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Abstract

In Chapter 1, the concept of equations over groups is introduced and the two main con-
jectures and several theorems on the subject are discussed. The main theorem (Theorem
1.12) is stated, which is that when certain constraints are put on r(t) € Gx < t| >, where
G is a group and ¢ is distinct from G, then r(¢) = 1 always has a solution over G. The
corollary to the main theorem (Corollary 1.13) is proved, the method of proof is outlined
and the key lemma is stated. In Chapters 2 and 3, the key lemma for the main theorem

is proved and in Chapter 4, the proof of the main theorem is completed.

In Chapter 5, the concept of cyclically presented groups is introduced. The previous ex-
periment which involved searching for trivial cyclically presented groups is discussed and
the experiment undertaken here, which involves searching for finite cyclically presented
groups, is briefly described. Results are stated, including the main theorem (Theorem
5.2.4), and the motivation for looking at the number of generators needed for finite

groups is discussed.

In Chapter 6, the experiment for searching for finite cyclically presented groups is out-
lined in more detail. It is explained how a list of candidates for finite cyclically presented
groups is found, and a table showing the numbers in the list is given. In Chapter 7, the

methods used to check the list of candidates for finite groups is outlined.

In Chapter 8, a list is given of all finite groups found and their structures. The outstand-
ing cases for which it is unknown whether or not the group is finite are mentioned. For
those finite groups which appear to be a family, proofs are given. The results found for

the number of generators for finite groups are discussed.



Acknowledgements

First, and most importantly, I would like to thank my supervisor Martin Edjvet for all
the help and support he has given me over the past few years. I would also like to thank
the University of Nottingham for providing my funding and for being a huge part of my
life for the last eight years.

I would like to give a massive thank you to Dave Parkin who has helped me out more
times than I can remember. Without his technical advice and assistance I would probably
still be running my many computations now. I am also grateful to Alexander Hulpke for

the assistance he has given me with the computer package GAP.

I would like to thank my boyfriend Martin Nelson. Firstly, for introducing me to Linux,
teaching me Latex, and generally helping me out with computer related problems that
have occurred all too frequently. Secondly, for all the support and understanding he has

given me throughout the PhD process.

Finally, I thank my parents and family for all the support they have given me. In spite of
knowing next to nothing about the subject of my work, they have always had confidence

in me and I am truly grateful.

i



Contents

1 Introduction — Equations over groups

1.1 Equations over groups . . . . . . . . . . ..
1.2 Statement of results . . . . . . ...
1.3 Method of proof for Theorem 1.12 . . . . . . . ... .. ... ... ...,

2 Theorem 1.12 cases (I) 1-3

2.1 Positive regions . . . . . .. ..o
22 Casel . . . .
2.2.1 r(t) = wthwttwtBwt“wts (A1) .. ... ...
222 r(t) = wthwttw ewtlw™ e (A4) ...
23 Case2 (A2) . . . .
231 A2sendings . . . .. ..o
2.3.2 Proof of Lemma 1.17 for A2 . . . . . .. .. ... L.
24 Case3 (A3) . . . .
241 A3sendings . . . .. ..o
24.2 Proof of Lemma 1.17 for A3 . . . . . ... ... L.

3 Theorem 1.12 cases (I) 4 and (II)

il

14

14

21

21

22

30

31

33

49

49

o1

64



CONTENTS

3.1 Cased . ... 65
3.1.1  r(t) = wthwtwtbothots (Bl(a)) .. ... 65
3.1.2  r(t) = wthwtwtbotio=Hs (B1(Db) . . ... 66
3.1.3  r(t) = wthwtw Hhotliptls (B2(a)) ... ... . 66
3.1.4  r(t) = wthwt2w Hhotlip=s (B2(b)) . . ... .. 68
3.1.5  r(t) = wthw Hlewtbotliotls (B3(a)) ... .. ... 69
3.1.6  r(t) = wthw Hl2wtbotliy=#s (B3(b)) . . . .. ... 70
3.1.7 r(t) = wthwt2otbwtiots (B4(a)) ... ... 70
3.1.8  r(t) = wthwtotbw s (Bb(a)) . . . ... . 71
3.1.9  r(t) = wthw Hl2othbwtlivtls (B6(a)) . . . .. ... 72
3.1.10 r(t) = wthw Hl2othbwtliy=#s (B6(b)) . . . . . ... ... ... 72
3.1.11 r(t) = wthwt2otbwtto=ts (B4(b)) ... ... 73
3.1.12 r(t) = wthwt2otbw =y~ (B5(b)) . . ... .. 75

3.2 Difficult cases for B4(b) and B5(b) . . . . . ... ... 7
321 CaseB4(b) . .. ... 7
322 CaseBb(b) ... ... 79

3.3 Subword problems . . . .. ... 79

34 Case (II) . . . o 81

4 Proof of Theorem 1.12 82
4.1 Maximum curvature sent to a boundary region . . . . ... ... ... .. 82
4.2 Checking total curvature . . . . . .. ..o 83

5 Introduction — Cyclically presented groups 85

iv



CONTENTS

5.1 Irreducible cyclic presentations . . . . . . ... ... oL 85
5.2 Motivation and results . . . . . ... o 86

6 Obtaining lists of possible words 90
6.1 Experiment . . . . . . ... 90

7 Checking for finiteness 94
7.1 Special cases . . . . . .. 94
7.1.1 Fibonacci groups . . . . . . . ... Lo 94

7.1.2  Generalized Fibonacci groups . . . . . . . .. ... 95

7.1.3 Positive words of length 3 . . . . . . ... ... 96

7.1.4 Positive words of length 4 . . . . . . .. ... 97

7.1.5 Positive words of length 5 . . . . . . ... ... 97

7.1.6  Exceptional intersections . . . . . . . ... .. ... 98

7.1.7 Special cases results . . . . ... ... L 99

7.2 Method for testing finiteness . . . . . . .. ... 100
7.2.1 Newman Infinity Criterion . . . . . . . . . ... ... ... .. ... 101

8 Results for finitely presented groups 102
8.1 Finite groups for [ <12 . . . . . ... 102
811 I<10 « oo o 103

812 [=11,12 . . . . .o e 104

8.1.3 Words left over . . . . . . . . ... 106

8.2 Remaining groups. . . . . . . . . . Lo 106



CONTENTS

8.3

8.4

13s, Idsand 155 . . . . . . . . . L 108
8.3.1 =13 . . . . e 108
8.3.2 I=14 . . . e 109
833 I=15 . . . e 110
Proofs for finite families . . . . . . . ... ... Lo o 111
8.4.1 Proof of Proposition 5.2.5 . . . . . .. .. ... .o 111
8.4.2 W=TOL2TT + « v v e e e e e e e e e e 115
843 wW=ToTaT] . . . . o e 115
844 W =TOLITOTT + + v v v v e v e e e e e e 118
84D W =TOLILOTT + + v v v v e e e e e e e e e e 120
84.6 w=uwxory lwytayt L 120
84T W =TOTALTITT + « v v v v e e e e e e e e e 125
8.4.8 w=Tom3TIXT . . .. 126
8.4.9 W =T0L3TIT2 » « « « v e e e e e e e 127
8.4.10 W = TOTATITALT + « v v v v e e e e e e e e e e 129
8411 W =T0T5L4TT . . « « v o o e e e e e e 129
8.4.12 W =T0L5L3T2 » « « v v v e e e e e e e e e 130
8.4.13 W = TOTATITITT  « « + o o 131
8.4.14 W = TOLITOTILOLTT + v v v v v v e v e e e e e e e 133
8.4.15 W = ToLoTITILOLTT + « v v v v v e e e e e e e e e e 134
8.4.16 w = xoxlxglxlxga;l_l .......................... 135
8.4.17 w= xoxz_lxgxgxalxl .......................... 136
8.4.18 The remaining groups in each family . . . . ... ... ... .. .. 138

vi



CONTENTS

8.5 Sporadics . . . ... 139
801 I<12 Lo e 140

85.2 13<I<ID o 141

8.6 Number of generators required for finite groups . . . . . . .. ... .. .. 143
References 145

vii



Chapter 1

Introduction — Equations over

groups

1.1 Equations over groups

Definition 1.1. Let G be a non-trivial group and let t be an element distinct from G.
Let r(t) = gith .. gpts, k> 1, g; € G\ {1}, I; € Z\ {0} be an element in the free
product Gx <t >.

Then r(t) =1 is said to be an equation over G which has a solution over G if there is an
embedding ¢ from G into a group H and an element h € H such that ¢(g1)h" ... ¢(gp)hlx =
1 H.

The length of the equation is defined to be |l1| + ...+ |lx| and the exponent sum is
li+...4+ 1. An equation is called singular if its exponent sum is equal to zero, otherwise

it us called non-singular.

There are two main conjectures in the study of equations over groups.
Conjecture 1.2. [21] Any equation over a torsion-free group G has a solution over G.

Conjecture 1.3. [22] Any non-singular equation over any group G has a solution over

G.

These conjectures remain unresolved, although some partial results have been proved for
both.

For example, the following two results support Conjecture 1.2.
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Theorem 1.4. [18] Any equation of length at most 6 over a torsion-free group has a

solution.

Theorem 1.5. [16] Any equation over a locally indicable group G has a solution over

G.

Locally indicable means each of the non-trivial finitely generated subgroups of the group
admits an epimorphism onto the infinite cyclic group. Any locally indicable group is

torsion-free.

The following theorem supports both Conjecture 1.2 and Conjecture 1.3.

Theorem 1.6. [20] Any equation of exponent sum 1 over a torsion-free group has a

solution.

There have been two main approaches to Conjecture 1.3. One is to restrict the class of

groups to which G belongs. The following theorem is an example of this approach.

Theorem 1.7. [13] Any non-singular equation over a residually finite group G has a

solution over G.

Residually finite means that, for any non-trivial element ¢, there is a homomorphism 6
to a finite group such that 6(g) # 1. It is worth remarking that polycyclic groups are

residually finite.

The other approach, which is the one adopted here, is to put constraints on r(t), for

example, on the length of r(t). An example is given by the following.

Theorem 1.8. [11] Any non-singular equation of length at most 5 has a solution.

More recently, however, there has been the following theorem in which the free product

length with respect to G* <t > is unbounded.
Theorem 1.9. [4, 7-9, 21, 22] Let r(t) = g1t ... gpt"* € Gx <t >, k> 1, [; € Z\ {0}
where:

(i) lgi| > 2, (1 <i<k), where |g;| refers to the order of g; in G.

(ii) li + ...+l #0 (i.e. the equation r(t) =1 is non-singular).

(iti) |Li| # [1j] for i # j.
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Then r(t) =1 has a solution over G.

Remark

The case k = 1 is a consequence of [21] in which it is shown that Conjecture 1.3 is
true whenever the length of the equation equals its exponent sum. The case k = 2
is a particular result of the fact that if r(t) = g1t"'got’? with {|g1],|g2|} # {2,3} and
li +13 # 0, r(t) = 1 always has a solution, which was shown in [4]. Case k = 3 was
proved in [7], case k = 4 was proved in [§8], case k = 5 was proved in [9], and the result
for k > 6 follows from a small cancellation argument [22|. In fact, if & > 6 and only

condition (7i) holds then the theorem is still true.

We will consider k£ > 5 of Theorem 1.9 in a more general setting which we now describe.

1.2 Statement of results

Let G be a group and let
r(t) = with .. wpth (k> 5)

where w; = gi,ltmi’lg@g L tmi’kiflgaki with Gij € G \ {1}, k; > 1, m; j 75 0.
We introduce the following condition:
(*) For 1 <i <k, |l;] is distinct from |I;]| for j # i and is distinct from |m,,,| for any

u, .

The following can be proved using standard small cancellation arguments and its proof

will be briefly discussed towards the end of the chapter.

Theorem 1.10. If k > 6 in the above and condition (*) holds then r(t) = 1 has a

solution over G.

This statement generalises Theorem 1.9 for when £ > 6. From now on therefore, it can

be assumed that & = 5.

Lemma 1.11. If Vi, 3j # i such that w; = wj-d, then it can be assumed that r(t) has

one of the following forms (modulo cyclic permutation and inversion):
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Al wth wt2wtBwttwt! A3 wth wt2wtBw = w1l
A2 wthwt2wtBwtlw =1l A wthwtl2w =B wtlaw =1t
Bl(a) wthwtZwtBotlot Bj(a) wthwtzutbwtiayts
B1(b) wthwtwtBytliy=1th B4(b)  wthwtotlwtliy=1th
B2(a) wthwt2w sytlpths B5(a) wtwt2uthBw Mt
B2(b) wthwt2w tBoytlay=1th B5(b)  wthwtotlsw1lay=1¢h
B3(a) wthw T tRwtBytluth B6(a) wthw ot wtluth
B3(b) wthw HtlewtBotly=1th B6(b) wthw HtlutBwtlay=1th

Proof. As we are assuming there is no single w; distinct from all other w; and their
inverses, it must be the case that either the w; are all equal to each other (or each
other’s inverses) or the w; are split into a subset of three and a subset of two with
the w; in the same subset being equal to each other (or each other’s inverses). With
this in mind, r(¢) may always be rewritten to be in one of the above forms using cyclic
permutation and inversion. For example, let r(t) = vtltwt2w=tBw g1, In-
verting this gives us t~But Mwt Bwt 2wty A cyclic permutation of this is

wt~Bwt =21ty which, after relabelling, is of the form B2(b). O

We define a subword of the word w = ¢g1t"™ gy ... gs—1t™*"1gs where g; € G\ {1}, m; €
Z\ {0}, s > 1 to be a word of the form ggt"™* gri1 ... gkrr—1t"*+"1gr1, where k €
{1,...,s} and r € {0,...,s — k}. A subword is an initial subword if k = 1, an end
subword if r = s — k and a proper subword if (k,r) # (1,s — k).

We are now ready to state our main theorem.

Theorem 1.12. Let G be a group and let
r(t) = withwot2wstBwtHwst!s

where w; = g; 1t L TR g with g € G\ {1}, ki > 1, my; #0.

Assume that condition (*) holds and, in addition, that the following conditions hold.
(**) No w; is a conjugate of an element of G of order 2.

(***) No w; is a proper initial or end subword of any chl for j #1i.

Then the following statements are true.

(I) Let r(t) be given by one of the 16 forms listed in Lemma 1.11. Then r(t) = 1 has

a solution over G if one of the following holds:
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(1) r(t) is of the form Al or A4.
(2) r(t) is of the form A2 and none of the following sets of relations hold:
(i) lh=1lo+ 14, lo =13+ 15 and I3 =1; + 15,
(i) i =ls+ 14, lo =11+ 14 and I3 = ls + 15,
(iii) ls =l + 1y =11 + 15,
() i =la+15 =13+ 14.
(8) r(t) is of the form A8 and neither of the following sets of relations hold:
(i) lo=10+13 and lo+ 14+ 15 =0,
(i) i =1la+15 and Iy + 13+ 14 = 0.
(4) r(t) is of the form B1-B6.

(II) If r(t) is not one of the 16 forms listed in Lemma 1.11, i.e. 3i such that w; # chl
for all j # i, then r(t) =1 has a solution over G.

Remark

It is worth pointing out that r(¢) has a solution under the restrictions of 2(i) if and only
if it has a solution under the restrictions of 2(ii). The same holds true for the pair 2(iii)
and 2(iv) and the pair 3(i) and 3(ii). A full explanation for this is given in Chapter
2. The restrictions are required because our method of proof breaks down. We expect,

however, that r(¢) = 1 will have a solution in these cases.

Note also that we do not require l1 +...41; # 0 and this allows us to prove the following

extension of Theorem 1.9 for when £ = 5.

Corollary 1.13. Let r(t) = g1t got!2gsti3gutlegst’> € Gx <t >, I; € Z\ {0} where:

(i) lgil > 2, (1 <i<5).

(1) |li] # [1;] for i # j.
Then r(t) = 1 has a solution over G.

Proof. The proof follows immediately from the theorem unless we have one of the ex-
ceptions in Case (2) or (3). If r(¢) is non-singular, () has a solution over G in the A
cases by |13].

Let 7(t) be singular. Consider Case (3), so r(t) = gtligt®2gt!3g=1tlag=1¢!s. The excep-
tions are (i) lo =11 +lzand lo + 1y + 15 =0, (i) l1 =lo+ 15 and I3 + 13+ 14 = 0 and
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we also have l; + o + I3+ 14 + 15 = 0. If (i) holds then the singularity condition implies
lo = 0 while if (%) holds we get [; = 0, either of which leads to a contradiction and the
result holds in this case.

Now consider Case (2), so 7(t) = gthgtl2gtl3gtlag=1t!s. Let condition (i) hold so
I3 =1la+1ly =11 +15. Let h € H be a solution in the overgroup H to the equation
gt'® = 1. Then in H we have r(h) = ghhgh2ght1 g~ hls = ghhrghl2ghlsh=l2g=1hl =
ghtghl2h=t2g=1pls = ghlipls = gh!s = 1 so r(t) has a solution over G. If (i) holds,
then the same result occurs by letting h € H be a solution to gt = 1. Cases (i) and
(#1) require a different approach. Let (i) hold so Iy = lo 4+ 14, lo = I3+ 15 and I3 =11 + 5
and we also have l1 + Il + I3 4+ I3 + I5 = 0. Using these relations, we can rewrite r(t)
as gt~ 2B gtls gt!s gt =613 g= 14313 This equation has a solution if and only if the equation
r(t) = gt—2gttgtgt ®¢~1t3 has a solution (see remark below) so let us consider this
equation instead. Since it can be assumed that G =< g|g™ > (see remark below), we

n n 6
require < g|g" > to embed in the overgroup H = SOt o Salat>e<slsT>

<<r(B)>> <<(as)P>>
Define the following mapping 6 : {g,t} — K by g — a, t — s. Now substituting yields

-2, .4

as 2as*asas %a"1s3 4ast

= as*as*asaa™'s® = (as*)? = 1 in K so 6 extends to a group
epimorphism. But since |s*| # 2 in < 5|s5 > it follows that < ala” > embeds in K by
[3], therefore g must have order n in H and so G =< g|¢g" > embeds in H and we are
done. The same argument can be used for case (i) by symmetry (See Subsection 2.3.2).

O

Remarks

1. We can assume the greatest common divisor of the /;’s is equal to one. To see this,
assume that ged(l; : 1 < i <5) =d > 1. Then l; = da; where ged(a; : 1 < i <
5) = 1. If we know the natural map from G to Hy =< G, s|wis® ... w5s* > is
injective then G embeds in Hyx,_a < t|t™ >=< G, t|r(t) >, where m = 0 if s has

infinite order and m = dq if s has order ¢ < oco.

2. We assume, without loss of generality, that G is generated by the elements of G
which appear in 7(t). For if Go =< g;; > where g, ; are elements of G involved in
r(t) and r(t) has a solution over Gy in H, then r(t) = 1 has a solution over G with

the amalgamated free product H *g, G as the overgroup of G.

The only form of equation r(¢) = 1 for which it is known that there is no solution is when
r(t) = uw(G,t)gu(G,t)~1 G, where u(G,t) € Gx <t > and g¢,§ € G have different orders.
Note that this cannot happen under the conditions of Conjecture 1.2 and Conjecture
1.3. Observe that this situation is also ruled out by condition (*), even when we allow

k > 1. This encourages us to make the following conjecture.
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Conjecture 1.14. Let G be a group and let r(t) = git? ... git% where | > 1, g; €
G\ {1}, ¢ € Z\ {0} and i such that |q;| # |q;j|, Vj #i. Then r(t) =1 has a solution

over G.

1.3 Method of proof for Theorem 1.12

To show that 7(¢) = 1 has a solution over G, it is enough to show that the map G — H =
< G,t|r(t) > given by g — g, Vg € G is injective. Assume by way of contradiction that
this map is not injective. Then there is a free product diagram K [22] whose boundary

is a simple closed curve with an element gy € G\ {1} as its label.

We will now describe how such a diagram can be amended. The diagram will have two
different types of regions. The first type is an r(¢)-region whose boundary label is some
cyclic permutation of r(¢)*'. The second type is a G-region whose boundary label is a

word in GG which yields the identity.

The first amendment we make to the diagram is to contract each maximal t-segment to a
point and label its corresponding corners with the [; or m,,, as appropriate. The second
amendment is to the G-regions. We place a new vertex in the interior of each G-region,
including the infinite region external to K, and then make the following transformation.
Create new edges between the newly added vertex and each vertex of the region and
delete the old edges which form the boundary of the region. Label the corners around
the new vertex with the element of G that corresponds to the label of the deleted edge.

This transformation is shown in Figure 1.1.

g2
g3

Figure 1.1: G-region amendment

What we have now obtained is a tessellation D of the 2-sphere, whose regions have

+1

corners labelled with some cyclic permutation of r(¢)*", reading around the region from

any vertex.
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Vertices which are labelled with powers of ¢ will be referred to as t-vertices. Vertices
labelled with elements of G are known as g-vertices. By convention we write ¢ in place

of I; at the corners of the diagrams and we will use 7 to denote —1;.

Given a region A, we refer to the five vertices with corner labels Iy,...,l5 within A as

v1, ..., Vs respectively.

Figure 1.2: A typical region of D

The sum of the corner labels at a t-vertex must equal 0 (since < ¢| > is one of the free
factors) and the product of the corner labels at a g-vertex must give the identity in G,

except for the vertex whose label is gg.

Let vg be the vertex obtained from the amendment of the original G-region labelled with
go- A region that has vy as one of its vertices is called a boundary region, otherwise it is
called interior. The degree of a region is said to be the number of vertices of that region
with degree exceeding 2. We denote the degree of a region A by d(A), the degree of
a vertex v by d(v) and the label of a vertex v by [(v).

We may assume that D is minimal with respect to the number of regions and, subject
to this, the number of interior vertices of D of degree 2 is maximal. These assumptions
play a role of great importance and lead to the following Lemma which is analogous to

one proved in [9].

Lemma 1.15. (i) No vertex label of D can have as a sublabel ii or ii, (1 <i <5);
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(11) d(v;) > 2 for 1 <i<5;

(11i) d(A) >5 for any region A of D.

Proof. (i) If we allowed such a sublabel then the diagram would not be reduced and it
would be possible to cancel two regions and contradict our assumption of the minimality
of D.

(i) This comes from (i) and the fact that |l;| # |I;| for i # j.

(iii) This fact follows of from (ii) and the fact that there are 5 of the v;. O

We define the curvature of a region A to be ¢(A) = ¢(dy, ..., dp) = (2—m)7r+2712i”i1d%,
where m = d(A) and the d; are the degrees of the vertices, 1 < ¢ < m. The total

curvature of D, denoted by ¢(D), is the sum of the curvatures of each region.

Lemma 1.16. ¢(D) = 4r.

Proof. Let V' = number of vertices, £/ = number of edges and F' = number of regions.
Then:
1

¢(D) =Xaepc(A) = Xaep[r(2—d(A)) + 27 (dil +...+ d_k>] (k =d(A))

1 1
= 2mXAeD <d_1 +...+ d_k> + 2m¥AeD —FEAeDd(A)

= 2nV 4+ 2rF —m2E=2n(V —E+ F) =4n. O

The contradiction required for our proof arises from being able to show that the total
curvature of 47 is not obtainable, and thus the mapping G — H, g — g, Vg € G is
injective, yielding Theorem 1.12.

From here, the next step is to locate interior regions A of D that have positive curvature
and to show that for each such region, we can find a neighbouring region A’ into which
we can distribute this positive curvature. We do this by a numerical transfer of curva-
ture between the regions of the diagram. Curvature is subtracted from positive regions
and added to some negative regions that neighbour these positive regions. These move-
ments of curvature are purely numerical reassignments and the diagram itself remains

unchanged.
For the region A’ let ¢*(A’) equal ¢(A’) plus all positive curvature A’ receives.

Our key lemma, is the following, the proof of which will be given in later chapters.

Lemma 1.17. If A" is an interior region of D such that ¢*(A’) > ¢(A’) then ¢*(A") <O0.
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We now state two more lemmas which will be useful later on.

Lemma 1.18. For 1 <i <5, w? # 1.

Proof. Let w? = 1 for some i. Let w; = gi1t™ ... t"™—1g,.

Then w? = git"™ .. TRl gp gt L TR g = 1

So g1 = g,;l, g = gk__ll,... and mj = —mp_1, Mo = —Mp_9,....
If £ even: mx = —mg == mg = 0: contradiction.

2
If k£ odd: gri1 = g;il = g2, = 1: contradiction by condition (**). O
2 2 2

Lemma 1.19. Let A be an interior region of positive curvature in D. Then all g-vertices
and t-vertices other than the v; must have degree 2, four of the v; must have degree 3,

and the remaining v; must have degree 3, 4 or 5, 1 < i <5.

Proof. Since ¢(3,3,3,3,3,3) = 0, a region with positive curvature must have degree at
most 5. By Lemma 1.15(iii), the region must have degree equal to 5. Therefore, as all
the v; have degree at least 3 by 1.15(ii), all g-vertices and ¢-vertices other than the v;
have degree 2. Since ¢(3,3,3,4,4) = ¢(3,3,3,3,6) = 0 there is at most one vertex v; of

degree exceeding 3 and its degree must not exceed 5. [

Remark

c(3,3,3,3,3) = %,
c(3,3,3,3,4) = %,
c(3,3,3,3,5) = {&.

These are the only possible values for positive curvature of a region of degree 5.

When considering the distribution of curvature, we may not have complete information
about regions which neighbour positive regions. We distribute curvature in steps i.e. we
send curvature from a positive region A; into A’ at step one, we send curvature from a

positive region Ay into A’ at step two and so on.

We define marking to be an assignment of natural numbers > 2 to all vertices of our
diagram. The value assigned to a vertex is the marked degree of the vertex. At step 0
all vertices have marked degree 2. Then at each step we increase the marked degree of
certain vertices, ensuring this value never exceeds the actual degree of the vertex. Let

d(v,n) be the marked degree of vertex v at step n.

If a region A has vertices uq, ..., U, we define the marked curvature of A at step n to
be ¢(A,n) = c(d(uy,n),...,dUun,n)).

10



CHAPTER 1: INTRODUCTION — EQUATIONS OVER GROUPS

We perform the gradual transfer of curvature in steps from the positive regions into
neighbouring negative regions, while simultaneously changing the marking of the dia-
gram. At step n we check the curvature transferred into a region is compensated for by

the difference ¢(A’,n) — ¢(A’,n — 1) arising from the remarking made at this step.

Remarks

1. We define ¢*(A’,n) to equal ¢(A’,n) plus any curvature sent into A’ at each step

up to and including n.

2. The marked curvature of a region at any step is an upper bound on the actual
curvature. In particular, if n is the final step, ¢*(A’,n) < 0 implies ¢*(A’") < 0 and

so Lemma 1.17 holds for this region.

The following Lemma will be used later on in part of the proof of Lemma 1.17.

Lemma 1.20. Suppose that at some step n, ¢*(A’,n) < 0. Suppose uy, ... uy are vertices
of A such that d(u;,n) =2, d(u;,n+ 1) > 2 and suppose at step n+ 1, xw of curvature
is transferred into A'. Then c¢*(A',n+ 1) < 0 provided that x — k + 255 lm <0.
Proof. At step n, ¢*(A',n) = c(dy,...,dn) +pr = (2 —m)m + 2772m1d + pr <0,
where pr is the total curvature distributed to A’ at steps m < n. Now at step n + 1, let
a; := d(u;,n + 1) > 2 and distribute a further z.

Then ¢*(A’,n + 1) satisfies:

(A n+1) < cdy,....dp,a1,...,a;) +pr+ 7w

1 1
=1y 4—27r§]Z 1 +p7r+x7r

1 1
& +pmw — /<;7r+2712i:1a—i +xm

1
= c(dy,...,dmn)+pr— k7r+27r2f:1— + xm
P

(2

= (2—-(m+k))r+ 2752

= (2—-m)m 427X,

1
= *(A')n) —kr 42758 — + zm.
a

i

Therefore, x — k + 255 ai—x—k+22Z 1m<0 = *(A\n+1)<0.0

Remark

Given our equation r(t), let D be the diagram whose construction is described above. Let
A be an interior region of D with positive curvature. As all g-vertices and t-vertices other
than the v; in this region have degree 2, for reasons of presentation we may represent
any line segment which gives us a w; with one vertex labelled with the corresponding w;.

We call such a vertex a w-vertex. Note that a w-vertex is actually a subgraph containing

11
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a chain of vertices and when calculating curvature we convert the w-vertices back to
g-vertices and t-vertices. We refer to the line segment between two v; containing one of

the w; as an edge. The region A of Figure 1.2 is then represented by the following figure.

Figure 1.3: A typical region of D of positive curvature

dvi) >3, 1 <i<b5and d(u;) =2, 1 <i<5.

Definition 1.21. A vertex v is called a split if d(v) > 2 and v is not a v;. Note that
such a vertex must be either a g-vertexr or a t-vertex. If such a vertex is found within an

edge beginning with v; and ending with vi11, we say the edge (7,7 + 1) splits.

Note that a split may not be found within a positive region or the degree of the region

would exceed five, a contradiction by Lemma 1.15(iii).

Definition 1.22. [}/ Suppose some vertez v of D has label xy and we know that x = 1.

Then we can change D by a bridge move as shown in Figure 1.4.

Figure 1.4: Bridge moves

Lemma 1.23. If w; = wj, © # j, no vertex label of D can have as a proper sublabel
wiwj_1 or wi_le. Also, if w; = wj_1

sublabel w;w; .

, 1 #£ j, no vertex label of D can have as a proper

12



CHAPTER 1: INTRODUCTION — EQUATIONS OVER GROUPS

Proof. 1f we were to allow such a label then we could perform bridge moves to increase

the number of degree 2 vertices without changing the number of regions, which is a

X )y
ay by
a by
az| bg

ol [y

contradiction. See Figure 1.5 for an example of such a move. [J

Figure 1.5: Performing bridge moves on a w-vertex

If £ > 6, there are no regions of positive curvature and so Lemma 1.17 holds immediately.
The completion of the proof of Theorem 1.10 follows the same argument as the completion

of the proof of the main theorem, which will be dealt with in Chapter 4.

Chapters 2 and 3 prove Lemma 1.17 for Theorem 1.12 and Chapter 4 completes the
proof of Theorem 1.12.

13



Chapter 2

Theorem 1.12 cases (I) 1-3

This chapter shall be concerned with the proof of Lemma 1.17 for the cases (I) (1)-(3)
in Theorem 1.12, that is, the cases for which r(¢) is of the form (A1)-(A4).

Section 2.1 does preliminary work needed for the remainder of the chapter. Sections
2.2, 2.3 and 2.4 examine cases (I) (1), (2) and (3) respectively of Theorem 1.12, proving

Lemma 1.17 in each case.

2.1 Positive regions

In this chapter we are assuming each w; is equal to w; or wj_l for ¢ # j. Each vertex
v; has degree at least 3 and there are four different possible labellings for each corner
of these vertices just outside of the region itself (each w within r(¢) matches up in the
diagram with one of the other w’s from 7(¢) in order to avoid the situation of Lemma
1.15(i)). There are therefore a large number of potential combinations for labels, which
have been worked out using a computer. The labels which give rise to a contradiction of
the assumptions can be discarded. For example, reading around, the label 444 (i.e. the
degree of the vertex is 3 and each corner is labelled in the same direction with 4 in place
of I4) would yield a contradiction as this would imply Iy + 14 + 1y =314 =0 =14 = 0.
Another example of a contradiction would be if we had the label 213 at vertex 1 and
135 at vertex 3, as this would mean Iy + Iy + 13 = 0 and I; + I3 — l5 = 0, which would
imply that [y = —l5. An example of a region whose labels do not give a contradiction is

as follows.

14



CHAPTER 2: THEOREM 1.12 casEs (I) 1-3

Figure 2.1: Example of a region of positive curvature

Using the notation introduced in Chapter 1, that I(v;) is the label of the vertex whose
corner within the region is labelled 4, then I(v1) = 215, I(vy) = 122, I(v3) = 135, l(v4) =
442, l(v5) = 153. This gives [y + 1o —l5 = —l1 + 2ly =11 + I3+ I5 = 214 + Iy = 0, which

does not yield any sort of contradiction.

Two different regions whose labels do not give a contradiction are known as compatible

regions. Two regions which are not compatible may not both appear in the diagram.

Possible labels

Lemma 2.1. Let A be an interior region of positive curvature in diagram D. Then there
is at most one v; whose label involves t-powers other than the l; (so involves at least one

M) and, in this case, d(v;) =4 or 5. The two possibilities are shown in Figure 2.2.

Proof. Let A be an interior region of positive curvature and let v be the vertex of A
shown in Figure 2.2. Then, clearly {I,,1;} C {I{*,... 5"}, for otherwise an edge would
split and d(A) > 5. O

If such a vertex as mentioned in Lemma 2.1 exists, that is, a v; containing an m,,, as a
corner label, then we call this an l-verter and let [ represent one of the m,, which is a

label of this vertex.

Let A be an interior region such that ¢(A) > 0. Suppose that A contains an l-vertex v.

Since 4 < d(v) <5, A is shown in Figure 2.2.

15
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(a) d(v) = 4 (b) d(v) =5

Figure 2.2: [-vertex in A (at least one of z,y is an 1)

If the region A is given by Figure 2.2 (a) then add c¢(A) < ¢(3,3,3,3,4) = § to the
region A’ which contains the label I. If A is given by Figure 2.2 (b) then add ¢(A) <
c(3,3,3,3,5) = £ to the region A" which contains the label z if x = loryify=1L.

Lemma 2.2. Assume at step n all [-vertices have marked degree 2 in A’ and at step
n+ 1 we mark all l-vertices of A" with their actual degree.
If ¢*(A',n) <0 then ¢*(A',n+1) <0.

Proof. Let us assume we have such a region of positive curvature with a label involving
an [ as in Figure 2.2 (a). Then the region A’ which contains [ has degree at least 6 as
it must also contain the five v;, each of which have degree at least 3. If we send the
c(A) < ¢(3,3,3,3,4) = § from A, into this region, then the curvature is successfully
compensated for as ¢(A’) < ¢(3,3,3,3,3,4) = —F, provided the region receives this one
lot of curvature only. If the degree of the vertex is 5 as in 2.2 (b) then it is possible
to send up to two lots of curvature in across the same [-vertex. For example, if x = [
and y # [ then in principal, A! (the region containing the corner label x) may receive
positive curvature through the l-vertex from both A and A, (the region containing the
corner label I;). In this case however, the curvature is equal to {= each time and %r < %
so we can assume from now on that ¢ is being sent in and the degree of the vertex is 4.
Let us assume now that ¢*(A’;n) <0, and at step n+ 1 we mark k [—Vertices, each with
their actual degree which must be at least 4. So at most %” is distributed to A’ at step
n + 1. Then by Lemma 1.20, because we have that (% -1+ %)k‘ < 0, we know that

c¢*(A’;n+ 1) <0. This completes the proof of the lemma. [J

Lemma 2.2 tell us that if we are able to distribute curvature successfully, i.e. in order for
Lemma 1.17 to be satisfied, for all regions while assuming no I-vertices, then we are able

to distribute curvature successfully for all positive regions. Therefore, from now we will

16
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assume that there are no positive regions involving such an [-vertex. So for the rest of
this chapter we need only consider positive regions whose vertices are either w-vertices

or v; whose labels involve only the ;.
Computing regions

In order to compute the different labels for each region, it is necessary to check every
possible combination of matching up the w;’s. We then compute every possible label

assuming each of the following in turn (see Figure 2.3).

(i) d(v)) =3, (1 <i<5),

(i) d(vy) >4, d(v;) =3 fori # 1,
(iii) d(ve) >4, d(v;) =3 for i # 2,
(iv) d(vs) >4, d(v;) =3 for i # 3,
(v) d(va) >4, d(v;) =3 for i # 4,

(vi) d(vs) >4, d(v;) =3 for i #5,

Figure 2.3: Possible vertex degrees

In the calculation we do not specify every combination of label for a vertex of degree
exceeding 3 as there would be far too many. So, for example, if d(vy) > 3 and we know

part of the label for vy is 312, we would write [(v1) = 312w where w is in place of

17
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either one or two numbers, depending of whether d(v1) = 4 or 5 respectively. Using the
methods mentioned above, we discard any labelling which gives a contradiction and list
those which do not. We also use computational methods to list which region labellings
are compatible and also to find out what so-called type each positive region is, which we

define next.
Types of regions

Let A be a region of positive curvature. Then it must be one and only one of the following
types:
(Type 1) A has a neighbour A’ with two edges that split as shown in Figure 2.4.

(Type 2) The above does not hold but one of A’s vertices has degree greater than 3,
and one of the two neighbouring regions containing this vertex has a split as

shown in Figure 2.4.

(Type 3) A is neither type 1 nor type 2.

Typel Type2

N

/

Figure 2.4: Type 1 and type 2 regions

For example, Figure 2.1 is of type 1 and has three neighbouring regions that fit the

criteria of the definition.

From the definition, regions of type 3 are of one of the following forms, up to symmetry.

18
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/ /
/
/

Figure 2.5: Type 3 regions

Receiving curvature from types 1 and 2 only

If a region A is of type 1, ¢(A) < % and this can be sent into A" as shown in Figure 2.4. If
this is the only curvature the region receives, ¢*(A’) <¢(3,3,3,3,3,3,3)+ § = —Z+% =
0. If Ais of type 2, ¢(A) < % and, again, send curvature into A" as shown in Figure 2.4. If
this is the only curvature the region receives, c*(A) <¢(3,3,3,3,3,4)+ 5 = -5 +% = 0.
We need to see what happens now if a region A’ receives curvature across more than one

edge, from regions of type 1 and 2 only.

Assume a region A’ receives curvature across two edges (see Figure 2.6):

1. Let both regions be of type 1. Then the remaining three edges all split: ¢*(A’) <
(3,3,3,3,3,3,3,3) +2(5) = - & +2(%) = 0.

2. Let one be of type 1 and the other of type 2, where the type 2 crossing shares one of
the splits of the type 1 crossing: ¢*(A’) < ¢(3,3,3,3,3,3,4) + 5+ 5 =—-5+5 =0.

3. The same as 2, except the type 2 uses a third split along the remaining edge:
c*(A') <¢(3,3,3,3,3,3,3,4) + T+ F = -3 4 2 <0.

4. Both of type 2, sharing neither the vertex of degree > 3 nor the split: ¢*(A’) <
(3,3,3,3,3,4,4) + 2(%) = _2% + 3 <0.

5. Both of type 2, sharing the degree > 3 vertex: c*(A’) < ¢(3,3,3,3,3,3,4)+2(§) =
-5+ 3 <0.
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6. Both of type 2, sharing the split: ¢*(A") <¢(3,3,3,3,4,4) +2(5) = -2 + 5 =0.

Figure 2.6: Receiving curvature across two edges

Assume a region A’ receives curvature across three edges (see Figure 2.7):

1. All of type 2, in which case two must share a degree > 3 vertex and two must share

a split: ¢*(A') <¢(3,3,3,3,3,4,4) +3(§) = - + 5 <0.

2. One of type 1, two of type 2, in which case each of the type 2 must share one of
the type 1 splits and both must share the same degree > 3 vertex.

1 \/ 2 \/

4

Figure 2.7: Receiving curvature across three edges

This last case is the only one which may cause problems when a region A’ receives
curvature from regions of types 1 and 2 only, as ¢(A’) < —% and as much as 2% could be
sent in. This case depends upon the existence of a region with all its vertices of degree
3 being able to appear with regions that are of type 2, in which all the relevant labels
match up. Note that the two regions of type 2 must be distinct in order for the labels

to match up correctly. This is because any specific region of type 2 sends curvature
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across the same edge each time but the A’ in question must receive curvature from type
2 regions across different edges. It is important to check if this situation can occur before
moving on to proving Lemma 1.17 for a region receiving curvature from regions of type

3.

2.2 Casel

2.2.1  r(t) = wthwikwtBwitwt's (A1)

Let r(t) = wtlwt2wtBwtwt’> and let A be an interior region of the diagram D of
positive curvature. As mentioned previously, the w-vertices all have degree 2 and the v;
must either all have degree 3 or have four vertices of degree 3 and one vertex of degree

greater than 3.

Let us first assume that all vertices are degree 3. It can be observed from the following
figure that every region sharing an edge with A has at least two splits. This comes from

the fact that we cannot have w? = 1 by Lemma, 1.18.

Figure 2.8: A region with all vertices of degree 3 in case Al

Now let us assume there are four vertices of degree 3 and one of degree greater than 3.
If we observe the following figure, we see that the three neighbouring regions which do

not contain the vertex of degree greater than 3 have at least two splits.
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Figure 2.9: A region with one vertex of degree > 3 in case Al

This means that all regions of positive curvature in this case are of type 1 and so, by the

argument at the end of Section 2.1, all curvature is successfully compensated for.

2.2.2  7(t) = wthwtzw tBwtliw =5 (A4)

Let r(t) = wtwt2w = Bwtlw =5 This case does not have the same nice properties
as the previous, and so the first thing to do is to work out all the different possible
labellings of a region of positive curvature using computation methods as mentioned in

Section 2.1, and decide which of the three types each of them is.

4 5
w 4 3 w
5 ~w 2 3 w 4
3 0 5 WL 4
3 ¥ 1 W
1 A, W 1
5 2
=\ 5 1
S 3 A 2 [
WW WW 4
w( \W WW
w 4W3 w
221ymK513
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w
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w

Figure 2.10: All possible labellings — A4
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Figure 2.10 shows all possible ways in which the w’s can match up.

We read around each vertex from left to right to obtain a possible label. For example,
if d(v1) = 3, l(v1) € {215,213,213,215,215,213,...,415}. If our choice for I(v1) ends
in a 3 say, [(v2) must begin with a 2, and so on. We allow a computer to find all such
combinations for each vertex and check if it is a valid labelling, that is, it does not give
a contradiction. Figure 2.1 gives us a valid labelling in this case which does not give any

contradiction.

The following results were obtained and we refer back to Figure 2.3 to consider each
case.

In case (i) there are 8 possible labellings.

(
In case (ii) there are 48 possible labellings.
In case (iii) there are 87 possible labellings.
In case (iv) there are 94 possible labellings.
In case (v) there are 94 possible labellings.
In case (vi) there are 87 possible labellings.
A full list of possible labellings may be viewed in [24] (a hard copy of which is attached

to this thesis for the convenience of the reader), in which the type of each region is

indicated also.

We note that when we refer to 13, for example, we are referring to region number 1 in
[24] for which all the v; are of degree 3. Region numbers without a subscript refer to the

regions which have one v; of degree > 3.

A4 sendings

The way in which we send curvature for the type 3 regions is as follows.

A | Edge sent A | Edge sent A | Edge sent A | Edge sent
across in across in across in across in
A A A A

19 | (3,4) 177 | (5,1) 225 | (5,1) 288 | (5,1)

34 | (3,4) 178 | (1,2) 229 | (1,2) 290 | (5,1)

35 | (3,4) 181 | (1,2) 251 | (5,1) 295 | (5,1)

44 | (3,4) 185 | (1,2) 254 | (5,1) 208 | (1,2)

173 | (5,1) 203 | (1,2) 286 | (5,1) 310 | (1,2)

174 | (1,2) 206 | (5,1) 287 | (5,1) 314 | (1,2)

The way in which we send curvature for certain type 1 and 2 regions is as follows.
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A | Edge sent A | Edge sent A | Edge sent A | Edge sent
across in across in across in across in
A A A A

52 | (2,3) 124 | (1,2) 297 | (3,4) 367 | (5,1)

64 | (1,2) 125 | (1,2) 323 | (3,4) 379 | (5,1)

68 | (1,2) 126 | (1,2) 327 | (5,1) 381 | (5,1)

84 | (1,2) 155 | (3,4) 345 | (5,1) 398 | (5,1)

88 | (1,2) 191 | (3,4) 357 | (5,1) 400 | (5,1)

90 | (1,2) 213 | (3,4) 365 | (5,1) 401 | (5,1)

104 | (2,3) 296 | (3,4)

For the remaining type 2 regions, consider the vertex clockwise from the degree > 3
vertex. If this vertex gives a split, send positive curvature across the edge between this
vertex and the degree > 3 vertex. Otherwise, the vertex anticlockwise from the degree
> 3 vertex must give a split and so send positive curvature across the edge between this

vertex and the degree > 3 vertex.

For the remaining type 1 regions, consider each pair of adjacent vertices, starting from vy
and vy, moving clockwise and ignoring any pair where one of the vertices has degree > 3.
When the first pair of vertices is found where both give splits, send positive curvature

between these two vertices.

We claim that, under the described sendings, Lemma 1.17 holds.

Proof of Lemma 1.17 for A4

It can also be viewed in [24] which regions of different labellings are compatible. We can
therefore check if the situation of Figure 2.7 (2) can occur, which may cause a problem
with regards to sending in three lots of positive curvature from regions of types 1 and
2 only. For this to happen we first require a region of type 1 in which all vertices have
degree 3 such that it can appear with two different regions of type 2. Looking at the
list shows us that there are only two region with all vertices of degree 3 appearing with
a region of type 2, 83 which goes with 27 and 33 which goes with 42, but there are no
type 1 regions appearing with two different regions of type 2. Therefore this situation
cannot happen. So any regions receiving curvature from regions of types 1 and 2 only

satisfy Lemma 1.17.

We now need to study regions of type 3 and for each such a region A, determine a

neighbour whose curvature can compensate for the curvature of A, and then check this
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neighbour can compensate for any further curvature being sent into it.

For this case, there are 24 regions of type 3, which can be viewed in [24], and the

curvature of each is at most %.

Recall that we are working with equations of the given form up to inversion and cyclic
permutation so consider 7(t) = wth wt2w™ 1 tBwttw 1t

Take the inverse of w to obtain the following: ¢t~ Bwt w1t Bwt w1t~y
Cyclically permute this to obtain the following: w1 t~hw =1t~ Bwt w1t =Bt
But this is of the same form as r(¢) and so we obtain a symmetry from (I1,1lo,13,14,15)

to (llv l57 l47 l37 12)

This means it is not necessary to find ways of allocating curvature for all the 24 regions
of type 3 as the symmetry will cause some repetition. Once we have paired the regions so
they are symmetrically equivalent, pick one of the symmetries, and we are only required
to allocate curvature to both symmetries in a pair if the two symmetries are regions that
may appear at the same time. This happens with 3 of our 12 pairings so we require

allocation of curvature for 15 different regions.

The following table shows all regions of type 3 and how they pair up in symmetries. The

15 regions for which curvature needs to be allocated are highlighted.

l(vy) lwe) Uvs) Uvg) Uvs)
34 | 213w 424 531 244 353
44 | 415w 424 335 142 353
19 | 413w 224 335 142 353
35 | 413w 424 531 244 355
177 | 413 224 531w 242 355
295 | 413 224 535 142w 355
178 | 413 422 131w 242 355
251 | 413 224 535 14lw 553
181 | 213 424 531w 244 353
290 | 415 424 335 142w 353
185 | 413 424 531w 244 355
286 | 413 224 335 142w 353
203 | 215 424 333w 244 353
314 | 215 424 335 444w 353
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225 | 413 424 535w 442 353
288 3 424 533 242w 353
229 | 413 424 535w 442 355
287 | 413 224 533 242w 353
174 422 131w 242 353
254 424 535 141w 553
173 | 413 224 531w 242 353
298 | 413 424 535 142w 355
206 | 415 424 333w 244 355
310 | 213 224 335 444w 353

For each of these 15 regions, there is a split in one of the edges off it and we are able to

send curvature to one side of the split. For each region A, the same procedure follows:

1. If the region A’ we are sending ¢(A) < % into contains a further split or a vertex

of degree > 3, c(A') <¢(3,3,3,3,3,4) = —%.

2. We therefore assume there are no further splits in A’ and all the vertices are degree

3, and in each of the 15 cases we obtain a contradiction.

3. Therefore, if A’ receives curvature from one place only, the negative curvature is

fully compensated for.

Following are the figures showing the way positive curvature can be sent in each of the

15 cases.

Figure 2.11: no. 34 Figure 2.12: no. 35 Figure 2.13: no. 177
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Figure 2.23: no. 298 Figure 2.24: no. 310 Figure 2.25: no. 314
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We define u; to be the vertex involving I; in A’. In each case, we assume there are no

further splits or vertices of degree > 3 in A’. Then the remaining labels of A’ for the

following cases must be:

34 Il(ug) =531 I(ug) =244 I(us) = 353
35 l(ug) =531 I(ug) =244 I(us) = 355
178 U(us) = 355 l(ug) =413 U(up) = 422
181 I(us) =353 I(u1) =213 I(up) = 244
185 I(us) =355 I(u1) =413 I(up) = 421
203 I(uz) =335 l(up) =424 (1, 2)-split
254 l(ug) =424 I(uy) =413 I(us) =553
314 I(uz) =335 l(up) =424 (1, 2)-split

But these all either give a new split or force the existing split to have proper sublabel

1 1

ww™ "+ or w~w, which is a contradiction by Lemma 1.23.

For 177 and 295, I(u1) = 145 or 145, but then we cannot complete us with degree 3
without causing a split. For 310, I(u;) = 152 or 154, but then we cannot complete us
with degree 3 without causing a split. For 229 and 298 we cannot complete us with
degree 3 without causing a split and for 225 and 288 we cannot complete us with degree

3 without causing a split. These all give a contradiction.

Therefore, there is sufficient negative curvature if A’ only receives curvature across one
edge. We now need to check what happens if A’ receives curvature across more than one

edge.

It is worth noting that if a type 1 or type 2 region has more than one possible neighbouring
region to which we could send curvature, we may pick the one which is most useful to
us. For example, if such a region is compatible with one of our type 3 regions and we
are able choose it so that the two positive regions send curvature across the same edge,
then we have made sure that no A’ can receive curvature from both these two regions

at the same time. An example of this situation is shown in Figure 2.26.

Type3

Figure 2.26: For the type 2 region we choose to send curvature to the left of the

degree > 3 vertex
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In 12 of the cases, the specified A’ can only receive curvature from A as either there
are no further regions compatible with A (See |24]), compatible regions send curvature
across the same edge as A, compatible regions send curvature across the split edge in A,
or the other region does not fit beside A due to having different labels. For example, the
compatible region 126 for 35 distributes curvature across the (2,3)-edge and has label

531 at vertex 3. However, Figure 2.12 shows that the region across the (2,3)-edge of A’

would need to have the label 535 at vertex 3 and so this region cannot be 126.

Region no.

Compatible regions

Edges crossed by

compatible region

Problem

34 124 (5, 1) Crosses split edge
(see Figure 2.11)
35 125 (5, 1) Crosses split edge
126 (2, 3) Does not fit
177 52 (5, 1) Does not fit
104 (3, 4) Crosses split edge
295, 400, 401 (4, 5) Crosses same edge
178 296 (2, 3) Crosses split edge
297 (4, 5) Does not fit
181 None
185 None
225 88, 288, 381 (3, 4) Crosses same edge
229 90, 298 (3, 4) Crosses same edge
254 None
288 88, 225, 381 (3, 4) Crosses same edge
295 52 (5, 1) Does not fit
104 (3, 4) Crosses split edge
177, 400, 401 (4, 5) Crosses same edge
298 90, 229 (3, 4) Crosses same edge

Let us now look at the remaining 3 regions, 203, 310 and 314.

If we first consider the region 203, we can see it is compatible with region 314 and also
with 64 and 367. However, 203, 314 and 64 all send curvature across (4, 5) so A’ may not
receive from more than one of these regions at a time. The only remaining possibility is
for A’ to receive from 367 as well as 203. The region 367 sends curvature across (2, 3)

and forces d(ug) > 3 and a (2, 1)-split.
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Next let us consider the region 314. This region is compatible with region 203 and also
with 64 and 367. As above, only region 367 may send curvature to A’ as well as 314, as

all others cross the same edge. Again we have d(us) > 3 and a (2, 1)-split.

For both 203 and 314 at most 5 is sent in and 367 introduces a new split and a new

degree > 3 vertex so c(A') < ¢(3,3,3,3,3,3,4) = —F. See Figure 2.27.

Figure 2.27: Receiving curvature from region A = 203 or 314 along with region 367

Lastly, consider 310, which is compatible with 155 and 357. Both 310 and 357 send cur-
vature across (2, 3). So A’ may only receive curvature from 155 as well as 310. However,
this would imply a (2,1)-split with proper sublabel ww™!, which is a contradiction by

Lemma 1.23. Therefore, 310 is the only region from which A’ can receive curvature.

We have checked for this case that all positive curvature is compensated for by negative

curvature and so Lemma 1.17 holds for this case.

2.3 Case 2 (A2)

This section is concerned with the proof of Lemma 1.17 for Case (2) in Theorem 1.12.
The method will be very similar to that of Subsection 2.2.2 and so this subsection may
be referred to for further detail. Unlike Case (1), the theorem only holds in this case
under further conditions, which come about due to some regions of positive curvature
being unable to be successfully compensated for. We shall begin in the same way as

Subsection 2.2.2 and take note of the regions which lead to the conditions later on.
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Let 7(t) = wthwtwtBwt!w =15, As in subsection 2.2.2, the first thing to do is to work
out all the different possible labellings of a region of positive curvature using computation

methods.

The following Figure 2.28 shows all possible ways in which the w’s can match up.

w 4 5 w
5 w 3 3 w
3 bt 2 w 4
2 W 1 W 4
1 T W 3
5 2
1
2 A L3 Z
W w >
w. W w w
w . w
2 N e
3, 4
4 W N K] 4/,
w
3 \J >
w
ETSAGTAREN
w
AN SK
w

Figure 2.28: All possible labellings — A2

We again use a computer to find all possible labellings and their types, a full list of which
can be found in [24].

Observe the cases in Figure 2.3.

In case (i) there are 6 possible labellings.

In case (ii) there are 82 possible labellings.

In case (iii) there are 66 possible labellings.

In case (iv) there are 82 possible labellings.
In case (v) there are 55 possible labellings.

In case

e T T s T T

vi) there are 55 possible labellings.

2.3.1 A2 sendings

The way in which we send curvature for the type 3 regions is as follows.
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A | Edge/vertex sent across in A A | Edge/vertex sent across in A
13 | N/A 147 | (4,5)
33 | N/A 149 | (3,4): When region across (3,4)
43 | (5,1): Send Zc(A) not positive.
(4,5): Send %C(A) 3-vertex:  Otherwise. [(vs) = 2134z,
55 | (3,4): Send Zc(A) z € {5,3,4}. Send to re-
(4,5): Send %C(A) gion containing x.
12 | (4,5) 164 | N/A
16 | (3,4) 166 | (4,5)
19 | (3,4) 167 | (2,3) When region across (2,3)
20 | (1,2): When region across (1,2) not positive.
not positive. s Otherwise.
(5,1) : Otherwise. 175 ,
43 | (5,1): When region across (5,1) 212 | N/A
not positive. 214 | (5,1)
l-vertex:  Otherwise. [(v1) = 5132z, 232 | (4,5) When this region has a
x € {4,1,5}. Send to re- split OR d(v4) = 5 OR
gion containing x. l(vq) = 4421 and d(usz) > 3
44 | N/A in this region.
72 | N/A (3,4) : When region across (4,5)
89 | (3,4) does not split and l(v4) =
97 | (5,1) 4425 or 4425.
99 | (2,3): When this region has a 4-vertex:  Otherwise.
split OR d(vz) = 5 OR 239 | N/A
region across (1,2) has no 240 | (3,4)
splits and d(us) > 3 in this 255 , When region across (3, 4) is
region. positive OR I(v4) = 3445.
(1,2): When region across (2,3) (3,4) : Otherwise.
positive OR d(v2) = 4, re- 256 | (1,2)
gion across (2,3) has no 257 | (1,2)
splits and this region has a 258 | N/A
split. 292 | (5,1)
2-vertex:  Otherwise. 295 | (2,3)
103 | (2,3) 299 | (4,5): When region across (5, 1) is
106 | (1,2) positive OR I(vs) = 5145.
108 | (5,1) (5,1) Otherwise.
125 | (4,5) 312 | N/A
127 | (3,4) 327 | N/A
128 | (5,1) 329 | (2,3
141 | (3,4) 331 | (4, When this region has a
146 | (1,2): When this region has a split OR d(vs) = 5 OR
split OR d(v2) = 5 OR I(vs) = 5532 and d(u1) > 3
region across (2,3) has no in this region.
splits and d(u4) > 3 in this (5,1) : When region across (4,5)
region. does not split and l(vs) =
(2,3): When region across (1,2) 5542 or 5542.
positive OR d(v2) = 4, re- 5-vertex:  Otherwise.
gion across (1,2) has no
splits and this region has a
split.
2-vertex:  Otherwise.
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The way in which we send curvature for certain type 1 and 2 regions is as follows.

A | Edge sent A | Edge sent A | Edge sent A | Edge sent
across in across in across in across in
A A A A

5 | (4,5) 82 | (4,5) 189 | (3,4) 324 | (3,4)

11 | (5,1) 105 | (1,2) 197 | (4,5) 330 | (4,5)

26 | (3,4) 122 | (3,4) 209 | (2,3) 334 | (5,1)

37 | (1,2) 129 | (5,1) 213 | (2,3) 179 | (5,1)

42 | (5,1) 130 | (5,1) 219 | (3,4) 235 | (4,5)

45 | (5,1) 135 | (3,4) 220 | (3,4) 243 | (3,4)

50 | (1,2) 138 | (2,3) 223 | (4,5) 245 | (3,4)

51 | (5,1) 153 | (3,4) 266 | (4,5) 260 | (4,5)

62 | (1,2) 154 | (2,3) 307 | (5,1) 273 | (5,1)

74 | (5,1) 171 | (3,4) 316 | (4,5) 278 | (4,5)

75 | (5,1) 189 | (3,4) 317 | (4,5) 298 | (4,5)

The remaining type 1 and 2 regions are dealt with in the same way as in Subsection
222

We claim that, under the described sendings, Lemma 1.17 holds.

2.3.2 Proof of Lemma 1.17 for A2

We now have to check is the situation of Figure 2.7 (2). There are two type 1 regions,
23 and 63, but it can be observed in [24] that these regions are not compatible with any
other region. Therefore this situation does not occur and any regions receiving curvature

from regions of type 1 and 2 only satisfy Lemma 1.17.

We now move on to the regions of type 3. There are 44 regions of type 3, 40 with

curvature at most ¢ (regions have one vertex of degree > 3) and 4 with curvature %

(regions have all vertices of degree 3).

As before, we can rewrite 7(t) = wthwt2wtBwtw =5 to obtain a symmetry, which
in this case is from (l1,12,13,14,15) to (I3,12,11,15,14). Following is the table showing all
type 3 regions and their pairings with this symmetry. As before, those we will allocate

curvature to are highlighted.
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l(v)  lwva)  Il(vs)
13 | 412 325 135
35 | 413 421 235
45 | 413 423 431
53 | 315 125 135
12 | 312w 325 135
166 | 413 421 231w
16 | 413w 421 235
214 | 412 325 135w
19 | 213w 421 235
175 | 412 325 132w
43 | 315w 423 432
149 | 215 125 431w
44 | 415w 423 432
212 | 215 125 435w
103 | 215 123w 431
106 | 315 123w 432
89 | 215 12lw 235
108 | 412 323w 432
127 | 215 425w 432
128 | 215 425w 432
97 | 413 421w 235
141 | 412 325w 135
99 | 413 42lw 235
146 | 412 325w 135
125 | 413 425w 431
147 | 315 425w 135
72 | 315w 125 431
164 | 315 423 431w
20 | 213w 423 431
167 | 315 125 132w
232 | 315 125 135
331 | 413 423 431
299 | 215 125 432
255 | 215 423 432
256 | 215 425 432
295 | 215 425 432
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257 | 313 421 235 444w 352
329 | 412 325 131 241 555w
258 | 315 421 235 444w 352
327 | 412 325 431 241 555w
240 | 215 125 432 343w 251
292 | 215 423 432 342 151w
239 | 215 125 431 243w 251
312 | 315 423 432 342 152w

There are twenty-two pairs of symmetries and we are only required to distribute curva-

ture to one of each of these pairs so there are twenty-two regions for which we need to

know how to distribute symmetry. Nine of these regions can be dealt with in the same

way as those in Subsection 2.2.2 so we shall deal with these first. The figures showing

the way positive curvature can be sent in each of these cases are as follows.

Figure 2.32: no. 19

no. 12

Figure 2.33: no. 108

35

Figure 2.34: no. 141
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Figure 2.35: no. 146 Figure 2.36: no. 147 Figure 2.37: no. 257

For each region apart from 53 and 146, we assume by way of contradiction that there

are no further splits and no vertices of degree > 3 in A’. We obtain the following:

12: l(ug) = 421 l(uy) =513 (5, 1)-split, contradiction
16: l(uy) = 315 l(ug) =424 (2, 3)-split, contradiction
19:  Cannot complete uy

108: I(us) = 531 (2, 3)-split, contradiction

141: l(uy) = 214 (1, 2)-split, contradiction

147: l(ug) = 421 l(uy) =513 (5, 1)-split, contradiction

257: Cannot complete us

Therefore, A’ has a further split or a further vertex of degree > 3, s0 ¢(A’) < ¢(3,3,3,3,3,4) =
—% and ¢(A) < &

Each specified A’ for these seven regions can receive curvature from one region only as

the following table shows:

Region no. Compatible regions Edges crossed Problem with regions

12 147, 330 (3, 4) Crosses same edge
16 None

19 None

108 45 (4, 5) Crosses same edge
141 189, 334 (4, 5) Crosses same edge
147 12, 330 (3, 4) Crosses same edge
257 171, 307 (2, 3) Crosses split edge
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We now look at 53 and 146, which are more complicated than the previous regions.

53:  Neither A nor B can be completed with no further splits or degree > 3 vertices,
so c(A),c(B) < ¢(3,3,3,3,3,4) = —Z and we can send $c(A) < Z to each of
A and B.
146: Case I: A is positive. Then A must be 197 and so 14 (ug) = 52353, which causes

a (4,5)-split in B. So ¢(B) < ¢(3,3,3,3,3,5) = —1Z and send ¢(A) = & to B.
Case II: A is not positive. So A must have a split or another vertex of degree
> 3. If it has a split then c¢(A) < ¢(3,3,3,3,3,4) = —F so send ¢(A) < to
A. Assume A has no splits and has at least one other vertex of degree > 3. If
da(u3) =5 then send ¢c(A) = {5 to A and observe that c¢(A4) < ¢(3,3,3,4,5) =
—15- Let da(us) = 4. If there is a split in B, ¢(B) < ¢(3,3,3,3,3,4) = —%
so send ¢(A) < % to B. Otherwise, if there is no split in B, l4(ug) = 5235.
If da(ug) = 3, la(ug) € {442,443}, both of which split along (3,4) in C so
send c¢(A) < & to C, ¢(C) < ¢(3,3,3,3,3,4) = —¢. If da(ug) > 3, either
da(uy) > 3 or la(u;) = 315 and us cannot be completed with degree 3, so
c(A) <¢(3,3,4,4,4) = —% and send c(A) < & to A.

The region 53 is not compatible with any other region and so the only possibility of

some A’ receiving curvature from 53 and from somewhere else also is if it receives from

a second 53 region. This is possible in this case as curvature can be sent in from 53

across more than one edge. However, A’ then has a (2, 3)-split and a (3, 4)-split and can

therefore compensate for the total § curvature being sent in, & from each of the two 53

regions. As 53 sends curvature across two different edges only, A’ can receive no more

than two lots of curvature.

We now look at 146, using the notation 146A to mean A is 146 and curvature is sent
into A. The region 146 is compatible with regions 37, 197 and 209 and we treat in case

in Figure 2.35 in turn.

146 A

Compatible regions which do not send curvature across the same edge are as follows: 37,
146 B (a second region 146 sending curvature across the (5, 1)-edge this time), 146C, 197,
209. The regions 37, 197 and 209 do not fit so we are left with 1468 and 146C". Assume
two lots are sent in from region 146B or 146C' as well as from region 146A. Then at
most % is sent in and we get a split and d(us) > 3, so ¢(A") < ¢(3,3,3,3,4,4) = —%.
We cannot have three lots sent in as 146 A, 146 B and 146C do not all fit together.
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146B
The region A’ must contain a split. Compatible regions which do not cross the same
edge (apart from 146 A which has already been dealt with) are as follows: 37, 146C, 209.
Region 146C" does not fit. Assume two lots are sent in from region 37 or 209 as well as
from region 146B, so at most 3 is sent in. The region gives another vertex of degree
> 3,50 ¢(A’) <¢(3,3,3,3,4,4) = —

cross the same edge.

%. We cannot have three lots sent in as 37 and 209

146C
Compatible regions which do not cross the same edge (apart from 1464 and 146B) are
as follows: 37, 197, 209. However, none of them fit and this completes the case for region

146.

Lemma 1.17 therefore holds for these nine cases. The remaining fifteen cases are more
complicated and need to be looked at in three groups, split depending on which other
regions they are compatible with. The first of these groups contains eight type 3 regions

and we are able to successfully distribute positive curvature for each of these regions.
Group 1

This first group contains the regions 232, 43, 106, 127, 167, 255, 256 and 292. A table
displaying the regions which may occur with each of the eight regions in this group is as

follows. The type 3 regions have been highlighted.

232 | 26, 43, 82, 106, 122, 127, 135, 153, 154, 167, 219, 220, 255, 256, 292, 316, 317

43 | 105, 106, 153, 167, 219, 232, 255, 266, 292, 316, 317, 324

106 | 43, 153, 167, 219, 232, 255, 292, 316, 317

127 | 232

167 | 43, 106, 153, 219, 232, 255, 292, 316, 317

255 | 43, 106, 153, 167, 219, 232, 292, 316, 317

256 | 232, 317

292 | 43, 105, 106, 153, 167, 219, 232, 255, 266, 316, 317, 324

The following figures show the way in which curvature is distributed for each of the 8

regions.
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Figure 2.38: no. 43 Figure 2.40: no. 127

Figure 2.41: no. 167 Figure 2.42: no. 232 Figure 2.43: no. 255

Figure 2.44: no. 256 Figure 2.45: no. 292

Next we outline the exact manner in which curvature will be sent and give an explanation

of how this curvature is compensated for, assuming only one lot is received.
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43:

106:

167:

232:

127:

255:

Case I: A’ is positive. Then it must be 167 as this is the only region that would
fit. Then [(v1) = 5132z where x € {4,1,5}. If 2 = 4 then we get a (4,5)-split
in C. If x = 1 then we get a (5,1) and a (1,2)-split in C. If z = 5 then
we get a (5,1)-split in C. So send the & from both 43 and 167 into C, so
c(C) < ¢(3,3,3,3,3,5) = —‘i—” and % is sent in. Treat the curvature sending
from 43 and 167 to the region C in Figure 2.38 as one sending of % from now on,
as these sendings depend on one another. Refer to this sending as 43C'. Case 1I:
A’ is not positive. Assume d(v1) = 5, so ¢(A) = 5. As A’ is not positive there
must be at least one split or further vertex of degree > 3 in A’, which implies
c(A") < ¢(3,3,3,4,5) = — 75, so we are done. Assume d(v1) = 4, so [(v1) = 3154,
causing a (3, 4)-split. Then ¢(A) = § and ¢(A") <¢(3,3,3,3,3,4) = —¢.

A’ is not positive so, as with region 43, if d(ve) = 5 we are done. If d(vy) = 4 then
I(vy) = 1233 or 1234, both of which cause a split, so ¢(A’) < ¢(3,3,3,3,3,4) =

s

G
We assume A’ is not positive, as the case when it is positive is dealt with in 43,
so if d(v3) = 5 we are done. If d(vs) = 4 then I(v3) = 1324 or 1322, both of
which cause a split, so we are done as ¢(A’) < —F once again.

A is not positive, otherwise it would be one of the following regions: 122 —
l(vg) = 4423w, 127 = I(vy4) = 4425w, 135 = I(v4) = 4425w, none of which
complete with degree 4 or 5. If there is a split in A, send to A as ¢(3,3,3,3,3,4) =
—%- Now assume there are no splits in A. The remaining vertices in A cannot
complete with degree 3 (or v4 would have degree > 5) so there is a further vertex
of degree > 3 in A. If d(vs) = 5, c(A) < ¢(3,3,3,4,5) = —{5 so send to A. If
d(vs) = 4 then [(vy) = 4425,4421 or 4425. If I(vg) = 4425 or 4425, B splits
along the (3,4)-edge so send to B. Assume [(vy) = 4421. Either da(us) > 4 or
la(us) = 351 and da(ug) > 4. If da(us) > 4, ¢(A) < ¢(3,3,4,4,4) = —% so send
to A. If da(us) = 3, l4(u3) = 232, which splits (2,3) in C, so send to C.
Another split or a vertex of degree > 3 in A’ is enough as then c¢(A’) <
c(3,3,3,3,3,4) = —%, so now assume otherwise. But then u; cannot be com-
pleted with degree 3 - contradiction.

Case I: B is positive, in which case B must be 219 (cannot be 153 or cannot
complete vy with degree < 6) and [(v4) = 34445. A cannot be completed with
da(uz) = da(ur) = da(us) = 3 so c(A) < ¢(3,3,3,4,5) = —7 and c(A) = 7%,
so send into A. Case II: B is not positive. Then if d(vs) = 5, send to B. If
d(vs) = 4 then I(vg) = 3444,3441 or 3445. The first two cause a (3,4)-split in
B which means ¢(B) < ¢(3,3,3,3,3,4) = —¢ and so send to B. The last causes
a (4,5)-split in A so send to A.
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256:  Another split or a vertex of degree > 3 in A’ is enough so assume otherwise.

But then the existing split has proper sublabel w~'w which is a contradiction.

292: A’ is not positive so, as before, if d(vs) = 5 we are done. If d(vs) = 4 then

I(vs) = 1515 which causes a split in A’ and we are done.

Let us now check that curvature is still compensated for when more than one lot is sent

in to the same region. We will look at a particular A’ which curvature is being sent into

and check if any further can be sent in.

232A

Compatible regions which do not cross the same edge are as follows: 26, 43, 43C', 82,
106, 122, 127, 135, 154, 167, 219, 220, 2328, 232C, 2554, 2558, 256, 316, 317.

Assume two lots are sent in:

Regions

Outcome

26, 43, 82, 106, 122, 127, 135,
154, 167, 219, 220, 232C,
2558, 316, 317

Does not fit.

43C Cannot be sent across the 1 vertex as d(u;) = 3 and
cannot be sent across the 5 vertex as [(us) = 51325
would give a (5,1)-split with proper sublabel ww™?,
a contradiction by Lemma 1.23. Can only be across
the 4 vertex, which has degree 5, giving a (4, 5)-split.
T4+ 321 — %% sent in. If d(ug) = 3, splits (2, 3) so
o(A') <¢(3,3,3,3,4,5) = -1,

154, 256 Forces a (5,1)-split with proper sublabel ww™! - con-
tradiction.

232B At most % sent in. d(ug) > 4, (3,4)-split, so ¢(A’) <
¢(3,3,3,3,4,4) = —T.

255A Case I in 255A: [4(u4) = 34445 and cannot complete

la(ug) = l(vyg) with degree < 6 - contradiction. Case
ITin 255A: At most § sent in. d(us) > 4, (4,5)-split:

C(A,) < 6(37 3737 37474) = _%

We cannot have three lots sent in as potential regions do not fit together.

232B

Compatible regions which do not cross the same edge are as follows: 26, 43, 43C', 82,
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106, 122, 127, 135, 153, 167, 219, 220, 232C, 2554, 2558, 292, 316, 317.
Assume two lots are sent in and note that d(us) > 3 and (3,4) splits:

Regions

Outcome

26, 43C, 82, 122, 135, 167,
219, 220, 2554, 317

Does not fit.

43, 255B At most % sent in. Region gives d(u3) > 4 so ¢(A') <
¢(3,3,3,3,4,4) = —T.

106 d(u1) > 4. If d(uy) = 5, at most 2 is sent in and
o(A') <¢(3,3,3,3,4,5) = =BT If d(uy) = 4, at most
Z sent in, (1,2)-split, so c(A’) < ¢(3,3,3,3,3,4,4) =
_2r

.

127 At most % sent in. Either another split or d(u;) > 3
so ¢(A") <¢(3,3,3,3,4,4) = —%.

153 At most % sent in. Regions split (2,3) and d(u;) > 4
so ¢(A) < ¢(3,3,3,3,3,4,4) = — 2.

292, 232C At most % sent in. Regions give d(u1) > 4 so ¢(A') <
¢(3,3,3,3,4,4) = —T.

316 At most % sent in. Regions give d(ug) > 4 so ¢(A') <

©(3,3,3,3,4,4) = 1.

Assume three lots are sent in:

Then it must be 2328 with two from eight possible regions.
Crossing (2,3): 43, 255B, 127 (compatible with 232 only), 316.

Crossing (5,1): 106.

Crossing (1,2): 153 (gives a (2, 3)-split), 292.
Crossing vertex 1: 232C (gives a (2, 3)-split).

So there is no region sending across (2,3) compatible with 153 or 232C', and so pos-
sible pairs are: {43,106}, {43,292}, {106,255B}, {255B,292}, {106,316}, {292,316},
{106,153}, {106,292}, {106,232C'}, {153,232C'}, {232C,292}.

Regions

Outcome

{106, 255B}, {2558, 292},

{106,232C}, {153,232C},
{232C, 292}

{292,316}, {106, 153}, {106,292},

Does not fit.
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{43,292}, {43,106} At most § sent in. Regions give d(u1) > 4 and
d(ug) >4 s0 ¢(A") <¢(3,3,3,4,4,4) = —7T.
106, 316 At most I sent in. Regions give d(uy) > 4 and
2
d(ug) >4 s0 ¢(A") <¢(3,3,3,4,4,4) = —7T.

If four lots were sent in it would be from 2328 and three from 43, 106, 292, 316. But 43
and 316 cross the same edge and 106 and 292 do not fit together so four lots cannot be

sent into A’.

232C

Compatible regions which do not cross the same edge are as follows: 26, 43, 43C, 82,
106, 122, 127, 135, 153, 154, 167, 219, 220, 255A, 2558, 256, 292, 316, 317.

Assume two lots are sent in and note that d(u;) > 3 and (2, 3)-splits:

Regions Outcome

26, 43, 82, 106, 122, 127, 135, | Does not fit.
153, 154, 167, 219, 220,
2558, 256, 292, 316, 317

43C Can only cross the 4 vertex which has degree 5. 232C
gives a (2,3)-split and 43C gives a (4,5)-split. So 3%

is sent in and ¢(A’) < ¢(3,3,3,3,3,4,5) = _23?_5'

255A Forces a (2, 3)-split with proper sublabel ww™!, which

is a contradiction.

Clearly we cannot have three lots sent in as 43C' is the only region that can send into
A’ as well as 232C.

127
We have completed 127 already as it is only compatible with 232. We do not have
to consider 232 again in the remaining regions of this group or we will be repeating

ourselves.

256
The only compatible region (apart from 232) is 317. This crosses the (5,1)-edge in A’

and does not fit, so A’ may not receive curvature from 317 also.
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43

Compatible regions which do not cross the same edge are as follows: 43C, 105, 106, 153,
167, 219, 255A, 266, 292, 317, 324.

Regions

Outcome

105, 153, 2554, 324

Does not fit.

43C

Cannot be across vertex 1 and cannot be across ver-

tex 4 or cannot complete [(vy) with degree 5. Only

possibility is across vertex 5, which splits (5,1). If

d(v1) = 4, l(v1) = 3154 which splits (3,4). So

%—I—%r = g—g is sent in and ¢(A’) < ¢(3,3,3,3,3,4,5) =
237 3

—Br If d(v) = 5, &+ 22 = 3T is sent in and

o(A') <¢(3,3,3,3,5,5) = — 2.

106, 167, 292

If d(u1) = d(u3) = 5 then 2T is sent in and c(A’) <
c(3,3,3,5,5) = —%. If at least one of these degrees is
4, at most % is sent in and there is a split so ¢(A’) <

(3,3,3,3,4,4) = — .

219, 317

Forces a (1,2)-split with proper sublabel ww™!, which

is a contradiction.

266

At most § sent in. Region gives d(u1) > 4 and a

(4,5)-split so ¢(3,3,3,3,4,4) = —Z.

Can only have three lots sent in if it is 292 and 43C' as none of the others fit together.

s

Each contribute a degree > 3 vertex and 43C' gives a (5,1)-split. So {f is sent in and

c(3,3,3,4,4,5) = —3Z.

43C

Compatible regions (with 167 also - see description of 43C' sending above) which do not
cross the same edge are as follows: 106, 153, 167, 219, 2554, 2558, 292, 316, 317.

Regions Outcome

106, 167 Does not fit.

153 Through 1 vertex does not fit and through 5 vertex
causes labels to give a contradiction, so through 4
vertex. (4,5)-split and (2,3)-split so 3= sent in and
c(3,3,3,3,3,4,5) = -2,

219 Only fits through 4 vertex but the labels give a con-
tradiction.
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255A Through vertex 1 or 5. g—g sent in. At least one split
_ _13
so c(A') <¢(3,3,3,3,4,5) = — 3.
2558, 292 Through vertex 4 or 5. g—g sent in. At least one split
_ 137
so c(A') <¢(3,3,3,3,4,5) = —55-
316, 317 All three crossings require a vertex whose label gives
a contradiction.

The only possibility for three lots being sent in is 43C' (through vertex 5) with 2554 and
292 as the others do not fit. Each of these regions contribute a degree > 3 vertex and

43C gives a (5,1)-split. So Z + I + 2T = I js sent in and ¢(3,3,3,4,4,5) = —3Z.

106 and 167
Compatible regions which do not cross the same edge are as follows: 153, 2554, 2558,
292, 316.

Regions Outcome
153, 292 Does not fit.
255A Case I in 255A: Either d(ui) = 4 so &% is sent in,

in which case there is a split and ¢(3,3,3,3,4,5) =
—g’—ow, ord(u;) =5so0 %—g is sent in and ¢(3,3,3,5,5) =
—%. Case II in 255A: Forces a (4,5)-split with proper

sublabel w™tw, which is a contradiction.

255B If d(u1) = d(u3) = 5 then 2T is sent in and c(A’) <
c(3,3,3,5,5) = —%. If at least one of these degrees is
4, at most % is sent in and there is a split, so ¢(A’) <

c(3,3,3,3,4,4) = —I.

316 At most % sent in. Region gives d(uz) > 4 and a
(3,4)-split so ¢(A’) <¢(3,3,3,3,4,4) = —Z.

We cannot have three lots sent in as it would have to be two of 316, 255A and 255B.
But 316 and 255B cross the same edge, 255A crosses the (3,4)-edge and 316 splits the
(3,4)-edge, and 255A and 2558 do not fit together.
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255A
Compatible regions which do not cross the same edge are as follows: 153, 219, 2558,
292, 316, 317.

Regions Outcome

2558, 316 Does not fit.

153 Forces a (2, 3)-split with proper sublabel ww™!, which
is a contradiction.

219, 317 At most % sent in. Region gives d(us) > 3 and a
(1,2)-split so ¢(A’) < ¢(3,3,3,3,4,4) = —Z.

292 Region gives d(u;) > 3. Assume case II in 255A:
At most % is sent in and a (4,5)-split, so ¢(A’) <
c(3,3,3,3,4,4) = —%. Assume case I in 255A: If

d(u1) = 4, I& is sent in and a (5, 1)-split so ¢(A’) <
(3,3,3,3,4,5) = =T Otherwise, d(u1) = 5, 2% is
sent in and ¢(A’) < ¢(3,3,3,5,5) = —%

We cannot have three lots sent in as both 219 and 317 cross (5, 1) and split (1,2), which
is the edge crossed by 292.

255B
Compatible regions which do not cross the same edge are as follows: 153, 219, 292, 317.

Regions Outcome
153, 292 Does not fit.
219, 317 Region gives a (1,2)-split with proper sublabel ww™!
- contradiction.
292

Compatible regions which do not cross the same edge are as follows: 105, 219, 266, 316,
317.

Regions Outcome

219, 266, 316, 317 Does not fit.

105 Region gives a (2,3)-split with proper sublabel w™!w
- contradiction.
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Group 1II

44

38, 107, 164, 188, 198, 241, 275, 301, 312

164

44, 107, 275, 312

312

38, 44, 107, 164, 188, 198, 241, 275, 301

This group brings about exception (7ii) that the equalities I3 = lo + 1y = 1 + I5 do

not hold, and by symmetry (7v), in Case (2) of Theorem 1.12. The exception allows

us to disregard regions 44 and 312, whose labellings are [(v1) = 415w, I(v2)
l(vg) = 432, l(vy) = 342, l(vs) = 153 and Il(vy) = 315, l(ve) = 423, I(v3)
l(vg) = 342, I(vs) = 152w respectively. The exception also rules out region 164, although

this is not one of the regions which causes the problem, which we describe next.

423,
132,

If we were to allow the equalities I3 = lo + 14 = l; 4+ l5 and therefore the regions 44 and

312, it would be possible to end up with the following situation.

T
e A5
2,h4 3 2,04
5N 5ol Nz
3 3 3
442 402 402
A5 15 A5 15 A5
44 312 44 312 44 312
4 2 N4 4 4 2 14 2
3 3 3 3 3 3 3 3 3 3 3 3
24 24 274 2y 4 214 2y 4
44 312 44 312 44 312
LG 1] 115 1N e 5
3 Fogd 3 4972 3 a2
5wl 5(7;1 R
MNa < 2N
1riG 1N
45"

Figure 2.46: 44 and 312 together

All regions in this figure other than 44 and 312 have degree —% and so far we have not

been able to find a way to compensate for the positive regions. Therefore the restriction

on the [;’s is required.
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Group III

15 | 156, 173, 258, 310, 311
258 | 13, 156, 173, 310, 311

This group brings about exception (i) that the equalities Iy = Iy + Iy, I3 = I3 + 5 and
I3 = 11 + 5 do not hold, and by symmetry (i), in Case (2) of Theorem 1.12. The
exception allows us to disregard region 13, whose labelling is I(vy) = 412, I(v2) = 325,
l(v3) = 135, l(vy) = 142, I(vs) = 153. The exception also rules out region 258 and we

now describe the problem that arises when allowing these two regions to occur.

If we allowed the mentioned equalities and therefore the regions 13 and 258, which are

compatible, it is possible to end up with the following situation.

3 4
\Ea L
3
13
258 = L
é 3
1 5\\‘ !
3
2 13 258
5
3 4
1 N 2
258 13 S
5
4 3
1 s L
258
3
2 13
5
4
258 S 2
1 5 1

Figure 2.47: 13 and 258 together

Again we have been unable to compensative for the positive curvature so the exception

on the [;’s is required.

This completes the proof of Lemma 1.17 in Case (2), with the mentioned exceptions.
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2.4 Case 3 (A3)

This section is concerned with the proof of Lemma 1.17 for case (3) in Theorem 1.12.
Let r(t) = wtwt2wtl3w = w1l

The following figure shows all possible ways in which the w’s can match up.

4 5
w__ 7~ 3 4 N AW
5 ~“w 7~ 3 2 N AW N g
4 Y 5 N\ W
2W1W3
1 7~w W
5 2
5 5
1
4 A 45
WW
WW WW
w AW
, e
3 B
, s s
E/ANGAREN
w
S N
w
ECRAC AR
w

Figure 2.48: All possible labellings — A3

A full list of all possible labellings and their types can be found in [24].

Observe the cases in Figure 2.3.
In case (i) there are 0 possible labellings.

In case (ii) there are 64 possible labellings.
In case (iii) there are 65 possible labellings.
In case (iv) there are 51 possible labellings.
In case (v) there are 48 possible labellings.
(

In case (vi) there are 51 possible labellings.

2.4.1 A3 sendings

The way in which we send curvature for the type 3 regions is as follows.
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A | Edge/vertex sent across in A A | Edge/vertex sent across in A
4 (3,4) 200 | (4,5): When region across (3, 4) is
(5,1) positive
16 | N/A (3,4) : Otherwise.
34 | (4,5) 205 | N/A
35 | (4,5) 206 | (3,4): When region across (4, 5) is
63 | (5,1): When region across (1, 2) is positive
positive. (4,5) Otherwise.
(1,2) : Otherwise. 209 | (4,5)
66 | (2,3): When region across (1, 2) is 210 | N/A
positive. 220 | (3,4)
(1,2) : Otherwise. 231 | (5,1) When this region has a
78 | (3,4) split OR region across
7 | N/A (4,5) does not split and ei-
91 | (4,5) ther d(vs) =5 or d(vs) =4
92 | (3,4) and d(us) = 3 and one of
123 | (2,3) d(u4),d(uz) > 3 in this re-
130 | (4,5) gion.
132 | (5,1) (4,5) : When region across (5,1)
150 | N/A does not split and this re-
152 | (2,3) gion has a split OR region
162 | (4,5) across (5,1) is positive.
165 | (1,2) 5-vertex: ~ When none of the above
169 | (4,5): When region across (3,4) is hold and this region splits.
positive Send %C(A) across (5,1)
(3,4) : When this region is not and 5-vertex otherwise.
positive and either d(v3) = 233 | (3,4)
5 or d(v3) = 4, l(v3) # 241 | (5,1)
3343. 248 | (2,3)
(2,3) : Otherwise. 258 | (3,4)
173 | (4,5) 259 | N/A
175 | (2,3): When this region has a 270 | (3,4)
split OR region across 271 | (3,4): When region across (4, 5) is
(3,4) does not split and ei- positive
ther d(v3) =5 or d(v3) =4 (4,5) When this region is not
and d(uz) = 3 and one of positive and either d(vs) =
d(ua),d(us) > 3 in this re- 5 or d(vs) = 4, l(vs) #
gion. 5545.
(3,4) : When region across (2,3) (5,1): Otherwise.
does not split and this re- 272 | (1,2)
gion has a split OR region
across (2, 3) is positive.
3-vertex: ~ When none of the above
hold and this region splits.
Send %C(A) across (2, 3)
and 3-vertex otherwise.

The way in which we send curvature for certain type 1 and 2 regions is as follows.
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A | Edge sent A | Edge sent A | Edge sent A | Edge sent
across in across in across in across in
A A A A

71 (1,2) 50 | (5,1) 98 | (2,3) 176 | (3,4)

18 | (4,5) 52 | (3,4) 99 | (2,3) 182 | (2,3)

19 | (5,1) 58 | (5,1) 109 | (2,3) 185 | (3,4)

23 | (1,2) 64 | (5,1) 114 | (2,3) 193 | (3,4)

24 | (5,1) 71| (3,4) 121 | (4,5) 198 | (5,1)

26 | (2,3) 72 | (2,3) 122 | (1,2) 207 | (4,5)

28 | (1,2) 74| (2,3) 124 | (4,5) 212 | (4,5)

30 | (5,1) 75| (2,3) 128 | (1,2) 230 | (4,5)

31 | (5,1) 80 | (5,1) 136 | (4,5) 249 | (3,4)

42 | (3,4) 82 | (1,2) 142 | (4,5) 261 | (4,5)

47 | (5,1) 90 | (2,3) 159 | (3,4) 279 | (3,4)

The remaining type 1 and 2 regions are dealt with in the same way as in Subsection

222

We claim that, under the described sendings, Lemma 1.17 holds.

2.4.2 Proof of Lemma 1.17 for A3

Since there are no positive regions whose vertices are all of degree 3, the situation of

Figure 2.7 (2) does not occur.

There are 36 regions of type 3, each with curvature §.

We can rewrite 7(t) = wthwt2wtBw 4w =1t to obtain a symmetry from (I1,ls, I3, 14, 15)
to (l2,11,15,14,13). Following is the table showing all type 3 regions and their pairings

with this symmetry. As before, those we will allocate curvature to are highlighted.

l(v1)  Uv2) Uvs) Uva) Uvs)
4 | 215w 125 133 243 451
91 | 312 321w 234 541 552
6 | 315w 125 134 543 254
123 | 312 325w 431 543 452
34 | 212w 321 231 543 451
92 | 215 12Iw 234 543 251
35 | 312w 321 231 543 452
78 | 215 125w 134 543 251
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63 | 315w 425 431 542 152

66 | 314 325w 132 143 254

16 | 315w 125 431 543 452

79 | 312 325w 134 543 254

130 | 312 324 331w 541 552

270 | 415 125 133 243 255w
152 | 314 321 232w 143 254

241 | 215 425 431 542 151w
165 | 212 324 333w 243 451

272 | 415 121 234 541 555w
173 | 312 321 234w 541 554

233 | 215 125 433 243  45lw
175 | 312 321 234w 542 154

231 | 215 125 432 143 451w
200 | 312 321 231 542w 154

206 | 215 125 432 143w 251
209 | 315 125 134 543w 254

220 | 312 325 431 543w 452

205 | 215 125 431 543w 251
210 | 312 321 231 543w 254

132 | 315 125 13lw 542 152
248 | 312 325 132 143 252w
162 | 215 125 433w 243 251
258 | 312 321 231 541 554w
150 | 215 125 432w 143 251
259 | 312 321 231 542 154w
169 | 312 324 334w 541 552
271 | 415 125 133 243 455w

In this case we do not get a pair for which the two regions are compatible with each other.
Therefore, as there are eighteen pairs of symmetries and we only require to distribute
curvature from one of each of these pairs, there are eighteen regions for which we need to
know how to distribute curvature. Nine of these regions can be dealt with individually

so we shall deal with these first. The figures showing the way positive curvature can be

sent in each of these cases is as follows:
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Figure 2.52: no. 35 Figure 2.53: no. 130 Figure 2.54: no. 165

Figure 2.55: no. 173 Figure 2.56: no. 209 Figure 2.57: no. 271

For the regions where we already know A’ has a split, we assume there are no further

splits and no vertices of degree > 3 in A’ and obtain a contradiction for each.
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4: Cannot complete u;.
34: l(us) = 552. Cannot complete wu;.
35: Cannot complete us.
130: Cannot complete uo.

165: l(uyg) = 541, I(us) = 554. Cannot complete u;.
173: Cannot complete uo.

271: Cannot complete uq.

So ¢(A) < & and ¢(A') <¢(3,3,3,3,3,4) = —F.

Let us now look at the remaining two regions. In these cases, we can use the fact that

the degree > 3 vertex must, in fact, be degree 5.

6: d(v1) = 550 ¢(A) = {5. Cannot have no splits and all remaining vertices
of degree 3 in A’, or would have a compatible positive region with vertex
3 of degree 5. This is not the case or A’ would have to be 6, which
is clearly not true, or 99, which has vertex 3 of degree 3. ¢(A’) <
c(3,3,3,4,5) = —15-

200: d(vg) = 5 50 ¢(A) = {5. Cannot have all remaining degrees 3 in A’ or
would have a compatible positive region with vertex 3 of degree 5, which
is not the case. c¢(A) <¢(3,3,3,4,5) = —{5.

The A’ for the following regions cannot receive curvature from elsewhere:

Region no. Compatible regions Edges crossed Problem with regions

6 99 (3, 4) Crosses same edge
34 261 (3, 4) Crosses same edge
130 None
165 128 (2, 3) Crosses same edge
173 193 (5, 1) Crosses same edge

198 (4, 5) Crosses split edge
209 None

Each of the remaining three cases, 4, 35, and 271, can only appear with one other region
that does not send curvature across the same edge: 75, 82, and 75 respectively. However,
75 forces a (1, 2)-split and 82 forces a (4, 5)-split, both with proper sublabel ww ™! which
is a contradiction by Lemma 1.23. Therefore, no more than one lot of curvature can be

sent into A’.
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The remaining cases are split into three groups as in the previous section.
Group 1

A table displaying the regions in this group along with their compatible regions is as

follows. As before, the compatible type 3 regions have been highlighted.

66 | 23, 64, 152, 248
152 | 23, 64, 66, 248
248 | 23, 24, 64, 66, 152

Figure 2.58: no. 66 Figure 2.59: no. 152 Figure 2.60: no. 248

66: Case [: A is positive. A must be 152 and I(v2) = 52323, which causes a (4,5)-

split in B. So send to B as ¢(B) < ¢(3,3,3,3,3,5) = —% and { is sent in.
Case II: B is positive. B must be 248 and I(vy) = 32523. If there is a split
or another degree > 3 vertex then c(A4) < ¢(3,3,3,4,5) = —{; and {& sent in,

so send to A. Now assume otherwise. But then [4(ug) = 245, which splits the
(1,2)-edge - contradiction. Case III: A and B are not positive. If d(ve) = 5 then
there must be at least one split or degree > 3 vertex in A, otherwise A would be
positive. So c(A) < ¢(3,3,3,4,5) = —{; and send the % to A. If d(v2) = 4 then
I(v2) € {3255,3252}, both of which split A so ¢(A4) < ¢(3,3,3,3,3,4) = —% and
send the § to A.

152:  Any splits and we are done so assume no splits. If d(us) = d(ug) = 3 then
I(us) = 525. But then uy cannot be completed with degree 3 and no splits. Let
d(us) > 3 or d(ug) > 3. If d(v3) = 5 then we are done as c(A’) < —{5 and {¢ is

sent in. If d(vs) = 4, I(v3) = 2323, which gives a split - contradiction.
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248: If a further split or degree > 3 vertex then we are done so assume otherwise. But

then the labels force the split to have sublabel ww™!, which is a contradiction.

We now check that curvature is still compensated for when more than one lot of curvature

1s sent in.

248

Compatible regions which do not cross the same edge are as follows: 23, 24, 64, 66A4,
152.

Assume two lots are sent in:

Regions Outcome

24, 64 Does not fit.

23 At most § sent in. Region gives a (3,4)-split and
d(ug) > 3 s0 ¢(A") <¢(3,3,3,3,3,3,4) = - 3.

66A Forces the split to have sublabel ww™!, which is a
contradiction.

152 Region gives d(uz) > 3. If d(ug) = 4, at most % is
sent in and [(uz) = 2323, which gives a (2, 3)-split, so
c(A’) <¢(3,3,3,3,3,3,4) = —F. If d(ug) = 5, at most
g—g is sent in and ¢(A’) <¢(3,3,3,3,3,5) = —g—g.

If three lots are sent in it must be with 23 and 152. But 23 and 152 do not fit together

unless d(ug2) > 5, so three lots cannot be sent in.

152
Compatible regions which do not cross the same edge are as follows: 23, 64, 66 A, 66B.

Assume two lots are sent in:

Regions Outcome

23 Does not fit.

64 Region gives a (5,1)-split with proper sublabel ww™!
- contradiction.

66A We have d(ug) > 3 and the region gives d(ug) > 3 and

also d(us) > 3 from the labels. If d(us) = 4, at most
Z is sent in and I(ug) = 2323, which causes a split, so
c(A") <¢(3,3,3,4,4,4) = —F. If d(ug) = 5, at most

g—g is sent in and ¢(A’) < ¢(3,3,4,4,5) = _%'

o6




CHAPTER 2: THEOREM 1.12 casEs (I) 1-3

668

At most g—g sent in. Region gives a (4, 5)-split and

d(us) = 5, 1(us) = 52323, 50 c(3,3,3,3,4,5) = — 4=,

If three lots are sent in it must be with 664 and 663, but the three do not fit without

forcing a (4,5)-split with proper sublabel ww ™!, a contradiction.

66A

Compatible regions which do not cross the same edge are as follows: 23, 64, 665.

Assume two lots are sent in:

Regions Outcome
23, 64 Does not fit.
66B Region forces a (4,5)-split with proper sublabel ww™!
- contradiction.
668

Compatible regions which do not cross the same edge are as follows: 23, 64.

Assume two lots are sent in:

Regions Outcome

64 Does not fit.

23 At most § sent in. Region gives a (3,4)-split and
d(uz) > 3 s0 ¢(A') < ¢(3,3,3,3,4,4) = —%.

Clearly we cannot have more than two lots being sent in.

Group II

175 | 30, 114, 200, 258
200 | 30, 31, 42, 71, 74, 80, 114, 121, 159, 175, 258, 279
258 | 30, 31, 42, 71, 74, 80, 114, 121, 159, 175, 200, 279
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Figure 2.61: no. 175 Figure 2.62: no. 200 Figure 2.63: no. 258

175:

200:

258:

If there are any splits in A or B then send there. Now assume there are no splits
in A or B. Case I: A is positive. Then A is 114 and d(v3) = 5, l(v3) = 43242.
If B has another vertex of degree > 3 then ¢(B) < —{; and send the { there,
so now assume otherwise. But then u; cannot be completed with degree 3
- contradiction. Case II: A is not positive. If d(v3) = 5, there must be a
split or another vertex of degree > 3 in A or A would be positive, so send to
A. Let d(v3) = 4, so l(v3) = 2345. If C splits, send there and now assume
otherwise. Cannot complete [4(ug) with degree 3 without splitting A or C so
da(uz) > 3. If da(ug) > 3 or da(us) > 3, c(A) < ¢(3,3,4,4,4) = —F so send
to A. Now assume da(uy) = da(us) = 3, s0 la(us) = 541 and [4(uyg) = 425.
If da(us) = 4, la(us) = 4343, which splits C' - contradiction. So d4(u3) = 5,
c(A),c(C) <¢(3,3,3,4,5) = —{5 and so send {5 each to A and C'.

Case I: A is positive. Then A is 258 and d(vs) = 5. If we have a split or further
vertex of degree > 3 in B then send to B, so now assume otherwise. Now
I(v4) = 55425 or 55421, both of which give a contradiction when completing the
labels of B with degree 3 with no splits. Case II: A is not positive and d(v4) = 4.
Then I(v4) = 5423 which splits A so send to A. Case III: A is not positive and
d(vg) = 5. Must be a split or another vertex of degree > 3 or A would be positive
we are so done.

Case I: B is positive. Then B is 279. This splits the (3,4)-edge of C so if there
is another split or a vertex of degree > 3 in C then send to C. Now assume
otherwise, which gives a contradiction when trying to complete the labels with
degree 3 with no splits. Case II: B is not positive and d(vs) = 5. Must be a split
or another vertex of degree > 3 in B or would be positive so send to B. Case
III: B is not positive and d(vs) = 4. If [(vs) = 5545, A splits along (4,5) so send
to A. The other potential labels split B along (4,5) so then send to B.
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175A
Compatible regions which do not cross the same edge are as follows: 114, 175B, 175C,
200A, 258 A, 258 B, 258C.

Assume two lots are sent in:

Regions Outcome

175B, 2588, 258C Does not fit (recall that 258C requires 279, which is
not compatible with 175).

114, 258 A At most § sent in. Region gives d(us4) > 3 and a split,
so c(A') <¢(3,3,3,3,4,4) = —%.

175C d(uz) > 4 and d(us) > 4 and if there is a split we

are done. If d(us) = 5, ¢(A) < ¢(3,3,4,4,5) = —{

and 42 send in so assume d(uz) = 4, d(ug) > 3. If

d(ug) = 4, region gives a split so we are done. Other-

wise, d(uz) = 5 and at most § + {5 = 7 is sent in, so

o(A') < ¢(3,3,4,4,5) = — 1%,

200A d(u2) > 4 and d(us) > 4. Either d(us) = 4 and region
causes a split so we are done or d(us) = 5. If d(uz) =5
also, 27 is sent in and ¢(3,3,3,5,5) = —Z. If d(ug) = 4
then either a split or d(us) > 3, so 2% sent in and

c(3,3,4,4,5) = — 1.

Assume three lots are sent in:

Regions Outcome
{175C,200A} Does not fit.
{114,175C'}, {114,200A}, At most § sent in. One region gives a split and

{175C, 258 A}, {200A4,258A} | d(ug) > 3 and the other gives d(uz) > 3, so ¢(A’) <
c(3,3,3,4,4,4) = —T.

We cannot have four lots sent in as would need to be three of 114, 175C', 200A and 258 A,
but 114 and 258A cross the same edge and 175C and 200A do not fit together.

175B
Compatible regions which do not cross the same edge are as follows: 30, 114, 175C,
2004, 200B, 258 A, 258 B, 258C.

Assume two lots are sent in:
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Regions Outcome

114, 175C, 200A, 258A, Does not fit.

2588, 258C

30, 200B Region gives a (5,1)-split with proper sublabel w™!w
- contradiction.

Clearly we cannot have three lots sent in.

175C
Compatible regions which do not cross the same edge are as follows: 30, 114, 2004,
200B, 2584, 258B, 258C'.

Assume two lots are sent in:

Regions Outcome

200A, 258B, 258C Does not fit.

30, 2008 Region gives a (5,1)-split with proper sublabel w™!w
- contradiction.

114 At most % sent in. Region gives d(us) > 3 and a
(2,3)-split, so c(A) <¢(3,3,3,3,4,4) = —%.

258A Region gives a (4,5)-split with proper sublabel w™!w
- contradiction.

Clearly we cannot have three lots sent in.

200B
Compatible regions which do not cross the same edge are as follows: 31, 42, 71, 74, 80,
114, 121, 159, 200A, 258 A, 2588, 258C, 279.

Assume two lots are sent in and note that d(ug) = 5:

Regions Outcome

31, 42, 71, 74, 80, 121, 159, | Does not fit.

2004, 258C

114, 258 A At most g—g sent in. Region gives d(u4) > 3 and a split,
so ¢(A") <¢(3,3,3,3,4,5) = —g’—g.

258B At most Z& sent in. Region gives d(us) > 3. If d(us) =
5 then ¢(3,3,3,5,5) = —% and % is sent in. If d(us) =
4, there is a (4,5)-split and ¢(3,3,3,3,4,5) = —g’—g.
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279 Region gives a (5,1)-split with proper sublabel ww™!

- contradiction.

If three lots are sent in must be with 258 B and either 114 or 258A as 114 and 258 A
cross the same edge. Then d(uz) =5, d(us) > 4, d(uyg) > 4 and there is a (2, 3)-split or
a (4,5)-split from 114 or 258 A respectively, so ¢(3,3,3,4,4,5) = —3?” and 2% is sent in.

200A
Compatible regions which do not cross the same edge are as follows: 30, 31, 42, 71, 80,
114, 121, 159, 258A, 279.

Assume two lots are sent in:

Regions Outcome

30, 279 Does not fit.

31,42, 71, 80, 121, 159 Region gives a (1,2)-split with proper sublabel w™!w
- contradiction.

114, 258 A At most T sent in. Region gives d(u4) > 3 and a split,
so ¢(A") <¢(3,3,3,3,4,4) = —%.

Three lots cannot be sent in as 144 and 258A cross the same edge.

258A
Compatible regions which do not cross the same edge are as follows: 30, 31, 42, 71, 74,
80, 121, 159, 258 B, 258C, 279.

Assume two lots are sent in and note that d(us) = 4 and (4,5) splits:

Regions Outcome

31, 42, 71, 80, 121, 159, Does not fit.

9258C, 279

30 At most § sent in. Region gives a (5,1)-split and
d(ug) >3 s0 ¢(A') < ¢(3,3,3,3,3,4,4) = -2

74 At most § sent in. Region gives a (1,2)-split and
d(us) > 3 s0 ¢(A) < ¢(3,3,3,3,3,4,4) = — 2.

258B At most % sent in. Region gives d(us) > 3 so ¢(A') <
c(3,3,3,3,4,4) = —T.
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Three lots cannot be sent in as 74 and 258 B cross (5,1) and 30 splits (5,1).

258 B and 258C
Compatible regions which do not cross the same edge are as follows: 30, 31, 42, 71, 80,
114, 121, 159, 279.

Assume two lots are sent in:

Regions Outcome

30, 279 Does not fit.

31, 42, 71, 80, 159 Region gives a (1,2)-split with proper sublabel w™!w
- contradiction.

114 At most 5 sent in. Can only be 258 B as 258C requires
279 and 114 and 279 are not compatible. Region gives
d(ug) > 3 and a (2,3)-split, so ¢(3,3,3,3,4,4) = —%.

Clearly we cannot have three lots sent in.

Group III

79 | 32, 177, 210, 259
210 | 32, 79, 112, 117, 148, 172, 177, 189, 259
259 | 32, 79, 112, 117, 148, 172, 177, 189, 210

This group brings about exception (i) that the equalities Iy =13 + 13 and lo+ 14+ 15 =0
do not hold, and by symmetry (ii), in Case (3) of Theorem 1.12. The exception given
allows us to disregard regions 210 and 259, whose labels are [(v1) = 312, I(ve) = 321,
I(v3) = 231, I(v4) = 543w, l(vs) = 254 and I(vy) = 312, l(ve) = 321, I(v3) = 231,
l(vg) = 542, l(vs) = 154w respectively. The exception also rules out region 79, although

this is not one of the regions which causes the problem, which we describe next.

If we were to allow the mentioned equalities and therefore the regions 210 and 259, it is

possible to end up with the following situation.
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3 11

4\‘)5 ) 45

v %

45 45’5 s
2 2 2

3 jl 3 \*l 3 jl

5 5

Figure 2.64: 210 and 259 together

All regions in this figure other than 210 and 259 have degree —¢ and, again, we have

not been able to compensate for the positive regions. Therefore the restriction on the
l;’s is required.

This completes the proof of Lemma 1.17 in this case, with the mentioned exceptions.
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Chapter 3

Theorem 1.12 cases (I) 4 and (II)

This chapter shall be concerned with the proof of Lemma 1.17 for the cases (I)(4) and
(IT) in Theorem 1.12. We will concentrate on (I)(4) first of all, that is, the cases for
which 7(¢) is of the form (B1)-(B6).

As in the previous chapter, we need to locate regions of positive curvature and distribute
this curvature to one or more nearby regions which are able to compensate for this
curvature. We will see that this is done in a similar way to the previous chapter, apart

from the cases B4(b) and B5(b), which require a slightly different approach.

We have the added complication for the B cases that we have the potential for v and w
to be subwords of each other. We assume that they are not equal to each other or to the
other’s inverse or we are back to the A cases. However, added complications arise when
v or w is a proper subword of the other, or a proper subword of the other’s inverse. For
now, we assume this is not the case and we will see in Section 3.3 why this situation

causes further complication and in which particular situations we get a problem.

The same result as in Lemma 2.2 from the previous chapter, for regions of the type
shown in Figure 2.2, follows to this chapter. This, along with the assumption that no v
or w is a proper subword of the other, means that for now we need only consider positive

regions whose vertices are either w-vertices (which here can have label w or v) or v;.
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3.1 Case 4

For each case, we will display the possible labellings of A, an interior region of positive
curvature, and check if there are any which do not give a contradiction and therefore
give us a region of positive curvature. As before, we allow the degree of at most one of

the v; to exceed 3, and this degree must then be 4 or 5.

Unlike the A cases, there are much fewer possible labellings and so the work may be
done by hand instead of using a computer. Much of the work in this section is the same

as in the original case of Theorem 1.9, which can be viewed in [9].

3.1.1  r(t) = wthwtwtBvthots (Bl(a))

Let 7(¢) be of the form Bl(a) and so 7(t) = wthwt2wtBvtlits.

Figure 3.1: All possible labellings for B1l(a)

If d(vy) = 3, I(vy4) = 543.

If d(vs) = 3, l(v3) € {134,234}

If d(vs) = 3, l(vs) € {451,452}.

So d(vg) = d(v3) = 3 gives a contradiction and d(vs) = d(vs) = 3 gives a contradiction
and so, as there can only be one vertex of degree > 3, d(vq) > 3 and d(v;) = 3, Vi # 4.
Let I(vs) = 451. Then [(v3) = 234, l(ve) = 121, which leaves us with [(v1) = 215 which
gives a contradiction.

Let I(vs) = 452. Then I(v3) = 134 and I(v2) € {125,325}, both of which give a contra-

diction.

There are no regions of positive curvature in this case.
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3.1.2  r(t) = wthwtwtBotio=1ts (B1(b))

Let 7(t) be of the form B1(b) and so 7(t) = wt wt2wtBvtte= s

Figure 3.2: All possible labellings for B1(b)

In this case d(vq) > 3, d(v;) = 3, Vi # 4.

Let I(vs) = 351. Then I(v3) = 135, I(v2) = 125, leaving [(v1) = 215 which is a contra-
diction.

Let I(vs) = 352. The I(v3) = 235, I(vy) = 121, leaving I(v1) = 315 which is a contradic-

tion.

There are no regions of positive curvature in this case.

3.1.3 r(t) = wthwtzw vt (B2(a))

Let 7(t) be of the form B2(a) and so 7(t) = wthwt2w ™ tBotlptls.

Figure 3.3: All possible labellings for B2(a)
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Let d(v;) = 3, Vi.
Then I(v3) = l(v4) = l(v5) = 534, I(vy) = 221, forcing I(v1) = 213, contradiction.

Let d(v1) > 3, d(v;) = 3, Vi # 1.
Then I(v3) = l(v4) = l(vs) = 534, I(v2) = 221. Send curvature as shown in (a) of
Diagram 3.4 below.

Let d(ve) > 3, d(v;) = 3, Vi # 2.
Then [(v3) = l(v4) = I(vs) = 534, I(v1) € {213,215}
If [(v1) = 213 then send curvature as shown in (b) of Diagram 3.4 below.

If I(v1) = 215 then send curvature as shown in (c) of Diagram 3.4 below.

Let d(vs) > 3, d(v;) = 3, Vi # 3.
Then I(vs) = l(vs) = 534, I(v1) = 215, I(v2) = 122. Send curvature as shown in (d) of
Diagram 3.4 below.

Let d(vq) > 3, d(v;) = 3, Vi # 4.

Then [(vs) € {451,453}.

If [(vs) = 451 then I(vy) = 213, I(vy) = 221, forcing I(v3) = 534, contradiction.
If I(vs) = 453 then I(v3) = 534, [(vy) = 221, I(v1) = 213, contradiction.

Let d(vs) > 3, d(v;) = 3, Vi # 5.
Then I(vs) = l(v4) = 534, l(vy) = 122, I(v1) = 132: send curvature as shown in (e) of
Diagram 3.4 below.

In the diagram we have the following:

(a) Curvature sent across the (2,3)-edge, d(us) > 3, (1,2)-split.
(b) Curvature sent across the (2,3)-edge, d(uz) > 3, (3,4)-split.
(c) Curvature sent across the (5,1)-edge, d(ui) > 3, (4, 5)-split.
(d) Curvature sent across the (1,2)-edge, d(ui) > 3, (2, 3)-split.

(e) Curvature sent across the (1,2)-edge, d(u1) > 3, (2, 3)-split.

In each case, if there is only one sending of curvature to any of the A’, then F is sent in

and ¢(A) <¢(3,3,3,3,3,4) = —§.

If two lots of curvature is sent in to any of the A’) it must be from case (¢) plus one of

the others as (d) and (e) both split (2,3). In case (c), I(vy) = 215, which contradict the
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labels in (a), (b) and (e), so the only possibility is (c) with (d). At most % is being sent in
and we get a (2, 3)-split, a (4,5)-split and d(u1) > 3 so ¢(A") < ¢(3,3,3,3,3,3,4) = -7,

which is more than enough to compensate.

Figure 3.4: Curvature distribution in B2(a)

3.1.4  7(t) = wthwtzw vty (B2(b))

Let 7(t) be of the form B2(b) and so r(t) = wt wtl2w B ytly=1¢ls.

Figure 3.5: All possible labellings for B2(b)
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In this case d(vs) > 3, d(v;) = 3, Vi # 4.
l(vs) € {351,353}, I(vs) € {535,135}. Any choice for I(vs) and I(v3) gives a contradic-

tion.

There are no regions of positive curvature in this case.

3.1.5 7(t) = wthw HtwtButlot’s (B3(a))

Let 7(t) be of the form B3(a) and so 7(t) = wthw ™ Ht2wtBotlpt!s.

Figure 3.6: All possible labellings for B3(a)

If d(vy) = 3, I(v4) = 543.

If d(vs) = 3, I(v3) € {134,134}

If d(vs) = 3, I(vs) € {452,452}

So d(vs4) = d(v3) = 3 gives a contradiction and d(vs) = d(vs) = 3 gives a contradiction
and so, as there can only be one vertex of degree > 3, we must have d(vy) > 3. Therefore,
d(v;) =3, Vi # 4.

Let I(vs) = 452. Then I(v1) = 113, I(v2) = 225, I(v3) = 134. l(v1) and l(v3) = —l4 =

3ly. l(vg) and l(vs) = g = 3ly = I3 = —l3, which is a contradiction.
Let I(vs) = 452. Then I(vy) = 311, I(v2) = 522, I(v3) = 134. I(v1) and l(v3) = 4 =
3ly. l(vg) and l(vs) = Iy = —3ly = I3 = —ly, which is a contradiction.

There are no regions of positive curvature in this case.
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3.1.6 7(t) = wthw trwtButliy=1ts (B3(b))

Let 7(t) be of the form B3(b) and so r(t) = wtw™ tRwtB oty =1t

Figure 3.7: All possible labellings for B3(b)

In this case d(vq) > 3, d(v;) = 3, Vi # 4.
I(vs) € {352,352}, I(vs) € {135,135}. Any choice for I(vs) and I(v3) gives a contradic-

tion.

There are no regions of positive curvature in this case.

3.1.7 r(t) = wthwtzvtbwtiivt’s (B4(a))

Let 7(t) be of the form B4(a) and so 7(t) = wthwt2vtBwtlvts.

4 3
W
w 5 5
3 w 1 N 4
1 w w 1
5 2
3 A 4
\

v v v
2 32 /Wg 3 {5
Jél w 5}\\

W
R

Figure 3.8: All possible labellings for B4(a)
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If d(v3) = d(vs) = 3, l(v3) € {355,351}, I(vs) € {351,353}, which gives a contradiction,
so one of the degrees must be > 3.
If d(vy) = d(vg) = 3, l(ve) € {124,424}, I(vy) € {142,242}, which gives a contradiction,
so one of the degrees must be > 3.

But there can be at most one vertex of degree > 3 so this gives a contradiction.

There are no regions of positive curvature in this case.

3.1.8 r(t) = wthwtvtBw vt (B5(a))

Let 7(t) be of the form B5(a) and so 7(t) = wthwt2vtlw = aptls.

w
>

Figure 3.9: All possible labellings for B5(a)

Let d(v3) = d(vs) = 3. Then l(v3) = l(vs) = 351. If d(v4) = 3, I(vq) = 542, if d(vy) = 3,
l(v1) € {215,214} and if d(ve) = 3, l(ve) € {124,324}. So d(v4) = d(vy) = 3 and
d(v4) = d(v2) = 3 both give a contradiction so either d(vs) > 3, d(v3) > 3 or d(vs) > 3.
Let d(vq) > 3, d(v;) = 3, Vi # 4.

Then [(v1) = 214 or would contradict I(v3) = I(vs) = 351, so I(ve) = 324, contradiction.
Let d(vs) > 3, d(v;) = 3, Vi # 3.

Then I(vy) = I(vy) = 241, I(v1) € {215,315} so it must be 315 or we get a contradiction.
But then /(vs) = 354, contradiction.

Let d(vs) > 3, d(v;) = 3, Vi # 5.

l(vy) = l(vyg) = 241, I(v3) = 532 and I(v1) € {215,315}, both of which give a contradic-

tion.

There are no regions of positive curvature in this case.
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3.1.9 r(t) = wthw Htutbwtivt’s (B6(a))

Let 7(t) be of the form B6(a) and so r(t) = wthw ™ t2utBwtHvts.

w
>

Figure 3.10: All possible labellings for B6(a)

If d(vs) = d(vs) = 3, l(v3) € {355,352}, I(vs) € {352,353}, which gives a contradiction,
so one of the degrees must be > 3.
If d(ve) = d(vg) = 3, l(v2) € {524,324}, I(vy) € {142,142}, which gives a contradiction,
so one of the degrees must be > 3.

But there can be at most one vertex of degree > 3 so this gives a contradiction.

There are no regions of positive curvature in this case.

3.1.10 r(t) = wthw Hrotbwtiv=1ts (B6(b))

Let 7(t) be of the form B6(b) and so 7(t) = wtl w ™ tlzvtlswtliy=1¢s,

4 4
w 1601 ¥
3 w 1 w 3
2 W w 5
5 2
2 A 5
v
\"
v \Y
4 w
3 N
Jil\éjs
w
(A

Figure 3.11: All possible labellings for B6(b)
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If d(v3) = d(vg) = 3, l(v3) € {435,432}, I(vy) € {143,143}, which gives a contradiction,
so one of the degrees must be > 3.
If d(vy) = d(vs) = 3, l(ve) € {525,325}, I(vs) € {252,253}, which gives a contradiction,
so one of the degrees must be > 3.

But there can be at most one vertex of degree > 3 so this gives a contradiction.
There are no regions of positive curvature in this case.

We now look at cases B4(b) and B5(b), which were missed out previously due to them

being more difficult cases.

3.1.11  r(t) = wthwtvtbwtlrv=1ts (B4(b))

For this case, 7(t) is of the form B4(b) and so 7(t) = wttwt2vtBwtl sy~ We shall
examine the possible labellings of a region with positive curvature and see that the

situation becomes more difficult when {1 = Iy + 5 = I3 + 4.

4 3
w

w25
3w1W4
1 w1
5 2
2 A 5
v v
v v

4 W
3 £
Jil\éjs

W
I

Figure 3.12: All possible labellings for B4(b)

If d(vs) = 3, I(vs) € {435,431}.

If d(vy) = 3, l(vg) € {143,243}

We cannot have [(v3) = [(v4) = 431 so we must have d(v3) > 3 or d(vy) > 3.
Then I(vs) € {251,253}, I(va) € {125,425} so l(ve) = I(vs) = 251 = I(vy).

There are 4 possibilities for regions of positive curvature.

1: I(vy) = 215, I(vg) = 125, I(v3) = 431w, I(vg) = 243, I(v5) = 251.
2: l(vy) = 215, l(ve) = 125, l(v3) = 435, I(vg) = 143w, I(vs) = 251.
3: 1(vy) = 215, I(ve) = 125, I(v3) = 435w, I(vg) = 143, I(v5) = 251.
4: U(vy) = 215, I(vy) = 125, I(vs) = 431, I(vy) = 243w, I(v5) = 251.
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The way in which curvature can be distributed for 1 and 2 is as follows.

Figure 3.13: no. 1 Figure 3.14: no. 2

The labels for these two regions cannot appear together and so A’ cannot receive cur-
vature from both 1 and 2 at the same time. Regions 1 and 2 can also not appear with

regions 3 and 4. Therefore Lemma 1.17 holds for these cases.

Now we consider regions 3 and 4 and we may obtain the following diagram which, like
in the previous section, shows that the positive curvature cannot be compensated for in

the usual way.

5| 2
314 . 3~
2 |5 2 1.5
47(3 4N\3 47(3

4,03 A 4C{3
27’5 T 25
314 34

572

Figure 3.15: 3 and 4 together
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All regions in this diagram other than 3 and 4 have degree —% and so there are not

enough sufficiently negative regions to compensate for the positive regions. Therefore,
restrictions on the [; seem to be required as in the previous section. However, for this
particular situation we are able to use a different method so that restrictions on the I;

are not required. We deal with this situation in Section 3.2.

3.1.12  r(t) = wthwtotBw =y~ (B5(b))

For this case, r(t) is of the form B5(b) and so r(t) = wth wt2vt!3w =ty =15 We shall
examine the possible labellings of a region with positive curvature and see that, similar

to case B4(b), the situation becomes more difficult when I} = Iy + 15 and [; + I3+ 14 = 0.

Figure 3.16: All possible labellings for B5(b)

If d(vs) = 3, I(vs) € {431,432}

If d(vy) = 3, I(vg) € {543,143},

We cannot have [(v3) = I(v4) = 431 so we must have d(vs) > 3 or d(vy) > 3.
Then [(vs) € {251,254}, I(vs) € {125,325} so I(vs) = I(v2) = 251 = I(v1).

There are 4 possibilities for regions of positive curvature.

1: I(vy) = 215, I(vg) = 125, I(v3) = 431w, I(vg) = 543, I(vs) = 251.
2: l(v1) = 215, l(ve) = 125, l(v3) = 432, I(vg) = 143w, I(vs) = 251.
3: l(vy) = 215, l(ve) = 125, l(v3) = 432w, I(vy) = 143, I(v5) = 251.
4: I(vy) = 215, I(vy) = 125, I(vs) = 431, I(vy4) = 543w, I(vs) = 251.

The way in which curvature can be distributed for 1 and 2 is as follows.
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Figure 3.17: no. 1 Figure 3.18: no. 2

The labels for these two regions cannot appear together and so A’ cannot receive cur-
vature from both 1 and 2 at the same time. Regions 1 and 2 can also not appear with

regions 3 and 4. Therefore Lemma 1.17 holds for these cases.

Now we consider regions 3 and 4 and we may obtain the following picture which, like
in the previous section, shows that the positive curvature cannot be compensated for in

the usual way.

[

5
7 ) A
25 20185
3~a A 3~

35 Sen? 3
24 : 295
3

4 34

Figure 3.19: 3 and 4 together

Again, for this particular situation we are able to use a different method to prevent the
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restrictions being required and we deal with this in the next section.

3.2 Difficult cases for B4(b) and B5(b)

The two diagrams obtained in the previous section have the same structure as those
that bring about the second two restrictions in Case (2) and the restrictions in Case
(3). Therefore, it seems likely that we would require the same restrictions for these
cases. However, using a new technique we are able to remove these restrictions and

prove Lemma 1.17 for these situations also.

3.2.1 Case B4(b)

Let 7(t) = wth wt2vtBwtto™ 15 and assume that I} = Iy + 5 = I3 + l4.
The problems are brought about by the situation occurring in Figure 3.15. If we return
to examine this diagram, we see that if we remove all edges in the diagram with corner

labels 43 at one end and 25 at the other, then we obtain strips.
5 4 /§
1 — 1 1
ST o <

Figure 3.20: Removing edges

Lemma 3.1. The boundaries of the strips obtained in the diagram are connected, i.e.

the strips do not form an annulus.

Proof. Assume by way of contradiction that these strips form an annulus. If we then
deleted the two strips alternating regions 3 and 4, then we could rejoin the diagram as
follows. Shift the bottom layer to the right so that it joins up with the top layer to create
vertices with labels 1(25). But this creates a diagram with fewer regions than before.
However, we assumed that our original diagram was minimal with respect to the number

of regions, and so we obtain a contradiction. [J

Note that this lemma is required as the resulting diagram must be connected for Lemma

1.16 to hold.

It is the important to know what labellings may occur at each end of the strips to see

7
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whether or not our Lemma 1.17 now holds. We explain more precisely the method we

are now using.

We begin with the amended diagram as described in Section 1.3. We now remove any
vertex sublabel 43 or 25 and replace them with new labels (43) and (25). We also remove
the corresponding edge, so that the new labels (43) and (25) each add one to the degree
of the vertex. So an old vertex 431 of degree 3 would now become (43)1, which is a

vertex of degree 2.

o :
}f 3 -
Figure 3.21: Amending vertices

We may assume from now on that we do not have the sublabels 43, 34, 25 or 52 anywhere

in the diagram. We look for potential positive regions under all these conditions.

Assume there are no splits in A and observe Figure 3.12, which shows the same possible
corner labels either side of the two ws, as the new labels begin and end with a w.
Therefore, because only a v may match up with another v, vy has sublabel 25, vs has
sublabel 43, v4 has sublabel 43 and vs has sublabel 25. However, none of these sublabels
are allowed and so we must have at least two splits, along the (2, 3)-edge and the (4,5)-
edge of A. The only original v; whose degree could potentially be 2 is v; and so A
has degree at least 6. Therefore, A is not positive and we have no regions of positive

curvature in this case.

YIS I &9/

5 1 » 1 @ 12

v(}v A v{}v

4 = w %,

Figure 3.22: Typical region for B4(b)
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3.2.2 Case B5(b)

Let r(t) = wth wt2vtBw =y~ 15 and assume that I} = Iy + 15 and I; + 13 + 14 = 0. As
in Subsection 3.2.1, we allow the new labels (43), (25), (43), (25) and we no longer allow
the sublabels 43, 25, 34, 52.

By the same argument as in Subsection 3.2.1, there are no regions of positive curvature

in this case.

3.3 Subword problems

The results obtained so far are with us assuming that v and w are not subwords of each
other. Before we explain the problems that may arise when dealing with the case when

they are subwords, we will recall exactly what is meant by a subword.

We define a subword of the word w = g1t gy ... gs—1t""1gs where g; € G\ {1}, m; €
Z\ {0}, s > 1 to be a word of the form gxt"™* gpi1 ... gkrr—1t"*+"1gr1, where k €
{1,...,s} and r € {0,...,s — k}. A subword is an initial subword if k = 1, an end
subword if r = s — k and a proper subword if (k,r) # (1,s — k).

So for example, if in the above word we have g1 = ¢'g”, ¢',¢” € G then g; is a subword
but ¢’ and ¢” are not subwords. So a subword must begin either at the start of the
original word or right after one of the ¢’s and must end either at the end of the word or

just before one of the ¢’s.

Note that when we talk about v or w being a subword of the other, we are also talking

1 1

about the situation where v~ is a subword of w or w™" is a subword of v.

The reason why v and w being subwords of each other causes difficulties is as follows.
In the diagrams, we match up the v’s and w’s to look at all potential labellings. So
for example, if w runs along the (5,1)-edge and the (1,2)-edge then 51 is a potential
sublabel for vs and 21 is a potential sublabel for v; and we have so far assumed that
this is the only type of label possible. However, if w is a sublabel of v then we may also

obtain the following situations.
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Figure 3.23: A possible example for when w is a subword of v

In this diagram we let v = g1t g2 ... gs—1t""*1gs and let w be a subword of the following

form.

(a) v=wt™giy1...gs—1t"""gs,
(b) v=g1t™gy...gt"wW"F NG L Gs—1 g,

(¢) v=git"™gs...gt"™Mw.

This demonstrates that when w is a subword of v, and similarly when v is a subword of

w, there are many more possible labellings.

Theorem 1.12 states that we will not allow v or w to be a proper initial or end subwords
of each other, which are the situations displayed in Diagram 3.23(a) and Diagram 3.23(c)
respectively. Before explaining why these two situations cause such a problem, we will
first show that allowing the situation in Diagram 3.23(b) does not cause us any further

problems and therefore that Lemma 3.2 holds.

Lemma 3.2. If we allow subwords of the form (b) above only, then Lemma 1.17 still
holds.

Proof. In this case, the region on the other side of the positive region, call it A’ as usual
(i.e. the region containing the labels m; and m;,,) has degree at least 7 as we must also
have vertices labelled with the I3 up to l5. These m; vertices give us a new kind of split,
which we refer to as a t-split.

Now, every time we have such an edge, let us send curvature across this edge. We now
have every way of sending curvature in all cases of the theorem and we need to check
that curvature is still compensated for.

Assume that at step n all ¢-splits have marked degree 2 and that ¢*(A’,n) < 0. Then

one sending in the way just described allows us to mark two ¢-splits with marked degree
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3 and any further allows us to mark at least one more ¢-split with marked degree 3. This
is equivalent to each sending allowing us to mark at least one vertex with marked degree
at least 3, and distributing at most § of curvature to A’. Therefore, as % —k+ % =0,
after k sendings of curvature in this new way at step n+ 1, ¢*(A’,n+1) < 0 by Lemma
1.20. Therefore, curvature is still able to be compensated for when allowing v or w to
be a middle subword of the other. O

The same result as in Lemma 3.2 is not true for when v or w is an initial or end subword
of the other. In these cases, if we look back at Diagram 3.23(a) and Diagram 3.23(c), we
see that the degree of the region containing m; could be 6 and therefore we could get the
case that % is being sent in and ¢(A’) < ¢(3,3,3,3,3,4) = —% or § is being sent in and
c(A) <¢(3,3,3,3,3,3) = 0. In these cases, curvature is not obviously compensated for
by A’ and it would need to be checked for every possible case. There are so many more
cases if this occurs that it is not done here and we therefore assume that we cannot have

v or w as an initial or end subword of the other.

3.4 Case (II)

This case states that if at least one of the w;’s within r(t) = wit wat2wstBw,ttwst!s
is not equal to plus or minus any other w; and the mentioned conditions hold, then r(t)

has a solution over G.
Let w; be such a word for a particular i.

Let us first assume that w; is not a subword of any other w;. Given the fact that the
w-vertices must have degree 2 in order for a region to have positive curvature, such a
region must have a w-vertex corresponding to w; with the same w; on the other side as
this is the only possible matching. But this contradicts Lemma 1.15(i) so no such region

of positive curvature exists.

Let w; be a middle subword of w; as described in Section 3.3 for some j. Then the region
containing the w; is of degree at least 7 and so we can send any positive curvature into

this region by the same argument as that stated in Lemma 3.2.

If w; were an initial or end subword then the corresponding region could be degree 6
and the same problems as mentioned in Subsection 3.3 could occur. By (***), we do not

allow this situation to occur. Therefore, we have proved Lemma 1.17 for this case also.
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Proof of Theorem 1.12

Let D be the tessellation of the 2-sphere as described in Chapter 1. Then ¢(D) = 47 by
Lemma 1.16. After making all the described curvature distributions from interior regions
A with ¢(A) > 0, ¢(D) < 3c¢*(A’) where the sum is taken over all interior regions of D
such that ¢*(A’) > ¢(A’), and over all boundary regions of D. Now, Lemma 1.17 implies
that ¢(D) < 3c¢*(A’) where the sum is taken over all boundary regions A’ of D only.

It is now necessary to prove that the equality ¢(D) = 47 is not obtainable, which yields

a contradiction.

For now we look at the case k = 5 only, where k£ is the free-product length of the equation

as mentioned in Theorem 1.12.

4.1 Maximum curvature sent to a boundary region

We need to consider how much curvature may be sent into a boundary region. If we
consider the crossings mentioned in Section 2.1 and in Section 3.3 involving t-powers

other than the [;, we see that the total amount is unbounded.

Let us recall what happens to the curvature of a region when such crossings take place.

Recall that ¢*(A’) = (2 — m)m + 2772?11% + p, where p is any curvature being sent in.

The first type of crossing, mentioned in 2.1, sends ¢ and the second type of crossing,
mentioned in 3.3, sends § so at most % is sent across each time and each such crossing

increases the degree of the region by at least 1. As % -1+ % = 0, these sorts of crossings

either have no effect or decrease the total curvature of the region they are being sent to
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by Lemma 1.20. Therefore we may disregard these types of crossings.

Recall that vy is the distinguished vertex and let d(vg) = ko. A boundary region must

contain this vertex plus the five ¢t-vertices vy, ... vs.

Curvature can be sent across each of the four edges not adjacent to vg, as it must be
sent from an interior region, and curvature may be also sent across at most two of the

five v;.

Note that we may in fact assume that curvature is sent across at most one of the v;.
This is because, if there were two sending across the v;, they would be the sendings for
A2 regions 43 and 232 as described in Section 2.3, Group I. These two crossings send in
% + & but cause two splits and these splits each prohibit crossings of §. Therefore the

curvature sendings would not be maximal if we assumed two sending across the v;.

Whenever % is sent in we get two splits and so we may assume that § is sent in from

each of the four edges in order to maximize potential curvature. Whenever & is sent
across a vertex we get a split so, again to maximise curvature sent in, we assume at most
15 1s sent in across one of the vertices, which happens in Section 2.4 without causing a

split.

Therefore, without any loss we can assume that the most is being sent in to a boundary

region is %” + 15 = %TW'

4.2 Checking total curvature

Suppose kg = 1: a single boundary region, denoted A.

Since any region contains at least five t-vertices of degree at least 3, it follows that
A _ _ 4

c(A) < c(ko,3,3,3,3,3) = ¢(1,3,3,3,3,3) = 7.

At most ?jT’T can be sent in to any one boundary region so ¢*(A) < 47” + ?ﬂf = 215—2” < 4,

and so ¢(D) < 4.

Suppose kg = 2: at most two boundary regions.

c(A) <¢(2,3,3,3,3,3) = 5.
o(D) <2(5+3) =81 <4r.

Suppose kg > 3:

Let A be a boundary region of degree n > 6. Suppose ny of the vertices coincide with
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9.
* / 3T
C(A) § C(ko, .,k0,3 ,3)+Z
[ 2n;  2(n—mny) 3
= 92— It S e ¥/ W
7r_( ) + T + 3 +7
_ 7r—£+2(n1—2) 11 n+2m
| ko ko 4 3
< ﬂ_—i 2(711—2) E_n+2n1
- | ko 3 4 3
N i
B ke 12 3 ko

So ¢(D) < ko (;i—g) = 4r.

Therefore ¢(D) < 4x for all values of kg, which gives a contradiction and so completes

the proof of Theorem 1.12.

Remark
If £ > 6, there are no regions of positive curvature and so Lemma 1.17 is seen to hold
straight away. An argument similar to the above tells us that the total curvature of 47

cannot be obtained, which proves Theorem 1.10.
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Introduction — Cyclically presented

groups

5.1 Irreducible cyclic presentations

Let F,, =< xg,...,Tn—1 > be the free group on n elements and let 6 : F,, — F}, be the

automorphism for which ;0 = x;11, where subscripts are taken mod n.

Let w € F}, be a cyclically reduced word. Define G, (w) =< g, ..., Tp_1|w,wb, ... w1 >

Definition 5.1.1. A group G is said to have a cyclic presentation (or to be cyclically

presented) if G = G (w) for some n and some w.

Note that the group Gsp,(zy 1a:ma:0x;b2) is a trivial cyclically presented group for m > 1.
This follows from the fact that each group is isomorphic to a free product of m copies
of the known trivial group Gs(z, 1x1:170x1_2). To avoid this situation where a cyclically
presented group may be decomposed into a free product of cyclically presented groups

on fewer generators, we introduce the notion of irreducibility.

Definition 5.1.2. G, (w) is defined to be irreducible if n = 1 orn > 1 and the following

two conditions are satisfied:

(1) w involves at least two of the x;.

(2) If w involves only x;, ... x;, where ij <ij11, 1 <j<k—1, and where k > 2, then

k

gcd(ig — il,. .. ,ik — ik_l,n) =1.
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From now on we assume that any cyclic presentation we refer to is irreducible.

The above automorphism 6 induces an automorphism of G, (w) and we obtain the fol-

lowing split extension of G, (w) by the cyclic group of order n.

Hy(w) =<zt | t" w(z,t) >,

where w(z,t) is in the normal closure of = and ¢" in the free group on = and ¢ [19]. It
can also be verified that any group with such a presentation is a split extension of some

cyclically presented group G, (w).

Note that w(z,t) is obtained from w by the rewrite z; — t~‘xt’. So, for example, if

w = xor3ry w3 then w(z,t) = x(t 3xt3) (¢t~ a1t (t32t?) = at Swt~ o at?.

We refer to G, (w) as the cyclically presented group associated with w(z,t) where w(z,t)

is as above.

We denote by l(w(x,t)) the length of w(x,t) regarded as a word in the free group on x
and ¢.

5.2 Motivation and results

The following theorem was proved in [5].

Theorem 5.2.1. Let w(z,t) be a cyclically reduced element in the normal closure of
and t" in the free group on x and t. If 6 < n < 10, l(w(x,t)) < 15 and the cyclically

presented group Gp(w) associated with w(z,t) is irreducible then G, (w) is non-trivial.

This theorem was then extended in [2| up to n = 100.

The aim is to extend the experiment which looks for examples of trivial cyclically pre-
sented groups under certain parameters by looking at when cyclically presented groups

are finite.

The experiment looks at cyclically presented groups associated with w(z, t) when l(w(z,t)) <

15 and n > 4.

Definition 5.2.2. By a family, we mean G, (w) where w is fized and n takes infinitely

many values.
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Definition 5.2.3. The word wy(z,t) is equivalent to wo(x,t) if and only if wi(x,t) can

be obtained from wy(x,t) by a sequence of the following moves.

(1) Cyclic permutation,

(2) Inversion,

3) ¢ — o,

Wt — .

For a particular n, wi(z,t) is n-equivalent to wy(x,t) if and only if wi(xz,t) can be
obtained from wa(x,t) by a sequence of any of the above or the following moves.

(5) Replace t* by t*2 where k1 = ko mod n,

(5) Multiply the powers of t by m where (m,n) = 1.

We obtain the following result, which is motivated by Theorem 5.2.1.
Theorem 5.2.4. Let w(xz,t) be a cyclically reduced element in the normal closure of
x and t" in the free group on x and t. Let 6 < n < 50, l[(w(z,t)) < 10 and assume
the cyclically presented group G, (w) associated with each w(x,t) is irreducible and that
w involves at least three of the x;s. Assume w(x,t) is not n-equivalent to one of the
following:
(i) x= "t et teta®t for n = 11,13,17,19,21, 23,25, 29,31, 33, 37,41, 43,47 or 49
(ii) x= " e~ e 2tat forn =7,
(iii) x~ " 3xte=2 forn =9,
(iv) x 1t 3xtat? forn = 9.
Then Gy (w) is finite if and only if, up to n-equivalence, the associated w(x,t) is one of
the following:
(i) x= 1227 ta= for n # 0 mod 3,
(ii) x= 422" ta=2t for n odd,
(iii) v~ e~ et for n odd,
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(iv) x= 1t 3z~ e~ =t for n odd,
(v) z= 't 2xtat= xt? for n odd,
(vi) =% 2zttt forn =7,

(vii) x= 't 22 2te= 1t for n = 6,

(viii) z= 't 32"tz 2 forn =6 and 9,
(iz) 21t 3z~ txt? for n = 6 and 6,
(z) x= 1 3xtz= 12 for n =6,

(wi) 2t 3xtat? for n =6,
(wii) 2t 22 2te=2t for n = 6,
(wiii) z~ 1t et ata®t forn =7,

(wiv) x4t 3wtz a1t for n = 6.

Remarks

1. Although we are running the experiment for n > 4, Theorem 5.2.4 is for n >

6. There are many words for which we have not been able to determine if the

corresponding groups are finite or infinite for n = 4 and n = 5. There are precisely

20 such words when [ < 10.

2. We used the restriction that w involves at least three of the x;s as we already know

otherwise that, if the group is finite, it must be cyclic [25], and we are interested

in finding non-cyclic finite groups.

3. The words (4i) and (iv) in the first list in Theorem 5.2.4 are mentioned in [27] as

groups for which it is open to determine whether or not they are finite.

Proposition 5.2.5. For each fived k > 3, the groups Gy (xq . .. xp_1) are families of finite

cyclically presented groups. In fact, Gy (xq ... xp_1) is finite if and only if ged(n, k) = 1.

The proof of this proposition will appear in Section 8.4.

Corollary 5.2.6. There is no upper bound on the length of w for which a family of finite

cyclically presented groups G, (w) exists.
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A further motivation for performing the described experiment is to look for groups which
are referred to as interesting groups in [19]. A finite group is interesting if it has a
balanced presentation. No examples have yet been found of an interesting group needing
more than three generators. So, while performing this experiment, we have searched for
finite groups of the form < x1,x9,x3, x4 | 71,72,73,74 >, where all four generators are
required. We have, however, been unable to find any such groups and so this supports

the belief that no such groups exist.

89



Chapter 6

Obtaining lists of possible words

6.1 Experiment

We describe the experiment in which we locate all possible irreducible presentations

under certain parameters, and attempt to identify which of the groups are finite.

Note that H,(w) =< z,t | t",w(x,t) > is finite if and only if the associated cyclically
presented group G (w) is finite. In fact, in this case |G, (w)| = |Hp(w)|/n which means

we may study the group Hy(w) in order to find out if Gy, (w) is finite or infinite.

We make the assumptions that w involves at least three of the x;s and that [(w(z,t)) < 15
and n > 4. Initially, we also require n < 15 in order for us to obtain a finite number of

potential groups.

Under these assumptions there are, in theory, 2(3!® — 1) reduced w(z,t) which we are
required to consider. We may make the following restrictions however, in order to allow

our words to be contenders for giving us a finite associated cyclically presented group.

(1) The word w(z,t) must be cyclically reduced.

(2) The exponent sum of ¢ in w(x,t) must be equal to 0 mod n.
(3) We work modulo equivalence.

(4) The exponent sum of z in w(x,t) must not equal 0.

(5) No cyclic permutation of w(x,t) may contain the subwords ¢=* t**! (when n = 2k)
or t=k+1) k41 (when n = 2k + 1).
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(6) The resulting presentation must be irreducible.
(7) The determinant of the relation matrix of the resulting presentation must not equal
0.

(8) The rewritten word w must involve at least 3 of the z;.

Recall that we use the restriction that w involves at least three of the x;s as we already
know otherwise that, if the group is finite, it must be cyclic [25]. Restrictions (1), (3) and
(5) are in place as otherwise, equivalent words will appear more than once. Restrictions
(4) and (7) are in place as otherwise, if they do not hold, the group is known to be

infinite. Restriction (2) must hold as this is true for any w(z,t) obtained from rewriting

w as described in Section 5.1.

A computer program has been produced which lists all possible words under the above
restrictions. To optimise the speed of this program it was further assumed that each

word begins with ~!. This assumption may be made as any word is equivalent to a

word beginning with z=1.

The following table gives the total number of words modulo (1)-(8) above for {

l(w(z,t)) <15 and 4 <n < 15.

\n 4 5 6 7 8 9 10 11 12 13 14 15
<7 3 3 1 3 3 2 3 3 1 3 3
8 5 11 5 8 4 8 5 8 4 5 8
32 34 28 30 30 29 30 30 28 30 30 29
10 45 87 49 72 48 64 50 66 44 66 50 64
11 171 237 239 234 220 215 217 220 209 220 217 215
12 273 585 414 584 357 483 367 484 343 484 367 477
13 | 1148 1648 1710 1787 1712 1608 1575 1604 1520 1604 1578 1571
14 | 1870 4208 3074 4352 2918 3750 2804 3534 2628 3521 2789 3484
11652 11537

15 | 7191 11698 12807 13340 13106 12258 11973 11807 11266 11741

A full list of these words may be viewed in [24].

Definition 6.1.1. Let J(I,n) refer to the set of words w(x,t) in the (I,n)-entry of the

table above.

Note that |J({,n)| =0 for [ < 7.

Lemma 6.1.2. Forl <15, J(l,n) C J(I,13) for n > 13. Moreover, J(l,p) = J(I,13)

when p > 13 is prime.
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Proof. To prove the first part, we need to show that there is no w(z,t) € J(l(w(zx,t)),n),
n > 13 such that w & J(l(w(z,t)),13). This is true if we cannot find a word that fails
the test for n = 13 but passes for some n > 13.

Let us look at the above restrictions. Restrictions (1), (3) and (4) do not depend on n
and so the test cannot fail for n = 13 and pass for n > 13 from any of these. When
n > 13 and [ < 15, the exponent sum of ¢ must be equal to 0 for restriction (2) to hold
and so this restriction does not depend on n at these values. When n > 13 and [ < 15,
7 cannot occur and so restriction (5) always holds for n > 13.

Restriction (8) holding for n = 13 implies it holds for n > 13 also as the same three
or more z; involved when n > 13 will be involved when n = 13. This is because, if w
involves only two of the x; when n = 13, g and xj, say, this is the rewrite of a word
w(t, ) involving t** as the only powers of t. To appear in the list when n = 13, k must
be at most 6 and so this word w(t,z) rewrites to the same word w involving only the
two generators xg and x; when n > 13.

If I <15 and w involves x;,,...,x;, then 13 does not divide o — 41,...,7; — ix—1 SO
restriction (6) always holds at n = 13 and therefore it cannot occur that this restriction
fails for n = 13 and passes for some n > 13.

The only restriction left to look at is restriction (7), which states that the determinant of
the resulting presentation must be non-zero. If we rerun the test without this restriction
then we see J(I,13) remains unchanged. This shows that the determinant test never
fails at n = 13 and so restriction (7) cannot fail for a word at n = 13 and pass for some
n > 13. So there is no word that fails any test for some n = 13 but passes for n > 13
and so the first part of the lemma holds.

To prove that J(I,p) = J(I,13) when p > 13 is prime, we need to show that any word
in J(1,13) is also in J(I,p). The only way this could potentially not be the case is if a
word passes the determinant test for n = 13 and fails for n = p.

Any word w fails the determinant test at p <= det(M) = 0, where M is the relation
matrix <= Ja such that f(a) =0, f associated polynomial, and a? =1 [2].

Assume a # 1. The minimal polynomial for the primitive p* root of unity (i.e. the
polynomial with the smallest degree such that a p® root of unity is a root of the poly-
nomial) has degree p — 1 [26]. Therefore, because the maximum degree of f is 6, a pth
root of unity may not be the root of f when p > 7 and so, in particular, when p > 13.

Therefore the determinant test never fails when n = p > 13 is prime. [J

Remark
For each individual [, there is a particular smallest prime p; such that J(I,n) C J(I,p;)

for n > p;. For [ = 15, we can see from the tables that this prime is 13 and so this prime
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is the value we use in the lemma.

Lemma 6.1.2 tells us that, with the exception of sporadics, which occur at smaller values
of n and shall be discussed in a moment, the words occurring for when n is prime
(n > 13) are all the possible words. Therefore, apart from sporadics, there is a finite set
of potential words for each value [ and out of these, the potentials for each n is a subset

of this set.

We can therefore, for each length [, examine each of the words in this set individually
and see for which values of n, if any, this word produces a finite group. Examining the
words in this way is useful for being systematic as, if we have proved the group associated
with this word is infinite for some n, then the group associated with this word is infinite

for kn where k is any positive integer.

Definition 6.1.3. A sporadic is a word that appears in only finitely many J(l,n). If
[ <15, Lemma 6.1.2 implies w is sporadic iff w & J(I,13).

Remarks

1. A sporadic will appear for small n only.

2. Sporadics exist due to restriction number (2) requiring only that the exponent sum
of t is equal to 0 mod n and they are precisely the words for which n divides the ¢

exponent sum but the exponent sum is non-zero.

3. Sporadics cannot form families but may give us finite groups for specific n.

Sporadics will be discussed in Section 8.5. For now we will put sporadics to one side and
concentrate on the list of words for each length. We see from the above table that the

number of words for each [ is as follows.

Length (78 9 100 1 12 1B u 1
Total number of words | 3 8 30 66 220 484 1604 3521 11741
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Checking for finiteness

7.1 Special cases

Before we begin the computational methods for working out which groups are finite,
which we describe in the next section, we can reduce our number of words in the lists

once again by using existing results on words that are of a certain form.

We describe the different forms we deal with in the remainder of this section and then give
the totals left after these words have been dealt with. It is worth noting that, although
the removal of these special cases before continuing with computational methods is now
seen to be a good way, for lower values of [ we found some of the results for such words

using computational methods instead.

We give an example for each of the special cases and explain how the relevant results
are used. However, there is usually more than one example in each case and details of

these can be found in [24].

7.1.1 Fibonacci groups
Let F}, be defined as a group of the following form.
F,=<xg,...,Tn-1 | ®iziz1 = 242 (0 <i<n—1) >, subscripts taken mod n.

This family of groups is known as the Fibonacci groups and it is known that the only

finite Fibonacci groups are Fi, Fy, F3, Fy, F5 and Fr.
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The length 7 word x~ 1t 22t is equivalent to a word that rewrites to xoazlx;l. But
the group Gn(xoxla;z_l) = F}, and so we know that this word is finite when n = 4,5 and
7 and infinite otherwise. See Section 8.1 for a full list of all finite groups in which this

group appears.

7.1.2 Generalized Fibonacci groups

Let G,,(m, k) be defined by the following presentation.
Gn(m,k) =< xo,...,Tp-1 | TiZitm = Tizx (0 <i<n—1) >, subscripts taken mod n.

Assume that the presentation is irreducible, i.e. that 0 < m < k <n and (n,m,k) = 1.

The following results are taken from [27].
Lemma 7.1.1. 1. If (n,k) =1 then G,(m,k) = H(n,z) where zk =m mod n.

2. If (n,k —m) =1 then Gp(m,k) = H(n, z) where z(k —m) =n —m mod n.

Here, H(n, z) refers to the Gilbert-Howie groups which are studied in [14].

Theorem 7.1.2. Suppose (n, z) # (8,3),(9,3),(9,4),(9,6),(9,7). Then H(n,z) is finite
iof and only if one of the following holds:

1. z=0,1;

2. (n,z) = (2s,s + 1) where s > 1;

3' (n7 Z) = (37 2)7 (47 2)7 (47 3)7 (57 2)7 (57 3)7 (57 4)7 (67 3)7 (67 4)7 (77 4)7 (77 6)7 (87 5)
Remark
The groups H(9,3) and H(9,6) are known to be infinite.

It remains unknown as to whether H(9,4) and H(9,7) are finite or infinite.

The group H(8,3) is finite of order 295,245.

If (n,k) > 1 and (n,k —m) > 1 then the presentation is called strongly irreducible and
Lemma 7.1.1 and therefore Theorem 7.1.2 cannot be used. Instead we have the following

corollary from [27].
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Corollary 7.1.3. Let G = G(m, k) be strongly irreducible and assume G # 1. Then G
is finite if and only if (m,k) =1 and n = 2k or n = 2(k —m), in which case G = Zj

m4n

where s =27 — (—1)72

Now let us look at an example of how the above results can be applied.

The length nine word 2~ ¢ =3z~ xt? rewrites to z; "3 "1 which is equivalent to zoz, 3z, ", .

Therefore, this word gives us the presentation G,(n—3,n—1),i.e. m=n—-3,k=n—1.
As (n,k) = (n,n — 1) = 1, we can use part (i) of Lemma 7.1.1 and we find that z = 3.
This means Gy (m,k) = H(n,3) and the lemma tells us that the group is finite when

n =4,5,6 and 8 and infinite otherwise.

7.1.3 Positive words of length 3
Let I',,(k,1) be defined by the following presentation.
Cn(k,l) =< 21,20 | 2ixippzig =1 (1<i<n) >.

The following two conditions will be used in the results:
(A) k+1=0mod nor 2l —k=0modn or 2k — =0 mod n;
(B) n=0mod 3 and k41 = 0 mod 3.

The following theorem is deduced from [10].

Theorem 7.1.4. Let (n,k,l) = 1. Then Ty (k,l) is finite if and only if one of the
following holds:

(i) k =1 mod n, in which case Ty (k,l) = Zs where s = 2™ — (—1)",
(i) (A) holds and (B) does not, in which case T'y,(k,l) = Zs,

(i11) (A) does not hold, n =0 mod 3, k+1% 0 mod 3 (so (B) does not hold) and n|3k
or n|3l or n|3(l — k), in which case T'y(k,1) = Zs where s = 2" — (—1)".

There is one length nine word of this form which is = '¢=32z~'tz=1¢2. This word is
equivalent to a word that rewrites to xorors and so k = 2 and [ = 3. Case (i) of the
theorem does not hold, case (ii) gives us that the group is finite for n = 4 and n = 5,
and case (iii) gives us that the group is finite for n = 6 and n = 9. The group is infinite

for all other values of n.

96



CHAPTER 7: CHECKING FOR FINITENESS

7.1.4 Positive words of length 4

Consider the following presentation.

Gn(J, ki, 1) =<1, Tn | iTigjTippTip =1 (1 <d<n) >.

Assume that G, (j, k,[) is non-trivial.

The following theorem is deduced from [1].
Theorem 7.1.5. If —j, j —k, k — 1 and | are all distinct mod n then G,(j,k,l) is
infinite. Therefore, Gy, (j, k,1) is finite only if one of the following conditions holds:
(1) nl(2j = k);
(1) n|(G+k—=1);
(1i) n|(j +1);
(i) n|(j — 2k +1);
(v) nl(j —k—=1); or
(vi) n|(k—21).
The length ten word = 22~ a1t 12 =12 is of this form with j =2, k = 1 and [ = 2.

We know that G, (2,1,2) is finite only if n divides 3, 1, 4, 2, -1, -3. Therefore, we know
Gn(2,1,2) is infinite whenever n > 4.

7.1.5 Positive words of length 5

Counsider the following presentation.

Gn(j,k,lim) =< x1,...,2, | Ti%igjTikTipiTipm = 1 (1 <0 <n) >,

Assume that we do not have any of the following:

(i) n|(j +k—1) and n|(k + 1),
(ii) n|(j —k—1+m) and n|(2j — 1 —m),
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(iii) n|(k —1—m) and n|(2k —m),
(iv) n|(j +1—m) and n|(j — 21),

(v) n|(j —k—m) and n|(j + k — 2m).

The following theorem is deduced from [17].

Theorem 7.1.6. G, (j,k,l,m) is finite only if two of the following hold:

(1) nl(2j — k)

(2) nl(G+k—1)

(3) nl(G +1—m)

(4) nl(G +m)

(5) nl(j — 2k +1)

(6) n|(j —k—1+m)

(7) nl(G —k—m)

(8) n|(k—2l+m)

(9) nl(k —1—m)
(10) n|(l —2m)

The length eleven word =22~ a2t 2~ 1? is of this form with j =2, k=1,1=1
and m = 2. As we are looking at n > 4, it is true that we do not have n dividing any of the
following pairs of numbers: {2,2},{2,1},{-2,0},{1,0},{—1,—1}. Then G,(2,1,1,2) is

finite only if n divides two of the following: 3, 2, 1, 4, 1, 2, -1, 1, -2, -3. This is never
true for n > 4 and so G,,(2,1,1,2) is infinite for all n > 4.

7.1.6 Exceptional intersections

The following theorem was proved in [6].

Let us assume that the word w(zg,...,z;) and any cyclic permutation of this word is

not able to be written in either of the following forms:
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(i) w‘f‘lwzﬁlw‘f‘szﬁz . ..w‘flwgl, W1 ES T, ..., Tp_1 >, W ES T1,..., Tk >;

.. a a «

(i) w§ (ve)ws? ()2 .. wi (1), ws €< 1, ..., Tp_1 >, V1 €< Tg,. .., Th_1 >,
vy €< X1,...,T >

where «;, 3; € Z.

Then G (w) is infinite for n > 4k.

Furthermore, if w(zo,...,z) involves every z;, 0 < i < k then G, (w) is infinite for
n>2k+1).
The length thirteen word x='t =2z~ 1tz =1tz =122t rewrites to xgla:;la:l_lxalxg. This

cannot be written in the first form as the existence of two separated xgs and z9s means
that we would have [ = 2 in the formula, but z1 could not appear in either wq or wo as

it only occurs once. If it were in the second form then we would have ws' = z;. But

Qi
3

then either (14 1/2)51 =z 1:E2:Ea 1:172_ Lor To 1:172_ 1, neither of which are valid possibilities.
Therefore, this word is not in either of the above forms. Since k = 2 in this case and zg,

x1 and x9 are all involved in the word, we get that G, (w) is infinite for n > 6.

7.1.7 Special cases results

Although initially several of the special cases were dealt with by hand, a computer
program was created subsequently to check which words were special cases, record the
results, and remove the some of the special case words from the list. Note that only some
of the special case words were removed, depending upon how complete a list of results
we are able to obtain using this computational method. The results of the program for
I > 13, which are the [ values for which we consider the list without the special words,
can be viewed in [24]. After this process, the number of words remaining is shown in the

following table.

Length 7T 8 9 10 11 12 13 14 15

Total number of words before 3 8 30 66 220 484 1604 3521 11741
Total after special case words removed | 0 8 26 60 205 481 1572 3512 11671
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7.2 Method for testing finiteness

After removing the words which fall under the category of special cases, the next step is
to look at each word separately and try to determine for each | < 15 which ones are finite
and which are infinite using computational methods. There are two different computer
packages that are used for the majority of cases. The first is called KBMAG [15] and
works by trying to find an automatic structure for the group H,(w) and, if successful, it
is able to tell us the size of the group. This method frequently fails for when n is small,
in which case we often obtain success by using KBMAG with the group G, (w) instead.
If both these methods fail then we may try to determine the size of the group H,(w)
using the computer package GAP [12]|. This package allows various commands and, if
the group is finite, it is often more successful than KBMAG in discovering this by means
of coset enumeration. Various tests can be put in place for checking if a group is infinite,

which we state below.

1. Low index subgroups are found for the group and checked to see if there is a zero

in the abelian invariants for one of these subgroups.
2. Subgroups in the derived series are checked for a zero in the abelian invariants.

3. The derived subgroups of low index subgroups are checked for a zero in the abelian

invariants.
4. The cores of low index subgroups are checked for a zero in the abelian invariants.

5. A mapping onto PSL(m,q) is found, where ¢ is a power of a prime and subgroups
of H,(w) containing the kernel of this mapping are checked for a zero in the abelian

invariants.

6. A mapping as mentioned above is found and the derived subgroups of the men-

tioned subgroups are checked for a zero in the abelian invariants.

7. A mapping as mentioned above but from a low index subgroup instead of H,(w)

itself, mentioned subgroups are checked for a zero in the abelian invariants.
8. A factor p-group is found and checked for a zero in the abelian invariants.

9. If a zero has failed to be found in the abelian invariants for any of the above tests,
then we many perform the Newman Infinity Criterion (see below) to see if this can

prove the group to be infinite.
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We note that we have not been able to use these methods, either with KBMAG or GAP,
in the same way for when [ = 13, [ = 14 and [ = 15, due to the large number of words

involved for each. The results we were able to obtain are discussed in Section 8.3.

7.2.1 Newman Infinity Criterion

Let G be a group. Let p be a prime and let G be the subgroup of G' generated by all
commutators and pth powers, so G1 = [G,G|GP. Let Gy = [G1,G]GP. Define d,(G) to
be the rank of G/G; and e,(G) to be the rank of G/G.

The following result was given in [23].

Theorem 7.2.1. Let G be a group with a finite presentation on b generators and r

relations. For some prime p, let d = d,,(G) and e = e,(G). If
r—b+d< % - % —e
or
r—b+d< d—;—%l—e+%(e+%l—ci—2),
then G has arbitrarily large quotients of p-power order.

In particular, if the criteria in the above theorem hold, then the group G is infinite. This
result has been implemented into GAP as a method and returns true if the group is
found to be infinite using this method, or faul if the method cannot tell us whether or
not the group is infinite. Candidates for the prime p are prime divisors of the order of
G/G'. 1f a prime p appears several times in the abelian invariants of a group then it is an
indication that the Newman Infinity Criterion using this value p may give us the return
value true, and it is this observation that has given us our success with this method for

finding groups to be infinite.

The length twelve word z~'t~'x =2t~ 12%t23t was found to be infinite when n = 5 using
the Newman Infinity Criterion in GAP. A subgroup of index 10 was found and the

Newman test on the derived subgroup of this subgroup returned true.
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Results for finitely presented groups

In this chapter we list all finite cyclically presented groups which have been found using
special cases, KBMAG or GAP, starting with [ < 10. Where we do not know the exact
structure of the group, we instead give its derived series. All of the finite groups in this

chapter can be generated by three generators.

Note that, in order to avoid repetition, we work up to n-equivalence of each word w(z,t)
and therefore each word w. Words which are equivalent for all n are discarded by
restriction (3) in Section 6.1. However, it is possible for repetition to occur when n
is fixed if two words are m-equivalence but not equivalent e.g. lxga;% is equivalent to

lxlx% when n =4 (i — n—1) but not when n = 5. Also, when n is odd, the subscripts

Ty
of zgx1x921 may be multiplied by 2 by Definition 5.2.3 (6) so this word is n-equivalent

to zoroxsxo in this instance.

When such repetitions have been found in our results they have been omitted from the
lists in this chapter. Therefore, there may be finite groups appearing in the results pages
in [24] which are equivalent to a word that is already in the list, and is therefore not

itself in the list.

8.1 Finite groups for [ < 12

In this section we list all finite cyclically presented groups we have found for [ < 12,

apart from the sporadics which will be dealt with in Section 8.5.
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8.1.1 [ <10

The following are families of finite groups and therefore each word produces an infinite
number of finite groups. Note that the full proofs that these and all other families in
this chapter are indeed families are given in Section 8.4, as well as an explanation as to

why the groups in the family are infinite for all values of n other than those given in the

conditions.
Group G |G| Structure of G
=7
< Z0oy ..y Tn—1 | TiTivoTit1 (0<i<n—1)> n#0mod3 3 73
=38
< Z0y .y Tn-1 | :ci:ci+2mf+1 (0<i<n—1)>, nodd 4 T4
< Ty Tn—1 | TiTit1Tit2Tiy1 (0<i<n—1)>, nodd 4n Ton X Loy
=10
< X0y Tn—1 | TiTitaZit2Tiy1 (0<i<n—1)>, nodd 4 T4
<o, | he e, (0<i<n—1)>, nodd | 2(4"—1) |14 Zions) 3G

The following are the rest of the finite groups, which occur for specific and generally

small n.
Group G |G| Structure of G
=7
< Ty .. 23 | T x2+2xz+l (0<i<3)> 24 SL(2,3)
<o, ..., X | T2, 1 0<i<4) > 120 SL(2,5)
< Tgy .-, :E3|l‘l‘2+2l‘2+1 (0<i<3)> 5 Zs
< XOy ..,y | Xy m2+2xz+1 (0<i<4)> 11 Z11
< Xoy ..., | X m2+2xz+1 (0<i<6)> 29 Zog
=38
<20, a3 | wiwd owip (0<4<3) > 80 Z7 % Lig
<@y, Ty | Tt pwigr (0<0<4) > 220 Za1 X (75 X Zy)
<@y, 5 | mwdowir (0 <1 <5) > | 4088448 | G2 <Gy < G, Gy perfect
=9
<Xy, T5 | Timipswipe (0 <7 <5) > 63 L X Ty
< Xoy ey | TiTigsxipe (0<i<8) > 513 Zag X Lo
< g, ...,T5 | TiTipax, 2(OS <5) > 56 (Zo X Lo X L) X Zr
<oy a7 | Timiyazy (0< i< 7) > | 295245 149G, <G, 4G
< Xy ey x5\xml+3xz+2(0§ i<5)> 9 Zg
<m0,...x5\xx2+3x2+2(0§ i<5)> 7 Zy
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Group G |G| Structure of G
< Xgy.. ., 3 | a:ia;?+2a:?+1 (0<i<3)> 125 Zos X Zs
< Xgy ..,y | a:ia;?+2a:?+1 (0<i<4)> 275 Z11 X Zos
< Xgy.e., 5 | a:ia;?+2a:?+1 (0<i<5b)> 2015 19731 <G
< Zgy..., 3 | a:ia;if2a:,~+1 (0<i<3)> 51 Zs1
<m0,...,x3\x,~xif2xif1 (0<i<3)> 39 Zs39
< 20, a3 | wiwd qxd g (0<i<3) > 120 Zs x SL(2,3)
< Xy -, T3 | $i$i+1xi__:2xi_+21 (0<i<3) > 5 Zs
< X0y e, Ty | :z:ixi+1x:2xi_fl 0<i<4)> 11 711
< X0y -, T | :z:ixiﬂx;rlﬂi_fl (0<i<6)> 29 Zog
< Ty ..., T3 | $i$?+3$;_31 (0<i<3)> 17 YA
< ,..., a3 | miwpHha?, (0<i<3)> | 39000 | 1<dZ5<(Z2) x Zs<
G, <G QG
=10
< oy, 23 | BiTipoTipaxipe (0<0<3) > | 80 Zis X L
<0, 23 | TiTipox 5 Tige (03 <3) > | 80 Zs X Zag
< X0y -, T5 | :z:ixifngngl (0<i<5)>| 1512 Zs X L
8.1.2 [=11,12
The following are families of finite groups for [ = 11, 12.
Group G |G| Structure of G
=12
< Ty .oy Tn—1 | TiTitaZitsTiy1 (0<i<n—1)>, mnodd, n# 0 mod3 4 74
< X0y Tt | TiTitaThoriyy (0<i<n—1)>, nodd, n#0mod3 6 Ze
< T0oye vy Tno1 | TiTitsTit1Tiye (0<i<n—1)>, nodd 4 Zy
< 0,y Tn—1 | mixiH:c;lQmH:cHgm;fl (0<i<n—-1)>, nodd ontl _ 9 Dont1_o

The following are the rest of the finite groups for [ = 11, 12.

Group G |G| | Structure of G
=11
< XOy ey 11 | TiZipaxips (0<i < 11) > 4095 | 1<Zg1 <G
< XOy .7 | a:ia;;_lélmwg (0<i<T) > 17 Za7
< Xgy..., 3 | mimi+2x?+3a:,~+1 (0<i<3)> 205 Zy1 X Zs
< XOy -y T3 | TiZipoxiysxipoxivr (0<i<3)> | 205 Zy1 X Zs
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Group G |G| Structure of G
< Xg,...,T4 ’ T 42L43Li42T541 (O <1< 4) > 1025 Ziy1 N ZLios
< Zg,...,T5 ’ T 42L;43Ti42T541 (O <1< 5) > 6335 Z1g1 X (Z5 X Z7)
< Xy, T3 | xiazi+2xi_f3xi_jl (0<i<3)> 295245 147Z8<9G, 4G
< Xgy ..., T3 | xixiwx;ﬁ?)x“gx“l (0<i<3)>| 1755 19739 <4G
< Xgy .., T3 | x-xi+2xi_+13xi+2xi_j1 (0<i<3)> 295245 1<9Z8<4G1 4G
< x,... x5\xxzjlxzf3(0<i§5)> 65 Zgs
< Xy, T3 | $i$i+2$i+3l‘i+l (0<i<3)> 13 713
< Xy, T3 | xixijrlﬂijrlgxprg:ni__:l (0<i<3)>]| 9375 1< Zg’ 4G <@
< Xy, T3 | xixi_éx;gx;b:niﬂ (0<i<3) > 13 Z13
< 20,...,73 | x-x;+12x;+13x;+12x;+11 (0<i<3)>| 6561 149G, 4G
< xoy ..., T3 | T Z+2:172+3x2+1 (0<i1<3) > 13 VAL
< Xoy. .23 | T x2+2x2+1x2+2$l+1 (0<i<3) > 195 Zys % (Zs x Zs)
< XOy .23 | Xy x2+2xz+1xz+2x,+1 (0<i<3)>| 39000 | 1<Z5<(Z3) x Zs<
G, 4G LG
< Xgy .., 13 | xixi_jzxiflxngiﬂ (0<i<3)> 1 Trivial
<xo,...,x3 | P hel (0<i<3) > 39000 | 1 <975 <(Z2) x Zs<
G, 4G LG
< Xy, T3 | x¢x;ﬁ2xi+3xi+2$i__,’_ll (0<i<3) > 5 Zs
<x0,..., 75 | BPripz s (0<i<5) > 63 Zgs3
< Ty .., T3 | :Eizni__:zzz:iﬂxixiﬂ (0<i1<3) > 39 Z3g
< Xy, T3 | x-xi+2xi+3x:2:ni—_:1 (0<i<3) > 5 Zs
<Xy Ty | T x2+2x2+3xz+2$2+1 (0<i<4)> 11 711
< TOy e a:5|xx2+2x2+3xz+2:172+ (0<i<b)> 56 147Z34G
< XOy ey T3 | TTipoxip1Xipoxiyr (0<i<3) > 125 Zos X Zs
< XOy ey Ty | TZipoXip1Xipoxipr (0 <d<4) > 275 711 X Zos
< XOy .., 23 | Xy x2+12xz+3xz+2x,+1 (0<i<3) > 39 Zas X Zs
S P 2 I x2+12xz+3x2+2xl+11 (0<i<3)> 13 713
< XOy .23 | Xy x2+12x2+3xz+2x,+1 (0<i<3)> 5 Zs
< XOy sy | X xz+12xz+3x1+2x,+1 (0<i<4)> 1 Trivial
<Xy Ty | T xZJrleZJrleQ:EZH (0<i<4)> 31 Z31
< Xy, T6 | T xZJrleZJrleQ:EZH (0<i<6)> 127 Z1a7
<Xy, T8 | T xz+2xz+1xz+2:ﬂl+1 (0<i<8) > 511 Zs11
< Ty .., T3 | xixinHg (0<i<3) > 37 Tz
< @0, x3 | wiwd ,wd (0<i<4) > 2639 Ziog ¥ (L7 x 73)
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Group G |G| | Structure of G
=12
< XOy ey @7 | g 3Tiqpaige (0<i<7T) > {6560 | 1<DZgps IG
< Xgy.. ., | xixi+3az;:4a;,~+3 (0<i<b)>| 728 19714, <G
Group G |G| Structure of G
< &0,.. ., @5 | 2w 5 Tipaive (0 <0 <5) > 1512 | 14Z3<49G, 4G
< x0,..., 5 | miwpr sy (0<i<5) > 728 Zys % Lsg
< XOy ey By | T 1 T2 1 Tipoxipr (0 <0< 4) > | 2046 19731 <G
< XOy ey T | TiTip1Tip2Xip1Tipoxir (0 <10 <6) > | 32766 147197 4G

8.1.3 Words left over

After using KBMAG and GAP to find whether a group is finite or infinite we are left

with the following number of words which are undecided for at least one 4 < n < 50:

9 10 11 12
30 66 220 484
26 60 205 481
10 8 77 46

Length

Total number of words before

Total after special case words removed

o O W
O oo 00| 0o

Total after tests

8.2 Remaining groups

It is often difficult to ascertain whether a group is finite or infinite for small n. Often it
has been necessary to put aside a word which has results for when n > 6. The following

table shows the number of words that remain:

9 10 11 12
30 66 220 484
10 8 77 46
3 1 27 28

Length
Total before
Total after tests
Total after tests n > 6

S O | W |
o o | oo | o

The partial results for the words in the bottom two rows can be viewed in [24]. They
leave us with the following groups for 6 < n < 50, [ < 10, for which we do not know

whether the group is finite or infinite.
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o Gr(wg oy ey ad);

° Gg(xgla;gx;l);

° Gg(xgla:gxg);

Gp(rgto max?), ne {11,13,17,19,21, 23,25, 29,31, 33,37, 41,43, 47, 49}.

The words w(z,t) corresponding to the above groups G, (w) are those mentioned in

Theorem 5.2.4.
We list the remaining groups for 4 <n <5, [ < 10.
=9

Gu(zg wy e h);

Gs (g w5 ad);

Gu(xy 'adwy);

o Gs(xg 23xd);

o Gs(ay ey ay ad);
o Gy(zy ey 23my);

° G5(x51x1x2_2x1).

o Gs(ap tay oy tan);
° G5(x51x2_1x3x1_1);
o Gz oy tat);

o Gy(xy'wah);

o Gs(ag 'y ey ®a?);
o Gy(xg oy zdm);
o Gs(ay ay oan});

o Gy(wg oy ayad);
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o Gs(xg 13731 1332 2 %)

1

Note that the words xglxz_la;g x1 and xglxglxgxl_l appearing in the above list are

n-equivalent to each other.

8.3 13s, 14s and 15s

Due to the large number of words for when | = 13, [ = 14 and [ = 15, it has not been
possible in the time given to perform the tests on the individual words in the same way
as we did for the lower values of /. Instead, we ran all words in GAP and simply asked
if it could tell us which ones it knew to be finite. Doing things this way means that we
cannot be certain if any of the groups which GAP did not find to be finite are definitely
infinite. However, it does give us a great number of groups which it can be sure are

finite.

8.3.1 [=13

Below is a table showing the finite family found and its structure.

Group G ‘ |G| ‘ Structure

< XOy ey Ty | Ti%igpaTivsTivoTivs (0<i<n—1)> nZ0mod5 ‘ 5 ‘ Zs,

The following table shows the remaining groups we have found after removing those

which are cyclic as the number of cyclic groups found is very large.

Group G |G Structure of G
<Xy T4 | Timirsxigs (0 <i < 14) > 32769 1<7Z331 <G
< XQ,...,T5 ] Tix Z+3xz+4xl+2xz+1 (0<i<b)>| 320 147Z3<49G, 4G
<Xy .r s x5]a;, Z+13xl+4x2+2x2+ (0<i<5)>| 19683 1<97Z3<1G 4G
< XOy ..o, T5 | T Z+13x2+4x2+2x1+ (O <i<5)>| 6552 | G; <G (G perfect)
< XOy ey Ty | TiTigoxiipsxipe (0 <0< 3) > 120 Zs x SL(2,3)
<@g, ...,x3 | TiTito; “aisrig (0<i<3)> 39 Zaz X Zg
< X0y, %3 | TiTigox; 1xl+13xl+11 (0<i<3)> | 9375 1973 <4G1 4G
< X0y 23 | T @iveri (0<i<3)> 35520 | 1<49Go<dG1 <G
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Group G |G| Structure of G
1 .
< Xg,...,T4 ’ T4 2L 5 4 Ti4-2Ti4-1 (0 <1< 4) > 14043 | Z151 % (Zg X Zgl)
-1 .-1,.-1 ,
<@y .o Ty | imipox; i 0wy (0<0 < 4) > 120 SL(2,5)
< XOy ..o, T | a;ia;i_kga;i_jélxifzxifl (0<i<5b)> 56 147Z34G
< Zg,...,T3 ’ xixi+2xi+3x§+2x§+l (0 <1< 3) > 1015 Ziog X (Z7 X Z5)
< @0y, T4 | T poxi 3T 140 (0 <0 < 4) > 275 Ziy1 X ZLas
1 .
< Zg,...,T3 ’ xixi+2xi+3x§+2x§+l (0 <1< 3) > 975 T3 X Lis,
<x0,..., 3 | iz hr et o2, (0<i<3)> | 6561 | 19Z2xZ3 <G
1 -1 .
< Xy -, T3 | $i$i+2$i+3xi+2x?+l (0<i<3) > 663 | Zi3 % (Z3 x Z17)
< &0, .., 23 | T @i0r? g (0 <0< 3) > 6561 | 1973 xZ3 <G
-1, -1, -2
< @0y .-, T3 | BT TiqoT T 15 (0<51<3) > | 24 SL(2,3)
8.3.2 [=14
Finite families:
Group G |G| Structure of G
< X0y 3 Tn—1 | TiTit5Lit4Tit1 (0 <i<n-— 1) >, n odd 4 ym
< Z0y. vy Tne1 | TiTitsTit3Tive (0< 1< n—1)> nodd, n# 0 mod 3 4 7
< Ty ey Tn-1 | :ci:ci+4xi+3:cf+2xi+1 (0<i<n-—1)>, nodd, n# 0 mod 3 6 Ze
< ZTOy..owy, Tn—1 | TiXi43Ti42Li41Ti42Li41 (0 <i<n-— 1) >, n Odd, n ;7§ 0 mod 3 6 Ze
< ZTOoy. ooy, Tn—1 | LT 2T 41Li43Ti42Li41 (0 <i<n-— 1) >, n Odd, n ;7§ 0 mod 3 6 Ze
< Z0oy.. o, Tn—1 | :Ciic;+12$¢+3£ci+2$;11}1‘+1 (0 <i<n-— 1) >n odd 2n+1 -2 D2n+172

The following table shows the remaining groups we have found after removing those

which are cyclic.

Group G |G| | Structure of G
< XOy ey 7 | TTiqaip5xiqq (0<0<T) > 6560 1974 <G
< XOy .7 | azixi+4x;r13xi+4 (0<i<8) > 6560 19724 <G
< X0y T5 | TiTirsxipsxiges (0<i<5) > 728 Z13 X ZLsg
< 20,..., 6 | iz el (0<i<6) > 10922 | 1<9Zy39G

< Ty Ty | TiTioXiy3TiporiTivy (0 <1< 4) > 2046 1<%Z31 <G
< X0y e, Ty | :Eizni_JFIQxi_Jrllx;rlei_fl:Eifz (0<i<4)>1]29524| 1<4Z¢1 4G
< @0, ... 23 | miwd @i ,wd g (0<i<3) > 6560 | 1<Zgs <G
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833 [=15

There are no finite families and the following table shows the finite groups we have found

after removing those which are cyclic.

Group G |G| Structure of G
< X0y -, T5 | $i$i_4r13$i+5$i_+14$i_+2 (0<i<b)> 6552 | G1 <G (Gy perfect)
< X0y -, T5 | $i$;4}3$i+5xi_+12$7;+1 (0<i<5h) > 6552 | G1 <G (Gy perfect)
< XOy ..o, T | "Ifix7:__,’_13x7:__|_15xi+4xi+2 (0<i<5b)> 320 1472<4G, 4G
< XOy ..o, T5 | "Ifix7:__,’_13xi+4xi__i_11xi+2 (0<i<5b)> 320 1472<4G, 4G

< XOy ..., T3 | azixi+2x?azi+3x?+1 (0<i<3)> 1015 Ziog X Zss
<o, ..., a3 | TiTipowy g (00 <3) > 663 | Zi3 % (Z3 x Zy7)
< Xgy.e .,y | a:ia;?+2x?+4a:?+1 0<i<4)> 5467 Zr1 X (Z7 X Z11)
< Xgy.. ., 3 | xix?+2xia;?+3a;,~+1 (0<i<3)> 791 7113 X 2y
< x0,..., 3 | @izt ox; g (0<i<3) > 507 | Zig % (Zg x Zy3)
< @0, ..., 23 | mixt pwd wlet g (0<i<3) > 4329 147481 <G
< x0, ..y xy | wwd ozt gw?  (0<i<4) > 5467 | Zm % (Zg % Z11)
< Xy -, T3 | :EZ-:EZ._JFIQxi+3xi_f4xi+3xi+2:nifl (0<i<3)>| 243 1< Zg <G
< Ty .., T3 | x-x-_J:Q:EHg:E._I:E?Hx;l (0<i1<3) > 320 1< Z% <G <G
< Xoy. -, 23 | 1T H_2ZEZ2+33}2$H_1 (0<i<3) > 975 713 X s
< Tg,...,T3 \ x-xi+2x,~+3xi+2x-1xi+1 0<i<3) > 320 1472<9G, 4G
< Xoy ..., | 25T Z+12xz+3xz+2xl+11x 13;Z+1 (0<i<3)>| 243 147Z34G
< Xgy..., 3 | xixiﬁzxi+3xi+2xi 2xi+1 (0<i<3)> 320 1472<9G, 4G
< Xgy..., 3 | x-x;rlzxi_j?)x-_%i_kgxiﬂ (0<i<3)> 320 1472<9G, 4G
< Xoy ... 3 | T Z+12x2+13x 1x2ﬁ3xz+2x,+1 (0<i<3)>| 243 1<9Z3<@G
< Xoy ..., | ay xZJrleHga;Hza; Yein (0<i<3)> 320 1472<4G, 4G
< Ty .., T3 | xixiJrlQ:EHg:z:Hg:EinixiH (0<i<3) > 507 Z13 X (L3 X Z13)
< Xy -, T3 | 517@'517,'_4_12x;_lgxi+233i+133i_1$;_11 (0<i<3)> | 243 147Z34G
< 20,...,73 | T ;jzx;jgx;jﬂ;jlx;jﬂiﬂ (0<i<3)>| 663 | Zi3x(Z3xZy7)
< Ty .. 23 | xz+2$l+1$z+3$z+2xz+l (0<i<3)> 663 Zi3 % (L3 x Z17)
< To,...,73 | T 3+2x3+1x2x§+3 (0<i<3)> 791 Z113 X Ty
< Ty .., Ty | :EZ'ZEZ-+2l‘i+1l‘i+2l‘i+3l‘i+2$i+1 (0<i<4)>1] 120 SL(2,5)
< Xy .oy | xixi+1xi+2x?+3x?+4 (0<i<4)> 840 SL(2,5) <G
(SL(2,5) perfect)
< XOy ..., T3 | azixzzﬂxi_fgxzfzxzﬂ (0<i<3) > 507 Zis ¥ (Z3 x Z13)
< X, ..., T3 ]wix§+1x§+2xi 2xi+3 (0<i<3)> 1600 1472<4G, 4G
< Xoy ..., T3 | xix§+1x;2x§+2xif3 (0<i<3)> 1600 1472<4G, 4G

110



CHAPTER 8: RESULTS FOR FINITELY PRESENTED GROUPS

8.4 Proofs for finite families

The sixteen finite families mentioned in this chapter have been discovered for certain
n using computation methods and conjectured to be families by observation. Here, we
prove that the groups are in fact families, i.e. that there is no bound on n for which a

finite group exists with the given word.

We begin by proving Proposition 5.2.5, which will cover the proofs for several of the

listed finite families.

8.4.1 Proof of Proposition 5.2.5

To prove the groups Gy, (z¢...x,_1) for k > 3 are families of finite cyclically presented

groups, we first examine the families of this form which we have already found.

The group G = Gy, (zox221) =< 0, .. ., Tp—1 | TiTiroxir1 (0 < i <n—1) > is equivalent
to the group G, (xgz1x2) and this group is isomorphic to the group Zs when n #Z 0 mod

3 and infinite otherwise, by observing the results in Subsection 8.1.1.
Let us now consider how we might prove this.

Let n=3s0 G =< Lo, T1,T2 | TOT1L2, T1X2L(Y, L2LOL1 >.

1:175 ! from the last relator and remove the generator zs, then we get

If we let z = 7
G =< X0, T1 ’ >.

So G is infinite, as expected.

Let n =4 s0 G =< xg,x1, T2, %3 | ToX1X2, T1T2X3, ToX3X0, L3TOLT] >.

Now let z3 = xl_lxg ! and use Tietze transformations to obtain the following:

—1,.-1 -1
G = < g, x1, 22 | ZoT1T2, T1T2X] Ty, TaL] >

= < z9,21 | xox%,azlxal >=<ux|zd> Zs.

Let n =550 G =< x0,T1,T2,T3, T4 | TOX1L2, L1X2X3, L2XL3L4, L3LAL(Q, TALQL] >

_ =1 =1,
Let w4y = 2 "z :

1.1 —1
G=< xo,T1,T2,T3 | TOT1T2, T1T2X3, T2T3T, Ty ,T3T, >
—1
= < X0, 1, T2 | ZT1T2, T1T2T1, ToTy >

= < 9,21 ‘ ToT1Tg, T1Tox1 > = < X ‘ x% > = Zs.
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Now assume n > 5.

So G =<mg, ..., Tn_1 | ToT1T2, ..., Tn_3Tp_2Tn_1, Tn_2Tp_120, Ln_1ToT1 >
Let z,,—1 = :L"l_lxgl:
G — —1,.—1 —1
=< T0; ---5 Tp—2 | TOL1L2, « vy Tpn—aTn—3Tn—2; Tn—3Tpn—2T] Ly , Tp—2T] >
Let x,,—9 = x1:
—1
G =<, ..., Tn-3 | ToT1T2, ..., Tn 5Tn_4Tn_3, Tn-4Tp_3T1, Tn_3T5 >
Let x,,_3 = x0:
G =<z, ..., Tn_g | ToT1T2, ..., Tn_6Tn_5Tn—4, Tn_5Tn_4T0, Tn_4ToT1 >.

But then G,(w) = G,_3(w), where w = zoxi29, and so by induction, n = m mod
3 = Gp(w) = Gpw).

So, as G4(w) = G5(w) = Z3 and G3(w) is infinite, n = 0 mod 3 = G, (w) is infinite,
and n # 0 mod 3 = Gp(w) = Z3. So G3(w) is infinite <= n = 0 mod 3 <=
ged(n,3) = 1.

Also in our list of finite families is the group G = Gy (zoxsxezi) = Gn(zox12273),

isomorphic to Z,4 when n is odd and infinite otherwise.

G =<0, ..., Tp1 | ToT122T3, ..., Tp_aTp_3Tp_2Tp_1, Tn_3Tn—2Tn—1T0,

Tp—2Tp—120T1, Tp—1TOT1T2 >.

Let @1 = x5 "oy tay
G = -1, —1_-1
=<Zg, ..., Tp-2 ToL1L2X35 -y Tn—5Ln—4Tn—3Tn—2, Tn—4Tn—-3Tn—2Ty T1 Tgy ,
—1,.—1 -1
G =< Lo, ---5 Tp-3 | TOT1T2L3; ..., Tpn—6Tn—5Tn—4Tn—3, Tpn—-5Tn—4Ln—-322,
—1,.—1 -1
G =<0, ...y Tn-a| TOTIT2T3, ..., Tn 7Tn—6Tn—5Tn—4, Tn—6Tn—5Tn—4T1,
-1
Tp—5Tp—4T1T2, Tp—4Ty >
G =<0, ..., Tn-5 | ToT1T2T3, ..., Tn-8§Tn—TTn—6Tn—55 Tn—TTn—6Tn—50,

Tp—6Tn—5T0T1, Tpn—5T0T1T2 >.

So this time Gp(w) = Gu—4(w) and so n = m mod 4 = Gp(w) = Gp(w) where

W = 2ogx1T2x3.
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More generally, if w = zgx; ...25_1 then n =m mod k = G, (w) = Gp(w).

To show this, let G, (w) =< xg, ..., Tn—1 | 70y ks S0,---,Sk—2 >, where n > k,

and where the relators are defined as follows:

o =2%0..-Tk—1, S0 = Tp—(k—1) - - - Tn—120,
™" =x1...2, S1 = a:n_(k_2) e 12021,
Tn—k = Tpn—k-- - Tn-1 Sk—2 = Tp_12L0-..Tk—2-

There are n — k + 1 relators of the type r; and k£ — 1 relators of the type s;, which makes

n relators in total, as expected.

-1 -1 —-1 —
Sk—2 = Tp—-1L0...-Tk—2 Tpn—1 — xk_2a;k_3 - Ly Ty

Sk—3 = Tn—2Tn—-120 .- - T3 Ip—2 = Tk-2

Ll

Sk—4 = Tn—3Tp—2Tn—120 - - - Tk—4 ITpn—3 = Tp-3

80 = Tp—(k—1) - -+ Tn-1T0 — Tp_(k—1) — L1

So x; = Xjpp—g, for 1 < ¢ < k — 2. This allows us to remove all s; and all x; for

n—(k—1)<i<n-—1

Then r,_j = Tn—kTn—(k—1)Tn—(k—2) - - - Tn—3Tn—2Tn—1

1,.-1,.-1

-1 -1 -1 -1 —
= Tp—kL1TQ ... :L‘k_3xk_2xk_2xk_3 oo Xy Ty T

—1
= Tp_kTy -

So rp_r = xp_p = o and therefore remove 7,,_p and x,_j.

We are left with the relators rg,...,7,_r_1, which are those that originally only involved
xz; for i <n — 1.

As we used the fact that z; = x4, for 0 < i < k — 2 where necessary in these relators,
we are now working mod n — k with the indices and we have obtained G,,_i(w).
Therefore, Gp,(w) = Gp—i(w), as expected and we have shown that n = m mod &k =
Gn(w) = Gp(w).
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Now let us assume that n = k. In this case, G, (w) =< zg, ..., Tp—1 | To...Tp_1 >
as all the n relators will be cyclic permutations of each other. The relator implies
that z,,_1 = a:;b . ..ZEal and we so can remove x,_; and the relator, leaving us with

< xgy -+-y Tp—o | > = F,_1, which is infinite.

Finally, let us assume that 1 <n < k.
Then G = G (w) =< xgy -y Tp—1]|70y-.-,Tn—1 >, wherer; = x; ... Tp_120...Tp_120 . - .,
where the pattern continues so that r; has length &k for each i. We claim that G is finite

cyclic of order k if and only if ged(n, k) = 1.

ro = (xo . xn_l)sxo oo Lp—1,

r1=(x1...xp_120)°%1 ... Ty,

r; = (1‘2 oo Ip—120 - - - :Ei_l)sl‘i e Lp 144,

Ti+1 = ($i+1 oo p1TQ ... ZEZ')S$Z'+1 co o Ly,

where r = k mod n, s = %, ie. k=ns+r.
Then r¢ = (21...%p—120)°x1 ... Zp—129 = 1 80 79,71 = o = Xy
T, — (xi—i-l o Tp—12Q - - - xi)8$i+1 e X144 = 1 SO Ty, il = Ty = Tigr

So i =j+ ar mod n for some a € Z = x; = xz; (*).

Let ged(n,k) = 1. Then ged(n,r) = 1 = ar mod n generates Z,, a € Z —
Vj,3a; € Z such that j = ajr mod n = x9 = z;, Vj by (*).

We end up with one generator for G, g say, and one relator, mlg, so G = Z, as predicted.

Let ged(n, k) =d > 1. Then ged(n,r) =d = x; = x;14. We are left with the genera-
tors g, . . ., ¢q4—1 and our relators are rg = (xg ... xq-1)", ..., 7 = (T; ... xg_1%0 ... Ti—1)",
m= %. These relators are all equal, so we are left with G =< zg,...,zq-1 | (zo ... 2zq-1)" >,

which is infinite, as expected.

So far we have proved:

(A) n=mmod k = Gp(w) = Gp(w).

(B) If 1 <n <k, Gy(w) is finite <= ged(n, k) = 1.

Assume ged(n, k) = 1. Then ged(m, k) = 1 for m = n mod k, 1 < m < k, which implies
G (w) is finite (from (B)), and Gp(w) = G (w) (from (A)). So Gy, (w) is finite.

Assume ged(n, k) = d > 1. Then ged(m,k) = 1 for m = n mod k, 1 < m < k, which

114



CHAPTER 8: RESULTS FOR FINITELY PRESENTED GROUPS

implies Gy, (w) is infinite (from (B)), and G,(w) = Gn(w) (from (A)). So G (w) is

infinite.

In conclusion, Gp(xq...xE_1) is finite <= gecd(n, k) = 1. Also, for any k there is

always an n for which ged(n, k) = 1 and so Gp4qk(w) is finite for all a € Z. This proves

Proposition 5.2.5.

8.4.2 w= L2y

G=<z0,...,Tn—1 | ZiTiporiy1 (0<i<n—1) >,

See Subsection 8.4.1.

8.4.3 w = zo17?

nZ0mod3. G=7Z3 [=T.

G=<uwzp,...,Tp_1 | 332'$i+2$l2+1 0<i<n—1)>, nodd. G=72Z4,1=8.

Assume n odd.

Relators are:
ToT2L1L1
L1T3T2X2

T2T4T3T3

Tp—2X0Ln—-1Tn—1

Tp—1L1L0L0

1

Let y; = x; .
o = Y1y1y2
T1 = Y2Y2Y3
T2 = Y3Y3ya

Tn—4 = Yn—-3Yn—3Yn—2

Tn—3 = Yn—2Yn—2Yn—1

So we can remove xg,Z1,...,T,_3 and the first n — 2 relators and write the last two

relators in terms of x,_o and x,_1.
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Consider the relator x,_1Z,_12Z,_2%o:

Lo = Y1Y1Y2
= (z32272)(T37272)Y2 = T3T2T27372 = (T372)T2(T372)
= y3yay3y3yaysys = (y3y)ys(ysya)®
= T5L4T5T4T4 5047584 = (T504) 2a(T524)2

= YsYeYsYeYsYsYeYsYeys = (Ysye) ys(ysye)®

Tir1T; 3 Til(Tir12; 3 when removing x;_1, 7 is even
= (i1 FJol (e 12:) g i,
]yi[(yiyi_l'_l)’hgl] when removing x; 1, 7 is odd

[(yzyz—i-l)

n—1

= [(yn—20n-1) = Jyn—2[(Yn—2yn-1) = ]

n—3 n—1
Tp-1Tp—1Tp—220 =1 & Tp_1Tn_1Zn—2[(Yn—2Yn—1) 2 |Yn—2[(Yn—2Yn— 1)7] =1

Tn1Tn-1Zn—2[(Yn—2Yn— 1)%3]11 2[(Yn—2yn— 1) 7 ]yn 2Yn—1 =1
Tn-1Tn—2[(Yn—2Yn—1) 2 ]yn 2[(yn Wn-1) 2 ]yn 2—1
Tp—1Zn—2Yn—2Yn—1[(Yn— 2yn 1) ]yn 2[(% 2yn )T ]yn 2=1
Tn—1Yn— 1[(yn 2yn 1) ]yn 2[(Yn— 2yn 1) ]yn 2 =1
[(Yn—2yn—1)"2 ]yn 2[(yn 2Yn—1)"7 Jyn—a =1
Yn2l(Wn—2yn-1)"7 Jyn—2l(yn—2yn_1)"7 ] = 1.

S R R

Consider the relator x,_ix1x020:

r17070 = T1(Y19192) (Y1y192) = Y1y21191Y2
= T3ToT3T2T0T3T0 = (1372)°To(T372)
= Y3Y4Y3Y4Y3ysyaysys = (y3y4)2y3(y3y4)2
= T5X4LET4LELALAL5T4TE5T, = (1E51E4)31E4(1E51E4)2
= YsYeYsYsysYeYsYsysysyeysys = (ysye) ys(ysys)®
= (i1 )%H] [(xZJrla;,)%] when removing z;_1, i is even
i1 i1

= [(yiyi+1) 2 vi[(yiyi+1) 2 | when removing x;_1, ¢ is odd

= [(Yn—2Yn—1) =R 1Yn— 2[(yn—2yn—1)n771]

n—1 n—1
Tp_1120%0 = 1 € Tp_1[(Yn—2Yn—1) 2 |Yn—2[(Yn—2Yn— 1)7] =1

& Tno1[(Yn—2Yn—1) 1Yn—2[(Yn—2Yn— 1) z ]yn 2Yn—1 =1

r
N |
-
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n—3

~ [(yn 2Yn— 1) b} ]yn 2[(yn 2yn—1) 2 ]yn_2:1
& Yno2lWn-29n-1)"7 Wn—2[(Un_20n-1)"7 ] = 1

Consider:
n—1 n—3
Yn—2 [(yn—2yn—1)7]yn—2 [(yn—Zyn—l) T]
n—>5 n—3

Yn—2l(Un—2Un—1)" Jyn—2[(Yn—2yn-1) 2 |

n—1 n—>5

So (yn 2Yn— 1)T _(yn 2yn—1) 2
[(yn 2Yn— 1) 5 ](yn 2Yn— 1)(yn—2yn—1) = (yn—2yn—1)%

So (yn—Zyn—l)(yn—2yn—1) =1

n—3

Into Yn— 2[(yn 2Yn— 1) B} ]yn 2[(yn—2yn—1)7]:

Let "— even, so 253 odd:

n—3
yn—2[(yn 2Yn— 1) 2 ]yn 2[(yn—2yn—1)T] = Yn—2Yn—2Yn—2Yn—1-

— 3
Yn—1 = Tp_9o

Let “5= L vdd, so T?’ even:
n—3
yn—2[(yn 2Yn— 1) 2 ]yn 2[(yn—2yn—1) 2 ]:yn—2yn—2yn—1yn—2:

_ .3
Yn—1 = Tp_o-
So we can remove I,,_1.

Y2l (Yn—2tn—1) "7 2l (Wn—2n—1)"7 | = Ynoal(yn22d_5)"% Jyn—ol(yn—2a?_,)"7 |
= Yn2l(@2_)"% Jyn2l(22_,) "7 ]
= yn—2[(xn—2)n_l]yn—2[(wn—2)n_3]
= Yn—2Zn—2[(Tn—2)""2|Yn—2&n—2[(Tn_2)

= [(@n—2)"*(xn—2)"""] = xin 26

n—4]

So i =1

Yn—2[(Wn-20n-1)"T Jn-2lWn-20n-1)"T ] = Yn-2l(Un-22%_5)"T Jyn—2l(yn_2?_,)*7 ]
= Yn2l(@2 )" T Tyn2l(22_,) "7 ]
= Yn—2[(Tn—2)"""yn—2[(Tn—2)" "]
= yn—2$n—2[($n—2)n_6]yn—233n 2[($n 2)

= [(@n-2)""N(@n—2)"""] = 233"

n—4]

2n—10 __
Sox; 5 =1
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2n—6 __ _2n—10_.4 __ ..2n—10 4 _
Lo =Tp o Tp_og==Ty o SOT, o= 1

So G=<apo|x} o>

8.4.4 w= ToX1ToT1

G=<x0,...,Tn-1 | TiTip1Tit2xip1 (0 <0 <n—1) >,

Relators:
ToL1T2X1
L1X2T3T2

To2X3L4T3

Tp—3Tn—2Tn—-1Tn—2
Tp—2Tn—-1L0Tn—1

Tn—1T0T1L0

1

Let y; = x;
To = Y1Y2y1
T1 = Y2Y3y2
T2 = Y2Y3y2

Tn—3 = Yn—2Yn—1Yn—2

nodd. G=%Zy, X272y l=38.

Get the generators xg, ..., T,_3 in terms of x,,_s and x,_1 in order to remove them.

Tn—3 = Yn—2Yn—1Yn—2

Tn—4 = Yn—3Yn—2Yn-3

= Tn—2Tn—-1Tn—2Yn—2Tn—2Tn—1Tn—2
Tp—2Tn—-1Tn—2Tn—-1Tn—-2

Tn—5 = Yn—4aYn—3Yn—4a
LTp—3Tn—2Tn—-3TLn—-2Ln—3

= Un—2Yn—1Yn—2Yn—1Yn—2Yn—1Yn—2

yni2 i even

€Ty = yn—z(yn—lyn—2

T =Ty o(Tn_12y_o)" 12 7 odd
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21 = Tp_o(Tp_12n_2)" "3

20 = Yn—2(Yn—1Yn—2)" ">
Relators left:
Tpn—1Tn—2Tn—1T0

Tp—1ToT1T0

Tn—1Tn—2Tnpn—-1T0 = xn—1$n—2xn—lyn—2(yn—lyn—2 n—2

Tp—120T1T0 = Tno1Yn—2(Yn—1Yn—2)""2Tn—2(Tn-12n—2)" " 3Yn_2(Yn—1yn—2) "2
= xn—lyn—2(yn—lyn—2)n_2xn—2(xn—1xn—2)n_3(yn—2yn—1)n_2yn—2
= xn—lyn—2(yn—lyn—Z)n_2xn—2(xn—lxn—2)n_3(yn—2yn—1)n_3yn—2yn—1yn—2
= xn—lyn—2(yn—lyn—2)n_2yn—1yn—2
= xn—lyn—2(yn—1yn—2)n_1

Compare:

$n—1$n—2$n—1yn—2(yn—lyn—2)n_2

$n—1yn—2yn—1yn—2(yn—lyn—2)n_2

Then x,—2%n—1 = Yn—2Yn—1

The relator xn_lznn_gxn_lyn_g(yn_lyn_g)"_2 can now be removed so relators are:

-1
Tpn—2Tn—2Tn—1Tn—1, (xn—1$n—2)n Tn—1Yn—2-
Let 2 =2p—1, Yy = Tn-2
_ 2,2 -1 —1
G=<uz,y| 2%y, (zy)" xy— >

So yxly = yxly a2 =1

and zy’z =y 2z Mylr =1

So [2%,y] = [y, 2] = 1

n—1 n—l) 2

y = (ay)" 'z so y? = ((zy)" ‘o) (z(yz) = z(yz(yx...(yr(yrry)zy)..xy)vy)r = o

Soy?=z?and y* =2t =1
Ly =lay=! = [(xy~")"][y2™ V)] as y? commutes with = and y
= (zy~ )" as n odd so 4[2(n — 1)

Then (zy)" tozy~! = (zy

So G =<uazy|y' 2%y’ (xzy™)" >
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—1 4 2,2
=<zy 2|y Yyt aty, 2" >
4
=<y, z |yt " zyzy >
1

=<y 2|yt "y tay=2""1>

8.4.5 w= ToX3ToT1

G=<uzg,...,Tpn_1 | TiXTi43%;42Ti4+1 (0 <i1<n-— 1) > nodd. G=727Zy4,1=10.

See Subsection 8.4.1.

_ 1,1, -1
8.4.6 w = 1wz, T| T,

B | :
G =<20,...,Tp1 | TiT 0t 0 (0<i<n—1)> mnodd 1 AZ1gnyy) G,
|G| =2(4" — 1), 1 = 10.

This particular family of groups is infinite when n is even (since Hs(w) is the infinite
dihedral group) and finite of order 2(4" — 1) when n is odd, the latter of which we now

prove.
Let us assume n > 4 is odd.

The group < xg,...,Tp—1 | 331'33@-_43233@-_431%_432 (0 <i<n-—1) > is the associated cyclically

presented group of H = H,(w) =< z,t | t", atwt tat?z =172 >,

To show the group G is finite and has order %(4" — 1), we first find the order of H. Let
us note that Hy, = < z,t|t", 22, [2,t] > = Zg X Z,, and therefore |H : H'| = 2n, where
H' denotes the derived subgroup of H. Next, we use the use the Schreier method to find

a presentation for H’.

We can see that U = {e,t,t%,...,t" Lz ot xt? ... xt" '} is a Schreier Transversal for
H' in H. We note that we should find (¢ — 1)i + 1 = 2n + 1 generators for H’', where
g = no. generators of H and i = |H : H'|.

The next step is to find the generators for H' in terms of x and ¢ by finding all words of
the form wy(wy) ™!, where u € U and y € {x,t}:
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wuelU |ye{st} | uy uy(uy) wueU |ye{zt} | uwy | uy(uy) '
e T x e e t t e
t T ot totlz! t t t? e
t? T xt? ot 2zt t? t 3 e
tn72 x xtn72 tn72mt7(n72)m71 tn72 t tnfl e
tnfl T LEtn71 tnflxtf(nfl)xfl tnfl t e m
T T e x? T t xt e
xt T t xtxt™! xt t xt? e
xt? T t2 xt?wt =2 xt? t xt? e
mtn72 x tn72 xt7“2xt7(7“2) mtn72 t ZCtn71 e
1’tn71 T tnfl xtnflxtf(nfl) 1’tn71 t T l’tnl’71

So generators for H' are:

a; = that i1 = x?
b; = xtixt™ ey =t"
(I1<i<n-—-1) c3 = xt"z !

As predicted, there are 2n + 1 generators for H'. We now need to find the defining

relators of H' in terms of the a;, b; and ¢;. These relators are all words of the form

uru~! where u € U and 7 is a relator for H. To aid us we first calculate all conjugates

of the generators of H' by the generators of H.

g ‘ aq a9 cew Qp—2 Ap—1 bl bg N bn_g bn—l (&1 Cy C3
—1 —1 —1 —1 —1 -1 —1 —1
tgt ‘ a20]  a30] . Qp—1G] Cac3 a; aiba aibs ... aib,—1 aiczcicy aibi co aicsag
g ‘ a1 ag ¢ ) An—1 b1 b2 . bn,Q bn,1 C1 C9 C3
—1 —1 —1 —1 —1 —1
rgx ‘ bicy ™ bacy ... bp_ac] bp_ic] ciar ciaz ... ciQp—2 CiQp—1 €1 €3  C1C2C]

Our relators for H' in term of 2 and ¢ are the following:

uru_lz

u\r ‘ " ‘ wtot at?e =112

tt tn tlatet tot?z 717270 (0<i<n-—1)

ott |zt | ptatot etz 2 (0<i<n—1)
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The final step in finding a presentation for H' is to rewrite all relators in terms of the a;,
b; and ¢;. For this we can use our conjugacy tables as the relators corresponding to ¢ and
xt', 0 < i < n—1, are simply the relators corresponding to =1 conjugated by ¢ and ¢ con-
jugated by z respectively. We use the fact that a=1'bbb...ba = (a~'ba)(a"'ba)...(a " ba).
So, for example, if r = ztzt~'zt?z~'¢t~2 then the relator t9rt 0 = r = b1a2_1 by in-
spection. The relator t'rt~! is simply r conjugated by t, so tlrt=1 = tblaglt_l =
(thit™Y)(tay ™) = (ar1be)(a1a3 ') = arbsajaz !, from the conjugacy tables. Continuing

in this way, we obtain all of the relators for H':

pP1=2¢C2 r1 = craiciby

p2 = c3 7o = biasbiby !

¢ = biay’ 73 = boazbaby !

g2 = arbrajaz :

g3 = agbgagaZ1 T, = bi—laibi—lbi__,_ll

4i = ai—lbiai—lai_—i-ll Tn—2 = bn—3an—2bn—3b;i1

-1 -1
Tn—1 = bp—2an_1bp_2cac] "c5
= b ~1 =b 21b bilert
qn—2 = An—-30p—20n—-3Q,, _1 Tn = Op—1C2C3 Op_1C201 Cg
—1
Gn—1 = Qp—2bp_10n_2c3C5

-1 -1 —1
qn = Gp_1C3C1Cy p_1C3a] Cy

The relator r; is obtained from ¢; using the second conjugacy table.

We have now found a presentation for H’ which is as follows:

H/ =< a17'"7an—17b17"'7bn—1ucl7627c3 ‘ P1,P2,4q1,---34n,T1y...,Tn >
We can simplify the presentation in the following way:
Cy = C3 = 1.

b1 = az. Remove b;: (removes ¢)

/ 1 .
H' =<ai, ..., an1, ba, ..., bp_1, c1, | ai1bjai1a;; (2 <i<n—2), ap_2b, 10, 2,
1 -1 3,1
ap-1C10n-1a7 , craiciby -, asbs -,
1 . 1
bi—1abi1b; (3 <i<n—2), bp2ap_1by—2c] ",

2 -1
by _qjay " >
as = b2_,. Remove ay: (removes ry,)
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! —1 2 2 —1
H' =< aj,a3,a4,...,0n-1,b2,...,bp—1,c1 | arbaaraz ", b;_,bsb;_ja; ",
1 .
a;i—1bja;1a; . (4 <i<n—2), ap_2bp_10n-2,
—1 136 -1
(p—1C1ap-1a; , craiciby , by b3,

bi—laibi—lbi__i_ll (3 <i1<n-— 2), bn_gan_lbn_ch_l >

by = b5 ;. Remove b3: (removes r7)

H' =< a1,a3,04,...,0p—1, b2, b4, b5 . ,bn_l, c1, ‘ albgalagl, b}lo_lagl,
ai_lbiai_la;rll (4<i<n-2),
An—2bn—1an—2, Gp_1c1a,-1a7 ",
Cla161b2_1, b2a3b2bzl, bg_1a4b2_1b5_1,
bi—laibi—lbi__i_ll (5 S ) S n — 2),

—1
bn—2an—1bn—2cl >

ag = b0 . Remove ay: (removes gs3)

/ —1 —1

H' =< ay,a3,a5,06,-..,0n-1,b2,b4,b5 ..., by_1,c1, | a1boaraz ", asbsazas ",
10 10 -1 1 . _1
bn 1bsb, 10 5 ai—1bia;1a;y (6 <1< n—2), ayp_2by_ 1052, an_1c10n-10; ,

— —1 —1 —1 . —1
cla101b2 1, b2a3b2b4 s b%2_1b5 s bi—laibi—lbi+1 (5 § (3 § n — 2), bn_Qan_lbn_ch >

Continue in this way, removing the generators bs, ag, b7, ag . . . and so the relators r4, ¢5, 76, q7, - - -

respectively.

Removing by, k odd where b = bg_l for some d yields the following presentation:

H/ =<a1,a3,...,0ak, Ak415 -+ An—1, b27 b47 crey bk—l—la bk+27 crey bn—la C1, ‘
ai_lbiai_laijrll (2<i<k—1,ieven,and k+1<i<n-—2), bﬁ’_la;il, Ap—9bp_1an—_2,
an_lclan_lal_l, clalclbgl, bi—1az’bi—1bi_+11 3<i<k,iodd,and k+2<i<n-—2),

-1 —1
bg—lak-i-le—lb]H—z? bn_gan_lbn_gcl >
Removing ay, k even where ap = b%_, for some d yields the following presentation:

!
H' =<aj,a3,...,05+1,05+2, .. Gp—1,b2,b4, ..., g, bgr1,...,bp—1,c1, |
_ . . . 1
ai—1biai—1a,~+11 (2<i<k,ieven,and k+2<i<n-—2), bg_lbk+1bg_1ak+2,
—1 —1 —1
Ap—2bn—1an—2, Apn-1¢1Gn—107 ", c1a1c1by ", bi—1a;bi—1b;

(3<i<k-1,io0dd,and k+1<i<n—2), & b}, bpsan_1bp_2c;' >
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Once we have removed a,,_1 = bi_l (and so g,—2) we have the following presentation:

! -1
H' =<ai,a3,...,0p—4,0n-2,02,b4,...,by_3,by_1,c1 | a;_1bia; 10,
: : d d -1 —1
(2<i<n-3,ieven), an_oby_1an_2, b%_jc1b5_ja7 ", craiciby
— . . ! —
bi_laibi_lbijl (3<i<n-—2,io0dd), bg_lc1 s

We remove generators that equal powers of b,_; and these powers are the following:
2,6,10,22,.... These come from the relator of the form bzu_lbmbzn_la;#l: 10 = 2(2) +
6,22 = 2(6) + 10 etc.

Let x; denote the relevant power and let xg = 2,21 = 6. Then x; = 2x;,_9 + z;_1.
Let 2, = AN so X =224 X1 —= N =24\ = A=2o0r A= —1.
z;=A2)+B(-1).i=0: 2=A+4+B,i=1: 6=24-B = A=§ B==2
So x; = $(8(2)" — 2(—1)").

Once we have removed a,_1 and obtained the above presentation, d = x,,_3,d = 7,
and as n is odd: d = %(8(2)”_3 —2),d = %(8(2)”_2 +2).

/
Next we remove c1: ¢ = be_; (removes r,,_1).
/ -1
H' =< ai,a3,...,an4,an-2,02,b4,...,by_3,b 1 | aj_1bia; 10,

. . 4" -1 d d 1
(2<i<n-—3, ieven), ap_2bp_1an-2, b&_ja; ", b _ja1b5_1by",

bi—laibi—lb;_ll (3 <i1<n—2,1 Odd) >

Now we have a; = b¢ | where d’ = z,,_; = (82" —2).

So we remove ay, bs, as, by, ... as before and each time remove g, 7r1,q2,73,. . ..

Once we have removed b,,_3 we are left only with a,,_o and b,,_1 as generators and we have
removed the relators qi1,q2, ..., Qn—2,qn, 71,72, - -, Tn_4,7n SO We have qp_1,7p_3,Tn_2

left as relators.
H =< ap—2,bn_1 | bzlila;igyan—ﬂ)n—lan—% b?_lan—2bzl_1b;i1 >
Ap_9 = bnmil. Remove a,,_o:
H' =< byt | 07 by a0 b b b bt >

n—17Yn—
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As we had d' = x,,_2, we have m’ = Zy(,,_9) = 2,4 and m = 29, 5.
m = 1(8(2)%"75 +2) and m/ = }(8(2)*"~* - 2).

First relator: m/+m/+1 = 22(8(2)?"~1—2)+1 = 1(8(2273)—1) = 2(22"—1) = $(4"-1).
Second relator: m+m/+m—1 = 23(8(2)>"5+2)+1(8(2)>""1-2)—1 = 2(8(2)*"1)— =
2(22" — 1) = (4" — 1). Therefore:

H =<b,_1 | b5_| >=17Zs,

(4" —1).

Wl

where s =

So |H'| = 4(4" — 1) and |H : H'| = 2n. As |G| = |H|/n and |H| = |H : H'||H’| then
|G| =2|H'| = %(4" — 1), which is what we were trying to prove.

8.4.7 w = xpTar37

G=<2x0,...,Tp-1 | TiTitaTit32i11 (0<i<n—1)>, nodd,n#0mod3. G =74,
[ =12.

Relators:

TiTiyaTip3Tiv1, 0<i<n—1

For all i, xjx;442iy3wi11 and x;432; 4771 62+4 are relators and can be rearranged to
give the following:
Ti44Ti43Ti+1T4

Lit+4Ti4+3Li+7Li+6

So X117 = wiprxie for all 4, subscripts taken mod n.
So r1xg = w726 fOr all k.
As n is odd and n # 0 mod 3, gcd(n,6) = 1.

Therefore, 129 = x;112; for all 7.

Let z = zj124

Each relator is of the form z; 12214243 = 22
G —< —1 —1 —1 —1 2 5
=< 20, L1y, Lp—-2,Tpn—1,2 | Z Tpn-1Tp—-2,--,2 XL2T1,2 ~T1X0,Z T0Tn—1,%

Remove z¢ = xl_lz:

1

— —1 —1 —1,.—1 2
G—<x1,...,xn_2,a;n_1,z Z T Tp—1Tn—2,.-, % T2T1,2 T RTp—1,2" >
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Remove 1 = xz_lz:

— -1 -1 -2 2
G—<x2,...,xn_2,xn_1,z 2 T Tp—1Tp—2, .., 2 XT3T2, 2 “XT2ZTp—1,2° >

Remove x5 = x?)_lz:

-1 -1 -2

_ —1.2
G =<3, Tpn-2,Tp—1,2 | 2 Xp_1Tp_2,....,2 T4T3,2 “T3 2

Tp—1, 22 >

_ =1 _.
Remove x,_3 = x, " ,z2:

n—1
1 —not

_ -1 ==L 2
G=<Tp_2,Tpn-1,2 | 27 Tp-1Tp-2,% T, 9% 2 Tp—1,2" >

Remove z,,_9 = a:;ilz:

_n+l1 n—1 2
G=<uwp_1,2|272 xp_12 2 Tp_1,2° >
22 =1 so reduces to:

G =<z, 1,2z ]| 222 _{,22> When "TH even.

n—1>
G=<wxy_1,2z| 2 '22_1,22> When 2 odd.
_ x2
Remove z =z, ;:
G =<x,_1 xfl_l >

_ 2,.2
8.4.8 w = wor3r57]

G=<uz0,...,Tp_1 xixi+3x§+2x?+1 (0<i<n-—1)>, nodd,n#0mod 3. G =1Zs,
[ =12.
Relators:

TiTi+3Ti42Ti+2Ti+1Ti+1, 0 <@ <n—1

For all ¢, ;x;43%i1o%i42Tit10i+1 and Tj4124+4Ti+3%;4+3Ti+2T;42 are relators and can be
rearranged to give the following:
Li+3Li4+2Li42Li+1Li+1T4

Li4-3Li4-2L42L54+1Li4-4Li43
So @1 17; = wipqxiqs for all 4, subscripts taken mod n

So r1xg = xapx3) for all k.
As n is odd and n # 0 mod 3, ged(n,3) = 1.

Therefore, 129 = x;112; for all 7.

Let z = zj 124
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Each relator is of the form x; 12,7137 10T 1oTis1 = 2°

_ —1 —1 —1 —1 3
G =<20,%1,. ., Tn-2,Tn-1,2 | 2 Tpn1Tp-2,...,2 T2T1,2 T1T0,2  T0Tp_1,2" >

Remove z¢ = xl_lz:

— -1 -1 -1,—1 3
G—<x1,...,xn_2,xn_1,z 2 T Tp—1Tn—2,..-,2 X2T1,Z Ty ZTp—1,2" >

Remove 1 = x;lz:

— -1 -1 -2 3
G—<$2,...,xn_2,$n_1,z Z "Tp—1Tp—2y...,2 "X3T2,Z "TX2ZTp—1,% >

Remove x5 = :1:3_1,2:

-1 -1 -2

_ —1.2
G=<x3,...,0p-2,Tp—1,2 | 2 XTp_1Tp_2,...,2 T4T3,2 “T3 2

a:n_l,z3 >

_ 1
Remove x,_3 = x, " ,z2:
n—1

_ _n=1 _ 1 n-1
G=<Tp_2,Tp-1,2|2 133n—1$n—2,z 2 T, 9% 2 $n—1’23 >

Remove z,,_9 = a:;ilz:

n+1 n—1

G=<mzp 1,2]|2 2 xpy_12 2 Ty_1,2°> >

2% =1 so we get one of the following:

(a) 2 =0mod 3, 27t =2 mod 3

2
=< p_1,2 | z222_1,23 >

Q

(b) ”lelmod& 5= =0mod 3
G=<zp_1,2 | 202 1,25 >

(¢) 2 =2 mod 3, %1 =1 mod 3 - not possible as n # 0 mod 3

—2 .
n—1-

(;::<:$n_1 |$g—l >

Remove z =z

8.4.9 w = zxor371129

Relators:

TiTiy3Tit1Tit2, 0 <1 <n—1

For all i, xjx;432i41®i12 and x;412; 44T 02;4+3 are relators and can be rearranged to

give the following:
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Ti+3Ti4+1Ti4+2T5

Ti4+3Ti+1Li+4Ti+42

S0 Xi42T; = Tiy4xiq2 for all 4, subscripts taken mod n

So xoxg = xypxor for all k.

As n is odd, ged(n,2) = 1.
Therefore, xoxg = x;10x; for all 7.

Let z = x40

Each relator is of the form ;32,112 100; = 22

— -1 -1 -1 -1
G—< LOyLLyeee s p—2,Tn—1,% Z "Tp—-1Tp—-3y...,2 “X3T1,2 “X2T0, £ XT1Tn—1,

z_lzz:oznn_g, 22 >

Remove z¢ = xz_lz:

1

— -1 -1 -1 —1,.—1 2
G—<$1,...,xn_2,$n_1,z Z "Ipn—-1Tp-3,...,2 T3T1,Z2 XT1Tp—-1,2 Ty ZIpn-2,% >

Remove 1 = x?)_lz:

— -1 -1 —-1,.—1 -1,.—1 2

G—< Lyeeeyp—2,Tp—1,2 | 2 Tp—-1Tp—3,-.-,2 ~T4T2,Z 1‘3 ZTn—-1,2 Ty ZTp—2,% >
IS

Remove xo = x; " 2:

— -1 -1 —-1,.—1 -2 2
G =< L3500y Tn—-2,Tn—-1,2 | 2 Tp-1Lp—-3,---,2 T5L3,2 T3 ZIn—-1,2 “T42ZTp—-2,% >
Remove x3 = xglz:

— -1 -1 -2 -2 2
G =< T4,y Tp—2,Tn—1,2 | 2 Tp—-1Tp—3,...,2 TeL4,2 “T5ZTp—1,2 “T42Tp—2,% >

Removing relator z; = :17{_&27: leaves us with relators z_lxj+2:17j, 22 and

b

z_Aleilz ZA3ZEn_1, Z_B1:EB2 2832, _o where:

A; =1(i+1—(i+1) mod 4) +1 By =1(i+2— (i+2) mod 4) +1
Ay — i+ 1, if ¢ even B, — i+ 2, if 7 even
i+2, ifiodd i+1, ifiodd
A3 =2(i—1—(i—1) mod 4) +1 B3 = 1(i —imod 4) + 1
1, ifi =0,3 mod 4 ) 1, ifi=2,3mod4
a = f—
-1, ifi=1,2mod 4 —1, ifi=0,1mod 4
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As n is odd, n — 4 is odd.
Remove = =z 'z
n—4 — Lp_9~-

Assume n — 4 =1 mod 4:

_ -1 —n-1l 1 _n-d —n-1l 1 _n-d 2
G =< xn—3axn—27xn—1az‘2 Tp—-1Tp-3,2 4 Ty 92 4 Tp—1,2 4 T, 32 4 Tp-2,%2 >
Remove z,,_3 = x;ilz:

_n—1 1 n—1 _n+3 n—1 2
G=<Tp_2,Tp_1,2 |2 % T, 92 % Tp_1,2 4 Tp_12 3 Tp_2,2° >

If "T_l even:

G = —1 2 _ 2 2
=< Tp_2,Tp_1,2 | T, okp_1,28p_1Tp_2,2" > = < Tp_1,2 | 20, _1,2° >

If 2=L odd:

_ -1 2o _ 2
G =< Tp_9,Tp_1,2 | 2, _92Tp_1,Tn-12Tp—2,2" > = < Tp_1,2 | 2T

n—1»

22 >

Assume n — 4 = 3 mod 4:
+1

G —< ‘ 1 _n4 nZS _njl nZS 2 >
=< Tn-3,Tn-2,Tpn—-1,%2 |2 Tp-1Tn-3,% In—2% ITn—1,% ITn—3% Tn—2,%

Remove x,_3 =z, 2:

_n+1 n—3 _n+l1 -1 n+1 2
G=<Tp_2,Tp-1,2 |2 4 Tp_22 & Tp_1,2 4 T, 12 4 Tp_9,2° >
It "TH ever:

2

_ -1 2 _ 2
G=<Tp-2,Tp-1,2 | Tn22Tp_1,%, 1Tp-2,2" > =< Tp_1,2 | 205_1,2° >

If 2L odd:

_ -1 2o _ 2 2
G=<Tp_-2,Tpn_1,%2 | 2Tp—2Tn_1,2T, 12Tp_2,2" > = < Tp_1,2 | 205_1,2° >
So G =< ap_1,2 | 2202 1,22 > = <xp_1 | zh_| >, as required.

8.4.10 w= Tol4X3T2Xq

G=<uz0,...,Tn_1 TiXi44Ti43Li42Tj41 (0 <i1<n-— 1) >, n 7_é 0 mod 5. G = Zs,
[ =13.

See Subsection 8.4.1.
8.4.11 w = rors0471

G=<uzg,...,Tpn_1 TiXTi45L;44Ti41 (0 <i1<n-— 1) > nodd. G=77Z4,1=14.

Relators:

TiTiy5TitaTit1, 0 <1 <n—1
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For all i, xjx;452i4awip1 and x;442;49T;18%;+5 are relators and can be rearranged to
give the following:
Lit5Li4+4Li41L4

Li45Li44Li4+9L54-8

So x;117; = wip9xiyg for all 4, subscripts taken mod n.

So r1x9 = xorxs) for all k.
As n is odd, ged(n,8) = 1.
Therefore, 129 = x;112; for all 7.

Let z = zj 124

Each relator is of the form z; 12215244 = 22

-1 -1 -1 -1 2
G =< L0y L1y oy Tn—2,Tp—1,% | Z T Tp—1Tpn—2,..., 2 "XT2T1,Z "T1TQ,Z ~TOTp—1,2" >

The remainder of the proof is the same as in Subsection 8.4.7.

8.4.12 w = xor50379

G=<um0,...,Tn-1 | TiTit5Tir32i12 (0<i<n—1)> mnodd,nZ0mod3. G =7Zy4,
[ = 14.

Relators:

TiTiy5Ti+3Ti42, 0 <1 <n—1

For all i, xjx;452i43wi12 and x;437;48T;162i+5 are relators and can be rearranged to
give the following:
Li+5Li4-3Li+2T4

Ti4+5Ti+3Li+8Ti+6

S0 xi40x; = Tiysxite for all 4, subscripts taken mod n

So xexg = wgrrer for all k.

As n is odd and n # 0 mod 3, ged(n,6) = 1.
Therefore, xoxg = x;10x; for all 7.

Let z = x40

Each relator is of the form z;ox;x; 15213 = 22
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_ -1 -1 -1 -1
G =<20,%1,.. ,Tn-2,Tn-1,2 | 27 Tn 1Tn_3,...,2 T3T1,2 TaTg, 2  T1Tp_1,

Z_lxoxn_g, 22>

The remainder of the proof is the same as in Subsection 8.4.9.

2
8.4.13 w = xpx4T37571

G =< x0y...,Tp-1 | xixi+4azi+3x?+2xi+1 (0<i<n-1)>, nodd, n# 0 mod 3.
G = Zg, | = 14.
Relators:

Tt ATi43Ti42%i42%i41, 0 <1 <n—1

For all 7, ;1 4%i+3%i+2%i+2Ti+1 and Tj1o%i6Ti+5%+4%i+4T;+3 are relators and can be
rearranged to give the following:
Li44Ti43Li42Ti42Ti+1T5

T4 4Ti4-3Li4-2L54-6Li+5Li+4
SO Xj1oTiy1T; = TipeTirsTiq for all ¢, subscripts taken mod n

So Tox1T) = TepTsrTar Tor all k.
As n is odd, ged(n,4) = 1.

Therefore, xox129 = xj10x;412; for all 7.
Let 2z = wj1omi1m;

Each relator is of the form ;1 ox;1 121 4T;13%10 = 22

— -1 -1 -1
G = <$0, Tly «ovy Tp—2y, Tp—-1, <2 Z Tp—-1Tn—2Tp—-3, ..., 2 X3T2T1, £ ~T2T1X(,

-1 -1 2
Z TT1T0Tn—1, ¥ T0Tp—1Tp—2, 2~ >

— 11
Remove xg = x] 2w, 2z:

-1

_ -1 -1 -1
G =<T1, ..., Tn-2, Tn-1, 2| 2 Tp 1Tp2Tn-3, ..., 2 T3T2T1, 2 Ty 2Tp_1,

z_lelxz_lzxn_lxn_g, 22>

Remove 1 = xz_lxglz:
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_ -1 -1 —1,.—1
G =<T2, ..., Tn-2, Tn-1, 2| 2 Tn 1Tp2Tn_3, ..., 2 T4T3T2, 2 Ty ZTp_1,
z_zxgzxn_la;n_g, 22 >
_ =1 -1,
Remove ro = x5 7, 2z:
_ -1 -1 -2
G =<3, ..., Tn-2, Tn-1, 2| 2 Tn 1Tp_2Tn_3, ..., 2  T5T4T3, 2 “T4T3ZTp_1,
z_zxgzxn_la;n_g, 22 >
_ 1 =1
Remove r3 =z, x5 z:
_ -1 -1 -2, —1_2
G = <$4, cevy In—92y Tp—1, 2 Z Tpn—-1Tn—2Lnpn—-3, .-y 2 " TeLrT4, < 1‘5 25 Tp—1,
z_zxfxglzzxn_lxn_g, 22>
=1 —1_.
Remove x4 = x5 x4 2:
_ -1 -1 -2, —1_2
G = <$5, ey In—92y Tp—1, < Z Tpn—-1Tn—2Tnp—-3, .-, 2 " X7TEI5, < 1‘5 25 Tp—1,

z_3x6z2:17n_1xn_2, 22>

-1 -1
Remove x,,_4 = x, 31, 52

_ “1 - b - b 2
G =< Tp_3, Tno, Tp_1, 2|2 Tp1Tp_2Tp_3, 2= NA12°0,_1, 272 A2 0y _1Tp_2, 2° >

We have the following cases:

(a) n—4=0mod 3

A=ty

Ay = :E;igx;b
aq %l +1
as %l +1
b=1x4+1

(b) n—4=1mod 3
Ay =,
As = xp—2
alznT_‘r’+1
agznT_5+2

b=1"272 41
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()

(a)

n —4 =2 mod 3 - cannot happen as n #Z 0 mod 3

n—4=0mod 3

If ”T_4 +1o0odd = ”T_4 even —> n —4 even = n even - contradiction so

”T_él—i—leven,"g;‘l+1:0mod2.

-1 -1 -1
Av =z, 5, Ap =, 32, ,, a1 =ax=b=0.

G =< Tn-3,Tn-29,Tn-1,2 | 27 0 10p_0®y_3, 2, on_1,2, 32, on 12,2, 2% >
Remove z,_1 = x,,_9:

G=<uw,_3,Tp2,2 | Z_1$%_2l‘n_3,$;i3l‘n_2,22 >

Remove z,,_3 = x,,_o:

G=<uwy_9,2| z_lzni_Q,zQ >

Remove z = x%_Q:

G=<zp 9|28 5>

n—4=1mod 3

n =5

If”T_E’—i—l even —> %5 odd = n—5o0dd = n even - contradiction so *3>+1
odd, 222 +1 =1 mod 2.
» 73

A1 = :E;ig, A2 = Tpn-2, A1 = 1, a9 = 0, b=1.

_ —1 -1 2
G =< Tn—3;Tn—2,Tn—1,% ’ 2 TIn—1Tn—-2Tn—-3, 2L, _32Tn—1,Tn—-22Tn—-1Tn—2, < >
Remove x,,_3 = x;Engilz

_ 2 2 2
G =<Tp_9,Tn_1,2 | T[_1Tn_22, ZTp_1T5 _o,2° >
Remove x,_o = x,ﬁlz_l

_ -3 -1 ,2
G=<wxp_1,2|x,°27"2°>

-3

Remove z =z~

8.4.14 w= ToX3ALoL1X2T1

G =< L0y y Tn—1 | TiXTi43L;42Li41Ti42T541 (0 <i1<n-— 1) >, nodd, n 7_é 0 mod 3.
G = Zg, | = 14.

Relators are:

TOL3T2X1T2T]

T1X4T3L2T3T2

T2T5L4X3T4T3

TITELELAT5T 4
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Tp—4Lp—-1Tp—2TLn—-3Tn—-2Tn—-3
Tn—3L0Ln—-1TLn—2Tn—1Ln—2
Tp—2L1X0Ln—-1L0Ln—1

Lp—1L2XL1LOL1LO

Let y; = :Ei_l

To = Y1Y2Y1Y2Y3
= T4T3T2T3L2Y2XALIL2TIL2Y2Y3
= X4T3T2X3XAXL3TD
= T4X3Y3YA4Y3YaY5T3T4T3Y3Y4Y3Y4Y5
= Y3YaYs5Y4ys
= TeT5L4T5LAYAY5YAY5

:3:‘6

So xg = x¢

By the symmetry of the relators we get zg = x¢ = x12..., S0 g = zg; where subscripts
are taken mod n.

As nis odd and n # 0 mod 3, ged(n,6) = 1 and so zg; will run though zg, ..., z,—1.

So xg = x1 = ... = x,—1 and, by the relators, xg =1.

8.4.15 w = ToToxr1X3027,

G =<2x0,...,Tp-1 | TiTit2Tit1Ti13Ti12%i41 (0<i<n-—1)> mnodd, n# 0 mod3
G =Zg, | = 14.

Relators are:

TOX2X1T3T2X1
T1T3T2T4T3T2
To2XAL3TE5T 4T3

LI3L5L4LEL5L 4

Tn—4Tn—2Tn—-3Tn—1TLn—2Ln—-3
Tn—3Tn—1Tn—-220Ln—-1Tn—2
Tp—2X0Ln—-1L1LOLP—1

Tp—1L1L0L2L1L0
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Let y; = a:i_l

o = Y1Y2Y3y1y2
= T3X2X4X3L2Y2Y3TL3L2L4X3T2Y2
= T3T2X4XL3L2X4L3
= T3Y3Y4Y5Y3Y4T4T3Y3YAY5Y3Y4T4T3
= Y4Y5Y3Y4Ys
= Y4Y5T5T4T6L5L4Y4Y5

:x6

So xg = x¢

By the symmetry of the relators we get zg = xg = x12..., S0 g = Tg; where subscripts
are taken mod n.

As n is odd and n #Z 0 mod 3, ged(n,6i) = 1 and so xg; will run though zg, ..., 2, 1.

So xg = x1 = ... = x,—1 and, by the relators, xg =1.

8.4.16 w = xoxlxz_lxl@xl—l

—1 -1 .
< @05+ Tt | BT T 1T (0<i<n—1)>, nodd. G = Dont1_y

Relators are:

1 -1 .
TiTit1 %, o Tit1Ti42T; 17 0<:<n-1

For all 4, $i$i+1$i__|_12$i+1$i+2$i__i_11 and $i+1mi+2$i—fgmi+2:ﬂi+3$;&2 are relators and can be
rearranged to give the following:

-1 —1
T oit1Li42T; L 1 LiTi+1

—1 —1
T oli1Ti4+2T; 4 3Ti42Ti+3
So 117,:31117@'117@'“ = :Ei__:3$i+2$i+3 for all 4, subscripts taken mod n

So ZE1_1$0$1 = $3_k1$2k$3k for all k.
As nis odd, ged(n,2) =1

—1

Therefore, a:l_lxoxl = x; 1 2;wiq1 for all 4.

Let z = x;rlla:ixiﬂ
2

Each relator is of the form xi_jzxiJrla:ng;rllxile =z
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_ 1 -1 -1 -1 .2
G =< L0, L1y Tn—2,Tp—1,% | BT _1Tn—2Tn—1,-..,2Ly T1T2, 2T TOL1, Tn—1L0RTy , 2~ >

Remove zg = x1zx]

_ 1 -1 -1 1y .2
G=<x1,...,Tn-2,Tn—1,2 | 2, 1 Tp-2Tp_1,...,2Tq LT, Tn_1T12L] (2T122] ), 2" >

_ =1,
Remove z1 = w9z,

o 1 -1 -1 —1\3 2
G=<x2,...,Tn-2,Tn_1,2| 20, {Tp—2Tn_1,...,2L5 ToT3, Tp_1L22Ty (2L22T5 )", 2% >

Remove zo = $3Z$3_12

N -1 —1 —1 —1\7 .2
G=<x3,...,Tn-2,Tn—1,2| 2T, {Tp—2Tn_1,...,2L, T3T4,Tp_10322T5 (2x3225" )", 2% >

-1 .
Remove x,_3 = x,,_22x, _5:

_ -1 -1 -1 y2n2-1 _2
G=<Tp_2,Tp_1,2 | 22, Tn_2Tn_1, Tn_1Tn—22T, _o(2Tp_22T, ) , 25 >

—1
Remove x,—2 = x,,—122, "

(e za )2 22 >

n—1
_ -1 on—1_1 -1
G=<xp1,2| Tpn_1xn_12(x, " 225_1%) x, "4,

G=<uwp-1,2 | Tp_12pn_12T
22>

—1 2n71_1 2
G=<xp1,2| xpn_r12(z,  22n_12) 25 >

_ _ n—1__
Soa; b = z(x !t 2en_12)? !

- . 29, _ —2_
=2z, 2w 1 2) (a2 12)P T T (s 12)? ]

— -1 y2n=2—1 -1 =21
=zx, 4 (2xp_122,”,) 2&n—12(X, "1 2Tp_12)
— -1 y2n—2-1 -1 27721
=zx, 4 (2xp_122,”,) 2(Tp_122,"12) Tp_1%
= wzw_l,
— _ -2 _
where w = za 1 (2,22, 1)?" 7!
So 337_111 is a conjugate of z and so x%_l =1
2 n—l-1 2
G=<zp_1,2| x5 1, Tn-12(Tpn-12Tp_12) 25 >
_ 2 M1 2
G=<uzp_1,2| x;_1,(Tn_12) , 2% >= Dont1_9
_ -1 -1
8.4.17 w = xoT, T3T2xy T1
-1 1 .
<@y 1 | iy T 3T 0w, w1 (0<4i<n—1)>, nodd. G = Daynt1_y

Relators are:

1 -1 .
TiT; oTiy3Tit2l; Tiyl, 0<i<n—1
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For all i, xix;’}2xi+3xi+2x;1xi+l and xi+2xif4xi+5xi+4x;r12xi+3 are relators and can be
rearranged to give the following:

—1 —1
T oli43Ti42T; Li4+1L4

—1 —1
L oTi43Ti+2T; L 4 Ti+5Li+4
So :Ei_1$i+1$i = a:i_+14:17i+5:17i+4 for all 4, subscripts taken mod n

So :Ealibll‘o = $A:k1$5k$4k for all k.
As nis odd, ged(n,4) =1

Therefore, :Ealajlzno = a:i_laziHa:i for all 7.
Let z = 27 'wj1m;
— &y i+14e
Each relator is of the form m;f2mi+3:ni+2:n;1:ni+1azi = 22
_ -1 -1 —1 -1 .2
G =< Lo, L1y Tn—2,Tn—-1,2 | 2L, _oln—-1Tn—2,...,2L1 T2T1, Z:EO L1, LOXN—12L,_1, % >

-1 .
Remove x,_1 = T,_22x,, _5:

_ —1 —1 —1 —1 2
G =<20,%1,..,Tn-2,2| 22, 3Tn_2Tp_3,...,2T T1X0, LoLn—22%, _o(2Tn_22T, "5), 2" >
-1 .
Remove z,_o = w327, _3:
G- —1 —1 —1 —1 33 .2
=< Z0,T1,.--,Tn—3,% | 2L}, _4Tp—3Tn—4, .-, 2Ly T1Z0, xoxn_gzxn_g(zxn_gzxn_g) , 25>
-1 .
Remove x,_3 = x,,_427, ",
G — —1 —1 —1 —1\7 .2
=< T, L1, .-+, Tn—4,2 | BT}, _5Tp—4Tn—5, ..., 2Ly T1Z0, xoxn_4zxn_4(zxn_4zxn_4) , 25>

Remove zo = x1zx] "

_ _ _ n—2__
G =<wzg, 11,2 | 22y 1x1xo,xoazlzx1 1(lezx1 1)2 122>

Remove z1 = xpzx|

_ _ n—1__

G =< g,z | xoxo2T, 1(zxozx0 1)2 L22>
—1\2n—l-1 -1 _2

G =< g,z | xoxoz(2z022y ) xy o,z >

G =< x0, 2 | azoz(z:ﬁoz:nal)znil_l, 22 >

The remainder of the proof is the same as in Subsection 8.4.16.
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8.4.18 The remaining groups in each family

In this section we have proved each group in the family is finite for the specified n. What
we have not yet proved, apart from the case where w = xg...x,_1 which is dealt with

in Subsection 8.4.1, is that the groups in the family are infinite for all other values of n.

Apart from those of the form w = zg...xz_1, the other families are either finite when
n is odd or when n is odd and n # 0 mod 3. For each of these families we look at the
case when n = 2 and for those which also require n Z 0 mod 3, we also look at the case

when n = 3.

Finite when n is odd:
Go(zom273) = < w0, 71 | 2823 >
xoxlxgxl) =< 29,21 ’ (xox1)2 >

—1
Go(zoxy a;l a;2 ) = < x,x1 | TOT1 >

D

_ 2.2
a(xoxsxrize) = < xo, 21 | TGXT >

D

2 ZE0:E5£L‘4$1) =< X9, T1 | ($0$1)2 >

Q

-1 -1 -1
2(xox12y xlxgznl ) = <wzo,21 | Tox1T T1TOT] >

Ga(
(
(
(
(
G2($0$2 3T, 1x1) = < x0,71 | x% >

Finite when n is odd and n # 0 mod 3:
Gao(zoz47371) = < T, 71 | TE2? >

Gs(zozaz371) = < T0, 71,72 | (T071)?, (T122)?, (T270)% >

Go(zor3r323) = < w0, 21 | TOT 17323 >

Gs3(zor3r323) = < wo, 71,72 | 232323 >

Go(zors57372) = < W0, 71 | 2823 >

G3(wox5w370) = < T00, 21, T2 | (wo21)?, (2122)2, (T270)? >

QD

2 _ 2 2 2
3(zoraz3aszry) = < o, T1, T | TOT1TOT5L1, T1LT2L1THT2, TaTOLT2LI L >

D

2(Tox3xr2r120201) = < X0, X1 | (ZE0:E1)3 >

_ 2 2 2
= < x9,T1,T2 | TOT1TOTHT1, T1T2L1T(GL2, T2LOT2XLITo >

Q

3(XoT3T2X1T2T1

D

= < 20,71 | ZoT1732% >

(

(

(

(

(

2(x0x4x3x§a:1) = < x0,21 | (x%x1)2, (x%a;o)z >

(

(

(

2(ToT2w123T271
(

)
)
)
)

_ 2
Gs(roxraxir3w021) = < X0, 21, %2 | (ToT221)” >

The groups < xg, 71 | 7322 >, < o, 71 | (z071)? >, < 30,71 | TOT1 >,
—1 -1 2 2,.2
< g, 1 | woT12y T1TOT] T >, < X0, X1 | ] >, < To, X1 | ToT1X[LT >,
< To,%1,%2 | :ng%x% >, < zo,21 | (zor1)? > and < xg, 21,22 | (zow221)? > all have

more generators than relators so they are infinite.
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The remaining three groups, < xq, 1,22 | (zor1)?, (1122)2, (2220)? >,
2,0 \2 (2.2, \2 2 2 2
< zg,x1 | (xgz1)?, (2720)° > and < zo, 21, T2 | ToXT1XOT5T1, T1T2T1LGL2, T2LOT2TITO >,

can all be found to be infinite by KBMAG.

Therefore, each group in the family is finite if and only if » meets the stated conditions.

8.5 Sporadics

In Chapter 6 we defined a sporadic to mean a word which appears for small n but does
not occur in the set of words for each [ which we have used throughout. They are
precisely the words for which n divides the ¢ exponent sum but the exponent sum is
non-zero. For example, when [ = 8, the word 't~ 'z~ 1z~ 12¢~! has t-exponent
4 and is a valid word for an irreducible presentation only when n = 4. There are 3 words
valid for when n = 5 and for no other n when [ = 8, and these 4 words are the only
sporadics for [ = 8. A full list of sporadics can be view in [24]. It is worth noting that

there are no sporadics when [ = 7.

As with the previous words for which the t-exponent is zero, our list of sporadic words
increases as [ increases. We therefore handle the words in the same way as before, looking
at each one for 8 <[ < 12 and simply trying to compute the finite groups for 13 <1 < 15.
Note that, whereas before we looked at each word for 4 < n < 50, we now require only
to look at the one relevant n. It is possible a particular sporadic word may be valid for
more than one n, for example, if the t-exponent is 8 then it is valid for n = 8 and n = 4.
However, we treat such a sporadic word separately for the different values of n so that

we work using a list of words for each different [ and each different n.

The following table shows how many sporadics there are for each [ and n.

\n 4 3 6 7 8 9 10 11 12| Total
8 1 3 0 0 0 0 0 0 0 4

9 6 8 0 0 0 0 0 0 0 14
10 11 33 3 6 0 0 0 0 0 93
11 26 64 34 21 3 0 0 0 0 178
12 85 210 71 122 9 6 0 0 0 203
13 | 363 489 328 287 142 41 3 0 0| 1653
14 | 636 1766 606 1074 285 300 19 13 0 | 4699
15 | 2788 3960 2886 2589 1693 894 346 77 5 | 15238
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8.5.1 [<12

As sporadics only exist for small n, there are no families of groups. Following are the

finite groups found for the sporadics when [ < 12.

Group G |G| | Structure of G
=9
< Xy, T3 | $il‘i+1l‘i+2l‘22+3 (0<i<3) > 5 Zs,
< XOy .y | azixijrlzxngi% (0<i<4)> 22 Zioo
=10
< @0, .. T4 | TiTipowipsri, (0<i<4) > 275 711 X ZLos
< @0,y T4 | Td oTi3Tigs (0 <0 < 4) > 1025 Za1 X Lo
< XOy ey T5 | TiTiqoTipaxiys (0 <0< 5) > 24 Zs X Zg
=11
< @0, ..., 23 | Twd Tipoxd 4 (0<i < 3) > 168 | Z7 x SL(2,3)
< @0, ..., 23 | miwd @i ,xd g (0<i<3) > 7 Zr
< Xgy.. ., 3 | $i$;f1$i$;4r12 (0<i<3)> 13 Z13
=12
< Ty T3 | TiTip 1T 42X 3T T Z._+11 (0<i<3)>| 624 Zizg X L
< @0, ..., 23 | miwd @i ,wd g (0<i<3) > 6260 | 1<Zgs5 <G
< XOy ey | x,xz+2xz+4xz+1 (0<i<4)> 1025 Za1 X Zos
< XOy ey | x,xz+2xz+4xz+1 (0<i<4)> 275 Z11 X Zos
< XOy .o,y | Xy xl+2xl+14a; Tivg (0< 1< 4) > 120 SL(2,5)
< Xgy.e .,y | xixiﬁszgwi zip1 (0<i<4) > 1 74
< Xgy ..,y | xixi+1x?+2xi+3x?+4 0<i<4)> 7 L
< Xgy.. ., T5 | x-x§+2x,~+3az,~+4x,~+5 (0<i<5b5)> | 15624 | 147434 4G
< X0y T6 | TiTiroXir3TitsTive (0 <1< 6) > 5 Zs,

The following table lists the number of unknown cases for [ < 12. There are no unknowns

for [ <10, n > 6 and so these unknowns do not affect Theorem 5.2.4.

Length 8 9 10 11 12
Total remaining 0 0 4 20 30
Total remainingn >6 [0 0 0 6 10

For [ < 10 the remaining groups are as follows.
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1

1 —2).
?

o Gs(x) woxs x,

o Gs(xy woxy ' x);

2 —2).
)

1
G5(x0 Loly

22)

—1
Gs(zg x5xy).

2 2

Note that the words 2 '3z, 2 and xy 'z32? appearing in the above list are n-equivalent

—1,_.-2
to xy " xy

Section 8.2.

8.5.2

2

13<1<15

x? and To 1x2x% respectively, which appear in the list of remaining groups in

Following are the list of finite sporadics found for [ = 13, 14 and 15 by asking GAP to

tell us which of the sporadic words bring about finite groups.

=13
Group G |G Structure of G
< X0y T3 | TiTip 1T 0Ty 3T T z+1 (0<i<3) > 1015 | Zog % (Z7 x Zs5)
< T, .. 23 | x2+1x2+2$l+3$ xip1 (0<i<3) > 1015 | Zog % (Z7 x Zs5)
< XQy - Xy | T 1 Tig 2Ty 3T x2+11 (0<i<3)> |169125 | 179955 <G
< Xoy .23 | Xy xl+1xl+2xz+3x,xz+1 (0<i<3)> 791 Zq13 X Ly
< Xgy..., 3 | a:,a;,+1xl+12x x2+2 (0<i<3)> 17 Za7
<@gy .., w3 | Timip1 2y T (0 <0< 3) > 1 Trivial
< Xy, T3 | azixfﬂazi—f?)x;rlz (0<i<3)> 29 Ziag
< XOy .., T3 | azixfﬂazi—fgxi_é (0<i<3)> 25 Zios
<Xy T3 | BT 13T T2 (0 <10 < 3) > 5 Zs
< Ty .., T3 | :EZZEH_1$Z+3£L‘ xl+2 (0<i1<3) > 13 Z13
< Xy, T3 | $i$i+1$i+3l‘i+2 (0<i<3)> 29 Ziag
< Xy, T3 | $i:ni__|_21:nl2+3xi_f2 (0<i<3)> 25 Zas
< Xy, T3 | ﬂj‘iﬂj‘i__i_llﬂj‘i+3ﬂj‘i_1$i+2 (0<i<3) > 5 Zs
< x0,...,x3 | wiwd w,xd 4 (0<i<3) > 9 Zyg
< Xy n sy | xixi+1x§+2x%+3x?+4 (0<i<4)> 8 Zg
< XOy ey g | xix§+1xi+2x%+3x?+4 (0<i<4)> 8 Zg
< Zg,...,Ts ’ xixi+2xi+4xox;}1 (0 << 5) > 4095 1< Zgl < G
< Zg,...,T5 ‘ xixi+1xi+2xi+3xi+4x§+5 (0 <1< 5) > 7 L7
<Xy T | xix?+1a;i_j4xi_j3 (0<i<5b)> 19 Z1g
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142

Group G |G| | Structure of G
< XOy ., T | azixi_flxi+4xi_+13 (0<i<5b)> 35 Zss
< Zo,...,Tg ‘ xixi+2xi+3xi+5a:?+6 (0 <1< 6) > 6 Zg
< Zg,...,Tq ’ TiTi42Ti43Li4+-4Li4+5T516 (O <1< 6) > 6 Zg
< Zo,...,T7 ‘ TiXi4 2L 4 4T545L547 (0 <1< 7) > 5) Zs
=14
Group G |G| Structure of G
< &0, w3 | TiTip127 HTigsrie (0<i<3) > | 122640 | 1< Z9955 4G
<Xy -y Ty | BT 1T 0T 3T qmimiy (0 <0< 4) > 7 Z7
< Ty, Ty | $i$i+1$i+2$i+3xi+4xixi_jl (0<i<4)>| 7775 1<7Z311 <G
< @0,y x4 | Tt @ owiggad, (0 <0< 4) > 9 Zyg
< X0y, Ty | xixf+1x%+2xf+3:n?+4 (0<i<4)> 9 Zg
<o, T5 | Timipemiwsy (0 < < 4) > 728 Zas » Lsg
< Ty, T5 | :Ei$i+1:ni+2:nl2+3xi+4x?+5 0<i<4) > 728 Z13 X Zsg
< Zg,...,T8 ’ TiTi43Ti44T547L548 (O <1< 8) > 5) Zs
< Zg,...,T9 ‘ T4 4T 8T 549 (0 <1< 9) > 40 Zis X 7.8
=15
Group G |G| | Structure of G
< Zg,...,T3 ‘ TiTi1L42T5 43T L5 41542 (O <1< 3) > 7 L7
< Zg,...,T3 ‘ xilengazHgmixin;}z (O <1< 3) > | 125 Ziog N Zis
< Xgy ..., T3 | xixi+1xi_f2xia;i__:3xi—_:2 (0<i<3)> 29 Ziog
< Xy -, T3 | :EZ-:EHlxi_Jrle?:E;fz (0<i1<3)> 37 Zis7
< Xy, T3 | $i$i+1$;4_12$i$i__i_13$i__,’_22 (0<i<3) > 29 Zag
< Xy, T3 | xixiﬂx;}ﬂi—%?” (0<i<3) > 5 Zs
< Ty .., T3 | :EZ-:EHl:Ei__:z:E;lxi_fgx:Q (0<i<3) > 39 Zi39
< Ty .., T3 | :EZ-:E?H:E;_SQ:E;_:lx:ngg (0<i1<3) > 5 Zs
< Ty .., T3 | :EZ':E12+1ZEZ-__’_12ZEZ-__’_11$Z-_+13$Z-_+12 (0<i<3) > 13 713
< XOy ..., T3 | a;iazglﬂa;if?)xi_jz (0<i<3)> 53 Zis3
< Xoy ..., T3 | a:ia;?Ha;ngix%H (0<i<3)> 791 Z113 X Zp
< Xgy ..., T3 | xix?ﬂxwgazlﬁlxi—é (0<i<3)> 5 Zs,
<xo,... w3 | md A e s (0<i<3) > 507 | Zyz x (Z3 x Zq3)
< Zgy..., 3 | azixfﬂa;i_j?)x;éxifgxiﬂ (0<i<3)> 29 Ziag
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Group G |G| Structure of G
< Xy -, T3 | $i$22+111}‘7;__i_13$i+1$i_+23 (0<i<3) > 37 Zis7
< Ty .., T3 | xixyj_-}-ll':vi+2$i_+11$12+3xi_—|—12 (0<i1<3) > 17 Z17
< Xgy.. ., 3 | xia;i_fla;‘;’ﬁxi_é 0<i<3)> 53 Z53
< XOy ..., | 25T Zflx 2x;f3x2+2 (0<i<3)> 791 Zq13 X L
< Xoy ..., T3 | xixiflxiJrgxi 2tito (0<i<3)> 13 713
< xo,... a3 | Tim A wisr; e (0<0 < 3) > 507 | Ziz % (Z3 x Z13)
< Xgy..., 3 | xix;f1$i+3xi__,’_l2xi+3xi__i_ll (0<i<3)> 29 Ziag
< @0,... w3 | @i g @t Lwt g (0<i < 3) > 264 | 19Z2,<4Qs 4G
< Xy -, T3 | $?$§’+1$§+2$§+3 (0<i<3) > 11 711
< Xy -, T3 | :E?xg’Jrl:Ei_fg:E;fQ (0<i<3)> 41 L4y
< xo,... a3 | 2w 2 g1 (0<i<3) > 41 Zn
<Xy Ty | TiTiro®ip 3T Tip1Tirg (0 <0< 4) > 6 Zg
< Ty, Ty | xixi+2:17@2+3:17i+4:17i+3x22+4 (0<i<4) > 8 7
< Ty, Ty | xixi+1$i+2$?+3:ni+4xixi+1 (0<i<4) > 8 7
< Xgy.e., 5 | azix?+2a;if5a;if3 (0<i<5)> 35 735
< Xgy.e., 5 | azixi_f2a;i+5a;i_j3 (0<i<5)> 19 Z1g
<Ly, T | T2 o Tigsx? gwt s (0< i <5) > | 262143 | 1 <DZg709 <G
< Xgy.. ., T | 1T Z+3azlf4azl+3 (0<i<5)> 117 Z117
< Xgy.. ., T | 1T Z_Ha:ZJila;ZJr2:,)(0<z’<5)> 37 Zi37
< Xoy.. T | 1T 14313312+4sz:3 (0<i<5)> 133 7133
< Tg,...,T5 | T Z+1$2+4$2+3(0<i<5)> 91 Zg1
< X0y T6 | TiTivsTireTite (0 <11 <6) > 7 Zr
< T0, ..., X6 | Tiigp3wh 422 52?6 (0 <0< 6) > 8 Y
< X0y .-, W6 | TiTipoTit3Tip5TipeTiv1 (0 <1< 6) > 6 Lg
< Ty, T6 | xixi+2:17@2+3:17i+4:17i+5x22+6 (0<i<6)> 8 7
< L0, 6 | Tilip1Tip2Tig3Tipatipsthyg (0 <0 < 6) > 8 Zg
< Xgy.e .27 | azix?+la;i_£5a;if4 0<i<7) > 97 L7
< Xgy.e .27 | xix;ﬁlxi+5xi__,’}4 0<i<7) > 97 L7

8.6 Number of generators required for finite groups

All of the finite groups in this chapter can be generated by up to three generators.
We know a group can be generated by up to two generators if the group is cyclic or

metacyclic. Otherwise GAP has been used to simplify the presentations.
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While we have not found any interesting groups needing four generators, we have found
groups which may require three. We list those groups for which GAP has not found a

presentation using fewer than three generators, each of which can be presented on three

generators.
o G=<uxg,...,23 | xixi+2xi+3x?+2x?+l (0<i<3)>,1=13, |G| =1015,
o G=<u,...,25 | iz w50 5w (0< i< 5) >, 1 =15, |G| = 6552.

All the remaining groups mentioned in this chapter require at most two generators.
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