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Abstract 

This thesis concerns two areas of bioinformatics related by their role in protein 

structure and function: protein structure prediction and post translational modification 

of proteins. The dihedral angles Ψ and Φ are predicted using support vector 

regression. For the prediction of Ψ dihedral angles the addition of structural 

information is examined and the normalisation of Ψ and Φ dihedral angles is 

examined. An application of the dihedral angles is investigated. The relationship 

between dihedral angles and three bond J couplings determined from NMR 

experiments is described by the Karplus equation. We investigate the determination of 

the correct solution of the Karplus equation using predicted Φ dihedral angles. 

Glycosylation is an important post translational modification of proteins involved in 

many different facets of biology. The work here investigates the prediction of N-

linked and O-linked glycosylation sites using the random forest machine learning 

algorithm and pairwise patterns in the data. This methodology produces more accurate 

results when compared to state of the art prediction methods. The black box nature of 

random forest is addressed by using the trepan algorithm to generate a decision tree 

with comprehensible rules that represents the decision making process of random 

forest. The prediction of our program GPP does not distinguish between glycans at a 

given glycosylation site. We use farthest first clustering, with the idea of classifying 

each glycosylation site by the sugar linking the glycan to protein. This thesis 

demonstrates the prediction of protein backbone torsion angles and improves the 

current state of the art for the prediction of glycosylation sites. It also investigates 

potential applications and the interpretation of these methods.  
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Chapter 1: Protein Bioinformatics 

1.1 Introduction 

 
Proteins are the work horses of biology. Both within the cell and without and across 

the whole spectrum of life there are proteins. They fulfil a structural role, such as in 

the case of collagen, which provides the framework of connective tissue, and they are 

the machines of biology, catalysing the chemical reactions of life throughout the 

biosphere. Protein biology has long been studied by scientists interested in a wide 

range of organisms. Proteins are important for the understanding of biology in healthy 

and disease states as well as providing drug targets against pathogenic organisms, and 

they are even potentially drugs themselves.  

 
The function of a protein depends on its structure. Therefore, much effort has been 

devoted to the determination of protein structures. Experimentally, a wide range of 

techniques have been used to study protein structure and dynamics. X-ray 

crystallography and NMR have been used to determine protein structure, and NMR 

spectroscopy has also been used to study protein dynamics. These methods are 

expensive and time consuming. Some structures, particularly membrane proteins, are 

very difficult or impossible to characterise experimentally. A computational approach 

can, therefore, be advantageous. Bioinformatics methods aim to predict the structure 

of proteins using the amino acid sequence and properties of the amino acids that are 

readily available. Rather than predict the 3D structure of the entire protein, which is 

very difficult, due to the number of possible structures that a given sequence can 

adopt, the problem is often broken down into smaller tasks, such as the prediction of 

secondary structure or of dihedral angles. Much work has been done on the prediction 

of protein secondary structure.  
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Post translational modification (PTM) of proteins is heavily involved with the 

regulation of proteins and with structural and functional aspects of proteins. 

Glycosylation, which we focus on in the second part of this thesis, is involved in a 

wide number of biological processes. Therefore, it is important to be able to determine 

where a protein is glycosylated and precisely which carbohydrate is joined. Once 

again determination of this is expensive and time consuming. This has led to a 

computational approach being employed to determine the location of the glycosylation 

sites (and indeed other PTMs). 

  

The bioinformatics problems dealt with in this thesis are sequence analysis problems. 

For this reason, we begin by introducing sequence analysis and reviewing the methods 

used to compare biological sequences, which are essential to the field. In the first part 

of this chapter, we review methods for predicting secondary structure, dihedral angles 

and surface accessibility of proteins. In chapter 3, we present our research on the 

prediction of dihedral angles of proteins and its potential applications. 

 

The second part of this introduction gives some background on PTM of proteins. A 

major aspect of protein structure and function, PTMs are structural modifications to a 

protein where a small molecule is added to a specific amino acid. These modifications 

are important in many areas of biology, such as the regulation of proteins and DNA, 

and signalling between cells and molecules. We give an overview of the different 

types of PTM and introduce glycosylation, a PTM where carbohydrate is added. In 

chapter 4, we describe our work to predict glycosylation sites and use the model 

generated to find out information about what determines the location of a 
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glycosylation site. 

 

1.2 Sequence Analysis 

In biology, there are two main areas of sequence analysis: sequence comparison, i.e., 

multiple sequence alignment, and prediction using sequence analysis, although the 

first is often used as a starting point for the second. Multiple sequence alignment is the 

comparison of three or more sequences.1 It is often used to find homologous 

sequences in a large database and to align known homologues. This process of 

locating and aligning homologous sequences is central to bioinformatics and is the 

most important area of sequence analysis. Initially, dynamic programming algorithms 

were prohibitively slow, with both stochastic and tree-based methods being attempted. 

The introduction of progressive alignment methods in the 1980s has been the 

foundation for modern sequence alignment methods, a selection of which are 

reviewed below. Progressive alignment allows a full alignment to be built up 

gradually, using a tree as a guide for the alignment. It forms the basis of some of the 

most popular sequence alignment programs, such as clustalW.2 ClustalW creates a 

distance matrix using dynamic programming combined with a sequence weight 

matrix, such as PAM3 or BLOSUM.4 The neighbourhood joining method produces a 

guide tree for progressive alignment based on this matrix. The progressive alignment 

is carried out by conducting the pairwise alignment of sequences using the tree as a 

guide, thus aligning more and more sequences with each iteration, until the alignment 

is completed. Version 2.0 of this program5 allows faster and more accurate 

alignments.  

 

PAM3 and BLOSUM are examples of mutation matrices; these are often used by 
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sequence alignment programs to improve the accuracy of alignments by including 

evolutionary information. The level of pairwise similarity between two given amino 

acids can be measured by the likelihood of an amino acid substitution occurring by 

chance versus being inherited. This can be quantified by the number of point 

mutations required to go from one amino acid to the other. This is known as the 

evolutionary distance between two amino acids. Dayhoff et al. used this principle to 

develop a series of mutation matrices3. These PAM matrices are derived from the 

assumption that evolution proceeds by way of single point mutations. Mutation 

matrices can be used to find the optimal sequence alignment, the one most likely to 

have occurred by evolution from a common ancestor rather than by chance. 

 

The BLOSUM matrix is calculated in a similar way to the Dayhoff matrix. Henikoff 

and Henikoff use sequence blocks taken from regions highly conserved between 

sequence families4. The sum of pairwise sequences for these blocks is used to 

calculate an odds matrix in similar fashion to the Dayhoff matrix. Sequences are 

clustered based on percentage identity, in order to allow differing evolutionary 

distances to be included. This results in a series of matrices equivalent to the PAM 

matrices developed by Dayhoff. BLOSUM62 is the most commonly used, the 62 

indicating it was compiled using clustering at 62% identity.  

 

1.2.1 PSI-BLAST 

One of the programs that has most revolutionised bioinformatics is PSI-BLAST 

(position specific iterated BLAST). 6 PSI-BLAST identifies homologous sequences 

from a database using BLOSUM62 matrices. It is also used to generate position 

specific scoring matrices (PSSMs). PSI-BLAST profiles are used in a number of 



 5 

sequence alignment methods and in many other areas of sequence analysis as a way of 

representing the amino acid sequence. The generation of these profiles is discussed in 

chapter 4. PSI-BLAST is an enhancement of the BLAST algorithm,7 used for 

searching protein and DNA databases for homologous sequences. BLAST uses well- 

defined sequence similarity measures in the form of PAM matrices to approximate the 

results that would be obtained using dynamic programming methods. PSI-BLAST 

improves over BLAST in both computation time and accuracy, by using sequence 

profiles to perform an iterative search of the database.  PSI-BLAST allows for the 

generation of gapped alignments, reducing the number of potential alignments that 

need to be searched for the optimal alignment. PSI-BLAST also automatically 

generates a PSSM from the significant alignments found in a given iteration and uses 

this as input for the next iteration. Profile based searches are more sensitive to distant 

homologies than pairwise based alignments. A PSSM represents the similarity and 

evolutionary distance for each amino acid in a protein relative to all of the 20 standard 

amino acids (see chapter 3 for a more detailed description and an example). The 

PSSM profiles are often used as input to other methods, e.g., as the input to a 

prediction program, since they represent an amino acid sequence in a way, which 

includes evolutionary information. The level of conservation of a group of amino 

acids is important when relating sequence to function. In this work, we use PSSMs as 

an input for prediction of both secondary structure and real value dihedral angles 

(Chapter 3). We use PSI-BLAST with multiple iterations to generate these, because of 

the ease of obtaining PSSMs from PSI-BLAST and because of the track record of the 

program being used in a similar manner. Other methods described are described 

briefly below. 
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There have been many attempts to enhance the PSI-BLAST algorithm and many 

sequence alignment programs use PSI-BLAST profiles to enhance alignments. 

HHPred8 combines PSI-BLAST with hidden markov models (HMMs). Rangwala and 

Karypis9 use PSI-BLAST as the base for an incremental alignment method based on 

sequence windows. CTX-BLAST10 incorporates a contextual alignment model into 

PSI-BLAST. Lee et al.11 tackle the problem of an increased probability of the 

introduction of false positives with each subsequent iteration of PSI-BLAST by 

introducing a ranking of hits produced from the first and last iteration. Przybylski and 

Rost12 boost the performance of PSI-BLAST using consensus sequences. We prefer 

the standard version of PSI-BLAST over these, as none of these readily outputs a 

PSSM without alteration, and not all are easily available. 

 

1.3 Protein Structure 

Sequence analysis has been used for the prediction of many different biological 

properties. It is common to use PSI-BLAST profiles to represent the protein sequence 

for prediction experiments. The goal is to determine some property of the protein from 

its amino acid sequence. Some of the most researched areas are structure prediction, 

both tertiary and secondary.  

 

Anfinsen showed that all of the information about a protein can be determined from its 

primary structure.13 The primary structure of a protein is the sequence of amino acids 

from N terminus to C terminus. The structures of the 20 amino acid types are given in 

Appendix A. There has been evidence for the contribution of environmental factors to 

protein folding and structure, and PTMs also play a role in determining the final 

structure of a protein. However, it is likely that a reasonable approximation of the 3D 
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structure of a protein in its native state can be determined from the primary structure 

with no additional information. This is, however, a calculation with too many 

permutations to be achieved ab initio. As a result of this, many less complex problems 

have been defined, to provide a bridge to predicting the complete structure. These 

include prediction of secondary structure, of dihedral angles, the prediction of surface 

accessibility of amino acid residues and prediction of residue contacts. 

 

A stepping-stone to the 3D structure is the secondary structure. This consists of a 

series of structural motifs that occur often within proteins. These can be considered as 

building blocks, which form the bulk of the protein’s structure. The secondary 

structure is most comprehensively described using the eight states assigned by the 

program DSSP14, although this is often reduced to a three state description of 

secondary structure. DSSP assigns structure based mainly on the hydrogen bonding 

patterns of a protein. These are used to assign the states of α-helix and 310-helix, β-

sheet, β-bridges, π-helices, turns and bends. 

 

Figure 1.1. An example of an α helix from the UBA domain of the protein p62.  
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An α helix (figure 1.1) is a regular helical arrangement of the amino acids held in 

place by the formation of amide to carbonyl hydrogen bonds. There are 3.6 residues 

per turn, with a rise between residues of 1.5 Å. Such helical structures can range in 

length from four amino acids to 40 or more and are sometimes amphipathic in nature. 

The helical structure can be broken (or prevented) by the inclusion of Pro, Gly, Ser or 

Thr in the sequence. Residues that encourage helix formation are Ala, Glu, Leu and 

Met.  

 

310-helices consist of three residues per turn and each hydrogen bond encloses a ring 

of ten atoms. Main chain hydrogen bonds are separated by three residues. Often 

occurring at the end of α-helices, 310-helices are less stable than α-helices, because 

the dipoles are less well aligned. This also means the packing is less energetically 

stable than that of an α-helix. In a π-helix, the hydrogen bonds are formed between 

residue i and residue i+5. This secondary structure element is a rare occurrence and 

long π-helices are not found.  

 

β-sheet (figure 1.2) takes the form of a planar arrangement of the amino acids, where 

the amino acids line up in extended conformation in stretches of five to ten residues. 

Typically the surface of this is corrugated in shape. β-sheets can be either parallel or 

anti-parallel in form.  In parallel β-sheets the direction of the amino acid chains within 

the sheet is the same throughout. These tend to have a longer distance in the sequence 

between the strands in the sheet, with long loop structures and random coil sections 

filling the gaps. Alternating direction of the amino acid backbone characterises anti-

parallel β-sheets. This form of β-sheet is often linked by short loops such as β-turns. 

An isolated pair of parallel β-sheet type structures is known as a β-bridge. 
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The loops and turns in a protein structure can take several forms. Turns are usually 

three to ten amino acids in length, and have defined structure, whereas loops are 

generally disordered in structure (i.e., random coil) and can be any length. Loop 

regions, in particular, are often of functional importance and can change conformation 

in order to facilitate binding of molecules. β-turns may be as few as three residues 

long and consist of a single hydrogen bond between two residues, which bends the 

amino acid sequence into a hairpin shape. There are several variations on the basic β-

turn and this type of structure may also be known as a bend or hairpin. Anything not 

conforming to the above structural motifs is classified as random coil. Such structures 

form a large proportion of protein structures. 

 

 

Figure 1.2. The hydrogen bonding pattern of an anti-parallel β-sheet. Dashed lines are 
hydrogen bonds and the arrows indicate the direction of the chain. (Image released 
under the creative commons licence.) 
 

The supra-secondary structure of a protein is a further progression towards the 3D 

structure. Certain commonly identified structural motifs that are made up of secondary 

structure elements, such as those described above, can be the first to form when a 
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protein folds into its native structure. These include structures such as the β-barrel or 

the α-helical bundle, as well as structural motifs involving loops and both β-sheets or 

α-helices. Many such supra-secondary structure motifs have been described. 

 

The tertiary structure of a protein is its complete 3D structure. This structure is 

determined by weak interactions between amino acid residues and side chains. 

Interactions such as steric hindrance, electrostatic, hydrophobicity related interactions, 

and van der Waals interactions all play a role.  

 

1.3.1 Dihedral angles 

 

Figure 1.3. Dihedral torsion angles of the protein backbone. The location of the 
backbone dihedral torsion angles Φ, Ψ, and ω are shown by the dashed lines 
indicating rotation around a bond.  
 

Dihedral torsion angles are described by rotation around the bonds along the protein 

backbone (figure 1.3). Of the three backbone dihedral angles, ω is generally planar, 

i.e., 0° in the cis conformation and 180° in the trans conformation. This is due to the 
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delocalisation of the carbonyl π electrons and the lone pair of the nitrogen atom. The 

other backbone dihedral angles are limited by steric hindrance. In practice, only 10% 

of the available conformations of Ψ and Φ angles are observed. Ramachandran15 

examined the available conformations in a selection of proteins, treating each atom as 

a hard sphere based on its van der Waals radius and disallowing steric clashes.  

 

Figure 1.4. The Ramachandran plot. The regions are labelled with the type of 
secondary structure indicated by the angles found there. The light shaded areas 
encompass allowed angles including those of glycine. The dark shaded areas show 
angles not including glycine. 
 

This resulted in the now classic Ramachandran plot (figure 1.4). Correlating 

secondary structure with the Ramachandran plot shows that regular structures have 
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similar values of Φ and Ψ for a given structure type. From the dihedral angles it is 

possible to get an approximation of the structure of a protein. Thus, it is useful to have 

a prediction of the dihedral angles for tasks such as structure prediction (both 

secondary and tertiary). There have been many attempts to predict the secondary 

structure of a protein and, more recently, several attempts have been made to predict 

Ψ and Φ dihedral angles.  

 

1.3.2 Secondary Structure Prediction 

Elements of secondary structure were first proposed by Pauling16. Attempts to predict 

the location of the secondary structure elements have been ongoing ever since, using a 

variety of methodologies. These are too numerous for all of them to be described here. 

However, the most important are presented below with some historical perspective. 

We use secondary structure prediction in both the areas of research covered in this 

thesis. It is a major component of our work to predict dihedral angles as we 

hypothesise that using secondary structure prediction will improve the accuracy of 

dihedral angle prediction, and in chapter 4 we use secondary structure prediction to 

add extra information to the input for our glycosylation predictor.  

 

Initial attempts at secondary structure prediction centred around amino acid 

propensity. GOR17, now at version V18, in its first version only used single residue 

statistics within a sliding sequence window. The statistics are generated for residues 

within the sequence window, with the objective of predicting the state of the residue at 

the centre of the window. By sliding the window along the length of the sequence, it is 

possible to obtain predictions for the entire protein. Subsequent versions of the 

program improved by adding pairwise statistics (version II18) and information 
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theoretic methods (version III and IV18). In version V, the information theory methods 

previously employed are combined with evolutionary information via PSSMs 

obtained from PSI-BLAST. The GOR algorithm uses a combination of information 

theory and Bayesian statistics to predict secondary structure. When combined with 

PSI-BLAST, this produces an accuracy of 73.5% Q3, although this has since been 

improved upon. Q3 is the three state prediction accuracy for protein secondary 

structure (equation 1.1) 

 

€ 

Q3 =
p α( ) + p β( ) + p coil( )

N
       (1.1) 

where p  is the number of residues correctly predicted for a given secondary structure 

type and N is the total number of residues. 

 

PHD19 is a neural network based prediction method, consisting of a three level feed 

forward network. The first level of the network takes as input a multiple sequence 

alignment and assigns the central residue of a 20 amino acid sliding window to one of 

the standard three structural classes. The second level takes the output of the first as 

input and once again predicts the structure class. The input from the preceding 

network is expressed as a 17 amino acid window, with amino acids represented by 

three binary outputs describing the structure classification. A number of such 

networks were trained and the outputs were fed into the third level of the network. The 

third level represents a jury decision by arithmetic average that produces a final 

prediction for secondary structure class. This schema produces accuracy of 70% (Q3). 

 

Another neural network based method, and one of the most popular secondary 

structure prediction programs available, which is still widely used, is PSIPRED.20 
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This method uses PSSMs generated by PSI-BLAST as input for a neural network. 

This was the first method to use such profiles directly rather than compiling a 

complete multiple sequence alignment. The output of the initial feed forward neural 

network is then filtered by a second network to give the secondary structure 

prediction. This gives an accuracy of around 76%. Here we use predictions from 

PSIPRED as input for glycosylation prediction in the hope of improving accuracy (see 

chapter 4). 

 

HMMSTR21 uses HMMs for secondary structure prediction as well as other protein 

properties. The model is based on sequence structure motifs and uses a voting scheme 

to determine the final structure. The HMMs used are different in that they are not the 

typical profile HMMs used in many other models. The model uses the correlations 

between sequence structure motifs to reduce the number of parameters in the model, 

and predicts secondary structure with an accuracy of 74.3% (Q3). 

 

JNET22 uses a neural networks arrangement which is similar to that used by PHD, 

using PSSMs produced by PSI-BLAST as input. JNET predicts secondary structure 

with an accuracy of 76.4% (Q3). A different approach is taken by Pollastri et al.23 

Their program SSPro uses a bidirectional recurrent neural network for secondary 

structure prediction with PSSMs. The performance of SSPro is 77%-80% (Q3), 

dependent on the testing set used. A brute force local clustering method is proposed 

by Jiang.24 This tries to take into account long range interactions, which form a 

significant component of protein structure.25  

 

DESTRUCT26 is a neural network based method, which predicts both secondary 
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structure and dihedral angles. Initially, two neural networks are trained, one predicting 

secondary structure and one predicting the Ψ dihedral torsion angle. The output from 

each is fed into subsequent neural networks in an iterative manner; the predictions of 

Ψ are used to enhance predictions of secondary structure and visa versa. The resulting 

prediction of secondary structure is comparable in accuracy to PSIPRED. This 

prediction program will be discussed in some detail later, as it forms a basis for some 

of the work in this thesis. 

 

Montgomerie et al. developed the program proteus.27 This includes structural 

alignments as part of the prediction process, and achieves a Q3 score of 88% by 

combining the secondary structure predictors of PSIPRED, JNET and TRANSSEC27 

(TRANSSEC was developed by the authors) as a “Jury of experts”. Birzele and 

Kramer28 define a new representation of secondary structure based on frequently 

occurring patterns. The authors use this to perform a prediction with a Support Vector 

Machine (SVM) classifier, which is comparable to PSIPRED in accuracy. A more 

traditional approach to prediction using SVMs is taken by Karypis.29 Using a novel 

kernel function cascaded SVMs are trained to predict three state secondary structure 

with of 79.3%. SVM classification is an opaque method. He et al.30 use an SVM in 

combination with a decision tree to extract meaningful rules with regard to protein 

secondary structure. The SVMs average 77.6% accuracy for helix, 80.7% for sheet 

and 70% for coil. Zhong and co-authors31 use k-means clustering to divide the training 

sets into representative clusters. This allows them to use their method of clustering 

SVMs to make predictions of secondary structure, which are in the region of 80%, 

although this varies across the clusters obtained. Won et al.32 use genetic algorithms to 

evolve a HMM for secondary structure prediction. The model developed improves 
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over HMMSTR, but is still much less accurate than state of the art models for 

secondary structure prediction. Prof33 is an ensemble method consisting of multiple 

neural networks combined using simple linear discrimination and a further neural 

network. The neural networks used are based on the methods GOR and PSIPRED. 

The combined result gives an accuracy of 77% (Q3). Yao et al.34 predict secondary 

structure using a probabilistic model. The authors combine the dynamic Bayesian 

method with a neural network. This combination gives results that are comparable 

with state of the art methods.  

 

1.3.3 Prediction of dihedral angles 

The Ramachandran plot clearly shows the link between the dihedral angles and 

protein structure. Thus, it is useful to predict dihedral angles. The DESTRUCT 

method26 uses dihedral angles to improve the accuracy of secondary structure and 

predictions of secondary structure to improve the accuracy of dihedral angle 

predictions. DESTRUCT was the first server to predict real value dihedral angles, 

achieving a Pearson correlation coefficient (PCC, see chapter 2 for definition) of 0.47. 

Previously, HMMSTR21 predicted categories for dihedral angles, using HMMs in a 

manner similar to the method for predicting secondary structure described above. A 

more recent method for predicting dihedral angle regions is DHPred.35 The authors 

define dihedral angle regions H, E and O (outlier) based on the Ramachandran plot. 

Residues are classified as belonging to a particular dihedral angle region using SVMs. 

The authors employ a two level approach to classification. First, sequences 

represented by PSSMs generated by PSI-BLAST are input into the first SVM 

classifier, which outputs predictions for each of the three dihedral angle regions 

considered. Secondly, these predictions are combined with the PSSM with a sequence 
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window size of seven and used as input for the second SVM classifier, which 

produces the final predictions for the state of each residue. This results in an accuracy 

of approximately 80%, comparable to the accuracy of PSIPRED and other secondary 

predictors, a legitimate comparison given that the dihedral regions correspond to the 

three state secondary structure of proteins. DESTRUCT was primarily motivated 

towards secondary structure prediction, with the dihedral prediction having the sole 

purpose of improving secondary structure accuracy. For this reason, only the Ψ 

dihedral angles are predicted by DESTRUCT. The other dihedral angles are less 

significant with regard to the definition of secondary structure, although Φ does play 

an important role when considering the tertiary structure.  

 

Real Spine36 improves substantially upon DESTRUCT. The first version gives a 

correlation coefficient of 0.62 between predicted and actual Ψ dihedral angles. The 

authors use twin neural networks. The inputs to both networks consist of PSSM 

profiles combined with predicted secondary structure information. The two networks 

produce a consensus prediction by averaging the output of the networks. Real Spine 

also predicts relative solvent accessibility (RSA) using the same methodology. The 

prediction for RSA has a correlation coefficient of 0.74.  Real-Spine 2,37 the second 

version, substantially improves over Real Spine, using a very simple alteration. Due to 

the properties of the sigmoidal function, the neural networks of Real Spine function 

poorly with respect to predictions in the region between -36° and +36°. The dihedral 

angle distribution is shifted by a normalisation step so that there are relatively few 

angles in this region. This small adjustment improves prediction accuracy to 0.75 

(PCC). Unlike its predecessor, Real-Spine 2 does not predict RSA values. However, it 

is the first to produce real-value predictions for Φ as well as Ψ. The method employed 
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for predicting Φ is similar to that for Ψ. However, the normalisation used is different 

to allow for the differing distribution of Φ. 

 

Whilst there are limits to predictive power, it is clear that there is much scope for 

improvement in the prediction of real value dihedral angles. Such improvement would 

enable the dihedral angles to be used to accurately predict the 3D structure of proteins, 

and potentially to aid in the assignment of structure from NMR spectra. In this work 

we hypothesise that we can improve on the above prediction methods by selecting a 

new machine learning method and use secondary structure prediction to enhance the 

accuracy of the prediction method. We selected Support vector regression (SVR) for 

this purpose. A detailed discussion of the reasoning behind this is presented in 

chapters two and three. Later, we also apply the normalisation methodology of Real 

Spine to SVR.  

 

1.3.4 Hydrophobicity and Surface Accessibility 

In our work to predict glycosylation sites, we use information about both 

hydrophobicity and surface accessibility, as these are both key properties. We include 

them, as PTMs can only take place on the outside of a protein and so finding those 

residues with high surface accessibility may improve accuracy. Here, we give an 

overview of these two properties and review methods for surface accessibility 

prediction.  

 

1.3.4.1 Assignment of Hydrophobicity and Surface Accessibility 

Hydrophobicity is a defining property of protein structure. A molecule is hydrophobic 

if it is repelled by water and hydrophilic if the opposite is true, hydrophobicity is the 
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degree by which molecules are repelled by water and is a sliding scale. Amino acids 

can be divided into two groups based on their hydrophobicity i.e. whether they are 

hydrophobic or polar. Hydrophobic amino acids are more likely to be found in the 

centre of a globular protein, or in the membrane bound sections of a membrane 

protein. Polar amino acids are more likely to be found near the surface. There are 

various hydrophobicity scales,38 which rank the amino acids according to their degree 

of hydrophobicity. There are, however, instances when buried residues are polar or 

exposed residues are hydrophobic, usually due to structural considerations or because 

of the need for functionality. 

 

Another approach is to consider the surface area that is exposed to solvent whilst in a 

given protein. This is known as the accessible surface area (ASA). The solvent 

accessibility of a protein is a related quantity, which can be determined by estimating 

the number of water molecules in contact with the amino acid’s surface. This value is 

calculated from molecular coordinates by DSSP, and is known as relative solvent 

accessibility when expressed on a continuous scale normalised with respect to the 

maximum solvent accessibility of each residue.39  

 

1.3.4.2 Prediction of Solvent Accessibility 

RSA can be predicted as either a real value or projected onto a series of discrete states. 

Other methods also predict the ASA area directly. The neural network based predictor 

developed by Rost and Sander39 achieves only modest accuracy for a ten state 

prediction of RSA. The ten states are selected to give a finer grained distinction of 

RSA levels near to the protein core. The method then uses an arrangement of neural 

networks to predict RSA. The arrangement of neural networks is similar to that used 
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in PHD, described previously. 

 

The majority of methods predict solvent accessibility as a number of categories, 

although it is ideally preferable to obtain a real value, as RSA is a sliding scale. In our 

work we use real value predictions. However, we also give a brief overview of some 

categorical predictors for both historical context and completeness. Li and Pan40 use 

multiple linear regression to predict two state solvent accessibility. Yuan et al.41 

predict two state solvent accessibility using SVM classifiers. Pollastri et al42. use 

bidirectional recurrent neural networks (RBNN) to predict both solvent accessibility 

and contact number. Multiple networks are trained and evaluated by cross validation. 

RVP-NET43 uses neural networks to predict real values for solvent accessibility. This 

method gives a PCC of 0.45-0.46 depending on the test data used. Kim and Park44 

predict relative solvent accessibility as both a two and three state classification, 

employing various thresholds. SVM predictions are combined by the use of a directed 

acyclic graph based scheme. The resulting method, PsiSVM, produces an accuracy of 

78% for two state prediction. Wang et al.45 use multiple linear regression to predict 

real values for solvent accessibility. The sequences are represented by PSSMs and 

prediction is comparable to other methods.  

 

Multiple linear regression is also employed by Qin et al.46 for the prediction of both 

solvent accessibility and secondary structure. QBES47 presents a substantially 

different approach to predicting solvent accessibility. The authors use quadratic 

programming as a means of minimising a simple energy function. Gianese and 

Pascarella48 employ a consensus method comprising the predictors JPRED, AccPro 

and PP.49 PP was produced by Gianese et al.49 and uses profiles of conditional 
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probabilities to perform its task. The three predictors are combined using a state 

mapping approach to two state RSA prediction to produce the consensus. SVM 

Cabins50 integrates the two approaches of classification and regression to improve the 

accuracy of solvent accessibility prediction.  

 

SABLE51 is a method based on neural networks for regression in order to predict real 

values for RSA. The method is trained on a large non-redundant dataset derived from 

Pfam52. The sequences are represented using PSSMs extracted from PSI-BLAST. The 

authors test both feed forward and Elman53 networks for prediction. The final 

predictor achieves a correlation coefficient of 0.66. We chose to use SABLE in this 

work for several reasons. Firstly, it is both freely available and open source allowing 

ease of use and integration with our existing software, whilst being reasonably 

accurate in predicting real values for solvent accessibility. Although more accurate 

methods exist, they were not easily available for use. 

 

1.4 Post Translational Modification 

Proteins are synthesised in the body by way of transcription and translation, before 

folding into their final structure. All proteins start out as a DNA sequence. This is 

transcribed into messenger RNA. In the case of eukaryotic organisms, the sequence 

undergoes RNA splicing, which can alter the order of exons to produce novel 

products. Introns are removed during this process. The messenger RNA is transformed 

into protein sequence by the ribosome, transfer RNA brings the appropriate amino 

acids to the ribosome and adenosinetriphosphate (ATP) is consumed to bind together 

the amino acids using the messenger RNA code as a template. The protein folds into 

its final structure, either in the cytosol or is transferred to the endoplasmic reticulum 
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(ER). Many proteins require chaperones to fold into the final structure. These 

chaperone proteins are also involved in a quality control process to ensure correct 

folding.  

 

After proteins are created in the body they can undergo a variety of modifications 

essential for the correct folding and functionality of the protein54.  There are over a 

hundred types of PTM, but some of the most common are briefly discussed below. 

These modifications can be either transient or permanent and often confer function on 

the protein in question. They occur across the entire spectrum of life. These 

modifications can be classified by the molecule added during the modification. There 

are also PTMs involving protein cleavage by proteases. However, it is beyond the 

scope of this thesis to discuss these here. The most common types of PTM are 

phosphorylation, acylation, alkylation, glycosylation, and oxidation, although there 

are many others. In this work we focus on the prediction of glycosylation sites from 

sequence with some additional work aimed at understanding the models that generate 

these predictions. Our hypothesis is that even where no consensus sequence motif 

exists there will be certain amino acids that favour glycosylation. So for this reason 

we use information on the pairs of amino acids surrounding glycosylation sites with 

the hypothesis that this will lead to a higher accuracy of glycosylation prediction.  

 

1.4.1 Post Translational Modification Overview  

Here we give a brief overview of some common types of PTM before going on to give 

a more extensive overview of glycosylation. Phosphorylation54,55 occurs upon the 

addition of a phosphate group to either Ser, Thr or Tyr. This particular modification is 

important for regulating cell processes and for signalling both within and between 
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cells. Some phosphorylation sites are transitive yin yang sites. In such cases the site 

can either be phosphorylated or glycosylated, depending on the physiological 

conditions and the environment of the protein. Such sites are often important as 

regulatory elements in the cell cycle and in signalling processes. As such, the 

functions and regulation of phosphorylation and cytoplasmic O-glycosylation are 

intricately linked. Acylation encompasses the addition of fatty acid chains of length 

C2, C14, C16, and the 8kDa chain of ubiquitin. Acetylation56 is the addition of multiple 

lysine residues to the histone terminus. In myristoylation57 a mirosyl group is added 

via glycine to the protein and effects the movement of the protein towards membrane 

interfaces. In palmitoylation58 the acyl group is transferred to the thiolate chain of 

cystine. This modification is also involved in the membrane anchoring of proteins. 

Ubiquitylation59 involves the carboxyl terminus of the protein ubiquitin being added 

to lysine.  This is either added as a single molecule (mono-ubiquitylation) or as the 

stepwise addition of multiple ubiquitin segments. Poly and mono-ubiquitylation both 

are involved with the direction of proteins to new locations within the cell. Alkylation 

involves the addition of alkyl substituents of varying size to several different amino 

acids. N-linked methylation60 of Lys and Arg in histones is an important part of the 

transcriptional regulation cycle complementing acylation. Protein S-Prenylation61: C15 

and C20 lipid groups can be added to protein, e.g. in the Ras family of proteins. 

Disulfide bridges62 are formed by the oxidation of the thiolate side chain of cysteine. 

These modifications are important in linking protein chains and providing stability in 

protein structure. 

 

1.4.2 Glycosylation 

Glycosylation63 involves the addition of highly complex carbohydrate chains to 
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protein at either Asn, Ser or Thr residues and occasionally at Cys. As prediction of 

glycosylation sites is a major subject of this thesis, we discuss in detail the types of 

glycosylation after giving an overview of carbohydrate chemistry, and the methods for 

prediction of glycosylation sites currently available. 

 

1.4.3 Structure of Glycans 

1.4.3.1 Carbohydrates 

Carbohydrates are chains of monosaccharides that fulfil a wide variety of functions. In 

the context of PTM, oligosaccharides are added to protein under various conditions. 

Oligosaccharides are usually taken to be chains of between two and ten 

monosaccharides of varying composition. They are often branched and vary greatly in 

composition. Polysaccharides are large molecules that are polymers of repeating sugar 

motifs, either repeated mono- or disaccharides or a more complicated arrangement.  

 

1.4.3.2 Monosaccharides 

Monosaccharides are of the form Cx(H2O)n. They possess a carbonyl group, either an 

aldehyde or a ketone; n ranges from three to nine. All monosaccharides, except 

dihydroxy acetone, are chiral about at least one carbon atom. The carbon atoms are 

numbered as per standard organic chemistry rules and monosaccharides are almost 

always cyclical in form. There are many monosaccharides, which can be conscripted 

to make up the oligosaccharides encountered in glycosylation. Some of these sugars 

only occur in plants or in prokaryotes. The most common found in vertebrate 

glycosylation66 are D-Glucose (Glc), N-Acetyl-D-Glucosamine (GlcNAc), D-

Galactose (Gal), N-Acetyl-D-galactosamine (GalNAc), D-Mannose (Man), D-Xylose 

(Xyl), D-Glucoronic Acid (GluA), L-Fucose (Fuc) and N-Acetylneuraminic acid 
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(NeuAc, also known as sialic acid). 

 

1.4.3.3 Glycosidic linkages 

The monosaccharides are linked together by two possible types of glycosidic linkage 

α and β. These linkages can also occur between various different carbon atoms. The 

type of linkage is labelled corresponding to the numbers of the carbon atoms 

concerned.  β1-4 and β1-6 linkages are particularly common. The variety of linkages 

between the monosaccharides, and the potential for branching of the oligosaccharide 

chains, account for the large number of potential oligosaccharide structures, of which 

nature only uses a small fraction. The glycosidic linkage is very flexible and allows 

for the formation of multiple conformations of glycan, whilst maintaining the rigidity 

of the constituent sugars, which tend to be relatively rigid.  

 

1.4.3.4 Oligosaccharides 

Oligosaccharides are the most common addition in glycosylation. They are polymers 

of varying composition of monosaccharides, ranging from two to 30 monomers. 

Oligosaccharides can be named with respect to the number of monosaccharides they 

comprise: disaccharide for two, trisaccharide for three, etc. These polymers have a 

reducing and non-reducing terminus, in much the same way that proteins have amino 

and carboxy termini. The reducing end has an available anomeric centre when in free 

form and is referred to in this way after the attachment to a hydroxy group, e.g., in 

glycosylation. It is possible for an oligosaccharide to have no reducing end, e.g., 

sucrose, which has its glycosidic linkage between the two anomeric centres and thus 

has no reducing end.  
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Figure 1.5. Glycosyltransferase A. Generated from the PDB structure using PyMol. 
The secondary structure is shown in ribbon form with the surface of the protein 
projected over it. Colours of the surface show the charge distribution of the amino 
acids on the surface. Green is neutral, red is hydrophobic and blue hydrophilic. 
 

1.4.4 Glycosyltransferases 

This large family of enzymes64 is responsible for initiating glycosylation and for 

elongating glycan chains. Since the substrate specificity of such enzymes is essential 

to the prediction of glycosylation sites, we briefly review them here. The substrates of 

these enzymes are varied, but all have in common the transfer of glycans, either 

monosaccharide or oligosaccharide, to a new substrate. Most of these enzymes are 
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concerned with chain elongation and in this case the substrate is another glycan. 

However, receptor substrates can be lipids, peptides, small molecules or DNA. The 

donor substrates are also varied, for example, dolichol and other lipids. In general, the 

specificity of glycosyltransferases is such that one enzyme catalyses the formation of 

one glycosidic linkage e.g. glycosyl transferase A (figure 1.5). However, in several 

cases multiple enzymes catalyse formation of the same glycosidic linkage. Examples 

of this are the fucosyltransferases III-VIII, which catalyse the same alpha 1-3 linkage 

to attach fucose to N-acetyllactoseamine65. There are also rare cases where a single 

enzyme is capable of forming more than one type of glycosidic linkage, e.g., the case 

of fucosyltransferase III that can catalyse formation of alpha 1-3 linkages as well as 

alpha 1-4 linkages. There are also enzymes, which have more than one active site. 

 

1.4.5 N-Linked Glycosylation 

 In this thesis, one of the major objectives is prediction of both types of glycosylation 

site: N-linked and O-linked. Here and in the following sections we introduce both in 

some detail. This provides some context to our work and highlights the significance of 

the modifications. N-linked glycosylation62,55 is the addition of an oligosaccharide to 

Asn. This occurs at the consensus sequence Asn Xxx Ser/Thr,55 where the Xxx is 

anything except Pro. This sequence is necessary, but not sufficient, for glycosylation.  

N-linked glycosylation takes place co-translationally in the lumen of the ER. Initially, 

the glycan is pre-assembled on a lipid dolichol molecule55, which acts as a scaffold. 

This molecule is synthesised on the inner surface of the membrane of the ER, 

beginning with the transfer of GlcNAc-P to the lipid-like precursor Dolichol-P. 14 

sugars are added to dolichol. Oligosaccharyltransferase attaches this glycan precursor 

molecule to Asn. The transfer to Asn takes place at the consensus sequence found in a 
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protein which is undergoing synthesis and transport through the membrane into the 

lumen of the ER. Oligosaccharyltransferase is a multi-subunit protein complex, which 

is embedded in the ER membrane. The glycan precursor is transferred to Asn as the 

protein emerges into the lumen of the ER55. 

 

Within the lumen of the ER the oligosaccharide is trimmed of some of its constituent 

monosaccharides66 (figure 1.6). Glucosidase I and II remove the first two Glc 

residues. Subsequently, a mannose residue is removed by alpha-mannosidase. This 

appears to be an important control step for the folding process of the protein with the 

assistance of chaperone proteins. The oligosaccharides assist in keeping the protein in 

solution during and after the folding process, thereby, indirectly assisting the function 

of the chaperone proteins. The chaperones are known to bind to specific points on the 

immature glycan, thus targeting incorrectly folded proteins for degradation. Once in 

the Golgi body, alpha mannosidase removes up to a further four mannose residues66, 

leaving Man5GlcNAc2.  This structure forms the basis for all other N-linked glycan 

chains. There are often some glycans that escape some of these precursor steps. 

Figure 1.6. The synthesis and maturation of N-glycans. Green residues represent 
mannose, purple rectangles are other sugars of unspecified identity, amino acids are 
shown by blue triangles and the large yellow rectangle is a lipid dolichol molecule. 
 

These are expressed as oligomannose, and cannot form complex or hybrid glycan 

types. The trimming of glycan precursors only occurs in multi-cellular organisms. In 
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yeast, for example, extra mannose residues are added to the glycan where in multi-

cellular organisms they would be removed. 

 

There are several types of glycan that can be constructed in the Golgi body. The Golgi 

body contains many specific glycosidases and glycosyltransferases capable of adding 

or removing different sugars to produce high mannose, hybrid or complex glycan 

types. All N-linked glycans have a trimannosyl core structure (Man3GlcNAc2). This is 

the base for many types of linear or branched oligosaccharide. High mannose type 

oligosaccharides contain between five and nine mannose residues attached to the 

GlcNAc residues within the trimannosyl core structure.  The complex oligosaccharide 

type does not contain any mannose residues outside of the core structure.  

Characteristically complex glycans have a disaccharide GlcNAc(beta1-4)Gal attached 

to the trimannosyl core. This may be a repeating unit or the base for the build up of a 

complex structure with two, three or four branches. These structures are produced by 

the stepwise addition of monosaccharides by various glycosyltransferases. Hybrid 

oligosaccharides possess features of both complex and high mannose type 

oligosaccharides. 

 

1.4.5.1 Function of N-glycans 

As well as assisting in the protein folding process67, N-linked glycans have a number 

of well documented functions54,68.  They have other structural roles in maintaining the 

conformations of proteins in the appropriate state, as well as preventing non-specific 

interactions and assisting in the orientation of cell surface molecules. N-linked glycans 

are important as cell adhesion molecules and for protein signalling, e.g., blood group 

determinants are oligosaccharides, which can either be N-linked or O-linked glycans.  
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They also play a role in the serum clearance of proteins. 

 

1.4.6 O-Linked Glycosylation 

There are several types of O-linked glycosylation, characterised by the glycan binding 

to an oxygen atom with an alpha glycosidic linkage. We discuss the common types 

and their function concentrating on mucin type glycosylation, which is central to the 

section of this work on predicting glycosylation.  

 

1.4.6.1 O-GalNAc or mucin type modification 

Mucin type glycoproteins63,64,69 are usually large molecules (typically greater than 

200kDa), which are heavily glycosylated at clusters of Ser and Thr residues, to the 

extent that one in three amino acids may be glycosylated. The glycan chains that are 

added to these proteins are varied in composition and structure.  These proteins exhibit 

regions of tandem repeats of variable length70. These contain numerous glycosylation 

sites and are usually replete with Pro residues, which encourage glycosylation64. 

Mucin glycoproteins are often secreted or embedded in the membrane. Membrane 

based glycoproteins mediate cellular adhesion and are involved in cellular signalling. 

Secreted mucins contribute to the mucosal defences of the body, and are one of the 

key ingredients in mucosal secretions, giving them their viscosity. O-linked glycans 

are synthesised in the Golgi body. The synthesis consists of the stepwise addition of 

monosaccharides to the oligosaccharide chain by glycosyltransferases. There is no 

trimming and reassembly of the glycan after synthesis unlike N-linked glycans. Whilst 

O-linked glycans can be long and complex structured oligosaccharides, they can also 

be short and relatively simple. Most commonly, the monosaccharides GalNAc, 

GlcNAc, Gal, Fuc, and sialic acid are found in O-linked glycans, although others have 



 31 

been observed. In contrast to N-linked glycans, O-linked oligosaccharides have less 

branching in the structure, being based on a biantennary (two branched) core. O-

glycans may be classified by the core structure, which falls into one of eight types (see 

figure 1.7). The synthesis of all mucin type glycans begins with the attachment of 

GalNAc to either Ser or Thr. This is catalysed by polypeptide-N-acetyl-

galactosaminyltransferase. This produces the Tn epitope GalNAcα1-Ser/Thr. This can 

then be sialylated by α-2,6-sialyltransferase to give sial Tn. This disaccharide cannot 

be extended further. Alternatively the GalNAc can be extended to form one of the 

core glycan structures detailed above63. The core structures may be elongated by the 

further addition of monosaccharides, or the core can be substituted for by a terminal 

monosaccharide, e.g. Fuc or sialic acid.  

 

 

Figure 1.7. The four most common O-Glycan core structures. Symbols follow 
standard conventions as in reference 66. Here yellow circles are Galactose, yellow 
squares are GalNAc, and blue squares are GlcNAc. 
 



 32 

The different core structures tend to be expressed in different structures in different 

concentrations. The core glycans can be further built upon to synthesize complex 

glycans of varying structure. 

 

1.4.6.2 Functions of O-linked mucin glycans  

Mucin type O-linked oligosaccharides have been implicated in a wide range of 

functions71. They take a role in the protection of the body against disease. Mucins are 

produced at biological membranes. The physical properties of these molecules enable 

them to protect the underlying epithelial cells from infection by bacteria and from 

extreme environments, e.g., the acidic conditions in the stomach. They provide 

lubrication, e.g., in the respiratory tract, and act as anti-adhesins, keeping lumen 

opposing surfaces from sticking together.  Mucin glycans are ligands for selectins, 

mediating the leukocyte homing during the inflammatory response. Mucins can also 

act as an antifreeze.  

 

Mucins play an important role in bacterial adhesion. Many pathogenic bacteria bind to 

O-linked oligosaccharides. Thus, this can hinder or occasionally enhance infection. 

Some species of gut bacteria use mucin proteins as a sole energy source. O-linked 

glycans also play an important role in sperm-egg recognition and binding. O-linked 

oligosaccharides are also carried by several types of haemopoietic and immune system 

cells. They prevent the agglutination of leukocytes both to themselves and to 

endothelial cells. There are dramatic changes to the glycosylation of T cells during 

maturation and activation, and oligosaccharides play a role in the interactions between 

T-cells and B-lymphocytes. Many less common O-glycan modifications also occur 

within the ER and Golgi.  O-mannosylation is a common type of glycosylation in the 
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brain of mammals and important for binding laminin to the extra-cellular matrix. 

Alpha linked mannosylation is a common glycosylation of proteins. Initially mannose 

is added to Ser/Thr by a mannosyltransferase, which is unique to this pathway, as are 

the subsequent N-acetylglucosaminyltransferases.  

 

1.4.7 Glycosylation of cytosolic and nuclear proteins 

Cytoplasmic and nuclear proteins often undergo multiple additions of β-O-GlcNAc72. 

In addition to mucin glycosylation, we also included cytosolic and nuclear 

glycosylation sites in our prediction experiments. So we review their structure and 

function here, to show the benefit of their prediction. These molecules are added as 

lone monosaccharides, with no further elongation. This type of modification is present 

across a wide variety of species, including almost all eukaryotes and protozoa, as well 

as fungi, plants and animals. The modification also occurs on viral proteins. These 

proteins are often also phosphorylated, and this modification has factors in common 

with phosphorylation. The O-GlcNAc modifications often occur at sites similar to 

those modified by phosphokinases and O-GlcNAc modifications are reversible. The 

composition of occupied GlcNAc sites on a given set of proteins is dynamically 

changing in response to cell signalling and the various stages of the cell cycle. The 

interplay between phosphorylation and glycosylation is important in many of the 

regulatory processes in the cell. 

 

The modification of proteins with O-GlcNAc occurs post translationally and is carried 

out by the highly conserved enzyme β-N-acetylglucosaminyltransferase, which is 

itself glycosylated and phosphorylated, probably to regulate its activity. This enzyme 

occurs in most species and has 85% homology across species. O-GlcNAc 
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glycosylation is necessary for survival, even at the level of a single cell. The possible 

functions of this modification are varied and not well characterised. O-GlcNAc 

modification is vital to the function of nucleoporin proteins that mediate the transport 

of macromolecules in and out of the nucleus via the nuclear transport complex. The 

O-GlcNAc modification is essential for the recognition of nuclear transport signals, 

and pores deficient in GlcNAc are structurally defective. 

 

O-GlcNAc is also associated with chromatin. The labelling of regions of chromatin 

with GlcNAc plays a functional role in transcription, with a dramatic reduction in O-

GlcNAc modifications occurring in regions undergoing active transcription.  

Glycosylation also has importance in regulating translation in association with 

phosphorylation. O-GlcNAc is also important for the modification of structural 

proteins in the cytoskeleton. Due to the significance of O-GlcNAc involvement in cell 

process regulation, malfunction of this modification is causative in a number of 

disease states.  The disruption of glycosylation and phosphorylation may be relevant 

in malignancies. The dysfunction of O-GlcNAc is also implemented in many 

neurodegenerative diseases and type 2 diabetes. Nuclear and cytoplasmic proteins are 

also modified with complex glycans.  Whilst further research and analysis is still 

required, the existence of these complex glycans is suggested in numerous studies.64 

Other types of glycosylation, such as glycophosphatydilinositol anchors and 

proteoglycans, are not predicted by our glycosylation program and, thus, are not 

covered here. 

 

1.4.8 Prediction of Glycosylation 

 Experimental methods of determining glycosylation include mass spectrometry 
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analysis with lectins (glycan binding proteins), NMR analysis, and, more recently, 

methods involving 2D gel electrophoresis and other methods analogous to those used 

in proteomics. The mass study of the change in expression of glycans in a cell in 

health and disease is known as glycomics.  These methods are expensive, difficult and 

time consuming. It is useful to use computational prediction of the location of 

glycosylation sites to reduce the experimental effort required to determine the 

glycosylation sites in a protein and also to understand the glycosylation process itself.  

 

1.4.8.1 Previous methods 

Several prediction methods have been published previously. We give a brief overview 

of these methods here. Prediction of glycosylation sites from sequence information 

has traditionally centred around neural network methods. NetOglyc64 predicts mucin 

type O-linked glycosylation sites from sequence using a neural network trained on the 

OGLYCBASE73 dataset. The authors test numerous representations of the amino acid 

sequence and find the best results are obtained with a PSSM representation. This is 

used to train a two layer feed forward neural network. This was superseded by Li et 

al.74 who use SVMs to predict the glycosylation sites. The authors develop an 

independent dataset from uniprot75, where positive sites are chosen based on uniprot 

annotations, and negative sites are chosen at random. Three SVM models are trained 

based on different combinations of sequence information and information concerning 

the properties of the amino acids. Li et al. produce a significant improvement over 

NetOglyc. Two more recent methods were published during the completion of this 

work. Carega et al.76 have used an SVM ensemble based method to predict O- and N-

linked glycosylation and C-mannosylation. Each SVM in the ensemble is a trained on 

a balanced subset of the training data, the predictions being obtained from the 
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combined outputs of the SVM classifiers. This method improves over previous 

methods. CKSAAP77 uses k spaced amino acid pairs as input information to predict O-

linked glycosylation sites. This is similar to our method, which is presented in chapter 

4. Pairwise patterns were used to train an SVM model on a dataset taken from the 

Swiss prot database78. The combination of Ser and Thr sites in the training set 

produced slightly better predictions than when separate training sets were used for 

each type of prediction. This may be due to the increase in training set size, but could 

possibly be due to similarities in the features of Ser and Thr glycosylation sites.  

 

1.4.8.2 Motivation and Objectives for New Predictive Methods 

There is still opportunity for improvement in the prediction of glycosylation sites. 

There is a limit on the accuracy that is attainable, due to the possibility of both 

undiscovered sites and various errors, both in the prediction and experimental data, 

that cannot be eliminated. However, the theoretical threshold has not yet been 

reached. It is for this reason that we pursue an improved prediction method by using 

pairwise patterns with a novel machine learning method. Another aspect to this work 

is that the methods produced up until now have been black box methods. This means 

their decision processes are hidden from the user. We seek to remedy this and to 

provide some biological comprehension of the prediction model produced by random 

forest. 

  

1.5 Thesis Overview 

In chapter two, a discussion is presented of the machine learning algorithms and 

statistical methods used in chapters three and four. We give an overview of the 

methods we will be using, along with some background and the reasons for choosing 
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these methods. In chapter three, the relationship between dihedral angles and 

secondary structure of proteins is explored. After producing a secondary structure 

predictor with the idea of using this information to improve dihedral angle predictions, 

we concentrate on the prediction of Φ and Ψ dihedral angles using SVR, both with 

and without the prediction of secondary structure. Our hypothesis here is that SVR, a 

machine learning algorithm as yet untried for dihedral angle prediction, will offer  

improvement in accuracy. We also hypothesise that predicted secondary structure 

information will improve the predictions still further. Chapter 4 is concerned with 

techniques to improve the accuracy of glycosylation prediction, by using random 

forests combined with pairwise pattern information, and with the extraction of 

biologically meaningful rules from the random forest. We reason that it is likely that 

the amino acids have dominant influence over which residues are glycosylated even in 

the absence of a consensus sequence. Therefore, we generate pairwise patterns and use 

them to generate information about whether a given residue is likely to be 

glycosylated with the hypothesis that this will improve prediction accuracy when 

combined with a machine learning algorithm. For our machine learning algorithm we 

choose random forest, which has not been used before for predicting glycosylation 

sites, but has a good track record of sequence based prediction. The hypothesis is that 

this will improve prediction accuracy. Our conclusions are offered for consideration in 

chapter 5. 
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Chapter 2: Machine learning algorithms 

2.1 Introduction 

The choice of machine learning algorithms that could be used to solve the 

bioinformatics problems outlined in chapter 1 is vast. In this chapter, we give some 

background to the machine learning algorithms used in the thesis and outline the 

algorithms themselves. We begin by defining the basic problems of classification and 

regression. We move on to introduce decision trees, which form an integral part of 

two of the machine learning methods used in this thesis. After this we introduce SVR 

and finally the rule extraction method trepan. Random forest is an ensemble method, 

which uses a group of decision trees to perform classification. It is used extensively to 

predict glycosylation sites in chapter 4. It was selected as a method as yet untried for 

the prediction of glycosylation sites, which promised to be good for classification 

based on sequence data. Our approach of using pairwise patterns requires the forest to 

be able to handle mixed data, which it indeed does. For these reasons we hypothesise 

that the use of random forest with pairwise pattern information will give better 

accuracy over the state of the art. Another reason for its selection was the possibility 

of parallelisation of the method, perhaps with each tree on a different processor, 

although in practice an ensemble of forests was used with each forest trained on a 

different cluster node.  

 

Kernel machine learning methods and, in particular, SVM algorithms for regression 

are used in chapter 3 of this thesis for prediction of protein backbone dihedral torsion 

angles from the amino acid sequence. Here we introduce both SVM for classification 

and regression. One leads naturally on to the other and indeed it is hard to understand 

one without the other. We chose to use real value, rather than categorical, prediction. 
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Categorical predictions are limited to a hard margin of classification between a 

relatively small number of divisions, which typically mirror secondary structure types. 

In contrast, dihedral angles are flexible throughout a wide range of values, and it is 

valuable to find as close to the real value as possible for use in 3D structure 

prediction. This also allows for regions of the protein, which do not have a well-

defined structure, and may not be well predicted by a secondary structure based 

assignment of dihedral angle categories. Having selected regression, it became 

necessary to choose a method for performing that regression that was both untried for 

dihedral angle prediction, and had the potential to improve accuracy. Previous 

methods all use neural networks. SVR has been shown to have comparable or better 

accuracy to neural networks, and had not been tested for prediction of dihedral angles. 

Therefore, we hypothesised that SVR will improve the accuracy of prediction of 

dihedral angles over the state of the art. 

 

Returning to chapter 4, the random forests method is a black box method and its 

decision process is not human interpretable. It is beneficial to view the decision 

making process of a machine learning algorithm for two reasons. Firstly, meaningful 

biological rules can be extracted from the decisions made by the algorithm. Such rules 

may be testable experimentally and may yield previously undiscovered biological 

principles. The second reason is that any mistakes which are reducing the accuracy of 

the machine learning algorithm may be highlighted, allowing for future improvement. 

For this purpose we selected trepan. Trepan was chosen as an algorithm which can 

easily be connected to the random forest in order to interpret its decision process. The 

trepan algorithm produces a decision tree based on the training data and the 

predictions of the random forest, thus giving a clear set of rules from which the 
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predictions can be interpreted.  

 

2.2 Classification 

There are many different types of machine learning algorithm used for data mining 

and bioinformatics, but all have the same basic premise of using a set of known 

examples to obtain information about new data or new information from existing data. 

The known examples are usually referred to as the training set. The model may be 

evaluated with a test set of unlabelled or unknown instances. Examples are often 

represented as a vector containing features that describe a given example or instance. 

The data can either be labelled or unlabelled. 

 

Machine learning algorithms can be divided into supervised and unsupervised 

learning1. Supervised learning typically consists of relating a series of attributes of the 

data to a specific class or numerical value known as a label of that specific instance. 

This relationship is termed the model and such methods are often called prediction 

methods. Unsupervised learning, in contrast, refers to methods that group instances 

without any reference to a pre-specified label. This area covers methods such as 

clustering. Supervised learning methods include, amongst others, decision trees, 

neural networks, and SVR. Supervised learning methods can further be divided into 

classification and regression methods. Classification methods fit each instance to a 

series of discrete classes based on a model derived from known examples. Regression, 

in contrast, fits the data to a real value distribution.  

 

Classification is an extension of concept learning1, whereby a set of examples is used 

to learn the general definition for a concept. A concept is defined as a category or 
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description, e.g., of an object or a set of objects such as the concept of an animal. 

Within concept learning a possible goal could be to learn what constitutes an animal, 

by learning from features present in a selection of creatures. Concept learning is 

restricted to a function mapping the set of possible examples to the Boolean set {True, 

False}. Classification is not restricted to the Boolean set, and maps the set of possible 

examples for a given problem to a predefined set of class labels. Equations in this 

section and the sections up until section 2.4 are adapted from reference 2, unless 

otherwise stated. 

  

For a training set S consisting of attributes A={a1, a2, a3, a4....an} and a target attribute 

Y from an unknown fixed distribution D over the labelled instance space, the goal is to 

induce a classifier, which has the minimum generalisation error. The generalisation 

error,2 E, is the rate of misclassification over the distribution D defined for nominal 

attributes: 

 

€ 

E(DT (S),D) = D(x,y) ⋅L(y,DT (S)(x))
x,y∈U
∑     (2.1) 

 

where U is the labelled instance space, defined as the Cartesian product of all input 

attribute domains and the target attribute domain. DT(S) is the decision tree for 

training set S. L is the zero one loss function2: 

 

 

€ 

L(y,DT (S)(x)) =
0 if y =DT (S)(x)
1if y≠ DT (S)(x)
 
 
 

 
 
 

     (2.2) 

 

The sum operator is replaced with integration for numeric attributes. 
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2.3 Decision trees 

Decision trees2 are one type of machine learning technique used most commonly for 

classification, although their use as a regression method is also possible. For the 

purposes of this work, we shall focus on decision trees used for classification, or 

classification trees. Classification trees are predictive models, which have been used 

in a variety of fields. The classification tree divides the data among a series of classes 

based on a number of decisions. Each decision is carried out based on one or more 

rules, such as whether a specific amino acid is present or not. 

 

A decision tree is structured hierarchically (figure 2.1). A decision tree is made up of a 

number of nodes, paths and leaves.  

 

Figure 2.1. A general schematic of a simple decision tree. Here nodes are numbered 
and split the data according to some rule. A leaf node designates the class, either A or 
B. The root node is the starting point of the decision tree and performs the intitial split 
of the data. Paths between nodes are shown as unbroken lines. 
 

Each of the nodes in the tree has a number of possible paths leaving it, which either 

join to other nodes further down the tree known as child nodes, or to a leaf node, 

which is a node assigning a specific class to an instance. The first node in the tree is 

known as the root node. Instances are classified as one of the designated classes by 
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sequentially following a path through the tree based on the attributes of the data in 

relation to the rules at each node, until a leaf node is reached, when the data is labelled 

as belonging to the corresponding class. 

 

2.3.1 Decision tree induction 

An inducer is an algorithm, which is used to create a decision tree from a set of 

examples known as training data. Each instance of the training data is represented as a 

vector of attributes labelled with a classification. The inducer takes the training data 

and forms a model that describes the relationship between the attributes and labels of 

the data. Construction of the decision tree begins at the root node. At each new node 

in the tree the data is divided based upon the features of the data. This process is 

continued iteratively until one of the stopping criteria is reached (see later). There are 

many ways to find the optimal split in the data at each node. These include both 

univariate and multivariate splitting criteria. Univariate splitting criteria are dependent 

on one attribute of the data. Thus, univariate decision tree inducers are concerned with 

identifying the best attribute with which to split the data. The approaches can be 

classified into criteria based on impurity, with or without normalisation, binary 

criteria, and those criteria based on information or distance.  

 

2.3.2 Splitting Criteria 

2.3.2.1 Impurity based criteria 

One of the aspects of a decision tree, which is important for choosing a decision tree 

algorithm is the method used at each node to decide where to split the data in order to 

share it between the two child nodes. Here we give an overview of some of the basic 

types of splitting criteria along with some examples, which are relevant to the methods 
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used in this thesis. In the next section, we will introduce some common decision tree 

algorithms the principles of which are relevant to the trepan algorithm described later 

in this chapter and used in chapter 4 for rule extraction. After introducing some 

example decision trees, we see how they can be grouped into ensembles, before 

introducing random forest, one of the principal methods used in this work.  

 

The splitting of the data at a given node in the tree can be chosen based on the purity 

of information obtained by the split. If the split is completely pure, then the measure is 

1 and 0 if all the components are equally distributed (i.e. if the split is arbitrary). 

Information gain3 uses entropy as a measure of the impurity in the data. Given a 

training set S with discrete attributes a1…i, a target attribute y with possible outcomes 

c1…i and σ is a selection of attributes chosen from S, the information gain is calculated 

as: 

 

€ 

InformationGain ai,S( ) = Entropy y,S( ) −
σ ai = vi , j

S

S
⋅ Entropy y,σ ai = vi , j

S( )
vi , j ∈dom ai( )
∑   (2.3) 

where: 

€ 

Entropy y,S( ) = −
σ y= c j

S

S
⋅ log2

σ y= c j
S

Sc j ∈dom y( )
∑      (2.4) 

 

The Gini index2 takes as its impurity measure the divergence between the target 

attributes.  

 

€ 

Gini y,S( ) =1−
σ y= c j

S

S

 

 

 
 

 

 

 
 

2

c j ∈dom y( )
∑        (2.5) 
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This leads to an evaluation criterion for the selection of the best attribute ai on which 

to split the data, which is: 

 

€ 

GiniGain ai,S( ) =Gini y,S( ) −
vi , j ∈dom ai( )
∑

σ ai = vi , j
S

S
⋅Gini y,σ ai = vi , j

S( )   (2.6) 

 

The Gini index is used in the CART method described below and is also related to the 

method employed by trepan. The nature of impurity based criteria means that they 

favour attribute domains with a large number of values. This bias can reduce the 

accuracy of a decision tree, as an attribute with many values will show the highest 

information gain, when in fact it may not give the greatest accuracy. Thus, it is useful 

to normalise the impurity measure. Normalising the information gain4 as follows gives 

rise to the gain ratio: 

 

€ 

GainRatio ai,S( ) =
InformationGain ai,S( )

Entropy ai,S( )
     (2.7) 

 

The attribute with the best ratio gain is selected. This measure can unduly favour 

attributes with a very small denominator. So it has been suggested that a two stage 

approach is used where first the information gain is calculated for all attributes 

allowing consideration of only those attributes that have better than or equal 

performance to the mean information gain, and thus allowing selection of the best gain 

ratio. The gain ratio is used as part of the splitting algorithm of trepan described in 

section 2.6.2.3 below. 
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2.3.2.2 Binary Criteria 

These criteria are designed for binary decision trees and are based on the division of 

the attribute into two sub domains. The twoing criterion5 is an equivalent of the Gini 

index for binary decision trees. It can be employed when the attribute domains are 

relatively wide and the Gini index would be inappropriate. It is defined as: 

 

€ 

twoing ai,dom1 ai( ),dom2 ai( ),S( ) =

0.25 ⋅
σ ai ∈dom1 ai( )S

S
⋅
σ ai ∈dom2 ai( )S

S
⋅

σ ai ∈dom1 ai( )ANDy= c j
S

σ ai ∈dom1 ai( )S

−
ci ∈dom y( )
∑

σ ai ∈dom2 ai( )ANDy= c j
S

σ ai ∈dom2 ai( )S

 

 

 
 

 

 

 
 

2
 

(2.8) 

  

where dom1  and dom2 are sub-domains of the attribute a. The twoing criteria is used 

in the CART algorithm to form part of its splitting process. 

 

Other binary criteria include the orthogonal2 criterion and the Kolmogorov-Smirnov 

criterion6. Many splitting criteria have been considered in the literature and those 

described above represent a selection of the most commonly employed. Each criterion 

performs better in some circumstances than others and whilst it is possible to select 

the splitting criteria for a given problem, performance gain may be minimal.  

 

2.3.3 Stopping criteria and pruning  

A decision tree requires a stopping criterion to limit it to a set number of nodes, i.e., to 

define the end of the process of inducing the decision tree. Stopping criteria have a 

number of common forms: the number of nodes has reached a maximum, the depth of 

the tree has reached a preset limit or the best splitting criterion is below a given 
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threshold. Other possibilities relate to the minimum number of instances reaching each 

potential child node, or to whether all instances in the training data are able to be 

given a classification. 

 

It is usual for some nodes to be pruned away from the tree after induction. Dependent 

on the stopping criterion, a tree may end up being large and over-fitted to the training 

data or conversely small and under-fitted. A pruning method can allow the decision 

tree to over-fit and then to remove sections of the tree, which are not improving the 

generalisation accuracy of the tree. Pruning is also carried out to reduce the 

complexity of a decision tree while maintaining its accuracy, or to produce a compact 

description of a concept or classification. The tree is often measured against the 

original tree, in order to assess the loss in accuracy incurred by pruning. 

 

A simple pruning method is error pruning3. In a bottom to top traversal of the nodes in 

a tree, the algorithm checks to see if replacing a node with the most frequent 

classification will reduce the generalisation error of the tree. If the accuracy is not 

reduced, then the node is pruned. This process is repeated until no pruning of the tree 

can be carried out without reducing accuracy. A similar method, minimum error 

pruning7 examines the l-probability error rate estimation before and after pruning and 

if pruning the node does not affect the error rate then it is accepted.  

 

Many other methods have been applied to the pruning of decision trees, such as 

pessimistic pruning4, error based pruning4 and minimum description length pruning8.  
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2.3.4 Some decision tree algorithms 

Below we discuss some of the more popular decision tree algorithms that have been 

developed. This is by no means an exhaustive survey. Those examples given below 

are designed to give an overview of some of the major types of decision tree. One of 

the simplest decision tree induction algorithms9, ID3 uses information gain as a 

splitting criterion. As a stopping criterion, the tree is considered complete when either 

each instance belongs to a single class or when the information gain from continuing 

is no longer greater than zero. No pruning of the tree is conducted, and no support is 

available for handling anything other than discrete attributes. 

 

The C4.5 algorithm4 is an improvement on ID3 by the same author. It is similar to 

ID3. However, the splitting criterion is the gain ratio and the stopping criterion is 

based on the number of instances. When the number of instances available for 

splitting falls below a certain threshold then no further splitting is carried out. C4.5 

also incorporates error-based pruning after the growing of the decision tree, and 

supports numeric attributes. 

 

Developed by Brieman et al., Classification and regression trees (CART)5 constructs 

binary trees using twoing criteria to split at each node producing exactly two child 

nodes. The initial tree is pruned using cost complexity pruning. CART can calculate 

the cost of misclassification in the induction of the tree when appropriate information 

is provided.  CART can also generate regression trees, whereby a real number is 

predicted at each leaf node rather than a class. In splitting for regression trees CART 

seeks to minimize the prediction squared error (least squared deviation). At each leaf 

node the predicted value is based on the weighted mean of each node. There are many 
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other algorithms for decision tree classification, and it is not appropriate to discuss 

them all here. However, more detail of algorithms such as CHAID10 and QUEST11 

can be found in the references listed below, particularly Rokach and Maimon2. 

 

2.4 Ensembles of decision trees 

2.4.1 Decision forests: general principles 

Decision forests are ensembles of decision trees2. An ensemble method is one that 

combines a number of models of either the same or of different types. Each of these 

models is trained to solve the same problem. Ensemble methods improve accuracy, 

and through distributed computing can allow for larger datasets to be considered by 

spreading the ensemble over a number of computers. Whilst there are many methods 

for ensemble learning, typically many of them have the same building blocks. In most 

cases labelled training data is used for the training of the ensemble. Typically all the 

elements of the ensemble are trained on data taken from the same training set. There is 

an inducer, which is the algorithm that develops each classifier based on the training 

set. There is an ensemble generator, which is responsible for generating a varied set of 

classifiers. Finally, there is a combination protocol, by way of which the various 

classifiers in the ensemble are combined to produce predictions. There are certain 

properties of ensemble classifiers, which must be considered in order to achieve an 

effective ensemble. These include, whether the classifiers interact with each other, 

how the individual classifiers are combined, the method by which variety between the 

classifiers is generated, the size of the ensemble, which inducer is used and whether 

the same or varied inducers are used throughout the ensemble, and what proportion of 

overlap there is in the training data presented to the individual classifiers. 
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There should be some diversity among the classifiers. If the classifiers are identical, 

the result will be the same as for an individual classifier. Many methods exist for 

ensuring there is sufficient diversity. Here, we give a brief overview of the different 

methods and some specific examples. However, we begin with the closely related 

property of dependence between classifiers. A decision forest is said to be dependent 

if the trees within it interact with each other and independent if they do not. 

Dependent classifiers fall into two main types: model guided instance selection and 

incremental batch learning12. In model-guided instance selection, the training process 

is iterative, the training data in a given iteration being manipulated by the models 

generated in previous iterations. Typically, such models only learn from mis-classified 

instances, ignoring those instances that were correctly classified by previous 

iterations. Boosting, such as in Adaboost,13 is an example of such a learning scheme. 

This method improves the output of a learning classifier system by repeatedly running 

it on various distributions of the training data and producing a composite classifier 

from the resulting models. Incremental batch learning simply uses the classifier 

generated in a previous iteration as prior knowledge for the next. The classifier 

generated at the final iteration is taken as the resulting trained model. 

 

Independent methods are those in which the classifiers in the ensemble have no 

knowledge or interaction with each other. Each of the classifiers is typically trained on 

a different subset of the training data. These subsets may overlap or they may be 

disjoint. Independent methods have the advantage that the combination method is 

independent of the induction. So multiple types of classifier can easily be combined 

and independent decision forests can easily be run on parallel architectures. Examples 

of independent methods include bagging14, wagging15, and random forest16. 
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2.4.2 Diversity 

Diversity is essential to ensemble machine learning. The classifiers must be as diverse 

as possible, whilst remaining within the bounds of the problem being considered. The 

classifiers must also remain consistent with one another in order to produce 

meaningful results. The required diversity can be generated using a variety of 

methods. The training data can be manipulated, the feature space can be partitioned or 

each classifier can be targeted at a different subset of the problem. In addition, 

manipulation of the inducer itself and hybridization of the various types of inducer can 

be used to create diversity within an ensemble. 

 

Manipulation of the inducer is probably the simplest way of generating diversity. The 

variability can often be generated by the manipulation of the parameters of the 

induction algorithm, for example, altering the threshold parameter in the C4.5 decision 

tree4 or altering of the topology of neural networks. The starting point for training the 

inducer can also be altered, e.g., the initial weights of a neural network. The method 

used by an inducer to traverse the so called ‘hypothesis space’ can be varied, leading 

the different classifiers to develop varied hypotheses for a classification problem. This 

can be done by introducing random variance, or by a method such as collective 

performance based strategy,17 whereby a cost penalty is introduced into the training 

algorithm, which encourages diversity.   

 

The training data can be split into sub-sets, with each classifier being trained on an 

overlapping or disjoint sub-set. Resampling is used to generate overlapping subsets of 

the data. Some methods use the distribution of the training data. Others use a random 

distribution. Other methods, such as Adaboost13, change the weights of the training 
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data, rather than sampling with replacement. 

 

An important method of generating variety is to create new training examples based 

on the distribution of the training data. These examples are combined with the training 

data to form a new training set. The DECORATE algorithm18 creates these examples 

to give maximum variance from the training data. The training is iterative, with the 

first iteration on the training data and subsequent iterations with the addition of 

artificial examples. 

 

Variance across the ensemble can be introduced via the partitioning of the data into 

disjoint partitions. This is often done randomly, and overcomes the bottleneck created 

by the size of the data. Each classifier is trained on a disjoint sub-set, but the whole 

ensemble processes the total amount. Also it is possible to use clustering techniques, 

e.g., SVM cabins19 partitions the data for training multiple SVMs in order to predict 

protein solvent accessibility. Both these approaches offer an improvement in accuracy 

and a way to overcome performance bottlenecks. 

 

Rather than diversify the data or change the way it is represented, search space 

partitioning introduces variation by directing the classifiers in the ensemble to explore 

different areas of the search space. Each of these models is constructed independently, 

and then aggregated. The subspaces of the feature space can overlap or be disjoint and 

how much, if any, overlap between subspaces to allow is an important consideration. 

The divide and conquer approach divides the subspace into sub-sets. The instance 

space can be divided using either clustering techniques, such as k means clustering, to 

divide the space into mutually exclusive subsets, or by a hybrid classifier, such as a 
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naïve Bayes tree20. The feature sub-set selection approach manipulates the input 

attribute set. Each of the classifiers is given a different sub-set of the features, and thus 

receives a different projection of the training set. The features can be divided up by a 

random selection or by using reducts2. A reduct is the smallest set of features that can 

be chosen, whilst retaining the same predictive power as the whole feature set. This 

has the limitation of preventing the ensemble size from being larger than the feature 

set. A collective feature based strategy21 is also possible, whereby after the initial 

random feature selection the sub-sets are refined using an iterative method, such as 

genetic algorithms or a hill climbing approach. 

 

Diversity can also be generated by using several different types of classifier to form 

the ensemble. This approach also covers combining several classifiers with 

mathematical or analytical methods. The different classifiers may identify different 

aspects of the training data, and, therefore, this will go some way to overcoming the 

natural bias of each individual classifier. For example, Zhou and Jiang combine the 

C4.5 decision tree with neural networks22. They first train a neural network. This 

ensemble enhances the training set by adjusting the class labels and adding new 

examples. The new training set is used to generate a C4.5 tree. This is analogous to 

the trepan23 method, described elsewhere in this thesis, in that it provides increased 

comprehensibility of the results. 

 

2.4.3 The combiner 

Once the individual classifiers have been generated, they must be combined in order 

to give the final output. Methods for this can be divided into two major categories, 

weighting methods, whereby each classifier is assigned a weight proportional to its 
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strength of classification, and meta learning approaches where a further machine 

learning process is used to select the best output. A majority voting approach is 

possibly the simplest method2. Each classifier is given a vote to determine class. The 

predicted class of a given instance is the one that is given the largest number of votes. 

A development of this is performance weighting,24 where each classifier is weighted 

by its performance on a validation set. Other methods employ as weights the 

distribution of probability across the classifiers and the Bayesian posterior probability 

of the classifier with respect to the training set2.  

 

Meta combination methods use a meta learning method to select the best classification 

based on the results of the base classifiers. Stacking25 combines multiple classifiers by 

learning from a training set, in which each instance is described by the target attribute 

and the predicted classifications produced by each of the base classifiers. This method 

can be improved by the inclusion of output probabilities for each prediction of the 

base classifiers. Arbiter trees26 are a decision tree approach designed to combine 

classifiers. Each arbiter tree is developed to decide between two or more classifiers. 

For large numbers of classifiers, multiple arbiter trees may be constructed and used in 

a hierarchical fashion. A similar method, combiner trees27, uses combiners instead of 

arbiters at each node in the tree to select the appropriate classification for a given 

instance.  Grading28 is a meta-learning method for deciding upon the correctness of 

the classifications produced by a base classifier. From each classifier, a training set is 

assembled of its predicted classifications attaching a new binary class, which indicates 

correct or incorrect with respect to that instance. Voting is carried out between the 

classifications of the base classifiers that are determined to be correct by the meta 

learner.  
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2.4.4 Random forest 

The random forest is the principal algorithm used in this thesis for prediction of 

glycosylation sites. Random forest was chosen for this work as a machine learning 

algorithm which was untried with regard to the prediction of post translational 

modification, but had been used with some success in other areas of biology. It is able 

to take both categorical and numerical data as input, which is ideal for analysing data 

about pairwise patterns and sequence information. It is also fast relative compared to 

methods such as SVM. We chose to use random forest rather than a single decision 

tree, which has many of the same properties, because an ensemble method has greater 

accuracy than a single decision tree. 

 

A random forest16 is an ensemble classifier, h, composed of a number of tree-

structured classifiers  

 

{h(x,Qk), k=1,2....N}         (2.9) 

 

where  {Qk} are independently generated random vectors of attributes drawn from the 

same distribution (i.e. the distribution of the training data) and N is the total number of 

vectors. Each tree casts a single vote to determine class. Generally to generate a tree, a 

random vector Qk is chosen, which is independent of previously chosen vectors Q1…k-

1. This vector should have the same distribution as its predecessors. The chosen vector 

is combined with the training data S to generate a classifier, resulting in a classifier 

h(x, Qk), where x is an input vector. For an ensemble, many such trees are generated, 

which vote to determine class. 
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A useful property of random forests is that increasing the number of trees does not 

induce over-fitting, due to the strong law of large numbers, whilst increasing the 

number of trees does improve accuracy. The strong law of large numbers deals with 

the stability of the mean of a random variable, and states that the mean will almost 

certainly converge as the number of samples tends to infinity, for samples chosen at 

random from a given distribution. The trees in a random forest are created using 

bagging in tandem with the selection of random features. This improves accuracy, 

whilst providing an internal error estimate, which can be calculated ‘out of bag’. The 

out of bag error is the generalised estimate for a classifier trained upon a training set S 

from which are bootstrapped Sk training sets. Then for each instance I in the training 

data combine the votes from the classifiers trained on the sets Sk which do not include 

the instance I. This is known as the out of bag classifier, and the out of bag error is the 

error rate of this classifier on the training set. It is also possible to use random forests 

for regression. Each tree is generated in a similar fashion as to classification, but with 

a numerical value for the target attribute. Regression is then performed at the leaf 

nodes to determine a numerical result.  

 

2.5 Kernel based machine learning 

For our work on prediction of dihedral angles we wished to predict real value angles 

and thus required a method to perform regression (for a discussion of the rationale for 

choosing real value dihedral angles see chapter 1 and 3). We wanted a method that 

had not been tried before but was proven to be at least comparable to the state of the 

art methods used in previous work. SVR is comparable in accuracy to neural 

networks, which were used in previous work and has not been used for prediction of 

dihedral angles. Our hypothesis is that the use of SVR will achieve greater accuracy of 
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prediction of dihedral angles.  

 

Here we introduce kernel machine learning, which is the basis for SVR, and then go 

on to introduce SVMs for classification and regression. We cover classification even 

though it is not explicitly used in this thesis as it gives an easy route to understanding 

the use of kernel machine learning for SVR. Originally developed by Vapnik and co-

workers,29 SVMs for both classification and regression fall into a category of machine 

learning algorithm known as kernel based machine learning30. Kernel methods are 

based around the idea of altering the representation of the data to fit to a particular 

type of method for classification. This is done by using a function, known as the 

kernel function, to map the input data into a higher dimensional space (figure 2.2). 

This feature space is such that a simple classification algorithm can be applied to 

classify the data, or regression can be performed to fit a function to the data. This has 

the additional advantage that the properties of a kernel function allow for the feature 

mapping to be computed using the inner product (also known as scalar or dot product) 

of the vectors in the input data. So machine learning can be performed without 

computing the feature mapping, thus dramatically reducing computational time for 

large datasets.  
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Figure 2.2 An illustration of kernel machine learning where a maximal margin 

hyperplane can be fitted to the data on the left after it has been raised into a higher 

dimensional space by a kernel function from its representation on the right. 

 

This leads to a modular approach, where the input data is modified with the kernel 

function, the inner products are calculated and the machine learning algorithm is run 

on the data. The choice of kernel function is important and we will discuss the various 

types of kernel function tested in this work. Equations in this section of the work are 

adapted from30 unless otherwise stated. A kernel function computes the inner product 

of the mapped image of two data points, x and z, in the embedding ω: 

 

€ 

k(x,z) = ω x( ),ω z( )         (2.10) 

 

for all x, z ∈ X where X is the instance space. 

 

2.5.1 Kernel types 

Various types of kernel can be constructed which map the data into varying feature 

spaces. We will address the kernels that are used later in this thesis. We begin with the 
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linear kernel, then move onto the polynomial and Gaussian kernels, both of which 

have been used in numerous bioinformatics methods. The polynomial and Gaussian 

kernel functions were adapted from Vapnik.29 The linear kernel is the simplest 

available: 

 

€ 

k x,z( ) = zx          (2.11) 

 

The polynomial kernel can be constructed in various degrees as best suits the data, 

although the higher the degree the slower the computation time. For a vector space X 

of dimension n, the polynomial kernel is: 

 

€ 

kd x,z( ) = x,z + R( )d         (2.12) 

 

where R and d are parameters, with d being referred to as the degree of the kernel. 

The Gaussian kernel is 

 

€ 

k x,z( ) = exp −
x − z 2

2σ 2

 

 
  

 

 
         (2.13) 

 

where σ > 0. σ is known as the kernel width, and is a user-defined parameter, which 

must be optimised for a particular dataset, along with the SVR parameters C and ε 

(see later in this thesis for more details on optimising for SVR). It is beyond the scope 

of this work to give a detailed mathematical characterisation of kernel machine 

learning. Here we give a summary of the SVMs for classification and regression. Full 

details and background are given in Shawe-Taylor and Cristianini30.  
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2.5.2 Hard margin SVM 

For the classification of data that has been raised into a higher dimensional feature 

space by a kernel function, the simplest method is to divide the data with a hyperplane 

in the higher dimensional feature space. In SVM classification, the hyperplane is a 

maximal margin hyperplane.  This is defined by the data instances in each class either 

side of the hyperplane. The hyperplane is chosen to give the maximum margin 

between it and these data, which are known as support vectors. This gives a hard 

margin SVM classifier. However, outliers in the data may not be accurately classified 

by a hard margin cut off, which leads to the idea of a soft margin classifier, which 

takes into account possible outliers and improves classification accuracy. 

 

2.5.3 Soft margin classifier 

A soft margin classifier can be achieved by the introduction of slack variables, which 

allow the margin constraints to be violated. The rationale for this is that the hard 

margin SVM is very sensitive to noise in the data, which may make it impracticable 

for real world data sets. The introduction of slack creates a trade off between the slack 

variables and the margin of the hyperplane. This trade off is regulated by the 

regularisation parameter C. This parameter is optimised for each dataset on which the 

SVM is trained. 

 

2.5.4 SVR  

Using SVM for regression is possible using an ε-insensitive loss function, which 

ignores all errors below a threshold ε. The resulting band around the output function is 

referred to as a tube. Otherwise the procedure is similar to that of classification. A 

function is fitted to the data using regression, with a margin defined by the support 
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vectors, i.e., the error cut off ε. The threshold for the error cut off is defined by the 

user and is optimised along with the other parameters already described. The SVR 

algorithm is given a soft margin, in much the same way as for classification, by using 

slack variables with the trade off between the slack variables and the margin handled 

by the parameter C, as before. More detail on the properties of SVM for classification 

and regression along with pseudocode for the above algorithms is given in Shawe-

Taylor and Cristianini30. 

 

2.6 Critical Assesment 

In reviewing the various methods considered above, we aimed to select those most 

appropriate to use in our work. We considered the accuracy of the methods, but also 

factors such as availability and whether the method had been used before. It would 

have been less productive to re-implement methods from scratch. Where multiple 

methods are available with similar accuracy, the most tried and tested one was chosen. 

When it came to selecting a method for classification, which had not been used for 

glycosylation site prediction, there were many possible choices. We chose an 

ensemble method because of the increased accuracy over a single decision tree, but 

also because of the prospect of running in parallel. Random forest has been tested in a 

variety of machine learning problems in various fields (see chapter 4 and above for 

references). The choice of splitting criteria, methods for generating diversity, used in 

random forest are appropriate for our work. The fact that little work had been done on 

interpreting the model produced by random forest was also a factor in deciding on the 

choice. When it comes to the choice of SVR algorithm, it was important to use the soft 

margin version, since it gives a certain tolerance of outliers that should improve 

accuracy in the long run.  Below we detail the methods chosen to assess the accuracy 
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of the work in this thesis. These were chosen to give a balanced assessment of the 

merits of the various methods, but were also to some extent based on the methods 

used to assess previous work, thus allowing a valid comparison. We then assess 

multiple possibilities for the method that could be used to interpret the random forest. 

The grounds for the final choice are given below. 

 

2.6.1 Assessing accuracy  

Throughout this work, common accuracy measures are used to assess the performance 

of the machine learning methods. In all the methods presented below, true positives 

(TP) are those instances correctly identified as positive, true negatives (TN) are 

correctly predicted negative instances, false negatives (FN) are positive examples 

which are incorrectly predicted as negative and false positives (FP) are negative 

examples incorrectly predicted as positive. Correctly classified instances (CCI) is a 

measure applied only to classification problems. This measure is the number of 

instances in the test set which have been assigned to the correct class as a fraction of 

the total, N: 

 

€ 

CCI =
Tp + Tn
N

         (2.14) 

 

This presents certain problems, as there is no indication of whether those instances are 

positive or negative examples and therefore no indication as to whether the prediction 

is a balanced one. Sensitivity (Sn), expressed here as a percentage, assesses the 

effectiveness at classifying positive examples: 

 



 71 

€ 

Sn =
Tp

Tp + Fn( )
×100         (2.15) 

 

Specificity (Sp), also expressed as a percentage, assesses the accuracy of the 

classification of negative examples: 

 

€ 

Sp =
Tn

Fp + Tn( )
×100         (2.16) 

 

The Matthews correlation coefficient (MCC)31 is a measure of accuracy designed to 

take into account the ability of a classifier to classify correctly both positive and 

negative instances. It produces a value between -1 and 1, with 1 being a perfect 

prediction and -1 a completely incorrect prediction. 0 represents a random prediction. 

 

€ 

MCC =
(TpTn ) − (FpFn )

(Tn + Fn )(Tn + Fp )(Tp + Fn )(Tp + Fp )
    (2.17) 

 

The Pearson correlation coefficient is used to assess the accuracy of numerical 

prediction, by relating the mean and standard deviation of the predicted and observed 

values in the dataset: 

 

€ 

r =

xi − x ( ) yi − y ( )
i=1

n

∑
n −1( )σ xσ y

        (2.18) 

 

where x is the observed data, y is the predicted data for n test instances i1,i2,…in, 

€ 

x  

and 

€ 

y  are the means of the observed and predicted data respectively and σx and σy are 
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the standard deviations of the observed and predicted data. 

 

Cross-validation is a technique used for calculating the accuracy of a prediction when 

the amount of data available prohibits the formation of an independent test set. The 

data are divided up into a number of sections (typically 10). The data instances which 

form these sections are chosen by random sampling without replacement and the 

number of instances in each section is equal. One of the sections is set aside to act as 

the test set, and the remainder are used for training. This is repeated N times, where N 

is the number of sections the data were split into, with a different section of the data 

being used as the test set in turn. This is known as N fold cross validation. 

 

Leave-one-out cross-validation is a variation on the above procedure. Instead of 

dividing the data into sections, the training procedure is repeated n times, where n is 

the number of instances in the training data. For each training cycle a different 

instance is left out of the training data, and is used as a test instance. This is repeated 

until every instance has been used as a test example. The accuracy is calculated over 

all of the test predictions. 

 

2.6.2 Model Interpretability 

Many machine learning algorithms, such as neural networks, SVMs and random 

forest, are inherently opaque. Characterised as black box methods, the decision 

making processes of these algorithms are not interpretable. In the case of neural 

networks, the weights of the network are known, but it is a non-trivial task to calculate 

the way the weights interact to make a prediction for a given instance. A similar state 

is true of SVMs. The kernel matrix cannot easily be mapped to the original data, in 
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such a way as to give a decision function in normal space, which again cannot be 

interpreted in the context of the problem. Random forest, which we use in chapter 4, is 

considered a black box method. The decision trees that make up the trained random 

forest cannot be read in the same way as, for example, a tree from an algorithm such 

as J48, which produces clear interpretable rules. In this work we seek to develop a 

method of interpreting the model produced by random forest. Many methods have 

been tried in order to extract meaningful information in the form of rules and 

interpretable decision processes from neural networks and SVM models. However, 

little work has been done on extracting rules from random forest. Many of the 

algorithms that are available for rule extraction from e.g. neural networks have been 

used for more than one machine learning method. Our intention is to take one such 

method and adapt it to extract comprehensible rules from random forest, giving us a 

detailed picture of the decisions made by our random forest model for glycosylation, 

and providing some biological insight. Since we intend to select an existing algorithm, 

we review examples of the major types of rule extraction method for neural networks 

and SVMs. A more comprehensive survey is available in references32,33. Not as much 

work has been done on the interpretability of random forest. Part of the novel work in 

this thesis focuses on this. 

 

2.6.2.1 Neural networks 

Of the methods below, several have also been used for interpreting SVM models as 

well as neural networks. Guo and Selman34 use inductive logic programming to 

generate an ordered set of Horn clauses (see reference34 for details) from an opaque 

machine learning model. Focusing on, neural networks, SVM, and random forest. 

They compare the resulting Horn clauses with a J48 decision tree, comparing each 
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Horn clause generated with the rule at a corresponding node in the decision tree. A 

sample set is created either from the training and testing data or from artificially 

created examples. Inductive logic programming is used in an iterative process to learn 

Horn clauses from this data and the responses of the machine learning algorithm being 

considered. This method gives a generalised framework for rule extraction and is one 

of the few methods to have been tested on random forest. Unfortunately, the code for 

this method is not freely available. So we were unable to use this method.  

 

Another approach is to derive a decision tree, thus presenting comprehensible rules 

which mirror the original model. Assche and Blockeel35 create a method that learns a 

single decision tree from an ensemble of neural networks. The algorithm developed is 

designed to avoid the use of artificially generated data as is commonly used in rule 

extraction methods. The decision tree is grown based on estimated probabilities, 

which are derived from the distribution of the prediction classes, rather than that of the 

training data.  The stopping criterion for the tree is a non-equivalence preserving 

stopping criterion, whereby a node becomes a leaf node if all instances reaching it are 

placed in the same class. The tree is pruned after construction. This method is 

potentially adaptable to other machine learning algorithms. However, once again the 

code is not readily obtainable. A similar approach is used in CRED36, which extracts 

meaningful rules from neural networks in the form of a decision tree. This method is, 

as many rule extraction algorithms are, bound to a specific type of learning classifier, 

in this case neural networks. 

 

A different approach is to use rules to represent the network structure. The COMBO37 

algorithm generates confirming rules to explain when a neurone is switched on and 
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disconfirming rules to explain when a neurone is switched off. The rules are generated 

based on combinations of the weights of the network. The neural network considered 

is a feed forward network trained using the back propagation algorithm. A 

combination tree is generated from the network weights after they have been sorted. 

This tree is pruned to reduce the search space. Combinations of weights are tested 

against the network. Those that prove successful are used to generate rules. These 

rules are ordered to be representative of the network structure. This method is only 

implemented for a specific type of neural network. Whilst it could be adapted to other 

neural network architectures, adaptation to other machine learning algorithms is 

impossible. 

 

 A similar approach is taken by Setiono38. Rules are extracted from a pruned neural 

network using the activation weights of the hidden units of the network. The 

activation weights are clustered in order to discretise them. Rules are extracted from 

these clusters. This assumes the number of clusters is small. If there are a large 

number of activation thresholds then the unit may be split to form a sub network. The 

algorithm is applied to this sub-network. The rules generated are merged in order to 

find rules that directly relate the inputs and outputs of the network. 

 

More recently, Setiono et al.39 use a method based on recursion and decision trees to 

extract rules from back-propagation neural networks. After the network has been 

pruned to remove redundant nodes and connections, the network is trained on a mixed 

data set of discrete and continuous attributes. The classification rules are generated 

based upon the set of trained examples that are correctly classified by the network. 

Whilst discrete attributes remain, classification rules are generated, dividing the 
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feature space into subspaces based on the discrete attributes. This is done recursively. 

When only continuous attributes remain in the dataset, a hyperplane is generated using 

a machine learning algorithm. The authors use a neural network to divide the 

continuous attributes. The result is a set of classification rules. While this method is 

potentially adaptable and indeed produces rules in an easily comprehensible format, it 

is a complicated algorithm and the software is not readily available. It was judged that 

the effort to be gained from implementing the algorithm is not worth the perceived 

benefit, since other algorithms that are easier to adapt to random forest are available.  

 

2.6.2.2 SVM 

Rule extraction techniques have also been used to extract comprehensible rules from 

other black box methods, such as SVM classifiers. Many neural network methods are 

adaptable to SVMs, e.g., trepan, which uses an oracle, can easily be used for 

classifiers other than neural networks, since the oracle can be any binary classifier. 

Many other rule extraction methods such as Re-RX39 described above, have also been 

applied to rule extraction from SVMs. Martens et al.32 examine the applicability of 

some of these algorithms to the SVM rule extraction problem. 

 

Relatively few methods have been developed specifically for SVM rule extraction. 

One example is SVM+prototypes40. This uses an iterative process, taking information 

from a trained SVM. The feature space is divided by a combination of the support 

vectors and prototype vectors obtained from clustering the data. Beginning with one 

prototype, each prototype is used to generate an ellipsoid. This undergoes a 

partitioning test to see if it is useful to divide the feature space further. If this test is 

negative, a rule is created based on the equation of the ellipsoid. Otherwise, further 
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partitioning into regions is carried out. The iterative process is completed when no 

further partitioning is required, or a threshold for the maximum number of regions is 

reached. 

 

Chaves et al.41 generate fuzzy rules to comprehend the models generated by SVM. 

The rules are generated from the support vectors, which are projected into a co-

ordinate space. The input data used to generate the rules is used to create fuzzy sets. 

These fuzzy sets are used to create a rule for each support vector. The rule is of an “If 

… Then” format. The rules are chosen based on the fuzzy set with the highest 

membership for the support vector. In the case of similar degrees of membership to 

more than one fuzzy set, the rule chosen is the one with the best fuzzy accuracy and 

coverage. 

 

The problem of dealing with higher dimensional data in the context of extracting 

comprehensible rules is particularly relevant to SVMs, given that they often raise the 

data into a high dimensional feature space. However, no rule extraction algorithms 

have been created which solve this problem. One possible approach is to map the data 

into a lower dimensional feature space, using an algorithm such as a self organising 

map. This approach can also be used to relate the model directly back to the training 

data or to a low dimensional map of the feature space. A further problem is the fusion 

of the domain specific knowledge of experts with rules generated from the rule 

extraction algorithm.  The rules produced by the algorithm must be relatable to the 

domain knowledge. It may be that rules are not generated for things that an expert in 

the field would deem to be obvious. Interpretability by experts, is therefore, crucial 

and domain knowledge obtained from experts is still preferable in many cases32. 
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2.6.2.3 Random forest 

A random forest model is not easily interpretable. Whilst it is composed of decision 

trees, which consist of rules that are in theory interpretable, first of all the rules are 

hidden within the bagging of the random forest, and secondly there are a number of 

trees which are taken from a random sampling of the data, and thus there will 

necessarily be redundancy within the trees, and possibly even disparity or conflict 

between different rules. So it is no trivial matter to decipher the decision process of a 

random forest. In chapter 4 we approach the interpretability of random forest by using 

trepan23 to induce a clear readable decision tree, giving an interpretable model 

corresponding to the decision making process of the random forest. Trepan was 

chosen over the other methods discussed here, because it is easily adaptable to other 

machine learning algorithms and is freely available, whilst maintaining a high fidelity 

to the original model. Other methods were either not available, not adaptable to 

random forest or did not have the same simplicity of trepan’s M of N rules (see 

below). Originally designed for extracting information from neural networks by 

Shavelik et al.23, the trepan algorithm has been implemented in matlab42 in a fashion 

which allows it to be applied to a variety of machine learning methods. The trepan 

algorithm induces a decision tree by submitting the training data to the original 

algorithm itself along with some examples generated by trepan based on the attribute 

distribution of the training data. The original model is referred to as the oracle. Its 

responses are used to induce a decision tree, which has a high fidelity with respect to 

the original model. Fidelity is the degree to which the predictions of the decision tree 

resemble those of the oracle. Trepan grows decision trees in a best first manner. It 

expands the node of the tree that has the greatest potential to increase the fidelity of 

the tree. Trepan chooses the best split at a given node using the gain ratio (section 
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2.3.2.1) combined with a hill climbing approach to select the best M of N rule. The M 

of N rules trepan uses are simple “if then” statements, whereby if M out of N 

conditions are met then the rule returns true, otherwise the rule returns false. The 

stopping criteria for trepan are two fold. The expansion of a node is halted if all 

examples reaching that node fall into a single class. The expansion of the tree is 

stopped either when all nodes reach this state or when a specified maximum number 

of nodes is reached. Trepan also deals with one particular problem of decision trees. 

Often very few instances of the training data can reach a given node in the tree, 

making the split or classification at a given node somewhat arbitrary. In order to 

overcome this shortcoming, trepan generates its own instances following the pattern of 

attributes in the training data. 

 

This chapter has explained the rationale behind our choices of machine learning 

algorithm for use in this work. We presented the background theory behind each 

algorithm and examples, whilst providing a rationale for our final choices. The next 

chapter is the first major section of the thesis on predicting real value dihedral angles 

and protein secondary structure using the SVR algorithms outline here. Then we 

progress to our work on prediction of glycosylation sites in chapter 4 using random 

forest and interpreting the model using trepan. 
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Chapter 3: Dihedral angle prediction 

3.1 Introduction 

Protein secondary structure prediction1 is an important problem in bioinformatics. 

Determination of the structure of proteins is a difficult and sometimes impossible task 

to achieve experimentally. Much work has been carried out towards the computational 

prediction of the tertiary structure of a protein, but it is impossible by brute force 

alone. The number of possible conformations an amino acid sequence can adopt is 

huge. Randomly trying conformations for a given protein, it would take up to 1032 

years to find the correct one.2 This is due to the vast conformational space available to 

proteins and is known as the Levinthal paradox. Currently, accurate 3D structure 

prediction is beyond the state of the art. As a stepping stone towards solving this 

problem, it is possible to predict the intermediate level of secondary structure and 

other properties. Secondary structure is linked to the Ψ backbone dihedral angles, as 

shown by Ramachandran3. In fact, the dihedral angles can be said to define, at least 

partially, the structure4. Based on this relationship, the program Destruct was 

previously developed5, with the intention of using an iterative process to allow the 

prediction of dihedral angles to enhance the prediction of secondary structure and 

conversely to allow the prediction of secondary structure to enhance the accuracy of 

dihedral angle prediction. 

 

Φ dihedral angle restraints are often used in the determination of 3D structures by 

experimental methods, such as NMR. These restraints can also play an important role 

in molecular dynamics simulations, carried out to analyse the structure and dynamics 

of a protein. Thus, it is useful to predict the Φ backbone angles where the 3D-structure 

is unknown. Such a prediction may allow the investigation of possible structures for 
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the protein. 

 

Here, we aim to improve the prediction accuracy of both Φ and Ψ dihedral angles, 

both for use in Destruct or a similar method and for use in the prediction of 3D protein 

structures. Here we predict Φ and Ψ as independent quantities due to practical 

concerns. Support vector regression (SVR) is only capable of predicting one angle at a 

time, and even if that were not the case, predicting one value may be easier than 

predicting two interdependent values when neither of them are known. Several 

previous predictions have been made of both real value and categorical dihedral angle 

predictions. The best of these, Real Spine 2, uses twin neural networks, combined 

with a normalisation of the dihedral angles6. This normalisation circumvents some of 

the deficiencies of the sigmoidal function used in the neural network and significantly 

improves accuracy over the previous work by the same authors7. See chapter 1 for a 

review of dihedral prediction algorithms. We aim to improve upon this previous work 

by using SVR8 to predict the dihedral angles. This machine learning algorithm is as 

yet untried for prediction of real value dihedral angles. All previous methodologies 

use neural networks, and SVR is known to be successful at solving a range of machine 

learning problems8. 

 

This leads us to hypothesize that the use of SVR8 combined with accurate secondary 

structure predictions obtained using cascade correlation networks (CASCOR)9  will 

lead to an improvement in accuracy of prediction of both Ψ and Φ dihedral angles. 

We also implement a similar normalisation scheme (see 3.2.8) to that used by Real 

Spine 2, in order to test whether this scheme will give rise to a similar improvement 

with a different machine learning algorithm. The effect of parameter optimisation of 
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the SVR algorithm is investigated, along with the choice of SVR kernel. We will 

begin the methods section of this chapter with a description of the data used for 

training and testing, followed by detailing the procedures for both secondary structure 

prediction and our experiments with the prediction of dihedral angles. The second half 

of the chapter will be concerned with the results of these experiments and the 

conclusions that can be drawn from them. 

 

3.2 Methods 

Our experiments began with a revival of the cascade correlation network9 for the 

purposes of protein structure prediction. From the very beginning of the project, it was 

intended that CASCOR  (an implementation of a cascade correlation neural network 

in C) play a role in the experiments. This is building on work previously conducted in 

the research group5. Therefore, our initial experiments approximately reproduce their 

work. We followed this with experiments for the prediction of dihedral angles. We 

begin by describing the datasets and the way we represent them for our experiments, 

as well as giving the rationale behind these choices.  

 

3.2.1 Datasets 

The CB513 dataset was compiled by Cuff and Barton10 as a non-redundant set for 

protein structure prediction. Here, we use it as our main training set. Despite being a 

relatively old dataset, it was chosen for this work due to its tried and tested nature. The 

fact that it has been used by multiple algorithms allows for direct comparison when 

comparing our results with other methods particularly Destruct, and it is large enough 

to allow the possibility of accurate prediction without being so large as to hinder 

computational effectiveness. It consists of 513 proteins, which are non-redundant to 
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25% identity. We use all sequences of this dataset in our experiments.  The CASP4 

and CASP5 datasets11,12 were originally produced for the critical assessment of 

techniques for  protein structure prediction (CASP). They consist of proteins for 

which the structures had been recently determined and not yet published. This was 

intended to give a blind test of protein structure prediction methods in a variety of 

categories. We use all sequences in each of these datasets for which structures can be 

found in the PDB. CASP4 contains 34 protein sequences and CASP5 contains 61 

proteins.  

 

3.2.2 Data pre-processing and representation 

Sequence data for all experiments was initially obtained in FASTA13 format. Each 

sequence was first converted into a position specific scoring matrix (PSSM) using 

PSI-BLAST14 against the nr (non-redundant) database15. PSSMs offer a representation 

of the data, which takes into account evolutionary information. The PSSM for a given 

protein of length L is an L x 20 matrix. Each of the 20 elements representing each 

amino acid is a log likelihood, accounting for evolutionary mutation, between that 

amino acid and each of the other amino acid types. In PSI-BLAST this fulfils the role 

of the substitution matrix, giving a more sensitive measure of the probability of an 

amino acid being at a given position. Within PSI-BLAST such matrices are used to 

perform multiple alignments in a very similar way to a normal sequence alignment. 

Gap scores, however, are taken from the initial BLAST search. See reference12 for 

more details. Each residue is, thus, represented by a 20 x 1 vector taken from the 

PSSM for that protein.  

 

For these experiments a sliding window approach was used. Each residue in turn is the 
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centre of a window consisting of the residue under examination and a number of 

residues either side of it. This window is moved along the amino acid sequence giving 

a separate sequence window for each residue. After generating the PSSM for each 

sequence, the data was converted into a sliding window format. We chose a window 

length of 15, the target amino acid and seven residues to either side. We decided upon 

this length of amino acid sequence based on previous work5 and on the computational 

resources available. This means that each amino acid was represented by a sequence 

of 15 vectors of length 20 before the addition of labels to the training data.  

 

To obtain the known dihedral angles for the training data, the PDB file for each 

protein was downloaded from the PDB15 and the dihedral angles were assigned using 

DSSP16. DSSP was also used to assign secondary structure to the same proteins where 

required (see later in this chapter). The input values and labels were scaled to between 

0.05 and 0.95 for both CASCOR9 and for SVR. Since there is no fixed minimum and 

maximum for the PSSM, this was carried out based on the minimum and maximum 

values of the PSSM throughout our training and testing dataset, making the 

assumption that values outside this range are exceedingly rare. The scaling is shown in 

equation 3.1, which appears later. This scaling range was chosen due to restraints on 

input values for CASCOR. Due to the implementation of CASCOR, values outside 

this range will cause the software to function improperly. The change in network 

weights depends on the value of the inputs, e.g. if the input is zero the weights will 

never change. The scaling was carried out identically both for dihedral prediction and 

for the secondary structure prediction with CASCOR in order to be consistent.  

 

€ 

y =
x − xmin
xmax − xmin

 

 
 

 

 
 ×0.9+0.05        (3.1) 
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where y is the scaled value, x is the original value, xmin is the minimum value of x in 

the training data, and xmax is the maximum value of x in the training data. 

 

We also experimented with the inclusion of additional amino acid properties in the 

information supplied to the SVR algorithm. These are included for the central three 

residues in the sequence window. These are likely to be the most influential residues 

in determining the dihedral angle. We limit the parameters to the central residues in 

order to avoid having an exorbitantly long input vector, which would greatly slow 

training of the SVR algorithm. These parameters are represented numerically and are 

scaled to the same range described above. The Graph shape index, hydrophobicity, 

volume, polarizability, iso-electric point, helix probability, and sheet probability were 

all taken from Meiler et al.17 The authors used neural networks to reduce the 

dimensionality of the parameters. Here we use the initial values with no reduction in 

dimensionality, since SVR should be successful at predicting from such high 

dimensional data.  

 

3.2.3 Secondary structure prediction with CASCOR 

Our initial experiments attempt to reproduce the work of Wood and Hirst5 using 

cascade correlation neural networks. Cascade correlation neural networks are a 

specific type of neural network that are designed to minimise training time, improving 

over back propagation networks9.  The network is trained in stages, using the quick 

prop algorithm18 as its learning algorithm. Starting with an initial network consisting 

of the input nodes and output nodes as specified by the user, all of which are 

interconnected, the network adds hidden units one by one, until either an error 

threshold is achieved or the maximum number of hidden units is reached. Each hidden 
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unit is added from a pool of candidates (figure 3.1), which are trained based upon 

connections with all nodes that are already part of the network using the examples 

from the training data. Training is targeted at maximising the correlation between the 

value of the candidate and the error of the output of the existing network. This is 

expressed as the sum over all nodes of the correlation between the value of the 

candidate unit and the residual output error of a given unit: 

€ 

S = Vp −V ( ) E p,o − E o( )
p
∑

o
∑        (3.2) 

where Eo is the residual output error at unit o, p is the training pattern, V is the value 

of the candidate unit and 

€ 

V and 

€ 

E o are the mean values of V and Eo respectively. S is 

maximised using a gradient ascent method and the quick prop algorithm. Once the 

value of S has converged, the unit with the best correlation is added to the network 

and the process for choosing the next candidate unit begins.  This training cycle 

continues until either the maximum number of nodes has been added to the network, 

or the error threshold required has been passed. Here we use CASCOR for secondary 

structure prediction reproducing the methodology of Wood and Hirst19.  The network 

is trained on the CB513 dataset and tested using the CASP5 dataset, both represented 

and scaled as described above. This gives an input vector for training consisting of 

300 (20×15) PSSM inputs and 3 example outputs describing the structure type for 

training. Each of these are either 0.5 (present) or -0.5 (not present) and are 

representative of helix, sheet or coil. An example input vector is shown in figure 3.2 

below. The network produces three outputs, which are between 0.5 and       -0.5, 

representing the three states of secondary structure helix, sheet, and coil. These 

outputs are interpreted such that 0.5 is positive and -0.5 is negative. The predicted 

secondary structure type is then the one that is closest to 0.5.  
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Figure 3.1 Schematic of the cascade correlation network: Inputs are represented by 
circles and outputs by squares. The hidden units are chosen from a pool of  candidates 
as described in the text. These are integrated into the network as shown here. 
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0.360,  0.236,  0.205,  0.174,  0.267,  0.298,  0.329,  0.298,  0.360,  0.205,  0.174,  0.236,  0.391,  0.174,  0.205,  
0.329, 0.174,  0.174,  0.174,  0.143,  0.205,  0.205,  0.205,  0.143,  0.205,  0.329,  0.329,  0.143,  0.329,  0.546,  
0.143,  0.174,  0.205,  0.236,  0.329,  0.236, 0.391,  0.298,  0.298,  0.298,  0.205,  0.329,  0.329,  0.236,  0.205,  
0.174,  0.267,  0.360,  0.205,  0.174,  0.205,  0.329,  0.298,  0.174,  0.174,  0.205, 0.329,  0.391,  0.298,  0.267,  
0.205,  0.391,  0.360,  0.205,  0.298,  0.205,  0.205,  0.360,  0.205,  0.174,  0.236,  0.298,  0.298,  0.174,  0.205,  
0.236, 0.329,  0.236,  0.174,  0.174,  0.391,  0.205,  0.205,  0.205,  0.174,  0.298,  0.422,  0.267,  0.329,  0.267,  
0.205,  0.236, 0.267,  0.205,  0.205,  0.298, 0.298,  0.391,  0.298,  0.267,  0.174,  0.298,  0.298,  0.205, 0.298,  0.236,  
0.205,  0.453,  0.298,  0.205,  0.205,  0.298,  0.236,  0.174,  0.205,  0.236, 0.391,  0.267,  0.298,  0.298,  0.236,  
0.329,  0.360,  0.267,  0.267,  0.174,  0.205,  0.360,  0.205,  0.205,  0.298,  0.329,  0.298,  0.174,  0.236,  0.205, 
0.267,  0.329,  0.329,  0.298,  0.143,  0.391,  0.422,  0.205,  0.267,  0.174,  0.205,  0.391,  0.205,  0.205,  0.205,  
0.267,  0.236,  0.174,  0.205,  0.174, 0.236,  0.298,  0.422,  0.298,  0.143,  0.298,  0.267, 0.422,  0.267,  0.143,  
0.143,  0.391,  0.174,  0.205,  0.267,  0.267,  0.236,  0.143,  0.174,  0.143 => +, -, -; 
 
Figure 3.2. An example input vector for CASCOR, the => symbol differentiates the 
training data from its label, binary attributes are represented as + for 0.5 and – for  -
0.5. 
 

Output for each input will be displayed as the target amino acid in single letter code 
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and the predicted structure type as one of H, E, or C (helix, sheet or coil respectively). 

Structure predictions from CASCOR are then used as an aid to dihedral angle 

predictions (see below). 

 

3.2.4 Dihedral prediction with SVR 

Previous work in predicting Ψ dihedral angles has concentrated on the use of neural 

networks of varying types5,6,7. Here, we attack the problem using SVR. SVR was 

chosen as a regression method that has yet to be investigated for the prediction of real 

value dihedral angles, but has shown promising results in other areas. Support vector 

machines for classification and regression have been applied to a wide range of 

problems,20 including biological ones21. The theory behind this methodology is 

explained in chapter 2. However, we give a brief overview here. The basic idea of 

SVR is to transform the data into a higher dimensional space in such a way that linear 

regression can be used to fit a function to the data. The data are transformed using a 

kernel function, which maps the data into a higher dimensional feature space. This 

takes the form of the kernel matrix. One useful property of kernel-defined feature 

spaces is that often the regression (or indeed classification) can be carried out using 

only the inner products (scalar or dot product) between two vectors of the training data 

without calculating the full mapping to the kernel defined feature space.  

 

Given a training set X = {x1,……, xl}, with labels yi {i = 1,…,l}, the kernel function 

€ 

k x,y  maps the training points x to a feature space F:  

 

€ 

k x,y = f (x), f (y)( )         (3.3) 
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where f(x) and f(y) are members of the feature space F. SVM classification involves 

the division of the data by fitting a maximal margin hyperplane to the data within the 

kernel feature space. If such a hyperplane exists, it can be found by convex 

optimisation of a quadratic function. However, this only gives a hard margin of 

classification, leading to misclassification of outliers. The introduction of slack 

variables allows for a soft margin classification. The margin of the hyperplane is 

defined by the support vectors obtained from the training data. For regression there is 

no hyperplane. However, ε-sensitive regression allows the fitting of a function to the 

training data. Errors below the threshold ε are ignored to give a tube around the 

function fitted to the data, analogous to the margin of the hyperplane in classification. 

As with classification, slack variables are used to give a soft margin to the regression 

function. The support vectors are those that define the margin of the regression 

function. 

 

3.2.5 Kernel functions  

The choice of kernel function is important. Since the philosophy of kernel-based 

machine learning is to manipulate the data into a feature space that allows the 

application of standard machine learning algorithms, the selection of an incorrect 

kernel would mean the data would not be optimally transformed.  The kernels 

considered during this work are those in the PyML machine learning package. This 

package is written in C and python and utilises the libSVM library22 for support vector 

machine algorithms. Details of the specific kernel functions are given below. The 

more general properties of kernel functions are discussed in chapter 2. 

 

Since the requirement was for a rapid test of kernel functions, we choose the kernel 
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function using the CASP4 dataset as a representative dataset, which is considerably 

smaller than the training set, whilst consisting of sequences with a low homology to 

the training data. This allowed us to quickly eliminate unsuitable kernel functions, 

with the intention of a more thorough examination if needed. However, the results 

were clear enough that this was not required. We test each of the kernel functions 

given below. For the polynomial kernel, we test various degrees (2, 3, 4, 5). 

Linear      

€ 

K(x,xi) = xi
T x      (3.4) 

Polynomial kernel of degree d  

€ 

K(x,xi) = 1+ xi
T x
c

 

 
 

 

 
 
d

    (3.5) 

Gaussian (also known as RBF) 

€ 

K(x,xi) = exp − x − xi 2
2 /σ 2{ }  (3.6) 

where d, c, and σ are constants. 

 

Input for these experiments was represented in a way similar to that for secondary 

structure prediction described above. The first part of the input vector was the PSSM 

representation of the 15 amino acid sequence window. This was followed for training 

by the dihedral angle scaled to between 0.05 and 0.95. This scaling was chosen to be 

within both the range required by the CASCOR software (to allow later use with 

secondary structure prediction) and with the SVR algorithm which requires a range of 

values between 0 and 1. This input vector was then converted into the sparse data 

format as required by the SVR implementation (see below). This has the label first 

followed by each of the data points labelled with its position an example of this input 

data is given in figure 3.3 below. The output is a real number between 0.05 and 0.95, 

which can be converted into a dihedral angle by reversing the scaling process.  

 

We evaluated these experiments by ten-fold cross-validation. From these experiments 
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the Gaussian kernel was obviously the best choice for our experiments. We therefore 

use the Gaussian kernel in all of the experiments described in the remainder of this 

chapter. 

 
0.6935 0:0.205 1:0.205 2:0.174 3:0.143 4:0.174 5:0.236 6:0.174 7:0.143 8:0.174 9:0.267 10:0.329 11:0.205 12:0.608 13:0.236 
14:0.143 15:0.174 /……/ 289:0.143 290:0.143 291:0.391 292:0.174 293:0.205 294:0.267 295:0.267 296:0.236 297:0.143 298:0.174 
299:0.143 

 
Figure 3.3 An example input vector for dihedral angle prediction. Here the label is 
given first, followed by the training data as position:value, where position refers to the 
values position in the input vector. We have abbreviated this input vector for clarity. 
All missing data values have the same format as those shown. 
 

3.2.6 Optimisation 

After selecting the kernel, there are three user-defined parameters which require 

optimisation: C, ε and γ.  ε is an error cut-off, that is, we will accept an error as long 

as it is not larger than ε. This allows the margin of the regression function to be a soft 

margin fit to the data between the two classes, taking into account variability and 

outliers within the data. C is the regularisation parameter for the SVR, which 

influences the weighting of the empirical loss function and error cutoff. γ is the kernel 

width of the Gaussian kernel. The parameters for the SVR algorithm and kernel can 

cover a wide range of values and the chosen values can greatly affect the output. In 

order to obtain a ball-park estimate for the parameters and hence narrow the search 

space, we used the work of Chersky and Ma23, who present a mathematical method for 

finding optimal values for these parameters. The methods in this reference are only 

accurate on synthetic data and subsequent optimisation is still required when dealing 

with a real world problem, such as the one in this work.  

 

To calculate an estimate of C, we use the following expression, based on the idea that 

C should be chosen according to the range of values involved. 
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€ 

C =max y − 3σ y , y + 3σ y{ }       (3.7)
 

 

where 

€ 

y  and σ are the mean and standard deviation of y the label of the training data. 

We do not estimate the value of the parameter ε. Estimating ε relies on knowing the 

level of noise present in the data. For real world data this is generally not known. 

Chersky and Ma take the approach of estimating it using k nearest neighbours 

regression. In our case, since the usual range of values is small (0-0.2), we merely 

proceed with the optimisation for this parameter. For an estimate of the kernel 

parameter γ, Cherkassy and Ma propose an expression relating the parameter to the 

dimension  d of the input to the regression problem.    

 

€ 

γ =
1

2 md( )
2

         (3.8)

 

 

 where m is a constant. Using these equations, it is possible to estimate the values for 

C and γ. This gives a starting point for the grid-based optimisation described below. 

 

We use a grid-based optimisation method for these experiments. Whilst other methods 

such as gradient descent24 may have more accuracy, the major advantage to a grid 

based optimisation was the ease of parallelisation, allowing for a relatively fast 

optimisation procedure. There is also less risk of a local minimum giving a false 

result, since the grid is sampled over the complete search space. Optimisation is 

carried out using a randomly chosen subset of the CB513 dataset with an inner and 

outer cross-validation approach to prevent bias. Input and output is of an identical 
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format to the kernel choice experiments described above. A ten-fold cross-validation 

is carried out for each set of parameters on each fold of data in the dataset. The 

optimisation is carried out on a 10×10×10 grid of points in parameter space, meaning 

we have 10 points for each parameter spread over the range of values under 

consideration. We did not consider more values, as each combination of values 

requires a separate training and cross-validation operation for each fold of the outer 

cross-validation, giving 10000 jobs for a 10×10×10 optimisation using ten-fold cross-

validation for both inner and outer parts. Therefore, optimising over a grid of higher 

resolution is impractical. For C, we consider values between one and 1000, with steps 

of 100, giving plenty of leeway around the result of Chersky and Ma. For ε we 

consider the full range of values: 0-0.2 with steps of 0.02 and for the kernel parameter 

γ the range is 0-2 with a step size of 0.2. Two is taken as the upper cutoff, as this is the 

point at which the kernel begins to behave as a polynomial kernel. 

 

3.2.7 Training and evaluation for dihedral angle prediction 

The SVR algorithm was trained on the CB513 dataset represented using PSSM 

profiles. The input format was identical to that described above for the kernel choice 

experiments. The prediction method was evaluated by ten-fold cross-validation and 

also on the CASP4 test set. In order to test whether the optimisation was making an 

improvement to prediction accuracy, an initial prediction was carried out using the un-

optimised SVM. This first set of predictions was carried out using the protein 

sequence as PSSM alone to represent the data with no additional structural 

information. The data were presented the sliding window approach described in 

section 3.2.2. The input vector is in the sparse format as previously described. The 

second round of predictions was carried out in the same way, using parameter values 
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obtained through optimisation. Given the level of improvement obtained with the 

optimised parameter values, no further optimisation was carried out. 

 

Secondary structure was predicted from sequence via CASCOR, an implementation of 

a cascade correlation neural network described above. The data were supplied to 

CASCOR in the form of PSSMs, using the same window encoding scheme as for 

dihedral angle prediction. The output is obtained in binary form, with three output 

nodes indicating a value for each type of structure (as described above). The final 

prediction is chosen based on the largest real value of the output. The largest value of 

the three nodes is chosen as the predicted type of secondary structure, equivalent to 

each being represented as a 0.5 or -0.5, where 0.5 is the structure predicted for each 

state and the other two nodes output -0.5.  

 
0.6935 0:0.205 1:0.205 2:0.174 3:0.143 4:0.174 5:0.236 6:0.174 7:0.143 8:0.174 9:0.267 10:0.329 11:0.205 12:0.608 13:0.236 
14:0.143 15:0.174 /……/ 289:0.143 290:0.143 291:0.391 292:0.174 293:0.205 294:0.267 295:0.267 296:0.2362 297:0.143103448276 
298:0.174 299:0.143 300:1 
 

 
Figure 3.4. Example input for prediction of dihedral angles with the addition of 
secondary structure. We have abbreviated the input vector for clarity. The missing 
values have identical format to those shown. The first part of the input vector is as 
shown in 3.3. The last attribute represents the predicted structural information as 
either a 1, 2 or 3 for helix, sheet or coil. 
 

Structure predictions are converted to a numerical representation for the SVR 

algorithm. A 1, 2 or 3 is used to represent helix, sheet or coil, respectively. This 

information about the target residue is presented in conjunction with the PSSM profile 

for the surrounding sequence window. This gives an input vector in sparse format with 

the label followed by 300 PSSM values and one value representing the structure type 

at the target residue. An example input vector is shown in figure 3.4 above. The SVR 

algorithm is trained and evaluated in the same way as described above using the 

parameters obtained by optimisation previously. 
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3.2.8 Normalisation 

Real Spine 2 uses a normalising procedure, employed to alter the distribution of 

dihedral angles to better suit a neural network using the sigmoidal activation function. 

Here we investigated the possibilities for improvement using the same normalising 

procedure with SVR. Our hypothesis was that this transformed distribution of the 

dihedral angles will be easier for the SVR algorithm to ‘understand’ and therefore it 

will achieve greater accuracy. For Ψ angles, the normalisation is carried out by adding 

100° to the angles between -100° and 180° and 460° to the angles between -100 and    

-180. For Φ angles, angles below 10° we add 350° and angles above 10° we add -10° 

(equation 3.9). We scale all angles to between 0.05 and 0.95. We compare the results 

with and without normalisation below. 

 

€ 

Ψ ≥−100°→Ψn =Ψ +100°

Ψ ≤−100°→Ψn =Ψ + 460°

Φ ≥10°→Φn =Φ +−10°

Φ ≤10°→Φn =Φ + 350°

       (3.9) 

Equation 3.9 gives normalisation for different values of Ψ and Φ, where Ψ is the 

original value of Ψ, Ψn is the normalised value of Ψ, Φ is the original value of Φ, and 

Φn is the normalised value of Φ. 

 

3.3 Results and Discussion 

3.3.1 Initial predictions 

The best results were obtained with the Gaussian kernel (Table 3.1). The linear kernel 

and polynomial kernels of degrees 2 and 3 produced no correlation between predicted 

and expected values. This is most likely because the feature space into which the data 

are transformed by the kernels is inappropriate for these experiments.  
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Table 3.1 Performance of SVR kernel functions evaluated by ten-fold cross-

validation. All kernels were used on default settings. 

Kernel Pearson Correlation Coefficient r 

Linear 0.055 

Polynomial degree 2 0.064 

Polynomial degree 3 0.059 

Polynomial degree 4 0.55 

Polynomial degree 5 0.31 

Gaussian 0.62 

 

The polynomial kernels of degree 4 and 5 were much better suited for dihedral angle 

prediction, although the Gaussian kernel was superior to both and requires less run 

time. Polynomial kernels require increased run time as the degree of the polynomial 

increases. All subsequent experiments were carried out with the Gaussian kernel. It is 

probable that the success of this kernel is a reflection of the underlying distribution of 

the data. 

 

In order to monitor the effectiveness of optimisation of the support vector machine 

parameters, an initial prediction for Ψ angles was carried out prior to optimisation of 

the SVR algorithm. We wished to gain some perspective on the improvement offered 

by optimisation of the SVR parameters, versus the time taken for the optimisation. 

The results of the initial Ψ angle prediction (Table 3.2) show an improvement over 

Destruct, which achieved a PCC (Pearson correlation coefficient) of 0.47, but are still 

lagging behind Real Spine (PCC = 0.62) and Real Spine 2 (PCC = 0.74). The 
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parameters chosen as a result of the optimisation procedure are C=1 ε=0.02 and γ= 

0.201. This is based on a grid-based search on partial data with an inner and outer 

cross-validation. The improvement given by optimisation in this case is minimal, with 

an increase in Pearson correlation coefficient of just +0.02. It is probably coincidental 

that the default values for the SVR parameters were so close to those optimal for 

dihedral prediction.  

 

Table 3.2. Results of SVR prediction of Ψ dihedral angles and comparison to 

previous work.  

 SVR Optimised 
SVR 

Optimised 
SVR with 
Structure 

Optimised 
SVR with 
Normalisation 
and Structure 

Destructa Real 
Spine 

Real 
Spine 
2.0 

Ten–fold 
cross-
validation 

0.55 0.57 0.58 0.64 0.47 0.62 0.74 

CASP 4  0.56 0.57 0.63    

a. Whilst Destruct tests secondary structure prediction on both the CASP4 and CASP5 

datasets, the corresponding accuracies for dihedral angle prediction are not reported.  

 

The version of CASCOR trained for this work was slightly less accurate than that 

published in Wood and Hirst19. This is probably attributable to the lack of a post-

processing step and to small differences in experimental setup, such as the initial 

weights of the neural net or the settings for programs such as PSI-BLAST. The 

accuracy of structural predictions is given as overall percentage accuracy (Q3) and as 

the percentage of correct helix, sheet and coil predictions. We obtain an overall 

accuracy of 67.0% Q3, with accuracy for helices of 78.3%, for sheet as 45.5% and 

66.6% for coil. Most of the deficiency in prediction of sheet is from incorrect 

predictions of the ends of a section of sheet or from short sections of only a few 
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residues.  There is an over-prediction of helix, with some β sheet residues identified as 

helix. With the addition of predicted secondary structure produced by CASCOR, the 

accuracy of the prediction improves to a Pearson correlation coefficient of r = 0.58, a 

0.01 increase over the optimised SVR without predicted secondary structure. 

 

3.3.2 Effect of normalisation 

The normalisation procedure improved prediction accuracy to r = 0.64, as evaluated 

by ten-fold cross-validation, although this was still not as accurate as Real Spine 2, 

nor did it represent as much of an improvement as was achieved by Real Spine 2 over 

Real Spine. The reason for the limited improvement is probably related to the 

differences between the two machine learning algorithms. Real Spine 2 uses neural 

networks with a sigmoidal activation function, and the normalisation step was 

introduced in order to overcome a specific deficiency of the sigmoidal function in 

relation to Ψ angle prediction. The neural network performed very badly on angles 

between -36° and 36°, although all angles in Real Spine 1.0 were scaled to between 0 

and 1. The authors used the normalisation to shift the distribution of the dihedral 

angles away from the problematic area, which was not approximated well by the 

sigmoidal function. Whilst the SVR technique is very different to the neural network, 

there is at the same time no real surprise that there is some improvement resulting 

from an adjustment to the distribution of dihedral angles in this fashion. The 

normalisation spreads out the angles and also removes any wrapping of regions of 

accepted angles over the 0-360° boundary.  

 

3.3.3 Effect of addition of amino acid properties 

As a further attempt to improve the prediction, we added some parameters associated 
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with the amino acids in the sequence to the input vector. We added these parameters 

for the central three residues of the sequence window. An example input vector is 

shown in figure 3.5 below.  

 

0.773 0:0.205 1:0.205 2:0.174 3:0.143 4:0.174 5:0.236 6:0.174 7:0.143 8:0.174 9:0.267 10:0.329 11:0.205 12:0.608 13:0.236 14:0.143 
15:0.174 /……/ 289:0.143 290:0.143 291:0.391 292:0.174 293:0.205 294:0.267 295:0.267 296:0.236 297:0.143 298:0.174 299:0.143 
300:2.59 301:0.19 302:4.00 303:1.70 304:6.04 305:0.39 306:0.31 307:2.94 308:0.29 309:5.89 310:1.79 311:5.67 312:0.30 313:0.38 
314:1.28 315:0.05 316:1.00 317:0.31 318:6.11 319:0.42 
 

Figure 3.5. An example of the input including amino acid parameters. These 
parameters are included in the order described in the text between positions 300 and 
319 in the input vector. This covers the central three residues of the sliding window. 
We have abbreviated the input vector shown for clarity. The missing values are of 
identical format to those shown. 
 
 

We use the residue’s graph shape index, hydrophobicity, volume, polarizability, iso-

electric point, helix probability and sheet probability17. These are the same parameters 

as those used by Real Spine. A similar step was taken by Real Spine. However, in 

contrast to Real Spine, we saw a decrease in the accuracy of prediction upon inclusion 

of these parameters, giving a Pearson correlation coefficient of r = 0.44. The lower 

accuracy is likely due to noise being introduced into the data by the increase in the 

number of parameters. It is also possible that the SVM can no longer find a kernel 

feature space that fits the data as well and so cannot fit a function to the data with the 

same degree of accuracy. Real Spine used a second neural network trained on these 

parameters alone to represent the amino acid sequence, and combined this with a 

network predicting from PSSM. It is possible that a similar approach here would 

improve the results. 

 

3.3.4 Predicting Φ Angles 

Prediction of Φ angles was carried out by a similar method to that of Ψ angles. Once 
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again the normalisation procedure was employed. No further optimisation of the SVR 

parameters was carried out. The normalisation of Φ angles is anticipated to have less 

effect, since there is no particular region apparent which is particularly hard to predict. 

However, prediction of Φ is expected to be a harder problem overall, as there is less of 

a range of values which Φ can take.  

 

Evaluated by ten-fold cross-validation, the Φ dihedral angles were predicted with a 

Pearson correlation coefficient of r = 0.50. This is not as good as Real Spine 2, which 

reached an accuracy of 0.70. It is possible that some small improvement could be 

gained by optimising the parameters of the SVR. However, this is unlikely to improve 

enough to surpass Real Spine. It is possible that the kernel function is not as well 

suited to prediction of Φ as it is to Ψ. It may also be possible to improve the 

prediction by performing a different normalisation of the data, which better facilitates 

the raising of the data into a higher dimensional space by the kernel function. The 

distribution of Φ angles does not have the same problems as that of  Ψ angles, 

namely, that the area of allowed values for Φ does not cross over the central axis or 

wrap around from -180° to +180°. However, the angles are distributed over a tighter 

range making this a harder prediction problem for the SVR algorithm. 

 

In general, the improvement given by normalising the distribution of dihedral angles 

is smaller than that gained by Real Spine 2 over Real Spine. This is most likely 

because of the differences between the machine learning methods. There is also to be 

taken into account the different scaling of the dihedral angles, which would reduce 

any effect presented similar to that observed in Real Spine.  
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3.3.5 Application of predicted dihedral angles to assigning NMR 

spectra  

A potential application of predicted dihedral angles is in the assignment of NMR 

spectra. J coupling describes the coupling of two nuclear spins due to the bonding 

electrons between them. J coupling data obtained experimentally can be used to 

determine the dihedral angles along the protein backbone. These dihedral angles can 

be calculated using the Karplus equation25: 

 

€ 

J3 = Acos2 Φ − 60( ) − BcosΦ − 60( ) + C      (3.10) 

 

where A, B and C are empirically determined constants, Φ is the backbone angle and 

J3 is the 3 bond J coupling determined by experiment. However, the Karplus equation 

has two possible solutions, and deciding on the correct dihedral angle is not trivial. 

Currently, dihedral angles are assigned by comparison of chemical shift data to known 

examples from a relatively small set of proteins (186 in the current version) using the 

Talos software26. This software is only able to assign 72% of dihedral angles and 1.8% 

of those are incorrect. This is done in preference to using the Karplus equation, as 

there is currently no easy way to determine which of the two possible solutions of the 

Karplus equation represents the correct dihedral angle. 

 

3.3.6 Predicting the correct solution of the Karplus equation 

The basic goal was to predict which of the solutions of the Karplus equation is the 

correct dihedral angle for a given amino acid in a given protein. Theoretically, each 

predicted dihedral angle will be closer to one of the possible solutions. This means 

that if the predicted dihedral angle is reasonably accurate then the solution closer to 
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the predicted angle will be correct. However, this approach assumes that the J 

coupling data from which the prospective dihedral angle is calculated, the constants in 

the Karplus equation and the predicted dihedral angle are of a reasonable accuracy. 

 

Both Φ and Ψ angles can be calculated using the Karplus equation. However, there is 

a lack of data available for Ψ dihedral angles and they are less well used by NMR 

spectroscopists. The J couplings for HN-HA, which can be used to calculate Φ, are 

readily available for a number of proteins and are the most readily obtainable by 

experiment. For this reason we chose to use HN-HA couplings to calculate Φ dihedral 

angles. The choice of constants for the Karplus equation was made from the most 

recent experimental determination of the three available27,28,29. Therefore, A = 7.90,     

B = -1.05, C = 0.65. We took HN-HA J-coupling data from the BioMagRes 

databank30. These data were originally compiled from a variety of sources and were 

obtained experimentally with varying error rates and procedures. The data are 

representative of that typically obtained during NMR spectroscopy work.  

 

We removed sequences with high sequence identity to other sequences within the data 

set to leave a dataset of 66 proteins, all with sequence identity of 35% or less with the 

CB513 dataset used to train the SVR model for Φ prediction. The proteins also had 

low sequence identity among themselves. We took the protein sequences for which we 

had J-coupling data, and calculated the two possible solutions to the Karplus equation. 

We obtained Φ dihedral angle predictions for these sequences using the method 

outlined above. We selected the solution of the Karplus equation that is closest to the 

predicted angle as the assigned angle for that particular amino acid. If no J coupling 

data is available for a given residue we supply the user with the predicted dihedral 
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angle (clearly denoted as such) in place of an assigned value, since this may still be 

useful to an experimentalist.  

 

To assess the accuracy of the assignment, we compare the dihedral angles we obtain 

from J coupling data to those given by DSSP for the same proteins. We calculate the 

Pearson correlation coefficient in the same way as described above.  This gives a 

Pearson correlation coefficient of r = -0.08 with a root mean squared error (RMSE) of 

106.9° and a mean absolute error (MAE) of 96.2°. This includes those residues with 

predicted dihedral angles assigned to them. Excluding these gives a Pearson 

correlation coefficient of r = 0.04 an RMSE of 97.3° and MAE of 92.4°. These results 

show little success in assigning dihedral angles. 

 

There are two problems with the concept outlined above, as shown by the results. The 

first and most pronounced problem is the experimental accuracy of the J coupling 

data. Whilst a reasonable accuracy of dihedral angle prediction is required, this need 

only be accurate enough to distinguish between the two values under scrutiny. 

However, this assumes an accurate set of experimental data. Error bars on the 

experimental data for HN-HA coupling in BioMagRes are between 1.0 and 4.0 radians 

per second.  This combined with a MAE of 56.3° on the dihedral predictions means, 

in some cases, that the error is larger than the difference between the two solutions to 

the Karplus equation. Thus, it is impossible to assign Φ correctly more often than a 

random choice between the two solutions. This is borne out by the Pearson correlation 

coefficient. 
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3.4 Conclusions 

Here, we started this work with the hypothesis that SVR would improve the accuracy 

of dihedral angle predictions. Whilst our method improves over Destruct, our method 

is not as accurate as the state of the art prediction methods, such as Real Spine 2.0. 

Dihedral angles can accurately be predicted by SVR, though not as accurately as with 

neural networks. The normalising procedure used with a sigmoidal function is not as 

effective. It may be possible to improve upon the predictions using a modified 

normalisation of the data or by a differing scaling of the PSSM. This may better 

transform the data for prediction by SVR. There is also scope for developing a 

specialist kernel to deal with PSSM. Of course, the use of more accurate secondary 

structure predictions should also improve dihedral angle accuracy. 

 

Another possibility for dihedral angle prediction is to divide the area of allowable 

dihedral backbone angles into bins and then to classify each residue based on the bin 

that they fall into. For secondary structure prediction this may be a better approach, 

since only areas of the dihedral angle space are required to define the secondary 

structure type. However for other applications, e.g. as restraints for molecular 

dynamics accurate dihedral angles are necessary and achievable as shown by Real 

Spine XI31 a method published after the completion of this work, which improves over 

Real Spine 2.0, using conditional random fields. It is claimed the angles produced by 

Real Spine XI are accurate enough to be used to assign local protein structure. We 

must conclude that whilst SVR is an improvement over cascade correlation networks, 

it does not advance the accuracy of dihedral angle predictions over the approach used 

by state of the art methods such as Real Spine. 
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The method we introduce for NMR assignment could possibly be made into a viable 

alternative for assigning dihedral angles or providing dihedral angles for molecular 

dynamics simulations based on experimental data. However, it depends on both more 

accurate J coupling data for the protein as well as accurate dihedral predictions, 

perhaps with error bars of less than the error obtained for the Karplus equation. 
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Chapter 4: Prediction of Glycosylation Sites using Random 

Forests 

4.1 Background 
 
The second part of this thesis is concerned with the prediction of protein glycosylation 

sites. We gave a detailed overview of PTM and glycosylation in chapter 1. Here, we 

give a brief overview of glycosylation of proteins and previous prediction methods. 

Most proteins do not perform their function without undergoing some form of PTM1. 

PTMs occur after the mRNA has been translated into peptide sequence and the 

polypeptide has begun to fold2,3,4. The importance of PTMs in protein function makes 

their characterisation of particular interest2,3,4. Accurate prediction, using 

computational methods, of sites in a protein sequence where a PTM occurs would 

facilitate protein annotation and would contribute to efforts in functional genomics.  

  

Glycosylation2,3,4, a common PTM, plays a role in protein folding, transport and half-

life, as well as being involved in cell-cell interactions and antigenicity. Glycosylation 

is an enzymatic process, with the exception of glycation, and involves the addition of 

sugars to the protein to build up glycan chains. There are four types of glycosylation: 

N-linked, O-linked, C-mannosylation and GPI (glycophosphatidyl-inositol) anchor 

attachment. C-mannosylation involves the addition of α-mannopyranosyl to the indole 

of tryptophan. GPI anchors concern membrane anchoring of a protein by the addition 

of GPI near the C-terminus. N-linked and O-linked glycosylation are the most 

common types and this study focuses on these modifications. 

 

 N-linked glycosylation consists of the addition of a pre-assembled glycan chain to 
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Asn. This occurs co-translationally and influences protein folding. After its addition, 

the glycan chain undergoes a maturation process, which can produce a glycan of the 

high mannose, hybrid or complex types. The sequence motif Asn-Xxx-Ser/Thr5, or in 

some rare cases Asn-Xxx-Cys, where Xxx is any amino acid except Pro, is required 

for N-glycosylation, although not sufficient on its own. O-linked glycosylation 

consists of the stepwise build-up of various sugars on Ser or Thr residues. O-

glycosylation has no known consensus sequence5. However, Pro is often present 

around O-glycosylation sites6 and O-glycosylation occurs more often in the β-strands 

of proteins5. 

 

Several glycosylation predictors have been produced7,8,9,10. Whilst these are not 

directly comparable, due to development on different datasets, the best predictors are 

NetOglyc 3.1, which is reported to predict correctly 76% of glycosylated residues11 

and 93% of non-glycosylated residues, and Oglyc10 with a reported accuracy of 85% 

correctly classified instances. NetOglyc uses both sequence and predicted structural 

information (predictions of secondary structure and accessible surface area) to train a 

back propagation neural network. Oglyc uses SVMs trained on a combination of 

physical properties of amino acids and a binary representation of the sequence. In this 

chapter, we attempt to improve the prediction of glycosylation sites, using a new 

machine-learning algorithm well suited to prediction from protein sequence data. 

 

Here we aim to develop a new method for predicting glycosylation sites of both O- 

and N-linked types. Our hypothesis is that, even when there is no consensus sequence 

for glycosylation, motifs in the sequence still play a role in determining whether a site 

is glycosylated. For this reason, we combine pairwise patterns and machine learning, 
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with the hypothesis that this will produce a more accurate prediction. We select 

random forest12 as the machine learning algorithm. This has not previously been used 

to predict glycosylation sites. However, a decision tree based method is appropriate 

for sequence (categorical) data and random forest has the added benefit of not over-

fitting12. 

 

 The random forest algorithm12 is based on decision trees.  A decision tree consists of 

paths and nodes, with each node using a rule to decide between two or more paths. A 

rule is typically of the form ‘If A then do B’, where A is a condition relating to the 

descriptors of the input data and B is a step on the path through the trees. The last rule 

gives the classification of the input data example. Several decision trees are developed 

using a random selection of inputs and random feature selection at each node to grow 

the trees. The trees then vote on the class for a given input.  There is no previous 

research into predicting glycosylation using random forests, although the algorithm 

has been widely used, including for prediction of protein-protein interactions13,14, for 

analysis of microarray data15 and identification16 and prediction17 of the function of 

SNPs (single nucleotide polymorphisms). The algorithm has been used for prediction 

of protein structure from NMR data18 and amino acid sequence19. The random forest 

algorithm has several features15, which make it suitable for applications such as the 

prediction of glycosylation sites. It can be used on a mixture of discrete and 

continuous descriptors, to classify binary or multi-class data sets and can cope with 

datasets where there are more variables than observations. The algorithm does not 

over-fit and continues to be successful, even when there is a large amount of noise in 

the data. 
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However, the models generated by random forest can be challenging to interpret. 

Therefore, we have employed trepan20, an algorithm originally designed to allow the 

comprehension of neural networks. It has been adapted for use with other machine 

learning algorithms21. Trepan uses the machine learning algorithm as an “Oracle”. By 

querying the Oracle with the training data and its own generated examples, trepan 

induces a decision tree using m of n rules (see section 4.2.4), thus giving a 

comprehensible picture of an otherwise opaque machine learning algorithm. 

 

In this chapter, using the database of glycosylation sites OGLYCBASE22 version 6.00, 

we analyse the amino acid frequencies around glycosylation sites. Using the O-unique 

dataset [http://www.cbs.dtu.dk/OGLYCBASE/cbsoglycbase.html] we apply the 

random forest algorithm implemented in weka23, combined with information about 

pairwise patterns, to predict the location of glycosylation sites in a given protein. 

Pairwise pattern information has previously been used for protein sequence analysis: 

for example, to predict whether a coiled coil region adopts a leucine zipper structure24 

and to assist in the prediction of protein secondary structure from amino acid 

sequence25. We also experiment with the addition of predicted secondary structure, 

predicted surface accessibility, and hydrophobicity of the amino acids in an effort to 

increase the prediction accuracy. Our prediction program is known as GPP 

(glycosylation prediction program) and is available on-line at: 

http://comp.chem.nottingham.ac.uk/glyco/. We would like to interpret the models for 

the random forest algorithm, and thus gain some biological insight into glycosylation. 

Whilst random forest produces individual rules that are human readable, in the case of 

GPP for each of the three types of glycosylation there are ten models of ten trees each. 

There are redundancies and potentially even conflicts between the different models. 
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We aggregate these models into a single decision tree using the trepan algorithm20, 

providing clear rules for each glycosylation type. 

 

4.2 Methods 
 

4.2.1 The dataset 

The data for frequency analysis is taken from OGLYCBASE 6.0022, which is 

available online from http://www.cbs.dtu.dk/databases/OGLYCBASE/.  The 

OGLYCBASE database contains both experimentally verified and putative instances 

of N-, O-, and C-linked glycosylation sites. It comprises 242 protein sequences and 

2413 verified glycosylation sites. The C-mannosylation data were not considered in 

our investigations, because there are too few experimentally verified sites in the 

dataset. Although several enzymes catalyse the attachment of a glycan to Ser and Thr, 

we have considered all cases in our dataset, with the expectation that the sequence 

patterns surrounding the glycosylated residue may nevertheless be similar, or at the 

very least that the machine learning algorithms may be able to detect and learn 

different sets of patterns within the dataset. For training and evaluation of GPP by ten-

fold cross-validation, we use the O-unique dataset. This is a subset of OGLYCBASE 

and was used for the training of NetOGlyc. It contains only mammalian proteins and 

is non-redundant. Our predictions were based on only those glycosylation sites that 

have been experimentally verified. Unverified sites can sometimes be unreliable and 

false results may confound the predictions. The information retained from the 

database consisted of the sequence, database reference and the location in the 

sequence of the modified residues that have been experimentally verified. Both 

datasets were then split into three, according to whether the modified residues are Ser, 
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Thr or Asn. Within the O-unique dataset, the Ser dataset contains 1219 instances (395 

positive and 824 negative), the Thr dataset contains 1068 instances (370 positive and 

698 negatives) and the Asn dataset contains 589 instances (200 positive and 389 

negatives). After removing duplicate sequence windows from the OGLYCBASE 

datasets, the Ser dataset contains 7285 instances (349 positive 6936 negative), the Thr 

dataset contains 6389 instances (695 positive and 5694 negative) and the Asn dataset 

contains 3508 instances (261 positives and 3247 negatives). Each instance was 

considered as the potentially modified residue and seven residues on either side, to 

give a 15 amino acid sequence window. This choice of window size was based on 

previous work10, providing reasonable computational tractability in determining 

pairwise patterns in the data, and still maintaining sufficient information to predict 

glycosylation site location. In this work, we use the single letter code to represent the 

amino acids in a categorical fashion. The weight of each instance derived from the 

patterns was represented by a numerical attribute. The random forest algorithm can 

develop trees using a mixture of discrete and continuous data. So no additional 

processing of the data was necessary before presenting the data to weka to train the 

random forest algorithm. The prediction program outputs true or false for each 

glycosylation site. This is then aligned with the sequence to show the status of every 

potential glycosylation site in context. An example of the input and output is shown in 

figure 4.1. 

 

4.2.2 Frequency Analysis 

As a preliminary test of the validity of using pairwise patterns to predict glycosylation 

sites, we analysed the frequency of the amino acids surrounding glycosylation sites. 

We aim to detect any significant increases or decreases in the various amino acids in 
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the sequence immediately surrounding the glycosylation site, as they may indicate a 

given amino acid improves or inhibits the chances of glycosylation.  

 

 

Figure 4.1. The flow of data through the prediction program. The top part of the 
figure demonstrates the input for random forest, in this case with the inclusion of 
predicted structural information. The output is shown below a depiction of a small 
random forest. 
 

 

After removing all duplicate sequence windows of size 15 from OGLYCBASE, we 

determined the frequency of each type of amino acid at each position in the window. 

This was carried out for both modified and unmodified sites for the Ser, Thr, and Asn 

datasets and on all of these combined. The frequencies of the modified sites were 

considered to be significant if the difference between the expected frequency and the 

actual frequency was greater than 3σ, where σ is the standard deviation. The expected 

frequency of the residue i at position j was calculated as: 

€ 

Eij =
FijNm

Nu

          (4.1) 

where Nm is the number of sequence windows centred on modified residues, Nu is the 
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number of windows centred on unmodified residues and Fij  is the frequency of 

occurrence of residues i at position j in the unmodified windows. The standard 

deviation was estimated assuming a binomial distribution. We focus on frequent 

patterns in modified sequences, as there is no obvious reason to anticipate that strong 

negative sequence motifs have evolved to evade recognition by enzymes catalysing 

glycosylation.  

 

The frequency of each possible unique pairwise arrangement of amino acids in the 

window was calculated. Patterns below a given frequency threshold were excluded 

from the final pattern set.  To optimise the threshold for pattern exclusion a single data 

set was prepared for each residue type consisting of all positives and an equal number 

of negatives; the threshold was increased incrementally and each resulting pattern set 

was used for prediction. The thresholds that produced the best accuracy were used in 

the final prediction program. These were 22 for Asn, 31 for Ser and 15 for Thr.  

 

Each pattern is given a weighting, to provide a measure of the probability that a 

sequence containing that pattern is a member of the modified class. For a pattern x, the 

pattern weight Wx is calculated as Fm/Fn, where Fm is the frequency of modified 

sequence windows in which pattern x occurs and Fn is the frequency of unmodified 

windows in which this pattern occurs. Each sequence window is compared against all 

of the significant patterns for that type of glycosylation site. Based on the patterns 

found, the sequence is given a pattern weight Wseq.: 

 

€ 

W seq =
Wx

kx=1

k

∑           (4.2) 
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where Wx is the weight of pattern x, and k is the number of patterns found in the 

sequence.  The weight and the sequence window are presented in the form of a string 

of letters (the single letter code for amino acid representation) comprising the 

sequence window and a numerical value (the weight), making use of the capability of 

weka23 to handle a mixture of continuous and categorical data.  

 

Predicted secondary structure information was combined with the pairwise pattern 

information described above. The program PsiPred27 was used to predict the 

secondary structure of the residue at the centre of each sequence window and this was 

then placed after the window sequence and the corresponding weight from pattern 

analysis. PsiPred was selected on the basis of its tried-and-tested nature and its 

accuracy. The surface accessibility was predicted using the SABLE program28. The 

choice of SABLE was motivated by the method’s competitive accuracy as well as its 

free availability and the availability of the source code. The surface accessibility is 

predicted as a number between 0 and 100, with 0 representing fully buried and 100 

fully exposed.  The data obtained from SABLE were added to the central residue of 

the corresponding instances in the training data. The hydrophobicity value of each 

central residue was added to the corresponding instance in the training data. These 

hydrophobicity values were taken from the literature29. The data flow through the 

prediction program is shown in figure 4.1. 

 

4.2.3 Balancing the dataset 
 
The dataset used for training and cross validation has a common problem encountered 

in machine learning applications30. There is a large imbalance between the two classes 

in the dataset. This leads to a prediction in which the majority class is over-predicted 
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and the minority class is predicted inaccurately. We needed to find a way of balancing 

the dataset in order to produce an accurate prediction program. Several approaches to 

dealing with this problem have been tried, both by artificially balancing the dataset 

and by way of algorithmic methods. Here we give an overview of several previous 

methods outlining their suitability and deficiencies, before going on to describe our 

own algorithm, which we developed to overcome the deficiencies of the algorithms 

described here. Random under sampling31 seeks to balance the dataset by removing 

randomly selected excess examples from the majority class until it is the same size as 

the minority class. The disadvantage of this is that for each example removed from the 

dataset some information is lost. This method may not be suitable if the minority class 

is too small. Too few examples of the majority class will remain and the accuracy of 

the prediction will be drastically reduced. It is thought that the inaccuracy of the 

minority class is not solely down to the relative number of examples between the 

minority and majority classes but also the amount of information available for the 

minority class, i.e. the number of instances, and the level of noise in the data30. 

Random over sampling32 adopts the opposite approach to random under sampling. 

Duplicate data is randomly sampled from the minority class until it reaches the same 

size as the majority class. This does improve accuracy of the minority class. However, 

there is a tendency to induce overfitting to the data by duplicating examples, the 

dataset may grow to a size that is computationally difficult to deal with.  

 

In this work, based on theoretical considerations, we rejected both of the above 

methods as being unsuitable. Random under sampling drastically reduces the size of 

the dataset and we lose much of the available information, decreasing the overall 

accuracy, whereas random over sampling requires vast duplication of the data. Since 
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we seek to avoid duplicate data by using the O-unique data set, introducing a large 

number of duplicates of the positive examples is counter productive. There is also an 

issue with the size of the oversampled dataset and the available computational power. 

 

Alternative methods have been proposed. Tomek links have been used for under 

sampling data33. A given pair of values (Ei, Ej) from different classes, separated by 

distance d(Ei, Ej) is a tomek link if there is no example Et such that d(Ei,Et) < d(Ei, Ej) 

or d(Ej, Et) < d(Ei, Ej). One or both of the examples forming a tomek link can be 

considered noise and thus this can be used to remove examples from the data to 

perform under sampling. However, this method does not deal with the problem of loss 

of information. We also reject the method of generating synthetic minority class 

examples used by SMOTE32 for random over sampling, due to the potential 

unreliability of using artificially generated examples. 

 

Several methods for balancing datasets combine multiple techniques using multiple 

classifiers. A selection of classifiers using a mixture of over and under sampling 

methods was tried by Estabrooks and Japkowizc34, taking into account that it is not 

clear which sampling method is best. This method gives good results, particularly for 

prediction of the positive examples. However, our data is not amenable to 

oversampling so this method is not suitable here. Chan and Stolfo35 use preliminary 

experiments to find a good class distribution and then create multiple datasets 

typically with all minority class instances and a selection from the majority class 

selected based on this distribution. A similar method has also been tried using an 

ensemble of SVMs36. However, these methods assume knowledge of a good class 

distribution and although this can be estimated, this both adds to the run time and is 
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not certain to identify such a distribution correctly. 

 

Instead of the above methods, we propose a balancing method that loses the minimum 

of information, whilst avoiding duplication of data or generation of artificial 

examples. The method has similarities to both those described by Chan and Stolfo35 

and Yan et al.36 However, we do not attempt to guide the distribution of the data in 

each of the data sets we create, since this requires good knowledge of the class 

distribution, which we do not have. We make use of ensemble machine learning 

methods to train multiple random forests. In order to retain the maximum information 

from the dataset, each of the datasets we create contains all of the positive examples, 

and a randomly chosen selection of negative examples equal in number to the positive 

examples. These examples are chosen without replacement so each of the datasets 

contains a different selection of negative data. The number of datasets used can then 

be chosen to correspond to the size of the starting dataset. Here we use ten datasets for 

each type of glycosylation site. The random forests trained on these datasets vote to 

determine class. Therefore, the predicting power of the negative examples is 

preserved, whilst we gain the advantages of an equal dataset and avoid the 

disadvantages of the under and over sampling methods. 

 

4.2.4 Training the prediction program 

Training of GPP has two main components. Firstly, a set of patterns is generated from 

the training data for each of the three types of glycosylation site. This is used to 

provide a weighting to each instance in the dataset. Secondly, the random forest is 

trained on the data and associated weights. Multiple random forests (ten in this work) 

are trained, with each voting to determine the class of each test instance. Each of the 



 126 

random forests was trained using a data set comprising all positive instances from the 

cross validation fold and an equal number of randomly chosen negative instances, this 

dataset being generated from the training data (see section 4.2.3). We use multiple 

forests to allow for as complete as possible representation of negative instances in the 

training data without the negatives completely overwhelming the positives in the 

dataset. The pattern sets were created from the entire training data within a cross 

validation fold. This entire procedure is summarised in figure 4.2. The accuracy of the 

prediction was evaluated by cross-validation. The data were divided randomly into ten 

sections and the above training procedure was carried out using nine of these, the 

tenth providing a test set using all instances. This was repeated ten times on each 

occasion with a different section of the data acting as the test set. The measures of 

accuracy used to assess GPP are as follows. Sensitivity, expressed as a percentage, is 

calculated as TP/(TP+FN) x 100, where TP is the number of true positive predictions 

and FN is the number of false negative predictions. Specificity, expressed as a 

percentage, is calculated as TN/(FP+TN) x 100, where TN is the number of true negative 

predictions and FP is the number of false positive predictions. The number of correctly 

classified instances is given as a percentage. We use the Matthews correlation 

coefficient37 (see equation 2.22) to compare the accuracy of our prediction program 

with that of the NetNglyc [http://www.cbs.dtu.dk/services/NetNGlyc/] and NetOglyc11 

glycosylation predictors. We use the number of correctly classified instances, the 

sensitivity and the specificity to compare our work with Oglyc10. In order to test the 

significance of the differences between the different methods of prediction, a paired t 

test38 was conducted on 30 duplicate experiments for pairs of methods. 
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Figure 4.2. The cross-validation of the GPP prediction program, illustrated for the Ser 
dataset. This procedure is repeated 10 times with each fold in turn being used as the 
test set in order to conduct a cross validation. The 10 training sets are drawn from the 
sum of the 9 folds of training data and are used to train 10 random forests. 
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Given a set of results Xi from method A and a set of results Yi from method B, each 

containing n data points, t is calculated as: 

 

 

€ 

t = X −Y ( )
n n −1( )( )

ˆ X i −
ˆ Y i( )2

i =1

n
∑

      (4.3) 

 

where is the mean of X and  is the mean of Y, ;  and p 

is the probability of obtaining a value as large or larger than the observed t. If p is 

below 0.05 then the difference of means is significant at the 5% level. The t test was 

calculated using the R statistics package39. 

 

For the purposes of comparison, we also conducted the above procedure substituting 

the naïve Bayes algorithm for random forest.  The naïve Bayes algorithm is based on 

Bayes rule, which states that for a given input vector x1......Xn the probability of 

observing a class M is:  

 

P(M|x1,.....,xn) = P(x1,.....,xn|M)P(M)/P(x1,.....,xn)     (4.4) 

 

Whilst it is theoretically possible to estimate the probability for each class M, in 

practice the conditional probabilities are not usually known and must be estimated 

from the data. For this reason, the naïve Bayes algorithm makes the assumption that 

the conditional probabilities are independent given the class in order to simplify 

equation 4.4 to:  
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P(xi|M)=(P(x1)),...,(P(xn))       (4.5) 

 

Although this is a rough approximation of the probability for a given class, the naïve 

Bayes classifier has proven to be reasonably robust, because it only matters that the 

true class receives the highest probability, not that the probability itself is correct. We 

used the implementation of naïve Bayes in weka23. As a further comparison, we also 

carried out a basic pattern search using scansite26, which classifies as positive all sites 

that have the consensus sequence. This was performed on the entirety of O-unique, 

since no training is required for scansite. 

 

4.2.5 Extraction of Rules 

Trepan is a method originally used to extract comprehensible rules from neural 

networks. Trepan uses an oracle function to represent the network and derives a 

decision tree from the classifications made by the oracle function. However, it can be 

used for rule extraction from any method that performs binary classification. We use 

here a modified version of trepan implemented in Matlab by Browne et al.21, with 

GPP as the oracle function. Thus, we derive a decision tree based on the classification 

by GPP of the training data, and additional examples created by trepan. The additional 

examples are based on the distribution of the attributes in the training data and they 

ensure a pre-set minimum number of examples reach each node in the tree. The 

splitting test at each node is an m of n test. For each node in the tree there are n 

features. If m of these features are evident in a given instance, this instance is deemed 

to satisfy the m of n rule for this node. In practice, here we find rules only with m = 1 

and n < 3, i.e., simple predicates involving one or two possibilities. Nodes of the tree 

are expanded based on a priority calculated as the number of examples misclassified 
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by the node. Those with highest priority are expanded first, since they have the most 

potential to increase the accuracy of the tree. 

 

4.3 Results and Discussion 

 

4.3.1 Frequency Analysis 

We conduct the frequency analysis using the OGLYCBASE dataset. This was used, 

rather than O-unique, because it has a greater volume and range of sequences, 

allowing statistically significant differences to the background to be more visible. 

There is also a wider range of sequences than O-unique and it is useful to observe 

whether there are trends across the whole spectrum of glyco-proteins, i.e., is our 

method likely to be useful for predicting more than just the mammalian glycosylation 

sites found in O-unique? The consensus sequence for Asn glycosylation is clearly 

exhibited in the frequency table (Table 4.1). The only amino acids in evidence at the 

+2 position are Ser, Thr and Cys, with low numbers of Pro at the +1 position. At the   

-6 position there is an increase in Asp and at the -5 position there is a significant 

increase in Met.  Met is hydrophobic in nature, and is the only such amino acid to be 

increased around glycosylated Asn residues. At the -2 position Gln is significantly 

increased. Cys is increased at the +3 position, indicating that Cys assists glycosylation 

at this position. There is an increase in Pro at the +4 position, which is perhaps 

surprising, as Pro disfavours glycosylation when found at +1 in almost all cases5. It 

may be that Pro helps create a structural conformation favourable for glycosylation 

when found at this position. 
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Position -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 

C 12 9 12 12 10 4 5 11 5 17 11 8 16 9 

D 13 23 10 8 9 13 7 8 0 14 6 17 12 19 

M 13 2 10 6 3 5 3 5 0 6 4 5 2 4 

P 13 22 15 20 7 15 11 1 0 6 31 18 18 14 

Q 9 10 10 16 15 21 7 8 1 11 13 16 9 11 

S 20 22 25 16 16 14 24 23 102 32 23 28 11 32 

T 14 26 15 23 17 17 15 17 151 16 16 13 19 22 

 

Table 4.1. Frequencies of selected amino acids surrounding modified Asn residues. 

Frequency is reported as the number of occurrences in the set of 261 instances of 

modified Asn residues. Statistically significant increases over the expected 

frequencies are represented in bold; significant decreases are represented by italics. 

The full table containing all amino acids is included in Appendix B. 

 

Around modified Ser residues there is known to be an abundance of Pro, Ser and Thr 

and the frequency analysis (Table 4.2) shows increases of Ser and Thr across the 

sequence window and increases in Pro at positions -6, -3, -1, 2, 3 and 4. Of those 

positions where Pro is increased, -1 and +3 present the greatest increases. There is an 

increase in Ala around the glycosylation site at position –1 perhaps suggesting small 

amino acids are preferred here. There is also a decrease in Phe at this position. Leu is 

decreased at –6, -2, +2, and +7, and Lys at +3 and +4. This suggests that these amino 

acids may have an unfavourable effect on glycosylation. 
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Position -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 

A 22 36 24 36 29 30 37 31 34 21 26 30 25 19 

D 6 12 6 18 14 10 6 4 3 10 11 8 5 5 

E 15 19 22 19 23 24 8 16 10 13 10 11 9 6 

G 19 26 30 17 20 22 27 40 27 27 16 23 19 41 

P 31 38 35 35 41 34 46 28 40 51 42 34 32 35 

S 56 42 43 54 53 56 47 48 60 43 56 41 48 49 

T 58 43 46 41 48 34 62 61 48 50 58 51 51 47 

 

Table 4.2. Frequencies of selected amino acids surrounding modified Ser residues. 

Frequency is reported as the number of occurrences in the set of 388 instances of 

modified Ser residues. Statistically significant increases over the expected frequencies 

are represented in bold; significant decreases are represented by italics. The full table 

containing all amino acids is included in Appendix B. 

 

Modified Thr residues (Table 4.3) exhibit elevations in Thr at all positions, except +7, 

and Pro at all odd numbered positions. There is an increase in Ser at the –1 position. 

This suggests that where Thr and Ser glycosylation sites are clustered together, they 

are almost always consecutive in sequence. Pro is particularly increased at the +3 

position, suggesting this is important for glycosylation, as was shown by others6. 

 

There is a decrease in Ile at position –1 and an increase at –2. Gly is increased 

downstream at positions -5 and -2, and upstream at positions +1, +4 and +7. Gly is 

also decreased at –3 and +3. Gln is decreased at the –1 position, as is Lys, which is 

also decreased at –2, and +1, 2 and 3. There is a general decrease in Leu around the 
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glycosylation site, particularly at the –1 and +1 positions. Arg is decreased at –3, –1 

and +3. 

 

position -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 

G 52 40 108 42 21 122 32 101 40 16 106 30 37 112 

I 20 16 16 33 23 40 14 17 17 13 18 29 14 18 

P 77 61 81 67 99 62 128 103 68 167 59 105 59 89 

R 33 22 17 28 8 13 21 11 25 9 15 30 30 16 

S 81 67 65 68 74 70 89 67 76 74 63 59 52 70 

T 101 168 96 130 117 115 107 95 118 131 127 95 156 87 

W 2 10 4 1 2 4 2 2 5 2 3 0 0 0 

 

Table 4.3.  Frequencies of selected amino acids surrounding modified Thr residues. 

Frequency is reported as the number of occurrences in the set of 2010 instances of 

modified Thr residues. Statistically significant increases over the expected frequencies 

are represented in bold; significant decreases are represented by italics. The full table 

containing all amino acids is included in Appendix B. 

 

4.3.2 Pairwise Patterns 

The pairwise patterns for each residue type were ranked by weight to identify those 

most likely to be found around modified residues. These patterns have significant 

frequencies around unmodified residues, as well as around modified residues. The 

weights of some patterns are very similar, especially those for Ser, and statistical 

fluctuations due to the relatively small size of the dataset mean that the rank order of 

these patterns may not be exact.  
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Asn Pattern (weight) Thr Pattern (weight) Ser Pattern (weight) 

.......N.S..... (4.78) ..........P.T.. (3.39) .......S..P.... (0.98) 

.......N.T..... (3.35) ...T......P.... (2.17) N......S....... (0.90) 

.....Q.N....... (1.78) ..T..P......... (2.14) .S.....S....... (0.89) 

.......N......Q (1.27) S..T........... (1.74) .......S......P (0.87) 

.......N......S (1.18) .........S....P (1.57) .......S.....I. (0.86) 

....R..N....... (1.0) .......T..I.... (1.43) .......S....P.. (0.83) 

......AN....... (1.0) .......T.....I. (1.39) ....P..S....... (0.82) 

..I....N....... (1.08) ...T..P........ (1.25) .......SA...... (0.80) 

.......N.....F. (1.08) .......T......M (1.25) .......S.....H. (0.80) 

..S....N....... (1.05) .......T.....P. (1.24) .......ST...... (0.79) 

S......N....... (0.95) .......TE...... (1.23) .......S...V... (0.79) 

...R...N....... (0.92) ....M..T....... (1.22) .......S..T.... (0.77) 

....F..N....... (0.92) Q......T....... (1.15) .......S....R.. (0.77) 

...P...N....... (0.89) .........SP.... (1.11) .......S.I..... (0.76) 

.I.....N....... (0.88) .M.....T....... (1.0) ......ES....... (0.76) 

.......N....A.. (0.88) ....P..T....... (1.0) ......IS....... (0.74) 

.......N.....L. (0.88) ......AT....... (1.0) .......S...P... (0.73) 

.....R.N....... (0.86) .......T..A.... (1.0) .......S.....A. (0.73) 

.......NV...... (0.82) ..........PT... (1.0) ...S...S....... (0.73) 

.......N..S.... (0.81) .............PS (1.0) .P.....S....... (0.72) 
Table 4.4. The 20 most significant patterns for glycosylated residues. The patterns are 

shown with amino acids represented by there single letter code and a ‘.’ used to denote 

a position that may be occupied by any amino acid. 

 

Around Asn residues (Table 4.4) the consensus sequence for Asn glycosylation was 

visible, with the patterns .......N.T..... (rank 02, weight 3.35) and .......N.S..... (rank 01, 

weight 4.78) as the top two patterns identified. Other patterns have substantially lower 

weights indicating the significance of the consensus sequence. Further patterns in the 

list indicate that Gln at –2 may be significant, as well as Ser, Ala and Arg at various 

positions. Gln at –2 is also increased in the frequency analysis above and so may be a 
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significant factor. However, there is no significant increase of Ser, Ala and Arg at 

corresponding positions in the frequency analysis, so it is possible this is only evident 

as part of a pairwise pattern. 

 

The most significant pattern around Ser is Pro at the +3 position, which is in line with 

the frequency analysis. Other patterns include Pro, Ser, Ile and Thr at various 

positions indicating that these amino acids may play a prominent role when linked 

with either Ser or Thr. Many of the patterns around Ser residues have similar weights, 

although Pro at +3 is markedly more significant. 

 

Whilst no consensus sequence has been shown for Thr, around Thr residues (Table 

4.3) there are correlations between the patterns, which suggest one or more sequence 

motifs may enhance the propensity for glycosylation. The majority of the patterns in 

the top 20 contain one of Ile, Thr, Pro or Ser, suggesting that these amino acids favour 

glycosylation. Given the frequency, and the analysis above (Table 4.3) it is likely that 

at least one or more of these amino acids is required for Thr glycosylation. The most 

prominent pattern is of Pro and Thr at the +3 and +5 positions, respectively. This 

could indicate either a motif that encourages glycosylation or the importance of the 

clustering of Ser and Thr glycosylation sites together given the significance of Pro in 

the neighbourhood of both. There are also several patterns with high significance 

involving Glu always upstream of the glycosylation site, although no significant 

increase of this was found in the frequency analysis. It is evident however, that 

pairwise patterns in isolation are not sufficient for correctly predicting glycosylation 

sites. For example, the consensus sequence for Asn glycosylation is represented by 



 136 

several pairwise patterns, but not all of the consensus sequences are glycosylated, so 

this alone is not sufficient to guarantee the presence of a glycosylation site. Only the 

synthesis of all the patterns gives sufficient information to predict whether 

glycosylation occurs. This is even more the case for O-linked glycosylation sites 

where a number of factors may be in effect as indicated by the frequency analysis. The 

complex nature of these overlapping patterns means that machine learning is 

necessary to utilise the information presented by the patterns in the form of a patterns 

weight and the sequence itself. 

 

4.3.3 Prediction accuracy 

To assess the improvement in accuracy of our balancing method, we carried out a 

prediction for Ser glycosylation sites using random under sampling and training with a 

single random forest. This resulted in an accuracy of 69.2% correctly classified 

instances, with a sensitivity of 67.9%, a specificity of 71.5%, and a Matthews 

correlation coefficient of 0.38.  This is much lower than the results for Ser prediction 

given below. We do not consider other balancing methods for the reasons stated above 

in section 4.2. 

 

We measured the prediction accuracy of GPP trained using the pattern weight and 

sequence only, and using additional structural information. For O-linked glycosylation 

sites the change in accuracy with additional information was minimal. For N-linked 

glycosylation an increase in accuracy was observed with the addition of predicted 

surface accessibility information. There was also a much smaller increase with the 

addition of predicted secondary structure information (Table 4.5).  The prediction of 

Thr sites was more accurate than that of Ser sites. The Matthews correlation 
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coefficient, specificity and overall accuracy were higher.  

 

 Random Forest Naïve Bayes 

Dataset 
(size) 

Correctly 
Classified 
Instances 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Matthews 
Correlation 
Coefficient 

Correctly 
Classified 
Instances 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Matthews 
Correlation 
Coefficient 

Ser  90.8 96.1 88.9 0.81 83.9 64.4 92.6 0.61 

Ser  + 
SA 

91.1 95.5 89.6 0.82 82.3 60.5 92.3 0.58 

Ser + 
Hydro 

89.9 96.4 87.5 0.79 82.7 64.8 90.9 0.59 

Ser + 
SS 

91.7 96.3 90.1 0.83 82.4 62.9 91.3 0.58 

Thr  92.0 93.6 92.4 0.84 86.8 74.8 93.3 0.70 

Thr + 
SA 

91.8 91.4 93.2 0.83 85.8 72.5 93.5 0.69 

Thr + 
Hydro 

91.1 91.8 92.2 0.82 85.9 73.0 93.3 0.69 

Thr + 
SS 

91.0 91.8 92.1 0.82 87.2 74.7 94.6 0.72 

Asn  92.8 96.6 91.8 0.85 90.3 83.8 94.6 0.79 

Asn + 
SA 

94.0 95.7 94.3 0.88 89.3 81.9 94.5 0.77 

Asn + 
Hydro 

92.4 95.2 91.9 0.84 90.1 82.5 94.8 0.78 

Asn + 
SS 

93.2 96.4 92.4 0.86 89.3 79.8 94.9 0.76 

Table 4.5.  Accuracy of prediction of glycosylation sites with random forest and naïve 

Bayes algorithms. Hydro = Hydrophobicity data; SA = predicted surface accessibility; 

SS = predicted secondary structure. 

 

However, the sensitivity was higher for the Ser site predictions. This was also the case 

for predictions of Ser and Thr carried out with additional information. In comparison 

to naïve Bayes, the prediction by random forest is superior. All predictions by naïve 

Bayes have a substantial loss in sensitivity and a much lower Matthews correlation 
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coefficient.  

 

 GPP NetOglyc NetNglyc Oglyc CKSAAP40 EnsembleGly41  Scan 
Site 

Ser CCI 90.8 91.8 N/A N/R 83.1 N/R N/A 
Ser 
Sensitivity 

96.1 66.7 N/A N/R 80.7 N/R N/A 

Ser 
Specificity 

88.9 95.3 N/A N/R 85.6 N/R N/A 

Ser MCC 0.81 0.62 N/A N/R 0.671 N/R N/A 
Thr CCI 92.0 84.9 N/A N/R 81.4 N/R N/A 
Thr 
Sensitivity 

93.6 81.5 N/A N/R 80.3 N/R N/A 

Thr 
Specificity 

92.4 89.5 N/A N/R 82.5 N/R N/A 

Thr MCC 0.84 0.67 N/A N/R 0.63 N/R N/A 
Asn CCI 92.8 N/A 76.7 N/A N/A 95.0 79.8 
Asn 
Sensitivity 

96.6 N/A 43.9 N/A N/A 98.0 72.7 

Asn 
Specificity 

91.8 N/A 95.7 N/A N/A 77.0b 81.9 

Asn MCC 0.85 N/A 0.49 N/A N/A 0.84 0.54 
Overall 
CCI 

91.4a 88.6a N/A 87.0 a N/A 89.0 N/A 

Overall 
Sensitivity 

94.9a 76.0a N/A 92.0a N/A 59.0 N/A 

Overall 
Specificity 

90.7a 92.8a N/A 78.0a N/A 68.0b N/A 

Overall 
MCC 

0.83a 0.66a N/A 0.71a N/A 0.64 N/A 

Table 4.6. A comparison of GPP and other glycosylation prediction programs. 

a. combined accuracy for Ser and Thr 

b. Specificity for EnsembleGly was calculated as Tp/ Tp+Fp. See text for 

comparison. 

N/A=not applicable; N/R = not reported; CCI = % correctly classified instances; MCC 

= Matthews Correlation Coefficient 

 

We first compare the results to the NetOglyc8, Oglyc10 and NetNglyc 

[http://www.cbs.dtu.dk/services/NetNGlyc/] prediction servers (Table 4.6). The 
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comparison with O-glycosylation predictors comes with the caveat that they may have 

been trained and tested with different data, which included differing ratios of positive 

and negative instances. We also had a slightly different focus than these predictors, in 

that we do not restrict ourselves to mucin glycosylation sites. For NetOglyc, we use 

data published in Julenius et al.11 The accuracy measures reported did not include 

correctly classified instances; so we calculated this from the information published.  

No published results are available for NetNglyc; so we submitted the sequences in the 

O-unique dataset to the NetNglyc web server and calculated the accuracy measures 

described above. We also compare predictions for the Asn dataset to a basic pattern 

search for the consensus sequence carried out by scansite26.  Li et al.10 did not give the 

Matthews correlation coefficient for the Oglyc predictions. Therefore, we calculated it 

from the reported data and also use the measures of correctly classified instances, 

sensitivity and specificity for this comparison. We converted the values provided by 

Li et al. into percentages. Oglyc only report the combined accuracy; separate accuracy 

information for Ser and Thr was not available. The comparison with Oglyc was 

carried out against their dataset two, which produced the best results for their 

predictor. The GPP predictor has a higher correlation coefficient and sensitivity than 

NetNglyc. Scansite correctly predicts most positive instances of Asn glycosylation 

and has a higher sensitivity and specificity than NetNglyc. However, GPP is more 

accurate and has higher Matthews correlation coefficient, sensitivity and specificity. 

Our prediction of Thr sites is better in all measures than that of NetOglyc.  For Ser 

prediction our overall accuracy is comparable, although we have a higher Matthews 

correlation coefficient. NetOglyc has a higher specificity and a lower sensitivity than 

GPP. There is a higher ratio of negatives to positives in the Ser data set compared to 

that for Asn and Thr. This affects the pattern weights, bringing them closer together 
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and making it more difficult for the random forest to discriminate between modified 

and unmodified residues. There are also more types of sugar in more equal 

proportions in the Ser dataset, creating a more difficult task for the random forest. The 

Asn dataset does not experience similar effects: its consensus sequence motif is easily 

picked out (and augmented) by the random forest algorithm. There are no data for 

separate Ser and Thr predictions available for Oglyc10. Their overall prediction 

accuracy of 87.4% (correctly classified instances) is less than the overall accuracy of 

GPP, and we also score better in sensitivity and specificity. 

 

Two more recent predictions servers, EnsembleGly by Carega et al.40 and CKSAAP 

by Chen et al.41, were published during the completion of this work. Carega et al. use 

ensembles of SVMs to predict O- and N-linked glycosylation sites. Carega et al. 

calculate sensitivity as Sn = Tp/ Tp+Fp. We convert this measure into a percentage. 

Calculating this measure for GPP, for Asn prediction Sn = 87.17 for Ser Sn =  81.3 for 

Thr Sn = 7.53 and for the combined O-Linked predictions Sn = 84.4 GPP has a greater 

Matthews correlation coefficient for both N- and O-linked prediction (only an overall 

score for O-linked is given). For N-linked sites they have a greater accuracy and 

sensitivity, but GPP has greater specificity and Matthews correlation coefficient, 

indicating EnsembleGly has a greater number of false negative predictions. For O-

linked sites, GPP scores better for sensitivity, specificity and Matthews correlation 

coefficient. Chen et al. predict mucin glycosylation sites using k-spaced pairwise 

patterns and SVMs. This method has some similarities with our own and the accuracy 

of the two methods is comparable. However, GPP is more accurate for both Ser and 

Thr predictions.  
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4.3.4 Rule extraction 

Trepan identifies the consensus motif for Asn glycosylation (figure 4.3) as the most 

prominent rules in the decision tree. However, subsequent rules are somewhat 

misleading, as they allow glycosylation without the consensus sequence being present. 

This is probably an artefact of the generation of additional data by trepan. This 

approach is reliant on the distribution of the training data and will highlight patterns 

additional to the consensus sequence. The tree corresponding to Thr glycosylation 

(figure 4.4) shows features in line with the statistical data. Pro at residue +3 increases 

glycosylation when accompanied by a Ser or Thr.  

 

 

Figure 4.3. Asn glycosylation rules. A subset of the complete decision tree covering 
all the rules for Asn glycosylation (the complete tree is available in Appendix C).  
Each node is numbered in the order it was added to the tree. All rules are 1 of A, B… 
N so only the relevant features are shown. The amino acids are represented using the 
single letter code and the positions are indicated with respect to a sequence window of 
length 15, with the target residue at position 08. 
 

The end of the sequence seems to be given undue importance. However, other rules 

are in line with the frequency analysis. Cys seems to strongly discourage 
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glycosylation, whilst Ser, Thr and Pro encourage it when accompanied by various 

other amino acids.  

 

Figure 4.4. Thr glycosylation rules.  A subset of the complete decision tree 
encompassing all the rules produced for Thr glycosylation (the complete tree is 
available in Appendix C). Each node is numbered in the order it was added to the tree. 
All rules are 1 of A, B… N so only the relevant features are shown. The amino acids 
are represented using the single letter code and the positions are indicated with respect 
to a sequence window of length 15, with the target residue at position 08. 
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Figure 4.5. Ser glycosylation rules. A subset of the rules produced for Ser (the 
complete tree is available Appendix C  showing the importance of the +2 position in 
glycosylation of Ser. Each node is numbered in the order it was added to the tree. All 
rules are 1 of A, B… N so only the relevant features are shown. The amino acids are 
represented using the single letter code and the positions are indicated with respect to 
a sequence window of length 15, with the target residue at position 08. 
 

Some rules may be inexact, due to the limited data in O-unique that trepan can base its 

derived examples on. This is also true for the Ser tree (figure 4.5). The tree for Ser is 

similar to the one for Thr, although more complicated. Once again, the end of the 

sequence is implicated, as is the presence of Pro at various positions. Cys again seems 

to block glycosylation, whilst Ser, Thr, Glu, and Pro all encourage it when present at 

various positions along the sequence, especially in conjunction. 

 

4.3.5 Sugar type 

The approach to predicting glycosylation sites described above predicts all 

glycosylation sites, and does not differentiate with respect to the type of glycan 

attached, or the glycosidic linkage involved. As previously described, there are many 
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different sugars involved in glycosylation, and in most cases each of these has a 

different enzyme catalysing its attachment. Therefore, it is reasonable to assume that 

there are differences in the amino acid sequence associated with each type of glycan. 

To test this, we classify the data in OGLCYBASE by the sugar type that attaches the 

glycan to the protein (linkage sugar). We use OGLYCBASE, as it includes more 

sequences and presents a more realistic representation of the distribution of linkage 

sugars. Duplicate sequences were removed from the database. However, other ways of 

reducing sequence identity were not carried out, as it is expected that glycosylation 

sites for different types of sugars will be similar. Sequence representation was as 

described above for prediction and rule extraction. Since the number of classes is 

large, classification methods such as random forest or SVM are unlikely to distinguish 

between the various classes accurately. So we use clustering to distinguish between 

the different glycans. 

 

For this work, we use farthest first clustering42, which aims at separating the data 

optimally based on distance.  The first point of k cluster centres is chosen at random (k 

is user defined). The second cluster centre is then the data point furthest away from 

the first point. The third cluster centre is the data point furthest from these two points. 

This process is continued until k points have been chosen to act as k initial cluster 

centres, with the kth point being furthest from the k-1th point. Each data point is 

assigned to the closest of these cluster centres using a distance metric. According to 

Hochbaum and Shmoys42 this algorithm produces clusters, which are no more than 

twice the optimal k centre value. For farthest first clustering, we used k = 7 clusters for 

Ser residues and k = 9 for Thr residues. Experiments showed that these produced the 

clearest split in the data (data not shown). Although there are sugars with only a few 
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examples in the data set that do not have their own clusters, increasing the number of 

clusters did not separate these instances from the bulk of the data. 

 

Cluster 1  
(57) 

Mannose 
61.4% 

GalNAc 
33.3% 

GlcNAc 
3.5% 

Xylose 
1.8% 

Cluster 2  
(33) 

GalNAc 
69.7% 

Mannose 
24.2% 

GlcNAc 
6.0% 

 

Cluster 3  
(19) 

GalNAc 
63.2% 

Xylose 
15.8% 

Mannose 
10.5% 

GlcNAc 
10.5% 

Cluster 4 
(16)  

GalNAc 
43.8% 

Xylose 
37.5% 

Mannose 
6.3% 

GlcNAc, 
Galactosea 
6.3% 

Cluster 5  
(64) 

GalNAc 
92.2% 

Mannose 
4.7% 

Xylose 
1.6% 

GlcNAc 
1.6% 

Cluster 6  
(29) 

Mannose 
48.3% 

GalNAc 
37.9 

Xylose 
10.3% 

Gal-
GalNAc 
3.4% 

Cluster 7 
(46)  

GalNAc 
58.7% 

GlcNAc 
23.9% 

Mannose 
17.4% 

 

Table 4.7 Percentage membership of clusters generated by farthest first clustering of 

Ser glycosylation sites 

a. both sugars have equal percentage so both have been included. 

 

The composition of the clusters is presented in table 4.7. The four most prominent 

sugars in each cluster are shown, along with the percentage of the cluster they occupy 

and the total number of instances in each cluster. Residues where the sugar type is not 

known are marked as unknown. The majority of residues are GalNAc, which is the 

most common linkage sugar. The clustering does not differentiate between the type of 

linkage sugar.  
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Cluster 1  
(124) 

GalNAc 
93.5% 

Mannose 
3.2% 

Gal-
GalNAc 
0.8% 

Galactosamine, 
HexNAca 0.8% 

Cluster 2  
(40) 

GalNAc 
65.0% 

Mannose 
30% 

GlcNAc 
5.0% 

 

Cluster 3 
(19)  

GalNAc 
78.9% 

Mannose 
15.8% 

Xylose 
5.263% 

 

Cluster 4  
(12) 

Fucose 
50.0% 

Mannose 
33.3% 

GalNAc 
16.7% 

 

Cluster 5  
(108) 

Mannose 
48.1% 

GalNAc 
46.3% 

GlcNAc 
4.6% 

Xylose 0.9% 

Cluster 6  
(98) 

GalNAc 
84.7% 

Mannose 
10.2% 

GlcNAc 
5.1% 

 

Cluster 7 
(86) 

Hexose 
87.2% 

GalNAc 
10.465 

Mannose 
2.3% 

 

Cluster 8 
(47)  

GalNAc 
68.1% 

GlcNAc 
14.9% 

Mannose 
10.6% 

HexNAc 4.3% 

Cluster 9  
(34) 

GalNAc 
70.5% 

Mannose 
23.5% 

GlcNAc 
5.9% 

 

Table 4.8 Percentage membership of clusters generated by farthest first clustering of 

Thr glycosylation sites 

a. both sugars have equal percentage so both have been included. 

 

There is not one single class per sugar and, in fact, GalNAc features prominently in all 

clusters, although mannose is clearly separated as the dominant sugar in two clusters. 

Increasing the number of clusters to ten does not alleviate this situation. This suggests 

that sequence alone is not sufficient to separate glycosylation types based on linkage 

sugar. It is likely that there are other factors involved, such as the structure of the 

protein and the properties of the protein surface, in determining which sugar is first 

attached to the protein at a given glycosylation site. The clustering of Thr 

glycosylation sites by linking sugar has much in common with Ser glycosylation sites. 
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The clusters are once again dominated by GalNAc, membership with this sugar 

featuring prominently in all the clusters. However, there are clusters for several of the 

significant sugars involved, such as hexose, mannose and fucose.  

 

In general, no cluster for either Ser or Thr is solely occupied by one linkage sugar. 

This may be in part due to the fact that most glycosylation sites are linked with 

GalNAc, with other modifications being relatively rare. The clustering may, therefore, 

be improved by increasing the amount of data available for non-GalNAc glycosylation 

sites. It may also be that a different representation of the data may be more appropriate 

for clustering. These experiments use the same representation as the glycosylation 

prediction earlier in this chapter. Whilst this is appropriate when looking for pair-wise 

patterns, representing the data with PSSMs may well be better for clustering. 

However, the idea of clustering glycosylation sites shows some promise if the 

methodology were to be refined. This could be used in place of predicting individual 

glycosylation types using separate predictors if the accuracy is increased. 

 

4.4 Conclusions 

The random forest algorithm was used to predict glycosylation sites, based on 

pairwise sequence patterns and the amino acid sequence. The program improved over 

the best prediction programs currently available, with significant increases in accuracy 

for the prediction of Thr and Asn glycosylation sites. Neither the addition of structural 

data, hydrophobicity information, nor surface accessibility data improved the 

prediction accuracy of O-linked glycosylation, although N-linked glycosylation 

prediction is improved by the addition of surface accessibility data. However, it may 

be possible to improve prediction accuracy further through the inclusion of 
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information on protein disorder and information on the orientation of membrane 

proteins. It may also be possible to increase accuracy by extending the initial data set, 

or by considering separately proteins whose PTM is catalysed by the same enzyme. 

Another option would be to produce prediction programs for each specific glycan 

type, or to classify each glycosylation site by type of glycan after prediction. Our use 

of the trepan algorithm allows us to extract comprehensible rules describing features 

characteristic of a glycosylation site. Our use of clustering to identify the linkage 

sugar at a glycosylation site was less fruitful, but shows some promise. It may provide 

an alternative to training predictors for each individual glycosylation type. 
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Chapter 5: Conclusions 

The topics discussed in this thesis are at the centre of bioinformatics and 

computational biology. The prediction of dihedral angles has many potential uses in 

protein structure prediction and determination. Glycosylation is a key PTM, which is 

heavily involved in the biology of all organisms. It is involved in the regulation of 

various biological processes and is be important in signalling between cells, in the 

immune system and in many other aspects of biology.  

 

Our hypothesis for the work in chapter 3 was that using the as yet untested method of 

SVR would improve prediction accuracy. We also wished to test the use of predicted 

secondary structure to enhance the prediction of dihedral angles. For this reason our 

initial experiments replicated the work of Wood and Hirst1. Reproduction of the 

Cascade Correlation networks predictor was based on incomplete information and was 

thus not entirely successful. We nevertheless obtained some potentially useful 

predictions, although the accuracy was well below that of state of the art methods such 

as PsiPred2. For the remainder of the chapter we focused on dihedral angle prediction, 

both with and without the secondary structure predictions obtained from CASCOR. 

Dihedral angles have potentially more use than secondary structure predictions. They 

give more information about the 3D structure than a three state secondary structure 

prediction, since it is possible to infer the orientation of the elements of the protein 

structure from the dihedral angles. It is also possible to use predicted dihedral angles 

as restraints for molecular dynamics and as a starting point for a complete 3D 

structure.  

 

We began by discussing the choice of the Gaussian kernel in the SVR. The selection 
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of the kernel is a crucial aspect, as is borne out by the differing accuracy of the 

kernels. The Gaussian kernel was clearly better based on our results. Optimising of the 

user defined parameters of the SVR was also a crucial step to undertake. These 

parameters can potentially have a large effect on the results of a given experiment. 

The optimisation gave us a useful, but surprisingly small, improvement over un-

optimised SVR. We used predicted secondary structure information to enhance the 

sequence representation and improve Ψ dihedral angle prediction. We also used 

normalization methods that have been previously employed by Real Spine 23. 

Structural information only resulted in a small gain in accuracy. However, the 

normalisation method resulted in a large improvement. We predicted Φ using similar 

methods, again using Real Spine 2’s normalisation method. No predicted secondary 

structure was added to the sequence representation for Φ prediction, since it does not 

have the same relevance. The best results are given by the normalised predictions in 

the case of Ψ with predicted structural information. In comparison to other work this 

method does not beat the state of the art methods such as Real Spine, though it is more 

accurate than the prediction of dihedral angles with Destruct1. However, the accuracy 

is far behind that of Real Spine XI4, which was published during the writing of this 

thesis. The conclusion reached is that there is no improvement over the state of the art 

methods to be gained using SVR, although SVR is an improvement on Cascade 

correlation networks, and indeed there is also a loss of speed over other methods. In 

the wider context of protein structure, prediction of the dihedral angles would be 

extremely valuable, and is an important goal on the route to computational 

determination of a protein’s structure. In the future the accuracy of dihedral angle 

prediction can still be improved upon and it is likely that this improvement will take 

the route of highly focused neural networks grouped into ensembles with each 
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predicting a part of the complete protein structure. 

 

 Also as part of chapter 3, we investigated a potential application of our dihedral angle 

predictions in NMR assignment, using Φ angles to assist in the solving of the Karplus 

equation. Such an application has not been attempted before, but would be a useful 

tool for the assigning of NMR spectra of proteins. This application still has the 

potential to be successful. However, this will require a much greater accuracy of the 

experimental measurements of 3 bond J couplings and of the prediction of dihedral 

angles, as our experiments here have shown. Currently, dihedral angles are assigned 

using the Talos software5 from a relatively small subset of proteins. Using the Karplus 

equation would allow the assignment of dihedral angles without referring to an 

example dataset, but this depends on the ease of obtaining the experimental results. 

 

In Chapter 4, we presented our research into predicting glycosylation sites. To test the 

feasibility of our initial hypothesis, we first looked for patterns in the amino acids 

surrounding glycosylation sites. Our frequency analysis shows that there are indeed 

amino acids, which are significantly increased or decreased in proximity of 

glycosylation sites. This has the implication that there are underlying motifs in the 

sequence that confer an increase in the likelihood of glycosylation. Pairwise patterns 

were generated within sequence windows. The frequency of occurrence of these pairs 

of amino acids shows that some patterns are much more likely to occur around 

glycosylated residues. This information was used to weight sequences, which were 

then used to train random forest. We balanced the dataset utilising an ensemble of 

random forests each trained on a balanced dataset created by under sampling from the 

training data. The sampling of the negative (majority class) was carried out without 
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replacement so the maximum information is retained. This method gave a large 

improvement in accuracy over both the unbalanced data and balancing the data using 

random under sampling alone. The resulting prediction program, GPP, produces 

accurate predictions of both N-linked and O-linked glycosylation sites. Comparing 

these predictions to other prediction methods it is clear that GPP is the best prediction 

method available. It scores higher in both accuracy and in Matthews correlation 

coefficient, indicating it makes significantly fewer false positives than other methods. 

The most recent prediction methods, are close to GPP in overall accuracy, but worse 

in at least some areas. In terms of interpretability all methods are equally black box in 

nature, making our work to interpret the random forest all the more important. In the 

wider context GPP is a useful tool for allowing the targeting of experiments, and for 

computational analysis of a large number of sequences. It is the best software 

available for these tasks. 

 

 The model generated by GPP is opaque, i.e. non-interpretable. To address this, the 

trepan algorithm was used to generate comprehensive rules in the form of a decision 

tree that represents the model generated by random forest. This showed some rules 

that were in agreement with experiment. There were, however, some details missed by 

trepan, possibly due to the nature of the m of n rules used therein, which did not seem 

to allow negative selection. So some sequence motifs that block glycosylation were 

not shown. There was also at least one rule that was puzzling in that it has no 

experimental evidence supporting it. Despite all this, the rules produce were able to 

provide some insight into the glycosylation process. These rules are potentially useful 

both for the understanding of the biological mechanism that dictates whether a residue 

is glycosylated or not, and to understand the weak points of the machine learning 
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method and suggest potential improvements. As a further experiment farthest first 

clustering was employed to classify the glycosylation site by linkage sugar type. This 

had little success and a different approach may be required in order to successfully 

determine the linkage sugar from sequence information. Such information would help 

to augment proteomics studies by indicating what may be attached to a given 

glycosylation site. However, the sugars attached may be tissue specific, so it may not 

be possible to determine the glycan attached to a glycosylation site without referring 

to factors in the surrounding environment. 

 

The work discussed here gives scope for future studies. Of the work in chapter 4, both 

the novel balancing method and the pairwise pattern method could conceivably be 

used in other work. The general method of weighting pairwise patterns could be 

applied to many different problems involving the classification of sequences. 

Particularly interesting would be to apply this to the prediction of other PTMs for 

which it would be very much suited. It would also be interesting to see if such a 

method could be used to improve upon the dihedral angle prediction method of 

chapter 3, since pairs of residues might denote hydrogen bonds that are important for 

defining a particular type of secondary structure. The balancing method can be used to 

balance any set of imbalanced data, and it would be interesting to look into the 

benefits of this method in a wider range of situations. The future course of the 

research discussed here promises to lead to the use of accurate predictions of protein 

structure which can be used for design of proteins and for targeting experimental 

research, although this work leads the methods used away from SVR and suggests that 

the methods employed by Real Spine XI are a better bet. Future prediction of PTMs 

will yield both targeted experiments but also potential drug targets and a greater 
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understanding of some of the fundamental process in regulation of the cell and in 

intercellular signalling as well as of the diseases associated with these areas of 

biology. 
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Appendix A 

Structures of the 20 standard amino acids 
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Appendix B 
 
The following tables contain the complete frequency statistics for glycosylated Ser, 

Thr and Asn residues. Significant increases are shown in bold significant decreases in 

italics. The results in these tables as well as the methods used to obtain them are 

discussed in chapter 4. 

 
Table B.1 Frequency statistics for glycosylated Asn residues 

Position -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 
A 19 15 18 17 20 18 15 23 0 15 21 22 15 16 
C 12 9 12 12 10 4 5 11 5 17 11 8 16 9 
D 13 23 10 8 9 13 7 8 0 14 6 17 12 19 
E 19 11 11 12 21 13 19 7 0 15 21 18 19 27 
F 6 12 10 6 16 13 10 12 0 7 7 5 15 4 
G 19 19 15 18 14 9 20 30 0 9 16 17 19 12 
H 6 7 6 8 9 8 5 8 0 7 9 7 10 6 
I 10 13 15 11 10 6 7 19 0 12 10 4 13 6 
K 10 6 11 9 9 14 11 12 0 17 10 9 9 17 
L 30 18 23 26 27 28 22 25 0 22 21 18 23 13 
M 13 2 10 6 3 5 3 5 0 6 4 5 2 4 
N 12 7 14 13 9 18 20 12 0 8 8 12 9 16 
P 13 22 15 20 7 15 11 1 0 6 31 18 18 14 
Q 9 10 10 16 15 21 7 8 1 11 13 16 9 11 
R 14 7 12 10 15 10 15 10 0 15 5 13 10 8 
S 20 22 25 16 16 14 24 23 102 32 23 28 11 32 
T 14 26 15 23 17 17 15 17 151 16 16 13 19 22 
V 14 13 16 17 15 19 25 17 0 18 15 18 19 12 
W 7 4 6 0 7 4 6 2 0 6 3 3 3 3 
Y 6 14 6 12 12 12 13 10 0 6 9 8 7 5 
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Table B.2 Frequency statistics for glycosylated Ser residues 
Position -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 
A 22 36 24 36 29 30 37 31 34 21 26 30 25 19 
C 4 7 3 3 4 13 3 7 3 17 6 5 6 5 
D 6 12 6 18 14 10 6 4 3 10 11 8 5 5 
E 15 19 22 19 23 24 8 16 10 13 10 11 9 6 
F 6 3 4 7 4 3 4 4 7 6 2 6 2 5 
G 19 26 30 17 20 22 27 40 27 27 16 23 19 41 
H 9 5 4 8 6 9 1 4 0 4 6 8 6 13 
I 13 13 7 6 8 11 16 9 15 7 7 4 17 8 
K 6 8 15 11 2 6 5 9 11 3 4 11 12 8 
L 20 12 20 20 15 11 13 18 12 15 24 16 17 15 
M 16 6 10 5 7 4 3 0 5 8 3 5 4 5 
N 16 10 12 9 12 12 6 6 7 4 8 21 9 10 
P 31 38 35 35 41 34 46 28 40 51 42 34 32 35 
Q 8 11 11 9 14 12 9 11 6 9 14 16 11 8 
R 12 5 12 11 8 7 4 11 8 8 0 4 11 8 
S 56 42 43 54 53 56 47 48 60 43 56 41 48 49 
T 58 43 46 41 48 34 62 61 48 50 58 51 51 47 
V 17 24 24 20 19 23 28 21 26 24 26 18 20 19 
W 3 9 0 4 4 3 2 0 1 1 1 0 5 2 
Y 6 5 8 4 5 8 8 2 5 5 3 8 7 4 

 
Table B.3 Frequency statistics for glycosylated Thr residues 
position -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 
A 59 54 60 66 48 52 81 51 77 62 47 41 41 47 
C 11 3d 16 0 8 3 3 13 3 2 4 9 5 8 
D 17 36 21 30 21 10 7 15 19 10 17 29 21 14 
E 42 36 41 36 45 30 12 40 29 20 33 40 43 29 
F 6 10 4 12 13 8 12 8 9 10 12 4 14 13 
G 52 40 108 42 21 122 32 101 40 16 106 30 37 112 
H 12 6 7 8 15 4 12 6 20 6 17 17 18 13 
I 20 16 16 33 23 40 14 17 17 13 18 29 14 18 
K 25 18 17 16 16 12 8 7 13 7 19 18 18 16 
L 19 25 34 35 35 26 14 15 27 20 26 34 34 17 
M 20 10 5 11 12 9 8 14 13 6 7 13 3 3 
N 20 10 14 17 22 18 19 15 24 17 18 21 14 15 
P 77 61 81 67 99 62 128 103 68 167 59 105 59 89 
Q 22 27 15 25 30 14 19 22 15 28 17 20 24 17 
R 33 22 17 28 8 13 21 11 25 9 15 30 30 16 
S 81 67 65 68 74 70 89 67 76 74 63 59 52 70 
T 101 168 96 130 117 115 107 95 118 131 127 95 156 87 
V 47 40 37 33 50 46 69 51 42 35 30 42 32 36 
W 2 10 4 1d 2 4 2 2 5 2 3 0 0 0 
Y 11 6d 12 11 10 7 11 7 11 11 5 4 16 8 
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Appendix C 

 

The following are the complete decision trees generated by trepan for Asn, Ser and 

Thr glycosylation. Full analysis and methods is given in chapter 4. 
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Figure C.1 Complete decision tree for Asn glycosylation sites 
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Figure C.2 Complete decision tree for Ser glycosylation sites 
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Figure C.3. Complete decision tree for Thr glycosylation sites 
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Appendix D 
 
Listed below are the commonly found monosaccharides encountered in this thesis 
 
Monosaccharides 
 
Name      Abbreviation     
Galactose    Gal 
D-Glucose    Glc 
D-Mannose    Man 
L-Fucose    Fuc 
D-Xylose    Xyl 
D-Glucuronic acid   GlcA 
N-Acetyl-D-galactoseamine  GalNAc 
N-Acetyl-D-glucoseamine  GlcNAc 
N-Acetyl-Neuraminic acid  NeuAc 
 
 
 
 


