristic(s)

to use for a given problem.

The term hyper-heuristic has been coined relatively recently [47, 52, 74, 252].

However, the first research into methods which search a heuristic space dates back to the

early 1960s, when Fisher and Thompson developed a hyper-heuristic method for the job

shop scheduling problem [106, 107]. At every decision point, one of the heuristics was applied

to the current solution based on a dynamic weighting. The weighting was increased if the

heuristic obtained a better solution, and decreased if not. Therefore, if a heuristic produced

an improvement, it was more likely to be chosen again. This hyper-heuristic was found to

be better than applying a randomly chosen heuristic. Also, randomly choosing a sequence

of heuristics was found to obtain better results than any one heuristic could achieve alone,

providing early evidence that using combinations of existing heuristics during the search

could be beneficial.

Recently, many metaheuristics have been employed as hyper-heuristics. For exam-

ple, simulated annealing [87], genetic algorithms [77, 134, 132, 133, 241, 263], tabu search

[52], and an ant algorithm [51]. These methods all require a set of heuristics to choose from,

which must be supplied by the practitioner. However, if the problem is new, there may be

no pre-existing heuristics available, or the existing heuristics may be sub-standard. Even if

there are heuristics available, better quality heuristics may be hard to discover manually if

they are counterintuitive in nature. These issues and circumstances serve as the motivation



1. introduction 3

Figure 1.1: A diagram which clarifies one of the key themes of this thesis. One of the
motivations for hyper-heuristic research is to automate the heuristic design process. This
thesis presents methodologies which allow the human to be replaced by genetic programming
at the algorithm design stage, while currently a human must still specify the potential
components of the heuristic to be built. Such an automated system means that human
involvement in heuristic design can stop earlier in the process.

for research into hyper-heuristic systems which create heuristics, rather than select between

pre-existing heuristics.

The subject of this thesis is a hyper-heuristic system which automatically designs

heuristics, using a genetic programming algorithm. A set of potential components must be

defined by the user, and the system searches the space of all heuristics that can be created

from the given components. While the specification of the components is not automated,

it is a process which requires less human input than to specify a set of fully functional

heuristics. Fukunaga states that humans excel at identifying good potential components of

methods to solve problems, but combining them seems to be a more difficult undertaking

[112]. This concept is central to the motivation for the work in this thesis, and is depicted

graphically in figure 1.1. As problems in the real world become more complex, identifying

ways to automate this process may become fundamental to the design of heuristics, because

it will become more difficult to manually combine their potential components in ways that

fully exploit the structure of a complex problem.

There are a number of advantages of such an approach. There is a possibility of

discovering new heuristics which are unlikely to be invented by a human analyst, due to

their counterintuitive nature. Another advantage is that a different heuristic can be created

for each individual instance, meaning that the result obtained on each is more likely to be
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better than that obtained by one general heuristic. Human created heuristics are designed to

perform well over many problems, because it would take too long to manually develop a new

heuristic for every individual instance. This thesis will show examples of counterintuitive

heuristics, which nevertheless perform better than those created by humans. The results also

show that a heuristic can indeed be automatically created for each instance, meaning that

the results of the hyper-heuristic as a whole are mostly superior to those of a comparable

human created heuristic.

The heuristics can be seen as ‘disposable’, if they are created to obtain a result for

one instance. In this case, the hyper-heuristic is searching the heuristic space to indirectly

find a good solution in the solution space. However, the process outputs a heuristic as well

as a solution, and this heuristic could be reused on new problems. Therefore, this thesis

also investigates the circumstances in which it is possible to apply the automatically created

heuristic to unseen problems and still obtain good results.

Evolving a disposable heuristic can take in the order of minutes or hours depending

on the size of the problem instance being solved. Every evaluation of an individual in

the population requires the training instance to be solved by the individual. A fitness is

assigned to the individual based on the result. If the problem being solved is large then this

increases the total time required for the evolution. It would be quicker to apply a one-pass

constructive heuristic, but its result is generally worse than the result of a heuristic which

has been evolved on the instance. Also, the time to apply a metaheuristic, searching the

space of solutions, would be of the same order of magnitude as applying the hyper-heuristic

to search the space of heuristics.

If the system is capable of evolving heuristics that can be reused on new problem

instances, the run time issues change. One motivation for hyper-heuristic research is that

once a heuristic is evolved, and specialised to a class of instances, it can obtain solutions

to new instances very quickly. Examples of this will be shown in this thesis. The time

necessary for evolution of a heuristic, means that in the short term it can be more efficient

to run a metaheuristic search. However, if many problems must be solved, then the total

time taken for the metaheuristic runs will soon become larger than the time to evolve a

quick heuristic and then run it multiple times. This is shown graphically in figure 1.2.

A key concept is that one-pass constructive heuristics ‘tailored’ to a class of prob-

lem instances can obtain better results, more quickly, than more complex metaheuristic

algorithms. Historically, one-pass constructive heuristics in the literature are intended to
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Figure 1.2: A conceptual graph of the potential advantage of hyper-heuristic systems
which generate heuristics. A metaheuristic system can begin to obtain solutions to instances
immediately. The hyper-heuristic cannot during the evolution, but once a heuristic is
evolved it can obtain solutions to problem instances quickly. In the long run, the hyper-
heuristic system as a whole requires less time because it produces one quick constructive
heuristic.

be used on any problem instance. The literature contains many worst case and average

case performance analyses for these heuristics over all problems. However, in many cases,

a practitioner is interested in the performance on their special case, which will contain a

certain structure that a bespoke heuristic can exploit. The focus on general heuristics could

be because a bespoke heuristic has little value outside of the problem set it is designed for,

and therefore it is expensive to design. Research into hyper-heuristics aims to reduce that

cost by automating the design process.

The domain of cutting and packing will be used in order to demonstrate the

potential of genetic programming to automatically create heuristics. Cutting and packing

problems involve assigning a number of small items to one or more larger items. This can

represent situations where shapes must be cut from larger stock sheets efficiently, or where

boxes must be packed into larger containers while minimising waste. Heuristics for this

domain are well studied, both empirically and theoretically, and the literature shows that a

vast array of heuristics, metaheuristics, and exact methods have been created and analysed.

This thesis shows that this process of heuristic creation can be automated.
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While not being a defining characteristic, the issue of generality is central to hyper-

heuristic research. Generality, in this case, means the ability to successfully apply the system

to a number of problem domains. To show the generality of this genetic programming

system, we will use the different problem domains of knapsack packing and bin packing.

A knapsack problem is one where a subset of the set of small items must be chosen to fit

into one larger item. Each small item has a value associated with it, as well as a size. The

objective is to find the subset which has the maximum total value, while still fitting into

the larger item. A bin packing problem involves assigning all of the small items, each to one

of a number of large items. The objective is to minimise the number of large items needed

to accommodate all of the small items.

The knapsack and bin packing problems can be defined in one, two, and three

dimensions. In this thesis, the genetic programming system will be applied to problems of

each dimensionality. Finally, the developed system will be shown to operate on both knap-

sack and bin packing problems, of any dimensionality, without any change in parameters.

Indeed, it is the first system in the literature that is able to claim human competitive results

in such a wide variety of packing domains.

In summary, this thesis will investigate the quality, specialisation, robustness,

scalability, and potential for reuse of the automatically generated heuristics. It will be

shown that they can be generated for a number of different problem domains, and that the

results they obtain can be human competitive.

1.1 Structure of Thesis

The thesis is structured as follows. Chapter 2 presents a review of the relevant literature

for genetic programming, hyper-heuristics, and one, two, and three dimensional packing.

Chapters 3 to 5 present work on one dimensional bin packing. Heuristics are evolved in

Chapter 6 for two dimensional strip packing. Chapter 7 presents the most recent work, a

hyper-heuristic system which evolves heuristics for the one, two, or three dimensional bin

packing or knapsack problem.

Figure 1.3 presents an overview of the thesis, showing the themes and problem

domains addressed in each chapter. The diagram is intended to be read from the ‘start’

box to the ‘conclusions and future work’ box, following the arrows. The main results of

each chapter are attached to each chapter’s box, and for chapters 3 to 5, the diagram shows
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Table 1.1: A summary of the implementation details for the genetic programming system
presented in each chapter. The parameters subtly change over time due to experience,
experimentation, and the capabilities of freely available genetic programming code

Feature Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7

GP Code Author’s Code ECJ

Population Size 1000 1024 64, 128, 256 1000

Generations 50

Initialisation Grow Ramped half and half

Protected Divide x
0 = 1 x

0 = x
0.5

x
0 = x

0.001

Selection Roulette Wheel Tournament

Crossover 90% 85%

Mutation 0% 10%

Reproduction 10% 5%

how the genetic programming functions and terminals change as improvements to the one

dimensional bin packing system were made. The diagram also displays the problem domains

for which the heuristics in each chapter are evolved for. The diagram is partitioned into

three sections, showing that the heuristics evolved in chapter 3 are not reusable, while in

chapters 4 and 5 the thesis investigates how reusable the heuristics are after they have

been evolved. In chapters 6 and 7, the focus returns to successfully evolving heuristics

specialised to one problem instance, which enables the genetic programming system as a

whole to achieve good results on a variety of problem domains.

The implementation details of the genetic programming system subtly change

throughout the thesis, due to experience and experimentation. Table 1.1 gives a summary

of the main changes that occur. Chapters 3 and 4 use genetic programming code written

by the author, while the subsequent chapters use the freely available ECJ (Evolutionary

Computation in Java) package, available at http://www.cs.gmu.edu/∼eclab/projects/ecj/.
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1.2 Academic Publications Produced

The following academic papers and one book chapter have been produced as a result of this

research. For each publication, the chapter number is given for where the work is presented

in this thesis.

• Chapter 3

E.K. Burke, M.R. Hyde and G. Kendall. 2006. “Evolving Bin Packing Heuristics

with Genetic Programming”, In Runarsson, Thomas., Beyer, Hans-Georg., Burke,

Edmund., J.Merelo-Guervos, Juan., Whitley, Darrell., and Yao, Xin., eds.: LNCS

4193, Proceedings of the 9th International Conference on Parallel Problem Solving

from Nature (PPSN 2006). Reykjavik, Iceland. September, 2006. Springer Lecture

Notes in Computer Science, Volume 4193. pp. 860–869.

• Chapter 4

Burke E. K., Hyde M., Kendall G., and Woodward J. 2007. “Automatic Heuristic

Generation with Genetic Programming: Evolving a Jack-of-all-Trades or a Master of

One”, In Proceedings of the ACM Genetic and Evolutionary Computation Conference

(GECCO 2007). London, UK. July 2007. pp. 1559–1565.

Burke E. K., Hyde M., Kendall G., Ochoa G., Ozcan E., and Woodward J. 2009. “Ex-

ploring Hyper-heuristic Methodologies with Genetic Programming”, In C. Mumford

and L. Jain, eds.: Computational Intelligence: Collaboration, Fusion and Emergence,

Intelligent Systems Reference Library. Springer. ISBN:978-3-642-01798-8.

• Chapter 5

Burke E. K., Hyde M., Kendall G., and Woodward J. 2007. “Scalability of Evolved On

Line Bin Packing Heuristics”, In Proceedings of the IEEE Congress on Evolutionary

Computation (CEC 2007). Singapore. September 2007. pp. 2530–2537.

• Chapter 6

Burke E. K., Hyde M., Kendall G., and Woodward J. 2010. “A Genetic Programming

Hyper-Heuristic Approach for Evolving Two Dimensional Strip Packing Heuristics”.

IEEE Transactions on Evolutionary Computation. Accepted, to Appear.
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• Chapter 7

Allen S., Burke E. K., Hyde M., and Kendall G. 2009. “Evolving Reusable 3D Packing

Heuristics with Genetic Programming”. In Proceedings of the ACM Genetic and Evo-

lutionary Computation Conference (GECCO 2009). Montreal, Canada. July 2009.

pp 931–938.
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Chapter 2

Literature Review

2.1 Introduction

This chapter will provide a review of the relevant literature for the areas of work studied

in this thesis. There are three main areas of work relevant to this thesis. They are hyper-

heuristics, packing problems, and genetic programming.

The first area of work to be covered is hyper-heuristics. This term can be used

to define a heuristic that searches a space of heuristics, rather than a space of solutions

directly. Hyper-heuristics can be classified into two main types. The first type chooses

one heuristic, or a sequence, from a pre-defined set. The second type automatically creates

heuristics from a set of potential components. The hyper-heuristic developed for packing

problems developed in this thesis falls into the second category.

The packing problems that we use to evaluate the hyper-heuristic are the one,

two, and three dimensional bin packing problems, the two and three dimensional knapsack

problems, and the two dimensional strip packing problem. In this chapter we review the

previous work on packing problems by organising the subjects into three sections. Section

2.3 presents the one dimensional packing literature, section 2.4 presents two dimensional

packing, and section 2.5 presents three dimensional packing.

Genetic programming is an evolutionary computation technique which evolves

computer programs. This technique is employed in this thesis to evolve heuristics for the

various packing problems outlined above. Section 2.7 is a brief introduction to genetic

programming, providing an explanation of the main concepts. References to more detailed

explanations are also provided.

The contribution of this thesis is to show it is possible for good packing heuris-
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tics to be automatically generated by a genetic programming hyper-heuristic. The aim of

this chapter is to put this contribution in context, and provide information about other

approaches to the same problems.

2.2 Hyper-Heuristics

Hyper-heuristics can be defined as heuristics that search a space of heuristics, as opposed

to searching a space of solutions directly [239]. The term “Hyper-Heuristics” is relatively

new, however the basic idea has been around since the 1960’s. For example, in 1961 (and

again in 1963), Fisher and Thompson presented an algorithm which combines local job shop

scheduling rules using a probabilistic learning technique [106, 107]. This can be classed as

a hyper-heuristic because the learning algorithm chooses which of two heuristics to apply,

and the chosen heuristic then selects the next job for the machine.

Research in this area is motivated by the “goal of raising the level of generality at

which optimisation systems can operate” [47], and by the assertion that in many real-world

problem domains, there are users who are interested in “good-enough, soon-enough, cheap-

enough” solutions to their search problems, rather than optimal solutions [47]. In practice,

this means researching systems that are capable of operating over a range of different

problem instances and sometimes even across problem domains, without expensive manual

parameter tuning, and while still maintaining a certain level of solution quality.

The ‘No Free Lunch’ theorem [278, 279] shows that all search algorithms have the

same average performance over all possible discrete functions. This would suggest that it is

not possible to develop a general search methodology for all optimisation problems as, over

all possible discrete functions, “no heuristic search algorithm is better than random enu-

meration” [277]. However, it is important to recognise that this theorem is not saying that

it is not possible to build search methodologies which are more general than is currently

possible. It is often the case in practice that search algorithms are developed for a spe-

cific group of problems, for instance timetabling problems [243]. Often the algorithms are

developed for a narrower set of problems within that group, for instance university course

timetabling [54, 41] or exam timetabling problems [42]. Indeed, algorithms can be spe-

cialised further by developing them for a specific organisation, whose timetabling problem

may have a structure very different to that of another organisation with different resources

and constraints [7, 244]. At each of these levels, the use of domain knowledge can allow the
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algorithms to exploit the structure of the set of problems in question. This information can

be used to intelligently guide a heuristic search.

In the majority of cases, humans develop heuristics which exploit certain features

of a problem domain, and this allows the heuristics to perform better on average than

random search. Hyper-heuristic research is concerned with building systems which can

automatically exploit the structure of a problem they are presented with, and create new

heuristics for that problem, or intelligently choose from a set of pre-defined heuristics. In

other words, hyper-heuristic research aims to automate the heuristic design process, or

automate the decision of which heuristics to employ for a new problem.

The advantage of an automated heuristic design process, is in making optimisation

tools and decision support available to organisations who currently solve their problems by

hand, without the aid of computers. Examples of such organisations could be, for example,

a primary school with a timetabling problem, or a small delivery company with a routing

problem. It is often prohibitively expensive for them to employ a team of analysts to

build a bespoke heuristic, which would be specialised to their organisation’s problem. A

more general system which automatically creates heuristics would be applicable to a range

of organisations, potentially lowering the cost to each. It may be that there is a trade-off

between the generality of such a system, and the quality of the solutions it obtains. However,

organisations for whom it is too expensive to commission a bespoke decision support system,

are often not interested in how close solutions are to optimal. They are simply interested in

how much better the solutions are than those they currently obtain by hand. For example,

consider a small organisation that currently solves its delivery scheduling problem by hand.

This organisation may find that the cost of commissioning a team of humans to design

a heuristic decision support system, would be far greater than the benefit the company

would get in terms of better scheduling solutions. However, the cost of purchasing an ‘off

the shelf’ decision support system which can automatically design appropriate heuristics,

may be lower than the resulting reduction in costs to the organisation. If the solutions

are good enough, and they are cheap enough, then it begins to make economic sense for

more organisations to take advantage of heuristic search methodologies. Hyper-heuristic

research aims to address the needs of organisations interested in “good-enough soon-enough

cheap-enough” solutions to their optimisation problems [47]. Note that “good enough” often

means solutions better than they currently obtain by hand, “soon enough” typically means

solutions delivered at least as quick as those obtained by hand, and “cheap enough” usually
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means the cost of the system is low enough that its solutions add value to the organisation.

There are two classes of hyper-heuristic, explained in sections 2.2.1 and 2.2.2. One

class aims to intelligently choose heuristics from a set of heuristics which have been provided.

The other class aims to automatically generate heuristics from a set of components. It is

this second class that is the focus of the work presented in this thesis.

2.2.1 Hyper-Heuristics to Choose Heuristics.

In the majority of previous work, the hyper-heuristic is provided with a set of human created

heuristics. These are often heuristics taken from the literature, that have been shown to

perform well. When using this type of hyper-heuristic approach, the hyper-heuristic is used

to choose which heuristic, or sequence of heuristics, to apply, depending on the current

problem state.

On a given problem instance, the performance of existing heuristics varies. There-

fore, it is difficult to determine which single heuristic will obtain the best result. When

using a hyper-heuristic approach, the strengths of the individual heuristics can potentially

be automatically combined. However, for such an approach to be worthwhile, the combina-

tion should “outperform all the constituent heuristics” [241]. An optimisation system which

intelligently chooses heuristics for the problem at hand can be said to operate at a higher

level of generality than the individual heuristics. This is because the system can potentially

be applied to many different instances of a problem, and maintain its performance.

A possible hyper-heuristic framework is used in [47, 74, 75, 76, 134, 252]. This is

shown in figure 2.1, and has a “domain barrier” between the domain specific heuristics and

the hyper-heuristic. This points out the difference in the responsibilities in the model, be-

tween the hyper-heuristic and the domain specific heuristics. The hyper-heuristic maintains

only knowledge of how many heuristics it has to call upon, and the results of the evaluation

of the solutions they obtain.

This idea enabled a tabu-search hyper-heuristic to be applied to the two very

different domains of nurse scheduling and university course timetabling in [52]. Different

sets of local search heuristics were used for each of the two problems, but the hyper-heuristic

was left unchanged. The hyper-heuristic maintains a ranking of its low level heuristics

based on their performance, and applies the one with the highest rank at each decision

point. If a heuristic is applied and does not result in a better solution, it is placed in
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Figure 2.1: The relationship between a hyper-heuristic, the domain specific heuristics,
and a problem instance [252]

the tabu list and therefore is subsequently not used for a number of iterations. The tabu

search hyper-heuristic receives no information about the domain in which it is operating.

A domain barrier thus makes it possible to apply a hyper-heuristic to a different problem

domain without requiring modification. Similar work on a tabu search hyper-heuristic

was presented by Kendall and Mohd Hussin [161]. An improved version of this algorithm

is outlined in [160], and tested on a real world timetabling problem from the University

Technology MARA.

Another example of a hyper-heuristic that maintains a domain barrier is the choice

function hyper-heuristic [74, 252]. At each decision point, the choice function evaluates the

domain specific heuristics and chooses the best one [74]. The choice function has three terms.

The first is a measure of the recent effectiveness of the heuristic, the second is a measure

of the recent effectiveness of pairs of heuristics, and the third measures the time since the

heuristic was last called. These three terms represent a trade-off between exploration and

exploitation, they make it more likely for good heuristics to be used more frequently, but the

third term adds the possibility of diversification. Good results are obtained over the domains

of sales summit scheduling, presentation scheduling, and nurse scheduling. Applying the

choice function on parallel hardware is investigated in [235].

While the domain barrier has been implemented in the framework above, it is not a

defining feature of a hyper-heuristic. A hyper-heuristic may or may not be domain specific.
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Often the hyper-heuristic receives little or no information about the problem domain, but

it does receive information about the performance of the heuristics being applied. The

heuristics must be domain specific because they must operate on instances of the problem

domain to obtain a solution.

Many existing metaheuristics have been employed successfully as hyper-heuristics.

Both a genetic algorithm and a learning classifier system have been applied to the one-

dimensional bin packing problem. The learning classifier system hyper-heuristic [242] selects

between eight heuristics every time a piece is to be packed. The percentage of pieces left

in four different size ranges is calculated, in addition to the percentage of pieces left in

relation to the total number of pieces. The problem state is represented as these two

features, which are then compared to a set of rules determining which heuristic will be used

to pack the next item. This method learns which heuristics should be used when different

features are present. Subsequent work evolves similar rule sets using a genetic algorithm

hyper-heuristic [241]. This work shows that it is not only a learning classifier system which

can generate rules, and that good results can be obtained by assigning reward to rule sets

only when the final outcome of the packing is known. Terashima-maŕin et al. extend

this approach onto the two dimensional stock cutting problem by applying a highly similar

learning classifier system [262], and genetic algorithm [264]. A comparison of the two hyper-

heuristics for this problem is subsequently given in [265].

Work on a genetic algorithm hyper-heuristic for a trainer scheduling problem is

presented in [77, 132, 133, 134]. In this problem, geographically distributed courses are

to be scheduled over a period of several weeks, and the courses are to be delivered by a

number of geographically distributed trainers [134]. The genetic algorithm chromosome is a

sequence of integers that each represent a heuristic. The work is further extended in [134] to

incorporate an adaptive length chromosome, so that the length of the sequence of heuristic

calls can be modified. Then the results are further improved in [132] by better directing

the genetic algorithm in its choice of whether to add or remove genes. A tabu method is

added to the genetic algorithm in [133], which means genes are no longer physically added

or removed. Instead, they are not used for a number of generations if they do not produce

an improvement in the objective function.

An ant algorithm hyper-heuristic is used in [51] for the project presentation schedul-

ing problem. A standard ant algorithm is applied to a search space of heuristics by repre-

senting each heuristic as a node in a graph, where an edge between two nodes means one
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can be applied after the other. The ants traverse the graph, each producing a solution using

the heuristic associated with each node they travel through. An ant lays pheromone on the

path it took after a full solution has been constructed, in proportion to the quality of the

solution. Thus, the good sequences of heuristics become reinforced. Another ant algorithm

hyper-heuristic is presented in [79]. The ant colony algorithm optimises a sequence of five

heuristics, each with five parameters. Results are obtained on the two dimensional bin

packing problem, making them relevant to the work in this thesis. In their earlier work,

Cuesta-Canada et al. employ the term ‘hyper-heuristic’ to refer to the set of five heuristics,

rather than to the ant algorithm which searches the space of these heuristics.

Simulated annealing is employed as a hyper-heuristic in [87] for the shipper ratio-

nalisation problem, determining space-efficient sizes for reusable containers. The simulated

annealing algorithm is based on the tabu search hyper-heuristic presented in [52], with

the difference that once the heuristic is selected by the tabu search, the move it gener-

ates is accepted according to the simulated annealing algorithm. A simulated annealing

hyper-heuristic is also employed in [13] to automate the design of planograms, which are

the two dimensional diagrams used to plan shelf space allocation. Greedy and choice func-

tion hyper-heuristics are also investigated in this paper but the simulated annealing had

superior performance. Bai et al. present further work inspired by a real world problem

in [11], where a collaboration with Tesco informs a study on fresh produce inventory con-

trol. Three hyper-heuristics are implemented for this problem, including the tabu search

simulated annealing hyper-heuristic previously presented in [87], and in addition to this,

metaheuristic and heuristic approaches are also compared. Issues of memory length in a

simulated annealing hyper-heuristic are addressed in [12].

The set of domain specific heuristics that the traditional hyper-heuristic chooses

between are usually a combination of mutational and hill climbing heuristics. Including

heuristics from these two classes means that the search can explore new areas of the search

space, and also exploit good areas. Work by Ozcan et al. in [216] explores three different

frameworks, which aim to better make use of the strengths of both classes of heuristic. In

the first framework, if the hyper-heuristic chooses a mutational heuristic, a hill climbing

heuristic is applied immediately afterwards to exploit the diversification before the next

heuristic is chosen. In the second framework, only mutational heuristics are available to the

hyper-heuristic, and a single hill climbing heuristic is applied immediately after a mutational

heuristic is applied, this framework is similar to a memetic algorithm. The third framework
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completely separates the sets of mutational and hill climbing heuristics. At each step, the

hyper-heuristic chooses and applies a mutational heuristic, and then chooses and applies a

hill climbing heuristic.

A hyper-heuristic for timetabling problems is presented in [55], using a tabu search

to find a sequence of simple graph colouring heuristics to solve the problem. A genetic

algorithm hyper-heuristic is used in [263] for the examination timetabling problem. Using a

direct encoding of the problem has been found to be restrictive. For this reason, the genetic

algorithm chromosome encodes instructions and parameters for guiding a search algorithm,

rather than encoding a particular solution. An example of the limitations of a particular

direct representation can be found in [240].

Bilgin et al. investigate combinations of seven heuristic selection mechanisms and

five move acceptance criteria [23], and the results are also tested on examination timetabling

benchmarks. This work shows that many hyper-heuristics in the literature can be viewed

as a combination of one heuristic selection mechanism and one acceptance criteria, and that

a different combination of these components can be classed as a different hyper-heuristic.

Ersoy et al. present similar work using a hyper-heuristic to choose between hill climbers

in a memetic algorithm [94]. This, again, shows that a hyper-heuristic can be used to

optimise a component of an existing metaheuristic algorithm, not just to choose between

fixed algorithms.

Two genetic algorithm hyper-heuristic strategies are analysed for the job shop

scheduling problem in [85]. One strategy evolves the choice of which priority rule from

twelve to use for conflict resolution at a given iteration. The other evolves the sequence

in which the machines are considered by a ‘shifting bottleneck’ heuristic. This can be

called a hyper-heuristic because the space of ordering heuristics is searched for one which

minimises the makespan. Storer et al. present work which is highly relevant to hyper-

heuristic research, also on the job shop scheduling problem. They state, “Search spaces can

also be generated by defining a space of heuristics” [256], which is a fundamental principle

of hyper-heuristic research. Specifically, they do this by parameterising existing heuristics

and searching the space of parameters. Their subsequent research on how to successfully

search such a space is presented in [257].

Hart and Ross have also developed a hyper-heuristic approach for the job shop

scheduling problem [136]. They use a genetic algorithm, where each gene represents a

combination of scheduling algorithm and heuristic. The scheduling algorithm generates
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a set of schedulable operations, and the heuristic determines which among those will be

chosen. Zhang and Dietterich use reinforcement learning to learn heuristics for the job

shop problem, and their approach is tested on a NASA space shuttle payload processing

problem, as well as an artificial problem set. Fang et al. present a genetic algorithm for

the job shop scheduling problem, which can be labelled a hyper-heuristic as the genome

represents an ordering of the jobs [98]. A subsequent proposed extension to the open shop

scheduling problem, in the same paper, involves the genome representing an ordering of

both the jobs and the specific tasks that they consist of. They later present the results of

this extension in [99]. This paper further expands the hyper-heuristic theme of the work,

by encoding into the genome the choice of heuristic that is used to schedule each specific

task. In the previous work, a fixed heuristic was used and only the ordering was evolved.

The chromosome encodes pairs of values representing which heuristic from eight to apply

to which remaining job. The heuristic chooses an operation from the job and places it at

the earliest time available in the solution.

Cowling and Chakhlevitch [73] state that the performance of a hyper-heuristic

relies very much on the choice of low level heuristics. They address the question of how the

set of low level heuristics should be designed. Related to this, is the problem of ensuring

that the set of low level heuristics is varied enough to ensure an efficient search, but not so

large that it contains heuristics that are not necessary. Further work by the same authors

addresses this problem, by introducing learning mechanisms into a hyper-heuristic to avoid

using heuristics which do not make valuable contributions [59]. This reduces computational

effort, because the under performing heuristics do not then slow the search down.

A case based reasoning hyper-heuristic is presented in [53] for the course timetabling

problem, and then again in [56], where it is shown that the hyper-heuristic can operate over

both the exam timetabling and the course timetabling domains. This hyper-heuristic works

by comparing the current problem to problems encountered before, and applying the same

heuristics that have worked well in similar situations. Tabu search is employed in [46] to

search for the best combination of two well known graph based heuristics for constructing

exam timetabling solutions. The tabu search mechanism is based on that presented in [52]

The knowledge gained from this hyper-heuristic is then used to inform two hybrid graph

based approaches to the same problem, one which inserts a certain percentage of one heuris-

tic into the heuristic list, and one in which case based reasoning remembers heuristics that

have been successfully used on similar partial solutions.
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Highly related to the case based reasoning approach is the COMPOSER algorithm

[126]. COMPOSER essentially consists of a set of condition-action rules which are learned

while working through a representative training set [126]. This algorithm is applied to deep

space network scheduling in [124, 125]. The algorithm developed by Fink [105] chooses

among three solution methods which apply heuristics in different ways, and is inspired by

the PRODIGY architecture that COMPOSER utilises. The solution methods are chosen

based on a statistical analysis of their past performance. This is different to case based

reasoning, as it does not rely on any prior knowledge of a particular problem domain. This

approach focuses on selecting a method to be used throughout the whole search, with no

opportunity for switching methods while the search is performed.

Pisinger and Ropke present a hyper-heuristic that can operate over five different

variants of the vehicle routing problem [222]. The approach employs adaptive large neigh-

bourhood search, a method which selects a heuristic to destroy part of the solution and a

heuristic to rebuild it. Adaptive large neighbourhood search is a paradigm rather than a

specific algorithm, it requires an acceptance criteria to be specified as well as the heuristics

which drastically modify the solution. The acceptance criteria used in this paper is sim-

ulated annealing, but any metaheuristic could be used. The paradigm has similarities to

variable neighbourhood search [135], which can also be considered a hyper-heuristic. This

is because adaptively changing the neighbourhood of the search can be seen as intelligently

selecting an appropriate heuristic.

Wah presents a population based method of learning by examples [273], to create

new heuristics. This work led to the development of the TEACHER (TEchniques for the

Automated Creation of HEuRistics) learning system, which uses similar genetics based

learning to design heuristics [274, 147, 149]. The system is for use in knowledge lean

environments, and as such is highly related to the work presented here. An important part

of the system is the partitioning of the problem domain into subclasses before creating

a heuristic for each. This relates directly to results in this thesis, which show that it is

beneficial to evolve a heuristic on a subclass of problems, representative of those on which

it will be used in the future. In [274], the system is applied to improve two circuit testing

solvers, and more examples of TEACHER applications are given in [148, 247, 261].

The concept of a heuristic to choose heuristics is closely related to the concept

of multimeme algorithms [168]. In a memetic algorithm, a meme represents a local search

heuristic or some other move operator. The results in [168] show the benefits of using more
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than one meme when performing a search. This can also be thought of as a hyper-heuristic

employing a number of low level heuristics during a search.

2.2.2 Hyper-Heuristics to Create Heuristics.

Less well studied in the literature is the class of hyper-heuristics which aim to create a

heuristic from a set of potential components. This is distinct from the class described in

section 2.2.1, in which the hyper-heuristic is given a set of complete functioning heuristics,

and must then choose between them. The created heuristic may be ‘disposable’ in the

sense that it is created just for one problem instance, and is not intended for use on unseen

instances. Alternatively the heuristic may be created for the purpose of re-using it on new

unseen instances of a certain problem class.

There are a number of potential advantages of this approach. Every problem

instance is different, and obtaining the best possible result for an instance would ideally

require a new heuristic or a variation of a previously created heuristic. It would be inefficient

for a human analyst to create a new heuristic for every problem instance. Human created

heuristics are rarely applicable to only one problem instance, they are usually created for a

class of instances, or for all problem instances.

For example, ‘best-fit’ is a human created heuristic for one dimensional bin pack-

ing [162], and performs well on a wide range of bin packing instances. Indeed, it was created

as a general heuristic for any bin packing instance. Over a narrower set of instances however,

with piece sizes defined over a certain distribution, best-fit can be outperformed by heuris-

tics which are ‘tailored’ to the distribution of piece sizes [49]. Poli, Woodward and Burke

[232] also employ genetic programming to evolve heuristics for bin packing. The structure

within which their heuristics operate is based on matching the piece size histogram to the

bin gap histogram, and is motivated by the observation that space is wasted when placing

a piece in a bin leaves a smaller available space than the size of the smallest piece still to be

packed. Their work also differs from that presented in this thesis because they use linear

genetic programming, and the problem addressed is offline bin packing (see section 2.3.2)

rather than online. However, the motivation for the work is the same, to automate the

process of designing heuristics for bin packing.

If the heuristic design process is automated, a computer system could produce

a good quality heuristic for an instance in a practical amount of time. This heuristic
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could even produce a solution that may be better than that which can be obtained by any

current human created heuristic. This is because it would have been created specifically for

that instance rather than as a general heuristic. Automating the heuristic design process

offers the chance to easily, and flexibly, specify the range of instances that a heuristic will

be applicable to, and then obtain that heuristic with minimal human effort spent in the

process.

A good heuristic for a given problem instance may be counterintuitive, especially

if the instance is complex. Another advantage of automated heuristic design, therefore, is

that a heuristic may be created which performs well on the instance, but was unlikely to

have been created by a human analyst.

Fukunaga presents an automated heuristic discovery system, for the SAT problem,

in [112, 113]. The most successful heuristics for SAT can be expressed as different combina-

tions of a particular set of components. It is stated that human researchers are particularly

good at identifying good components, but the process of combining them could benefit

from automation [112]. The paper uses an evolutionary algorithm to evolve human compet-

itive heuristics consisting of these components. Some issues and potential objections from

[112] are resolved in [113], by implementing the system in ‘Lisp’ for quicker evaluation, and

showing that good heuristics can still be evolved without initialising the population with

complex hand coded heuristics and components.

Bader-El-Din and Poli [9] observe that the approach of Fukunaga results in heuris-

tics consisting of other nested heuristics. This results in heuristics which are composites of

those in early generations, and which are therefore relatively slow to execute. Bader-El-Din

and Poli present a different heuristic generation methodology for SAT, which makes use of

traditional crossover and mutation operators to produce heuristics which are more parsimo-

nious, and faster to execute. A grammar is defined, which can express four existing human

created heuristics, and allows significant flexibility to create completely new heuristics. Sub-

sequent research by the same team of researchers has shown that a hyper-heuristic system

can evolve constructive heuristics for timetabling problems [10]. The evolved heuristics

are not intended to be reusable, and the system is presented as an online learning method,

which can often obtain better results than other constructive algorithms and hyper-heuristic

approaches.

Keller and Poli present a linear genetic programming hyper-heuristic for travelling

salesman problems in [159]. At its simplest level, the system evolves sequences of 2-opt
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and 3-opt swap heuristics. Then conditional and loop components are added to the set

of components, to add complexity to the evolved heuristics. Work presented by Ho and

Tay in [140, 260], employs genetic programming to evolve composite dispatching rules for

the job shop scheduling problem. The terminals of the genetic programming algorithm are

components of previously published dispatching rules, and the functions are the arithmetic

operators and an automatically defined function (ADF, see [165]). The evolved dispatching

rules are functions, which assign a score to a job based on the state of the problem. When

a machine becomes idle, the dispatching rule is evaluated once for each job in the machine’s

queue, and each result is assigned to the job as its score. The job in the queue with the

highest score is the next job to be assigned to the machine. Jakobovic et al. employ the

same technique for the parallel machine scheduling problem [151].

Dimopoulos and Zalzala [84] evolve priority dispatching rules for the single machine

scheduling problem, to minimise the total tardiness of jobs. The terminal set is based on

the human designed ‘Montagne’ dispatching rule, and contains five elements, representing

both global and local job information. The function set consists of the four basic arithmetic

operators. While the function and terminal sets are relatively simple, the system evolves

heuristics superior to the Montagne, ADD, and SPT heuristics. Genetic programming is

also used to evolve priority dispatching rules in [118]. ADFs are not used in this paper,

however the function and terminal sets are expanded from that presented in [84, 140].

Human competitive heuristics are produced, even for job shop environments with multiple

machines, where a unique dispatching rule is evolved for each.

Recent work by Kumar et al. presents a genetic programming system which evolves

heuristics for the biobjective knapsack problem [172]. This is the first work in which heuris-

tics for a multiobjective problem have been automatically generated with a hyper-heuristic.

The technique employs many similar ideas to the bin packing methodology presented in

this thesis. For example, the terminals used are similar, and the framework which iter-

ates through the pieces, applying the heuristic to each, is similar to the method of iterating

through the bins presented in chapter 3. Further work has shown that heuristics can also be

generated with genetic programming for a multiobjective minimum spanning tree problem

[173].

Oltean [212] presents a linear genetic programming hyper-heuristic, which gener-

ates evolutionary algorithms. A standard individual in a linear genetic program represents

a series of instructions that manipulate values in a memory array. The memory positions
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are referred to as ‘registers’. Oltean represents an evolutionary algorithm population as

this memory array, with each member of the population stored in one register. The ge-

netic operators are the instructions that operate on the memory array. Tavares et al. [259]

also present a methodology for evolving an evolutionary algorithm. They specify the main

components of a generic evolutionary algorithm, including initialisation, selection, and the

use of genetic operators. Tavares et al. explain how each of these steps, can be evolved

individually by a genetic programming hyper-heuristic. They demonstrate the approach

through an example of evolving an effective mapping function of genotype to phenotype,

for a function optimisation problem.

Pappa and Freitas employ a grammar based genetic programming system to evolve

rule induction algorithms for classification [217]. They show that classification algorithms

can be automatically specialised to one of two problem classes, a conclusion which is similar

to some of the conclusions of this thesis. Their paper states that automatic generation

of algorithms may result in better algorithms than have currently been designed by hand,

which is a common motivation for hyper-heuristic research. They also assert that such an

approach can be cheaper than manual algorithm design. As explained previously in this

section, this reduction in cost is another reason why hyper-heuristic research is potentially

beneficial to smaller organisations.

The literature also shows a link between memetic algorithms and hyper-heuristics.

Krasnogor states a definition of a true memetic algorithm as “evolutionary algorithms where

not only the solutions to the problem at hand are evolved but where local searchers that can

further improve the quality of those solutions are coevolved, e.g., by GP, alongside them”

[168]. Further work by Krasnogor and Gustafson has shown that this is possible, with self

generation of memes. For protein structure prediction, a grammar is defined in [169, 170],

which expresses groups of memes, each of which performs a local search at a given point in

the genetic algorithm. All aspects of the memes are evolved, and the result is a memetic

algorithm which is evolved with genetic programming. This provides the possibility of

automatically tuning the metaheuristic (in this case a memetic algorithm) to any problem

instance [170], and replacing time consuming manual algorithm tuning.
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2.3 One Dimensional Packing

This section provides a literature review for one dimensional packing problems. This prob-

lem domain is reviewed here because it is one of the domains used to test our hyper-heuristic

genetic programming technique. The two and three dimensional packing domains, described

in sections 2.4 and 2.5, are also used to test our hyper-heuristic.

2.3.1 Problem Definitions

The Knapsack Problem

The one dimensional 0-1 knapsack problem consists of a set of pieces, a subset of which

must be packed into one knapsack with capacity c. Each piece j has a weight wj and a

value vj . The objective is to maximise the value of the pieces chosen to be packed into the

knapsack, without the total weight exceeding the capacity of the knapsack. A mathematical

formulation of the 0-1 knapsack problem is shown in equation 2.1, taken from [199].

Maximise
n∑
j=1

vjxj

Subject to
n∑
j=1

wjxj ≤ c,

xj ∈ {0, 1}, j ∈ N = {1, . . . , n}, (2.1)

Where xj is a binary variable indicating whether piece j is selected to be packed into the

knapsack.

The Bin Packing Problem

The classical one dimensional bin packing problem consists of a set of pieces, which must be

packed into as few bins as possible. Each piece j has a weight wj , and each bin has capacity

c. The objective is to minimise the number of bins used, where each piece is assigned to

one bin only, and the weight of the pieces in each bin does not exceed c. A mathematical
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formulation of the bin packing problem is shown in equation 2.2, taken from [199].

Minimise
n∑
i=1

yi

Subject to
n∑
j=1

wjxij ≤ cyi, i ∈ N = {1, . . . , n},

n∑
i=1

xij = 1, j ∈ N,

yi ∈ {0, 1}, i ∈ N,

xij ∈ {0, 1}, i ∈ N, j ∈ N, (2.2)

Where yi is a binary variable indicating whether bin i contains pieces, xij indicates whether

piece j is packed into bin i, and n is the number of available bins (and also the number of

pieces as we know we can pack n pieces into n bins).

A practical application of the one dimensional bin packing problem is cutting

lengths of stock material that has fixed width, such as pipes for plumbing applications, or

metal beams [251]. A set of orders for different lengths must be fulfilled by cutting the

stock lengths into smaller pieces while minimising the wasted material. Also, the prob-

lem of scheduling television advertisements of different lengths into a series of commercial

breaks can be represented as a one dimensional bin packing problem [1]. Two practical

applications of the knapsack problem are presented in the areas of cryptography [204] and

capital budgeting [194].

2.3.2 Previous Work

For the reader looking for an extensive explanation of knapsack problems, Martello and

Toth’s book [199] is recommended. This goes into detail on a range of knapsack problems

including the 0-1 variant which is used in this thesis. There are also good surveys of

knapsack problems in [219, 223]. The earliest formalisation of the one dimensional bin

packing problem, along with certain production scheduling and other industrial optimisation

problems, is that given by Kantorovich [157]. The literature on so called cutting and packing

problems is vast, and as such many problems which are otherwise identical are named

differently. It is for this reason that Dyckhoff, and later Wäscher et al, have published

typologies which attempt to introduce a consistent naming scheme to organise the research

performed in this area [90, 276].
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Table 2.1: A description of existing constructive heuristics for one dimensional bin packing
Heuristic Description

Best Fit (BF) [236] Best-fit constructs a solution by putting each piece into the bin
which has the least space remaining. The process is repeated
until all pieces have been allocated to a bin. No other online
algorithm is better in both the average and worst case [162]

Worst Fit (WF) [69] Puts the piece in the emptiest bin that has room for it.
Opens a new bin if the piece does not fit in any existing bin

Almost Worst Fit Puts the piece in the second emptiest bin if that bin has room
(AWF) [69] for it. Opens a new bin if the piece does not fit in any open bin

Next Fit (NF) [153] Puts the piece in the highest indexed bin and opens a new bin if
there is not enough room for it

First Fit (FF) [153] Puts the piece in the lowest indexed bin that has room for it
and opens a new bin if it does not fit in any open bin. An
average case analysis of first fit is given in [70]

A number of examples of heuristics used for the bin packing problem are described

in table 2.1. They all take a list of pieces as input and pack each piece in turn. While they

are all simple, the heuristics have very different behaviour. Figure 2.2 shows where each of

the heuristics from table 2.1 would pack a piece of size 60 into the given partial solution.

Which heuristic is best depends on the instance,

A bin packing problem is referred to as ‘online’ if looking ahead is not permitted,

the pieces must be packed one at a time, and the pieces cannot be moved once they are

allocated a place [35]. The ‘offline’ version of the bin packing problem occurs when all of the

pieces are known before the packing starts. The heuristics listed in table 2.1 are applicable

to the online problem because they operate on one piece at a time. These heuristics are

often combined with a sorting algorithm which arranges the pieces in non-increasing order

before the packing begins. For example, ‘first-fit-decreasing’ is first-fit applied to a problem

after the pieces have been sorted. First-fit-decreasing is therefore an offline heuristic because

the pieces must be known for the sorting to occur.

Johnson et al. show that the first-fit-decreasing algorithm has a worst case per-

formance of (11/9)opt+ 4, where opt is the optimal number of bins. The constant in that

expression has subsequently been refined down from four to one in [283]. The performance

of this classic algorithm deteriorates when the optimal solution requires the bins to be filled

nearly to capacity [127]. Gupta and Ho suggest a heuristic algorithm to address this situa-

tion, called ‘minimal bin slack’ (MBS) [127]. The MBS algorithm attempts to find groups
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Figure 2.2: A diagram showing where the heuristics from table 2.1 would place a piece
of size 60. Next-fit only has access to the highest indexed bin and an empty bin, and it
chooses the empty bin in this case because the piece does not fit into the highest indexed
bin

of items that fit well into a bin. It packs one bin at a time and then moves on to the next

bin. For each bin all subsets of items are searched and the subset resulting in the least

wasted space is chosen. This algorithm is also guaranteed to find a two bin solution, if one

exists. Fleszar and Hindi use a modified MBS heuristic to construct a good initial solution

for a variable neighbourhood search. This hybrid algorithm produces better results on the

investigated problems than the original MBS heuristic [108].

Two algorithms for one dimensional bin packing are presented in [282]. The first

is an online algorithm, with better worst case bounds than first-fit. The second is an offline

algorithm, which has better worst case bounds than first-fit-decreasing. Further theoretical

work on the performance bounds of algorithms for one dimensional bin packing can be

found in [68, 237, 249]

The algorithm presented by Djang and Finch in 1998 first pre-orders the pieces in

non-increasing order of size. It then fills a bin to at least one third full by taking the pieces

one at a time in order. Then the algorithm searches for a combination of either one, two or

three pieces that fill the bin exactly. If no combination is found, then a piece combination

that fills the bin to one less than its capacity is searched for, and then two less than the

capacity, and so on [242].

Exact methods have been studied for one dimensional packing problems, modelling

the problem either as linear or integer programs, and the integer programs are usually solved
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by first relaxing the integer constraints to obtain a lower bound. The linear programming

approach can be traced back to the work of Gilmore and Gomory [120, 121], and more

recent applications of this technique are given in [2, 89]. As well as discussing such linear

programming methods, Haessler and Sweeny [131] discuss two more methods. Sequential

heuristic methods employ patterns repeatedly, and good patterns must be chosen early to

obtain good solutions [130]. The advantages and disadvantages are nicely summarised in

[131]. The two approaches can also be combined to form a hybrid approach [131].

Large knapsack and bin packing problems can be represented as integer programs

with a large number of variables. Holthaus studies solution methods to large one dimensional

bin packing problems with more than one bin size, using a decomposition approach, which

first reduces the size of the problem before using the solution to help find a good solution

to the original problem [142]. The same problem but with supply bounds is investigated in

[19], also formulating the problem as an integer program. The approach combines a cutting

plane algorithm with the technique of column generation. Two branch and price algorithms

are compared on the standard one dimensional bin packing problem by Vance in [268, 270].

For the one dimensional bin packing problem, Scholl et al. present an exact proce-

dure called ’BISON’ [246], based on the well known MTP procedure [199]. In order to find

strong upper bounds for the beginning of this procedure, a tabu search heuristic is applied

to a modified version of the bin packing problem, where the maximum height of a fixed

number of bins is minimised. The tabu search is iterative, and the neighbourhood moves

involve swapping two pieces, or moving one piece.

Metaheuristics have also been applied to the one dimensional bin packing problem.

For example, a simulated annealing algorithm is used for bin packing in [234], and for a

modified version of the bin packing problem in [156, 37]. The number of bins is fixed and

the objective is to distribute the pieces so that the height of the fullest bin is minimised. A

genetic algorithm has been applied to the one dimensional bin packing problem in [97]. The

work is extended in [96] by adding a local search step to the genetic algorithm, based on the

concept of dominance of one bin over another. The dominance concept was introduced in

[200], along with a reduction algorithm for solving the one dimensional bin packing problem.

Genetic algorithms have also been used to obtain solutions for variations of the

knapsack and bin packing problems. For example, Chu and Beasley address the multidi-

mensional knapsack problem with a genetic algorithm in [65]. Also, Raidl and Kodydek use

a genetic algorithm for the multiple container packing problem, which combines elements
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of both the knapsack and bin packing problems. Chu and Beasley also present a genetic

algorithm for the related generalised assignment problem in [64]. Grammatical evolution

is employed in [215] to evolve sentences which represent solutions to the multidimensional

knapsack problem. Attribute grammars are added to ensure that the constraints of the

problem are adhered to.

The technique of weight annealing assigns weights to areas of the fitness landscape,

to attract or repel the search process of a greedy heuristic. This technique is used for the

bin packing problem in [192], where a weight is assigned to each bin, and swap heuristics

are employed to modify the solution. Alvim et al. [6] present a hybrid algorithm involving

reductions, constructive heuristics, load balancing, and tabu search. The standard multi-

processor scheduling problem can be stated as a one dimensional bin packing problem, and

so heuristics for use in that problem are relevant here. Fujita and Yamashita review the

heuristics for use in multiprocessor scheduling in [111], and a tabu search metaheuristic

technique is presented in [145].

The heuristics and metaheuristics explained in this section operate directly on a

search space of candidate solutions. For example, the genetic algorithm in [97] maintains

a population of full assignments of pieces to bins. This is in contrast to a hyper-heuristic

approach, where the hyper-heuristic would operate on a search space of one dimensional bin

packing heuristics. Examples of such hyper-heuristic approaches can be found in [241, 242],

where a learning classifier system and a genetic algorithm operate on a set of domain specific

heuristics, which in turn operate on the problem space.

2.4 Two Dimensional Packing

2.4.1 Problem Definitions

The bin packing problem can be defined in two dimensions, where the bin size is defined by

a width W and a height H. Each piece j ∈ N = {1, . . . , n} is defined by a width wj and a

height hj . The objective is to minimise the number of bins needed to accommodate all of the

items, where each item is assigned to one bin only. The pieces must not overlap each other

or exceed the boundaries of the bin into which they are placed. In the two dimensional

knapsack problem, each piece also has a value vj , and the objective is to maximise the

value of the subset of pieces chosen to be placed in the knapsack. Two dimensional packing

problems are also referred to as ‘cutting problems’ because real world instances of such
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problems can involve cutting shapes from sheets of material, while minimising waste.

In this thesis, the genetic programming hyper-heuristic technique is also applied

to the two dimensional strip packing problem. This is another cutting problem, analogous

to the problem of efficiently cutting shapes from a roll of material. The formulation of

the problem involves a sheet of material of fixed width W and infinite height. Each piece

j ∈ N = {1, . . . , n} is defined by a width wj and a height hj . When the packing is complete,

a horizontal guillotine cut is made across the sheet’s width, at a height equal to the upper

edge of the highest piece. The objective in this type of problem is to minimise the height

of the portion of the sheet that is cut.

Two dimensional packing problems can be separated into many classifications,

more than are dealt with in this thesis. For example, in [104, 71, 180, 203, 269], all the

pieces to be packed are squares. Typologies for cutting and packing problems are defined

by Dyckhoff [90], and later Wäscher et al [276]. The more recent Wäscher et al. typology

separates two dimensional packing problems with criteria such as the homogeneity of the

pieces, and the number of larger shapes into which the pieces must be packed. Lodi et

al. [188] survey the work on two dimensional strip packing and bin packing, including

exact, heuristic and metaheuristic approaches. They also include mathematical models of

the problems, and lower bounds for their solutions. Dowsland and Dowsland also present

a good introductory survey of two and three dimensional problems that occur in the real

world in [88]. The literature on two dimensional packing literature is too large to fully

review in this section. However, the interested reader is referred to these surveys for an

overview of the domain.

In real world applications of two dimensional packing problems, constraints often

have to be imposed on the placement of pieces due to properties of the material in use, or

properties of the machines that cut the material. One such constraint is that the pieces

must not be rotated before they are put into the solution. Another common constraint is

the so called ‘guillotine’ constraint, which means that each cut must be orthogonal from one

side of the sheet to the other, creating two new sheets either side of the cut. Subsequent

cuts must be made in the same way across the new sheets.

A real world example of the two dimensional packing problem is the crepe-rubber

cutting problem, described in [245], in which the pieces cannot be rotated, and the guillotine

constraint is applied. Vasko et al. describe a cutting problem from the steel industry where

the guillotine constraint is applied, but the pieces can be rotated [271]. The problem of
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arranging the layout of newspaper pages is modelled as a two dimensional packing problem

in [174]. In this application, the guillotine constraint is not applicable. Also, the orientation

of pieces must be fixed because the adverts must be the displayed correctly on the page.

Biro and Boros show that a resource constrained scheduling problem can be represented as

a strip packing problem [24], and Lee and Sewell model a problem of producing furniture for

the boat industry as a strip packing problem, where shapes are cut from rolls of vinyl [178].

The two dimensional packing problem is also related to the domains of space allocation in

buildings [43, 44, 45, 250] and shelf space allocation in retail environments [280, 281].

2.4.2 Exact Methods

Exact methods have been shown to work well for small instances. For example, Eisemann

[91] presents an early linear programming formulation of a two dimensional stock cutting

problem in 1957. Gilmore and Gomory [120] improve on previous linear programming

approaches four years later, but the results are still obtained on small instances. A different

approach is presented by Dyckhoff in [89]. Tree search procedures have been employed

to produce optimal solutions for the 2D guillotine stock cutting problem [63] and two

dimensional non-guillotine stock cutting problem [17]. The method presented in [63] has

since been improved in [138] and [80].

A branch and bound algorithm is also used in [201] to obtain an exact solution

to the problem. Another exact algorithm is presented in [128], which limits the explored

tree branches with a bound derived from an integer programming relaxation. Also, an

exact algorithm for problems with the guillotine constraint is given in [62], and recently in

[67]. Work on exact solutions to general n-dimensional packing problems is presented in

[102, 103].

There are many more papers in the literature regarding exact solutions to the

two dimensional packing problem, and they are not all reviewed here due to the focus on

heuristic methods in this thesis. It is recognised that these methods cannot provide good

results for large instances. For example, the largest instance used in both [138] and [80]

is 60 pieces. For exact methods, the computational effort required to obtain a solution is

exponential in the problem size, and so heuristic methods are more widely used for larger

instances.



2. literature review 33

2.4.3 Heuristic Methods

Heuristic methods cannot guarantee an optimal solution, but can produce good quality

results for much larger problem instances. They are often easy for a non-expert to under-

stand, and so are more likely to be applied to real-world problems over other methods. An

early heuristic approach to the two dimensional bin packing problem is presented in [21].

The algorithm starts with an initial solution and is based on an iterative process which

repeatedly discards the sheet with the most waste so those pieces can be used to improve

the utilisation of the other sheets.

Baker et al. [14] define a class of packing algorithms (BL) which maintain bottom

left stability during the construction of the solution, meaning that all the pieces cannot be

moved any further down or left from where they are positioned. The heuristic presented in

[14] has come to be named ‘bottom-left-fill’ (BLF) because it places each piece in turn into

the lowest available position, including any ‘holes’ in the solution, and then left justifying

it. While this heuristic is intuitively simple, implementations are often not efficient because

of the difficulty in analysing the holes in the solution for the points that a piece can be

placed [60]. Chazelle presents an optimal method for determining the ordered list of points

that a piece can be put into, using a ‘spring’ representation to analyse the structure of the

holes [60].

These heuristics take, as input, a list of pieces, and the results rely heavily on

the pieces being in a ‘good’ order [14]. Theoretical work presented by Brown et al. [35]

shows the lower bounds for online algorithms both for pre-ordered piece lists by decreasing

height and width, and non pre-ordered lists. Results in [143] have shown that pre-ordering

the pieces by decreasing width or decreasing height before applying BL or BLF results in

performance increases of between 5% and 10%.

Recently, a ‘best-fit’ style heuristic was presented in [38]. Preordering the pieces

for this heuristic makes no difference, the next piece to pack is selected by the heuristic

depending on the state of the problem. In this algorithm, the lowest available space on

the sheet is selected, and the piece which best fits into that space is placed there. This

algorithm is shown to produce better results than previously published heuristic algorithms

on benchmark instances [38].

Lodi et al. present four heuristics for two dimensional packing, one for each of

the combinations of fixed and 90◦ piece rotations, and with and without the guillotine
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constraint. They also present a more general tabu search framework for two dimensional

packing, where the subordinate heuristic can be changed depending on the problem at

hand [189].

Work in [179] adds an interactive element to the software package, allowing users

to change the solution found by a heuristic. This work draws attention to the assertion that

making heuristic software more interactive may encourage greater adoption of heuristic

methods as decision support systems in real-world settings.

Zhang et al [284] use a recursive algorithm, running in O(n3) time, to create good

strip packing solutions, based on the ‘divide and conquer’ principle. Finally, two heuristics

for the strip packing problem with a sequencing constraint are presented by Rinaldi and

Franz [238], based on a mixed integer linear programming formulation of the problem.

2.4.4 Metaheuristic Methods

Metaheuristics have been successfully employed to evolve a good ordering of pieces for a

simple heuristic to pack. For example, Jakobs [152] uses a genetic algorithm to evolve a

sequence of pieces for a simpler variant of the BL heuristic. This variant packs each piece

by initially placing it in the top right of the sheet and repeating the cycle of moving it

down as far as it will go, and then left as far as it will go. Liu and Teng [187] proposed a

simple BL heuristic to use with a genetic algorithm that evolves the order of pieces. Their

heuristic moves the piece down and to the left, but as soon as the piece can move down it is

allowed to do so. However, the BL approach with a metaheuristic to evolve the piece order

is somewhat limited, because for certain instances there is no sequence that can be given

to the BL heuristic that results in the optimal solution [14, 20].

Ramesh Babu and Ramesh Babu [233] use a genetic algorithm in a similar way to

Jakobs, to evolve an order of pieces, but use a slightly different heuristic to pack the pieces,

and different genetic algorithm parameters, improving on Jakobs’ results. The chromosome

allows for multiple sheets to be used for the packing, however the comparison made with

Jakobs’ results uses only one sheet.

Kröger [171] and Valenzuela and Wang [267] employ a genetic algorithm for the

guillotine variant of the problem. They use a linear representation of a slicing tree as the

chromosome. The slicing tree determines the order that the guillotine cuts are made and

between which pieces (a good explanation and diagram can be found in [171]). The slicing
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trees bear a similarity with the genetic programming trees in this paper, which represent

heuristics. The slicing trees are not heuristics however, they only have relevance to the

instance they are applied to, while a heuristic dynamically takes into account the piece

sizes of an instance before making a judgement on where to place a piece. If the pattern

of cuts dictated by the slicing tree were to be applied to a new instance, the pattern does

not consider any properties of the new pieces. For example, if the slicing tree defines a cut

between piece one and piece nine, then this cut will blindly be made in the new instance

even if these pieces now have completely different sizes. A heuristic would consider the

piece sizes and the spaces available before making a decision.

Hopper and Turton [143] compare the performance of several metaheuristic ap-

proaches for evolving the piece order. Each is tested with both the BL constructive algo-

rithm of Jakobs [152], and the BLF algorithm of [14]. The metaheuristics used are simulated

annealing, a genetic algorithm, naive evolution, hill climbing, and random search. They are

evaluated on benchmark instances, and the results show that better results are obtained

when the algorithms are combined with the BLF decoder.

A genetic algorithm for a two dimensional knapsack problem is presented in [129],

and different versions of genetic algorithms are also employed in [146], for three types of

two dimensional packing problems, including strip packing and bin packing. A heuristic

approach using a local search on a sequence pair representation is presented in [221], with

a simulated annealing acceptance criteria. They test these heuristics both on the classical

instances and on new instances which they define. The setting of good parameters when

using a simulated annealing algorithm for packing is investigated in [86], and simulated

annealing is employed in [39] to evolve a piece order for the best-fit heuristic presented

previously in [38].

Other approaches start with a solution and iteratively improve it, rather than

heuristically constructing a solution after optimising the piece order. Lai and Chan [175],

Faina [95], and Dagli and Hajakbari [81] implement simulated annealing algorithms. Also,

Bortfeldt’s genetic algorithm [29] operates directly on the representations of strip packing

solutions.

A reactive greedy randomised adaptive search procedure (reactive GRASP) is pre-

sented in [4] for the two-dimensional strip packing problem without rotation. The method

involves a constructive phase and a subsequent iterative improvement phase. To obtain the

final overall algorithm, four parameters were chosen using the results from a computational
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study. First, one of four methods of selecting the next piece to pack is chosen. Second, a

method of randomising the piece selection is chosen from a choice of four. Third, there are

five options for choosing a parameter δ, which is used in the randomisation method, and

finally there are four choices for the iterative improvement algorithm after the construction

phase is complete. It is a complex algorithm with many parameters, which are chosen by

hand to enable the algorithm to obtain some of the best results in the literature.

Belov et al. have obtained arguably the best results in the literature for this

problem [20]. Their ‘SVC’ algorithm is based on an iterative process, repeatedly applying

one constructive heuristic, ‘SubKP’, to the problem, each time updating certain parameters

that guide its packing. The results obtained are very similar to those obtained by the

GRASP method. They obtain the same overall result on the ‘C’, ‘N’ and ‘T’ instances

of Hopper and Turton, but SVC obtains a slightly better result on ten instance sets from

Berkey and Wang, and Martello and Vigo. Together, SVC(SubKP) and the reactive GRASP

method in [4] represent the state of the art in the literature, and SVC(SubKP) seems to

work better for larger instances [20].

2.5 Three Dimensional Packing

2.5.1 Problem Definitions

In a three dimensional bin packing problem, each bin is defined by a width W , a height H,

and a depth D. Each piece j ∈ N = {1, . . . , n} is defined by a width wj , a height hj , and

a depth dj . The objective is to minimise the number of bins needed to accommodate all of

the items, where each item is assigned to one bin only. The pieces must not overlap each

other or exceed the boundaries of their bin. In the three dimensional knapsack problem,

there is one bin available, with dimensions W , H, and D. Each piece j also has a value vj

in addition to wj , hj , and dj . The objective is to maximise the value of the pieces chosen

to be packed into the one bin.

There are numerous other three dimensional packing problems. For example, one

special case involves packing only cubes [203, 209]. In this thesis, heuristics are evolved for

instances with differing dimensions only, but while we are aware of the wide variety of other

problems that have been introduced in the literature, there are too many to provide a full

review here. The typologies of Dyckhoff [90], and more recently Wäscher et al [276] provide

classifications for these problems, in response to the vast literature in which references to



2. literature review 37

identical problems often use different names. Dowsland and Dowsland provides a good

survey of the different types of real world two and three dimensional problems [88].

Three dimensional packing problems are abstractions of many real world prob-

lems, and it is possible to model real world problems as classical three dimensional packing

problems with additional constraints. A prominent example is the problem of loading a

container ship, where the goal is to maximise the volume utilisation of a single ship, or to

minimise the number of ships that are needed to hold a given set of containers. Beasley and

Hoare [18] study a real world shelf space allocation problem, which is essentially a three di-

mensional packing problem with added constraints. Other real world examples are cutting

foam rubber in arm-chair production, designing packaging [190], and a packing algorithm

being developed for a French biscuit factory [36].

However the constraints faced in these real world situations are often not reflected

in the problem instances studied in the literature. For example, Bischoff and Ratcliff argue

that the common metric of volume utilisation of the container is insufficient for real world

problems where many other constraints must be taken into account [25]. They address two

of these constraints with two algorithms. One algorithm creates stable packings, and one

algorithm creates convenient packings, assuming that the pieces are to be unloaded at more

than one stop. The pieces’ load bearing strength is addressed by an algorithm by Bischoff in

[26], which ensures that heavier pieces are not placed on top of pieces that cannot support

their weight.

2.5.2 Exact Methods

There are relatively few examples of exact methods being used for three dimensional packing

problems, when compared to the literature for one or two dimensional problems. Exact

methods are perhaps less appropriate due to the greater number of arrangements per piece,

and therefore the greater number of calculations that must be done. For example, each piece

can be oriented in six ways in a three dimensional instance, compared to only one way in a

one dimensional instance, and there are many more potential locations for a piece within a

bin. There are often more location and orientation combinations than can be evaluated in

a reasonable amount of time for even small three dimensional instances.

An exact method using an integer programming representation is presented in

[150]. Martello et al. base a branch and bound algorithm on an exact method for filling one
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bin. Results can be obtained in reasonable time with this algorithm for instances of up to 90

pieces [197]. However, it is shown in [83] that not all orthogonal packings can be generated

with this algorithm, therefore it may miss an optimal packing. Also, better lower bounds

are found by Boschetti in [33], who concludes that this means more instances can be solved

to optimality by the exact algorithm in [197], and that it would require less computing

time. Changes to the algorithm are presented in 2007 by Martello et al, which ensure that

all packings are considered [198]. In this paper, Martello et al. draw attention to the fact

that in the real world a robot arm can be used to pack a container. This will constrain

the potential locations of a piece because the arm must be able to place the piece without

collisions with other pieces. The idea of an ‘envelope’ to represent the partial solution is

explained, a piece cannot be placed in a position where an existing piece would be in front

of, right of, or above it. The robot packing constraint provides part of the inspiration for

the 3D packing representation in this thesis, as does the idea of an ‘envelope’ behind which

no piece can be placed.

2.5.3 Heuristic and Metaheuristic Methods

Pisinger and Egeblad use a heuristic approach using ‘sequence triples’ for the three dimen-

sional representation [221]. This approach is based on the sequence pair representation for

two dimensional problems, mentioned in section 2.4.4, and the same simulated annealing

strategy is applied. Eley presents an approach which uses a greedy heuristic to create blocks

of homogeneous identically oriented items, and a tree search afterwards to improve upon the

total arrangement by changing the order in which the piece types are packed [92]. Another

approach employing a greedy heuristic and tree search is presented in [185], for both the

bin packing and the knapsack problem. A feature of the paper is a system for assigning

‘blame’ to problem pieces, meaning that they will be packed earlier in the sequence on the

next iteration. This is similar to the hyper-heuristic approach to exam timetabling of Burke

and Newall [40], which adapts the heuristic order at each iteration. Both of these papers

draw upon ‘squeaky wheel’ optimisation, presented by Joslin and Clements [154].

Li and Cheng present several algorithms for the variant of the problem with no

rotations allowed [182], including an algorithm for use if the underside of each piece is

a square. The same authors also developed an algorithm two years later with a better

asymptotic performance bound [183]. Miyazawa and Wakabayashi compare their algorithm
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to this, showing that it has an asymptotic performance bound which is better still, answering

a question raised by Li and Cheng on whether an algorithm exists with a better performance

bound than theirs [207]. In 1999, Miyazawa and Wakabayashi present four algorithms for

four similar problems [208]. They relax one of the packing constraints by allowing rotations

around the z axis. The algorithms have slightly better asymptotic performance bounds

to the previous work in the literature. The good performance bounds come from careful

analysis of the structure of the problems in question. Whereas Miyazawa and Wakabayashi

perform this analysis manually, one of the aims of hyper-heuristic research is to create

systems which can automate this process.

Ngoi et al. describe an intuitive heuristic procedure which constructs a solution

by placing a piece in the position which results in the least wasted space around it [211].

A similar spatial representation technique is presented in [66], also incorporating a user

interface and the ability to specify certain locations for items before the packing begins.

Lim et al. use a multi-faced buildup method, allowing every surface in the container to

be a ‘floor’ to locate boxes [184]. An algorithm based on the concept of ‘caving degree’

is introduced in [144]. Caving degree is a measure of how close a box is to those already

packed, and the packing with the largest caving degree is chosen.

Pisinger uses a wall building approach to obtain good results on a container loading

problem [220], and also explains two other approaches to the problem, namely the stack

building approach and the cuboid arrangement approach. In general, the wall building

approach separates the container into distinct layers along its depth, and then each layer

is filled with pieces. This approach was introduced by George and Robinson [119] who, in

contrast to later wall building algorithms, allow pieces to straddle two layers. Moura and

Oliveira [210] combine the basic George and Robinson algorithm with a GRASP strategy.

Pisinger’s approach uses a tree search to determine the depths of the layers, “each

layer is then filled as a number of strips, where the strips may be oriented horizontally or

vertically.” [220]. Bischoff and Marriott compare 14 heuristics based on the wall building

approach [27]. Another example of a wall building approach is presented in [117], where a

number of solutions are created and the user can choose the best one. The hybrid genetic

algorithm of [31] creates an initial population with a basic heuristic which forms vertical

layers in the container. These layers are then used as the unit of crossover and mutation

in the genetic algorithm. In general, genetic algorithms have not been widely studied for

three dimensional packing problems, possibly due to the difficulty in creating an effective
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representation. However, some examples include, but are not limited to, [72, 158, 186].

The stack building approach involves creating ‘towers’ of pieces, and arranging

them efficiently on the floor of the container. An example of this class of algorithms is shown

in [116], where a simple heuristic creates the stacks and a genetic algorithm is applied to

arrange the stacks onto the container floor. The cuboid arrangement approach packs groups

of similar pieces. An example of this approach is presented in [30], where a group can be

made up of one or two types of pieces, and a tabu search metaheuristic is used to improve

the solution iteratively. The cuboid arrangement approach is useful when stability is a

primary concern, because it produces very stable packings, with similar pieces stacked with

each other.

Lodi proposes a tabu search method, in conjunction with a heuristic which fills

the container in layers along its height [190]. This heuristic takes into account the need for

a good vertical filling, with items of similar height packed into a layer, and also the need

for efficiently packed layers, which is essentially a two dimensional packing problem. A

tabu search method for container loading is also presented in [32], with an emphasis on the

stability constraint, and how to parallelise the algorithm. Faroe et al. implement a guided

local search technique for the three dimensional bin packing problem [101], The guided

local search penalises certain features of a solution when a local optimum is found. Similar

to the methodology presented in this thesis, they apply the technique to two dimensional

instances by setting the pieces’ depth dimension to a constant.

2.6 Complexity Status

Sections 2.3 to 2.5 have presented the various exact, heuristic, and metaheuristic methods

which have been employed for the one, two and three dimensional packing problems. This

section briefly summarises the complexity status of the problems addressed in this thesis.

The one dimensional bin packing problem is well known to be NP-Hard [5]. As

such, the literature concerning this problem mainly presents heuristics and approximation

algorithms. However, the one dimensional knapsack problem is weakly NP-Hard, as it can be

solved in pseudo polynomial time using dynamic programming [115]. The two dimensional

strip packing problem is NP-Hard, as a one dimensional bin packing problem can be easily

converted into a two dimensional strip packing problem [5, 196].

The three dimensional bin packing problem is strongly NP-Hard, as it is a general-
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isation of the one dimensional bin packing problem [196]. The three dimensional knapsack

problem (container loading problem) is also strongly NP-Hard, and both of these three di-

mensional problems are considered very difficult to solve in practice [100, 196, 220]. Heuristic

and metaheuristic search techniques are most common for these problems. Nevertheless, an

exact algorithm for the three dimensional knapsack problem has been presented which can

solve instances with up to 90 pieces [196].

2.7 Genetic Programming

Genetic programming is an evolutionary computation method which evolves computer pro-

grams [15, 164, 167]. Despite the similar name, the methodology is distinct from a genetic

algorithm. In a genetic algorithm, the chromosome represents a candidate solution to a

problem, usually as a fixed length string of characters. In a genetic programming run, the

chromosome represents a program, or a method to solve a problem, usually as a variable

size tree structure. Importantly, the user does not have to specify the size and shape of the

final solution that they expect.

A hyper-heuristic is defined as a heuristic which searches a space of heuristics, as

opposed to directly searching a space of candidate solutions. Koza states that the search

space of genetic programming is a search algorithm over “the space of all possible computer

programs composed of functions and terminals appropriate to the problem domain.” [164]

Intuitively, one can see how genetic programming may lend itself to the class of hyper-

heuristic which aims to generate heuristics (methods to solve a problem) from a set of

potential components (see section 2.2.2).

Genetic programming became popular due to the work by John Koza in 1992

[164]. A good account of the previous work on evolutionary algorithms, which led to the

development of genetic programming can be found in [15]. To paraphrase some of this

history, employing a tree structure for the individuals in a genetic programming population

was suggested by both Cramer [78] and Koza [163], and some of the first work evolving

programs using the ‘Lisp’ and PROLOG programming languages can be found in [137, 110].

Section 2.7.1 will explain the standard structure of a genetic programming chro-

mosome. Section 2.7.3 will describe five preparatory steps that need to be completed before

a genetic programming run can start. Section 2.7.4 will explain the three basic genetic op-

erators, and how they operate on the chromosome structure defined in section 2.7.1. Some
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of the theoretical understanding of genetic programming is introduced in section 2.7.5, and

some of the achievements of genetic programming to date are presented in section 2.7.6.

2.7.1 Program Structure

In genetic programming, the programs that comprise the population are traditionally rep-

resented as tree structures. There are other program structures which can be evolved. For

example, linear genetic programming [34, 218, 228] evolves linear sequences of instructions.

Graph structures are evolved in parallel distributed genetic programming [225, 224] and

cartesian genetic programming [205, 206]. Tree based genetic programming is the technique

employed in this thesis. What follows is a short introduction to this methodology.

Each node in the tree returns a value to its parent node. The leaf nodes are usu-

ally input variables providing information about the problem state, or numeric constants.

The internal nodes have one or more children nodes, and they return a value obtained by

performing operations on the values returned by their children nodes. In genetic program-

ming, the trees’ internal nodes are referred to as ‘functions’, and leaf nodes are referred to

as ‘terminals’.

For example, consider a one dimensional bin packing problem (see section 2.3.1).

Figure 2.3 shows a program which calculates the space left at the top of a bin, such as the

one shown in figure 2.4, where a piece is put into a bin which is already partially filled.

The terminals in figure 2.3 are ‘C’, ‘S’, and ‘F ’. C represents the capacity of the bin. S

represents the size of the piece that is put into the bin. F represents the fullness of the

bin before the piece of size S is put in. Figure 2.4 shows the values that these terminals

correspond to.

The functions in figure 2.3 are the arithmetic operators of ‘−’ and ‘+’. The ‘+’

function takes two arguments, S and F , sums them, and returns the result to its parent

node. Its parent node is the ‘−’ function, which also takes two arguments, C and the value

returned by the ‘+’ node. It subtracts the second argument from the first, and returns the

result as the output of the program.

2.7.2 Initialisation

At the start of a genetic programming run, the population must be initialised. A number

of methods have been proposed for this process, and in most cases, the trees’ nodes are
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Figure 2.3: An example tree structure
representing a program that calculates
the space left in the bin in figure 2.4

Figure 2.4: The features of a one di-
mensional bin to which the tree in figure
2.3 could be applied to

selected randomly from the manually defined set of functions and terminals. For the three

methods explained here, the trees have a predefined maximum depth to limit the size of the

initial trees. The ‘full’ method selects a function for every node until the maximum depth

is reached, where a terminal must be selected. The result is a tree with all of the terminal

nodes at the same depth. The ‘grow’ method has no constraints on where the terminals

can be placed, resulting in trees with varied structures. The ‘ramped half-and-half’ method

was proposed by Koza [164], and is the initialisation method used in this thesis. In this

method, half of the population is initialised with the grow method, and half with the full

method. The maximum depth of the trees is also varied, creating a wide range of initial

tree structures.

2.7.3 The Five Preparatory Steps

For a basic run of genetic programming, the following five steps must be completed, taken

from [167].

Define a Terminal Set

The first step is to “define the set of terminals (e.g., the independent variables of the prob-

lem, zero-argument functions, and random constants) for each branch of the to-be-evolved

program” [167]. The terminal set is the set of nodes that can be the leaf nodes of the pro-

gram tree, and as such, they take no arguments. They are the mechanism through which

the problem state is made available to the program. They act as input variables, changing
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their value as the problem state changes. For example, in the program in figure 2.3, the

value of the F terminal will decrease if the bin has a lower fullness, and the value of S will

increase if the piece put into the bin is larger. So the program will return a different result

in either case.

The example of evolving a program to control a robot to clean a floor is given in

[167]. The terminals may be defined as the movements that the robot can make, such as

‘turn right’, ‘turn left’, ‘move forward’, and ‘swish the mop’. Other terminals may provide

sensory information, such as how far an obstacle is from the robot [167]. Terminals can also

be constant values that may be useful to the program. For example, a program calculating

the gravitational force between two objects, will need the universal gravitational constant

declared as a terminal, which will not change as the objects are changed.

Define a Function Set

The second step is to define “the set of primitive functions for each branch of the to-be-

evolved program.” [167]. The function set is the set of operations that can be represented

by the internal nodes of the tree. For example they can be arithmetic operators, boolean

logic operators, or conditional operators. The functions of a genetic programming tree

manipulate the values supplied to the program by the terminals, and as such their defining

feature is that they take one or more arguments, which can be the values returned by

terminal nodes or other function nodes.

Define a Fitness Measure

The third step is to define “the fitness measure (for explicitly or implicitly measuring the

fitness of individuals in the population)” [167]. The fitness measure (or objective function)

assesses how good a program is at the problem at hand, and the result is used to select

individuals to be parents of those in the next generation. To return to the cleaning robot

example, the fitness measure may be defined as the percentage of the floor successfully

cleaned by the robot.

Define the Run Parameters

The fourth step is to define “certain parameters for controlling the run” [167]. These include

the population size, the maximum program size, and the percentage of the new population
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that is to be created from each of the genetic operators.

Define the Termination Criterion

The fifth step is to define “the termination criterion and method for designating the result

of the run” [167]. For example, the run could stop when a maximum number of generations

has been executed, or a time limit has been reached. Alternatively, the run could stop when

an individual of a certain quality has been evolved.

2.7.4 Genetic Operators

In a ‘canonical’ GP implementation, there are three genetic operators which modify the

population to create the next generation. They are ‘crossover’, ‘mutation’, and ‘reproduc-

tion’. Originally, the work by Koza in [164] did not include the mutation operator. However,

there is now general consensus that mutation is beneficial to the search and should be in-

cluded. In the experiments in this thesis, a generational evolutionary model is employed,

rather than a steady state model. In each generation, each individual in the population

is assigned a fitness value in proportion to their performance on the given task. As is the

case with other evolutionary algorithms, the fitness values are then used to determine which

individuals are to be the parents of those in the next generation. The next generation is

created by applying a combination of the genetic operators to create new individuals. This

is in contrast to a steady state model, where one genetic operator would be applied once

to create a new individual, which would replace one individual in the population and be

tested immediately.

For example, fitness proportional selection can be used, in which each individual

is selected to be a parent with a probability proportional to their fitness. However, this

can mean that one strong individual can dominate the population if its fitness is dispro-

portionately higher than any other individual’s fitness. This problem can be addressed in

a number of ways, one of which is with a tournament selection mechanism. In tournament

selection, two or more individuals are selected from the population, and the individual with

the highest fitness becomes a parent.
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Crossover

The standard crossover operator requires two parent individuals, and creates two children.

A node is chosen at random in each individual, and the subtrees defined by each point

are exchanged. This process creates two child individuals, which are added to the next

generation. Figure 2.5 shows, graphically, the crossover operator being applied to two

individuals. Uniform selection of crossover points often leads to a bias towards simply

swapping two leaf nodes, as the average number of children is usually at least two. There

is therefore more chance that a leaf node is chosen than an internal node. Koza suggests

choosing an internal node in 90% of cases, and a leaf node in 10% of cases, in order to force

the crossover of more complex subtrees. This is the approach taken in this thesis.

Mutation

The mutation operator requires one parent individual, and creates one child. A node is

chosen at random in the parent, and it is common to force the selection of an internal

node 90% of the time. The subtree defined by that node is deleted, and a new subtree is

generated in its place, consisting of nodes chosen from the function and terminal set. When

only using crossover, a function or terminal can be lost from one generation to the next if

no individuals that contain it are chosen to be parents. Mutation provides a mechanism for

a lost function or terminal to re-enter the population. In general, mutation can be a way to

diversify the search and help avoid local optima. Figure 2.6 shows this process graphically.

Reproduction

The reproduction operator simply copies one parent to create one child. Mutation and

crossover can be destructive. They can cause a good individual to be lost from one gen-

eration to the next. The reproduction operator provides a mechanism to retain good indi-

viduals, so that they can be further modified after the next generation. In this thesis, the

evolutionary model is always generational, rather than steady state. The next generation

is created in one process using a combination of the genetic operators, and if the reproduc-

tion operator is called, it makes an exact copy of one individual and places it in the next

generation.



2. literature review 47

Figure 2.5: An example of a genetic programming crossover operation being performed
on two parent trees to create two child trees
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Figure 2.6: An example of a genetic programming mutation operation being performed.
Only one parent tree is necessary, and one child tree is produced. The subtree rooted at
the circled node is deleted, and a new subtree is grown at the same point, by randomly
selecting each node

Constraints on the Tree Structure

In standard genetic programming, as the trees can be arbitrarily recombined with the

crossover operator, it is important that the functions and terminals satisfy a constraint

called ‘closure’ [164]. This means that any output of a function or terminal can be used

as the input to any other function. If this is not the case, then it cannot be guaranteed

that the crossover operator will produce syntactically valid trees. However, ensuring closure

of the function set is not the only way to ensure that trees produced with crossover will

execute. Indeed, sometimes it may actually be necessary to make use of a set of functions

which returns differing types of outputs, and numerous methods have been proposed to

extend genetic programming in order to handle this. Poli et al. [228] presents a summary

of these approaches, including strongly typed genetic programming, and grammar based

approaches.

2.7.5 Theoretical Concepts

Banzhaf et al. [15] provide a chapter outlining the biological concepts that underpin the

inspiration for genetic programming, and also a chapter on the mathematical basics needed

to understand certain genetic programming concepts. Currently, the most developed the-

oretical explanation of genetic programming is based on Holland’s ‘schema theory’ [141].

Schemata are building blocks which help the individual to solve the problem. In genetic
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algorithm theory, they are represented as sub-sections of the chromosome with ‘wildcard’

characters for genes which are unspecified. It has been less straightforward to adapt this

model to genetic programming, because the chromosome is of variable length, and the

crossover operators used are more complex. As such, it has been more difficult to agree on

a similar definition for schemata [15, 227].

Koza first adapted schema theory to genetic programming in his 1992 book [164].

And more recent work on schema theory has been done by Poli et al. [229, 230, 231].

A good survey of all the work on schema theory, and other theoretical models of genetic

programming, can be found in chapter 11 of [228].

2.7.6 Achievements of Genetic Programming

Genetic programming has been applied to many different kinds of problems, and it would

be impossible to list all of its achievements in this literature review. This section will give

some of the main areas in which genetic programming has been successful.

The 2009 Genetic and Evolutionary Computation Conference will host the sixth

annual awards for human competitive results produced by genetic and evolutionary compu-

tation. While results achieved by any evolutionary computation technique can be submitted,

the results of the previous human competitive awards are a showcase for the ability of ge-

netic programming to create innovative solutions to real world problems. There are eight

criteria by which the entries are judged, ranging from infringement on an existing patent,

to “holding its own” in competitions with humans. The full details can be found at the

competition website:

http://www.genetic-programming.org/hc2005/main.html

Poli et al. cite two prominent examples of work that fulfils many of these criteria.

The first is an antenna design evolved by genetic programming [193]. The design had a

performance very similar to the design created by the contractor commissioned to design the

antenna. The second example is the design of algorithms for quantum computers [254, 255].

Poli et al. [228] also report a number of additional areas where genetic program-

ming has proved to be successful, the reader is referred to [228] for an extensive list of

references, but some are provided here: image and signal processing [82, 195, 258], financial

trading and economics [61, 155, 266], industrial process control [58, 109, 181], bioinformatics
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and medicine [3, 28, 93], hyper-heuristics [49, 114, 159], and entertainment and computer

games [8, 177, 272].

2.7.7 Summary

To conclude this section, the literature on genetic programming is vast, and it would be

impossible to completely cover in this review. For example, the genetic programming bib-

liography contains over 5000 references. It is maintained by William Langdon, Steven

Gustafson, and John Koza, and can be found at this website:

http://www.cs.bham.ac.uk/∼wbl/biblio/

This section has covered the sections of the genetic programming literature that are relevant

to this thesis, and the reader who is interested in learning more about genetic programming

is directed to the excellent book by Poli et al. [228], and to these additional references

[15, 164, 165, 166].

2.8 Conclusion

The aim of this chapter was to put the contribution of this thesis in context. Previous work

has been described for the areas of hyper-heuristics, packing in up to three dimensions, and

genetic programming.

Hyper heuristics have been defined as heuristics which search a space of heuristics,

as opposed to directly searching a space of solutions. Since the first few publications of

hyper-heuristic methods in the 1960s (see [107] for the first), little progress was made to

exploit this approach to the development of search methodologies until the 1990s. In the last

decade, much more research has been undertaken into hyper-heuristics. It can be reasoned

that hyper-heuristic methodology has seen a resurgence of interest recently because of the

increase in difficulty and scale of problems in the real-world [252]. While the difficulty has

increased, the cost of solutions has increased, because the same methods based on hand

crafted solutions are applied to progressively more difficult problems, which takes more

time in human analysis and development. Large companies can afford to commission such

bespoke systems. However, smaller organisations with optimisation problems do not have

access to them, because of the prohibitive cost.
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There is a need, therefore, for an automated approach to heuristic generation

and selection, which can provide value for money to users who do not have the funding to

commission a bespoke system. The hyper-heuristic research presented in this chapter shows

the first steps to providing more general, more automated, and therefore cheaper systems.

The one, two and three dimensional bin packing and knapsack problems have

been introduced, along with the two dimensional strip packing problem. There has been

a large amount of previous work on these problems, especially in one and two dimensions.

The previous work has generally been to develop heuristics for one of these problems only.

In the vast majority of cases, a human-created heuristic for one problem type cannot be

employed for another problem type without changing the heuristics parameters at the very

least, because they are designed and built by hand specifically for one problem. This thesis

aims to show that a computer can be employed to design and build heuristics for any of

the packing problems presented in this chapter, thus automating this potentially expensive

process usually done by hand.

The wealth of literature on genetic programming mostly studies concepts beyond

the complexity of this system. However, for the reader not familiar with genetic program-

ming, section 2.7 provides a strong starting point to understanding the genetic programming

system used in this thesis at least. References are provided to good introductory texts if

more information is needed.

In this thesis, we use genetic programming as a hyper-heuristic for a variety of

packing problems. The next chapter presents initial work on a hyper-heuristic genetic

programming system for one dimensional bin packing.
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Chapter 3

Evolving Heuristics for the One Dimensional Bin

Packing Problem

3.1 Introduction

In the previous chapter, we presented a review of the relevant literature regarding hyper-

heuristics, packing problems, and genetic programming. This chapter will present initial

work on automating the design of heuristics for the one dimensional bin packing problem.

In subsequent chapters we will expand and improve upon this initial work, showing that it

is possible to create human-competitive heuristics with genetic programming for well known

packing problems.

The aims of this work are to investigate if it is possible for a genetic programming

system to generate heuristics equal to, or better than, human created constructive heuristics.

If this is found to be possible then it would validate the hypothesis that genetic programming

can be employed as a hyper-heuristic to generate heuristics. Experiments are performed to

determine the relative effectiveness of two fitness functions. We also investigate the effects

of removing a particular function from the function set.

As we have seen in section 2.7 of the previous chapter, genetic programming evolves

a population of tree structures that represent programs. The heuristics we evolve are

therefore tree structures, with leaf nodes that represent certain features of the current

problem instance state, and with internal nodes that perform operations on those feature

values to return one numerical result. At each generation, each heuristic in the population

is applied to a set of problem instances, and assigned a fitness based on its performance.

The fitness scores of all the heuristics are then used to determine which ones will be selected
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as parents for the individuals in the next generation.

The trees we evolve operate within a fixed framework where the tree is applied in

turn to the available bins. The tree returns a value for every bin. If the value is zero or less

then we move on to the next bin, but if the value is positive we put the piece in the bin. In

this way, it is the tree which decides when to stop the search for a suitable bin and put the

piece into the current bin. The tree therefore operates as a heuristic. The algorithm then

repeats the process for each of the other pieces until all the pieces have been packed.

This is similar to the way first-fit operates, and so we will explain this heuristic in

section 3.2. The methodology is explained in section 3.3. Results are displayed in section

3.4, and conclusions are drawn in section 3.5.

3.2 The First-Fit Heuristic

First-fit is a constructive heuristic which packs a set of pieces one at a time, in the order

that they are presented. The heuristic iterates through the open bins, and the current

piece is placed in the first bin into which it fits. This heuristic is for the online bin packing

problem, because it packs pieces one at a time, and a piece cannot be moved once it has

been assigned to a bin. The difference between an online problem and an offline problem is

explained in section 2.3.2.

Figure 3.1 shows an intermediate stage of a simple packing problem, with four

pieces left to pack and some pieces already packed into the partial solution on the right.

The current piece (with a size of 70) cannot fit into the first bin or the second bin, because

they do not contain enough free space. However, the piece fits into the third bin, so the

piece will immediately be committed to that bin, as shown in figure 3.2. The algorithm will

then return to the first bin, this time considering the second piece (with a size of 85). It

will iterate through the bins again, this time to the fourth bin, and immediately choose to

put the piece there, as shown in figure 3.3. This is because the fourth bin is the first with

enough free space to accommodate it. The final two pieces are packed in the same way, and

the final solution is shown in figure 3.4.

In summary, this heuristic iterates through the bins, and at each bin it makes a

final decision on whether or not to place the piece into the bin. We draw our inspiration

from first-fit for our evolved heuristics. In general terms, we will evolve the heuristic part

of the algorithm, which will choose whether or not to put a piece in the current bin or move
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Figure 3.1: Pieces remaining to be
packed, and a partial solution

Figure 3.2: The first piece is put into
the third bin because it is the first bin
with enough space to accommodate it

Figure 3.3: The second piece is put into
the fourth bin

Figure 3.4: The final two pieces are put
into the first and fifth bins

on to consider the next bin.

3.3 Methodology

In this section, we explain how a heuristic in the population is applied to a problem instance,

what the heuristics actually consist of, and how we evolve the heuristics. Section 3.3.1

explains how we apply a heuristic to the problem to obtain a result. Section 3.3.2 explains

what the heuristics consist of. In section 3.3.3, we give a detailed example of part of

the packing process, to further clarify the process of applying a heuristic. Section 3.3.4

gives examples of heuristics that produce illegal solutions. Finally, section 3.3.5 explains

the details of the genetic programming algorithm that evolves the heuristics, such as the

parameters and the fitness function used to rate the heuristics’ performance.

3.3.1 How The Heuristic is Applied

We obtain a fitness value for a heuristic by evaluating the quality of the solution it creates.

This section explains how a heuristic constructs a solution. After reading this section, the

reader may also find section 3.3.3 useful, which gives a detailed example of the packing

process.

The heuristic operates within a fixed framework, shown in algorithm 1. For each
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piece, the framework iteratively applies the heuristic to each open bin in the same way as

first-fit iterates through the bins. For each bin, the heuristic returns a value (essentially

a score for the bin and piece combination), and if the value is greater than zero then the

piece is placed in that bin. If the value is less than or equal to zero then the next bin is

considered. After a piece is placed, the cycle repeats with the next piece. Therefore, within

this framework, we evolve the mechanism which makes the choice of whether to commit to

a bin or move on to consider the next bin.

Algorithm 1 Pseudo code of the framework within which the heuristics are applied in the

experiments of chapter 3. The input is a list L of pieces to be packed
1: initialise partial solution s with one empty bin

2: for each piece p in L do

3: for each bin b in s do

4: heuristic output = evaluateHeuristic(p, fullness of i, capacity of i)

5: if heuristic output > 0 then

6: place piece p in bin i and break

7: end if

8: end for

9: if piece was placed in the empty bin then

10: add a new empty bin to s

11: end if

12: end for

It should be noted that we do not constrain the heuristic to only consider bins

with enough room for the current piece. In other words, as the heuristic iterates through

the bins, if the heuristic finds a bin that the piece cannot fit into, it must still make a

decision as to whether to put the piece into the bin. The heuristic is permitted to put the

piece into such a bin, and if it does then this produces an ‘illegal’ solution. Therefore, to

produce a legal solution, the heuristic must take into account that the current piece is too

large and return a value of zero or less. An illegal solution is also produced if, for any one

piece, the heuristic never returns a value greater than zero. In such a case, the piece will

not be placed in any bin, even the empty bin which is always made available. The concept

of illegal solutions is explained further in section 3.3.4. While a heuristic is permitted to

produce an illegal solution, the heuristic’s fitness is heavily penalised if it does (see section
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Table 3.1: The functions and terminals used in chapter 3, and descriptions of the values
they return

Symbol Arguments Description

Functions

+ 2 Add
− 2 Subtract
∗ 2 Multiply
% 2 Protected divide function.

A division by zero will return 1
≤ 2 Tests if the first argument is less than

or equal to the second argument.
Returns 1 if true, -1 if false

A 1 Returns the absolute value of
the argument

Terminals
F 0 Returns the sum of the pieces already

in the bin
C 0 Returns the bin capacity
S 0 Returns the size of the current piece

3.3.5). This provides a selection pressure towards heuristics which produce legal solutions.

3.3.2 Structure of the Heuristics

The individuals in the population are heuristics that have a tree structure. This is the

traditional structure for individuals in a genetic programming population. The leaf nodes

of a tree are referred to as ‘terminals’ and they take a value depending on the state of

the problem. The internal nodes of a tree are referred to as ‘functions’, and they perform

operations on the values supplied by the terminals. For a full explanation of the role of

functions and terminals, refer back to section 2.7.1.

For a heuristic to produce a solution, it considers each piece in sequence, and

decides which bin to pack the current piece into. It chooses a bin by operating within a

fixed framework (shown in algorithm 1), which applies the heuristic to each bin in sequence.

When the heuristic is applied to a bin, its terminal nodes each acquire a value, dynamically

determined by the properties of the current bin and the current piece. The heuristic returns

one numerical result, by evaluating its function nodes using the values supplied by its

terminal nodes.

The functions and terminals are shown in table 3.1. The function set includes the

four basic arithmetic operators, along with a ‘less-than-or-equal-to’ operator, and a function

that returns the absolute value of its input. There are three terminals, ‘F ’, ‘S’, and ‘C’. F
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Figure 3.5: An example heuristic used in the analysis in section 3.3.3, to pack the pieces
in figures 3.6 to 3.9

represents the total size of the pieces already in the bin, C represents the capacity of the

bin, and S represents the size of the current piece.

This function and terminal set is intentionally simple, but aims to provide all of

the information that a heuristic may need. From this set of components, the heuristic can

calculate more complex features, for example the space left in the bin. From the examples

given in section 3.3.4, one can see that just using the bin capacity terminal does not provide

enough information to intelligently make a decision on where to place the piece. The

heuristic must evolve to combine information about both the piece and the bin, in order to

ensure the constraints of the bin packing problem are adhered to.

3.3.3 Simple Example of a Heuristic Constructing a Solution

This section provides a step-by-step analysis of a heuristic (shown in figure 3.5) performing

part of the packing process of a simple problem instance. It is more informative to begin

the example with a partial solution, as it makes more explicit the ability of the terminal

nodes to obtain different values as the heuristic is applied to different bins. Therefore, the

example begins with four pieces already packed, and four pieces which remain to be packed,

as can be seen in figure 3.6. Figures 3.7-3.9 help explain the process of packing the first

three of those pieces, using the heuristic shown in figure 3.5. All of the bins have a capacity

of 150 in this example. The reader may wish to compare the results of this heuristic with

the results of the first-fit heuristic when packing the same instance, shown in section 3.2

and figures 3.1-3.4. The example begins with the partial solution shown in figure 3.6, the

heuristic will first choose a bin for the piece of size 70. To do this, the heuristic is applied

to each bin in turn, and returns a value for each. This is shown in figure 3.7. The first
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Figure 3.6: A partial solution. We will
use the heuristic in figure 3.5 to pack the
four remaining pieces

Figure 3.7: The piece of size 70 is
packed into the first bin for which the
heuristic returns a positive number, the
fifth bin

Figure 3.8: The piece of size 85 is
packed into the sixth bin

Figure 3.9: The piece of size 30 is
packed into the third bin

bin has a fullness of 90, and a capacity of 150. The heuristic is shown in equation 3.1 in

linear form, and in equation 3.2 with the values for the terminal nodes substituted in. The

inequality evaluates to false, so a value of −1 is returned by this node (see the description

of ≤ in table 3.1). This is the value returned by the heuristic, since the ≤ node is at the

root of the tree.

(S + S) ≤ (C − (F + S)) (3.1)

(70 + 70) ≤ (150− (90 + 70)) (3.2)

The value returned by the heuristic is not greater than zero, so the heuristic moves on to

the next bin and is evaluated in the same way, the value of the F terminal node will be

120 this time, however, because this bin has a different fullness. The right hand side of the

inequality will be even less than for the first bin, because of this increase in the value of F .

So the inequality will still not hold, and the heuristic will still return −1.

In fact, the first time that the heuristic returns a value of greater than zero is

at bin five, which is empty. The value of zero for the F terminal node means that the

inequality evaluates to true, and so it returns 1. The piece is put into this bin, as shown in

figure 3.7 and the heuristic moves on to the next piece.

Figure 3.8 shows the process of packing the second piece, which has a size of 85.

The bins are iterated through, and a result is returned by the heuristic for each one. This
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time, the value of the S terminal will be different, because it is a different piece that is

being packed. The sixth bin is the first bin for which the heuristic returns a value greater

than zero, and so the piece is put into this bin. It is obvious so far that this heuristic is

different to first fit. This is because it often decides not to put a piece into a bin that clearly

contains enough space for it, as if it is waiting for a better bin.

When we pack the third piece with the heuristic, it decides to put it into the third

bin, which already contains a piece. This process is shown in figure 3.9. At the first bin,

when the terminal values have been substituted into equation 3.1 and then simplified, the

heuristic is checking the inequality 60 ≤ 30. This evaluates to false, and so −1 is returned.

At the second bin, the heuristic also returns −1, because the inequality 60 ≤ 0 is false. At

the third bin, the heuristic is checking the inequality 60 ≤ 90, which evaluates to true, and

the piece is put into this bin. The fourth piece will be packed into bin seven.

From this packing process, it can be shown that this heuristic will never pack a

piece into a bin if its size is greater than a third of the free space in the bin. For example,

in figures 3.6-3.9, a piece would need to be of size 20 or less for the heuristic to pack it into

the first bin. This is because for a bin with 60 units of space left, the piece must be size 20

or lower for the inequality of equation 3.1 to hold.

3.3.4 Heuristics Producing Illegal Solutions

In section 3.3.1, it was stated that a heuristic can produce an illegal solution, and is not

artificially constrained not to do so. Through the process of evolution, it must learn the

rules of one dimensional bin packing through the feedback it gets from the fitness function.

This section provides further clarification on how a heuristic may produce an illegal solution.

All algorithms for bin packing use information about the piece size, the capacity

of the bin, and the pieces that have been placed in the bin already, to ensure that they do

not violate the hard constraints of the problem. This is the minimum information needed to

ensure that the bin does not become overfilled. The heuristics evolved here are not forced

to contain all of the terminal nodes that represent these features. They are free to contain

any subset of the terminals. This is a decision taken to test if the genetic programming

system can select the correct information and use it in the correct way.

If a heuristic does not have the minimum set of terminals that it needs to be able

to create a legal solution, then there is a possibility that it may produce an illegal solution.
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that puts no pieces in any
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However, a heuristic could also produce an illegal solution if it does contain the relevant

functions and terminals, but combined in an incorrect way. The following two subsections

provide examples of these conditions to further clarify these points.

Two Examples of Heuristics Without All Relevant Terminals

A heuristic only including the capacity terminal (C) cannot possibly make a relevant decision

as to whether a piece should be placed into a bin. For example, if the heuristic was C + C

(figure 3.10), then the result returned would always be twice the bin capacity. This value

will always be greater than zero, and so every piece will be placed into the first bin, which

will eventually overfill it. Such a heuristic is permitted to remain in the population, it is

not artificially deleted, nor is its choice of bin constrained. However, it will receive a very

low fitness value and therefore it will be highly unlikely to be chosen to be a parent of

individuals in the next generation.

Similarly, if the heuristic was C − C (figure 3.11), then the result would always

be zero. In this case, the piece will not be put into any bin, and the algorithm will iterate

through all the available bins and never decide to put the piece into one of them. This

also produces an illegal solution because a hard constraint of the problem is that all of the

pieces must be packed. Again, the algorithm is not constrained to definitely pack all of the

pieces. The heuristic must evolve its own mechanism to ensure that all of the pieces are

packed and that no bin is overfilled.
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Table 3.2: Genetic programming initialisation parameters for chapter 3
Population size 1000
Generations 50
Crossover Proportion 90%
Reproduction Proportion 10%
Maximum depth of initial trees 4
Method of initialising the trees Grow
Selection Method Roulette wheel

An Heuristic Combining the Relevant Terminals in an Incorrect Way

Figure 3.12 shows a heuristic containing all the terminals available. The way they are

combined, however, means that the heuristic will not put any piece in any bin, because the

fullness of the first bin is zero before any pieces are packed, and the final calculation of the

heuristic makes it multiply the right hand side of the tree by the fullness. This calculation

will always be a multiplication with zero, and therefore the heuristic will never return a

value greater than zero.

3.3.5 How the Heuristics are Evolved

Previous sections of this chapter have explained how a heuristic is applied to a problem

instance to obtain a solution, and what a heuristic consists of. This section explains how

the heuristics themselves are evolved by the genetic programming algorithm. There are three

parts to this section. The first part will provide an overview of the genetic programming

parameters and the experimental setup. The second part will describe the benchmark data

set on which we evolve the heuristics. The third part will describe two fitness functions

used to assess the performance of each heuristic.

Experimental Setup

The parameters of the genetic programming run are shown in table 3.2. These values are

used because they are standard parameters, which result in a good solution in reasonable

time. As stated in chapter 1 on table 1.1, the genetic programming system used for the

experiments of this chapter is the author’s own code. This is also true for chapter 4,

while the subsequent chapters use the ECJ (Evolutionary Computation in Java) package

(http://www.cs.gmu.edu/∼eclab/projects/ecj/).
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A population size of 1000 is used, with the maximum number of generations set

to 50. 90% of a new generation is generated by the crossover operator, and 10% by the

reproduction operator. The individuals for these operators are selected via roulette wheel

selection.

The relatively small value of four is chosen for the maximum initial depth of the

trees, because the trees’ size is not limited during the run. The ‘grow’ method [167] of

initialising the trees is used. Fitness proportional (roulette wheel) selection is employed to

select individuals from the population for the crossover and reproduction operators. This

method selects individuals in proportion to their fitness relative to the rest of the population.

These parameters are intentionally basic. They are standard parameters, most of

which are used in [164], which are sufficient to produce the results presented in this chapter.

To put this decision in context, the aim of this initial chapter is to discover if a basic genetic

programming system can produce human competitive heuristics, and we therefore opt to

use a simple configuration initially, then add richness to the parameters once a proof of

concept has been established.

For example, the mutation operator is considered in the literature to be beneficial

in the majority of cases, and is used in chapters 6 and 7 of the thesis. The ‘grow’ method of

initialising the population is replaced in subsequent chapters by the ‘ramped half-and-half’

method. Also, parsimony pressures are applied to the population in later chapters, but they

are not used in this chapter.

The next section explains that there are 20 instances used in the experiments of

this chapter. The results section presents heuristics evolved on one problem instance and

heuristics evolved on all 20 instances. During the genetic programming run, each individual

is assigned a fitness which is either based on its performance on one instance (‘evolved on’

one instance), or its performance on all of the instances (‘evolved on’ all 20 instances).

In the results section, 20 heuristics are evolved in each set of experiments. One run

of the genetic programming system always outputs just one heuristic, so therefore 20 runs

of the genetic programming system are performed in each set of experiments. Algorithm

2 shows the genetic programming algorithm. Because of available computing resources, 20

heuristics were evolved for each experiment in this chapter. Evolving this many heuristics

provides a reliable average performance value. In subsequent chapters, 50 heuristics are

evolved for each experiment, as they are evolved on groups of instances only, and not single

instances. Therefore we could afford to evolve more heuristics for each group.
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Algorithm 2 Pseudo code of the genetic programming algorithm used in the experiments of

chapter 3. The input is a set of problem instances I, which could contain just one instance,

or it could contain 20 instances. Algorithm 1 is referred to, which details how a heuristic

produces a solution. The genetic operators are selected with probabilities detailed in table

3.2
1: initialise population

2: for generation g ≤ 50 do

3: for each individual ind in population do

4: for each instance i ∈ I do

5: fitness(ind) += getFitness(algorithm1(ind, i))

6: end for

7: end for

8: initialise new population nextgen

9: repeat

10: select genetic operator

11: select parent(s) with roulette wheel selection

12: insert child into nextgen

13: until population nextgen is filled population = nextgen

14: end for
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The Data Set

The dataset that is used to evolve the heuristics is a set of 20 instances, generated by Falke-

nauer to test a hybrid grouping genetic algorithm for bin packing [96]. The dataset is avail-

able at the OR-Library at http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/binpackinfo.html,

where the set is referred to as ‘binpack0’. Each instance has 120 pieces, with sizes uniformly

distributed between 20 and 100 inclusive.

The Fitness Functions

After the heuristic has constructed a solution, its fitness is obtained by evaluating the

the quality of the solution that it produced. In this chapter, two fitness functions are

investigated, and their performance will be compared in the results section.

The results section presents heuristics evolved on one problem instance, and heuris-

tics evolved on all 20 problem instances in the dataset (each heuristic packs 20 instances

and its performance is then assessed). The two fitness functions (shown in equations 3.3

and 3.4) obtain a fitness for the former of the two. For the latter, the fitness is obtained by

applying the fitness function to each packed instance and summing the results. The total

is then assigned as the fitness of the individual.

The ‘basic’ fitness function is shown in equation 3.3, where B represents the num-

ber of bins used, n represents the number of pieces in the instance, Sk represents the size

of piece k, and C represents the bin capacity.

Fitness = B −
∑n

k=1 Sk
C

(3.3)

This fitness function finds the difference between the number of bins used and a trivial

theoretical upper bound on the number of bins needed. The upper bound is calculated by

summing the piece sizes and dividing by the capacity of the bins, and then rounding the

result up to the nearest integer. A fitness closer to zero is better, and a fitness equal to

zero means the solution obtained by the heuristic is provably optimal. Illegal solutions (see

section 3.3.4) are given a fitness value of 1000, an arbitrarily high value compared to the

range of fitness values that a legal solution can have. The worst legal solution is obtained

by allocating only one piece to every bin. As there are 120 pieces, a legal solution can never

have a fitness greater than 120, which is much lower than 1000.

The second fitness function is shown in equation 3.4, where: n = number of bins.
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m = number of pieces. wj = size (weight) of piece j. xij = 1 if piece j is in bin i and 0

otherwise. C = bin capacity.

Fitness = 1−


∑n

i=1

(∑m
j=1 wjxij
C

)2

n

 (3.4)

This fitness function is taken from [97]. It puts a premium on bins that are filled completely

or nearly so. Importantly, the fitness function is designed to avoid the problem of plateaus

in the search space, that occur when the fitness function does not discriminate between

heuristics that use the same number of bins. Solutions with lower fitness are better, and a

fitness of 1000 is assigned to any heuristic that produces an illegal solution.

3.4 Results

This section presents the results of the experiments performed with the genetic programming

hyper-heuristic described in this chapter. Section 3.4.1 presents some evolved heuristics

obtained during preliminary experiments, which approximate the performance of first-fit.

Section 3.4.2 explains the two statistical tests that are used to validate the two categories

of results. Section 3.4.3 analyses all of the heuristics evolved with the basic fitness function.

This can be compared to section 3.4.4, which analyses the results of the heuristics evolved

with the second fitness function. Section 3.4.5 presents the results of heuristics evolved

without the ≤ function in the function set.

3.4.1 Individual Results

This section presents individual heuristics obtained in the first set of experiments, using

the basic fitness function. They are intended to provide the reader with some examples of

what the evolved heuristics look like, and how similar they are to the human created first-fit

heuristic.

Small Trees

Figures 3.13-3.16 show four individuals evolved from four different runs (labelled A to D),

which illustrate that simple programs can be found by the genetic programming system,

and that the system is versatile enough to produce many different ways of expressing the

same heuristic, including some ways that would perhaps not be thought of immediately by
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Figure 3.16: Tree D

a human programmer given the same task. They all result in a legal solution because a

piece is never put in a bin when it is larger than the space left in the bin.

All four individuals perform much the same function. However, trees C and D are

slightly different to A and B. Trees A and B both return a negative number if the piece

size is greater than the space left in the bin, and a positive number if not. They, therefore,

implement the first-fit heuristic. Trees C and D perform the same way, apart from the

case when the piece size is the same as the space left in the bin. Zero is returned in this

case, because the ‘≤’ terminal returns zero when its two arguments are equal. This means

that the greater-than-zero condition (shown in algorithm 1) is not met, and the piece is not

placed in the bin. So C and D are individuals that do not implement the first-fit heuristic,

but their functionality is highly similar.

It is interesting to analyse why heuristics C and D were best-of-run individuals,

when theoretically superior heuristics, such as A and B, seem easy to evolve because of their

relatively small size. This can be explained by imagining that if heuristic C is found first

in its run, then it is stored as the best-of-run individual so far. In subsequent generations,

heuristics like A and B most probably were produced, but with the data sets used here they

do not produce a solution which used less bins. They, therefore, would not replace heuristic
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C as the best-of-run individual, because they would not have a better fitness according to

the basic fitness function.

A possible reason that a better result is not gained by using heuristics A and B,

is because the bin capacity is large and the piece sizes are such that it is uncommon for a

bin to be filled exactly. Therefore, the fact that the piece will not be put in the bin if it

exactly fills the bin barely affects the assignment of pieces to bins. Therefore, the solutions

produced by both heuristics are almost the same, and they receive the same fitness.

Plateaus in the search space (where many different heuristics map to the same

fitness) also mean that code-bloat [22] was not especially problematic to the genetic pro-

gramming algorithm in the runs which produced figures 3.13-3.16. They were found in the

early generations when the average tree size was small, they were stored as the best so

far, and then were not surpassed by individuals found in later generations. The average

complexity of the trees only increases in later generations. Therefore, if a good heuristic is

found early in the run, it is more likely to be a simple and easy to understand tree than

if it is found in a later generation. The next section presents and describes two heuristics

which were stored in later generations of a run, and are more complex then those presented

in this section.

More Complex Trees

We present two more examples of heuristics created during different runs, which are more

complex than the four individuals presented in figures 3.13-3.16. These individuals are of

interest because they are quite far removed from any program that a human programmer

would create for the same task. Both are best-of-run individuals.

Tree Structure 1

Figure 3.17 has the same functionality as the first-fit heuristic, because F is always less than

or equal to C. For this reason, 1 will always be returned by the left branch. In general, if

inequality 3.5 is satisfied, then the piece fits into the bin. The right hand branch will return

0 or less if this is the case. Therefore, the result returned by the whole tree will be 1 or

greater, and the piece will be put in the bin.

(F + (S − C)) <= 0 (3.5)
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Tree Structure 2

Figure 3.18 shows a tree which also implements the first-fit heuristic. The heuristic’s right

hand branch (from the first subtract node downwards) can be simplified to expression 3.6.

(C − F )− S (3.6)

This branch will return 0 or greater if the piece fits, or else it will return a negative number,

as C −F will be smaller than S. Since C is always a positive integer number, C divided by

a positive number returns a positive number, and so the piece is placed in the bin in such a

case. On the other hand, C divided by a negative number returns a negative number, and

so if the right hand branch evaluates to a negative number then the piece is not placed in

the bin.

The most interesting feature of figure 3.18, however, is the way that the ‘protected

divide’ node at the root fixes the problem that figures 3.15 and 3.16 have. Recall that in

those trees, when the piece fits exactly, zero is returned, and therefore the ‘greater-than-

zero’ condition, shown in the pseudocode (algorithm 1), is not satisfied, and the piece is not

placed in the bin. The protected divide function at the root of figure 3.18 means that when

the piece fits exactly, 1 is returned as it is a division by zero. So the problems in figures

3.15 and 3.16 have been solved in figure 3.18.

This functionality was not the reason the protected divide function was defined

in this way. The reason it was defined this way was for closure of the function set, as

explained in [164]. This is, therefore, an example of how the evolutionary process can use
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combinations of functions and terminals in ways not originally envisaged by the human

programmer that supplied them.

3.4.2 Statistical Tests

This section explains the two statistical tests used to analyse the results in sections 3.4.3-

3.4.5.

In each of the sections 3.4.3-3.4.5, there are two categories of heuristics for which

results are reported. The first category consists of heuristics which are each evolved on all

20 instances. Each section presents the results of 20 heuristics evolved from this category.

The paired difference t-test is used to analyse this category of results, to see if each evolved

heuristic performs better than first-fit or best-fit. The second category consists of heuristics

evolved for just one given instance. Each section presents the results of 400 heuristics, as

20 heuristics are evolved on each of the 20 instances. The paired-difference t-test is used to

analyse this category, to see if the genetic programming evolves heuristics that are better

than first-fit and best-fit on average.

The t-test

For each individual instance, 20 heuristics are evolved. The results of these 20 heuristics

are compared to the result of first-fit and best-fit on the same instance with a t-test. For

example, a set of 20 evolved heuristics produces a set of 20 results on one instance. First-fit

obtains one result on one instance, the number of bins it needs. The null hypothesis (H0) of

the t-test is that the set of 20 results has a mean equal to the result of first-fit. The aim of

the t-test is to disprove the null hypothesis, meaning we could conclude that the 20 results

are taken from a population with a mean different to the result of first-fit. We perform a

one-tailed t-test with a confidence level of 95% to determine if the heuristics we evolve come

from an underlying distribution with a mean less (i.e. better) than the result of first-fit.

If the mean is worse, then we also want to test if the heuristics we evolve are

significantly worse than first-fit. Therefore, when the mean is greater (i.e. worse), then we

perform a one-tailed t-test to see if the result is significantly greater. The results of the

heuristics are compared to the result of best-fit in the same way. The results are presented

by stating whether a set of 20 heuristics is significantly better or significantly worse than

the human-created heuristic, or if there is no significant difference either way.
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The paired-difference t-test

The 20 heuristics evolved on all 20 instances are each compared to first-fit and best-fit with

a paired-difference t-test. When comparing to first-fit, the 20 results the evolved heuristic

obtained on the 20 instances are compared to the 20 results that first-fit obtained. The

results are paired because they depend on the specific instance they were obtained on,

and it is, therefore, meaningless to compare two results from different instances. The null

hypothesis (H0) is that the mean difference between the two sets of results is zero. The aim

of the test is to disprove the null hypothesis, and show that the mean difference between

the 20 pairs of results is greater than zero. If the mean difference is greater than zero then

the evolved heuristic will be shown to be worse than first fit, because the heuristic that uses

more bins is worse. The test is one-tailed, because we are testing if an evolved heuristic

is worse than first-fit, we are not testing if an evolved heuristic is just different to first-fit.

Results are taken to be significant at the 95% confidence level. The 20 heuristics are then

compared to best-fit in the same way.

3.4.3 Comparison with First-Fit and Best-Fit, Employing the Basic Fitness Function

Evolving heuristics for all 20 instances

Table 3.3 summarises the results of 20 heuristics each evolved on all 20 problem instances,

using the basic fitness function (see equation 3.3). They must, therefore, perform well on

all of the instances if they are to survive in the population. The top two rows of the table

show the mean and standard deviation of the number of bins needed by the heuristics in

total, to pack all of the 20 instances.

The third and fourth rows show the performance of first-fit and best-fit on the

same instances. This demonstrates that the evolved heuristics have a similar performance

to first-fit. However, they do not perform as well as best-fit, which uses six bins less than

first-fit. Fifteen heuristics used 1044 bins in total over the 20 instances, 4 heuristics used

1043, and one heuristic used 1042 bins. Note though that, the difference in performance

is not statistically different, and, therefore, we cannot say that the evolved heuristics are

superior. As stated in section 3.4.2, we compare each of the evolved heuristics to first-fit

and best-fit, on all 20 instances, with a paired-difference t-test. The final two rows of table

3.3 show a summary of these statistical comparisons in terms of the number worse than

first-fit or best-fit. The 20 evolved heuristics are not statistically worse than first-fit, and
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Table 3.3: The performance of 20 heuristics, each evolved on all 20 instances using the
basic fitness function which is shown in equation 3.3, section 3.3.5

Performance of 20 Average total number of bins used 1043.7
evolved heuristics Standard deviation 0.571
Performance of Performance of first-fit 1044
other heuristics Performance of best-fit 1038

Statistical analysis
Number not statistically worse than first-fit 20
Number not statistically worse than best-fit 1

one is not statistically worse than best-fit. These results show that the evolved heuristics

consistently have the same performance as the first-fit heuristic.

Evolving heuristics for one of the 20 instances

There are 20 heuristics evolved on each individual instance, making 400 in total, as there

are 20 instances. Table 3.4 is split into two sections to display the results. The upper

section displays the results from the heuristics evolved on instances 1-10, and the lower

section displays instances 11-20. In each section, the first row shows the average number of

bins used by the 20 heuristics evolved on each instance, and the standard deviation of the

distribution. The third and fourth rows of the table show the results of first-fit and best-fit

on each instance as a comparison.

The fifth and sixth rows show the results of statistical comparisons (see section

3.4.2) between the distribution of results of the 20 heuristics, and the result of first-fit

or best-fit. If we look at the fifth row, a ‘
√

’ means that for the instance, the genetic

programming hyper-heuristic generates heuristics better than first-fit. A ‘×’ means that the

evolved heuristics are worse than first-fit. A ‘=’ symbol means that there is no significant

difference between the heuristics generated by the genetic programming system and first-fit.

Therefore, table 3.4 shows that, for eight of the individual instances, the genetic

programming hyper-heuristic creates heuristics which are statistically better than first-fit.

On the remaining twelve instances, there is no significant difference. When compared with

best-fit, the hyper-heuristic creates better heuristics for five instances, and worse heuristics

for six instances.

To comment on the difference between evolving on one instance or all 20 instances,

it seems harder for the genetic programming system to evolve better heuristics over 20

instances than when they are evolved over one instance. This can be seen by the result
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Table 3.4: The performance of 20 heuristics each evolved on one instance, using the basic
fitness function which is shown in equation 3.3, section 3.3.5
Instance 1 2 3 4 5 6 7 8 9 10
Average number 50.0 51.0 48.0 51.95 52.0 51.7 50.9 52.0 53.4 49.0
of bins used
Standard deviation 0 0 0 0.22 0 0.47 0.31 0 0.50 0
Performance of 50 51 48 52 52 52 51 52 54 49
first-fit
Performance of 50 51 48 53 52 52 52 52 53 48
best-fit
First-fit statistical = = = = =

√
= =

√
=

comparison
Best-fit statistical = = =

√
=

√ √
= × ×

comparison
Instance 11 12 13 14 15 16 17 18 19 20
Average number 55.1 51.6 51.9 50.95 52.6 52.0 55.4 56.0 51.95 51.65
of bins used
Standard deviation 0.31 0.50 0.31 0.22 0.50 0 0.50 0 0.22 0.49
Performance of 56 52 52 51 53 53 56 56 52 52
first-fit
Performance of 55 51 51 51 53 52 55 56 51 52
best-fit
First-fit statistical

√ √
= =

√ √ √
= =

√

comparison
Best-fit statistical = × × =

√
= × = ×

√

comparison

that no heuristic evolved over 20 instances is significantly better than first-fit, but there are

some heuristics evolved on individual instances which are significantly better than best-fit.

3.4.4 Comparison with First-Fit and Best-Fit, Employing the Second Fitness Function

This section takes the same format as section 3.4.3, and presents the results obtained when

the second fitness function is used to guide the evolution, instead of the basic fitness function.

Evolving heuristics for all 20 instances

Table 3.5 shows the results of the 20 heuristics evolved on all 20 instances. This set of

20 heuristics has a slightly better mean performance than the set evolved using the basic

fitness function, as can be seen by comparing rows two and four of table 3.5. However, this
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Table 3.5: The performance of 20 heuristics each evolved on all 20 instances using the
second fitness function which is shown in equation 3.4, section 3.3.5

Performance of 20 Average number of bins used 1043.45
evolved heuristics Standard deviation 0.605

Performance of
Using the basic fitness function 1043.7

other heuristics
Performance of first-fit 1044
Performance of best-fit 1038

Statistical analysis
Number not statistically worse than first-fit 20
Number not statistically worse than best-fit 1

difference is not found to be statistically significant when a two-sample t-test is performed

on the two sets of 20 performance values. Using the paired-difference t-test, there is no

significant difference found between the performance of any evolved heuristic and first-fit.

Also, best-fit is statistically better than 19 of the evolved heuristics. These results suggest

that changing to the second fitness function does not make a significant difference when

evolving heuristics on all 20 instances.

Evolving heuristics for one of the 20 instances

Table 3.6 shows the results for the heuristics evolved on one instance with the second fitness

function. The average number of bins used by the heuristics evolved with the basic fitness

function (see section 3.4.3) is given in row four as a comparison. In contrast to table 3.4,

the results of first-fit and best-fit are omitted from table 3.6 because they are given in table

3.4. Ultimately, it is the statistical comparison that matters most rather than the actual

values that are compared.

The statistical comparisons are given in rows five and six of table 3.6. They

show that with the second fitness function, the hyper-heuristic evolves heuristics which are

significantly better than first-fit on nine instances. This is one more than for the basic

fitness function, where this was true for eight instances. This could suggest that the second

fitness function makes a positive difference, but we do not claim that this is a conclusive

result.

Comparing with best fit, there are five instances where the evolved heuristics are

better, and seven instances where they are worse. This can be compared to the results of the

basic fitness function, where the evolved heuristics are worse on six of the instances. This

could suggest that the second fitness function makes a negative difference to the evolution

process. However, overall, these results do not seem to be different enough to be able to
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Table 3.6: The performance of 20 heuristics each evolved on one instance, using the second
fitness function which is shown in equation 3.4, section 3.3.5
Instance 1 2 3 4 5 6 7 8 9 10
Average number 50.0 51.0 48.0 51.95 52.0 51.8 51.0 52.0 53.4 49.0
of bins used
Standard deviation 0 0 0 0.22 0 0.41 0 0 0.50 0
Evolved with basic 50.0 51.0 48.0 51.95 52.0 51.7 50.9 52.0 53.4 49.0
fitness function
First-fit statistical = = = = =

√
= =

√
=

comparison
Best-fit statistical = = =

√
=

√ √
= × ×

comparison
Instance 11 12 13 14 15 16 17 18 19 20
Average number 55.4 51.55 52.0 51.0 52.75 52.0 55.4 55.9 51.85 51.65
of bins used
Standard deviation 0.50 0.51 0 0 0.44 0 0.50 0.31 0.37 0.49
Evolved with basic 55.1 51.6 51.9 50.95 52.6 52.0 55.4 56.0 51.95 51.65
fitness function
First-fit statistical

√ √
= =

√ √ √
=

√ √

comparison
Best-fit statistical × × × =

√
= × = ×

√

comparison

conclude that the second fitness function makes any difference to the evolution of heuristics

on these individual problems.

3.4.5 Comparison with First-Fit and Best-Fit, Removing the ≤ Function

This section takes the same format as the previous two. The second fitness function is used

for this set of results, but this time the ≤ function is removed from the function set. This

function is different to the others in some respects, because it returns one of only three

values, −1, 0, or 1. This function is potentially only useful at the root of the tree, where

its result will clearly fall on either side of zero. However, potentially, a lot of information

could be lost as calculations performed further down the tree are condensed to either −1,

0, or 1. Therefore, it is possible that better results can be obtained without this function.

Evolving heuristics for all 20 instances

Table 3.7 shows the results of the 20 heuristics evolved on all 20 instances without the

≤ function. The table compares these results to those previously reported in sections
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Table 3.7: The performance of 20 heuristics each evolved on all 20 instances, without
the ≤ function included in the function set, and with the second fitness function, which is
shown in equation 3.4, section 3.3.5

Performance of 20 Average number of bins used 1043.05
evolved heuristics Standard deviation 1.146

Performance of
With the ≤ function and the second fitness function 1043.45

other heuristics
With the ≤ function and the basic fitness function 1043.7
Performance of first-fit 1044
Performance of best-fit 1038

Statistical analysis
Number not statistically worse than first-fit 20
Number not statistically worse than best-fit 4

3.4.3 and 3.4.4. It appears that removing the ≤ function from the function set has had

little impact, although the average number of bins used by the 20 heuristics has decreased

slightly. However, this difference is not significant when a two-sample t-test is applied to

both sets of results. None of these evolved heuristics are statistically worse than first-fit

(similar to the heuristics evolved with the ≤ function). This time, however, one heuristic is

evolved that is statistically better than first-fit (verified by a one-tailed t-test to see if the

heuristic is better rather than worse). Also, in contrast to the results of tables 3.3 and 3.5,

there are four heuristics which are found not to have worse performance than best-fit. In

conclusion, it appears that removing the ≤ function has a positive impact on the evolution

of heuristics each trained on all 20 problem instances.

Evolving heuristics for one of the 20 instances

Table 3.8 shows the results of the 20 heuristics evolved for each instance without the ≤
function included in the function set. The second fitness function is used in this experiment.

The results from the previous sections 3.4.3 and 3.4.4 (which included ≤) are shown in the

fourth and fifth rows as a comparison. The statistical comparisons with first-fit and best-fit

are given in rows six and seven.

The statistical tests show that for twelve instances, the genetic programming pro-

duces heuristics significantly better than first-fit. This is better than the result with ≤
included, where this was true for nine instances. Also, the genetic programming produces

heuristics which are better than best-fit for seven of the instances, and worse than best-fit

for five of the instances. This compares well with the results of the heuristics evolved with

≤ included (see section 3.4.4), where five were better and seven were worse. Therefore, it
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appears that removing the ≤ function has a positive impact on the evolution of heuristics

for these problem instances.

3.5 Conclusion

This chapter has shown that a genetic programming hyper-heuristic system can consistently

evolve heuristics of at least the same quality as the human-designed first-fit heuristic. This

is the case whether the heuristics are evolved on 20 instances or just one instance. It

has also been shown that, when evolving heuristics for certain single instances, the hyper-

heuristic can generate heuristics better than best-fit. However, no heuristic is evolved over

all 20 instances that is better than best-fit. Some are evolved which statistically perform as

well as best-fit, but they always use 4-5 bins more in total, with this result just not being

significant enough over the 20 instances to be able to disprove the null hypothesis. Best-fit

seems to be a more general heuristic than any that can be evolved with the hyper-heuristic

system presented in this chapter.

Two fitness functions have been investigated in this chapter, a basic one, and a

more complex version which takes more information into account than just the number of

bins used. It is possible that the basic fitness function could cause large plateaus in the

search space, preventing better heuristics from being stored over technically inferior ones

(see section 3.4.1), and making the the search for an optimal heuristic almost random [97].

This could be a difficulty as the problem instances we evolve heuristics for become more

complex. There was no significant difference in the performance of the two fitness functions,

but the second one will be used in future chapters because it resulted in a slightly improved

mean performance value, and it addresses the problem of plateaus in the search space to

some extent.

An experiment was also performed to test if the ≤ function is necessary in the

genetic programming function set. The results of section 3.4.5 show that it is not necessary

to include this function, and in fact the results improve when it is taken out. Recall

that a piece is placed in a bin if a greater than zero condition is satisfied (see algorithm

1). The ≤ function intuitively seems useful because its result of −1, 0 or 1 falls neatly

on either side of this inequality. However, it may oversimplify large sections of a tree,

keeping the heuristic’s functionality quite simple. When it is removed from the function

set, this potential simplification is removed, and the five remaining functions are evidently
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Table 3.8: The performance of 20 heuristics each evolved on one instance, without the ≤
function included in the function set, and with the second fitness function, which is shown
in equation 3.4, section 3.3.5
Instance 1 2 3 4 5 6 7 8 9 10
Average number 50.0 51.0 48.0 51.95 51.95 51.6 50.75 51.85 53.05 48.95
of bins used
Standard deviation 0 0 0 0.22 0.22 0.50 0.44 0.37 0.22 0.22
With ≤ function 50.0 51.0 48.0 51.95 52.0 51.8 51.0 52.0 53.4 49.0
and second fitness
function
With ≤ function 50.0 51.0 48.0 51.95 52.0 51.7 50.9 52.0 53.4 49.0
and basic fitness
function
First-fit statistical = = = = =

√ √ √ √
=

comparison
Best-fit statistical = = =

√
=

√ √ √
= ×

comparison
Instance 11 12 13 14 15 16 17 18 19 20
Average number 55.15 51.45 51.9 50.9 52.55 51.8 55.2 55.85 51.65 51.40
of bins used
Standard deviation 0.49 0.51 0.31 0.31 0.51 0.62 0.41 0.37 0.49 0.50
With ≤ function 55.4 51.55 52.0 51.0 52.75 52.0 55.4 55.9 51.85 51.65
and second fitness
function
With ≤ function 55.1 51.6 51.9 50.95 52.6 52.0 55.4 56.0 51.95 51.65
and basic fitness
function
First-fit statistical

√ √
= =

√ √ √ √ √ √

comparison
Best-fit statistical = × × =

√
= ×

√
×

√

comparison
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still sufficient to be able to construct a good quality heuristic.

There are some instances from the set of 20 for which we can conclude that either

best-fit performs very well, or that the genetic programming finds it more difficult to pro-

duce heuristics of the same quality. For example, for instances 10, 12, 13, 17 and 19, the

genetic programming statistically produces heuristics worse than best-fit in all three main

experiments in this chapter (see tables 3.4, 3.6 and 3.8).

Recall that the human designed heuristics for the online bin packing problem

(explained in table 2.1 in section 2.3.2) operate by either considering all the bins before

making a choice (for example, best-fit), or they iterate through each bin in turn and make a

choice immediately after considering the current bin (for example, first-fit). In this chapter,

we have used the latter as a framework and evolved the heuristic which makes the decision

to pack the piece or move on to the next bin. Better results may be obtained if we use

the former framework, and evolve a heuristic which decides where to place the piece after

iterating through and evaluating all of the bins.

The next chapter investigates the question of determining if using such a frame-

work, based on the operation of best-fit, can enable the heuristics to achieve better results.

Importantly, we also test to see if these evolved heuristics can be successfully used on new

problem instances after they have been evolved.
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Chapter 4

The Reusability of Evolved Online Bin Packing

Heuristics

4.1 Introduction

In chapter 3, the genetic programming hyper-heuristic evolved heuristics on single instances

and it was shown that they performed better than the best-fit heuristic. However, the

heuristics evolved over 20 instances did not perform better than best-fit. At the end of

chapter 3, we concluded that this was because of the framework used to apply the heuristics.

Therefore, a different framework is employed in this chapter.

In the previous chapter, the heuristic chooses a bin for a piece by returning a value

which is greater than zero, and then the subsequent bins are not considered. In the present

chapter, the framework applies the heuristic to all the bins, returning a value for each, and

the bin that obtains the highest value is the one chosen by the heuristic for the current

piece. One aim of this chapter is to show that, by employing this framework, the quality

of the evolved heuristics are consistently as good as best-fit. Another aim of the chapter

is to evolve heuristics which are applicable to new (unseen) problem instances after the

heuristic has been evolved on a given set of instances. Therefore, we use 20 instances to

train every heuristic evolved in this chapter. We investigate three areas of the behaviour

of the evolved heuristics on unseen instances. The three areas are the heuristics’ overall

quality, how specialised they are, and their robustness.

The quality of the heuristics is ascertained by comparing the performance of each

evolved heuristic to best-fit, on 20 new problem instances similar to those that they were

evolved on. The extent of any trade-off between specialisation and generalisation is in-
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vestigated by creating seven classes of problem instances, each defined by their piece size

distribution. There is one general class, two intermediate classes, and four narrow classes,

forming a hierarchy. The results will show whether a heuristic can be evolved to be spe-

cialised to a narrow piece size distribution, and how this affects its performance on other

classes.

There are circumstances where heuristics perform well on new instances from the

class they were evolved on, but produce illegal results on instances from other classes. Illegal

results are possible because the heuristics are not artificially constrained to adhere to the

hard constraints of the problem. In this chapter, we test the robustness of the evolved

heuristics by applying them to instances from classes other than those they were evolved

on, and show the circumstances where illegal results occur. This issue is important because

it affects the trust that can be placed in heuristics created by a computer system as opposed

to those created by a human.

In summary, the main aims of this chapter are twofold. They are, firstly, to

investigate if we can obtain better heuristics with a framework different to that of chapter

3 and secondly, to investigate the circumstances under which the heuristics can be reused

on new problems.

Section 4.2 explains the best-fit heuristic, which is the main performance bench-

mark in this chapter. Section 4.3 explains the framework that the heuristic operates within,

the functions and terminals used, an example of the packing process, and the genetic pro-

gramming parameters that are used to evolve the heuristics. Section 4.4 presents the results,

and section 4.5 presents the conclusions.

4.2 The Best-Fit Heuristic

The best-fit heuristic is explained here because we use it as the main benchmark heuristic to

judge the performance of the heuristics evolved in this chapter. It also serves as inspiration

for the fixed framework that the evolved heuristics operate within, similar to the way first-

fit inspired the framework for the heuristics in the last chapter. Therefore, it is important

to understand how best-fit works before reading the rest of this chapter.

We explain the operation of best-fit through a simple example, starting from a

partial solution identical to the one that was used to explain first-fit in section 3.2. A

comparison of the two solutions shows that best-fit is superior on this small example. Note
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Figure 4.1: The start of the example of
section 4.2, the piece of size 70 will be
packed next by the best-fit heuristic

Figure 4.2: The piece of size 70 is
packed into the fourth bin because it has
the least free space of all the bins that
the piece fits into

Figure 4.3: The next piece is packed
into the third bin after all the bins are
considered

Figure 4.4: The final two pieces are
packed into the second and first bins

though that the results of chapter 3 show that best-fit is better than first-fit on some

instances, but that the reverse is true on other instances. First-fit also has the advantage

of being quicker, as it considers less bins in the average case. However, best-fit does seem

to perform better in practice, as it did overall on the instances in chapter 3. Theoretical

results have shown that no other online heuristic is superior in terms of both the average

case and worst case [162].

Figure 4.1 shows a partial solution, with four pieces to pack, and four pieces

already packed. The best-fit heuristic begins with the first piece in the list (as it is an

online heuristic). To find a bin for this piece, the heuristic iterates through all the bins.

This is in contrast to the first-fit heuristic, which does not have to consider all of the bins,

only those up to the bin that it finally decides upon. Of the bins that the piece fits into,

best-fit places the piece into the bin with the least free space. This process is shown in

figure 4.2, where the piece of size 70 is placed into the fourth bin. This is because the piece

cannot fit into the first two bins, which have a fullness of 90 and 120. The piece fits into

the third, fourth and fifth bins, but the fourth bin (with a fullness of 45) has the least free

space.

The next piece is then considered, which has a size of 85. The process of packing
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this piece is shown in figure 4.3. It does not fit onto the first two bins, or the fourth bin,

but it does fit into the third and fifth bins. The third bin has less free space, so the piece

is placed there. The best-fit heuristic does not put a piece into an empty bin if it can fit

into any partially filled bin. Figure 4.4 shows that the final two pieces are packed into the

second and first bins, because they fit exactly.

This heuristic is the inspiration for the framework used to apply the heuristics in

this chapter. Within this new framework, all of the bins are considered by the heuristic,

just as all of the bins have to be considered by best-fit before it can determine which bin

has the least free space. Section 4.3.1 explains this framework further.

4.3 Methodology

4.3.1 How The Heuristic is Applied

The genetic programming hyper-heuristic maintains a population of heuristics represented

as tree structures. To create each new generation of heuristics from the previous generation,

we must obtain a fitness value for each heuristic. The fitness value is obtained by evaluating

the quality of the solution that the heuristic creates. This section explains how a heuristic

constructs a solution, which is then assessed to obtain the fitness of the heuristic. The

heuristics consist of functions and terminals explained in section 4.3.2. Section 4.3.3 gives

a detailed example of the packing process to further clarify how a heuristic is applied.

To pack all of the pieces in a problem instance, the heuristic operates within a

fixed framework, shown in algorithm 3. For the first bin, the heuristic is evaluated once,

and therefore returns a numerical value for the bin (this process is explained in detail in

section 4.3.3). The numerical value is treated as the ‘score’ for the bin, which is stored as

the best score so far. At the next bin, the heuristic is evaluated again, and the score for

this bin is compared to the best score so far. If it is larger, then the current bin is stored

as the best so far and its score is stored in memory. After all of the bins have been given a

score by the heuristic, the piece is placed into the bin which received the highest score.

This framework differs fundamentally from the framework of chapter 3, where

the piece was put into the current bin immediately if the heuristic returned a value greater

than zero. The framework used in this chapter will require more evaluations of the heuristic,

because all of the bins are evaluated for every piece. However, this will also provide the

heuristic with more choice and, therefore, the heuristics evolved have more potential to
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create better solutions.

In summary, we evolve a heuristic which scores each bin for its suitability for the

current piece. To construct a solution, the framework shown in algorithm 3 iterates through

all of the bins, applying the heuristic to each one, and therefore obtaining a numerical value

for each. The bin which receives the highest value is the bin into which the piece is placed.

Algorithm 3 Pseudo code of the framework within which the heuristics are applied in

chapter 4. The inputs are a problem instance set I, each i ∈ I contains a list L of pieces to

be packed
1: for each problem i ∈ I do

2: initialise partial solution s with one empty bin

3: for each piece p in L do

4: variable bestSoFar = −∞
5: for each bin b in s do

6: heuristic output = evaluateHeuristic(bin b)

7: if heuristic output > bestSoFar then

8: bestSoFar = output

9: bestBinIndex = b

10: end if

11: end for

12: put piece in bestBinIndex bin

13: if piece was placed in the empty bin then

14: add a new empty bin to s

15: end if

16: end for

17: fitness of heuristic += fitness of solution to s

18: end for

The heuristic is not constrained by the framework to only consider the bins which

have enough space for the current piece. As was the case in chapter 3, the heuristic is

permitted to overfill a bin if it chooses to. Such heuristics are penalised heavily by the fitness

function, however, and so are highly unlikely to be chosen as parents of the individuals in the

next generation. The result is that the evolved heuristics always contain some mechanism
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which ensures that a bin is never overfilled. However, in contrast to the heuristics evolved

in chapter 3, there is no possibility of the heuristic not putting a piece into any bin. The

first bin is always stored as the best so far, so if no other bin receives a higher score then

the piece will be placed there.

4.3.2 Structure of the Heuristics

The heuristics evolved by the genetic programming hyper-heuristic have a tree structure,

consisting of function and terminal nodes. The functions and terminals used in the experi-

ments in this chapter are given in table 4.1. For a full explanation of the role of functions

and terminals, refer back to section 2.7.1.

For a heuristic to produce a solution, it considers each piece in sequence, and

decides which bin to pack the current piece into. It chooses a bin by operating within a

fixed framework (shown in algorithm 3 and explained in section 4.3.1), which evaluates the

heuristic once for each bin. When the heuristic is evaluated, its terminal nodes each acquire

a value, dynamically determined by the properties of the current bin and the current piece.

The heuristic returns one numerical result, by evaluating each of its function nodes using

the values supplied by its terminal nodes (this is explained in more detail in section 4.3.3).

The function set includes the four basic arithmetic operators, and a ‘less-than-or-

equal-to’ operator. The ‘absolute value’ function, which was used in chapter 3 because it

is a standard function, is not used here because it could in fact be counter-productive and

we wish to investigate if good quality heuristics can be evolved without it. For example, it

is important to know whether the result of evaluating a heuristic is positive or negative. It

can mean the difference between interpreting the bin as a very good candidate or very bad.

Calculations that would distinguish between the two extremes could be rendered obsolete

by the absolute value terminal. We do not wish the genetic programming to waste effort

when the rest of the functions are sufficient. There are three terminals, ‘F ’, ‘S’, and ‘C’.

F represents the total size of the pieces already in the bin, C represents the capacity of the

bin, and S represents the size of the current piece.

The heuristic must evolve to combine information about both the piece and the

bin, in order to ensure the constraints of the bin packing problem are adhered to. This is

achieved by using the function nodes to perform operations on the values of the terminal

nodes and the values returned by other function nodes.
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Table 4.1: The functions and terminals used in chapter 4, and descriptions of the values
they return

Symbol Arguments Description

Functions

+ 2 Add
− 2 Subtract
∗ 2 Multiply
% 2 Protected divide function.

A division by zero will return 1
≤ 2 Tests if the first argument is less than

or equal to the second argument.
Returns 1 if true, -1 if false

Terminals

F 0 Returns the sum of the pieces already
in the bin

C 0 Returns the bin capacity
S 0 Returns the size of the current piece
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Figure 4.5: An example heuristic, used in the example packing described in section 4.3.3
and figures 4.6 to 4.9

4.3.3 Simple Example of a Heuristic Constructing a Solution

This section works through a simple example of a heuristic packing three pieces from an

example problem instance. This is to further clarify the methodology explained in section

4.3.1. Figure 4.5 shows the heuristic that will be used in the example, and the instance to

be packed is shown in figure 4.6. This instance is identical to the instance used to explain

how the best-fit heuristic operates (section 4.2), and so it may be useful to refer back to

that section for a comparison.

Figure 4.6 shows that the first piece to pack has a size of 70. The heuristic is

evaluated at each bin, and obtains a different score for each because the terminal nodes

acquire different values at each. In expression 4.2, the heuristic is written in linear form,

rather than tree form. When the heuristic is evaluated at the first bin, the C terminal will
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Figure 4.6: The initial partial solution from section 4.3.3. The
heuristic in figure 4.5 will pack the first three pieces.

Figure 4.7: All of the bins are scored by the heuristic, the bin
on the far right scores the highest with 34500. A new empty bin
is opened because the existing one receives the piece.

Figure 4.8: The newly opened bin on the far right scores the
highest with 32250. Again, a new empty bin is opened because
there must always be one available.

Figure 4.9: For the third time, the empty bin receives the
piece. The heuristic appears to prefer to place each piece into a
new bin.
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acquire a value of 150, the S terminal will acquire a value of 70, and the F terminal will

acquire a value of 90. Expression 4.1 shows the heuristic with those values substituted in.

This expression evaluates to 8400, so this is the score for the first bin.

(C − F ) ∗ ((C + C)− S − F ) (4.1)

(150− 90) ∗ ((150 + 150)− 70− 90) (4.2)

Figure 4.7 shows the scores that are given to the four other bins. It also shows

that the piece is put into the fifth bin, because this obtains the highest score. A new bin is

opened after the piece is placed into the fifth bin. There is always an empty bin available

to the heuristic.

The next piece has a size of 85, and the process of packing it is shown in figure

4.8. The bin that was opened after the previous piece was placed (drawn as a dotted line

in figure 4.7) is now available, so there are now six bins for the heuristic to choose from. Of

the six bins, the empty bin on the far right receives the highest score, 32250, so the piece

is placed into that bin. A new bin is opened again, because the piece was placed into the

empty bin. Figure 4.9 shows the next piece being packed into the newly opened seventh

bin.

This heuristic appears to select the empty bin for each new piece. This is a strategy

that will not result in a good solution, but the solution will at least be a legal one because

a bin will never be overfilled.

4.3.4 How the Heuristics are Evolved

Section 4.3.1 has explained how a heuristic is applied to a problem instance to obtain a

solution, and section 4.3.2 has described each of the potential components of a heuristic.

This section explains how the heuristics themselves are evolved by the genetic programming

algorithm. There are three parts to this section. The first part will provide an overview of

the genetic programming parameters. The second part will describe the data sets on which

we evolve the heuristics. The third part will describe the fitness function used to assess the

performance of each heuristic.
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Table 4.2: Genetic programming initialisation parameters for chapter 4
Population Size 1000
Generations 50
Maximum Depth of Initial Trees 4
Crossover Proportion 90%
Reproduction Proportion 10%
Selection Method Roulette wheel

Parameters

The experiments in this chapter use the genetic programming parameters shown in table 4.2.

As stated in chapter 1 on table 1.1, the genetic programming system used for the experiments

of this chapter is the author’s own code. Subsequent chapters use the ECJ (Evolutionary

Computation in Java) package (http://www.cs.gmu.edu/∼eclab/projects/ecj/).

The population size is set to 1000, and the number of generations is set to 50. These

are the parameters with which the genetic programming performed well in the experiments

of chapter 3. The maximum depth of the initial randomly created trees is four. In contrast

to chapter 3, we apply a parsimony pressure on the population to control the effects of code

bloat. Any individual 30 nodes larger than the average of the population is penalised, by

assigning it the same fitness given to a heuristic that produces an illegal solution. This is

similar to the ‘Tarpeian wrapper’ method [226].

The proportion of the population created from the crossover and reproduction

operators is 90% and 10% respectively, and individuals are selected for these operators with

fitness proportional (roulette wheel) selection.

The Data Sets

The experiments presented in this chapter are based around seven problem classes, each

defined by a uniform piece size distribution. The classes are referred to as Cl−u where l is

the lower limit of the distribution and u is the upper limit.

The piece size distributions used in the randomly generated instances are shown

graphically in figure 4.10. From this figure, one can see that the seven classes are arranged

into three levels of a hierarchy. We refer to C10−49 and C50−89 as sub-problems of C10−89.

In the same way, C10−29 and C30−49 are sub-problems of C10−49, and C50−69 and C70−89

are sub-problems of C50−89. This is because, as can be seen in Fig. 4.10, all of the values
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Figure 4.10: Diagram of the piece size distributions of each class of instances created for
the experiments of chapter 4

in a sub-problem can appear in its super-problem, but not all of the values that appear in

the super-problem can appear in the sub-problem. So the sub-problems are less general as

the pieces have a smaller range of values.

From each of the seven classes, we generate two unique ‘sets’ of twenty problem

instances, a ‘training’ set and a ‘validation’ set. Each instance has 120 pieces uniformly

distributed between the two limits defined by the class. The bin capacity is always 150. The

defining characteristic of a set is therefore the uniform distribution that its piece sizes are

taken from. Training sets and validation sets are referred to as Tl−u and Vl−u respectively,

where l is the lower limit of the uniform distribution and u is the upper limit.

A heuristic is always evolved using a particular training set of twenty instances.

The validation sets are used to test the heuristics on new problems after they have been

evolved, and as such they are not involved in the evolution stage. We evolve 50 heuristics

for each class, which are obtained from 50 runs of genetic programming. One heuristic is

taken from each run as the best heuristic found. Each set of 50 heuristics is defined as Hl−u,

where l and u are the lower and upper limits of the uniform distribution of the training set

they were evolved on. There are 350 heuristics in total.

In the training stage, a heuristic will only come into contact with one training set.

In the validation stage, the heuristic is separately tested on all seven validation sets. This

will enable us to investigate how re-usable the heuristic is on new problems of the same

class, and new problems of different classes.
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The Fitness Function

The fitness function employed in the experiments of this chapter is shown in equation 4.3,

where nj = number of bins used in instance j, fullnessij = sum of all the pieces in bin i of

instance j, and C = bin capacity. It is identical to the second fitness function used in chapter

3 except that its formulation here highlights the fact that the total of 20 instances is always

taken. It puts a premium on bins that are filled completely or nearly so. Importantly, it

avoids the potential problem of plateaus in the search space, that occur when the fitness

function is simply the number of bins used by the heuristic [97]. Smaller fitness values are

better.

Fitness =
20∑
j=1

(
1−

(∑nj
i=1(fullnessij/C)2

nj

))
(4.3)

A fitness of 1000 is given to any heuristic which produces an illegal solution, an arbitrarily

high value compared to the range of values that the fitness function can return. In contrast

to chapter 3, a parsimony pressure is employed to control code bloat, so any heuristic at

least 30 nodes larger than the average of the population also receives a fitness of 1000.

4.4 Results

This section presents the results of the experiments performed using the methodology ex-

plained in this chapter. Section 4.4.1 presents an example of an evolved heuristic, to give

the reader an impression of the variety of behaviours that the heuristics can evolve, espe-

cially their behaviour on the validation sets of classes other than the one they were evolved

on. The next three sections present three aspects of the results of all of the 350 evolved

heuristics. Section 4.4.2 analyses the quality of the evolved heuristics. Section 4.4.3 analyses

to what degree the heuristics can be specialised for sub-classes with progressively narrower

distributions. Finally, section 4.4.4 analyses the robustness of the heuristics on new prob-

lems, specifically if the heuristics actually produce illegal results on classes different to that

which they were evolved on.

4.4.1 Example of an Evolved Heuristic

This section presents and explains a 35 node individual which was evolved on T10−90. This

heuristic is a good example of how a heuristic can perform well on its training set, and the

validation set from the same class, but badly on validation sets from other classes.
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Figure 4.11: An example heuristic, evolved on T10−90

Figure 4.11 shows the evolved heuristic in full, and equation 4.4 shows the heuristic

represented as a mathematical equation. Table 4.3 shows the results that this heuristic

obtains on the seven validation sets. The table shows that the heuristic uses at most one

more bin than best fit on each validation set, apart from sets V10−29 and V10−49.

2S + F

S + F
+

C

((FC ) ≤ (2C − F )) + (C − S − F )
(4.4)

Indeed, the result for V10−29 represents the heuristic putting each piece in a new

bin. This can be explained as follows, with reference to equation 4.4. Given a piece size

between 10 and 29, no fullness between 10 and 29 can make the heuristic evaluate to a

result greater than it does when the fullness is zero. So, the score that the heuristic gives

to the non-empty bins will always be lower than the score that it gives to the empty bin.

Therefore, no piece will ever be put in a bin which already contains a piece, it will always

be placed in an empty bin.

However, in all other classes, where the pieces can be larger, there are combinations

of piece sizes and fullness that can make the heuristic return a value greater than when the

fullness is zero. So it is possible for pieces to be put in bins that already contain a piece.
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Table 4.3: Summary of the results obtained by the heuristic shown in figure 4.11 compared
to the results of best-fit. The result shown is the total bins used over the 20 instances.

Validation set Heuristic result Best-fit result
V10−89 835 834
V10−49 676 503
V50−89 1220 1220
V10−29 2400 326
V30−49 702 704
V50−69 1198 1198
V70−89 1815 1815

But still, no piece with a size of less than 30 will ever be put in a bin with a fullness of less

than 30. The heuristic’s result on V10−49 also shows this difficulty that the heuristic has

when packing small pieces. However, the result is better than for V10−29 because some of

the pieces are large enough for the fullness to reach a high enough value that more pieces

can be put in the same bin.

It is worth noting that, while the result for V10−29 is very poor, none of the solutions

are illegal. The safeguard against illegal solutions is the right hand term of the two terms

in equation 4.4, and it is a safeguard that holds in all problem classes. If putting a piece

in a bin would overfill the bin by one unit, then the right hand term becomes equal to 1 (a

division by zero returns 1), which is low enough for the whole heuristic to value an empty

bin more. Therefore, the heuristic will never choose a bin that would be overfilled over a

bin that the piece can fit into. If the bin would be overfilled by two or more units, then

the heuristic’s result becomes negative, and again the heuristic will rate the open bin more

highly than it rates an illegal placement.

Equation 4.4 is an example of a heuristic strategy that uses the ratios of piece sizes

very well, bin fullness and bin capacity that exist in the class it was evolved on, but cannot

exist in certain other classes.

4.4.2 The Quality of Evolved Heuristics

In this section of results, we are concerned with the performance of the heuristics on the

validation set of the class they were evolved on. This shows their quality on new unseen

problem instances. Recall that 50 heuristics are evolved for each class, making 350 in

total, and each heuristic is the result of one run of genetic programming. We compare the

performance of all 350 heuristics with the best-fit heuristic, on the validation set of the class
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Table 4.4: The performance of each set of evolved heuristics tested against best-fit
Validation Better than No Significant Worse than

Set Best-Fit Difference Best-Fit
H10−89 0 48 2
H10−49 0 50 0
H50−89 0 49 1
H10−29 5 45 0
H30−49 6 44 0
H50−69 0 29 21
H70−89 3 47 0

that they were evolved on. A two-tailed paired-difference t-test, with a confidence level of

95%, is used to test for a significant difference from best-fit (this test is explained in section

3.4.2).

Table 4.4 summarises the results of the comparisons with best-fit. The table

shows, for each evolved heuristic set, the number of heuristics that are significantly better,

and worse, than best-fit. The vast majority of heuristics show no significant difference

with best-fit. However, there are 14 evolved heuristics that perform significantly better

than best-fit on their validation sets. These are all produced from training on classes at

the bottom of the hierarchy. In other words they are produced on the narrowest problem

distributions. From this, we can conclude that it is more probable for a heuristic to become

specialised in these classes due to the piece size distribution being sufficiently narrow.

The set H50−69 is clearly an exception, where 21 heuristics perform significantly

worse than best-fit on V50−69, and none perform better than best-fit. This anomalous result

can be attributed to the particularly good performance of best-fit on this class of piece sizes.

It would seem that best-fit performs well when the pieces are all roughly between 1/3 and

1/2 of the bin capacity, and so finding a heuristic that outperforms best-fit is more difficult

in this class.

4.4.3 Specialisation of Evolved Heuristics

In this section, we analyse how heuristic sets perform on the validation set from the class

upon which they were evolved, compared to the heuristic sets evolved on the super-class and

super-super-class of that validation set. For example, the super-class of P10−29 is P10−49,

and its super-super-class is P10−89. The super-class of P50−89 is P10−89, and has no super-
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Table 4.5: A comparison of the performance of six sets of evolved heuristics with the
heuristic sets evolved on their respective super-class and super-super-class. The entries in
the table state whether the set is better, worse, or the same as its super-class (or super-
super-class) set. The values in brackets represent the probabilities that the performance
values of both heuristic sets come from underlying populations with the same mean. For
example, row 4 (labelled H10−29) shows that the H10−29 set is better on the V10−29 instances
than the set evolved on its super-class (H10−49) and the set evolved on its super-super-class
(H10−89)

Heuristic Set Super-Class Set Super-Super-Class Set
H10−49 Better (≤ 0.01) N/A
H50−89 Same (0.35) N/A
H10−29 Better (≤ 0.01) Better (≤ 0.01)
H30−49 Same (0.29) Better (≤ 0.01)
H50−69 Same (0.09) Worse (≤ 0.01)
H70−89 Better (≤ 0.01) Better (≤ 0.01)

super-class (indicated by N/A in table 4.5). There are 50 fitness scores for each heuristic

set. This set of 50 fitness scores is compared to the 50 from the other heuristic set, to assess

if there is a significant difference between the two sets.

The results shown in table 4.5 are the results of a one-tailed t-test between the set

of 50 total scores of one heuristic set and the 50 total scores of another. In each comparison,

we are testing the hypothesis (H1) that the values of the sub-class come from a distribution

with a mean lower (better) than the distribution of the super-class. The null hypothesis

(H0) is that the values of both the sub-class and the super-class come from distributions

with the same mean. The values shown represent the probability that H0 is true. We use

a 95% significance level, so if the probablility is lower than 0.05 then the results of the

heuristic set from the sub-class are significantly different.

Table 4.5 shows that, as the classes become more specialised, the heuristics evolved

on them can be more specialised too. This hierarchy is observed in all situations except for

one anomaly, where set H10−89 is significantly better at V50−69 than H50−69. In contrast to

the other results in table 4.5, we use a two-tailed t-test for this comparison of H50−69 with

its super-super-class. This is because the mean of H50−69 is higher (worse) than the mean

of its super-super-class, and therefore we test whether the distributions are significantly

different in either direction, as opposed to testing H1.

There exists an epithet “Jack of all trades, master of none, though ofttimes better

than master of one”. The distribution of the piece sizes of V50−69 and their ratio with the
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capacity of the bins evidently present a situation where the jack of all trades is better than

the master of one. The heuristics of H10−89, which represent the jack of all trades in this

case, are able to use their wider skills to perform better on average than heuristics which

are specialised in class C50−69.

There is no statistically significant difference between the mean performances of

H50−89, H50−69 and H30−49 on their native classes compared to the performances of heuris-

tics evolved on their super-classes. There seems to be no specific features of these classes

that heuristics can learn through evolution that they cannot already learn by packing the

pieces of their super-class. In the experiments, it appears that piece sizes of around 1/3 of

the bin capacity apparently inhibit the specialisation of heuristics on these classes. Con-

versely, there appears to be more scope for specialisation at the extremes of the range of

piece sizes used here. Specifically, H10−29 and H70−89 are the only sets of heuristics with

means that are significantly better than their super-class and their super-super-class at a

98% level of confidence.

4.4.4 Robustness of Evolved Heuristics

The robustness of a heuristic is important in a commercial scenario. Where there are finan-

cial considerations, practitioners may be reluctant to trust an evolved heuristic to perform

well on new problems that it is given. Whilst we are not suggesting that the heuristics

evolved here could be employed commercially, possible mistrust of computer generated

heuristics is an important issue that future work on automatic heuristic generation will

have to address.

All the evolved heuristic sets were tested on all seven of the validation sets, as

explained in section 4.3.4, but table 4.6 presents only the results where the heuristic set

is tested on an ‘unrelated’ validation set, containing piece sizes that the heuristics did not

pack during their evolution. Each class, apart from C10−89, has one unrelated class in the

middle layer of the hierarchy and at least two unrelated classes in the lower level of the

hierarchy. For example, class C10−49 has three unrelated classes, which are C50−89 in the

middle of the hierarchy, and C50−69 and C70−89 in the bottom row of the hierarchy. In

table 4.6, a cross (×) represents at least one illegal result on the validation set by the 50

heuristics in the set. A circle (◦) represents no illegal results by that heuristic set on the

validation set.
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Table 4.6: Summary of the illegal results when heuristic sets are each tested on three
unrelated validation sets, containing piece sizes they did not pack in their evolution. A
cross represents at least one illegal result, a circle represents no illegal results

Validation sets of three classes unrelated
to the heuristic set

Heuristic Set Mid-level Two low-level classes
H10−49 × × ×
H10−29 × × ×
H30−49 × × ×
H50−89 × × ◦
H50−69 ◦ ◦ ◦
H70−89 ◦ ◦ ◦

H50−89 produces some illegal results on V10−29 but not on its subclasses V50−69

and V70−89. In the same way, H10−49 produces some illegal results on V50−69 and V70−89 but

not on its subclasses V10−29 and V30−49. This is summarised in the first and fourth rows of

table 4.6. In addition to this (but not shown in the table), the most general set of heuristics

H10−89, produces no illegal results over any of the validation sets. These results show that

heuristics evolved on a super-class can be applied to sub-classes without them failing.

However, when applied to an unrelated class, there is a chance that the heuristic

will not produce a legal solution. This can be explained by the fact that the heuristics,

when applied to an unrelated class, will be trying to pack piece sizes that they have not

been evolved to pack, and there is a chance that a heuristic may try to use relationships of

piece sizes, fullness, and capacity that cannot exist in the new class.

To help explain the next point, let set A be the group of classes C10−49, C10−29

and C30−49. Also, let set B be the group of classes C50−89, C50−69 and C70−89. Table 4.6

shows that set A seems to be easier for the heuristics trained on set B, than set B is for the

heuristics trained on set A. This can be seen by comparing the top three rows of table 4.6

to the bottom three rows. For example, on set A, only two heuristics from H50−69 result

in some illegal solutions, and they only result in illegal solutions on V10−49 and V10−29. In

contrast to this, H10−49, H10−29, and H30−49 all result in some illegal solutions on each of

V50−89, V50−69 and V70−89.

Our results show that the heuristics evolved for the distributions above 1/3 of the

bin capacity can mostly be applied to lower piece sizes (piece sizes of less than 50) without

producing illegal solutions, even if these heuristics do not result in equivalent performance

in the lower distributions. The reverse is true for the bin packing heuristics evolved for
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lower piece size distributions. These heuristics are less applicable to problems with higher

piece sizes, and result in more illegal solutions.

To summarise the robustness results, they show how important it is that the

training set used to evolve a heuristic is representative of the future problems that the

heuristic is expected to encounter. The results show that if a heuristic is presented with

pieces it has not seen before, then there is a chance it will not be able to function as intended

and illegal solutions may result. However, the results also show that no heuristic generated

automatically by our genetic programming methodology produced an illegal result when

applied to new problems of the same class.

4.5 Conclusion

There are three major conclusions to be drawn from the experiments performed in this

chapter. Firstly, the vast majority of the 350 automatically designed heuristics evolved in

this chapter match the performance of the human-created best-fit heuristic. In the previous

chapter, no heuristics of this category were evolved over 20 instances. This increase in

performance of the evolved heuristics is due to the change in the way that they are applied

to the problem, allowing them to consider all of the bins before making a decision. The

methodology of the previous chapter did not afford the heuristics this choice.

Secondly, heuristics can be evolved to be specialists on a particular sub-problem,

or general enough to work on all sub-problems. However, there is a trade-off between

performance and generalisation. Three levels of generalisation were investigated, creating a

hierarchy structure of piece size distributions. In general, the heuristics evolved on narrower

distributions performed better, on new instances of that distribution, than heuristics which

were evolved to be more widely applicable.

The third main conclusion is that heuristics evolved on a super-class will not

produce illegal results on problems from one of its sub-classes. However, there is a chance

that if a heuristic is applied to problems of a different class then illegal solutions may be

produced. This means that the hyper-heuristic creates heuristics which are robust when

packing pieces they have seen before during their evolution.

These three conclusions show, above all, that care must be taken to ensure that a

representative training set is provided when automatically evolving heuristics. The heuris-

tics generated by this type of system will all be specialised to some degree (for example,
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even the most general heuristics evolved here are ‘specialised’ to the distribution 10-89),

and just because a heuristic can solve a bin packing problem, it does not mean it can be

relied upon to obtain a solution for all bin packing problems.

In contrast to the conventional hyper-heuristic approaches and other metaheuris-

tics, our genetic programming hyper-heuristic approach has two outputs, good quality solu-

tions, and a heuristic that can be reused on future problems of the same type without further

training. The additional output of a re-usable heuristic means that the computationally

expensive evolution process can be employed to produce a heuristic on small problems, and

then the resulting heuristic can be applied quickly to larger problem instances. In this way,

the solutions to the larger instances could potentially be obtained much more efficiently

than if an evolutionary algorithm is employed on the larger instances directly.

This re-usability of the heuristics is an important quality of the hyper-heuristic

approach. Therefore, in the next chapter, we will investigate how the heuristics perform

when applied to instances that are orders of magnitude larger than their training instances.

The results will show whether the evolved heuristics maintain their performance when they

pack a greater number of pieces than were in their training set, and what effect changing

the size of the training set has.
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Chapter 5

The Scalability of Evolved Online Bin Packing

Heuristics

5.1 Introduction

Chapter 4 showed that a genetic programming hyper-heuristic can generate heuristics which

perform as well as the human designed best-fit heuristic on unseen problem instances. Seven

problem classes were created, each defined by the upper and lower limits of a uniform

distribution. The experiments investigated the quality, specialisation, and robustness of

the evolved heuristics.

Chapter 4 highlighted a benefit of the hyper-heuristic approach over traditional

evolutionary computation methods which operate on a space of solutions. If there are 1000

problems to be solved, then it is possible to evolve a heuristic on a representative sample

of 20 instances. Assuming that the heuristic is constructive, it can then be applied to

the remaining 980 instances very quickly. This can be compared to a traditional genetic

algorithm which would have to be run on each instance (i.e. 1000 separate runs). Assuming

that a genetic algorithm takes longer than a constructive heuristic, the hyper-heuristic

methodology would be quicker. The evolution of a heuristic may require more time than a

single genetic algorithm run over 20 instances, but once the heuristic is evolved, it is very

quick to obtain a solution for the remaining instances, whereas the genetic algorithm would

have to be run again for each instance.

This chapter investigates a potential further benefit of the hyper-heuristic method-

ology. Utilising traditional evolutionary computation methods is computationally expen-

sive. Larger problem instances require more time to obtain a solution, and it is often difficult
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to devise an efficient representation of the problem for an evolutionary algorithm to operate

on.

The experiments of this chapter show that a heuristic can be evolved on a small

instance, and then applied to solve larger instances. Assuming that the evolved heuristic

is quick to run, and constructive heuristics generally are, then this methodology has the

potential to greatly reduce the computational cost of solving larger instances. Again, the

benefit is possible because the output of this hyper-heuristic methodology is a re-usable

heuristic, as well as a solution to the problem instance on which it was evolved.

The experiments performed in this chapter involve 20 training instances each with

500 pieces, and 20 validation instances each with 100,000 pieces. The heuristics are evolved

on the smaller instances and then their performance on the unseen larger instances is

recorded. Section 5.2 presents the framework within which the heuristics are applied, the

structure of the heuristics, and the genetic programming parameters. Section 5.3 discusses

the results, over the full 100,000 pieces and in detail over the the first 500 pieces. The

results compare the effect of evolving the heuristics on all 500 pieces of the training set, or

only the first 100 or 250 pieces. Section 5.4 presents the conclusions to this chapter.

5.2 Methodology

5.2.1 How the Heuristic is Applied

The heuristics are applied in the same way as in chapter 4, where an example of the packing

process is given in section 4.3.3. A heuristic operates within a fixed framework, shown in

algorithm 4, which applies the heuristic to pack all of the pieces in the instance. Algorithm

4 is identical to algorithm 3 in the previous chapter, and is repeated here as a new algorithm

for ease of reference.

The pieces are packed one at a time in the order that they appear in the list,

this is shown on line 2 of the algorithm. To decide where to pack a piece, the heuristic is

evaluated on each bin in sequence. This process is shown on lines 4 and 5 of the algorithm.

At the first bin, the heuristic is evaluated once, and therefore returns a numerical value for

the bin. The numerical value is treated as the ‘score’ for the bin, which is stored as the

best so far. At the next bin, the heuristic is evaluated once again, and the resulting score

for this bin is compared to the best score so far (see line 6). If it is larger, then the current

bin is stored as the best so far and its score is stored in memory on line 7. After all of the
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Algorithm 4 Pseudo code of the framework within which the heuristics are applied in the

experiments of chapter 5. This is identical to algorithm 3 in the previous chapter, as the

way the heuristics are applied is kept the same. The inputs are a problem instance set I,

each i ∈ I contains a list L of pieces to be packed
1: for each problem i ∈ I do

2: initialise partial solution s with one empty bin

3: for each piece p in L do

4: variable bestSoFar = −∞
5: for each bin b in s do

6: heuristic output = evaluateHeuristic(bin b)

7: if heuristic output > bestSoFar then

8: bestSoFar = output

9: bestBinIndex = b

10: end if

11: end for

12: put piece in bestBinIndex bin

13: if piece was placed in the empty bin then

14: add a new empty bin to s

15: end if

16: end for

17: fitness of heuristic += fitness of solution to s

18: end for

bins have been given a score by the heuristic, the algorithm progresses to line 11, where the

piece is placed into the bin which received the highest score. Line 13 shows that the fitness

of the heuristic is the sum of the quality of the solutions it creates to the 20 instances.

In summary, we evolve a heuristic which scores each bin for its suitability for

the current piece. To construct a solution, the framework shown in algorithm 4 iterates

through all of the bins, applying the heuristic to every one in turn, and therefore obtaining

a numerical value for each bin. The bin which receives the highest value is the bin into

which the piece is placed. The heuristics’ performance is judged by the quality of their

solutions to 20 instances, the details of which are given in section 5.2.3.

The heuristic is not constrained by the framework to only consider the bins which
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Table 5.1: The functions and terminals used in chapter 5, and descriptions of the values
they return

Symbol Arguments Description

Functions

+ 2 Add
− 2 Subtract
∗ 2 Multiply

% 2
Protected divide function. A denominator
of zero will be changed to 0.5

Terminals
E 0

Returns the emptiness of the bin, the sum
of the pieces in the bin subtracted from
the capacity of the bin

S 0 Returns the size of the current piece

have enough space for the current piece. As was the case in chapters 3 and 4, the heuristic

is permitted to overfill a bin if it chooses to. However, such heuristics are heavily penalised

by the fitness function, and so are highly unlikely to be chosen as parents of the individ-

uals in the next generation. The result is that the evolved heuristics always contain some

mechanism which ensures that a bin is never overfilled.

5.2.2 Structure of the Heuristics

The heuristics evolved by the genetic programming hyper-heuristic have a tree structure,

consisting of function and terminal nodes. The functions and terminals used in the experi-

ments in this chapter are given in table 5.1. For a full explanation of the role of functions

and terminals, refer back to section 2.7.1. The functions and terminals that are used in

the experiments in this chapter are similar to those of chapter 4, but not identical. The

differences are explained in this section.

The functions are shown in the first four rows of table 5.1. These are the same

functions that were used in the previous chapters. However, in contrast to the function set

of chapter 4, the ‘≤’ function has been removed. The ≤ function existed to provide an easy

way for the heuristic to differentiate between bins that a piece can fit into and those that the

piece cannot. It was included in previous function sets because intuitively it seems useful,

and it is a function that would be used by a human programmer when creating the first-fit

heuristic. However, a heuristic can be built that performs the same function, without the

≤ function. For example, simply subtracting the bin fullness and the piece size from the

bin capacity will give a negative result if the bin is overfilled, and a positive one if not, so
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Table 5.2: The values returned by the standard protected divide function and the modified
protected divide used in the experiments of this chapter.

Calculation 10
1000

10
100

10
10

10
1

10
0

When % returns 1 0.01 0.1 1 10 1
When denominator is changed to 0.5 0.01 0.1 1 10 20

the ≤ function may not be necessary for the function set to be sufficient.

The ‘protected divide’ function is slightly different to its function in the previous

two chapters. The function exists so that a division by zero will return a value rather

than an error. Previously, the function returned a value of one if it was asked to divide

by zero. This is modified slightly for the experiments in this chapter. It now changes the

denominator to 0.5, which has the effect of doubling the numerator.

The logic behind this decision can be seen in table 5.2. The top row of the table

shows five fractions with denominators descending from 1000 to 0 in powers of ten. The

middle row shows the result of the protected divide function as implemented in the first

two chapters, where a division by zero returns a value of one. The values returned by this

function get progressively higher until there is a division by zero in the last column, where

one is returned. Compare this to the lower row of table 5.2, which shows the values returned

by the protected divide function that changes a denominator of zero to 0.5. This time, the

values get progressively higher even in the last column.

It makes logical sense that the function should not return one when the denom-

inator is zero, otherwise the results are identical when the denominator is either ten or

zero. For example, if the denominator represents the space left in the bin, then it would

not distinguish between a completely full bin and one that has ten free units of space, and

everything between these two values would be rated higher than both.

The terminals are shown in the lower two rows of table 5.1. In the previous two

chapters, three terminals have been used, F , C, and S. A new terminal (E) is defined as

C − F , or the capacity minus the fullness of the bin, which is the ‘emptiness’ of the bin.

Experiments were performed with both sets of terminals to determine if there is

a benefit in reducing the size of the set from three to two. Reducing the terminal set does

not result in better evolved heuristics. However, heuristics of the same quality are found in

less generations. We conclude that this is because the calculations the heuristics perform at

each bin with the C and F terminals are mostly of the form C−F , and replacing these two
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nodes with one node (E) removes the effort needed to evolve this structure. A potential

disadvantage of removing C is that there is now no terminal that represents a constant.

While constants are sometimes important in genetic programming, the experiments using

both sets of terminals suggest that a terminal with a constant value is not important for

this problem.

5.2.3 How the Heuristics are Evolved

This section explains the parameters used by the genetic programming algorithm to evolve

the heuristics. There are three parts to this section. The first part will provide an overview

of the genetic programming parameters. The second part will describe the data sets on

which we evolve the heuristics. The third part will describe the fitness function used to

assess the performance of each heuristic.

Parameters

For the experiments in this chapter, the genetic programming system is implemented using

the ECJ package, a Java based evolutionary computation research system, which can be

found at http://www.cs.gmu.edu/∼eclab/projects/ecj/. Many of the default parameters

of ECJ are the same, or similar, to those selected for the experiments in the two previous

chapters, and so they are left unchanged. The reason for this change from the author’s

code, which was used in the previous chapters, is because ECJ is a proven system with a

relatively large community that supports it. The ECJ package was found by the author to

be faster, and more flexible.

The population size is set to 1024, and the number of generations is set to 50.

The proportion of the population created from the crossover and reproduction operators is

90% and 10% respectively, and individuals are selected for these operators with tournament

selection, where seven individuals are randomly selected from the population and the best

is passed to the operator.

Fitness proportional selection was used in the experiments of chapters 3 and 4.

This is a selection method which ensures that the best individuals in the population are

chosen more frequently. However, it is possible that one individual could dominate the

population after a few generations if it has a very high fitness function relative to the rest

of the population. Tournament selection lessens the impact of one highly fit individual on
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Table 5.3: Genetic programming initialisation parameters for the experiments of chapter
5

Population Size 1024
Generations 50
Crossover Proportion 90%
Reproduction Proportion 10%
Tree Initialisation Method Ramped half-and-half
Selection Method Tournament selection, size 7

the next generation, because the seven individuals from the population are chosen for each

tournament regardless of their fitness.

The initialisation method for the individuals in the first generation has been

changed to ‘ramped half-and-half’, which is the standard method used in the literature.

This is in contrast to the ‘grow’ method, which was implemented for the experiments in

the previous two chapters. Ramped half-and-half is a popular algorithm to generate trees,

introduced in [164]. To generate a tree, it first chooses between the ‘grow’ and ‘full’ (the

depth of every terminal node is equal) methods with equal probability. Then a tree is

created with the chosen method, with a depth randomly chosen from between two and six

nodes inclusive.

The Data Set

The data set generated for this chapter is similar to the data set used in chapter 3, which

was defined by Falkenauer [96]. 20 training instances are randomly generated containing

500 pieces each, and the piece sizes are uniformly distributed between 20-100 inclusive.

Every heuristic evolved for the experiments in this chapter is evolved on all 20 instances.

In total, 90 heuristics are evolved. 30 heuristics are evolved for their performance

on the 20 instances. Another 30 heuristics are evolved on the first 250 pieces of each of the

20 instances. The final 30 heuristics are evolved on the first 100 pieces of each instance.

Therefore, each heuristic is evolved over 20 instances, but some are only tasked with packing

a subset of pieces.

The aim of this chapter is to test the evolved heuristics on problem instances much

larger than those they are evolved on, to investigate how the heuristics’ performance scales

with the problem size. Thus, another set of 20 instances are generated, each with 100,000

pieces taken from the same 20-100 uniform distribution. The evolved heuristics are applied



5. the scalability of evolved online bin packing heuristics 106

to these instances, and the results are shown in section 5.3.

The performance of the evolved heuristics is presented in the results section in

terms of the number of bins that the heuristic needs to pack all of the pieces. This is recorded

at checkpoints, the intervals between which increase in size as more pieces are packed, giving

more detail at the beginning of the packing and less at the end. For example, the number

of bins used by the heuristic is recorded when each of the first ten pieces is packed, then at

every ten pieces between ten and 100. At the end of the packing the checkpoints are every

10,000 pieces.

The Fitness Function

As tournament selection is the method for selecting individuals for the genetic operators,

the fitness function must differentiate between two individuals’ performance. A heuristic is

deemed fitter than another if it requires less bins in total to pack all of the 20 instances.

This provides a quick and reliable method of judging the relative fitness of two individuals.

If two heuristics that use the same number of bins are compared, then the fitness

function from chapter 4 is applied. For ease of reference, it is shown again in equation 5.1,

where nj = number of bins used in instance j, fullnessij = sum of all the pieces in bin i of

instance j, and C = bin capacity. The function iterates through 20 instances because each

heuristic is evolved on 20 training instances, and the fitnesses of the solutions are summed to

obtain the heuristic’s fitness. Smaller fitness values are better. A fitness of 1000 is assigned

to a heuristic that produces an illegal solution, an arbitrarily high value compared to the

range of fitness values that a legal heuristic can produce.

Fitness =
20∑
j=1

(
1−

(∑nj
i=1(fullnessij/C)2

nj

))
(5.1)

5.3 Results

30 heuristics are evolved on the first 100 pieces of the training set instances, 30 are evolved

on the first 250 pieces, and a further 30 are evolved on all 500 pieces of each training instance.

In this section, the three sets of 30 heuristics will be referred to as H100, H250, and H500.

After the heuristics have been evolved, they are applied to a set of 20 validation instances,

each with 100,000 pieces. The validation set instances are unseen by the heuristics during

their evolution.
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Figure 5.1: The results for H100, H250, and H500 on the validation instances. The vertical
axis shows the amount of bins by which the 30 heuristics from each group beat best-fit on
average. The horizontal axis shows the number of pieces packed. The results shown are the
average amount of bins required by the heuristics over the 20 validation instances.

5.3.1 Performance past the training range

This section discusses the results of the heuristics over the full 100,000 pieces of each instance

in the validation set. The results are displayed graphically in figure 5.1, which shows three

series of results, one for each of H100, H250, and H500. Recall that 30 heuristics are evolved

for each of these classes. For each heuristic, we measure the number of bins used by the

heuristic at each checkpoint for each of the 20 instances, and then record the mean average

of the 20 values taken at each checkpoint (there will be one value taken at each checkpoint

for each instance). There are 30 of these mean averages at each checkpoint (because there

are 30 heuristics), so we calculate the average of these 30. This is then subtracted from the

average number of bins used by best-fit at this checkpoint over the 20 instances, and the

result is plotted in the graph of figure 5.1. In addition to this, table 5.4 shows the number

of bins required on average by the 30 heuristics on each individual instance of the validation

set (where each problem has 100,000 pieces).
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Table 5.4: The number of bins used on average by the three groups of 30 evolved heuristics
over the set of problems with 100,000 pieces, compared to the number used by best-fit

Instance Best-Fit H100 H250 H500

1 41694 41677.70 41292.43 41070.00
2 41644 41637.83 41255.80 41032.57
3 41769 41757.30 41368.77 41148.37
4 41744 41735.83 41348.53 41135.83
5 41714 41696.43 41308.63 41088.33
6 41714 41703.87 41313.43 41094.03
7 41751 41732.77 41354.20 41128.57
8 41729 41722.20 41336.83 41116.50
9 41751 41735.97 41354.83 41136.03
10 41664 41648.67 41271.50 41058.33
11 41807 41797.70 41413.83 41201.53
12 41786 41770.20 41394.10 41179.57
13 41796 41781.97 41389.10 41168.80
14 41755 41759.43 41375.17 41165.00
15 41703 41697.33 41310.10 41089.27
16 41768 41766.00 41383.53 41166.67
17 41706 41707.03 41325.43 41107.07
18 41788 41776.20 41386.40 41169.63
19 41828 41817.40 41430.17 41217.73
20 41814 41808.40 41418.50 41197.97

Average difference from best-fit = 9.74 394.69 612.66

The results show that when applied to problems much larger than their training set,

the evolved heuristics still maintain their performance, which is better than the performance

of best-fit. The heuristics evolved on the first 100 pieces of all the training set instances use

an average of 9.7 bins less than best-fit after 100,000 pieces have been packed. This may

not seem like very many. However, a paired difference t-test over the 20 instances shows

that the set of 20 average results, from the heuristics evolved on 100 pieces, is significantly

better than the 20 results from best-fit. The results from the heuristic sets evolved on 250

and 500 pieces are significantly better to an even greater degree.

The heuristics evolved on 250 pieces perform better than the heuristics evolved on

100 pieces, requiring an average of 394.69 less bins on average. The heuristics evolved on

500 pieces perform better still, requiring 612.66 less bins. These results make it possible

to conclude that heuristics perform better when they have been evolved on larger training

instances. This highlights a trade off between the time taken to evolve the heuristics and

their performance on new problems.
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Figure 5.2: The results for the heuristics evolved on 100, 250, and 500 pieces of the training
instances, on the first 500 pieces of each of the 20 validation instances. This is a ‘zoomed
in’ view of the same data displayed in figure 5.1. The vertical axis shows the amount of
bins by which the 30 heuristics from each group beat best-fit on average. The horizontal
axis shows the number of pieces packed. The results shown are the average results of the
30 heuristics over the 20 instances.

5.3.2 Performance over the training range

This section will discuss the performance of the three sets of evolved heuristics on just

the first 500 pieces of each validation instance. This provides some insight into how the

heuristics are able to beat best-fit over the long term. Figure 5.2 shows a ‘zoomed in’ view

of the graph in figure 5.1, and as such it displays the detail of the beginning of the packing.

H500 clearly opens more bins than is necessary when packing the first 200 pieces.

This can be seen by the fact that the line goes immediately below the x-axis at the start of

the packing, showing that best-fit uses less bins than the evolved heuristics do. However,

when 250 pieces have been packed, the heuristics are using less bins than best-fit on average.

This can be seen in figure 5.2 because the line crosses over the x-axis, and is above it when

250 pieces have been packed. Note that 250 pieces is halfway through the amount of pieces

in the training set.
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H250 also begins the packing by using more bins than best-fit. The graph line goes

immediately below the x-axis and then crosses it when around 125 pieces have been packed.

When a reading is taken at the 150 piece checkpoint, H250 is using less bins than best-fit on

average. 125 pieces is half the amount of pieces in the training set for H250. It seems that

when packing the pieces at the beginning, these two sets of heuristics sacrifice short term

efficiency to have more choice later on. This effect is less obvious in figure 5.2 for H100, but

the effect is still there. The line goes below the x-axis at the beginning, and is above the

x-axis by the time 100 pieces have been packed. After this point, the heuristic is always

better than best-fit.

To explain this behaviour it is necessary to refer to the concept of ‘open’ and

‘closed’ bins. A bin is said to be open if it has enough free space to be able to accommodate

a further piece. Conversely, a bin is said to be closed if it does not. We can see whether a

bin is closed because we know that the minimum size of a piece is 20. Therefore, for these

problem instances, if a bin has less than 20 units of free space then it is said to be closed.

Intuitively, a human would know that if many more pieces are still to be packed, it would

be shortsighted to fill a bin to 131 fullness (19 free units of space). This is because the bin

would then be closed, and 19 units of free space would be wasted. It would be more prudent

to put the piece into another bin and wait for a piece that fills the bin to capacity. Such a

piece may never arrive, but it is more likely to arrive if it is known that many more pieces

are still to come.

The evolved heuristics do appear to have knowledge of the amount of pieces that

they are asked to pack in their training sets, because they are beating best-fit by the time

half of the number of pieces in their training set have been packed. Then they further

increase their lead over best-fit at every checkpoint, and finish the packing having used

less bins than best-fit. Of course, the heuristic cannot know the how far it is through the

packing. It has no information given to it about how many pieces have been packed and

therefore cannot know that it must pack more efficiently when it is halfway through the

packing. The heuristic merely takes one piece and decides where to pack it, and it will

use the same logic to make its decision at the start of the packing as it will at the end.

Therefore, in contrast to how the results look, the heuristics do not wait until the end then

begin packing efficiently, because they cannot know how close they are to the end.

To take H250 as an example, the results suggest that the heuristics keep many

bins open at the start of the packing, to maintain more choice for where to put new pieces.



5. the scalability of evolved online bin packing heuristics 111

These bins are then closed only when a piece is found which fits very well into the remaining

free space. When 250 pieces have been packed, there will still be many open bins, just as

there were at the start. But less bins in total will be used than best-fit, because the bins

that have been closed are filled more efficiently. This efficiency more than makes up for the

inefficiency of the open bins that exist at that point. This is true to a greater extent for

H500, where the heuristics seem to have evolved to keep more bins open than the heuristics

of H250. It is also true to a lesser extent for H100.

In summary, it seems that the heuristics of H500 are much more ‘liberal’ when

deciding upon whether to open a new bin for a piece. They are less ‘risk averse’ in this

sense, because during their evolution it was more likely for a piece to appear later that fits

exactly into the gap in the open bin that was left free. This behaviour pays off when applied

to much larger instances, because it is highly likely for a well fitting piece to appear before

the packing is over. In contrast, the results suggest that the heuristics of H100 are more

risk averse, and often choose to close bins ‘prematurely’. This is because heuristics with the

behaviour of H500 would receive low fitnesses, and be eliminated from the population, as

the number of efficiently packed closed bins would not be able to compensate for the open

bins when a small number of pieces have been packed.

Best-fit is a very good short term strategy, because it will never open a new bin

unless it has to. Therefore, it would be very difficult to evolve a heuristic to beat it over

an instance set containing many different sized instances. In such a scenario, the heuristic

must pack as efficiently as possible all of the time because any piece could be the last. It

would be inefficient to open a new bin just before the packing is complete, when an existing

bin could have accommodated the piece.

5.3.3 Two Evolved Heuristics

This section will present two example evolved heuristics in graphical form. Both heuristics

outperform best-fit on average over the 20 validation set instances. One is an example

heuristic with a counterintuitive packing policy, and an interesting ridge structure. The

second is a more complex heuristic, which appears to have arisen in response to the fact

that there are no pieces smaller than size 20. The heuristics are compared to a plot of

best-fit to highlight the differences.
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Best-Fit

Within the framework that the heuristics are applied with in this chapter, the heuristic

C/(E−S) expresses best-fit. The C in this function can be any constant value, and E and

S are the emptiness of the bin and the size of the piece respectively. This is because when

a piece fits exactly into a bin, the heuristic will return the maximum value. E − S will be

zero, and the protected divide function will change this to 0.5, so the result will be 2C.

The function is expressed graphically in figure 5.3. There is a ‘wall’ through the

middle of the graph, behind which the results are negative, and in front of which the results

are positive. The wall exists on the boundary where the piece size is equal to the emptiness,

where the piece fits exactly into the bin. Behind the wall, the piece size is greater than the

emptiness, so the piece does not fit into the bin. The result where the piece is put into an

empty bin is always positive, and therefore the empty bin will always receive a higher score

than any that would be overfilled. The heuristic will always prefer better filled bins because

the values get higher the closer the piece size is to the emptiness.

Example Heuristic One

Our best evolved heuristic is displayed graphically in the same way in figure 5.4. The plot

is rotated so that the large emptiness side is in the foreground, because it is this area of the

graph where the heuristic differs from best-fit. This graph has a wall where the values are

negative behind and positive in front. This, as in best-fit, is to prevent a bin from being

overfilled, because the empty bin will always receive a higher score. In general, as the free

space in the bin gets greater, the value returned for a bin reduces (for a given piece size).

However, this rule changes when the piece size is small and the emptiness is high.

Figure 5.4 shows that the surface of the graph ‘curls up’ at the end, meaning that a high

value is returned for combinations of a small piece size and large emptiness. This means that

the heuristic will sometimes choose to put small pieces into very empty bins. In contrast,

in the graph of best-fit this area of the plot gradually gets lower, meaning that the best

fitting bin will always be chosen. The good performance of this evolved heuristic suggests

that it is an advantage to maintain a larger diversity of fullnesses in the open bins. This

affords the heuristic more choice when later pieces are packed.

Another difference between figures 5.3 and 5.4 is the raised ‘ridge’ in the function

landscape of our best evolved heuristic (figure 5.4), running in front of and parallel to the
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Figure 5.3: The function C/(E − S), which represents the best-fit heuristic when applied
in the fixed framework used in this chapter. The defining feature is the ‘wall’ which exists
on the boundary of where the piece size matches the ‘emptiness’ of the bin. Behind this
wall the piece size is larger than the emptiness, so the piece does not fit in the bin. The bin
which receives the maximum score will be the bin with the least emptiness out of all of the
bins that the piece fits into.
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Figure 5.4: A heuristic requiring 41448.4 bins on average over the validation set, thus
outperforming best-fit. The graph is in the same format as figure 5.3, but rotated to put
the ‘high emptiness’ side in the foreground. The heuristic has much the same structure
as best-fit, however the corner curls up at the end as the piece size gets small and the
emptiness gets large. There is also a ‘ridge’ in the landscape running in front of the wall,
where certain combinations of piece size and emptiness are rated higher than those adjacent
to the ridge on both sides.
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Figure 5.5: A heuristic requiring 40573.3 bins on average over the validation set, thus
outperforming best-fit. This is the same heuristic as is displayed in figure 5.6

wall, from the left of the plot to the right. This means that there are certain combinations

of piece size and bin emptiness that are rated higher than the combinations adjacent to

them. The ridge occurs where the emptiness is twice the size of the piece. The landscape

would smoothly curve downwards and then back up towards the wall, but for two values

where the emptiness is twice the piece size and one more unit than this value. For example,

if the piece size is 50, then the values returned by the heuristic when the emptiness is 100

and 101 do not fit the pattern. The value when the emptiness is 100 is more markedly

different to the rest of the sequence than than when the emptiness is 101.

Example Heuristic Two

The second example heuristic is displayed in figure 5.5 and 5.6. These figures show the

same graph but they are rotated 180◦ relative to each other, to display the other side of the

plot. This heuristic has a wall in its fitness landscape, similar to best-fit, which prevents a

bin being overfilled.

The side of the wall where a piece would be too large for a bin is on the right of the

wall in figure 5.5, and on the left of the wall in figure 5.6. The function forms an interesting

landscape on this side of the wall, but the shape is irrelevant because there will always

be an empty bin available to the heuristic. For a given piece size, the value returned for
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Figure 5.6: A heuristic requiring 40573.3 bins on average over the validation set. This is
the same heuristic as is displayed in figure 5.5

the empty bin (emptiness 150) is always higher than the maximum value of any emptiness

behind the wall.

The function of the heuristic, therefore, must be attributed to the shape of the

landscape in front of the wall. This is to the left in figure 5.5, and to the right in 5.6. This

area is where the piece size is less than or equal to the emptiness. If the piece fits exactly

into the bin then the value returned is high (off the scale of the top of the graph), so if such

a bin is available the piece will be put there.

The interesting feature of this heuristic is the section of the graph where the

emptiness is between the piece size (S) and roughly double the piece size (roughly 2S + 5).

Between these values there is a dip in the graph, where the values are lower than those

either side. The dip reaches a low point at roughly 20 units of emptiness greater than the

size of the piece.

For example, a piece of size 20 will be put into a bin with an emptiness of between

20-24 over all others. As the emptiness increases, the values returned by the heuristic

gradually get lower until a low point is reached at an emptiness of 28. Then the values rise

again until 48 emptiness, and then start a decline that continues until the full 150 capacity

of the bin. This means that if there is a group of bins that the piece will nearly fill, the
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heuristic definitely wants to avoid leaving a gap of around eight after the piece is placed,

and if it can avoid leaving any gap of between 5-27 then it will.

To give another example, a piece of size 70 will be put into a bin with 70 emptiness

if one is available. The heuristic would choose a bin between 70-75 emptiness if there are any

available, because such bins receive the highest scores for a piece of size 70. For emptinesses

from 71-90 the values returned get lower, down to a low point at 90. After this the values

get higher again slowly until reaching a high point at 145, and then the values get lower

again for the remaining five units of the 150 capacity.

To summarise these two examples, they show that the heuristic chooses a bin

where the piece fits exactly. If none are available, it then chooses a bin where four or five

units of space would be left at the top. Then if none of these are available it will choose a

bin where the piece would fill roughly half the emptiness of the bin (leaving a lot of space).

For any given piece size, some of the least favoured bins are those which leave a gap that

no further piece can fill, because none are smaller than 20. This will have the effect of

maintaining a larger variety of bins that are open, and the extra choice that the heuristic

has means that it can be more efficient in the long run.

5.4 Conclusion

The aim of this chapter was to show that heuristics can be evolved on small problem

instances and maintain their performance on problem instances orders of magnitude larger

than those they were trained on. This has been shown by creating a training set with 500

pieces in each instance. 30 heuristics were evolved by their performance packing the full 500

pieces of each instance, each in a separate genetic programming run. In addition to this, 30

were evolved only packing the first 250 pieces of the instances, and 30 were evolved on the

first 100 pieces. Each of the 90 evolved heuristics were then applied to a set of instances

each with 100,000 pieces and these results have been presented in this chapter.

Compared to best-fit, the evolved heuristics have a tendency to keep more bins

open. This allows better performance because, over many pieces, these open bins can be

filled more efficiently. This strategy has the effect of under performing when the first set

of pieces is packed, but by the end of the packing less bins are used in total. The effect of

under performing at the start of the packing is an example of a long term strategy, which

has arisen even though the heuristics themselves have no knowledge of how much of the
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packing has been completed as they pack the current piece. It has also been shown that the

heuristics are more likely to allow more bins to be opened at the start of the packing if they

have been evolved with more pieces in the training set instances. The heuristics generally

overtake the performance of best-fit when half of this number of pieces have been packed. It

is analogous to saying that the heuristics are less ‘risk averse’ when they have been evolved

packing more pieces. When fewer pieces are used in the training set, the heuristics are much

more likely to have behaviour which is effective in the short term, as if they are unwilling

to risk opening new bins in case the next piece is the last.

The heuristics evolved for one dimensional bin packing are very quick, taking

seconds to solve a given instance of reasonable size. The heuristics, as applied here, take

in the order of hours to fully pack a 100,000 piece instance. This is a large value because

of the heuristic being applied to every bin in the solution, even the completely full bins

and those which could not possibly fit a piece inside because no piece is smaller than 20.

This time could easily be reduced by several orders of magnitude, by not evaluating the

bins which evidently cannot receive a piece. For example, assuming roughly three pieces

fit into a bin on average, to pack the last piece of a 100,000 piece instance requires over

33,000 evaluations of the heuristic. A small fraction of those would be open bins which

would actually be able to accommodate the piece, and these are the only bins that it is

productive to consider.

The time issue has an important implication. Assuming that a heuristic could pack

an instance very quickly after it has been evolved, the results that have been presented in

this chapter show that it is possible to evolve a heuristic on a reduced problem, and then

apply it to solve a larger problem, providing that the reduced problem is still representative.

The bulk of the time taken with this hyper-heuristic method is in the evolution stage. An

evolutionary algorithm operating on a space of solutions may take a long time to obtain a

solution for twenty 100,000 piece instances. We conclude that the hyper-heuristic paradigm,

while automating the heuristic design process, also has the potential to alleviate, to some

extent, the problem of combinatorial explosion, where the time taken to obtain a solution

increases exponentially with the size of the problem.

To summarise chapters 3, 4, and 5, heuristics for one dimensional bin packing

have been automatically designed and built by our genetic programming hyper-heuristic

methodology. We have shown that they are re-usable in certain circumstances, and that

they maintain their performance on new problems much larger than their training set. In



5. the scalability of evolved online bin packing heuristics 119

the next chapter, the problem domain is changed to the two dimensional strip packing

problem. The functions and terminals will be changed from those familiar in the previous

three chapters, and the framework within which the heuristics are applied is also changed,

because of the representation of the problem in two dimensions. However, the methodology

will remain essentially unchanged, applying a heuristic function which scores the potential

locations for each piece. The similarities and differences are discussed more thoroughly in

the introduction to the next chapter.
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Chapter 6

Evolving Heuristics for Two Dimensional Strip

Packing

6.1 Introduction

The previous three chapters have presented methodologies to evolve heuristics for one di-

mensional bin packing. This chapter presents a framework and representation to enable

automatic heuristic generation for the two dimensional strip packing problem. While the

representation is necessarily different, the fundamental packing methodology is the same as

for chapters 3, 4, and 5. A heuristic is evaluated once for each potential allocation, and the

allocation that receives the highest score is performed.

The two dimensional strip packing problem is explained in the introduction to

this thesis, in section 2.4.1, but a brief description is given here for ease of reference. A

set of two dimensional shapes must be packed into a two dimensional container, which

has both a width and an infinite height. This is analogous to cutting a required set of

shapes from a sheet of material. The objective is to minimise the height of the sheet that

is needed to accommodate all of the shapes, and thus minimise the waste material when

a guillotine cut is made across the width of the sheet. The problem arises in real world

industrial problems when rolls of material are used in manufacturing. For example, clothing

manufacture requires shapes to be cut from stock rolls of textiles, and window panes must

be cut from stock sheets of glass.

There are three differences between the methodology presented in this chapter and

that of the previous three chapters. The first difference is that the heuristics have a choice

of which piece to pack, from all of those available. In the previous methodology, a heuristic
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packed each piece in turn, in the order in which they appeared in the piece list. In this

chapter, the heuristics can choose any piece from the list of those remaining, and choose

where to pack it. This changes the problem from online to offline, because the heuristic has

knowledge of all of the pieces before the packing begins.

The second difference concerns the ability of heuristics to produce illegal solutions.

In chapters 3, 4, and 5, a bin could be overfilled by a heuristic, resulting in an illegal solution.

This was permitted so that the heuristics could learn the rules of the problem, as well as

evolving a good packing strategy. For the two dimensional problem representation there is

no similar way to allow the heuristics to violate the hard constraints of the problem. In

addition to this, the representation of the problem domain is complex enough that trivial

heuristics do not produce good solutions. This is in contrast to the representation of the one

dimensional bin packing problem, where a heuristic consisting of just one terminal could

produce the same result as the first-fit heuristic if illegal solutions were permitted. For

these reasons, illegal solutions are prevented in the experiments of this chapter. That is,

the heuristics can only consider legal allocations of pieces.

In the previous three chapters, the heuristics evolved for one dimensional bin

packing were shown to be re-usable under certain circumstances. In this chapter, the

heuristics are treated as disposable, in the sense that they are evolved to produce a solution

to one problem instance. The heuristics can be reused on unseen instances, but they may

not produce the same quality of results as they do on the instance they are evolved for.

The hyper-heuristic can therefore design a heuristic for an individual instance, allowing the

heuristic to perform better than any one comparable constructive heuristic that performs

generally well across a wide range of instances.

In the results section, we show that this hyper-heuristic methodology produces re-

sults better than human created metaheuristics, and the best available constructive heuris-

tic. The results are also compared to the state of the art reactive GRASP methodology

[4]. However, the complexity of the GRASP heuristic is far beyond what a computer could

currently design. The results of this chapter show that it is possible to automate the heuris-

tic design process for two dimensional strip packing, and that the quality of the evolved

heuristics is comparable to that of heuristics designed by humans.

The chapter is organised as follows. Section 6.2 explains how the sheet is repre-

sented, and where the pieces can be placed in the solution. Section 6.3 explains how the

heuristic selects a piece and where to place it, and how the heuristics are evolved. Section
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6.4 displays the results, and section 6.5 presents the conclusions to the chapter.

6.2 Representation

Constructive two dimensional strip packing heuristics treat the problem as a sequence of

steps, placing a piece into the solution at each step. The heuristics evolved in this chapter

decide both which piece to place and where to place it. The potential locations for a piece

are described in this section.

The available spaces on the sheet are determined by a number of ‘bins’, the number

and configuration of which is defined by the arrangement of the pieces that are already in

the bin. Each bin has a width, a lateral position, and a height in relation to the base of

the sheet. This representation takes its inspiration from the paper by Burke, Kendall and

Whitwell [38], which introduces the best-fit heuristic for two dimensional packing. This

heuristic selects the lowest available space, and then finds the piece whose width best fits

it. In order to efficiently find the lowest space, the sheet could be represented as a dynamic

set of bins.

At the beginning of the packing there is one bin, which has a width equal to the

width of the sheet, and a height equal to zero, because its base is the base of the sheet.

The heuristic can choose to place a piece in either the left or right corner of a bin, so at

this initial stage there are two locations into which a piece can be placed. In the majority

of cases, when a piece is put into the solution, it will split the bin into two separate bins.

One will appear next to the piece, representing the remaining space in the initial bin. The

second will form on top of the piece, and will have a width equal to the width of the bin.

This is the most common modification of the bin structure. However, bins can merge if

they are adjacent and their height is equal, and bins can be filled if they are too narrow for

a piece.

As an example, figures 6.1-6.4 show a step by step example of packing two pieces.

Figure 6.1 shows the initial partial solution with two pieces packed into the lower left and

right corners. The bin structure is shown in each diagram to illustrate how it is modified

after each piece is placed. The four situations where the bin structure will change are

described in more detail in the following four sub-sections.
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Figure 6.1: Bin structure after two
pieces have been packed

Figure 6.2: The middle bin of figure 1
has been replaced by two new bins due to
the third piece being packed into it

Figure 6.3: As no piece can fit into bin
three of figure 2, the base of bin three has
been raised, to combine it with bin two

Figure 6.4: When the fourth piece is
packed into the second bin, the heights
of bin two and three are the same and
they have been combined
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Bin creation

When a piece P is placed in bin Bx, Bx is replaced by two bins, By and Bz. By will form

directly on top of P , and Bz will represent what remains of Bx, and will be formed only if

Width(P ) < Width(Bx). Formally:

Height(By) = Height(Bx) +Height(P )

Width(By) = Width(P )

Height(Bz) = Height(Bx)

Width(Bz) = Width(Bx)−Width(P )

This process is shown in figures 6.1-6.2.

Bin Combination

Using the notation from the bin creation section, if the height of By is equal to the height

of the neighbouring bin Bn, forming a continuous flat level, then By is joined to Bn, amal-

gamating them into one bin. This process is shown in figure 6.4.

Raising Narrowest Bin

If Bz is too narrow for any remaining piece to fit in, then Height(Bz) is increased to the

level of its lowest neighbour, and then the bin combination process occurs between the two

bins. This is only invoked if Bz is between two higher bins. The space is wasted space,

and so can be discarded for the purposes of continuing to construct a solution. If Bz is

not between two higher bins, then the space cannot yet be counted as wasted space. This

process is shown in figures 6.2-6.3.

Raising Lowest Bin

If there is no piece that can fit in any bin, the lowest bin in the current solution is raised to

the level of its lowest neighbour, and the two bins are combined, forming a wider bin. This

is done iteratively until a bin is formed that is wide enough to accommodate at least one

piece.
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6.3 Methodology

The previous section explained the representation of the two dimensional bin packing prob-

lem. Section 6.3.1 explains how this representation is manipulated by a heuristic in order

to produce a solution. Section 6.3.2 then describes the structure of the heuristics. Using in-

formation given in these two sections, an example of the packing process is worked through

in section 6.3.3. Finally, section 6.3.4 presents the genetic programming parameters, the

data sets used in the results section, and the fitness function employed to assess the relative

fitness of the heuristics.

6.3.1 How the Heuristic is Applied

This section describes the process by which the heuristic is applied to an instance to obtain

a solution. As in chapters 3, 4, and 5, the heuristic operates within a fixed framework. The

framework for this chapter is shown in algorithm 5. In the previous three chapters, the

heuristics returned a value for each location available for the piece that it was packing at

the time. The piece was placed at the location which received the highest value. Due to the

change in representation, the framework is naturally different to that of previous chapters.

The underlying method, of scoring each possible place for each piece, is unchanged.

However, there are two fundamental differences. Firstly, in previous frameworks,

every location was scored, even those into which the piece could not fit. If the heuristic

resulted in an illegal solution because of this, it was penalised heavily by the fitness function.

In this chapter, illegal solutions are prevented from occurring. Every heuristic will produce

a legal solution because the framework in which they operate only allows legal placement

of pieces. This is achieved with a modification of the framework, where the heuristic is now

only evaluated where the allocation of the piece and location would be a legal one.

The second difference is that the heuristic decides which piece to pack, as well as

where to place it. This is in contrast to the framework in the previous chapters, where

the pieces are packed one at a time, in the order that they appear in the piece list. The

heuristic only had to decide where to place the given piece. This is a fundamental difference,

because the problem becomes offline rather than online. All of the pieces are known before

the packing starts, and they can be packed in any order.

The pseudocode for the framework that applies the heuristics is shown in algorithm

5. It refers to the concept of an ‘allocation’. In each bin (recall that a bin is part of the
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Algorithm 5 Pseudo code of the framework within which the heuristics are applied in the

experiments of chapter 6
1: while pieces exist to be packed do

2: if narrowest bin is too narrow for any piece AND narrowest bin is between two higher

bins (or the sheet edge) then

3: raise narrowest bin to level of lowest neighbour

4: else if at least one piece can fit in any bin then

5: for each bin b in partial solution do

6: for each piece p in pieceList do

7: for each orientation o of piece p do

8: if piece p fits into bin b then

9: current allocation = b,p,o

10: heuristic output = evaluateHeuristic(current allocation)

11: if heuristic output > bestSoFar then

12: bestSoFar = heuristic output

13: best allocation = current allocation

14: end if

15: end if

16: end for

17: end for

18: end for

19: perform the best allocation on the partial solution

20: else

21: raise lowest bin

22: end if

23: update bin structure

24: end while
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representation of the sheet), a piece can be put in the bottom-left corner or in the bottom-

right corner. There are also two orthogonal orientations that the piece can adopt in both

corners. Given a partial solution, we will refer to a combination of piece, bin, corner and

orientation as an allocation. Therefore, there is a total of four allocations to consider for

each piece and bin combination, provided that the piece’s width in each orientation is

smaller than the width of the bin.

Line 1 of the algorithm shows that the framework iterates until all of the pieces

have been packed. The conditional statement, on line 2, checks if the narrowest bin in the

sheet is too narrow to accommodate any remaining piece. If it is also between two higher

bins then it is ‘filled’ up to the height of the lowest of the two. This process is described as

‘raising the narrowest bin’ in section 6.2, and shown in figure 6.3.

If the narrowest bin can accommodate a piece then we can be sure that at least one

piece can fit into a bin, and so the main body of the code executes, from line 5 to line 19.

The heuristic is evaluated once for each allocation that does not result in an illegal solution.

A value will be returned by the heuristic for each allocation, which is treated as its ‘score’.

This is shown on line 10 of the algorithm. A higher score means that the heuristic rates

an allocation as better. The allocation which receives the highest score is the one that is

performed on the partial solution on line 19, because the heuristic has chosen it from all of

the options available. In other words, the piece from the allocation is put into the bin from

the allocation, in the orientation dictated by the allocation.

The algorithm shows, on line 21, that if no piece can fit into a bin, then the lowest

bin is raised. This is explained in section 6.2 under the heading ‘raising the lowest bin’,

and by figure 6.4. On line 23 the bin structure is updated, making sure that adjacent bins

of the same height are amalgamated into one, and initialising new bins where a piece has

been placed into the solution.

6.3.2 The Structure of the Heuristics

The functions and terminals used for the experiments in this chapter are shown in table

6.1, with descriptions of each. The terminals are shown in the lower six rows of the table.

The heuristic is evaluated for each allocation, which represents a valid potential piece,

orientation, and bin combination (see section 6.3.1). There are two terminals representing

the size of the piece, two representing the bin of the current allocation, and two representing
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Table 6.1: The functions and terminals used in chapter 6, and descriptions of the values
they return

Name Label Description

Functions

Add + Add two inputs
Subtract - Subtract second input from first input
Multiply * Multiply two inputs
Divide % Protected divide function

Terminals

Width W The width of the piece
Height H The height of the piece

Bin Width Left BWL Difference between the bin and piece widths
Bin Height BH Bin base’s height, relative to base of sheet

Opposite Bin OB Bin height minus height of opposite bin
Neighbouring Bin NB Bin height minus height of neighbouring bin

the position of the piece in the bin.

The W terminal returns the width of the piece, and the H terminal returns its

height. The values that these return will change depending on the orientation of the piece.

The width is always the horizontal component, and the height is the vertical component.

These two terminals allow the heuristic to determine the relative size of the piece, and enable

the heuristic to distinguish between the two orientations of a piece if all other elements of

the allocation are the same.

The BWL terminal stands for the bin width left. It returns the width of the piece

subtracted from the width of the bin, and as such it gives the heuristic a measure of how

well the piece fits into the bin. The BH terminal returns the bin height, which is measured

as the distance between the base of the bin and the base of the sheet.

The ‘opposite bin’ and ‘neighbouring bin’ terminals give information about the

difference in height between the current bin and either of the two bins adjacent to it. An

allocation is either in the lower-left or lower-right of the bin. If the allocation is in the lower-

left, then the neighbouring bin is the bin to the left of the current bin, and the opposite bin

is to the right. If the allocation is in the lower-right of the bin then these labels are reversed.

These terminals give the context of the current bin within the solution. For example, they

can provide information on whether the bin is between two higher bins, or between two

lower bins. Importantly, they also enable the heuristic to distinguish between an allocation

with the piece in the lower-right corner and one in the lower-left corner of a given bin.

The four functions are the standard arithmetic operators. They all have identical

functionality to the previous chapter, with the exception of the protected divide function.
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Table 6.2: The values returned by the standard protected divide function, the modified
protected divide used in the previous chapter, and the further modified function used in
this chapter.

Calculation 10
1000

10
100

10
10

10
1

10
0.1

10
0

When % returns 1 0.01 0.1 1 10 100 1
When denominator is changed to 0.5 0.01 0.1 1 10 100 20
When denominator is changed to 0.001 0.01 0.1 1 10 100 10000

The protected divide function exists to ensure that when a division by zero occurs, a value is

returned rather than an error. The standard protected divide function, as defined by Koza

[164], returns a value of one. Recall that, in chapter 5, the protected divide function was

modified from its standard functionality, changing the denominator to 0.5 if it was zero, and

therefore effectively doubling the numerator. It was modified in this way because the values

returned by the function did not follow a pattern (see section 5.2.2, and table 5.2, for a full

explanation). The middle row of table 6.2 shows that if the denominator sequence between

one and zero is expanded, for example by including 0.1, the pattern is again broken. The

values go from 1 to 10 to 100 and then back down to 20 at zero. Table 6.2 shows that if

the denominator is changed to 0.001 instead of 0.5, then the pattern is restored. This is the

functionality of the protected divide function used in the function set for this chapter.

There will always be a point where the pattern of rising values will break. For

example, if the denominator is 0.0001, the value returned by the function will be 100000.

However, the table shows that, when the denominator is zero, the value returned is 10000,

so this is again a drop in the value at the end of the sequence.

A possible solution would be to change the functionality of the protected divide

function, so that a division by zero returns +∞. This value is greater than would be

returned by the protected divide function if the denominator was changed from zero to an

arbitrarily small value, and therefore maintains the pattern in all circumstances. However,

to return +∞ may result in subtlety being lost in calculations elsewhere in the heuristic’s

tree structure. For example, adding, subtracting, or multiplying any value by∞ will return

∞, meaning that the heuristic will return∞ regardless of calculations that other branches of

the tree perform. The 0.001 value is a compromise between maintaining the pattern as the

denominator reaches zero, and maintaining the importance of other calculations elsewhere

in the tree when a division by zero occurs.
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Figure 6.5: An example heuristic, which is analysed in section 6.3.3 by packing the pieces
of figure 6.6

6.3.3 Example of the Packing Process

This section, which goes into more detail than section 6.3.1, works through an example of

how the heuristic chooses a piece from those which remain to be packed, and then where

to place it in the partial solution. The heuristic we will use in this example is shown in

figure 6.5. It consists of nodes from the GP function and terminal set shown in table

6.1. It contains at least one of each of the functions and terminals, however this is not a

requirement. A heuristic in the population could contain only a subset of the functions and

terminals that have been made available.

We will use the heuristic shown in figure 6.5 to choose a piece from those which

remain to be packed (shown in figure 6.6) and choose where to place it in the partial solution

shown in figure 6.7. The partial solution shows that two pieces have already been packed by

the heuristic, one to the left and one to the right. We do not show this process, because the

example will be more descriptive if we start with a partial solution. There are three bins in

the partial solution, labelled 1, 2 and 3, which are defined by the pieces already packed.

The framework takes each piece in sequence, and evaluates the heuristic for every

possible allocation of that piece. So, first we will consider piece 1 from figure 6.6. A piece

can be placed in the left or right of a bin, in either orientation, providing it does not exceed
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Figure 6.6: The pieces that the heuristic in figure 6.5 will pack for the example described
in section 6.3.3

Figure 6.7: The current partial solu-
tion, the heuristic will choose a piece from
figure 6.6 to be placed in this solution

Figure 6.8: All of the locations where
piece one from figure 6.6 can be placed

Figure 6.9: Allocation A from figure 6.8
in detail

Figure 6.10: Allocation C from figure
6.8 in detail
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the width of the bin. So, piece 1 cannot be placed into bin 1, because that bin is only

15 units wide, and the piece is 20 units wide in its narrowest orientation. Piece 1 can be

placed into bin 3, but only in one orientation. The piece will be too wide if it is placed in

its horizontal orientation. Bin 2 is wide enough to accommodate the piece in either of its

orientations.

Figure 6.8 shows these six valid allocations for piece 1 in the partial solution,

labelled A to F. Each of these six allocations will receive a score, obtained by evaluating

the tree once for each allocation. The tree will give a different score for each allocation

because the GP terminal nodes will evaluate to different values depending on the features

of the allocation.

The process of evaluating the heuristic for allocations A and C is shown here.

Figure 6.9 shows allocation A in detail. To evaluate the tree for allocation A, we will first

determine the values of the terminal nodes of the tree. The ‘width’ (W) and the ‘height’ (H)

terminals will take the values 20 and 50 respectively. The ‘bin width left’ (BWL) terminal

will evaluate to 35 because that is the horizontal space left in the bin after the piece is

placed. The ‘bin height’ (BH) terminal evaluates to zero, because the base of bin 2 is at the

base of the sheet. The opposite bin for the allocation is bin 3, as it is to the right of bin 2,

and the allocation is in the lower left corner of bin 2. The ‘opposite bin’ (OB) terminal will

evaluate to −45, because the opposite bin has a height of 45, and OB is the height of the

current bin minus the height of the opposite bin. The neighbouring bin is bin 1, because it

is to the left of bin 2, and the allocation is also in the left of bin 2. The ‘neighbouring bin’

(NB) terminal will evaluate to −80, because the neighbouring bin has a height of 80.

The tree is displayed as an expression in 6.1. Expression 6.2 shows the same

expression with the terminal values are substituted in. This simplifies to expression 6.3,

which evaluates to −44.454 to three decimal places. This value is the score for the allocation

of piece 1 in bin 2, in a vertical orientation and on the left side of the bin.(
W ∗H

NB − (BWL ∗H)

)
− (BH +OB) (6.1)(

20 ∗ 50
−80− (35 ∗ 50)

)
− (0− 45) (6.2)

−
(

1000
1830

)
+ 45 (6.3)

Figure 6.10 shows allocation C in detail. Again, we will calculate the values of the

terminal nodes for this allocation in order to evaluate the heuristic. W and H are now 50
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Figure 6.11: Both of the potential allo-
cations for piece two

Figure 6.12: The new partial solution
after the allocation which received the
highest score has been performed

and 20 respectively. They are different from their values in allocation A because the piece

is now in the horizontal orientation. BWL evaluates to five, as this is the horizontal space

left in the bin after the piece has been placed, shown in figure 6.10. BH evaluates to zero,

as before, because the allocation concerns the same bin. OB and NB evaluate to −80 and

−45 respectively, as the allocation is for the lower right side of the bin rather than the left.

When the terminal values have been substituted in, the heuristic simplifies to

expression 6.4, which evaluates to 73.103 (to 3 d.p.). This is the score for the allocation of

piece 1 in bin 2, in a horizontal orientation and on the right side of the bin.

−
(

1000
145

)
+ 80 (6.4)

Of these two allocations we have shown, the second allocation has been rated as

better by the heuristic because it received a higher score. The other four allocations for this

piece are scored in the same way. Then the allocations possible for piece 2 are scored, of

which there are essentially two, shown in figure 6.11. There are in fact four allocations which

are scored for the second piece, but it has identical width and height so both orientations

will produce the same result from the heuristic.

The rest of the pieces that remain to be packed have all of their allocations scored

in the same way. Finally, the allocation which received the highest score from the heuristic

is actually performed. In other words the piece from the allocation is committed to the

partial solution, in the bin, orientation and position dictated by the allocation. Then the
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Table 6.3: Initialisation parameters of the experiments of chapter 6
Population size 64, 128 and 256
Generations 50
Crossover probability 0.85
Mutation probability 0.1
Reproduction probability 0.05
Tree initialisation method Ramped half-and-half
Selection method Tournament selection, size 7

bin structure is updated according to the rules explained in section 6.2 because a new piece

has been put into a bin.

For example, the allocation involving piece one in position ‘C’ from figure 6.8

received a score of 73.103. If no subsequent allocation (involving the same piece or any other

piece) receives a higher score than this, then this will be the allocation that is performed.

Assuming there are no further pieces to be packed that have a width smaller than five, the

bins will then be reconfigured as shown in figure 6.12, because of the process of raising the

narrowest bin, shown in section 6.2 and figures 6.2 and 6.3.

The process of choosing a piece and where to put it is now complete, and the next

iteration begins. All the remaining pieces are scored again in the same way, and there will

be new positions available due to the change in bin structure that has occurred.

6.3.4 How the Heuristics are Evolved

The process by which a heuristic packs a solution has been explained in the previous section.

This section explains how the heuristics are evolved, and contains three sub-sections. The

genetic programming parameters are explained in the first part. The data sets used in the

experiments in this chapter are explained in the second part. The third part presents the

fitness function employed to assign a fitness value to a heuristic.

Parameters

Table 6.3 shows the parameters used for the genetic programming algorithm. The experi-

ments of this chapter are coded using the ECJ (Evolutionary Computation in Java) package,

found at http://www.cs.gmu.edu/∼eclab/projects/ecj/. Three population sizes are tested,

to investigate the extent to which the population size affects the quality of the evolved

heuristics. The three values of 64, 128, and 256 are smaller than the standard 1000 popula-
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tion size that was used in the one dimensional bin packing experiments. This choice reflects

the need to keep the run times to reasonable levels.

A mutation operator is included in the set of genetic operators, which deletes a

random subtree and then replaces it with a new subtree using the ‘grow’ method, with a

minimum and maximum depth of five. The crossover operator produces two new individuals

with a maximum depth of 17. Approximately 10% of the population of a new generation

is produced using the mutation operator. 85% is produced using crossover, and 5% by the

reproduction operator. As in the previous chapter, the trees are initialised with the ramped

half-and-half method, and the selection of individuals is performed by tournament selection.

The Data Sets

The four benchmark data sets from the literature are explained in this section. The instances

are summarised in table 6.4. All of the instances are created from known optimal packings,

and are well studied in the literature, each having been used to benchmark the performance

of a number of heuristic and metaheuristic methodologies. The use of these data sets means

that we can compare the results of the hyper-heuristic methodology against a wide variety

of other methodologies.

The Hopper and Turton data set contains seven classes of three problems each.

Each class was constructed from a different sized initial rectangle and contains a different

number of pieces. All pieces have a maximum aspect ratio of seven, meaning that the

length of the longer side is never more than seven times the length of the smaller side.

Valenzuela and Wang created two classes of problem, referred to as ‘nice’ and ‘path’. The

nice data set contains pieces of similar size, and the path data set contains pieces that have

very different dimensions. The data set from Burke, Kendall and Whitwell contains twelve

instances with increasing numbers of pieces in each. All of these datasets can be found at

http://dip.sun.ac.za/∼vuuren/repositories/levelpaper/spp[1].htm. We also use an instance

created by Ramesh Babu and Ramesh Babu, containing 50 rectangles all of similar size.

The dimensions of the pieces in this instance are given in [233].

The Valenzuela and Wang data set uses floating points to represent the dimensions

of the rectangles. The implementation of this hyper-heuristic methodology uses integers, so

to obtain a data set we can use, the data is multiplied by 100 and rounded to the nearest

integer, the results are then divided by 100 so they can be compared to the other results



6. evolving heuristics for two dimensional strip packing 136

Table 6.4: The benchmark problem instances used in this chapter
Instance set Number of Number of Sheet Optimal
name Instances Rectangles Width Height
Hopper and
Turton (2001) 21 16-197 20-160 20-240
Valenzuela and
Wang (2001) 12 25-1000 100 100
Burke, Kendall and
Whitwell (2006) 12 10-500 40-100 40-300
Ramesh Babu and
Ramesh Babu (1999) 1 50 1000 375

in the literature. For each instance modified in this way, the total area of all the shapes

divided by the width of the sheet is never less than 100, so we can say that this procedure

never results in an easier instance, and it is fair to compare the results with others in the

literature.

Fitness Function

The individual’s fitness is the height of the solution that it creates. Lower fitnesses are

therefore better, because lower solutions mean that the pieces are better packed. Individuals

are selected to be parents of the next generation by tournament selection, selecting seven

individuals at random, and then selecting the individual with the best fitness from the

seven. When two heuristics have the same fitness, the winner is the heuristic which wastes

the least space between the pieces. This does not include wasted space at the top of the

solution, only wasted space that is completely enclosed. There is therefore selection pressure

to pack the pieces without gaps, fitting the pieces together neatly.

6.4 Results

6.4.1 Explanation of Benchmark Algorithms

Table 6.5 shows the overall results we have obtained for the system. We compare our results

to two metaheuristic methods described in section 2.4.4 of the literature review, a genetic

algorithm with bottom-left-fill decoder (GA+BLF) [143], and a simulated annealing ap-

proach with bottom-left-fill decoder (SA+BLF) [143]. The metaheuristics search the space

of potential piece orderings, and the bottom-left-fill places each piece in turn into the lowest
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Table 6.5: Results of our evolved heuristics compared to recent metaheuristic and con-
structive heuristic approaches, and the reactive GRASP approach. The results are high-
lighted, in bold type, where the hyper-heuristic system finds a heuristic which has equal
or better results than the metaheuristic approaches and the best-fit algorithm for that in-
stance. The GRASP algorithm is generally the best approach, the bold values are intended
to show how the evolved heuristics compare to the other approaches

Name Meta- BF Evolved Evolved Evolved Reactive Max Time to
heuristic Heuristic 64 128 256 GRASP Evolve (s)

N1 40 45 40 40 40 40 0.141
N2 51 53 52 51 52 50 5.27 ×101

N3 52 52 52 51 51 51 2.06 ×101

N4 83 83 83 81 82 81 3.96 ×102

N5 106 105 103 103 105 102 1.80 ×102

N6 103 103 102 102 101 101 6.21 ×102

N7 106 107 102 102 102 101 1.19 ×103

N8 85 84 82 83 82 81 1.52 ×103

N9 155 152 154 151 152 151 1.67 ×103

N10 154 152 152 152 152 151 9.48 ×103

N11 155 152 152 152 151 151 1.19 ×104

N12 312 306 305 311 304 303 7.55 ×104

c1p1 20 21 21 21 21 20 2.08 ×101

c1p2 21 22 21 21 21 20 3.38 ×101

c1p3 20 24 21 20 20 20 7.38
c2p1 16 16 16 16 16 15 6.73 ×101

c2p2 16 16 16 16 16 15 1.60 ×101

c2p3 16 16 16 15 16 15 1.63 ×101

c3p1 32 32 31 31 31 30 5.08 ×101

c3p2 32 34 32 32 32 31 1.75 ×102

c3p3 32 33 34 32 34 30 4.42 ×101

c4p1 64 63 64 63 62 61 2.34 ×102

c4p2 63 62 61 62 62 61 2.78 ×102

c4p3 62 62 61 62 62 61 1.25 ×102

c5p1 94 93 93 91 92 91 1.24 ×103

c5p2 95 92 93 91 92 91 7.21 ×102

c5p3 95 93 91 93 91 91 1.48 ×103

c6p1 127 123 122 123 121 121 2.65 ×103

c6p2 126 122 132 122 121 121 2.95 ×103

c6p3 126 124 122 123 122 121 1.72 ×103

c7p1 255 247 245 245 245 244 2.32 ×103

c7p2 251 244 243 246 243 242 4.83 ×103

c7p3 254 245 246 243 243 243 2.65 ×104

NiceP1 108.2 107.4 106.73 107.05 106.56 103.7 1.41 ×102

NiceP2 112 108.5 107.17 108.76 107.97 104.6 9.67 ×102

NiceP3 113 107 104.84 110.5 105.58 104 1.40 ×103

NiceP4 113.2 105.3 120.85 118.82 104.18 103.6 1.05 ×104

NiceP5 111.9 103.5 110 102.6 101.97 102.2 8.13 ×104

NiceP6 - 103.7 103.1 101.69 101.95 102.2 2.81 ×105

PathP1 106.7 110.1 110.61 112.86 108.3 104.2 1.03 ×102

PathP2 107 113.8 108.98 108.73 104.53 101.8 7.37 ×102

PathP3 109 107.3 126.21 113.08 106.87 102.6 2.37 ×103

PathP4 108.8 104.1 109.27 106.54 104.95 102 6.69 ×103

PathP5 111.11 103.7 114.05 121.97 106.18 103.1 1.34 ×105

PathP6 - 102.8 126.5 118.81 115.45 102.5 6.90 ×105

RBP1 400 400 400 400 400 375 5.40 ×102
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available position, including any ‘holes’ in the solution, and then left-justifying it. Table

6.5 shows only the best result of the two on each instance (shown in the “metaheuristic”

column). These two metaheuristic approaches are also described in [143], and the results

evaluated using a packing density measure rather than the length of sheet needed. To ob-

tain the results that we compare with here, the metaheuristic methods were implemented

again in [38].

The ‘best-fit’ style algorithm is presented in [38], and has achieved superior results

to BL and BLF (see section 2.4.3 for an explanation of BL and BLF). The best-fit algorithm

is utilised here as a constructive, non metaheuristic, benchmark. The operation of the best-

fit heuristic is similar to the framework within which the evolved heuristics operate. For

example, the pieces are packed one at a time, but any piece can be chosen from all of those

available, and best-fit is also deterministic. The best-fit heuristic must pack the piece into

the lowest available bin, and always into either the left or right corner (this is a user defined

parameter). In contrast, the heuristics in this chapter evolve the choice of bin and location.

The results are highlighted, in bold type, where the hyper-heuristic system finds a heuristic

which has equal results or beats the metaheuristic approaches and the best-fit algorithm

for that instance.

We also compare with the reactive GRASP presented in [4]. The reactive GRASP

method does not allow piece rotations, but they are allowed for the heuristics evolved in

these experiments. The GRASP results would probably not be worse if rotations were

allowed, so while we are aware of the difference, we believe the comparison with GRASP

is still valuable, as it is a comparison with a complex human designed heuristic with many

tunable parameters.

Computational times for the genetic programming runs are shown in the far right

column of table 6.5. The figure reported is for the longest of the three runs (with 64, 128,

and 256 population), which in most cases was the run with the population set to 256. The

run times are relatively large compared to the run times reported for the methods that we

compare against. It is important to keep in mind that this includes the time taken for the

genetic programming to both design and run a heuristic. The times stated in the literature

for the GRASP, metaheuristics, and the best-fit heuristic, only include the time taken to

run them. We assert that a fair comparison would involve the time taken for the human

designers to build, as well as run, their heuristics. However, the contribution of these results

is not to show that this methodology is quicker, but to show that a heuristic design process
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can be automated for two dimensional packing.

6.4.2 Comparison with Metaheuristics and the Best-Fit Heuristic

Table 6.5 shows that in the vast majority of cases, the GP system finds a heuristic in at least

one of the three runs that obtains packings better than, or equal to, the two established

metaheuristics and the best-fit algorithm. However, there are four exceptions. For the

instance c1p1, the GP system cannot find a heuristic that performs better than either the

GA+BLF or the SA+BLF, both of which find the optimal solution at a height of 20. It is

known in the literature that the metaheuristic approaches perform well on problems of small

size because the search space is relatively small. Also, no heuristic is found that is better

than the best-fit heuristic on the three most difficult ‘Path’ problems from [267]. Both of

the metaheuristics were unable to find a solution to the NiceP6 and PathP6 problems due

to excessive time requirements, so it would seem that the simpler constructive heuristic

performs best for these larger problems.

6.4.3 Comparison with Reactive GRASP

The evolved heuristics’ results are competitive with the reactive GRASP method [4] ex-

plained in section 2.4.4 of the literature review. On the majority of problems, the reactive

GRASP obtains results which are the same or better than the evolved heuristics. Table 6.6

presents the mean and standard deviation of the differences between the reactive GRASP

results and the best evolved heuristic for each problem. The table shows these both as

percentages and actual units, and it shows these calculations on all the results and on the

three individual benchmark sets which contain more than one instance.

Table 6.6 therefore summarises the observation that on both the Hopper and Tur-

ton, and Burke, Kendall and Whitwell datasets, the best evolved heuristics for those prob-

lems match the reactive GRASP or are one unit worse, apart from the problem c3p3, where

the best evolved heuristic is two units worse. However, on each of the problems NiceP5

and NiceP6, at least one heuristic is generated that beats the result of the reactive GRASP,

which is a significant result on two relatively large problems. This is especially true as

the evolved heuristics are only constructive, with no post-processing such as an iterative

improvement stage.
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Table 6.6: Difference in performance of the best evolved heuristics for each instance and
the reactive GRASP, the figures represent the extent to which the GRASP performs better
than the evolved heuristics.

Instance set Percent Units
name Mean S.D. Mean S.D.
All Instance
Sets 1.91% 2.69% 1.72 4.09
Burke, Kendall and
Whitwell (2006) 0.52% 0.66% 0.50 0.52
Hopper and
Turton (2001) 1.90% 2.58% 0.57 0.60
Valenzuela and
Wang (2001) 2.93% 3.42% 3.02 3.51

6.4.4 Example Packings

Figures 6.13 and 6.14 show two packings achieved for the problem instance c5p3, both of

which have a height of 91, just one unit over the optimal packing. Figures 6.15 and 6.16

show the two evolved heuristics that created these packings, where W and H are the piece

width and piece height respectively. OBH and NBH are the opposite bin height and the

neighbouring bin height. BWL is the bin width left, and BH is the bin height. All of these

genetic programming terminals are summarised in table 6.1.

The heuristics have a tree structure, but could not be displayed in this way because

of space constraints, and so they are displayed in polish notation, with the operator as a

prefix. These two heuristics are not easily understood, and it is likely that they contain

redundancy as is common in the output of a genetic programming run. They are offered

not as an explanation of why the pieces were packed in this way, but as examples of the

output of the hyper-heuristic. They illustrate that the evolved heuristics are complex, and

take a different form to a heuristic that is developed by a human programmer.

Figure 6.15 was evolved when the population was set to 64, and figure 6.16 was

evolved when the population was set to 256. Figure 6.15 is a heuristic that packs the pieces

of this instance leaving no gaps at all, as figure 6.13 shows. Interestingly, figure 6.16 is a

heuristic that decides to pack one of the smallest pieces first, seen in the lower-left corner

of figure 6.14. Even though this may seem counter-intuitive to humans, it is a strategy that

pays off in the long term for this problem instance.
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Figure 6.13: Packing of instance c5p3
to a height of 91. Packed by the heuristic
evolved with population 64

Figure 6.14: Packing of instance c5p3
to a height of 91. Packed by the heuristic
evolved with population 256

(- (+ (- (+ (* NBH (- W W)) (- (- (+

(* NBH (* (- W W) (- W W))) (- (-

(* (+ BH BWL) (- W W)) NBH) (*

BH BH))) (- (+ (% H OBH) (+ W

NBH)) (- (* W W) (* BH BH)))) (+

(* BH BH) (- (+ BH BWL) OBH))))

(- (+ (* BH BH) (- (+ BH BWL)

OBH)) (- W (* BH BH)))) (- (* (+

BH BWL) (- W W)) (+ BH BWL)))

(- (+ (+ W BH) (+ W NBH)) (- (*

W W) (* W W))))

Figure 6.15: The heuristic that
packed figure 6.13

(- (- (- (- (- (- (+ OBH W) (- BH

W)) (- BH W)) (% (+ NBH OBH)

(+ NBH BH))) (% (+ NBH OBH)

(% BWL BWL))) (% (+ OBH W)

(% (- (- (- (- (+ OBH W) (- BH

W)) (- (% (+ NBH OBH) (- (- (-

(- BH (- NBH BWL)) (- W W)) (%

(% (+ NBH OBH) (% BWL BWL))

(+ NBH BH))) BH)) W)) (- BH (-

NBH BWL))) (- BH W)) NBH)))

BH)

Figure 6.16: The heuristic that
packed figure 6.14
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6.4.5 Results with Parsimony Pressure and Cache of Heuristic Evaluations

It has been shown that the process of evolving a heuristic for an instance produces results

which are competitive with those of human-created heuristics. The problem is that the

process of evolution often takes a long time. As time can be an important factor, the

experiments were repeated, with two measures taken to attempt to reduce the time of the

run.

The first is a method to control code bloat, which is a phenomenon in genetic

programming [228, 202, 253, 176] where the average size of the trees in the population

grows as the number of generations increase. This can cause a problem if left unchecked,

because the time taken to evaluate the individual increases with its size. This is especially

true in the experiments here, because the heuristic is evaluated a large number of times

in order to pack an instance. The method employed to reduce the impact of code bloat

in the experiments is the tarpeian wrapper method of Poli [226]. A proportion of the

individuals with above average size receive the worst fitness value possible. The proportion

is a parameter of the method, set to 0.2 in these experiments.

The second addition to the implementation is a memory, for caching the results

of the heuristic evaluations. When a piece is placed into the solution, the heuristic is then

evaluated again for all the allocations available. This results in wasted time, because the

value that the heuristic returns for certain allocations will be the same as it was at the

last decision point. The only values that change are for the allocations affected by the

newest piece. The allocations associated with the two new bins created by the piece will

need to be evaluated by the heuristic for all the pieces. Also, the two bins on either side

of the bin which received the piece will need to be re-evaluated, because they are involved

in the calculation of the OBH and NBH terminals. All the allocations associated with all

the other bins will receive the same value from the heuristic, because the values of the

heuristic’s terminals will acquire the same values.

The improved implementation, therefore, provides each bin with a memory, storing

the heuristic’s value for each piece and orientation in that bin. A bin’s memory is deleted

when the heuristic decides to put the piece into it, or an one adjacent to it. The heuristic is

therefore only actually evaluated when there is a chance that the value returned by it could

be different. This results in less time per run for the larger instances, because for those

instances there are more bins created on the sheet and therefore more allocations which
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Table 6.7: A comparison of the time taken to evolve the heuristics using the previous
implementation, and the improved implementation.

Previous Improved
Implementation Implementation

Instance Best Max Time to Best Max Time to
Name Result Evolve (s) Result Evolve (s)

N1 40 0.1 40 0.2
N2 51 52.7 51 59.2
N3 51 206.1 51 150.0
N4 81 395.7 81 369.6
N5 103 180.1 103 436.8
N6 101 620.9 101 650.1
N7 102 1191.9 103 727.4
N8 82 1521.8 81 958.2
N9 151 1665.2 152 910.6
N10 152 9483.1 151 6324.4
N11 151 11905.4 151 21427.4
N12 304 75487.4 302 51929.2
c1p1 21 20.8 21 27.2
c1p2 21 33.8 21 32.8
c1p3 20 7.4 20 11.5
c2p1 16 67.3 16 99.1
c2p2 16 16.0 16 93.4
c2p3 15 16.3 15 70.0
c3p1 31 50.8 31 81.7
c3p2 32 174.6 32 107.2
c3p3 32 44.2 31 104.4
c4p1 62 233.8 61 467.6
c4p2 61 278.1 62 371.4
c4p3 61 125.3 61 256.5
c5p1 91 1236.1 91 683.1
c5p2 91 720.8 91 762.4
c5p3 91 1476.2 92 489.2
c6p1 121 2646.3 122 1240.1
c6p2 121 2949.9 121 1502.2
c6p3 122 1715.3 122 1535.4
c7p1 245 2317.9 241 8152.4
c7p2 243 4831.9 243 4367.6
c7p3 243 26500.7 243 5205.0

NiceP1 106.56 141.5 106.74 80.7
NiceP2 107.17 966.8 105.85 358.7
NiceP3 104.84 1401.3 103.79 1588.2
NiceP4 104.18 10495.6 101.81 12399.3
NiceP5 101.97 81301.9 101.68 69069.0
NiceP6 101.69 280586.3 N/A N/A
PathP1 108.30 102.5 106.80 101.7
PathP2 104.53 737.3 103.73 373.9
PathP3 106.87 2373.6 103.55 1909.4
PathP4 104.95 6692.8 107.74 7010.4
PathP5 106.18 133852.1 109.35 57709.1
PathP6 115.45 690178.7 N/A N/A
RBP1 400 539.8 400 308.8
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are evaluated needlessly. The new implementation also uses floating point data rather than

integer data to represent the bins, so the Valenzuela and Wang data set no longer needs to

be converted to integers.

Table 6.7 shows the results of the improved implementation compared to the previ-

ous implementation. The largest problem instances are NiceP6 and PathP6, each containing

1000 pieces with floating point dimensions. No result is reported for these because the new

implementation causes the program to run out of memory due to the high number of bins

that are generated for these instances. The ‘best result’ column shows the best of the three

runs (population 64, 128, and 256), and the ‘max time to evolve’ column shows the time

taken for the longest of the three runs, which in most cases is the run with the population

set to 256. The table shows that the evolved heuristics are of approximately the same

quality. However, the time taken to evolve the heuristics is reduced. This effect becomes

more evident as the size of the problem instance increases.

In summary, the results of table 6.7 show that it is possible to reduce the time it

takes to evolve a heuristic by implementing the processes more efficiently.

6.5 Conclusion

This chapter has presented a framework and representation that enables heuristics to be

automatically generated for two dimensional strip packing. The heuristics construct a

solution one piece at a time, by choosing a piece to pack next and where to place it.

The selection is made by returning a value for each available allocation, and performing

the allocation which receives the highest value. Each heuristic is evolved to exploit features

and properties of one instance.

In contrast to the heuristics evolved for one dimensional bin packing in chapter

4 and 5, the heuristics are disposable, in the sense that they are not applied to unseen

instances after they have been evolved. The heuristics can be applied to unseen instances,

and they would generate legal solutions. However, the solutions would not be as close to

optimal as the results on their training instance, because the instances are too different for

the heuristics to be able to exploit any similarities. Future work could involve generating

data sets which show that these heuristics can be re-usable under certain conditions.

The results obtained by the evolved heuristics are better than the results of hu-

man created metaheuristics, and the best available constructive heuristic. One reason for
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the results being better could be because the hyper-heuristic methodology automatically

generates a constructive heuristic for each instance, meaning that the result for an instance

is obtained by a heuristic which is tuned to that instance.

The reactive GRASP methodology [4] for this problem is a complex method with

many parameters, and both constructive and iterative phases. The results show that the

GRASP methodology produces superior results to those of the evolved heuristics. An

explanation for this could be that the set of functions and terminals are not expressive

enough to enable the genetic programming to easily find heuristics which can obtain the

same quality of results. Compared directly to the hyper-heuristic methodology in this

chapter, the results are better and it obtains them in a quicker time. However, it must be

noted that the hyper-heuristic methodology takes a long time to run because it is designing

and running the heuristics, whereas the time reported for GRASP is only to run it.

The contribution of this work is not to obtain the best results in the literature for

these instances, but to investigate methods to automate the heuristic design process. These

results show that heuristics can be automatically designed for this problem, and that they

are of a high enough quality to warrant future investigation. If it can be discovered that

the heuristics can be reused under certain circumstances, the large run times can then be

further justified, because the heuristics are very quick to return a solution to new problems

once they are evolved, due to their constructive nature.

Reducing run times would still be beneficial, and this could be achieved by fo-

cussing further work on evolving heuristics which intelligently select which allocations to

consider, rather than blindly evaluating all those available. This has the potential to reduce

the time taken to evolve a heuristic, because it is the many evaluations of the heuristics

in the population that account for the large run times. However, it is likely that the run

times will always be relatively large compared to other work in the literature, because this

methodology must design and run the heuristics, whereas other methodologies only take

into account the time taken to run. It is the design stage which is the most time inten-

sive, and this is exactly why it is potentially beneficial to research ways of automating the

process.

The next chapter presents a hyper-heuristic system which can evolve heuristics

for any one, two or three dimensional bin packing or knapsack problems. This is the first

such system which can claim to obtain results for each of these problems with no change

in parameters between runs. This represents further work towards one of the objectives of
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hyper-heuristic research and, indeed, this thesis, to raise the level of generality at which

optimisation systems can operate.
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Chapter 7

A Hyper-Heuristic for 1D, 2D and 3D Packing

Problems

7.1 Introduction

Through chapters 3 to 6, the problem domains for which heuristics have been evolved have

progressed from one to two dimensions. This naturally leads to the question of whether this

methodology can also be applied to three dimensional problems. Answering this question

is one of the aims of this chapter. However, the investigation goes further than this. The

hyper-heuristic system presented in this chapter can evolve heuristics for one, two, or three

dimensional bin packing or knapsack problems. No current packing methodology is able to

produce solutions for such a wide range of packing problems. The hyper-heuristic system

also does not require any tuning of parameters between obtaining a solution for a one

two or three dimensional problem, or when switching between a bin packing and knapsack

problem. This is possible because the hyper-heuristic searches the solution space indirectly,

by searching the heuristic space instead.

It could be argued that, for example, genetic algorithms have already been applied

to all three domains [96, 146, 129, 187, 116]. However, in each of these cases, the genetic

algorithm has been implemented in a different way, with a different representation and

different parameters. Even though the genetic algorithm paradigm has been used for both

problem domains in all three dimensions, the implementation of the actual algorithms are

quite different. To the author’s knowledge, the hyper-heuristic system presented in this

chapter is the first algorithm to be able to obtain results on all of these problem domains,

and to do so without requiring any of the parameters to be changed. It has a common
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problem representation, and a set of parameters that need not change, because they apply

to the heuristics rather than the underlying problem.

Increasing the dimensionality of the problem to three dimensions presents further

challenges in designing a suitable representation, with which the heuristics can build a

solution. In one dimension, a piece can be placed into only one location in a bin. In

two dimensions, there are many locations where a piece can be placed, including both a

lateral position and a height. The heuristic must also decide which orientation the piece

is to have, whereas the one dimensional packing problem does not require such a decision.

Pieces in three dimensional packing problems have six possible orientations, and the depth

dimension adds much more complexity to the problem of finding a suitable location. The

representation explained in this chapter is designed with these issues in mind.

In chapter 6, the container was represented as a number of dynamic bins, which

determined the potential locations for a piece. In the experiments of this chapter, the

container is represented by a number of ‘corners’, which represent locations, and contain

information about their immediate surroundings. The two dimensional problem representa-

tion started with one bin, representing the whole container. Similarly, the three dimensional

representation starts with one corner, into which the first piece is placed. When a piece is

put into the corner it creates three more, and further corners are created as more pieces are

put into the container.

This somewhat limits the potential places where a piece can go, and it essentially

means that each piece must be placed into a location where it is adjacent to an existing piece.

However, the decision was taken because of the length of time it took to evolve heuristics

in the previous chapter. As there are even more potential combinations of location and

orientation for every piece, the locations must be limited in order to keep the run times to

acceptable levels.

The outline of this chapter is as follows. The formulations for the two problem

domains are stated in section 7.2. Section 7.3 explains the representation that the heuristics

manipulate in order to construct a solution. In section 7.4, the methodology is explained,

including how a heuristic packs a problem instance, and how the heuristics are evolved.

The data sets are described in section 7.5. They are in a separate section in this chapter

because there are 18 in total, which is many more than in previous chapters. The results

obtained on these data sets are presented in section 7.6, and the conclusions are drawn in

section 7.7.
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7.2 Problem Descriptions

The descriptions of the problems addressed in this thesis were given in the literature review

(chapter 2). For ease of reference, this section re-states the formulations for the bin packing

and knapsack problems that are addressed in this chapter.

7.2.1 The Knapsack Problem

The one dimensional 0-1 knapsack problem consists of a set of pieces, a subset of which

must be packed into one knapsack with capacity c. Each piece j has a weight wj and a

value vj . The objective is to maximise the value of the pieces chosen to be packed into the

knapsack, without the total weight exceeding the capacity of the knapsack. A mathematical

formulation of the 0-1 knapsack problem is shown in equation 7.1, taken from [199].

Maximise
n∑
j=1

vjxj

Subject to
n∑
j=1

wjxj ≤ c,

xj ∈ {0, 1}, j ∈ N = {1, . . . , n}, (7.1)

Where xj is a binary variable indicating whether piece j is selected to be packed into the

knapsack.

7.2.2 Knapsack Packing in Two and Three Dimensions

The knapsack problem can be defined in two dimensions. In the two dimensional case, the

knapsack has a width W and a height H. Each piece j ∈ N = {1, . . . , n} is defined by a

width wj , a height hj , and a value vj . The objective is to maximise the total value of the

pieces chosen to be packed into the knapsack. No piece can overlap another, or exceed the

boundaries of the knapsack.

The knapsack problem can also be defined in three dimensions, with the knapsack

having a depth D, and each piece having a depth dj , in addition to the properties in the

two dimensional case. In both the two and three dimensional cases we allow all rotations

of the pieces where the sides of the piece are parallel to the edges of the knapsack. We also

do not impose the ‘guillotine’ cutting constraint defined in [63].
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7.2.3 The Bin Packing Problem

The classical one dimensional bin packing problem consists of a set of pieces, which must be

packed into n bins. Each piece j has a weight wj , and each bin has capacity c. The objective

is to minimise the number of bins used, where each piece is assigned to one bin only, and

the weight of the pieces in each bin does not exceed c. A mathematical formulation of the

bin packing problem is shown in equation 7.2, taken from [199].

Minimise
n∑
i=1

yi

Subject to
n∑
j=1

wjxij ≤ cyi, i ∈ N = {1, . . . , n},

n∑
i=1

xij = 1, j ∈ N,

yi ∈ {0, 1}, i ∈ N,

xij ∈ {0, 1}, i ∈ N, j ∈ N, (7.2)

Where yi is a binary variable indicating whether bin i has been used, and xij indicates

whether piece j is packed into bin i.

7.2.4 Bin Packing in Two and Three Dimensions

The bin packing problem can be defined in two dimensions, where the bin size is defined by

a width W and a height H. Each piece j ∈ N = {1, . . . , n} is defined by a width wj and a

height hj . The objective is to minimise the number of bins needed to accommodate all of

the items, where each item is assigned to one bin only. The pieces must not overlap each

other or exceed the boundaries of their bin.

The problem is often referred to as the two dimensional stock cutting problem.

This is because of its similarities with the real world problem of cutting shapes from standard

sized stock sheets of material, while attempting to minimise the number of sheets used. In

the experiments of this chapter, we allow 90◦ rotations of the pieces, and do not impose the

‘guillotine’ constraint defined in [63].

The bin packing problem can also be defined in three dimensions, where the bins

also have a depth D, and each piece j ∈ N = {1, . . . , n} also has a depth dj , in addition to

the properties in the two dimensional case. This problem is often referred to as the multiple
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container loading problem because of its similarities with real world problems encountered

in industries such as shipping and home delivery, where reducing the number of vehicles

needed will reduce costs. In the experiments of this chapter, we allow orthogonal rotations

of the pieces in all directions, except where the instance itself specifies that only certain

rotations are allowed for each piece.

7.3 Representation

We will begin the description of our representation by using the example of a three dimen-

sional knapsack problem. We will then extend the description in section 7.3.5 to cover the

bin packing problem, and to cover problems of lower dimensions.

7.3.1 Bin and Corner Objects

Each bin is represented by its dimensions, and by a list of ‘corner’ objects, which represent

the available spaces into which a piece can be placed. A bin is initialised by creating a corner

which represents the lower-back-left corner of the bin, as shown in figure 7.1. Therefore at

the start of the packing, the heuristic just chooses which piece to put in this corner, because

it is the only corner available. Figure 7.1 also shows the positive directions of the X, Y, and

Z axes.

When the chosen piece is placed, the corner is deleted, as it is no longer available,

and at most three more corners are generated in the X, Y and Z directions, from the

coordinates of the deleted corner. This is shown in figure 7.2. A corner is not created when

the piece meets the outside edge of the container. Therefore, after the first piece has been

put into the bin, the heuristic then has a choice of a maximum of three corners that the

first piece defines.

A corner contains information about the three 2D surfaces that define it, in the

XY plane, the XZ plane, and the YZ plane. The corner is at the intersection of these three

orthogonal planes. Figure 7.3 shows the three 2D surfaces that the corner above the piece

is defined by. Note that the XZ surface has its limits at the edges of the top of the piece.

Similarly, figure 7.4 shows the three surfaces of the corner that is to the right of the piece

in the figure.



7. a hyper-heuristic for 1d, 2d and 3d packing problems 152

Figure 7.1: An initialised bin with one
‘corner’ in the back-left-bottom corner of
the bin

Figure 7.2: A bin with one piece placed
in the corner from figure 7.1

Figure 7.3: The three surfaces defined
by the corner that is in the Y direction of
the piece

Figure 7.4: The three surfaces defined
by the corner that is in the X direction of
the piece
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Figure 7.5: An invalid placement of a
new piece, because it exceeds the limit of
the corner’s XZ surface in the Z direction

Figure 7.6: An invalid placement of a
new piece, because it exceeds the limit of
the corner’s YZ surface in the Z direction

7.3.2 Valid Placement of Pieces

Each piece is considered by the heuristic in all six orientations at every corner, unless the

instance itself constrains the orientation of the piece. Only an orientation that will fit

against all three surfaces of the corner without exceeding any of them, is considered to be

a valid orientation. Figure 7.5 shows an invalid placement, because a new piece exceeds the

limit of the corner’s XZ surface in the Z direction. Also, in figure 7.6, the new piece exceeds

the limit of the corner’s YZ surface in the Z direction, so this placement is invalid.

7.3.3 Extending a Corner’s Surfaces

If a piece is put into a corner and the piece reaches the limit of one of the corner’s surfaces,

it often means that a surface of one or more nearby corners needs to be modified. An

example is shown in figure 7.7, where the piece is placed in the middle and the two corners

shown must have their surfaces updated. In this situation, as is often the case, the piece

does not extend an existing surface, but creates a new one in the same plane that overlaps

the existing surfaces. So the corner on the left of figure 7.7 now has two surfaces in its XZ

plane, and the corner on the right has two surfaces in its YZ plane.
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Figure 7.7: A piece which reaches the
limit of two surfaces of the corner that it
was put into

7.3.4 Filler Pieces

Some corners may have surfaces which are too small, in one or more directions, for any

piece. If this is the case then the corners are essentially wasted space. If left unchecked,

eventually there will be many corners of this type that no piece can fit into, and there

may be potentially a lot of wasted space that could be filled if the pieces were allowed to

exceed the limits of the three surfaces of a corner. For this reason, we use ‘filler pieces’ that

effectively fill cuboids of unusable space. As we will describe in this section, they create

more space at one or more nearby corners by extending one of their surfaces, so that more

pieces can potentially fit into them.

After a piece has been placed, the corner with the smallest available area for a

piece is checked to see if it can accommodate any of the remaining pieces. If it cannot, then

we put a filler piece in this corner. The filler piece will have dimensions equal to the closest

limits of the corner’s surfaces in each direction, so the filler piece does not exceed any of

the limits of the three surfaces of a corner. In figure 7.8, the three surfaces are shown of the

corner with the smallest available area. If no remaining piece can fit into this corner then

it is selected to receive a filler piece, which is shown in figure 7.9 after it is placed.

The reason for the filler piece is that it will exactly reach the edge of an adjacent

piece, and extend the surface that it matches with, therefore increasing the number of pieces

that will fit into the corner that the surface belongs to. As is shown in figure 7.9, three
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Figure 7.8: The three surfaces of the
corner with the smallest available area

Figure 7.9: A filler piece is put into the
corner from 7.8, the surfaces of two cor-
ners are updated

corners have their surfaces updated by the filler piece. First, the corner in the top left of

the figure has its XZ surface extended across the top of the filler piece in the X direction,

shown by horizontal stripes. Secondly, the corner to the left of the filler piece has its XY

surface extended across the front of the piece, shown by vertical stripes. Thirdly, the corner

just under the filler piece receives a second YZ surface, which extends up the right side of

the filler piece. Both the original YZ surface and the second one are shown in the figure, as

diagonal stripes. Note that a filler piece never creates a corner, the net effect of inserting a

filler piece will be the deletion of the corner that the filler piece was inserted into.

After the filler piece has been placed, this process is repeated, and if the corner

with the next smallest available area cannot accept any remaining piece then that corner

is filled with a filler piece. When the smallest corner can accept at least one piece from

those remaining, the packing continues. In the knapsack problem there is only one bin. The

packing will terminate when the whole bin is filled with pieces and filler pieces, and there

are no corners left. The result is then the total value of the pieces that have been packed.

7.3.5 Bin Packing, and Packing in Lower Dimensions

The representation described in sections 7.3.1-7.3.4 also allows for the bin packing problem

to be represented. If the user specifies that the instance is to be used for the bin packing

problem, then an empty bin is always kept open, so the evolved heuristic can choose to put
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a piece into it. Then, when this bin is first used, another new bin is opened. The heuristic

always has the choice of any corner in any bin. When running an instance as a bin packing

problem, the piece values (necessary for the knapsack problem) are set to one because they

are not relevant, and the packing stops when all the pieces have been packed.

The three dimensional representation can also be used for two and one dimensional

problem instances, by setting the redundant dimensions of the bins and pieces to one. For

example, when using a two dimensional instance, the depth of each piece and bin is set to

one, and for a one dimensional instance, the depth and height are set to one.

7.4 Methodology

This section describes the hyper-heuristic algorithm that evolves the packing heuristics.

We will refer to a combination of piece, orientation and corner as an ‘allocation’, and a

point in the algorithm where the heuristic is asked to decide which piece is placed where

will be referred to as a ‘decision point’. Section 7.4.1 describes how a heuristic is applied

to a problem to obtain a solution, explaining what the heuristics choose at every decision

point. Section 7.4.2 explains the functions and terminals of the heuristics evolved for this

chapter. Section 7.4.3 describes how the heuristics themselves are evolved, including the

genetic programming parameters and the fitness function.

7.4.1 How the Heuristic is Applied

The heuristic operates within a fixed framework which, at each decision point, evaluates the

heuristic once for each valid allocation that can be performed. So every piece, orientation

and corner combination, in every bin, is evaluated in this way. The actual allocation

performed is the one which receives the maximum evaluation. Then the filler stage (section

7.3.4) is performed to fill any redundant space, and the cycle then repeats by considering

the next decision point.

The framework is shown in algorithm 6. The while loop on line 1 performs as

many iterations as is necessary to pack all of the pieces. There may be more iterations of

this loop than there are numbers of pieces, because of the ‘if’ statement on line 2. This

checks if the corner with the smallest area can accommodate a piece, and if not then it is

filled with a filler piece. If a filler piece is placed into the corner, then the main block of

code is not performed due to the ‘else’ statement on line 4, and the next smallest corner is
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Algorithm 6 Pseudo code of the framework within which the heuristics are applied in

chapter 7
1: while pieces exist to be packed do

2: if no piece can fit into the corner with the smallest area then

3: put a filler piece into this corner and update the corner structure

4: else

5: for all pieces P in pieceList do

6: for all orientations O of the piece do

7: for all corners C in current partial solution do

8: if piece P in orientation O fits into corner C then

9: current allocation = P,C,O

10: heuristic output = evaluateHeuristic(current allocation)

11: if heuristic output > best output then

12: best allocation = current allocation

13: best output = heuristic output

14: end if

15: end if

16: end for

17: end for

18: end for

19: perform best allocation on partial solution

20: remove chosen piece from pieceList

21: update corner structure

22: if solving a bin packing problem AND the chosen corner was in an empty bin then

23: open a new bin containing one available corner

24: end if

25: if there are no corners left then

26: the knapsack packing is complete, break from while loop

27: end if

28: end if

29: end while
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checked on the next iteration of the while loop.

If at least one piece can fit into the corner with the smallest area, then we are

sure that one piece can be legally packed, and so the main block of code executes (lines 5

to 27). There are three nested ‘for’ loops, on lines 5, 6 and 7, which ensure that all of the

piece, orientation and corner combinations are considered by the heuristic. If the piece can

physically fit into the corner, in its current orientation, then the heuristic is evaluated using

the current allocation as input. This is shown on line 10 of the algorithm. This means that

its terminal values are set to values dictated by the properties of the current allocation,

i.e. the current piece, orientation and corner (see section 7.4.2 for further clarification of

this process). One numerical value is returned by the heuristic, which is interpreted as

an evaluation of the relative suitability of the allocation. If this evaluation is the highest

returned so far for any allocation, then it is stored as the best allocation so far (line 12 of

the algorithm).

When all of the possible allocations have been considered by the heuristic, the

algorithm progresses to line 19, where the best allocation is performed, by putting the piece

into the corner in its chosen orientation. The chosen piece is then removed from the list of

pieces that need to be packed, and the corner structure is updated because the new piece

will create new corners.

The final section of code contains two conditional statements, on lines 22 and

25. The first creates a new bin if the heuristic chose to put a piece into the empty bin.

When solving a bin packing problem, the framework always keeps an empty bin available

to the heuristic. When solving a knapsack problem, only one bin is available, and this will

eventually be filled up (with pieces and filler pieces) so that there are no corners left. The

second conditional statement checks for this condition and breaks from the main loop when

such a solution is found.

In summary, when the algorithm exits from the main while loop, the packing is

complete and the heuristic has been used to form a solution to either a bin packing or

knapsack problem. It has done this by choosing which piece to pack next, and into which

corner, by returning a value for each possible combination. The combination with the

highest value is taken as the heuristic’s choice.
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Table 7.1: The functions and terminals used in chapter 7, and descriptions of the values
they return

Name Description

Functions

+ Add
- Subtract
* Multiply
% Protected divide

Terminals

Volume The volume of the piece
Value The value (or profit) of the piece

XYWaste (The X-dim of the current corner’s XY
surface minus the piece’s X-dim)
PLUS (the Y-dim of the current corner’s
XY surface minus the piece’s Y-dim)

XZWaste (The X-dim of the current corner’s XZ
surface minus the piece’s X-dim)
PLUS (the Z-dim of the current corner’s
XZ surface minus the piece’s Z-dim)

YZWaste (The Y-dim of the current corner’s YZ
surface minus the piece’s Y-dim)
PLUS (the Z-dim of the current corner’s
YZ surface minus the piece’s Z-dim)

CornerX The X coordinate of the current corner
CornerY The Y coordinate of the current corner
CornerZ The Z coordinate of the current corner

7.4.2 The Structure of the Heuristics

A heuristic is a tree structure, containing function and terminal nodes. At each decision

point, the heuristic returns a value for each of the valid allocations that could be performed.

As each allocation represents a combination of a piece, orientation, and corner, the terminal

nodes describe these three elements of the allocation and allow the heuristic to distinguish

between different allocations.

Table 7.1 summarises the twelve functions and terminals and the values they re-

turn, the functions are shown in the upper four rows, and the terminals in the lower eight

rows. The functions are the four standard arithmetic operators. The protected divide

function changes a zero denominator to 0.001, as explained in section 6.3.2 of chapter 6.

The ‘volume’ terminal returns the product of the current piece’s three dimensions.

This allows the heuristic to differentiate between pieces in the same corner. The alternative

to this would be to create a separate terminal for each dimension of the piece. While this
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would provide more detail, it would take more effort during the evolution to arrange them

into useful configurations. For this reason, there is just one terminal representing overall

size, as this would be likely to be the most common use of the three such terminals. The

‘value’ terminal returns the value of the piece, which is a key property of each piece in the

knapsack problem.

The three ‘waste’ terminals give the heuristic information on how well the piece

fits into the corner under consideration. There is one for each surface that meets to form the

corner, XY, XZ and YZ. They are calculated by summing the difference between the length

of the surface and the length of the piece, in both directions of the surface. So it returns

zero if the piece fits onto the surface exactly, and it gets higher when the two dimensions

of the piece are smaller than the two dimensions of the surface.

These terminals are potentially useful in a number of situations. For example, in

one instance it may be beneficial to make the pieces line up in one plane, but it might not be

important to match up the pieces in the other two planes. In another instance all the pieces

may be roughly the same dimensions, with slight variations, and it may be important to

orient them all the same way. The waste terminals could facilitate such processes because

they give the heuristic access to information on the fit of the piece to the pieces that intersect

to form the corner, in all three planes.

Finally, there are three terminals, cornerX, cornerY, and cornerZ, which provide

the heuristic with information about the position of the corner in the container. They return

the relevant coordinate of the corner. For example, cornerY returns the Y coordinate of the

current corner.

7.4.3 How the Heuristics are Evolved

Section 7.4.1 explained how one heuristic is applied to a problem instance to obtain a

solution. This section explains how the heuristics themselves are evolved by the genetic

programming algorithm, and consists of two sub-sections. The genetic programming pa-

rameters are described in the first part, and the fitness function is explained in the second

part. Compared to previous chapters, many more data sets are employed to evolve the

heuristics in this chapter. For this reason they are described separately in section 7.5.
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Table 7.2: Initialisation parameters of the experiments of chapter 7
Population size 1000
Generations 50
Crossover probability 0.85
Mutation probability 0.1
Reproduction probability 0.05
Tree initialisation method Ramped half-and-half
Selection method Tournament selection, size 7

Parameters

Table 7.2 shows the parameters used in the genetic programming runs. The mutation

operator is point mutation, using the ‘grow’ method explained in [164], with a minimum

and maximum depth of five. The crossover operator produces two new individuals with

a maximum depth of 17. These are standard default parameters provided in the genetic

programming implementation of the ECJ (Evolutionary Computation in Java) package

employed for the genetic programming implementation for the experiments of this chapter.

Fitness Functions

A fitness is assigned to each heuristic in the population, based on the quality of the packing

it produces. The quality of the packing is necessarily calculated differently for bin packing

and knapsack instances.

Bin Packing Fitness

For bin packing problems, we use the fitness function shown in equation 7.3, taken from

[97]. In equation 7.3, n = number of bins, fullnessi = sum of the volumes the pieces in

bin i, and C = bin capacity (total volume). Lower fitness values are better.

Fitness = 1−

(∑n
i=1(fullnessi/C)2

n

)
(7.3)

This fitness function puts a premium on bins that are nearly or completely filled. Im-

portantly, the fitness function avoids the problem of plateaus in the search space, which

occur when the fitness function is simply the number of bins used by the heuristic. We
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subtract from one as the term in brackets equates to values between zero and one and we

are interested in minimising the fitness value.

Knapsack Fitness

For knapsack problems, the fitness of a heuristic is the total value of all of the pieces that

have been chosen by the heuristic to be packed into the single knapsack. The reciprocal of

this figure is then taken as the fitness, because the genetic programming implementation

treats lower fitness values as better. This fitness function is shown in equation 7.4, where

n represents the number of pieces in the instance, xj is a binary variable indicating if the

piece j is packed in the knapsack, and vj represents the value of the piece j.

Fitness =
1∑n

j=1 vjxj
(7.4)

7.5 The Data Sets

We have tested our methodology on a comprehensive selection of 18 data sets from the

literature. We list them in this section, and in table 7.3. It is common, in the literature, for

the same cutting and packing instances to be used to test both bin packing and knapsack

methodologies. Instances that are originally created for the knapsack problem can be used

as bin packing instances by ignoring the value of each piece, and packing all the pieces in the

instance into the least bins possible. Instances originally intended as bin packing problems

do not specify a value for each piece because this is irrelevant, so to use them as knapsack

instances it is usual for practitioners to calculate the volume of each piece, and to use that

as its value.

The instances have been used in a large number of papers. In table 7.3 we give

the references where the instances have been used to obtain the results we have compared

against in this thesis. They use the same set of constraints, meaning we can compare fairly

with these results. The remainder of this section gives a more detailed account of where

and how the data sets have been employed.
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Table 7.3: A summary of the 18 data sets used in the experiments of this chapter
Instance Number of Used For References
Name Instances Bin Packing Knapsack

1D
Uniform 80

√
× [96]

Hard 10
√

× [246, 248]

2D

beng 10
√

× [21, 201]
Okp 5 ×

√

[221]

Wang 1 ×
√

Ep30 20 ×
√

Ep50 20 ×
√

Ep100 20 ×
√

Ep200 20 ×
√

Ngcut 12
√ √

[221, 201]Gcut 13
√ √

Cgcut 3
√ √

3D

Ep3d20 20 ×
√

[221]Ep3d40 20 ×
√

Ep3d60 20 ×
√

Thpack8 15 ×
√

[211, 25, 66, 31]
Thpack9 47

√ √
[144, 150, 25, 92, 185]

BandR 700 ×
√

[221, 31, 32, 184, 185]

7.5.1 One Dimensional Instances

Uniform

This is a data set consisting of 80 instances with piece sizes distributed uniformly between

20 and 100 inclusive. The set is split into four subsets, with 120, 250, 500 and 1000 pieces

respectively. The bin capacity is 150 for every instance. These instances are used in [96].

Hard

This is a data set consisting of 10 instances, each with 200 pieces distributed between 20,000

and 35,000, with a bin capacity of 100,000. These instances were first proposed in [246],

where three instances were solved to optimality. The seven remaining instances were solved

to optimality in [248].
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7.5.2 Two Dimensional Instances

Bengtsson

Originally defined in [21], the ten instances in this data set were also used in [201]. All ten

instances were solved to optimality.

Okp

This data set is defined in [102]. It is also used in [103] and [57], and solved to optimality

in all cases, where the orientation of the pieces is fixed. The results of [221] are used here

for comparison because they are the only set of results in the literature where 90◦ piece

rotations are allowed, and optimal results have not been obtained.

Wang

This data set is defined in [275], and solved using only guillotine cuts. We compare to the

results in [221] because they allow 90◦ piece rotations.

Ep*

This collection of data sets is defined in [221]. There are four data sets of 20 instances, with

30, 50, 100, and 200 pieces to pack respectively. In each of these sets there are five groups

of four instances, with the pieces in each group having different characteristics, tall, wide,

uniform, square and diverse. In each group of four there are two that are ‘clustered’, with

twenty different pieces that are repeated, and two that are ‘random’, with independently

generated pieces. Of the two instances of each, the bin area is either 25% or 75% of the

total area of the pieces.

Ngcut

This data set was originally defined in [17] as a knapsack problem, and all instances were

solved to optimality for the case where no rotations of pieces are allowed. All twelve

instances have also been solved to optimality for the bin packing problem in [201], where

the piece orientation is fixed, and an exact algorithm is used. These are the only bin packing

results in the literature with this data set, and as such we limit the pieces to one orientation
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for this instance to keep the comparisons fair. We also compare to the knapsack results

obtained in [221] on this data set.

Gcut

This data set was originally defined in [16] for the two cutting problem with guillotine cuts.

Hadjiconstantinou and Christofides [128] used the data set for constrained non-guillotine

cutting, fixing the orientation of pieces. The set has also been employed in [102] and [103]

with fixed orientation of pieces. We compare to the optimal bin packing results of [201],

fixing the orientations of the pieces as in that paper. We also compare to the heuristic

knapsack results of [221].

Cgcut

This data set was defined as a knapsack problem in [63], where the problem is constrained

to guillotine cuts. The data set has since been used in [139, 103] with fixed orientation of

pieces. We compare to the bin packing results in [201], and limit the orientation of pieces

as is done in that paper. We also compare to the knapsack results obtained with a heuristic

method in [221], where the pieces are free to be rotated by 90◦.

7.5.3 Three Dimensional Instances

Ep3d*

The Ep3d collection of data sets is defined in [221], and is similarly constructed to the Ep

collection described in section 7.5.2. There are three data sets of 20 instances, with 20, 40

and 60 pieces to pack. Within each data set there are 5 instance groups, each group has

either flat, long, cube, uniform, or diverse pieces. In each of these groups of four instances,

two are ‘clustered’ and two are ‘random’ as described for the Ep set. One of these two

has its container volume at 50% of the total volume of pieces, and the other one has its

container volume at 90%.

Thpack8

This data set was originally defined in [191], and later used in [211, 25, 66]. Bortfeldt and

Gehring have tested both their CBUSE and CBGAS methodologies on the data set also,

and the results are reported in [31].
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Thpack9

Thpack9 was defined originally as a data set of three dimensional bin packing problems in

[150]. We compare our results to [150], and later work in [25, 92]. The work of Lim and

Zhang [185] is also compared to in this paper. As a knapsack problem, the first 44 instances

in the set have been used in [184]. Huang and He [144] achieve better results and use all 47

instances.

BandR

This is the largest data set, with 700 instances. In all instances, the container size is the

same, length 587, width 233, and height 220 (the dimensions in cm of a standard 20ft ISO

container). The data set is split into seven sets of 100 instances, and the seven sets have 3,

5, 8, 10, 12, 15, and 20 different piece types. The random generator used to create the set

was defined in [25].

The data set was used in that paper to evaluate a methodology that aims to

provide very stable packings, and also packings useful in multi-drop situations, where there

are multiple stops where only part of the packing solution is to be unloaded. As these

objectives are not considered here, there is little value in a comparison with that work, but

we do compare with the later work on this data set, in [31, 184, 32, 185]. This data set is

the only set which constrains the orientations of the pieces, and those constraints are also

adhered to in our work, to ensure a fair comparison.

7.6 Results

We obtain results on a comprehensive suite of 18 unique data sets, the details of which are

shown in section 7.5. Each data set contains a number of instances, for which numerous

results exist in the literature. In this section, the results obtained by the hyper-heuristic

methodology are compared to the best result in the literature for that instance. Tables

7.5 and 7.6 show the ‘Ratio’ for each data set, which is a value obtained by comparing

our results on a data set to the best results in the literature. To get to this Ratio figure,

there are three steps, described below and shown in equations 7.5, 7.6 and 7.7, and further

clarified using an example of one data set in section 7.6.1.

InstanceAverage =
∑10

i=1 ri
10

(7.5)
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InstanceRatio =
InstanceAverage

z
(7.6)

Ratio =
∑m

i=1 InstanceRatioi
m

(7.7)

For every instance, we perform ten runs, each with a different random seed. This

generates ten different heuristics. We calculate the average performance of the ten heuristics

for the instance, and name this value the ‘InstanceAverage’. This is shown in equation 7.5,

where ri is the result of run i.

For each instance, we then calculate the ratio of the InstanceAverage over the best

result in the literature, and name this value the ‘InstanceRatio’. This is shown in equation

7.6, where z is the best result in the literature for the given instance.

Each instance in a set has an InstanceRatio. The ‘Ratio’ is the average InstanceR-

atio of all the instances in the set. This is shown in equation 7.7, where i is the instance

number, and m is the number of instances in the data set. Tables 7.5 and 7.6 show the Ratio

for each data set. The standard deviation reported is for the distribution of InstanceRatio

values, of which there will be one for every instance in the set.

As the bin packing problem is a minimisation problem, a Ratio lower than 1 means

our result is better than the best result in the literature. Conversely, the knapsack problem

is a maximisation problem, so a Ratio higher than 1 means our result is better. To keep

the results tables consistent, we convert the Ratios to percentage values, which represent

our improvement over the best results in the literature. For example, a Ratio of 1.023 as

a bin packing result represents a -2.3% improvement, because it means that, in the results

we obtained, we use 2.3% more bins on average. This percentage figure is shown in tables

7.5 and 7.6. A positive percentage means the results are better than the results from the

literature, and a negative percentage means the results are worse. The results of this table

will be discussed in sections 7.6.2 and 7.6.3, after an example calculation of the Ratio value

is performed in section 7.6.1.

7.6.1 An Example Calculation

In this section, we will show the individual results for each instance in the Thpack9 bin

packing data set, to further clarify how the Ratio is obtained for a set.

Table 7.4 shows our results in detail. There are six algorithms from four different

papers that use this data set, and their results are shown in the columns A-F in the table.
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Table 7.4: The individual instance results for the Thpack9 bin packing data set
A B C D E F Best in GPHH GPHH Instance

Instance Literature Best Average Ratio
thpack9-1 26 27 27 27 26 25 25 25 25 1.000
thpack9-2 11 11 11 11 10 10 10 10 10 1.000
thpack9-3 20 21 26 21 22 19 19 19 19.5 1.026
thpack9-4 27 29 27 29 30 26 26 26 26 1.000
thpack9-5 65 61 59 55 51 51 51 51 51 1.000
thpack9-6 10 10 10 10 10 10 10 10 10 1.000
thpack9-7 16 16 16 16 16 16 16 16 16 1.000
thpack9-8 5 4 4 4 4 4 4 4 4 1.000
thpack9-9 19 19 19 19 19 19 19 19 19 1.000
thpack9-10 55 55 55 55 55 55 55 55 55 1.000
thpack9-11 18 19 25 17 18 16 16 16 16.2 1.013
thpack9-12 55 55 55 53 53 53 53 53 53 1.000
thpack9-13 27 25 27 25 25 25 25 25 25 1.000
thpack9-14 28 27 28 27 27 27 27 27 27 1.000
thpack9-15 11 11 15 12 12 11 11 11 11 1.000
thpack9-16 34 28 29 28 26 26 26 26 26 1.000
thpack9-17 8 8 10 8 7 7 7 7 7.1 1.014
thpack9-18 3 3 2 2 2 2 2 2 2 1.000
thpack9-19 3 3 3 3 3 3 3 3 3 1.000
thpack9-20 5 5 5 5 5 5 5 5 5 1.000
thpack9-21 24 24 26 24 26 20 20 20 20 1.000
thpack9-22 10 11 11 9 9 9 9 9 9 1.000
thpack9-23 21 22 22 21 21 20 20 20 20 1.000
thpack9-24 6 6 7 6 6 5 5 5 5.6 1.120
thpack9-25 6 5 5 6 5 5 5 5 5 1.000
thpack9-26 3 3 4 3 3 3 3 3 3 1.000
thpack9-27 5 5 5 5 5 5 5 5 5 1.000
thpack9-28 10 11 12 11 10 9 9 10 10 1.111
thpack9-29 18 17 23 18 18 17 17 17 17.7 1.041
thpack9-30 24 24 26 22 23 22 22 22 22.5 1.023
thpack9-31 13 13 14 13 14 12 12 13 13.4 1.117
thpack9-32 5 4 4 4 4 4 4 4 4 1.000
thpack9-33 5 5 5 5 5 4 4 5 5 1.250
thpack9-34 9 9 8 8 9 8 8 8 8 1.000
thpack9-35 3 3 3 2 2 2 2 3 3 1.500
thpack9-36 18 19 14 18 14 14 14 14 14 1.000
thpack9-37 26 27 23 26 23 23 23 23 23 1.000
thpack9-38 50 56 45 46 45 45 45 45 45 1.000
thpack9-39 16 16 18 15 15 15 15 15 15 1.000
thpack9-40 9 10 11 9 9 9 9 8 8 0.889
thpack9-41 16 16 17 16 15 15 15 15 15 1.000
thpack9-42 4 5 5 4 4 4 4 4 4 1.000
thpack9-43 3 3 3 3 3 3 3 3 3 1.000
thpack9-44 4 4 4 4 4 3 3 3 3 1.000
thpack9-45 3 3 3 3 3 3 3 3 3 1.000
thpack9-46 2 2 2 2 2 2 2 2 2 1.000
thpack9-47 4 3 4 3 3 3 3 3 3 1.000

Ratio = 1.023482
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Table 7.5: Summary of bin packing results, and the percentage improvement over the best
results in the literature

Instance Ratio S.D. Percent
Name Improvement

1D
Uniform 1.000 0.003 0
Hard 1.004 0.007 −0.4

2D

Beng 1.000 0.053 0
Ngcut 1.000 0.000 0
Gcut 1.012 0.041 −1.2
Cgcut 1.000 0.000 0

3D Thpack9 1.023 0.086 −2.3

Column A shows the results of [150]. Columns B and C show the results of the two algo-

rithms presented in [25]. Columns D and E show the results of the two algorithms ‘E-seq’

and ‘E-sim’ presented in [92], and column F shows the results of [185].

The best results are highlighted in bold and summarised in the ‘Best in Literature’

column. ‘GPHH Best’ and ‘GPHH Average’ show the best and average results respectively

from our ten runs on each instance. The InstanceRatio column is the result of equation 7.6

for each instance, in other words the result of ‘GPHH Average’ divided by the ‘Best in liter-

ature’. The Ratio for the data set is given at the foot of the table under the InstanceRatio

column. This table shows how we arrive at the Ratio for the data set, it is the average of

all of the InstanceRatio values of the data set.

7.6.2 Bin Packing Results

The discussion in this section refers to the results reported in table 7.5.

One Dimensional

For the ‘Uniform’ data set, we compare to the results of Falkenauer [96]. The results of

the evolved heuristics are one bin worse than Falkenauer’s results for three instances out of

80. The heuristics obtain results one bin better for two instances out of the 80, achieving

the proven optimum results in those cases. Also, for each instance, our average of the ten

runs is never more than one bin worse than our best result, so in this respect the results

are consistent.

For the ‘Hard’ data set, we compare to Schwerin and Wäscher [248] who have

solved the instances to optimality. The evolved heuristics achieve the optimal result for all
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Table 7.6: Summary of knapsack results, and the percentage improvement over the best
results in the literature

Instance Ratio S.D. Percent
Name Improvement

2D

Okp 1.012 0.019 +1.2
Wang 1.000 0.000 0
Ep30 0.991 0.018 −0.9
Ep50 1.004 0.014 +0.4
Ep100 0.974 0.072 −2.6
Ep200 1.024 0.015 +2.4
Ngcut 0.957 0.143 −4.3
Gcut 1.012 0.062 +1.2
Cgcut 0.983 0.016 −1.7

3D

Ep3d20 1.130 0.107 +13.0
Ep3d40 1.102 0.100 +10.2
Ep3d60 1.060 0.067 +6.0
Thpack8 0.995 0.014 −0.5
Thpack9 1.007 0.000 +0.7
BandR 0.971 0.004 −2.9

but one instance of the set of ten, where our best result uses one bin more than the optimal.

For seven of the instances, the evolved heuristics find the optimal result in all ten runs.

Two Dimensional

For the ‘Beng’ data set, the results are compared to the exact methods in [21, 201]. For the

‘Ngcut’, ‘Gcut’, and ‘Cgcut’ sets, we compare the results to [201]. The results that have

been reported for these four data sets are obtained without allowing rotations of the pieces,

so for a fair comparison we applied the same constraint.

Martello and Vigo [201] do not find a result for the eighth gcut instance. The

heuristic evolved for this instance does find a result, but it is not included in the calculation

of the Ratio for this data set because an InstanceRatio cannot be calculated without a result

from the literature.

Three Dimensional

Thpack9 is the only three dimensional bin packing data set, and the results can be seen in

detail for this set in table 7.4. For 42 instances out of the 47, our best heuristic evolved

from the ten runs matches the best result from the literature. There are four instances in
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which we use one more bin than the best result, and one instance in which we beat the

best result by one bin. The average bins used in each of the ten runs is never more than

0.7 greater than the best result of the ten runs, so the heuristics evolved are of consistently

good quality for each instance.

7.6.3 Knapsack Results

The discussion in this section refers to the results reported in table 7.6.

Two Dimensional

We compare all our two dimensional knapsack results to the results in [221], where the

four new ‘Ep*’ instances are defined to test their heuristic. They also apply their heuristic

approach to five older data sets, previously solved to optimality with exact methods, but

still useful to compare heuristic methods which are not guaranteed to achieve the optimal

result.

The results on the nine problem sets show that there is no real difference between

the performance of the evolved heuristics and the performance of the heuristic method used

in [221]. There are five sets with a Ratio just greater than one, and four just with less than

one. In the ngcut set, the high standard deviation is because of the 6th instance of the set

where the ratio is 0.5. Without this outlier the standard deviation of ngcut would be less

than 0.01.

Three Dimensional

There are three subsets in the ep3d set. In the first set, with instances of 20 pieces, the

results of the evolved heuristics are better in every instance than the results in [221]. In the

second set, the results are better in all but two instances, and in the third set all but four

of the evolved heuristics obtain better results.

Thpack8 has 15 instances. In 13 of those, we match the best result for the instance

from five papers that report results. However, in the 2nd and 6th instances in the set, the

evolved heuristics could not reach the results of the CBUSE method of [31]. Note though

that the result for the 2nd instance is second only to CBUSE, and the result for the 6th

instance is third best.
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Over the 47 instances of Thpack9, we obtain an average space utilisation of 95.2%,

which is compared to the 94.6% of [144]. We achieve 100% space utilisation in 14 instances

out of the 47. The individual results for the 47 instances of this set are not reported in the

literature, so in this data set, equations 7.5, 7.6 and 7.7 could not be calculated. Therefore,

in the Ratio column of table 7.6 for this data set, we report the ratio of our average space

utilisation over the average space utilisation of [144]. This also means that the standard

deviation is not reported because InstanceRatio values could not be calculated for each

instance of this set.

There are 5 papers that report results for the BandR data set. As explained in

section 7.5.3, there are 700 instances, split into 7 subsets of 100. Therefore, unsurprisingly,

the results for the individual instances have not been reported in previous papers. Only

the averages of the 7 subsets have been reported, along with an overall average for the 700

instances. So in this data set, similar to Thpack9, we could not compare to the best results

from the literature for each individual instance.

So for each of the seven subsets, we compile the best average space utilisation

reported in the literature, from the five papers that report results. We calculate the equiv-

alent of an ‘InstanceRatio’ for each subset, by dividing our average for the subset by the

best result for the subset. Then the Ratio is calculated with equation 7.7 with m set to

seven, rather than 700 as would be expected. So for the BandR data set, we are comparing

against the best technique on each of its seven subsets, rather than on each instance.

7.7 Conclusion

In this chapter, we have described a genetic programming methodology that automatically

generates a heuristic for any one, two, or three dimensional knapsack or bin packing problem.

This is the first hyper-heuristic system to be applied to three dimensional packing. The

goals of this chapter are a natural progression from the previous four chapters, as the

problem domains have increased in dimensionality from one to three. The results of the

automatically designed heuristics can at least equal the results obtained by complex human

designed heuristics, in the packing problems addressed here. This is especially significant

as these packing problems are well studied, and the human designed heuristics obtain very

close to optimal solutions for some of the data sets.

The good results are possible because the experiments evolve one heuristic for
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one instance. The heuristic can therefore specialise on that instance. The heuristics are

‘disposable’ in this sense, because they are evolved for the sole purpose of obtaining a

solution to one instance, and are not meant to be applied to any another instances.

This highlights two areas of further work. Firstly, it will be necessary to investigate

the circumstances where the heuristics can be reused. The data-sets used here have varying

piece sizes, so maybe if the pieces are more uniform then the heuristics would be able to

generalise better. Also, the heuristics will have to be evolved on more training instances.

The re-usable heuristics for one dimensional bin packing evolved in chapters 4 and 5 were

evolved on a training set of 20 instances. It may be that less training instances could be

used, as the heuristics take longer to pack the three dimensional instances, and 20 may

be too many. The terminals may have to be changed to some which provide more general

information. Particularly, the three waste terminals could be changed to some which better

describe the relationship of the current piece with its potential surroundings.

Secondly, further work could ascertain whether a heuristic evolved on three dimen-

sions can be successful on one and two dimensional instances. This would mean one single

heuristic would have been designed by evolution to solve 1D, 2D and 3D packing instances.

This is a task that no human created constructive has been designed to perform currently.

Automatic heuristic generation is a relatively new area of research. The traditional

method of solving packing problems is to obtain or generate a set of benchmark instances,

and design a heuristic that obtains good results for that data set. This process of heuristic

design can take a long time, after which the resulting heuristic is specialised to the bench-

mark data set. Recently, metaheuristics have been developed which operate well over a

variety of instances. Designing a metaheuristic system, and optimising its parameters, is a

process that can take many more hours of research. A system has not been presented before

that can operate over these different problem domains, and maintain a human-competitive

quality of results. For example, before the work presented here, a metaheuristic system de-

veloped solely for three dimensional packing instances could not operate on one dimensional

instances.

Therefore, in addition to showing that human competitive heuristics can be auto-

matically designed, a further contribution of this chapter is to present a system that can

generate a solution for any one, two, or three dimensional knapsack or bin packing problem

instance, without the need to tune parameters for different dimensions/instances. All that

is required is to provide the problem instance file, and specify whether it is a bin packing or
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knapsack instance. This system does take more computational effort to generate a solution

to an instance, but this is the price paid for generality over three packing domains. One

of the goals of hyper-heuristic research is to “raise the level of generality” of optimisation

methods. We conclude that the methodology presented here represents a more general sys-

tem than those currently available, due to its performance on problems in the one, two and

three dimensional cases of two packing problem domains.
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Chapter 8

Conclusion

8.1 Context

A hyper-heuristic is a heuristic that searches a space of heuristics, rather than a solution

space directly. The goal of such research is to develop systems which are more general than

those currently available [47]. The first hyper-heuristic system was developed in the early

1960s [106, 107]. Since then, the area has received little attention up until recently, where

there has been an increase in hyper-heuristic research activity. The need is now clear for

more general systems. Most hyper-heuristic research to date has involved intelligently se-

lecting a heuristic from a pre-defined set. The alternative, which has received less attention,

is to enable a hyper-heuristic to design a heuristic from a set of potential components. This

process of automatic heuristic generation is the subject of this thesis, and it is of particular

interest as suitable heuristics may not exist for a problem, and the cost of a bespoke heuris-

tic system is often beyond what a small organisation can afford. An automated heuristic

generation system has the potential to spread the high cost over a number of customers.

This thesis has presented and analysed a hyper-heuristic methodology which au-

tomates the heuristic design process for one, two and three dimensional bin packing and

knapsack problems. The heuristics designed by this methodology produce results compet-

itive with, and often superior to, those obtained by human created heuristics. Indeed, the

genetic programming system of chapter 7 represents the first packing algorithm in the lit-

erature able to claim human competitive results in such a wide variety of packing domains,

without requiring any change in parameters. The same cannot be claimed of other packing

systems currently in the literature, which are developed to operate on single problem do-

mains. The system presented in this thesis searches a space of heuristics which can be built
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from a set of components. The components that are relevant to the problem at hand can

be chosen, and others can be discarded, which means that the system can be more general

and maintain a high quality of results.

In the field of packing problems, there is a large literature on human created

heuristics. In contrast, no work has been carried out on automating the heuristic design

process for packing. However, automatic heuristic generation has been studied relatively

recently by Fukunaga for the SAT problem [112, 113, 114]. Fukunaga’s approach stems

from the fact that many existing SAT heuristics are composites, in the sense that they can

be seen as different arrangements of the same set of components. These components are

identified and employed as the functions and terminals of a genetic programming system

named CLASS, which evolves a heuristic that decides which variable to flip next. Bader-El-

Din and Poli [9] observe that this results in heuristics which are relatively slow to execute,

because they are composites of heuristics in early generations. Bader-El-Din and Poli

present a different heuristic generation methodology for SAT, which makes use of traditional

crossover and mutation operators to produce heuristics which are more parsimonious, and

faster to execute. A grammar is defined, which can express four existing human created

heuristics, and allows significant flexibility to create completely new heuristics.

Another system for automatically designing heuristics is presented by Keller and

Poli [159], for the travelling salesman problem. They use a grammar based linear genetic

programming technique to evolve parsimonious metaheuristics. While the genetic program-

ming technique they employ is different, they evolve a heuristic for each instance, similar

to the methodology used in chapters 6 and 7.

Work presented by Geiger et al. in [118] is highly relevant to the work presented

here. They use genetic programming to evolve priority dispatching rules for a single machine

shop environment, and more complex shop configurations. The format of these heuristics

is very similar to those presented in this thesis, in the sense that they are tree structures

with terminals which represent different attributes of the job and machine. The dispatching

rules learn relationships between the job and machine attributes, in a similar way to how

the heuristics presented here learn beneficial relationships between piece and bin attributes.

There are many more examples of the automatic generation of heuristics in the

literature, and the area is receiving progressively more attention. For example, in production

scheduling [151, 140, 260, 84], cutting and packing [172], the travelling salesman problem

[213], and function optimisation [212, 214, 259]. The activity in this area reflects the need
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for more general systems, which can effectively automate as much of the heuristic design

process as possible.

8.2 Summary of Work

8.2.1 Chapters 3 - 5

Chapters 3 to 5 developed and improved the hyper-heuristic methodology over a series of

one dimensional packing problems. Chapter 3 introduced the fundamental methodology

that would be used throughout the thesis, that of a heuristic returning a score for a number

of potential locations for a piece. In chapter 3, the piece was placed into the location which

received the first score greater than zero. This chapter showed that the quality of heuristics

designed in this way could be as good, or better than, the human designed first-fit heuristic.

Chapter 4 refined the methodology further by allowing all possible locations to

be considered by the heuristic. The piece was put into the location which received the

highest score overall, rather than being placed into the first location which achieved a

certain threshold. This greater flexibility allowed the evolved heuristics to beat the human

designed best-fit heuristic. This chapter also showed that the heuristics can be reused on

unseen problem instances. They achieve the best results on new problem instances of the

same class as those they were evolved on. Also, it was shown that the heuristics become

specialised on the class that they were evolved on. A hierarchy of performance is formed,

where heuristics are specialists on a particular sub-problem, or general enough to work on

all sub-problems. It was shown empirically that there is a trade off between performance

and generalisation. The third conclusion of chapter 4 was that a heuristic could produce

unexpected results if it was applied to instances with piece sizes different to those which

it had seen during its evolution. It is not only the functions and terminals of an evolved

heuristic which produce its behaviour, it is also their relationship with the sizes of the pieces.

Therefore, the structure of an evolved heuristic only produces its behaviour on instances of

the same class as those it has seen before.

Chapter 5 investigated the scalability of the evolved heuristics. The experiments

generated heuristics for small instances, and then applied them to much larger unseen

instances. It was found that the heuristics maintain their performance beyond the size

of their training set instances. The long term performance of the heuristics is increased

when the training set is larger. It was explained that, at the start of the packing, the
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heuristics perform worse than best-fit, but the heuristics are shown to be performing better

than best-fit as the packing progresses beyond half the number of pieces in the training

set. It appears as if the heuristics take a long term view, and perform sub-optimally at

the beginning, in order to be able to outperform best-fit by the time all of the pieces have

been packed. However, the heuristics have no information regarding the current stage of

the packing, and therefore cannot change their behaviour to begin packing more tightly at

the final stage. The results were explained by the logic that, if more bins are kept open,

then a wider distribution of open bins is available, and less space is wasted by closing a bin

too soon.

8.2.2 Chapter 6

The two dimensional strip packing problem was investigated in chapter 6. The representa-

tion on which the heuristics operate took inspiration from the best-fit constructive heuristic,

presented in [38]. As the best-fit heuristic can pack any piece next from all of those which

are still available, chapter 6 introduced a new element to the framework in which the heuris-

tics operate, to give the heuristics the same freedom. It was shown that the piece order

could be rendered virtually irrelevant when using this hyper-heuristic methodology. This

changes the problem to an offline problem, rather than online, because all of the pieces are

made known before the packing begins. This is similar to a production situation where all

of the required shapes are known before the cutting pattern for the stock sheets is decided.

The results of chapter 6 show that it is possible to evolve heuristics that obtain results

which are better than the results of human designed heuristics. One conclusion to be drawn

from this work is that, because of the nature of how the heuristics are applied to pack an

instance, the process of evolving a heuristic is time consuming. A number of potential areas

for future research are specified in section 8.3, which will address this important issue.

8.2.3 Chapter 7

Chapter 7 employed the hyper-heuristic methodology to automatically design heuristics for

the three dimensional bin packing and knapsack problems. In a similar way to that pre-

sented in chapter 6, the heuristics gave a score to each potential location for each piece,

and performed the allocation which received the highest score. The available locations

in the three dimensional representation were corners, where three perpendicular surfaces
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met. A contribution of this chapter was that the hyper-heuristic methodology was capa-

ble of evolving heuristics for one and two dimensional packing instances, in addition to

three dimensional instances. The system also evolved heuristics for both the bin packing

and knapsack problems in all three dimensions. Importantly, no parameter changes were

required between changes from one problem domain to another. The results were shown

to be competitive with the results of human created heuristics. This is a significant result

considering that no other system in the literature can obtain results over such a wide range

of problem domains.

We have already stated that the need is now clear for more general systems, and we

believe that chapter 7 raises important issues concerning what we refer to by the ‘generality’

of a system. In chapter 7, the system was capable of finding a solution to more problem

instances than any other packing system in the literature. Clearly this shows the generality

of the genetic programming approach presented in this thesis. However, an important goal

of current hyper-heuristic research is to automate the design process for heuristics that can

also be reused after they have been evolved. Humans have proven that they are adept

at analysing a group of problem instances and then designing heuristics which exploit the

structure of those problems, but this is currently a costly process. We believe that this

approach has the potential to reduce the cost of designing bespoke heuristics, through

further automation of the design process. These automatically designed heuristics may not

be general, they may be specialised to a given type of packing problem, but the hyper-

heuristic system that designed the heuristics can be referred to as general if it can produce

heuristics for a wide range of different problem types.

Note that the heuristic design process is, of course, not completely automated

with such a system. This would represent a ‘general solver’, which can not exist currently.

However, this hyper-heuristic approach does represent a change of emphasis regarding the

role of the human heuristic designer. With a hyper-heuristic system which automates

part of the design process, the human designer need only identify good building blocks for

heuristics, and the time consuming task of combining them in an intelligent way is passed

to the computer.
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8.3 Extensions and Future Work

We suggest here some research directions in order to extend the work presented in this

thesis.

8.3.1 Evolving Reusable Heuristics for Two and Three Dimensional Packing

Chapters 3 to 5 investigated the reuse of the evolved heuristics for one dimensional bin

packing. The same could be investigated of the two and three dimensional heuristics. While

these heuristics obtain very good results, they take a long time to evolve due to the many

heuristics that must be evaluated in each generation. Being able to reuse the heuristics

after they have been evolved would further justify the relatively large run times. As stated

in the conclusion of chapter 7, the data-sets used here have varying piece sizes, so it may be

necessary to generate more uniform instances for the heuristics to generalise successfully.

Also, the heuristics will have to be evolved on more training instances in order for them to

generalise. The re-usable heuristics for one dimensional bin packing, evolved in chapters 4

and 5, were evolved on a training set of 20 instances. It may be that less training instances

could be used, as the heuristics take longer to pack the three dimensional instances, and

20 may be too many. Another related question for research is whether a validation set of

instances is necessary when evolving heuristics for packing, as is the standard method for

preventing overfitting to the training set.

It is left as a broad area for future work to determine whether the existing functions

and terminals are sufficient to evolve generalisable heuristics, or if they would need to be

modified to incorporate more general information. For example, the ‘piece width’ terminal

currently encodes the absolute value of the width of the piece, but it may be necessary to

redefine this terminal. The redefined terminal may encode the piece width as a fraction

of the sheet width, or as a fraction of the maximum piece width in the instance. Then

the heuristic may be more applicable to new problem instances. To express the issue a

different way, if one was to take a problem instance, and create a new instance by reducing

the size of all the dimensions by half, then one would expect that applying a heuristic to

both instances would produce two solutions which look identical. Currently, because the

terminals encode absolute values, it is not clear whether an evolved heuristic would produce

identical results for instances which are scaled up or down.
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8.3.2 Specialisation and Robustness of Two Dimensional Packing Heuristics

The work in chapter 6 also indicates another area of future work. In chapter 4, section

4.4.1, we presented an example of an evolved heuristic for one dimensional bin packing

which performed poorly on new instances with pieces of a given distribution that it had not

seen before. It performed poorly because it had evolved to make use of ratios (for example,

of piece size to bin capacity) that did not exist in the new instances. It is our intuition that

the same phenomenon would happen for two dimensional packing, and that the evolved

heuristics would perform well on new instances of the same class as the training set, at the

expense of their performance on other classes of instance. This area of future work could also

contribute to defining the characteristics of what makes two dimensional instances similar

or different, as one could label instances as conceptually ‘different’ if a heuristic performs

well on some at the expense of the others. While this thesis has addressed many of the

issues in evolving heuristics for two dimensional packing, there is still much more potential

for research in this area.

8.3.3 Intelligently Select which Allocations to Consider

The conclusion of chapter 6 suggested that reducing the run times of the system would be

beneficial. This could be achieved by focussing further work on evolving heuristics that

intelligently select which allocations to consider, rather than evaluating all those available.

This has the potential to reduce the time taken to evolve a heuristic, because it is the

many evaluations of the heuristics in the population that account for the large run times.

However, it is likely the run times will always be relatively large, compared to other work in

the literature, because this methodology must design and run the heuristics, whereas other

methodologies only take into account the time taken to run. It is the design stage which

is the most time intensive, whether this is done by human or machine, and this is exactly

why it is potentially beneficial to research ways of automating this process.

8.3.4 Improve the Three Dimensional Packing Representation

The functions and terminals used in chapter 7 were chosen because they exploit our rep-

resentation of the three dimensional packing problem. This raises a possible direction for

future work. The human created ‘best-fit’ heuristic cannot be exactly encoded by these

functions and terminals and the current representation of the problem. Therefore, it can-
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not be evolved by the system as presented in this thesis, and it is possible that the space

of heuristics defined by the functions and terminals may not include the best heuristics for

the problem. We suggest that it would be possible to obtain superior heuristics if the rep-

resentation is improved to allow more piece allocations, and if the functions and terminals

are changed so that they can encode the functionality of best-fit.

8.3.5 Employ Higher Level Functions and Terminals

In [114], Fukunaga compares his type of evolved heuristic with the evolved heuristics pre-

sented in chapter 3 and in [48]. He classifies our heuristics as value selection heuristics,

because they decide which value to assign to each bin and piece combination. The heuris-

tics evolved by the CLASS system are variable selection heuristics because they decide which

variable to consider next. Fukunaga goes on to say that a variable selection heuristic for our

problem would be one which selects the bin and piece combination to consider next. How-

ever, we use a fixed ordering which iterates through all of the combinations. This insight

suggests potential future work, which would involve constructing the heuristics from higher

level components than the functions and terminals used in this thesis. For example, the

heuristics consist of components which provide numerical values to describe details of each

potential allocation. There are often many potential allocations at each decision point, and

therefore many heuristic evaluations must be performed in order to ascertain the allocation

with the highest score. Multiplied over the number of individuals in the population, these

evaluations result in large run times. Using higher level components would mean that every

allocation need not be considered, and the chosen piece and location could be selected much

more quickly. Examples of such components could be a terminal that picks a random bin,

or the bin with the most free space, or the set of bins that is less than 50% full. Conditional

operators could also be included to make the heuristics more flexible.

8.3.6 Evolving one General Packing Heuristic

The heuristics evolved in chapter 7 all consist of the same functions and terminals regardless

of whether they are being applied to a one, two or three dimensional problem. This is a

consequence of the system requiring no parameter changes between runs on any domain.

Therefore, the heuristics which are evolved for three dimensional packing will obtain results

if applied to one or two dimensional problems. We suggest that another area for future
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work would be to investigate if the heuristics can be reused on problems of a different

dimensionality than those which they were evolved on. This would potentially require a large

training set, containing a representative sample of instances of each type of problem. The

author knows of no current human designed heuristic for this purpose. It would represent

a significant result if one computer designed heuristic could be shown to work well over all

of these problems.

8.4 Final Remarks

In summary, there are three main achievements of this thesis. Firstly, to present a method-

ology which is capable of automatically designing heuristics for packing problems. This is

the first piece of work in the literature to automatically design heuristics for this problem.

Secondly, to show the heuristics are of a good enough quality to compete with human de-

signed heuristics. Thirdly, to show that one hyper-heuristic system can be general enough

to automatically design heuristics for many different packing problem domains. This the-

sis has addressed important issues on the quality, specialisation, robustness, and reuse of

automatically designed heuristics.

The area of hyper-heuristics is still relatively new, with many aspects yet to be

researched. However, it is a paradigm which appears highly appropriate for certain real

world applications, as the cost of bespoke implementations of search methodologies stays

beyond the means of smaller organisations, who currently solve their optimisation problems

by hand. As hyper-heuristic systems receive more attention, there is a possibility that they

will be able to routinely generate heuristics for such organisations, reducing the cost of

computer aided optimisation through automation of the heuristic design process.
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