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ABSTRACT 

This study considered a novel approach to selecting isolates of Hyphomycete fungi 

as mycoinsecticides for biological control of aphids in arable crops in the UK. The 

approach was designed to select isolates which were compatible with both the 

biotic and abiotic environment. 

Aphis fabae was chosen as a representative target aphid for bioassays, based on 

results of preliminary experiments. Eighteen isolates of fungi were screened at a 

single concentration of 1x 108 conidia ml"' against apterous adult A. fabae, which 

were incubated at 23°C. Spray applications were made using an electrostatic rotary 

atomiser in both laboratory and field experiments. Isolates that originated from 

aphid hosts were most pathogenic to A. fabae. Four isolates were selected for 

further studies; ARSEF 2879 (Beauveria bassiana), HRI 1.72 (Verticillium 

lecanii), Mycotrol strain GHA (B. bassiana) and Z 11 (Paecilomyces 

fumosoroseus). 

Isolate HRI 1.72 was most virulent to A. fabae in dose-response assays compared 

to other isolates; at concentrations of 1x 105 conidia ml-1 and above, mortality of 

aphids due to infection by HRI 1.72 was 100%. Isolates of P. fumosoroseus and V. 

lecanii were able to grow and germinate better in vitro at low temperatures (10 & 

15°C), than isolates of B. bassiana and Metarhizium anisopliae. Aphis fabae and 
Myzus persicae, inoculated with isolate HRI 1.72 and incubated at 10°C, 

succumbed to infection after a significantly shorter period of time compared to 

other isolates. 

Rhopalosiphum padi was most resistant to infection by the four isolates compared 
to five other species of aphid. Aphis fabae, Acyrthosiphon pisum, Sitobion avenae, 
Metopolophium dirhodum, R. padi and M. persicae were most susceptible to 
infection by isolate HRI 1.72. Aphids infected with isolates of V. lecanii often had 

fungal sporulation on their legs and died attached to leaves on which they were 
feeding. 

The isolates Mycotrol strain GHA and ARSEF 2879 were pathogenic to the 7-spot 
ladybird Coccinella septempunctata and the generalist parasitoid Praon volucre. 
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The isolates HRI 1.72 and Z11 had very little impact on these natural enemies 

tested. 

When aphids of A. fabae were co-inoculated with isolates of Hyphomycete fungi 

and Erynia neoaphidis, most individuals succumbed to infection with E. 

neoaphidis. A significant number of aphids died within 24 hours of inoculation and 

showed no signs of external sporulation. The potential interactions between these 

natural enemies in the biocontrol of aphids are discussed. 

The spatial and temporal distribution of aphids and their natural enemies, in field 

bean and wheat crops, was determined in two field seasons (1997 & 1998). Aphids 

sampled from the field, after application of Hyphomycete fungi in 1998, mostly 

succumbed to infection with E. neoaphidis. Epizootics of E. neoaphidis were 

recorded in both years. Greater numbers of healthy laboratory aphids succumbed to 

infection with Hyphomycete fungi when they were bioassayed on leaves sampled 

immediately following spraying (51 - 100%) compared to 24 hours later (8 - 65%). 

Microclimate recordings showed humidity in both crops was generally >90% 

overnight and differences were as great as 15% between the top and bottom of crop 

canopies. Temperature differences were as great as 5-7 °C between individual 

sensors. 

The implications of using a biorational approach as part of the development of 
Hyphomycete fungi as mycoinsecticides for the control of aphids is discussed. 
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Chapter 1- INTRODUCTION 

1.1 Aphids as pests 

Aphids have a world wide distribution, although the greatest number of species 

occur in temperate regions, and represent a huge pest problem in agriculture. There 

are over 4,000 species of aphid (Minks & Harrewijn, 1987) which is relatively few 

compared to 10,000 species of grasshoppers, 12,000 geometrid moths and 60,000 

weevils (Dixon, 1998). However, one in four plants in temperate regions may be 

infested with aphids. 

The success of aphids in colonising host plants has largely been attributed to their 

ability to reproduce parthenogenetically for much of the year (Dixon, 1998). 

Parthenogenetic females are able to reproduce without fertilisation, producing 

numerous offspring. These nymphs may have embryos developing within them 

when they are born and these embryos may also have embryos. This "telescoping" 

of generations and viviparity (giving birth to live young) allows aphids to have 

very high reproductive rates. The high rate of increase of aphid populations, 

coupled with the fact that aphids are phloem feeding plant bugs has lead to their 

status as major agricultural crop pests. 

The economic damage caused by aphids in agricultural crops is due to direct 

feeding damage and the transmission of plant viruses. Direct injury of economic 
importance usually only occurs when aphids reach high numbers. Such outbreaks 

tend to be sporadic in Britain and Europe but in some years losses in cereals, for 

example, have exceeded 30% (Kolbe, 1969). More regularly, serious yield losses 

in cereals in the UK are due to barley yellow dwarf virus (BYDV). This virus is 

persistent in aphids so once they are infected, they may transmit the virus for life. 

The most economically important vectors in cereals in the U. K. are the bird-cherry 

oat aphid Rhopalosiphum padi (L. ) and the grain aphid Sitobion avenae (Fabricus) 

(Plumb, 1986). On legumes, the black bean aphid, Aphis fabae Scopoli, and the 

pea aphid, Acyrthosiphon pisum (Harris), are major pests. It has been suggested 

that the most important aphid pest world wide is the peach potato aphid Myzus 



persicae (Sulzer) (Mackauer & Way, 1976). It has been reported as a vector of at 
least 24 viruses of plants and of at least 100 diseases altogether in over 50 different 

plant families. These families include beans, sugar beet, brassicas and potatoes in 

the UK (Kennedy, Day & Eastop, 1962). 

Current data show that, in wheat and winter barley, over 80% of foliar insecticide 

applications are made against aphids, representing an area of over 1,900,000 ha 

(Thomas, Garthwaite & Banham, 1996). As the incidence of BYDV differs over 

years and regions, farmers usually apply prophylactic sprays against aphid vectors 
in the autumn. The annual cost of this control is estimated at around £10 million. 
Similarly, in other crops, a large percentage of the total area treated with 
insecticides is for aphid control; between autumn 1995 and harvests in 1996, 

84.3% of peas, 62.8% of beans and 81.3% of ware potatoes were treated (Thomas 

et al., 1996). 

It is not surprising that with such high use of chemical insecticides, there has been 

increasing concern over public health and the environment. Additionally, problems 

of insecticide resistance and secondary pest outbreaks have also become more 

apparent. It has become more difficult to control M persicae, for example, due to 
insecticide resistance; in summer 1996 it was not possible to control some 

populations of M persicae that were present on potato and brassica crops using 

currently available chemical sprays (Foster & Devonshire, 1996). For these 

reasons, there is increasing pressure to move towards more sustainable practices in 

agriculture using environmentally acceptable methods of control for insect pests. 

1.1.1 Biology of aphids used in this study 

1.1.1.1 Rhopalosiphum padi 

Apterous aphids are green mottled yellowish green or olive-green, or dark-olive to 

greenish black, often with rust-coloured patches around the bases of the siphunculi. 
Alates have a pale to dark-green abdomen. Aphids are broadly oval and both 

apterae and alatae are 1.2 - 2.4 mm long. 

2 



In Europe, the usual host is the bird-cherry Prunus padus and the secondary hosts 

are various species of Gramineae, including all the major grasses and cereals. The 

life cycle is heteroecious (host alternating) holocyclic between P. padus and 
Gramineae in Europe but may be anholocyclic on Gramineae if the primary hosts 

are not available and where winter conditions permit (Blackman & Eastop, 2000). 

Aphids which have a holocyclic life cycle produce sexual morphs in the autumn 

which produce eggs for overwintering. Those which adopt an anholocyclic life 

cycle show permanent, year-round parthenogenesis. 

1.1.1.2 Sitobion avenae 

Apterous aphids are yellowish-green or dirty reddish brown and sometimes shiny, 

with black antennae and black siphunculi. Alatae are similarly coloured but may 

have distinct dark dorsal intersegmental markings. Aphids are broadly spindle 

shaped and medium sized; the apterae are 1.3 - 3.3 mm long whilst alatae are 1.6 - 
2.9 mm long. 

The host plants are numerous species of Gramineae which includes all the cereals 

and pasture grasses of temperate climates. The life cycle is monoecious holocyclic 

on these hosts, or anholocyclic where warm winters allow. Sitobion avenae is a 

vector of several viruses including BYDV, bean yellow mosaic, pea mosaic and 
beet western yellows (Blackman & Eastop, 2000). 

1.1.1.3 Metopolophium dirhodum 

Apterous Metopolophium dirhodum Walker are green or yellow-green with a 
darker green longitudinal mid-dorsal stripe. The legs, siphunculi and cauda are 

pale. The apterae are spindle-shaped and 1.6 - 2.9 mm long whilst alatae are 

similarly shaped but may be slightly larger at 1.6 - 3.3 mm long. 

The primary hosts are wild and cultivated Rosa spp. and the secondary hosts are 
numerous species of cereals and grasses. The aphid is heteroecious holocyclic 
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between these two hosts, but may overwinter parthenogenetically on grasses in 

some areas of Europe (Prior, 1976). As well as feeding pressures exerted on host 

plants, the aphid is a vector of BYDV. 

1.1.1.4 Aphisfabae 

Young aphids are matt black in colour but, as they age, may develop white wax 

markings. Apterae are 1.5 - 3.1 mm long whilst alatae are 1.3 - 2.6 mm long. 

The aphid is heteroecious holocyclic between spindle Euonymus europaeus or 

guelder-rose Viburnum opulus and a very wide range of secondary host plants 

which includes many crops (Blackman & Eastop, 2000). It is a particular pest of 
beans Vicia faba, causing direct feeding damage due to swamping colonies 
developing on young shoots and other aerial parts of plants. The aphid is also a 

vector of viruses in sugar beet. 

1.1.1.5 Acyrthosiphon pisum 

Aphids are large and green or pink with slender appendages. Apterae are 2.5 - 4.4 

mm long whilst alatae are 2.3 - 4.3 mm long. The life cycle is holocyclic on 

various leguminous hosts (Blackman & Eastop, 2000). The species A. pisum is a 

complex of races and subspecies and populations of these are known to occur with 

particular host-plant preferences in Europe (Müller, 1980; Müller & Steiner, 1985). 

1.1.1.6 Myzus persicae 

Apterous adults are whitish green, pale-yellow-green, grey-green, mid-green, pink, 

red or almost black and are uniformly coloured and not shiny. Alatae have a black 

central dorsal patch on the abdomen. Apterae and alates are medium sized, 1.2 - 
2.1 mm long (Blackman & Eastop, 2000). 

The primary host is usually the peach tree Prunus persica and the nectarine tree P. 

nectarina. There are a very wide variety of secondary hosts which cover over 40 
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different plant families and include economically important crops. The life cycle is 

generally heteroecious holocyclic between Prunus and secondary hosts in 

temperate areas. In warmer climates and when peach is absent as a host, an 

anholocyclic life cycle is prevalent on secondary hosts (Mackauer & Way, 1976). 

Myzus persicae is the most important aphid virus vector (Kennedy et al., 1962). 

Persistent viruses that are transmitted include bean leaf roll, beet western yellows, 
beet mild yellowing, beet yellow net, pea enation mosaic, potato leaf roll, tobacco 

vein-distorting, tobacco yellow net and tobacco yellow vein (Blackman & Eastop, 

2000). 

1.2 Integrated pest management 

In integrated pest management (IPM), the reliance on chemical pesticides is 

reduced by increasing the use of other, sustainable control methods, such as 

cultural, biological control and host plant resistance, to maintain pest numbers 
below economically significant levels (Allen, 1980; Hoy & Herzog, 1985). 

IPM has been defined as: 
"a pest management system that in the socioeconomic context of farming systems, 

the associated environment and the population dynamics of the pest species, 

utilises all suitable techniques and methods in as compatible a manner as possible 

and maintains the pest population levels below those causing economic injury" 

(Smith & Reynolds, 1966). 

Aspects of biological control, one of the methods of control that may be used in an 
IPM programme, are investigated in this thesis. More specifically, the use of 
entomopathogenic (insect pathogenic) fungi for the biological control of aphids in 

arable crops in the UK is the basis of this work. 
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1.2.1 Biological control 

Biological control in general may be defined simply as: 

"the use of living organisms, excluding host plants, as pest control agents" 

(Greathead & Waage, 1983) or, 

"the utilisation of natural enemies to reduce damage caused by noxious organisms 

to tolerable levels " (Debach & Rosen, 1991). 

These natural enemies may be predators, parasites or pathogens of the pest. There 

are three main methods that are used to achieve biological control defined by Luck 

(1990) as introduction or classical biological control, augmentation and 

conservation. 

Introduction or classical biological control involves the introduction of exotic 

natural enemies to permanently reduce a pest, which itself is usually of foreign 

origin. Augmentation utilises insectary- or laboratory-reared natural enemies to 

supplement indigenous populations of natural enemies or initiate natural enemy 

populations for a limited period, e. g. for a growing season. Augmentation has been 

further divided to cover two types of augmentative biological control; inoculation 

and inundation (Dent, 1995). In inoculative releases, a small number of the natural 

enemy are released early in the cropping season with the hope that they reproduce 

and the population is able to control pests over an extended period of time. 

Inundation methods rely on releasing large numbers of individuals when natural 

populations or released populations have not reproduced to high enough numbers 

to effect control. Pest control in this situation will be by the released individuals 

themselves rather than by their offspring. 

In conservation biological control, important natural enemies are identified and 
husbanded by appropriate management practices. Appropriate practices may 

remove negative influences, such as broad spectrum chemical insecticides, and 

encourage positive activities, such as maintaining physical refuges including 
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hedgerows and field margins. Indeed, the addition of banks of grass as a physical 

refuge in cereal fields in the UK has been successful in providing overwintering 

refuges for predators of aphids and, hence, an important source of predators early 
in the following season (Thomas, Wratten & Sotherton, 1991). 

The first well documented case of biological control was in 1762, when a mynah 

bird from India was used to control locusts in Mauritius. During the 1880's the 

vedalia beetle Rodalia cardinalis Mulsant demonstrated impressive control of the 

cottony cushion scale Icerya purchasi Maskell on citrus in California. This 

impressive success led the way to many other successful biological control 

programmes, such as the control of cassava mealybug Phenacoccus manihoti 

Matile-Ferrero in Africa using the parasitoid Epidinocarsis lopezi (De Santis) 

(Neuenschwander & Herren, 1988). By 1986, there had been 1162 introductions of 

predators or parasitoids; 25% of these successfully regulated the target pest, 69% 

provided intermittent or partial control and only 6% failed to provide any control at 

all (Luck, 1990). 

Important groups of biological control agents include arthropod natural enemies, 

such as ladybirds, parasitoids and predatory beetles and entomopathogenic fungi. 

1.3 Entomopathogenic fungi 

Entomopathogenic fungi occur naturally and have the ability to cause epizootics 

which significantly reduce insect host populations (Burges, 1981). An epizootic is 

a term which is applied to a disease which affects a large number of animals 

simultaneously and is similar to that of an epidemic in humans (Holmes, 1979). 

Over 750 species of fungi from two kingdons, Chromista and Fungi, have been 

recorded as entomopathogens (Glare & Milner, 1991). 

1.3.1 Fungal taxonomy 

Most of the entomopathogenic fungi are true Fungi in the divisions 

Chytridiomycota, Zygomycota, Ascomycota and Basidiomycota. The best known 
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genus in the division Chytridiomycota is Coelomomyces which contains mainly 

aquatic species which produce zoospores (flagellated spores for asexual 

reproduction) and are entomopathogens of mosquitoes and other Diptera. 

Most entomopathogens within the division Zygomycota are in the subdivision 
Zygomycotina, class Zygomycetes and order Entomophthorales. There are over 
200 known species of entomopathogenic fungi in the order Entomophthorales 

(Glare & Milner, 1991) and naturally occurring epizootics of these fungi occur in 

many insect species (Hamm, 1980; McCoy, Samson & Boucias, 1988). The most 

commonly occurring Entomophthoralean fungus infecting aphids in the UK is 

Erynia neoaphidis Remaudiere & Hennebert (Dean & Wilding, 1971,1973; 

Wilding, 1975; Wilding & Perry, 1980). 

The Entomophthorales are characterised by production of forcibly discharged, 

uninucleate or multinucleate asexual spores known as conidia. In the absence of a 

suitable host, these conidia may produce secondary or tertiary spores which also 

have the potential to germinate and infect hosts. Fungi within this order are able to 

produce resting spores which survive during unfavourable conditions, for example 

over the winter months. Resting spores can be produced either sexually or 

asexually. The most common genera include, Conidiobolus, Erynia, Entomophaga, 

Zoophthora and Neozygites (Tanada & Kaya, 1993). Most of the 

Entomophthorales have been recorded from a limited number of hosts and are 

therefore relatively host specific, such as E. neoaphidis which is only recorded 
from aphids. Others, such as Zoophthora radicans (Brefeld) Batko, have been 

recorded from a wide range of different hosts but individual isolates may only 

infect insects of a particular species. Aspects of the host range and specificity of 

these fungi are reviewed by Pell, Eilenberg, Hajek & Steinkraus (in press). 

Many important entomopathogens occur in the subdivision Deuteromycotina (also 

referred to as Fungi Imperfecti) and the artifical class Hyphomycetes. These fungi 

form asexual conidia and the sexual forms are either unknown or occur rarely, 
hence the name Fungi Imperfecti. As sexual forms do occur in some species, such 
as Cordyceps, some authors feel that these fungi should be classified within the 
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division Ascomycota (Goettel, Inglis & Wraight, 2000). However, until this view 
is formally recognised, the widely accepted classification of the Hyphomycetes in 

the Deuteromycotina is used in this study. The Deuteromycotina do not produce 

resting spores and are capable of surviving in soil as conidia (Samson, Evans & 

Latge, 1988). 

The most prominent genera containing insect pathogens within the class 
Hyphomycetes are Beauveria, Metarhizium, Paecilomyces, Verticillium, 

Aschersonia, Hirsutella and Nomuraea. 

The most studied species of Beauveria, the white muscardine fungus, are B. 

bassiana (Balsamo) Vuillemin and B. brongniartii (Saccardo) Petch (McCoy et al., 
1988). 

Within the genus Paecilomyces, Samson (1974) recognised 31 species of which the 

best known entomopathogenic fungi are P. farinosus (Holm) Brown & Smith, the 

yellow muscardine fungus, and P. fumosoroseus (Wize) Brown & Smith. 

The genus Verticillium has been previously referred to as the genus 
Cephalosporium but, more recently, authors have preferred to use Verticillium 
(Hall, 1981a; McCoy et al., 1988). The most researched and well documented 

pathogen in this genus is V lecanii (Zimmermann) Viegas. 

Until very recently, the genus Metarhizium, the green muscardine fungus, was 
based on morphological characters and was reviewed by Tulloch (1976). The 

genus consisted of the species Metarhizium anisopliae (Metschnikoff) Sorokin 

which had two varieties, M anisopliae var. majus (Johnston) Tulloch and M 

anisopliae var. anisopliae Tulloch, and the species M flavoviride Gams & 

Rozsypal. However, Driver, Milner & Trueman (2000) have reassessed the genus 

using sequence data and RAPD patterns. They accept three species and eight 

varieties of Metarhizium, of which five are new varieties. The three species are M 

anisopliae, M album and M flavoviride. The varieties are listed as M anisopliae 

var. anisopliae, M. anisopliae var. majus, M anisopliae var. acridum, M 
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anisopliae var. lepidiotum, M flavoviride var. novazealandicum, M. flavoviride 

var. pemphigum, M flavoviride var. minus and M flavoviride var. flavoviride. In 

this thesis, the species M anisopliae is identified not by variety, but by the species 

name used in the literature cited, as the majority of isolates of Metarhizium spp. 
have yet to be reclassified. One notable exception is a grasshopper and locust 

pathogen used in the product "Green Muscle TM" and reported on widely in literature 

from the LUBILOSA1 project. This isolate has been reclassified from M 

flavoviride to M anisopliae var. acridum and any references to this pathogen in 

this thesis will be made using the most recent taxonomic classification. 

The majority of the fungal isolates used in this study are from the species V. 

lecanii, M anisopliae, B. bassiana and Paecilomyces spp. 

1.3.2 Morphological and diagnostic characteristics of hyphomycete fungi 

1.3.2.1 Beauveria bassiana 

Insects that have succumbed to infection with B. bassiana have a dusty, white 

appearance and infection with the pathogen is often referred to as "white 

muscardine disease" (Tanada & Kaya, 1993). The conidia are usually densely 

clustered with denticulate (toothed) apical extensions (rachis) bearing one 

conidium per denticle and conidia are aseptate (Figure 1.1 a). Conidia of B. 

bassiana are nearly globose and < 3.5µm diameter whilst conidia of B. 

brongniartii are long, ovoid and cylindrical, with a length of 2.5 - 4.5 µm. 

1.3.2.2 Verticillium lecanii 

Verticillium lecanii is known as the "white-halo" fungus because mycelium grow 
around the edge of infected scale insects. The conidiophores are little differentiated 
from vegetative hyphae and conidia occur as pairs or singly in whorls on hyphae or 
apically on short side branches (Figure 1.1 b). Conidia are aseptate and borne in 

Lutte Biologique contre des Locustes et les Sautereaux: an international collaborative research 
and implementation programme for the biological control of locusts and grasshoppers. 
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a) Beauveria bassiana b) Verticillium lecanii 

c) Metarhizium anisopliae d) Paecilomyces spp. 

FIGURE 1.1 : Schematic drawings of morphological features of species of 
Hyphomycete fungi. [Reproduced from Samson, 1981] 
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slime drops. They range from short ovoid to elongate and cylindrical with a 
diameter of 1.0 -1.7 gm and length of 2- 10 gm 

1.3.2.3 Metarhizium anisopliae 

Affected hosts are often densely covered in mycelium. The conidiophores are 

usually broadly branched and densely intertwined. Conidia are aseptate, cylindrical 

or ovoid and form chains that are usually arranged in cylindrical columns or a solid 

mass of parallel chains (Figure 1.1c). Conidia range in colour from bright green to 

yellow-green, whilst hyphae tend to be white. Conidia of M anisopliae var. 

anisopliae have a cylindrical conidium which is >9 µm long, often with a slight 

central narrowing. Metarhizium anisopliae var. majus have conidia that are 

morphologically similar to those of M anisopliae var. anispoliae, but conidia are 
larger, generally <_ 11 µm. 

1.3.2.4 Paecilomyces species 

Conidia are born singly or as groups on whorls on branches of conidiophores or on 

short side branches or in apical whorls (Figure 1.1 d). Conidia are aseptate and 

range from colourless to pigmented but are never black, brown or olive. Conidia of 
P. fumosoroseus are long, ovoid and :S4 µm long. Conidia in mass are rosy-tan to 

smoky-pink in colour. Conidia of P. farinosus are generally short fusoid to lemon 

shaped and slightly smaller than those of P. fumosoroseus, <_ 3µm long, coloured 

white to cream in mass. 

1.3.3 Fungal infection processes 

Entomopathogenic fungi typically penetrate the insect host through the cuticle, 
rather than having to be ingested like other microbials. Fungi are therefore the only 

major pathogens known to infect insects with sucking mouthparts in the orders 
Hemiptera and Homoptera (Roberts & Humber, 1981). There have been reports of 

viral infections in aphid populations (Williamson, Von Wechmar & Rybicki, 

1989), but these are rare and generally occur within insectary-reared colonies 

rather than field populations. 
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Once a conidium lands on the cuticle of an insect it will germinate and form a 

germ tube as long as temperature and humidity conditions are favourable. 

However, even under favourable temperature and humidity conditions, some fatty 

acids on insect cuticles may be fungistatic and fungal development may be 

inhibited (Smith & Grula, 1982). Cuticular components may also provide a 

nutritional role for stimulation and growth of the germ tubes of conidia, dependent 

on the species of fungus. Beauveria bassiana, for example, requires both a carbon 

and nitrogen source for stimulation and growth of the germ tube (Smith & Grula, 

1981). 

The germ tube then penetrates the insect cuticle. The Hyphomycete fungi 

demonstrate two methods of penetration; direct penetration of the cuticle by 

hyphae, as in V. lecanii and B. bassiana (Hughes & Gillespie, 1985), or the 

formation of an appressorium which produces a penetration peg such as in M. 

anisopliae (Zacharuk, 1970a, b). Having penetrated the host, the fungus proliferates 

within the insect haemocoel as cell-walled hyphal bodies (blastospores) or wall- 

less amoeboid protoplasts. The host is generally killed within three to fourteen 

days, although this may take longer; the precise time is dependent not only on the 

intrinsic activity of the fungal isolate, but also on the number of conidia applied, 

temperature conditions during the incubation period and host defences (Gillespie, 

1988). 

Some Hyphomycetes may induce death before extensive invasion of host tissues. 

This type of fungus-induced mortality has been attributed to the production of 

toxins. Both M anisopliae and B. bassiana have been reported as producing an 

array of toxins (Roberts, 1980). Normally though, as long as there are high 

humidity conditions following death of the host, the fungus will emerge through 

the cuticle and sporulate on the cadaver. In many cases, this fungal outgrowth will 
initially occur at the intersegmental regions of the host where growth may also be 

most predominant. This provides a local source of inoculum for the infection of 

other hosts. However, if conditions are unfavourable, then the fungus can remain 

viable within the mummified cadaver for several months and will produce conidia 

when favourable conditions return (Ferron, 1981). Conidia may also be produced 
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within the host cadaver and it has been suggested that they are released when the 

host cadaver naturally breaks down (P. Shah, pers. comm. ). 

The Entomophthorales are generally specialised pathogens which are often 

difficult to culture in vitro. The Hyphomycetes, however, are able to infect a wide 

range of different hosts and are much easier to culture in vitro, making them ideal 

candidates for large scale production. The most successful examples of the use of 

entomopathogenic fungi for insect pest control have therefore involved fungi from 

the class Hyphomycetes and inundative biological control. This has generally been 

achieved by using single or multiple applications of large amounts of incoculum to 

promote the rapid development of an epizootic, often referred to as the 

"mycoinsectide approach" (Charnley, 1989). 

The efficacy of a group of entomopathogenic Hyphomycete fungi against aphid 

pests and their interaction with other natural enemies and the abiotic environment 
form the basis of this Ph. D study. 

1.3.4 Fungal epizootiology 

The most common epizootics in aphids are caused by entomophthoralean fungi. 

An epizootic is an "unusually large number of cases of disease" in a host 

population (Fuxa & Tanada, 1987). Therefore, a very small number of cases of 
disease may be termed an epizootic if no cases were expected. Long-term 

monitoring of diseases is important to establish when a disease becomes an 

epizootic. One way of doing this is to determine when an enzootic disease becomes 

epizootic. Whilst epizootics are sporadic and characterised by a sudden change in 

incidence, enzootics are characterised by low levels of disease over a long 

duration. 

The change in prevalence of fungi within host populations, as with diseases in 

other organisms, relies on susceptibility of the host population to the disease and 
then efficient transmission within the population through contact between infected 
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and healthy hosts. All these stages in an epizootic may be affected by 

environmental and host factors. 

Transmission may be either horizontal, from host to host (Canning, 1982), or 

vertical, from parent to progeny (Fine, 1975). Fungi are generally horizontally 

transmitted and this has been shown to be important for the transmission of 

Hyphomycete fungi in insects including aphids (Hall, 1981 a), Colorado potato 

beetle (Long, Groden & Drummond, 2000) and grasshoppers and locusts (Thomas, 

Wood & Lomer, 1995). 

Generally, an epizootic is more likely to develop at high host densities (Watanabe, 

1987). High host densities may increase contact between individuals and hence 

pathogen transmission, as well as increasing individual stress due to crowding 

which in turn may make insects more susceptible to pathogen infection. In this 

way, pathogens act in a density-dependent manner, causing mortality in more hosts 

as host density increases. 

Properties of the pathogen population will affect the development of an epizootic. 
Pathogens must be infective to the host, be able to survive and persist within the 

host environment and have the capacity to disperse and occur in high enough 

densities to initiate infection. Entomophthoralean fungi may produce resistant 

structures, such as resting spores, to persist within the environment but no similar 

structures are know to occur for the Hyphomycetes. Factors, such as the forcible 

discharge of conidia of Entomophthorales, ensure local dispersal and other factors, 

such as wind and rain, increase this dispersal (Hemmati, 1998). 

Predators and parasitoids are able to act as carriers or vectors of conidia within 

host populations (Roy, 1997; Andreadis, 1987). Not only is the direct vectoring 

potential of a predator or parasitoid important, but the resulting movement of the 

host species when disturbed may also play an important role in development of an 

epizootic. Studies on the interactions between Z radicans and two parasitoids, 

which attack the diamondback moth Plutella xylostella (L. ), have shown that the 

presence of a foraging parasitoid increases the level of infection in P. xylostella larvae 
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by causing greater movement of the larvae in the vicinity of infected cadavers 

(Furlong & Pell, 1996). Similarly, the presence of a foraging ladybird increased the 

level of infection in pea aphids A. pisum by the fungus E. neoaphidis (Roy, 1997). 

Additionally, studies on the movement of aphids mediated by alarm pheromone have 

been shown to cause greater levels of V. lecanii infection within aphid populations 

(Hockland, Dawson, Griffiths, Marples, Pickett & Woodcock, 1986). Other 

behaviours, such as grooming, may remove conidia from individual hosts but 

transmit them to other, healthy hosts. The fungus M. anisopliae spread in healthy 

populations of the termite Reticulitermes sp. because of grooming activity between 

infected and healthy termites (Kramm, West & Rockenbach, 1982). 

The environment may be very influential in epizootic development. It has been 

widely accepted that moisture is the most important environmental factor 

influencing the course of epizootics in aphid populations. Infection of the pea 

aphid A. pisum has been positively correlated to the average rainfall recorded 12 

days prior to observation of the disease (Wilding, 1975). Missonier, Robert & 

Thoizon (1970) showed that an enzootic of Entomophthora sp. was maintained in 

an aphid population when RH was a minimum of 90% for at least eight hours per 

day but, to become epizootic, RH had to exceed 90% for ten hours per day and 

there had to be five hours of rain per day for three days. 

Temperature may also affect the progression of disease epizootics. When 

temperature favours a quick generation time for the host such as aphids, but is 

above or below the optimum for the fungus, then the aphid population may still 

increase to damaging numbers. However, if temperature favours the fungus by 

allowing a short incubation period but reduces the speed of insect development, 

then an epizootic may develop. 

1.4 Arthropods as aphid biocontrol agents 

Arthropod natural enemies of aphids include parasitoids and predators such as 

lacewings, ladybirds, hoverflies, carabid and staphylinid beetles. In many years, 
this suite of natural enemies is able to exert enough pressure on aphid populations 
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to maintain numbers below an economic damage threshold. Two of these natural 

enemies, the generalist parasitoid Praon volucre (Halliday) and the seven-spot 
ladybird Coccinella septempunctata L. were used in this study as representatives 

of aphid arthropod natural enemies. 

1.4.1 Parasitoids 

There have been more than 400 aphid parasitoid species recorded (Start', 1988) 

and these are important components of the natural enemy guild which helps control 

aphids in different crops. The grain aphid S. avenae, for example, is parasitised by 

several aphid parasitoids, particularly from the genus Aphidius (Powell, 1982). The 

parasitoid considered in the current study is the species P. volucre which is a 

generalist parasitoid species, commonly occurring in a range of habitats and 

attacking a wide range of aphid species. 

Adult aphid parasitoids are solitary endoparasitoids which attack their host and lay 

a single egg within it. On hatching, the larva feeds on the host tissues internally 

and ultimately causes the death of the host (Polaszek, 1986). The skin of the dead 

aphid is attached to the substrate by the parasitoid larva and this is then called the 

aphid "mummy". The parasitoid pupates within the mummy and emerges as an 

adult, cutting a circular hole in the mummy. In the genus Praon, the larva spins a 

cocoon beneath the empty skin of the aphid in which to pupate. 

Parasitoids are able to attack aphids at low densities in the early part of the 

growing season (Carter, McClean, Watt & Dixon, 1980). The ability of parasitoids 

to slow down initial aphid population growth rates, reduces the potential aphid 

population levels and increases the likelihood that other natural enemies will be 

able to control aphid populations (Wratten & Powell, 1991). 

1.4.2. Ladybirds 

The seven-spot ladybird C. septempunctata (Figure 1.2) is the most common 
coccinellid species found in Europe (Majerus, 1994). Both larvae and adults are 
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voracious aphid predators (Bodenheimer, 1943). Ladybird numbers generally do 

not synchronise with initial outbreaks of aphids which are recorded early in the 

season (Coderre, 1988). This has largely been attributed to their slow reproductive 

rate in comparison to the much faster reproduction rates of aphids. 

Ladybirds overwinter in woodlands (Zhou & Carter, 1992) and emerge from these 

sites in spring to disperse to non-crop habitats in late April (Zhou, Carter & 

Powell, 1994). Subsequently, ladybirds then move into agricultural crops. Eggs are 

laid in crops near aphid colonies to coincide with seasonal peaks of aphid 

availability on host plants (Dixon, 1970; Wratten, 1973; Wright & Laing, 1980). 

Eggs are generally laid as aphid populations are starting to increase in density and 

therefore cues, such as the presence of honeydew and/or low aphid density, 

stimulate oviposition (Hemptinne, Dixon & Coffin, 1992; Evans & Dixon, 1986). 

First instar larvae feed on the egg case from which they emerged, before dispersing 

and foraging in aphid colonies. Pupation takes place within the crop and adults 

emerge in early June, although developmental times are dependent on both prey 

availability and temperature. These adults feed until mid to late September. 

Coccinellids aggregate in areas of high prey density and disperse from those of low 

density (Hon6k, 1985; Coderre, 1988); these aggregations at the population level in 

areas of high aphid density may be large, even though individiuals only respond 

weakly to aphid density (Ives, Kareiva & Perry, 1993). In mid to late September, 

adults move to overwintering sites where they remain until spring. There is only 

one generation of new adults in a season and the majority of new adults need a 

period of overwintering to reach sexual maturity (Majerus, 1994). 

The use of ladybirds in classical and augmentative biological control has been 

limited by problems with commercially culturing the species (Gurney & Hussey 

1970). One of the most successful examples of classical control however, was the 

release of the vedalia ladybird R. cardinalis to control cottony cushion scale I. 

purchasi (Van Emden, 1989). Additionally, very successful programmes of 

augmentative biological control using the convergent ladybird Hippodamia 

convergens Guerin-Meneville have been instigated in the United States. At the end 
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FIGURE 1.2 : Coccinella seplempunclula (the 7-spot ladybird) fi eding on 
Acyrthosiphon pisum (the pea aphid). 

19 

je %4, 



of the breeding season, large numbers of ladybirds move from lowland breeding 

sites to mountainous regions. These winter groups may comprise millions of 

individuals which are collected, bottled and stored at temperatures just above 

freezing. In spring, bottles of ladybirds are sold to growers in niche markets, such 

as market gardeners and organic farmers (Majerus, 1994). However, as individuals 

often disperse following release, this control is most effective in contained 

environments such as the glasshouse. 

These arthropod predators are obviously an important component species in the 

suite of natural enemies that attack aphid pests. It is likely that conservation 

biological control will prove to be the most useful method of biological control 

utilising coccinellid predators in agricultural cropping systems. 

1.5 Hyphomycete fungi as natural aphid biocontrol agents 

Verticillium lecanii is the only Hyphomycete fungus to be found naturally causing 

epizootics in aphid populations and has been recorded from many geographically 

distinct areas (Milner, 1997). Scale insects in the tropics and semi-tropics are also 

commonly infected with V. lecanii. Other insects, such as thrips, mites and 

whitefly, are also susceptible. Verticillium lecanii has been found infecting aphid 

species, such as the cardamom aphid Pentalonia nigronervosa f. caladii van der 

Goot (Mathew, Venugopal & Saju, 1999), several species of cereal aphid (Ozino, 

Arzone & Alma, 1988; Feng, Johnson & Kish, 1990a), the peach-potato aphid M. 

persicae (Kish, Majchrowicz & Biever, 1994) and the melon aphid Aphis gossypii 
Glover (Sanchez-Pena, 1993). Only recently, the first record of V. lecanii from 

aphid hosts in South Africa was made from a survey of entomopathogenic fungi in 

16 species of aphid (Hafting, Humber, Poprawski & Miller, 1999). 

There are fewer reports of B. bassiana and Paecilomyces spp. naturally infecting 

aphids and these infections are not recorded as being epizootic in aphid 

populations. Beauveria bassiana has been recorded from the peach potato aphid M 

persicae (Kish et al., 1994) and six species of cereal aphid, although the majority 

were from the potato aphid Macrosiphum euphorbiae Thomas (Feng et al., 1990a). 
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Prior to this, there is only one other report of B. bassiana infecting an aphid; the 

pea aphid A. pisum (Pavliushin, 1983). 

Generally, levels of Hyphomycete infection are low in sampled aphid populations. 

From thousands of cereal aphids collected in the field, less than 1% were found to 

have natural infections with B. bassiana (Feng & Johnson, 1990). Beauveria 

bassiana was identified from 33 cadavers and V. lecanii from 50 cadavers from a 

total of 10 737 cadavers investigated by Feng et al., (1990a). In comparison, 

infection levels of E. neoaphidis have been recorded as high as 73.5% in cabbage 

aphid Brevicoryne brassicae (L. ) (Sivcev, 1992) and 43.9% of sampled cereal 

aphids (Feng et al., 1990a). 

The Hyphomycete fungus Metarhizium sp. has only ever been recorded naturally 
infecting aphids in populations of the lettuce root aphid Pemphigus bursarius 

(=trehernei) (L. ) in Norfolk, UK (Foster, 1975). The isolates have been treated as 

an undescribed variety of M. flavoviride (Milner, 1997). 

1.6 Mycoinsecticides 

1.6.1 Historical Background 

Historically, the potential for using fungi as insect biocontrol agents has been 

known since 1834 when Agostino Bassi infected the silkworm Bombyx mori (L. ) 

with B. bassiana (Glare & Milner, 1991; Hall & Papierok, 1982). In 1879, 

Metschnikoff conducted experiments using M anisopliae against larvae of the 

wheat cockchafer, Anisoplia austriaca (Hbst. ) and in 1888, Krassilstichik used this 

fungus against the sugar beet curculio, Cleonus punctiventris (Germar. ). These 

were the first recorded practical attempts at using fungi as biological control 

agents. 

Following these first experiments, there were several unsuccessful attempts at 
introducing fungi into biological control programmes and there was little interest 
in developing fungi as microbial insecticides (mycoinsecticides). Whilst the 
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specific requirements for fungal infection of host insects were relatively well 

understood, the impact of environmental factors on the epizootiology of fungal 

infections in the field were less well researched. The emphasis in research was 

focused on other methods of biological control; there was little research conducted 

from the late nineteenth century (until the 1960's) on basic or applied aspects of 

using fungi as biological control agents. There has, however, been a resurgence in 

interest in this area over the past 30 years, largely due to the increase in problems 

associated with chemicals. 

Reports have estimated that the world market for pesticides in 1995 was 

approximately $29 billion with biopesticides representing a market- share of $380 

million (Menn, 1997). However, the growth rate for biopesticides has been forecast 

as 10 - 15% for the period 1997 - 2007 (Menn, 1996). The largest share of the 

biopesticides market is currently based on the bacterium Bacillus thuringiensis 

(Bt) and related products. Most of these have been developed in the United States 

for the control of cotton pests. The European markets are somewhat different from 

world markets, with a greater proportion of crop protection efforts devoted to plant 

pathogens as opposed to insect pests (Butt, Harris & Powell, 1999). 

1.6.2 Successful control programmes 

The following reviews are concentrated on the species of fungus investigated in 

this study rather than microbial pathogens in general for insect pest control. The 

reports on these pathogens are intended to indicate the crops and pests against 

which these fungal species have been successful as control agents. 

For information on the successful introduction of other fungal pathogens into 

insect control programmes the reader is referred to Ignoffo & Mandava (1988) and 
Ferron, Fargues and Riba (1991). Recent developments and future prospects in 

microbial control of pests in general have been reviewed by Lacey & Goettel 

(1995), whilst the use of fungal pathogens specifically against aphids has recently 
been discussed by Milner (1997). Current information on the range of registered 
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pest control products based on fungi is available in publications by Copping (1998) 

and Shah & Goettel (1999). 

1.6.2.1 Beauveria bassiana 

Beauveria bassiana has been used on a large scale both in China and in the former 

Soviet Union as a mycoinsecticide. In China, preparations have been used against 

the European corn borer Ostrinia nubilalis Hubner (Chiang & Huffaker, 1976), 

pine caterpillars such as Dendrolimus punctatus Walker and green leatboppers 

Nephotettix spp. (Chamley, 1989). In the former Soviet Union, B. bassiana was 

developed as the product "Boverin" for large-scale control of the Colorado potato 

beetle Leptinotarsa decemlineata (Say) and to a lesser extent, the codling moth 

Cydia pomonella (L. ) (Ferron, 1981). Application of Boverin made with a reduced 

dosage of chemical insecticides successfully reduced spring populations of C. 

pomenella when summer generations of the moth were treated (Ferron, 1981). 

Field trials in the former Soviet Union showed that application of Boverin with 

insecticides provided adequate control of L. decemlineata under variable climatic 

conditions (Ferron, 1981). 

The potential of B. bassiana for controlling L. decemlineata has been evaluated in 

the United States since 1980 (Ferron et al., 1991). Populations of pupae of L. 

decemlineata were reduced when B. bassiana was applied to soil (Watt & Lebrun, 

1984). More recently, the Mycotech Corporation in the United States has obtained 

registration for B. bassiana strain GHA for the control of several pests including 

thrips, aphids, whitefly and mealybugs (Bradley, Lord, Jaronski, Gill, Dreves & 

Murphy, 1998). Products are used in vegetables and ornamentals under the 

tradenames Botanigard®, Mycotrol® and Cornguard®. Other companies, such as 
Natural Plant Protection (NPP) and Troy Biosciences, have B. bassiana products 

aimed at corn borers and a range of soft-bodied coleopteran, heteropteran and 
homopteran pests (Copping, 1998). 

Beauveria brongniartii has been used extensively in Switzerland to control swarms 
of cockchafers Melolontha melolontha (L. ) (Keller, 1982). Beauveria brongniartii 
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is marketed as the products Ago Biocontrol Beauveria 50 (Ago Biocontrol) and 

Engerlingspilz (Andermatt Biocontrol AG). 

1.6.2.2 Verticillium lecanii 

An isolate of V. lecanii was introduced in 1981 for control of aphids on 

chrysanthemums as the product "Vertalec®" and in 1982, another isolate was 

introduced as "Mycotal®" for the control of whitefly on cucumbers and tomatoes. 

Despite being temporarily discontinued in 1986 by the original producer Tate and 

Lyle, both products are still available and now manufactured by Koppert 

Biological Systems B. V. Vertalec® is produced by liquid fermentation as 

blastospores which are formulated to improve stability and these are applied as a 

spray diluted to 106 blastospores ml''. The market has been limited by competition 

with effective chemical insecticides and the requirement of the fungus for high 

relative humidity for host infection (Milner & Lutton, 1986). These factors have 

been suggested to have contributed to the original withdrawal of the product 

(Charnley, 1989). 

1.6.2.3 Metarhizium anisopliae 

Metarhizium anisopliae var. major has been used successfully to control the 

rhinoceros beetle Orycetes rhinoceros (L. ) in Fiji, Tonga and Western Samoa 

(Latch & Falloon, 1976). A formulation of conidia of M anisopliae called 

"Metaquino" was used in Brazil to control the sugarcane spittle bug Mahanarva 

posticata (Stal) (Ferron, 1981). Products are also available for the control of red- 

headed cockchafer (BioGreen® granules, Bio-Care Technology Pty. Limited), vine 

weevil (BIO 1020, Bayer AG), termites (Bioblast, Ecoscience and Terminex) and a 

range of lepidopteran, coleopteran, homopteran and orthopteran pests (Ago 

Biocontrol Metarhizium 50, Ago Biocontrol). 

Recently, the isolate IMI 330189 M anisopliae var. acridum was registered as the 

product "Green Muscle" (International Institute of Biological Control) for the 

control of locusts and grasshoppers (Neethling & Dent, 1998). 
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conditions of low relative humidity are often suggested to be the negative influence 

acting on development of the pathogen (James, Schaffer, Croft & Lighthart, 1995). 

The successful development of epizootics of Entomophthoralean fungi that 

correlate with periods of rainfall or high relative humidity is thought to indicate 

that these favourable conditions are needed for a fungal pathogen to infect hosts 

under field conditions (Wilding, 1975; Missionier et al., 1970). 

Whilst the impact of macroclimate on the epizootiology of fungi is well 

recognised, there has been little research on the influence of the microclimate 

within the crop canopy, not only on applied mycoinsecticides but also on 

indigenous entomopathogens. Favourable microclimates within a dense canopy 

may facilitate a higher level of humidity than that of the ambient air or have areas 

of suitable temperature or protection from solar radiation for development of 

fungal pathogens (Fuxa & Tanada, 1987). By identifying areas of the crop that 

support pest insects and are more suitable for fungal development, it may be 

possible to target applications of mycoinsecticides to these areas and thus improve 

the levels of pest control achieved under field conditions. 

The aims of this study were to investigate an ecologically sound integrated 

approach to selecting potential mycoinsecticides based not only on their ability to 

kill the target host, but also on their ability to do so over the range of abiotic 

conditions that may be experienced in the field and with little impact on non-target 

natural enemies. It is this approach that has been termed a biologically rational or 

"biorational" approach to selecting mycoinsecticides. A useful discussion of the 

need to adopt a more ecological approach towards developments in IPM is given in 

Thomas (1999), drawing on examples from the LUBILOSA project and the 

integration of biological control and host-plant resistance. 

26 



Milner (1997) states that an ideal bioinsecticide against aphids would satisfy the 

following conditions: 

1. cheap to mass produce, 

2. easy to store, 

3. effective over a wide range of temperature and humidity conditions, 

4. provide rapid kill at economical doses, 

5. wide host range within aphids, 

6. minimal non-target effect especially on parasites and predators of aphids. 

Additionally, an ideal bioinsecticide would also be compatible with other cropping 

practices, including pesticides. 

The aim of this Ph. D. study is to investigate the possibility of using selection 

criteria based on points three to six, as a way of selecting isolates of fungi as 

potential mycoinsecticides for the control of aphids in arable crops in the UK. The 

approach taken still emphasises virulence to the host insect as an important aspect 

of the selection procedure. However, it also takes into account the effect of abiotic 

factors on the ability of isolates to infect hosts, both under laboratory and field 

conditions. Additionally, the impact of isolates on representative natural enemies, 

such as ladybirds, parasitoids and other naturally occurring fungi, is also 

considered. A plan of the biorational selection procedure indicates how the thesis 

is structured to answer the aims set out above (Figure 1.3). 
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FIGURE 1.3 : Stepwise, biorational selection procedure for Hyphomycete fungi 
against aphid pests. I 
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CHAPTER 2: GENERAL MATERIALS AND METHODS 

2.1 Aphid Cultures 

All aphid cultures were maintained in the Rothamsted insectary facility in 

ventilated perspex cages (0.5m2 x lm) at a constant temperature of 18°C and a 16 

hour photoperiod (16 light: 8 dark). Individual species of aphids were maintained 

using different methods. None of the aphid cultures originated from single clones. 

2.1.1 Legume Aphids: Acyrthosiphon pisum and Aphis fabae 

Pea aphid, Acyrthosiphon pisum, and bean aphid, Aphis fabae, colonies have been 

cultured continuously at Rothamsted for at least ten years and seven to eight years 

respectively. The aphids that were used to establish these colonies were collected 

from bean crops on Rothamsted farm. Both species of aphid were reared on three 

to four weeks old dwarf broad bean plants (Vicia faba, var. "The Sutton"). 

Plants in the aphid cultures were changed regularly (at least every seven days) as 

aphid numbers rapidly increased under insectary conditions. Acyrthosiphon pisum 

were gently dislodged from plants and a small sample (approximately 200 

individuals of mixed instar) were transferred to fresh plants. Six to nine pots 

containing five plants per pot were placed in each cage. Aphis fabae were 

transferred to fresh plants by cutting an infested pair of leaflets or a small growing 

tip from a plant and placing it on an uninfested plant. Once these leaves wilted, the 

aphids moved onto the fresh plant. Aphis fabae aphids were difficult to move as 

they did not withdraw their stylets readily from the feeding site so moving infested 

leaves and allowing aphids to transfer to new leaves ensured the minimal amount 

of damage to individuals. 

2.1.2 Cereal Aphids: Sitobion avenae, Metopolophium dirhodum and 
Rhopalosiphum padi 

The colonies of S. avenae and M dirhodum were established from aphids collected 

on Rothamsted farm (Appendix 1). Both S. avenae and M dirhodum were 
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maintained on one to two weeks old winter wheat plants (Triticum aestivum L., 

cultivar Beaufort). Cultures of both species of aphid were changed weekly by 

dislodging aphids from plants and transferring a small sample (approximately 200 

individuals of mixed instar) to uninfested fresh plants. The population of S. avenae 

was kept high in culture to ensure alate aphids were produced which were 

subsequently used for producing aphids of known age. 

The R. padi colony has been cultured continuously for at least six years at 
Rothamsted. Aphids were maintained on one to two week old barley plants 
(Hordeum vulgare var. "Puffin"). Care was taken when working with R. padi as 

this species tended to contaminate other aphid cultures; as a sanitary measure, R. 

padi were always the last species to be handled. Rhopalosiphum padi were 

generally more waxy than the other cereal aphids so dusting the collecting tray 

with a light coating of non-perfumed talcum powder made the aphids easier to 

collect. 

2.1.3 Myzus persicae 

The M persicae colony was established from an insecticide susceptible clone 

(Appendix 1) and was maintained on three to four weeks old Chinese cabbage 

(Brassica chinensis L., var. pekinensis, cultivar "Tip Top"). Aphids were 

transferred in a similar manner to A. fabae by placing a small piece of leaf from an 
infested plant onto a clean, uninfested plant. 

2.2 Production of leaves in water agar 

The appropriate plant material was chosen for the species of aphid that was being 

reared. Approximately 10ml of 2% water agar was poured into sterile Petri dishes 

(9cm diameter; Sterilin, Bibby Sterilin Ltd. ) and leaves were embedded into the 

agar once it had cooled, but had not set, with the upper leaf surface in contact with 

the agar. 

Bean leaves were used as young pairs of leaflets or as older single leaves. Aphis 

fabae tended to move less often on slightly older, single leaves. Wheat and barley 
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leaves were used as young single leaves or as larger leaves cut into sections. Leaf 

discs were cut from Chinese cabbage using a large cork borer (number 18,2.5cm 

diameter) in preliminary experiments. In later experiments, a single, large disc was 

cut using a biscuit cutter (6cm diameter). Leaves set in agar as described would 

generally last for two to three days at 23°C and for five days or more at 10°C, when 

used to maintain aphids. 

2.3 Rearing apterous adult aphids of known age 

All aphids of known age were reared in the insectary at 18°C and 16 hour 

photoperiod. Apterous adult aphids were harvested from the insectary. Aphisfabae 

and M. persicae were harvested by cutting bean stems or Chinese cabbage leaves 

with aphids on and placing the plant parts in large, plastic, ventilated boxes (24 x 

24 x 12cm). As the plants wilted over a period of three to four hours, adult aphids 

moved off the stems or leaves and onto the lid of the box where they were easily 

picked up individually using a fine camel hair paintbrush. Metopolophium 

dirhodum and R. padi were harvested by dislodging aphids from plants. 

Acyrthosiphon pisum were gently sieved through a metal soil sieve (mesh size 12) 

leaving only adult and fourth instar aphids in the sieve. Alate S. avenae were 

collected from the insectary culture using an electric insect pooter. Alate S. avenae 

were used to produce aphids of known age as apterous adults tended to produced 

nymphs which gave a mixture of apterous and alate adults; alate aphids produced 

nymphs which mainly developed as apterous adults. 

Adult aphids collected from the insectary were transferred to Petri dishes which 

contained leaves set in 2% water agar of the appropriate host plant for each aphid 

species. The number of aphids placed in each dish and the number of dishes used 

was different for the different species of aphid (Table 2.1). The dishes were 

inverted and adults were allowed to produced nymphs for 24 hours at 18°C in a 16 

hour photoperiod. 

Adults were then removed using a fine pair of Storkbill forceps (Watkins and 
Doncaster) leaving the nymphs that had been produced overnight on the leaves. 
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Preliminary investigations showed that the number of nymphs produced per adult 

over 24 hours depended on the species of aphid and the environmental conditions. 

Generally, the cereal aphids produced fewer nymphs compared to the other aphid 

species. 

TABLE 2.1 : Requirements for producing aphids of known age for each of six 
different aphid species 

l 

Aphid Species 

No. of 

adults per dish 

Number of 

Petri dishes 

No. of nymphs 

produced 

Developmental 

Period (days) 

A. fabae 10 - 12 20 1 500 7-8 

A. pisum' 10 - 12 10 850 7-8 

S. avenae2 15 - 20 20 550 10-11 

R. padi' 10 - 12 20 1 500 7-8 

M. dirhodum' 10 - 12 20 350 10-11 

M. persicaef 10 - 12 20 1 000 7-8 

Apterous adult aphids 
2 Alate adult aphids 

Nymphs were transferred to clean, whole plants in the insectary by peeling leaves 

from the agar and placing them on clean plants. The developmental period from 

nymph to adult differed between the aphid species (Table 2.1). Aphids were used 

as one to three days old adults for experiments (i. e. one to three days after they had 

started to produce nymphs). 

2.4 Culturing the 7-spot ladybird, Coccinella septempunctata 

Ladybirds were reared in the Rothamsted insectary at a constant temperature of 
18°C and a 16 hour photoperiod. Adult ladybirds that had recently emerged and 

older adults from the previous year were collected from fields around Rothamsted 

in the summers 1996 - 1999. These adults were placed in insectary cages 

containing bean plants and A. pisum as prey. The older adults were maintained as 
the breeding colony in the insectary with A. pisum as a source of food. The young 

adults were stored at 4°C for at least one month to simulate a winter hibernation 

period, necessary for the development of sexual maturity in the females. These 
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ladybirds were stored in groups of twenty in Petri dishes which contained a small 

piece of tissue folded in a fan shape to provide gaps that ladybirds could squeeze 

into. Approximately 20-30 adults were maintained in the insectary for breeding 

and adults were brought out of cold storage when the colony needed to be 

supplemented. Adults survived cold storage for up to six months but were 

generally used up to three months after being stored as the number surviving after 

this period started to decline. 

Eggs were usually laid on plant pots or occasionally on the sides of the cage. Plant 

pots were removed to prevent cannibalism and eggs on the side of the cage were 

protected with a Petri dish held in place with adhesive tape. At 18°C, eggs hatched 

four days after being laid. First instar larvae were fed as a group with a mixture of 

instars of A. pisum in Petri dishes (9cm Petri dish with a 9cm piece of filter paper 

in the base). Second instar larvae were transferred three to four days later using a 

camel hair paintbrush, in groups of three or four individuals, to separate Petri 

dishes. Larvae were maintained in these dishes and fed with A. pisum every two 

days until pupation. Under insectary conditions, developmental time from egg to 

pupa took 21 - 23 days and a further five to six days before adults emerged from 

pupae. Young adults were transferred to an insectary cage and maintained in the 

same way as the breeding colony. They were used for experiments when they were 

two to four weeks old adults. 

2.5 Culturing the parasitoid Praon volucre 

Parasitoids were reared in the Rothamsted insectary at a constant temperature of 
18°C and a 16 hour photoperiod. Parasitoids were field collected in 1996 and 

subsequently have been cultured on A. pisum and S. avenae (Appendix 1). To set 

up cultures for this study, approximately 50 "mummies" (cadavers of aphid hosts 

containing parasitoid larvae) were placed in a cage containing high numbers of 

either A. pisum or S. avenae. Emerging adults were allowed to oviposit freely and 

aphid numbers were supplemented as necessary over a period of two weeks. After 

approximately one week, most of the adult parasitoids died as there was no source 
of food provided and many mummies were visible on the aphid host plants. The 
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culture was changed every two weeks with approximately 50 mummies being 

returned to fresh plants and aphid colonies. Praon volucre is a solitary endo- 

parasitoid so mummies only contained a single larva, making it relatively easy to 

balance the numbers of emerging adults within the culture. 

The male and female sex ratios had to be monitored every three to four months to 

ensure that the number of males to females was maintained as a 50: 50 proportion. 
This ensured that female parasitoids did not reproduce parthenogenetically as this 

resulted in all male offspring. Maintaining high numbers of parasitoids in the 

colony also helped to prevent this. 

Parasitoids were harvested for experiments as mummies by gently removing 
individuals from leaves using a fine pair of Storkbill forceps. Adult parasitoids 

emerged over the following week. It was too time consuming and difficult to rear 

more accurately aged individuals for experiments because of the high number of 
individuals required. 

2.6 Fungal isolates 

For the purposes of this study, a fungal isolate is defined following the definition 

of Hawksworth, Kirk, Sutton & Pegler (1995) as "the first single-spore or pure 
isolation of a fungus from anyplace". 

Z. 6.1 Collection 

Isolates were supplied by; the United States Department of Agriculture (USDA) 

Agricultural Research Service Collection of Entomopathogenic fungi (ARSEF), 

Ithaca, New York; the Danish Pest Infestation Laboratory, Skovbrynet, Denmark; 

the Federal Biological Research Centre for Agriculture and Forestry, Darmstadt, 

Germany and Horticulture Research International (HRI), Wellesbourne, UK. All 

isolates had reported potential against aphids either in the literature or by personal 

communication and many were originally isolated from aphids (Table 2.2). 
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2.6.2 Storage 

Isolates were received as mycelial cultures on either sabouraud dextrose agar 
(SDA) or SDA supplemented with 1% yeast (SDAY) as first subcultures. 

Mycotech strain GHA was isolated from a sample of the formulated product, 

Mycotrol® WP (kindly supplied by Dr. J. D. Vandenberg), by streaking the powder 

onto Oatmeal Dodine Agar (ODA) and then subculturing from this onto SDA. 

ODA is a selective medium for the isolation of hyphomycete fungi (Appendix 2), 

particularly Metarhizium spp. and Beauveria spp., and this allowed separation of 

the fungal strain GHA from the formulation component of Mycotrol® WP. All 

isolates were subsequently stored as a culture collection at IACR-Rothamsted, 

Harpenden, England. 

Fungi were stored at -86°C in cryovials (System 100 Cryogenic vials (1.5ml), 

Nalgene®) in 10% glycerol (v/v) as a cryoprotectant to help prevent the formation 

of ice crystals during freezing, storage and thawing of cultures. All procedures 

were carried out in a laminar flow hood using sterile methods. All equipment was 

sterilised in an autoclave at 121°C and 15 p. s. i. (pressure, in pounds per square 

inch) for 20 minutes. A cork borer (size 2, diameter 5mm) was used to cut "plugs" 

of fungus from culture plates. If isolates were received on slopes of media in tubes, 

a piece of tungsten wire bent at a right angle was used to cut small pieces of fungus 

in the tube. Two or three plugs of fungus were placed in each vial which contained 

approximately lml of 10% sterile glycerol solution. Tubes were gently shaken to 

ensure the plugs were covered with the glycerol solution, screwed shut and placed 
directly in the -86°C freezer. 

Vials were stored in a cryobox (System 100 Cryobox, Nalgene®) which had a 

permanent numerical grid system printed on the lid, allowing an inventory to be 

kept of all vials in storage. Isolates did not lose viability over the duration of the 

study. Regular subcultures were made and isolates stored to ensure there was 

always a suitable supply of fungal material for experiments. All fungi used in 

experiments were either third or fourth subculture from the original sample 

received at IACR-Rothamsted. 
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2.6.3 Subculturing fungi 

A single vial of each isolate to be subcultured was taken out of the freezer and 

allowed to defrost at room temperature for at least ten to fifteen minutes. All 

procedures were carried out aseptically in a laminar flow bench. The plugs of 
fungus were macerated in the vial, using the solid end of a wire holder to form a 

suspension. Three or four drops (approximately 0.15ml) of this suspension were 

pipetted onto each of eight plates of sterile SDA (10ml SDA in 9cm Petri dishes). 

A sterile inoculation loop (5.05mm diameter, volume = 1/100ml) was used to 

streak the drops of fungal suspension across the plate. The plates were then sealed 

with Parafilm (Parafilm®M, American National Can. ) and stored at 25°C in 

darkness. 

After seven days, the plates were opened in the laminar flow and sterile air was 

allowed to pass over each plate for approximately 30 seconds before they were re- 

sealed with Parafilm and placed back in the incubator. Preliminary investigations 

showed that a small slit made in the Parafilm at this time allowed free exchange of 

air and encouraged large numbers of conidia to be produced quickly. Conidia were 
harvested after a further seven days. 

2.6.4 Spore harvesting 

All procedures were carried out aseptically in a laminar flow bench. In general, 

conidia harvested from eight culture plates and suspended in 20ml of 0.03% Tween 

80 (polyoxyethylenesorbitan, biological detergent, BDH) resulted in a suspension 

of approximately 1x109 conidia ml"'. The final concentration depended on 
individual isolate characteristics, such as the quantity of conidia produced and the 

ease with which these could be harvested and suspended. 

Different methods were used for harvesting conidia from the different species of 
fungus. Conidia of B. bassiana, M anisopliae and Paecilomyces spp. produced 
dusty conidia which had hydrophobic cell walls and were therefore difficult to 

suspend in water alone. Paecilomyces spp. had less hydrophobic cell walls than 
Beauveria spp. and Metarhizium spp., but they were still difficult to suspend in 

37 



water. Conidia of V. lecanif had hydrophilic cell walls and were easy to place in 

aqueous suspension. 

Conidia from isolates of B. bassiana and M anisopliae were gently scraped into 

small plastic weigh boats using the flat end of a spatula. Conidia and scrapings 

were then suspended in approximately 20ml of 0.03% Tween 80 in a 50m1 

graduated conical tube (50ml centrifuge tubes, BDH). To prepare suspensions of 

conidia of V. lecanii and Paecilomyces spp. isolates, 20 - 30ml of 0.03% Tween 80 

was pipetted onto plates, distributing the Tween between the number of plates to 

be scraped. Plates were gently scraped using the flat end of a spatula before 

pouring conidia and scrapings into a 50ml conical tube. 

2.6.5 Preparing suspensions of conidia 

Once conidia had been harvested using the appropriate method (section 2.6.4), the 

tubes of suspensions were vortexed using a Gallenkamp Spinmix (Gallenkamp) for 

approximately two minutes and then placed on a Griffin flask shaker (Griffin & 

George Ltd. ). The suspensions were shaken vigorously for approximately l hours 

at room temperature to ensure that conidia were well suspended; the hydrophobic 

conidia of M anisopliae develop in long chains and those of B. bassiana develop 

in dense balls making them difficult to suspend as individual conidia. 

Each suspension was filtered through four layers of tight woven muslin placed in a 
Buchner funnel (10cm diameter). The suspensions were allowed to filter under 

gravity and the filtrates were placed on ice to prevent germination of conidia. 
Suspensions were used on the day that they were prepared for isolate selection 

assays. In subsequent bioassays, suspensions were prepared the day before an 

experiment and the stock suspension was held overnight on ice in a polystyrene 
box at 4°C in darkness. No conidia germinated overnight under these conditions 

and subsequent germination tests indicated that there was no lasting effect on the 

ability of conidia to germinate. 
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The concentration of conidia in each suspension was estimated by using an 
improved Neubauer bright-line haemocytometer (Reichart). 

2.6.6 Spraying fungi 

All spray applications were made using an electrostatically charged rotary 

atomiser, the APE 80 (Arnold & Pye, 1980), mounted on a modified track sprayer. 
The APE 80 was originally developed at Rothamsted for tractor boom mounting to 

apply oil and water-based ultra low volume (ULV) formulations to field crops. In 

the sprayer head (Figure 2.1), a metal plate is charged with 30 000 V from a high 

tension (HT) electrode which ionises the plate, giving it a negative charge. A jet 

unit then applies the fungal suspension or other liquid at a rate of 25ml min" onto 

the metal plate. A spinning disc surrounds the plate and this runs at 4 500 rotations 

per minute (rpm), forming droplets of liquid at the edge of the disc. Deflectors are 
positioned on either side of the sprayer head and are negatively charged. As 

droplets are formed at the edge of the plate and sprayed outwards, the deflectors 

push the spray down to accurately maintain the direction of application. This 

ensures there is no spray drift. Suspensions of conidia of fungi were always applied 

at 10.41 1 ha" with a lm swath width at a height of 25cm above the spray target. 

The number of conidia per cm2 was calculated from this application rate (Table 

2.3). Droplets had a volume median diameter (VMD) of 100µm. 

TABLE 2.3 : Calculated number of spores deposited per cm2 of area sprayed using 
the APE 80 when different concentrations of fungal suspensions are applied. 

Concentration of spray 

(conidia ml's) 

Number of spores deposited 

(per cm2) 

1x10 0.01 

1x103 0.10 
1x104 1.04 

1x105 10.41 
1x106 104.10 
1x107 1 041 

1x108 10 410 
1x109 104 100 
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FIGURE 2.1 : Detail of the APE 80 spray head used to apply suspensions of 
conidia of fungi to aphids in laboratory and field assays 
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2.7 Bioassay assessment 

Insects were checked on a daily or twice daily basis throughout the duration of a 
bioassay. The length of time varied depending on the experiment conducted, for 

example a bioassay using large concentrations of conidia would be run for a 

shorter time, as insects succumbed to fungal infection more quickly, than a 
bioassay using small concentrations of conidia. The number of individuals that 
died was recorded as well as any missing aphids. Additionally, the position of dead 

aphids was recorded as attached to leaves or in the lids of dishes. Each dead aphid 

was placed on damp filter paper in the lid of a 9cm Petri dish or on 1% water agar 
in a 9cm Petri dish and assessed for fungal sporulation after two to three days at 

23°C in the dark. 

2.8 Changing bioassay dishes 

Treated insects were transferred to fresh leaves set in water agar every 48 hours 

post-inoculation. This reduced problems associated with rapid deterioration of the 

excised leaves and over-crowding which occurred as nymphs were produced. To 

move treated adult aphids, surrounding nymphs and leaves were crushed using the 
blunt end of a paintbrush; aphids were stimulated to move by breathing gently over 
the dish to circulate the air. Aphids then rapidly removed their stylets, a process 

which could be seen by eye, and were picked up on a fine camel hair paintbrush 

and moved to clean leaves. Fresh filter paper was placed in the lid of the inverted 

dishes. 

2.9 Statistical analysis 

All calculations and analyses were performed in the computer packages, 
Microsoft® Excel 97 and Genstat 5, release 4.1 (Genstat Committee, 1998). All 

raw data is held at IACR-Rothamsted from whom relevant information can be 

obtained. 
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CHAPTER 3- DEVELOPMENT OF A STANDARDISED BIOASSAY 

METHOD FOR SCREENING HYPHOMYCETE FUNGI AGAINST 

APHIDS 

3.1 Introduction 

The key biological attribute when selecting isolates of fungi to be developed as 

mycoinsecticides is their virulence towards the target insect(s) and their limited 

pathogenicity to non-target organisms. This chapter is aimed at reviewing some of 

the methods used to determine virulence towards the host. Pathogenicity of fungi 

to non-target insects will be reviewed in chapter 6. The definitions of pathogenicity 

and virulence used in this study are those suggested by Prior (1992) in the context 

of insect pathology as "the ability to cause disease" and "a quantitative measure of 
the capacity of an individual pathogen genotype to cause infection" respectively. 

Pathogenicity and virulence of entomopathogenic fungi are most often evaluated 

under controlled conditions in the laboratory using precise bioassay methods. 
Abiotic factors such as temperature and humidity can cause large variability in the 

virulence of a pathogen to its host (Doberski, 1981b; Milner & Bourne, 1983; 

Hsiao, Bidochka & Khachatourians, 1992; Vandenberg, Ramos & Altre, 1998b; 

Feng, Poprawski, Nowierski & Zeng, 1999). The design of any laboratory bioassay 

must ensure that the assay is repeatable and reliable. As variability in bioassay 

results are generally caused by the cumulative differences of many different 

components of the assay, the only way to achieve repeatable results is to have 

detailed technical standardisation of every part of the assay (Burges & Thompson, 

1971). 

The following review is concentrated on the components that are particularly 
important when designing a bioassay to screen fungal isolates for their 

pathogenicity and/or virulence to aphid hosts. Relevant bioassays of different fungi 

against a selected range of other insect hosts will be limited to those with 
similarities to aphid systems. It is not within the scope of this work to review 
bioassays using different micro-organisms and the reader is referred to Burges 
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(1981), Tanada and Kaya (1993) and Navon and Ascher (2000) for reviews of 

bioassays using other pathogens such as bacteria, viruses and protozoans. 

3.1.1 Inoculating test insects 

One of the greatest problems in standardising a bioassay system is administering 

conidia to target insects in a controlled and repeatable manner. The normal route of 

fungal penetration is through the cuticle and techniques to achieve inoculation via 

this route in a standardised manner are often laborious and time-consuming (Hall 

& Papierok, 1982). 

The first tier of testing in a pathogen screening programme is generally to 

determine the pathogenicity of candidate fungi to the target insects. Inoculation 

procedures are relatively crude as it is only the ability of fungi to cause disease 

which is tested at this stage and estimation of the dose received by insects is less 

important. Insects are often exposed directly to large quantities of conidia which 

for hyphomycete fungi is usually as dusts or on culture plates (Yokomi & 

Gottwald, 1988; Jones, Grace & Tamashiro, 1996; Meadow, Shelton & 

Vandenberg, 1998; Smith, Oduor & Moore, 1998; Mohan, Aruna & Uma, 1999) 

and for entomomphthoralean fungi as discharged showers of conidia (Milner, 

1982; Pell, Wilding, Player & Clark, 1993). This allows a large number of fungal 

isolates to be screened quickly, using few test insects which may be important 

when insects cannot be cultured in the laboratory and have to be field collected 

(Milner, 1992). Some caution must be exercised, however, to ensure that these first 

tier assays are accurately measuring pathogenicity of the conidia. Jones et al. 

(1996) observed that ticks exposed to conidia of Metarhizium anisopliae on culture 

plates were "so heavily coated with conidia that they could no longer walk freely". 

Death of host insects in such situations may be due to shock and mechanical 

damage associated with numerous penetrations of conidia or suffocation because 

of occlusion of the respiratory apparatus. 

Generally, pathogenicity screening is used to identify a limited number of isolates 

to be tested against the target insect in assays to determine their virulence. These 

assays require a precise method of inoculating insects with conidia, most often 
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over a range of different doses to estimate the LDso (dose which kills 50% of test 

insects) values for each isolate. A dose is defined as the accurately measured 

number of infective propagules a host is exposed to. When test insects are exposed 

to a known concentration of infective propagules in suspension, but the actual dose 

received by insects is not quantified, the LC50 value (concentration that kills 50% 

of test insects) gives a better estimate of virulence of an isolate. Estimates may also 

be made of the LT50 (time for 50% mortality of test insects) for each isolate at 

specific doses of conidia. 

3.1.1.1 Showering conidia 

Direct inoculation of test insects with an accurate dose of conidia of species in the 

Entomophthorales is very difficult. In contrast to conidia of the Hyphomycetes, 

conidia of the Entomophthorales cannot easily be suspended in aqueous suspension 

making inoculation difficult. The Entomophthorales are characterised by the 

formation of forcibly discharged conidia so bioassays are often developed such 

that an estimation of dose depends on the time insects are exposed to showers of 

conidia. 

Vandenberg & Soper (1979) showered larvae of the spruce budworm 

Choristoneura fumiferana (Clem. ) with spores of Zoophthora radicans 

(=Entomophthora sphaerosperma). Larvae were showered with the fungus for 

different periods of time to regulate the number of conidia to which the insects 

were exposed. An estimation of the dose of fungus received by larvae was made 

based on the average number of conidia in a selected area of agar from water agar 

plates showered before and after larvae were inoculated. Hemmati (1998) exposed 

Acyrthosiphon pisum and Sitobion avenae to primary conidia of Erynia neoaphidis 

by showering the aphids for different periods of time in Petri dishes where they 

were feeding on leaves embedded in water agar. The dose of conidia received by 

aphids was estimated by counting the conidia deposited on a known area of the 

water agar adjacent to the aphids. 

Wilding (1976) developed a more accurate method for estimating the dose of 
Entomophthora conidia showered onto the aphid A. pisum. Aphids were held under 
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a celluloid sheet that had holes through which conidia could pass but aphids could 

not escape. By counting the conidia that landed on the celluloid around the aphids, 

an accurate measurement of the dose could be made. This was the first time a 

linear relationship between log-dose and probit mortality was reported for 

Entomophthora spp. 

Other authors have used similar methods to estimate the dose of Entomophthora 

spp. to which aphids were exposed. Milner & Soper (1981) directly exposed adult 

spotted alfalfa aphids Therioaphis trifolii f. maculata to primary conidia of 

Entomophthora spp. by showering aphids in a purpose built bioassay chamber. The 

dose was estimated from the number of conidia that landed on a coverslip placed 

beneath the aphids. In a subsequent experiment, Milner (1982) exposed A. pisum 

and bluegreen aphids Acyrthosiphon kondoi Shinji to a shower of primary conidia 

and controlled the dose by the length of exposure time. The dose received was 

again estimated from counts of conidia on glass slides placed beneath the 

sporulating fungus used to inoculate aphids. Feng et al. (1999) exposed groups of 

A. pisum directly to primary conidia of Erynia (=Pandora) neoaphidis by 

showering from mats of mycelia. A coverslip placed beside the aphids for the 

duration of inoculation allowed the dose to be estimated. 

3.1.1.2 Topical applications and direct injection of conidia 

Topical applications using a micro-applicator are an accurate way of dosing large 

insects. This method has been used for inoculating insects such as grasshoppers 

and locusts (Prior, Carey, Abraham, Moore & Bateman, 1995; Bateman, Carey, 

Batt, Prior, Abraham, Moore, Jenkins & Fenlon, 1996), termites (Jones et al., 

1996) and cockroaches (Mohan et al., 1999). 

The position of application of fungal conidia may influence the level of mortality 

achieved. Butt, Ibrahim, Clark and Beckett (1995) found that conidia of M 

anisopliae applied under the elytra of the cabbage stem flea beetle Psylloides 

chrysocephala (L. ) resulted in a lower LT50 value than when conidia were placed 

on the exposed parts of the insect body. However, Prior et al. (1995) showed that 

there was no significant difference between placing drops of a suspension of M. 
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Jlavoviride conidia under the thorax or on the mouthparts of desert locust 

Shistocerca gregaria (Forskil). However, it was noted that placing the inoculum 

under the pronotum gave a quick and consistent kill so this was subsequently 

chosen as the standard method of inoculation for future bioassays. 

Inoculation may be achieved by injecting spores directly into the host. Generally, 

insects are immobilised and a micro-injector . 
is used to pierce the intersegmental 

membranes and inject the propagules straight into the haemocoel. The main route 

of fungal infection is via the cuticle and this may present an important barrier to 

host infection (Hajek & St. Leger, 1994). This suggests that inoculation by 

injection of fungal inocula is not an accurate way to test the virulence of 

entomopathogenic fungi. Several studies have shown that there are differences in 

susceptibility of hosts to fungal pathogens after topical exposure of conidia, but 

there were no differences when hosts were injected with fungi (Riba, Katagiri & 

Kawakami, 1982; Ramoska, Hajek, Ramos & Soper, 1988; Hajek, Butler & 

Wheeler, 1995). In other studies, the resistance of larvae to fungal infection has 

been shown to be not solely due to the itegumental barrier. Ignoffo, Garcia and 

Kroha (1982a) showed that Anticarsia gemmatalis (Hubner) larvae injected with 

fungal inocula had similar levels of resistance to infection with inocula that were 

injected or applied topically and dose-mortality relationships were even 

demonstrated for injected inocula. 

3.1.1.3 Incorporation of conidia into foodstuf and exposure to inoculated surfaces 

Inoculum has been presented to test insects incorporated into either bait or 

foodstuff and/or by exposing them directly to a surface which is often a foodstuff 

that has been treated with conidia. In any food bait experiment a large amount of 

infection is through the host cuticle from contact with conidia on the substrate and 

so it is difficult to dissociate the two different methods of inoculation. 

In assays against boll weevils, conidia of Beauveria bassiana incorporated into 

feeding substrates were found to be no less pathogenic than conidia applied 

directly as conidial sprays (Wright & Chandler, 1992). Isolates of B. bassiana were 

also shown to be pathogenic to the American cockroach Periplaneta americana 
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(L. ) when conidia were incorporated into wheat flour as a foodstuff (Mohan et al., 

1999). A mortality of 67-100% in cockroaches exposed to the food baits suggested 

this might be a method that could be developed for cockroach control. 

In a bioassay of B. bassiana against Colorado potato beetle Leptinotarsa 

decemlineata larvae were allowed to feed for 48 hours on leaves that had been 

surface treated with conidia of B. bassiana (Ignoffo, Garcia, Kroha, Samginäkovä 

& Kälalovä, 1983). An LC5o value of 28.8 ± 13.9 conidia/mm2 was calculated but 

there was no inhibition of larval feeding or effect on larval body weight. Larvae of 

various cabbage pests were inoculated with conidia of the mycoinsecticide Boverin 

(B. bassiana) by allowing larvae to feed on treated leaves for 48 or 72 hours 

(Ignoffo, Garcia, Alyoshina & Lappa, 1979). This gave an inverse relationship 

between consumption of leaves and Boverin concentration and a typical dose- 

mortality response. A similar inoculation method was used to bioassay B. bassiana 

and Nomuraea rileyi (Farlow) against Trichoplusia ni (Hubner) (Ignoffo, Puttler, 

Hostetter & Dickerson, 1976b; Ignoffo, Garcia, Kroha & Couch, 1982b). 

Agudelo & Falcon (1983) compared the infectivity of Paecilomyces farinosus 

conidia and hyphal bodies to the beet armyworm Spodoptera exigua. Fourth instar 

larvae were microfed or topically exposed to conidia and hyphal bodies. Ingested 

conidia were significantly less pathogenic than topically applied conidia or 

topically applied or ingested hyphal bodies. The LT50 for external infection was 

4.1 days, compared with 6.3 days when the larvae were microfed. Such an 

inoculation procedure is more suitable when considering lepidopteran pests such as 

S. exigua whose feeding habit will expose them to conidia both on the exoskeleton 

and in the gut. Pell et al. (1993) inoculated leaf discs with primary conidia of Z 

radicans and then allowed secondary conidia to be formed overnight. By counting 

conidia showered onto slides at the same time the leaves were inoculated, the 

authors were able to quantify the number of spores on each leaf before allowing 

larvae of the diamondback moth Plutella xylostella to walk over and feed on the 

leaves for 30 minutes. A positive relationship was demonstrated between the dose 

of conidia and mortality of larvae. Similar methods have been used to evaluate 

doses of conidia received by aphids (Milner & Soper, 1981). 
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The pathogenicity of N. rileyi to nine species of caterpillar was evaluated by 

allowing larvae to walk on leaves treated with a known volume of conidia (Puttler, 

Ignoffo & Hostetter, 1976). Using this method, the authors were able to confirm 

differences they had noted in the field in larval susceptibility to the fungus. 

Similarly, the pathogenicity of isolates of B. bassiana, P. farinosus and M 

anisopliae to Scolytus scolytus (F. ) was tested by exposing insects to leaf discs 

inoculated with an unknown quantity of conidia (Doberski, 1981 a). 

The relationship between pathogenicity and dose has been more accurately 

quantified using exposure to treated surfaces as a method of host insect 

inoculation. Ferron & Robert (1975) obtained a relationship between dose and 

pathogenicity when they inoculated the bean weevil Acanthoscelides obtectus Say 

by allowing insects to walk over Petri dishes sprayed with B. bassiana, M 

anisopliae or P. fumosoroseus. Barson (1977) exposed S. scolytus larvae to elm 

bark which had been treated with suspensions of B. bassiana. Although a 

relationship between pathogenicity and dose was demonstrated, the calculated 

values of the LD5o were suggested to be inaccurate because larvae were exposed to 

conidia for the entire duration of the experiment. 

3.1.1.4 Dipping in suspensions of conidia 

In many bioassays, the test insects are treated by dipping them in suspensions of 

conidia at known concentrations and monitoring the numbers of test insects that 

die and sporulate with fungus. These systems have been reported for various aphid 

species (Hall, 1976a; Hall & Burges, 1979; Feng & Johnson, 1990; Feng, Johnson 

& Kish, 1990b; Dorschner, Feng & Baird, 1991; Miranpuri & Khachatourians, 

1996). Dipping insects in fungal suspensions has also proved useful as a method 
for inoculating ticks (Monteiro, Bittencourt, Daemon & Faccini, 1998a; Monteiro, 

Fiorin, & Correia, 1998b), grasshoppers (Khachatourians, 1992), cockchafers 
(Keller, Schweizer & Shah, 1999) and whitefly scales (Hall, 1982). 

Inoculating test insects by dipping them in suspensions of conidia is not suitable 
for all insect species. Doberski (1981 a) tried inoculating adult elm bark beetles S. 

scolytus by dipping them in suspensions of conidia and noted that many of the 
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beetles did not survive the treatment. Chandler (1997) tried dosing lettuce root 

aphid Pemphigus bursarius by totally immersing them in suspensions of conidia 

but all aphids were killed during treatment. However, Hall (1976a) developed a 

successful bioassay system to investigate the impact of Verticillium lecanii on the 

chrysanthemum aphid Macrosiphoniella sanborni (Gillette) which relied on aphids 

being totally immersed in suspensions of conidia. Feng & Johnson (1990) and 

Feng et al. (1990b) also successfully inoculated several species of cereal aphids 

using a short immersion period in suspensions of conidia. 

There are limitations to using immersion techniques as a method of inoculating 

insects. Most importantly, the LC5o and LT50 values that are calculated from 

bioassays using immersion inoculation are likely to be unrealistically low 

estimates of doses needed to achieve the same kill in the field. Yokomi & 

Gottwald (1988) compared the efficacy of spray and drench applications of V. 

lecanif against three aphid species, which often attack greenhouse-grown citrus. 

Aphids were either immersed in suspensions of conidia or sprayed with 

suspensions (to the point of runoff) with an airbrush. At concentrations of 1x 104 

conidia ml's the LT5o for the drench treatment was calculated as 9.9 days and for 

the spray treatment was 12.4 days. Hall (1979) compared the level of V. lecanii 

infection in the chrysanthemum aphid M. sanborni when aphids were exposed to 

conidia by immersion in suspensions of conidia or by allowing the aphids to walk 

over leaves treated with conidia. Infection from conidia treated leaves was very 

low compared to that obtained when aphids themselves were treated with conidia. 

The differences between laboratory and field estimates of LC5o values were shown 

by Dorschner et al. (1991). The authors tested the virulence of B. bassiana to the 

hop aphid Phorodon humuli (Schrank) under controlled laboratory conditions, on 

potted plants and in the field. In the laboratory bioassay, aphids were treated by 

immersion in suspensions of conidia and the calculated LC50 was 1.37 x 105 

conidia ml''. In the pot experiments, doses of 1x 105 and 1x 107 conidia ml" were 

applied to potted hop plants, representing the LC50 and LC95 values obtained in the 

laboratory bioassay. Effective control after four weeks was only achieved with the 

dose of Ix 107 conidia ml"' and the 1x 105 conidia ml" treatment was not 
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significantly different from the control at this time. Although these differences 

were largely attributed to variable relative humidity (RH) in the pot experiment (in 

the range 50 - 95%), this work demonstrates some inherent problems with 

extrapolating results from laboratory bioassays to the field situation. Indeed, there 

were no mycoses or control of target insects observed in the field assay described, 

although this was suggested to be due to the effects of low humidity and high 

temperatures. 

Sopp, Gillespie and Palmer (1989) applied the V. lecanii isolate 1.72 used in the 

product Vertalec® to Chrysanthemums and found it gave good control of the aphid 

Myzus persicae but not Aphis gossypii. The aphids had been shown to be equally 

susceptible to the fungus using immersion bioassays in the laboratory, with 

calculated LC50 values of approximately 1x 105 conidia ml"' (Hall, 1976a). 

However, M persicae is a more active aphid than A. gossypii and Sopp et al. 

(1989) suggested that this enhanced mobility meant M. persicae came into contact 

with more conidia than A. gossypii when the aphids were treated under field 

conditions. This demonstrates the need to use application systems in a laboratory 

bioassay that accurately represent the system used for applying conidia under field 

conditions. Whilst dipping insects in suspensions of conidia may be a suitable 

method to test pathogenicity and provide repeatable results, this author suggests 

that more realistic application methods should be used to test virulence of fungi in 

the laboratory. 

3.1.1.5 Spraying systems 

The simplest spraying techniques used in laboratory bioassays, have involved 

propellant systems such as an artist airbrush (Yokomi & Gottwald, 1988). These 

systems have proved useful in evaluating the pathogenicity and virulence of 

hyphomycete fungi to aphids (Miranpuri & Khachatourians, 1995; Askary, 

Carriere, Belanger & Brodeur, 1998). Although such equipment may be calibrated 

to apply a specific volume of spray, like other methods of inoculation, the actual 

dose received by insects is often not quantified. Additionally, many of these sprays 

are applied until the point of run-off which exposes insects to very high volumes of 

conidial suspensions similar to those which they may experience if the dipping 
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method of inoculation was used (Yokomi & Gottwald, 1988). Aerosol propellants 

are not always suitable for application of conidia and high mortality has been noted 

in some aphids treated using such application systems (Chandler, 1997). Other 

authors have used aerosol spray bottles (Poprawski, Parker & Tsai, 1999) or hand 

operated spray bottles (Dorschner et al., 1991) to apply fungal inocula to aphids 

under laboratory conditions. 

Many studies have used static sprayers to allow a more accurate dose of fungal 

conidia to be applied to aphid hosts. The most commonly used static sprayers are 

the Potter tower (Potter, 1952) and the Burgerjon tower (Burgerjon, 1956), which 

are both accurately calibrated systems which rely on atomisation to deliver a fine 

spray with great precision. Poprawski et al. (1999) observed that the Burgerjon 

tower gave the least variable doses (compared to aerosol spray bottles) as a method 

to inoculate the brown citrus aphid Toxoptera citricida (Kirkaldy) with different 

hyphomycete fungi. 

The Potter tower has been used to inoculate various insect hosts with 

entomopathogenic fungi including whiteflies (Vidal, Lacey & Fargues, 1997b; 

Meekes, Fransen & van Lenteren, 1996; Wraight, Carruthers, Bradley, Jaronski, 

Lacey, Wood & Galaini-Wraight, 1998; Lacey, Kirk, Millar, Mercadier & Vidal, 

1999) lepidopteran larvae (Feng, Carruthers, Roberts & Robson 1985), coleopteran 

larvae (Ferron & Robert, 1975) and aphids (Mesquita, Lacey, Mercadier & 

Leclant, 1996; Chandler, 1997; Poprawski et al., 1999). 

Different methods have been developed to estimate the dose of conidia received by 

test insects inoculated in spray towers. Mesquita et al. (1996) used the Potter tower 

to inoculate the Russian wheat aphid Diuraphis noxia (Mordvilko) with an isolate 

of P. fumosoroseus. The tower was calibrated by spraying suspensions of conidia 

onto Petri dishes containing water agar and counting conidia in a known area. This 

method allowed a very accurate dose to be applied to aphids. Similar methods have 

been used to calculate the dose of B. bassiana and P. fumosoroseus conidia 

received by D. noxia (Vandenberg, 1996) and P. xylostella larvae using the 
Burgerjon spray tower (Vandenberg et al., 1998b). The LC50 values that were 
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calculated for these fungi against aphids were found to be lower than other authors 

had obtained. Vandenberg (1996) suggested that the main reason for this was that 

the bioassay methods were more accurate and the assay itself was quite sensitive. 

Chandler (1997) estimated the doses of M anisopliae conidia received by lettuce 

root aphid P. bursarius by macerating recently inoculated aphids and plating out 

the resulting suspensions onto plates of media. By counting the number of colonies 

that developed an estimate was made of the dose of conidia received by the aphids. 

However, as the author notes, this method does not differentiate between infectious 

conidia and those that were unable to infect. 

Various different types of ultra-low volume (ULV) spray application methods have 

been used to inoculate insects. Puterka, Humber and Poprawski (1994) used an 

ULV spray application method that consisted of a pressurised spray bottle in a 

spray chamber to spray pear psylla Cacopsylla pyricola (Foerster) nymphs on leaf 

discs in Petri dishes. Although a ULV spray was used, the leaves were still sprayed 

to run-off with 200 pl of conidia suspension applied to both adaxial and abaxial 

surfaces of the leaf. This type of spray application technology has been useful 

under glasshouse conditions to apply mycoinsecticides to aphids (Sopp et al., 

1989) and particularly under field conditions to control locusts in the LUBILOSA 

programme (Neethling & Dent, 1998; Bateman, 1999). 

3.1.2 Choice of target insect 

Standardisation of the target host is virtually impossible but there are several 

points that should be considered when selecting insects to be used in assays. 

Generally, the host used in bioassays should be that which will be targeted in 

subsequent field applications. Mycoinsecticides are likely to be targeted at the 

most susceptible life stage of the host. 

Dose-mortality experiments have indicated that there is an age-maturation immune 

response so that, generally, the early instars are the most susceptible (Boucias, 

Bradford & Barfield, 1984; Steenberg & Vagn Jenson, 1998; Vandenberg et al., 
1998b). However, there are exceptions to this general rule; Feng et al., (1985) 
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quantified the dose-mortality relationships between three isolates of B. bassiana 

and five instars of the European corn borer Ostrinia nubilalis. Characteristically, 

the first instar was the most susceptible and the fourth instar the most resistant. 

However, the fifth instar, which was expected to be less susceptible than instars 

one to four, only had an LC50 higher than the first instar. It was suggested that the 

fifth instar period accounts for 40% of the entire larval development period and so 

is less likely to moult during an inoculation period. Conidia are therefore less 

likely to be removed with the moulted cuticle than in other instars and so will have 

a greater chance of germinating and penetrating the host cuticle. 

Many entomopathogenic fungi will only infect a particular life stage (Ignoffo & 

Mandava, 1988) and bioassay procedures should be standardised to ensure that the 

same life stage is used in each assay. Most bioassays of entomopathogenic fungi 

against aphids use apterous adults as the target host (Hall, 1976a, 1976b; Yokomi 

& Gottwald, 1988; Feng et al., 1990b; Vandenberg, 1996). Other assays have been 

conducted on third instar (Mesquita et al., 1996) or first instar aphids (Milner, 

1982). However, if treated aphids moult before conidia attached to the cuticle have 

germinated, the estimates of values for the LT5o and LD5o for early instar aphids 

may be inaccurate. 

There is an effect of age or life stage of aphids on their susceptibility to 

entomopathogenic fungi. Dromph, Pell, Clark and Eilenberg (in prep. ) showed that 

alate S. avenae aphids from two different coloured clones were both more 

susceptible to E. neoaphidis than apterae of the same clones. The susceptibility of 

adult A. pisum to infection with E. neoaphidis has been shown to change with the 

age of aphid. Apterous adults which were three to four days old were found to be 

more susceptible than one day old or six to seven day old adults (Lizen, Latteur & 

Oger, 1985). Additionally, alate A. pisum in the same study were shown to be up to 

six times more resistant to fungal infection. 

Host insects should be uniform in size although some studies have shown there are 

no differences between different sized hosts in their susceptibility to 

entomopathogenic fungi (Mohan et al., 1999). Other factors, such as host sex, may 
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need to be considered for some insects (Maniania & Odulaja, 1998) but other 
studies have shown that this is not always an important determinant in host 

susceptibility (Prior et al., 1995). 

3.1.3 Choice of carrier 

The carrier used to suspend fungal conidia must be chosen carefully as some are 
known to have toxic effects on the host insect. 

Prior et al. (1995) tested nine refined vegetable oils, six unrefined vegetable oils 
and kerosene as dilutants for various species of hyphomycete fungi in bioassays 

against the desert locust S. gregaria. Mortality of adult locusts twelve days post- 

treatment with the dilutents alone ranged from 16.7% for coconut and cotton seed 

oils to 100% for Neem and Kerosene. However, there were no untreated controls 
held under the bioassay conditions used in this experiment so it is difficult to 
determine whether a mortality of 16.7% is higher than would be expected for 

locusts under these conditions. Neem is known to have insecticidal properties and 

so was unsuitable as a dilutant for this bioassay. Interestingly, the authors also 

observed that as vegetable oils aged, the control mortality in bioassays increased. 

To reduce this effect on control mortality, fresh oils were obtained regularly. 

Surfactants such as Silwet L-77 (an organo-silicone nonionic surfactant) often 

cause relatively high mortality in aphids (Imai, Tsuchiya, Morita & Fujimori, 

1994; Imai, Tsuchiya & Fujimori; 1995) and other soft-bodied insects (Purcell & 

Schroeder, 1996). Poprawski et al. (1999) noted high mortality in their control 

group of brown citrus aphid T. citricida (43.9 ± 7.5%) treated with 0.05% Silwet 

L-77 compared to a blank control (unsprayed) group with lower mortality (17.1 ± 
2.3%). Although this surfactant was used in a maximum challenge pathogenicity 

assay, Tween 80 at 0.01% was used for multiple dose assays and control mortality 

was reduced to less than 5%. 

Hall (1976a) immersed M sanborni, Brachycaudus helichrysi and M persicae in 
increasing concentrations of Triton X100 or Tween 80 to determine the effect of 
the surfactants on aphid survival. The percentage of aphids drowning increased 
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with increasing concentrations of both carriers for M sanborni but B. helichrysi 

and M persicae were not affected, even at concentrations as high as 1% of the 

wetting agents. 

Interestingly, M. sanborni was chosen as the host aphid for further bioassays 

because the other aphids displayed other disadvantages; there was high control 

mortality of the other aphids as they were restless and reluctant to feed under the 

bioassay conditions. It was suggested that the low control mortality of M sanborni 

was more important than the drowning effect. This is a good example of the 

compromise that has to be made when designing an accurate and repeatable 

bioassay system. 

3.1.4 Post-inoculation incubation and mortality assessment 

Test insects should be incubated under controlled conditions that favour survival of 

control insects that do not receive any treatment at all or those that are only 

inoculated with the carrier. Factors such as temperature, humidity and photoperiod 

can be adjusted to favour fungal germination immediately following inoculation 

and reverted to optimal conditions for prolonged insect survival. Alternatively, 

conditions such as temperature may need to be maintained to favour insect survival 

as long as fungal growth is not adversely affected (Ferron & Robert, 1975). 

A good incubation system will be indicated by low control mortality. This has been 

suggested to be ideally less than 10% for pathogen bioassays (Goettel & Inglis, 

1997). As aphids are phloem-feeding insects, they should ideally be maintained on 

whole plants rather than excised leaves. Chandler (1997) showed that the lettuce 

root aphid P. bursarius was only able to survive on whole living plants and 

suggested that using excised leaves for bioassay systems would not provide aphids 

with adequate nutrition. However, there is often a need to compromise on an ideal 

incubation system because of the number of insects to be screened. 

It has been shown that successful infection by a fungus may be influenced by the 

physiological state of the host. The susceptibility of the spotted alfalfa aphid T. 

trifolii to infection by Z radicans (=Entomophthora sphaerosperma) was shown to 
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be reduced if aphids were starved for a 24 hour period after fungal inoculation 

(Milner & Soper, 1981). However, other studies have shown that susceptibility of 

test insects to fungus is not affected by periods of starvation. There was no 

significant difference in susceptibility of locusts to M flavoviride whether they 

were fed or starved during the course of a bioassay (Prior et al., 1995). 

Mortality assessments should be made on a daily basis and any insects that die 

should be removed immediately from the assay container. Dead insects must be 

removed to prevent horizontal transmission of conidia from the sporulating 

cadavers (Arthurs & Thomas, 1999). The cadavers should be incubated at a warm 

temperature and a high relative humidity to encourage sporulation of conidia on 

the host for positive identification. 

It is essential that control groups of insects are included in any bioassay, including 

those, of entomopathogenic fungi against insect hosts. Controls may be used to 

indicate a background level of fungal mortality occuring naturally in host 

populations. Milner & Soper (1981) used field collected spotted alfalfa aphid T. 

trifollii for bioassays of Entomophthora spp. and noted that the frequency of 

naturally occurring disease was generally very low (<2%) as indicated by control 

mortality. 

In laboratory bioassays there are generally two approaches to interpreting control 

mortality. Many researchers use the control group of insects solely to prove there 

is no fungal contamination between treatments. Often in these cases, no details are 

presented on control mortality other than a statement that there was "no mortality 

attibutable to fungal infection in control insects". This is true for assays with cereal 

aphids (Feng & Johnson, 1990; Feng et al., 1990b; Feng & Johnson, 1991; 

Vandenberg, 1996), pea aphids (Milner, 1982) and hop aphids (Dorschner et al., 

1991), as well as several species of lepidoptera (Vandenberg & Soper, 1979; 

Ignoffo et al., 1979; Ignoffo et al., 1982a; Vandenberg et al., 1998b). 

Alternatively, control deaths are used to show how suitable the incubation methods 

are for a host insect species; a small number of control deaths indicate that 

conditions in the incubation system do not cause stress in the insect host. 
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Considering bioassays of entomopathogenic fungi against aphids, the ideal control 

mortality of less than 10% appears to be a somewhat unrealistic value to obtain in 

the laboratory. Hayden, Bidochka & Khachatourians (1992) evaluated virulence of 

several entomopathogenic fungi to S. avenae and obtained mortality in control 

groups between 0- 10%. Chandler (1992) developed a bioassay against the lettuce 

root aphid P. bursarius which gave a mean control mortality of 11%, although the 

range of mortality was from 8- 15%. When the same assay procedure was used for 

pathogenicity tests on a separate occasion, mortality was as great as 20% 

(Chandler, 1997). 

Other bioassays against aphids have recorded higher values for control mortality. 

Miranpuri & Khachatourians (1996) had less than 13% control mortality in a 

bioassay of woolly elm aphid Eriosoma americanium Riley. However, this result is 

dubious as the method of inoculation was different for those aphids treated with 

fungus (dipped in fungal suspensions) compared to the control aphids (sprayed 

with water). Under these conditions, any observations made on control mortality 

are meaningless. In an assay against the Russian wheat aphid D. noxia, control 

mortality was recorded as 11.67 ± 5.69% (Mesquita et al., 1996) whilst an assay 

against the chrysanthemum aphid M. sanborni had recorded control mortality of 

16.3 ± 4.7% (Jackson, Heale & Hall, 1985). A much higher level of control 

mortality (up to 37.2 ± 2.7%) has been reported in bioassays against S. avenae 

(Miranpuri & Khachatourians, 1995). Whilst a low control mortality indicates a 

good bioassay system, it would appear that the often quoted level of less than 10% 

is very difficult to achieve with soft-bodied, phloem-feeding insects such as 

aphids. Improved rearing, handling and incubation systems should be developed 

for specific aphid species to ensure as low a control mortality as possible. 

The problems of analysing and interpreting control mortality data have become a 

contentious issue. An exhaustive review of the subject is not intended here, but an 

overview of some of the more pertinent issues concerning bioassays of 

entomopathogenic fungi against insects is useful. Many authors use Abbott's 

formula to remove effects not due to the entomopathogen for insects treated with 

pathogen by correcting for mortality observed in the control treatment where the 
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carrier alone is applied (Abbott, 1925). However, this does not allow for sampling 

variation as the formula fixes the level of control mortality according to a single 

sample i. e. the single control group of insects assayed for all treatments (Fenlon, 

1995). Other methods have been suggested to be more suitable for analysis, such 

as the maximum likelihood method (Finney, 1971). 

Insects treated with fungi may die from the action of toxins produced by the 
invading fungi and, therefore these insects will not show overt signs of mycosis. 
These insect deaths are generally classed as "non-fungal" control mortality. 
Current analysis procedures do not satisfactorily deal with these non-fungal deaths 

in controls which may potentially be related to the treatments because of toxin 

effects. IACR statisticians are currently investigating modelling non-fungal deaths 

more accurately (S. J. Clark, pers. comm. ). 

3.2 Materials and Methods 

3.2.1 Insect and fungus cultures 

All aphid species were reared to apterous adults of known age using methods 

described in section 2.1. Fungal isolates were cultured as described in section 2.6.3 

and fungal suspensions were prepared as described in sections 2.6.4 and 2.6.5. The 

sprayer system used for all spray applications is described in section 2.6.6. 

3.2.2 Aphid movement in dishes during spray applications 

The movement of aphids of the six species detailed in section 2.1 was assessed in 

Petri dishes to determine if this was an appropriate method for holding test insects 

during spraying only; systems for post-inoculation incubation are evaluated in 

section 3.2.3. Five aphids were placed into each of 15 Petri dishes for each aphid 

species which contained leaves embedded in 2% water agar. Aphids were placed in 

dishes late in the afternoon, the dishes were then inverted and five dishes were 

placed overnight in each of a controlled environment (CE) room, insectary cage or 

a CE cabinet at 18°C and a 16 hour photoperiod. On the following day, all the 

dishes were moved to the 18°C CE room and were turned the right way up and the 
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lid removed. Aphids were observed for ten minutes and the time that each 

individual began moving was recorded; moving was defined as removal of the 

stylets and walking away from the feeding site. If any aphids were on the lid of the 

Petri dish at the start of the experiment they were removed before the observation 

period started and the sample size reduced appropriately. 

3.2.3, Post-inoculation incubation 

Three methods of incubating insects following inoculation with candidate fungi 

were investigated to determine which method resulted in the smallest control 

mortality of test insects. This experiment was only done with the black bean aphid 

A. fabae. 

The three methods for incubating aphids (Figure 3.1) were; i) excised leaves set in 

2% water agar in 9cm Petri dishes, ii) a Blackman box (12.5 x8x 2cm with a 

5.5cm diameter hole covered with muslin), where excised leaves were held in 

water saturated foam in a ventilated plastic box or iii) a small plant under a 

lampglass covered with muslin held in place with a metal ring. Five aphids were 

placed in each incubation system, with five replicates of each system. The different 

incubation systems were all placed in a CE room at 23°C and a 16 hour 

photoperiod. Aphids were checked daily for seven days and the number that died 

or were missing was recorded. 
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FIGURE 3.1 : Three holding systems tested for incubating Aphis 
. 
juhae during 

bioassays. From left to right; a Blackman box with leaves held in moist sponge, a 
Petri dish with leaves set in water agar and a whole plant held under a lampglass. 
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3.2.4 Aphid population density 

The density of aphids on a leaf set in 2% water agar in a Petri dish affected aphid 

survival over the duration of a bioassay. This experiment was designed to 

determine the optimal number of aphids per Petri dish which would result in small 

control mortality but give results that could be analysed statistically. This 

experiment was only done with the black bean aphid A. fabae. 

Aphids were placed on excised bean leaves set in 2% water agar to give densities 

of 5,8,10,12,15 and 20 aphids per dish. Five replicates of each aphid density 

were placed at 23°C in a 16 hour photoperiod. Aphids were checked daily for 15 

days and the number of dead and missing aphids recorded. Aphids were moved 

onto fresh leaves 72 hours after they were placed in the dishes; this simulated a 24 

hour settling period prior to spraying and a 48 hour incubation period after 

spraying. Aphids were subsequently moved to clean leaves every 48 hours. 

3.2.5 Effect of carrier on aphid survival 

The surfactant Tween 80 was used as a carrier for conidia; a concentration of 

0.03% was sufficient to suspend conidia and had no effect on germination of 

conidia. Tween 80 at a concentration of 0.03% was tested against the aphid A. 

fabae to determine any side effects of the carrier on different populations of the 

aphid. 

Three aphid population densities of 5,12 or 20 aphids were sprayed with 0.03% 

Tween 80, distilled water, or were left unsprayed. All aphids were sprayed using 

methods detailed in section 2.6.6 and were incubated on excised leaves in 2% 

water agar in Petri dishes at 23°C, in a 16 hour photoperiod. Mortality was 

assessed daily for eight days and dead aphids were removed. Aphids were moved 

to clean leaves every 48 hours. 
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3.2.6 Preliminary maximum challenge 

A first tier pathogenicity test was carried out with isolates ARSEF 2859 (V. 

lecanii) and ARSEF 4491 (P. fumosoroseus). Twenty-five A. pisum and A. fabae 

were allowed to walk on culture plates of conidia for a ten minute exposure period. 

There were two replicates for A. pisum and three replicates for A. fabae for each 

treatment. A single replicate of 25 aphids of each species were allowed to walk in 

empty Petri dishes for a ten minute period as controls. Following inoculation, 

aphids were removed and placed in the CE cabinet, at 18°C with a 16 hour 

photoperiod, on single bean plants in lampglasses covered with cling film. The 

cling film was replaced with muslin after 24 hours and aphid mortality checked 

daily for three days. Data were analysed using logistic regression under the general 

linear regression procedure in Genstat 5. 
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3.3 Results 

3.3.1 Aphid movement in dishes during spray applications 

Aphids moved infrequently for all six species that were tested (Table 3.1). The 

most movement was for A. pisum and M dirhodum. Individuals of A. fabae, R. 

padi and M. persicae did not move over the ten minute recording period. 

TABLE 3.1 : Movement in a ten minute period of apterous adult aphids of six 
species in Petri dishes after being held in different controlled environment facilities 
overnight. 

Aphid species Location overnight Number of aphids Time(s) of first 

moving (%) movement (secs) 

A. pisum CE Room 4 375 

Tardis 21 20 - 395 
Insectary 17 35 - 246 

S. avenae CE Room 0 0 

Tardis 0 0 

Insectary 4 77 
M. dirhodum CE Room 12 207 - 347 

Tardis 4 500 
Insectary 4 383 

A. fabae CE Room 0 0 
Tardis - - 

Insectary 0 0 
R. padi CE Room 0 0 

Tardis - - 
Insectary 0 0 

M persicae CE Room 0 0 

Tardis - - 
Insectary 0 0 
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3.3.2 Post-inoculation incubation 

There was less than 10% mortality in all the incubation systems until day three, 

after which mortality began to increase (Figure 3.2). After seven days, the greatest 

mortality (70%) occurred in aphids reared in Petri dishes and then incubated in 

Blackman boxes. The lowest mortality (25%) was for aphids reared in the 

insectary and then incubated in Petri dishes and those reared in Petri dishes and 

then incubated on whole plants. Generally, those aphids incubated on whole plants 

survived better than those in Petri dishes, which in turn survived better than those 

incubated in Blackman boxes. 
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Figure 3.2: Cumulative proportion of Aphisfabae dying on each day having been 
reared in different systems (on whole plants (IR) or excised leaves in Petri dishes 
(PR)) and then incubated in three systems (a whole plant (PLANT), excised leaves 
in Petri dishes (PETRI) or Blackman boxes (BLACK)). 
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3.3.3 Aphid population density 

The mortality of aphids at all densities over the first eight days of the assay was 

less than 10% (Figure 3.3). At the end of the assay (day 15), aphid mortality was 

below 25% in all treatments, ranging from 8% for those dishes with a density of 15 

aphids to 21.7% for those with an aphid density of 12. 
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FIGURE 3.3 : Cumulative proportion of Aphis fabae dying on each day at 
different population densities (5,8,10,12,15 or 20 aphids) when incubated on 
excised leaves set in agar in Petri dishes. 

3.3.4 Effect of carrier on aphid survival 

The proportion of aphids that died in populations of 5 or 12 aphids was greatest for 

those treated with Tween 80 at 0.03%, although this did not exceed 27% for either 

population (Figure 3.4). However, when the population was increased to 20 aphids 

per dish the mortality in unsprayed controls increased to 53% and mortality of 

aphids sprayed with Tween 80 at 0.03% was lower at 25%. 
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FIGURE 3.4 : Cumulative proportion of Aphisfabae dying on each day following 

spraying with water, Tween 80 (0.03%) or left unsprayed at three different 

population densities; a) 5 aphids, b) 12 aphids or c) 20 aphids per Petri dish. 
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3.3.5 Preliminary maximum challenge 

Approximately 80-100% of aphids treated with suspensions of conidia of either 

isolate had died by 48 hours post-inoculation (Figure 3.5). No assessment of fungal 

sporulation on cadavers was made. There was no significant difference in the total 

number of aphids that died over the two days between treatments (F3,7 = 0.11, P= 

0.951). There was also no significant difference between isolates (F1,6 = 4.31, 

P<0.05) for the number of aphids that died on the two days. Many of the aphids 

treated with fungus were noted to be so heavily covered with spores that they were 

unable to walk. 
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FIGURE 3.5 : Pathogenicity of isolates ARSEF 2859 (V. lecanii) and ARSEF 
4491 (P. fumosoroseus) to Acyrthosiphon pisum and Aphisfabae aphids. 
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3.5 Discussion 

Any bioassay system should be designed to ensure that the host insects are exposed 

to environmental conditions that cause the minimal amount of stress to the insects. 

This should result in small control mortality and therefore an accurate assessment 

of pathogenicity and virulence of tested pathogens. Any system can then be 

adapted to allow for conditions which favour fungal infection, such as periods of 

high humidity following inoculation for germination of conidia. 

Most laboratory bioassays of entomopathogenic fungi against insect hosts use 

methods of inoculation that are poor representations of the application technique 

that would be used under field conditions. One of the aims of this study was to use 

an application system in the laboratory which could also be used to apply fungal 

pathogens in the field. The APE 80 sprayer (Arnold & Pye, 1981) has been used in 

a series of experiments to select an isolate of M. anisopliae for control of crucifer 

pests (David-Henriet, Ibrahim, Pye & Butt, In prep. ). These assays were conducted 

in the laboratory, extended to field simulation and then to full scale field trials 

using the same application system in each situation. Using this type of application 

method may give a less accurate measure of LCSO values than a controlled 

laboratory experiment. It is likely that even with perfect mixing of a suspension of 

conidia, some insects will receive no conidia at all. However, it will present a far 

more realistic estimation of the range of doses that will be required to achieve 

levels of control under field conditions. 

The APE 80 was therefore chosen as the inoculation system to test isolates against 

aphids. As part of a biorational approach it is suggested that isolates which could 

produce a repeatable level of kill using the same application system to be used 

under field conditions would be better adapted for use as mycoinsecticides than 

isolates which are more variable in their ability to infect host insects. However, to 

ensure reliability and repeatability of the bioassay method, other components of the 

assay were rigorously standardised. 
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Apterous adult aphids of known age were used for all assays as previous studies 

have shown that there may be differences in host susceptibility to fungi depending 

on host age (Lizen et al., 1985). Additionally, using apterous adults ensured that 

the host aphids would not moult during the course of the bioassay and in the 

process shed conidia on the cast exuviae. It has been shown that moulting soon 

after inoculation reduces susceptibility of insects to fungal infection (Vey & 

Fargues, 1977; Vandenberg et al. 1998b). 

Aphids were sprayed in dishes where they were held on excised leaves set in water 

agar. It would have been more realistic to spray aphids on whole plants or spray 

plants and then place aphids on them. However, up to 105 replicates were sprayed 

on some occasions so the Petri dish system was used for ease of handling, storage 

and assessment. Preliminary investigations indicated that aphids placed on dishes 

24 hours prior to spraying did not move when they were inoculated the following 

day. However, in later experiments it became apparent that insects became stressed 

after 48 hours in a dish post-inoculation and many would be found drowned in 

collected water in the lids of dishes. To overcome this, aphids were placed onto 
leaves in Petri dishes on the morning of the day they were to be sprayed. Most 

aphids were then settled in a feeding position by the afternoon when sprays were 

applied. Additionally, a piece of filter paper (5cm diameter) was placed in the lids 

of dishes which absorbed excess free water and maintained a high humidity. 

Aphids were incubated post-inoculation in Petri dishes, even though it was shown 
that survival was better on whole plants. Aphids were not moved to whole plants 

after inoculation because; i) it was very time consuming searching for treated 

aphids, ii) aphids were often lost, so sample sizes had to be reduced and iii) test 

aphids needed to be moved before the end of the experiment (generally eight days 

post-inoculation) as plants became over-crowded with nymphs and it became 

difficult to identify treated adult aphids from newly developed adults and late 

instar nymphs. 

The optimal number of aphids per dish was shown to be 15 for long-term aphid 

survival (15 days, based on results from aphid population density experiments) but 
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the length of most bioassays was less than eight days, at which time there was less 

than 10% aphid mortality for all population densities of aphids. A density of 12 

aphids per dish was used for short assays and increased to 15 aphids per dish in 

assays where the total number of replicates had to be reduced to make the running 

of the assay technically feasible. 

The total sample sizes used were generally between 60 - 90 aphids per treatment. 

Mathematical calculations have shown the minimum sample size for assays to give 

a reliable estimate of the LD50 and LT50 is 120 individuals. For increased precision, 

sample sizes of 240 or more individuals are required (Robertson, Smith, Savin & 

Lavigne, 1984) but this may be an impractical number of insects to handle in a 

bioassay. Sample sizes as low as 20 aphids per treatment have been used but this 

dramatically reduces the precision of LTso and LDso estimates (Hayden et al., 

1992). Conclusions drawn from such experiments should be treated with caution. 

An increase in precision of dose-response assays by increasing replication has been 

found to be greater than increasing the number of insects from ten to twenty, or 

increasing the number of doses (Hall, 1976b). 

There was high control mortality in initial assays. Some insects died of fungal 

infection in control treatments in the first two assays, and this appeared to be 

largely due to contamination with an isolate of M anisopliae which had been 

applied in a previous un-related experiment. Careful routine cleaning of the 

sprayer head with Decon 75® (detergent), 95% ethyl alcohol and water after every 

application of fungal suspension, eliminated this type of control mortality. A strict 

hygiene routine was adopted when spraying; Petri dishes were placed on fresh blue 

paper towel (Kimberly-Clark') and isolates were applied in an order that ensured 

no two isolates of the same species were applied sequentially. If there was any 

contamination between sprays it was easily noticed because subsequent deaths 

could be confirmed as being caused by a different fungal species when sporulation 

tests were done. 

Preliminary assays were conducted with three aphid species; S. avenae, M 

persicae and A. fabae. Generally, M persicae was less susceptible than S. avenae 
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or A. fabae to a range of isolates that were tested in these preliminary assays 

(Appendix 3). Although mortality of S. avenae and A. fabae to fungal isolates was 

similar, control mortality in S. avenae was higher than that for A. fabae. Therefore, 

A. fabae was chosen as the representative target aphid because, of those aphids 

tested, it showed intermediate susceptibility to fungal isolates and had a low level 

of control mortality. 

Preliminary bioassays of several isolates of fungi against A. fabae were carried out 

using a concentration of Ix 106 conidia ml'' but there was little or no kill of test 

insects. An increased concentration of 1x 107 conidia ml-' showed differences 

between isolates, with some killing large numbers of aphids. However, there was a 

large amount of variability between assays. A concentration of 1x 10' conidia ml'' 

was finally chosen as a discriminatory dose for bioassays to determine 

pathogenicity of fungi towards the target aphids. At this dose, variability between 

assays was reduced; aphids died over a shorter time period and reduced periods of 

handling were required. 

All assays were done at 23°C, which favoured fungal development and reduced the 

length of bioassays because insects succumbed to fungal infection over a shorter 

period of time compared to 18°C. In turn, this reduced control mortality of aphids. 

By evaluating the different components of the bioassay system, a standardised 
bioassay for evaluating hyphomycete fungi against aphids was designed and used 

throughout this study (Appendix 4). 
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CHAPTER 4- PATHOGENICITY, VIRULENCE AND APHID HOST 

RANGE 

4.1 Introduction 

Historically, an isolate of Verticillium lecanii from the chrysanthemum aphid 

Macrosiphoniella sanborni (isolate reference; 1-72) was produced in the U. K. as 

the commercial product Vertalec® for the control of aphids in glasshouses. There 

was a large amount of research into many aspects of the pathogenicity and 

virulence of this specific isolate towards glasshouse aphid pests (Hall, 1976a, 

1979,1980ab, 1982). More recently, there has been interest in using isolates of 

Beauveria bassiana for control of cereal aphids (Feng & Johnson, 1990; Feng et al. 

1990b; Feng, Poprawski & Khachatourians, 1994). Research has largely been 

concentrated on the pathogenicity and virulence of isolates towards the Russian 

wheat aphid Diuraphis noxia. This aphid has become a serious pest in the United 

States since it was first recorded there in 1986 (Stoetzel, 1987). Subsequently, 

research has expanded into the potential use of other hyphomycete fungi, such as 

Paecilomycesfumosoroseus for the control of cereal aphids (Mesquita et al., 1996; 

Vandenberg, 1996). 

This chapter is aimed specifically at investigating aspects of the pathogenicity and 

virulence of different species of hyphomycete fungi to a range of aphids under 

laboratory conditions. The effects of fungi on other organisms such as non-target 

beneficials is covered in chapter 6 and the impact of microbials at the field level in 

chapter 7. Evaluating the host range of fungal isolates is important to determine 

their potential as mycoinsecticides; the more pest species that an isolate of fungus 

can infect the more marketable it will be as a commercial product, but the greater 

the risk it may pose to non-target natural enemies. 

Within a single species of fungus, there may be differences between isolates in 

virulence toward a species of host insect or virulence of a single isolate may differ 

against related species of the host insect (Khachatourians, 1992). The most virulent 

isolates to a host are generally those that were isolated from individuals of the 
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same host (Goettel, Poprawski, Vandenberg, Li & Roberts, 1990). Jackson et at. 

(1985) showed that the chrysanthemum aphid M sanborni was most susceptible to 

isolates of V. lecanii originating from aphid hosts compared to isolates from other 

insect and non-insect hosts. However, an isolate may increase in virulence to a host 

if it is passaged through that host and reisolated. Hayden et al. (1992) found that 

passage of Paecilomyces farinosus through the grain aphid Sitobion avenae 

reduced the LT50 from 11.1 days to 5.3 days. In comparison, passage of V. lecanii 

through the chrysanthemum aphid M sanborni did not enhance virulence of the 

fungal isolate (Hall, 1980b). 

When assessing virulence between isolates, generally a comparison is made of the 

dose or concentration of conidia needed to achieve a given level of host mortality, 

often quoted as the LD50 or LC50 respectively. For the purposes of this study, the 

term dose is defined as the "exact measured number of infective propagules that a 

host comes into contact with" and concentration as "the number of infectious 

propagules in a unit amount that is applied to the hosts". 

Hall (1976b) evaluated the virulence of the V. lecanii isolate (isolate reference; 1- 

72) to M sanborni (from which the fungus was originally isolated) and reported an 

LC5o of 2.33 x 105 conidia . ml"1. The relative pathogenicity of conidia and 

blastospores of this V. lecanii isolate to M sanborni was also considered. The LC50 

value for aphids that were dipped in suspensions of conidia was given as 4.85 x 105 

conidia m]"' for blastospores and 1.51 x 105 conidia ml"' for aerially produced 

conidia, indicating that conidia were over three times more virulent. When aphids 

were exposed to inocula on treated leaf discs, the LC50 value was given as 9x 106 

conidia ml"' for blastospores and 5.3 x 107 conidia ml" for conidia. The authors 

suggested that aphids did not acquire disease as readily from leaf surfaces treated 

with conidia as they did when they were treated directly. However, this may 

equally be due to the differences between the methods of inoculation, making it 

difficult to compare between these treatments. Vandenberg, Jackson and Lacey 

(1998a) also compared the efficacy of blastospores and aerially produced conidia 

for an isolate of P. fumosoroseus to the Russian wheat aphid D. noxia and found 
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that there was no difference between the two forms of inocula in mortality or 

average survival time of the aphids. 

Hall (1979) suggested that isolates of V. lecanii with large conidia (6.7 - 8.4 µm in 

length) were better able to initiate epizootics compared to isolates with small 

conidia (3.8 - 6.7 µm). A large number of isolates were assayed against M 

sanborni and virtually all killed adults, with greater than 50% mortality recorded 

(Hall, 1984). Interestingly, the isolates with the greatest epizootic potential 

(measured as the mortality of aphid progeny) were those with large conidia and a 

fast in vitro growth and germination rate. Similarly, Altre, Vandenberg & Cantone 

(1999) demonstrated a strong positive correlation between the size of conidia of 

isolates of P. fumosoroseus and the virulence of those isolates to diamondback 

moth P. xylostella. Additionally, conidia which germinated fastest in vitro were 

also the most virulent against P. xylostella. 

A comparison of characteristics of 18 isolates of V.. lecanii suggested that the 

expression of virulence appeared to be related to a fast germination rate, high 

sporulation, the absence of extracellular amylase activity and relatively high 

extracellular chitinase production (Jackson et al., 1985). It was noted, however, 

that there were some important exceptions to this and the authors concluded that 

virulence may be determined by additive effects of different traits and the absence 

of one trait was not necessarily detrimental to the virulence of that isolate. 

Yokomi and Gottwald (1988) used a detached leaf bioassay to assay three isolates 

of V. lecanii against the spiraea aphid Aphis citricola van der Goot, the melon 

aphid Aphis gossypii and the peach-potato aphid Myzus persicae. The aphid M 

persicae was found to be the most susceptible and A. citricola the most resistant to 

the three isolates. In this assay, the most virulent isolates were also those that 

germinated most quickly in vitro. 

An aphid derived isolate of B. bassiana (isolate reference; SGBB8601) was 

obtained from a field population of the greenbug Schizaphis graminum Rondani in 

June 1986. The virulence of this isolate was compared to five other B. bassiana 
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isolates from a range of different insect hosts to the Russian wheat aphid D. noxia 

(Feng & Johnson, 1990). The aphid-derived isolate had the lowest LC50 (0.57 x 105 

conidia ml-1) and deaths were observed after two days at the highest concentration 

of 1x 107 conidia ml-1. The rate of cumulative mortality increased with increasing 

concentration of conidia for all isolates and increased more rapidly for the more 

virulent isolates. At a concentration of 1x 107 conidia ml"', the LT5o values ranged 

from 4.2 ± 1.5 days for isolate SGBB8601 to 8.7 ± 2.7 days for an isolate derived 

from the Homopteran Deois flavopicta (Stal). Interestingly, two coleopteran 

derived isolates were more virulent to aphids than two homopteran isolates. This 

was suggested to indicate that the host or origin was not a reliable indicator of the 

virulence of an isolate to a specific host. 

Isolate SGBB8601 was then tested alongside an isolate of V. lecanii from the 

Russian wheat aphid D. noxia to six species of aphids infesting cereals (Feng et al., 

1990b). All the aphids tested were susceptible to infection with both isolates but, 

overall, the B. bassiana isolate was more virulent than the V. lecanii isolate. Of the 

six aphid species, D. noxia was the most susceptible and the bird-cherry oat aphid 

Rhopalosiphum padi the least susceptible to fungal infection. As conidial 

concentration increased, the LT50 values decreased, but differed significantly 

between aphid species. The lowest calculated LT50 values were given for D. noxia 

infected with B. bassiana as 1.6 ± 3.2 days at a concentration of 1x 108 conidia ml" 
1. Results could be directly compared with those obtained by Feng & Johnson 

(1990) as the same methods of host inoculation were used. The LC50 for isolate 

SGBB8601 to D. noxia was given by Feng et al. (1990b) as 0.82 x 105 conidia ml's 

(recorded as 0.57 x 105 conidia ml" by Feng & Johnson, 1990) and the LT50 at a 

concentration of 1x 107 conidia ml'1 as 4.3 ± 1.6 days (recorded at the same 

concentration as 4.2 ± 1.5 days by Feng & Johnson, 1990). Prior to this, other 

authors had noted high variability between assays in values of the LCso and LT50 

(Hall, 1976b). Feng et al. (1990b) showed that the assay they developed was both 

repeatable and reliable in assessing the virulence of different isolates to aphids 
infesting cereals. 
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Further studies showed that isolate SGBB8601 was just as virulent to the hop aphid 

Phorodon humuli (Schrank) as to the Russian wheat aphid D. noxia (Dorshner et 

al., 1991). An LC5o of 1.37 x 105 conidia ml'' and an LT50 of 3.09 days at a 

concentration of 1x 108 conidia ml"' was obtained when aphids were dipped in 

suspensions of the fungus. This isolate also caused high mortality (48% in 

laboratory assays), to the woolly elm aphid Eriosoma americanum Riley 

(Miranpuri & Khachatourians, 1996). However, under field conditions, a V. lecanii 

isolate (ATCC 46578) gave effective control of field populations of E. americanum 

whilst the B. bassiana isolate (SGBB8601) had no significant effect on aphids. 

This indicates that virulence under laboratory conditions to a specific host is not 

always translated directly to virulence in the field. The authors concluded that V. 

lecanii may have more use as a microbial control agent for this aphid. 

Other studies have also found isolates of V. lecanii to be more pathogenic to aphids 

than isolates of B. bassiana. Hayden et al. (1992) investigated the virulence of 

several entomopathogenic fungi towards the grain aphid S. avenae and found an 

isolate of V. lecanii (ATCC 46578) to be the most pathogenic with an LT5o of 2.4 

days compared to B. bassiana which had an LT50 of 9.5 days. However, the low 

sample sizes used (20 aphids for isolates of B. bassiana and 40 aphids for isolates 

of V. lecanii) and the high doses of fungi that insects received (4 x 103 to 7x 103 

conidia per aphid) suggests that these results should be treated with caution. 

The virulence of different isolates of V. lecanii and B. bassiana towards S. avenae 

was also investigated using a range of different inoculation methods (Miranpuri & 

Khachatourians, 1995). Again, isolates of V.. lecanii were generally found to be 

more virulent than those of B. bassiana. The V. lecanii isolate (which was also 

used by Hayden et al., (1992)) had a similar LT50 value compared to previous 

assays. In this case, the LT5o was between 2.16 and 2.73 days compared to 2.4 days 

in the previous assay. In comparison, the isolate of B. bassiana had LTso values in 

the range of 3.0 to 4.6 days. Isolate BBSG8601 (the B. bassiana greenbug isolate) 

had LT5o values in replicates of 4.24 and 3.62 days compared to the LT50 of 5.2 

days at the highest dose (1 x 108 conidia ml'') tested by Feng et al. (1990b). Both 

experiments used an immersion method to inoculate test insects so the differences 
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between the assays were more likely to be related to differences between the 

populations of host aphids tested. Milner (1982) found that two biotypes of the pea 

aphid Acyrthosiphon pisum differed in their susceptibility to a range of isolates of 

Erynia neoaphidis such that one biotype could be described as resistant to the 

fungal pathogen. Interestingly, an isolate that originated from the host aphid 

proved to be non-pathogenic to both the susceptible and resistance biotypes, again 

suggesting that virulence cannot be predicted from the host from which a fungus is 

isolated. 

The first report of the potential of the species P. fumosoroseus for the microbial 

control of aphids was made by Mesquita et al. (1996). The virulence of a whitefly 

(Bemisia tabaci (Grennadius)) derived isolate of P. fumosoroseus (ARSEF 3877) 

was evaluated against the Russian wheat aphid D. noxia using a Potter tower to 

inoculate aphids with different doses of conidia. The LD5o for this isolate was 1.78 

x 103 conidia ml-1. The shortest LT50 was 2.06 days at a dose of 3.74 x 104 conidia 

ml-1. Although the methods of inoculation were different, the LC50 value obtained 

(0.57 x 105 conidia ml-1) compared favourably with that obtained previously for 

other isolates of B. bassiana against D. noxia (0.82 x 105 conidia ml's (Feng et al., 

1990b)). 

Vandenberg (1996) developed a standardised assay and evaluated the virulence of 

a large number of isolates of B. bassiana and P. fumosoroseus to the Russian 

wheat aphid D. noxia. Initial assays were conducted with two isolates of each 

species of fungus. Aphids were found to be significantly less susceptible to the B. 

bassiana isolates than the P. fumosoroseus isolates, similar to the results of 

Mesquita et al. (1996). One isolate of each species was then chosen as a standard 

for further assays; the virulence of other isolates of B. bassiana and P. 

fumosoroseus was compared to the standards at a dose of 1x 105 conidia ml''. The 

LT50 values for isolates of B. bassiana ranged from 5.7 to 11.7 days (compared to 

8.0 days for the standard) and for isolates of P. fumosoroseus from 5.7 to 8.5 days 

(compared to 7.5 days for the standard). It has been suggested that P. fumosoroseus 

may present the most promising pathogen for development as a mycoinsecticide 
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against aphids for several reasons including the discovery of these highly virulent 
isolates (Milner, 1997). 

Recently, the first bioassay of B. bassiana against the brown citrus aphid 

Toxoptera citricidus was reported (Poprawski et al., 1999). Isolates of B. bassiana 

and the other hyphomycete fungi P. fumosoroseus and Metarhizium anisopliae 

were assayed in single-dose assays to select the most promising isolates. Seven 

isolates (including a standard isolate, B. bassiana strain GHA, used as the 

commercial product Mycotrol®, Mycotech, Butte, MT) were then assessed in 

multiple-dose bioassays to determine the virulence of each isolate towards the 

aphid host. In this case, aphids were found to be less susceptible to isolates of P. 

fumosoroseus compared to the standard B. bassiana isolate, strain GHA, but 

another isolate of B. bassiana and one of M. anisopliae were more virulent than the 

standard. 

Few studies have been conducted using isolates of M. anisopliae against aphids. 

Hall (1980a) compared the virulence of a strain of M anisopliae isolated from 

Pemphigus bursarius against the V. lecanii isolate 1-72 to the aphid M sanborni. 

The larger LC50 values that were found for M anisopliae were suggested to be 

because the germination of conidia, growth and sporulation rates of M anisopliae 

were slower than those of V.. lecanii. 

Chandler (1992) evaluated the potential of Al. flavoviride isolate 99.82 (original 

host Pemphigus trehernei (=bursarius)) and two isolates of V. lecanii; isolate 1.72 

and isolate 19.79 (original host Trialeurodes vaporariorum (Westwood) and 

developed as the product Mycotal® against whitefly) to the lettuce root aphid P. 

bursarius. The M flavoviride isolate was found to be more pathogenic to aphids 

than either of the V.. lecanii isolates. The author suggested that because these 

aphids are soil-inhabiting insects, they encounter a wider range of insect pathogens 

and have therefore been able to develop some type of resistance to infection. This 

isolate was then assayed with isolates of B. bassiana, P. farinosus and Al. 

anisopliae for pathogenicity toward P. bursarius (Chandler, 1997). Of 25 isolates, 

only isolate 391.93 M anisopliae (original host P. trehernei) and ARSEF 321 V.. 
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lecanii (original host the water lily aphid Rhopalosiphum nymphaea (L. )) were 

able to kill aphids and only the M anisopliae isolate was able to do so consistently. 

A series of dose-response assays with the M anisopliae isolate resulted in LC50 

values of between 8.07 x 105 and 4.47 x 106 conidia ml-t. 

Butt, Ibrahim, Ball and Clark (1994) investigated the pathogenicity of two isolates 

of M anisopliae to a range of crucifer pests including the peach-potato aphid M 

persicae and the turnip or mustard aphid Lipaphis erysimi (=Lipaphis 

pseudobrassicae) (Kaltenbach). When aphids were immersed in suspensions of 

conidia at concentrations of 1x 107 or Ix 1010 conidia m1 1, mortality of 100% was 

recorded for both species of aphid after three days. The earliest deaths were 

recorded on the day after inoculation. 

One of the major restrictions to the uptake of microbial pesticides has been their 

narrow host range and their requirements for specific environmental conditions. 

Little research has been done on evaluating the pathogenicity and virulence of 

fungal isolates to a range of targets with different pest status. An isolate of V. 

lecanii from soil (reference; DAOM 179104) was tested against a variety of insect 

pests including five aphid species (Harper & Huang, 1986). Aphids were sprayed 

on plants at a dose of 2.06 x 107 conidia ml" and the subsequent reduction in aphid 

populations was found to be different between the aphid species. There was a 

significant reduction of the pea aphid A. pisum (97%) and the rose-grain aphid 

Metopolophium dirhodum (67%), a sometimes significant reduction of the peach- 

potato aphid M persciae (54%) and the spotted alfalfa aphid Therfoaphis trifolii f. 

maculata (75%) and no significant reduction of the bird-cherry oat aphid R. padi 

(32%). 

Other studies have shown that an isolate of V.. lecanii derived from the codling 

moth (reference 198499) is comparable in virulence to the potato aphid 

Macrosiphum euphorbiae as the commercial product Vertalec® and is also an 

antagonist of cucumber powdery mildew Sphaerotheca fuliginea (Schlechtend : 

Fr. ) Pollaci (Askary et al., 1998). The level of control of powdery mildew was 

equivalent to that of Sporothrixflocculosa Traquair, Shaw and Jarvis, a biological 
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control agent of greenhouse pathogens. Hall (1980d) first suggested that a single, 

versatile strain of a fungus could be used for the simultaneous control of arthropod 

pests and plant diseases. Askary et al. (1998) suggest that the development of 

isolates such as V. lecanii strain 198499 on a host may favour the expansion of 

epizootics to other organisms and facilitate development of such isolates as 

commercial microbial pesticides. 

4.2 Materials and Methods 

4.2.1 Insect and Fungus Cultures 

All aphid species were reared using methods described in section 2.1. Fungal 

isolates were cultured as described in section 2.6.3 and fungal suspensions were 

prepared as described in sections 2.6.4 and 2.6.5. All spray applications were made 

using the methods and sprayer system described in section 2.6.6. The general 

bioassay procedures described in chapter 2 were followed for all experiments 

unless stated otherwise. 

4.2.2 Single-dose isolate selection assays against Aphisfabae with 18 isolates 

All isolates could not be assessed at the same time so they were randomly divided 

into four groups. Each group contained five or six isolates which included a 

standard isolate, Mycotech strain GHA (B. bassiana) which was used in every 

bioassay. This isolate was chosen as the standard because it had been cultured from 

the formulated product, Mycotrol®WP (Mycotech Corporation, Butte, MT) and so 

was assumed to be a relatively stable isolate, causing a similar level of host 

mortality on each occasion. Each group of isolates were screened on a single 

occasion against the black bean aphid Aphis fabae. Aphids were sprayed with 

suspensions of fungi at a single concentration of 1x 108 conidia ml"'. Each 

treatment was applied to six Petri dishes each containing 12 insects, giving a total 

of 72 aphids per treatment. Six dishes of insects in each experiment were sprayed 

with 0.03% Tween 80 as controls. Daily mortality was recorded over a period of 
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eight days as detailed in section 2.7 and insects were transferred to fresh leaves in 

water agar every 48 hours post-inoculation as detailed in section 2.8. 

The Kaplan-Meier test was used to estimate survival probabilities and plot survival 

distributions in each bioassay for the standard isolate, Mycotech strain GHA (B. 

bassiana). The points on the curve of the survival distribution give estimates of the 

proportion of insects that survive to a given period of time. From the Kaplan-Meier 

estimates, the median survival time can be estimated by linear interpolation. A 

non-parametric k-sample rank test for censored data (Peto & Peto, 1972) was used 

to examine differences between bioassays for the standard isolate, Mycotech strain 

GHA (B. bassiana). An uncensored value arises when an insect dies from the 

treatment and a censored value when an insect survives to the end of the trial. 

The LT50, standard error of the LT50 and 95% confidence intervals were calculated 

individually for all of the isolates using actuarial clinical life tables analysis (Lee, 

1992). The life table method requires a large number of observations so that 

survival times can be grouped into intervals. The advantage of using the life table 

technique is that it allows for losses that occur before the end of the experiment 

that are not due to the treatment, i. e. aphids that have died for another reason. 

Missing aphids were excluded from all analyses. 

4.2 3 Dose-response assays against Aphisfabae with four selected isolates 

4.2.3.1 Dose ranges of 1x105 - 1x109 conidia mt' 

A dose-response bioassay was performed with the isolates Mycotech strain GHA 

(B. bassiana), HRI 1.72 (V.. lecanii), ARSEF 2879 (B. bassiana) and Z11 (P. 

fumosoroseus) against A. fabae. All four isolates were assayed at the same time 

and the bioassay was repeated on three occasions. Aphids were sprayed with 

suspensions of each fungus at concentrations of 1x 105,1 x 106,1 x 107,1 x 108 

and 1x 109 conidia ml". Each treatment was applied to five separate Petri dishes, 

each containing 12 aphids giving a total of 60 aphids per treatment. Five dishes of 
insects in each experiment were sprayed with 0.03% Tween 80 as controls. Daily 
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mortality was recorded over a period of 11 days as detailed in section 2.7 and 

aphids were transferred to fresh leaves every 48 hours post-inoculation as detailed 

in section 2.8. It was not possible to prepare the highest concentration of 

suspension of fungus (1x109 ml") for isolates HRI 1.72 (V lecanii) and Mycotech 

strain GHA on the first occasion, so these treatments were excluded for this 

bioassay. 

Data were analysed using the general linear regression procedure with probit 

analysis in Genstat 5. Using this analysis, the LC50 values and associated 95% 

confidence limits of the LC50 were calculated for each isolate. The LT50 values, 

standard error of the LTso and 95% confidence limits of the LT50 were calculated 

using the actuarial life tables analysis detailed in section 4.2.2. 

4.2.3.2 Dose ranges of 1x106 -1x108 conidia mt1 

The four selected isolates, Mycotech strain GHA (B. bassiana), Z11 (P. 

fumosoroseus), ARSEF 2879 (B. bassiana) and HRI 1.72 (V. lecanii) were assayed 

against A. fabae over a more precise range of concentrations than those tested in 

section 4.2.3.1. All four isolates were screened at the same time and the assay was 

run on one occasion. Aphids were sprayed with suspensions of fungi at 

concentrations of 1X 106,1 X 106.5,1 x 107,1 x 107'5 and 1x 108 conidia ml's. Each 

treatment was applied to four Petri dishes, each containing 15 aphids which gave a 

total of 60 aphids per treatment. Mortality was recorded over a period of eight days 

as detailed in section 2.7, with recordings made twice a day on days three, four and 

five. 

Data were analysed using the general linear regression procedure with probit 

analysis in Genstat 5. Using this analysis, the LC50 values and associated 95% 

confidence limits were calculated for each isolate. The LT50 values, standard error 

of the LT5o and 95% confidence limits were calculated for each isolate and 

concentration combination using actuarial life tables analysis as detailed in section 

4.2.2. 
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4.2.4 Dose-response against A. fabae with isolate HRI 1.72 

The isolate HRI 1.72 (V. lecanii) was screened alone against A. fabae at a range of 

concentrations to allow an LC50 to be calculated for this isolate. Aphids were 

sprayed with suspensions of the fungus at concentrations of 1x 102,1 x 102.5,1 x 

103,1 x 103.5,1 x 104,1 x 104.5,1 x 105 and 1x 105.5 conidia ml"'. Each treatment 

was applied to six Petri dishes each containing 15 aphids, giving a total of 90 

aphids in each treatment. The assay was conducted on a single occasion. Daily 

mortality was recorded over a period of ten days using methods detailed in section 

2.7, with recordings made twice a day except for the first two days when mortality 

was recorded only once a day. Aphids were transferred to fresh leaves every 48 

hours post-inoculation as detailed in section 2.8. 

The LT50 values, standard error of the LT50 and 95% confidence limits were 

calculated at each dose using the actuarial life tables analysis detailed in section 

4.2.2. 

4.2.5 Host range assays against representative cereal aphids, legume aphids and 

the polyphagous aphid Myzus persicae 

The four isolates HRI 1.72 (V. lecanii), Z11 (P. fumosoroseus), ARSEF 2879 (B. 

bassiana) and Mycotech strain GHA (B. bassiana) were screened against the six 

aphid species listed in section 2.1. All four isolates were screened at the same time 

and the assay was repeated on two occasions. Aphids were sprayed with 

suspensions of fungi at a single concentration of 1x108 conidia ml''. Each 

treatment was applied to three Petri dishes each containing 15 aphids, giving a total 

of 45 aphids per treatment. Three dishes of aphids for each species were sprayed 

with 0.03% Tween 80 as controls. Daily aphid mortality was recorded for six days 

using the methods detailed in section 2.7, with recordings made twice a day, except 

for days one, two and three in the first experiment where recordings were made 

only once a day. 
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Data for all treatments applied to the aphid M dirhodum were not statistically 

analysed because 100% non-fungal mortality occurred in the controls. Because of 

this high mortality, M dirhodum was not used in the second experiment. 

Rhopalosiphum padi were assayed on wheat in the first experiment and whilst the 

bioassay insects were reared on wheat, the original stock culture was maintained 

on barley. It was suspected that high control mortality in the bioassay for this 

species of aphid was due to the change of host plant. Therefore, R. padi in the 

second assay were reared and maintained. throughout the assay on barley. The LT50 

value for each treatment and aphid combination was calculated for each dish using 

the actuarial life tables analysis (section 4.2.2). The standard error for the LT50 of 

each replicate (dish) was weighted by calculating the inverse of the estimate of the 

variance of the LT50. The LT50 value was calculated for each dish and therefore 

had a standard error associated with it. Weighting the data by a function of the 

standard error meant the analysis took account of differences in the variability 

around the calculated LT50 values. The weighted data were analysed using the 

general linear regression procedure in Genstat 5. 
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4.3 Results 

4.3.1 Single-dose isolate selection assays against Aphisfabae with 18 isolates 

The non-parametric k-sample rank test indicated a difference between the 

bioassays in the survivorship of insects treated with the standard isolate Mycotech 

strain GHA (B. bassiana ; x23 = 48.3, P<0.001). The median values calculated 

using the Kaplan-Meier survivorship analysis for Mycotech strain GHA (B. 

bassiana) in the four bioassays were 5.7,4.6,4.8 and 5.0 days. The differences 

shown by Mycotech strain GHA (B. bassiana) between each of the four bioassays 

suggested that the bioassays could not be combined in one analysis. In the first run 

of the bioassay, the pattern of aphid mortality due to isolate Mycotech strain GHA 

was different to that in the following three bioassays (Figure 4.1). A smaller 

proportion of aphids died on each day although the first aphid deaths were 

recorded four days post-inoculation which was similar in all four assays. 
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FIGURE 4.1 : Cumulative Proportion of A. fabae dying due to fungus on each day 
following inoculation with a single concentration (1x108 conidia ml-1) of isolate 
Mycotech strain GHA in each of four bioassays. 
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Because of the differences between bioassays in the LT5o values calculated for 

Mycotech strain GHA, each of the four bioassays were analysed separately using 

parametric actuarial clinical life table analysis to describe the data (Table 4.1). 
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In the first assay, there was little difference in aphid mortality due to the isolates 

T80 (V. lecanii) and ARSEF 2879 (B. bassiana) which killed the highest number 

of aphids (>95% for both isolates (Table 4.1)) in the shortest times (LT50 for T80 = 

4.32 days; ARSEF 2879 = 4.39 days). Aphid mortality due to the isolates 

Mycotech strain GHA (B. bassiana) and T195 (B. bassiana) only started to occur 

four days after inoculation (Figure 4.2) and more aphids survived in these 

treatments. 
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FIGURE 4.2 : Cumulative proportion of A. fabae dying due to fungus on each day 
following inoculation with a single concentration (1x108 conidia ml'') of isolates 
ARSEF 2879 (B. bassiana), T195 (B. bassiana), T80 (V. lecanii), Z4 (P. 
fumosoroseus) and the standard isolate Mycotech strain GHA (B. bassiana). 
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In the second assay, aphid mortality due to isolate HRI 1.72 (V. lecanii) occurred 

very quickly following inoculation (Figure 4.3, LT50 = 3.31 days) and this was the 

only isolate in any of the four assays for which 100% of the treated aphids 

succumbed to fungal infection (Table 4.1). In the second assay, aphid mortality 

due to isolates Z26 (V.. lecanii), Z43 (M anisopliae) and Mycotech strain GHA (B. 

bassiana) only started to occur after three to four days and more than 80% of 

aphids in each treatment succumbed to fungal infection. Aphid mortality due to 

isolate ARSEF 4491 (P. fumosoroseus) was less than for the other isolates (75%). 
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FIGURE 4.3 : Cumulative proportion of A. fabae dying due to fungus on each day 
following inoculation with a single concentration (1x108 conidia ml'') of isolates 
HRI 1.72 (V. lecanii), Z43 (M anisopliae), ARSEF 4491 (P. fumosoroseus), Z26 
(V. lecanii) and the standard isolate Mycotech strain GHA (B. bassiana). 
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In the third bioassay, aphid mortality due to isolate Z11 (P. fumosoroseus) started 

to occur on day three (Figure 4.4). This isolate also had the lowest LT50 of the 

isolates screened in this assay (LT50 = 3.687 days). There was little difference in 

the total number of aphids that succumbed to fungal infection between the isolates 

(Table 4.1). Aphid mortality due to isolate T130 (M anisopliae) occurred more 

slowly than mortality due to the other isolates (LT50 = 5.55 days; Figure 4.4). 
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FIGURE 4.4: Cumulative proportion of A. fabae dying due to fungus on each day 
following inoculation with a single concentration (1 x 108 conidia m1'') of isolates 
Z25 (V.. lecanii), Z11 (P. fumosoroseus), ARSEF 2859 (V. lecanii), T130 (M 

anisopliae) and the standard isolate Mycotech GHA (B. bassiana). 

In the fourth bioassay, total aphid mortality due to the standard isolate Mycotech 

strain GHA (B. bassiana) was large (93%) and occurred more quickly than for the 

other isolates (LT5o = 4.97 days). Aphid mortality due to the isolates, Z139 (B. 

bassiana), ARSEF 4461 (P. fumosoroseus) and Z135 (B. bassiana), occurred over 

a similar period of time (Figure 4.5) and the total number of aphids that succumbed 

to fungal infection was similar for these isolates (Table 4.1). 

90 

12345678 
Days after inoculation 



t 

0.9 

0.8 

0.7 

ö 0.6 

0.5 

° 0.4 

0.3 

0 0.2 

0.1 
0 

--f- Mycotech (CIA --E3. - Z 139 
3458 -ä-Z135 

-ý T229 $ ARSEF 4461 

FIGURE 4.5 : Cumulative proportion of A. fabae dying due to fungus on each day 
following inoculation with a single concentration (1x108 conidia ml"') of isolates 
Z139 (B. bassiana), ARSEF 3458 (P. fumosoroseus), Z135 (B. bassiana), T229 (P. 
farinosus), ARSEF 4461 (P. fumosoroseus) and the standard isolate Mycotech 

strain GHA (B. bassiana). 

Mortality due to the isolates T229 (P. farinosus) and ARSEF 3458 (P. 

fumosoroseus) was small compared to the other isolates and occurred over a longer 

period of time (Figure 4.5, Table 4.1). An LT50 value could not be calculated for 

isolate T229 as only 46.48% of the aphids treated had succumbed to fungal 

infection by day eight of the assay. 

As assays could not be combined, the most effective treatments for each assay 

were identified as those which had the lowest LT5o values and caused the highest 

mortality in treated aphids. The most effective treatments were therefore: 

Bioassay 1: T80 (V. lecanii) and ARSEF 2879 (B. bassiana) 

Bioassay 2: HRI 1.72 (V. lecanii) 

Bioassay 3: Z11 (P. fumosoroseus) 

Bioassay 4: Mycotech strain GHA (B. bassiana) 
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All of these isolates, except for T80 (V.. lecanii) were taken forward to the next 

level of testing. Isolate ARSEF 2879 (B. bassiana) was chosen from the first assay 

as it was easier to harvest large numbers of spores from solid culture for this 

isolate compared to T80 (V. lecanii). 

4.3.2 Dose-response assays against Aphisfabae with four selected isolates 

4.3.2.1 Dose ranges of Ix105 -1x109 conidia mt' 

In the third run of the dose-response assay, there were a large number of deaths in 

the controls due to fungus (49%). It was suspected that this fungus was V. lecanii, 

from characteristic sporulation on dead aphids and examination of conidia under 

the microscope. Similar deaths occurred in the applied fungal treatments so the 

results from this assay were discarded. 

In the first assay, isolate HRI 1.72 (V. lecanii) was clearly the most effective 

isolate causing a distinctly different pattern of aphid mortality compared to the 

other three isolates (Figure 4.6). 
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FIGURE 4.6 : Proportion of adult Aphis fabae dying due to fungus in the first run 
of a dose response assay with five concentrations (logio 5.0,6.0,7.0,8.0 & 9.0 
conidia m1'') of isolates Mycotech strain GHA (B. bassiana), HRI 1.72 (V 
lecanii), Z 11 (P. fumosoroseus) and ARSEF 2879 (B. bassiana) 
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For this reason, HRI 1.72 (V.. lecanii) was removed from the probit analysis. The 

results from the general linear regression with probit analysis, indicated that a 

single line was sufficient to describe the data for the other three isolates (F18 8= 

108.77, P<0.001). The single line model suggested there was no significant 

difference between the three isolates in the effect they had on aphids over the range 

of concentrations of conidia applied; the calculated LC5o for the three isolates was 

5.78 x 106 conidia ml-1 (95% confidence interval; 3.33 x 106 - 1.01 x 107 conidia 

ml-1). Adding an additional description of an individual intercept for each isolate 

did not describe the data any better (F2,8 = 1.14, P=0.366) and neither did adding a 

further description of a different slope for each isolate (F2,8 = 0.31, P=0.743). 

In general, the LT50 values for all isolates (including HRI 1.72 (V. lecanii)) 

decreased with an larger concentrations of conidia (Table 4.2). Aphids treated with 

a large concentration (lx108 conidia ml-1) of isolate HRI 1.72 (V. lecanii) began to 

die to fungal infection two days after inoculation compared to the other treatments 

in which mortality began after three to four days (Figure 4.7). 

TABLE 4.2 : Calculated LT50 values for four isolates of hyphomycete fungi; 
Mycotech GHA (B. bass iana), Z11 (P. fumosoroseus), HRI 1.72 (V. lecanii) and 
ARSEF 2879 (B. bassiana), screened against adult Aphisfabae in the first run of a 
dose response assay at concentrations of lx 105 -lx 109 conidia nil". . 

Isolate Concentration LT5o se of LT50 ± 95% Cl 
(conidia ml"') (days) (days) of LT50 

10 * * * 
106 + * + 

Mycotech 10' 6.06 0.21 0.41 
Strain GHA 108 5.14 0.13 0.26 

109 4.03 0.15 0.29 
10, + + + 
106 + s + 

Z11 10' 7.98 3.57 6.99 
108 4.00 0.35 0.68 
109 3.60 0.08 0.16 
10, 7.38 0.24 0.46 
106 5.66 0.20 0.38 

HRI 1.72 10' 3.71 0.11 0.22 
108 3.18 0.11 0.21 
109 - - - 
10 + * + 
106 

ARSEF 2879 10, 5.50 0.27 0.53 
108 4.05 0.13 0.25 
109 
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Data for HRI 1.72 (V. lecanii) were also removed from analysis in the second 

dose-response assay for consistency. Although this isolate was less effective than 

in the first assay, it still showed a different pattern of kill to the other isolates 

(Figure 4.8). 
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FIGURE 4.8 : Proportion of adult Aphis fabae dying due to fungus in the second 
run of a dose response assay with five concentrations (logio 5.0,6.0,7.0,8.0 & 9.0 

conidia ml-1) of isolates Mycotech strain GHA (B. bassiana), HRI 1.72 (i! 
lecanii), Z 11 (P. fumosoroseus) and ARSEF 2879 (B. bassiana) 

The general linear regression with probit analysis indicated that the data for 

ARSEF 2879 (B. bassiana), Z 11 (P. fumosoroseus) and Mycotech strain GHA (B. 

bassiana) were described by a single line model as adding an additional 

description of an individual intercept for each isolate did not describe the data any 

better (F2,9 = 1.67, P=0.241). However, the addition of a further parameter to the 

model of an individual slope for each isolate was found to give a better description 

of the data (F2,9 = 4.62, P=0.042). This suggested that the isolates had very close, 

but not exactly the same, intercepts and quite different slopes. 

The calculated LC5o values could only be compared if the model describing the 

response of aphids to an isolate fitted lines that were either the same or parallel for 

each isolate. In this assay, the fitted model suggested that the three isolates could 

not be directly compared. The model suggested that the isolates were acting in a 
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different way over the range of concentrations of conidia: the LT50 values at any 

one dose were dependent on the isolate that was applied. 

The calculated LT5o values (Table 4.3) generally decreased as the concentration of 

conidia increased for all isolates including HRI 1.72 (V lecanii). However, the 

mortality of aphids due to isolate ARSEF 2879 at concentrations of 1x105 and 

1x106 conidia ml-1 was similar whilst mortality of aphids due to other isolates was 

less at the smaller concentration. 

TABLE 4.3 : Calculated LT50 values for four isolates of hyphomycete fungi; 
Mycotech strain GHA (B. bassiana), Z 11 (P. fumosoroseus), HRI 1.72 (V lecanii) 

and ARSEF 2879 (B. bassiana), assayed against adult Aphis fabae in the second 
run of a dose response assay at concentrations of 1x 105 -1x 109 conidia ml's. 

Isolate Concentration LT50 se of LT50 ± 95% CI 
(conidia ml") (days) (days) of LT5o 

10, 
106 6.61 0.28 0.55 

Mycotech 107 5.14 0.14 0.28 

strain GHA 10, 4.12 0.15 0.28 
109 3.67 0.11 0.21 
10 
106 

Zil 107 5.01 0.29 0.58 
108 4.16 0.13 0.25 
109 3.70 0.09 0.18 
10 5.27 0.19 0.38 
106 4.46 0.14 0.27 

HRI 1.72 107 3.43 0.09 0.18 
108 3.00 0.13 0.. 26 
109 2.91 0.17 0.33 
10 9.26 0.65 1.28 
106 9.35 1.45 2.85 

ARSEF 2879 107 5.23 0.19 0.38 
108 3.64 0.09 0.18 
109 3.59 0.09 0.18 

Again, isolate HRI 1.72 (V. lecanii) was the most effective of the four isolates; 

aphids began to die due to fungal infection on the second day of the assay and 

approximately 90% of aphids were dead by day six for all concentrations except 

lx105 conidia ml'' (Figure 4.9). 
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Overall, in both runs of the assay, total aphid mortality due to all isolates showed 

little difference at the two largest concentrations (1 x 108 and W09 109 conidia ml-1) 

and aphids succumbed to fungal infection over a similar period of time (Tables 4.2 

& 4.3). The mortality of aphids due to each isolate was more variable at 

concentrations smaller than N108 108 conidia ml- 1 (Figures 4.7 & 4.9). To calculate 

more accurate values for the LCso and LTso of each isolate, an increased range of 

concentrations were screened between 1x 106 and 1x 108 conidia ml"'. 

4.3.2.2 Dose ranges of 1x106 -1x108 conidia mt' 

Data for HRI 1.72 (V. lecanii) were removed from the analysis; aphid mortality 
due to this isolate showed a different pattern compared to the other isolates (Figure 

4.10). 
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FIGURE 4.10 : Proportion of adult Aphis fabae dying due to fungus in a dose 
response assay after inoculation with five concentrations (logio 6.0,6.5,7.0,7.5 & 
8.0 conidia ml-) of isolates Mycotech strain GHA (B. bassiana), HRI 1.72 (V. 
lecanii), Z11 (P. fumosoroseus) and ARSEF 2879 (B. bassiana) 

The general linear regression with probit analysis indicated that a single line was 

not sufficient to describe the data (F1,14 = 19.69, P<0.001). Adding an additional 

description to the data of an individual intercept for each isolate did not describe 

the data any better (F2,14 = 13.05. P<0.001). Therefore the best model to describe 
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the data was with a different slope and intercept for each isolate. The LC50 values 

could not be compared between isolates as the fitted model suggested that the 

isolates were acting in a different way over the range of concentrations of conidia. 

In general, for each isolate as concentration of conidia increased, the calculated 
LT50 values decreased (Table 4.4). 

TABLE 4.4 : Calculated LT50 values for four isolates of hyphomycete fungi; 
Mycotech GHA (B. bassiana), Z11 (P. fumosoroseus), HRI 1.72 (V. lecanii) and 
ARSEF 2879 (B. bassiana), screened against adult Aphisfabae in a dose response 
assay at concentrations of 1x 106_ 1x 108 conidia ml"'. 

Isolate Concentration LT5o se of LT50 ± 95% CI 
(conidia ml-) (days) (days) of LT5o 

1x10 * * 
Mycotech 1x 106.5 5.46 0.19 0.38 

GHA Ix 10, 4.93 0.10 0.19 
1x 107'5 4.41 0.11 0.23 
1x 108 3.84 0.07 0.14 
1x10 * 
IX106.5 * * * 

Z11 IX 107 
1x107.1 5.31 0.30 0.58 
1x 108 4.53 0.12 0.24 
1x10 5.55 0.17 0.34 
1x106.5 4.37 0.10 0.19 

HRI 1.72 1x 107 3.95 0.04 0.08 
1x 107.5 3.23 0.07 0.14 
1x108 3.17 0.09 0.17 
1x10 * 
1x 106.5 6.72 0.47 0.92 

ARSEF Ix 107 4.82 0.12 0.24 
2879 1x 107.5 3.89 0.06 0.12 

Ix 108 3.95 0.07 0.13 

At the larger concentrations of conidia (1 x 108 and 1X 107'5) mortality of aphids 
due to isolate HRI 1.72 (V. lecanii) started to occur after 48 hours and mortality 

was greater than 90% for each concentration of conidia after 168 hours (Figure 

4.11). 
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Mortality of aphids due to isolate ARSEF 2879 (B. bassiana) was not more than 

77% of insects treated at any concentration of conidia. Mortality of aphids due to 

isolate ZI1 (P. fumosoroseus) was less than 40% of treated insects at 

concentrations of 1x106,1x106'5 and 1x107 conidia ml"'. To calculate the LC50 

values for isolate HRI 1.72 (V.. lecanii), a range of smaller concentrations needed 

to be investigated. 

4.3.3 Dose-response against A. fabae with isolate HRI 1.72 

Aphid mortality due to isolate HRI 1.72 (V. lecanii) was greater than 90% of 

aphids treated with concentrations of conidia larger than 1x104 conidia ml"'. Most 

of this mortality had occurred 144 to 168 hours following inoculation (Figure 

4.12). 
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FIGURE 4.12 : Cumulative proportion of Aphis fabae dying due to fungus on 
each day following inoculation with seven concentrations (logio 2.5,3.0,3.5,4.0, 
4.5,5.0 & 5.5 conidia ml") of isolate HRI 1.72 (V. lecanii). 

At the smallest dose of 1x102'5 conidia ml"' aphid mortality due to fungus was 

almost 40% of treated aphids by the end of the experiment. Aphid mortality due to 

fungus was higher and occurred over a shorter period of time when a concentration 

of 1x103 conidia ml"' was applied compared to 1x1035 conidia ml-1. The proportion 
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of aphids dead due to fungus in each dish indicated large variability in data points 

for the concentration of 1x1025 conidia ml" and an extreme data point for the 

concentration of 1x103'5 conidia ml's (Figure 4.13). The data were considered to be 

too variable to perform a formal statistical test to calculate an LC5o value for this 

isolate. 
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FIGURE 4.13 : Proportion of Aphis fabae dying due to fungus in each replicate 
(dish) following inoculation at seven concentrations (logio 2.5,3.0,3.5,4.0,4.5, 
5.0 & 5.5 conidia ml") of isolate HRI 1.72 (V.. lecanii). 

4.3.4 Host range assays against representative cereal aphids, legume aphids and 

the polyphagous aphid Myzus persicae 

Control mortality was very high, but similar, for three of the six aphid species (S. 

avenae, R. padi and A. pisum) on the two occasions the host range bioassay was run 

(Figures 4.14 & 4.15). Mortality in control treatments for A. fabae and M. persicae 

was much lower than for the other aphids and never exceeded 20% in either run of 

the bioassay. Metopolophium dirhodum was excluded from the experiment after the 

first run of the bioassay because there was 100% control mortality on this occasion 
for this aphid species. However, none of the mortality in any of the control 

treatments was ever attributable to a fungus treatment (based on sporulation data). 
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FIGURE 4.14 : Total proportion of control aphids dying due to causes other than 
infection with fungus, six days after inoculation with Tween 80 (0.03%), in the 
first run of a host range experiment. 
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FIGURE 4.15 : Total proportion of control aphids dying due to causes other than 
infection with fungus, six days after inoculation with Tween 80 (0.03%), in the 
second run of a host range experiment. 
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The control treatments indicated that A. fabae and M persicae were able to survive 

better under the bioassay conditions and were therefore assumed to be less stressed 

than the other aphid species. This suggested that there was a level of aphid stress 

which was affecting the aphids in a different manner. The aphids were therefore 

split into two separate groups for analysis; stressed (S. avenae, R. padi and A. 

pisum) and non-stressed aphids (A. fabae and M. persicae). 

Analysis of results for the non-stressed aphids using general linear regression 

indicated that there was a significant effect of bioassay occasion (F1,39 = 8.80, P= 

0.005) and the results for isolate ZI I (P. fumosoroseus) may have caused these 

differences (Figure 4.16). 
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FIGURE 4.16 : Predicted LT50 values (with standard errors) for "non-stressed" 
species of aphid in a host range assay following inoculation with a single dose 
(lx108 conidia ml-) of isolates Mycotech strain GHA (B. bassiana), Z11 (P. 
fumosoroseus), HRI 1.72 (V. lecanii) and ARSEF 2879 (B. bassiana). 
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Both species of aphid treated with the isolates ARSEF 2879 (B. bassiana), 

Mycotech strain GHA (B. bassiana) and HRI 1.72 (V. lecanii) had similar LT50 

values between the two experiments whereas aphids treated with Z11 (P. 

fumosoroseus) appeared to have much lower LT50 values in the second bioassay. 

Aphids of both species had the lowest LT50 values when treated with isolate HRI 

1.72 (V. lecanii) in both experiments. Both species of aphid treated with the 

isolates Mycotech strain GHA (B. bassiana) and ARSEF 2879 (B. bassiana) had 

similar LT50 values but Mycotech strain GHA (B. bassiana) appeared to have a 

slightly higher LT50 compared to ARSEF 2879 (B. bassiana) in both bioassays. 

A significant interaction between aphid species and fungal isolate (F3,47 = 4.24, P= 

0.011) suggested that the LT50 of an aphid species was dependent on the isolate 

with which it was treated. However, this may have been confounded by the fact 

that Z11 (P. fumosoroseus) showed such large differences between the two assays; 

a significant but small amount of variation was accounted for by the aphid species 

(F1,39 = 0.042) whereas the fungus differences accounted for a large amount of the 

variation (F3,39 = 19.96, P<0.001). 

Analysis of data for the stressed aphids indicated that there were significant effects 

of bioassay occasion (F1,54 = 8.31, P=0.006), aphid species (F2,54 = 8.57, P<0.001), 

fungal isolate (F3,54 = 21.67, P<0.00 1) and a significant interaction between aphid 

species and fungal isolate (F6,54 = 5.09, P<0.001). This suggested that there were 

differences between the aphid species in the way that they responded to each of the 

isolates on each occasion. The largest differences between occasions occurred for 

R. padi (Figure 4.17); in both runs the lowest LT50 values were obtained when this 

aphid was treated with isolate HRI 1.72 (V.. lecanii) but in the second run, this 

value was lower than in the first run. 
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FIGURE 4.17 : Predicted LT50 values (with standard errors) for "stressed" species 
of aphid in a host range assay following inoculation with a single dose (1x108 
conidia ml-1) of isolates Mycotech strain GHA (B. bassiana), Z11 (P. 
fumosoroseus), HRI 1.72 (V. lecanii) and ARSEF 2879 (B. bassiana). 

Additionally, R. padi had very different LT50 values when treated with ZI I (P. 

fumosoroseus) between the two runs of the bioassay; on the first occasion it was 

quite high (LT50 = 140.18 h±2.80) but on the second occasion aphids succumbed 

to the fungus more quickly and the LT50 value was much lower (LTso = 83.32 h± 

9.76). The predicted LT5o values for A. pisum and S. avenae were similar between 

bioassays when they were treated with each of the isolates; aphids treated with 

HRI 1.72 (V. lecanii) succumbed to fungal infection over the shortest period of 

time and S. avenae succumbed to fungal infection more quickly than A. pisum. 

Isolate Z11 (P. fumosoroseus) was highly variable in the time that it took to kill 

aphids, both within and between species assayed on different occasions. Isolate 

HRI 1.72 (V. lecanii) consistently killed aphids in the shortest time and also 

appeared to be less variable than the other isolates, killing aphids that were 

stressed and non-stressed over similar periods of time. 
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4.4 Discussion 

Generally, isolates that originated from aphid hosts were more pathogenic to 

apterous adult A. fabae as indicated by low LT50 values in the single-dose isolate 

selection assays. Interestingly, the two isolates of P. fumosoroseus, ARSEF 4461 

and ARSEF 4491, had larger LT50 values for infection of A. fabae than had been 

previously noted for a range of cereal aphids (Vandenberg, 1996). This may have 

been due to differences in incubation temperature and aphid host species. 

The greatest mortality of A. fabae (100%) in the single-dose assays at a 

concentration of 1x 108 conidia m1"1 was recorded for aphids inoculated with 

isolate HRI 1.72 (V. lecanii). The shortest LT50 of 3.31 days was also recorded for 

this isolate. This compares favourably with results obtained by Hall (1984); an 

LT5 of 3.1 days was recorded for the chrysanthemum aphid M sanborni 

inoculated with isolate HRI 1.72 (V. lecanii) at a concentration of 1x 107 conidia 

ml-1 and an LT5o of 3.6 days at a concentration of 1x 106 conidia ml". As the 

original host of isolate HRI 1.72 was M sanborni, these results would suggest that 

this fungus is more virulent specifically towards the aphid species from which it 

was isolated. Other authors have noted similar differences between aphid hosts in 

susceptibility to the same fungal isolates (Feng et al., 1990b). 

Aphids that succumbed to fungal infection with isolates of V. lecanii were often 

observed attached to the leaves on which they had been feeding in Petri dish assays 

(personal observation). Those aphids which succumbed to infection with isolates 

of B. bassiana, P. fumosoroseus or M. anisopliae tended to be found in the lids of 

dishes. It is suggested that this was because they had either actively moved off the 

leaf surface or had dropped off the leaf and been unable to climb back on. Butt, 

Beckett and Wilding (1990) noted that there was invasion of the muscle tissues in 

A. pisum after one day of infection with the fungal pathogen E. neoaphidis, 

suggesting that reduced mobility may be associated with this tissue invasion. Roy 

(1997) showed that A. pisum infected with E. neoaphidis were unable to recolonise 

plants after they were dislodged. 
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Adults of A. fabae and other aphid species frequently had fungal growth and 

sporulation on their legs, one to two days before they died of infection with 

isolates of V. lecanii (Figure 4.18). Similar patterns of mortality were noted for M 

sanborni treated with V. lecanii (Hall, 1976b). Aphids of A. fabae infected with V. 

lecanii in the current study were also observed to be more difficult to move into 

clean dishes; they appeared to be unable to respond to alarm pheromone and had 

great difficulty walking. Roy (1997) showed that A. pisum infected with E. 

neoaphidis were less responsive to alarm pheromone in the later stages of 

infection. Similarly, when A. pisum and A. fabae infected with isolate ARSEF 

3458 (P. fumosoroseus) were exposed to alarm pheromone of healthy aphids, there 

was a reduced response in the later stages of infection (Redman, 1998). 

Sporulation on appendages and reduced movement of infected insects may be 

beneficial in establishing fungus in host populations that could aid in the 

development of fungal epizootics. 

It is likely that infected aphids that drop off plants will effectively be removing 

fungal inoculum from the aerial environment and therefore reduce the potential for 

the pathogen to spread in the aphid population. It is suggested that the attachment 

of cadavers to the host plant could be recorded as an indication of epizootic 

potential of an isolate. 

The relationship between dose of inocula and the infection of host insects has 

previously been demonstrated (Burges, 1981). Many studies have shown that LT50 

values for aphids treated with entomopathogenic fungi decrease with increasing 

dose or concentration of inoculum (Poprawski et al., 1999; Chandler, 1997; 

Mesquita et al., 1996; Vandenberg, 1996; Dorshner et al., 1991; Feng & Johnson, 

1990; Feng et al., 1990b). The isolates selected for the dose-response experiment 

in this study showed a similar pattern of decreasing LT50 values with increasing 

concentration of conidia. Generally, there was little change in the LT50 value or 

total mortality of aphids between the concentrations of 1x 108 and 1x 109 conidia 
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ml-1. A maximum speed of kill was therefore achieved using a concentration of Ix 

108 conidia ml-1 under the conditions of this assay. 

Although the relationships between isolates and the concentration of conidia 

applied were difficult to determine in this study (largely due to the variable nature 

of isolate Z11 (P. fumosoroseus)) it was apparent that the largest mortality in 

aphids was consistently recorded due to isolate HRI 1.72 (V. lecanii). At 

concentrations of Ix 105 conidia ml"' and above, mortality of aphids due to fungal 

infection was 100% by this isolate. Aphids began to die due to fungal infection 

only two days post-inoculation. Even at concentrations as low as 1x 102.5 conidia 

ml"', some aphid mortality due to fungal infection was noted. 

There was large variability in the total mortality of aphids due to isolate HRI 1.72 

(V lecanii) at low concentrations of 1x 102'5 and Ix 103 conidia ml-1. The number 

of conidia at these concentrations was calculated as 2.01 and 6.36 conidia per dish. 

At these low densities of conidia there would have been large variability between 

aphids in the number of conidia that they contacted. When a concentration of 1x 

104.5 conidia ml"' (= 201.03 conidia per dish) was applied to aphids, the total 

mortality of aphids due to fungus in replicates became much less variable. 

It is likely that many aphids will only be exposed to low concentrations of conidia 

under field conditions. Isolates selected for field use should exhibit a very high 

level of virulence to the target host. It may be possible that isolates such as HRI 

1.72 (V. lecanii) can be applied at much higher concentrations than necessary to 

achieve high levels of host mortality. This will allow large numbers of conidia to 

be lost or inactivated by environmental exposure, whilst the high level of virulence 

will compensate for these losses as only a few conidia will be needed to survive to 

cause lethal infections within the host population. 

Mortality of aphids in control treatments was large for some species of aphid in the 

host range studies. The cereal aphids, R. padi, M dirhodum and S. avenae, and the 

pea aphid A. pisum did not survive well on excised leaves. In comparison, 

mortality in control treatments for the peach-potato aphid M persicae and the bean 
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aphid A. fabae was smaller. Myzus persicae is known to feed preferentially on 

senescing and physiologically old leaves (van Emden, 1969). The changes in 

excised leaves resemble those of senescing ones, so aphids such as M persicae 

will be able to survive well on excised leaves (Minks & Harrewijn, 1987). Aphis 

fabae prefers to feed near a vein (Lowe, 1967) and it may be that the phloem 

pressure on excised leaves is sufficient to sustain aphids in the bioassay system 

described. 

The other aphid species were probably less well adapted to survival on excised 

leaves; S. avenae generally colonises the upper parts of plants, especially the ear. It 

is likely that the nutritional qualities of the young wheat leaves used in this 

bioassay were very different to those of a mature wheat plant or a wheat ear. 

Because of these differences between the aphid species, it was necessary to split 

the aphid hosts in the host range assays into "stressed" or "non-stressed" species to 

account for the differences that host plant suitability may have on levels of aphid 

stress and hence susceptibility to fungal infection. 

Both the non-stressed aphid species (M persicae and A. fabae) and the stressed 

aphid species (M dirhodum, R. padi, S. avenae & A. pisum) were most susceptible 

to isolate HRI 1.72 (V lecanii). Isolate Z1I (P. fumosoroseus) was variable in 

pathogenicity to these aphids between different experiments. In general, S. avenae 

appeared to be more susceptible than A. pisum to isolates, but R. padi was 

relatively resistant except to HRI 1.72 (V.. lecanit). Other studies on the 

susceptibility of cereal aphids to hyphomycete fungi have found S. avenae to be 

more susceptible to V. lecanii and B. bassiana than R. padi (Feng et al., 1990b), 

and R. padi was found to be the most resistant aphid of six species of cereal aphid 

tested. The LT5o values were smaller for S. avenae inoculated with V. lecanli and 

B. bassiana in the current study compared to those found by Feng et al. (1990b), 

which suggests the isolates used in the current study were more virulent than those 

previously tested. 

Studies to date have generally suggested that isolates of B. bassiana and V. lecanii 

are better at controlling aphids than isolates from species such as M anisopliae. 
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Whilst V. lecanii and B. bassiana are recorded in aphid populations, they are 

usually found at low levels of infection and are rarely noted to cause epizootics. 

These infections could be opportunistic and restrained from becoming epizootic by 

the dependence of these fungi on high humidity for their spread through host 

populations. 

It has been suggested that the lettuce root aphid P. bursarius is susceptible to 

isolates of M anisopliae because the aphids are regularly exposed to other 

hyphomycete fungi in the root environment (Chandler, 1997). Alternatively, this 

may represent an example of co-evolution between the host and the pathogen. 

Beauveria bassiana for example, occurs in soil as a ubiquitous saprophyte and 

mainly infects Lepidopteran, Coleopteran and Hemipteran insects. However, V. 

lecanii infects aphids, scale insects and whiteflies, primarily in tropical and semi- 

tropical environments (Hall, 1981 a). If this pathogen is more prevalent in the aerial 

environment, then it is possible that aphids may be exposed more regularly to this 

species compared to other hyphomycetes and therefore develop resistance to the 

pathogen. This is not the case however, as several isolates of V. lecanii have 

proved to be highly pathogenic to aphids under laboratory conditions and within 

the field environment (Khalil, Bartos & Landa, 1985). 

Because of the wide host range of B. bassiana and M anisopliae, it is not easy to 

quantify fungus-host relationships for these species. Additionally, the host lists for 

the hyphomycetes in general may represent the focus of research on specific pests 

and beneficial species of insect and therefore not accurately represent the true host 

range. Information about isolates, such as origin and host passages, should always 

be provided in the literature to allow more accurate information on the host range 

of these fungi to be obtained. 

It is currently very difficult to compare results of bioassays of entomopathogenic 

fungi on aphids because of differences between methods of inoculation, number of 

subcultures or host passages made, differences between aphid biotypes or 

populations and differences in post-incubation systems (e. g. temperature, humidity 

and incubation container). Whilst some of these are inherently difficult to 
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compensate for, such as differences between populations of the same aphid 

species, it is suggested that some form of standardisation in other areas of bioassay 

design would allow for better comparison between results from different 

researchers. 
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Chapter 5- IMPACT OF ABIOTIC FACTORS 

5.1 Introduction 

Environmental factors have a large impact on many aspects of fungal-insect 

interactions; they may alter host susceptibility to infection, alter the progress of 

infection both within living and dead hosts, or alter the sporulation on a host and 

therefore alter the ability of the fungus to spread through host populations. The 

main abiotic factors that affect entomopathogenic fungi are humidity, temperature 

and exposure to ultra-violet (UV) radiation. Additionally, chemical pesticides may 

adversely affect the development and progression of fungal epizootics by inhibition 

of germination of conidia or vegetative growth, or by reducing the host population. 

This section of work is concentrated on evaluating the impact of a range of 

environmental factors on the ability of isolates of fungus to germinate, grow and 

infect their aphid hosts. This information will aid in the selection of isolates for 

further work which will be tolerant of the field environment in which they will be 

required to operate. Although studies detailed here are concentrated on the impact 

of temperature and humidity, the potential impact of other abiotic factors is 

discussed. 

5.1.1 Humidity 

High relative humidity and/or free water is required by entomopathogenic fungi for 

germination of conidia and is considered the most critical environmental factor 

influencing the development of epizootics (Fuxa & Tanada, 1987; Hall & 

Papierok, 1982; Nordin, Brown & Millstein, 1983). Under field conditions, 

epizootics of entomophthoralean fungi occur during or after periods of high 

humidity or rainfall (Hemmati, 1998; Milner & Bourne, 1983; Wilding, 1969). 

Water saturation or near saturation is needed by many entomophthoralean species 

for active discharge of their conidia from host cadavers (Glare, Milner & Chilvers, 

1986a). 
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The requirement for long periods of high humidity for effective transmission of 

Verticillium lecanii has been a major constraint to the commercial uptake of 

Vertalec and Mycotal® (Milner & Lutton, 1986); a period of 14 hours at 100% 

RH and 15 - 20° was required for high levels of infection in aphids by these 

isolates (Hall, 1981 a). At a RH of 97%, both infection and subsequent sporulation 

of the Vertalec® isolate in peach-potato aphid Myzus persicae populations was 

delayed and reduced, whilst at 80% RH no sporulation was detected (Milner & 

Lutton, 1986). It has been suggested that high humidity is more crucial to the 

establishment of infection than to subsequent mycelial development occurring on 

dead cadavers for isolates of V. lecanii (Drummond, Heale & Gillespie, 1987). 

However, under dry conditions, fungi may sporulate inside the host. Zonocerus 

variegatus grasshoppers died from infection by Metarhizium anisopliae var. 

acridum in the field in Benin and sporulation occurred on the inside of the cadaver 

(Lomer, Bateman, Godonou, Kpindou, Shah, Paratso & Prior, 1993). In this 

situation, conidia will only become available for transmission to other hosts when 

the cadaver breaks down and conidia are released (P. Shah, pers. comm. ). 

High RH is also required for 100% infection of hosts with V. lecanii in the peach- 

potato aphid M persicae (Milner & Lutton, 1986) and the greenhouse whitefly 

Trialeurodes vaporariorum (Ekbom, 1981). Mortality of 100% was recorded for 

the bird-cherry oat aphid Rhopalosiphum padi inoculated with an isolate of V. 

lecanii when aphids were held at humidities in the range 12 - 100% (Hsiao et al., 

1992). However, the experimental methods are questionable for this experiment. It 

appears that aphids in these assays were placed on excised barley leaves on damp 

filter paper in Petri dishes and then placed in dessicators over various chemicals to 

maintain different relative humidities. This would suggest that aphids would still 

be exposed to a high RH within the Petri dish itself. 

The humidity requirements of Beauveria bassiana and M anisopliae have been 

shown to be similar to those of V.. lecanii with the fastest rate of germination of 

conidia at 100% RH and inhibition of germination at less than 90% RH (Walstad, 

Anderson & Stambaugh, 1970). External sporulation of B. bassiana and M 

anisopliae on fungus-killed cadavers also requires humidity of greater than 90% 

(Waisted et al., 1970; Ramoska, 1984; Ferron, 1977). 
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The ability of conidia to germinate under low RH conditions can be represented by 

germination in vitro on media adjusted to different water activities which measures 

the actual availability of water to a conidium. Water activity (a,, ) is defined as the 

ratio between the vapour pressure of water in a substrate (P) and vapour pressure of 

pure water (Po) at the same temperature and pressure. An aW value of 1.00 is 

equivalent to an RH of 100%. Hallsworth and Magan (1999) found the growth of 

M anisopliae and Paecilomycesfarinosus was fastest at 0.97 - 0.98a" (= 97 - 98% 

RH). However, growth of B. bassiana was fastest when water was freely available 

at 0.998a, ß (= 99.8% RH). 

Although it is difficult to relate data from in vitro a,, studies to field conditions, this 

may be a quick method for selecting isolates of fungi that are capable of growing at 

reduced aH, or tolerating these conditions for short periods of time. These isolates 

may be better adapted to infect host insects under reduced humidity conditions that 

may be experienced in the field. 

Not all hyphomycete isolates are dependent on high humidity for infection of host 

insects. Humidity has been shown to have no influence on levels of mortality in the 

desert locust Schistocerca gregaria treated with M flavoviride (Fargues, 

Ouedraogo, Goettel & Lomer, 1997b). Similarly, an isolate of M. anisopliae was 

able to infect two species of termite at RH as low as 86%, even though it did not 

germinate below 0.93aW in in vitro studies (Milner, Staples & Lutton, 1997). It was 

suggested that the microclimate around the cuticle of the termites was maintained 

at close to 100% RH, allowing conidia to germinate and penetrate the host cuticle. 

As the fungus was not able to sporulate on termites killed by fungus it was 

suggested that the humidity on the cuticle reached that of ambient RH after the 

host's death. Studies such as these show how critical small changes of microclimate 

at the host cuticle can be when considering the possibility of secondary cycling of 

conidia. 

There has been interest in manipulating conidia to improve germination at low a, 

by modifying their polyol content. Hallsworth and Magan (1995) showed that 

conidia containing enhanced levels of glycerol and erythritol were able to 

germinate on media at 0.887 a,, (M anisopliae), 0.923 aw (P. farinosus) and 0.935 
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a,, (B. bassiana). Manipulation of conidia to allow germination at low water 

availability may improve pathogenicity under field conditions. Additionally, 

mutants of P. farinosus and M anisopliae, selected for their ability to grow at 

lower water activities than their parental strains, have been shown to be more 

virulent against the green leafhopper Nephotettix virescens Distant at humidities of 

96 and 98% RH (Matewele, Trinci & Gillespie, 1994). 

5.1.2 Temperature 

Temperature acts on the host-pathogen system by influencing germination of 

conidia and the infection process. Fungal species have different temperature 

tolerances and these generally fall between 20 - 30°C (Ignoffo & Mandava, 1988). 

The optimum temperature for germination of conidia of Entomophthora spp. has 

been recorded between 16 and 27°C (Wilding, 1970,1981a; Milner & Bourne, 

1983). Conidia of Entomophthora spp. have been recorded as being discharged at 

temperatures between 5 and 30°C (Wilding, 1981a; Hemmati, 1998) but the 

optimum temperature for discharge and growth has been recorded around 20°C 

(Morgan, Boddy, Clark & Wilding, 1995; Glare et al., 1986a; Wilding, 1971). 

However, species such as Neozygites fresenii (Novakowski) occur in tropical and 

subtropical environments where average temperatures are higher than 20°C 

(Keller, 1997; Steinkraus, Kring & Tugwell, 1991) and isolates of Zoophthora 

radicans have been recorded growing in vitro at temperatures as high as 30°C (M. 

J. Furlong, pers. comm. ). 

Extensive laboratory studies have evaluated the in vitro growth and germination of 

several species of hyphomycete fungi. Species of hyphomycete fungi are able to 

grow in the temperature range of 5- 35°C (Hallsworth & Magan, 1999). The 

optimal constant temperature for growth and germination of isolates of B. bassiana 

is generally about 25°C (Ekesi, Maniania, Ampong-Nyarko, 1999; Hallsworth & 

Magan, 1999; Sivasankaran, Easwaramoorthy & David, 1998; Ferron, 1981) with a 

temperature threshold of 35 - 37°C (Fargues, Goettel, Smits, Ouedraogo & 

Rougier, 1997a; Ouedraogo, Fargues, Goettel & Lomer, 1997). 
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In comparison, isolates of M anisopliae have been shown to have a higher optimal 

temperature for in vitro growth between 25 - 30°C (Fargues, Maniania, Delmas & 

Smits, 1992; Walsted et al., 1970) and faster rates of germination than isolates of 

B. bassiana at 25 - 30°C (Hywel-Jones & Gillespie, 1990). However, an isolate of 

M anisopliae has recently been reported as being able to grow at 40°C (Hallsworth 

& Magan, 1999). Isolates of M. flavoviride and M anisopliae var. acridum are able 

to tolerate very high temperatures. Most isolates of these species are from Acridids 

and it has been suggested that the thermal tolerance of these pathogens is due to the 

ability of host grasshoppers to thermoregulate, elevating their body temperature to 

higher than ambient by intercepting solar radiation (Chappell & Whitman, 1990) 

and thereby exposing the fungus directly to increased temperatures. Thermal 

regulation has been shown to be very important in reducing development of B. 

bassiana infections in grasshopper populations under field conditions (Inglis, 

Johnson & Goettel, 1997) and of M anisopliae var. acridum infection in locusts 

under both laboratory and field conditions (Blanford & Thomas, 1999; Blanford, 

Thomas & Langewald, 1998). 

Paecilomyces spp. tend to have a lower temperature optima for growth and 

germination compared to the other species of hyphomycete, at approximately 20°C 

(Hallsworth & Magan, 1999). However, the temperature optima for vegetative 

growth of 37 isolates of P. fumosoroseus from a diverse host range was found to be 

wide ranging from 20 - 30°C (Vidal, Fargues & Lacey, 1997a). 

The majority of evidence indicates that optimal temperatures for in vitro growth 

and germination are related to optimal temperatures for in vivo host infection. The 

optimal temperature for in vitro growth and germination of an isolate of B. 

bassiana was shown to be 25°C and susceptibility of the sugarcane shoot borer 

Chilo infuscatellus Snellen to this fungus was found to be highest when larvae 

were held at 25°C after inoculation (Sivasankaran et al., 1998). Ignoffo, Garcia & 

Hostetter (1976a) showed the optimal temperature for in vitro development of 

Nomuraea rileyi was similar to the optimum temperature for germ tube penetration 

and vegetative growth of the fungus in the velvetbean caterpillar Anticarsia 

gemmatalis (Boucias et al., 1984). 
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There have been other reports however, that do not show the same correlation 

between in vitro and in vivo fungal development related to temperature. The 

optimal temperature for infection of the variegated grasshopper Z variegatus with 

M. flavoviride has been shown to be higher than that for optimal growth in vitro 

(Thomas & Jenkins, 1997). Maniania and Fargues (1986) assayed ten isolates of P. 

fumosoroseus and six of N. rileyi at 20°C and 25°C for infectivity to larvae of 

Mamestra brassicae (L. ) and Spodoptera littoralis (Boisd. ). Higher rates of 

mortality were recorded for M brassicae exposed to P. fumosoroseus at 25 than 

20°C but there was no difference when larvae were exposed to N. rileyi at the 

different temperatures. However, mortality of S. littoralis was significantly higher 

to P. fumosoroseus at 20°C than at 25°C whilst there was no significant difference 

for N. rileyi. The authors suggested the effect of temperature on the infection 

process may depend on interactions between the individual host species and fungal 

isolate. 

Similarly, isolates of M flavoviride which had different relative growth rates in 

vitro at 35°C were found to cause equal mortality to the grasshopper S. gregaria at 

this temperature (Ouedraogo et al., 1997). Additionally, an isolate of B. bassiana 

that germinated and grew most rapidly in vitro between 25 and 32°C caused the 

greatest mycosis in the convergent ladybird Hippodamia convergens between 10 

and 15°C, temperatures at which in vitro growth and germination was greatly 

delayed or inhibited (James, Croft, Schaffer & Lighthart, 1998). The authors 

suggested that the ladybirds may be able to resist infection because of changes in 

immunity to pathogen infection at the higher temperatures. 

Generally, as temperatures decrease below the optimal for in vivo infection, the 

time taken for insects to succumb to fungal infection increases (Vandenberg et al., 

1998b; Boucias et al., 1984; Doberski, 1981b). Often however, there may be a 

reduction in the rate at which host mortality occurs but the overall total mortality is 

not significantly different to that achieved at higher temperatures (Ekesi et al., 

1999). 

Few studies have been conducted to evaluate the effect of temperature on 

infectivity of fungi to aphids. Studies have mostly been limited to the 
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Entomophthorales (Steinkraus & Slaymaker, 1994; Glare, Milner & Chilvers, 

1986b; Milner & Lutton, 1983; Wilding, 1970). Maximum mortality of the bird- 

cherry oat aphid R. padi infected with V. lecanii occurred at constant temperatures 

of 21 and 27°C but there was no mortality due to fungus at 8°C (Hsiao et al., 

1992). 

Although it is important to study the impact of constant temperatures on fungal 

growth and infection, temperature will fluctuate under field conditions and these 

fluctuations may affect the ability of fungi to invade their hosts. Feng et al. (1999) 

investigated the effect of fluctuating temperatures, designed to simulate late-season 

temperatures, on the infectivity of the fungus Erynia (=Pandora) neoaphidis to the 

pea aphid Acyrthosiphon pisum. The authors suggested that the fungus was more 

virulent at high temperatures compared to lower fluctuating temperatures; LC50 

values were lower at a constant temperature of 20°C compared to those at lower 

fluctuating temperatures (5.4°C - 18.9°C with mean temperature of 12.12°C) under 

1 ih and 16h photoperiods. Studies of infection of the migratory grasshopper 

Melanoplus sanguinipes (F. ) by B. bassiana (Mycotech strain GHA) and M 

flavoviride, at various combinations of oscillating temperatures with the same 

mean temperature, showed that there was a decreased rate of grasshopper mortality 

as the. degree of temperature oscillation increased (Inglis, Duke, Kawchuk & 

Goettel, 1999). This reduced rate of mortality was more pronounced for the isolate 

of B. bassiana than that of M flavoviride. although in vitro growth studies 

suggested that both fungi were adversely affected by the larger oscillations in 

temperature. 

Furlong, Pell, Choo & Rahman (1995) inoculated adult Plutella xylostella with 

Zoophthora radicans and then incubated the moths at a constant temperature of 18, 

20,23 or 25°C, or at 23°C and then 16°C on an alternating 12h diurnal cycle. Moths 

succumbed to infection and died within 72 hours of inoculation at the constant 

temperatures, but at the alternating temperatures, this period was extended to 84 

hours. Interestingly, infected adults placed in the field (where temperatures 

fluctuated between 22.8°C and 15°C), succumbed to infection and died within 96 

hours. These results showed how laboratory studies of the effects of alternating 
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temperatures on infection by fungi may provide a more realistic estimate of the rate 

of infection under field conditions. 

Fargues and Luz (2000) performed an elaborate series of experiments to 

investigate the effects of several fluctuating humidity and temperature regimes on 

infection of the hemipteran disease vector Rhodnius prolixus StAhl by the fungus B. 

bassiana. By taking into account the microclimatic measurements of these 

variables from a range of different habitats, the authors were able to show that 

temperature was less critical than humidity for infection. However, under 

favourable humidity regimes, moderate temperatures (20 and 25°C) resulted in 

higher levels of infection compared to lower temperatures (15°C). By evaluating a 

range of combinations of environmental factors, the authors suggest that windows 

of opportunity may be identified for pathogen applications to target the pest best. 

5.1.3 Pesticides 

If entomopathogenic fungi are to be successfully incorporated into insect pest 

control programmes, they must be compatible with pesticides that are used in 

commercial crop protection. Studies have demonstrated inhibition in vitro of 

fungal growth and germination by many pesticides. 

The effect of nine fungicides and fourteen insecticides on isolates of Beauveria 

spp. and Verticillium spp. showed fungicides such as benomyl, maneb and captan 

were highly deleterious to fungal growth for most isolates of both genera, even at a 

tenth of the recommended field rate (Olmert & Kenneth, 1974). 

Hall (1981b) found that germination of two isolates of V. lecanii was more 

sensitive to chemicals than growth. In contrast, the growth of a single isolate of M 

anisopliae was found to be more sensitive to pesticides than germination 

(Moorhouse, Gillespie, Sellers & Charnley, 1992). Hall (1981b) showed that 

fungicides such as maneb, 'fenarimol, captan, imazil and dichlofluarid inhibited 

germination of conidia of V. lecanii, but in contrast to Olmert and Kenneth (1974), 

benomyl was found to only significantly inhibit germination at recommended and 

greater doses of fungicides. Mietkiewski, Pell and Clark (1997) found that 
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benomyl had the most inhibitory effect of several pesticides tested on in vitro 

growth of B. bassiana and field studies confirmed this inhibition; significantly 

fewer wax moth Galleria melonella (L. ) larvae became infected with B. bassiana 

from soil treated with benomyl compared to untreated soil. 

The susceptibility of fungi to different pesticides has been shown to vary between 

fungal species and between chemicals (Poprawski & Majchrowicz, 1995). 

Majchrowicz and Poprawski (1993) found that growth of entomophthoralean fungi 

was generally more adversely affected by fungicides than isolates of the 

hyphomycetes. However, intraspecific differences between isolates of V. lecanii 

and M anisopliae in susceptibility to pesticides, suggests that it is not only species 

differences that are important (Olmert & Kenneth, 1974; Moorhouse et al., 1992). 

Majchrowicz and Poprawski (1993) found the dithiocarbamate derivatives zineb + 

copper oxychloride together and manozeb alone completely inhibited germination 

of Conidiobolus coronatus, C. thromboides, B. bassiana, P. farinosus, M 

anisopliae and V. lecanii. Hall (1983) showed that whilst germination of conidia of 

V. lecanii on agar was only slightly inhibited by the two chemicals iprodione and 

carbaryl applied separately, there was much greater inhibition of germination when 

a mixture of the chemicals was used, suggesting mixtures of pesticides may be 

more detrimental to fungi than the component pesticides alone. 

In vitro mycelial growth assays in the laboratory have been suggested to be crude 

and that the germination of conidia and subsequent host penetration are more 

important factors in the fungal infection process (Majchrowicz & Poprawski, 

1993). Mycelial development occurs mainly within host tissues and as pesticides 

are less likely to be present here, it is less likely that development of mycelia will 

be inhibited (Khalil, Shah & Naeem, 1985; Hall, 1981b). Studies of the effect of 

ten fungicides on the development of Erynia neoaphidis (=Entomophthora aphidis) 

on pea aphid A. pisum showed that suppression of fungal infection of aphids by the 

fungicides corresponded with suppression of the germination of conidia in vitro 

(Wilding & Brobyn, 1980). 

It is widely accepted that field studies of the effect of pesticides on fungi have not 

reflected the results obtained in in vitro experiments. Hall (1981b) found that 
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several chemical compounds inhibited germination of V. lecanii conidia at doses of 

0.1 x the recommended field dose and these were all incompatible with the fungus 

in in vivo studies against the aphids Macrosiphoniella sanborni and M persicae. 

However, the chemical fenarimol only impaired the ability of V. lecanii to infect 

aphids when applied simultaneously with the fungus. Similarly, at high doses of B. 

bassiana against the Colorado potato beetle Leptinotarsa decemlineata, laboratory 

studies indicated detrimental effects of the fungicides on fungal infection of the 

host but there was negligible impact of the fungicides under field conditions (Jaros- 

Su, Groden & Zhang, 1999). Even when growth of B. bassiana was completely 

inhibited in the laboratory, this inhibition was reduced when the fungus was 

applied against the Colorado potato beetle in the field (Clark, Casagrande & 

Wallace, 1982). 

There may be synergistic effects of applying fungal pathogens and chemicals 

together. Chemicals could be used as "stressors" to increase susceptibility to fungal 

pathogens. Quintela & McCoy (1998) showed that low doses of the insecticide 

imidacloprid increased the susceptibility of larvae of the weevil Diaprepes 

abbreviatus (L. ) to the fungal pathogen M anisopliae. It was suggested that the 

chemical reduced movement of larvae and, subsequently, reduced the number of 

conidia removed from the cuticle when contacting the substrate. Boucias (1996) 

reported similar interactions between B. bassiana and imidacloprid against the 

termite Reticulitermes flavipes (Kollar); the chemical prevented termite grooming 

and hence fewer conidia were removed and mortality due to the fungal pathogen 

increased. 

Potential detrimental effects of host plant chemical defences (allelochemicals) 

should also be considered. These allelochemicals inhibit a large number of fungal 

pathogens and it is possible that these could inhibit growth and germination at the 

plant surface. The alkaloids tomatine and solanine have been shown to inhibit 

growth and germination of B. bassiana and P. fumosoroseus (Costa & Gaugler, 

1989; Lacey & Mercadier, 1998). It may therefore be very important to consider 

plant chemicals when resistant plant species or cultivars are utilised in an 

integrated pest control programme alongside a mycoinsecticide. 
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5.1.4 UV and Solar radiation 

It is well known that solar radiation and particularly the ultraviolet waveband have 

detrimental effects on entomopathogenic fungi (Moore, Higgins, & Lomer, 1996; 

Carruthers, Feng, Ramos & Soper, 1988; Hunt, Moore, Higgins & Prior, 1994). 

Artificial sunlight is most often used to investigate the effects of solar radiation on 

deactivation of conidia because of the variability associated with natural sunlight 

(Zimmermann, 1982; Ignoffo, Hostetter, Sikorowski, Sutter & Brookes, 1977). 

Under artificial conditions, the susceptibility of conidia to UV is related to the 

spectral composition and intensity of light. An isolate of P. fumosoroseus was 

adversely affected by UVA (320 - 400 nm) but UVB (280 - 320 nm and 295 - 320 

nm) was more detrimental to the fungus, measured by criteria such as ability to 

infect larvae of the fall armyworm Spodopterafrugiperda (Smith). Primary conidia 

of Z. radicans were very susceptible to artificial UV radiation (peak 365, range 300 

- 400 nm) and were unable to cause mycosis after only three minute exposures 

(Furlong & Pell, 1997). However, exposure of up to four hours to natural temperate 

summer sunlight had no affect on the ability of conidia to cause mycosis in the 

diamondback moth P. xylostella. This indicates that conidia are able to tolerate less 

intense solar radiation and may therefore be more protected in shaded areas of 

crops. Indeed, conidia have been shown to be able to survive longer on abaxial leaf 

surfaces rather than adaxial which may be related to the differences in exposure to 

solar radiation (Brobyn, Wilding & Clark, 1985; Carruthers & Haynes, 1986). 

Inglis et al., (1997) noted that there was deactivation of conidia by UVB in field 

trials of B. bassiana against grasshoppers. However, the authors suggested that 

temperature and sunlight influenced the ability of grasshoppers to thermoregulate 

and that this indirectly had a greater negative impact on B. bassiana infection than 

UVB deactivation of conidia. Thermoregulation in acridids has been shown to 

reduce disease in controlled environments (Boorstein & Ewald, 1987; Carruthers, 

Larkin & Firstencel, 1992). Ultraviolet protectants have therefore proved to be 

useful in formulations of B. bassiana to increase survival of conidia in the 

laboratory and under field conditions (Inglis, Goettel & Johnson, 1995). 
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5.2 Materials and Methods 

5.2.1 Insect and Fungus Cultures 

All aphid species were reared to known-age using methods described in section 

2.1. Fungal isolates were cultured as described in section 2.6.3 and fungal 

suspensions were prepared as described in sections 2.6.4 and 2.6.5. All spray 

applications were made using the methods and sprayer system described in section 

2.6.6. The general bioassay procedures described in chapter 2 were followed for all 

experiments unless stated otherwise. 

5.2.2 Impact of temperature on in vitro fungal germination 

The impact of temperature on in vitro germination was evaluated for all isolates 

listed in section 2.6.1 (except T229 P. farinosus). All isolates could not be tested 

on one occasion so five isolates were screened each time and included a standard 

isolate, Mycotech strain GHA (B. bassiana). Suspensions of conidia were prepared 

and diluted to give a concentration of 1x 106 conidia ml'' the day before the 

experiment and held overnight on ice in a CE room at 4°C. The following day, 84 

plates of SDA (10ml of SDA in 9cm Petri dishes) were inoculated at the centre of 

the plate, using a Gilson Pipetteman, with 4µl of a suspension of conidia for each 

isolate. Twenty-one plates for each fungal isolate were placed in a plastic box with 

wet blue roll and the boxes placed in incubators set at 10,15,20 or 25°C. A 

Tinytalk®II miniature temperature datalogger (Radio Spares, UK) was placed in 

one box in each incubator to record the temperature over the assay period. 

At each of the times shown in Table 5.1, three plates for each isolate by 

temperature combination were fixed by placing a drop of 10% cotton blue in 

lactophenol and a coverslip on the conidia at the centre of the plate. Plates were 

stored in sealed plastic bags at 4°C until they could be evaluated. Plates could be 

kept in this way for six months or longer without contamination. For each replicate 

(plate), 300 conidia were counted in random fields of view using a Leitx Dialux 20 

EB light microscope (magnification x 500) and the number that had germinated 
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was noted. A conidium was considered to be germinated when the germ tube was 

at least as long as the diameter of the conidium. 

TABLE 5.1 : Time (hours post-inoculation) at which conidia were fixed in an 
experiment to determine the impact of temperature on in vitro germination of 
conidia. 

Temperature (°C) 
10 15 20 25 

0 0 0 0 
12 12 6 6 

Time 24 18 9 9 
(hours) 36 24 12 12 

48 30 18 18 
72 36 24 24 
96 48 30 30 

A measure of time taken for 50% of conidia to germinate (GT50) was calculated for 

each temperature and fungus combination by using general linear regression with 

modelling of binomial proportions with logits procedure in Genstat 5. The inverse 

of the variance of each GT50 was taken to weight the data. The natural logarithm 

(loge) of the GT5o was calculated to normalise data and the normalised data were 

analysed using the general linear regression procedure in Genstat 5, taking account 

for the weight of each GT50. Data for the standard isolate Mycotech strain GHA 

were analysed using this method to determine whether the different runs of the 

assay could be combined. Data for all isolates were subsequently grouped by 

fungal species and then analysed using the same analysis. 

5.2.3 Impact of temperature on in vitro fungal colony growth 

Isolates were randomly divided into two groups, sub-cultured on successive days 

and placed in an incubator at 20°C in the dark for four days. Plugs were cut using a 

sterile cork borer (5mm diameter) from non-sporulating mycelium on plates and a 

single plug was placed upside down in the centre of a clean plate of medium (22ml 

of SDA in a 9cm Petri dish). Plates were sealed with parafilm and incubated in the 

dark at 10,15,20 or 25°C. Five replicate plates were prepared for each isolate by 

temperature combination. Surface radial growth was recorded every two days 
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using two cardinal diameters previously drawn on the bottom of the dish. Plates 

were exposed to light during the periods of measurement. The experiment was run 

for 26 days or until the fungal colony had covered the plate. 

The colony radial growth rate (Kr) (Pirt, 1967) was calculated for each isolate at 

each temperature. Colonies grew in a linear way between days three and twelve 

post-inoculation and this growth could be described with a linear model (y = Kr(t) 

+ b). The increase in colony radius was plotted against time and Kr was calculated 

by linear regression as the slope of this graph. Colony radial growth rates were 

used as the main parameter to evaluate the influence of temperature on fungal 

growth. 

5.2.4 Impact of temperature on pathogenicity of fungi to A. fabae and M. 

persicae 

Three isolates (HRI 1.72 (V. lecanii), Mycotech strain GHA (B. bassiana) and Zl 1 

(P. fumosoroseus)) were assayed for pathogenicity to the black bean aphid Aphis 

fabae and the peach-potato aphid M. persicae at different temperatures. 

Suspensions of conidia were applied at a single dose of 1x 108 conidia ml". There 

were four replicates (Petri dishes) of 15 aphids for each isolate and temperature 

combination and a control. Following spraying, aphids were incubated in CE 

rooms at either 10,18 or 23°C with a 16 hour photoperiod. Aphids were transferred 

to clean leaves set in water agar, 48 hours post-inoculation. Mortality was recorded 

twice daily for aphids incubated at 18 and 23°C and once every two to three days at 

10°C using methods described in section 2.7. Aphids were transferred to fresh 

leaves every two days post-inoculation at 18 and 23°C and every seven days at 

10°C, as detailed in section 2.8. Dead aphids were placed onto damp filter paper 

and assessed for fungal sporulation. 

The LT5o, standard error of the LTso and 95% confidence intervals for each 

temperature by aphid by fungus treatment were calculated for each dish using 

actuarial clinical life tables analysis (section 4.2.2). The inverse of the variance of 

the LT5o of each dish was taken to weight the data. The LT50 values were analysed 

using the general linear regression procedure in Genstat 5.1 with account taken for 
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the weights of each LT50 value. The model that described these data best was used 

to calculate predicted LT50 values with associated standard errors for each aphid by 

fungus by temperature combination. 

5.2.5 Impact of water availability (a,. ) on in vitro fungal germination 

The impact of low water activity (a, ) on in vitro germination was determined for 

the four isolates selected in section 4.3.1. Suspensions of conidia were prepared 

and diluted to give a concentration of 1x 106 conidia ml" using methods described 

in section 2.6 and 4µl of a suspension was applied using a Gilson pipetteman 

(Gilson®) at the centre of a 9cm Petri dish containing l Oml of agar. 

In the first experiment, the effect of added nutrients on the rate of conidial 

germination was tested at a single a,, of 1.000 (=100% RH). Plates of water agar 

(1.5% w/v, 10m1 water agar in 9cm Petri dishes) were prepared with or without 

added nutrients (1% w/v D-Glucose anhydrous (Fisher Scientific) and 1% yeast 

extract w/v (Oxoid)). Twelve plates (replicates) were inoculated for each isolate by 

nutrient combination and plates were placed in sealed plastic boxes and incubated 

at 24°C in darkness. Three plates were removed at 18,24,30 and 43h post- 

inoculation from each isolate by nutrient combination and were fixed by placing a 

drop of 10% cotton blue in lactophenol and a coverslip on the conidia at the centre 

of the plate. For each dish, 100 conidia were counted and the number that had 

germinated was recorded as detailed in section 5.2.2. Additionally, the length of 

the germ tubes produced by conidia for isolates HRI 1.72 (V. lecanii), Mycotech 

strain GHA (B. bassiana) and ARSEF 2879 (B. bassiana) was recorded for 30 

conidia of each isolate at 18h post-inoculation. 

The second experiment was designed to determine the effect of different a,,, on the 

germination of conidia. Two types of a,,, media were tested. The first contained 

1.5% (w/v) agar-agar and glycerol (Scientific grade for analysis, Fisher Scientific) 

adjusted, as described by Dallyn and Fox (1980), to give a medium with aW ranging 

from 0.923 - 0.993 (= 92.3 - 99.3% RH). The second was exactly the same as the 

first except that nutrients were added (1% w/v D-Glucose anhydrous (Fisher 

Scientific) and 1% yeast extract w/v (Oxoid)). Three plates (replicates) were 
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inoculated for each isolate by nutrient by aN combination and plates were placed in 

sealed plastic bags with plates of the same a, and incubated at 24°C in darkness. 

All dishes were removed 24h post-inoculation and were fixed by placing a drop of 

10% cotton blue in lactophenol and a coverslip on the conidia at the centre of the 

plate. For each plate, 100 conidia were counted and the number that had 

germinated was recorded as detailed in section 5.2.2. 

5.3 Results 

5.3.1 Impact of temperature on in vitro germination of conidia 

Rates of germination of conidia for all isolates were faster at the higher 

temperatures (25 and 20°C) than at the lower temperatures (10 and 15°C). General 

linear regression analysis of the weighted Lo&GTso values for the standard isolate, 

Mycotech strain GHA, indicated that the data were best described by a single line 

model which indicated that germination of conidia was significantly affected by 

temperature (Fi, io = 134.86, P<0.001). Adding an additional description of an 

individual intercept for each isolate in each run of the experiment did not describe 

the data any better (F4,10 = 1.12, P=0.401). All runs of the assay could therefore be 

combined in one analysis. These results suggested that there were significant 

differences between temperatures in the number of conidia of the standard isolate 

(Mycotech strain GHA) that germinated, but that germination was not significantly 

different at each temperature over the different assays. 

When isolates were grouped and analysed as individual species, the single line 

model was sufficient to describe the data for isolates of P. fumosoroseus and M 

anisopliae (Table 5.2), indicating that there were significant differences in the rate 

of germination of conidia between the different temperatures (P. fumosoroseus 

FI, 16 = 195.84, P<0.001; M anisopliae F1,5= 43.11, P<0.001). Adding an additional 

description of an individual intercept for each isolate did not describe the data any 

better (P. fumosoroseus F5,16 = 2.62, P=0.065; M anisopliae F2,5 = 2.33, P= 

0.193). This would suggest that there was no significant intra-specific differences 

in the number of conidia that germinated for isolates of P. fumosoroseus and M. 

anisopliae over the range of temperatures tested. 
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TABLE 5.2 : Results for general linear regression analysis on loge time for 50% of 
conidia to germinate in vitro (GT50) for isolates of V. lecanii, P. fumosoroseus, M 

anisopliae and B. bassiana, at four different temperatures (10,15,20 and 25°C). 

Species Intercept Standard error of Slope of line Standard error of 

(lo& GTso) intercept slope 

P. fumosoroseus 5.00 0.167 -0.112 0.034 

M. anisopliae 5.81 0.446 -0.142 0.024 

V. lecanii 4.559 0.226 -0.092 0.036 
HRI 1.72 3.758 0.330 -0.073 0.018 
ARSEF 2859 4.283 0.812 -0.080 0.044 
T80 4.169 0.855 -0.071 0.046 
TT5 4.647 0.818 -0.996 0.045 
Z25 4.943 0.787 -0.106 0.043 
B. bassiana 
Mycotech GHA 4.76 0.167 -0.102 0.009 
ARSEF 2879 4.80 0.235 -0.101 0.235 
T195 5.27 0.261 -0.112 0.261 
Z135 4.20 0.245 -0.083 0.245 
Z139 4.50 0.303 -0.087 0.303 

Germination of conidia of isolates of V. lecanii was significantly affected by 

temperature (Fi, 1o = 105.09, P<0.001). The single line model did not describe the 

data well, but an additional description of a different intercept for each isolate did 

describe the data sufficiently (F4,10 = 4.49, P=0.025). This suggested that the 

pattern of germination of isolates of V.. lecanii changed in the same way over the 

range of temperatures, but that there were significant differences between isolates 

in their rate of germination at any one temperature. Isolate HRI 1.72 behaved very 

differently to all the other V. lecanii isolates and germinated much more quickly at 

every temperature tested. When this isolate was removed from the analysis, the 

data for the remaining isolates could be described by the single line model (F1, g = 

142.18, P<0.001) as adding an additional description of different intercepts did not 

account for significantly more of the variability in the data (F3,8 = 1.29, P=0.342). 

Data for isolates of P. fumosoroseus, M anisopliae and V. lecanii (with HRI 1.72 

removed) were grouped by species and analysed using general linear regression to 

determine whether there were any differences between the species in rate of 

germination at the different temperatures. The best model to describe the data was 
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one in which the equation of the line for each species had a separate intercept but a 

similar slope. There was a significant effect of temperature (Fi, 49 = 5324.43, 

P<0.001) and there was a significant difference between the response of each 

species at any given temperature (F3,49 = 558.14, P<0.001) but the pattern of this 

response was not significantly different over the range of temperatures (F2,49 = 

3.06, P=0.056). However, this value is very close to the arbitrary significance 

level of 5% so this final result should be treated with some caution. 

5.3.2 Impact of temperature on in vitro fungal colony growth 

There were inter- and intra-specific differences between isolates in colony growth 

rates at the four temperatures tested (Table 5.3). Generally, the rate of colony 

growth for all isolates, regardless of species, was faster at the higher temperatures 

(20 and 25°C) compared to growth at lower temperatures (10 and 15°C). There 

were differences between the species of fungus in their growth rates at the lowest 

temperature (10°C); isolates of M anisopliae had the slowest growth (2.68 - 20.64 

µm h') compared to the other species and P. fumosoroseus isolates were able to 

grow the fastest at this temperature (20.31 - 77.90 gm h"). Additionally, at 10°C, 

there was more interspecific variability in colony growth rates for isolates of P. 

fumosoroseus compared to isolates of the other species at this temperature. 

At the highest temperature (25°), isolates of M anisopliae grew faster than isolates 

of V. lecanii or B. bassiana and only one isolate of P. fumosoroseus (Z11) was 

recorded as growing faster. A decrease in growth rates at 25°C compared to 20°C 

was noted for isolates Z25 (V. lecanii), Z135 (B. bassiana) and T229 (P. 

farinosus). 
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5.3.3 Impact of temperature on pathogenicity of fungi to A. fabae 

Generally, mortality occurred more quickly and reached a maximum earlier at the 

higher temperatures of 18 and 23°C compared to 10°C (Figure 5.1). The first 

mortality due to fungus occurred 48 hours post-inoculation at 18 and 23°C but not 

until 120 hours at 10°C. Aphids of both A. fabae and M persicae were most 

susceptible to isolate HRI 1.72 at all three temperatures. Greater than 96% 

mortality was recorded for aphids treated with this isolate at each temperature. The 

smallest mortality of aphids was recorded for M persicae treated with isolate 

Mycotech strain GHA and mortality to this fungus was noted latest at each of the 

three temperature by isolate combinations. 

There were significant differences in the LT50 values for the two aphid species 

(F,, 52 = 12.67, P<0.001). Aphis fabae was generally more susceptible than M. 

persicae (Figure 5.2). Having allowed for these differences between aphids, adding 

an additional description to the model of the effect of temperature accounted for 

significantly more of the variability in the data (F2,52 = 1484.05, P<0.001) 

suggesting that differences between LT50 values were largely caused by the 

temperature at which the assay was run; LT50 values at the lowest temperature 

(10°C) were larger than those at 18 or 23°C. 

Adding a third description to the model of a different slope for each fungus also 

accounted for more of the variability in the data (F2,52 = 213.08, P<0.001). This 

suggested that, given the differences between aphids and the differences between 

temperatures, there was a significant effect of fungal isolate on the LT50 values; 

aphid mortality due to isolate HRI 1.72 occurred more quickly following 

inoculation compared to the other two isolates. 
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FIGURE 5.1 : Cumulative proportion of A. fabae and M. persicae dying due to 
fungus on each day following inoculation with a single concentration (1 x 108 
conidia ml") of isolates HRI 1.72 (V. lecanii), Z11 (P. fumosoroseus) and 
Mycotech strain GHA (B. bassiana) and incubated at a) 10, b) 18 and c) 23°C. 
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FIGURE 5.2 : LT50 values (with associated standard errors) for A. fabae and M. 
persicae dying due to fungus following inoculation with a single concentration (I x 
10" conidia ml-') of isolates HRI 1.72 (V. lecanii), Z11 (P. fumosoroseus) and 
Mycotech strain GHA (B. bassiana) and incubated at 10,18 and 23°C. 

There was no interaction between aphid species and temperature, suggesting that 

the two aphid species reacted in a similar way to the fungi at each of the different 

temperatures (F2,52 = 2.01, P=0.144). However, there was a significant interaction 

between aphid species and fungal isolate (F2552 = 9.00, P<0.001) which is suggested 

to be because the LT50 values for M. persicae inoculated with isolate Mycotech 

strain GHA (B. bassiana) were significantly different to those for A. fabae 

inoculated with the same isolate at 18 and 23°C. 

There was a significant interaction between temperature and species of fungus 

(F4,52 = 90.76, P<0.001) suggesting that the difference between temperatures 

changed with the species of fungus. 
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5.3.4. Impact of water availability (a. ) on in vitro fungal germination 

In the first experiment, more conidia germinated when nutrients were present 

compared to when they were absent (Table 5.4). These differences were more 

marked at 18 h than at 24 h, especially for isolate Z11 (P. fumosoroseus) which 

germinated more slowly than the other isolates both in the presence and absence of 

nutrients. These results indicated that within 24 hours of inoculation, under optimal 

incubation conditions with free water available, each of the isolate and nutrient 

treatments would be expected to have reached a maximum level of germination. 

Therefore, the impact of reduced water availability on the number of conidia 

germinating should be detectable by this time. 

TABLE 5.4 : Number of conidia that germinated in vitro at aH, 1.00 for isolates 
HRI 1.72 (V. lecanii), Z11 (P. fumosoroseus), Mycotech strain GHA (B. bassiana) 

and ARSEF 2879 (B. bassiana) in the presence (+) and absence (-) of added 
nutrients. 

Number of germinated conidia (%) 

18h (+) 18h (-) 24h (+) 24h (-) 

HRI1.72 96.33 94.67 * 99.33 

Z11 41.33 26.00 94.33 86.33 

ARSEF 2879 98.67 89.67 99.00 95.00 

Mycotech strain GHA 99.33 97.00 * 100.00 

indicates that it was not possible to count individual conidia because of dense growth of mycelia 

There were differences between isolates in the length of germ tube produced after 

18 h growth either in the presence or absence of added nutrients (Figure 5.3). In the 

absence of added nutrients, germ tube lengths were similar for all three isolates. 

Adding nutrients increased the length of germ tubes for isolates HRI 1.72 (V. 

lecanii) and ARSEF 2879 (B. bassiana) but had no effect on isolate Mycotech 

strain GHA (B. bassiana). 
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FIGURE 5.3 : Average length of germ tubes (with standard errors) produced from 

conidia of isolates HRI 1.72 (V. lecanii), ARSEF 2879 (B. bassiana) and Mycotech 

strain GHA (B. bassiana) on media with and without added nutrients. 

In the second experiment, when the water availability of agar was reduced, there 

was a reduction in the number of conidia that germinated for each isolate (Figure 

5.4). None of the isolates were able to germinate below 0.955 a,, (= 95.5% RH). A 

general ANOVA of data for 1.00 - 0.971 aW indicated that there was no significant 

effect of adding nutrients on the number of conidia that germinated (F1774 = 0.56, P 

= 0.457). Data could not be analysed for a, y treatments lower than this because of 

the extreme differences between results at 0.955 a,, and above. There was a 

significant effect of isolate on the number of conidia that germinated (F3,74 = 

264.89, P<0.001). Germination was reduced or totally inhibited at 0.955 a,, for all 

isolates except HRI 1.72 (V. lecanii) for which approximately 50% of conidia were 

able to germinate in the presence of added nutrients. 
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5.4 Discussion 

In this study, there were differences both within and between species of fungus in 

their in vitro rate of growth and germination in relation to temperature. Most 

isolates were able to grow and germinate faster at the higher temperatures of 20 

and 25°C compared to the lower temperatures of 10 and 15°C. 

Isolates of M anisopliae were most adversely affected at the lowest temperature 

(10°C) compared to the other species of fungus, but were able to grow and 

germinate faster at the highest temperature (25°C). This agrees with other work 

which has shown there to be little, if any, growth and germination of isolates of 

Metarhizium spp. at temperatures of 11°C and below (Ekesi et al., 1999; 

Ouedraogo et al., 1997). At higher temperatures, isolates of M anisopliae have 

also been shown to grow and germinate more quickly than isolates of B. bassiana 

(Ekesi et al., 1999) and P. farinosus (Hallsworth & Magan, 1999). 

There were no intraspecific differences between isolates of P. fumosoroseus, M 

anisopliae and V. lecanii (excluding isolate HRI 1.72) in the rate of germination of 

conidia related to temperature. The fitted model suggested that isolates of P. 

fumosoroseus were able to germinate faster at 10 and 15°C than isolates of M. 

anisopliae or V. lecanii. Growth rates of isolates of P. fumosoroseus at 10°C were 

also found to be higher than those for isolates of the other three species of fungus 

at the same temperature. Other studies have shown similar low temperature 

tolerance in 37 isolates of P. fumosoroseus which were able to grow at 

temperatures as low as 8°C (Vidal et al., 1997a). Isolates of P. farinosus have also 

been shown to have a faster growth rate than those of M anisopliae and B. 

bassiana at temperatures between 5 and 20°C (Hallsworth and Magan, 1999). 

Differences between isolates in the rate of growth of mycelia at low temperatures 

is likely to be very important when selecting isolates as potential mycoinsecticides 

for use in cropping systems. In the current study, isolates of species such as P. 

fumosoroseus and Y. lecanii that are able to grow and germinate well at 

temperatures of 10 and 15°C are therefore likely to be better adapted for 
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development as mycoinsecticides; the average monthly temperatures for May to 

August at Rothamsted were 11.0 to 15.9°C over the years 1872 - 1969. 

It has been suggested that the differences, between and within species of fungus in 

growth of mycelia and germination of conidia related to temperature may be 

attributed to the geographic origin of the isolate. The effect of temperature on the 

in vitro growth rate of isolates of P. fumosoroseus indicated that interspecific 

variability was partially related to the climate from which the isolates were 

obtained (Vidal et al., 1997a). Indian isolates were able to grow well at high 

temperatures (optima of 32 and 35°C) whilst those originating from Europe grew 

well at low temperatures (optima between 20 and 25°C). Fargues et al., (1992) 

showed that there was a relationship between the minimum and maximum 

temperatures for fungal growth and the climatic conditions of the site of origin in a 

study of isolate from six species of hyphomycete. Isolates from tropical, humid 

areas (such as isolates of M anisopliae) were able to grow well at high 

temperatures (35°C) whilst isolates originating from soil insects in temperate areas 

(such as isolates of B. bassiana and B. brongniartii) were able to grow at low 

temperatures (8°C). 

However, Ekesi et al. (1999) found two isolates of M anisopliae from the same 

origin had significantly different germination profiles. Fargues et al., (1997a) also 

found no clear relationship between relative growth rates of isolates of B. bassiana 

at different temperatures and geographical origin. The authors suggest however, 

that this is not surprising as B. bassiana has a very wide host range and is a 

cosmopolitan, facultative pathogen. 

It therefore appears that the geographical origin of an isolate may not be a very 

reliable indicator of the ability of that isolate to germinate and grow under specific 

temperature conditions. Although there are generalisations that can be made for 

different species of fungi based on temperature optima for growth and germination, 

it is likely that there will be isolates that can tolerate temperatures above and below 

these optima. Evidence of differences between isolates within a species in their 

temperature tolerance for growth and germination would suggest that it is not 

possible to determine the response of an isolate based solely on general trends for 
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that species or the climate from which it originated. Climatic differences between 

seasons at any one site may place selection pressures on fungi that are able to grow 

and germinate under very different abiotic conditions. An isolate collected in a 

temperate climate in a very hot summer for example, may have a temperature 

profile closer to that of a tropical isolate, compared to an isolate that is collected at 

the same site but under cool spring conditions. Mycoinsecticides should not 

therefore, be chosen simply by matching climatic factors between the site of origin 

and that of application. 

The in vivo infection studies at different temperatures in this study showed there 

was little difference between the LT50 values obtained at 18 and 23°C for either A. 

fabae or M persicae when they were inoculated with fungi. Results of in vitro 

studies showed rates of growth of these isolates only increased slightly between 20 

and 25°C so it may be expected that these changes in temperature would have little 

impact on the rate of aphid mortality if the same relationship existed in vivo. The 

LTso values for both aphid species inoculated with isolate HRI 1.72 (V lecanii) 

were significantly smaller at 10°C than those for the other isolates. The in vitro 

germination data suggested that HRI 1.72 (V.. lecanii) was able to germinate more 

quickly than the other isolates at this temperature which may also be related to the 

in vivo pathogenicity of this isolate at 10°C. Other studies have suggested that a 

fast germination rate of conidia (amongst other traits) may be related to the 

expression of pathogenicity (Jackson et al., 1985). However, differences do occur 

between in vitro and in vivo germination of fungal isolates related to temperature 

(Ouedraogo et al., 1997), suggesting isolates should be selected on the basis of 

results from both in vitro and in vivo germination tests. 

The in vitro germination studies on agar adjusted to different water activities 

indicated that none of the isolates tested were able to germinate below aW 0.955 (= 

95.5 % RH). This agrees with other studies in which V. lecanii has been cited as 

requiring above 0.93aw for conidial germination and mycelial growth (Drummond 

et al., 1987) and isolates of B. bassiana, M. anisopliae and Paecilomyces spp. have 

been shown to be unable to germinate below 0.93 a,, (Gillespie & Crawford, 1986). 

A strain of V. lecanii which colonises grain has, however, been recorded as 

germinating on media with water activity as low as aW 0.90 (Magan & Lacey, 
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1984). In the current study, although conidia were recorded as being unable to 

germinate on media with a,, 0.932 - 0.955, they were noted to have become quite 

swollen as if water had entered them. Increasing the recording period would 

establish whether these conidia had the potential to germinate or if germination 

was totally inhibited at these water activities. 

A small number of conidia (0.33%) of the isolate HRI 1.72 (V. lecanii) were 

recorded in the current study as being able to germinate at a water activity as low 

as a,, 0.948. It is interesting that this isolate was also the most pathogenic in vivo to 

aphid hosts. Similar relationships between germination of conidia at low humidity 

or water activity and in vivo pathogenicity has been reported for isolate HRI 1.72 

(Chandler, Heale & Gillespie, 1994), an isolate of V. lecanii identified only as 

isolate "A" (Drummond et al., 1997) and isolates of M anisopliae and P. farinosus 

(Matewele et al., 1994). Additionally, the use of formulations in carriers such as oil 

has been shown to increase mortality of inoculated insects under low humidity 

compared to carriers such as Tween (Prior, Jollands & le Patourel, 1988; Bateman, 

Carey, Moore & Prior, 1993; Ibrahim, Butt, Beckett & Clark, 1999). 

Adding nutrients to media had the greatest effect on isolate HRI 1.72, increasing 

the speed of germination and the length of germ tubes recorded. It is most likely 

that the increase in length of germ tube was simply because conidia germinated 

more quickly in the presence of added nutrients and the germ tubes therefore had 

more time to grow before the recording was made. This does however, suggest that 

the presence of nutrients, such as those in the host cuticle, may increase the rate of 

germination of conidia and subsequently, germ tube production. The germination 

and differentiation of germination structures has previously been shown to be 

influenced by the insect cuticle (Butt et al., 1995). In vitro studies incorporating 

host cuticle into germination media have also been shown to alter the germination 

of fungi depending on the host cuticle used (Ibrahim et al., 1999). 

Studies have demonstrated that insects may become infected by fungi under low 

humidity conditions but that external sporulation, and hence epizootic potential, 

generally occurs at high humidity. Under low humidity conditions, fungi may 

sporulate inside the host (Lomer et al., 1993). Imagines of the bean weevil 
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Acanth9scelides obtectus Say have been reported as being infected with B. 

bassiana at an ambient RH of 0% but sporulation only occurred at above 92% 

(Ferron, 1977). The elm bark beetle Scolytus scolytus has been infected with B. 

bassiana at ambient humidities as low as 5% (Doberski, 1981 b). The chinch bug 

Blissus leucopterus (Say) was also infected at a low RH of 30% with B. bassiana 

but again, sporulation on the host only occurred at higher humidity of 75% RH and 

above (Ramoska, 1984). It has been suggested that a boundary layer of moist air, 

similar to that which exists in plants (Waggoner, 1965), surrounds the insect cuticle 

and that this constant, higher humidity (compared to macroclimatic RH) provides 

the ideal environment for germination of fungal conidia (Ferron, 1977; Ramoska, 

1984). 

The impact of pesticides on germination and growth of fungi was not investigated 

in this study. An M. Sc. student (Nicholas Mantis) at the University of Nottingham 

investigated the compatibility of isolates ARSEF 2879 (B. bassfana), Z11 (P. 

fumosoroseus), HRI 1.72 (V. lecanii) and Mycotech strain GHA (B. bassiana) with 

the fungicides Bravo 500 (chlorothalonil), Sportak-Sierra (prochloraz) and Standon 

(kresoxim-methyl + epiconazole) and the insecticide Toppel (cypermethrin) 

(Mantis, 2000). At the recommended field rate, the germination of conidia of all 
isolates was reduced in the fungicide treatments. Additionally, the rate of mycelial 

growth and the overall number of conidia that were able to germinate was also 

reduced. The rate of mycelial growth and germination of conidia was not so 

adversely affected by the insecticide Toppel. At 0.01 x field rate of all chemicals, 
the percentage germination of conidia of each isolate increased, compared to field 

rate treatments; the greatest increase was for isolate Z 11 (P. fumosoroseus). 

Studies such as these should be included as part of the selection criteria in the 

biorational approach as isolates that are compatible with commonly used pesticides 

will be more easily incorporated into IPM programmes of aphid control. 

Therefore, part of the selection criteria for isolates that have the potential for use as 
mycoinsecticides should be based on information from both germination and 
growth studies under abiotic conditions which prevail at the site of release. 
Knowledge of germination of conidia will aid in selecting isolates that are able to 
infect and penetrate hosts quickly under field conditions. An increase in the ability 
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of conidia to germinate quickly has been associated with increased pathogenicity 

of an isolate of M anisopliae to the tobacco hornworm Maduca sezta (Hassan, 

Dillon and Charnley, 1989). Also, the ability of an isolate to grow during the 

incubation period within a host will ultimately dictate the speed of kill achieved 

with a mycoinsecticide. The idea that microbial control agents will operate in a 

similar manner to conventional chemical insecticides may place strong pressures 

on ensuring "knock-down" insect pest control with mycoinsecticides and hence, the 

selection of isolates that can germinate and grow quickly. 
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CHAPTER 6: INTERACTIONS OF MYCOINSECTICIDES WITH OTHER 
NATURAL ENEMIES 

6.1 Introduction 

There are many potentially antagonistic, synergistic and additive interactions that 

could occur between microbial insecticides and non-target organisms, such as 
invertebrates and other microbial pathogens, but there is currently an incomplete 

understanding of these interactions. 

Microbial products have been registered and marketed in a similar way to chemical 
insecticides so there has been a tendency to assess their impact on non-target 

organisms in a similar manner to chemical insecticides. Most of the literature on 
interactions between microbial pathogens and non-target organisms therefore 

relates to direct impact assessments. The reader is referred to Cook, Bruckart, 

Coulson, Goettel, Humber, Lumsden, Maddox, McManus, Moore, Meyer, Quimby 

Stack & Vaughn (1996) for a recent review on safety considerations of live 

organisms introduced for biological control. It has been suggested, however, that 
long term effects of microbial pathogens are likely to be more important for natural 

enemies than intermediate, direct mortalities (Flexner, Lighthart & Croft, 1986). 

The main risks associated with microbial insecticides have been identified as 
toxicity, allergenicity and infections in mammals and non-target fauna (Hall & 

Papierok, 1982). The safety of any microbial agent will be directly linked to its 

physiological and ecological host range (Goettel, 1994). The physiological host 

range has been defined as the range of hosts that a pathogen may infect under 
laboratory conditions, whereas the ecological host range is the range of hosts that 

will actually be affected under field conditions (Hajek & Butler, 2000). Generally, 
fungal isolates are most virulent to the host from which they were initially isolated 
(Goettel et al., 1990). However, some insect species may also be very easy to 
infect in the laboratory with fungi that are not known to attack them in nature 
(Goettel, 1994). For this reason, it has been suggested that specificity testing may 
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only be useful for fungi with narrow ecological host ranges and, if the fungus has a 

wide ecological host range, testing non-target susceptibility in the laboratory is not 

a reliable indicator of safety in the field (Goettel, 1994). However, testing 

pathogens in both the laboratory and field to demonstrate such differences between 

physiological and ecological host range has been limited (Hajek & Butler, 2000). 

A particular species of fungus may be recorded from a very diverse range of hosts; 

Beauveria bassiana has been recorded infecting over 700 species of arthropods 
(Li, 1988). However, strains or isolates within a species of fungus may show high 

specificity towards a particular host (Milner, 1982). Potentially, individual isolates 

of the same fungal species may adversely affect non-target beneficial organisms 

with varying degrees of pathogenicity to those non-targets. However, the lists of 

those non-targets that are susceptible to infection by different fungi do not contain 
information of individual isolates but only of the species of fungus (Goettel et al., 
1990). 

Additionally, the physiological and ecological host range of an entomopathogenic 

fungus may be influenced by the biology and ecology of the host and abiotic 
factors. There may be differences in both the applied pathogen and the hosts, as 

well as many host-related factors that cause differences between the laboratory and 

field (Hajek & Butler, 2000; Watson, Jenkins & Thomas, 1999). For example, it 

has been suggested that fungal pathogens and non-targets may be spatially or 

temporally separated, that the host may have defensive behaviours such as the 

ability to thermoregulate to avoid fungal infections (Carruthers et al., 1992; 

Watson, Mullens & Peterson, 1993; Inglis et al., 1996,1997) or there may be 

changes in virulence of spores that are passaged through the host (Aizawa, 1971; 

Hayden et al., 1992). 

The assessment of the hazard that entomopathogens may pose to non-target 

arthropods normally follows several tiers. In the first tier, individual isolates are 

screened for pathogenicity to non-target arthropods. These tests are done in the 
laboratory and potential hosts are exposed to relatively high doses of the pathogen. 
If the pathogen proves to be virulent, experiments at higher tiers are used to 
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attempt to simulate realistic exposure under field conditions and assess effects in 

the field. Such experiments are more effective when semi-field bioassays are 

combined with full scale field experiments (Danfa & van der Valk, 1999). 

Direct impact assessments have been made against several species of natural 

enemies, including predators, parasitoids and pollinaters (Vinson, 1990). Many of 

these were first tier tests to determine the pathogenicity of microbial control agents 

to a chosen non-target indicator species; some have been published as standard 

protocols for laboratory testing of microbial pathogens against specific non-target 

species (James & Lighthart, 1992). Predicting the ecological host range is 

somewhat more difficult, particularly with selfperpetuating organisms that function 

at the tertiary trophic level, such as entompathogens and predatory insects. The 

following sections are primarily aimed at reviewing the "safety" aspect of 

microbial pathogens, specifically focusing on interactions between fungal 

pathogens and other natural enemies of aphids. 

6.1.1 Predators 

Testing microbials against predators has involved species of coleoptera, predatory 

mites and predatory bugs (Magalhaes, Lord, Wraight, Daoust & Roberts, 1988; 

James & Lighthart, 1994; Poprawski, Legaspi & Parker, 1998; Vinson, 1990). 

Such studies have largely been designed to look at the direct impact of microbials 

through contact and/or ingestion of propagules by non-target organisms. The 

impact of microbial pathogens on predators has been reviewed by Goettel et al. 

(1990) and Vinson (1990). 

Coccinellid beetles are very important predators of aphids and many non-target 

tests of microbial pathogens have involved coccinellids. Second instar larvae of the 

coccinellid Serangium parcesetosum Sicard were found to be more susceptible to 

conidia of Beauveria bassiana than Paecilomyces fumosoroseus when they were 

exposed directly to the conidia (Poprawski et al., 1998). Similarly, adult 

coccinellid beetles of other species have been found to be susceptible on direct 

exposure to B. bassiana but not to Zoophthora radicans conidia (Magalhaes et al., 
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1988). James and Lighthart (1994) also found that B. bassiana, Metarhizium 

anisopliae and P. fumosoroseus were pathogenic to first instar larvae of the 

coccinellid Hippodamia convergens but there was no infection in larvae treated 

with Nomuraea rileyi. Haseeb & Murad (1997) showed that although several 
isolates of B. bassiana were highly pathogenic to adults of the coccinellid 
Coccinella septempunctata, some were faster acting than others. Additionally, 

different isolates showed a range of pathogenicity to several different predators of 

vegetable pests (Haseeb & Murad, 1998). 

Direct exposure to conidia through ingestion has also been investigated for 

predators. Whilst entomopathogenic fungi generally invade the host through the 

cuticle without requiring ingestion, there is evidence that some entomopathogenic 

fungi, such as B. bassiana, are able to invade insects with chewing mouthparts via 

the alimentary canal (Feng et al., 1994). However, it is difficult to determine the 

contribution that the two methods of infection may have on the infection process in 

predatory insects. The mortality of S. parcesetosum was found to be high when 

larvae were allowed to feed on whiteflies infected with B. bassiana (Poprawski et 

al., 1998) and larvae of the coccinellid Cryptolaemus montrousieri Mulsant were 

also susceptible to B. bassiana when they were fed mealybugs which were treated 

with the commercial product Boverin® (Kiselek, 1975). However, there were no 
detrimental effects on the predatory mite Phytoseiulus persimilis (Athias-Henriot) 

when it consumed whiteflies infected with Aschersonia aleyrodis Webber 

(Fransen, 1987). Similarly, other studies have shown there may be no detrimental 

effects of feeding prey infected with bacteria such as Bacillus thuringiensis 

Berliner to predators (Yousten, 1973). Also, protozoan pathogens and nuclear 

polyhedrosis viruses appear to have little impact on predators (Abbas & Boucias, 

1984; Young & Hamm, 1985; Marti & Hamm, 1986). 

There may be indirect detrimental effects of predators feeding on prey infected 

with microbial pathogens. Reductions in food consumption and increased 

developmental times have been recorded for predators exposed to bacteria 

(Salama, Zaki & Sharaby, 1982). Similary, high mortality of larvae of C. 

septempunctata fed with cotton aphids which were infected with the fungus 
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Neozygites fresenii was suggested to be because of the lack of suitability of the 

prey for the predator (Simelane, 1996). 

Other coleopteran species have been used to investigate the non-target effects of 
fungal pathogens. An isolate of M anisopliae var. acridum being developed for 

use as a mycoinsecticide against grasshoppers and locusts has been tested against 

various non-target organisms in the Sahel (Danfa & van der Valk, 1999). When 

two species of predatory tenebrionid beetle were exposed to conidia (either 

through direct topical applications or through ingestion of infected grasshoppers) 

there was no significant effect of the pathogen on the predators. Subsequent field 

studies in Niger showed there was indeed no negative impact of the same isolate 

on several non-target species including the tenebrionid beetles (Peveling, Attignon, 

Langewald & Ouambama, 1999). 

Studies on several predators in cotton have also shown little impact of a B. 

bassiana based mycoinsecticide treatment in the field (Jaronski, Lord, Rosinska, 

Bradley, Hoelmer, Simmons, Osterlind, Brown, Staten & Antilla, 1998). Only one 

predator species out of four that were susceptible to the fungus under laboratory 

bioassay conditions was actually susceptible in the field. However, other species 

studied in the laboratory were not present in the field trial so conclusions could not 
be made about their susceptibility. Additionally, as B. bassiana infection was 
found in all treatments, including the untreated controls, the authors suggest there 

may have been a natural outbreak of the pathogen, but were unable to differentiate 

between the applied strain and those isolated from infected predators. There was 

significant control of whiteflies (the target insects) in plots treated with B. 

bassiana, suggesting that the infections found in untreated controls could equally 
be due to the applied fungus and to a natural B. bassiana epizootic, although the 

control plots were a considerable distance from the treated plots. 

In a similar study, an isolate of B. bassiana that was pathogenic in the laboratory to 

the coccinellid H. convergens (James & Lighthart, 1994) was tested under field 

conditions to determine its pathogenicity to target aphids and non-target predators 
(James et al., 1995). In contrast to the previous study, larvae of H. convergens 
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were affected in one of two studies at lower concentrations of pathogen than those 

used in laboratory studies. Differences in larval susceptibility between the two 

studies were suggested to be due to weather conditions; early in the season the 

incidence of the predator was reduced by 75-93% even at low concentrations of 

pathogen, but was not affected later in the season. Similarly, other studies have 

shown changes in insect susceptibility to a fungal pathogen may be caused by 

stressful conditions, such as starvation and changes in temperature (Donegan & 

Lighthart, 1989). 

6.1.2 Parasitoids 

The competitive interactions between unrelated organisms which share a resource 

is receiving increasing attention (Hochberg & Lawton, 1990). Host-parasitoid- 

pathogen interactions may be detrimental or beneficial for the parasitoid and 

pathogen that interact within the shared host. Hochberg (1991 a, 1991 b) has defined 

two potential types of parasitoid and pathogen interaction as, i) intrahost 

interactions, where the natural enemies interact during their development within 

the same host and, ii) extrahost interactions, where the parasitoid may transmit the 

pathogen outside of the host. Modelling theory has suggested that the interactions 

between pathogens and parasitoids acting simultaneously against the same hosts in 

a population may result in the elimination of one natural enemy by the competitor 

in all co-infected hosts, or some intermediate outcome (Hochberg, Hassell & May, 

1990). The interactions between specific pathogen groups and parasitoids have 

been reviewed by Akhurst (1990), Gröner (1990), Goettel et al. (1990), Melin & 

Cozzi (1990) and Brooks (1993). 

One of the main detrimental effects that fungi have on parasitoids is to cause 

premature death of the host before the parasitoid has completed development. The 

time at which a pathogen infects a parasitised host has been shown to be critical for 

successful development of the parasitoid in several host-pathogen-parasitoid 

systems (Brooks, 1993). The parasitoid Aphidius rhopalosiphi De Stefani-Perez 

was adversely affected when the host aphid, Metopolophium dirhodum, was 

infected with the pathogen Erynia neoaphidis less than four days after being 
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parasitised (Powell, Wilding, Brobyn & Clark, 1986). Similarly, when the potato 

aphid Macrosiphum euphorbiae was parasitised by Aphidius nigripes Ashmead, 

only 30.7% of the parasitoids survived if aphids were infected with V.. lecanii two 

days after parasitism compared to 89.2% survival if infection occurred four days 

following parasitism (Askary & Brodeur, 1999). Similar patterns in differences of 

parasitoid survival have been shown when larvae of the diamondback moth 

Plutella xylostella were parasitised by Diadegma semiclausum Hellen or Cotesia 

plutellae Kurdjumov and subsequently infected with the pathogen Zoophthora 

radicans; none of the parasitoids survived if larvae were infected with the fungus 

four days following parasitism (Furlong & Pell, in press). 

The effect of the timing of attack by the parasitoid and pathogen on the successful 

development of either natural enemy is known as the priority effect (Powell et al., 

1986; Fransen & van Lenteren, 1993). A recent study evaluating the priority 

required by the parasitoid A. rhopalosiphi to complete its development in the host 

Sitobion avenae, prior to infection by the fungus E. neoaphidis, showed that under 

certain priority conditions, the competitive outcome of the pathogen-parasitoid 

interaction was influenced by the resistance of the wheat host plant (Fuentes- 

Contreras, Pell & Niemeyer, 1998). Resistance to aphids in plants increased the 

developmental time of the parasitoid but did not change the developmental time of 

the fungus. When the two natural enemies competed within the same host on a 

resistant plant and both had a chance to complete their development successfully, 

the survival of the parasitoid was significantly reduced. Because of the reduced 

developmental time of the parasitoid on the resistant plant, this natural enemy 

required a greater advantage (priority effect) to outcompete the fungus than it did 

on a susceptible plant. 

There have been a limited number of reports of the direct pathogenicity of 

entomopathogenic fungi to adult parasitbids compared to those on the indirect 

effects. Furlong and Pell (1996) studied parasitoids of P. xylostella and found the 
fungus Z radicans was pathogenic to adult D. semiclausum, but not to adult C. 

plutellae when adult wasps were exposed to large numbers of conidia. Poprawski, 

Mercadier and Wraight (1992) found Z radicans was pathogenic to adults of the 
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aphid parasitoid Aphelinus asychis Walker which were exposed to showers of 

conidia. Additionally, when mummies were treated with conidia, an average of 

20.1% of the emerging adult parasitoids subsequently succumbed to fungal 

infection. Lacey, Mesquita, Mercadier, Debire, Kazmer & Leclant (1997) showed 

that adult A. asychis were also susceptible to infection by P. fumosoroseus. There 

is also some evidence that parasitoid susceptibility to fungal pathogens depends on 

the exposure time and hence the dose of conidia received by the parasitoids. Danfa 

& van der Valk (1999) showed that isolates of M. anisopliae and B. bassiana 

caused 100% mortality in two common Sahelian parasitoids which were exposed 

continuously to conidia on treated paper but, when the exposure time was limited 

to less than six hours, there was no infection in parasitoids. 

There may be direct interactions between entomopathogenic fungi and parasitoid 

larvae within the same host (Brooks, 1993). Studies of the susceptibility of larvae 

of the aphid parasitoid A. nigripes to the fungus V. lecanii showed that developing 

hyphae of the fungus were able to colonise the host aphid tissues (within which the 

parasitoid larva was developing) but were then restricted to the periphery of the 

parasitoid cuticle (Askary & Brodeur, 1999). Similar restrictions to hyphal growth 

have been reported for parasitoids developing in other aphid hosts (Milner, Lutton 

& Borne, 1984; Powell et al., 1986). Interestingly, Askary and Brodeur (1999) also 

found hyphae and blastospores of V. lecanii in the gut of parasitoid larvae, 

suggesting the fungus was consumed with the aphid host tissues by the parasitoid. 

The authors concluded that there may have been some defensive reaction of the 

larvae which prevented them becoming infected with the fungus. It has been 

indicated in other studies that parasitoid larvae may produce antimicrobial 

compounds which can inhibit fungal development within the host (Führer & 

Willers, 1986). 

There may be indirect or sublethal effects of entomopathogenic fungi on 

parasitoids that have developed in mycosed hosts (Brooks, 1993). El-Maghraby, 

Hegab & Yousif-Khalil (1988) found the developmental period of the parasitoid 
Microplitis rufiventris Kok. was increased when parasitised larvae of Spodoptera 

littoralis were infected with B. thuringiensis or B. bassiana. Lacey et al. (1997) 
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found that under high relative humidity, adult A. asychis treated with P. 

fumosoroseus were significantly less active than untreated controls. The authors 

suggest that reduced searching capacity by affected parasitoids may subsequently 

reduce the number of aphids parasitised under field conditions. Reductions in host 

development and other sublethal effects have also been noted in other host- 

parasitoid-pathogen systems (Hoch, Schopf & Maddox, 2000). 

Fungal pathogens may also be detrimental to parasitoids by altering hosts and 

making them unattractive to ovipositing female parasitoids. Brobyn, Clark and 

Wilding (1988) showed that the parasitoid A. rhopalosiphi could only discriminate 

between healthy aphids and aphids infected with E. neoaphidis once the fungus 

had heavily colonised the aphid host tissues. Prior to this, the frequency of 

oviposition attempts was the same as for the controls, suggesting the mechanism 

for detecting the fungus in the host was only poorly developed. Potentially, the 

development of parasitoid populations under field conditions may be adversely 

affected when they competitively interact with entomopathogenic fungi. When the 

mealybug Rastrococcus invadens Williams was treated with the fungus Hirsutella 

cryptosclerotium Fernandez-Garcia, Evans and Samson and the parasitoid 
Gyranussoidea tebygi Noyes, there were increased levels of parasitism when there 

were longer periods between fungal treatment and parasitoid exposure to mealybug 

populations (Akalach, Fernandez-Garcia & Moore, 1992). It was suggested that at 
later stages of fungal infection, parasitoids were able to avoid ovipositing in hosts 

infected with fungus whilst at early exposures, many would oviposit in hosts which 

would subsequently die due to fungal infection. Fransen and van Lenteren (1993) 

also observed ovipositing female Encarsia formosa Beltsville avoided whitefly 

hosts that had been infected with the fungus A. aleyrodis. When the fungus was 

applied to parasitised whitefly hosts four days after parasitism had taken place, 
healthy E. formosa adults emerged, demonstrating how the two natural enemies 

may act synergistically to control whitefly. 

Field studies to evaluate the effect of fungal pathogens on natural populations of 
parasitoids have shown promising results, with little impact of the pathogens on the 

non-target fauna. A recent study was focused on evaluating the effect of the B. 
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bassiana based mycoinsecticide Mycotrol® WP on Eretmocerus nr. californicus 

Howard wasps in commercial melons (Jaronski et al., 1998). The parasitoids had 

been shown to be highly susceptible to the pathogen under laboratory conditions. 

However, the field application of B. bassiana had no significant effect on the rate 

of parasitism, although parasitoids were less abundant in the B. bassiana treated 

plots than in control plots. The authors suggest that this reduced parasitoid 

abundance may be due to the reduced numbers of hosts available in plots where 

whiteflies were controlled with the fungus. They conclude that this study indicates 

that, under field conditions, the parasitoids were not as severely impacted by B. 

bassiana applications as would have been suggested from laboratory studies. 

However, the long-term impact of such reduced host availability to parasitoid 

abundance and survival was not evaluated. 

An isolate of P. fumosoroseus also had no significant detrimental effect on the 

parasitoid A. asychis when the pathogen and parasitoid were applied in 

combination against Diuraphis noxia (Mesquita, Lacey & Leclant, 1997). There 

were no differences between the number of mummies and the F1 emergence in the 

treated parasitoid populations compared to the controls and it was suggested that A. 

asychis and P. fumosoroseus had potential to be used together in integrated aphid 

control. Glasshouse experiments with P. fumosoroseus and E. formosa supported 

laboratory experiments that the parasitoid was not susceptible to the fungus and 

others have demonstrated the capacity for an additive effect of fungus and 

parasitoids for aphid control (Mesquita et al., 1997). 

Results of glasshouse and field testing are therefore very encouraging for the 

introduction of fungal pathogens into insect pest control programmes. However, as 

Danfa and van der Valk (1999) observe specifically for B. bassiana and M 

anisopliae, the hymenoptera should remain a priority group to be included in 

impact assessments when mycoinsecticides are used under field conditions. 
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6.1.3 Pollinators 

Research on the impact of pathogens on pollinators has concentrated on the 

honeybee, Apis mellifera L., mainly because of regulatory requirements for 

registering microbial insecticides (Neale & Newton, 1999). General reviews of 

effects of microbial pathogens on bees and other pollinators are given by Goettel et 

al. (1990) and Vinson (1990). 

There is much variability in the susceptibility of pollinators to entomopathogenic 

fungi. Some authors report high levels of pathogenicity to bees (Vandenberg, 1990; 

Butt et al., 1994; Brinkman, Fuller, Leubke & Hildreth, 1997), whilst others have 

demonstrated non-susceptibility or reduced susceptibility to doses more realistic of 

field applications (Cooper, Hornitzky & Medcraft, 1984; Ball, Pye, Carreck, 

Moore & Bateman, 1994; Butt, Carreck, Ibrahim & Williams, 1998). However, it 

is widely accepted that safety testing against pollinators is a necessity when 

assessing non-target impacts of microbial insecticides. 

6.1.4 Microbial Pathogens 

It is likely that microbial insecticides will interact with other pathogens that occur 

naturally in the field environment or within mixtures of pathogens which may be 

introduced together to achieve better control (Heale, 1988). In both of these 

situations, the potential interactions between pathogens will have important 

implications for the success of a biological control programme. 

Investigations into the interactions between two or more microbial pathogens in the 

same host has been relatively limited. Competitive interactions between B. 

bassiana and M flavoviride when nymphs of grasshoppers (Melanoplus 

sanguinipes) were co-inoculated with the fungi were found to change under 

oscillating temperatures (Inglis et al., 1999). Populations of M flavoviride in the 

haemocoel of nymphs increased relative to B. bassiana as the amplitude of the 

temperature oscillation increased. 

155 



Similarly, the competitive interactions between two entomophthoralean fungi, N. 

fresenii and E. neoaphidis, were investigated when Aphis fabae was co-inoculated 

with the fungi (Villacarlos, Pell & Steinkraus, in prep. ). The development of either 

fungus was dependent on temperature; at low temperatures, E. neoaphidis was 

more prevalent, whilst at higher temperatures, N. fresenfi was more common. 

Competitive interactions have also been observed between isolates of the same 

species of fungus applied as a mixture for whitefly control (Chandler, Heale & 

Gillespie, 1993a). 

In a more intricate system, the interaction of two microbial pathogens, B. 

thuringiensis and B. bassiana and the host/parasitoid system S. littoralis/M. 

rufiventris showed that there were direct adverse effects on adult parasitoids when 

the pathogens were applied together (El-Maghraby et al., 1988). Additionally, 

applying both pathogens to S. littoralis larvae, which had previously been 

parasitised, resulted in fewer larval deaths compared to single pathogen 

applications. It was suggested that the parasitoids may be directly affected by 

toxins or that B. thuringiensis caused reduced feeding in the host, making the host 

unsuitable for development of the parasitoid. Parasitoids died after emergence from 

the host but there was no record made of cause of death, so it is not possible to 

determine whether the bacterium or fungus had a greater impact on the emerging 

parasitoids. 

Synergistic interactions between pathogens are not uncommon but often depend on 

the dose and time of inoculation of the pathogens. When gypsy moth larvae 

Lymantria dispar L. were simultaneously inoculated with gypsy moth 

nucleopolyhedrosis virus (LdNPV) and the fungus Entomophaga maimaiga 

Humber, Shimazu & Soper, the fungus alone was observed in the majority of 

cadavers. This was suggested to be solely due to the shorter incubation time of the 

fungus (Malakar, Elkinton, Hajek & Burand, 1999). However, when sequentially 

inoculated (so mortality from both pathogens would be expected at the same time) 

the LD5o for the LdNPV decreased suggesting that the presence of the fungus 

enhanced LdNPV replication. Other studies have found similar synergistic 
interactions between B. thuringiensis and nematodes (Koppenhofer & Kaya, 1997), 
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B. tenella Delacroix and the virus Entomopoxvirus melolonthae (Ferron & Hurpin, 

1974) and B. thuringiensis and a microsporidium, Vairimorpha necatrix Kramer 

(Fuxa, 1979). 

A recent study used morphological diagnostic methods for the first time to 

demonstrate the co-prevalence of a fungus (Strongwellsea castrans Batko & 

Weiser), microsporidium (Cystosporogenes deliaradicae Larsson, Eilenberg and 

Bresciani) and bacterium (B. thuringiensis) in the cabbage root fly, Delia radicum 

(Eilenberg, Damgaard, Hansen, Pedersen, Bresciani & Larsson, 2000). In this case 

it was suggested that infection with the fungus may allow an opportunistic 

infection by the microsporidium as the prevalence of the microsporidium was 

higher in those individuals infected with S. castrans than in uninfected D. radicum. 

It was also suggested that proliferation of the bacterium may take place after oral 

uptake in insects infected by other pathogens; in this case there were two records 

of simultaneous infections of D. radicum with B. thuringiensis and S. castrans. 

Such studies indicate the complexity of multiple pathogen interactions. 

The aim of the current study was to evaluate the direct impact of the four selected 

isolates Mycotech strain GHA (B. bassiana), HRI 1.72 (V. lecanii), ARSEF 2879 

(B. bassiana) and Z11 (P. fumosoroseus) in laboratory assays against three aphid 

natural enemies; the 7-spot ladybird C. septempunctata, the generalist parasitoid 

Praon volucre and the naturally occurring entomophthoralean fungus Erynia 

neoaphidis. 

6.2 Materials and Methods 

6.2.1 Insect and hyphomycete fungus cultures 

The aphid A. fabae and ladybird C. septempunctata were reared to known-age 

using the methods described in sections 2.3 and 2.4. The generalist parasitoid P. 

volucre was reared using methods described in section 2.5. Fungi were cultured 

and suspensions of conidia prepared using the methods described in section 2.6 and 

were adjusted to give a final concentration of lx 108 conidia ml" unless stated 
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otherwise. All spray applications were made using the methods and sprayer system 

described in section 2.6.6. The general bioassay procedure described in sections 
2.7 and 2.8 was followed for all experiments on aphids unless stated otherwise. 

6.2.1.1 Culturing Erynia neoaphidis 

A single isolate of E. neoaphidis (reference X4) was used for all experiments. This 

isolate was obtained in the mid 1970's from infected Acyrthosiphon pisum on 

lucerne. It has been continually cultured in vivo on A. pisum at IACR-Rothamsted 

since this time and is permanently stored in liquid nitrogen. 

To produce A. pisum cadavers, "mummies" (dried cadavers of aphids infected by 

E. neoaphidis) were placed on a damp piece of tissue paper on a small circular 

piece of moistened foam (approximately 1 cm diameter) in the lid of a glass tube 

(4.5cm. x 2cm) late in the afternoon. The lids were then placed into a plastic box 

(17 x 11.5 x 6cm, Stewarts Ltd. ) which contained damp tissue paper to maintain a 

high humidity and held overnight at 10°C in the dark. By the following morning, 

the mummies had swelled, changed from dark brown to straw coloured and begun 

to sporulate. Prior to aphid inoculation, mummies were allowed to warm gently in 

the laboratory to encourage sporulation. 

To inoculate A. pisum with E. neoaphidis, aphids were showered with fungal 

conidia. A small piece of wide-meshed nylon netting was placed over one end of 

an open ended glass tube and secured with a rubber band. Approximately 20 - 30 

apterous, adult A. pisum aphids were placed in the tube. A piece of nylon netting 

was placed over the lid containing the sporulating mummies and the lid was 

securely fastened over the aphids. The tubes were then placed over glass slides (76 

x 26mm, Chance Propper Ltd. ) with the open end facing down and the mummies 

showering conidia from above, in a plastic box containing damp tissue paper to 

maintain a high relative humidity. Aphids were inoculated for two to three hours 

on the laboratory bench. Following inoculation, the slides were stained with cotton 
blue in lactophenol (10% cotton blue, v/v) and the spores examined under a Dialux 

20 compound microscope to confirm that conidia were present and could be 

158 



identified as E. neoaphidis. 

Inoculated aphids were transferred to single bean plants which were enclosed by 

lamp glasses. The lamp glasses had cling film placed over the top to maintain a 

high relative humidity and the plants were placed in a CE cabinet at 18°C with a 16 

hour photoperiod. After 24 hours, the cling film was replaced with fine meshed 

muslin which was held in place with metal rings. 

Aphids died on the third or fourth day post-inoculation, mostly in the late 

afternoon, and plants were checked regularly over this period for infected cadavers. 

Aphids that had died from fungal infection were straw coloured and firm to touch. 

The cadavers were removed with fine forceps before conidiophores and rhizoids 

had emerged and placed in drying Petri dishes. The drying dishes were made of 

Petri dish lids (90mm diameter) which had 80mm holes cut in them which in turn 

were covered with nylon mesh. Cadavers were placed in one lid and another lid 

was fastened over them and held securely with masking tape. These drying dishes 

were placed in the CE cabinet at 18°C and 16 hour photoperiod for 48 hours, after 

which the cadavers had dried to form hard "mummies". Mummies were stored for 

up to six weeks in a glass dessicator at 4°C over 90% aqueous glycerol (v/v) which 

maintained a 20% relative humidity. 

6.2.1.2 Inoculating Aphis fabae with Erynia neoaphidis 

Apterous, adult A. fabae were inoculated with E. neoaphidis for experiments using 

the same procedures detailed for inoculation of A. pisum when culturing E. 

neoaphidis (section 6.2.1.1). 

6.2.1.3 Inoculating Coccinella septempunctata and Praon volucre with 
hyphomycete fungi 

Adult C. septempunctata and mummies of P. volucre were inoculated by dipping 

them for ten seconds in fungal suspensions or Tween 80 (0.03%) as a control. 
Details of the number of insects treated and number of replicates are given in 
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sections 6.2.2 and 6.2.3. Coccinella septempunctata were dipped in 10ml of each 

treatment in a 50m1 centrifuge tube (BDH), whilst P. volucre were dipped in 5ml 

of each treatment in a 7ml Bijou tube (Sterilin). Treated insects were then tipped 

into a Buchner funnel lined with filter paper (Whatman No. 41,90mm diameter) 

and the excess liquid drawn off under suction. A clean Buchner funnel was used 
for each isolate. The funnel was rinsed between each replicate with 95% ethyl 

alcohol and deionised water and a fresh piece of filter paper was placed inside. 

Control treatments were applied first and fungal treatments were then applied in a 

random order. 

6.2.2 Single-dose bioassays against Coccinella septempunctata 

The four isolates selected in section 4.3.1 were screened against adult C. 

septempunctata at a single dose of 1x 108 conidia ml"' . As a limited number of adult 

coccinellids could be maintained at any one time, only three isolates could be 

screened on any occasion. To allow for this, a cyclic design of four treatments (all 

isolates to be used) in four blocks (bioassay occasion) of three plots (isolates to be 

used on each occasion) was arranged. Using this design, each fungus was 

replicated three times with each pair of fungi occurring twice. 

Adult ladybirds were inoculated using procedures detailed in section 6.2.1.3. Each 

treatment consisted of three replicates of ten insects. Treated ladybirds were placed 

onto a small, single bean plant infested with A. pisum under a lampglass. Cling 

film was placed over the top of the lampglasses to maintain a high humidity and 

they were placed in a 23°C CE room with a photoperiod of 16 hours. The cling 
film was replaced with muslin after 24 hours. 

Mortality in treatments was recorded daily for 21 days (except for bioassay number 
two when data were not collected on days four and five) and any dead ladybirds 

removed and placed onto damp filter paper at 23°C for two to three days to check 

for fungal sporulation (Figure 6.1). Additionally, all dead ladybirds were dissected 

to confirm the cause of death. The body cavity of those individuals killed by 

fungus was a solid mass of mycelium compared to non-fungal deaths where the 
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FIGURE 6.1 : ARSEF 2879 (B. bassiana, left) and Mycotech strain GllA (B. 
hassiana, right) sporulating from adult 7-spot ladybirds ('occinella seplemf)unc"luiu. 
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body cavity was full of black liquid. Any individuals that showed external 

sporulation but no dense mass of mycelia in the body cavity were assumed to have 

died of causes other than fungal infection and to be showing saprophytic fungal 

growth. Acyrthosiphon pisum were regularly added to lampglasses to ensure the 

ladybirds were fed to satiation. 

On each bioassay occasion, a positive control bioassay was run. Aphisfabae were 

inoculated with isolates of fungus which were being used in ladybird assays to 

confirm the fungus was viable. The standard bioassay methods described in 

chapter two were used for all aphid assays. Mortality was recorded daily for seven 

days as described in section 2.8 or until all aphids were dead. 

6.2.3 Single-dose bioassays against the generalist parasitoid, Praon volucre 

The four isolates selected in section 4.3.1 were screened against adult P. volucre 

which were reared on either A. pisum or S. avenae hosts at a single dose of 1x 108 

conidia ml"'. There was one experiment against parasitoids from A. pisum and one 

against parasitoids from S. avenae. Each experiment was repeated on two 

occasions. An additional experiment was done where parasitoids from different 

hosts were bioassayed on the same occasion and this was repeated on two 

occasions. 

Mummies were gently removed from leaves using fine forceps (Storkbill forceps, 

Watkins & Doncaster). Rolling leaves gently lifted the edges of the mummy, 

allowing the forceps to be slipped under the mummy making it easier to lift it off 

the leaf intact. By collecting individual mummies in this way, any mummies from 

which a parasitoid had emerged were identified and excluded from the experiment. 

Mummies were inoculated in batches of 50 individuals using the procedures 

detailed in section 6.2.1.3. Following inoculation, mummies were carefully 

separated using fine forceps and each mummy was placed in a separate specimen 

tube (soda glass specimen tube, 50 x 13mm) with the plastic stopper in place. All 

tubes from one treament were placed in a sandwich box (17 x 11.5 x 6cm, Stewarts 
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Ltd. ) so that each treatment was kept separate. Boxes were held at 23°C in a 16 

hour photoperiod. 

On each bioassay occasion, a positive control bioassay was run. Aphis fabae were 

inoculated with isolates of fungus which were being used in parasitoid assays to 

confirm the fungus was viable. The standard bioassay methods described in 

chapter two were used for all aphid assays. Mortality was recorded daily for seven 

days as described in section 2.8 or until all aphids were dead. 

Tubes were checked daily for parasitoid emergence and deaths. On emergence, 

adult parasitoids were sexed and carefully moved to clean tubes away from the 

aphid mummy from which they had emerged. A small ball of cotton wool was 

placed in the lid of the tube and 50% honey solution (v/v) was pipetted onto the 

cotton wool until it was saturated. The stopper was placed back in the tube and the 

tube placed on its side in a tray. Each tube was numbered sequentially and the date 

of emergence and sex of the parasitoid were recorded. When parasitoids died, the 

cadavers were placed onto damp filter paper and held at 23°C for 24 - 48 hours to 

determine whether sporulation occurred. The date and cause of death were 

recorded for each parasitoid. 

This experiment was run for 14 days after which the majority of parasitoids had 

emerged. Additionally, preliminary experiments run for 21 days showed that adult 

parasitoids began to die naturally seven to ten days post-emergence under control 

conditions. The mummies from which a parasitoid had failed to emerge were 

dissected under a binocular light microscope and the reason for the non-emergence 

established. The four categories for non-emergence were: adult parasitoid had 

emerged before treatment; unsuccessful emergence, i. e. where an adult parasitoid 

had developed and died before emergence or had become trapped when trying to 

emerge from the mummy; unsuccessful larval development, i. e. where a larva was 

found in the mummy which had not successfully developed into an adult 

parasitoid; and mycosed adult pre-emergence, i. e. the adult parasitoid was found to 

be mycosed within the mummy on dissection. 

163 



Data were adjusted to take account of the recording period; for example a 

parasitoid may have emerged any time between the recording made on one day and 

the next so the actual time of emergence was taken as the mid-point between 

recording times. The results for each assay were used to calculate time from 

inoculation to emergence, from emergence to death and from inoculation to death. 

Additionally, these data could be categorised by parasitoid sex and cause of death, 

i. e. either due to fungus or to other causes. Data were analysed using logistic 

regression under the general linear regression procedure in Genstat 5. 

6.2.4 Interactions between hyphomycete fungi, Erynia neoaphidis and A. fabae 

6.2.4.1 Infection of Aphis fabae with Erynia neoaphidis 

An isolate of E. neoaphidis (reference X4) was tested against A. fabae and A. 

pisum in a maximum challenge experiment to compare susceptibility of the two 

aphid species to the fungus. Aphids of both species were inoculated with a large 

number of conidia using the techniques described in section 6.2.1. Aphids were 

showered with conidia for two to three hours to ensure they were exposed to a 

large number of conidia. Controls were held under the same conditions but were 

not exposed to the fungus. There were six replicates of ten aphids for each aphid 

species and treatment. Aphids were maintained on whole plants under lampglasses 

and were monitored once a day on the first and second days and then four times on 

day three and twice on day four. Dead aphids were removed and placed on damp 

filter paper to identify sporulation due to E. neoaphidis. 

6.2.4.2 Interactions between hyphomycete isolates and Erynia neoaphidis on A. 

fabae 

Three hyphomycete isolates were used in an experiment to determine whether 

there was any competition between them and E. neoaphidis within the same aphid 

host, A. fabae. The hyphomycete isolates used were Z 11 (P. fumosoroseus), HRI 

1.72 (V. lecanii) and Mycotech strain GHA (B. bassiana). Suspensions of these 

fungi were prepared the day before the assay and were adjusted to give 
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concentrations of 1x108 conidia m1" for HRI 1.72 (i! lecanii) and 1x109 conidia 

ml-' for isolates Mycotech strain GHA (B. bassiana) and Z11 (P. fumosoroseus). 

The suspensions were held overnight on ice as detailed in section 2.4.5. 

The day before the assay, 64 bioassay dishes containing bean leaves set in 2% 

water agar were prepared using methods described in section 2.2 and placed at 

10°C overnight. An additional 38 Petri dish lids (9cm) were prepared with 

moistened filter paper (70mm) placed in the lid and six mummies of E. neoaphidis 

arranged evenly on the filter paper. The bottoms of the dishes were placed under 

the lids and the dishes were inverted and held at 10°C overnight in the dark in 

containers with wet paper to maintain a high humidity. Bean leaves and stems 

infested with A. fabae were harvested late in the afternoon and placed in ventilated 

boxes at 18°C overnight to allow aphids to move off the plants. 

The next day, 15 aphids were placed in each bioassay dish early in the morning 

(08.00 hours) and allowed to settle for approximately three hours. Aphids were 

then inoculated with the hyphomycete fungi by spraying using the standard 

techniques set out in section 2.6.6 or inoculated with E. neoaphidis by placing a lid 

of sporulating mummies over the dish containing the aphids and showering them 

with conidia for 2'/z hours. There were four treatments; E. neoaphidis alone (E), a 

hyphomycete isolate alone (H), E. neoaphidis and then a hyphomycete isolate 

(EH), and a hyphomycete isolate and then E. neoaphidis (HE). Each treatment had 

a control in which aphids were not exposed to fungus but were held under the same 

conditions as treated aphids. The timing for treatment applications is shown in 

Table 6.1. 

Aphids were transferred to clean leaves 48 hours after inoculation. Mortality was 

recorded 24 hours following inoculation and then twice daily for four days. Dead 

aphids were placed on 1% water agar at 23°C and checked after 24 hours for signs 

of sporulation. If it was not obvious which fungus was sporulating from an aphid, 

the cadaver was squashed and stained with a drop of 10% cotton blue in 

lactophenol to determine which conidia were present. 
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TABLE 6.1 : Treatment application times for E. neoaphidis (E) and each of three 
hyphomycete (H) isolates; Z11 (P. fumosoroseus), HRI 1.72 (V lecanii) and 
Mycotech strain GHA (B. bassiana) applied either alone or in succession to the 
aphid Aphisfabae. 

Treatment Time for H inoculation Time for E inoculation 

E- 12.30-15.00 

H 15.30 - 
EH 15.30 12.30 - 15. Q0 

HE 11.00 12.30 - 15.00 

On the first day there were a large number of non-fungal deaths in some 

treatments. These non-fungal deaths were analysed using logistic regression under 

the general linear regression procedure in Genstat 5. 

6.3 Results 

6.3.1 Single-dose bioassays against Coccinella septempunctata 

The isolates Mycotech strain GHA (B. bassiana) and ARSEF 2879 (B. bassiana) 

were variable in their pathogenicity to ladybirds between assays which meant 

assays could not be combined in a single statistical analysis. On each occasion that 

ladybirds were inoculated with these isolates, more than 50% of the ladybirds 

succumbed to fungal infection (Figure 6.2). On the two occasions that isolates 

Mycotech strain GHA (B. bassiana) and ARSEF 2879 (B. bassiana) were screened 

in the same assay, they caused a similar percentage of mortality in treated 

ladybirds. In contrast, isolate Zi I (P. fumosoroseus) killed very few ladybirds in 

all assays (3 - 24% of treated ladybirds) and there was no fungal infection noted in 

any ladybirds treated on any occasion with isolate HRI 1.72 (V. lecanii). The first 

mortalities in ladybirds treated with fungi occurred three and five days post- 

inoculation and few individuals succumbed to fungal infection after approximately 

nine days. 
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Control mortality was below 23% for all assays except assay number two when it 

was much higher at 60%. On this occasion, the ladybirds used were slightly 

younger than in the other assays at two weeks old compared to three to four weeks 

old. Most of the deaths occurred later in the assay on days 14 - 16. It is possible 

that these ladybirds were adversely affected by the methods used to dose them 

during the bioassay, but it is more likely that they were not as fit as those used in 

other assays and were not able to survive under the bioassay conditions. 

Aphis fabae inoculated with isolates in positive control bioassays succumbed to 

infection with the applied fungi and the total mortality for inoculated aphids was 

never less than 90%. 

6.3.2 Single-dose bioassays against the generalist parasitoid, Praon volucre 

In the experiments where parasitoids treated were from a single aphid host, the two 

B. bassiana isolates, Mycotech strain GHA and ARSEF 2879 were most 

pathogenic to adult parasitoids of P. volucre that emerged from either S. avenae or 

A. pisum hosts (Figures 6.3 and 6.4). Overall, mortality of parasitoids due to 

fungus appeared to be smaller for those parasitoids emerging from S. avenae hosts 

compared to those emerging from A. pisum hosts. When parasitoids from both 

hosts were used in assays to evaluate these apparent differences, on one occasion 

the patterns of parasitoid mortality were similar between hosts but, on the other 

occasion, it appeared that those parasitoids emerging from A. pisum hosts were 

more susceptible to the fungal pathogens than those emerging from S. avenae hosts 

(Figure 6.5). 
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FIGURE 6.3 : Cumulative proportion of P. volucre (from S. avenae hosts) dying 
due to fungus, in two bioassays, on each day following inoculation with isolates 
Mycotech strain GHA (B. bassiana), Z11 (P. fumosoroseus), HRI 1.72 (V. lecanii) 
and ARSEF 2879 (B. bassiana). 
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FIGURE 6.4 : Cumulative proportion of P. volucre (from A. pisum hosts) dying 
due to fungus, in two bioassays, on each day following inoculation with isolates 
Mycotech strain GHA (B. bassiana), Z11 (P. fumosoroseus), HRI 1.72 (V. lecanii) 
and ARSEF 2879 (B. bassiana). 
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FIGURE 6.5 : Cumulative proportion of P. volucre (from A. pisum and S. 

avenae hosts) dying due to fungus in two bioassays, on each day following 
inoculation with isolates Mycotech strain GHA (B. bassiana), Z11 (P. 
fumosoroseus) and ARSEF 2879 (B. bassiana). 
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There was a significant effect of sex on time from inoculation to emergence for 

parasitoids from S. avenae hosts assayed on their own in one run of the assay 

(Bioassay 2 F1,205 = 6.97, P=0.009) but not in the other (Bioassay 1 F1,183 = 0.13, 

P=0.724). This difference was due to female parasitoids having a longer period 

from inoculation to emergence compared to male parasitoids. There was no effect 

of treatment in either run of the assay (Bioassay 1 F4,183 = 1.00, P=0.410, 

Bioassay 2 F4,205 = 1.82, P=0.126). When parasitoids from A. pisum were assayed 

on their own, on one occasion there was a significant effect of sex on time to 

emergence (Bioassay 3 F1,191 = 45.50, P<0.001) which was due to the longer time 

for inoculation to emergence for female parasitoids. In both runs of the experiment 

there was also a significant effect of isolate on time to emergence (Bioassay 3 

F4,191 = 3.46, P=0.009, Bioassay 4 F4,134 = 4.21, P=0.03). There were generally 

very few females that emerged from aphid mummies so when a significant effect 

of sex on inoculation to emergence time was noted, it was not possible to do any 

further analysis due to the unbalanced nature of the data. 

When parasitoids from both hosts were assayed at the same time, there was a 

significant effect of sex on time from inoculation to emergence in both assays for 

parasitoids from A. pisum (Bioassay 5 F1,164 = 37.21, P<0.001, Bioassay 6 F1,157 = 

5.80, P=0.017). When parasitoids from S. avenae were assayed, there was a 

significant effect of sex on time from inoculation to emergence on one occasion 

(Bioassay 6, F1,163 = 4.59, P=0.034) but not on the other occasion (Bioassay 5, 

Fj, 151 = 0.25, P=0.616). 

Aphis fabae inoculated with isolates in positive control bioassays succumbed to 

infection with the applied fungi and the total mortality for inoculated aphids was 

never less than 90%. 
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6.3.3 Interactions between hyphomycete fungi, Erynia neoaphidis and A. fabae 

6.3.3.1 Infection of Aphis fabae with Erynia neoaphidis 

There was 30% mortality of A. fabae at 48 hours post-inoculation and, by 65 hours, 

over 95% of A. fabae had succumbed to fungal infection, with 100% mortality by 

68 hours (Figure 6.6). The first mortalities of A. pisum treated with the fungus 

occurred after 65 hours with 62% mortality by 70 hours and 100% mortality by 96 

hours. At 68 hours post-inoculation, there was 100% mortality of A. fabae but only 

5% mortality of A. pisum. In general, A. fabae died three days post-inoculation 

whilst A. pisum died three to four days post-inoculation. 
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FIGURE 6.6 : Cumulative proportion of A. fabae and A. pisum dying due to 
fungus over a period of four days following inoculation with isolate X4 (E. 
neoaphidis). 

6.3.3.2 Interactions between hyphomycete isolates and Erynia neoaphidis on A. 

fabae 

The majority of aphids succumbed to infection with E. neoaphidis (Figure 6.7) 

when they were dual inoculated (EH and HE treatments) with E. neoaphidis and 

the hyphomycete isolate Mycotech strain GHA (B. bassiana) or Z11 (P. 

fumosoroseus). The number of aphids which succumbed to infection with E. 

173 

0 12 24 36 48 60 72 84 96 

Time (hours) 



Zi 1+ Frynia 

m1 
0.9 

49 0.8 
0.7 

öm0.6 
ö 
r 0.5 
$sý 0.4 

0.3 
0.2 
0.1 

0 U 

1.72 + Erynta 

51 
0.9- 
0.8- 
0' 70.6 

0.5 
0.4 
0.3 
0.2 
0.1 

u0 
0 

GHA + F}ynia 

1 
0.9 
0.8 
0.7 
0.6 

$ 0.5 
0.4 
0.3 
0.2 
0.1 

0 

-+-E 
-o--H 
-A--EH 
-s- HE 

-+-E 
-0- H 

-i- EH 
M HE 

-f- E 

-a- H 

-A EH 

-s-HE 

FIGURE 6.7 : Cumulative proportion of A. fabae dying due to E. 
neoaphidis (for treatments E, EH and HE) or a hyphomycete fungus (for 
treatment H) on each day following inoculation with isolates X4 (E. 
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neoaphidis in the EH and HE treatments was similar to the number that succumbed 

to E. neoaphidis in the E treatment. When the hyphomycete isolate HRI 1.72 (V. 

lecanii) was applied alone, the pattern of aphid mortality due to the hyphomycete 

was similar to that of E. neoaphidis mortality when the entomophthoralean was 

applied alone. There appeared to be less mortality due to the entomophthoralean 

when it was co-inoculated with the hyphomycete HRI 1.72 (1! lecanii). 

There was no significant difference between the isolates in the patterns between 

different treatments of the non-fungal deaths that occurred on the first day (F2,36 = 

1.44, P=0.25 1). When insects were dual inoculated with two fungi (EH or HE), 

there were significantly more non-fungal deaths compared to those when a single 

fungus was applied (F1,36 = 8.03, P=0.008). Considering treatments with a single 

fungus applied (H and E), there were significantly more deaths occurring in 

treatment E than H for all isolates (F3,36 = 15.98, P<0.001). Although there was no 

significant difference between the order of inoculation with two fungi, i. e. EH or 

HE (F1,36= 3.67, P=0.063), there was slight evidence (indicated by aP value close 

to the arbitrary significance level of P=0.05) that there could be differences 

between isolates and this may have been due to isolate Mycotech strain GHA 

where there were fewer mortalities in the HE treatment compared to the EH 

treatment. 

6.4 Discussion 

The hyphomycete isolates ARSEF 2879 (B. bassiana) and Mycotech strain GHA 

(B. bassiana) were shown to be pathogenic to the natural enemies C. 

septempunctata and P. volucre in first tier pathogenicity tests under laboratory 

conditions. This physiological susceptibility may not reflect the ecological 

susceptibility of the beneficial insect species, but the results can be used as an 

indication of the potential effects of the pathogens on natural enemies under field 

conditions. 

In line with other studies, B. bassiana was found to be pathogenic to ladybirds. 

Beauveria bassiana is one of the few pathogens that is noted as causing epizootics 
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in natural enemies, such as staphylinid beetles (Steenberg, Langer & Esbjerg, 

1995), and has been recorded from sixteen genera of coccinellids (Goettel et al., 

1990). This pathogen has been identified as a major mortality factor in 

overwintering coccinellids (Hodek, 1973; Mills, 1981) and it is therefore not 

surprising that B. bassiana was often particularly pathogenic towards coccinellids 

in the laboratory. It has been suggested that increased use of mycoinsecticides may 

increase the level of overwintering mortality in many hibernating non-target 

insects (Flexner et al., 1986). Coleopteran species are therefore very important 

organisms for use in evaluations of the side-effects of microbial pathogens on non- 

targets. 

Ladybirds treated with isolate ARSEF 2879 (B. bassiana) often died at the top of 

the lampglass, attached to the muslin by their legs and were noted to sporulate in 

this position. Fungus-mediated behavioural changes, such as the behaviour of 

grasshoppers infected with Entomophaga (=Empusa) grylli (Fresenius) Batko 

which climb to the top of vegetation prior to death, assist in aerial dispersal of 

fungal conidia (Skaife, 1925; Glare & Milner, 1991). In the current study, spread 

of conidia to other ladybirds in such a way would be detrimental to the natural 

enemy. However, it could be beneficial to the pathogen by allowing it to survive a 

reduction in an aphid host population, for example at the end of the growing 

season, by providing an alternative host. Additionally, the large number of conidia 

produced on a ladybird cadaver may be beneficial for spread of the pathogen 

within an aphid population. This would however, rely on the pathogen being able 

to cause an epizootic in the host population, similar to those associated with 

entomophthoralean fungi. 

When ladybirds were treated with isolate HRI 1.72, some of the A. pisum aphids 

that were supplied as a source of food were noted to succumb to infection with the 

fungus. Ladybirds are able to vector conidia of E. neoaphidis to healthy aphids 

(Roy, 1997). Vectoring of fungi has also been shown for parasitoids (Nemeye, 

Moore & Prior, 1990), mites (Schable, 1982) and bees (Butt et al., 1998). Roy 

(1997) showed that the presence of a foraging 7-spot ladybird C. septempunctata 

on populations of the pea aphid A. pisum resulted in significantly more aphids 
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becoming infected with the pathogen E. neoaphidis than in the absence of a 

foraging ladybird. Thus, beneficials may play an important role in the 

dissemination of pathogens to populations of the host which are distanced both 

spatially and temporally. However, the dissemination of pathogens often has a 

profound negative effect on populations of beneficials involved. This negative 

effect may be a lethal or sublethal effect, such as a reduction in reproductive rate 

and/or development time of beneficials. It appears that, in the current study, the 

predator was able to vector the hyphomycete isolate HRI 1.72 to healthy aphids but 

was not adversely affected in the process. However, vectoring was not directly 

observed and further studies are needed to confirm these observations. 

The parasitoids used in experiments were at a, theoretically, resistant stage of their 

life cycle with respect to pathogen infections; it has been shown that exposure to a 

pathogen late in the development of the larval parasitoid, compared to earlier 

exposures, results in the parasitoid developing successfully (Broojcs, 1993; Askary 

& Brodeur, 1999). Isolates ARSEF 2879 (B. bassiana) and Mycotech strain GHA 

(B. bassiana) were pathogenic to emerging adult P. volucre but there was 

variability between assays in the degree of pathogenicity. This may have been 

because the actual dose of conidia received by a parasitoid was not accurately 

measured; if a parasitoid emerged shortly after a recording had been made it was in 

contact with a mummy case covered with conidia for a longer period compared to 

a parasitoid that emerged shortly before the next recording was made. 

Generally, female parasitoids took longer to emerge than male parasitoids and 

therefore, under field conditions, may be exposed to fewer viable conidia on the 

external surface of the mummy, as factors such as exposure to UV radiation will 

inactivate many conidia on the parasitoid mummy. Mummies which contained 

parasitoids which did not emerge over the course of the experiment were dissected 

but the larvae or adult parasitoids were never found to be infected with a fungal 

pathogen. This suggests that adult parasitoids were infected with fungi on 

emergence from the mummy rather than inside the host. 

Interestingly there was also a significant effect of fungal treatment on some 

occasions (data not shown), with parasitoids emerging earlier when they were 
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treated with isolate Mycotech strain GHA (B. bassiana). The larval period of 

parasitoids in virus infected hosts has been observed as being shorter (Beegle & 

Oatman, 1975) or longer (Hotchkin & Kaya, 1983) than in non-infected hosts. 

However, in the current study it is an adult emergence time rather than a larval 

development time that was considered. It is possible that conidia of isolate 

Mycotech strain GHA produced mycelia which were able to penetrate the mummy 

and adult parasitoids reacted to this invasion, and subsequent possible decline in 

food or environmental quality, by emerging more quickly. Further work is 

necessary to confirm the observations reported in these experiments. It would be 

interesting to use microscopic techniques to determine whether conidia do 

germinate on the mummy surface and if so, whether this differs between isolates of 

fungus and between different parasitoid hosts. 

The isolates HRI 1.72 (V. lecanii) and Z11 (P. fumosoroseus) were found to have 

very little impact on C. septempunctata and P. volucre, with few individuals 

succumbing to fungal infection. Although these experiments only evaluated the 

physiological host range it does not seem unreasonable to suggest that these 

isolates are also likely to have little impact on these natural enemies under field 

conditions. Mycoinsecticides that have an adverse impact on natural enemies 

should be carefully evaluated to determine if spatial or temporal separation of the 

applied fungi and other natural enemies will reduce the potential negative impact 

on non-targets (Fransen & van Lenteren, 1993). 

It is likely that parasitoids came into contact with conidia on emergence from the 

mummy. Potentially, these parasitoids could vector conidia within and between 

aphid populations. The parasitoid Heterospilus prosopidis has been shown to carry 

conidia of plant pathogens which may remain viable on the parasitoid for at least 

10 days (Nemeye et al., 1990). Other studies showed that parasitoids were unable 

to vector certain microsporidia (Hoch et al., 2000). However, parasitoids exposed 

to fungus have been shown to significantly increase fungal infection in host 

populations of the grain aphid S. avenae (Fuentes-Contreras et al., 1998) and the 

diamondback moth P. xylostella (Furlong & Pell, 1996). It is suggested that 
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parasitoids increase mobility of the host and therefore the likelihood that hosts may 

contact conidia, hence increasing fungal infection in the host population. 

It is also possible that parasitoids have a detrimental effect on fungal pathogens. 

Furlong and Pell (In press) studied the infection of P. xylostella larvae with the 

pathogen Z radicans after larvae had been parasitised with either of the parasitoids 

Cotesia plutellae or Diadegma semiclausum. When larvae were infected with the 

pathogen three days after being parasitised, there was a significant reduction in the 

number of conidia produced per cadaver. 

In the current study, when aphids were dual inoculated with large doses of fungal 

pathogens from different orders, namely a hyphomycete and an 

entomophthoralean, the hyphomycete was generally unable to develop successfully 

and insects succumbed to infection with the entomophthoralean E. neoaphidis. 

Large numbers of conidia of both pathogens were used in this study, so further 

studies should investigate whether there is an interaction between the dose of 

conidia received and the outcome of dual inoculation with a hyphomycete and 

entomophthoralean fungus. The development of E. neoaphidis and the different 

isolates of hyphomycete fungi used in this study is dependent on temperature 

conditions. It would be interesting to determine if relationships between the two 

fungi change when the hosts are exposed to fluctuating temperatures more realistic 

of field conditions. 

It is probable that the two pathogens were not directly competing within the aphid 

host in these studies because of the shorter incubation time required for E. 

neoaphidis. To investigate the direct competitive interactions between these two 

fungi, the hyphomycete isolates would need to be applied first and then the E. 

neoaphidis the following day. Additionally, histological studies would reveal 

whether both conidia types are able to germinate in the presence of each other on 

the host cuticle. 

The fact that many aphids died within 24 hours of being inoculated with fungi, but 

did not shown any signs of fungal sporulation, was interesting. The results suggest 
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that this mortality was largely due to E. neoaphidis, but was enhanced by the 

presence of a hyphomycete fungus. It is most likely that the large number of 

conidia applied to insects resulted in massive puncturing of the host cuticle by 

fungal mycelia and, hence, premature host death. This situation is potentially 

beneficial for a commercial mycoinsecticide as the host population is reduced 

quickly. However, it may be detrimental for both a naturally occurring 

entomophthoralean fungus and an applied hyphomycete fungus as a reduction in 

inoculum may correspondingly reduce the opportunity for the fungus to reach 

epizootic levels within a host population. 

It has been stated that the physiological host range may not directly reflect the 

ecological host range of an entomopathogenic fungus and that insects may be 

infected under laboratory conditions when they would not become infected in the 

field (Goettel, 1994). Whilst this is true, the biorational approach used in the 

current study allows selection of isolates that are pathogenic to the host insect but 

have limited, if any, detrimental impact on non-target natural enemies. Selection of 

isolates of hyphomycete fungi for insect pest control that are relatively innocuous 

to non-targets under maximum challenge conditions in the laboratory 

(physiological host range) can only serve to reduce the potential impact of large 

quantities of hyphomycete fungi, applied as mycoinsecticides, to natural enemy 

populations. 
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Chapter 7- FIELD EVALUATION OF SELECTED ISOLATES AS 

POTENTIAL MYCOINSECTICIDES 

7.1 Introduction 

The objectives of the field trials were to determine (i) the persistence and 

distribution of isolates selected sprayed in the field in two contrasting canopy types 

(spring wheat and spring beans) in relation to microclimatic conditions, (ii) the 

temporal and spatial distribution of aphids and their natural enemies within these 

crops, particularly the entomophthoralean fungus Erynia neoaphidis and (iii) the 

effect of the applied mycoinsecticides on aphids from each of the different crops. 

7.1.1 Persistence of fungi 

The successful outcome of a mycoinsecticide applied to an insect host population 

(i. e. host population reduction or extinction) will depend on factors such as the 

innate susceptibility of the insect to the microbial pathogen, the degree of exposure 

to the pathogen and environmental conditions. Laboratory assays are most often 

used to indicate the susceptibility of different insect hosts (see chapters three and 

four). Additionally, the effects of environmental conditions, representative of those 

that a pathogen may be exposed to under field conditions, are usually assessed 

under laboratory in vitro and in vivo studies (chapter five). 

The degree of exposure of the host to the pathogen, depends on the likelihood that 

the insect will come into contact with the microbe. For entomopathogenic fungi in 

the aerial environment, this is dependent on factors such as the persistence of the 

microbial agent, its distribution within the canopy and the behaviour and 

morphology of the insect. Part of the biorational approach described in this study 

was to assess the potential for targeting fungal sprays to specific areas within the 

crop canopy. It was hoped that this would not only improve the persistence of the 

agent applied, but also target areas where large numbers of hosts were most 

common to improve contact between the fungus and the aphid population. 
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The stability and persistence of entomopathogenic fungi within the field 

environment are influenced by sunlight (UV component), humidity or free water 
availability and temperature (McCoy et al., 1988). Additionally, the physical effect 
of rainfall and the chemical influences of substrate also influence persistence of 
conidia. It is, however, difficult to separate the impact of these different, 

environmental influences on the persistence of conidia of fungi and results should 
be treated on a case by case basis. 

Some of the effects of UV on conidia of fungi under laboratory conditions have 

been discussed in chapter five, so the following review is concentrated on the 

effects of UV on conidia at the plant surface, mainly under field conditions. The 

persistence of conidia of Beauveria bassiana on soybean foliage was reduced 

under solar radiation with a half life of 4.2 days. Conidia of Nomuraea rileyi had a 
half life of only two to three days (Gardner, Sutton & Noblet, 1977). Exposure to 
direct sunlight on the upper surface of cabbage or pigeon bean plants reduced the 
half-life of N. rileyi to 3.6 hours (Fargues, Rougier, Goujet & Itier, 1988). The half 

life of conidia of both B. bassiana and Metarhizium anisopliae applied to cowpea 
Vigna unguiculata (L. ) was generally one to two days on exposure to full sunlight 

outdoors (Daoust & Pereira, 1986). Conidia exposed to full sunlight were not 

viable after a week whilst those protected from sunlight were able to survive for 

three weeks or more. Similarly, exposure to sunlight in the field in Israel resulted 
in 100% mortality of primary conidia of Zoophthora (=Erynia) radicans in less 

than 24 hours (Uziel & Schtienberg, 1993) and in the Cameron Highlands, the 

ability of conidia to infect the diamondback moth Plutella xylostella was 
dramatically reduced after 24 hours of field exposure (Furlong & Pell, 1997). It 

was suggested that exposure to sunlight was the major factor limiting the 

persistence of conidia of this pathogen in the field. Exposure to ultraviolet 

radiation was also suggested to be the main factor causing the decline in number of 
conidia of B. bassiana after application to crested wheat grass and alfalfa plots in 
Canada (Inglis, Goettel & Johnson, 1993). 

The impact of rainfall on the foliar persistence of plant pathogenic fungi is well 
documented (Fitt, McCartney & Walklate, 1989) but there have been fewer studies 
of the impact of rainfall on entompathogenic fungi (Morgan, 1994; Furlong & Pell, 
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1997; Pell, Tydeman & McCartney, 1998). Rainfall has been shown to reduce 

significantly the number of airborne conidia of N. rileyi (Kish & Allen, 1978) and 

similar results have been shown for B. bassiana (Gardner et al., 1977) and V. 

lecanii (Hall, 1981a). A range of intensities of simulated rainfall removed the 

majority of conidia of B. bassiana from potato Solanum tuberosum (L. ) within the 

first 15 minutes of exposure (Inglis, Ivie, Duke & Goettel, 2000), but there was no 
difference between different intensities in the total number of conidia that were 

removed. However, Inglis, Johnson and Goettel (1995) showed that there was a 

reduction of only 28% and 35% of conidia of B. bassiana from alfalfa and wheat 

respectively when leaves were exposed to 26.7 mm h" of simulated rain for 30 

minutes. Increasing the exposure time to an hour though, reduced the number of 

conidia remaining on wheat but not on alfalfa, although these differences were not 

significant. 

7.1.2 Climate monitoring 

Whilst macroclimatic conditions may give an indication of the environmental 

conditions to which a pathogen is exposed, it is the microclimate which is likely to 
have the greatest impact both on applied pathogens and their insect hosts. 

Microclimatology is the study of "the climate in the boundary layer of the 

atmosphere where factors such as temperature and humidity can change 

dramatically in a distance of a few cm and where plants and animals can modify 

the climate in which they and other organisms live" (Unwin, 1980). Because the 

scale of measurement is often very small, any microclimatic figures quoted can 

only be representative of the situation under which those measurements were 

made. 

The most important microclimatic factors likely to affect pathogens in the field will 
be temperature, humidity and exposure to UV light. It is not intended to give an 

exhaustive review of the measurement and influence of these microclimatic factors 

on the biotic environment, rather to highlight some of the more important facts 

relevant to the current field trials. For reviews of specific aspects of microclimate, 

the reader is referred to Unwin & Corbet (1991) and Willmer (1986) for discussion 
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of the influence of microclimate on insects, to Jones (1983) for details of the 
influence of microclimate on plants and to Monteith & Unsworth (1990) for the 

principles of environmental measurements. 

The microclimate around leaves within a crop canopy may be very variable over 
the course of a day (Figure 7.1). Generally, the upper (adaxial) leaf surface is 

warmer and the lower (abaxial) surface cooler during daylight and this depends 

largely on radiation levels (Willmer, 1986). Also, leaves are often warmer than the 

surrounding air in cold weather and cooler than the surrounding air in hot weather 
(Gates, 1965). The effects seen at the level of the individual leaf will contribute to 

the microclimate of larger elements of vegetation, such as the total stand of crop 

vegetation. 
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FIGURE 7.1 : Microclimatic conditions around leaf surfaces in a crop of beans 
over a 24 hour period in June. [Reproduced from Willmer, 1986]. 

For a dense stand of vegetation, such as a crop of field beans, the largest changes in 

microclimate will be experienced at the top of the crop or the "active surface". 
Although aphids are often found in the growing points of plants for nutritional 

reasons, they also settle in areas of a crop where the microclimate is more stable as 

they are immobile whilst in their feeding positions. This is one reason why aphids 

are often found on the lower surfaces of leaves compared to the upper surfaces. 
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7.1.3 Spatial distribution of aphids in crops 

Aphids show differences in preference for feeding sites. In cereal crops, 

individuals of the grain aphid Sitobion avenae generally colonise the upper part of 

the plant, particularly the ears (Klingauf, 1987). In a field experiment, when peak 

numbers of aphids were recorded in wheat, the rose-grain aphid Metopolophium 

dirhodum and S. avenae were distributed differently over individual plants 
(Wratten, 1978). Metopolophium dirhodum was found on the flag leaf (36%), leaf 

2 (49%) and leaf 3 (15%), whilst S. avenae was found in the ear (89%), flag leaf 

(5%), leaf 2 (4%) and leaf 3 (2%). Holmes (1988) showed that, whilst S. avenae 

are found mainly in the ear, they do move from the plant on which they were born 

during their development. This occurred even in small colonies and so was 

suggested not to be a response to crowding on individual plants. 

The black bean aphid Aphisfabae characteristically forms compact apical colonies 

as do pea aphids Acyrthosiphon pisum (Lowe, 1971). Kennedy, Booth and 

Ibbotson (1950) showed that aphids of A. fabae preferred young or early senescent 

leaves of sugar beet compared to mature leaves. Lowe (1967) found that aphids of 

A. fabae that settled on the abaxial surface of leaves fed only on veins, ignoring the 

lamina and margins. Aphids of A. pisum preferred leaves to stems of bean plants, 

with between 86 - 98% of aphids tested selecting leaves (Lowe & Taylor, 1964). 

Aphids are generally found on lower compared to upper surfaces (Trumble, 1982). 

Aphisfabae has been reported as feeding only on the underside of sweet pea (Hull, 

1964) but on either surface of beans (Dixon & Wratten, 1971). Acyrthosiphon 

pisum has been recorded as feeding on leaf undersides (Hull, 1964). Whilst R. padi 

-preferentially select the lower side of leaves, M. dirhodum is often found on upper 

and lower leaf surfaces (Klingauf, 1987). 

7.1.4 Temporal distribution of Erynia neoaphidis 

The entomopathogenic fungus, Erynia neoaphidis, has often been recorded in 

cereal aphids (Dean & Wilding, 1973; Roy, 1997) and in bean aphids (Wilding, 

1975; Wilding & Perry, 1980). In some years, natural epizootics of the fungus may 
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control aphid populations. Wilding (1975) reported that Erynia neoaphidis 
(=Entomophthora aphidis) occurring with two other Entomophthora spp. was able 
to cause 83% mortality in the host, A. pisum. 

Epizootics are generally recorded in July and early August (Way, 1967; Dean & 

Wilding, 1971,1973; Wilding, 1975). However, this is often after aphid 

populations have reached damaging densities on crops. The late development of 

epizootics is suggested to be due to low infection in early, low density populations 

of aphids migrating into crops. The probability of an aphid being infected by the 

overwintering forms of Entomophthoralean fungi is thought to be relatively low 

(Gustafsson, 1969). Only once aphids reach high densities do disease epizootics 

increase to a level which has the potential to cause a decline in aphid numbers. 

Erynia neoaphidis requires a high relative humidity (90 - 100%) during the initial 

stages of infection (Wilding, 1969) and saturated air is necessary for the pathogen 

to discharge conidia (Yendol, 1968). Aphids infected with E. neoaphidis in the 

field die just prior to dusk, enabling the fungus to sporulate under warm, humid 

conditions (Glare & Milner, 1991). Erynia neoaphidis failed to spread in 

populations of A. fabae in field beans Viciafaba during two warm, dry seasons but 

was able to spread rapidly in cool, moist seasons (Wilding, 1981b). It is accepted 

that a high relative humidity exceeding 90% and an adequate temperature above a 

threshold of about 20°C are the ideal conditions for the development of an 

epizootic (Wilding & Perry, 1980; Wilding, 1981a). Therefore, conditions under 

which an epizootic of E. neoaphidis develops, are likely to be similar to those 

required by Hyphomycete fungi for host infection, i. e. high relative humidity and a 

warm temperature. 

Temperatures of 10,15 and 20°C have been shown to have no effect on the 

infectivity of primary conidia of E. neoaphidfs for the blue green aphid 
Acyrthosiphon kondoi when moisture was not limiting (Milner & Bourne, 1983). 

However, temperature did affect the rate of disease development and, alongside 
leaf wetness, the number of primary conidia available to infect new hosts. As 

temperature has an impact both on the development of the host population and the 
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fungus population, its effect on the prevalence of E. neoaphidis and other 

pathogens is difficult to determine (Fuxa & Tanada, 1987). If temperatures favour 

a short incubation time for the fungus, but retard insect development, then it is 

possible that an epizootic of the fungus will develop. 

7.2 Materials and Methods 

7.2.1 Field trial design 

Field trials were set up on Rothamsted Farm in 1997 and 1998 on the Long Hoos 

fields in the same plots in both years. In each year, crops of spring field bean V. 

faba and spring wheat Triticum aestivum (L. ) were planted (Appendix 5). The 

crops were adjacent to each other and were rotated over the two years, with 36 

plots (5m x 3m) arranged in a6x6 randomised block with un-drilled side paths 

(0.5m and 3m) between plots (Figures 7.2,7.3 & 7.4). Treatments were only 

applied in blocks one to three, and blocks four, five and six were maintained for 

additional experiments as required. Plots were marked with a single fibre glass 

cane at one corner of the plot. Standard farm operations were applied to both crops 

except there were no insecticides or fungicides applied in 1997 and in 1998 one 

spray of Carbendazim was made against chocolate spot in the beans early in the 

season before any mycoinsecticide applications were made or E. neoaphidis was 

recorded in the crop. 

Plants were divided into three equal parts for recording purposes, defined as the (i) 

top, which in wheat, prior to ear formation, contained the flag leaf and for beans 

included the growing point, (ii) middle which included the second leaf in the wheat 

and (iii) bottom which included the third leaf and stem below in the wheat. For 

wheat, the "top" category was split into the top and the ear, once the ears had 

formed. The other sections of the plant assigned to the categories remained 

constant throughout the season. 
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7.2.2 Aphid and natural enemy monitoring 

The crops were monitored regularly and counts of aphids and natural enemies were 

made as soon as the first individuals were noted. Counts were made approximately 

every two weeks in twelve plots in each year, until aphid populations crashed 
(Figures 7.2,7.3 & 7.4, plots marked "C"). The recording period in 1997 was from 

5th June to 6`h August and in 1998 from 29th May to 16`h July. Counts were made 

on 20 main stems of bean plants and 20 tillers of wheat in each plot, from plants in 

a lm2 area in the centre of each plot. Therefore, a maximum number of 240 plants 

were assessed for each recording date. When numbers of aphids became very large, 

the number of plants assessed was reduced according to the time taken to assess the 

two crops. 

Records were made at each of the three positions (top, middle and bottom) on a 

plant using the following categories: 
Aphids : species (alate, aptera or nymph) 
Ladybirds : species (adult, larva or egg batch) 

Parasitoids : adult or mummy 

Lacewings : adult, larva or egg 

Hoverflies : adult or larva 

Fungi : species 

The species of entomophthoralean fungi infecting aphids in the field were 
identified in situ and and by regularly sampling aphid cadavers. The cadavers were 
placed on damp filter paper in the bottom of a Petri dish and conidia were 

showered from them onto glass slides in the laboratory. The slides were stained 

with 10 % cotton blue in lactophenol and the species of fungus identified. 

The average number of aphids per plant for all plots at one recording position was 
calculated for each crop type. The logio values of these counts (plus one to allow 
for logs of zero to be calculated) were taken to transform data to show on the same 
graphical scale and not for analysis purposes. Natural enemy counts were very 
small and so were expressed as the number in a1 m2 area of crop. 
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7.2.3 Climate monitoring 

7.2.3.1 Macroclimate measurements 

Data from the IACR-Rothamsted meteorological station were obtained for the 
periods when field trials were carried out. Measurements were made on a daily 
basis and included maximum and minimum temperatures (°C), rainfall (mm), sun 
(hours), dry bulb and wet bulb temperatures (°C) and wind speed (ms"'). 

7.2.3.2 Microclimate measurements 

In the 1998 field season, the microclimate of both crops was recorded over the 

period 26`h June to 27`h July, using a Campbell Scientific 21X data logger. Data 

were multiplexed through a Campbell Scientific AM416 multiplexer because of the 
high number of inputs to the logger. Measurements were made every 60 seconds 

and the average values computed within the logger and stored every 30 minutes 
(Appendix 6). Data were downloaded from the logger to a portable storage module 
in the field and subsequently downloaded to a PC in the laboratory, using 
Campbell software, and exported into Excel 97 spreadsheets. Power was supplied 
to the datalogger using a rechargeable leisure battery (BSX Powerdrive, type 
678A, 75 amp) which was charged on mains electricity every six days in the 
laboratory. The datalogger was positioned in the buffer zone between the two crops 

so that measurements could be taken simultaneously in both crops (Figure 7.5). 

Sensors were placed so that measurements were made at random positions within a 
4 in radius of the datalogger. 

7.2.3.1.1 Temperature measurements 

Temperature was measured using type T copper/copper-nickel thermocouples with 

welded tips and polytetrafluoroethylene insulation (RS components Ltd. ). The 

thermocouples were connected to type T thermocouple extension wire using 
miniature type T thermocouple connectors and the wire was attached directly to the 

datalogger. 
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FIGURE 7.5 : Campbell 21X datalogger simultaneously recording microclimate 
in a crop of spring field bean and spring wheat, positioned in the buffer zone 
between the two crop types during field experiments in 1998. 
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Thermocouples were attached to leaves using electricians' tape so that the 

thermocouple was touching the leaf (Figure 7.6). The thermocouple connectors 

were held in inverted conical tubes using a rubber bung to secure the wires (Figure 

7.7) in order to protect the connectors from damp conditions which could cause 

rusting and hence inaccurate measurements. The tubes were attached to plastic 

stakes within each of the crops. 

A pair of thermocouples were positioned with one on the adaxial surface of a leaf 

and one on the abaxial surface of a separate leaf. Pairs of thermocouples were 

positioned in this way at the top, middle and bottom of the wheat and bean crops 

(positions were as defined in section 7.2.1). There were two pairs of thermocouples 

at the top and middle of the crop and one pair at the bottom. Thermocouples were 

checked regularly in the field and if the welded tip of a thermocouple broke it was 

replaced with a new thermocouple. 

7.2.3.1.2 Humidity measurements 

Wet and dry bulb temperatures were measured within the wheat and bean canopies 

using six ventilated (aspirated) psychrometers which were designed and built at 

IACR-Rothamsted (Figure 7.8). Psychrometers were mounted on wooden stakes in 

the field (Figure 7.9) at three heights within each crop at (a) the bottom (75cm 

from soil surface), (b) the middle (halfway between the canopy surface and the 

bottom psychrometer) and (c) the top (level with the top of the crop canopy). Each 

psychrometer contained two thermocouples, one of which measured air 

temperature whilst the other was covered by cloth and a water-soaked wick which 

gave a temperature lowered by evaporative cooling (Figure 7.10). The difference 

between these two temperatures gave the wet bulb depression. The air flow across 

the wet bulb needed to be above 3 ms' t, a critical value below which the wet bulb 

depression may be inaccurate, so the netting and fans on the psychrometers were 

regularly cleaned to maintain a satisfactory air flow. Psychrometers were 

disconnected from the battery supply and the netting was dusted with a stiff brush 

to removed debris. The fans were cleaned carefully with cotton buds and water. 

The water reservoir for the wet wick was checked weekly and filled with distilled 
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FIGURE 7.6 : Thermocouple tip taped to a bean leaf in recording position 
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FIGURE 7.7 : Inverted conical tubes acting as protective covers for thermocouple connectors in the field. 
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FIGURE 7.9 : Ventilated psychrometer mounted on wooden stake in position in 
field bean crop. 
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FIGURE 7.10 : Wet and dry bulb thermocouples in a prototype of a ventilated 
psychrometer built at IACR-Rothamsted. 
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water which had a few drops of sodium hypochlorite added to reduce the incidence 

of algal growth in the reservoir. 

Relative humidity was calculated from the measurements of wet and dry bulb 

temperature using the following sets of equations. Firstly, it was necessary to 

calculate the saturation vapour pressure (vapour pressure of water saturated air) 

which is a function of temperature. Saturation vapour pressure (es) at temperature t 
(degrees Kelvin, °C + 273) can be calculated as follows (Unwin, 1980): 

Loglo es = 9.24349 - 2305 - 500 - 100 000 

I $3 

From this, the vapour pressure (e) at temperature t can be calculated from the 
following formula: 

e=e5(,, )-0.66(Td-Tw) 

Where, Td is the air (dry bulb) temperature (in °C), T�, is wet bulb temperature (in 

°C) and es() is the saturation vapour pressure at the wet bulb temperature. The 

value 0.66 is the "psychrometer constant" for a ventilated psychrometer. Relative 

humidity can then be calculated as follows: 

RH(%)= ex 100 

es(d) 

Where es (d) is the saturation vapour pressure at the air temperature (Td). 

7.2.4. Spray application infield trials 

All suspensions of conidia were applied to field plots using a hand held version of 
the APE80 sprayer detailed in section 2.6.6. The application rate of 10.4 1 ha" was 
identical to that used in laboratory experiments with 24 ml of liquid applied per 

minute. To spray three plots of 5x3m in one crop, approximately 70 ml of each 
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suspension of conidia was required. This allowed approximately 20 ml which 

could be run through the sprayer on the approach to the plot and on the way out the 

other side of the plot. Therefore, at least 140 ml of a suspension of each fungus was 

needed to spray three replicate plots within each crop type, with depositions of 

approximately 1.56 x 1010 conidia per plot. 

A germination test was carried out for each suspension of conidia to check the 

viability of conidia; the percentage of conidia that germinated on SDA after 24 

hours at 20°C was recorded. Additionally, three water agar plates (I% water agar in 

a 9cm Petri dish) were placed in each plot to be sprayed with suspensions of 

conidia. The plates were balanced on plastic rods and secured with a piece of re- 

usable adhesive (Bluetack®) so that the surface of the agar was facing upwards. 
The dishes were placed at random positions within the plot but so that the dishes 

were level with the top of the canopy. After sprays had been applied, the dishes 

were incubated at 20°C for 24 hours and the number of conidia that germinated 

was recorded. This gave a measure of viability of conidia and also acted as a check 

to ensure that conidia were deposited evenly in the crop. 

Spray applications were made on 19/06/98 and 07/07/98. On both occasions the 
wind speed was less than 5 m. p. h., which was necessary to reduce spray drift, and 
the sprays were applied in the late afternoon at approximately 17.00 hours. On both 

occasions, applications of Mycotech strain GHA (B. bassiana) were made to plots 
in the beans and wheat (plots labelled "GHA" in Figures 7.3 & 7.4), applications of 
HRI 1.72 (V. lecanii) were made in the wheat crop only (plots labelled "1.72" in 

Figure 7.4) and Tween 80 (0.03%) as a control was applied to both crops (plots 

labelled "B" in Figures 7.3 & 7.4). HRI 1.72 was not applied to beans because 

there was only sufficient inoculum to make applications in one crop. 

7.2.5 Aphid bioassays 

Aphids of A. fabae and S. avenae were reared to known-age using the methods 
described in section 2.3. Fungi were cultured using the methods described in 

section 2.6 except that at least 100 plates were prepared for each isolate for each 
spray date. Suspensions of conidia were prepared on the day which they were 
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sprayed using the methods described in section 2.6 and the appropriate quantities 

to give a volume of approximately 150 ml of suspension of conidia. These 

suspensions were adjusted to give a final concentration of Ix 109 conidia ml's. 

7.2.5.1 Evaluation of susceptibility of aphids in the field 

This experiment was carried out on one occasion only, for the spray on 19/06/98. 

Counts of the number of aphids and natural enemies in blank formulation plots (i. e. 
those to be treated with Tween only) and the treatment plots were made three days 

prior to the spray application, using the methods detailed in section 7.2.2. The 

same plots were assessed seven days after sprays had been applied. 

A sample of aphids of A. fabae and A. pisum were removed from each plot, 
immediately following spray applications. Ten aphids of each species were taken 

from leaves at the top of the crop and ten from the middle, but none were sampled 
from the bottom of the crop as leaves in this area had started to senesce and very 
few aphids were found there. The aphids were placed on clean bean leaves set in 

2% water agar in 9cm Petri dishes and incubated using the standard methods 
detailed in section 2.8. Mortality was recorded daily for 10 days as described in 

section 2.7. When aphids died of fungal infection, the pathogen was identified by 

(i) showering conidia over glass slides and staining with 10% cotton blue in 

lactophenol if the fungus was suspected to be an entomophthoralean, or (ii) 

crushing the insect in a drop of 10% cotton blue in lactophenol under a coverslip if 

the pathogen was suspected to be a Hyphomycete fungus. Results from this 

assessment were used to determine the number of aphids that received a lethal dose 

of conidia directly from the spray application in the field. The same assessments 

were not made in the wheat crop as aphid numbers were very low. 

7.2.5.2 Persistence of conidia on leaves 

This experiment was carried out on both occasions that spray applications were 

made. Leaves were collected immediately following spray applications from all 
treated plots and blank control plots and carefully placed in labelled plastic bags. 

Two sets of leaves were picked from the top, middle and bottom of both the wheat 

202 



and bean crops. Leaves were set in 2% water agar in 9cm Petri dishes in the 

laboratory. Bean leaves were used as a pair of leaflets if they were small (i. e. could 
fit in a 9cm Petri dish), or as single leaves if they were larger. Each wheat leaf was 

cut into a maximum of three sections to fit into the Petri dishes. All leaves were 

embedded in agar with the lower (abaxial) surface facing upwards to represent the 

normal feeding site for aphids. Ten healthy, apterous adult A. fabae reared in the 
insectary to known-age were placed into each dish of bean leaves and incubated at 
23°C for 48 hours, after which the aphids were transferred to clean leaves using the 

methods detailed in section 2.8. Similarly, ten healthy apterous adult aphids of S. 

avenae reared in the insectary to known-age were placed into each dish of wheat 
leaves and incubated in the same way. Mortality was recorded daily using the 

methods detailed in section 2.7 for nine to ten days. 

On the second spray date (07/07/98), an additional sample of leaves was collected 

24 hours post-application, and aphids were assayed using the methods detailed 

above. 

7.3 Results 

7.3.1 Aphid and natural enemy counts 

7.3.1.1 Wheat 1997 

In 1997, the first aphids were recorded in the wheat crop at the beginning of June 

with numbers peaking later than month and decreasing to very few individuals by 

the beginning of August (Figure 7.11). 

The majority of the aphids recorded were M dirhodum with fewer S. avenge 
(Appendix 7). The majority of S. avenae were recorded in the ear and at the top 
(including the flag leaf) of plants with fewer aphids at the middle and the bottom 

(Figure 7.12a). In comparison, very few aphids of M. dirhodum were recorded in 

the ear and individuals were evenly distributed between the top, middle and bottom 

of the crop (Figure 7.12b). 
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FIGURE 7.11 : Average number of healthy aphids (all species combined) and 
aphids infected with E. neoaphidis recorded per plant in a spring wheat crop over 
the period 05/06/97 - 06/08/97. 

Sporulating aphids infected with E. neoaphidis were noted on plants from the 

beginning of July, at around the same time that healthy aphid numbers peaked 
(Figure 7.12c). The biggest number of infected aphids was recorded as the number 

of healthy aphids started to decrease. Infected aphids were distributed relatively 

evenly between the four recording positions (Figure 7.12c). Although few 

ladybirds were recorded on the plants selected for monitoring, there were large 

numbers of ladybirds present in the crop from the middle of June to the end of the 

recording period. 
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FIGURE 7.12 : Distribution of (a) healthy S. avenae, (b) healthy M. dirhodum, 
and (c) aphids infected with E. neoaphidis at four positions on plants (ear, top, 
middle and bottom) in a spring wheat crop over the period 05/06/97 - 06/08/97. 
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7.3.1.2 Wheat 1998 

In 1998, the first aphids were recorded at approximately the same time as in 1997, 

i. e. at the end of May (Figure 7.13). Numbers increased slightly in late June and 

then started to decrease by the middle of July. The number of aphids recorded was 

much smaller than in 1997 and there were generally more aphids of S. avenae 

present than M dirhodum (Appendix 7). 
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FIGURE 7.13 : Average number of healthy aphids (all species combined) 
recorded per plant in a crop of spring wheat over the period 29/05/98 - 16/07/98. 

Although there were smaller numbers of aphids recorded, the majority of S. avenae 

were found in the upper regions of the crop and aphids of M dirhodum were found 

mostly in the middle of the crop (Figure 7.14). 
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FIGURE 7.14: Distribution of (a) healthy S. avenae and (b) healthy M. dirhodum 
aphids at four positions on plants (ear, top, middle and bottom) in a spring wheat 
crop over the period 29/05/98 - 16/07/98. 
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7.3.1.3 Beans 1997 

In 1997 there were very few aphids recorded in the bean crop (Figure 7.15). The 

first aphids were noted at the beginning of June with numbers peaking around the 

middle of June and then decreasing at the beginning of July. There were more 
individuals of A. pisum recorded than A. fabae (Appendix 8). 
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FIGURE 7.15 : Average number of healthy aphids (all species combined) 
recorded per plant in a spring field bean crop over the period 04/06/97 - 03/07/97. 

The majority of individuals of both species were recorded at the top of the plants 

with only a few A. pisum being recorded in the lower regions (Figure 7.16). Very 

few natural enemies were present in the crop and no E. neoaphidis was recorded. 
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FIGURE 7.16 : Distribution of (a) healthy A. fabae and (b) healthy A. pisum 
aphids at three positions on plants (top, middle and bottom) in a spring field bean 
crop over the period 04/06/97 - 03/07/97 
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7.3.1.4 Beans 1998 

In 1998 there were a very large number of aphids recorded in the beans (Appendix 

8). The first aphids were recorded in the middle of May with numbers increasing 

quickly around the middle of June (Figure 7.17). There were large numbers of A. 

pisum present compared to 1997 and very large numbers of A. fabae (Appendix 8). 

By the beginning of July, shortly after the last recording date, it was not possible to 

count individual aphids of A. fabae as colonies had become very dense, even 

causing the collapse of some plants within the the crop. 
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FIGURE 7.17 : Average number of healthy aphids (all species combined) and 
aphids infected with E. neoaphidis recorded per plant in a spring field bean crop 
over the period 14/05/98 - 30/06/98 

The largest number of A. fabae was recorded at the top of the crop throughout the 

season, but numbers also increased at the middle and bottom of the crop later in the 

season (Figure 7.18a). In comparison to 1997, A. pisum were found to be 

distributed evenly between the three regions of the plant and for several of the 

sampling dates, there were more individuals recorded in the middle of the crop 
than the top and bottom (Figure 7.18b). 
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FIGURE 7.18 : Distribution of (a) healthy A. fabae and (b) healthy A. pisum 
aphids at three positions on plants (top, middle and bottom) in a spring field bean 
crop over the period 14/05/98 - 30/06/98 
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Aphids infected with E. neoaphidis were first noted in the middle of June and 
numbers of infected aphids rapidly increased over the following two week period 
(Appendix 8). Although formal recording ceased on 30/06/97, a large epizootic of 
E. neoaphidis had established and within two weeks, there were very few live 

aphids left in the crop. 

7.3.2 Climate measurements 

7.3.2.1 Microclimate temperature 

There were only very small differences between the different temperature 

measurements made at the three positions within both of the crops. The biggest 

differences occurred between the adaxial leaf surfaces at the top of the canopy and 
the abaxial leaf surfaces at the bottom of the canopy for both crops (Figures 7.19 & 

7.20). However, during the hottest and coolest times of the day, the differences 

could be as much as 2°C between these positions within the crop canopy. 
Generally, during daytime the highest temperatures were recorded for the upper 

surface of leaves at the top of the crop whilst, during the night, the lower surfaces 

at the bottom of the canopy were warmest. 

There were large differences in temperature between replicates at the different 

positions within the crop canopies with differences being in the region of 5 to 7°C 
for some recording periods. Higher temperatures were associated with leaves that 

were in direct sunlight whilst lower temperatures occurred when leaves were 

shaded, which often occurred in the lower parts of the canopy. The average 

temperature for the replicate thermocouples held at the top and middle of the crops 

gave a more accurate measurement of temperatures across a range of leaves at each 
height. 
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FIGURE 7.19 (a) : Average temperatures of the upper side of leaves at the top and 
the lower side of leaves at the bottom of a crop of spring wheat during the period 
03/07/98 - 09/07/98 
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FIGURE 7.19 (b) : Average temperatures of the upper side of leaves at the top and 
the lower side of leaves at the bottom of a crop of spring wheat during the period 
10/07/98 - 16/07/98 
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FIGURE 7.19 (c) : Average temperatures of the upper side of leaves at the top and 
the lower side of leaves at the bottom of a crop of spring wheat during the period 
17/07/98 - 22/07/98 
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FIGURE 7.20 (a) : Average temperatures of the upper side of leaves at the top and 
the lower side of leaves at the bottom of a crop of spring field bean during the 
period 03/07/98 - 09/07/98. 
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FIGURE 7.20 (b) : Average temperatures of the upper side of leaves at the top and 
the lower side of leaves at the bottom of a crop of spring field bean during the 
period 10/07/98 - 16/07/98. 
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FIGURE 7.20 (c) : Average temperatures of the upper side of leaves at the top and 
the lower side of leaves at the bottom of a crop of spring field bean during the 
period 17/07/98 - 23/07/98. 
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7.3.2.2 Microclimate humidity 

Data for the three psychrometers in the bean crop indicated that humidity was 

consistently higher at the bottom of the crop than at the top of the crop (Figure 

7.21a, b, c). From midday to early afternoon, there was as much as 15% difference 

between the humidity at the bottom and the top of the canopy, with humidity 

consistently lower at the top of the canopy. The highest humidity was generally 

recorded between midnight and 05.00 hours, but only exceeded 90% RH for short 

periods each day, mostly between 02.00 hours and 06.00 hours. 

The ventilated psychrometers at the middle and bottom of the wheat crop did not 

work consistently over the course of the study so data from these were discarded. 

The pattern for the single psychrometer from the top of the wheat was similar to 

that from the beans (Figure 7.22). The top of the wheat crop appeared to be slightly 

more humid on average than the top of the bean crop. 
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FIGURE 7.21 (a) : Average relative humidity calculated from wet and dry bulb 
temperature recordings from three ventilated psychrometers positioned at the top, 
middle and bottom of a crop of spring field beans during the periods 03/07/98 - 
09/07/98. 
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7.3.4 Aphid bioassays 

7.3.4.1 Evaluation of susceptibility of aphids in the field 

Tests showed that 98% or more of conidia of each fungus applied were able to 

germinate under laboratory conditions. Acyrthosiphon pisum and A. fabae which 
were collected from bean plots treated with Mycotech strain GHA (B. bassiana) 

and Tween 80 (0.03%) on 19/06/98, succumbed to infection by a range of different 

pathogens (Figure 7.23). 

The most prevalent pathogen was identified as E. neoaphidis, with over 83% of A. 
fabae and 53% of A. pisum sampled from the middle of plants treated with Tween 

succumbing to infection. More A. fabae succumbed to infection with E. neoaphidis 
than A. pisum from aphids sampled from the two canopy heights in the different 

treatments. 

When plots were sprayed with Mycotech strain GHA (B. bassiana), the maximum 
infection with B. bassiana was noted in A. fabae (13% infection) and A. pisum 
(17%) sampled from the top of the crop. A Verticillium-like pathogen was recorded 
from 27% of A. fabae. 

Counts were difficult to make seven days after the spray application of conidia was 
made as aphids had reached large population densities and E. neoaphidis had 

reached high density within those aphid populations. No aphids had succumbed to 

infection with applied fungi under casual observation in the field. 

224 



(a) A. fabae 

0.8 
9N 

0.6 

° 0.4 

° 0.2 a LI IL 
0 

Parasitised E. neoaphidis B bassiana Verlicillium spp Cunidioholus 

't'ill, 
Cause of death 

  Tween Top Q Tween Middle 0 GHA Top   GHA Middle 

(b) A. pisum 

0.8 ' 

ü 0.6 
LC 

0.4 
.ýo 

0.2 

0 
Pa, asifis. 'd !i zeoaphidis 

£D 

B. bassiana Verticillium spp. Conidiobolus 

Cause of death ''/'/' 

  Tween Top Q Tween Middle Q GHA Top   GHA Middle 

FIGURE 7.23 : Mortality of (a) A. fabae and (b) A. pisum aphids sampled from 

plots in a crop of spring field bean sprayed with suspensions of conidia of isolates 
Mycotech strain GHA (B. bassiana) and HRI 1.72 (V. lecanii) at a concentration of 
1x 109 conidia ml-1. 
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7.3.4.2 Evaluation of persistence on leaves 

Aphis fabae which were exposed to bean leaves sampled immediately from plots 

sprayed with Mycotech strain GHA (B. bassiana) on 19/06/98 succumbed to 
infection with B. bassiana (Figure 7.24). More aphids died of B. bassiana when 

placed on leaves removed from the top of the crop canopy compared to those 

exposed to leaves from the middle of the canopy. A B. bassiana-like pathogen was 

recorded from 5% of aphids placed on leaves from the Tween control plots. 
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FIGURE 7.24 : Mortality of A. fabae exposed for 48 hours to leaves which had 
been removed from plots in a crop of spring field bean immediately following 
spraying on 19/06/98 with a suspension of Mycotech strain GHA (B. bassiana) at a 
concentration of 1x 109 conidia ml''. 

Aphisfabae which were exposed to bean leaves from plots sprayed with Mycotech 

strain GHA (B. bassiana) on 07/07/98 succumbed to infection with both B. 
bassiana and E. neoaphidis (Figure 7.25). The largest numbers of aphids which 
died due to B. bassiana were exposed to leaves removed immediately after the 

spray (Oh) and more aphids died when exposed to leaves from the top compared to 
the middle of the crop. The number of aphids that were infected with fungi, when 
exposed to leaves only 24 hours after the spray had been applied, was reduced for 
leaves sampled from the top of the canopy but slightly increased for those sampled 
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FIGURE 7.25 : Mortality of A. fabae exposed for 48 hours to leaves which had 
been removed from plots in a crop of spring field bean immediately following 
spraying with a suspension of Mycotech strain GHA (B. bassiana) at a 
concentration of 1x 109 conidia ml" on 07/07/98 and 24 hours later, due to (a) B. 
bassiana and (b) E. neoaphidis. 
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from the bottom of the canopy. The largest number of aphids died due to E. 

neoaphidis when exposed to leaves sampled immediately following spraying from 

the middle of the crop. There were similar numbers of aphids succumbing to 
infection with E. neoaphidis when exposed to leaves from the other areas of the 

crop at either Oh or 24h following spraying (Figure 7.26). A large number of aphids 
(43%) exposed to leaves from Tween treated plots succumbed to infection with E. 

neoaphidis. 
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Figure 7.26: Mortality of A. fabae aphids exposed for 48 hours to leaves which 
had been removed from plots in a crop of spring field bean immediately following 
spraying with a solution of Tween 80 (0.03%) on 07/07/98 and 24 hours later, due 
to E. neoaphidis. 

Sitobion avenae exposed to wheat leaves from plots immediately following 

spraying with Tween on 19/06/98 succumbed to infection with a V. lecanii-like 

fungus (Figure 7.27). Similar numbers of aphids succumbed to fungal infection 

when exposed to leaves removed either from the middle or the top of the crop. 
When S. avenae were exposed to wheat leaves from plots immediately following 

spraying with isolate Mycotech strain GHA (B. bassiana) on 19/06/98, 

approximately 100% of the aphids exposed to leaves from the top of the crop and 
60% of aphids exposed to leaves from the middle of the crop succumbed to 
infection with B. bassiana (Figure 7.28). 
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FIGURE 7.27 : Mortality of S. avenae, exposed for 48 hours to leaves which had 
been removed from plots in a crop of spring wheat immediately following spraying 
with a solution of Tween 80 (0.03%) on 19/06/98, due to a V. lecanii-like pathogen 
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FIGURE 7.28 : Mortality of S. avenae exposed for 48 hours to leaves which had 
been removed from plots in a crop of spring wheat immediately following spraying 
with Mycotech strain GHA (B. bassiana) at a concentration of 1x 109 conidia ml' 
on 19/06/98, due to B. bassiana and a V.. lecanii-like pathogen 
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Aphids exposed to leaves from plots sprayed with isolate HRI 1.72 (V. lecanii) 

mainly succumbed to infection with V. lecanii, with more aphids dying from the 
fungus when exposed to leaves from the top of the crop compared to the middle 
(Figure 7.29). However, approximately 20% of aphids exposed to leaves from the 

top of the crop also succumbed to infection with a B. bassiana-like pathogen. 
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FIGURE 7.29 : Mortality of S. avenae exposed for 48 hours to leaves which had 
been removed from plots in a crop of spring wheat immediately following spraying 
with HRI 1.72 (V. lecanii) at a concentration of 1x 109 conidia ml'' on 19/06/98, 
due to B. bassiana and a V. lecanfi-like pathogen 

Sitobion avenae exposed to leaves from plots of wheat sprayed with Tween 80 

(0.03%) on 07/07/98 did not succumb to any infections over the course of the 

assays, regardless of whether leaves had been removed immediately following 

spraying or 24 hours later. Sitobion avenae exposed to wheat leaves removed from 

plots sprayed with Mycotech strain GHA (B. bassiana) succumbed to infection 

with B. bassiana (Figure 7.30). More aphids died of B. bassiana when they were 

exposed to leaves from the top of the canopy, compared to the middle, when leaves 

were sampled both immediately after spraying and 24 hours later. However, more 

aphids succumbed to infection with B. bassiana when exposed to leaves from the 

middle of the canopy 24 hours after spraying compared to immediately following 

spraying. 
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FIGURE 7.30 : Mortality of S. avenae exposed for 48 hours to leaves which had 
been removed from plots in a crop of spring wheat immediately following spraying 
with a suspension of Mycotech strain GHA (B. bassiana) at a concentration of 1x 
109 conidia ml" on 07/07/98 and 24 hours later, due to B. bassiana 

Sitobion avenae exposed to wheat leaves from plots sprayed with isolate HRI 1.72 

(V. lecanii) succumbed to infection with V. lecanii (Figure 7.31). More aphids died 

when exposed to leaves removed immediately after the spray application than 24 

hours later. More aphids succumbed to infection with V. lecanii when exposed to 

leaves from the middle of the crop compared to the top, at each of the times at 

which the leaves were sampled. However, a smaller numbers of aphids succumbed 

to infection with V. lecanii when exposed to leaves sampled after 24 hours 

compared to those from leaves sampled immediately following spraying. The 

number of aphids succumbing to infection with V.. lecanii when exposed to leaves 

from the middle of the crop decreased by 40% from the sample time of Oh 

compared to that of 24h, whilst the number succumbing to infection when exposed 

to leaves from the top of the crop decreased by 60% between the two sampling 

times. 
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FIGURE 7.31 : Mortality of S. avenae exposed for 48 hours to leaves which had 
been removed from plots in a crop of spring wheat immediately following spraying 
with a suspension of HRI 1.72 (V. lecanii) at a concentration of 1x 109 conidia ml- 1 on 07/07/98 and 24 hours later, due to V. lecanii 
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7.4 Discussion 

The temporal and spatial distribution of aphids and their natural enemies was 
determined over two field seasons in crops of field beans and wheat. Aphid 

numbers reached high levels in wheat in 1997 and in beans in 1998. In both years, 
the number of aphids increased in the last two weeks of June and reached a peak in 

the first two weeks of August, before decreasing dramatically just prior to harvest. 

The number of aphid cadavers identified with infection by the natural enemy E. 

neoaphidis reached a peak as aphid numbers began to decline. Large numbers of 

aphids sampled after spray applications on 19/06/98 in bean crops succumbed to 

infection with E. neoaphidis suggesting that this fungus was more prevalent than 

field counts on 16/06/98 had suggested. Parasitoid numbers in beans in 1998 also 
increased as aphid numbers increased (data not shown). Whether aphid numbers 
decreased in either year because of the impact of natural enemies is difficult to 

determine as aphid populations naturally decrease prior to harvest when plants 
become unsuitable hosts. 

The spatial distribution of aphids over individual wheat plants was similar between 

the two years and agrees with distribution patterns of cereal aphids found by other 

authors (Dean & Luuring, 1970). There was a general increase in numbers of S. 

avenae recorded in the lower regions of the crop as the population density of this 

species increased in the ear. At high infestation levels, interspecific competition 

within S. avenae populations has been reported to cause a general movement of 

aphids of this species to lower regions of the plant (Chongrattanameteekul, Foster 

& Araya, 1991). These temporal and spatial patterns of distribution of aphids 

within a crop are important considerations for targeting mycoinsecticide sprays. 

In the bean crop, when aphid numbers were low in 1997, both A. fabae and A. 

pisum were distributed mainly at the top of the plants. However, although both 

species of aphid were distributed at the top of the crop in the early part of the 1998 

field season, when high densities of A. fabae developed, A. pisurn became more 
frequent in the middle of the crop. It is possible that there was direct competition 
between the two aphid species at the top of the plants forcing A. pisum to occupy 
lower areas. Aphis fabae changes feeding position from stems to leaves in the 
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presence of A. pisum and from the upperside to the underside of leaves (Lowe, 
1967; Salyk & Sullivan, 1982). It is possible that one species of aphid in the 
current study was affecting the behaviour of the other, but in contrast to previous 
studies, it appeared that A. pisum was the species that changed feeding position 
rather than A. fabae. 

Alternatively, the reduction in numbers of A. pisum at the top of the crop could be 

explained by competitive interactions. When two species share a natural enemy, an 
increase in abundance of one species may increase abundance of the shared natural 
enemy and therefore increase predation of the second species. These types of 
interaction between two species have been termed "apparent competition" (Holt, 

1977). The population growth of one species is reduced as the population growth 

of the other species increases, similar to changes noted in classic interspecific 

competition. Apparent competition has been shown in populations of the nettle 

aphid Microlophium carnosum (Buckton) and the bird-cherry oat aphid 
Rhopalosiphum padi (Müller & Godfray, 1997). An increase in populations of R. 

padi caused a decrease in adjacent populations of M carnosum because of 
increased predation by coccinellids which were attracted into the area by the large 

populations of R. padi. 

It is possible that apparent competition was causing a decrease in numbers of A. 

pisum at the top of the bean crop if the increased populations of A. fabae attracted a 
shared natural enemy. There was an increase in the number of parasitoids, 

predators and pathogens (especially E. neoaphidis) as the populations of A. fabae 

increased (data not shown for predators and pathogens). Any of these shared 

natural enemies could have caused a reduction of A. pisum in the upper crop 

regions. Alternatively, another factor such as plant quality or a combination of 

competitive interactions may have caused these changes in aphid distribution. 

More A. fabae succumbed to infection with E. neoaphidis than A. pisum when 
aphids were sampled from populations in the field after spray applications 
(personal observation, data not shown). It is possible that the isolate of E. 

neoaphidis in the field was more virulent against A. fabae than A. pisum. 
Variability in susceptibility to different isolates of E. neoaphidis has been 
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demonstrated previously in aphids (Milner & Soper, 1981). Alternatively, because 

A. fabae had formed dense colonies by the time aphids were sampled, the pathogen 

may have been able to spread more readily to new hosts within populations of A. 

fabae compared to A. pisum which were distributed more sparsely. These results 

show that applied Hyphomycete fungi and E. neoaphidis may potentially interact 

within the field environment. Investigations reported in chapter five suggest that, 

under such conditions, E. neoaphidis would be more aggressive. Indeed, when 
bean leaves from the field which were sprayed with suspensions of conidia were 

assayed against healthy aphids, a large number of aphids in some samples 

succumbed to infection with E. neoaphidis rather than the applied Hyphomycete 

fungus. 

It is difficult to determine whether the V. lecanii-like and B. bassiana-like fungi 

noted in aphids that were exposed to leaves from control plots on 19/06/98 were 

due to spray drift or were other pathogens occurring in the field. All spray 

applications were made when wind speeds were less than 5 m. p. h which should 
have prevented any spray drift. Additionally, one of the benefits of using an 

electrostatic sprayer is that charged particles are attracted directly to the crop plant. 
Molecular techniques could be used to determine whether fungi such as those 
described above are applied isolates or other isolates occurring naturally. Such 

techniques will be useful for evaluating persistence of applied fungi and tracking 

the development of epizootics within host populations. 

Persistence studies, using assays of field collected leaves against healthy aphids, 
indicated that there was generally more inoculum at the top of the canopy 

compared to the lower regions immediately following spray applications of conidia 

of B. bassiana and V. lecanii in the two crops. This type of bioassay method has 

been used for both Hyphomycete and entomophthoralean fungi (Brobyn et al., 
1985; Vandenberg, Shelton, Wilsey & Ramos, 1998c) and is useful for detecting 

not only viable conidia but other. infectious inocula such as hyphae (Goettel et al., 
2000). Conidia did not persist for long periods as, after only 24 hours, fewer aphids 

were infected when exposed to leaves sampled from the field compared to leaves 

sampled immediately following spraying. However, leaves were not sampled at 

any later times and this would have been useful to have determined whether 
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inocula could persist for longer periods of time. Inocula of B. bassiana and V. 

lecanii have been recorded as persisting in the field and under glasshouse 

conditions for periods of 28 and 39 days respectively (Hall, 1980c; James et al., 

1995). 

However, conidia have also been reported to survive for shorter periods under field 

conditions. Survival of B. bassiana on the upper surfaces of foliage in Southern 

California was very limited; survival of conidia only had a half-life of 1.7 days on 

melon and I day on broccoli (Jaronski & Goettel, 1997). Survival on the 

undersides of leaves was greater than on the upper surfaces with a half-life of 5-9 

days on melon leaves. The rate of decay is affected by both the plant species and 

location within the canopy; a dense canopy of alfalfa gave better protection for 

conidia from solar radiation than that of wheatgrass (Inglis et al., 1993). In 

targeting mycoinsecticides, applications should be maximised at the top of the 

crop, to inoculate directly the insects that are distributed there, but also penetrate 

lower into the crop to favour survival and expose insects to residual inoculum. The 

electrostatic sprayer gives an even coverage of both surfaces of leaves at different 

heights in the crop. Applications of M anisopliae to control the mustard beetle 

Phaedon cochleariae (F. ) under field conditions resulted in higher mortality of 
beetles when applications were made using an electrostatic sprayer compared to a 
hydraulic sprayer (Inyang, McCartney, Oyejola, Ibrahim, Pye, Archer & Butt, 

2000). 

Humidity recordings were of ambient RH in the air surrounding leaves, rather than 

the humidity of leaf surfaces themselves. The highest humidities were recorded 
during the night when temperatures were at their lowest. For example, between 

12.00pm and 6.00am, the average temperature of bean leaves over the recording 

period PJuly to 23" July was 11.87°C for the upper leaf surface at the top of the 

canopy and 12.48°C for the lower leaf surface at the bottom of the canopy. Isolates 

for use in temperate fields in the summer should, therefore, be selected using the 
biorational approach based on their temperature tolerance to a range of 
temperatures around these low values. Isolates selected in this way may then be 

able to germinate and grow at temperatures that are associated with ideal humidity 

conditions in the field. 
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When spray applications were made in the field on 07/07/98, the recorded 

humidity of the field bean crop was above 97% between 21.30 hours and 04.30 

hours (Appendix 9). During this period, the maximum temperature was recorded as 

10.29°C and the minimum as 7.45°C (Appendix 10). Data from in vivo 

experiments reported in chapter 5 suggest that at 100% RH and 10°C, the LT5o 

values for aphids treated with isolate HRI 1.72 were 221.72 hours for A. fabae and 

244.12 hours for M persicae. This would suggest that under these field conditions, 

the progression of disease may have been slow. 

It is important to determine whether germination and penetration of conidia can be 

achieved under such conditions in the field as this will influence the ability of fungi 

to cause infection in host populations. Theoretically, the pattern of germination for 

isolates under the field conditions described above may be calculated using the 

equations derived in chapter five for in vitro germination of conidia of each isolate. 

The calculated GT50 values for HRI 1.72 using this equation would be 42.11 hours 

and 42.32 hours under the maximum and minimum temperatures recorded in the 

field. It is therefore possible that some conidia of HRI 1.72 that came into contact 

with hosts overnight would be able to germinate under the microclimatic 

conditions recorded in the field. 

However, it is not advisable to extrapolate results from laboratory studies to 

represent what may occur under field conditions. Observation of the development 

of conidia on host cuticle under field conditions in relation to temperature and 

humidity regimes would provide evidence of the actual ability of conidia to 

germinate and penetrate during short periods of optimal conditions. Conidia of V. 

lecanii were able to germinate at 70% RH on leaves but showed poor infection of 

aphids (Burges, 2000). However, when RH was maintained at 95% for 15 to 18 

hours, alternating with 40 or 70% RH, fungal growth, sporulation and aphid 

infection was increased. 

Conidia are generally not exposed to a constant regime of temperature and 
humidity. The microclimate records from the current study indicate how dramatic 

the differences in both environmental factors can be even over the period of one 
day. The impact of fluctuating temperature and humidity regimes on germination, 
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growth and virulence of pathogens have been discussed in chapter five. 

The results of the field experiments provide evidence that in temperate cropping 

systems aphid natural enemies may occur when Hyphomycete fungi are applied. 
Some of these natural enemies may therefore be exposed for long periods of time 

to conidia; individual seven-spot ladybirds C. septempunctata were often noted to 

remain in crop areas in the field for two weeks or more (personal observation). 
However, spray applications were made quite late in the growing season when 

aphids had reached high numbers. For population suppression in commercial crops 

sprays are more likely to be applied earlier in the season when host populations are 
beginning to increase in numbers but before significant damage to the crop. Results 

from natural enemy monitoring would suggest that earlier applications may impact 

on fewer natural enemies. It is difficult to determine what the potential impact 

would be on natural enemies, as previous studies have indicated that non-target 

susceptibility may be related to weather conditions during exposure in the field 

(James et al., 1995). Issues surrounding the impact of applied microbial pathogens 

on non-target organisms are discussed in chapter six. 

It was not possible to determine whether the applied Hyphomycete fungi reduced 

aphid populations as a natural epizootic of E. neoaphidis was present and appeared 

to cause the decrease in host aphid populations shortly after sprays were applied in 

the beans. In a similar study, a single spray of blastospores of Y". lecanii also 

applied in late June failed to control A. fabae on broad beans (Khalil et al., 1985). 

The authors suggest that low humidities (40-60% RH) were not suitable for fungal 

development, but it is not clear over what periods this humidity was recorded i. e. 
daily or hourly for example. As the results in this chapter show, the mean daily 

humidity may be low but an RH of 100% may be reached on the microclimate 

scale and maintained for a reasonable period of time every night in wheat and bean 

crops. 

The field experiments described in this chapter were designed to demonstrate that 
isolates selected using the biorational approach were able to demonstrate some 
level of aphid control under field conditions. For a number of reasons, highlighted 

previously, this was not fully achieved in these trials. It may be more useful to use 
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field simulation studies as a method to evaluate the performance of selected 
isolates under field conditions, before a full scale field trial is undertaken. The 

potential of isolates of M anisopliae for the control of crucifer pests was evaluated 

using this method (David-Henriet et al., In Press). The infectivity of a promising 
isolate of M anisopliae was reduced (compared to that achieved in the laboratory) 

under field simulation conditions and this infectivity was reduced more in full field 

trials. Using a method such as this in the biorational approach would allow a large 

number of isolates to be screened in field simulation assays and would increase the 
likelihood that an isolate selected for further trials would be effective under field 

conditions. 
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Chapter 8- GENERAL DISCUSSION 

The isolates obtained for this study from international culture collections all had 

reported potential against aphids. However, first tier tests against the black bean 

aphid Aphis fabae and subsequent dose-response studies identified differences in 

pathogenicity between isolates. There have been few reports using A. fabae as a 

target aphid for bioassay studies of entomopathogenic fungi (Zayed & Zebitz, 

1997). The current study indicated that A. fabae was a useful representative target 

for the selection of fungal isolates for the biocontrol of aphids. Aphis fabae 

survived on excised leaves and, as these aphids normally form dense colonies on 

plants, they were not stressed when forced to occupy a small area of leaf together. 

Host range studies against several aphid species, using the isolates selected in first 

tier tests, indicated that the bird cherry oat aphid Rhopalosiphon padi was more 

resistant to infection (indicated by large LT50 values) compared to other aphid 

species. This may have been due to. stress from being maintained on excised 

leaves. Further studies using whole plants as an incubation system would confirm 

whether this was a factor influencing patterns of aphid mortality. Rhophalosiphum 

padi was also the most resistant of several species of aphid inoculated with 
Hyphömycete isolates (Feng et al., 1990b) and Erynia neoaphidis (P. Shah, pers. 

comm. ). In both of these studies, aphids were reportedly not stressed, suggesting 

that susceptibility to infection was related to another, unknown, factor. The 

mechanism(s) of this resistance to infection require further investigation. 

Aphids used in assays of entomopathogenic fungi are generally from laboratory 

cultures. These cultures often originate from single clones or from a small sample 

of field collected aphids. The potential differences between clones or biotypes of 

aphids needs to be studied to determine whether populations of aphids differ in 

susceptibility to isolates of fungi. For example, Milner (1982) found that biotypes 

of Acyrthosiphon pisum may differ in susceptibility to E. neoaphidis, so that one 
biotype may be described as resistant. It will be essential in the development of 

mycoinsecticides to determine the-impact of isolates of Hyphomycete fungi to 

genetically diverse populations of aphids that may be present in crops. 
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When A. fabae and Myzus persicae were inoculated with isolate HRI 1.72 and 
incubated at 10°C, LT50 values of between nine and ten days were recorded for 

these aphids respectively. Although aphid numbers would be increasing at a slow 

rate under these conditions, this may not represent an acceptable speed of kill for a 

mycoinsecticide under field conditions. However, although the immediate 

"knockdown" effect of mycoinsecticides may not be comparable with that of 

chemical insecticides, the mycoinsecticides may provide better long term control 

of insect pests. Trials in Niger showed that the reduction in a grasshopper 

population after spray application of an isolate of Metarhizium anisopliae was 

similar to that achieved with an organophosphate insecticide (Langewald, 

Ouambama, Mamadou, Peveling, Stolz, Bateman, Attignon, Blanford, Arthurs & 

Lomer, 1999). However, grasshopper populations recovered in plots sprayed with 
insecticide within 16 days, whilst populations in plots sprayed with the fungus 

remained lower as grasshoppers were exposed to conidia which remained infective 

for three weeks after spraying. 

In addition, sublethal effects or changes in host behaviour due to infection with 
fungi may reduce the damage by aphids to a crop. Changes in host behaviour or 

sublethal effects may be just as useful in crop protection as the death of the host. 

For example, M flavoviride infection reduced feeding and flying in desert locusts 

(Seyoum, Moore & Charnely, 1995) and Beauveria bassiana infection in Colorado 

potato beetle reduced fecundity of surviving individuals (Fargues, Delmas, Auge & 

Lebrun, 1991). In comparison, infection with B. bassiana did not significantly 

affect the rate of nymph production by adult D. noxia (Wang & Knudsen, 1993). 

However, if infection with a fungus had sublethal effects on aphids which inhibited 

feeding, an immediate "knock-down" of pests would not be such an important 

feature of a mycoinsecticide. 

Molecular techniques, such as genetic recombination, present exciting 

opportunities to enhance the virulence of fungi, with much of the work to date 

concentrated on M anisopliae (St. Leger, Frank, Roberts & Staples, 1992a; St. 

Leger, Staples & Roberts, 1992b). Many Hyphomycete fungi have considerable 

natural genetic variation (such as M anisopliae) and this could be of benefit for 
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establishing "genetic fingerprints" of isolates. This is important for patenting and 

registration of isolates as mycoinsecticides, as well as monitoring of non-target 

effects. Additionally, such fingerprints may provide a very powerful tool to "track" 

isolate movement within host populations and allow accurate models of epizootic 
development. A useful review of areas of opportunity for using molecular 

techniques to improve mycoinsecticides is given by Charnley, Cobb & Clarkson 

(1997). 

Many biopesticides were rushed onto the pesticide markets in the 1980s during a 

period when concerns over pesticides and public health were high profile issues. 

This meant some of these products were available before predictable efficiency and 

cost effectiveness had been developed. Biopesticides were "fast tracked" through 

registration processes and, although this had the advantage of costing less, and 

requiring fewer toxicology tests than conventional chemicals, there were 
disadvantages; a lot of companies were not ready to effectively produce, market, 

support or sell products. The historical failure under field conditions of the V. 

lecanii product Vertalec® may simply have been because there had been little 

research into mycoinsecticides and problems with using these products in the field 

were not understood at this time. Both Vertalec® and Mycotal® are still 

commercially available and are very successful control agents used in glasshouses. 

The success of companies, such as the Mycotech Corporation in the United States, 

has shown that with increased knowledge of the biology of fungi and improved 

application technology, products based on entomopathogenic fungi are 

successfully entering markets in a wide range of agricultural and horticultural 

crops. However, the success of many of these products as mycoinsecticides relies 

on their ability to control a wide range of pest species. The disadvantage of this is 

that non-target beneficials may be adversely affected although, to date, there have 

been no reports of adverse affects of field applications on beneficials (Cory & 

Myers, 2000). 

The increasing problems of negative indirect and non-target effects of biological 

control are receiving increasing attention (Cory & Myers, 2000). As yet, however, 
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there is no evidence that inundative release of insect pathogens has resulted in 

long-term negative effects on non-targets or even that pathogens applied in this 

way have established. However, there has been little research in this area and it is 

essential that studies are made of any negative effects of mycoinsecticide 

applications. The potential genetic changes that may occur in inundation releases 

need to be assessed. Whilst the ability of isolates to adapt and avoid host resistance 

are beneficial, there may also be problems of isolates adapting to infect non-target 

organisms. Changes in fungi have been noted after in vivo and in vitro passages, 

such as changes in virulence (Daoust & Roberts, 1982; Morrow, Boucias & Heath, 

1989; Hayden et al., 1992) and changes in sporulation, growth rate and 

morphology (Hall, 1980b). It is unclear whether these changes are due to 

phenotypic plasticity, genetic variation within a population and/or genetic changes 
(Watson et al., 1999). 

Physiological host range studies showed that isolates of P. fumosoroseus and V.. 

lecanii were the least pathogenic of the isolates tested to the 7-spot ladybird 

Coccinella septempunctata and the generalist parasitoid Praon volucre. Ecological 

host range studies are required to confirm whether the negative impact of B. 

bassiana isolates on these natural enemies noted under laboratory conditions 

extends to the field situation. Isolates, which have little or no impact on a natural 

enemy in a maximum challenge experiment under laboratory conditions, are 

unlikely to infect similar targets in the field environment. It is these isolates that 

would be identified using the biorational approach as well as those with a wide 

physiological host range. The impact of potential mycoinsecticides on non-target, 

beneficial insects should be a major consideration during the selection process, 

rather than in "side-effect" testing once an isolate is under development. 

The host cuticle is one level at which specificity is determined (Hall & Papierok, 

1982). Differences in adhesion and germination of conidia on host cuticle have 

been related to pathogenicity (Butt et al., 1995) and host cuticle incorporated into 

media has been shown to influence germination of conidia (Butt et al., 1999). 

Methods such as this could provide a way of indicating the potential host range of 
isolates in first tier pathogenicity tests. This would allow a large number of hosts, 
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including a range of non-target organisms, to be screened in in vitro tests. The 

potential impact of fungi on non-target species that would normally be excluded 
from bioassays, because of difficulty with rearing procedures or post-inoculation 
incubation, could then be investigated. Host cuticle germination studies, such as 
these, could be included in the biorational selection procedure, preceding in vivo 
studies on a more limited number of non-target natural enemies. 
It was not within the scope of this thesis to evaluate the mass production or 
formulation of the isolates that were selected as potential mycoinsecticides. 
Efficient mass production systems and technologies exist for only a few species of 
fungus. The greatest achievements have been for B. bassiana (Feng et al., 1994) 

and full commercial-scale production of this fungus has been achieved most 

notably by the Mycotech Corporation of Butte, MT. Wraight & Carruthers (1999) 

provide a useful review of the most recent advances in the development of mass 

production technologies. The suitability of isolates for mass production was not 

used as a specific criterion in the biorational selection procedure but three isolates 

were dropped from the study during first tier pathogenicity assays because it was 
difficult to obtain large numbers of conidia from culture plates of these isolates. 

The success of any mycoinsecticide may also depend on the development of an 

appropriate delivery system (Bateman, 1998). Formulations of fungi in oil may 

allow them to operate under ambient conditions of very low humidity, such as 
desert conditions (Bateman et al., 1993). Some studies have shown that 
formulation does not always improve field activity (Bull, 1978; Couch & Ignoffo, 

1981), although to maximise application efficiency, storage and shelf life and 

allow a microbial to operate over a wide range of environmental conditions, it is 

likely that some type of formulation will be necessary (Jones, Cherry & Grzywacz, 

1997). More detail on the issues surrounding the formulation of biopesticides in 

general is discussed in Burges (1998). It would be useful to determine to what 

extent formulation and application technology could increase the effectiveness of 
isolates; this could compensate for isolates that are adversely affected by humidity 

but in all other respects would be selected in the biorational approach. 
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Currently, mycoinsecticides are still limited to niche markets, although research 

and development of mycoinsecticides for the control of Russian wheat aphid, 
Colorado potato beetle and grasshoppers and locusts have shown that the 

opportunity exists to use these products over a wide range of cropping systems. 
Mycoinsecticides may also be useful in organic farming and high value vegetable 

crops. However, these markets may be highly competitive and it may, therefore, be 

better to focus on the green credentials of mycoinsecticides, for use in 

environmentally sensitive areas and as a tool for resistance management. As 

pressure from the government and public is increased to . 
farm in a more 

environmentally acceptable way, mycoinsecticides may become more acceptable 

and growers may become prepared to accept some of the limitations of using 

mycoinsecticides. 

Mycoinsecticides are often viewed as operating in a similar way to chemical 

insecticides and research has reflected this by focusing largely on the "knockdown" 

impact of isolates of fungus on host insects. Ideally, these biopesticides should 

represent one part of an IPM programme and should not be developed with a view 

to replacing chemical insecticides in a control programme. As there is an 
increasing need to assess more long-term solutions for insect pest control, there are 
increasing opportunities for development of mycoinsecticides as pest management 

tools. 

In conclusion, the biorational approach described in this study allowed selection of 

isolates of fungi for the biocontrol of aphids in arable crops that were not only 

pathogenic to host aphids, but non-pathogenic to non-target organisms and had the 

ability to operate over a wide range of environmental conditions (Figure 8.1). The 

most promising isolate identified in the selection procedure was HRI 1.72 (i! 

lecanii), from the original single spore isolate developed as the product Vertalec®. 

Isolates of P. fumosoroseus and V. lecanfi were identified as potentially more 

useful species for development as mycoinsecticdes, compared to M anisopliae 

and B. bassiana. This was largely because isolates of P. fumosoroseus and V. 

lecanii were more host specific, but also because they were able to operate over a 

range of environmental conditions. 
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Future research should be aimed at determining to what extent these selection 

criteria relate to the ability of isolates of fungi to operate under field conditions. 

This would determine how useful the criteria are for selecting isolates of fungi for 

aphid control and how useful the "semi-field" bioassay approach is compared to 

more precise laboratory bioassay methods. Whilst screening for more virulent 

isolates of fungus will continue, it is likely that the biggest advances will be made 

with development of new application and formulation technologies. The emphasis 

of an isolate selection procedure should therefore shift from isolate pathogenicity 

to target insects to assessment of factors that make the mycoinsecticide more 

ecologically sound. The biorational approach has been shown to be a useful 

method for selection of isolates. Although infection of aphids with isolates such as 

HRI 1.72 may be adversely affected by low humidity, constraints such as these. 

may be overcome by formulation. Ultimately, using a biorational approach, such as 

that described in this study, will result in selection of potential mycoinsecticides 

which are likely to provide predictable and reliable biological control of aphid 

pests as part of an IPM programme. 
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Appendix 1: Origin of insect cultures 

Metopolophium dirhodum 

Set up in the summer of 1995 using approximately 120 individuals collected from 

winter wheat and rye grass at Road Piece, Rothamsted farm 

Sitobion avenae 

Set up using green morphs only (although they changed colour once in culture for 

a while) during the summer of 1996. Approximately 200 from Sawyers 3 (from 

winter wheat), approximately 150 from Pasteurs (from winter wheat) and 

approximately 220 from Great Harpenden 1 (from spring wheat) were collected. 

Aphisfabae 

Continuously cultured at IACR-Rothamsted for at least 8 years. The culture was 

set up from aphids collected on the Rothamsted farm. 

Acyrthosiphon pisum and Rhopalosiphum padi 
Continuously cultured at IACR-Rothamsted for at least 10 years. The culture was 

set up from aphids collected on the Rothamsted farm. 

Myzus persicae 

Set up originally from an insecticide susceptible clone (reference US 1 L). Aphids 

were collected from a sugar beet crop in 1974 in Cambridge. 

Praon volucre / Sitobion avenae 

Set up during the summer of 1996 with approximately 90 females and 50 males 

collected from cereal crops on Road Piece, Rothamsted Farm. The most likely host 

was S. avenae with possibly a small percentage of M dirhodum. Praon volucre on 
A. pisum was set up by sub-culturing the P. volucre from S. avenae once it was 
well established. 
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Appendix 2: Oatmeal Dodine Agar - Selective medium for isolation of Beauveria 

spp. and Metarhizium spp. 

Ingredients: 500m1 batch 

17.5g Oatmeal agar 

2.5g Bacto agar 

0.45g Cyprex 65WP (Dodine - N-dodecylguanidine) 

2.5mg Crystal Violet (Hopkin & Williams) 

2ml Antibiotic Stock solution 

Crystal Violet stock solution 

0.1g crystal violet 

200m1 sterile distilled water 

Store in the dark in a refrigerator 

Antibiotic Stock solution 
4g Penicillin G (Sigma) 

IO. Og Streptomycin sulphate (Sigma) 

40. Oml Sterile distilled water 

Protocol 

1. Weigh out Oatmeal agar and agar-agar 

2. Make a smooth slurry in a duran by adding the 500m1 of water slowly and 

shaking vigorously 
3. Add Cyprex and 5ml of the crystal violet solution 

4. Autoclave at 121°C and 15 p. s. i. for 20 minutes 

5. Allow medium to cool to 50 - 55°C in a waterbath and add 2m1 of antibiotic 

stock solution under sterile conditions 

6. Swirl flask well to distribute antibiotics and pour medium into plates 

This amount of ODA should give 20 plates (9cm Petri dishes) 
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Appendix 3: number of aphids dying due to fungus (%) in four preliminary 
bioassays against S. avenae, A. fabae and M persicae. 

M persicae A. fabae S. avenae 
Control 0 2 4 

2879 (B. bassiana) 17 58 70 
3458 (P. fumosoroseus) 8 41 58 
T130 (M anisopliae) 10 36 60 

T80 (V. lecanii) 52 53 85 
Control 0 0 0 

T314 (P. fumosoroseus) 43 34 85 
Z143 (M. anisopliae) 7 3 48 

Z25 (V. lecanii) 20 58 84 
Control 0 0 0 

T195 (B. bassiana) 7 21 33 
Mycotech strain GHA (B. bassiana) 0 2 3 

Z43 (M anisopliae) 31 12 60 
2859 (Y. lecanii) 35 83 58 

Control 0 0 0 
Z25 (V.. lecanii) 13 78 82 

2879 (B. bassiana) 7 66 58 
Mycotech strain GHA (B. bassiana) 32 90 72 

3458 (P. fumosoroseus) 0 3 2 
4491 (P. fumosoroseus) 28 77 64 
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Appendix 4: Standardised bioassay method 

Day l 

1) Place apterous adult aphids (or alates of Sitobion avenae) on excised leaves set 
in water agar using the appropriate number of aphids to obtain the required number 

of nymphs as detailed in section 2.3. 

nay2 

1) Remove adult aphids from dishes and move nymphs to an insectary or other CE 
facility at 18°C and 16 hour photoperiod (16 hours light :8 hours dark). 

Day 10 

1) Prepare bioassay dishes of leaves in water agar using methods detailed in 

section 2.2. 

2) Prepare fungal suspensions using methods in section 2.6.5. 

Day 11 
1) Place aphids on leaves in bioassay dishes in the early morning with 12 or 15 

aphids per dish (depending on the bioassay requirements) and allow to settle for 

approximately four or five hours. 

2) Spray with fungal suspensions in the late afternoon, using methods detailed in 

section 2.6.6. 

3) Place inverted dishes at 23°C (or other temperature required) and 16 hour 

photoperiod (16 hours light :8 hours dark). 

4) Monitor daily mortality of aphids using assessment procedures in section 2.7. 

Move aphids to fresh leaves in clean dishes every 48 hours using the methods 
detailed in section 2.8. 
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Appendix 5: Standard practices for cropping on the IACR-Rothamsted Farm 

(applied to experimental plots). 

Crop Drilling Variety Depth Rate Row 

Date Spacing 

Beans 13-3-1997 Sirrocco 10-20 cm 20 seeds m - 
21-3-1998 Alfred 10-20 cm 20 seeds m2 - 

Wheat 13-3-1997 Chablis 2-4 cm 400 seeds m 12.5 cm 
21-3-1998 Axona 2-4 cm 400 seeds m2 12.5 cm 

Range of pesticides used on crops of wheat and field bean on the IACR- 

Rothamsted Farm (only applied to non-experimental plots). 

Crop Pesticide Applications 

Beans Herbicides: propaquizafop, bentazone 

Fungicides: chlorothalonil, carbendazim 
Insecticides: pirimicarb 

Wheat Herbicides: clodinafop 
Fungicides: mixtures of epoxiconazole, 

tebuconazole, flusilazole, cyprodinil, 
fenpropidin, fenpropimorph, quinoxyfen 
Insecticides: pirimicarb 

Growth Regulators: chlormequat 
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Appendix 6: Data logger program for Campbell Scientific 21X datalogger 

attached to a Campbell Scientific AM416 Multiplexer. 

*1 
01: 60 Set datalogger to record measurements every 60 seconds 

01: P17 Measure Panel Temperature 
01: 1 Input storage location for panel temperature 

02: P20 Activate Multiplexer Set Port 
01: 1 Set High (activate) 
02: 1 Port Number 

03: P87 Begin Measurement Loop 
01: 1 Delay (0 = no delay between passes of loop) 
02: 16 Loop count (16 passes through sets of 2 thermocouples) 

03: P90 Step Loop Index 
01: 2 Step index of 2 

05: P22 Clock Pulse Excitation with delay 
01: 1 Excitation channel 
02: 1 Delay time for excitation (units = 0.01 seconds) 
03: 0 Delay after Excitation 
04: 5000 mV of Excitation 

06: P14 Measure Thermocouple 
01: 2 2 repetitions (input channels to datalogger) 
02: 1 Range code (5mV slow) 
03: 1 Input channel of thermocouple 
04: 1 Thermocouple type T 
05: 1 Reference temperature is stored in location 1 
06: 2 -- Store thermocouple temperature in location 2 (- - indicates that the 

location needs to be indexed) 
07: 1 Multiplier of 1 (°C) 
08: 0 Offset of zero 
07: P95 End measurement loop 

08: P20 Deactivate multiplexer Set Port 
01: 1 Set low 
02: 1 Control port number 

09: P92 If Time 
01: 0 0 minutes in the interval (mins) 
02: 30 30 minute interval 
03: 10 Set output flag (Flag 0) 

10: P77 Output time 
01: 10 Store hour and minute 
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11: P71 Average 
01: 32 Number of repetitions 
02: 2 Source of Thermocouple temperatures to be averaged, input 

storage location 2 

12: P92 If Time 
01: 0 0 minutes into the interval 
02: 1440 1440 minute interval (1 day) 
03: 10 Set output flag (Flag 0) 

13: P77 Output time 
01: 110 Store day, hour and minute 

14: P73 Maximise Instruction 
01: 32 32 repetitions 
02: 10 Output the time at which the maximum occurs in hours and 

minutes 
03: 2 Location to maximise = thermocouple temperature 

15: P74 Minimise Instruction 
01: 32 32 repetitions 
02: 10 Output the time at which the minimum occurs in hours and 

minutes 
03: 2 Location to minimise = thermocouple temperature 
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Appendix 7: Aphid Counts - Wheat 

Counts for 1997 - on 240 plants on each occasion 

Species 05/06 23/06 01/07 21/07 06/08 

S. avenae 11 1 71 137 0 

M. dirhodum 8 610 1543 85 0 

R. padi 0 0 0 1 0 

Aphids infected with E. neoaphidis 0 0 15 592 291 

Counts for 1998 - on 240 plants for the first two sampling dates and then on 120 

for the remainder 
Species 29/05 06/06 12/06 17/06 30/06 11/07 16/07 

S. avenae 14 31 21 15 26 79 59 

M dirhodum 3 19 1 1 4 7 0 

R. padi 0 0 0 1 0 0 0 

Aphids infected with E. 
neoaphidis 

0 0 0 0 0 0 0 
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Appendix 8: Aphid counts - Beans 

Counts for 1997 - on 240 plants 

Species 04/06 16/06 03/07 

A. fabae 1 32 50 

A. pisum (green morph) 8 65 6 

A. pisum (pink morph) 0 33 2 

Aphids infected with E. neoaphidis 0 0 0 

Counts for 1998 - on a reduced number of plants (shown in parentheses) due to the 

extremely large number of aphids that were present in this year. 

Species 14/05 

(80) 

21/05 

(240) 

05/06 

(140) 

11/06 

(40) 

16/06 

(55) 

30/06 

(10) 

A. fabae 0 230 1132 373 1721 1825 

A. pisum 0 20 328 175 502 109 

Aphids infected with E. 

neoaphidis 

0 0 0 0 4 370 
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THE 1998 BRIGHTON CONFERENCE - Pests & Diseases 4D-5 

A biorational approach to selecting mycoinsecticides for aphid management 

HYeo, JKPell, BJPye 
IACR-Rothamsted, Harpenden, Hertfordshire, ALS 2JQ, UK 

PG Alderson 
University of Nottingham, Sutton Bonington, Loughborough, Leicestershire, LE12 SRD, UK 

ABSTRACT 

In laboratory bioassays, Hyphomycete fungi showed differential virulence against 
Aphis fabae, Coccinella septempunctata and Praon volucre. In vitro studies 
indicated that some species of fungi grew and germinated better than others at low 
temperatures (10°C). This information was used to select isolates for field testing. 

INTRODUCTION 

Fungi have been identified as potential biological control agents against aphids in arable crops 
(Vandenberg, 1996). Although virulence against the target insect is important, we are also 
considering the impact of isolates on non-target beneficials and isolate interactions with the 
abiotic environment. By taking this approach we will select isolates that will be compatible 
with both the biotic and abiotic environment in which they will be used. 

MATERIALS AND METHODS 

To investigate the impact of temperature on in vitro growth of fungi, single plugs of each 
isolate were placed onto media and incubated at four temperatures; 10,15,20 and 25°C. The 
rate of radial growth of each fungal colony was measured. Data were analysed using an ante. 
dependence test (Kenward, 1987). 

Isolates were screened in a single-dose bioassay against A. fabae. Aphids were sprayed with 
suspensions of fungi (1x108 conidia/ml in 0.03% Tween 80) or Tween (0.03%) as a control. 
Spray applications were made using an electrostatic rotary atomiser on a track sprayer at 
0.4m/s applying 24 ml/min which equates to 10.4 litre/ha. Mortalities were monitored daily 
and data were analysed using the Kaplan-Meier method for survival data. 

Adult C. septempunctata and P. volucre were treated with fungal suspensions (1 x 10s 
conidia/ml in 0.03% Tween 80) or with Tween 80 (0.03%) and daily mortalities recorded. 
Fungal isolates were simultaneously screened against A. fabae as a positive control. 

RESULTS 

There was a significant difference in the radial growth of all isolates at each temperature after 
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the first 2-4 days of growth (P<0.001). Trends suggested that Paecilomyces fumosoroseus 
isolates were the most tolerant to the range of temperatures. Preliminary results from in vitro 
germination experiments showed similar trends. 

The total number of aphids treated which were killed by fungus in bioassays ranged from 53% 
for isolate T229 (Paecilomycesfarinosus) to 100% for isolate 1.72 (Verticillium lecani: ). The 
isolates which resulted in the lowest median survival time (MST) of aphids were selected 
from each bioassay. These isolates were; 1.72 (V.. lecanii; MST=3.7 days), 2879 (Beauveria 
bassiana; MST=4.4 days), Zil (P. f anosoroseus; MST=3.7 days) and 'Mycotech' B. 
bassiana strain GHA (MST=5.0 days). Subsequent field testing was conducted with isolates 
1.72 V.. lecanii and 'Mycotech' B. bassiana strain GHA. 

In bioassays, there were large differences between isolates in their virulence towards C. 

septempunctata (Table 1). The percentage of adult P. volucre emerging from treated 

mummies was 76% for controls and 85% for treated mummies. However, 73% of those 
insects that emerged from treated mummies succumbed to fungal infection. 

Table 1. Virulence of seven isolates in bioassays against C. septempunctata and 
corresponding virulence against A. fabae. 

Fungal Isolate Infection (%) 
C. septempunctata (n=30) A. fabae (n-72) 

GHA (B. bassiana) 21 75 
20 94 
90 92 

T195 (B. bassiana) 71 79 
T130 (Metarhizium anisopliae) 100 96- 

2859 (V. lecanii) 7 94 
Z4 (P. fumosoroseus) 3 78 
T229 (P. farinosus) 3 26 

T80 (V. lecanii) 0 92 
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