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Abstract
In Chapter 1, the concept of equations over groups is introduced and the two main con-jectures and several theorems on the subject are discussed. The main theorem (Theorem1.12) is stated, which is that when certain constraints are put on r(t) ∈ G∗ < t| >, where
G is a group and t is distinct from G, then r(t) = 1 always has a solution over G. Thecorollary to the main theorem (Corollary 1.13) is proved, the method of proof is outlinedand the key lemma is stated. In Chapters 2 and 3, the key lemma for the main theoremis proved and in Chapter 4, the proof of the main theorem is completed.In Chapter 5, the concept of cyclically presented groups is introduced. The previous ex-periment which involved searching for trivial cyclically presented groups is discussed andthe experiment undertaken here, which involves searching for �nite cyclically presentedgroups, is brie�y described. Results are stated, including the main theorem (Theorem5.2.4), and the motivation for looking at the number of generators needed for �nitegroups is discussed.In Chapter 6, the experiment for searching for �nite cyclically presented groups is out-lined in more detail. It is explained how a list of candidates for �nite cyclically presentedgroups is found, and a table showing the numbers in the list is given. In Chapter 7, themethods used to check the list of candidates for �nite groups is outlined.In Chapter 8, a list is given of all �nite groups found and their structures. The outstand-ing cases for which it is unknown whether or not the group is �nite are mentioned. Forthose �nite groups which appear to be a family, proofs are given. The results found forthe number of generators for �nite groups are discussed.
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Chapter 1
Introduction � Equations overgroups
1.1 Equations over groupsDe�nition 1.1. Let G be a non-trivial group and let t be an element distinct from G.Let r(t) = g1t

l1 . . . gkt
lk , k ≥ 1, gi ∈ G \ {1}, li ∈ Z \ {0} be an element in the freeproduct G∗ < t >.Then r(t) = 1 is said to be an equation over G which has a solution over G if there is anembedding φ from G into a group H and an element h ∈ H such that φ(g1)h

l1 . . . φ(gk)h
lk =

1 in H.The length of the equation is de�ned to be |l1| + . . . + |lk| and the exponent sum is
l1 + . . .+ lk. An equation is called singular if its exponent sum is equal to zero, otherwiseit is called non-singular.There are two main conjectures in the study of equations over groups.Conjecture 1.2. [21] Any equation over a torsion-free group G has a solution over G.Conjecture 1.3. [22] Any non-singular equation over any group G has a solution over
G.These conjectures remain unresolved, although some partial results have been proved forboth.For example, the following two results support Conjecture 1.2.1



Chapter 1: Introduction � Equations over groupsTheorem 1.4. [18] Any equation of length at most 6 over a torsion-free group has asolution.Theorem 1.5. [16] Any equation over a locally indicable group G has a solution over
G.Locally indicable means each of the non-trivial �nitely generated subgroups of the groupadmits an epimorphism onto the in�nite cyclic group. Any locally indicable group istorsion-free.The following theorem supports both Conjecture 1.2 and Conjecture 1.3.Theorem 1.6. [20] Any equation of exponent sum 1 over a torsion-free group has asolution.There have been two main approaches to Conjecture 1.3. One is to restrict the class ofgroups to which G belongs. The following theorem is an example of this approach.Theorem 1.7. [13] Any non-singular equation over a residually �nite group G has asolution over G.Residually �nite means that, for any non-trivial element g, there is a homomorphism θto a �nite group such that θ(g) 6= 1. It is worth remarking that polycyclic groups areresidually �nite.The other approach, which is the one adopted here, is to put constraints on r(t), forexample, on the length of r(t). An example is given by the following.Theorem 1.8. [11] Any non-singular equation of length at most 5 has a solution.More recently, however, there has been the following theorem in which the free productlength with respect to G∗ < t > is unbounded.Theorem 1.9. [4, 7�9, 21, 22] Let r(t) = g1t

l1 . . . gkt
lk ∈ G∗ < t >, k ≥ 1, li ∈ Z \ {0}where:(i) |gi| > 2, (1 ≤ i ≤ k), where |gi| refers to the order of gi in G.(ii) l1 + . . . + lk 6= 0 (i.e. the equation r(t) = 1 is non-singular).(iii) |li| 6= |lj | for i 6= j. 2



Chapter 1: Introduction � Equations over groupsThen r(t) = 1 has a solution over G.RemarkThe case k = 1 is a consequence of [21] in which it is shown that Conjecture 1.3 istrue whenever the length of the equation equals its exponent sum. The case k = 2is a particular result of the fact that if r(t) = g1t
l1g2t

l2 with {|g1|, |g2|} 6= {2, 3} and
l1 + l2 6= 0, r(t) = 1 always has a solution, which was shown in [4]. Case k = 3 wasproved in [7], case k = 4 was proved in [8], case k = 5 was proved in [9], and the resultfor k ≥ 6 follows from a small cancellation argument [22]. In fact, if k ≥ 6 and onlycondition (iii) holds then the theorem is still true.We will consider k ≥ 5 of Theorem 1.9 in a more general setting which we now describe.1.2 Statement of resultsLet G be a group and let

r(t) = w1t
l1 . . . wkt

lk (k ≥ 5)where wi = gi,1t
mi,1gi,2 . . . tmi,ki−1gi,ki

with gi,j ∈ G \ {1}, ki ≥ 1, mi,j 6= 0.We introduce the following condition:(*) For 1 ≤ i ≤ k, |li| is distinct from |lj | for j 6= i and is distinct from |mu,v| for any
u, v.The following can be proved using standard small cancellation arguments and its proofwill be brie�y discussed towards the end of the chapter.Theorem 1.10. If k ≥ 6 in the above and condition (*) holds then r(t) = 1 has asolution over G.This statement generalises Theorem 1.9 for when k ≥ 6. From now on therefore, it canbe assumed that k = 5.Lemma 1.11. If ∀i, ∃j 6= i such that wi = w±1

j , then it can be assumed that r(t) hasone of the following forms (modulo cyclic permutation and inversion):
3



Chapter 1: Introduction � Equations over groupsA1 wtl1wtl2wtl3wtl4wtl5A2 wtl1wtl2wtl3wtl4w−1tl5

A3 wtl1wtl2wtl3w−1tl4w−1tl5A4 wtl1wtl2w−1tl3wtl4w−1tl5B1(a) wtl1wtl2wtl3vtl4vtl5B1(b) wtl1wtl2wtl3vtl4v−1tl5B2(a) wtl1wtl2w−1tl3vtl4vtl5B2(b) wtl1wtl2w−1tl3vtl4v−1tl5B3(a) wtl1w−1tl2wtl3vtl4vtl5B3(b) wtl1w−1tl2wtl3vtl4v−1tl5

B4(a) wtl1wtl2vtl3wtl4vtl5B4(b) wtl1wtl2vtl3wtl4v−1tl5B5(a) wtl1wtl2vtl3w−1tl4vtl5B5(b) wtl1wtl2vtl3w−1tl4v−1tl5B6(a) wtl1w−1tl2vtl3wtl4vtl5B6(b) wtl1w−1tl2vtl3wtl4v−1tl5Proof. As we are assuming there is no single wi distinct from all other wj and theirinverses, it must be the case that either the wi are all equal to each other (or eachother's inverses) or the wi are split into a subset of three and a subset of two withthe wi in the same subset being equal to each other (or each other's inverses). Withthis in mind, r(t) may always be rewritten to be in one of the above forms using cyclicpermutation and inversion. For example, let r(t) = vtl1wtl2w−1tl3w−1tl4v−1tl5 . In-verting this gives us t−l5vt−l4wt−l3wt−l2w−1t−l1v−1. A cyclic permutation of this is
wt−l3wt−l2w−1t−l1v−1t−l5vt−l4 which, after relabelling, is of the form B2(b). �We de�ne a subword of the word w = g1t

m1g2 . . . gs−1t
ms−1gs where gi ∈ G \ {1}, mi ∈

Z \ {0}, s ≥ 1 to be a word of the form gkt
mkgk+1 . . . gk+r−1t

mk+r−1gk+r where k ∈

{1, . . . , s} and r ∈ {0, . . . , s − k}. A subword is an initial subword if k = 1, an endsubword if r = s − k and a proper subword if (k, r) 6= (1, s − k).We are now ready to state our main theorem.Theorem 1.12. Let G be a group and let
r(t) = w1t

l1w2t
l2w3t

l3w4t
l4w5t

l5where wi = gi,1t
mi,1 . . . tmi,ki−1gi,ki

with gi,j ∈ G \ {1}, ki ≥ 1, mi,j 6= 0.Assume that condition (*) holds and, in addition, that the following conditions hold.(**) No wi is a conjugate of an element of G of order 2.(***) No wi is a proper initial or end subword of any w±1
j for j 6= i.Then the following statements are true.(I) Let r(t) be given by one of the 16 forms listed in Lemma 1.11. Then r(t) = 1 hasa solution over G if one of the following holds:4



Chapter 1: Introduction � Equations over groups(1) r(t) is of the form A1 or A4.(2) r(t) is of the form A2 and none of the following sets of relations hold:(i) l1 = l2 + l4, l2 = l3 + l5 and l3 = l1 + l5,(ii) l1 = l3 + l4, l2 = l1 + l4 and l3 = l2 + l5,(iii) l3 = l2 + l4 = l1 + l5,(iv) l1 = l2 + l5 = l3 + l4.(3) r(t) is of the form A3 and neither of the following sets of relations hold:(i) l2 = l1 + l3 and l2 + l4 + l5 = 0,(ii) l1 = l2 + l5 and l1 + l3 + l4 = 0.(4) r(t) is of the form B1-B6.(II) If r(t) is not one of the 16 forms listed in Lemma 1.11, i.e. ∃i such that wi 6= w±1
jfor all j 6= i, then r(t) = 1 has a solution over G.RemarkIt is worth pointing out that r(t) has a solution under the restrictions of 2(i) if and onlyif it has a solution under the restrictions of 2(ii). The same holds true for the pair 2(iii)and 2(iv) and the pair 3(i) and 3(ii). A full explanation for this is given in Chapter2. The restrictions are required because our method of proof breaks down. We expect,however, that r(t) = 1 will have a solution in these cases.Note also that we do not require l1 + . . .+ lk 6= 0 and this allows us to prove the followingextension of Theorem 1.9 for when k = 5.Corollary 1.13. Let r(t) = g1t

l1g2t
l2g3t

l3g4t
l4g5t

l5 ∈ G∗ < t >, li ∈ Z \ {0} where:(i) |gi| > 2, (1 ≤ i ≤ 5).(ii) |li| 6= |lj | for i 6= j.Then r(t) = 1 has a solution over G.Proof. The proof follows immediately from the theorem unless we have one of the ex-ceptions in Case (2) or (3). If r(t) is non-singular, r(t) has a solution over G in the Acases by [13].Let r(t) be singular. Consider Case (3), so r(t) = gtl1gtl2gtl3g−1tl4g−1tl5 . The excep-tions are (i) l2 = l1 + l3 and l2 + l4 + l5 = 0, (ii) l1 = l2 + l5 and l1 + l3 + l4 = 0 and5



Chapter 1: Introduction � Equations over groupswe also have l1 + l2 + l3 + l4 + l5 = 0. If (i) holds then the singularity condition implies
l2 = 0 while if (ii) holds we get l1 = 0, either of which leads to a contradiction and theresult holds in this case.Now consider Case (2), so r(t) = gtl1gtl2gtl3gtl4g−1tl5 . Let condition (iii) hold so
l3 = l2 + l4 = l1 + l5. Let h ∈ H be a solution in the overgroup H to the equation
gtl3 = 1. Then in H we have r(h) = ghl1ghl2ghl4g−1hl5 = ghl1ghl2ghl3h−l2g−1hl5 =

ghl1ghl2h−l2g−1hl5 = ghl1hl5 = ghl3 = 1 so r(t) has a solution over G. If (iv) holds,then the same result occurs by letting h ∈ H be a solution to gtl1 = 1. Cases (i) and(ii) require a di�erent approach. Let (i) hold so l1 = l2 + l4, l2 = l3 + l5 and l3 = l1 + l5and we also have l1 + l2 + l3 + l4 + l5 = 0. Using these relations, we can rewrite r(t)as gt−2l3gt4l3gtl3gt−6l3g−1t3l3 . This equation has a solution if and only if the equation
r(t) = gt−2gt4gtgt−6g−1t3 has a solution (see remark below) so let us consider thisequation instead. Since it can be assumed that G =< g|gn > (see remark below), werequire < g|gn > to embed in the overgroup H = <g|gn>∗<t|>

<<r(t)>>
. Let K = <a|an>∗<s|s6>

<<(as4)3>>
.De�ne the following mapping θ : {g, t} → K by g 7→ a, t 7→ s. Now substituting yields

as−2as4asas−6a−1s3 = as4as4asaa−1s3 = (as4)3 = 1 in K so θ extends to a groupepimorphism. But since |s4| 6= 2 in < s|s6 >, it follows that < a|an > embeds in K by[3], therefore g must have order n in H and so G =< g|gn > embeds in H and we aredone. The same argument can be used for case (ii) by symmetry (See Subsection 2.3.2).
�Remarks1. We can assume the greatest common divisor of the li's is equal to one. To see this,assume that gcd(li : 1 ≤ i ≤ 5) = d > 1. Then li = dαi where gcd(αi : 1 ≤ i ≤

5) = 1. If we know the natural map from G to H1 =< G, s|w1s
α1 . . . w5s

α5 > isinjective then G embeds in H1∗s=td < t|tm >=< G, t|r(t) >, where m = 0 if s hasin�nite order and m = dq if s has order q < ∞.2. We assume, without loss of generality, that G is generated by the elements of Gwhich appear in r(t). For if G0 =< gi,j > where gi,j are elements of G involved in
r(t) and r(t) has a solution over G0 in H, then r(t) = 1 has a solution over G withthe amalgamated free product H ∗G0 G as the overgroup of G.The only form of equation r(t) = 1 for which it is known that there is no solution is when

r(t) = u(G, t)gu(G, t)−1 ĝ, where u(G, t) ∈ G∗ < t > and g, ĝ ∈ G have di�erent orders.Note that this cannot happen under the conditions of Conjecture 1.2 and Conjecture1.3. Observe that this situation is also ruled out by condition (*), even when we allow
k ≥ 1. This encourages us to make the following conjecture.6



Chapter 1: Introduction � Equations over groupsConjecture 1.14. Let G be a group and let r(t) = g1t
q1 . . . glt

ql where l ≥ 1, gi ∈

G \ {1}, qi ∈ Z \ {0} and ∃i such that |qi| 6= |qj|, ∀j 6= i. Then r(t) = 1 has a solutionover G.1.3 Method of proof for Theorem 1.12To show that r(t) = 1 has a solution over G, it is enough to show that the map G → H =

< G, t | r(t) > given by g 7→ g, ∀g ∈ G is injective. Assume by way of contradiction thatthis map is not injective. Then there is a free product diagram K [22] whose boundaryis a simple closed curve with an element g0 ∈ G \ {1} as its label.We will now describe how such a diagram can be amended. The diagram will have twodi�erent types of regions. The �rst type is an r(t)-region whose boundary label is somecyclic permutation of r(t)±1. The second type is a G-region whose boundary label is aword in G which yields the identity.The �rst amendment we make to the diagram is to contract each maximal t-segment to apoint and label its corresponding corners with the li or mu,v as appropriate. The secondamendment is to the G-regions. We place a new vertex in the interior of each G-region,including the in�nite region external to K, and then make the following transformation.Create new edges between the newly added vertex and each vertex of the region anddelete the old edges which form the boundary of the region. Label the corners aroundthe new vertex with the element of G that corresponds to the label of the deleted edge.This transformation is shown in Figure 1.1.PSfrag replacements
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g3g3 Figure 1.1: G-region amendmentWhat we have now obtained is a tessellation D of the 2-sphere, whose regions havecorners labelled with some cyclic permutation of r(t)±1, reading around the region fromany vertex. 7



Chapter 1: Introduction � Equations over groupsVertices which are labelled with powers of t will be referred to as t-vertices. Verticeslabelled with elements of G are known as g-vertices. By convention we write i in placeof li at the corners of the diagrams and we will use ī to denote −li.Given a region ∆, we refer to the �ve vertices with corner labels l1, . . . , l5 within ∆ as
v1, . . . , v5 respectively.
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Figure 1.2: A typical region of DThe sum of the corner labels at a t-vertex must equal 0 (since < t| > is one of the freefactors) and the product of the corner labels at a g-vertex must give the identity in G,except for the vertex whose label is g0.Let v0 be the vertex obtained from the amendment of the original G-region labelled with
g0. A region that has v0 as one of its vertices is called a boundary region, otherwise it iscalled interior. The degree of a region is said to be the number of vertices of that regionwith degree exceeding 2. We denote the degree of a region ∆ by d(∆), the degree ofa vertex v by d(v) and the label of a vertex v by l(v).We may assume that D is minimal with respect to the number of regions and, subjectto this, the number of interior vertices of D of degree 2 is maximal. These assumptionsplay a role of great importance and lead to the following Lemma which is analogous toone proved in [9].Lemma 1.15. (i) No vertex label of D can have as a sublabel īi or īi, (1 ≤ i ≤ 5);8



Chapter 1: Introduction � Equations over groups(ii) d(vi) > 2 for 1 ≤ i ≤ 5;(iii) d(∆) ≥ 5 for any region ∆ of D.Proof. (i) If we allowed such a sublabel then the diagram would not be reduced and itwould be possible to cancel two regions and contradict our assumption of the minimalityof D.(ii) This comes from (i) and the fact that |li| 6= |lj | for i 6= j.(iii) This fact follows of from (ii) and the fact that there are 5 of the vi. �We de�ne the curvature of a region ∆ to be c(∆) = c(d1, . . . , dm) = (2−m)π+2πΣm
i=1

1
di
,where m = d(∆) and the di are the degrees of the vertices, 1 ≤ i ≤ m. The totalcurvature of D, denoted by c(D), is the sum of the curvatures of each region.Lemma 1.16. c(D) = 4π.Proof. Let V = number of vertices, E = number of edges and F = number of regions.Then:

c(D) = Σ∆∈Dc(∆) = Σ∆∈D[π(2 − d(∆)) + 2π

(

1

d1
+ . . . +

1

dk

)

] (k = d(∆))

= 2πΣ∆∈D

(

1

d1
+ . . . +

1

dk

)

+ 2πΣ∆∈D − πΣ∆∈Dd(∆)

= 2πV + 2πF − π2E = 2π(V − E + F ) = 4π. �The contradiction required for our proof arises from being able to show that the totalcurvature of 4π is not obtainable, and thus the mapping G → H, g 7→ g, ∀g ∈ G isinjective, yielding Theorem 1.12.From here, the next step is to locate interior regions ∆ of D that have positive curvatureand to show that for each such region, we can �nd a neighbouring region ∆′ into whichwe can distribute this positive curvature. We do this by a numerical transfer of curva-ture between the regions of the diagram. Curvature is subtracted from positive regionsand added to some negative regions that neighbour these positive regions. These move-ments of curvature are purely numerical reassignments and the diagram itself remainsunchanged.For the region ∆′, let c∗(∆′) equal c(∆′) plus all positive curvature ∆′ receives.Our key lemma is the following, the proof of which will be given in later chapters.Lemma 1.17. If ∆′ is an interior region of D such that c∗(∆′) > c(∆′) then c∗(∆′) ≤ 0.9



Chapter 1: Introduction � Equations over groupsWe now state two more lemmas which will be useful later on.Lemma 1.18. For 1 ≤ i ≤ 5, w2
i 6= 1.Proof. Let w2

i = 1 for some i. Let wi = g1t
m1 . . . tmk−1gk.Then w2

i = g1t
m1 . . . tmk−1gkg1t

m1 . . . tmk−1gk = 1.So g1 = g−1
k , g2 = g−1

k−1, . . . and m1 = −mk−1, m2 = −mk−2, . . ..If k even: m k
2

= −m k
2

=⇒ m k
2

= 0: contradiction.If k odd: gk+1
2

= g−1
k+1
2

=⇒ g2
k+1
2

= 1: contradiction by condition (**). �Lemma 1.19. Let ∆ be an interior region of positive curvature in D. Then all g-verticesand t-vertices other than the vi must have degree 2, four of the vi must have degree 3,and the remaining vi must have degree 3, 4 or 5, 1 ≤ i ≤ 5.Proof. Since c(3, 3, 3, 3, 3, 3) = 0, a region with positive curvature must have degree atmost 5. By Lemma 1.15(iii), the region must have degree equal to 5. Therefore, as allthe vi have degree at least 3 by 1.15(ii), all g-vertices and t-vertices other than the vihave degree 2. Since c(3, 3, 3, 4, 4) = c(3, 3, 3, 3, 6) = 0 there is at most one vertex vi ofdegree exceeding 3 and its degree must not exceed 5. �Remark
c(3, 3, 3, 3, 3) = π

3 ,
c(3, 3, 3, 3, 4) = π

6 ,
c(3, 3, 3, 3, 5) = π

15 .These are the only possible values for positive curvature of a region of degree 5.When considering the distribution of curvature, we may not have complete informationabout regions which neighbour positive regions. We distribute curvature in steps i.e. wesend curvature from a positive region ∆1 into ∆′ at step one, we send curvature from apositive region ∆2 into ∆′ at step two and so on.We de�ne marking to be an assignment of natural numbers ≥ 2 to all vertices of ourdiagram. The value assigned to a vertex is the marked degree of the vertex. At step 0all vertices have marked degree 2. Then at each step we increase the marked degree ofcertain vertices, ensuring this value never exceeds the actual degree of the vertex. Let
d(v, n) be the marked degree of vertex v at step n.If a region ∆ has vertices u1, . . . , um, we de�ne the marked curvature of ∆ at step n tobe c(∆, n) = c(d(u1, n), . . . , d(um, n)). 10



Chapter 1: Introduction � Equations over groupsWe perform the gradual transfer of curvature in steps from the positive regions intoneighbouring negative regions, while simultaneously changing the marking of the dia-gram. At step n we check the curvature transferred into a region is compensated for bythe di�erence c(∆′, n) − c(∆′, n − 1) arising from the remarking made at this step.Remarks1. We de�ne c∗(∆′, n) to equal c(∆′, n) plus any curvature sent into ∆′ at each stepup to and including n.2. The marked curvature of a region at any step is an upper bound on the actualcurvature. In particular, if n is the �nal step, c∗(∆′, n) ≤ 0 implies c∗(∆′) ≤ 0 andso Lemma 1.17 holds for this region.The following Lemma will be used later on in part of the proof of Lemma 1.17.Lemma 1.20. Suppose that at some step n, c∗(∆′, n) ≤ 0. Suppose u1, . . . uk are verticesof ∆′ such that d(ui, n) = 2, d(ui, n + 1) > 2 and suppose at step n + 1, xπ of curvatureis transferred into ∆′. Then c∗(∆′, n + 1) ≤ 0 provided that x − k + 2Σk
i=1

1
d(ui,n+1) ≤ 0.Proof. At step n, c∗(∆′, n) = c(d1, . . . , dm) + pπ = (2 − m)π + 2πΣm

i=1
1
di

+ pπ ≤ 0,where pπ is the total curvature distributed to ∆′ at steps m ≤ n. Now at step n + 1, let
ai := d(ui, n + 1) > 2 and distribute a further xπ.Then c∗(∆′, n + 1) satis�es:

c∗(∆′, n + 1) ≤ c(d1, . . . , dm, a1, . . . , ak) + pπ + xπ

= (2 − (m + k))π + 2πΣm
i=1

1

di
+ 2πΣk

i=1

1

ai
+ pπ + xπ

= (2 − m)π + 2πΣm
i=1

1

di

+ pπ − kπ + 2πΣk
i=1

1

ai

+ xπ

= c(d1, . . . , dm) + pπ − kπ + 2πΣk
i=1

1

ai

+ xπ

= c∗(∆′, n) − kπ + 2πΣk
i=1

1

ai
+ xπ.Therefore, x − k + 2Σk

i=1
1
ai

= x − k + 2Σk
i=1

1
d(ui,n+1) ≤ 0 =⇒ c∗(∆′, n + 1) ≤ 0. �RemarkGiven our equation r(t), let D be the diagram whose construction is described above. Let

∆ be an interior region of D with positive curvature. As all g-vertices and t-vertices otherthan the vi in this region have degree 2, for reasons of presentation we may representany line segment which gives us a wi with one vertex labelled with the corresponding wi.We call such a vertex a w-vertex. Note that a w-vertex is actually a subgraph containing11



Chapter 1: Introduction � Equations over groupsa chain of vertices and when calculating curvature we convert the w-vertices back to
g-vertices and t-vertices. We refer to the line segment between two vi containing one ofthe wi as an edge. The region ∆ of Figure 1.2 is then represented by the following �gure.
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Figure 1.3: A typical region of D of positive curvature
d(vi) ≥ 3, 1 ≤ i ≤ 5 and d(ui) = 2, 1 ≤ i ≤ 5.De�nition 1.21. A vertex v is called a split if d(v) > 2 and v is not a vi. Note thatsuch a vertex must be either a g-vertex or a t-vertex. If such a vertex is found within anedge beginning with vi and ending with vi+1, we say the edge (i, i + 1) splits.Note that a split may not be found within a positive region or the degree of the regionwould exceed �ve, a contradiction by Lemma 1.15(iii).De�nition 1.22. [4] Suppose some vertex v of D has label xy and we know that x = 1.Then we can change D by a bridge move as shown in Figure 1.4.
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Figure 1.4: Bridge movesLemma 1.23. If wi = wj , i 6= j, no vertex label of D can have as a proper sublabel
wiw
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j , i 6= j, no vertex label of D can have as a propersublabel wiwj . 12



Chapter 1: Introduction � Equations over groupsProof. If we were to allow such a label then we could perform bridge moves to increasethe number of degree 2 vertices without changing the number of regions, which is acontradiction. See Figure 1.5 for an example of such a move. �
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Figure 1.5: Performing bridge moves on a w-vertexIf k ≥ 6, there are no regions of positive curvature and so Lemma 1.17 holds immediately.The completion of the proof of Theorem 1.10 follows the same argument as the completionof the proof of the main theorem, which will be dealt with in Chapter 4.Chapters 2 and 3 prove Lemma 1.17 for Theorem 1.12 and Chapter 4 completes theproof of Theorem 1.12.
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Chapter 2
Theorem 1.12 cases (I) 1-3
This chapter shall be concerned with the proof of Lemma 1.17 for the cases (I) (1)-(3)in Theorem 1.12, that is, the cases for which r(t) is of the form (A1)-(A4).Section 2.1 does preliminary work needed for the remainder of the chapter. Sections2.2, 2.3 and 2.4 examine cases (I) (1), (2) and (3) respectively of Theorem 1.12, provingLemma 1.17 in each case.2.1 Positive regionsIn this chapter we are assuming each wi is equal to wj or w−1

j for i 6= j. Each vertex
vi has degree at least 3 and there are four di�erent possible labellings for each cornerof these vertices just outside of the region itself (each w within r(t) matches up in thediagram with one of the other w's from r(t) in order to avoid the situation of Lemma1.15(i)). There are therefore a large number of potential combinations for labels, whichhave been worked out using a computer. The labels which give rise to a contradiction ofthe assumptions can be discarded. For example, reading around, the label 444 (i.e. thedegree of the vertex is 3 and each corner is labelled in the same direction with 4 in placeof l4) would yield a contradiction as this would imply l4 + l4 + l4 = 3l4 = 0 =⇒ l4 = 0.Another example of a contradiction would be if we had the label 213 at vertex 1 and
135̄ at vertex 3, as this would mean l1 + l2 + l3 = 0 and l1 + l3 − l5 = 0, which wouldimply that l2 = −l5. An example of a region whose labels do not give a contradiction isas follows. 14



Chapter 2: Theorem 1.12 cases (I) 1-3
∆
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wFigure 2.1: Example of a region of positive curvatureUsing the notation introduced in Chapter 1, that l(vi) is the label of the vertex whosecorner within the region is labelled i, then l(v1) = 215̄, l(v2) = 1̄22, l(v3) = 135, l(v4) =

442, l(v5) = 153. This gives l1 + l2 − l5 = −l1 + 2l2 = l1 + l3 + l5 = 2l4 + l2 = 0, whichdoes not yield any sort of contradiction.Two di�erent regions whose labels do not give a contradiction are known as compatibleregions. Two regions which are not compatible may not both appear in the diagram.Possible labelsLemma 2.1. Let ∆ be an interior region of positive curvature in diagram D. Then thereis at most one vi whose label involves t-powers other than the li (so involves at least one
mu,v) and, in this case, d(vi) = 4 or 5. The two possibilities are shown in Figure 2.2.Proof. Let ∆ be an interior region of positive curvature and let v be the vertex of ∆shown in Figure 2.2. Then, clearly {lr, lt} ⊆ {l±1

1 , . . . , l±1
5 }, for otherwise an edge wouldsplit and d(∆) > 5. �If such a vertex as mentioned in Lemma 2.1 exists, that is, a vi containing an mu,v as acorner label, then we call this an l̃-vertex and let l̃ represent one of the mu,v which is alabel of this vertex.Let ∆ be an interior region such that c(∆) > 0. Suppose that ∆ contains an l̃-vertex v.Since 4 ≤ d(v) ≤ 5, ∆ is shown in Figure 2.2.15



Chapter 2: Theorem 1.12 cases (I) 1-3
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(b) d(v) = 5Figure 2.2: l̃-vertex in ∆ (at least one of x, y is an l̃)If the region ∆ is given by Figure 2.2 (a) then add c(∆) ≤ c(3, 3, 3, 3, 4) = π
6 to theregion ∆′ which contains the label l̃. If ∆ is given by Figure 2.2 (b) then add c(∆) ≤

c(3, 3, 3, 3, 5) = π
15 to the region ∆′ which contains the label x if x = l̃ or y if y = l̃.Lemma 2.2. Assume at step n all l̃-vertices have marked degree 2 in ∆′ and at step

n + 1 we mark all l̃-vertices of ∆′ with their actual degree.If c∗(∆′, n) ≤ 0 then c∗(∆′, n + 1) ≤ 0.Proof. Let us assume we have such a region of positive curvature with a label involvingan l̃ as in Figure 2.2 (a). Then the region ∆′ which contains l̃ has degree at least 6 asit must also contain the �ve vi, each of which have degree at least 3. If we send the
c(∆) ≤ c(3, 3, 3, 3, 4) = π

6 from ∆, into this region, then the curvature is successfullycompensated for as c(∆′) ≤ c(3, 3, 3, 3, 3, 4) = −π
6 , provided the region receives this onelot of curvature only. If the degree of the vertex is 5 as in 2.2 (b) then it is possibleto send up to two lots of curvature in across the same l̃-vertex. For example, if x = l̃and y 6= l̃ then in principal, ∆′

x (the region containing the corner label x) may receivepositive curvature through the l̃-vertex from both ∆ and ∆t (the region containing thecorner label lt). In this case however, the curvature is equal to π
15 each time and 2π

15 < π
6 ,so we can assume from now on that π

6 is being sent in and the degree of the vertex is 4.Let us assume now that c∗(∆′, n) ≤ 0, and at step n + 1 we mark k l̃-vertices, each withtheir actual degree which must be at least 4. So at most kπ
6 is distributed to ∆′ at step

n + 1. Then by Lemma 1.20, because we have that (1
6 − 1 + 2

4)k < 0, we know that
c∗(∆′, n + 1) ≤ 0. This completes the proof of the lemma. �Lemma 2.2 tell us that if we are able to distribute curvature successfully, i.e. in order forLemma 1.17 to be satis�ed, for all regions while assuming no l̃-vertices, then we are ableto distribute curvature successfully for all positive regions. Therefore, from now we will16



Chapter 2: Theorem 1.12 cases (I) 1-3assume that there are no positive regions involving such an l̃-vertex. So for the rest ofthis chapter we need only consider positive regions whose vertices are either w-verticesor vi whose labels involve only the li.Computing regionsIn order to compute the di�erent labels for each region, it is necessary to check everypossible combination of matching up the wi's. We then compute every possible labelassuming each of the following in turn (see Figure 2.3).(i) d(vi) = 3, (1 ≤ i ≤ 5),(ii) d(v1) ≥ 4, d(vi) = 3 for i 6= 1,(iii) d(v2) ≥ 4, d(vi) = 3 for i 6= 2,(iv) d(v3) ≥ 4, d(vi) = 3 for i 6= 3,(v) d(v4) ≥ 4, d(vi) = 3 for i 6= 4,(vi) d(v5) ≥ 4, d(vi) = 3 for i 6= 5,
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Figure 2.3: Possible vertex degreesIn the calculation we do not specify every combination of label for a vertex of degreeexceeding 3 as there would be far too many. So, for example, if d(v1) > 3 and we knowpart of the label for v1 is 3̄12, we would write l(v1) = 3̄12ω where ω is in place of17



Chapter 2: Theorem 1.12 cases (I) 1-3either one or two numbers, depending of whether d(v1) = 4 or 5 respectively. Using themethods mentioned above, we discard any labelling which gives a contradiction and listthose which do not. We also use computational methods to list which region labellingsare compatible and also to �nd out what so-called type each positive region is, which wede�ne next.Types of regionsLet ∆ be a region of positive curvature. Then it must be one and only one of the followingtypes:(Type 1) ∆ has a neighbour ∆′ with two edges that split as shown in Figure 2.4.(Type 2) The above does not hold but one of ∆'s vertices has degree greater than 3,and one of the two neighbouring regions containing this vertex has a split asshown in Figure 2.4.(Type 3) ∆ is neither type 1 nor type 2.
∆

∆

∆

∆

Type 1
Type 2

PSfrag replacements
′

′Figure 2.4: Type 1 and type 2 regionsFor example, Figure 2.1 is of type 1 and has three neighbouring regions that �t thecriteria of the de�nition.From the de�nition, regions of type 3 are of one of the following forms, up to symmetry.
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Chapter 2: Theorem 1.12 cases (I) 1-3
∆∆

∆ ∆

∆

Figure 2.5: Type 3 regionsReceiving curvature from types 1 and 2 onlyIf a region ∆ is of type 1, c(∆) ≤ π
3 and this can be sent into ∆′ as shown in Figure 2.4. Ifthis is the only curvature the region receives, c∗(∆′) ≤ c(3, 3, 3, 3, 3, 3, 3)+ π

3 = −π
3 + π

3 =

0. If ∆ is of type 2, c(∆) ≤ π
6 and, again, send curvature into ∆′ as shown in Figure 2.4. Ifthis is the only curvature the region receives, c∗(∆′) ≤ c(3, 3, 3, 3, 3, 4)+ π

6 = −π
6 + π

6 = 0.We need to see what happens now if a region ∆′ receives curvature across more than oneedge, from regions of type 1 and 2 only.Assume a region ∆′ receives curvature across two edges (see Figure 2.6):1. Let both regions be of type 1. Then the remaining three edges all split: c∗(∆′) ≤

c(3, 3, 3, 3, 3, 3, 3, 3) + 2(π
3 ) = −2π

3 + 2(π
3 ) = 0.2. Let one be of type 1 and the other of type 2, where the type 2 crossing shares one ofthe splits of the type 1 crossing: c∗(∆′) ≤ c(3, 3, 3, 3, 3, 3, 4)+ π

3 + π
6 = −π

2 + π
2 = 0.3. The same as 2, except the type 2 uses a third split along the remaining edge:

c∗(∆′) ≤ c(3, 3, 3, 3, 3, 3, 3, 4) + π
3 + π

6 = −5π
6 + π

2 < 0.4. Both of type 2, sharing neither the vertex of degree > 3 nor the split: c∗(∆′) ≤

c(3, 3, 3, 3, 3, 4, 4) + 2(π
6 ) = −2π

3 + π
3 < 0.5. Both of type 2, sharing the degree > 3 vertex: c∗(∆′) ≤ c(3, 3, 3, 3, 3, 3, 4)+2(π

6 ) =

−π
2 + π

3 < 0. 19



Chapter 2: Theorem 1.12 cases (I) 1-36. Both of type 2, sharing the split: c∗(∆′) ≤ c(3, 3, 3, 3, 4, 4) + 2(π
6 ) = −π

3 + π
3 = 0.
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Figure 2.6: Receiving curvature across two edgesAssume a region ∆′ receives curvature across three edges (see Figure 2.7):1. All of type 2, in which case two must share a degree > 3 vertex and two must sharea split: c∗(∆′) ≤ c(3, 3, 3, 3, 3, 4, 4) + 3(π
6 ) = −2π

3 + π
2 < 0.2. One of type 1, two of type 2, in which case each of the type 2 must share one ofthe type 1 splits and both must share the same degree > 3 vertex.
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Figure 2.7: Receiving curvature across three edgesThis last case is the only one which may cause problems when a region ∆′ receivescurvature from regions of types 1 and 2 only, as c(∆′) ≤ −π
2 and as much as 2π

3 could besent in. This case depends upon the existence of a region with all its vertices of degree3 being able to appear with regions that are of type 2, in which all the relevant labelsmatch up. Note that the two regions of type 2 must be distinct in order for the labelsto match up correctly. This is because any speci�c region of type 2 sends curvature20



Chapter 2: Theorem 1.12 cases (I) 1-3across the same edge each time but the ∆′ in question must receive curvature from type2 regions across di�erent edges. It is important to check if this situation can occur beforemoving on to proving Lemma 1.17 for a region receiving curvature from regions of type3.2.2 Case 12.2.1 r(t) = wtl1wtl2wtl3wtl4wtl5 (A1)Let r(t) = wtl1wtl2wtl3wtl4wtl5 and let ∆ be an interior region of the diagram D ofpositive curvature. As mentioned previously, the w-vertices all have degree 2 and the vimust either all have degree 3 or have four vertices of degree 3 and one vertex of degreegreater than 3.Let us �rst assume that all vertices are degree 3. It can be observed from the following�gure that every region sharing an edge with ∆ has at least two splits. This comes fromthe fact that we cannot have w2 = 1 by Lemma 1.18.
∆

w
w

w

w

w

w

w

w

w

w w

w
w

2

3

1
w

w

w

ww

w

4

w

5

Figure 2.8: A region with all vertices of degree 3 in case A1Now let us assume there are four vertices of degree 3 and one of degree greater than 3.If we observe the following �gure, we see that the three neighbouring regions which donot contain the vertex of degree greater than 3 have at least two splits.
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Chapter 2: Theorem 1.12 cases (I) 1-3
∆
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Figure 2.9: A region with one vertex of degree > 3 in case A1This means that all regions of positive curvature in this case are of type 1 and so, by theargument at the end of Section 2.1, all curvature is successfully compensated for.2.2.2 r(t) = wtl1wtl2w−1tl3wtl4w−1tl5 (A4)Let r(t) = wtl1wtl2w−1tl3wtl4w−1tl5 . This case does not have the same nice propertiesas the previous, and so the �rst thing to do is to work out all the di�erent possiblelabellings of a region of positive curvature using computation methods as mentioned inSection 2.1, and decide which of the three types each of them is.
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Chapter 2: Theorem 1.12 cases (I) 1-3Figure 2.10 shows all possible ways in which the w's can match up.We read around each vertex from left to right to obtain a possible label. For example,if d(v1) = 3, l(v1) ∈ {2̄15̄, 2̄13, 2̄13̄, 2̄15, 215̄, 213, . . . , 415}. If our choice for l(v1) endsin a 3 say, l(v2) must begin with a 2, and so on. We allow a computer to �nd all suchcombinations for each vertex and check if it is a valid labelling, that is, it does not givea contradiction. Figure 2.1 gives us a valid labelling in this case which does not give anycontradiction.The following results were obtained and we refer back to Figure 2.3 to consider eachcase.In case (i) there are 8 possible labellings.In case (ii) there are 48 possible labellings.In case (iii) there are 87 possible labellings.In case (iv) there are 94 possible labellings.In case (v) there are 94 possible labellings.In case (vi) there are 87 possible labellings.A full list of possible labellings may be viewed in [24] (a hard copy of which is attachedto this thesis for the convenience of the reader), in which the type of each region isindicated also.We note that when we refer to 13, for example, we are referring to region number 1 in[24] for which all the vi are of degree 3. Region numbers without a subscript refer to theregions which have one vi of degree > 3.A4 sendingsThe way in which we send curvature for the type 3 regions is as follows.
∆ Edge sentacross in

∆19 (3, 4)34 (3, 4)35 (3, 4)44 (3, 4)173 (5, 1)174 (1, 2)

∆ Edge sentacross in
∆177 (5, 1)178 (1, 2)181 (1, 2)185 (1, 2)203 (1, 2)206 (5, 1)

∆ Edge sentacross in
∆225 (5, 1)229 (1, 2)251 (5, 1)254 (5, 1)286 (5, 1)287 (5, 1)

∆ Edge sentacross in
∆288 (5, 1)290 (5, 1)295 (5, 1)298 (1, 2)310 (1, 2)314 (1, 2)The way in which we send curvature for certain type 1 and 2 regions is as follows.23



Chapter 2: Theorem 1.12 cases (I) 1-3
∆ Edge sentacross in

∆52 (2, 3)64 (1, 2)68 (1, 2)84 (1, 2)88 (1, 2)90 (1, 2)104 (2, 3)

∆ Edge sentacross in
∆124 (1, 2)125 (1, 2)126 (1, 2)155 (3, 4)191 (3, 4)213 (3, 4)296 (3, 4)

∆ Edge sentacross in
∆297 (3, 4)323 (3, 4)327 (5, 1)345 (5, 1)357 (5, 1)365 (5, 1)

∆ Edge sentacross in
∆367 (5, 1)379 (5, 1)381 (5, 1)398 (5, 1)400 (5, 1)401 (5, 1)For the remaining type 2 regions, consider the vertex clockwise from the degree > 3vertex. If this vertex gives a split, send positive curvature across the edge between thisvertex and the degree > 3 vertex. Otherwise, the vertex anticlockwise from the degree

> 3 vertex must give a split and so send positive curvature across the edge between thisvertex and the degree > 3 vertex.For the remaining type 1 regions, consider each pair of adjacent vertices, starting from v1and v2, moving clockwise and ignoring any pair where one of the vertices has degree > 3.When the �rst pair of vertices is found where both give splits, send positive curvaturebetween these two vertices.We claim that, under the described sendings, Lemma 1.17 holds.Proof of Lemma 1.17 for A4It can also be viewed in [24] which regions of di�erent labellings are compatible. We cantherefore check if the situation of Figure 2.7 (2) can occur, which may cause a problemwith regards to sending in three lots of positive curvature from regions of types 1 and2 only. For this to happen we �rst require a region of type 1 in which all vertices havedegree 3 such that it can appear with two di�erent regions of type 2. Looking at thelist shows us that there are only two region with all vertices of degree 3 appearing witha region of type 2, 83 which goes with 27 and 33 which goes with 42, but there are notype 1 regions appearing with two di�erent regions of type 2. Therefore this situationcannot happen. So any regions receiving curvature from regions of types 1 and 2 onlysatisfy Lemma 1.17.We now need to study regions of type 3 and for each such a region ∆, determine aneighbour whose curvature can compensate for the curvature of ∆, and then check this24



Chapter 2: Theorem 1.12 cases (I) 1-3neighbour can compensate for any further curvature being sent into it.For this case, there are 24 regions of type 3, which can be viewed in [24], and thecurvature of each is at most π
6 .Recall that we are working with equations of the given form up to inversion and cyclicpermutation so consider r(t) = wtl1wtl2w−1tl3wtl4w−1tl5 .Take the inverse of w to obtain the following: t−l5wt−l4w−1t−l3wt−l2w−1t−l1w−1.Cyclically permute this to obtain the following: w−1t−l1w−1t−l5wt−l4w−1t−l3wt−l2 .But this is of the same form as r(t) and so we obtain a symmetry from (l1, l2, l3, l4, l5)to (l1, l5, l4, l3, l2).This means it is not necessary to �nd ways of allocating curvature for all the 24 regionsof type 3 as the symmetry will cause some repetition. Once we have paired the regions sothey are symmetrically equivalent, pick one of the symmetries, and we are only requiredto allocate curvature to both symmetries in a pair if the two symmetries are regions thatmay appear at the same time. This happens with 3 of our 12 pairings so we requireallocation of curvature for 15 di�erent regions.The following table shows all regions of type 3 and how they pair up in symmetries. The15 regions for which curvature needs to be allocated are highlighted.
l(v1) l(v2) l(v3) l(v4) l(v5)

34 213̄ω 4̄24̄ 5̄31̄ 2̄44 353

44 4̄15ω 424 335̄ 1̄42̄ 3̄53̄

19 4̄13ω 224 335̄ 1̄42̄ 3̄53̄

35 413̄ω 4̄24̄ 5̄31̄ 2̄44 355

177 413 224̄ 5̄31̄ω 2̄42̄ 3̄55

295 413 224̄ 5̄35̄ 1̄42̄ω 3̄55

178 413̄ 4̄22 131̄ω 2̄42̄ 3̄55

251 4̄13 224̄ 5̄35̄ 1̄41ω 553̄

181 213̄ 4̄24̄ 5̄31̄ω 2̄44 353

290 4̄15 424 335̄ 1̄42̄ω 3̄53̄

185 413̄ 4̄24̄ 5̄31̄ω 2̄44 355

286 4̄13 224 335̄ 1̄42̄ω 3̄53̄

203 215 424 333ω 244 353

314 215 424 335 444ω 35325



Chapter 2: Theorem 1.12 cases (I) 1-3
225 4̄13̄ 4̄24̄ 5̄35ω 442̄ 3̄53̄

288 4̄13̄ 4̄24̄ 5̄33 242̄ω 3̄53̄

229 413̄ 4̄24̄ 5̄35ω 442̄ 3̄55

287 4̄13 224̄ 5̄33 242̄ω 3̄53̄

174 4̄13̄ 4̄22 131̄ω 2̄42̄ 3̄53̄

254 4̄13̄ 4̄24̄ 5̄35̄ 1̄41ω 553̄

173 4̄13 224̄ 5̄31̄ω 2̄42̄ 3̄53̄

298 413̄ 4̄24̄ 5̄35̄ 1̄42̄ω 3̄55

206 415 424 333ω 244 355

310 213 224 335 444ω 353For each of these 15 regions, there is a split in one of the edges o� it and we are able tosend curvature to one side of the split. For each region ∆, the same procedure follows:1. If the region ∆′ we are sending c(∆) ≤ π
6 into contains a further split or a vertexof degree > 3, c(∆′) ≤ c(3, 3, 3, 3, 3, 4) = −π

6 .2. We therefore assume there are no further splits in ∆′ and all the vertices are degree3, and in each of the 15 cases we obtain a contradiction.3. Therefore, if ∆′ receives curvature from one place only, the negative curvature isfully compensated for.Following are the �gures showing the way positive curvature can be sent in each of the15 cases.
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Figure 2.11: no. 34
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Figure 2.12: no. 35
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Chapter 2: Theorem 1.12 cases (I) 1-3
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Figure 2.14: no. 178
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Figure 2.15: no. 181
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Figure 2.16: no. 185
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Figure 2.17: no. 203
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Figure 2.18: no. 225
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Figure 2.19: no. 229
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Figure 2.20: no. 254
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Figure 2.21: no. 288
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Figure 2.22: no. 295
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Figure 2.23: no. 298
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Figure 2.24: no. 310
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Figure 2.25: no. 31427



Chapter 2: Theorem 1.12 cases (I) 1-3We de�ne ui to be the vertex involving li in ∆′. In each case, we assume there are nofurther splits or vertices of degree > 3 in ∆′. Then the remaining labels of ∆′ for thefollowing cases must be:34 l(u3) = 5̄31̄ l(u4) = 2̄44 l(u5) = 35335 l(u3) = 5̄31̄ l(u4) = 2̄44 l(u5) = 355178 l(u5) = 3̄55 l(u1) = 413̄ l(u2) = 4̄22181 l(u5) = 353 l(u1) = 213̄ l(u2) = 2̄44185 l(u5) = 355 l(u1) = 413̄ l(u2) = 4̄24̄203 l(u3) = 335 l(u2) = 424 (1, 2)-split254 l(u2) = 4̄24̄ l(u1) = 4̄13̄ l(u5) = 553̄314 l(u3) = 335 l(u2) = 424 (1, 2)-splitBut these all either give a new split or force the existing split to have proper sublabel
ww−1 or w−1w, which is a contradiction by Lemma 1.23.For 177 and 295, l(u1) = 1̄45 or 1̄45̄, but then we cannot complete u2 with degree 3without causing a split. For 310, l(u1) = 152̄ or 154̄, but then we cannot complete u5with degree 3 without causing a split. For 229 and 298 we cannot complete u5 withdegree 3 without causing a split and for 225 and 288 we cannot complete u2 with degree3 without causing a split. These all give a contradiction.Therefore, there is su�cient negative curvature if ∆′ only receives curvature across oneedge. We now need to check what happens if ∆′ receives curvature across more than oneedge.It is worth noting that if a type 1 or type 2 region has more than one possible neighbouringregion to which we could send curvature, we may pick the one which is most useful tous. For example, if such a region is compatible with one of our type 3 regions and weare able choose it so that the two positive regions send curvature across the same edge,then we have made sure that no ∆′ can receive curvature from both these two regionsat the same time. An example of this situation is shown in Figure 2.26.
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Type 2Figure 2.26: For the type 2 region we choose to send curvature to the left of thedegree > 3 vertex 28



Chapter 2: Theorem 1.12 cases (I) 1-3In 12 of the cases, the speci�ed ∆′ can only receive curvature from ∆ as either thereare no further regions compatible with ∆ (See [24]), compatible regions send curvatureacross the same edge as ∆, compatible regions send curvature across the split edge in ∆′,or the other region does not �t beside ∆ due to having di�erent labels. For example, thecompatible region 126 for 35 distributes curvature across the (2, 3)-edge and has label
5̄31̄ at vertex 3. However, Figure 2.12 shows that the region across the (2, 3)-edge of ∆′would need to have the label 535 at vertex 3 and so this region cannot be 126.Region no. Compatible regions Edges crossed by Problemcompatible region34 124 (5, 1) Crosses split edge(see Figure 2.11)35 125 (5, 1) Crosses split edge126 (2, 3) Does not �t177 52 (5, 1) Does not �t104 (3, 4) Crosses split edge295, 400, 401 (4, 5) Crosses same edge178 296 (2, 3) Crosses split edge297 (4, 5) Does not �t181 None185 None225 88, 288, 381 (3, 4) Crosses same edge229 90, 298 (3, 4) Crosses same edge254 None288 88, 225, 381 (3, 4) Crosses same edge295 52 (5, 1) Does not �t104 (3, 4) Crosses split edge177, 400, 401 (4, 5) Crosses same edge298 90, 229 (3, 4) Crosses same edgeLet us now look at the remaining 3 regions, 203, 310 and 314.If we �rst consider the region 203, we can see it is compatible with region 314 and alsowith 64 and 367. However, 203, 314 and 64 all send curvature across (4, 5) so ∆′ may notreceive from more than one of these regions at a time. The only remaining possibility isfor ∆′ to receive from 367 as well as 203. The region 367 sends curvature across (2, 3)and forces d(u3) > 3 and a (2, 1)-split. 29



Chapter 2: Theorem 1.12 cases (I) 1-3Next let us consider the region 314. This region is compatible with region 203 and alsowith 64 and 367. As above, only region 367 may send curvature to ∆′ as well as 314, asall others cross the same edge. Again we have d(u3) > 3 and a (2, 1)-split.For both 203 and 314 at most π
3 is sent in and 367 introduces a new split and a newdegree > 3 vertex so c(∆′) ≤ c(3, 3, 3, 3, 3, 3, 4) = −π

2 . See Figure 2.27.
∆

∆

367

PSfrag replacements
′

Figure 2.27: Receiving curvature from region ∆ = 203 or 314 along with region 367Lastly, consider 310, which is compatible with 155 and 357. Both 310 and 357 send cur-vature across (2, 3). So ∆′ may only receive curvature from 155 as well as 310. However,this would imply a (2, 1)-split with proper sublabel ww−1, which is a contradiction byLemma 1.23. Therefore, 310 is the only region from which ∆′ can receive curvature.We have checked for this case that all positive curvature is compensated for by negativecurvature and so Lemma 1.17 holds for this case.2.3 Case 2 (A2)This section is concerned with the proof of Lemma 1.17 for Case (2) in Theorem 1.12.The method will be very similar to that of Subsection 2.2.2 and so this subsection maybe referred to for further detail. Unlike Case (1), the theorem only holds in this caseunder further conditions, which come about due to some regions of positive curvaturebeing unable to be successfully compensated for. We shall begin in the same way asSubsection 2.2.2 and take note of the regions which lead to the conditions later on.30



Chapter 2: Theorem 1.12 cases (I) 1-3Let r(t) = wtl1wtl2wtl3wtl4w−1tl5 . As in subsection 2.2.2, the �rst thing to do is to workout all the di�erent possible labellings of a region of positive curvature using computationmethods.The following Figure 2.28 shows all possible ways in which the w's can match up.
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Figure 2.28: All possible labellings � A2We again use a computer to �nd all possible labellings and their types, a full list of whichcan be found in [24].Observe the cases in Figure 2.3.In case (i) there are 6 possible labellings.In case (ii) there are 82 possible labellings.In case (iii) there are 66 possible labellings.In case (iv) there are 82 possible labellings.In case (v) there are 55 possible labellings.In case (vi) there are 55 possible labellings.2.3.1 A2 sendingsThe way in which we send curvature for the type 3 regions is as follows.
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Chapter 2: Theorem 1.12 cases (I) 1-3
∆ Edge/vertex sent across in ∆

13 N/A
33 N/A
43 (5, 1): Send 1

2
c(∆)

(4, 5): Send 1
2
c(∆)

53 (3, 4): Send 1
2
c(∆)

(4, 5): Send 1
2
c(∆)12 (4, 5)16 (3, 4)19 (3, 4)20 (1, 2) : When region across (1, 2)not positive.

(5, 1) : Otherwise.43 (5, 1) : When region across (5, 1)not positive.1-vertex: Otherwise. l(v1) = 5̄1̄32̄x,
x ∈ {4, 1̄, 5̄}. Send to re-gion containing x.44 N/A72 N/A89 (3, 4)97 (5, 1)99 (2, 3): When this region has asplit OR d(v2) = 5 ORregion across (1, 2) has nosplits and d(u5) > 3 in thisregion.

(1, 2): When region across (2, 3)positive OR d(v2) = 4, re-gion across (2, 3) has nosplits and this region has asplit.2-vertex: Otherwise.103 (2, 3)106 (1, 2)108 (5, 1)125 (4, 5)127 (3, 4)128 (5, 1)141 (3, 4)146 (1, 2): When this region has asplit OR d(v2) = 5 ORregion across (2, 3) has nosplits and d(u4) > 3 in thisregion.
(2, 3): When region across (1, 2)positive OR d(v2) = 4, re-gion across (1, 2) has nosplits and this region has asplit.2-vertex: Otherwise.

∆ Edge/vertex sent across in ∆147 (4, 5)149 (3, 4) : When region across (3, 4)not positive.3-vertex: Otherwise. l(v3) = 2̄13̄4̄x,
x ∈ {5, 3̄, 4̄}. Send to re-gion containing x.164 N/A166 (4, 5)167 (2, 3) : When region across (2, 3)not positive.

(3, 4) : Otherwise.175 (5, 1)212 N/A214 (5, 1)232 (4, 5) : When this region has asplit OR d(v4) = 5 OR
l(v4) = 4421̄ and d(u3) > 3in this region.

(3, 4) : When region across (4, 5)does not split and l(v4) =

4425 or 4425̄.4-vertex: Otherwise.239 N/A240 (3, 4)255 (4, 5) : When region across (3, 4) ispositive OR l(v4) = 3̄445̄.
(3, 4) : Otherwise.256 (1, 2)257 (1, 2)258 N/A292 (5, 1)295 (2, 3)299 (4, 5) : When region across (5, 1) ispositive OR l(v5) = 51̄4̄5.
(5, 1) : Otherwise.312 N/A327 N/A329 (2, 3)331 (4, 5) : When this region has asplit OR d(v5) = 5 OR

l(v5) = 553̄2 and d(u1) > 3in this region.
(5, 1) : When region across (4, 5)does not split and l(v5) =

5542 or 554̄2.5-vertex: Otherwise.
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Chapter 2: Theorem 1.12 cases (I) 1-3The way in which we send curvature for certain type 1 and 2 regions is as follows.
∆ Edge sentacross in

∆5 (4, 5)11 (5, 1)26 (3, 4)37 (1, 2)42 (5, 1)45 (5, 1)50 (1, 2)51 (5, 1)62 (1, 2)74 (5, 1)75 (5, 1)

∆ Edge sentacross in
∆82 (4, 5)105 (1, 2)122 (3, 4)129 (5, 1)130 (5, 1)135 (3, 4)138 (2, 3)153 (3, 4)154 (2, 3)171 (3, 4)189 (3, 4)

∆ Edge sentacross in
∆189 (3, 4)197 (4, 5)209 (2, 3)213 (2, 3)219 (3, 4)220 (3, 4)223 (4, 5)266 (4, 5)307 (5, 1)316 (4, 5)317 (4, 5)

∆ Edge sentacross in
∆324 (3, 4)330 (4, 5)334 (5, 1)179 (5, 1)235 (4, 5)243 (3, 4)245 (3, 4)260 (4, 5)273 (5, 1)278 (4, 5)298 (4, 5)The remaining type 1 and 2 regions are dealt with in the same way as in Subsection2.2.2We claim that, under the described sendings, Lemma 1.17 holds.2.3.2 Proof of Lemma 1.17 for A2We now have to check is the situation of Figure 2.7 (2). There are two type 1 regions,

23 and 63, but it can be observed in [24] that these regions are not compatible with anyother region. Therefore this situation does not occur and any regions receiving curvaturefrom regions of type 1 and 2 only satisfy Lemma 1.17.We now move on to the regions of type 3. There are 44 regions of type 3, 40 withcurvature at most π
6 (regions have one vertex of degree > 3) and 4 with curvature π

3(regions have all vertices of degree 3).As before, we can rewrite r(t) = wtl1wtl2wtl3wtl4w−1tl5 to obtain a symmetry, whichin this case is from (l1, l2, l3, l4, l5) to (l3, l2, l1, l5, l4). Following is the table showing alltype 3 regions and their pairings with this symmetry. As before, those we will allocatecurvature to are highlighted.
33



Chapter 2: Theorem 1.12 cases (I) 1-3
l(v1) l(v2) l(v3) l(v4) l(v5)

13 4̄12̄ 3̄25̄ 1̄35̄ 1̄42 153̄

33 4̄13̄ 4̄21̄ 2̄35̄ 1̄43 253̄

43 413̄ 4̄23̄ 4̄31̄ 2̄43 255

53 3̄15̄ 1̄25̄ 1̄35 442 152̄

12 3̄12̄ω 3̄25̄ 1̄35̄ 1̄44 352̄

166 4̄13̄ 4̄21̄ 2̄31̄ω 2̄41 553̄

16 4̄13̄ω 4̄21̄ 2̄35 442 153̄

214 412̄ 3̄25̄ 1̄35̄ω 1̄43 255

19 2̄13̄ω 4̄21̄ 2̄35̄ 1̄44 351̄

175 4̄12̄ 3̄25̄ 1̄32̄ω 3̄41 553̄

43 3̄15ω 423̄ 4̄32̄ 3̄42 152̄

149 2̄15̄ 1̄25 431̄ω 2̄43 251̄

44 4̄15ω 423̄ 4̄32̄ 3̄42 153̄

212 2̄15̄ 1̄25 435̄ω 1̄43 251̄

103 2̄15̄ 1̄23̄ω 4̄31̄ 2̄43 251̄

106 3̄15̄ 1̄23̄ω 4̄32̄ 3̄42 152̄

89 2̄15̄ 1̄21̄ω 2̄35 443 251̄

108 412̄ 3̄23̄ω 4̄32̄ 3̄42 155

127 2̄15 425ω 432̄ 3̄44 351̄

128 2̄15 425ω 432̄ 3̄41 551̄

97 413̄ 4̄21̄ω 2̄35̄ 1̄42 155

141 4̄12̄ 3̄25̄ω 1̄35 443 253̄

99 4̄13̄ 4̄21̄ω 2̄35̄ 1̄43 253̄

146 4̄12̄ 3̄25̄ω 1̄35̄ 1̄42 153̄

125 4̄13̄ 4̄25ω 431̄ 2̄41 553̄

147 3̄15 425̄ω 1̄35̄ 1̄44 352̄

72 3̄15̄ω 1̄25 431̄ 2̄44 352̄

164 3̄15 423̄ 4̄31̄ω 2̄41 552̄

20 2̄13̄ω 4̄23̄ 4̄31̄ 2̄43 251̄

167 3̄15̄ 1̄25̄ 1̄32̄ω 3̄42 152̄

232 3̄15̄ 1̄25̄ 1̄35 442ω 152̄

331 413̄ 4̄23̄ 4̄31̄ 2̄43 255ω

299 2̄15̄ 1̄25 432̄ 3̄41 551̄ω

255 2̄15 423̄ 4̄32̄ 3̄44ω 351̄

256 2̄15 425 432̄ 3̄44ω 351̄

295 2̄15 425 432̄ 3̄41 551̄ω34



Chapter 2: Theorem 1.12 cases (I) 1-3
257 3̄13̄ 4̄21̄ 2̄35 444ω 352̄

329 412̄ 3̄25̄ 1̄31̄ 2̄41 555ω

258 3̄15 421̄ 2̄35 444ω 352̄

327 412̄ 3̄25 431̄ 2̄41 555ω

240 2̄15̄ 1̄25 432̄ 3̄43ω 251̄

292 2̄15 423̄ 4̄32̄ 3̄42 151̄ω

239 2̄15̄ 1̄25 431̄ 2̄43ω 251̄

312 3̄15 423̄ 4̄32̄ 3̄42 152̄ωThere are twenty-two pairs of symmetries and we are only required to distribute curva-ture to one of each of these pairs so there are twenty-two regions for which we need toknow how to distribute symmetry. Nine of these regions can be dealt with in the sameway as those in Subsection 2.2.2 so we shall deal with these �rst. The �gures showingthe way positive curvature can be sent in each of these cases are as follows.
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Figure 2.29: no. 53
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Figure 2.30: no. 12
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Figure 2.31: no. 16
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Figure 2.32: no. 19
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Figure 2.33: no. 108
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Figure 2.34: no. 14135



Chapter 2: Theorem 1.12 cases (I) 1-3
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Figure 2.36: no. 147
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Figure 2.37: no. 257For each region apart from 53 and 146, we assume by way of contradiction that thereare no further splits and no vertices of degree > 3 in ∆′. We obtain the following:12: l(u2) = 4̄21̄ l(u1) = 513̄ (5, 1)-split, contradiction16: l(u1) = 3̄15 l(u2) = 424 (2, 3)-split, contradiction19: Cannot complete u4108: l(u3) = 531̄ (2, 3)-split, contradiction141: l(u1) = 2̄14̄ (1, 2)-split, contradiction147: l(u2) = 4̄21̄ l(u1) = 513̄ (5, 1)-split, contradiction257: Cannot complete u5Therefore, ∆′ has a further split or a further vertex of degree > 3, so c(∆′) ≤ c(3, 3, 3, 3, 3, 4) =

−π
6 and c(∆) ≤ π

6 .Each speci�ed ∆′ for these seven regions can receive curvature from one region only asthe following table shows:Region no. Compatible regions Edges crossed Problem with regions12 147, 330 (3, 4) Crosses same edge16 None19 None108 45 (4, 5) Crosses same edge141 189, 334 (4, 5) Crosses same edge147 12, 330 (3, 4) Crosses same edge257 171, 307 (2, 3) Crosses split edge36



Chapter 2: Theorem 1.12 cases (I) 1-3We now look at 53 and 146, which are more complicated than the previous regions.
53: Neither A nor B can be completed with no further splits or degree > 3 vertices,so c(A), c(B) ≤ c(3, 3, 3, 3, 3, 4) = −π

6 and we can send 1
2c(∆) ≤ π

6 to each of
A and B.146: Case I: A is positive. Then A must be 197 and so lA(u3) = 52̄353̄, which causesa (4, 5)-split in B. So c(B) ≤ c(3, 3, 3, 3, 3, 5) = −4π

15 and send c(∆) = π
15 to B.Case II: A is not positive. So A must have a split or another vertex of degree

> 3. If it has a split then c(A) ≤ c(3, 3, 3, 3, 3, 4) = −π
6 so send c(∆) ≤ π

6 to
A. Assume A has no splits and has at least one other vertex of degree > 3. If
dA(u3) = 5 then send c(∆) = π

15 to A and observe that c(A) ≤ c(3, 3, 3, 4, 5) =

− π
10 . Let dA(u3) = 4. If there is a split in B, c(B) ≤ c(3, 3, 3, 3, 3, 4) = −π

6so send c(∆) ≤ π
6 to B. Otherwise, if there is no split in B, lA(u3) = 52̄35.If dA(u4) = 3, lA(u4) ∈ {442, 443}, both of which split along (3, 4) in C sosend c(∆) ≤ π

6 to C, c(C) ≤ c(3, 3, 3, 3, 3, 4) = −π
6 . If dA(u4) > 3, either

dA(u1) > 3 or lA(u1) = 3̄15 and u5 cannot be completed with degree 3, so
c(A) ≤ c(3, 3, 4, 4, 4) = −π

6 and send c(∆) ≤ π
6 to A.The region 53 is not compatible with any other region and so the only possibility ofsome ∆′ receiving curvature from 53 and from somewhere else also is if it receives froma second 53 region. This is possible in this case as curvature can be sent in from 53across more than one edge. However, ∆′ then has a (2, 3)-split and a (3, 4)-split and cantherefore compensate for the total π

3 curvature being sent in, π
6 from each of the two 53regions. As 53 sends curvature across two di�erent edges only, ∆′ can receive no morethan two lots of curvature.We now look at 146, using the notation 146A to mean ∆ is 146 and curvature is sentinto A. The region 146 is compatible with regions 37, 197 and 209 and we treat in casein Figure 2.35 in turn.

146ACompatible regions which do not send curvature across the same edge are as follows: 37,
146B (a second region 146 sending curvature across the (5, 1)-edge this time), 146C, 197,209. The regions 37, 197 and 209 do not �t so we are left with 146B and 146C. Assumetwo lots are sent in from region 146B or 146C as well as from region 146A. Then atmost π

3 is sent in and we get a split and d(u5) > 3, so c(∆′) ≤ c(3, 3, 3, 3, 4, 4) = −π
3 .We cannot have three lots sent in as 146A, 146B and 146C do not all �t together.37



Chapter 2: Theorem 1.12 cases (I) 1-3
146BThe region ∆′ must contain a split. Compatible regions which do not cross the sameedge (apart from 146A which has already been dealt with) are as follows: 37, 146C, 209.Region 146C does not �t. Assume two lots are sent in from region 37 or 209 as well asfrom region 146B, so at most π

3 is sent in. The region gives another vertex of degree
> 3, so c(∆′) ≤ c(3, 3, 3, 3, 4, 4) = −π

3 . We cannot have three lots sent in as 37 and 209cross the same edge.
146CCompatible regions which do not cross the same edge (apart from 146A and 146B) areas follows: 37, 197, 209. However, none of them �t and this completes the case for region146.Lemma 1.17 therefore holds for these nine cases. The remaining �fteen cases are morecomplicated and need to be looked at in three groups, split depending on which otherregions they are compatible with. The �rst of these groups contains eight type 3 regionsand we are able to successfully distribute positive curvature for each of these regions.Group IThis �rst group contains the regions 232, 43, 106, 127, 167, 255, 256 and 292. A tabledisplaying the regions which may occur with each of the eight regions in this group is asfollows. The type 3 regions have been highlighted.232 26, 43, 82, 106, 122, 127, 135, 153, 154, 167, 219, 220, 255, 256, 292, 316, 31743 105, 106, 153, 167, 219, 232, 255, 266, 292, 316, 317, 324106 43, 153, 167, 219, 232, 255, 292, 316, 317127 232167 43, 106, 153, 219, 232, 255, 292, 316, 317255 43, 106, 153, 167, 219, 232, 292, 316, 317256 232, 317292 43, 105, 106, 153, 167, 219, 232, 255, 266, 316, 317, 324The following �gures show the way in which curvature is distributed for each of the 8regions.
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Chapter 2: Theorem 1.12 cases (I) 1-3
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Figure 2.38: no. 43
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Figure 2.39: no. 106
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Figure 2.40: no. 127
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Figure 2.41: no. 167
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Figure 2.42: no. 232
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Figure 2.43: no. 255
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Figure 2.44: no. 256
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Figure 2.45: no. 292Next we outline the exact manner in which curvature will be sent and give an explanationof how this curvature is compensated for, assuming only one lot is received.39



Chapter 2: Theorem 1.12 cases (I) 1-343: Case I: ∆′ is positive. Then it must be 167 as this is the only region that would�t. Then l(v1) = 5̄1̄32̄x where x ∈ {4, 1̄, 5̄}. If x = 4 then we get a (4, 5)-splitin C. If x = 1̄ then we get a (5, 1) and a (1, 2)-split in C. If x = 5̄ thenwe get a (5, 1)-split in C. So send the π
15 from both 43 and 167 into C, so

c(C) ≤ c(3, 3, 3, 3, 3, 5) = −4π
15 and 2π

15 is sent in. Treat the curvature sendingfrom 43 and 167 to the region C in Figure 2.38 as one sending of 2π
15 from now on,as these sendings depend on one another. Refer to this sending as 43C. Case II:

∆′ is not positive. Assume d(v1) = 5, so c(∆) = π
15 . As ∆′ is not positive theremust be at least one split or further vertex of degree > 3 in ∆′, which implies

c(∆′) ≤ c(3, 3, 3, 4, 5) = − π
10 , so we are done. Assume d(v1) = 4, so l(v1) = 3̄154,causing a (3, 4)-split. Then c(∆) = π

6 and c(∆′) ≤ c(3, 3, 3, 3, 3, 4) = −π
6 .106: ∆′ is not positive so, as with region 43, if d(v2) = 5 we are done. If d(v2) = 4 then

l(v2) = 1̄23̄3̄ or 1̄23̄4̄, both of which cause a split, so c(∆′) ≤ c(3, 3, 3, 3, 3, 4) =

−π
6 .167: We assume ∆′ is not positive, as the case when it is positive is dealt with in 43,so if d(v3) = 5 we are done. If d(v3) = 4 then l(v3) = 1̄32̄4 or 1̄32̄2̄, both ofwhich cause a split, so we are done as c(∆′) ≤ −π

6 once again.232: A is not positive, otherwise it would be one of the following regions: 122 =⇒

l(v4) = 4423̄ω, 127 =⇒ l(v4) = 4425ω, 135 =⇒ l(v4) = 4425ω, none of whichcomplete with degree 4 or 5. If there is a split in A, send to A as c(3, 3, 3, 3, 3, 4) =

−π
6 . Now assume there are no splits in A. The remaining vertices in A cannotcomplete with degree 3 (or v4 would have degree > 5) so there is a further vertexof degree > 3 in A. If d(v4) = 5, c(A) ≤ c(3, 3, 3, 4, 5) = − π

10 so send to A. If
d(v4) = 4 then l(v4) = 4425, 4421̄ or 4425̄. If l(v4) = 4425 or 4425̄, B splitsalong the (3, 4)-edge so send to B. Assume l(v4) = 4421̄. Either dA(u5) ≥ 4 or
lA(u5) = 351̄ and dA(u4) ≥ 4. If dA(u3) ≥ 4, c(A) ≤ c(3, 3, 4, 4, 4) = −π

6 so sendto A. If dA(u3) = 3, lA(u3) = 2̄32̄, which splits (2, 3) in C, so send to C.127: Another split or a vertex of degree > 3 in ∆′ is enough as then c(∆′) ≤

c(3, 3, 3, 3, 3, 4) = −π
6 , so now assume otherwise. But then u1 cannot be com-pleted with degree 3 - contradiction.255: Case I: B is positive, in which case B must be 219 (cannot be 153 or cannotcomplete v4 with degree < 6) and l(v4) = 3̄4445. A cannot be completed with

dA(u2) = dA(u1) = dA(u5) = 3 so c(A) ≤ c(3, 3, 3, 4, 5) = − π
10 and c(∆) = π

15 ,so send into A. Case II: B is not positive. Then if d(v4) = 5, send to B. If
d(v4) = 4 then l(v4) = 3̄444, 3̄441̄ or 3̄445̄. The �rst two cause a (3, 4)-split in
B which means c(B) ≤ c(3, 3, 3, 3, 3, 4) = −π

6 and so send to B. The last causesa (4, 5)-split in A so send to A. 40



Chapter 2: Theorem 1.12 cases (I) 1-3256: Another split or a vertex of degree > 3 in ∆′ is enough so assume otherwise.But then the existing split has proper sublabel w−1w which is a contradiction.292: ∆′ is not positive so, as before, if d(v5) = 5 we are done. If d(v5) = 4 then
l(v5) = 151̄5̄ which causes a split in ∆′ and we are done.Let us now check that curvature is still compensated for when more than one lot is sentin to the same region. We will look at a particular ∆′ which curvature is being sent intoand check if any further can be sent in.

232ACompatible regions which do not cross the same edge are as follows: 26, 43, 43C, 82,106, 122, 127, 135, 154, 167, 219, 220, 232B, 232C, 255A, 255B, 256, 316, 317.Assume two lots are sent in:Regions Outcome26, 43, 82, 106, 122, 127, 135,154, 167, 219, 220, 232C,
255B, 316, 317 Does not �t.
43C Cannot be sent across the 1 vertex as d(u1) = 3 andcannot be sent across the 5 vertex as l(u5) = 5̄1̄32̄5̄would give a (5, 1)-split with proper sublabel ww−1,a contradiction by Lemma 1.23. Can only be acrossthe 4 vertex, which has degree 5, giving a (4, 5)-split.

π
6 + 2π

15 = 9π
30 sent in. If d(u3) = 3, splits (2, 3) so

c(∆′) ≤ c(3, 3, 3, 3, 4, 5) = −13π
30 .154, 256 Forces a (5, 1)-split with proper sublabel ww−1 - con-tradiction.

232B At most π
3 sent in. d(u4) ≥ 4, (3, 4)-split, so c(∆′) ≤

c(3, 3, 3, 3, 4, 4) = −π
3 .

255A Case I in 255A: lA(u4) = 3̄4445 and cannot complete
lA(u2) = l(v4) with degree < 6 - contradiction. CaseII in 255A: At most π

3 sent in. d(u4) ≥ 4, (4, 5)-split:
c(∆′) ≤ c(3, 3, 3, 3, 4, 4) = −π

3 .We cannot have three lots sent in as potential regions do not �t together.
232BCompatible regions which do not cross the same edge are as follows: 26, 43, 43C, 82,41



Chapter 2: Theorem 1.12 cases (I) 1-3106, 122, 127, 135, 153, 167, 219, 220, 232C, 255A, 255B, 292, 316, 317.Assume two lots are sent in and note that d(u4) > 3 and (3, 4) splits:Regions Outcome26, 43C, 82, 122, 135, 167,219, 220, 255A, 317 Does not �t.43, 255B At most π
3 sent in. Region gives d(u3) ≥ 4 so c(∆′) ≤

c(3, 3, 3, 3, 4, 4) = −π
3 .

106 d(u1) ≥ 4. If d(u1) = 5, at most 7π
30 is sent in and

c(∆′) ≤ c(3, 3, 3, 3, 4, 5) = −13π
30 . If d(u1) = 4, at most

π
3 sent in, (1, 2)-split, so c(∆′) ≤ c(3, 3, 3, 3, 3, 4, 4) =

−2π
3 .

127 At most π
3 sent in. Either another split or d(u1) > 3so c(∆′) ≤ c(3, 3, 3, 3, 4, 4) = −π

3 .
153 At most π

3 sent in. Regions split (2, 3) and d(u1) ≥ 4so c(∆′) ≤ c(3, 3, 3, 3, 3, 4, 4) = −2π
3 .292, 232C At most π

3 sent in. Regions give d(u1) ≥ 4 so c(∆′) ≤

c(3, 3, 3, 3, 4, 4) = −π
3 .316 At most π

3 sent in. Regions give d(u2) ≥ 4 so c(∆′) ≤

c(3, 3, 3, 3, 4, 4) = −π
3 .Assume three lots are sent in:Then it must be 232B with two from eight possible regions.Crossing (2, 3): 43, 255B, 127 (compatible with 232 only), 316.Crossing (5, 1): 106.Crossing (1, 2): 153 (gives a (2, 3)-split), 292.Crossing vertex 1: 232C (gives a (2, 3)-split).So there is no region sending across (2, 3) compatible with 153 or 232C, and so pos-sible pairs are: {43, 106}, {43, 292}, {106, 255B}, {255B, 292}, {106, 316}, {292, 316},

{106, 153}, {106, 292}, {106, 232C}, {153, 232C}, {232C, 292}.Regions Outcome
{106, 255B}, {255B, 292},
{292, 316}, {106, 153}, {106, 292},
{106, 232C}, {153, 232C},
{232C, 292}

Does not �t.
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Chapter 2: Theorem 1.12 cases (I) 1-3
{43, 292}, {43, 106} At most π

2 sent in. Regions give d(u1) ≥ 4 and
d(u3) ≥ 4 so c(∆′) ≤ c(3, 3, 3, 4, 4, 4) = −π

2 .
{106, 316} At most π

2 sent in. Regions give d(u1) ≥ 4 and
d(u2) ≥ 4 so c(∆′) ≤ c(3, 3, 3, 4, 4, 4) = −π

2 .If four lots were sent in it would be from 232B and three from 43, 106, 292, 316. But 43and 316 cross the same edge and 106 and 292 do not �t together so four lots cannot besent into ∆′.
232CCompatible regions which do not cross the same edge are as follows: 26, 43, 43C, 82,106, 122, 127, 135, 153, 154, 167, 219, 220, 255A, 255B, 256, 292, 316, 317.Assume two lots are sent in and note that d(u1) > 3 and (2, 3)-splits:Regions Outcome26, 43, 82, 106, 122, 127, 135,153, 154, 167, 219, 220,
255B, 256, 292, 316, 317 Does not �t.
43C Can only cross the 4 vertex which has degree 5. 232Cgives a (2, 3)-split and 43C gives a (4, 5)-split. So 9π

30is sent in and c(∆′) ≤ c(3, 3, 3, 3, 3, 4, 5) = −23π
30 .

255A Forces a (2, 3)-split with proper sublabel ww−1, whichis a contradiction.Clearly we cannot have three lots sent in as 43C is the only region that can send into
∆′ as well as 232C.
127We have completed 127 already as it is only compatible with 232. We do not haveto consider 232 again in the remaining regions of this group or we will be repeatingourselves.
256The only compatible region (apart from 232) is 317. This crosses the (5, 1)-edge in ∆′and does not �t, so ∆′ may not receive curvature from 317 also.43



Chapter 2: Theorem 1.12 cases (I) 1-3
43Compatible regions which do not cross the same edge are as follows: 43C, 105, 106, 153,167, 219, 255A, 266, 292, 317, 324.Regions Outcome105, 153, 255A, 324 Does not �t.
43C Cannot be across vertex 1 and cannot be across ver-tex 4 or cannot complete l(v1) with degree 5. Onlypossibility is across vertex 5, which splits (5, 1). If

d(v1) = 4, l(v1) = 3̄154 which splits (3, 4). So
π
6 + 2π

15 = 9π
30 is sent in and c(∆′) ≤ c(3, 3, 3, 3, 3, 4, 5) =

−23π
30 . If d(v1) = 5, π

15 + 2π
15 = 3π

15 is sent in and
c(∆′) ≤ c(3, 3, 3, 3, 5, 5) = −8π

15 .106, 167, 292 If d(u1) = d(u3) = 5 then 2π
15 is sent in and c(∆′) ≤

c(3, 3, 3, 5, 5) = −π
5 . If at least one of these degrees is4, at most π

3 is sent in and there is a split so c(∆′) ≤

c(3, 3, 3, 3, 4, 4) = −π
3 .219, 317 Forces a (1, 2)-split with proper sublabel ww−1, whichis a contradiction.266 At most π

3 sent in. Region gives d(u1) ≥ 4 and a
(4, 5)-split so c(3, 3, 3, 3, 4, 4) = −π

3 .Can only have three lots sent in if it is 292 and 43C as none of the others �t together.Each contribute a degree > 3 vertex and 43C gives a (5, 1)-split. So 7π
15 is sent in and

c(3, 3, 3, 4, 4, 5) = −3π
5 .

43CCompatible regions (with 167 also - see description of 43C sending above) which do notcross the same edge are as follows: 106, 153, 167, 219, 255A, 255B, 292, 316, 317.Regions Outcome106, 167 Does not �t.153 Through 1 vertex does not �t and through 5 vertexcauses labels to give a contradiction, so through 4vertex. (4, 5)-split and (2, 3)-split so 9π
30 sent in and

c(3, 3, 3, 3, 3, 4, 5) = −23π
30 .219 Only �ts through 4 vertex but the labels give a con-tradiction.44



Chapter 2: Theorem 1.12 cases (I) 1-3
255A Through vertex 1 or 5. 9π

30 sent in. At least one splitso c(∆′) ≤ c(3, 3, 3, 3, 4, 5) = −13π
30 .

255B, 292 Through vertex 4 or 5. 9π
30 sent in. At least one splitso c(∆′) ≤ c(3, 3, 3, 3, 4, 5) = −13π

30 .316, 317 All three crossings require a vertex whose label givesa contradiction.The only possibility for three lots being sent in is 43C (through vertex 5) with 255A and292 as the others do not �t. Each of these regions contribute a degree > 3 vertex and
43C gives a (5, 1)-split. So π

6 + π
6 + 2π

15 = 7π
15 is sent in and c(3, 3, 3, 4, 4, 5) = −3π

5 .
106 and 167Compatible regions which do not cross the same edge are as follows: 153, 255A, 255B,292, 316.Regions Outcome153, 292 Does not �t.
255A Case I in 255A: Either d(u1) = 4 so 7π

30 is sent in,in which case there is a split and c(3, 3, 3, 3, 4, 5) =

−13π
30 , or d(u1) = 5 so 2π

15 is sent in and c(3, 3, 3, 5, 5) =

−π
5 . Case II in 255A: Forces a (4, 5)-split with propersublabel w−1w, which is a contradiction.

255B If d(u1) = d(u3) = 5 then 2π
15 is sent in and c(∆′) ≤

c(3, 3, 3, 5, 5) = −π
5 . If at least one of these degrees is4, at most π

3 is sent in and there is a split, so c(∆′) ≤

c(3, 3, 3, 3, 4, 4) = −π
3 .316 At most π

3 sent in. Region gives d(u2) ≥ 4 and a
(3, 4)-split so c(∆′) ≤ c(3, 3, 3, 3, 4, 4) = −π

3 .We cannot have three lots sent in as it would have to be two of 316, 255A and 255B.But 316 and 255B cross the same edge, 255A crosses the (3, 4)-edge and 316 splits the
(3, 4)-edge, and 255A and 255B do not �t together.
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Chapter 2: Theorem 1.12 cases (I) 1-3
255ACompatible regions which do not cross the same edge are as follows: 153, 219, 255B,292, 316, 317.Regions Outcome
255B, 316 Does not �t.153 Forces a (2, 3)-split with proper sublabel ww−1, whichis a contradiction.219, 317 At most π

3 sent in. Region gives d(u5) ≥ 3 and a
(1, 2)-split so c(∆′) ≤ c(3, 3, 3, 3, 4, 4) = −π

3 .292 Region gives d(u1) > 3. Assume case II in 255A:At most π
3 is sent in and a (4, 5)-split, so c(∆′) ≤

c(3, 3, 3, 3, 4, 4) = −π
3 . Assume case I in 255A: If

d(u1) = 4, 7π
30 is sent in and a (5, 1)-split so c(∆′) ≤

c(3, 3, 3, 3, 4, 5) = −13π
30 . Otherwise, d(u1) = 5, 2π

15 issent in and c(∆′) ≤ c(3, 3, 3, 5, 5) = −π
5We cannot have three lots sent in as both 219 and 317 cross (5, 1) and split (1, 2), whichis the edge crossed by 292.

255BCompatible regions which do not cross the same edge are as follows: 153, 219, 292, 317.Regions Outcome153, 292 Does not �t.219, 317 Region gives a (1, 2)-split with proper sublabel ww−1- contradiction.
292Compatible regions which do not cross the same edge are as follows: 105, 219, 266, 316,317.Regions Outcome219, 266, 316, 317 Does not �t.105 Region gives a (2, 3)-split with proper sublabel w−1w- contradiction.

46



Chapter 2: Theorem 1.12 cases (I) 1-3Group II 44 38, 107, 164, 188, 198, 241, 275, 301, 312164 44, 107, 275, 312312 38, 44, 107, 164, 188, 198, 241, 275, 301This group brings about exception (iii) that the equalities l3 = l2 + l4 = l1 + l5 donot hold, and by symmetry (iv), in Case (2) of Theorem 1.12. The exception allowsus to disregard regions 44 and 312, whose labellings are l(v1) = 4̄15ω, l(v2) = 423̄,
l(v3) = 4̄32̄, l(v4) = 3̄42, l(v5) = 153̄ and l(v1) = 3̄15, l(v2) = 423̄, l(v3) = 4̄32̄,
l(v4) = 3̄42, l(v5) = 152̄ω respectively. The exception also rules out region 164, althoughthis is not one of the regions which causes the problem, which we describe next.If we were to allow the equalities l3 = l2 + l4 = l1 + l5 and therefore the regions 44 and312, it would be possible to end up with the following situation.

24

1 5

24

1 5

24

1 5

2 4

15

3

5 1

3

51

3

51

3

51

24

1 5

3

51

42

3

42

3

42

3

42

3

42

3

42

3

42

3

42

3

42

3

42

3

42

3

42

3

24

1 5
24

1 5

24

1 5

3

51

3

51

3

51

3

5 1

2 4

15

2 4

15

24

1 5

3

51

2 4

15

PSfrag replacements 44

44

44

44

44

44

312 312312

312312312

Figure 2.46: 44 and 312 togetherAll regions in this �gure other than 44 and 312 have degree −π
6 and so far we have notbeen able to �nd a way to compensate for the positive regions. Therefore the restrictionon the li's is required. 47



Chapter 2: Theorem 1.12 cases (I) 1-3Group III
13 156, 173, 258, 310, 311258 13, 156, 173, 310, 311This group brings about exception (i) that the equalities l1 = l2 + l4, l2 = l3 + l5 and

l3 = l1 + l5 do not hold, and by symmetry (ii), in Case (2) of Theorem 1.12. Theexception allows us to disregard region 13, whose labelling is l(v1) = 4̄12̄, l(v2) = 3̄25̄,
l(v3) = 1̄35̄, l(v4) = 1̄42, l(v5) = 153̄. The exception also rules out region 258 and wenow describe the problem that arises when allowing these two regions to occur.If we allowed the mentioned equalities and therefore the regions 13 and 258, which arecompatible, it is possible to end up with the following situation.
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Chapter 2: Theorem 1.12 cases (I) 1-32.4 Case 3 (A3)This section is concerned with the proof of Lemma 1.17 for case (3) in Theorem 1.12.Let r(t) = wtl1wtl2wtl3w−1tl4w−1tl5 .The following �gure shows all possible ways in which the w's can match up.
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Chapter 2: Theorem 1.12 cases (I) 1-3
∆ Edge/vertex sent across in ∆4 (3, 4)6 (5, 1)16 N/A34 (4, 5)35 (4, 5)63 (5, 1) : When region across (1, 2) ispositive.

(1, 2) : Otherwise.66 (2, 3) : When region across (1, 2) ispositive.
(1, 2) : Otherwise.78 (3, 4)79 N/A91 (4, 5)92 (3, 4)123 (2, 3)130 (4, 5)132 (5, 1)150 N/A152 (2, 3)162 (4, 5)165 (1, 2)169 (4, 5) : When region across (3, 4) ispositive
(3, 4) : When this region is notpositive and either d(v3) =

5 or d(v3) = 4, l(v3) 6=

3343.
(2, 3) : Otherwise.173 (4, 5)175 (2, 3) : When this region has asplit OR region across

(3, 4) does not split and ei-ther d(v3) = 5 or d(v3) = 4and d(u3) = 3 and one of
d(u4), d(u5) > 3 in this re-gion.

(3, 4) : When region across (2, 3)does not split and this re-gion has a split OR regionacross (2, 3) is positive.3-vertex: When none of the abovehold and this region splits.Send 1
2
c(∆) across (2, 3)and 3-vertex otherwise.

∆ Edge/vertex sent across in ∆200 (4, 5) : When region across (3, 4) ispositive
(3, 4) : Otherwise.205 N/A206 (3, 4) : When region across (4, 5) ispositive
(4, 5) : Otherwise.209 (4, 5)210 N/A220 (3, 4)231 (5, 1) : When this region has asplit OR region across

(4, 5) does not split and ei-ther d(v5) = 5 or d(v5) = 4and d(u5) = 3 and one of
d(u4), d(u3) > 3 in this re-gion.

(4, 5) : When region across (5, 1)does not split and this re-gion has a split OR regionacross (5, 1) is positive.5-vertex: When none of the abovehold and this region splits.Send 1
2
c(∆) across (5, 1)and 5-vertex otherwise.233 (3, 4)241 (5, 1)248 (2, 3)258 (3, 4)259 N/A270 (3, 4)271 (3, 4) : When region across (4, 5) ispositive

(4, 5) : When this region is notpositive and either d(v5) =

5 or d(v5) = 4, l(v5) 6=

5545.
(5, 1) : Otherwise.272 (1, 2)

The way in which we send curvature for certain type 1 and 2 regions is as follows.
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Chapter 2: Theorem 1.12 cases (I) 1-3
∆ Edge sentacross in

∆7 (1, 2)18 (4, 5)19 (5, 1)23 (1, 2)24 (5, 1)26 (2, 3)28 (1, 2)30 (5, 1)31 (5, 1)42 (3, 4)47 (5, 1)

∆ Edge sentacross in
∆50 (5, 1)52 (3, 4)58 (5, 1)64 (5, 1)71 (3, 4)72 (2, 3)74 (2, 3)75 (2, 3)80 (5, 1)82 (1, 2)90 (2, 3)

∆ Edge sentacross in
∆98 (2, 3)99 (2, 3)109 (2, 3)114 (2, 3)121 (4, 5)122 (1, 2)124 (4, 5)128 (1, 2)136 (4, 5)142 (4, 5)159 (3, 4)

∆ Edge sentacross in
∆176 (3, 4)182 (2, 3)185 (3, 4)193 (3, 4)198 (5, 1)207 (4, 5)212 (4, 5)230 (4, 5)249 (3, 4)261 (4, 5)279 (3, 4)The remaining type 1 and 2 regions are dealt with in the same way as in Subsection2.2.2We claim that, under the described sendings, Lemma 1.17 holds.2.4.2 Proof of Lemma 1.17 for A3Since there are no positive regions whose vertices are all of degree 3, the situation ofFigure 2.7 (2) does not occur.There are 36 regions of type 3, each with curvature π

6 .We can rewrite r(t) = wtl1wtl2wtl3w−1tl4w−1tl5 to obtain a symmetry from (l1, l2, l3, l4, l5)to (l2, l1, l5, l4, l3). Following is the table showing all type 3 regions and their pairingswith this symmetry. As before, those we will allocate curvature to are highlighted.
l(v1) l(v2) l(v3) l(v4) l(v5)

4 2̄15̄ω 1̄25̄ 1̄33 243̄ 4̄51̄

91 3̄12̄ 3̄21̄ω 2̄34̄ 5̄41 552̄

6 315̄ω 1̄25̄ 1̄34̄ 5̄43 254

123 3̄12̄ 3̄25ω 431 543̄ 4̄52̄

34 2̄12̄ω 3̄21̄ 2̄31 543̄ 4̄51̄

92 2̄15̄ 1̄21̄ω 2̄34̄ 5̄43 251̄

35 3̄12̄ω 3̄21̄ 2̄31 543̄ 4̄52̄

78 2̄15̄ 1̄25̄ω 1̄34̄ 5̄43 251̄51



Chapter 2: Theorem 1.12 cases (I) 1-3
63 3̄15ω 425 431 542 152̄

66 314 325̄ω 1̄32 143 254

16 3̄15̄ω 1̄25 431 543̄ 4̄52̄

79 312̄ 3̄25̄ω 1̄34̄ 5̄43 254

130 3̄12̄ 3̄24 331ω 541 552̄

270 415̄ 1̄25̄ 1̄33 243 255ω

152 314 321̄ 2̄32ω 143 254

241 2̄15 425 431 542 151̄ω

165 2̄12̄ 3̄24 333ω 243̄ 4̄51̄

272 415̄ 1̄21̄ 2̄34̄ 5̄41 555ω

173 312̄ 3̄21̄ 2̄34̄ω 5̄41 554

233 2̄15̄ 1̄25 433 243̄ 4̄51̄ω

175 312̄ 3̄21̄ 2̄34̄ω 5̄42 154

231 2̄15̄ 1̄25 432 143̄ 4̄51̄ω

200 312̄ 3̄21̄ 2̄31 542ω 154

206 2̄15̄ 1̄25 432 143ω 251̄

209 315̄ 1̄25̄ 1̄34̄ 5̄43ω 254

220 3̄12̄ 3̄25 431 543̄ω 4̄52̄

205 2̄15̄ 1̄25 431 543ω 251̄

210 312̄ 3̄21̄ 2̄31 543ω 254

132 3̄15̄ 1̄25̄ 1̄31ω 542 152̄

248 3̄12̄ 3̄25̄ 1̄32 143 252̄ω

162 2̄15̄ 1̄25 433ω 243 251̄

258 312̄ 3̄21̄ 2̄31 541 554ω

150 2̄15̄ 1̄25 432ω 143 251̄

259 312̄ 3̄21̄ 2̄31 542 154ω

169 3̄12̄ 3̄24 334̄ω 5̄41 552̄

271 415̄ 1̄25̄ 1̄33 243̄ 4̄55ωIn this case we do not get a pair for which the two regions are compatible with each other.Therefore, as there are eighteen pairs of symmetries and we only require to distributecurvature from one of each of these pairs, there are eighteen regions for which we need toknow how to distribute curvature. Nine of these regions can be dealt with individuallyso we shall deal with these �rst. The �gures showing the way positive curvature can besent in each of these cases is as follows:
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Figure 2.49: no. 4
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Figure 2.50: no. 6
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Figure 2.51: no. 34
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Figure 2.52: no. 35
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Figure 2.53: no. 130
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Figure 2.54: no. 165
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Figure 2.55: no. 173
∆

π
6

∆
5

w

w w

w

w

w

3

w
w

w
w

2
1

5

1
4

4

1

3 5

5

4
3

2

4

5

1

5 w

w

w

w

w

wPSfrag replacements ′

Figure 2.56: no. 209
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Figure 2.57: no. 271For the regions where we already know ∆′ has a split, we assume there are no furthersplits and no vertices of degree > 3 in ∆′ and obtain a contradiction for each.
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Chapter 2: Theorem 1.12 cases (I) 1-34: Cannot complete u1.34: l(u5) = 552̄. Cannot complete u1.35: Cannot complete u5.130: Cannot complete u2.165: l(u4) = 5̄41, l(u5) = 554. Cannot complete u1.173: Cannot complete u2.271: Cannot complete u1.So c(∆) ≤ π
6 and c(∆′) ≤ c(3, 3, 3, 3, 3, 4) = −π

6 .Let us now look at the remaining two regions. In these cases, we can use the fact thatthe degree > 3 vertex must, in fact, be degree 5.6: d(v1) = 5 so c(∆) = π
15 . Cannot have no splits and all remaining verticesof degree 3 in ∆′, or would have a compatible positive region with vertex3 of degree 5. This is not the case or ∆′ would have to be 6, whichis clearly not true, or 99, which has vertex 3 of degree 3. c(∆′) ≤

c(3, 3, 3, 4, 5) = − π
10 .209: d(v4) = 5 so c(∆) = π

15 . Cannot have all remaining degrees 3 in ∆′ orwould have a compatible positive region with vertex 3 of degree 5, whichis not the case. c(∆′) ≤ c(3, 3, 3, 4, 5) = − π
10 .The ∆′ for the following regions cannot receive curvature from elsewhere:Region no. Compatible regions Edges crossed Problem with regions6 99 (3, 4) Crosses same edge34 261 (3, 4) Crosses same edge130 None165 128 (2, 3) Crosses same edge173 193 (5, 1) Crosses same edge198 (4, 5) Crosses split edge209 NoneEach of the remaining three cases, 4, 35, and 271, can only appear with one other regionthat does not send curvature across the same edge: 75, 82, and 75 respectively. However,75 forces a (1, 2)-split and 82 forces a (4, 5)-split, both with proper sublabel ww−1 whichis a contradiction by Lemma 1.23. Therefore, no more than one lot of curvature can besent into ∆′. 54



Chapter 2: Theorem 1.12 cases (I) 1-3The remaining cases are split into three groups as in the previous section.Group IA table displaying the regions in this group along with their compatible regions is asfollows. As before, the compatible type 3 regions have been highlighted.66 23, 64, 152, 248152 23, 64, 66, 248248 23, 24, 64, 66, 152
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Figure 2.60: no. 24866: Case I: A is positive. A must be 152 and l(v2) = 52̄3̄23̄, which causes a (4, 5)-split in B. So send to B as c(B) ≤ c(3, 3, 3, 3, 3, 5) = −4π
15 and π

15 is sent in.Case II: B is positive. B must be 248 and l(v2) = 325̄2̄3. If there is a splitor another degree > 3 vertex then c(A) ≤ c(3, 3, 3, 4, 5) = − π
10 and π

15 sent in,so send to A. Now assume otherwise. But then lA(u2) = 245, which splits the
(1, 2)-edge - contradiction. Case III: A and B are not positive. If d(v2) = 5 thenthere must be at least one split or degree > 3 vertex in A, otherwise A would bepositive. So c(A) ≤ c(3, 3, 3, 4, 5) = − π

10 and send the π
15 to A. If d(v2) = 4 then

l(v2) ∈ {325̄5̄, 325̄2}, both of which split A so c(A) ≤ c(3, 3, 3, 3, 3, 4) = −π
6 andsend the π

6 to A.152: Any splits and we are done so assume no splits. If d(u5) = d(u4) = 3 then
l(u5) = 52̄5. But then u4 cannot be completed with degree 3 and no splits. Let
d(u5) > 3 or d(u4) > 3. If d(v3) = 5 then we are done as c(∆′) ≤ − π

10 and π
15 issent in. If d(v3) = 4, l(v3) = 2̄323̄, which gives a split - contradiction.55



Chapter 2: Theorem 1.12 cases (I) 1-3248: If a further split or degree > 3 vertex then we are done so assume otherwise. Butthen the labels force the split to have sublabel ww−1, which is a contradiction.We now check that curvature is still compensated for when more than one lot of curvatureis sent in.
248Compatible regions which do not cross the same edge are as follows: 23, 24, 64, 66A,152.Assume two lots are sent in:Regions Outcome24, 64 Does not �t.23 At most π

3 sent in. Region gives a (3, 4)-split and
d(u2) > 3 so c(∆′) ≤ c(3, 3, 3, 3, 3, 3, 4) = −π

2 .
66A Forces the split to have sublabel ww−1, which is acontradiction.152 Region gives d(u2) > 3. If d(u2) = 4, at most π

3 issent in and l(u2) = 2̄323̄, which gives a (2, 3)-split, so
c(∆′) ≤ c(3, 3, 3, 3, 3, 3, 4) = −π

2 . If d(u2) = 5, at most
7π
30 is sent in and c(∆′) ≤ c(3, 3, 3, 3, 3, 5) = −8π

30 .If three lots are sent in it must be with 23 and 152. But 23 and 152 do not �t togetherunless d(u2) > 5, so three lots cannot be sent in.
152Compatible regions which do not cross the same edge are as follows: 23, 64, 66A, 66B.Assume two lots are sent in:Regions Outcome23 Does not �t.64 Region gives a (5, 1)-split with proper sublabel ww−1- contradiction.
66A We have d(u2) > 3 and the region gives d(u3) > 3 andalso d(u5) > 3 from the labels. If d(u2) = 4, at most

π
3 is sent in and l(u2) = 2̄323̄, which causes a split, so
c(∆′) ≤ c(3, 3, 3, 4, 4, 4) = −π

2 . If d(u2) = 5, at most
7π
30 is sent in and c(∆′) ≤ c(3, 3, 4, 4, 5) = −8π

30 .56



Chapter 2: Theorem 1.12 cases (I) 1-3
66B At most 7π

30 sent in. Region gives a (4, 5)-split and
d(u5) = 5, l(u5) = 52̄3̄23̄, so c(3, 3, 3, 3, 4, 5) = −13π

30 .If three lots are sent in it must be with 66A and 66B, but the three do not �t withoutforcing a (4, 5)-split with proper sublabel ww−1, a contradiction.
66ACompatible regions which do not cross the same edge are as follows: 23, 64, 66B.Assume two lots are sent in:Regions Outcome23, 64 Does not �t.
66B Region forces a (4, 5)-split with proper sublabel ww−1- contradiction.

66BCompatible regions which do not cross the same edge are as follows: 23, 64.Assume two lots are sent in:Regions Outcome64 Does not �t.23 At most π
3 sent in. Region gives a (3, 4)-split and

d(u2) > 3 so c(∆′) ≤ c(3, 3, 3, 3, 4, 4) = −π
3 .Clearly we cannot have more than two lots being sent in.Group II 175 30, 114, 200, 258200 30, 31, 42, 71, 74, 80, 114, 121, 159, 175, 258, 279258 30, 31, 42, 71, 74, 80, 114, 121, 159, 175, 200, 279
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Chapter 2: Theorem 1.12 cases (I) 1-3
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Figure 2.63: no. 258175: If there are any splits in A or B then send there. Now assume there are no splitsin A or B. Case I: A is positive. Then A is 114 and d(v3) = 5, l(v3) = 43̄242.If B has another vertex of degree > 3 then c(B) ≤ − π
10 and send the π

15 there,so now assume otherwise. But then u1 cannot be completed with degree 3- contradiction. Case II: A is not positive. If d(v3) = 5, there must be asplit or another vertex of degree > 3 in A or A would be positive, so send to
A. Let d(v3) = 4, so l(v3) = 2̄34̄5̄. If C splits, send there and now assumeotherwise. Cannot complete lA(u3) with degree 3 without splitting A or C so
dA(u3) > 3. If dA(u4) > 3 or dA(u5) > 3, c(A) ≤ c(3, 3, 4, 4, 4) = −π

6 so sendto A. Now assume dA(u4) = dA(u5) = 3, so lA(u5) = 541 and lA(u4) = 425̄.If dA(u3) = 4, lA(u3) = 434̄3̄, which splits C - contradiction. So dA(u3) = 5,
c(A), c(C) ≤ c(3, 3, 3, 4, 5) = − π

10 and so send π
12 each to A and C.200: Case I: A is positive. Then A is 258 and d(v4) = 5. If we have a split or furthervertex of degree > 3 in B then send to B, so now assume otherwise. Now

l(v4) = 55425 or 55421̄, both of which give a contradiction when completing thelabels of B with degree 3 with no splits. Case II: A is not positive and d(v4) = 4.Then l(v4) = 5423̄ which splits A so send to A. Case III: A is not positive and
d(v4) = 5. Must be a split or another vertex of degree > 3 or A would be positivewe are so done.258: Case I: B is positive. Then B is 279. This splits the (3, 4)-edge of C so if thereis another split or a vertex of degree > 3 in C then send to C. Now assumeotherwise, which gives a contradiction when trying to complete the labels withdegree 3 with no splits. Case II: B is not positive and d(v5) = 5. Must be a splitor another vertex of degree > 3 in B or would be positive so send to B. CaseIII: B is not positive and d(v5) = 4. If l(v5) = 5545, A splits along (4, 5) so sendto A. The other potential labels split B along (4, 5) so then send to B.58



Chapter 2: Theorem 1.12 cases (I) 1-3
175ACompatible regions which do not cross the same edge are as follows: 114, 175B, 175C,
200A, 258A, 258B, 258C.Assume two lots are sent in:Regions Outcome
175B, 258B, 258C Does not �t (recall that 258C requires 279, which isnot compatible with 175).114, 258A At most π

3 sent in. Region gives d(u4) > 3 and a split,so c(∆′) ≤ c(3, 3, 3, 3, 4, 4) = −π
3 .

175C d(u2) ≥ 4 and d(u5) ≥ 4 and if there is a split weare done. If d(u2) = 5, c(∆′) ≤ c(3, 3, 4, 4, 5) = −4π
15and 4π

15 send in so assume d(u2) = 4, d(u3) > 3. If
d(u3) = 4, region gives a split so we are done. Other-wise, d(u3) = 5 and at most π

6 + π
12 = π

4 is sent in, so
c(∆′) ≤ c(3, 3, 4, 4, 5) = −4π

15 .
200A d(u2) ≥ 4 and d(u5) ≥ 4. Either d(u5) = 4 and regioncauses a split so we are done or d(u5) = 5. If d(u2) = 5also, 2π

15 is sent in and c(3, 3, 3, 5, 5) = −π
5 . If d(u2) = 4then either a split or d(u3) > 3, so 7π
30 sent in and

c(3, 3, 4, 4, 5) = −4π
15 .Assume three lots are sent in:Regions Outcome

{175C, 200A} Does not �t.
{114, 175C}, {114, 200A},
{175C, 258A}, {200A, 258A}

At most π
2 sent in. One region gives a split and

d(u4) > 3 and the other gives d(u5) > 3, so c(∆′) ≤

c(3, 3, 3, 4, 4, 4) = −π
2 .We cannot have four lots sent in as would need to be three of 114, 175C, 200A and 258A,but 114 and 258A cross the same edge and 175C and 200A do not �t together.

175BCompatible regions which do not cross the same edge are as follows: 30, 114, 175C,
200A, 200B, 258A, 258B, 258C.Assume two lots are sent in: 59



Chapter 2: Theorem 1.12 cases (I) 1-3Regions Outcome114, 175C, 200A, 258A,
258B, 258C

Does not �t.30, 200B Region gives a (5, 1)-split with proper sublabel w−1w- contradiction.Clearly we cannot have three lots sent in.
175CCompatible regions which do not cross the same edge are as follows: 30, 114, 200A,
200B, 258A, 258B, 258C.Assume two lots are sent in:Regions Outcome
200A, 258B, 258C Does not �t.30, 200B Region gives a (5, 1)-split with proper sublabel w−1w- contradiction.114 At most π

3 sent in. Region gives d(u4) > 3 and a
(2, 3)-split, so c(∆′) ≤ c(3, 3, 3, 3, 4, 4) = −π

3 .
258A Region gives a (4, 5)-split with proper sublabel w−1w- contradiction.Clearly we cannot have three lots sent in.

200BCompatible regions which do not cross the same edge are as follows: 31, 42, 71, 74, 80,114, 121, 159, 200A, 258A, 258B, 258C, 279.Assume two lots are sent in and note that d(u2) = 5:Regions Outcome31, 42, 71, 74, 80, 121, 159,
200A, 258C

Does not �t.114, 258A At most 7π
30 sent in. Region gives d(u4) > 3 and a split,so c(∆′) ≤ c(3, 3, 3, 3, 4, 5) = −13π

30 .
258B At most 7π

30 sent in. Region gives d(u5) > 3. If d(u5) =

5 then c(3, 3, 3, 5, 5) = −π
5 and 2π

15 is sent in. If d(u5) =

4, there is a (4, 5)-split and c(3, 3, 3, 3, 4, 5) = −13π
30 .60



Chapter 2: Theorem 1.12 cases (I) 1-3279 Region gives a (5, 1)-split with proper sublabel ww−1- contradiction.If three lots are sent in must be with 258B and either 114 or 258A as 114 and 258Across the same edge. Then d(u2) = 5, d(u5) ≥ 4, d(u4) ≥ 4 and there is a (2, 3)-split ora (4, 5)-split from 114 or 258A respectively, so c(3, 3, 3, 4, 4, 5) = −3π
5 and 2π

5 is sent in.
200ACompatible regions which do not cross the same edge are as follows: 30, 31, 42, 71, 80,114, 121, 159, 258A, 279.Assume two lots are sent in:Regions Outcome30, 279 Does not �t.31, 42, 71, 80, 121, 159 Region gives a (1, 2)-split with proper sublabel w−1w- contradiction.114, 258A At most π

3 sent in. Region gives d(u4) > 3 and a split,so c(∆′) ≤ c(3, 3, 3, 3, 4, 4) = −π
3 .Three lots cannot be sent in as 144 and 258A cross the same edge.

258ACompatible regions which do not cross the same edge are as follows: 30, 31, 42, 71, 74,80, 121, 159, 258B, 258C, 279.Assume two lots are sent in and note that d(u4) = 4 and (4, 5) splits:Regions Outcome31, 42, 71, 80, 121, 159,
258C, 279 Does not �t.30 At most π

3 sent in. Region gives a (5, 1)-split and
d(u2) > 3 so c(∆′) ≤ c(3, 3, 3, 3, 3, 4, 4) = −2π

374 At most π
3 sent in. Region gives a (1, 2)-split and

d(u5) > 3 so c(∆′) ≤ c(3, 3, 3, 3, 3, 4, 4) = −2π
3 .

258B At most π
3 sent in. Region gives d(u5) > 3 so c(∆′) ≤

c(3, 3, 3, 3, 4, 4) = −π
3 .

61



Chapter 2: Theorem 1.12 cases (I) 1-3Three lots cannot be sent in as 74 and 258B cross (5, 1) and 30 splits (5, 1).
258B and 258CCompatible regions which do not cross the same edge are as follows: 30, 31, 42, 71, 80,114, 121, 159, 279.Assume two lots are sent in:Regions Outcome30, 279 Does not �t.31, 42, 71, 80, 159 Region gives a (1, 2)-split with proper sublabel w−1w- contradiction.114 At most π

3 sent in. Can only be 258B as 258C requires279 and 114 and 279 are not compatible. Region gives
d(u4) > 3 and a (2, 3)-split, so c(3, 3, 3, 3, 4, 4) = −π

3 .Clearly we cannot have three lots sent in.Group III 79 32, 177, 210, 259210 32, 79, 112, 117, 148, 172, 177, 189, 259259 32, 79, 112, 117, 148, 172, 177, 189, 210This group brings about exception (i) that the equalities l2 = l1 + l3 and l2 + l4 + l5 = 0do not hold, and by symmetry (ii), in Case (3) of Theorem 1.12. The exception givenallows us to disregard regions 210 and 259, whose labels are l(v1) = 312̄, l(v2) = 3̄21̄,
l(v3) = 2̄31, l(v4) = 543ω, l(v5) = 254 and l(v1) = 312̄, l(v2) = 3̄21̄, l(v3) = 2̄31,
l(v4) = 542, l(v5) = 154ω respectively. The exception also rules out region 79, althoughthis is not one of the regions which causes the problem, which we describe next.If we were to allow the mentioned equalities and therefore the regions 210 and 259, it ispossible to end up with the following situation.
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Chapter 2: Theorem 1.12 cases (I) 1-3
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Figure 2.64: 210 and 259 togetherAll regions in this �gure other than 210 and 259 have degree −π
6 and, again, we havenot been able to compensate for the positive regions. Therefore the restriction on the

li's is required.This completes the proof of Lemma 1.17 in this case, with the mentioned exceptions.
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Chapter 3
Theorem 1.12 cases (I) 4 and (II)
This chapter shall be concerned with the proof of Lemma 1.17 for the cases (I)(4) and(II) in Theorem 1.12. We will concentrate on (I)(4) �rst of all, that is, the cases forwhich r(t) is of the form (B1)-(B6).As in the previous chapter, we need to locate regions of positive curvature and distributethis curvature to one or more nearby regions which are able to compensate for thiscurvature. We will see that this is done in a similar way to the previous chapter, apartfrom the cases B4(b) and B5(b), which require a slightly di�erent approach.We have the added complication for the B cases that we have the potential for v and wto be subwords of each other. We assume that they are not equal to each other or to theother's inverse or we are back to the A cases. However, added complications arise when
v or w is a proper subword of the other, or a proper subword of the other's inverse. Fornow, we assume this is not the case and we will see in Section 3.3 why this situationcauses further complication and in which particular situations we get a problem.The same result as in Lemma 2.2 from the previous chapter, for regions of the typeshown in Figure 2.2, follows to this chapter. This, along with the assumption that no vor w is a proper subword of the other, means that for now we need only consider positiveregions whose vertices are either w-vertices (which here can have label w or v) or vi.
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Chapter 3: Theorem 1.12 cases (I) 4 and (II)3.1 Case 4For each case, we will display the possible labellings of ∆, an interior region of positivecurvature, and check if there are any which do not give a contradiction and thereforegive us a region of positive curvature. As before, we allow the degree of at most one ofthe vi to exceed 3, and this degree must then be 4 or 5.Unlike the A cases, there are much fewer possible labellings and so the work may bedone by hand instead of using a computer. Much of the work in this section is the sameas in the original case of Theorem 1.9, which can be viewed in [9].3.1.1 r(t) = wtl1wtl2wtl3vtl4vtl5 (B1(a))Let r(t) be of the form B1(a) and so r(t) = wtl1wtl2wtl3vtl4vtl5 .
∆

w

w

w

1

2

34

5

1

2

3

2

5

2

3

1

5
1

2
1

45

3

4

w

w

w

w

w
w

v
v

v

vFigure 3.1: All possible labellings for B1(a)If d(v4) = 3, l(v4) = 5̄43̄.If d(v3) = 3, l(v3) ∈ {1̄34̄, 2̄34̄}.If d(v5) = 3, l(v5) ∈ {4̄51̄, 4̄52̄}.So d(v4) = d(v3) = 3 gives a contradiction and d(v4) = d(v5) = 3 gives a contradictionand so, as there can only be one vertex of degree > 3, d(v4) > 3 and d(vi) = 3, ∀i 6= 4.Let l(v5) = 4̄51̄. Then l(v3) = 2̄34̄, l(v2) = 1̄21̄, which leaves us with l(v1) = 2̄15̄ whichgives a contradiction.Let l(v5) = 4̄52̄. Then l(v3) = 1̄34̄ and l(v2) ∈ {1̄25̄, 3̄25̄}, both of which give a contra-diction.There are no regions of positive curvature in this case.65



Chapter 3: Theorem 1.12 cases (I) 4 and (II)3.1.2 r(t) = wtl1wtl2wtl3vtl4v−1tl5 (B1(b))Let r(t) be of the form B1(b) and so r(t) = wtl1wtl2wtl3vtl4v−1tl5 .
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vFigure 3.2: All possible labellings for B1(b)In this case d(v4) > 3, d(vi) = 3, ∀i 6= 4.Let l(v5) = 351̄. Then l(v3) = 1̄35, l(v2) = 1̄25̄, leaving l(v1) = 2̄15̄ which is a contra-diction.Let l(v5) = 352̄. The l(v3) = 2̄35, l(v2) = 1̄21̄, leaving l(v1) = 3̄15̄ which is a contradic-tion.There are no regions of positive curvature in this case.3.1.3 r(t) = wtl1wtl2w−1tl3vtl4vtl5 (B2(a))Let r(t) be of the form B2(a) and so r(t) = wtl1wtl2w−1tl3vtl4vtl5 .
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Chapter 3: Theorem 1.12 cases (I) 4 and (II)Let d(vi) = 3, ∀i.Then l(v3) = l(v4) = l(v5) = 534̄, l(v2) = 221, forcing l(v1) = 213, contradiction.Let d(v1) > 3, d(vi) = 3, ∀i 6= 1.Then l(v3) = l(v4) = l(v5) = 534̄, l(v2) = 221. Send curvature as shown in (a) ofDiagram 3.4 below.Let d(v2) > 3, d(vi) = 3, ∀i 6= 2.Then l(v3) = l(v4) = l(v5) = 534̄, l(v1) ∈ {213, 215̄}.If l(v1) = 213 then send curvature as shown in (b) of Diagram 3.4 below.If l(v1) = 215̄ then send curvature as shown in (c) of Diagram 3.4 below.Let d(v3) > 3, d(vi) = 3, ∀i 6= 3.Then l(v4) = l(v5) = 534̄, l(v1) = 215̄, l(v2) = 1̄22. Send curvature as shown in (d) ofDiagram 3.4 below.Let d(v4) > 3, d(vi) = 3, ∀i 6= 4.Then l(v5) ∈ {4̄51̄, 4̄53}.If l(v5) = 4̄51̄ then l(v1) = 2̄13, l(v2) = 221, forcing l(v3) = 534̄, contradiction.If l(v5) = 4̄53 then l(v3) = 534̄, l(v2) = 221, l(v1) = 213, contradiction.Let d(v5) > 3, d(vi) = 3, ∀i 6= 5.Then l(v3) = l(v4) = 534̄, l(v2) = 122, l(v1) = 132̄: send curvature as shown in (e) ofDiagram 3.4 below.In the diagram we have the following:(a) Curvature sent across the (2, 3)-edge, d(u3) > 3, (1, 2)-split.(b) Curvature sent across the (2, 3)-edge, d(u2) > 3, (3, 4)-split.(c) Curvature sent across the (5, 1)-edge, d(u1) > 3, (4, 5)-split.(d) Curvature sent across the (1, 2)-edge, d(u1) > 3, (2, 3)-split.(e) Curvature sent across the (1, 2)-edge, d(u1) > 3, (2, 3)-split.In each case, if there is only one sending of curvature to any of the ∆′, then π
6 is sent inand c(∆′) ≤ c(3, 3, 3, 3, 3, 4) = −π

6 .If two lots of curvature is sent in to any of the ∆′, it must be from case (c) plus one ofthe others as (d) and (e) both split (2, 3). In case (c), l(v1) = 215̄, which contradict the67



Chapter 3: Theorem 1.12 cases (I) 4 and (II)labels in (a), (b) and (e), so the only possibility is (c) with (d). At most π
3 is being sent inand we get a (2, 3)-split, a (4, 5)-split and d(u1) > 3 so c(∆′) ≤ c(3, 3, 3, 3, 3, 3, 4) = −π

2 ,which is more than enough to compensate.
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(e) d(v5) > 3Figure 3.4: Curvature distribution in B2(a)3.1.4 r(t) = wtl1wtl2w−1tl3vtl4v−1tl5 (B2(b))Let r(t) be of the form B2(b) and so r(t) = wtl1wtl2w−1tl3vtl4v−1tl5 .
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Chapter 3: Theorem 1.12 cases (I) 4 and (II)In this case d(v4) > 3, d(vi) = 3, ∀i 6= 4.
l(v5) ∈ {351̄, 353}, l(v3) ∈ {535, 135}. Any choice for l(v5) and l(v3) gives a contradic-tion.There are no regions of positive curvature in this case.3.1.5 r(t) = wtl1w−1tl2wtl3vtl4vtl5 (B3(a))Let r(t) be of the form B3(a) and so r(t) = wtl1w−1tl2wtl3vtl4vtl5 .
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d(vi) = 3, ∀i 6= 4.Let l(v5) = 4̄52. Then l(v1) = 113, l(v2) = 225̄, l(v3) = 1̄34̄. l(v1) and l(v3) =⇒ −l4 =

3l1. l(v2) and l(v5) =⇒ l4 = 3l2 =⇒ l1 = −l2, which is a contradiction.Let l(v5) = 4̄52̄. Then l(v1) = 3̄11, l(v2) = 522, l(v3) = 134̄. l(v1) and l(v3) =⇒ l4 =

3l1. l(v2) and l(v5) =⇒ l4 = −3l2 =⇒ l1 = −l2, which is a contradiction.There are no regions of positive curvature in this case.
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Chapter 3: Theorem 1.12 cases (I) 4 and (II)3.1.6 r(t) = wtl1w−1tl2wtl3vtl4v−1tl5 (B3(b))Let r(t) be of the form B3(b) and so r(t) = wtl1w−1tl2wtl3vtl4v−1tl5 .
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Chapter 3: Theorem 1.12 cases (I) 4 and (II)If d(v3) = d(v5) = 3, l(v3) ∈ {3̄55, 3̄51}, l(v5) ∈ {3̄51̄, 3̄53̄}, which gives a contradiction,so one of the degrees must be > 3.If d(v2) = d(v4) = 3, l(v2) ∈ {1̄24̄, 4̄24̄}, l(v4) ∈ {1̄42̄, 2̄42̄}, which gives a contradiction,so one of the degrees must be > 3.But there can be at most one vertex of degree > 3 so this gives a contradiction.There are no regions of positive curvature in this case.3.1.8 r(t) = wtl1wtl2vtl3w−1tl4vtl5 (B5(a))Let r(t) be of the form B5(a) and so r(t) = wtl1wtl2vtl3w−1tl4vtl5 .
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l(v2) = l(v4) = 24̄1̄, l(v3) = 5̄32 and l(v1) ∈ {2̄15̄, 315̄}, both of which give a contradic-tion.There are no regions of positive curvature in this case.71



Chapter 3: Theorem 1.12 cases (I) 4 and (II)3.1.9 r(t) = wtl1w−1tl2vtl3wtl4vtl5 (B6(a))Let r(t) be of the form B6(a) and so r(t) = wtl1w−1tl2vtl3wtl4vtl5 .
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Figure 3.10: All possible labellings for B6(a)If d(v3) = d(v5) = 3, l(v3) ∈ {3̄55, 3̄52̄}, l(v5) ∈ {3̄52, 3̄53̄}, which gives a contradiction,so one of the degrees must be > 3.If d(v2) = d(v4) = 3, l(v2) ∈ {524̄, 324̄}, l(v4) ∈ {1̄42̄, 142̄}, which gives a contradiction,so one of the degrees must be > 3.But there can be at most one vertex of degree > 3 so this gives a contradiction.There are no regions of positive curvature in this case.3.1.10 r(t) = wtl1w−1tl2vtl3wtl4v−1tl5 (B6(b))Let r(t) be of the form B6(b) and so r(t) = wtl1w−1tl2vtl3wtl4v−1tl5 .
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Chapter 3: Theorem 1.12 cases (I) 4 and (II)If d(v3) = d(v4) = 3, l(v3) ∈ {435̄, 432}, l(v4) ∈ {1̄43, 143}, which gives a contradiction,so one of the degrees must be > 3.If d(v2) = d(v5) = 3, l(v2) ∈ {525, 325}, l(v5) ∈ {252, 253̄}, which gives a contradiction,so one of the degrees must be > 3.But there can be at most one vertex of degree > 3 so this gives a contradiction.There are no regions of positive curvature in this case.We now look at cases B4(b) and B5(b), which were missed out previously due to thembeing more di�cult cases.3.1.11 r(t) = wtl1wtl2vtl3wtl4v−1tl5 (B4(b))For this case, r(t) is of the form B4(b) and so r(t) = wtl1wtl2vtl3wtl4v−1tl5 . We shallexamine the possible labellings of a region with positive curvature and see that thesituation becomes more di�cult when l1 = l2 + l5 = l3 + l4.
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Chapter 3: Theorem 1.12 cases (I) 4 and (II)The way in which curvature can be distributed for 1 and 2 is as follows.
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′Figure 3.14: no. 2The labels for these two regions cannot appear together and so ∆′ cannot receive cur-vature from both 1 and 2 at the same time. Regions 1 and 2 can also not appear withregions 3 and 4. Therefore Lemma 1.17 holds for these cases.Now we consider regions 3 and 4 and we may obtain the following diagram which, likein the previous section, shows that the positive curvature cannot be compensated for inthe usual way.
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Chapter 3: Theorem 1.12 cases (I) 4 and (II)All regions in this diagram other than 3 and 4 have degree −π
6 and so there are notenough su�ciently negative regions to compensate for the positive regions. Therefore,restrictions on the li seem to be required as in the previous section. However, for thisparticular situation we are able to use a di�erent method so that restrictions on the liare not required. We deal with this situation in Section 3.2.3.1.12 r(t) = wtl1wtl2vtl3w−1tl4v−1tl5 (B5(b))For this case, r(t) is of the form B5(b) and so r(t) = wtl1wtl2vtl3w−1tl4v−1tl5 . We shallexamine the possible labellings of a region with positive curvature and see that, similarto case B4(b), the situation becomes more di�cult when l1 = l2 + l5 and l1 + l3 + l4 = 0.
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Chapter 3: Theorem 1.12 cases (I) 4 and (II)
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Chapter 3: Theorem 1.12 cases (I) 4 and (II)restrictions being required and we deal with this in the next section.3.2 Di�cult cases for B4(b) and B5(b)The two diagrams obtained in the previous section have the same structure as thosethat bring about the second two restrictions in Case (2) and the restrictions in Case(3). Therefore, it seems likely that we would require the same restrictions for thesecases. However, using a new technique we are able to remove these restrictions andprove Lemma 1.17 for these situations also.3.2.1 Case B4(b)Let r(t) = wtl1wtl2vtl3wtl4v−1tl5 and assume that l1 = l2 + l5 = l3 + l4.The problems are brought about by the situation occurring in Figure 3.15. If we returnto examine this diagram, we see that if we remove all edges in the diagram with cornerlabels 43 at one end and 25 at the other, then we obtain strips.
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1 1Figure 3.20: Removing edgesLemma 3.1. The boundaries of the strips obtained in the diagram are connected, i.e.the strips do not form an annulus.Proof. Assume by way of contradiction that these strips form an annulus. If we thendeleted the two strips alternating regions 3 and 4, then we could rejoin the diagram asfollows. Shift the bottom layer to the right so that it joins up with the top layer to createvertices with labels 1̄(25). But this creates a diagram with fewer regions than before.However, we assumed that our original diagram was minimal with respect to the numberof regions, and so we obtain a contradiction. �Note that this lemma is required as the resulting diagram must be connected for Lemma1.16 to hold.It is the important to know what labellings may occur at each end of the strips to see77



Chapter 3: Theorem 1.12 cases (I) 4 and (II)whether or not our Lemma 1.17 now holds. We explain more precisely the method weare now using.We begin with the amended diagram as described in Section 1.3. We now remove anyvertex sublabel 43 or 25 and replace them with new labels (43) and (25). We also removethe corresponding edge, so that the new labels (43) and (25) each add one to the degreeof the vertex. So an old vertex 431̄ of degree 3 would now become (43)1̄, which is avertex of degree 2.PSfrag replacements
11

4 3
43Figure 3.21: Amending verticesWe may assume from now on that we do not have the sublabels 43, 3̄4̄, 25 or 5̄2̄ anywherein the diagram. We look for potential positive regions under all these conditions.Assume there are no splits in ∆ and observe Figure 3.12, which shows the same possiblecorner labels either side of the two vs, as the new labels begin and end with a w.Therefore, because only a v may match up with another v, v2 has sublabel 25, v3 hassublabel 43, v4 has sublabel 43 and v5 has sublabel 25. However, none of these sublabelsare allowed and so we must have at least two splits, along the (2, 3)-edge and the (4, 5)-edge of ∆. The only original vi whose degree could potentially be 2 is v1 and so ∆has degree at least 6. Therefore, ∆ is not positive and we have no regions of positivecurvature in this case.
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Figure 3.22: Typical region for B4(b)78



Chapter 3: Theorem 1.12 cases (I) 4 and (II)3.2.2 Case B5(b)Let r(t) = wtl1wtl2vtl3w−1tl4v−1tl5 and assume that l1 = l2 + l5 and l1 + l3 + l4 = 0. Asin Subsection 3.2.1, we allow the new labels (43), (25), (43), (25) and we no longer allowthe sublabels 43, 25, 3̄4̄, 5̄2̄.By the same argument as in Subsection 3.2.1, there are no regions of positive curvaturein this case.3.3 Subword problemsThe results obtained so far are with us assuming that v and w are not subwords of eachother. Before we explain the problems that may arise when dealing with the case whenthey are subwords, we will recall exactly what is meant by a subword.We de�ne a subword of the word w = g1t
m1g2 . . . gs−1t

ms−1gs where gi ∈ G \ {1}, mi ∈

Z \ {0}, s ≥ 1 to be a word of the form gkt
mkgk+1 . . . gk+r−1t

mk+r−1gk+r where k ∈

{1, . . . , s} and r ∈ {0, . . . , s − k}. A subword is an initial subword if k = 1, an endsubword if r = s − k and a proper subword if (k, r) 6= (1, s − k).So for example, if in the above word we have g1 = g′g′′, g′, g′′ ∈ G then g1 is a subwordbut g′ and g′′ are not subwords. So a subword must begin either at the start of theoriginal word or right after one of the t's and must end either at the end of the word orjust before one of the t's.Note that when we talk about v or w being a subword of the other, we are also talkingabout the situation where v−1 is a subword of w or w−1 is a subword of v.The reason why v and w being subwords of each other causes di�culties is as follows.In the diagrams, we match up the v's and w's to look at all potential labellings. Sofor example, if w runs along the (5, 1)-edge and the (1, 2)-edge then 51̄ is a potentialsublabel for v5 and 2̄1 is a potential sublabel for v1 and we have so far assumed thatthis is the only type of label possible. However, if w is a sublabel of v then we may alsoobtain the following situations.
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Chapter 3: Theorem 1.12 cases (I) 4 and (II)
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Chapter 3: Theorem 1.12 cases (I) 4 and (II)3 and any further allows us to mark at least one more t-split with marked degree 3. Thisis equivalent to each sending allowing us to mark at least one vertex with marked degreeat least 3, and distributing at most π
3 of curvature to ∆′. Therefore, as k

3 − k + 2k
3 = 0,after k sendings of curvature in this new way at step n + 1, c∗(∆′, n + 1) ≤ 0 by Lemma1.20. Therefore, curvature is still able to be compensated for when allowing v or w tobe a middle subword of the other. �The same result as in Lemma 3.2 is not true for when v or w is an initial or end subwordof the other. In these cases, if we look back at Diagram 3.23(a) and Diagram 3.23(c), wesee that the degree of the region containing ml could be 6 and therefore we could get thecase that π

3 is being sent in and c(∆′) ≤ c(3, 3, 3, 3, 3, 4) = −π
6 or π

6 is being sent in and
c(∆′) ≤ c(3, 3, 3, 3, 3, 3) = 0. In these cases, curvature is not obviously compensated forby ∆′ and it would need to be checked for every possible case. There are so many morecases if this occurs that it is not done here and we therefore assume that we cannot have
v or w as an initial or end subword of the other.3.4 Case (II)This case states that if at least one of the wi's within r(t) = w1t

l1w2t
l2w3t

l3w4t
l4w5t

l5is not equal to plus or minus any other wj and the mentioned conditions hold, then r(t)has a solution over G.Let wi be such a word for a particular i.Let us �rst assume that wi is not a subword of any other wj . Given the fact that the
w-vertices must have degree 2 in order for a region to have positive curvature, such aregion must have a w-vertex corresponding to wi with the same wi on the other side asthis is the only possible matching. But this contradicts Lemma 1.15(i) so no such regionof positive curvature exists.Let wi be a middle subword of wj as described in Section 3.3 for some j. Then the regioncontaining the wj is of degree at least 7 and so we can send any positive curvature intothis region by the same argument as that stated in Lemma 3.2.If wi were an initial or end subword then the corresponding region could be degree 6and the same problems as mentioned in Subsection 3.3 could occur. By (***), we do notallow this situation to occur. Therefore, we have proved Lemma 1.17 for this case also.81



Chapter 4
Proof of Theorem 1.12
Let D be the tessellation of the 2-sphere as described in Chapter 1. Then c(D) = 4π byLemma 1.16. After making all the described curvature distributions from interior regions
∆ with c(∆) > 0, c(D) ≤ Σc∗(∆′) where the sum is taken over all interior regions of Dsuch that c∗(∆′) > c(∆′), and over all boundary regions of D. Now, Lemma 1.17 impliesthat c(D) ≤ Σc∗(∆′) where the sum is taken over all boundary regions ∆′ of D only.It is now necessary to prove that the equality c(D) = 4π is not obtainable, which yieldsa contradiction.For now we look at the case k = 5 only, where k is the free-product length of the equationas mentioned in Theorem 1.12.4.1 Maximum curvature sent to a boundary regionWe need to consider how much curvature may be sent into a boundary region. If weconsider the crossings mentioned in Section 2.1 and in Section 3.3 involving t-powersother than the li, we see that the total amount is unbounded.Let us recall what happens to the curvature of a region when such crossings take place.Recall that c∗(∆′) = (2 − m)π + 2πΣm

i=1
1
di

+ p, where p is any curvature being sent in.The �rst type of crossing, mentioned in 2.1, sends π
6 and the second type of crossing,mentioned in 3.3, sends π

3 so at most π
3 is sent across each time and each such crossingincreases the degree of the region by at least 1. As 1

3 −1+ 2
3 = 0, these sorts of crossingseither have no e�ect or decrease the total curvature of the region they are being sent to82



Chapter 4: Proof of Theorem 1.12by Lemma 1.20. Therefore we may disregard these types of crossings.Recall that v0 is the distinguished vertex and let d(v0) = k0. A boundary region mustcontain this vertex plus the �ve t-vertices v1, . . . v5.Curvature can be sent across each of the four edges not adjacent to v0, as it must besent from an interior region, and curvature may be also sent across at most two of the�ve vi.Note that we may in fact assume that curvature is sent across at most one of the vi.This is because, if there were two sending across the vi, they would be the sendings forA2 regions 43 and 232 as described in Section 2.3, Group I. These two crossings send in
2π
15 + π

6 but cause two splits and these splits each prohibit crossings of π
6 . Therefore thecurvature sendings would not be maximal if we assumed two sending across the vi.Whenever π

3 is sent in we get two splits and so we may assume that π
6 is sent in fromeach of the four edges in order to maximize potential curvature. Whenever π

6 is sentacross a vertex we get a split so, again to maximise curvature sent in, we assume at most
π
12 is sent in across one of the vertices, which happens in Section 2.4 without causing asplit.Therefore, without any loss we can assume that the most is being sent in to a boundaryregion is 4π

6 + π
12 = 3π

4 .4.2 Checking total curvatureSuppose k0 = 1: a single boundary region, denoted ∆̂.Since any region contains at least �ve t-vertices of degree at least 3, it follows that
c(∆̂) ≤ c(k0, 3, 3, 3, 3, 3) = c(1, 3, 3, 3, 3, 3) = 4π

3 .At most 3π
4 can be sent in to any one boundary region so c∗(∆̂) ≤ 4π

3 + 3π
4 = 25π

12 < 4π,and so c(D) < 4π.Suppose k0 = 2: at most two boundary regions.
c(∆̂) ≤ c(2, 3, 3, 3, 3, 3) = π

3 .
c(D) ≤ 2(π

3 + 3π
4 ) = 13π

6 < 4π.Suppose k0 ≥ 3:Let ∆̂ be a boundary region of degree n ≥ 6. Suppose n1 of the vertices coincide with83



Chapter 4: Proof of Theorem 1.12
v0.

c∗(∆′) ≤ c(k0, . . . , k0, 3, . . . , 3) +
3π

4

= π

[

(2 − n) +
2n1

k0
+

2(n − n1)

3
+

3

4

]

= π

[

4

k0
+

2(n1 − 2)

k0
+

11

4
−

n + 2n1

3

]

≤ π

[

4

k0
+

2(n1 − 2)

3
+

11

4
−

n + 2n1

3

]

= π

[

4

k0
+

17

12
−

n

3

]

<
4π

k0
.So c(D) < k0

(

4π
k0

)

= 4π.Therefore c(D) < 4π for all values of k0, which gives a contradiction and so completesthe proof of Theorem 1.12.RemarkIf k ≥ 6, there are no regions of positive curvature and so Lemma 1.17 is seen to holdstraight away. An argument similar to the above tells us that the total curvature of 4πcannot be obtained, which proves Theorem 1.10.
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Chapter 5
Introduction � Cyclically presentedgroups
5.1 Irreducible cyclic presentationsLet Fn =< x0, . . . , xn−1 > be the free group on n elements and let θ : Fn → Fn be theautomorphism for which xiθ = xi+1, where subscripts are taken mod n.Let ω ∈ Fn be a cyclically reduced word. De�ne Gn(ω) =< x0, . . . , xn−1|ω, ωθ, . . . , ωθn−1 >.De�nition 5.1.1. A group G is said to have a cyclic presentation (or to be cyclicallypresented) if G ∼= Gn(ω) for some n and some ω.Note that the group G3m(x−1

0 xmx0x
−2
m ) is a trivial cyclically presented group for m ≥ 1.This follows from the fact that each group is isomorphic to a free product of m copiesof the known trivial group G3(x

−1
0 x1x0x

−2
1 ). To avoid this situation where a cyclicallypresented group may be decomposed into a free product of cyclically presented groupson fewer generators, we introduce the notion of irreducibility.De�nition 5.1.2. Gn(ω) is de�ned to be irreducible if n = 1 or n > 1 and the followingtwo conditions are satis�ed:(1) w involves at least two of the xi.(2) If ω involves only xi1 . . . xik where ij < ij+1, 1 ≤ j ≤ k − 1, and where k ≥ 2, then

gcd(i2 − i1, . . . , ik − ik−1, n) = 1. 85



Chapter 5: Introduction � Cyclically presented groupsFrom now on we assume that any cyclic presentation we refer to is irreducible.The above automorphism θ induces an automorphism of Gn(ω) and we obtain the fol-lowing split extension of Gn(ω) by the cyclic group of order n.
Hn(ω) =< x, t | tn, w(x, t) >,where w(x, t) is in the normal closure of x and tn in the free group on x and t [19]. Itcan also be veri�ed that any group with such a presentation is a split extension of somecyclically presented group Gn(ω).Note that w(x, t) is obtained from ω by the rewrite xi 7→ t−ixti. So, for example, if

ω = x0x3x
−1
4 x3 then w(x, t) = x(t−3xt3)(t−4x−1t4)(t−3xt3) = xt−3xt−1x−1txt3.We refer to Gn(ω) as the cyclically presented group associated with w(x, t) where w(x, t)is as above.We denote by l(w(x, t)) the length of w(x, t) regarded as a word in the free group on xand t.5.2 Motivation and resultsThe following theorem was proved in [5].Theorem 5.2.1. Let w(x, t) be a cyclically reduced element in the normal closure of xand tn in the free group on x and t. If 6 ≤ n ≤ 10, l(w(x, t)) ≤ 15 and the cyclicallypresented group Gn(ω) associated with w(x, t) is irreducible then Gn(ω) is non-trivial.This theorem was then extended in [2] up to n = 100.The aim is to extend the experiment which looks for examples of trivial cyclically pre-sented groups under certain parameters by looking at when cyclically presented groupsare �nite.The experiment looks at cyclically presented groups associated with w(x, t) when l(w(x, t)) ≤

15 and n ≥ 4.De�nition 5.2.2. By a family, we mean Gn(ω) where ω is �xed and n takes in�nitelymany values. 86



Chapter 5: Introduction � Cyclically presented groupsDe�nition 5.2.3. The word w1(x, t) is equivalent to w2(x, t) if and only if w1(x, t) canbe obtained from w2(x, t) by a sequence of the following moves.(1) Cyclic permutation,(2) Inversion,(3) x → x−1,(4) t → t−1.For a particular n, w1(x, t) is n-equivalent to w2(x, t) if and only if w1(x, t) can beobtained from w2(x, t) by a sequence of any of the above or the following moves.(5) Replace tk1 by tk2 where k1 ≡ k2 mod n,(5) Multiply the powers of t by m where (m,n) = 1.We obtain the following result, which is motivated by Theorem 5.2.1.Theorem 5.2.4. Let w(x, t) be a cyclically reduced element in the normal closure of
x and tn in the free group on x and t. Let 6 ≤ n ≤ 50, l(w(x, t)) ≤ 10 and assumethe cyclically presented group Gn(ω) associated with each w(x, t) is irreducible and that
ω involves at least three of the xis. Assume w(x, t) is not n-equivalent to one of thefollowing:(i) x−1t−1x−1t−1xtx2t for n = 11, 13, 17, 19, 21, 23, 25, 29, 31, 33, 37, 41, 43, 47 or 49(ii) x−1t−1x−1t−1x−2tx2t for n = 7,(iii) x−1t−3xtx−1t2 for n = 9,(iv) x−1t−3xtxt2 for n = 9.Then Gn(ω) is �nite if and only if, up to n-equivalence, the associated w(x, t) is one ofthe following:(i) x−1t−2x−1tx−1t for n 6≡ 0 mod 3,(ii) x−1t−2x−1tx−2t for n odd,(iii) x−1t−1x−1t−1x−1tx−1t for n odd, 87



Chapter 5: Introduction � Cyclically presented groups(iv) x−1t−3x−1tx−1tx−1t for n odd,(v) x−1t−2xtxt−1xt2 for n odd,(vi) x−1t−2xtx−1t for n = 7,(vii) x−1t−2x−2tx−1t for n = 6,(viii) x−1t−3x−1tx−1t2 for n = 6 and 9,(ix) x−1t−3x−1txt2 for n = 6 and 8,(x) x−1t−3xtx−1t2 for n = 6,(xi) x−1t−3xtxt2 for n = 6,(xii) x−1t−2x−2tx−2t for n = 6,(xiii) x−1t−1x−1t−1xtx2t for n = 7,(xiv) x−1t−3xtx−1tx−1t for n = 6.Remarks1. Although we are running the experiment for n ≥ 4, Theorem 5.2.4 is for n ≥

6. There are many words for which we have not been able to determine if thecorresponding groups are �nite or in�nite for n = 4 and n = 5. There are precisely20 such words when l ≤ 10.2. We used the restriction that ω involves at least three of the xis as we already knowotherwise that, if the group is �nite, it must be cyclic [25], and we are interestedin �nding non-cyclic �nite groups.3. The words (iii) and (iv) in the �rst list in Theorem 5.2.4 are mentioned in [27] asgroups for which it is open to determine whether or not they are �nite.Proposition 5.2.5. For each �xed k ≥ 3, the groups Gn(x0 . . . xk−1) are families of �nitecyclically presented groups. In fact, Gn(x0 . . . xk−1) is �nite if and only if gcd(n, k) = 1.The proof of this proposition will appear in Section 8.4.Corollary 5.2.6. There is no upper bound on the length of ω for which a family of �nitecyclically presented groups Gn(ω) exists.
88



Chapter 5: Introduction � Cyclically presented groupsA further motivation for performing the described experiment is to look for groups whichare referred to as interesting groups in [19]. A �nite group is interesting if it has abalanced presentation. No examples have yet been found of an interesting group needingmore than three generators. So, while performing this experiment, we have searched for�nite groups of the form < x1, x2, x3, x4 | r1, r2, r3, r4 >, where all four generators arerequired. We have, however, been unable to �nd any such groups and so this supportsthe belief that no such groups exist.
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Chapter 6
Obtaining lists of possible words
6.1 ExperimentWe describe the experiment in which we locate all possible irreducible presentationsunder certain parameters, and attempt to identify which of the groups are �nite.Note that Hn(ω) =< x, t | tn, w(x, t) > is �nite if and only if the associated cyclicallypresented group Gn(ω) is �nite. In fact, in this case |Gn(ω)| = |Hn(ω)|/n which meanswe may study the group Hn(ω) in order to �nd out if Gn(ω) is �nite or in�nite.We make the assumptions that ω involves at least three of the xis and that l(w(x, t)) ≤ 15and n ≥ 4. Initially, we also require n ≤ 15 in order for us to obtain a �nite number ofpotential groups.Under these assumptions there are, in theory, 2(315 − 1) reduced w(x, t) which we arerequired to consider. We may make the following restrictions however, in order to allowour words to be contenders for giving us a �nite associated cyclically presented group.(1) The word w(x, t) must be cyclically reduced.(2) The exponent sum of t in w(x, t) must be equal to 0 mod n.(3) We work modulo equivalence.(4) The exponent sum of x in w(x, t) must not equal 0.(5) No cyclic permutation of w(x, t) may contain the subwords t−k, tk+1 (when n = 2k)or t−(k+1), tk+1 (when n = 2k + 1). 90



Chapter 6: Obtaining lists of possible words(6) The resulting presentation must be irreducible.(7) The determinant of the relation matrix of the resulting presentation must not equal0.(8) The rewritten word ω must involve at least 3 of the xi.Recall that we use the restriction that ω involves at least three of the xis as we alreadyknow otherwise that, if the group is �nite, it must be cyclic [25]. Restrictions (1), (3) and(5) are in place as otherwise, equivalent words will appear more than once. Restrictions(4) and (7) are in place as otherwise, if they do not hold, the group is known to bein�nite. Restriction (2) must hold as this is true for any w(x, t) obtained from rewriting
ω as described in Section 5.1.A computer program has been produced which lists all possible words under the aboverestrictions. To optimise the speed of this program it was further assumed that eachword begins with x−1. This assumption may be made as any word is equivalent to aword beginning with x−1.The following table gives the total number of words modulo (1)-(8) above for l =

l(w(x, t)) ≤ 15 and 4 ≤ n ≤ 15.
l\n 4 5 6 7 8 9 10 11 12 13 14 15
≤ 7 3 3 1 3 3 2 3 3 1 3 3 2
8 5 11 5 8 4 8 5 8 4 8 5 8
9 32 34 28 30 30 29 30 30 28 30 30 29
10 45 87 49 72 48 64 50 66 44 66 50 64
11 171 237 239 234 220 215 217 220 209 220 217 215
12 273 585 414 584 357 483 367 484 343 484 367 477
13 1148 1648 1710 1787 1712 1608 1575 1604 1520 1604 1578 1571
14 1870 4208 3074 4352 2918 3750 2804 3534 2628 3521 2789 3484
15 7191 11698 12807 13340 13106 12258 11973 11807 11266 11741 11652 11537A full list of these words may be viewed in [24].De�nition 6.1.1. Let J(l, n) refer to the set of words w(x, t) in the (l, n)-entry of thetable above.Note that |J(l, n)| = 0 for l < 7.Lemma 6.1.2. For l ≤ 15, J(l, n) ⊆ J(l, 13) for n ≥ 13. Moreover, J(l, p) = J(l, 13)when p ≥ 13 is prime. 91



Chapter 6: Obtaining lists of possible wordsProof. To prove the �rst part, we need to show that there is no w(x, t) ∈ J(l(w(x, t)), n),
n > 13 such that w 6∈ J(l(w(x, t)), 13). This is true if we cannot �nd a word that failsthe test for n = 13 but passes for some n > 13.Let us look at the above restrictions. Restrictions (1), (3) and (4) do not depend on nand so the test cannot fail for n = 13 and pass for n > 13 from any of these. When
n ≥ 13 and l ≤ 15, the exponent sum of t must be equal to 0 for restriction (2) to holdand so this restriction does not depend on n at these values. When n ≥ 13 and l ≤ 15,
t±7 cannot occur and so restriction (5) always holds for n ≥ 13.Restriction (8) holding for n = 13 implies it holds for n > 13 also as the same threeor more xi involved when n > 13 will be involved when n = 13. This is because, if ωinvolves only two of the xi when n = 13, x0 and xk say, this is the rewrite of a word
w(t, x) involving t±k as the only powers of t. To appear in the list when n = 13, k mustbe at most 6 and so this word w(t, x) rewrites to the same word ω involving only thetwo generators x0 and xk when n > 13.If l ≤ 15 and w involves xi1 , . . . , xik then 13 does not divide i2 − i1, . . . , ik − ik−1 sorestriction (6) always holds at n = 13 and therefore it cannot occur that this restrictionfails for n = 13 and passes for some n > 13.The only restriction left to look at is restriction (7), which states that the determinant ofthe resulting presentation must be non-zero. If we rerun the test without this restrictionthen we see J(l, 13) remains unchanged. This shows that the determinant test neverfails at n = 13 and so restriction (7) cannot fail for a word at n = 13 and pass for some
n > 13. So there is no word that fails any test for some n = 13 but passes for n > 13and so the �rst part of the lemma holds.To prove that J(l, p) = J(l, 13) when p ≥ 13 is prime, we need to show that any wordin J(l, 13) is also in J(l, p). The only way this could potentially not be the case is if aword passes the determinant test for n = 13 and fails for n = p.Any word ω fails the determinant test at p ⇐⇒ det(M) = 0, where M is the relationmatrix ⇐⇒ ∃a such that f(a) = 0, f associated polynomial, and ap = 1 [2].Assume a 6= 1. The minimal polynomial for the primitive pth root of unity (i.e. thepolynomial with the smallest degree such that a pth root of unity is a root of the poly-nomial) has degree p − 1 [26]. Therefore, because the maximum degree of f is 6, a pthroot of unity may not be the root of f when p > 7 and so, in particular, when p ≥ 13.Therefore the determinant test never fails when n = p ≥ 13 is prime. �RemarkFor each individual l, there is a particular smallest prime pl such that J(l, n) ⊆ J(l, pl)for n ≥ pl. For l = 15, we can see from the tables that this prime is 13 and so this prime92



Chapter 6: Obtaining lists of possible wordsis the value we use in the lemma.Lemma 6.1.2 tells us that, with the exception of sporadics, which occur at smaller valuesof n and shall be discussed in a moment, the words occurring for when n is prime(n ≥ 13) are all the possible words. Therefore, apart from sporadics, there is a �nite setof potential words for each value l and out of these, the potentials for each n is a subsetof this set.We can therefore, for each length l, examine each of the words in this set individuallyand see for which values of n, if any, this word produces a �nite group. Examining thewords in this way is useful for being systematic as, if we have proved the group associatedwith this word is in�nite for some n, then the group associated with this word is in�nitefor kn where k is any positive integer.De�nition 6.1.3. A sporadic is a word that appears in only �nitely many J(l, n). If
l ≤ 15, Lemma 6.1.2 implies w is sporadic i� w 6∈ J(l, 13).Remarks1. A sporadic will appear for small n only.2. Sporadics exist due to restriction number (2) requiring only that the exponent sumof t is equal to 0 mod n and they are precisely the words for which n divides the texponent sum but the exponent sum is non-zero.3. Sporadics cannot form families but may give us �nite groups for speci�c n.Sporadics will be discussed in Section 8.5. For now we will put sporadics to one side andconcentrate on the list of words for each length. We see from the above table that thenumber of words for each l is as follows.Length 7 8 9 10 11 12 13 14 15Total number of words 3 8 30 66 220 484 1604 3521 11741
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Chapter 7
Checking for �niteness
7.1 Special casesBefore we begin the computational methods for working out which groups are �nite,which we describe in the next section, we can reduce our number of words in the listsonce again by using existing results on words that are of a certain form.We describe the di�erent forms we deal with in the remainder of this section and then givethe totals left after these words have been dealt with. It is worth noting that, althoughthe removal of these special cases before continuing with computational methods is nowseen to be a good way, for lower values of l we found some of the results for such wordsusing computational methods instead.We give an example for each of the special cases and explain how the relevant resultsare used. However, there is usually more than one example in each case and details ofthese can be found in [24].7.1.1 Fibonacci groupsLet Fn be de�ned as a group of the following form.

Fn =< x0, . . . , xn−1 | xixi+1 = xi+2 (0 ≤ i ≤ n − 1) >, subscripts taken mod n.This family of groups is known as the Fibonacci groups and it is known that the only�nite Fibonacci groups are F1, F2, F3, F4, F5 and F7.94



Chapter 7: Checking for finitenessThe length 7 word x−1t−2xtx−1t is equivalent to a word that rewrites to x0x1x
−1
2 . Butthe group Gn(x0x1x

−1
2 ) = Fn and so we know that this word is �nite when n = 4, 5 and

7 and in�nite otherwise. See Section 8.1 for a full list of all �nite groups in which thisgroup appears.7.1.2 Generalized Fibonacci groupsLet Gn(m,k) be de�ned by the following presentation.
Gn(m,k) =< x0, . . . , xn−1 | xixi+m = xi+k (0 ≤ i ≤ n − 1) >, subscripts taken mod n.Assume that the presentation is irreducible, i.e. that 0 < m < k < n and (n,m, k) = 1.The following results are taken from [27].Lemma 7.1.1. 1. If (n, k) = 1 then Gn(m,k) ∼= H(n, z) where zk ≡ m mod n.2. If (n, k − m) = 1 then Gn(m,k) ∼= H(n, z) where z(k − m) ≡ n − m mod n.Here, H(n, z) refers to the Gilbert-Howie groups which are studied in [14].Theorem 7.1.2. Suppose (n, z) 6= (8, 3), (9, 3), (9, 4), (9, 6), (9, 7). Then H(n, z) is �niteif and only if one of the following holds:1. z = 0, 1;2. (n, z) = (2s, s + 1) where s ≥ 1;3. (n, z) = (3, 2), (4, 2), (4, 3), (5, 2), (5, 3), (5, 4), (6, 3), (6, 4), (7, 4), (7, 6), (8, 5).RemarkThe groups H(9, 3) and H(9, 6) are known to be in�nite.It remains unknown as to whether H(9, 4) and H(9, 7) are �nite or in�nite.The group H(8, 3) is �nite of order 295,245.If (n, k) > 1 and (n, k − m) > 1 then the presentation is called strongly irreducible andLemma 7.1.1 and therefore Theorem 7.1.2 cannot be used. Instead we have the followingcorollary from [27]. 95



Chapter 7: Checking for finitenessCorollary 7.1.3. Let G = Gn(m,k) be strongly irreducible and assume G 6= 1. Then Gis �nite if and only if (m,k) = 1 and n = 2k or n = 2(k − m), in which case G ∼= Zswhere s = 2
n
2 − (−1)

m+n
2 .Now let us look at an example of how the above results can be applied.The length nine word x−1t−3x−1txt2 rewrites to x−1

0 x−1
3 x1 which is equivalent to x0xn−3x

−1
n−1.Therefore, this word gives us the presentation Gn(n−3, n−1), i.e. m = n−3, k = n−1.As (n, k) = (n, n − 1) = 1, we can use part (i) of Lemma 7.1.1 and we �nd that z = 3.This means Gn(m,k) ∼= H(n, 3) and the lemma tells us that the group is �nite when

n = 4, 5, 6 and 8 and in�nite otherwise.7.1.3 Positive words of length 3Let Γn(k, l) be de�ned by the following presentation.
Γn(k, l) =< x1, . . . , xn | xixi+kxi+l = 1 (1 ≤ i ≤ n) > .The following two conditions will be used in the results:(A) k + l ≡ 0 mod n or 2l − k ≡ 0 mod n or 2k − l ≡ 0 mod n;(B) n ≡ 0 mod 3 and k + l ≡ 0 mod 3.The following theorem is deduced from [10].Theorem 7.1.4. Let (n, k, l) = 1. Then Γn(k, l) is �nite if and only if one of thefollowing holds:(i) k ≡ l mod n, in which case Γn(k, l) ∼= Zs where s = 2n − (−1)n,(ii) (A) holds and (B) does not, in which case Γn(k, l) ∼= Z3,(iii) (A) does not hold, n ≡ 0 mod 3, k + l 6≡ 0 mod 3 (so (B) does not hold) and n|3kor n|3l or n|3(l − k), in which case Γn(k, l) ∼= Zs where s = 2n − (−1)n.There is one length nine word of this form which is x−1t−3x−1tx−1t2. This word isequivalent to a word that rewrites to x0x2x3 and so k = 2 and l = 3. Case (i) of thetheorem does not hold, case (ii) gives us that the group is �nite for n = 4 and n = 5,and case (iii) gives us that the group is �nite for n = 6 and n = 9. The group is in�nitefor all other values of n. 96



Chapter 7: Checking for finiteness7.1.4 Positive words of length 4Consider the following presentation.
Gn(j, k, l) =< x1, . . . , xn | xixi+jxi+kxi+l = 1 (1 ≤ i ≤ n) >.Assume that Gn(j, k, l) is non-trivial.The following theorem is deduced from [1].Theorem 7.1.5. If −j, j − k, k − l and l are all distinct mod n then Gn(j, k, l) isin�nite. Therefore, Gn(j, k, l) is �nite only if one of the following conditions holds:(i) n|(2j − k);(ii) n|(j + k − l);(iii) n|(j + l);(iv) n|(j − 2k + l);(v) n|(j − k − l); or(vi) n|(k − 2l).The length ten word x−1t−2x−1tx−1t−1x−1t2 is of this form with j = 2, k = 1 and l = 2.We know that Gn(2, 1, 2) is �nite only if n divides 3, 1, 4, 2, -1, -3. Therefore, we know

Gn(2, 1, 2) is in�nite whenever n > 4.7.1.5 Positive words of length 5Consider the following presentation.
Gn(j, k, l,m) =< x1, . . . , xn | xixi+jxi+kxi+lxi+m = 1 (1 ≤ i ≤ n) >.Assume that we do not have any of the following:(i) n|(j + k − l) and n|(k + l),(ii) n|(j − k − l + m) and n|(2j − l − m),97



Chapter 7: Checking for finiteness(iii) n|(k − l − m) and n|(2k − m),(iv) n|(j + l − m) and n|(j − 2l),(v) n|(j − k − m) and n|(j + k − 2m).The following theorem is deduced from [17].Theorem 7.1.6. Gn(j, k, l,m) is �nite only if two of the following hold:(1) n|(2j − k)(2) n|(j + k − l)(3) n|(j + l − m)(4) n|(j + m)(5) n|(j − 2k + l)(6) n|(j − k − l + m)(7) n|(j − k − m)(8) n|(k − 2l + m)(9) n|(k − l − m)(10) n|(l − 2m)The length eleven word x−1t−2x−1tx−2t−1x−1t2 is of this form with j = 2, k = 1, l = 1and m = 2. As we are looking at n ≥ 4, it is true that we do not have n dividing any of thefollowing pairs of numbers: {2, 2}, {2, 1}, {−2, 0}, {1, 0}, {−1,−1}. Then Gn(2, 1, 1, 2) is�nite only if n divides two of the following: 3, 2, 1, 4, 1, 2, -1, 1, -2, -3. This is nevertrue for n ≥ 4 and so Gn(2, 1, 1, 2) is in�nite for all n ≥ 4.7.1.6 Exceptional intersectionsThe following theorem was proved in [6].Let us assume that the word ω(x0, . . . , xk) and any cyclic permutation of this word isnot able to be written in either of the following forms:98



Chapter 7: Checking for finiteness(i) ωα1
1 ωβ1

2 ωα2
1 ωβ2

2 . . . ωαl

1 ωβl

2 , ω1 ∈< x0, . . . , xk−1 >, ω2 ∈< x1, . . . , xk >;(ii) ωα1
3 (ν1ν2)

β1ωα2
3 (ν1ν2)

β2 . . . ωαl

3 (ν1ν2)
βl , ω3 ∈< x1, . . . , xk−1 >, ν1 ∈< x0, . . . , xk−1 >,

ν2 ∈< x1, . . . , xk >;where αi, βi ∈ Z.Then Gn(ω) is in�nite for n ≥ 4k.Furthermore, if ω(x0, . . . , xk) involves every xi, 0 ≤ i ≤ k then Gn(ω) is in�nite for
n ≥ 2(k + 1).The length thirteen word x−1t−2x−1tx−1tx−1t−2xt2 rewrites to x−1

0 x−1
2 x−1

1 x−1
0 x2. Thiscannot be written in the �rst form as the existence of two separated x0s and x2s meansthat we would have l = 2 in the formula, but x1 could not appear in either ω1 or ω2 asit only occurs once. If it were in the second form then we would have ωα1

3 = x1. Butthen either (ν1ν2)
β1 = x−1

0 x2x
−1
0 x−1

2 or x−1
0 x−1

2 , neither of which are valid possibilities.Therefore, this word is not in either of the above forms. Since k = 2 in this case and x0,
x1 and x2 are all involved in the word, we get that Gn(ω) is in�nite for n ≥ 6.7.1.7 Special cases resultsAlthough initially several of the special cases were dealt with by hand, a computerprogram was created subsequently to check which words were special cases, record theresults, and remove the some of the special case words from the list. Note that only someof the special case words were removed, depending upon how complete a list of resultswe are able to obtain using this computational method. The results of the program for
l ≥ 13, which are the l values for which we consider the list without the special words,can be viewed in [24]. After this process, the number of words remaining is shown in thefollowing table. Length 7 8 9 10 11 12 13 14 15Total number of words before 3 8 30 66 220 484 1604 3521 11741Total after special case words removed 0 8 26 60 205 481 1572 3512 11671
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Chapter 7: Checking for finiteness7.2 Method for testing �nitenessAfter removing the words which fall under the category of special cases, the next step isto look at each word separately and try to determine for each l ≤ 15 which ones are �niteand which are in�nite using computational methods. There are two di�erent computerpackages that are used for the majority of cases. The �rst is called KBMAG [15] andworks by trying to �nd an automatic structure for the group Hn(ω) and, if successful, itis able to tell us the size of the group. This method frequently fails for when n is small,in which case we often obtain success by using KBMAG with the group Gn(ω) instead.If both these methods fail then we may try to determine the size of the group Hn(ω)using the computer package GAP [12]. This package allows various commands and, ifthe group is �nite, it is often more successful than KBMAG in discovering this by meansof coset enumeration. Various tests can be put in place for checking if a group is in�nite,which we state below.1. Low index subgroups are found for the group and checked to see if there is a zeroin the abelian invariants for one of these subgroups.2. Subgroups in the derived series are checked for a zero in the abelian invariants.3. The derived subgroups of low index subgroups are checked for a zero in the abelianinvariants.4. The cores of low index subgroups are checked for a zero in the abelian invariants.5. A mapping onto PSL(m, q) is found, where q is a power of a prime and subgroupsof Hn(ω) containing the kernel of this mapping are checked for a zero in the abelianinvariants.6. A mapping as mentioned above is found and the derived subgroups of the men-tioned subgroups are checked for a zero in the abelian invariants.7. A mapping as mentioned above but from a low index subgroup instead of Hn(ω)itself, mentioned subgroups are checked for a zero in the abelian invariants.8. A factor p-group is found and checked for a zero in the abelian invariants.9. If a zero has failed to be found in the abelian invariants for any of the above tests,then we many perform the Newman In�nity Criterion (see below) to see if this canprove the group to be in�nite. 100



Chapter 7: Checking for finitenessWe note that we have not been able to use these methods, either with KBMAG or GAP,in the same way for when l = 13, l = 14 and l = 15, due to the large number of wordsinvolved for each. The results we were able to obtain are discussed in Section 8.3.7.2.1 Newman In�nity CriterionLet G be a group. Let p be a prime and let G1 be the subgroup of G generated by allcommutators and pth powers, so G1 = [G,G]Gp. Let G2 = [G1, G]Gp. De�ne dp(G) tobe the rank of G/G1 and ep(G) to be the rank of G/G2.The following result was given in [23].Theorem 7.2.1. Let G be a group with a �nite presentation on b generators and rrelations. For some prime p, let d = dp(G) and e = ep(G). If
r − b + d < d2

2 − d
2 − eor

r − b + d ≤ d2

2 − d
2 − e + d

2(e + d
2 − d2

4 ),then G has arbitrarily large quotients of p-power order.In particular, if the criteria in the above theorem hold, then the group G is in�nite. Thisresult has been implemented into GAP as a method and returns true if the group isfound to be in�nite using this method, or fail if the method cannot tell us whether ornot the group is in�nite. Candidates for the prime p are prime divisors of the order of
G/G′. If a prime p appears several times in the abelian invariants of a group then it is anindication that the Newman In�nity Criterion using this value p may give us the returnvalue true, and it is this observation that has given us our success with this method for�nding groups to be in�nite.The length twelve word x−1t−1x−2t−1x2tx3t was found to be in�nite when n = 5 usingthe Newman In�nity Criterion in GAP. A subgroup of index 10 was found and theNewman test on the derived subgroup of this subgroup returned true.
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Chapter 8
Results for �nitely presented groups
In this chapter we list all �nite cyclically presented groups which have been found usingspecial cases, KBMAG or GAP, starting with l ≤ 10. Where we do not know the exactstructure of the group, we instead give its derived series. All of the �nite groups in thischapter can be generated by three generators.Note that, in order to avoid repetition, we work up to n-equivalence of each word w(x, t)and therefore each word ω. Words which are equivalent for all n are discarded byrestriction (3) in Section 6.1. However, it is possible for repetition to occur when nis �xed if two words are n-equivalence but not equivalent e.g. x−1

0 x3x
2
2 is equivalent to

x−1
0 x1x

2
2 when n = 4 (i → n−i) but not when n = 5. Also, when n is odd, the subscriptsof x0x1x2x1 may be multiplied by 2 by De�nition 5.2.3 (6) so this word is n-equivalentto x0x2x4x2 in this instance.When such repetitions have been found in our results they have been omitted from thelists in this chapter. Therefore, there may be �nite groups appearing in the results pagesin [24] which are equivalent to a word that is already in the list, and is therefore notitself in the list.8.1 Finite groups for l ≤ 12In this section we list all �nite cyclically presented groups we have found for l ≤ 12,apart from the sporadics which will be dealt with in Section 8.5.
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Chapter 8: Results for finitely presented groups8.1.1 l ≤ 10The following are families of �nite groups and therefore each word produces an in�nitenumber of �nite groups. Note that the full proofs that these and all other families inthis chapter are indeed families are given in Section 8.4, as well as an explanation as towhy the groups in the family are in�nite for all values of n other than those given in theconditions. Group G |G| Structure of G

l = 7

< x0, . . . , xn−1 | xixi+2xi+1 (0 ≤ i ≤ n − 1) >, n 6≡ 0 mod 3 3 Z3

l = 8

< x0, . . . , xn−1 | xixi+2x
2
i+1 (0 ≤ i ≤ n − 1) >, n odd 4 Z4

< x0, . . . , xn−1 | xixi+1xi+2xi+1 (0 ≤ i ≤ n − 1) >, n odd 4n Zn o Z4

l = 10

< x0, . . . , xn−1 | xixi+3xi+2xi+1 (0 ≤ i ≤ n − 1) >, n odd 4 Z4

< x0, . . . , xn−1 | xix
−1
i+2x

−1
i+1x

−1
i+2 (0 ≤ i ≤ n − 1) >, n odd 2

3
(4n − 1) 1 E Z 1

3
(2n+1) E GThe following are the rest of the �nite groups, which occur for speci�c and generallysmall n. Group G |G| Structure of G

l = 7

< x0, . . . , x3 | xixi+2x
−1
i+1 (0 ≤ i ≤ 3) > 24 SL(2, 3)

< x0, . . . , x4 | xixi+2x
−1
i+1 (0 ≤ i ≤ 4) > 120 SL(2, 5)

< x0, . . . , x3 | xix
−1
i+2xi+1 (0 ≤ i ≤ 3) > 5 Z5

< x0, . . . , x4 | xix
−1
i+2xi+1 (0 ≤ i ≤ 4) > 11 Z11

< x0, . . . , x6 | xix
−1
i+2xi+1 (0 ≤ i ≤ 6) > 29 Z29

l = 8

< x0, . . . , x3 | xix
2
i+2xi+1 (0 ≤ i ≤ 3) > 80 Z7 o Z16

< x0, . . . , x4 | xix
2
i+2xi+1 (0 ≤ i ≤ 4) > 220 Z11 × (Z5 o Z4)

< x0, . . . , x5 | xix
2
i+2xi+1 (0 ≤ i ≤ 5) > 4088448 G2 E G1 E G, G2 perfect
l = 9

< x0, . . . , x5 | xixi+3xi+2 (0 ≤ i ≤ 5) > 63 Z7 o Z9

< x0, . . . , x8 | xixi+3xi+2 (0 ≤ i ≤ 8) > 513 Z19 o Z27

< x0, . . . , x5 | xixi+3x
−1
i+2 (0 ≤ i ≤ 5) > 56 (Z2 × Z2 × Z2) o Z7

< x0, . . . , x7 | xixi+3x
−1
i+2 (0 ≤ i ≤ 7) > 295245 1 E G2 E G1 E G

< x0, . . . , x5 | xix
−1
i+3xi+2 (0 ≤ i ≤ 5) > 9 Z9

< x0, . . . , x5 | xix
−1
i+3x

−1
i+2 (0 ≤ i ≤ 5) > 7 Z7103



Chapter 8: Results for finitely presented groupsGroup G |G| Structure of G

< x0, . . . , x3 | xix
2
i+2x

2
i+1 (0 ≤ i ≤ 3) > 125 Z25 o Z5

< x0, . . . , x4 | xix
2
i+2x

2
i+1 (0 ≤ i ≤ 4) > 275 Z11 o Z25

< x0, . . . , x5 | xix
2
i+2x

2
i+1 (0 ≤ i ≤ 5) > 2015 1 E Z31 E G

< x0, . . . , x3 | xix
−3
i+2xi+1 (0 ≤ i ≤ 3) > 51 Z51

< x0, . . . , x3 | xix
−2
i+2x

−2
i+1 (0 ≤ i ≤ 3) > 39 Z39

< x0, . . . , x3 | xix
2
i+1x

2
i+3 (0 ≤ i ≤ 3) > 120 Z5 × SL(2, 3)

< x0, . . . , x3 | xixi+1x
−1
i+2x

−2
i+1 (0 ≤ i ≤ 3) > 5 Z5

< x0, . . . , x4 | xixi+1x
−1
i+2x

−2
i+1 (0 ≤ i ≤ 4) > 11 Z11

< x0, . . . , x6 | xixi+1x
−1
i+2x

−2
i+1 (0 ≤ i ≤ 6) > 29 Z29

< x0, . . . , x3 | xix
2
i+3x

−2
i+1 (0 ≤ i ≤ 3) > 17 Z17

< x0, . . . , x3 | xix
−2
i+2x

2
i+1 (0 ≤ i ≤ 3) > 39000 1 E Z5 E (Z2

5) o Z5E

G2 E G1 E G

l = 10

< x0, . . . , x3 | xixi+2xi+3xi+2 (0 ≤ i ≤ 3) > 80 Z5 o Z16

< x0, . . . , x3 | xixi+2x
−1
i+3xi+2 (0 ≤ i ≤ 3) > 80 Z5 o Z16

< x0, . . . , x5 | xix
−1
i+3xi+2xi+1 (0 ≤ i ≤ 5) > 1512 Z5 o Z168.1.2 l = 11, 12The following are families of �nite groups for l = 11, 12.Group G |G| Structure of G

l = 12

< x0, . . . , xn−1 | xixi+4xi+3xi+1 (0 ≤ i ≤ n − 1) >, n odd, n 6≡ 0 mod 3 4 Z4

< x0, . . . , xn−1 | xixi+3x
2
i+2x

2
i+1 (0 ≤ i ≤ n − 1) >, n odd, n 6≡ 0 mod 3 6 Z6

< x0, . . . , xn−1 | xixi+3xi+1xi+2 (0 ≤ i ≤ n − 1) >, n odd 4 Z4

< x0, . . . , xn−1 | xixi+1x
−1
i+2xi+1xi+2x

−1
i+1 (0 ≤ i ≤ n − 1) >, n odd 2n+1 − 2 D2n+1

−2The following are the rest of the �nite groups for l = 11, 12.Group G |G| Structure of G

l = 11

< x0, . . . , x11 | xixi+4xi+3 (0 ≤ i ≤ 11) > 4095 1 E Z91 E G

< x0, . . . , x7 | xix
−1
i+4xi+3 (0 ≤ i ≤ 7) > 17 Z17

< x0, . . . , x3 | xixi+2x
2
i+3xi+1 (0 ≤ i ≤ 3) > 205 Z41 o Z5

< x0, . . . , x3 | xixi+2xi+3xi+2xi+1 (0 ≤ i ≤ 3) > 205 Z41 o Z5104
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< x0, . . . , x4 | xixi+2xi+3xi+2xi+1 (0 ≤ i ≤ 4) > 1025 Z41 o Z25

< x0, . . . , x5 | xixi+2xi+3xi+2xi+1 (0 ≤ i ≤ 5) > 6335 Z181 o (Z5 × Z7)

< x0, . . . , x3 | xixi+2x
−2
i+3x

−1
i+1 (0 ≤ i ≤ 3) > 295245 1 E Z6

3 E G1 E G

< x0, . . . , x3 | xixi+2x
−1
i+3xi+2xi+1 (0 ≤ i ≤ 3) > 1755 1 E Z39 E G

< x0, . . . , x3 | xixi+2x
−1
i+3xi+2x

−1
i+1 (0 ≤ i ≤ 3) > 295245 1 E Z6

3 E G1 E G

< x0, . . . , x5 | x2
i x

−1
i+1x

−2
i+3 (0 ≤ i ≤ 5) > 65 Z65

< x0, . . . , x3 | xix
−1
i+2x

2
i+3x

−1
i+1 (0 ≤ i ≤ 3) > 13 Z13

< x0, . . . , x3 | xix
−1
i+2x

−1
i+3xi+2x

−1
i+1 (0 ≤ i ≤ 3) > 9375 1 E Z3

5 E G1 E G

< x0, . . . , x3 | xix
−1
i+2x

−1
i+3x

−1
i+2xi+1 (0 ≤ i ≤ 3) > 13 Z13

< x0, . . . , x3 | xix
−1
i+2x

−1
i+3x

−1
i+2x

−1
i+1 (0 ≤ i ≤ 3) > 6561 1 E G1 E G

< x0, . . . , x3 | xix
−1
i+2x

−1
i+3x

2
i+1 (0 ≤ i ≤ 3) > 13 Z13

< x0, . . . , x3 | xix
−1
i+2xi+1xi+2xi+1 (0 ≤ i ≤ 3) > 195 Z13 o (Z3 × Z5)

< x0, . . . , x3 | xix
−1
i+2xi+1x

−1
i+2xi+1 (0 ≤ i ≤ 3) > 39000 1 E Z5 E (Z2

5) o Z5E

G2 E G1 E G

< x0, . . . , x3 | xix
−1
i+2x

−1
i+1xi+2xi+1 (0 ≤ i ≤ 3) > 1 Trivial

< x0, . . . , x3 | xix
3
i+1x

−2
i+2x

−1
i+1 (0 ≤ i ≤ 3) > 39000 1 E Z5 E (Z2

5) o Z5E

G2 E G1 E G

< x0, . . . , x3 | xix
−1
i+2xi+3xi+2x

−1
i+1 (0 ≤ i ≤ 3) > 5 Z5

< x0, . . . , x5 | x2
i xi+1x

−2
i+3 (0 ≤ i ≤ 5) > 63 Z63

< x0, . . . , x3 | xix
−1
i+2xi+1xixi+1 (0 ≤ i ≤ 3) > 39 Z39

< x0, . . . , x3 | xixi+2xi+3x
−1
i+2x

−1
i+1 (0 ≤ i ≤ 3) > 5 Z5

< x0, . . . , x4 | xixi+2xi+3x
−1
i+2x

−1
i+1 (0 ≤ i ≤ 4) > 11 Z11

< x0, . . . , x5 | xixi+2xi+3x
−1
i+2x

−1
i+1 (0 ≤ i ≤ 5) > 56 1 E Z3

2 E G

< x0, . . . , x3 | xixi+2xi+1xi+2xi+1 (0 ≤ i ≤ 3) > 125 Z25 o Z5

< x0, . . . , x4 | xixi+2xi+1xi+2xi+1 (0 ≤ i ≤ 4) > 275 Z11 o Z25

< x0, . . . , x3 | xix
−1
i+2xi+3xi+2xi+1 (0 ≤ i ≤ 3) > 39 Z13 o Z3

< x0, . . . , x3 | xix
−1
i+2xi+3x

−1
i+2x

−1
i+1 (0 ≤ i ≤ 3) > 13 Z13

< x0, . . . , x3 | xix
−1
i+2x

−1
i+3xi+2xi+1 (0 ≤ i ≤ 3) > 5 Z5

< x0, . . . , x4 | xix
−1
i+2x

−1
i+3xi+2xi+1 (0 ≤ i ≤ 4) > 1 Trivial

< x0, . . . , x4 | xix
−1
i+2x

−1
i+1x

−1
i+2xi+1 (0 ≤ i ≤ 4) > 31 Z31

< x0, . . . , x6 | xix
−1
i+2x

−1
i+1x

−1
i+2xi+1 (0 ≤ i ≤ 6) > 127 Z127

< x0, . . . , x8 | xix
−1
i+2x

−1
i+1x

−1
i+2xi+1 (0 ≤ i ≤ 8) > 511 Z511

< x0, . . . , x3 | xix
3
i+1x

−3
i+3 (0 ≤ i ≤ 3) > 37 Z37

< x0, . . . , x3 | xix
3
i+2x

3
i+1 (0 ≤ i ≤ 4) > 2639 Z29 o (Z7 × Z13)
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Chapter 8: Results for finitely presented groupsGroup G |G| Structure of G

l = 12

< x0, . . . , x7 | xixi+3xi+4xi+2 (0 ≤ i ≤ 7) > 6560 1 E Z205 E G

< x0, . . . , x5 | xixi+3x
−1
i+4xi+3 (0 ≤ i ≤ 5) > 728 1 E Z14 E GGroup G |G| Structure of G

< x0, . . . , x5 | xix
−1
i+3xi+4xi+2 (0 ≤ i ≤ 5) > 1512 1 E Z3 E G1 E G

< x0, . . . , x5 | xix
−1
i+3x

−1
i+4x

−1
i+3 (0 ≤ i ≤ 5) > 728 Z13 o Z56

< x0, . . . , x4 | xixi+1xi+2xi+1xi+2xi+1 (0 ≤ i ≤ 4) > 2046 1 E Z31 E G

< x0, . . . , x6 | xixi+1xi+2xi+1xi+2xi+1 (0 ≤ i ≤ 6) > 32766 1 E Z127 E G8.1.3 Words left overAfter using KBMAG and GAP to �nd whether a group is �nite or in�nite we are leftwith the following number of words which are undecided for at least one 4 ≤ n ≤ 50:Length 7 8 9 10 11 12Total number of words before 3 8 30 66 220 484Total after special case words removed 0 8 26 60 205 481Total after tests 0 0 10 8 77 468.2 Remaining groupsIt is often di�cult to ascertain whether a group is �nite or in�nite for small n. Often ithas been necessary to put aside a word which has results for when n ≥ 6. The followingtable shows the number of words that remain:Length 7 8 9 10 11 12Total before 3 8 30 66 220 484Total after tests 0 0 10 8 77 46Total after tests n ≥ 6 0 0 3 1 27 28The partial results for the words in the bottom two rows can be viewed in [24]. Theyleave us with the following groups for 6 ≤ n ≤ 50, l ≤ 10, for which we do not knowwhether the group is �nite or in�nite. 106



Chapter 8: Results for finitely presented groups
• G7(x

−1
0 x−1

1 x−2
2 x2

1);
• G9(x

−1
0 x3x

−1
2 );

• G9(x
−1
0 x3x2);

• Gn(x−1
0 x−1

1 x2x
2
1), n ∈ {11, 13, 17, 19, 21, 23, 25, 29, 31, 33, 37, 41, 43, 47, 49}.The words w(x, t) corresponding to the above groups Gn(ω) are those mentioned inTheorem 5.2.4.We list the remaining groups for 4 ≤ n ≤ 5, l ≤ 10.

l = 9

• G4(x
−1
0 x−3

2 x−1
1 );

• G5(x
−1
0 x−2

2 x2
1);

• G4(x
−1
0 x3

2x1);
• G5(x

−1
0 x2

2x
2
1);

• G5(x
−1
0 x−1

1 x−1
2 x2

1);
• G4(x

−1
0 x−1

1 x2
2x1);

• G5(x
−1
0 x1x

−2
2 x1).

l = 10

• G5(x
−1
0 x−1

2 x−1
3 x1);

• G5(x
−1
0 x−1

2 x3x
−1
1 );

• G4(x
−1
0 x−4

2 x−1
1 );

• G4(x
−1
0 x4

2x
−1
1 );

• G5(x
−1
0 x−1

1 x−2
2 x−2

1 );
• G4(x

−1
0 x−1

1 x3
2x1);

• G5(x
−1
0 x−1

1 x2x
3
1);

• G4(x
−1
0 x−1

1 x−2
2 x2

1); 107
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• G5(x

−1
0 x−1

1 x−2
2 x2

1);Note that the words x−1
0 x−1

2 x−1
3 x1 and x−1

0 x−1
2 x3x

−1
1 appearing in the above list are

n-equivalent to each other.8.3 13s, 14s and 15sDue to the large number of words for when l = 13, l = 14 and l = 15, it has not beenpossible in the time given to perform the tests on the individual words in the same wayas we did for the lower values of l. Instead, we ran all words in GAP and simply askedif it could tell us which ones it knew to be �nite. Doing things this way means that wecannot be certain if any of the groups which GAP did not �nd to be �nite are de�nitelyin�nite. However, it does give us a great number of groups which it can be sure are�nite.8.3.1 l = 13Below is a table showing the �nite family found and its structure.Group G |G| Structure
< x0, . . . , xn−1 | xixi+4xi+3xi+2xi+1 (0 ≤ i ≤ n − 1) >, n 6≡ 0 mod 5 5 Z5The following table shows the remaining groups we have found after removing thosewhich are cyclic as the number of cyclic groups found is very large.Group G |G| Structure of G

< x0, . . . , x14 | xixi+5xi+3 (0 ≤ i ≤ 14) > 32769 1 E Z331 E G

< x0, . . . , x5 | xix
−1
i+3xi+4xi+2x

−1
i+1 (0 ≤ i ≤ 5) > 320 1 E Z2

2 E G1 E G

< x0, . . . , x5 | xix
−1
i+3xi+4x

−1
i+2x

−1
i+1 (0 ≤ i ≤ 5) > 19683 1 E Z3 E G1 E G

< x0, . . . , x5 | xix
−1
i+3x

−1
i+4x

−1
i+2xi+1 (0 ≤ i ≤ 5) > 6552 G1 E G (G1 perfect)

< x0, . . . , x3 | xixi+2xixi+3xi+2 (0 ≤ i ≤ 3) > 120 Z5 × SL(2, 3)

< x0, . . . , x3 | xixi+2x
−1
i xi+3xi+1 (0 ≤ i ≤ 3) > 39 Z13 o Z3

< x0, . . . , x3 | xixi+2x
−1
i x−1

i+3x
−1
i+1 (0 ≤ i ≤ 3) > 9375 1 E Z3

5 E G1 E G

< x0, . . . , x3 | xixi+2x
−1
i xi+2xi+1 (0 ≤ i ≤ 3) > 35520 1 E G2 E G1 E G108
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< x0, . . . , x4 | xixi+2x
−1
i+4xi+2xi+1 (0 ≤ i ≤ 4) > 14043 Z151 o (Z3 × Z31)

< x0, . . . , x4 | xixi+2x
−1
i+4x

−1
i+2x

−1
i+1 (0 ≤ i ≤ 4) > 120 SL(2, 5)

< x0, . . . , x5 | xixi+2x
−1
i+4x

−1
i+2x

−1
i+1 (0 ≤ i ≤ 5) > 56 1 E Z3

2 E G

< x0, . . . , x3 | xixi+2xi+3x
2
i+2x

2
i+1 (0 ≤ i ≤ 3) > 1015 Z29 o (Z7 × Z5)

< x0, . . . , x4 | xixi+2xi+3xi+1xi+2 (0 ≤ i ≤ 4) > 275 Z11 o Z25

< x0, . . . , x3 | xix
−1
i+2xi+3x

2
i+2x

2
i+1 (0 ≤ i ≤ 3) > 975 Z13 o Z75

< x0, . . . , x3 | xix
−1
i+2x

−1
i+3x

2
i+2x

2
i+1 (0 ≤ i ≤ 3) > 6561 1 E Z2

9 × Z3 E G

< x0, . . . , x3 | xix
−1
i+2x

−1
i+3xi+2x

3
i+1 (0 ≤ i ≤ 3) > 663 Z13 o (Z3 × Z17)

< x0, . . . , x3 | xixi+1xi+2x
2
i+3x

−2
i+1 (0 ≤ i ≤ 3) > 6561 1 E Z2

9 × Z3 E G

< x0, . . . , x3 | xixi+1xi+2x
−1
i+3x

−1
i+2x

−2
i+1 (0 ≤ i ≤ 3) > 24 SL(2, 3)8.3.2 l = 14Finite families: Group G |G| Structure of G

< x0, . . . , xn−1 | xixi+5xi+4xi+1 (0 ≤ i ≤ n − 1) >, n odd 4 Z4

< x0, . . . , xn−1 | xixi+5xi+3xi+2 (0 ≤ i ≤ n − 1) >, n odd, n 6≡ 0 mod 3 4 Z4

< x0, . . . , xn−1 | xixi+4xi+3x
2
i+2xi+1 (0 ≤ i ≤ n − 1) >, n odd, n 6≡ 0 mod 3 6 Z6

< x0, . . . , xn−1 | xixi+3xi+2xi+1xi+2xi+1 (0 ≤ i ≤ n − 1) >, n odd, n 6≡ 0 mod 3 6 Z6

< x0, . . . , xn−1 | xixi+2xi+1xi+3xi+2xi+1 (0 ≤ i ≤ n − 1) >, n odd, n 6≡ 0 mod 3 6 Z6

< x0, . . . , xn−1 | xix
−1
i+2xi+3xi+2x

−1
i xi+1 (0 ≤ i ≤ n − 1) >, n odd 2n+1 − 2 D2n+1

−2The following table shows the remaining groups we have found after removing thosewhich are cyclic. Group G |G| Structure of G

< x0, . . . , x7 | xixi+4xi+5xi+4 (0 ≤ i ≤ 7) > 6560 1 E Z41 E G

< x0, . . . , x7 | xixi+4x
−1
i+3xi+4 (0 ≤ i ≤ 8) > 6560 1 E Z41 E G

< x0, . . . , x5 | xixi+3xi+5xi+3 (0 ≤ i ≤ 5) > 728 Z13 o Z56

< x0, . . . , x6 | xix
−1
i+3x

−1
i+5x

−1
i+3 (0 ≤ i ≤ 6) > 10922 1 E Z43 E G

< x0, . . . , x4 | xixi+2xi+3xi+2xixi+1 (0 ≤ i ≤ 4) > 2046 1 E Z31 E G

< x0, . . . , x4 | xix
−1
i+2x

−1
i+1x

−1
i+2x

−1
i+1x

−1
i+2 (0 ≤ i ≤ 4) > 29524 1 E Z61 E G

< x0, . . . , x3 | xix
2
i+1x

2
i+2x

3
i+3 (0 ≤ i ≤ 3) > 6560 1 E Z205 E G
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Chapter 8: Results for finitely presented groups8.3.3 l = 15There are no �nite families and the following table shows the �nite groups we have foundafter removing those which are cyclic.Group G |G| Structure of G

< x0, . . . , x5 | xix
−1
i+3xi+5x

−1
i+4x

−1
i+2 (0 ≤ i ≤ 5) > 6552 G1 E G (G1 perfect)

< x0, . . . , x5 | xix
−1
i+3xi+5x

−1
i+2xi+1 (0 ≤ i ≤ 5) > 6552 G1 E G (G1 perfect)

< x0, . . . , x5 | xix
−1
i+3x

−1
i+5xi+4xi+2 (0 ≤ i ≤ 5) > 320 1 E Z2

2 E G1 E G

< x0, . . . , x5 | xix
−1
i+3xi+4x

−1
i+1xi+2 (0 ≤ i ≤ 5) > 320 1 E Z2

2 E G1 E G

< x0, . . . , x3 | xixi+2x
2
i xi+3x

2
i+1 (0 ≤ i ≤ 3) > 1015 Z29 o Z35

< x0, . . . , x3 | xixi+2x
−1
i x3

i+3x
−1
i+1 (0 ≤ i ≤ 3) > 663 Z13 o (Z3 × Z17)

< x0, . . . , x4 | xix
2
i+2x

2
i+4x

2
i+1 (0 ≤ i ≤ 4) > 5467 Z71 o (Z7 × Z11)

< x0, . . . , x3 | xix
2
i+2xix

2
i+3xi+1 (0 ≤ i ≤ 3) > 791 Z113 o Z7

< x0, . . . , x3 | xix
2
i+2x

−1
i x2

i+3x
−1
i+1 (0 ≤ i ≤ 3) > 507 Z13 o (Z3 × Z13)

< x0, . . . , x3 | xix
2
i+2x

2
i+1x

2
i x

2
i+3 (0 ≤ i ≤ 3) > 4329 1 E Z481 E G

< x0, . . . , x4 | xix
2
i+2x

2
i+3x

2
i+1 (0 ≤ i ≤ 4) > 5467 Z71 o (Z7 × Z11)

< x0, . . . , x3 | xix
−1
i+2xi+3x

−1
i+4xi+3xi+2x

−1
i+1 (0 ≤ i ≤ 3) > 243 1 E Z3

3 E G

< x0, . . . , x3 | xix
−1
i+2xi+3x

−1
i x2

i+2x
−1
i+1 (0 ≤ i ≤ 3) > 320 1 E Z2

2 E G1 E G

< x0, . . . , x3 | xix
−1
i+2x

2
i+3x

2
i x

−1
i+1 (0 ≤ i ≤ 3) > 975 Z13 o Z75

< x0, . . . , x3 | xix
−1
i+2xi+3x

2
i+2x

−1
i x−1

i+1 (0 ≤ i ≤ 3) > 320 1 E Z2
2 E G1 E G

< x0, . . . , x3 | xix
−1
i+2xi+3xi+2x

−1
i+1x

−1
i x−1

i+1 (0 ≤ i ≤ 3) > 243 1 E Z3
3 E G

< x0, . . . , x3 | xix
−1
i+2xi+3xi+2x

−2
i x−1

i+1 (0 ≤ i ≤ 3) > 320 1 E Z2
2 E G1 E G

< x0, . . . , x3 | xix
−1
i+2x

−1
i+3x

−2
i xi+2xi+1 (0 ≤ i ≤ 3) > 320 1 E Z2

2 E G1 E G

< x0, . . . , x3 | xix
−1
i+2x

−1
i+3x

−1
i x−1

i+3xi+2xi+1 (0 ≤ i ≤ 3) > 243 1 E Z3
3 E G

< x0, . . . , x3 | xix
−1
i+2x

−1
i+3x

2
i+2x

−1
i xi+1 (0 ≤ i ≤ 3) > 320 1 E Z2

2 E G1 E G

< x0, . . . , x3 | xix
−1
i+2x

−1
i+3xi+2xi+1xixi+1 (0 ≤ i ≤ 3) > 507 Z13 o (Z3 × Z13)

< x0, . . . , x3 | xix
−1
i+2x

−1
i+3xi+2xi+1x

−1
i x−1

i+1 (0 ≤ i ≤ 3) > 243 1 E Z3
3 E G

< x0, . . . , x3 | xix
−1
i+2x

−1
i+3x

−1
i+2x

−1
i+1x

−1
i+2xi+1 (0 ≤ i ≤ 3) > 663 Z13 o (Z3 × Z17)

< x0, . . . , x3 | xix
−2
i+2xi+1x

−1
i+3x

−1
i+2x

−1
i+1 (0 ≤ i ≤ 3) > 663 Z13 o (Z3 × Z17)

< x0, . . . , x3 | xix
2
i+2x

2
i+1x

2
i x

2
i+3 (0 ≤ i ≤ 3) > 791 Z113 o Z7

< x0, . . . , x4 | xix
−1
i+2x

−1
i+1x

−1
i+2x

−1
i+3xi+2xi+1 (0 ≤ i ≤ 4) > 120 SL(2, 5)

< x0, . . . , x4 | xixi+1xi+2x
2
i+3x

2
i+4 (0 ≤ i ≤ 4) > 840 SL(2, 5) E G(SL(2, 5) perfect)

< x0, . . . , x3 | xix
2
i+1x

−2
i+3x

−2
i+2x

−2
i+1 (0 ≤ i ≤ 3) > 507 Z13 o (Z3 × Z13)

< x0, . . . , x3 | xix
2
i+1x

2
i+2x

−2
i x−2

i+3 (0 ≤ i ≤ 3) > 1600 1 E Z2
2 E G1 E G

< x0, . . . , x3 | xix
2
i+1x

−2
i x2

i+2x
−2
i+3 (0 ≤ i ≤ 3) > 1600 1 E Z2

2 E G1 E G110



Chapter 8: Results for finitely presented groups8.4 Proofs for �nite familiesThe sixteen �nite families mentioned in this chapter have been discovered for certain
n using computation methods and conjectured to be families by observation. Here, weprove that the groups are in fact families, i.e. that there is no bound on n for which a�nite group exists with the given word.We begin by proving Proposition 5.2.5, which will cover the proofs for several of thelisted �nite families.8.4.1 Proof of Proposition 5.2.5To prove the groups Gn(x0 . . . xk−1) for k ≥ 3 are families of �nite cyclically presentedgroups, we �rst examine the families of this form which we have already found.The group G = Gn(x0x2x1) =< x0, . . . , xn−1 | xixi+2xi+1 (0 ≤ i ≤ n−1) > is equivalentto the group Gn(x0x1x2) and this group is isomorphic to the group Z3 when n 6≡ 0 mod
3 and in�nite otherwise, by observing the results in Subsection 8.1.1.Let us now consider how we might prove this.Let n = 3 so G =< x0, x1, x2 | x0x1x2, x1x2x0, x2x0x1 >.If we let x2 = x−1

1 x−1
0 from the last relator and remove the generator x2, then we get

G =< x0, x1 | >.So G is in�nite, as expected.Let n = 4 so G =< x0, x1, x2, x3 | x0x1x2, x1x2x3, x2x3x0, x3x0x1 >.Now let x3 = x−1
1 x−1

0 and use Tietze transformations to obtain the following:
G = < x0, x1, x2 | x0x1x2, x1x2x

−1
1 x−1

0 , x2x
−1
1 >

= < x0, x1 | x0x
2
1, x1x

−1
0 > = < x0 | x3

0 > ∼= Z3.Let n = 5 so G =< x0, x1, x2, x3, x4 | x0x1x2, x1x2x3, x2x3x4, x3x4x0, x4x0x1 >.Let x4 = x−1
1 x−1

0 :
G = < x0, x1, x2, x3 | x0x1x2, x1x2x3, x2x3x

−1
1 x−1

0 , x3x
−1
1 >

= < x0, x1, x2 | x0x1x2, x1x2x1, x2x
−1
0 >

= < x0, x1 | x0x1x0, x1x0x1 > = < x0 | x3
0 > ∼= Z3.111



Chapter 8: Results for finitely presented groupsNow assume n > 5.So G =< x0, . . . , xn−1 | x0x1x2, . . . , xn−3xn−2xn−1, xn−2xn−1x0, xn−1x0x1 >Let xn−1 = x−1
1 x−1

0 :
G =< x0, . . . , xn−2 | x0x1x2, . . . , xn−4xn−3xn−2, xn−3xn−2x

−1
1 x−1

0 , xn−2x
−1
1 >Let xn−2 = x1:

G =< x0, . . . , xn−3 | x0x1x2, . . . , xn−5xn−4xn−3, xn−4xn−3x1, xn−3x
−1
0 >Let xn−3 = x0:

G =< x0, . . . , xn−4 | x0x1x2, . . . , xn−6xn−5xn−4, xn−5xn−4x0, xn−4x0x1 >.But then Gn(ω) ∼= Gn−3(ω), where ω = x0x1x2, and so by induction, n ≡ m mod
3 =⇒ Gn(ω) ∼= Gm(ω).So, as G4(ω) = G5(ω) = Z3 and G3(ω) is in�nite, n ≡ 0 mod 3 =⇒ Gn(ω) is in�nite,and n 6≡ 0 mod 3 =⇒ Gn(ω) = Z3. So G3(ω) is in�nite ⇐⇒ n ≡ 0 mod 3 ⇐⇒

gcd(n, 3) = 1.Also in our list of �nite families is the group G = Gn(x0x3x2x1) = Gn(x0x1x2x3),isomorphic to Z4 when n is odd and in�nite otherwise.
G =< x0, . . . , xn−1 | x0x1x2x3, . . . , xn−4xn−3xn−2xn−1, xn−3xn−2xn−1x0,

xn−2xn−1x0x1, xn−1x0x1x2 >.Let xn−1 = x−1
2 x−1

1 x−1
0 :

G =< x0, . . . , xn−2 | x0x1x2x3, . . . , xn−5xn−4xn−3xn−2, xn−4xn−3xn−2x
−1
2 x−1

1 x−1
0 ,

xn−3xn−2x
−1
2 x−1

1 , xn−2x
−1
2 >.

G =< x0, . . . , xn−3 | x0x1x2x3, . . . , xn−6xn−5xn−4xn−3, xn−5xn−4xn−3x2,

xn−4xn−3x
−1
1 x−1

0 , xn−3x
−1
1 >.

G =< x0, . . . , xn−4 | x0x1x2x3, . . . , xn−7xn−6xn−5xn−4, xn−6xn−5xn−4x1,

xn−5xn−4x1x2, xn−4x
−1
0 >.

G =< x0, . . . , xn−5 | x0x1x2x3, . . . , xn−8xn−7xn−6xn−5, xn−7xn−6xn−5x0,

xn−6xn−5x0x1, xn−5x0x1x2 >.So this time Gn(ω) ∼= Gn−4(ω) and so n ≡ m mod 4 =⇒ Gn(ω) ∼= Gm(ω) where
ω = x0x1x2x3. 112



Chapter 8: Results for finitely presented groupsMore generally, if ω = x0x1 . . . xk−1 then n ≡ m mod k =⇒ Gn(ω) ∼= Gm(ω).To show this, let Gn(ω) =< x0, . . . , xn−1 | r0, . . . , rn−k, s0, . . . , sk−2 >, where n > k,and where the relators are de�ned as follows:
r0 = x0 . . . xk−1,
r1 = x1 . . . xk,...

rn−k = xn−k . . . xn−1

s0 = xn−(k−1) . . . xn−1x0,
s1 = xn−(k−2) . . . xn−1x0x1,...

sk−2 = xn−1x0 . . . xk−2.There are n− k + 1 relators of the type ri and k− 1 relators of the type si, which makes
n relators in total, as expected.

sk−2 = xn−1x0 . . . xk−2 =⇒ xn−1 = x−1
k−2x

−1
k−3 . . . x−1

1 x−1
0

sk−3 = xn−2xn−1x0 . . . xk−3 =⇒ xn−2 = xk−2

sk−4 = xn−3xn−2xn−1x0 . . . xk−4 =⇒ xn−3 = xk−3...
s0 = xn−(k−1) . . . xn−1x0 =⇒ xn−(k−1) = x1So xi = xi+n−k, for 1 ≤ i ≤ k − 2. This allows us to remove all si and all xi for

n − (k − 1) ≤ i ≤ n − 1.Then rn−k = xn−kxn−(k−1)xn−(k−2) . . . xn−3xn−2xn−1

= xn−kx1x2 . . . xk−3xk−2x
−1
k−2x

−1
k−3 . . . x−1

2 x−1
1 x−1

0

= xn−kx
−1
0 .So rn−k =⇒ xn−k = x0 and therefore remove rn−k and xn−k.We are left with the relators r0, . . . , rn−k−1, which are those that originally only involved

xi for i < n − 1.As we used the fact that xi = xi+n−k for 0 ≤ i ≤ k−2 where necessary in these relators,we are now working mod n − k with the indices and we have obtained Gn−k(ω).Therefore, Gn(ω) = Gn−k(ω), as expected and we have shown that n ≡ m mod k =⇒

Gn(ω) ∼= Gm(ω). 113



Chapter 8: Results for finitely presented groupsNow let us assume that n = k. In this case, Gn(ω) =< x0, . . . , xn−1 | x0 . . . xn−1 >as all the n relators will be cyclic permutations of each other. The relator impliesthat xn−1 = x−1
n−2 . . . x−1

0 and we so can remove xn−1 and the relator, leaving us with
< x0, . . . , xn−2 | > = Fn−1, which is in�nite.Finally, let us assume that 1 ≤ n < k.Then G = Gn(ω) =< x0, . . . , xn−1 | r0, . . . , rn−1 >, where ri = xi . . . xn−1x0 . . . xn−1x0 . . .,where the pattern continues so that ri has length k for each i. We claim that G is �nitecyclic of order k if and only if gcd(n, k) = 1.

r0 = (x0 . . . xn−1)
sx0 . . . xr−1,

r1 = (x1 . . . xn−1x0)
sx1 . . . xr,...

ri = (xi . . . xn−1x0 . . . xi−1)
sxi . . . xr−1+i,

ri+1 = (xi+1 . . . xn−1x0 . . . xi)
sxi+1 . . . xr+i,where r ≡ k mod n, s = k−r

n
, i.e. k = ns + r.Then r0 =⇒ (x1 . . . xn−1x0)
sx1 . . . xr−1x0 = 1 so r0, r1 =⇒ x0 = xr.

ri =⇒ (xi+1 . . . xn−1x0 . . . xi)
sxi+1 . . . xr−1+ixi = 1 so ri, ri+1 =⇒ xi = xi+r.So i = j + ar mod n for some a ∈ Z =⇒ xi = xj (*).Let gcd(n, k) = 1. Then gcd(n, r) = 1 =⇒ ar mod n generates Zn, a ∈ Z =⇒

∀j,∃aj ∈ Z such that j ≡ ajr mod n =⇒ x0 = xj , ∀j by (*).We end up with one generator for G, x0 say, and one relator, xk
0 , so G ≡ Zk as predicted.Let gcd(n, k) = d > 1. Then gcd(n, r) = d =⇒ xi = xi+d. We are left with the genera-tors x0, . . . , xd−1 and our relators are r0 = (x0 . . . xd−1)

m, . . . , ri = (xi . . . xd−1x0 . . . xi−1)
m,

m = k
d
. These relators are all equal, so we are left with G =< x0, . . . , xd−1 | (x0 . . . xd−1)

m >,which is in�nite, as expected.So far we have proved:(A) n ≡ m mod k =⇒ Gn(ω) ∼= Gm(ω).(B) If 1 ≤ n ≤ k, Gn(ω) is �nite ⇐⇒ gcd(n, k) = 1.Assume gcd(n, k) = 1. Then gcd(m,k) = 1 for m = n mod k, 1 ≤ m ≤ k, which implies
Gm(ω) is �nite (from (B)), and Gn(ω) = Gm(ω) (from (A)). So Gn(ω) is �nite.Assume gcd(n, k) = d > 1. Then gcd(m,k) = 1 for m = n mod k, 1 ≤ m ≤ k, which114



Chapter 8: Results for finitely presented groupsimplies Gm(ω) is in�nite (from (B)), and Gn(ω) = Gm(ω) (from (A)). So Gn(ω) isin�nite.In conclusion, Gn(x0 . . . xk−1) is �nite ⇐⇒ gcd(n, k) = 1. Also, for any k there isalways an n for which gcd(n, k) = 1 and so Gn+ak(ω) is �nite for all a ∈ Z. This provesProposition 5.2.5.8.4.2 ω = x0x2x1

G =< x0, . . . , xn−1 | xixi+2xi+1 (0 ≤ i ≤ n − 1) >, n 6≡ 0 mod 3. G = Z3, l = 7.See Subsection 8.4.1.8.4.3 ω = x0x2x
2
1

G =< x0, . . . , xn−1 | xixi+2x
2
i+1 (0 ≤ i ≤ n − 1) >, n odd. G = Z4, l = 8.Assume n odd.Relators are:

x0x2x1x1

x1x3x2x2

x2x4x3x3

. . .

xn−2x0xn−1xn−1

xn−1x1x0x0Let yi = x−1
i .

x0 = y1y1y2

x1 = y2y2y3

x2 = y3y3y4

. . .

xn−4 = yn−3yn−3yn−2

xn−3 = yn−2yn−2yn−1So we can remove x0, x1, . . . , xn−3 and the �rst n − 2 relators and write the last tworelators in terms of xn−2 and xn−1. 115



Chapter 8: Results for finitely presented groupsConsider the relator xn−1xn−1xn−2x0:
x0 = y1y1y2

= (x3x2x2)(x3x2x2)y2 = x3x2x2x3x2 = (x3x2)x2(x3x2)

= y3y4y3y3y4y3y4 = (y3y4)y3(y3y4)
2

= x5x4x5x4x4x5x4x5x4 = (x5x4)
2x4(x5x4)

2

= y5y6y5y6y5y5y6y5y6y5 = (y5y6)
2y5(y5y6)

3

. . .

= [(xi+1xi)
i
2 ]xi[(xi+1xi)

i
2 ] when removing xi−1, i is even

= [(yiyi+1)
i−1
2 ]yi[(yiyi+1)

i+1
2 ] when removing xi−1, i is odd

. . .

= [(yn−2yn−1)
n−3

2 ]yn−2[(yn−2yn−1)
n−1

2 ]

xn−1xn−1xn−2x0 = 1 ⇔ xn−1xn−1xn−2[(yn−2yn−1)
n−3

2 ]yn−2[(yn−2yn−1)
n−1

2 ] = 1

⇔ xn−1xn−1xn−2[(yn−2yn−1)
n−3

2 ]yn−2[(yn−2yn−1)
n−3

2 ]yn−2yn−1 = 1

⇔ xn−1xn−2[(yn−2yn−1)
n−3

2 ]yn−2[(yn−2yn−1)
n−3

2 ]yn−2 = 1

⇔ xn−1xn−2yn−2yn−1[(yn−2yn−1)
n−5

2 ]yn−2[(yn−2yn−1)
n−3

2 ]yn−2 = 1

⇔ xn−1yn−1[(yn−2yn−1)
n−5

2 ]yn−2[(yn−2yn−1)
n−3

2 ]yn−2 = 1

⇔ [(yn−2yn−1)
n−5

2 ]yn−2[(yn−2yn−1)
n−3

2 ]yn−2 = 1

⇔ yn−2[(yn−2yn−1)
n−5

2 ]yn−2[(yn−2yn−1)
n−3

2 ] = 1.Consider the relator xn−1x1x0x0:
x1x0x0 = x1(y1y1y2)(y1y1y2) = y1y2y1y1y2

= x3x2x3x2x2x3x2 = (x3x2)
2x2(x3x2)

= y3y4y3y4y3y3y4y3y4 = (y3y4)
2y3(y3y4)

2

= x5x4x5x4x5x4x4x5x4x5x4 = (x5x4)
3x4(x5x4)

2

= y5y6y5y6y5y6y5y5y6y5y6y5y6 = (y5y6)
3y5(y5y6)

3

. . .

= [(xi+1xi)
i
2
+1]xi[(xi+1xi)

i
2 ] when removing xi−1, i is even

= [(yiyi+1)
i+1
2 ]yi[(yiyi+1)

i+1
2 ] when removing xi−1, i is odd

. . .

= [(yn−2yn−1)
n−1

2 ]yn−2[(yn−2yn−1)
n−1

2 ]

xn−1x1x0x0 = 1 ⇔ xn−1[(yn−2yn−1)
n−1

2 ]yn−2[(yn−2yn−1)
n−1

2 ] = 1

⇔ xn−1[(yn−2yn−1)
n−1

2 ]yn−2[(yn−2yn−1)
n−3

2 ]yn−2yn−1 = 1116
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⇔ [(yn−2yn−1)

n−1
2 ]yn−2[(yn−2yn−1)

n−3
2 ]yn−2 = 1

⇔ yn−2[(yn−2yn−1)
n−1

2 ]yn−2[(yn−2yn−1)
n−3

2 ] = 1Consider:
yn−2[(yn−2yn−1)

n−1
2 ]yn−2[(yn−2yn−1)

n−3
2 ]

yn−2[(yn−2yn−1)
n−5

2 ]yn−2[(yn−2yn−1)
n−3

2 ]So (yn−2yn−1)
n−1

2 = (yn−2yn−1)
n−5

2

[(yn−2yn−1)
n−5

2 ](yn−2yn−1)(yn−2yn−1) = (yn−2yn−1)
n−5

2So (yn−2yn−1)(yn−2yn−1) = 1.Into yn−2[(yn−2yn−1)
n−1

2 ]yn−2[(yn−2yn−1)
n−3

2 ]:Let n−1
2 even, so n−3

2 odd:
yn−2[(yn−2yn−1)

n−1
2 ]yn−2[(yn−2yn−1)

n−3
2 ] = yn−2yn−2yn−2yn−1:

yn−1 = x3
n−2Let n−1

2 odd, so n−3
2 even:

yn−2[(yn−2yn−1)
n−1

2 ]yn−2[(yn−2yn−1)
n−3

2 ] = yn−2yn−2yn−1yn−2:
yn−1 = x3

n−2.So we can remove xn−1.
yn−2[(yn−2yn−1)

n−1
2 ]yn−2[(yn−2yn−1)

n−3
2 ] = yn−2[(yn−2x

3
n−2)

n−1
2 ]yn−2[(yn−2x

3
n−2)

n−3
2 ]

= yn−2[(x
2
n−2)

n−1
2 ]yn−2[(x

2
n−2)

n−3
2 ]

= yn−2[(xn−2)
n−1]yn−2[(xn−2)

n−3]

= yn−2xn−2[(xn−2)
n−2]yn−2xn−2[(xn−2)

n−4]

= [(xn−2)
n−2][(xn−2)

n−4] = x2n−6
n−2So x2n−6

n−2 = 1

yn−2[(yn−2yn−1)
n−5

2 ]yn−2[(yn−2yn−1)
n−3

2 ] = yn−2[(yn−2x
3
n−2)

n−5
2 ]yn−2[(yn−2x

3
n−2)

n−3
2 ]

= yn−2[(x
2
n−2)

n−5
2 ]yn−2[(x

2
n−2)

n−3
2 ]

= yn−2[(xn−2)
n−5]yn−2[(xn−2)

n−3]

= yn−2xn−2[(xn−2)
n−6]yn−2xn−2[(xn−2)

n−4]

= [(xn−2)
n−6][(xn−2)

n−4] = x2n−10
n−2So x2n−10

n−2 = 1 117
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x2n−6

n−2 = x2n−10
n−2 x4

n−2 = x2n−10
n−2 so x4

n−2 = 1So G =< xn−2 | x4
n−2 >8.4.4 ω = x0x1x2x1

G =< x0, . . . , xn−1 | xixi+1xi+2xi+1 (0 ≤ i ≤ n − 1) >, n odd. G = Zn o Z4, l = 8.Relators:
x0x1x2x1

x1x2x3x2

x2x3x4x3

. . .

xn−3xn−2xn−1xn−2

xn−2xn−1x0xn−1

xn−1x0x1x0Let yi = x−1
i

x0 = y1y2y1

x1 = y2y3y2

x2 = y2y3y2

. . .

xn−3 = yn−2yn−1yn−2Get the generators x0, . . . , xn−3 in terms of xn−2 and xn−1 in order to remove them.
xn−3 = yn−2yn−1yn−2

xn−4 = yn−3yn−2yn−3

= xn−2xn−1xn−2yn−2xn−2xn−1xn−2

= xn−2xn−1xn−2xn−1xn−2

xn−5 = yn−4yn−3yn−4

= xn−3xn−2xn−3xn−2xn−3

= yn−2yn−1yn−2yn−1yn−2yn−1yn−2

. . .

xi = yn−2(yn−1yn−2)
n−i−2 i even

xi = xn−2(xn−1xn−2)
n−i−2 i odd

. . . 118
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x1 = xn−2(xn−1xn−2)

n−3

x0 = yn−2(yn−1yn−2)
n−2Relators left:

xn−1xn−2xn−1x0

xn−1x0x1x0

xn−1xn−2xn−1x0 = xn−1xn−2xn−1yn−2(yn−1yn−2)
n−2

xn−1x0x1x0 = xn−1yn−2(yn−1yn−2)
n−2xn−2(xn−1xn−2)

n−3yn−2(yn−1yn−2)
(n−2)

= xn−1yn−2(yn−1yn−2)
n−2xn−2(xn−1xn−2)

n−3(yn−2yn−1)
n−2yn−2

= xn−1yn−2(yn−1yn−2)
n−2xn−2(xn−1xn−2)

n−3(yn−2yn−1)
n−3yn−2yn−1yn−2

= xn−1yn−2(yn−1yn−2)
n−2yn−1yn−2

= xn−1yn−2(yn−1yn−2)
n−1Compare:

xn−1xn−2xn−1yn−2(yn−1yn−2)
n−2

xn−1yn−2yn−1yn−2(yn−1yn−2)
n−2Then xn−2xn−1 = yn−2yn−1The relator xn−1xn−2xn−1yn−2(yn−1yn−2)

n−2 can now be removed so relators are:
xn−2xn−2xn−1xn−1, (xn−1xn−2)

n−1xn−1yn−2.Let x = xn−1, y = xn−2

G =< x, y | x2y2, (xy)n−1xy−1 >So yx2y = yx2y−1x−2 = 1and xy2x = y−2x−1y2x = 1So [x2, y] = [y2, x] = 1

y = (xy)n−1x so y2 = ((xy)n−1x)(x(yx)n−1) = x(yx(yx...(yx(yxxy)xy)...xy)xy)x = x2So y2 = x2 and y4 = x4 = 1Then (xy)n−1xy−1 = (xy−1y2)n−1xy−1 = [(xy−1)n][y2(n−1)] as y2 commutes with x and y

= (xy−1)n as n odd so 4|2(n − 1)So G = < x, y | y4, x2y2, (xy−1)n > 119
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= < x, y, z | zyx−1, y4, x2y2, zn >

= < y, z | y4, zn, zyzy3 >

= < y, z | y4, zn, y−1zy = zn−1 >8.4.5 ω = x0x3x2x1

G =< x0, . . . , xn−1 | xixi+3xi+2xi+1 (0 ≤ i ≤ n − 1) >, n odd. G = Z4, l = 10.See Subsection 8.4.1.8.4.6 ω = x0x
−1
2 x−1

1 x−1
2

G =< x0, . . . , xn−1 | xix
−1
i+2x

−1
i+1x

−1
i+2 (0 ≤ i ≤ n − 1) >, n odd. 1 E Z 1

3
(2n+1) E G,

|G| = 2
3(4n − 1), l = 10.This particular family of groups is in�nite when n is even (since H2(ω) is the in�nitedihedral group) and �nite of order 2

3(4n − 1) when n is odd, the latter of which we nowprove.Let us assume n > 4 is odd.The group < x0, . . . , xn−1 | xix
−1
i+2x

−1
i+1x

−1
i+2 (0 ≤ i ≤ n− 1) > is the associated cyclicallypresented group of H = Hn(w) =< x, t | tn, xtxt−1xt2x−1t−2 >.To show the group G is �nite and has order 2

3(4n − 1), we �rst �nd the order of H. Letus note that Hab = < x, t | tn, x2, [x, t] > = Z2×Zn and therefore |H : H ′| = 2n, where
H ′ denotes the derived subgroup of H. Next, we use the use the Schreier method to �nda presentation for H ′.We can see that U = {e, t, t2, . . . , tn−1, x, xt, xt2, . . . , xtn−1} is a Schreier Transversal for
H ′ in H. We note that we should �nd (g − 1)i + 1 = 2n + 1 generators for H ′, where
g = no. generators of H and i = |H : H ′|.The next step is to �nd the generators for H ′ in terms of x and t by �nding all words ofthe form uy(uy)−1, where u ∈ U and y ∈ {x, t}:
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u ∈ U y ∈ {x, t} uy uy(uy)−1

e x x e

t x xt txt−1x−1

t2 x xt2 t2xt−2x−1... ... ... ...
tn−2 x xtn−2 tn−2xt−(n−2)x−1

tn−1 x xtn−1 tn−1xt−(n−1)x−1

x x e x2

xt x t xtxt−1

xt2 x t2 xt2xt−2... ... ... ...
xtn−2 x tn−2 xtn−2xt−(n−2)

xtn−1 x tn−1 xtn−1xt−(n−1)

u ∈ U y ∈ {x, t} uy uy(uy)−1

e t t e

t t t2 e

t2 t t3 e... ... ... ...
tn−2 t tn−1 e

tn−1 t e tn

x t xt e

xt t xt2 e

xt2 t xt3 e... ... ... ...
xtn−2 t xtn−1 e

xtn−1 t x xtnx−1So generators for H ′ are:
ai = tixt−ix−1

bi = xtixt−i

(1 ≤ i ≤ n − 1)

c1 = x2

c2 = tn

c3 = xtnx−1As predicted, there are 2n + 1 generators for H ′. We now need to �nd the de�ningrelators of H ′ in terms of the ai, bi and ci. These relators are all words of the form
uru−1 where u ∈ U and r is a relator for H. To aid us we �rst calculate all conjugatesof the generators of H ′ by the generators of H.
g a1 a2 . . . an−2 an−1 b1 b2 . . . bn−2 bn−1 c1 c2 c3

tgt−1 a2a
−1

1
a3a

−1

1
. . . an−1a

−1

1
c2c

−1

3
a−1

1
a1b2 a1b3 . . . a1bn−1 a1c3c1c

−1

2
a1b1 c2 a1c3a

−1

1

g a1 a2 . . . an−2 an−1 b1 b2 . . . bn−2 bn−1 c1 c2 c3

xgx−1 b1c
−1

1
b2c

−1

1
. . . bn−2c

−1

1
bn−1c

−1

1
c1a1 c1a2 . . . c1an−2 c1an−1 c1 c3 c1c2c

−1

1Our relators for H ′ in term of x and t are the following:
uru−1:

u\r tn xtxt−1xt2x−1t−2

ti tn tixtxt−1xt2x−1t−2−i, (0 ≤ i ≤ n − 1)

xti xtnx−1 xtixtxt−1xt2x−1t−2−ix−1, (0 ≤ i ≤ n − 1)121



Chapter 8: Results for finitely presented groupsThe �nal step in �nding a presentation for H ′ is to rewrite all relators in terms of the ai,
bi and ci. For this we can use our conjugacy tables as the relators corresponding to ti and
xti, 0 < i ≤ n−1, are simply the relators corresponding to ti−1 conjugated by t and ti con-jugated by x respectively. We use the fact that a−1bbb...ba = (a−1ba)(a−1ba)...(a−1ba).So, for example, if r = xtxt−1xt2x−1t−2 then the relator t0rt−0 = r = b1a

−1
2 by in-spection. The relator t1rt−1 is simply r conjugated by t, so t1rt−1 = tb1a
−1
2 t−1 =

(tb1t
−1)(ta−1

2 t−1) = (a1b2)(a1a
−1
3 ) = a1b2a1a

−1
3 , from the conjugacy tables. Continuingin this way, we obtain all of the relators for H ′:

p1 = c2

p2 = c3

q1 = b1a
−1
2

q2 = a1b2a1a
−1
3

q3 = a2b3a2a
−1
4...

qi = ai−1biai−1a
−1
i+1...

qn−2 = an−3bn−2an−3a
−1
n−1

qn−1 = an−2bn−1an−2c3c
−1
2

qn = an−1c3c1c
−1
2 an−1c3a

−1
1 c−1

2

r1 = c1a1c1b
−1
2

r2 = b1a2b1b
−1
3

r3 = b2a3b2b
−1
4...

ri = bi−1aibi−1b
−1
i+1...

rn−2 = bn−3an−2bn−3b
−1
n−1

rn−1 = bn−2an−1bn−2c2c
−1
1 c−1

3

rn = bn−1c2c
−1
3 bn−1c2b

−1
1 c−1

3

The relator ri is obtained from qi using the second conjugacy table.We have now found a presentation for H ′ which is as follows:
H ′ = < a1, . . . , an−1, b1, . . . , bn−1, c1, c2, c3 | p1, p2, q1, . . . , qn, r1, . . . , rn >We can simplify the presentation in the following way:
c2 = c3 = 1.
b1 = a2. Remove b1: (removes q1)
H ′ = < a1, . . . , an−1, b2, . . . , bn−1, c1, | ai−1biai−1a

−1
i+1 (2 ≤ i ≤ n − 2), an−2bn−1an−2,

an−1c1an−1a
−1
1 , c1a1c1b

−1
2 , a3

2b
−1
3 ,

bi−1aibi−1b
−1
i+1 (3 ≤ i ≤ n − 2), bn−2an−1bn−2c

−1
1 ,

b2
n−1a

−1
2 >

a2 = b2
n−1. Remove a2: (removes rn) 122
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H ′ =< a1, a3, a4, . . . , an−1, b2, . . . , bn−1, c1 | a1b2a1a

−1
3 , b2

n−1b3b
2
n−1a

−1
4 ,

ai−1biai−1a
−1
i+1 (4 ≤ i ≤ n − 2), an−2bn−1an−2,

an−1c1an−1a
−1
1 , c1a1c1b

−1
2 , b6

n−1b
−1
3 ,

bi−1aibi−1b
−1
i+1 (3 ≤ i ≤ n − 2), bn−2an−1bn−2c

−1
1 >

b3 = b6
n−1. Remove b3: (removes r2)

H ′ =< a1, a3, a4, . . . , an−1, b2, b4, b5 . . . , bn−1, c1, | a1b2a1a
−1
3 , b10

n−1a
−1
4 ,

ai−1biai−1a
−1
i+1 (4 ≤ i ≤ n − 2),

an−2bn−1an−2, an−1c1an−1a
−1
1 ,

c1a1c1b
−1
2 , b2a3b2b

−1
4 , b6

n−1a4b
6
n−1b

−1
5 ,

bi−1aibi−1b
−1
i+1 (5 ≤ i ≤ n − 2),

bn−2an−1bn−2c
−1
1 >

a4 = b10
n−1. Remove a4: (removes q3)
H ′ =< a1, a3, a5, a6, . . . , an−1, b2, b4, b5 . . . , bn−1, c1, | a1b2a1a

−1
3 , a3b4a3a

−1
5 ,

b10
n−1b5b

10
n−1a

−1
6 , ai−1biai−1a

−1
i+1 (6 ≤ i ≤ n − 2), an−2bn−1an−2, an−1c1an−1a

−1
1 ,

c1a1c1b
−1
2 , b2a3b2b

−1
4 , b22

n−1b
−1
5 , bi−1aibi−1b

−1
i+1 (5 ≤ i ≤ n − 2), bn−2an−1bn−2c

−1
1 >Continue in this way, removing the generators b5, a6, b7, a8 . . . and so the relators r4, q5, r6, q7, . . .respectively.Removing bk, k odd where bk = bd

n−1 for some d yields the following presentation:
H ′ =< a1, a3, . . . , ak, ak+1, . . . an−1, b2, b4, . . . , bk+1, bk+2, . . . , bn−1, c1, |

ai−1biai−1a
−1
i+1 (2 ≤ i ≤ k − 1, i even, and k + 1 ≤ i ≤ n− 2), bd′

n−1a
−1
k+1, an−2bn−1an−2,

an−1c1an−1a
−1
1 , c1a1c1b

−1
2 , bi−1aibi−1b

−1
i+1 (3 ≤ i ≤ k, i odd, and k + 2 ≤ i ≤ n − 2),

bd
n−1ak+1b

d
n−1b

−1
k+2, bn−2an−1bn−2c

−1
1 >Removing ak, k even where ak = bd

n−1 for some d yields the following presentation:
H ′ =< a1, a3, . . . , ak+1, ak+2, . . . an−1, b2, b4, . . . , bk, bk+1, . . . , bn−1, c1, |

ai−1biai−1a
−1
i+1 (2 ≤ i ≤ k, i even, and k + 2 ≤ i ≤ n − 2), bd

n−1bk+1b
d
n−1a

−1
k+2,

an−2bn−1an−2, an−1c1an−1a
−1
1 , c1a1c1b

−1
2 , bi−1aibi−1b

−1
i+1

(3 ≤ i ≤ k − 1, i odd, and k + 1 ≤ i ≤ n − 2), bd′

n−1b
−1
k+1, bn−2an−1bn−2c

−1
1 >123
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n−1 (and so qn−2) we have the following presentation:

H ′ =< a1, a3, . . . , an−4, an−2, b2, b4, . . . , bn−3, bn−1, c1 | ai−1biai−1a
−1
i+1

(2 ≤ i ≤ n − 3, i even), an−2bn−1an−2, bd
n−1c1b

d
n−1a

−1
1 , c1a1c1b

−1
2 ,

bi−1aibi−1b
−1
i+1 (3 ≤ i ≤ n − 2, i odd), bd′

n−1c
−1
1 >We remove generators that equal powers of bn−1 and these powers are the following:

2, 6, 10, 22, . . .. These come from the relator of the form bd′′

n−1bmbd′′

n−1a
−1
m+1: 10 = 2(2) +6, 22 = 2(6) + 10 etc.Let xi denote the relevant power and let x0 = 2, x1 = 6. Then xi = 2xi−2 + xi−1.Let xi = λi so λi = 2λi−2 + λi−1 =⇒ λ2 = 2 + λ =⇒ λ = 2 or λ = −1.

xi = A(2)i + B(−1)i. i = 0 : 2 = A + B, i = 1 : 6 = 2A − B =⇒ A = 8
3 , B = −2

3 .So xi = 1
3(8(2)i − 2(−1)i).Once we have removed an−1 and obtained the above presentation, d = xn−3, d

′ = xn−2and as n is odd: d = 1
3 (8(2)n−3 − 2), d′ = 1

3(8(2)n−2 + 2).Next we remove c1: c1 = bd′

n−1 (removes rn−1).
H ′ =< a1, a3, . . . , an−4, an−2, b2, b4, . . . , bn−3, bn−1 | ai−1biai−1a

−1
i+1

(2 ≤ i ≤ n − 3, i even), an−2bn−1an−2, bd′′

n−1a
−1
1 , bd′

n−1a1b
d′

n−1b
−1
2 ,

bi−1aibi−1b
−1
i+1 (3 ≤ i ≤ n − 2, i odd) >Now we have a1 = bd′′

n−1 where d′′ = xn−1 = 1
3(8(2)n−1 − 2).So we remove a1, b2, a3, b4, . . . as before and each time remove qn, r1, q2, r3, . . ..Once we have removed bn−3 we are left only with an−2 and bn−1 as generators and we haveremoved the relators q1, q2, . . . , qn−2, qn, r1, r2, . . . , rn−4, rn so we have qn−1, rn−3, rn−2left as relators.

H ′ =< an−2, bn−1 | bm′

n−1a
−1
n−2, an−2bn−1an−2, b

m
n−1an−2b

m
n−1b

−1
n−1 >

an−2 = bm′

n−1. Remove an−2:
H ′ =< bn−1 | bm′

n−1bn−1b
m′

n−1, b
m
n−1b

m′

n−1b
m
n−1b

−1
n−1 >124



Chapter 8: Results for finitely presented groupsAs we had d′ = xn−2, we have m′ = x2(n−2) = x2n−4 and m = x2n−5.
m = 1

3(8(2)2n−5 + 2) and m′ = 1
3(8(2)2n−4 − 2).First relator: m′+m′+1 = 21

3 (8(2)2n−4−2)+1 = 1
3 (8(22n−3)−1) = 1

3(22n−1) = 1
3(4n−1).Second relator: m+m′+m−1 = 21

3(8(2)2n−5+2)+ 1
3(8(2)2n−4−2)−1 = 2

3(8(2)2n−4)− 1
3 =

1
3(22n − 1) = 1

3 (4n − 1). Therefore:
H ′ =< bn−1 | bs

n−1 >= Zs,where s = 1
3(4n − 1).So |H ′| = 1
3(4n − 1) and |H : H ′| = 2n. As |G| = |H|/n and |H| = |H : H ′||H ′| then

|G| = 2|H ′| = 2
3(4n − 1), which is what we were trying to prove.8.4.7 ω = x0x4x3x1

G =< x0, . . . , xn−1 | xixi+4xi+3xi+1 (0 ≤ i ≤ n− 1) >, n odd, n 6≡ 0 mod 3. G = Z4,
l = 12.Relators:
xixi+4xi+3xi+1, 0 ≤ i ≤ n − 1For all i, xixi+4xi+3xi+1 and xi+3xi+7xi+6xi+4 are relators and can be rearranged togive the following:
xi+4xi+3xi+1xi

xi+4xi+3xi+7xi+6So xi+1xi = xi+7xi+6 for all i, subscripts taken mod n.So x1x0 = x7kx6k for all k.As n is odd and n 6≡ 0 mod 3, gcd(n, 6) = 1.Therefore, x1x0 = xi+1xi for all i.Let z = xi+1xiEach relator is of the form xi+1xixi+4xi+3 = z2

G =< x0, x1, . . . , xn−2, xn−1, z | z−1xn−1xn−2, ..., z
−1x2x1, z

−1x1x0, z
−1x0xn−1, z

2 >Remove x0 = x−1
1 z:

G =< x1, . . . , xn−2, xn−1, z | z−1xn−1xn−2, ..., z
−1x2x1, z

−1x−1
1 zxn−1, z

2 >125



Chapter 8: Results for finitely presented groupsRemove x1 = x−1
2 z:

G =< x2, ..., xn−2, xn−1, z | z−1xn−1xn−2, ..., z
−1x3x2, z

−2x2zxn−1, z
2 >Remove x2 = x−1

3 z:
G =< x3, ..., xn−2, xn−1, z | z−1xn−1xn−2, ..., z

−1x4x3, z
−2x−1

3 z2xn−1, z
2 >

. . .Remove xn−3 = x−1
n−2z:

G =< xn−2, xn−1, z | z−1xn−1xn−2, z
−n−1

2 x−1
n−2z

n−1
2 xn−1, z

2 >Remove xn−2 = x−1
n−1z:

G =< xn−1, z | z−
n+1

2 xn−1z
n−1

2 xn−1, z
2 >

z2 = 1 so reduces to:
G =< xn−1, z | zx2

n−1, z
2 > When n+1

2 even.
G =< xn−1, z | z−1x2

n−1, z
2 > When n+1

2 odd.Remove z = x±2
n−1:

G =< xn−1 | x4
n−1 >8.4.8 ω = x0x3x

2
2x

2
1

G =< x0, . . . , xn−1 | xixi+3x
2
i+2x

2
i+1 (0 ≤ i ≤ n− 1) >, n odd, n 6≡ 0 mod 3. G = Z6,

l = 12.Relators:
xixi+3xi+2xi+2xi+1xi+1, 0 ≤ i ≤ n − 1For all i, xixi+3xi+2xi+2xi+1xi+1 and xi+1xi+4xi+3xi+3xi+2xi+2 are relators and can berearranged to give the following:
xi+3xi+2xi+2xi+1xi+1xi

xi+3xi+2xi+2xi+1xi+4xi+3So xi+1xi = xi+4xi+3 for all i, subscripts taken mod nSo x1x0 = x4kx3k for all k.As n is odd and n 6≡ 0 mod 3, gcd(n, 3) = 1.Therefore, x1x0 = xi+1xi for all i.Let z = xi+1xi 126



Chapter 8: Results for finitely presented groupsEach relator is of the form xi+1xixi+3xi+2xi+2xi+1 = z3

G =< x0, x1, . . . , xn−2, xn−1, z | z−1xn−1xn−2, . . . , z
−1x2x1, z

−1x1x0, z
−1x0xn−1, z

3 >Remove x0 = x−1
1 z:

G =< x1, . . . , xn−2, xn−1, z | z−1xn−1xn−2, . . . , z
−1x2x1, z

−1x−1
1 zxn−1, z

3 >Remove x1 = x−1
2 z:

G =< x2, . . . , xn−2, xn−1, z | z−1xn−1xn−2, . . . , z
−1x3x2, z

−2x2zxn−1, z
3 >Remove x2 = x−1

3 z:
G =< x3, . . . , xn−2, xn−1, z | z−1xn−1xn−2, . . . , z

−1x4x3, z
−2x−1

3 z2xn−1, z
3 >

. . .Remove xn−3 = x−1
n−2z:

G =< xn−2, xn−1, z | z−1xn−1xn−2, z
−n−1

2 x−1
n−2z

n−1
2 xn−1, z

3 >Remove xn−2 = x−1
n−1z:

G =< xn−1, z | z−
n+1

2 xn−1z
n−1

2 xn−1, z
3 >

z3 = 1 so we get one of the following:(a) n+1
2 ≡ 0 mod 3, n−1

2 ≡ 2 mod 3

G =< xn−1, z | zx2
n−1, z

3 >(b) n+1
2 ≡ 1 mod 3, n−1

2 ≡ 0 mod 3

G =< xn−1, z | zx2
n−1, z

3 >(c) n+1
2 ≡ 2 mod 3, n−1

2 ≡ 1 mod 3 - not possible as n 6≡ 0 mod 3Remove z = x−2
n−1:

G =< xn−1 | x6
n−1 >8.4.9 ω = x0x3x1x2Relators:

xixi+3xi+1xi+2, 0 ≤ i ≤ n − 1For all i, xixi+3xi+1xi+2 and xi+1xi+4xi+2xi+3 are relators and can be rearranged togive the following: 127



Chapter 8: Results for finitely presented groups
xi+3xi+1xi+2xi

xi+3xi+1xi+4xi+2So xi+2xi = xi+4xi+2 for all i, subscripts taken mod nSo x2x0 = x4kx2k for all k.As n is odd, gcd(n, 2) = 1.Therefore, x2x0 = xi+2xi for all i.Let z = xi+2xiEach relator is of the form xi+3xi+1xi+2xi = z2.
G =< x0, x1, . . . , xn−2, xn−1, z | z−1xn−1xn−3, . . . , z

−1x3x1, z
−1x2x0, z−1x1xn−1,

z−1x0xn−2, z2 >Remove x0 = x−1
2 z:

G =< x1, . . . , xn−2, xn−1, z | z−1xn−1xn−3, . . . , z
−1x3x1, z

−1x1xn−1, z
−1x−1

2 zxn−2, z
2 >Remove x1 = x−1

3 z:
G =< x2, . . . , xn−2, xn−1, z | z−1xn−1xn−3, . . . , z

−1x4x2, z
−1x−1

3 zxn−1, z
−1x−1

2 zxn−2, z
2 >Remove x2 = x−1

4 z:
G =< x3, . . . , xn−2, xn−1, z | z−1xn−1xn−3, . . . , z

−1x5x3, z
−1x−1

3 zxn−1, z
−2x4zxn−2, z

2 >Remove x3 = x−1
5 z:

G =< x4, . . . , xn−2, xn−1, z | z−1xn−1xn−3, . . . , z
−1x6x4, z

−2x5zxn−1, z
−2x4zxn−2, z

2 >

. . .Removing relator xi = x−1
i+2z leaves us with relators z−1xj+2xj, z2 and

z−A1xa
A2

zA3xn−1, z−B1xb
B2

zB3xn−2 where:
A1 = 1

4(i + 1 − (i + 1) mod 4) + 1

A2 =

{

i + 1, if i even
i + 2, if i odd

A3 = 1
4(i − 1 − (i − 1) mod 4) + 1

a =

{

1, if i ≡ 0, 3 mod 4

−1, if i ≡ 1, 2 mod 4

B1 = 1
4 (i + 2 − (i + 2) mod 4) + 1

B2 =

{

i + 2, if i even
i + 1, if i odd

B3 = 1
4 (i − i mod 4) + 1

b =

{

1, if i ≡ 2, 3 mod 4

−1, if i ≡ 0, 1 mod 4128



Chapter 8: Results for finitely presented groupsAs n is odd, n − 4 is odd.Remove xn−4 = x−1
n−2z:Assume n − 4 ≡ 1 mod 4:

G =< xn−3, xn−2, xn−1, z | z−1xn−1xn−3, z
−n−1

4 x−1
n−2z

n−1
4 xn−1, z

−n−1
4 x−1

n−3z
n−1

4 xn−2, z
2 >Remove xn−3 = x−1

n−1z:
G =< xn−2, xn−1, z | z−

n−1
4 x−1

n−2z
n−1

4 xn−1, z
−n+3

4 xn−1z
n−1

4 xn−2, z
2 >If n−1

4 even:
G =< xn−2, xn−1, z | x−1

n−2xn−1, zxn−1xn−2, z
2 > = < xn−1, z | zx2

n−1, z
2 >If n−1

4 odd:
G =< xn−2, xn−1, z | zx−1

n−2zxn−1, xn−1zxn−2, z
2 > = < xn−1, z | zx2

n−1, z
2 >Assume n − 4 ≡ 3 mod 4:

G =< xn−3, xn−2, xn−1, z | z−1xn−1xn−3, z
−n+1

4 xn−2z
n−3

4 xn−1, z
−n+1

4 xn−3z
n−3

4 xn−2, z
2 >Remove xn−3 = x−1

n−1z:
G =< xn−2, xn−1, z | z−

n+1
4 xn−2z

n−3
4 xn−1, z

−n+1
4 x−1

n−1z
n+1

4 xn−2, z
2 >If n+1

4 even:
G =< xn−2, xn−1, z | xn−2zxn−1, x

−1
n−1xn−2, z

2 > = < xn−1, z | zx2
n−1, z

2 >If n+1
4 odd:

G =< xn−2, xn−1, z | zxn−2xn−1, zx−1
n−1zxn−2, z

2 > = < xn−1, z | zx2
n−1, z

2 >So G = < xn−1, z | zx2
n−1, z

2 > = < xn−1 | x4
n−1 >, as required.8.4.10 ω = x0x4x3x2x1

G =< x0, . . . , xn−1 | xixi+4xi+3xi+2xi+1 (0 ≤ i ≤ n − 1) >, n 6≡ 0 mod 5. G = Z5,
l = 13.See Subsection 8.4.1.8.4.11 ω = x0x5x4x1

G =< x0, . . . , xn−1 | xixi+5xi+4xi+1 (0 ≤ i ≤ n − 1) >, n odd. G = Z4, l = 14.Relators:
xixi+5xi+4xi+1, 0 ≤ i ≤ n − 1 129



Chapter 8: Results for finitely presented groupsFor all i, xixi+5xi+4xi+1 and xi+4xi+9xi+8xi+5 are relators and can be rearranged togive the following:
xi+5xi+4xi+1xi

xi+5xi+4xi+9xi+8So xi+1xi = xi+9xi+8 for all i, subscripts taken mod n.So x1x0 = x9kx8k for all k.As n is odd, gcd(n, 8) = 1.Therefore, x1x0 = xi+1xi for all i.Let z = xi+1xiEach relator is of the form xi+1xixi+5xi+4 = z2

G =< x0, x1, . . . , xn−2, xn−1, z | z−1xn−1xn−2, ..., z
−1x2x1, z

−1x1x0, z
−1x0xn−1, z

2 >The remainder of the proof is the same as in Subsection 8.4.7.8.4.12 ω = x0x5x3x2

G =< x0, . . . , xn−1 | xixi+5xi+3xi+2 (0 ≤ i ≤ n− 1) >, n odd, n 6≡ 0 mod 3. G = Z4,
l = 14.Relators:
xixi+5xi+3xi+2, 0 ≤ i ≤ n − 1For all i, xixi+5xi+3xi+2 and xi+3xi+8xi+6xi+5 are relators and can be rearranged togive the following:
xi+5xi+3xi+2xi

xi+5xi+3xi+8xi+6So xi+2xi = xi+8xi+6 for all i, subscripts taken mod nSo x2x0 = x8kx6k for all k.As n is odd and n 6≡ 0 mod 3, gcd(n, 6) = 1.Therefore, x2x0 = xi+2xi for all i.Let z = xi+2xiEach relator is of the form xi+2xixi+5xi+3 = z2.130



Chapter 8: Results for finitely presented groups
G =< x0, x1, . . . , xn−2, xn−1, z | z−1xn−1xn−3, . . . , z

−1x3x1, z
−1x2x0, z−1x1xn−1,

z−1x0xn−2, z2 >The remainder of the proof is the same as in Subsection 8.4.9.8.4.13 ω = x0x4x3x
2
2x1

G =< x0, . . . , xn−1 | xixi+4xi+3x
2
i+2xi+1 (0 ≤ i ≤ n − 1) >, n odd, n 6≡ 0 mod 3.

G = Z6, l = 14.Relators:
xixi+4xi+3xi+2xi+2xi+1, 0 ≤ i ≤ n − 1For all i, xixi+4xi+3xi+2xi+2xi+1 and xi+2xi+6xi+5xi+4xi+4xi+3 are relators and can berearranged to give the following:
xi+4xi+3xi+2xi+2xi+1xi

xi+4xi+3xi+2xi+6xi+5xi+4So xi+2xi+1xi = xi+6xi+5xi+4 for all i, subscripts taken mod nSo x2x1x0 = x6kx5kx4k for all k.As n is odd, gcd(n, 4) = 1.Therefore, x2x1x0 = xi+2xi+1xi for all i.Let z = xi+2xi+1xiEach relator is of the form xi+2xi+1xixi+4xi+3xi+2 = z2

G = < x0, x1, . . . , xn−2, xn−1, z | z−1xn−1xn−2xn−3, . . . , z−1x3x2x1, z−1x2x1x0,

z−1x1x0xn−1, z−1x0xn−1xn−2, z2 >Remove x0 = x−1
1 x−1

2 z:
G = < x1, . . . , xn−2, xn−1, z | z−1xn−1xn−2xn−3, . . . , z−1x3x2x1, z−1x−1

2 zxn−1,

z−1x−1
1 x−1

2 zxn−1xn−2, z2 >Remove x1 = x−1
2 x−1

3 z: 131



Chapter 8: Results for finitely presented groups
G = < x2, . . . , xn−2, xn−1, z | z−1xn−1xn−2xn−3, . . . , z−1x4x3x2, z−1x−1

2 zxn−1,

z−2x3zxn−1xn−2, z2 >Remove x2 = x−1
3 x−1

4 z:
G = < x3, . . . , xn−2, xn−1, z | z−1xn−1xn−2xn−3, . . . , z−1x5x4x3, z−2x4x3zxn−1,

z−2x3zxn−1xn−2, z2 >Remove x3 = x−1
4 x−1

5 z:
G = < x4, . . . , xn−2, xn−1, z | z−1xn−1xn−2xn−3, . . . , z−1x6x5x4, z−2x−1

5 z2xn−1,

z−2x−1
4 x−1

5 z2xn−1xn−2, z2 >Remove x4 = x−1
5 x−1

6 z:
G = < x5, . . . , xn−2, xn−1, z | z−1xn−1xn−2xn−3, . . . , z−1x7x6x5, z−2x−1

5 z2xn−1,

z−3x6z
2xn−1xn−2, z2 >

. . .Remove xn−4 = x−1
n−3x

−1
n−2z

G = < xn−3, xn−2, xn−1, z | z−1xn−1xn−2xn−3, z−a1A1z
bxn−1, z−a2A2z

bxn−1xn−2, z2 >We have the following cases:(a) n − 4 = 0 mod 3

A1 = x−1
n−2

A2 = x−1
n−3x

−1
n−2

a1 = n−4
3 + 1

a2 = n−4
3 + 1

b = n−4
3 + 1(b) n − 4 = 1 mod 3

A1 = x−1
n−3

A2 = xn−2

a1 = n−5
3 + 1

a2 = n−5
3 + 2

b = n−5
3 + 1 132



Chapter 8: Results for finitely presented groups(c) n − 4 = 2 mod 3 - cannot happen as n 6≡ 0 mod 3(a) n − 4 = 0 mod 3If n−4
3 + 1 odd =⇒ n−4

3 even =⇒ n − 4 even =⇒ n even - contradiction so
n−4

3 + 1 even, n−4
3 + 1 = 0 mod 2.

A1 = x−1
n−2, A2 = x−1

n−3x
−1
n−2, a1 = a2 = b = 0.

G =< xn−3, xn−2, xn−1, z | z−1xn−1xn−2xn−3, x
−1
n−2xn−1, x

−1
n−3x

−1
n−2xn−1xn−2, z

2 >Remove xn−1 = xn−2:
G =< xn−3, xn−2, z | z−1x2

n−2xn−3, x
−1
n−3xn−2, z

2 >Remove xn−3 = xn−2:
G =< xn−2, z | z−1x3

n−2, z
2 >Remove z = x3

n−2:
G =< xn−2 | x6

n−2 >(b) n − 4 = 1 mod 3If n−5
3 +1 even =⇒ n−5

3 odd =⇒ n−5 odd =⇒ n even - contradiction so n−5
3 +1odd, n−5

3 + 1 = 1 mod 2.
A1 = x−1

n−3, A2 = xn−2, a1 = 1, a2 = 0, b = 1.
G =< xn−3, xn−2, xn−1, z | z−1xn−1xn−2xn−3, zx−1

n−3zxn−1, xn−2zxn−1xn−2, z
2 >Remove xn−3 = x−1

n−2x
−1
n−1z

G =< xn−2, xn−1, z | x2
n−1xn−2z, zxn−1x

2
n−2, z

2 >Remove xn−2 = x−2
n−1z

−1

G =< xn−1, z | x−3
n−1z

−1, z2 >Remove z = x−3
n−1

G =< xn−1 | x−6
n−1 >8.4.14 ω = x0x3x2x1x2x1

G =< x0, . . . , xn−1 | xixi+3xi+2xi+1xi+2xi+1 (0 ≤ i ≤ n − 1) >, n odd, n 6≡ 0 mod 3.
G = Z6, l = 14.Relators are:
x0x3x2x1x2x1

x1x4x3x2x3x2

x2x5x4x3x4x3

x3x6x5x4x5x4 133



Chapter 8: Results for finitely presented groups
. . .

xn−4xn−1xn−2xn−3xn−2xn−3

xn−3x0xn−1xn−2xn−1xn−2

xn−2x1x0xn−1x0xn−1

xn−1x2x1x0x1x0Let yi = x−1
i

x0 = y1y2y1y2y3

= x4x3x2x3x2y2x4x3x2x3x2y2y3

= x4x3x2x3x4x3x2

= x4x3y3y4y3y4y5x3x4x3y3y4y3y4y5

= y3y4y5y4y5

= x6x5x4x5x4y4y5y4y5

= x6So x0 = x6By the symmetry of the relators we get x0 = x6 = x12..., so x0 = x6i where subscriptsare taken mod n.As n is odd and n 6≡ 0 mod 3, gcd(n, 6) = 1 and so x6i will run though x0, ..., xn−1.So x0 = x1 = ... = xn−1 and, by the relators, x6
0 = 1.8.4.15 ω = x0x2x1x3x2x1

G =< x0, . . . , xn−1 | xixi+2xi+1xi+3xi+2xi+1 (0 ≤ i ≤ n − 1) >, n odd, n 6≡ 0 mod 3

G = Z6, l = 14.Relators are:
x0x2x1x3x2x1

x1x3x2x4x3x2

x2x4x3x5x4x3

x3x5x4x6x5x4

. . .

xn−4xn−2xn−3xn−1xn−2xn−3

xn−3xn−1xn−2x0xn−1xn−2

xn−2x0xn−1x1x0xn−1

xn−1x1x0x2x1x0 134



Chapter 8: Results for finitely presented groups
Let yi = x−1

i

x0 = y1y2y3y1y2

= x3x2x4x3x2y2y3x3x2x4x3x2y2

= x3x2x4x3x2x4x3

= x3y3y4y5y3y4x4x3y3y4y5y3y4x4x3

= y4y5y3y4y5

= y4y5x5x4x6x5x4y4y5

= x6So x0 = x6By the symmetry of the relators we get x0 = x6 = x12..., so x0 = x6i where subscriptsare taken mod n.As n is odd and n 6≡ 0 mod 3, gcd(n, 6i) = 1 and so x6i will run though x0, ..., xn−1.So x0 = x1 = ... = xn−1 and, by the relators, x6
0 = 1.8.4.16 ω = x0x1x

−1
2 x1x2x

−1
1

< x0, . . . , xn−1 | xixi+1x
−1
i+2xi+1xi+2x

−1
i+1 (0 ≤ i ≤ n − 1) >, n odd. G = D2n+1−2Relators are:

xixi+1x
−1
i+2xi+1xi+2x

−1
i+1, 0 ≤ i ≤ n − 1For all i, xixi+1x

−1
i+2xi+1xi+2x

−1
i+1 and xi+1xi+2x

−1
i+3xi+2xi+3x

−1
i+2 are relators and can berearranged to give the following:

x−1
i+2xi+1xi+2x

−1
i+1xixi+1

x−1
i+2xi+1xi+2x

−1
i+3xi+2xi+3So x−1

i+1xixi+1 = x−1
i+3xi+2xi+3 for all i, subscripts taken mod nSo x−1

1 x0x1 = x−1
3k x2kx3k for all k.As n is odd, gcd(n, 2) = 1Therefore, x−1

1 x0x1 = x−1
i+1xixi+1 for all i.Let z = x−1

i+1xixi+1Each relator is of the form x−1
i+2xi+1xi+2x

−1
i+1xixi+1 = z2135



Chapter 8: Results for finitely presented groups
G =< x0, x1, . . . , xn−2, xn−1, z | zx−1

n−1xn−2xn−1, . . . , zx−1
2 x1x2, zx−1

1 x0x1, xn−1x0zx−1
0 , z2 >Remove x0 = x1zx−1

1 :
G =< x1, . . . , xn−2, xn−1, z | zx−1

n−1xn−2xn−1, . . . , zx−1
2 x1x2, xn−1x1zx−1

1 (zx1zx−1
1 ), z2 >Remove x1 = x2zx−1

2 :
G =< x2, . . . , xn−2, xn−1, z | zx−1

n−1xn−2xn−1, . . . , zx−1
3 x2x3, xn−1x2zx−1

2 (zx2zx−1
2 )3, z2 >Remove x2 = x3zx−1

3 :
G =< x3, . . . , xn−2, xn−1, z | zx−1

n−1xn−2xn−1, . . . , zx−1
4 x3x4, xn−1x3zx−1

3 (zx3zx−1
3 )7, z2 >

. . .Remove xn−3 = xn−2zx−1
n−2:

G =< xn−2, xn−1, z | zx−1
n−1xn−2xn−1, xn−1xn−2zx−1

n−2(zxn−2zx−1
n−2)

2n−2−1, z2 >Remove xn−2 = xn−1zx−1
n−1

G =< xn−1, z | xn−1xn−1zx−1
n−1(zxn−1zx−1

n−1)
2n−1−1, z2 >

G =< xn−1, z | xn−1xn−1z(x−1
n−1zxn−1z)2

n−1−1x−1
n−1, z

2 >

G =< xn−1, z | xn−1z(x−1
n−1zxn−1z)2

n−1−1, z2 >So x−1
n−1 = z(x−1

n−1zxn−1z)2
n−1−1

= z(x−1
n−1zxn−1z)(x−1

n−1zxn−1z)2
n−2−1(x−1

n−1zxn−1z)2
n−2−1

= zx−1
n−1(zxn−1zx−1

n−1)
2n−2−1zxn−1z(x−1

n−1zxn−1z)2
n−2−1

= zx−1
n−1(zxn−1zx−1

n−1)
2n−2−1z(xn−1zx−1

n−1z)2
n−2−1xn−1z

= wzw−1,where w = zx−1
n−1(zxn−1zx−1

n−1)
2n−2−1So x−1

n−1 is a conjugate of z and so x2
n−1 = 1

G =< xn−1, z | x2
n−1, xn−1z(xn−1zxn−1z)2

n−1−1, z2 >

G =< xn−1, z | x2
n−1, (xn−1z)2

n−1, z2 >= D2n+1−28.4.17 ω = x0x
−1
2 x3x2x

−1
0 x1

< x0, . . . , xn−1 | xix
−1
i+2xi+3xi+2x

−1
i xi+1 (0 ≤ i ≤ n − 1) >, n odd. G = D2n+1−2Relators are:

xix
−1
i+2xi+3xi+2x

−1
i xi+1, 0 ≤ i ≤ n − 1 136



Chapter 8: Results for finitely presented groupsFor all i, xix
−1
i+2xi+3xi+2x

−1
i xi+1 and xi+2x

−1
i+4xi+5xi+4x

−1
i+2xi+3 are relators and can berearranged to give the following:

x−1
i+2xi+3xi+2x

−1
i xi+1xi

x−1
i+2xi+3xi+2x

−1
i+4xi+5xi+4So x−1

i xi+1xi = x−1
i+4xi+5xi+4 for all i, subscripts taken mod nSo x−1

0 x1x0 = x−1
4k x5kx4k for all k.As n is odd, gcd(n, 4) = 1Therefore, x−1

0 x1x0 = x−1
i xi+1xi for all i.Let z = x−1

i xi+1xiEach relator is of the form x−1
i+2xi+3xi+2x

−1
i xi+1xi = z2

G =< x0, x1, . . . , xn−2, xn−1, z | zx−1
n−2xn−1xn−2, . . . , zx−1

1 x2x1, zx−1
0 x1x0, x0xn−1zx−1

n−1, z
2 >Remove xn−1 = xn−2zx−1

n−2:
G =< x0, x1, . . . , xn−2, z | zx−1

n−3xn−2xn−3, . . . , zx−1
0 x1x0, x0xn−2zx−1

n−2(zxn−2zx−1
n−2), z

2 >Remove xn−2 = xn−3zx−1
n−3:

G =< x0, x1, . . . , xn−3, z | zx−1
n−4xn−3xn−4, . . . , zx−1

0 x1x0, x0xn−3zx−1
n−3(zxn−3zx−1

n−3)
3, z2 >Remove xn−3 = xn−4zx−1

n−4:
G =< x0, x1, . . . , xn−4, z | zx−1

n−5xn−4xn−5, . . . , zx−1
0 x1x0, x0xn−4zx−1

n−4(zxn−4zx−1
n−4)

7, z2 >

. . .Remove x2 = x1zx−1
1 :

G =< x0, x1, z | zx−1
0 x1x0, x0x1zx−1

1 (zx1zx−1
1 )2

n−2−1, z2 >Remove x1 = x0zx−1
0 :

G =< x0, z | x0x0zx−1
0 (zx0zx−1

0 )2
n−1−1, z2 >

G =< x0, z | x0x0z(zx0zx−1
0 )2

n−1−1x−1
0 , z2 >

G =< x0, z | x0z(zx0zx−1
0 )2

n−1−1, z2 >The remainder of the proof is the same as in Subsection 8.4.16.
137



Chapter 8: Results for finitely presented groups8.4.18 The remaining groups in each familyIn this section we have proved each group in the family is �nite for the speci�ed n. Whatwe have not yet proved, apart from the case where ω = x0 . . . xk−1 which is dealt within Subsection 8.4.1, is that the groups in the family are in�nite for all other values of n.Apart from those of the form ω = x0 . . . xk−1, the other families are either �nite when
n is odd or when n is odd and n 6≡ 0 mod 3. For each of these families we look at thecase when n = 2 and for those which also require n 6≡ 0 mod 3, we also look at the casewhen n = 3.Finite when n is odd:
G2(x0x2x

2
1) = < x0, x1 | x2

0x
2
1 >

G2(x0x1x2x1) = < x0, x1 | (x0x1)
2 >

G2(x0x
−1
2 x−1

1 x−1
2 ) = < x0, x1 | x0x1 >

G2(x0x3x1x2) = < x0, x1 | x2
0x

2
1 >

G2(x0x5x4x1) = < x0, x1 | (x0x1)
2 >

G2(x0x1x
−1
2 x1x2x

−1
1 ) = < x0, x1 | x0x1x

−1
0 x1x0x

−1
1 >

G2(x0x
−1
2 x3x2x

−1
0 x1) = < x0, x1 | x2

1 >Finite when n is odd and n 6≡ 0 mod 3:
G2(x0x4x3x1) = < x0, x1 | x2

0x
2
1 >

G3(x0x4x3x1) = < x0, x1, x2 | (x0x1)
2, (x1x2)

2, (x2x0)
2 >

G2(x0x3x
2
2x

2
1) = < x0, x1 | x0x1x

2
0x

2
1 >

G3(x0x3x
2
2x

2
1) = < x0, x1, x2 | x2

0x
2
2x

2
1 >

G2(x0x5x3x2) = < x0, x1 | x2
0x

2
1 >

G3(x0x5x3x2) = < x0, x1, x2 | (x0x1)
2, (x1x2)

2, (x2x0)
2 >

G2(x0x4x3x
2
2x1) = < x0, x1 | (x2

0x1)
2, (x2

1x0)
2 >

G3(x0x4x3x
2
2x1) = < x0, x1, x2 | x0x1x0x

2
2x1, x1x2x1x

2
0x2, x2x0x2x

2
1x0 >

G2(x0x3x2x1x2x1) = < x0, x1 | (x0x1)
3 >

G3(x0x3x2x1x2x1) = < x0, x1, x2 | x0x1x0x
2
2x1, x1x2x1x

2
0x2, x2x0x2x

2
1x0 >

G2(x0x2x1x3x2x1) = < x0, x1 | x0x1x
2
0x

2
1 >

G3(x0x2x1x3x2x1) = < x0, x1, x2 | (x0x2x1)
2 >The groups < x0, x1 | x2

0x
2
1 >, < x0, x1 | (x0x1)

2 >, < x0, x1 | x0x1 >,
< x0, x1 | x0x1x

−1
0 x1x0x

−1
1 >, < x0, x1 | x2

1 >, < x0, x1 | x0x1x
2
0x

2
1 >,

< x0, x1, x2 | x2
0x

2
2x

2
1 >, < x0, x1 | (x0x1)

3 > and < x0, x1, x2 | (x0x2x1)
2 > all havemore generators than relators so they are in�nite.138



Chapter 8: Results for finitely presented groupsThe remaining three groups, < x0, x1, x2 | (x0x1)
2, (x1x2)

2, (x2x0)
2 >,

< x0, x1 | (x2
0x1)

2, (x2
1x0)

2 > and < x0, x1, x2 | x0x1x0x
2
2x1, x1x2x1x

2
0x2, x2x0x2x

2
1x0 >,can all be found to be in�nite by KBMAG.Therefore, each group in the family is �nite if and only if n meets the stated conditions.8.5 SporadicsIn Chapter 6 we de�ned a sporadic to mean a word which appears for small n but doesnot occur in the set of words for each l which we have used throughout. They areprecisely the words for which n divides the t exponent sum but the exponent sum isnon-zero. For example, when l = 8, the word x−1t−1x−1t−1x−1t−1xt−1 has t-exponent4 and is a valid word for an irreducible presentation only when n = 4. There are 3 wordsvalid for when n = 5 and for no other n when l = 8, and these 4 words are the onlysporadics for l = 8. A full list of sporadics can be view in [24]. It is worth noting thatthere are no sporadics when l = 7.As with the previous words for which the t-exponent is zero, our list of sporadic wordsincreases as l increases. We therefore handle the words in the same way as before, lookingat each one for 8 ≤ l ≤ 12 and simply trying to compute the �nite groups for 13 ≤ l ≤ 15.Note that, whereas before we looked at each word for 4 ≤ n ≤ 50, we now require onlyto look at the one relevant n. It is possible a particular sporadic word may be valid formore than one n, for example, if the t-exponent is 8 then it is valid for n = 8 and n = 4.However, we treat such a sporadic word separately for the di�erent values of n so thatwe work using a list of words for each di�erent l and each di�erent n.The following table shows how many sporadics there are for each l and n.

l\n 4 5 6 7 8 9 10 11 12 Total8 1 3 0 0 0 0 0 0 0 49 6 8 0 0 0 0 0 0 0 1410 11 33 3 6 0 0 0 0 0 5311 56 64 34 21 3 0 0 0 0 17812 85 210 71 122 9 6 0 0 0 50313 363 489 328 287 142 41 3 0 0 165314 636 1766 606 1074 285 300 19 13 0 469915 2788 3960 2886 2589 1693 894 346 77 5 15238139



Chapter 8: Results for finitely presented groups8.5.1 l ≤ 12As sporadics only exist for small n, there are no families of groups. Following are the�nite groups found for the sporadics when l ≤ 12.Group G |G| Structure of G

l = 9

< x0, . . . , x3 | xixi+1xi+2x
2
i+3 (0 ≤ i ≤ 3) > 5 Z5

< x0, . . . , x4 | xix
−1
i+2xi+3xi+4 (0 ≤ i ≤ 4) > 22 Z22

l = 10

< x0, . . . , x4 | xixi+2xi+3x
2
i+4 (0 ≤ i ≤ 4) > 275 Z11 o Z25

< x0, . . . , x4 | xix
2
i+2xi+3xi+4 (0 ≤ i ≤ 4) > 1025 Z41 o Z25

< x0, . . . , x5 | xixi+2xi+4xi+5 (0 ≤ i ≤ 5) > 24 Z3 o Z8

l = 11

< x0, . . . , x3 | xix
2
i+1xi+2x

3
i+3 (0 ≤ i ≤ 3) > 168 Z7 × SL(2, 3)

< x0, . . . , x3 | xix
2
i+1x

2
i+2x

2
i+3 (0 ≤ i ≤ 3) > 7 Z7

< x0, . . . , x3 | xix
−2
i+1xix

−1
i+2 (0 ≤ i ≤ 3) > 13 Z13

l = 12

< x0, . . . , x3 | xixi+1xi+2xi+3xix
−1
i+1 (0 ≤ i ≤ 3) > 624 Z39 o Z16

< x0, . . . , x3 | xix
2
i+1x

2
i+2x

3
i+3 (0 ≤ i ≤ 3) > 6260 1 E Z205 E G

< x0, . . . , x4 | xixi+2xi+4x
2
i+1 (0 ≤ i ≤ 4) > 1025 Z41 o Z25

< x0, . . . , x4 | xixi+2x
2
i+4xi+1 (0 ≤ i ≤ 4) > 275 Z11 o Z25

< x0, . . . , x4 | xixi+2x
−1
i+4x

−1
i xi+4 (0 ≤ i ≤ 4) > 120 SL(2, 5)

< x0, . . . , x4 | xix
−1
i+2xi+3x

−1
i xi+1 (0 ≤ i ≤ 4) > 1 Z1

< x0, . . . , x4 | xixi+1x
2
i+2xi+3x

2
i+4 (0 ≤ i ≤ 4) > 7 Z7

< x0, . . . , x5 | xix
2
i+2xi+3xi+4xi+5 (0 ≤ i ≤ 5) > 15624 1 E Z434 E G

< x0, . . . , x6 | xixi+2xi+3xi+5xi+6 (0 ≤ i ≤ 6) > 5 Z5The following table lists the number of unknown cases for l ≤ 12. There are no unknownsfor l ≤ 10, n ≥ 6 and so these unknowns do not a�ect Theorem 5.2.4.Length 8 9 10 11 12Total remaining 0 0 4 20 30Total remaining n ≥ 6 0 0 0 6 10For l ≤ 10 the remaining groups are as follows.140



Chapter 8: Results for finitely presented groups
• G5(x

−1
0 x2x

−1
3 x−2

4 );
• G5(x

−1
0 x2x

−1
3 x2

4);
• G5(x

−1
0 x2

2x
−2
4 );

• G5(x
−1
0 x2

2x
2
4).Note that the words x−1

0 x2
2x

−2
4 and x−1

0 x2
2x

2
4 appearing in the above list are n-equivalentto x−1

0 x−2
2 x2

1 and x−1
0 x2

2x
2
1 respectively, which appear in the list of remaining groups inSection 8.2.8.5.2 13 ≤ l ≤ 15Following are the list of �nite sporadics found for l = 13, 14 and 15 by asking GAP totell us which of the sporadic words bring about �nite groups.

l = 13 Group G |G| Structure of G

< x0, . . . , x3 | xixi+1xi+2xi+3xix
2
i+1 (0 ≤ i ≤ 3) > 1015 Z29 o (Z7 × Z5)

< x0, . . . , x3 | xixi+1xi+2xi+3x
2
i xi+1 (0 ≤ i ≤ 3) > 1015 Z29 o (Z7 × Z5)

< x0, . . . , x3 | xixi+1xi+2xi+3x
2
i x

−1
i+1 (0 ≤ i ≤ 3) > 169125 1 E Z2255 E G

< x0, . . . , x3 | xixi+1xi+2x
2
i+3xixi+1 (0 ≤ i ≤ 3) > 791 Z113 o Z7

< x0, . . . , x3 | xixi+1x
−1
i+2xix

−1
i+2 (0 ≤ i ≤ 3) > 17 Z17

< x0, . . . , x3 | xixi+1x
−1
i+2x

−1
i xi+2 (0 ≤ i ≤ 3) > 1 Trivial

< x0, . . . , x3 | xix
3
i+1x

−2
i+3x

−1
i+2 (0 ≤ i ≤ 3) > 29 Z29

< x0, . . . , x3 | xix
2
i+1x

−2
i+3x

−2
i+2 (0 ≤ i ≤ 3) > 25 Z25

< x0, . . . , x3 | xixi+1xi+3xixi+2 (0 ≤ i ≤ 3) > 5 Z5

< x0, . . . , x3 | xixi+1x
−1
i+3xix

−1
i+2 (0 ≤ i ≤ 3) > 13 Z13

< x0, . . . , x3 | xix
−3
i+1x

2
i+3x

−1
i+2 (0 ≤ i ≤ 3) > 29 Z29

< x0, . . . , x3 | xix
−2
i+1x

2
i+3x

−2
i+2 (0 ≤ i ≤ 3) > 25 Z25

< x0, . . . , x3 | xix
−1
i+1xi+3x

−1
i xi+2 (0 ≤ i ≤ 3) > 5 Z5

< x0, . . . , x3 | x2
i x

2
i+1x

2
i+2x

3
i+3 (0 ≤ i ≤ 3) > 9 Z9

< x0, . . . , x4 | xixi+1x
2
i+2x

2
i+3x

2
i+4 (0 ≤ i ≤ 4) > 8 Z8

< x0, . . . , x4 | xix
2
i+1xi+2x

2
i+3x

2
i+4 (0 ≤ i ≤ 4) > 8 Z8

< x0, . . . , x5 | xixi+2xi+4x0x
−1
i+1 (0 ≤ i ≤ 5) > 4095 1 E Z91 E G

< x0, . . . , x5 | xixi+1xi+2xi+3xi+4x
2
i+5 (0 ≤ i ≤ 5) > 7 Z7

< x0, . . . , x5 | xix
2
i+1x

−1
i+4x

−1
i+3 (0 ≤ i ≤ 5) > 19 Z19141



Chapter 8: Results for finitely presented groupsGroup G |G| Structure of G

< x0, . . . , x5 | xix
−2
i+1xi+4x

−1
i+3 (0 ≤ i ≤ 5) > 35 Z35

< x0, . . . , x6 | xixi+2xi+3xi+5x
2
i+6 (0 ≤ i ≤ 6) > 6 Z6

< x0, . . . , x6 | xixi+2xi+3xi+4xi+5xi+6 (0 ≤ i ≤ 6) > 6 Z6

< x0, . . . , x7 | xixi+2xi+4xi+5xi+7 (0 ≤ i ≤ 7) > 5 Z5

l = 14 Group G |G| Structure of G

< x0, . . . , x3 | xixi+1x
2
i+2xi+3x

2
i x

−1
i+1 (0 ≤ i ≤ 3) > 122640 1 E Z2255 E G

< x0, . . . , x4 | xixi+1xi+2xi+3xi+4xixi+1 (0 ≤ i ≤ 4) > 7 Z7

< x0, . . . , x4 | xixi+1xi+2xi+3xi+4xix
−1
i+1 (0 ≤ i ≤ 4) > 7775 1 E Z311 E G

< x0, . . . , x4 | xix
2
i+1x

2
i+2xi+3x

3
i+4 (0 ≤ i ≤ 4) > 9 Z9

< x0, . . . , x4 | xix
2
i+1x

2
i+2x

2
i+3x

2
i+4 (0 ≤ i ≤ 4) > 9 Z9

< x0, . . . , x5 | xixi+2xix
−1
i+3 (0 ≤ i ≤ 4) > 728 Z13 o Z56

< x0, . . . , x5 | xixi+1xi+2x
2
i+3xi+4x

2
i+5 (0 ≤ i ≤ 4) > 728 Z13 o Z56

< x0, . . . , x8 | xixi+3xi+4xi+7xi+8 (0 ≤ i ≤ 8) > 5 Z5

< x0, . . . , x9 | xixi+4xi+8xi+9 (0 ≤ i ≤ 9) > 40 Z5 o Z8

l = 15 Group G |G| Structure of G

< x0, . . . , x3 | xixi+1xi+2xi+3xixi+1xi+2 (0 ≤ i ≤ 3) > 7 Z7

< x0, . . . , x3 | xixi+1xi+2xi+3xixi+1x
−1
i+2 (0 ≤ i ≤ 3) > 125 Z25 o Z5

< x0, . . . , x3 | xixi+1x
−2
i+2xix

−1
i+3x

−1
i+2 (0 ≤ i ≤ 3) > 29 Z29

< x0, . . . , x3 | xixi+1x
−1
i+2x

2
i x

−2
i+2 (0 ≤ i ≤ 3) > 37 Z37

< x0, . . . , x3 | xixi+1x
−1
i+2xix

−1
i+3x

−2
i+2 (0 ≤ i ≤ 3) > 29 Z29

< x0, . . . , x3 | xixi+1x
−1
i+2x

−2
i x2

i+2 (0 ≤ i ≤ 3) > 5 Z5

< x0, . . . , x3 | xixi+1x
−1
i+2x

−1
i x−2

i+3x
−1
i+2 (0 ≤ i ≤ 3) > 39 Z39

< x0, . . . , x3 | xix
2
i+1x

−1
i+2x

−1
i+1x

−1
i+3xi+2 (0 ≤ i ≤ 3) > 5 Z5

< x0, . . . , x3 | xix
2
i+1x

−1
i+2x

−1
i+1x

−1
i+3x

−1
i+2 (0 ≤ i ≤ 3) > 13 Z13

< x0, . . . , x3 | xix
4
i+1x

−3
i+3x

−1
i+2 (0 ≤ i ≤ 3) > 53 Z53

< x0, . . . , x3 | xix
2
i+1xi+3xix

2
i+2 (0 ≤ i ≤ 3) > 791 Z113 o Z7

< x0, . . . , x3 | xix
2
i+1xi+3x

−1
i+1x

−2
i+3 (0 ≤ i ≤ 3) > 5 Z5

< x0, . . . , x3 | xix
2
i+1x

−2
i+3x

−2
i+2x

−2
i+1 (0 ≤ i ≤ 3) > 507 Z13 o (Z3 × Z13)

< x0, . . . , x3 | xix
2
i+1x

−1
i+3x

−1
i+2x

−1
i+3xi+1 (0 ≤ i ≤ 3) > 29 Z29142
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< x0, . . . , x3 | xix
2
i+1x

−1
i+3xi+1x

−2
i+3 (0 ≤ i ≤ 3) > 37 Z37

< x0, . . . , x3 | xix
−1
i+1xi+2x

−1
i+1x

2
i+3x

−1
i+2 (0 ≤ i ≤ 3) > 17 Z17

< x0, . . . , x3 | xix
−4
i+1x

3
i+3x

−1
i+2 (0 ≤ i ≤ 3) > 53 Z53

< x0, . . . , x3 | xix
−2
i+1x

−2
i x−2

i+3x
−2
i+2 (0 ≤ i ≤ 3) > 791 Z113 o Z7

< x0, . . . , x3 | xix
−2
i+1xi+3x

−2
i xi+2 (0 ≤ i ≤ 3) > 13 Z13

< x0, . . . , x3 | xix
−2
i+1xi+3x

−1
i x−2

i+2 (0 ≤ i ≤ 3) > 507 Z13 o (Z3 × Z13)

< x0, . . . , x3 | xix
−2
i+1xi+3x

−1
i+2xi+3x

−1
i+1 (0 ≤ i ≤ 3) > 29 Z29

< x0, . . . , x3 | x2
i x

3
i+1x

2
i+2x

4
i+3 (0 ≤ i ≤ 3) > 264 1 E Z2 E Q8 E G

< x0, . . . , x3 | x2
i x

3
i+1x

3
i+2x

3
i+3 (0 ≤ i ≤ 3) > 11 Z11

< x0, . . . , x3 | x2
i x

3
i+1x

−2
i+3x

−2
i+2 (0 ≤ i ≤ 3) > 41 Z41

< x0, . . . , x3 | x2
i x

−3
i+1x

2
i+3x

−2
i+2 (0 ≤ i ≤ 3) > 41 Z41

< x0, . . . , x4 | xixi+2xi+3xixi+1xi+4 (0 ≤ i ≤ 4) > 6 Z6

< x0, . . . , x4 | xixi+2x
2
i+3xi+4xi+3x

2
i+4 (0 ≤ i ≤ 4) > 8 Z8

< x0, . . . , x4 | xixi+1xi+2x
2
i+3xi+4xixi+1 (0 ≤ i ≤ 4) > 8 Z8

< x0, . . . , x5 | xix
2
i+2x

−1
i+5x

−1
i+3 (0 ≤ i ≤ 5) > 35 Z35

< x0, . . . , x5 | xix
−2
i+2xi+5x

−1
i+3 (0 ≤ i ≤ 5) > 19 Z19

< x0, . . . , x5 | xixi+1x
2
i+2xi+3x

2
i+4x

2
i+5 (0 ≤ i ≤ 5) > 262143 1 E Z9709 E G

< x0, . . . , x5 | xix
3
i+3x

−2
i+4x

−1
i+3 (0 ≤ i ≤ 5) > 117 Z117

< x0, . . . , x5 | xix
2
i+1x

−2
i+4x

−2
i+3 (0 ≤ i ≤ 5) > 37 Z37

< x0, . . . , x5 | xix
−3
i+1x

2
i+4x

−1
i+3 (0 ≤ i ≤ 5) > 133 Z133

< x0, . . . , x5 | xix
−2
i+1x

2
i+4x

−2
i+3 (0 ≤ i ≤ 5) > 91 Z91

< x0, . . . , x6 | xixi+3xi+6xi+2 (0 ≤ i ≤ 6) > 7 Z7

< x0, . . . , x6 | xixi+3x
2
i+4x

2
i+5x

2
i+6 (0 ≤ i ≤ 6) > 8 Z8

< x0, . . . , x6 | xixi+2xi+3xi+5xi+6xi+1 (0 ≤ i ≤ 6) > 6 Z6

< x0, . . . , x6 | xixi+2x
2
i+3xi+4xi+5x

2
i+6 (0 ≤ i ≤ 6) > 8 Z8

< x0, . . . , x6 | xixi+1xi+2xi+3xi+4xi+5x
2
i+6 (0 ≤ i ≤ 6) > 8 Z8

< x0, . . . , x7 | xix
2
i+1x

−1
i+5x

−1
i+4 (0 ≤ i ≤ 7) > 97 Z97

< x0, . . . , x7 | xix
−2
i+1xi+5x

−1
i+4 (0 ≤ i ≤ 7) > 97 Z978.6 Number of generators required for �nite groupsAll of the �nite groups in this chapter can be generated by up to three generators.We know a group can be generated by up to two generators if the group is cyclic ormetacyclic. Otherwise GAP has been used to simplify the presentations.143



Chapter 8: Results for finitely presented groupsWhile we have not found any interesting groups needing four generators, we have foundgroups which may require three. We list those groups for which GAP has not found apresentation using fewer than three generators, each of which can be presented on threegenerators.
• G =< x0, . . . , x3 | xixi+2xi+3x

2
i+2x

2
i+1 (0 ≤ i ≤ 3) >, l = 13, |G| = 1015,

• G =< x0, . . . , x5 | xix
−1
i+3xi+5x

−1
i+2xi+1 (0 ≤ i ≤ 5) >, l = 15, |G| = 6552.All the remaining groups mentioned in this chapter require at most two generators.
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