
Data Mining Techniques for Protein Sequence

Analysis

Stephen Edward Hamby

Thesis submitted to the University of Nottingham

for the degree of Doctor of Philosophy

December 2009

 ii

 iii

Abstract

This thesis concerns two areas of bioinformatics related by their role in protein

structure and function: protein structure prediction and post translational modification

of proteins. The dihedral angles Ψ and Φ are predicted using support vector

regression. For the prediction of Ψ dihedral angles the addition of structural

information is examined and the normalisation of Ψ and Φ dihedral angles is

examined. An application of the dihedral angles is investigated. The relationship

between dihedral angles and three bond J couplings determined from NMR

experiments is described by the Karplus equation. We investigate the determination of

the correct solution of the Karplus equation using predicted Φ dihedral angles.

Glycosylation is an important post translational modification of proteins involved in

many different facets of biology. The work here investigates the prediction of N-

linked and O-linked glycosylation sites using the random forest machine learning

algorithm and pairwise patterns in the data. This methodology produces more accurate

results when compared to state of the art prediction methods. The black box nature of

random forest is addressed by using the trepan algorithm to generate a decision tree

with comprehensible rules that represents the decision making process of random

forest. The prediction of our program GPP does not distinguish between glycans at a

given glycosylation site. We use farthest first clustering, with the idea of classifying

each glycosylation site by the sugar linking the glycan to protein. This thesis

demonstrates the prediction of protein backbone torsion angles and improves the

current state of the art for the prediction of glycosylation sites. It also investigates

potential applications and the interpretation of these methods.

 iv

Acknowledgements

I thank Jonathan Hirst for his excellent supervision, Ben Bulheller for designing the

website that makes the glycosylation prediction software available for use, Clare

Evans, Craig Bruce, and Petros Kountouris for useful discussions, the BBSRC for a

studentship and the University of Nottingham for the use of high performance

computing.

 v

Contents

Abstract iii

Acknowledgements iv

List of Figures x

List of Tables xii

List of Common Abbreviations xiii

Publications Arising From This Thesis xv

Chapter 1 Protein bioinformatics 1

1.1 Introduction 1

1.2 Sequence analysis 3

1.2.1 PSI-BLAST 4

1.3 Protein structure 6

1.3.1 Dihedral angles 10

1.3.2 Secondary structure prediction 12

1.3.3 Prediction of dihedral angles 16

1.3.4 Hydrophobicity and surface accessibility 18

 1.3.4.1 Assignment of hydrophobicity and surface accessibility 18

 1.3.4.2 Prediction of solvent accessibility 19

1.4 Post translational modification 21

 1.4.1 Post translational modification overview 22

 1.4.2 Glycosylation 23

 1.4.3 Structure of glycans 24

1.4.3.1 Carbohydrates 24

1.4.3.2 Monosaccharides 24

1.4.3.3 Glycosidic linkages 25

 vi

1.4.3.4 Oligosaccharides 25

 1.4.4 Glycosyltransferases 26

 1.4.5 N-Linked glycosylation 27

 1.4.5.1 Function of N-glycans 29

 1.4.6 O-Linked glycosylation 30

 1.4.6.1 O-GalNAc or mucin type modification 30

 1.4.6.2 Functions of O-linked mucin glycans 32

 1.4.7 Glycosylation of cytosolic and nuclear proteins 33

 1.4.8 Prediction of glycosylation 34

 1.4.8.1 Previous prediction methods 35

 1.4.8.2 Motivation and objectives for new predictive methods 36

1.5 Thesis overview 36

1.6 References 37

Chapter 2 Machine learning algorithms 46

2.1 Introduction 46

2.2 Classification 48

2.3 Decision trees 50

 2.3.1 Decision tree induction 51

 2.3.2 Splitting criteria 51

2.3.2.1 Impurity based criteria 51

2.3.2.2 Binary criteria 54

 2.3.3 Stopping criteria and pruning 54

 2.3.4 Some decision tree algorithms 56

2.4 Ensembles of decision trees 57

 vii

 2.4.1 Decision forest: general principles 57

 2.4.2 Diversity 59

 2.4.3 The combiner 62

 2.4.4 Random forest 63

2.5 Kernel based machine learning 65

 2.5.1 Kernel types 66

 2.5.2 Hard margin support vector machine 68

 2.5.3 Soft margin classifier 68

 2.5.4 SVR 68

2.6 Critical assesment 69

 2.6.1 Assessing accuracy 70

 2.6.2 Model interpretability 72

2.6.2.1 Neural networks 73

 2.6.2.2 SVM 76

 2.6.2.3 Random forest 78

2.7 References 79

Chapter 3 Dihedral angle prediction 85

3.1 Introduction 85

3.2 Methods 87

 3.2.1 Datasets 87

 3.2.2 Data pre-processing and representation 88

 3.2.3 Structure prediction with cascor 90

 3.2.4 Dihedral prediction with SVR 93

 3.2.5 Kernel functions 94

 viii

 3.2.6 Optimisation 96

 3.2.7 Training and evaluation for dihedral angle prediction 98

 3.2.8 Normalisation 100

3.3 Results and discussions 100

 3.3.1 Initial predictions 100

 3.3.2 Effect of normalisation 103

 3.3.3 Effect of addition of amino acid properties 104

 3.3.4 Predicting Φ angles 105

 3.3.5 Applications of predicted dihedral angles to assigning 106

 NMR spectra

3.3.6 Predicting the correct solution for BioMagRes 106

J coupling data

3.4 Conclusions 109

3.5 References 110

Chapter 4 Glycosylation prediction 114

4.1 Background 114

4.2 Methods 118

 4.2.1 The dataset 118

 4.2.2 Frequency analysis 119

 4.2.3 Balancing the dataset 122

 4.2.4 Training the prediction program 125

 4.2.5 Extraction of rules 129

4.3 Results and Discussion 130

 4.3.1 Frequency analysis 130

 ix

 4.3.2 Pairwise patterns 133

 4.3.3 Prediction accuracy 136

 4.3.4 Rule extraction 140

 4.3.5 Sugar type 143

4.4 Conclusions 147

4.5 References 148

Chapter 5 Conclusions 153

5.1 References 158

Appendix A 159

Appendix B 163

Appendix C 165

Appendix D 169

 x

List of Figures

1.1 An example of an α helix structure from the UBA domain of the 7

protein p62

1.2 The hydrogen bonding pattern of an anti-parallel β sheet 9

1.3 Dihedral torsion angles of the protein backbone 10

1.4 The Ramachandran plot 11

1.5 Glycosyltransferase A 26

1.6 The synthesis and maturation of N-glycans 28

1.7 Four common O-glycan core structures 31

2.1 A general schematic of a simple decision tree 50

2.2 An illustration of kernel machine learning where a maximal margin 66

hyperplane can be fitted to the data on the left after it has been raised

into a higher dimensional space by a kernel function from its

representation on the right

3.1 Schematic of the cascade correlation network 92

3.2 An example of an input vector for CASCOR 92

3.3 An example input vector for dihedral angle prediction 96

3.4 Example input for prediction of dihedral angles with the addition 99

 of secondary structure

3.5 An example of the input including amino acid parameters 104

4.1 The flow of data through the prediction program 120

4.2 The cross-validation of the GPP prediction program, illustrated for 127

 the Ser dataset

4.3 Asn glycosylation rules 141

4.4 Thr glycosylation rules 142

 xi

4.5 Ser glycosylation rules 143

C.1 Complete decision tree for Asn glycosylation 166

C.2 Complete decision tree for Ser glycosylation 167

C.3 Complete decision tree for Thr glycosylation 168

 xii

List of Tables

3.1 Correlation coefficients achieved using various SVR kernel functions 101

3.2 Initial results of SVR prediction with and without optimisation and 102

 in comparison to previous work

4.1 Frequencies of selected amino acids surrounding modified Asn 131

residues

4.2 Frequencies of selected amino acids surrounding modified Ser 132

 residues

4.3 Frequencies of selected amino acids surrounding modified Thr 133

 residues

4.4 The 20 most significant patterns for glycosylated residues 134

4.5 Accuracy of prediction of glycosylation sites with random forest 137

 and naïve Bayes algorithm

4.6 A comparison of the GPP predictor and other glycosylation 138

prediction programs

4.7 Percentage membership of clusters generated by farthest first 145

 clustering of Ser glycosylation sites

4.8 Percentage membership of clusters generated by farthest first 146

clustering of Thr glycosylation sites

B.1 Frequency statistics for glycosylated Asn residues 163

B.2 Frequency statistics for glycosylated Ser residues 164

B.3 Frequency statistics for glycosylated Thr residues 164

 xiii

List of Common abbreviations

For abbreviations of amino acid names and sugars refer to appendices A and D

respectively.

ASA Accessible Surface Area

ATP Adenosine Tri Phosphate

BLAST Basic Local Alignment Search Tool

BLOSUM BLOcks of Amino Acid SUbstitution Matrix

CART Classification and Regression Trees

CASCOR CAScade CORrelation

CASP Critical Assessment of methods for protein Structure Prediction

CCI Correctly Classified Instances

Da Dalton

DESTRUCT Dihedral-Enhanced STRUCTure prediction

DNA Deoxyribose Nucleic Acid

DSSP Define Secondary Structure of Proteins

ER Endoplasmic Reticulum

GPI Glycophosphatidylinositol

HMM Hidden Markov Model

kDa kilo Dalton

MAE Mean Absolute Error

MCC Matthews Correlation Coefficient

NMR Nuclear Magnetic Resonance

PAM Percent Accepted Mutation

PCC Pearson Correlation Coefficient

PDB Protein Data Bank

 xiv

PSI-BLAST Position Specific Iterated BLAST

PSSM Position Specific Scoring Matrix

PTM Post Translational Modification

RMSE Root Mean Squared Error

RNA Ribose Nucleic Acid

RSA Relative Solvent Accessibility

SA Solvent Accessibility

SNP Single Nucleotide Polymorphism

SVM Support Vector Machine

SVR Support Vector Regression

 xv

Publications Arising From This Thesis

Hamby SE, Hirst JD, Prediction of glycosylation sites using random forests. BMC

Bioinformatics 2008, 9:500.

1

Chapter 1: Protein Bioinformatics

1.1 Introduction

Proteins are the work horses of biology. Both within the cell and without and across

the whole spectrum of life there are proteins. They fulfil a structural role, such as in

the case of collagen, which provides the framework of connective tissue, and they are

the machines of biology, catalysing the chemical reactions of life throughout the

biosphere. Protein biology has long been studied by scientists interested in a wide

range of organisms. Proteins are important for the understanding of biology in healthy

and disease states as well as providing drug targets against pathogenic organisms, and

they are even potentially drugs themselves.

The function of a protein depends on its structure. Therefore, much effort has been

devoted to the determination of protein structures. Experimentally, a wide range of

techniques have been used to study protein structure and dynamics. X-ray

crystallography and NMR have been used to determine protein structure, and NMR

spectroscopy has also been used to study protein dynamics. These methods are

expensive and time consuming. Some structures, particularly membrane proteins, are

very difficult or impossible to characterise experimentally. A computational approach

can, therefore, be advantageous. Bioinformatics methods aim to predict the structure

of proteins using the amino acid sequence and properties of the amino acids that are

readily available. Rather than predict the 3D structure of the entire protein, which is

very difficult, due to the number of possible structures that a given sequence can

adopt, the problem is often broken down into smaller tasks, such as the prediction of

secondary structure or of dihedral angles. Much work has been done on the prediction

of protein secondary structure.

 2

Post translational modification (PTM) of proteins is heavily involved with the

regulation of proteins and with structural and functional aspects of proteins.

Glycosylation, which we focus on in the second part of this thesis, is involved in a

wide number of biological processes. Therefore, it is important to be able to determine

where a protein is glycosylated and precisely which carbohydrate is joined. Once

again determination of this is expensive and time consuming. This has led to a

computational approach being employed to determine the location of the glycosylation

sites (and indeed other PTMs).

The bioinformatics problems dealt with in this thesis are sequence analysis problems.

For this reason, we begin by introducing sequence analysis and reviewing the methods

used to compare biological sequences, which are essential to the field. In the first part

of this chapter, we review methods for predicting secondary structure, dihedral angles

and surface accessibility of proteins. In chapter 3, we present our research on the

prediction of dihedral angles of proteins and its potential applications.

The second part of this introduction gives some background on PTM of proteins. A

major aspect of protein structure and function, PTMs are structural modifications to a

protein where a small molecule is added to a specific amino acid. These modifications

are important in many areas of biology, such as the regulation of proteins and DNA,

and signalling between cells and molecules. We give an overview of the different

types of PTM and introduce glycosylation, a PTM where carbohydrate is added. In

chapter 4, we describe our work to predict glycosylation sites and use the model

generated to find out information about what determines the location of a

 3

glycosylation site.

1.2 Sequence Analysis

In biology, there are two main areas of sequence analysis: sequence comparison, i.e.,

multiple sequence alignment, and prediction using sequence analysis, although the

first is often used as a starting point for the second. Multiple sequence alignment is the

comparison of three or more sequences.1 It is often used to find homologous

sequences in a large database and to align known homologues. This process of

locating and aligning homologous sequences is central to bioinformatics and is the

most important area of sequence analysis. Initially, dynamic programming algorithms

were prohibitively slow, with both stochastic and tree-based methods being attempted.

The introduction of progressive alignment methods in the 1980s has been the

foundation for modern sequence alignment methods, a selection of which are

reviewed below. Progressive alignment allows a full alignment to be built up

gradually, using a tree as a guide for the alignment. It forms the basis of some of the

most popular sequence alignment programs, such as clustalW.2 ClustalW creates a

distance matrix using dynamic programming combined with a sequence weight

matrix, such as PAM3 or BLOSUM.4 The neighbourhood joining method produces a

guide tree for progressive alignment based on this matrix. The progressive alignment

is carried out by conducting the pairwise alignment of sequences using the tree as a

guide, thus aligning more and more sequences with each iteration, until the alignment

is completed. Version 2.0 of this program5 allows faster and more accurate

alignments.

PAM3 and BLOSUM are examples of mutation matrices; these are often used by

 4

sequence alignment programs to improve the accuracy of alignments by including

evolutionary information. The level of pairwise similarity between two given amino

acids can be measured by the likelihood of an amino acid substitution occurring by

chance versus being inherited. This can be quantified by the number of point

mutations required to go from one amino acid to the other. This is known as the

evolutionary distance between two amino acids. Dayhoff et al. used this principle to

develop a series of mutation matrices3. These PAM matrices are derived from the

assumption that evolution proceeds by way of single point mutations. Mutation

matrices can be used to find the optimal sequence alignment, the one most likely to

have occurred by evolution from a common ancestor rather than by chance.

The BLOSUM matrix is calculated in a similar way to the Dayhoff matrix. Henikoff

and Henikoff use sequence blocks taken from regions highly conserved between

sequence families4. The sum of pairwise sequences for these blocks is used to

calculate an odds matrix in similar fashion to the Dayhoff matrix. Sequences are

clustered based on percentage identity, in order to allow differing evolutionary

distances to be included. This results in a series of matrices equivalent to the PAM

matrices developed by Dayhoff. BLOSUM62 is the most commonly used, the 62

indicating it was compiled using clustering at 62% identity.

1.2.1 PSI-BLAST

One of the programs that has most revolutionised bioinformatics is PSI-BLAST

(position specific iterated BLAST). 6 PSI-BLAST identifies homologous sequences

from a database using BLOSUM62 matrices. It is also used to generate position

specific scoring matrices (PSSMs). PSI-BLAST profiles are used in a number of

 5

sequence alignment methods and in many other areas of sequence analysis as a way of

representing the amino acid sequence. The generation of these profiles is discussed in

chapter 4. PSI-BLAST is an enhancement of the BLAST algorithm,7 used for

searching protein and DNA databases for homologous sequences. BLAST uses well-

defined sequence similarity measures in the form of PAM matrices to approximate the

results that would be obtained using dynamic programming methods. PSI-BLAST

improves over BLAST in both computation time and accuracy, by using sequence

profiles to perform an iterative search of the database. PSI-BLAST allows for the

generation of gapped alignments, reducing the number of potential alignments that

need to be searched for the optimal alignment. PSI-BLAST also automatically

generates a PSSM from the significant alignments found in a given iteration and uses

this as input for the next iteration. Profile based searches are more sensitive to distant

homologies than pairwise based alignments. A PSSM represents the similarity and

evolutionary distance for each amino acid in a protein relative to all of the 20 standard

amino acids (see chapter 3 for a more detailed description and an example). The

PSSM profiles are often used as input to other methods, e.g., as the input to a

prediction program, since they represent an amino acid sequence in a way, which

includes evolutionary information. The level of conservation of a group of amino

acids is important when relating sequence to function. In this work, we use PSSMs as

an input for prediction of both secondary structure and real value dihedral angles

(Chapter 3). We use PSI-BLAST with multiple iterations to generate these, because of

the ease of obtaining PSSMs from PSI-BLAST and because of the track record of the

program being used in a similar manner. Other methods described are described

briefly below.

 6

There have been many attempts to enhance the PSI-BLAST algorithm and many

sequence alignment programs use PSI-BLAST profiles to enhance alignments.

HHPred8 combines PSI-BLAST with hidden markov models (HMMs). Rangwala and

Karypis9 use PSI-BLAST as the base for an incremental alignment method based on

sequence windows. CTX-BLAST10 incorporates a contextual alignment model into

PSI-BLAST. Lee et al.11 tackle the problem of an increased probability of the

introduction of false positives with each subsequent iteration of PSI-BLAST by

introducing a ranking of hits produced from the first and last iteration. Przybylski and

Rost12 boost the performance of PSI-BLAST using consensus sequences. We prefer

the standard version of PSI-BLAST over these, as none of these readily outputs a

PSSM without alteration, and not all are easily available.

1.3 Protein Structure

Sequence analysis has been used for the prediction of many different biological

properties. It is common to use PSI-BLAST profiles to represent the protein sequence

for prediction experiments. The goal is to determine some property of the protein from

its amino acid sequence. Some of the most researched areas are structure prediction,

both tertiary and secondary.

Anfinsen showed that all of the information about a protein can be determined from its

primary structure.13 The primary structure of a protein is the sequence of amino acids

from N terminus to C terminus. The structures of the 20 amino acid types are given in

Appendix A. There has been evidence for the contribution of environmental factors to

protein folding and structure, and PTMs also play a role in determining the final

structure of a protein. However, it is likely that a reasonable approximation of the 3D

 7

structure of a protein in its native state can be determined from the primary structure

with no additional information. This is, however, a calculation with too many

permutations to be achieved ab initio. As a result of this, many less complex problems

have been defined, to provide a bridge to predicting the complete structure. These

include prediction of secondary structure, of dihedral angles, the prediction of surface

accessibility of amino acid residues and prediction of residue contacts.

A stepping-stone to the 3D structure is the secondary structure. This consists of a

series of structural motifs that occur often within proteins. These can be considered as

building blocks, which form the bulk of the protein’s structure. The secondary

structure is most comprehensively described using the eight states assigned by the

program DSSP14, although this is often reduced to a three state description of

secondary structure. DSSP assigns structure based mainly on the hydrogen bonding

patterns of a protein. These are used to assign the states of α-helix and 310-helix, β-

sheet, β-bridges, π-helices, turns and bends.

Figure 1.1. An example of an α helix from the UBA domain of the protein p62.

 8

An α helix (figure 1.1) is a regular helical arrangement of the amino acids held in

place by the formation of amide to carbonyl hydrogen bonds. There are 3.6 residues

per turn, with a rise between residues of 1.5 Å. Such helical structures can range in

length from four amino acids to 40 or more and are sometimes amphipathic in nature.

The helical structure can be broken (or prevented) by the inclusion of Pro, Gly, Ser or

Thr in the sequence. Residues that encourage helix formation are Ala, Glu, Leu and

Met.

310-helices consist of three residues per turn and each hydrogen bond encloses a ring

of ten atoms. Main chain hydrogen bonds are separated by three residues. Often

occurring at the end of α-helices, 310-helices are less stable than α-helices, because

the dipoles are less well aligned. This also means the packing is less energetically

stable than that of an α-helix. In a π-helix, the hydrogen bonds are formed between

residue i and residue i+5. This secondary structure element is a rare occurrence and

long π-helices are not found.

β-sheet (figure 1.2) takes the form of a planar arrangement of the amino acids, where

the amino acids line up in extended conformation in stretches of five to ten residues.

Typically the surface of this is corrugated in shape. β-sheets can be either parallel or

anti-parallel in form. In parallel β-sheets the direction of the amino acid chains within

the sheet is the same throughout. These tend to have a longer distance in the sequence

between the strands in the sheet, with long loop structures and random coil sections

filling the gaps. Alternating direction of the amino acid backbone characterises anti-

parallel β-sheets. This form of β-sheet is often linked by short loops such as β-turns.

An isolated pair of parallel β-sheet type structures is known as a β-bridge.

 9

The loops and turns in a protein structure can take several forms. Turns are usually

three to ten amino acids in length, and have defined structure, whereas loops are

generally disordered in structure (i.e., random coil) and can be any length. Loop

regions, in particular, are often of functional importance and can change conformation

in order to facilitate binding of molecules. β-turns may be as few as three residues

long and consist of a single hydrogen bond between two residues, which bends the

amino acid sequence into a hairpin shape. There are several variations on the basic β-

turn and this type of structure may also be known as a bend or hairpin. Anything not

conforming to the above structural motifs is classified as random coil. Such structures

form a large proportion of protein structures.

Figure 1.2. The hydrogen bonding pattern of an anti-parallel β-sheet. Dashed lines are
hydrogen bonds and the arrows indicate the direction of the chain. (Image released
under the creative commons licence.)

The supra-secondary structure of a protein is a further progression towards the 3D

structure. Certain commonly identified structural motifs that are made up of secondary

structure elements, such as those described above, can be the first to form when a

 10

protein folds into its native structure. These include structures such as the β-barrel or

the α-helical bundle, as well as structural motifs involving loops and both β-sheets or

α-helices. Many such supra-secondary structure motifs have been described.

The tertiary structure of a protein is its complete 3D structure. This structure is

determined by weak interactions between amino acid residues and side chains.

Interactions such as steric hindrance, electrostatic, hydrophobicity related interactions,

and van der Waals interactions all play a role.

1.3.1 Dihedral angles

Figure 1.3. Dihedral torsion angles of the protein backbone. The location of the
backbone dihedral torsion angles Φ, Ψ, and ω are shown by the dashed lines
indicating rotation around a bond.

Dihedral torsion angles are described by rotation around the bonds along the protein

backbone (figure 1.3). Of the three backbone dihedral angles, ω is generally planar,

i.e., 0° in the cis conformation and 180° in the trans conformation. This is due to the

 11

delocalisation of the carbonyl π electrons and the lone pair of the nitrogen atom. The

other backbone dihedral angles are limited by steric hindrance. In practice, only 10%

of the available conformations of Ψ and Φ angles are observed. Ramachandran15

examined the available conformations in a selection of proteins, treating each atom as

a hard sphere based on its van der Waals radius and disallowing steric clashes.

Figure 1.4. The Ramachandran plot. The regions are labelled with the type of
secondary structure indicated by the angles found there. The light shaded areas
encompass allowed angles including those of glycine. The dark shaded areas show
angles not including glycine.

This resulted in the now classic Ramachandran plot (figure 1.4). Correlating

secondary structure with the Ramachandran plot shows that regular structures have

 12

similar values of Φ and Ψ for a given structure type. From the dihedral angles it is

possible to get an approximation of the structure of a protein. Thus, it is useful to have

a prediction of the dihedral angles for tasks such as structure prediction (both

secondary and tertiary). There have been many attempts to predict the secondary

structure of a protein and, more recently, several attempts have been made to predict

Ψ and Φ dihedral angles.

1.3.2 Secondary Structure Prediction

Elements of secondary structure were first proposed by Pauling16. Attempts to predict

the location of the secondary structure elements have been ongoing ever since, using a

variety of methodologies. These are too numerous for all of them to be described here.

However, the most important are presented below with some historical perspective.

We use secondary structure prediction in both the areas of research covered in this

thesis. It is a major component of our work to predict dihedral angles as we

hypothesise that using secondary structure prediction will improve the accuracy of

dihedral angle prediction, and in chapter 4 we use secondary structure prediction to

add extra information to the input for our glycosylation predictor.

Initial attempts at secondary structure prediction centred around amino acid

propensity. GOR17, now at version V18, in its first version only used single residue

statistics within a sliding sequence window. The statistics are generated for residues

within the sequence window, with the objective of predicting the state of the residue at

the centre of the window. By sliding the window along the length of the sequence, it is

possible to obtain predictions for the entire protein. Subsequent versions of the

program improved by adding pairwise statistics (version II18) and information

 13

theoretic methods (version III and IV18). In version V, the information theory methods

previously employed are combined with evolutionary information via PSSMs

obtained from PSI-BLAST. The GOR algorithm uses a combination of information

theory and Bayesian statistics to predict secondary structure. When combined with

PSI-BLAST, this produces an accuracy of 73.5% Q3, although this has since been

improved upon. Q3 is the three state prediction accuracy for protein secondary

structure (equation 1.1)

€

Q3 =
p α() + p β() + p coil()

N
 (1.1)

where p is the number of residues correctly predicted for a given secondary structure

type and N is the total number of residues.

PHD19 is a neural network based prediction method, consisting of a three level feed

forward network. The first level of the network takes as input a multiple sequence

alignment and assigns the central residue of a 20 amino acid sliding window to one of

the standard three structural classes. The second level takes the output of the first as

input and once again predicts the structure class. The input from the preceding

network is expressed as a 17 amino acid window, with amino acids represented by

three binary outputs describing the structure classification. A number of such

networks were trained and the outputs were fed into the third level of the network. The

third level represents a jury decision by arithmetic average that produces a final

prediction for secondary structure class. This schema produces accuracy of 70% (Q3).

Another neural network based method, and one of the most popular secondary

structure prediction programs available, which is still widely used, is PSIPRED.20

 14

This method uses PSSMs generated by PSI-BLAST as input for a neural network.

This was the first method to use such profiles directly rather than compiling a

complete multiple sequence alignment. The output of the initial feed forward neural

network is then filtered by a second network to give the secondary structure

prediction. This gives an accuracy of around 76%. Here we use predictions from

PSIPRED as input for glycosylation prediction in the hope of improving accuracy (see

chapter 4).

HMMSTR21 uses HMMs for secondary structure prediction as well as other protein

properties. The model is based on sequence structure motifs and uses a voting scheme

to determine the final structure. The HMMs used are different in that they are not the

typical profile HMMs used in many other models. The model uses the correlations

between sequence structure motifs to reduce the number of parameters in the model,

and predicts secondary structure with an accuracy of 74.3% (Q3).

JNET22 uses a neural networks arrangement which is similar to that used by PHD,

using PSSMs produced by PSI-BLAST as input. JNET predicts secondary structure

with an accuracy of 76.4% (Q3). A different approach is taken by Pollastri et al.23

Their program SSPro uses a bidirectional recurrent neural network for secondary

structure prediction with PSSMs. The performance of SSPro is 77%-80% (Q3),

dependent on the testing set used. A brute force local clustering method is proposed

by Jiang.24 This tries to take into account long range interactions, which form a

significant component of protein structure.25

DESTRUCT26 is a neural network based method, which predicts both secondary

 15

structure and dihedral angles. Initially, two neural networks are trained, one predicting

secondary structure and one predicting the Ψ dihedral torsion angle. The output from

each is fed into subsequent neural networks in an iterative manner; the predictions of

Ψ are used to enhance predictions of secondary structure and visa versa. The resulting

prediction of secondary structure is comparable in accuracy to PSIPRED. This

prediction program will be discussed in some detail later, as it forms a basis for some

of the work in this thesis.

Montgomerie et al. developed the program proteus.27 This includes structural

alignments as part of the prediction process, and achieves a Q3 score of 88% by

combining the secondary structure predictors of PSIPRED, JNET and TRANSSEC27

(TRANSSEC was developed by the authors) as a “Jury of experts”. Birzele and

Kramer28 define a new representation of secondary structure based on frequently

occurring patterns. The authors use this to perform a prediction with a Support Vector

Machine (SVM) classifier, which is comparable to PSIPRED in accuracy. A more

traditional approach to prediction using SVMs is taken by Karypis.29 Using a novel

kernel function cascaded SVMs are trained to predict three state secondary structure

with of 79.3%. SVM classification is an opaque method. He et al.30 use an SVM in

combination with a decision tree to extract meaningful rules with regard to protein

secondary structure. The SVMs average 77.6% accuracy for helix, 80.7% for sheet

and 70% for coil. Zhong and co-authors31 use k-means clustering to divide the training

sets into representative clusters. This allows them to use their method of clustering

SVMs to make predictions of secondary structure, which are in the region of 80%,

although this varies across the clusters obtained. Won et al.32 use genetic algorithms to

evolve a HMM for secondary structure prediction. The model developed improves

 16

over HMMSTR, but is still much less accurate than state of the art models for

secondary structure prediction. Prof33 is an ensemble method consisting of multiple

neural networks combined using simple linear discrimination and a further neural

network. The neural networks used are based on the methods GOR and PSIPRED.

The combined result gives an accuracy of 77% (Q3). Yao et al.34 predict secondary

structure using a probabilistic model. The authors combine the dynamic Bayesian

method with a neural network. This combination gives results that are comparable

with state of the art methods.

1.3.3 Prediction of dihedral angles

The Ramachandran plot clearly shows the link between the dihedral angles and

protein structure. Thus, it is useful to predict dihedral angles. The DESTRUCT

method26 uses dihedral angles to improve the accuracy of secondary structure and

predictions of secondary structure to improve the accuracy of dihedral angle

predictions. DESTRUCT was the first server to predict real value dihedral angles,

achieving a Pearson correlation coefficient (PCC, see chapter 2 for definition) of 0.47.

Previously, HMMSTR21 predicted categories for dihedral angles, using HMMs in a

manner similar to the method for predicting secondary structure described above. A

more recent method for predicting dihedral angle regions is DHPred.35 The authors

define dihedral angle regions H, E and O (outlier) based on the Ramachandran plot.

Residues are classified as belonging to a particular dihedral angle region using SVMs.

The authors employ a two level approach to classification. First, sequences

represented by PSSMs generated by PSI-BLAST are input into the first SVM

classifier, which outputs predictions for each of the three dihedral angle regions

considered. Secondly, these predictions are combined with the PSSM with a sequence

 17

window size of seven and used as input for the second SVM classifier, which

produces the final predictions for the state of each residue. This results in an accuracy

of approximately 80%, comparable to the accuracy of PSIPRED and other secondary

predictors, a legitimate comparison given that the dihedral regions correspond to the

three state secondary structure of proteins. DESTRUCT was primarily motivated

towards secondary structure prediction, with the dihedral prediction having the sole

purpose of improving secondary structure accuracy. For this reason, only the Ψ

dihedral angles are predicted by DESTRUCT. The other dihedral angles are less

significant with regard to the definition of secondary structure, although Φ does play

an important role when considering the tertiary structure.

Real Spine36 improves substantially upon DESTRUCT. The first version gives a

correlation coefficient of 0.62 between predicted and actual Ψ dihedral angles. The

authors use twin neural networks. The inputs to both networks consist of PSSM

profiles combined with predicted secondary structure information. The two networks

produce a consensus prediction by averaging the output of the networks. Real Spine

also predicts relative solvent accessibility (RSA) using the same methodology. The

prediction for RSA has a correlation coefficient of 0.74. Real-Spine 2,37 the second

version, substantially improves over Real Spine, using a very simple alteration. Due to

the properties of the sigmoidal function, the neural networks of Real Spine function

poorly with respect to predictions in the region between -36° and +36°. The dihedral

angle distribution is shifted by a normalisation step so that there are relatively few

angles in this region. This small adjustment improves prediction accuracy to 0.75

(PCC). Unlike its predecessor, Real-Spine 2 does not predict RSA values. However, it

is the first to produce real-value predictions for Φ as well as Ψ. The method employed

 18

for predicting Φ is similar to that for Ψ. However, the normalisation used is different

to allow for the differing distribution of Φ.

Whilst there are limits to predictive power, it is clear that there is much scope for

improvement in the prediction of real value dihedral angles. Such improvement would

enable the dihedral angles to be used to accurately predict the 3D structure of proteins,

and potentially to aid in the assignment of structure from NMR spectra. In this work

we hypothesise that we can improve on the above prediction methods by selecting a

new machine learning method and use secondary structure prediction to enhance the

accuracy of the prediction method. We selected Support vector regression (SVR) for

this purpose. A detailed discussion of the reasoning behind this is presented in

chapters two and three. Later, we also apply the normalisation methodology of Real

Spine to SVR.

1.3.4 Hydrophobicity and Surface Accessibility

In our work to predict glycosylation sites, we use information about both

hydrophobicity and surface accessibility, as these are both key properties. We include

them, as PTMs can only take place on the outside of a protein and so finding those

residues with high surface accessibility may improve accuracy. Here, we give an

overview of these two properties and review methods for surface accessibility

prediction.

1.3.4.1 Assignment of Hydrophobicity and Surface Accessibility

Hydrophobicity is a defining property of protein structure. A molecule is hydrophobic

if it is repelled by water and hydrophilic if the opposite is true, hydrophobicity is the

 19

degree by which molecules are repelled by water and is a sliding scale. Amino acids

can be divided into two groups based on their hydrophobicity i.e. whether they are

hydrophobic or polar. Hydrophobic amino acids are more likely to be found in the

centre of a globular protein, or in the membrane bound sections of a membrane

protein. Polar amino acids are more likely to be found near the surface. There are

various hydrophobicity scales,38 which rank the amino acids according to their degree

of hydrophobicity. There are, however, instances when buried residues are polar or

exposed residues are hydrophobic, usually due to structural considerations or because

of the need for functionality.

Another approach is to consider the surface area that is exposed to solvent whilst in a

given protein. This is known as the accessible surface area (ASA). The solvent

accessibility of a protein is a related quantity, which can be determined by estimating

the number of water molecules in contact with the amino acid’s surface. This value is

calculated from molecular coordinates by DSSP, and is known as relative solvent

accessibility when expressed on a continuous scale normalised with respect to the

maximum solvent accessibility of each residue.39

1.3.4.2 Prediction of Solvent Accessibility

RSA can be predicted as either a real value or projected onto a series of discrete states.

Other methods also predict the ASA area directly. The neural network based predictor

developed by Rost and Sander39 achieves only modest accuracy for a ten state

prediction of RSA. The ten states are selected to give a finer grained distinction of

RSA levels near to the protein core. The method then uses an arrangement of neural

networks to predict RSA. The arrangement of neural networks is similar to that used

 20

in PHD, described previously.

The majority of methods predict solvent accessibility as a number of categories,

although it is ideally preferable to obtain a real value, as RSA is a sliding scale. In our

work we use real value predictions. However, we also give a brief overview of some

categorical predictors for both historical context and completeness. Li and Pan40 use

multiple linear regression to predict two state solvent accessibility. Yuan et al.41

predict two state solvent accessibility using SVM classifiers. Pollastri et al42. use

bidirectional recurrent neural networks (RBNN) to predict both solvent accessibility

and contact number. Multiple networks are trained and evaluated by cross validation.

RVP-NET43 uses neural networks to predict real values for solvent accessibility. This

method gives a PCC of 0.45-0.46 depending on the test data used. Kim and Park44

predict relative solvent accessibility as both a two and three state classification,

employing various thresholds. SVM predictions are combined by the use of a directed

acyclic graph based scheme. The resulting method, PsiSVM, produces an accuracy of

78% for two state prediction. Wang et al.45 use multiple linear regression to predict

real values for solvent accessibility. The sequences are represented by PSSMs and

prediction is comparable to other methods.

Multiple linear regression is also employed by Qin et al.46 for the prediction of both

solvent accessibility and secondary structure. QBES47 presents a substantially

different approach to predicting solvent accessibility. The authors use quadratic

programming as a means of minimising a simple energy function. Gianese and

Pascarella48 employ a consensus method comprising the predictors JPRED, AccPro

and PP.49 PP was produced by Gianese et al.49 and uses profiles of conditional

 21

probabilities to perform its task. The three predictors are combined using a state

mapping approach to two state RSA prediction to produce the consensus. SVM

Cabins50 integrates the two approaches of classification and regression to improve the

accuracy of solvent accessibility prediction.

SABLE51 is a method based on neural networks for regression in order to predict real

values for RSA. The method is trained on a large non-redundant dataset derived from

Pfam52. The sequences are represented using PSSMs extracted from PSI-BLAST. The

authors test both feed forward and Elman53 networks for prediction. The final

predictor achieves a correlation coefficient of 0.66. We chose to use SABLE in this

work for several reasons. Firstly, it is both freely available and open source allowing

ease of use and integration with our existing software, whilst being reasonably

accurate in predicting real values for solvent accessibility. Although more accurate

methods exist, they were not easily available for use.

1.4 Post Translational Modification

Proteins are synthesised in the body by way of transcription and translation, before

folding into their final structure. All proteins start out as a DNA sequence. This is

transcribed into messenger RNA. In the case of eukaryotic organisms, the sequence

undergoes RNA splicing, which can alter the order of exons to produce novel

products. Introns are removed during this process. The messenger RNA is transformed

into protein sequence by the ribosome, transfer RNA brings the appropriate amino

acids to the ribosome and adenosinetriphosphate (ATP) is consumed to bind together

the amino acids using the messenger RNA code as a template. The protein folds into

its final structure, either in the cytosol or is transferred to the endoplasmic reticulum

 22

(ER). Many proteins require chaperones to fold into the final structure. These

chaperone proteins are also involved in a quality control process to ensure correct

folding.

After proteins are created in the body they can undergo a variety of modifications

essential for the correct folding and functionality of the protein54. There are over a

hundred types of PTM, but some of the most common are briefly discussed below.

These modifications can be either transient or permanent and often confer function on

the protein in question. They occur across the entire spectrum of life. These

modifications can be classified by the molecule added during the modification. There

are also PTMs involving protein cleavage by proteases. However, it is beyond the

scope of this thesis to discuss these here. The most common types of PTM are

phosphorylation, acylation, alkylation, glycosylation, and oxidation, although there

are many others. In this work we focus on the prediction of glycosylation sites from

sequence with some additional work aimed at understanding the models that generate

these predictions. Our hypothesis is that even where no consensus sequence motif

exists there will be certain amino acids that favour glycosylation. So for this reason

we use information on the pairs of amino acids surrounding glycosylation sites with

the hypothesis that this will lead to a higher accuracy of glycosylation prediction.

1.4.1 Post Translational Modification Overview

Here we give a brief overview of some common types of PTM before going on to give

a more extensive overview of glycosylation. Phosphorylation54,55 occurs upon the

addition of a phosphate group to either Ser, Thr or Tyr. This particular modification is

important for regulating cell processes and for signalling both within and between

 23

cells. Some phosphorylation sites are transitive yin yang sites. In such cases the site

can either be phosphorylated or glycosylated, depending on the physiological

conditions and the environment of the protein. Such sites are often important as

regulatory elements in the cell cycle and in signalling processes. As such, the

functions and regulation of phosphorylation and cytoplasmic O-glycosylation are

intricately linked. Acylation encompasses the addition of fatty acid chains of length

C2, C14, C16, and the 8kDa chain of ubiquitin. Acetylation56 is the addition of multiple

lysine residues to the histone terminus. In myristoylation57 a mirosyl group is added

via glycine to the protein and effects the movement of the protein towards membrane

interfaces. In palmitoylation58 the acyl group is transferred to the thiolate chain of

cystine. This modification is also involved in the membrane anchoring of proteins.

Ubiquitylation59 involves the carboxyl terminus of the protein ubiquitin being added

to lysine. This is either added as a single molecule (mono-ubiquitylation) or as the

stepwise addition of multiple ubiquitin segments. Poly and mono-ubiquitylation both

are involved with the direction of proteins to new locations within the cell. Alkylation

involves the addition of alkyl substituents of varying size to several different amino

acids. N-linked methylation60 of Lys and Arg in histones is an important part of the

transcriptional regulation cycle complementing acylation. Protein S-Prenylation61: C15

and C20 lipid groups can be added to protein, e.g. in the Ras family of proteins.

Disulfide bridges62 are formed by the oxidation of the thiolate side chain of cysteine.

These modifications are important in linking protein chains and providing stability in

protein structure.

1.4.2 Glycosylation

Glycosylation63 involves the addition of highly complex carbohydrate chains to

 24

protein at either Asn, Ser or Thr residues and occasionally at Cys. As prediction of

glycosylation sites is a major subject of this thesis, we discuss in detail the types of

glycosylation after giving an overview of carbohydrate chemistry, and the methods for

prediction of glycosylation sites currently available.

1.4.3 Structure of Glycans

1.4.3.1 Carbohydrates

Carbohydrates are chains of monosaccharides that fulfil a wide variety of functions. In

the context of PTM, oligosaccharides are added to protein under various conditions.

Oligosaccharides are usually taken to be chains of between two and ten

monosaccharides of varying composition. They are often branched and vary greatly in

composition. Polysaccharides are large molecules that are polymers of repeating sugar

motifs, either repeated mono- or disaccharides or a more complicated arrangement.

1.4.3.2 Monosaccharides

Monosaccharides are of the form Cx(H2O)n. They possess a carbonyl group, either an

aldehyde or a ketone; n ranges from three to nine. All monosaccharides, except

dihydroxy acetone, are chiral about at least one carbon atom. The carbon atoms are

numbered as per standard organic chemistry rules and monosaccharides are almost

always cyclical in form. There are many monosaccharides, which can be conscripted

to make up the oligosaccharides encountered in glycosylation. Some of these sugars

only occur in plants or in prokaryotes. The most common found in vertebrate

glycosylation66 are D-Glucose (Glc), N-Acetyl-D-Glucosamine (GlcNAc), D-

Galactose (Gal), N-Acetyl-D-galactosamine (GalNAc), D-Mannose (Man), D-Xylose

(Xyl), D-Glucoronic Acid (GluA), L-Fucose (Fuc) and N-Acetylneuraminic acid

 25

(NeuAc, also known as sialic acid).

1.4.3.3 Glycosidic linkages

The monosaccharides are linked together by two possible types of glycosidic linkage

α and β. These linkages can also occur between various different carbon atoms. The

type of linkage is labelled corresponding to the numbers of the carbon atoms

concerned. β1-4 and β1-6 linkages are particularly common. The variety of linkages

between the monosaccharides, and the potential for branching of the oligosaccharide

chains, account for the large number of potential oligosaccharide structures, of which

nature only uses a small fraction. The glycosidic linkage is very flexible and allows

for the formation of multiple conformations of glycan, whilst maintaining the rigidity

of the constituent sugars, which tend to be relatively rigid.

1.4.3.4 Oligosaccharides

Oligosaccharides are the most common addition in glycosylation. They are polymers

of varying composition of monosaccharides, ranging from two to 30 monomers.

Oligosaccharides can be named with respect to the number of monosaccharides they

comprise: disaccharide for two, trisaccharide for three, etc. These polymers have a

reducing and non-reducing terminus, in much the same way that proteins have amino

and carboxy termini. The reducing end has an available anomeric centre when in free

form and is referred to in this way after the attachment to a hydroxy group, e.g., in

glycosylation. It is possible for an oligosaccharide to have no reducing end, e.g.,

sucrose, which has its glycosidic linkage between the two anomeric centres and thus

has no reducing end.

 26

Figure 1.5. Glycosyltransferase A. Generated from the PDB structure using PyMol.
The secondary structure is shown in ribbon form with the surface of the protein
projected over it. Colours of the surface show the charge distribution of the amino
acids on the surface. Green is neutral, red is hydrophobic and blue hydrophilic.

1.4.4 Glycosyltransferases

This large family of enzymes64 is responsible for initiating glycosylation and for

elongating glycan chains. Since the substrate specificity of such enzymes is essential

to the prediction of glycosylation sites, we briefly review them here. The substrates of

these enzymes are varied, but all have in common the transfer of glycans, either

monosaccharide or oligosaccharide, to a new substrate. Most of these enzymes are

 27

concerned with chain elongation and in this case the substrate is another glycan.

However, receptor substrates can be lipids, peptides, small molecules or DNA. The

donor substrates are also varied, for example, dolichol and other lipids. In general, the

specificity of glycosyltransferases is such that one enzyme catalyses the formation of

one glycosidic linkage e.g. glycosyl transferase A (figure 1.5). However, in several

cases multiple enzymes catalyse formation of the same glycosidic linkage. Examples

of this are the fucosyltransferases III-VIII, which catalyse the same alpha 1-3 linkage

to attach fucose to N-acetyllactoseamine65. There are also rare cases where a single

enzyme is capable of forming more than one type of glycosidic linkage, e.g., the case

of fucosyltransferase III that can catalyse formation of alpha 1-3 linkages as well as

alpha 1-4 linkages. There are also enzymes, which have more than one active site.

1.4.5 N-Linked Glycosylation

 In this thesis, one of the major objectives is prediction of both types of glycosylation

site: N-linked and O-linked. Here and in the following sections we introduce both in

some detail. This provides some context to our work and highlights the significance of

the modifications. N-linked glycosylation62,55 is the addition of an oligosaccharide to

Asn. This occurs at the consensus sequence Asn Xxx Ser/Thr,55 where the Xxx is

anything except Pro. This sequence is necessary, but not sufficient, for glycosylation.

N-linked glycosylation takes place co-translationally in the lumen of the ER. Initially,

the glycan is pre-assembled on a lipid dolichol molecule55, which acts as a scaffold.

This molecule is synthesised on the inner surface of the membrane of the ER,

beginning with the transfer of GlcNAc-P to the lipid-like precursor Dolichol-P. 14

sugars are added to dolichol. Oligosaccharyltransferase attaches this glycan precursor

molecule to Asn. The transfer to Asn takes place at the consensus sequence found in a

 28

protein which is undergoing synthesis and transport through the membrane into the

lumen of the ER. Oligosaccharyltransferase is a multi-subunit protein complex, which

is embedded in the ER membrane. The glycan precursor is transferred to Asn as the

protein emerges into the lumen of the ER55.

Within the lumen of the ER the oligosaccharide is trimmed of some of its constituent

monosaccharides66 (figure 1.6). Glucosidase I and II remove the first two Glc

residues. Subsequently, a mannose residue is removed by alpha-mannosidase. This

appears to be an important control step for the folding process of the protein with the

assistance of chaperone proteins. The oligosaccharides assist in keeping the protein in

solution during and after the folding process, thereby, indirectly assisting the function

of the chaperone proteins. The chaperones are known to bind to specific points on the

immature glycan, thus targeting incorrectly folded proteins for degradation. Once in

the Golgi body, alpha mannosidase removes up to a further four mannose residues66,

leaving Man5GlcNAc2. This structure forms the basis for all other N-linked glycan

chains. There are often some glycans that escape some of these precursor steps.

Figure 1.6. The synthesis and maturation of N-glycans. Green residues represent
mannose, purple rectangles are other sugars of unspecified identity, amino acids are
shown by blue triangles and the large yellow rectangle is a lipid dolichol molecule.

These are expressed as oligomannose, and cannot form complex or hybrid glycan

types. The trimming of glycan precursors only occurs in multi-cellular organisms. In

 29

yeast, for example, extra mannose residues are added to the glycan where in multi-

cellular organisms they would be removed.

There are several types of glycan that can be constructed in the Golgi body. The Golgi

body contains many specific glycosidases and glycosyltransferases capable of adding

or removing different sugars to produce high mannose, hybrid or complex glycan

types. All N-linked glycans have a trimannosyl core structure (Man3GlcNAc2). This is

the base for many types of linear or branched oligosaccharide. High mannose type

oligosaccharides contain between five and nine mannose residues attached to the

GlcNAc residues within the trimannosyl core structure. The complex oligosaccharide

type does not contain any mannose residues outside of the core structure.

Characteristically complex glycans have a disaccharide GlcNAc(beta1-4)Gal attached

to the trimannosyl core. This may be a repeating unit or the base for the build up of a

complex structure with two, three or four branches. These structures are produced by

the stepwise addition of monosaccharides by various glycosyltransferases. Hybrid

oligosaccharides possess features of both complex and high mannose type

oligosaccharides.

1.4.5.1 Function of N-glycans

As well as assisting in the protein folding process67, N-linked glycans have a number

of well documented functions54,68. They have other structural roles in maintaining the

conformations of proteins in the appropriate state, as well as preventing non-specific

interactions and assisting in the orientation of cell surface molecules. N-linked glycans

are important as cell adhesion molecules and for protein signalling, e.g., blood group

determinants are oligosaccharides, which can either be N-linked or O-linked glycans.

 30

They also play a role in the serum clearance of proteins.

1.4.6 O-Linked Glycosylation

There are several types of O-linked glycosylation, characterised by the glycan binding

to an oxygen atom with an alpha glycosidic linkage. We discuss the common types

and their function concentrating on mucin type glycosylation, which is central to the

section of this work on predicting glycosylation.

1.4.6.1 O-GalNAc or mucin type modification

Mucin type glycoproteins63,64,69 are usually large molecules (typically greater than

200kDa), which are heavily glycosylated at clusters of Ser and Thr residues, to the

extent that one in three amino acids may be glycosylated. The glycan chains that are

added to these proteins are varied in composition and structure. These proteins exhibit

regions of tandem repeats of variable length70. These contain numerous glycosylation

sites and are usually replete with Pro residues, which encourage glycosylation64.

Mucin glycoproteins are often secreted or embedded in the membrane. Membrane

based glycoproteins mediate cellular adhesion and are involved in cellular signalling.

Secreted mucins contribute to the mucosal defences of the body, and are one of the

key ingredients in mucosal secretions, giving them their viscosity. O-linked glycans

are synthesised in the Golgi body. The synthesis consists of the stepwise addition of

monosaccharides to the oligosaccharide chain by glycosyltransferases. There is no

trimming and reassembly of the glycan after synthesis unlike N-linked glycans. Whilst

O-linked glycans can be long and complex structured oligosaccharides, they can also

be short and relatively simple. Most commonly, the monosaccharides GalNAc,

GlcNAc, Gal, Fuc, and sialic acid are found in O-linked glycans, although others have

 31

been observed. In contrast to N-linked glycans, O-linked oligosaccharides have less

branching in the structure, being based on a biantennary (two branched) core. O-

glycans may be classified by the core structure, which falls into one of eight types (see

figure 1.7). The synthesis of all mucin type glycans begins with the attachment of

GalNAc to either Ser or Thr. This is catalysed by polypeptide-N-acetyl-

galactosaminyltransferase. This produces the Tn epitope GalNAcα1-Ser/Thr. This can

then be sialylated by α-2,6-sialyltransferase to give sial Tn. This disaccharide cannot

be extended further. Alternatively the GalNAc can be extended to form one of the

core glycan structures detailed above63. The core structures may be elongated by the

further addition of monosaccharides, or the core can be substituted for by a terminal

monosaccharide, e.g. Fuc or sialic acid.

Figure 1.7. The four most common O-Glycan core structures. Symbols follow
standard conventions as in reference 66. Here yellow circles are Galactose, yellow
squares are GalNAc, and blue squares are GlcNAc.

 32

The different core structures tend to be expressed in different structures in different

concentrations. The core glycans can be further built upon to synthesize complex

glycans of varying structure.

1.4.6.2 Functions of O-linked mucin glycans

Mucin type O-linked oligosaccharides have been implicated in a wide range of

functions71. They take a role in the protection of the body against disease. Mucins are

produced at biological membranes. The physical properties of these molecules enable

them to protect the underlying epithelial cells from infection by bacteria and from

extreme environments, e.g., the acidic conditions in the stomach. They provide

lubrication, e.g., in the respiratory tract, and act as anti-adhesins, keeping lumen

opposing surfaces from sticking together. Mucin glycans are ligands for selectins,

mediating the leukocyte homing during the inflammatory response. Mucins can also

act as an antifreeze.

Mucins play an important role in bacterial adhesion. Many pathogenic bacteria bind to

O-linked oligosaccharides. Thus, this can hinder or occasionally enhance infection.

Some species of gut bacteria use mucin proteins as a sole energy source. O-linked

glycans also play an important role in sperm-egg recognition and binding. O-linked

oligosaccharides are also carried by several types of haemopoietic and immune system

cells. They prevent the agglutination of leukocytes both to themselves and to

endothelial cells. There are dramatic changes to the glycosylation of T cells during

maturation and activation, and oligosaccharides play a role in the interactions between

T-cells and B-lymphocytes. Many less common O-glycan modifications also occur

within the ER and Golgi. O-mannosylation is a common type of glycosylation in the

 33

brain of mammals and important for binding laminin to the extra-cellular matrix.

Alpha linked mannosylation is a common glycosylation of proteins. Initially mannose

is added to Ser/Thr by a mannosyltransferase, which is unique to this pathway, as are

the subsequent N-acetylglucosaminyltransferases.

1.4.7 Glycosylation of cytosolic and nuclear proteins

Cytoplasmic and nuclear proteins often undergo multiple additions of β-O-GlcNAc72.

In addition to mucin glycosylation, we also included cytosolic and nuclear

glycosylation sites in our prediction experiments. So we review their structure and

function here, to show the benefit of their prediction. These molecules are added as

lone monosaccharides, with no further elongation. This type of modification is present

across a wide variety of species, including almost all eukaryotes and protozoa, as well

as fungi, plants and animals. The modification also occurs on viral proteins. These

proteins are often also phosphorylated, and this modification has factors in common

with phosphorylation. The O-GlcNAc modifications often occur at sites similar to

those modified by phosphokinases and O-GlcNAc modifications are reversible. The

composition of occupied GlcNAc sites on a given set of proteins is dynamically

changing in response to cell signalling and the various stages of the cell cycle. The

interplay between phosphorylation and glycosylation is important in many of the

regulatory processes in the cell.

The modification of proteins with O-GlcNAc occurs post translationally and is carried

out by the highly conserved enzyme β-N-acetylglucosaminyltransferase, which is

itself glycosylated and phosphorylated, probably to regulate its activity. This enzyme

occurs in most species and has 85% homology across species. O-GlcNAc

 34

glycosylation is necessary for survival, even at the level of a single cell. The possible

functions of this modification are varied and not well characterised. O-GlcNAc

modification is vital to the function of nucleoporin proteins that mediate the transport

of macromolecules in and out of the nucleus via the nuclear transport complex. The

O-GlcNAc modification is essential for the recognition of nuclear transport signals,

and pores deficient in GlcNAc are structurally defective.

O-GlcNAc is also associated with chromatin. The labelling of regions of chromatin

with GlcNAc plays a functional role in transcription, with a dramatic reduction in O-

GlcNAc modifications occurring in regions undergoing active transcription.

Glycosylation also has importance in regulating translation in association with

phosphorylation. O-GlcNAc is also important for the modification of structural

proteins in the cytoskeleton. Due to the significance of O-GlcNAc involvement in cell

process regulation, malfunction of this modification is causative in a number of

disease states. The disruption of glycosylation and phosphorylation may be relevant

in malignancies. The dysfunction of O-GlcNAc is also implemented in many

neurodegenerative diseases and type 2 diabetes. Nuclear and cytoplasmic proteins are

also modified with complex glycans. Whilst further research and analysis is still

required, the existence of these complex glycans is suggested in numerous studies.64

Other types of glycosylation, such as glycophosphatydilinositol anchors and

proteoglycans, are not predicted by our glycosylation program and, thus, are not

covered here.

1.4.8 Prediction of Glycosylation

 Experimental methods of determining glycosylation include mass spectrometry

 35

analysis with lectins (glycan binding proteins), NMR analysis, and, more recently,

methods involving 2D gel electrophoresis and other methods analogous to those used

in proteomics. The mass study of the change in expression of glycans in a cell in

health and disease is known as glycomics. These methods are expensive, difficult and

time consuming. It is useful to use computational prediction of the location of

glycosylation sites to reduce the experimental effort required to determine the

glycosylation sites in a protein and also to understand the glycosylation process itself.

1.4.8.1 Previous methods

Several prediction methods have been published previously. We give a brief overview

of these methods here. Prediction of glycosylation sites from sequence information

has traditionally centred around neural network methods. NetOglyc64 predicts mucin

type O-linked glycosylation sites from sequence using a neural network trained on the

OGLYCBASE73 dataset. The authors test numerous representations of the amino acid

sequence and find the best results are obtained with a PSSM representation. This is

used to train a two layer feed forward neural network. This was superseded by Li et

al.74 who use SVMs to predict the glycosylation sites. The authors develop an

independent dataset from uniprot75, where positive sites are chosen based on uniprot

annotations, and negative sites are chosen at random. Three SVM models are trained

based on different combinations of sequence information and information concerning

the properties of the amino acids. Li et al. produce a significant improvement over

NetOglyc. Two more recent methods were published during the completion of this

work. Carega et al.76 have used an SVM ensemble based method to predict O- and N-

linked glycosylation and C-mannosylation. Each SVM in the ensemble is a trained on

a balanced subset of the training data, the predictions being obtained from the

 36

combined outputs of the SVM classifiers. This method improves over previous

methods. CKSAAP77 uses k spaced amino acid pairs as input information to predict O-

linked glycosylation sites. This is similar to our method, which is presented in chapter

4. Pairwise patterns were used to train an SVM model on a dataset taken from the

Swiss prot database78. The combination of Ser and Thr sites in the training set

produced slightly better predictions than when separate training sets were used for

each type of prediction. This may be due to the increase in training set size, but could

possibly be due to similarities in the features of Ser and Thr glycosylation sites.

1.4.8.2 Motivation and Objectives for New Predictive Methods

There is still opportunity for improvement in the prediction of glycosylation sites.

There is a limit on the accuracy that is attainable, due to the possibility of both

undiscovered sites and various errors, both in the prediction and experimental data,

that cannot be eliminated. However, the theoretical threshold has not yet been

reached. It is for this reason that we pursue an improved prediction method by using

pairwise patterns with a novel machine learning method. Another aspect to this work

is that the methods produced up until now have been black box methods. This means

their decision processes are hidden from the user. We seek to remedy this and to

provide some biological comprehension of the prediction model produced by random

forest.

1.5 Thesis Overview

In chapter two, a discussion is presented of the machine learning algorithms and

statistical methods used in chapters three and four. We give an overview of the

methods we will be using, along with some background and the reasons for choosing

 37

these methods. In chapter three, the relationship between dihedral angles and

secondary structure of proteins is explored. After producing a secondary structure

predictor with the idea of using this information to improve dihedral angle predictions,

we concentrate on the prediction of Φ and Ψ dihedral angles using SVR, both with

and without the prediction of secondary structure. Our hypothesis here is that SVR, a

machine learning algorithm as yet untried for dihedral angle prediction, will offer

improvement in accuracy. We also hypothesise that predicted secondary structure

information will improve the predictions still further. Chapter 4 is concerned with

techniques to improve the accuracy of glycosylation prediction, by using random

forests combined with pairwise pattern information, and with the extraction of

biologically meaningful rules from the random forest. We reason that it is likely that

the amino acids have dominant influence over which residues are glycosylated even in

the absence of a consensus sequence. Therefore, we generate pairwise patterns and use

them to generate information about whether a given residue is likely to be

glycosylated with the hypothesis that this will improve prediction accuracy when

combined with a machine learning algorithm. For our machine learning algorithm we

choose random forest, which has not been used before for predicting glycosylation

sites, but has a good track record of sequence based prediction. The hypothesis is that

this will improve prediction accuracy. Our conclusions are offered for consideration in

chapter 5.

1.6 References

1. Wallace IM, Blackshields G, and Higgins DG. Multiple sequence alignments.

Curr. Opin. Str. Bio. 2005 15:261-266.

2. Thompson JD, Higgins DG, and Gibson TJ. CLUSTAL improving the

 38

sensitivity of progressive multiple sequence alignment through sequence

weighting, position-specific gap penalties and weight matrix choice. Nucleic

Acids Res. 1994 22:4673-4680.

3. Dayhoff MO, Editor of Atlas of Protein sequence and Structure Vol. 5 suppl. 3

Nat. Biomed. Res. Found., Washington, DC.

4. Henikoff S and Henikoff JG. Amino acid substitution matrices from protein

blocks. Proc. Natl. Acad. Sci. USA 1992 89:10915-10919.

5. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA,

McWilliam H, Valentin F, Wallace IM, Wilm A Lopez R, Thompson JD,

Gibson TJ, and Higgins DG. ClustalW and ClustalX version 2.0,

Bioinformatics 2007 23:2947-2948.

6. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, and

Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein

database search programs. Nucleic Acids Res. 1997 25:3389-3402.

7. Altschul SF, Gish W, Miller W, Myers EW, and Lipman DJ. Basic local

alignment search tool, J. Mol. Biol. 1990 215:403-410.

8. Soding J, Biegert A, and Lupas AN. The HHpred interactive server for protein

homology detection and structure prediction. Nucleic Acids Res. 2005

33:W244-W248.

9. Rangwala, H and Karypis G. Incremental window-based protein sequence

alignment algorithms. Bioinformatics 2006 23:e17-e23.

10. Gambin A, and Wojtalewicz P. CTX-BLAST: context sensitive version of

protein BLAST Bioinformatics 2007 23:1686-1688.

11. Lee ML, Chan MK, and Bundschuh R. Simple is beautiful: a straightforward

approach to improve the delineation of true and false positives in PSIBLAST

 39

searches. Bioinformatics 2008 24:1339-1343.

12. Przbylski D, and Rost B. Powerful fusion: PSI-BLAST and consensus

sequences. Bioinformatics 2008 24:1987-1993.

13. Anfinsen CB. Principles that govern the folding of folding chains. Science

1973 181: 223-230.

14. Kabsch W and Sander C. A dictionary of protein secondary structure.

Biopolymers, 1983, 22:2577-2637.

15. Ramachandran GN, Ramakrishnan C, and Sasisekharan V. Stereochemistry of

polypeptide chain configurations. J. Mol. Biol. 1963 7:95-99.

16. Pauling L, and Corey RB. Configurations of polypeptide chains with favoured

orientations around single bonds. Proc. Nat. Acad. Sci. 1951 37:729-740.

17. Garnier J, Osguthorpe DJ, and Robson B. Analysis and implications of simple

methods for prediction of α-helical and β-structural regions in globular

proteins. J. Mol. Biol. 1978 120:97-120.

18. Kloczkowski A, Ting KL, Jernigan RL, and Garnier J. Combining the GOR V

algorithm with evolutionary information for protein secondary structure

prediction from amino acid sequence. PROTEINS: Struct. Funct. Genet. 2002

49:154-166.

19. Rost B and Sander C. Prediction of protein secondary structure at better than

70% accuracy. J. Mol. Biol. 1993 232:584-599.

20. Jones DT. Protein secondary structure prediction based on position-specific

scoring matrices. J. Mol. Biol. 1999 292:195-202.

21. Bystroff C, Thorsson V and Baker D. HMMSTR: a hidden markov model for

local sequence-structure correlations in proteins J. Mol. Biol. 2000, 301:173-

190.

 40

22. Cuff JA and Barton GJ. Application of multiple sequence alignment profiles

to improve protein secondary structure prediction. PROTEINS: Struct. Funct.

Genet. 2000 40:502-511.

23. Pollastri G, Pryzybylski D, Rost B and Baldi P. Improving the prediction of

protein secondary structure in three and eight classes using recurrent neural

networks and profiles. PROTEINS: Struct. Funct. Genet. 2002, 47:228-235.

24. Jaing F. Prediction of protein secondary structure with a reliability score

estimated by local sequence clustering. Prot. Eng. 2003, 16:651-657.

25. Hvidsten TR, Kryshtafovych A and Fidelis K. Local descriptors of protein

structure: A systematic analysis of the sequence–structure relationship in

proteins using short- and long-range interactions. PROTEINS: Struct. Funct.

Bioinf. 2008, 75:870-884.

26. Wood MJ, and Hirst JD. Protein secondary structure prediction with dihedral

angles. PROTEINS: Struct. Funct. Bioinf. 59:476-481.

27. Montgomerie S, Sundararaj S, Gallin WJ and Wishart DS. Improving the

accuracy of protein secondary structure prediction using structural alignment.

BMC Bioinformatics 2006, 7:301.

28. Birzele F and Kramer S. A new representation for protein secondary structure

prediction based on frequent patterns. Bioinformatics 2006 22:2628 – 2634.

29. Karypis G. YASSPP: Better kernels and coding schemes lead to

improvements in protein secondary structure prediction. PROTEINS: Struct.

Funct. Bioinf. 2006 64:575-586.

30. He J, Hu HJ, Harrison R, Tai PC and Pan Y. Rule generation for protein

secondary structure prediction with support vector machines and decision tree.

IEEE Trans. NanoBio. 2006 5:46-53.

 41

31. Zhong W, He J, Harrison R, Tai PC, and Pan Y. Clustering support vector

machines for protein local structure prediction. Expert Systems with

Applications 2007 32:518-526.

32. Won KJ, Hamelryck T, Prugel-Bennett A, and Krogh A. An Evolutionary

method for learning HMM structure: prediction of protein secondary structure.

BMC Bioinformatics 2007 8:357.

33. Ouali M and King RD. Cascaded multiple classifiers for secondary structure

prediction Prot. Sci. 2000 9:1162-1176.

34. Yao XQ, Zhu H, and She ZS. A dynamic Bayesian network approach to

protein secondary structure prediction. BMC Bioinformatics 2008 9:49.

35. Zimmerman O and Hamsmann UHE. Support vector machines for prediction

of dihedral angle regions. Bioinformatics, 2006 22:3009-3015.

36. Dor O, and Zhou Y. Real-SPINE: An integrated system of neural networks for

real-value prediction of protein structural properties. PROTEINS: Struct.

Funct. Bioinf. 2007 68:76-81.

37. Xue B, Dor O, Faraggi E, and Zhou Y. Real-value prediction of backbone

torsion angles. PROTEINS Struct. Funct. Bioinf. 2008, 72:427-433.

38. Kurgan LA, Stach W and Ruan J. Novel scales based on hydrophobicity

indices for secondary protein structure. J. Theor. Biol. 2007 248:354-366.

39. Rost B and Sander C. Conservation and prediction of solvent accessibility in

protein families. PROTEINS: Struct. Funct. Genet.1994 20:216-226.

40. Li X and Pan MX. New method for accurate prediction of solvent

accessibility from protein sequence. PROTEINS: Struct. Funct. Genet. 2001,

42:1-5.

41. Yuan Z, Burrage K, and Mattick JS. Prediction of protein solvent accessibility

 42

using support vector machines. PROTEINS: Struct. Funct. Genet. 2002,

48:566-570.

42. Pollastri G, Baldi P, Fariselli P and Casadio R. Prediction of coordination

number and relative solvent accessibility in proteins. PROTEINS: Struct.

Funct. Genet. 2002, 47:142-153.

43. Ahmad S, Gromiha MM and Sarai A. Real value prediction of solvent

accessibility from amino acid sequence. PROTEINS: Struct. Funct. Genet.

2003, 50:629-635.

44. Kim H and Park H. Prediction of protein relative solvent accessibility with

support vector machines and long-range interaction 3D local descriptor.

PROTEINS: Struct. Funct. Bioinf. 2004, 54:557-562.

45. Wang JY, Lee HM and Ahmad S. Prediction and evolutionary information

analysis of protein solvent accessibility using multiple linear regression.

PROTEINS: Struct. Funct. Bioinf. 2005, 61:481-491.

46. Qin S, He Y and Pan XM. Accessibility with an improved multiple linear

regression method. PROTEINS: Struct. Funct. Bioinf. 2005, 61:473-480.

47. Xu Z, Zhang C, Liu S and Zhou Y. QBES: Predicting real values of solvent

accessibility from sequences by efficient, constrained energy optimization.

PROTEINS: Struct. Funct. Bioinf. 2006, 63:961-966.

48. Gianese G and Pascarella S. A consensus procedure improving solvent

accessibility prediction. J. Comput. Chem. 2006, 27:621-626.

49. Gianese G, Bossa F and Pascarella S. Improvement in prediction of solvent

accessibility by probability profiles. Prot. Eng. 2003 16:987-992.

50. Wang J-Y, Lee HM and Ahmad S. SVM-Cabins: prediction of solvent

accessibility using accumulation cutoff set and support vector machine.

 43

PROTEINS: Struct. Funct. Bioinf. 2007, 68:82-91.

51. Adamczak R, Porollo A, and Meller J. Accurate prediction of solvent

accessibility using neural networks-based regression. PROTEINS Struct.

Funct. Bioinf. 2004, 56:753-767.

52. Finn RD, Tate J, Mistry J, Coggill PC, Sammut JS, Hotz HR, Ceric G,

Forslund K, Eddy SR, Sonnhammer EL and Bateman A. The Pfam protein

families database. Nucl. Acids Res. 2008, 36:D281-D288.

53. Elman JL. Finding structure in time, Cognitive Science, 1990, 14:179-211.

54. Walsh CT, Garneu-Tsodikova S and Gatto Jr GJ. Protein posttranslational

modifications: the chemistry of proteome diversifications. Angew. Chem. Int.

Ed. 2005, 44:7342-7372.

55. Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S and Brunak S.

Prediction of post-translational glycosylation and phosphorylation of proteins

from the amino acid sequence. Proteomics 2004, 4:1633-1649.

56. Eberharter A and Becker PB. Histone acetylation: a switch between repressive

and permissive chromatin. EMBO reports, 2002, 3:224-229.

57. Boutin JA. Myristoylation. Cell Signal 1997, 1:15-35.

58. Bijlmakers M-J and Marsh M. The on-off story of protein palmitoylation.

Trends Cell Biol. 2003, 13:32-41.

59. Haglund K and Dikic I. Ubiquitylation and cell signalling. EMBO J. 2005,

24:3353-3359.

60. Bedford MT and Richard S. Argenine methylation: an emerging regulator of

protein function. Molecular Cell, 2005, 18:263-172.

61. Zhang FL, and Casey PJ. Protein prenylation: molecular mechanisms and

functional consequences. Annu. Rev. Biochem. 1996, 65:241-269.

 44

62. Bardwell JCA. Building bridges: disulphide bond formation in the cell.

Molecular Microbiology 1994, 14:199-205.

63. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart

GW, and Etzler ME. (Editors) Essentials of glycobiology 2nd edition, Cold

Spring Harbour Laboratory Press, Cold Spring Harbour, New York, 2009.

64. Julenius K, Mølgaard A, Gupta R and Brunak S. Prediction, conservation,

analysis, and structural characterization of mammalian mucin-type O-

glycosylation sites. Glycobiology 2005, 15:153-164

65. Breton C, Oriol R, and Imberty A. Conserved structural features in eukaryotic

and prokaryotic fucosyl transferases. Glycobiology 1998 8:87-94.

66. Betanbaugh MJ, Tomiya N,Narang S, Hsu JTA and Lee YC. Biosynthesis of

Human type N-Glycans in heterogenous systems. Curr. Opin. Struct. Biol

2004 14:601-606.

67. Helenius A and Aebi M. Intracellular functions of N-linked glycans. Science

2001 291:2364-2369.

68. Lis H and Sharon N. Protein glycosylation: structural and functional aspects.

Eur. J. biochem. 1993, 218:1-27.

69. Hanisch F-G. O-Glycosylation of the mucin type. Biol. Chem. 2001, 382:143-

149.

70. Silverman HS, Parry S, Sutton-Smith M, Burdick MD, McDermott K, Reid

CJ, Batra SK, Morris HR, Hollingsworth MA, Dell A, and Harris A. In vivo

glycosylation of mucin tandem repeats. Glycobiology 2001, 11:459-471.

71. Seregni E, Botti C, Massaron S, Lombardo C, Capobianco A, Bogni A,

Bombardieri E. Structure function and gene expression of epithelial mucins.

Tumori, 1997 83:625-632.

 45

72. Snow DM, Hart GW, Nuclear and cytoplasmic glycosylation. Int. Rev. Cytol.

1998, 181:43-74.

73. Gupta R, Birch H, Rapacki K, Brunak S and Hansen JE. O-GLYCBASE

version 4.0: a revised database of O-glycosylated proteins. Nucleic Acids Res.

1999, 27:370-372.

74. Li S, Liu B, Zeng R, Cai Y and Li Y. Predicting O-glycosylation sites in

mammalian proteins by using SVMs. Comput. Biol. Chem. 2006, 30:203-208.

75. Bairoch A, Apweiler R, Wu CH, Barker WC, Boekmann B, Ferro S,

Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA,

O’Donovan C, Redaschi N and Yeh L-SL. The universal protein resource

(UniProt). Nucleic Acids Res. 2005, 33:D154-D159.

76. Caragea C, Sinapov J, Silvescu A, Dobbs I and Honaver V. Glycosylation site

prediction using ensembles of support vector machines classifiers. BMC

Bioinformatics 2007, 8:438.

77. Chen YZ, Tang YR, Sheng ZY, and Zhang Z. Prediction of mucin-type O-

glycosylation sites in mammalian proteins using the composition of k-spaced

amino acid pairs. BMC Bioinformatics 2008, 9:101.

78. Boeckmann B, Bairoch A, Apweiler R, Blatter M-C, Estreicher A, Gasteiger

E, Martin MJ, Michoud K, O’Donovan C, Phan I, Philbout S, and Schneider

M. The Swiss prot protein knowledge base and its supplement TrEMBL in

2003. Nucleic Acids Res. 2003, 31:365-370.

 46

Chapter 2: Machine learning algorithms

2.1 Introduction

The choice of machine learning algorithms that could be used to solve the

bioinformatics problems outlined in chapter 1 is vast. In this chapter, we give some

background to the machine learning algorithms used in the thesis and outline the

algorithms themselves. We begin by defining the basic problems of classification and

regression. We move on to introduce decision trees, which form an integral part of

two of the machine learning methods used in this thesis. After this we introduce SVR

and finally the rule extraction method trepan. Random forest is an ensemble method,

which uses a group of decision trees to perform classification. It is used extensively to

predict glycosylation sites in chapter 4. It was selected as a method as yet untried for

the prediction of glycosylation sites, which promised to be good for classification

based on sequence data. Our approach of using pairwise patterns requires the forest to

be able to handle mixed data, which it indeed does. For these reasons we hypothesise

that the use of random forest with pairwise pattern information will give better

accuracy over the state of the art. Another reason for its selection was the possibility

of parallelisation of the method, perhaps with each tree on a different processor,

although in practice an ensemble of forests was used with each forest trained on a

different cluster node.

Kernel machine learning methods and, in particular, SVM algorithms for regression

are used in chapter 3 of this thesis for prediction of protein backbone dihedral torsion

angles from the amino acid sequence. Here we introduce both SVM for classification

and regression. One leads naturally on to the other and indeed it is hard to understand

one without the other. We chose to use real value, rather than categorical, prediction.

 47

Categorical predictions are limited to a hard margin of classification between a

relatively small number of divisions, which typically mirror secondary structure types.

In contrast, dihedral angles are flexible throughout a wide range of values, and it is

valuable to find as close to the real value as possible for use in 3D structure

prediction. This also allows for regions of the protein, which do not have a well-

defined structure, and may not be well predicted by a secondary structure based

assignment of dihedral angle categories. Having selected regression, it became

necessary to choose a method for performing that regression that was both untried for

dihedral angle prediction, and had the potential to improve accuracy. Previous

methods all use neural networks. SVR has been shown to have comparable or better

accuracy to neural networks, and had not been tested for prediction of dihedral angles.

Therefore, we hypothesised that SVR will improve the accuracy of prediction of

dihedral angles over the state of the art.

Returning to chapter 4, the random forests method is a black box method and its

decision process is not human interpretable. It is beneficial to view the decision

making process of a machine learning algorithm for two reasons. Firstly, meaningful

biological rules can be extracted from the decisions made by the algorithm. Such rules

may be testable experimentally and may yield previously undiscovered biological

principles. The second reason is that any mistakes which are reducing the accuracy of

the machine learning algorithm may be highlighted, allowing for future improvement.

For this purpose we selected trepan. Trepan was chosen as an algorithm which can

easily be connected to the random forest in order to interpret its decision process. The

trepan algorithm produces a decision tree based on the training data and the

predictions of the random forest, thus giving a clear set of rules from which the

 48

predictions can be interpreted.

2.2 Classification

There are many different types of machine learning algorithm used for data mining

and bioinformatics, but all have the same basic premise of using a set of known

examples to obtain information about new data or new information from existing data.

The known examples are usually referred to as the training set. The model may be

evaluated with a test set of unlabelled or unknown instances. Examples are often

represented as a vector containing features that describe a given example or instance.

The data can either be labelled or unlabelled.

Machine learning algorithms can be divided into supervised and unsupervised

learning1. Supervised learning typically consists of relating a series of attributes of the

data to a specific class or numerical value known as a label of that specific instance.

This relationship is termed the model and such methods are often called prediction

methods. Unsupervised learning, in contrast, refers to methods that group instances

without any reference to a pre-specified label. This area covers methods such as

clustering. Supervised learning methods include, amongst others, decision trees,

neural networks, and SVR. Supervised learning methods can further be divided into

classification and regression methods. Classification methods fit each instance to a

series of discrete classes based on a model derived from known examples. Regression,

in contrast, fits the data to a real value distribution.

Classification is an extension of concept learning1, whereby a set of examples is used

to learn the general definition for a concept. A concept is defined as a category or

 49

description, e.g., of an object or a set of objects such as the concept of an animal.

Within concept learning a possible goal could be to learn what constitutes an animal,

by learning from features present in a selection of creatures. Concept learning is

restricted to a function mapping the set of possible examples to the Boolean set {True,

False}. Classification is not restricted to the Boolean set, and maps the set of possible

examples for a given problem to a predefined set of class labels. Equations in this

section and the sections up until section 2.4 are adapted from reference 2, unless

otherwise stated.

For a training set S consisting of attributes A={a1, a2, a3, a4....an} and a target attribute

Y from an unknown fixed distribution D over the labelled instance space, the goal is to

induce a classifier, which has the minimum generalisation error. The generalisation

error,2 E, is the rate of misclassification over the distribution D defined for nominal

attributes:

€

E(DT (S),D) = D(x,y) ⋅L(y,DT (S)(x))
x,y∈U
∑ (2.1)

where U is the labelled instance space, defined as the Cartesian product of all input

attribute domains and the target attribute domain. DT(S) is the decision tree for

training set S. L is the zero one loss function2:

€

L(y,DT (S)(x)) =
0 if y =DT (S)(x)
1if y≠ DT (S)(x)








 (2.2)

The sum operator is replaced with integration for numeric attributes.

 50

2.3 Decision trees

Decision trees2 are one type of machine learning technique used most commonly for

classification, although their use as a regression method is also possible. For the

purposes of this work, we shall focus on decision trees used for classification, or

classification trees. Classification trees are predictive models, which have been used

in a variety of fields. The classification tree divides the data among a series of classes

based on a number of decisions. Each decision is carried out based on one or more

rules, such as whether a specific amino acid is present or not.

A decision tree is structured hierarchically (figure 2.1). A decision tree is made up of a

number of nodes, paths and leaves.

Figure 2.1. A general schematic of a simple decision tree. Here nodes are numbered
and split the data according to some rule. A leaf node designates the class, either A or
B. The root node is the starting point of the decision tree and performs the intitial split
of the data. Paths between nodes are shown as unbroken lines.

Each of the nodes in the tree has a number of possible paths leaving it, which either

join to other nodes further down the tree known as child nodes, or to a leaf node,

which is a node assigning a specific class to an instance. The first node in the tree is

known as the root node. Instances are classified as one of the designated classes by

 51

sequentially following a path through the tree based on the attributes of the data in

relation to the rules at each node, until a leaf node is reached, when the data is labelled

as belonging to the corresponding class.

2.3.1 Decision tree induction

An inducer is an algorithm, which is used to create a decision tree from a set of

examples known as training data. Each instance of the training data is represented as a

vector of attributes labelled with a classification. The inducer takes the training data

and forms a model that describes the relationship between the attributes and labels of

the data. Construction of the decision tree begins at the root node. At each new node

in the tree the data is divided based upon the features of the data. This process is

continued iteratively until one of the stopping criteria is reached (see later). There are

many ways to find the optimal split in the data at each node. These include both

univariate and multivariate splitting criteria. Univariate splitting criteria are dependent

on one attribute of the data. Thus, univariate decision tree inducers are concerned with

identifying the best attribute with which to split the data. The approaches can be

classified into criteria based on impurity, with or without normalisation, binary

criteria, and those criteria based on information or distance.

2.3.2 Splitting Criteria

2.3.2.1 Impurity based criteria

One of the aspects of a decision tree, which is important for choosing a decision tree

algorithm is the method used at each node to decide where to split the data in order to

share it between the two child nodes. Here we give an overview of some of the basic

types of splitting criteria along with some examples, which are relevant to the methods

 52

used in this thesis. In the next section, we will introduce some common decision tree

algorithms the principles of which are relevant to the trepan algorithm described later

in this chapter and used in chapter 4 for rule extraction. After introducing some

example decision trees, we see how they can be grouped into ensembles, before

introducing random forest, one of the principal methods used in this work.

The splitting of the data at a given node in the tree can be chosen based on the purity

of information obtained by the split. If the split is completely pure, then the measure is

1 and 0 if all the components are equally distributed (i.e. if the split is arbitrary).

Information gain3 uses entropy as a measure of the impurity in the data. Given a

training set S with discrete attributes a1…i, a target attribute y with possible outcomes

c1…i and σ is a selection of attributes chosen from S, the information gain is calculated

as:

€

InformationGain ai,S() = Entropy y,S() −
σ ai = vi , j

S

S
⋅ Entropy y,σ ai = vi , j

S()
vi , j ∈dom ai()
∑ (2.3)

where:

€

Entropy y,S() = −
σ y= c j

S

S
⋅ log2

σ y= c j
S

Sc j ∈dom y()
∑ (2.4)

The Gini index2 takes as its impurity measure the divergence between the target

attributes.

€

Gini y,S() =1−
σ y= c j

S

S















2

c j ∈dom y()
∑ (2.5)

 53

This leads to an evaluation criterion for the selection of the best attribute ai on which

to split the data, which is:

€

GiniGain ai,S() =Gini y,S() −
vi , j ∈dom ai()
∑

σ ai = vi , j
S

S
⋅Gini y,σ ai = vi , j

S() (2.6)

The Gini index is used in the CART method described below and is also related to the

method employed by trepan. The nature of impurity based criteria means that they

favour attribute domains with a large number of values. This bias can reduce the

accuracy of a decision tree, as an attribute with many values will show the highest

information gain, when in fact it may not give the greatest accuracy. Thus, it is useful

to normalise the impurity measure. Normalising the information gain4 as follows gives

rise to the gain ratio:

€

GainRatio ai,S() =
InformationGain ai,S()

Entropy ai,S()
 (2.7)

The attribute with the best ratio gain is selected. This measure can unduly favour

attributes with a very small denominator. So it has been suggested that a two stage

approach is used where first the information gain is calculated for all attributes

allowing consideration of only those attributes that have better than or equal

performance to the mean information gain, and thus allowing selection of the best gain

ratio. The gain ratio is used as part of the splitting algorithm of trepan described in

section 2.6.2.3 below.

 54

2.3.2.2 Binary Criteria

These criteria are designed for binary decision trees and are based on the division of

the attribute into two sub domains. The twoing criterion5 is an equivalent of the Gini

index for binary decision trees. It can be employed when the attribute domains are

relatively wide and the Gini index would be inappropriate. It is defined as:

€

twoing ai,dom1 ai(),dom2 ai(),S() =

0.25 ⋅
σ ai ∈dom1 ai()S

S
⋅
σ ai ∈dom2 ai()S

S
⋅

σ ai ∈dom1 ai()ANDy= c j
S

σ ai ∈dom1 ai()S

−
ci ∈dom y()
∑

σ ai ∈dom2 ai()ANDy= c j
S

σ ai ∈dom2 ai()S















2

(2.8)

where dom1 and dom2 are sub-domains of the attribute a. The twoing criteria is used

in the CART algorithm to form part of its splitting process.

Other binary criteria include the orthogonal2 criterion and the Kolmogorov-Smirnov

criterion6. Many splitting criteria have been considered in the literature and those

described above represent a selection of the most commonly employed. Each criterion

performs better in some circumstances than others and whilst it is possible to select

the splitting criteria for a given problem, performance gain may be minimal.

2.3.3 Stopping criteria and pruning

A decision tree requires a stopping criterion to limit it to a set number of nodes, i.e., to

define the end of the process of inducing the decision tree. Stopping criteria have a

number of common forms: the number of nodes has reached a maximum, the depth of

the tree has reached a preset limit or the best splitting criterion is below a given

 55

threshold. Other possibilities relate to the minimum number of instances reaching each

potential child node, or to whether all instances in the training data are able to be

given a classification.

It is usual for some nodes to be pruned away from the tree after induction. Dependent

on the stopping criterion, a tree may end up being large and over-fitted to the training

data or conversely small and under-fitted. A pruning method can allow the decision

tree to over-fit and then to remove sections of the tree, which are not improving the

generalisation accuracy of the tree. Pruning is also carried out to reduce the

complexity of a decision tree while maintaining its accuracy, or to produce a compact

description of a concept or classification. The tree is often measured against the

original tree, in order to assess the loss in accuracy incurred by pruning.

A simple pruning method is error pruning3. In a bottom to top traversal of the nodes in

a tree, the algorithm checks to see if replacing a node with the most frequent

classification will reduce the generalisation error of the tree. If the accuracy is not

reduced, then the node is pruned. This process is repeated until no pruning of the tree

can be carried out without reducing accuracy. A similar method, minimum error

pruning7 examines the l-probability error rate estimation before and after pruning and

if pruning the node does not affect the error rate then it is accepted.

Many other methods have been applied to the pruning of decision trees, such as

pessimistic pruning4, error based pruning4 and minimum description length pruning8.

 56

2.3.4 Some decision tree algorithms

Below we discuss some of the more popular decision tree algorithms that have been

developed. This is by no means an exhaustive survey. Those examples given below

are designed to give an overview of some of the major types of decision tree. One of

the simplest decision tree induction algorithms9, ID3 uses information gain as a

splitting criterion. As a stopping criterion, the tree is considered complete when either

each instance belongs to a single class or when the information gain from continuing

is no longer greater than zero. No pruning of the tree is conducted, and no support is

available for handling anything other than discrete attributes.

The C4.5 algorithm4 is an improvement on ID3 by the same author. It is similar to

ID3. However, the splitting criterion is the gain ratio and the stopping criterion is

based on the number of instances. When the number of instances available for

splitting falls below a certain threshold then no further splitting is carried out. C4.5

also incorporates error-based pruning after the growing of the decision tree, and

supports numeric attributes.

Developed by Brieman et al., Classification and regression trees (CART)5 constructs

binary trees using twoing criteria to split at each node producing exactly two child

nodes. The initial tree is pruned using cost complexity pruning. CART can calculate

the cost of misclassification in the induction of the tree when appropriate information

is provided. CART can also generate regression trees, whereby a real number is

predicted at each leaf node rather than a class. In splitting for regression trees CART

seeks to minimize the prediction squared error (least squared deviation). At each leaf

node the predicted value is based on the weighted mean of each node. There are many

 57

other algorithms for decision tree classification, and it is not appropriate to discuss

them all here. However, more detail of algorithms such as CHAID10 and QUEST11

can be found in the references listed below, particularly Rokach and Maimon2.

2.4 Ensembles of decision trees

2.4.1 Decision forests: general principles

Decision forests are ensembles of decision trees2. An ensemble method is one that

combines a number of models of either the same or of different types. Each of these

models is trained to solve the same problem. Ensemble methods improve accuracy,

and through distributed computing can allow for larger datasets to be considered by

spreading the ensemble over a number of computers. Whilst there are many methods

for ensemble learning, typically many of them have the same building blocks. In most

cases labelled training data is used for the training of the ensemble. Typically all the

elements of the ensemble are trained on data taken from the same training set. There is

an inducer, which is the algorithm that develops each classifier based on the training

set. There is an ensemble generator, which is responsible for generating a varied set of

classifiers. Finally, there is a combination protocol, by way of which the various

classifiers in the ensemble are combined to produce predictions. There are certain

properties of ensemble classifiers, which must be considered in order to achieve an

effective ensemble. These include, whether the classifiers interact with each other,

how the individual classifiers are combined, the method by which variety between the

classifiers is generated, the size of the ensemble, which inducer is used and whether

the same or varied inducers are used throughout the ensemble, and what proportion of

overlap there is in the training data presented to the individual classifiers.

 58

There should be some diversity among the classifiers. If the classifiers are identical,

the result will be the same as for an individual classifier. Many methods exist for

ensuring there is sufficient diversity. Here, we give a brief overview of the different

methods and some specific examples. However, we begin with the closely related

property of dependence between classifiers. A decision forest is said to be dependent

if the trees within it interact with each other and independent if they do not.

Dependent classifiers fall into two main types: model guided instance selection and

incremental batch learning12. In model-guided instance selection, the training process

is iterative, the training data in a given iteration being manipulated by the models

generated in previous iterations. Typically, such models only learn from mis-classified

instances, ignoring those instances that were correctly classified by previous

iterations. Boosting, such as in Adaboost,13 is an example of such a learning scheme.

This method improves the output of a learning classifier system by repeatedly running

it on various distributions of the training data and producing a composite classifier

from the resulting models. Incremental batch learning simply uses the classifier

generated in a previous iteration as prior knowledge for the next. The classifier

generated at the final iteration is taken as the resulting trained model.

Independent methods are those in which the classifiers in the ensemble have no

knowledge or interaction with each other. Each of the classifiers is typically trained on

a different subset of the training data. These subsets may overlap or they may be

disjoint. Independent methods have the advantage that the combination method is

independent of the induction. So multiple types of classifier can easily be combined

and independent decision forests can easily be run on parallel architectures. Examples

of independent methods include bagging14, wagging15, and random forest16.

 59

2.4.2 Diversity

Diversity is essential to ensemble machine learning. The classifiers must be as diverse

as possible, whilst remaining within the bounds of the problem being considered. The

classifiers must also remain consistent with one another in order to produce

meaningful results. The required diversity can be generated using a variety of

methods. The training data can be manipulated, the feature space can be partitioned or

each classifier can be targeted at a different subset of the problem. In addition,

manipulation of the inducer itself and hybridization of the various types of inducer can

be used to create diversity within an ensemble.

Manipulation of the inducer is probably the simplest way of generating diversity. The

variability can often be generated by the manipulation of the parameters of the

induction algorithm, for example, altering the threshold parameter in the C4.5 decision

tree4 or altering of the topology of neural networks. The starting point for training the

inducer can also be altered, e.g., the initial weights of a neural network. The method

used by an inducer to traverse the so called ‘hypothesis space’ can be varied, leading

the different classifiers to develop varied hypotheses for a classification problem. This

can be done by introducing random variance, or by a method such as collective

performance based strategy,17 whereby a cost penalty is introduced into the training

algorithm, which encourages diversity.

The training data can be split into sub-sets, with each classifier being trained on an

overlapping or disjoint sub-set. Resampling is used to generate overlapping subsets of

the data. Some methods use the distribution of the training data. Others use a random

distribution. Other methods, such as Adaboost13, change the weights of the training

 60

data, rather than sampling with replacement.

An important method of generating variety is to create new training examples based

on the distribution of the training data. These examples are combined with the training

data to form a new training set. The DECORATE algorithm18 creates these examples

to give maximum variance from the training data. The training is iterative, with the

first iteration on the training data and subsequent iterations with the addition of

artificial examples.

Variance across the ensemble can be introduced via the partitioning of the data into

disjoint partitions. This is often done randomly, and overcomes the bottleneck created

by the size of the data. Each classifier is trained on a disjoint sub-set, but the whole

ensemble processes the total amount. Also it is possible to use clustering techniques,

e.g., SVM cabins19 partitions the data for training multiple SVMs in order to predict

protein solvent accessibility. Both these approaches offer an improvement in accuracy

and a way to overcome performance bottlenecks.

Rather than diversify the data or change the way it is represented, search space

partitioning introduces variation by directing the classifiers in the ensemble to explore

different areas of the search space. Each of these models is constructed independently,

and then aggregated. The subspaces of the feature space can overlap or be disjoint and

how much, if any, overlap between subspaces to allow is an important consideration.

The divide and conquer approach divides the subspace into sub-sets. The instance

space can be divided using either clustering techniques, such as k means clustering, to

divide the space into mutually exclusive subsets, or by a hybrid classifier, such as a

 61

naïve Bayes tree20. The feature sub-set selection approach manipulates the input

attribute set. Each of the classifiers is given a different sub-set of the features, and thus

receives a different projection of the training set. The features can be divided up by a

random selection or by using reducts2. A reduct is the smallest set of features that can

be chosen, whilst retaining the same predictive power as the whole feature set. This

has the limitation of preventing the ensemble size from being larger than the feature

set. A collective feature based strategy21 is also possible, whereby after the initial

random feature selection the sub-sets are refined using an iterative method, such as

genetic algorithms or a hill climbing approach.

Diversity can also be generated by using several different types of classifier to form

the ensemble. This approach also covers combining several classifiers with

mathematical or analytical methods. The different classifiers may identify different

aspects of the training data, and, therefore, this will go some way to overcoming the

natural bias of each individual classifier. For example, Zhou and Jiang combine the

C4.5 decision tree with neural networks22. They first train a neural network. This

ensemble enhances the training set by adjusting the class labels and adding new

examples. The new training set is used to generate a C4.5 tree. This is analogous to

the trepan23 method, described elsewhere in this thesis, in that it provides increased

comprehensibility of the results.

2.4.3 The combiner

Once the individual classifiers have been generated, they must be combined in order

to give the final output. Methods for this can be divided into two major categories,

weighting methods, whereby each classifier is assigned a weight proportional to its

 62

strength of classification, and meta learning approaches where a further machine

learning process is used to select the best output. A majority voting approach is

possibly the simplest method2. Each classifier is given a vote to determine class. The

predicted class of a given instance is the one that is given the largest number of votes.

A development of this is performance weighting,24 where each classifier is weighted

by its performance on a validation set. Other methods employ as weights the

distribution of probability across the classifiers and the Bayesian posterior probability

of the classifier with respect to the training set2.

Meta combination methods use a meta learning method to select the best classification

based on the results of the base classifiers. Stacking25 combines multiple classifiers by

learning from a training set, in which each instance is described by the target attribute

and the predicted classifications produced by each of the base classifiers. This method

can be improved by the inclusion of output probabilities for each prediction of the

base classifiers. Arbiter trees26 are a decision tree approach designed to combine

classifiers. Each arbiter tree is developed to decide between two or more classifiers.

For large numbers of classifiers, multiple arbiter trees may be constructed and used in

a hierarchical fashion. A similar method, combiner trees27, uses combiners instead of

arbiters at each node in the tree to select the appropriate classification for a given

instance. Grading28 is a meta-learning method for deciding upon the correctness of

the classifications produced by a base classifier. From each classifier, a training set is

assembled of its predicted classifications attaching a new binary class, which indicates

correct or incorrect with respect to that instance. Voting is carried out between the

classifications of the base classifiers that are determined to be correct by the meta

learner.

 63

2.4.4 Random forest

The random forest is the principal algorithm used in this thesis for prediction of

glycosylation sites. Random forest was chosen for this work as a machine learning

algorithm which was untried with regard to the prediction of post translational

modification, but had been used with some success in other areas of biology. It is able

to take both categorical and numerical data as input, which is ideal for analysing data

about pairwise patterns and sequence information. It is also fast relative compared to

methods such as SVM. We chose to use random forest rather than a single decision

tree, which has many of the same properties, because an ensemble method has greater

accuracy than a single decision tree.

A random forest16 is an ensemble classifier, h, composed of a number of tree-

structured classifiers

{h(x,Qk), k=1,2....N} (2.9)

where {Qk} are independently generated random vectors of attributes drawn from the

same distribution (i.e. the distribution of the training data) and N is the total number of

vectors. Each tree casts a single vote to determine class. Generally to generate a tree, a

random vector Qk is chosen, which is independent of previously chosen vectors Q1…k-

1. This vector should have the same distribution as its predecessors. The chosen vector

is combined with the training data S to generate a classifier, resulting in a classifier

h(x, Qk), where x is an input vector. For an ensemble, many such trees are generated,

which vote to determine class.

 64

A useful property of random forests is that increasing the number of trees does not

induce over-fitting, due to the strong law of large numbers, whilst increasing the

number of trees does improve accuracy. The strong law of large numbers deals with

the stability of the mean of a random variable, and states that the mean will almost

certainly converge as the number of samples tends to infinity, for samples chosen at

random from a given distribution. The trees in a random forest are created using

bagging in tandem with the selection of random features. This improves accuracy,

whilst providing an internal error estimate, which can be calculated ‘out of bag’. The

out of bag error is the generalised estimate for a classifier trained upon a training set S

from which are bootstrapped Sk training sets. Then for each instance I in the training

data combine the votes from the classifiers trained on the sets Sk which do not include

the instance I. This is known as the out of bag classifier, and the out of bag error is the

error rate of this classifier on the training set. It is also possible to use random forests

for regression. Each tree is generated in a similar fashion as to classification, but with

a numerical value for the target attribute. Regression is then performed at the leaf

nodes to determine a numerical result.

2.5 Kernel based machine learning

For our work on prediction of dihedral angles we wished to predict real value angles

and thus required a method to perform regression (for a discussion of the rationale for

choosing real value dihedral angles see chapter 1 and 3). We wanted a method that

had not been tried before but was proven to be at least comparable to the state of the

art methods used in previous work. SVR is comparable in accuracy to neural

networks, which were used in previous work and has not been used for prediction of

dihedral angles. Our hypothesis is that the use of SVR will achieve greater accuracy of

 65

prediction of dihedral angles.

Here we introduce kernel machine learning, which is the basis for SVR, and then go

on to introduce SVMs for classification and regression. We cover classification even

though it is not explicitly used in this thesis as it gives an easy route to understanding

the use of kernel machine learning for SVR. Originally developed by Vapnik and co-

workers,29 SVMs for both classification and regression fall into a category of machine

learning algorithm known as kernel based machine learning30. Kernel methods are

based around the idea of altering the representation of the data to fit to a particular

type of method for classification. This is done by using a function, known as the

kernel function, to map the input data into a higher dimensional space (figure 2.2).

This feature space is such that a simple classification algorithm can be applied to

classify the data, or regression can be performed to fit a function to the data. This has

the additional advantage that the properties of a kernel function allow for the feature

mapping to be computed using the inner product (also known as scalar or dot product)

of the vectors in the input data. So machine learning can be performed without

computing the feature mapping, thus dramatically reducing computational time for

large datasets.

 66

Figure 2.2 An illustration of kernel machine learning where a maximal margin

hyperplane can be fitted to the data on the left after it has been raised into a higher

dimensional space by a kernel function from its representation on the right.

This leads to a modular approach, where the input data is modified with the kernel

function, the inner products are calculated and the machine learning algorithm is run

on the data. The choice of kernel function is important and we will discuss the various

types of kernel function tested in this work. Equations in this section of the work are

adapted from30 unless otherwise stated. A kernel function computes the inner product

of the mapped image of two data points, x and z, in the embedding ω:

€

k(x,z) = ω x(),ω z() (2.10)

for all x, z ∈ X where X is the instance space.

2.5.1 Kernel types

Various types of kernel can be constructed which map the data into varying feature

spaces. We will address the kernels that are used later in this thesis. We begin with the

 67

linear kernel, then move onto the polynomial and Gaussian kernels, both of which

have been used in numerous bioinformatics methods. The polynomial and Gaussian

kernel functions were adapted from Vapnik.29 The linear kernel is the simplest

available:

€

k x,z() = zx (2.11)

The polynomial kernel can be constructed in various degrees as best suits the data,

although the higher the degree the slower the computation time. For a vector space X

of dimension n, the polynomial kernel is:

€

kd x,z() = x,z + R()d (2.12)

where R and d are parameters, with d being referred to as the degree of the kernel.

The Gaussian kernel is

€

k x,z() = exp −
x − z 2

2σ 2




 




  (2.13)

where σ > 0. σ is known as the kernel width, and is a user-defined parameter, which

must be optimised for a particular dataset, along with the SVR parameters C and ε

(see later in this thesis for more details on optimising for SVR). It is beyond the scope

of this work to give a detailed mathematical characterisation of kernel machine

learning. Here we give a summary of the SVMs for classification and regression. Full

details and background are given in Shawe-Taylor and Cristianini30.

 68

2.5.2 Hard margin SVM

For the classification of data that has been raised into a higher dimensional feature

space by a kernel function, the simplest method is to divide the data with a hyperplane

in the higher dimensional feature space. In SVM classification, the hyperplane is a

maximal margin hyperplane. This is defined by the data instances in each class either

side of the hyperplane. The hyperplane is chosen to give the maximum margin

between it and these data, which are known as support vectors. This gives a hard

margin SVM classifier. However, outliers in the data may not be accurately classified

by a hard margin cut off, which leads to the idea of a soft margin classifier, which

takes into account possible outliers and improves classification accuracy.

2.5.3 Soft margin classifier

A soft margin classifier can be achieved by the introduction of slack variables, which

allow the margin constraints to be violated. The rationale for this is that the hard

margin SVM is very sensitive to noise in the data, which may make it impracticable

for real world data sets. The introduction of slack creates a trade off between the slack

variables and the margin of the hyperplane. This trade off is regulated by the

regularisation parameter C. This parameter is optimised for each dataset on which the

SVM is trained.

2.5.4 SVR

Using SVM for regression is possible using an ε-insensitive loss function, which

ignores all errors below a threshold ε. The resulting band around the output function is

referred to as a tube. Otherwise the procedure is similar to that of classification. A

function is fitted to the data using regression, with a margin defined by the support

 69

vectors, i.e., the error cut off ε. The threshold for the error cut off is defined by the

user and is optimised along with the other parameters already described. The SVR

algorithm is given a soft margin, in much the same way as for classification, by using

slack variables with the trade off between the slack variables and the margin handled

by the parameter C, as before. More detail on the properties of SVM for classification

and regression along with pseudocode for the above algorithms is given in Shawe-

Taylor and Cristianini30.

2.6 Critical Assesment

In reviewing the various methods considered above, we aimed to select those most

appropriate to use in our work. We considered the accuracy of the methods, but also

factors such as availability and whether the method had been used before. It would

have been less productive to re-implement methods from scratch. Where multiple

methods are available with similar accuracy, the most tried and tested one was chosen.

When it came to selecting a method for classification, which had not been used for

glycosylation site prediction, there were many possible choices. We chose an

ensemble method because of the increased accuracy over a single decision tree, but

also because of the prospect of running in parallel. Random forest has been tested in a

variety of machine learning problems in various fields (see chapter 4 and above for

references). The choice of splitting criteria, methods for generating diversity, used in

random forest are appropriate for our work. The fact that little work had been done on

interpreting the model produced by random forest was also a factor in deciding on the

choice. When it comes to the choice of SVR algorithm, it was important to use the soft

margin version, since it gives a certain tolerance of outliers that should improve

accuracy in the long run. Below we detail the methods chosen to assess the accuracy

 70

of the work in this thesis. These were chosen to give a balanced assessment of the

merits of the various methods, but were also to some extent based on the methods

used to assess previous work, thus allowing a valid comparison. We then assess

multiple possibilities for the method that could be used to interpret the random forest.

The grounds for the final choice are given below.

2.6.1 Assessing accuracy

Throughout this work, common accuracy measures are used to assess the performance

of the machine learning methods. In all the methods presented below, true positives

(TP) are those instances correctly identified as positive, true negatives (TN) are

correctly predicted negative instances, false negatives (FN) are positive examples

which are incorrectly predicted as negative and false positives (FP) are negative

examples incorrectly predicted as positive. Correctly classified instances (CCI) is a

measure applied only to classification problems. This measure is the number of

instances in the test set which have been assigned to the correct class as a fraction of

the total, N:

€

CCI =
Tp + Tn
N

 (2.14)

This presents certain problems, as there is no indication of whether those instances are

positive or negative examples and therefore no indication as to whether the prediction

is a balanced one. Sensitivity (Sn), expressed here as a percentage, assesses the

effectiveness at classifying positive examples:

 71

€

Sn =
Tp

Tp + Fn()
×100 (2.15)

Specificity (Sp), also expressed as a percentage, assesses the accuracy of the

classification of negative examples:

€

Sp =
Tn

Fp + Tn()
×100 (2.16)

The Matthews correlation coefficient (MCC)31 is a measure of accuracy designed to

take into account the ability of a classifier to classify correctly both positive and

negative instances. It produces a value between -1 and 1, with 1 being a perfect

prediction and -1 a completely incorrect prediction. 0 represents a random prediction.

€

MCC =
(TpTn) − (FpFn)

(Tn + Fn)(Tn + Fp)(Tp + Fn)(Tp + Fp)
 (2.17)

The Pearson correlation coefficient is used to assess the accuracy of numerical

prediction, by relating the mean and standard deviation of the predicted and observed

values in the dataset:

€

r =

xi − x () yi − y ()
i=1

n

∑
n −1()σ xσ y

 (2.18)

where x is the observed data, y is the predicted data for n test instances i1,i2,…in,

€

x

and

€

y are the means of the observed and predicted data respectively and σx and σy are

 72

the standard deviations of the observed and predicted data.

Cross-validation is a technique used for calculating the accuracy of a prediction when

the amount of data available prohibits the formation of an independent test set. The

data are divided up into a number of sections (typically 10). The data instances which

form these sections are chosen by random sampling without replacement and the

number of instances in each section is equal. One of the sections is set aside to act as

the test set, and the remainder are used for training. This is repeated N times, where N

is the number of sections the data were split into, with a different section of the data

being used as the test set in turn. This is known as N fold cross validation.

Leave-one-out cross-validation is a variation on the above procedure. Instead of

dividing the data into sections, the training procedure is repeated n times, where n is

the number of instances in the training data. For each training cycle a different

instance is left out of the training data, and is used as a test instance. This is repeated

until every instance has been used as a test example. The accuracy is calculated over

all of the test predictions.

2.6.2 Model Interpretability

Many machine learning algorithms, such as neural networks, SVMs and random

forest, are inherently opaque. Characterised as black box methods, the decision

making processes of these algorithms are not interpretable. In the case of neural

networks, the weights of the network are known, but it is a non-trivial task to calculate

the way the weights interact to make a prediction for a given instance. A similar state

is true of SVMs. The kernel matrix cannot easily be mapped to the original data, in

 73

such a way as to give a decision function in normal space, which again cannot be

interpreted in the context of the problem. Random forest, which we use in chapter 4, is

considered a black box method. The decision trees that make up the trained random

forest cannot be read in the same way as, for example, a tree from an algorithm such

as J48, which produces clear interpretable rules. In this work we seek to develop a

method of interpreting the model produced by random forest. Many methods have

been tried in order to extract meaningful information in the form of rules and

interpretable decision processes from neural networks and SVM models. However,

little work has been done on extracting rules from random forest. Many of the

algorithms that are available for rule extraction from e.g. neural networks have been

used for more than one machine learning method. Our intention is to take one such

method and adapt it to extract comprehensible rules from random forest, giving us a

detailed picture of the decisions made by our random forest model for glycosylation,

and providing some biological insight. Since we intend to select an existing algorithm,

we review examples of the major types of rule extraction method for neural networks

and SVMs. A more comprehensive survey is available in references32,33. Not as much

work has been done on the interpretability of random forest. Part of the novel work in

this thesis focuses on this.

2.6.2.1 Neural networks

Of the methods below, several have also been used for interpreting SVM models as

well as neural networks. Guo and Selman34 use inductive logic programming to

generate an ordered set of Horn clauses (see reference34 for details) from an opaque

machine learning model. Focusing on, neural networks, SVM, and random forest.

They compare the resulting Horn clauses with a J48 decision tree, comparing each

 74

Horn clause generated with the rule at a corresponding node in the decision tree. A

sample set is created either from the training and testing data or from artificially

created examples. Inductive logic programming is used in an iterative process to learn

Horn clauses from this data and the responses of the machine learning algorithm being

considered. This method gives a generalised framework for rule extraction and is one

of the few methods to have been tested on random forest. Unfortunately, the code for

this method is not freely available. So we were unable to use this method.

Another approach is to derive a decision tree, thus presenting comprehensible rules

which mirror the original model. Assche and Blockeel35 create a method that learns a

single decision tree from an ensemble of neural networks. The algorithm developed is

designed to avoid the use of artificially generated data as is commonly used in rule

extraction methods. The decision tree is grown based on estimated probabilities,

which are derived from the distribution of the prediction classes, rather than that of the

training data. The stopping criterion for the tree is a non-equivalence preserving

stopping criterion, whereby a node becomes a leaf node if all instances reaching it are

placed in the same class. The tree is pruned after construction. This method is

potentially adaptable to other machine learning algorithms. However, once again the

code is not readily obtainable. A similar approach is used in CRED36, which extracts

meaningful rules from neural networks in the form of a decision tree. This method is,

as many rule extraction algorithms are, bound to a specific type of learning classifier,

in this case neural networks.

A different approach is to use rules to represent the network structure. The COMBO37

algorithm generates confirming rules to explain when a neurone is switched on and

 75

disconfirming rules to explain when a neurone is switched off. The rules are generated

based on combinations of the weights of the network. The neural network considered

is a feed forward network trained using the back propagation algorithm. A

combination tree is generated from the network weights after they have been sorted.

This tree is pruned to reduce the search space. Combinations of weights are tested

against the network. Those that prove successful are used to generate rules. These

rules are ordered to be representative of the network structure. This method is only

implemented for a specific type of neural network. Whilst it could be adapted to other

neural network architectures, adaptation to other machine learning algorithms is

impossible.

 A similar approach is taken by Setiono38. Rules are extracted from a pruned neural

network using the activation weights of the hidden units of the network. The

activation weights are clustered in order to discretise them. Rules are extracted from

these clusters. This assumes the number of clusters is small. If there are a large

number of activation thresholds then the unit may be split to form a sub network. The

algorithm is applied to this sub-network. The rules generated are merged in order to

find rules that directly relate the inputs and outputs of the network.

More recently, Setiono et al.39 use a method based on recursion and decision trees to

extract rules from back-propagation neural networks. After the network has been

pruned to remove redundant nodes and connections, the network is trained on a mixed

data set of discrete and continuous attributes. The classification rules are generated

based upon the set of trained examples that are correctly classified by the network.

Whilst discrete attributes remain, classification rules are generated, dividing the

 76

feature space into subspaces based on the discrete attributes. This is done recursively.

When only continuous attributes remain in the dataset, a hyperplane is generated using

a machine learning algorithm. The authors use a neural network to divide the

continuous attributes. The result is a set of classification rules. While this method is

potentially adaptable and indeed produces rules in an easily comprehensible format, it

is a complicated algorithm and the software is not readily available. It was judged that

the effort to be gained from implementing the algorithm is not worth the perceived

benefit, since other algorithms that are easier to adapt to random forest are available.

2.6.2.2 SVM

Rule extraction techniques have also been used to extract comprehensible rules from

other black box methods, such as SVM classifiers. Many neural network methods are

adaptable to SVMs, e.g., trepan, which uses an oracle, can easily be used for

classifiers other than neural networks, since the oracle can be any binary classifier.

Many other rule extraction methods such as Re-RX39 described above, have also been

applied to rule extraction from SVMs. Martens et al.32 examine the applicability of

some of these algorithms to the SVM rule extraction problem.

Relatively few methods have been developed specifically for SVM rule extraction.

One example is SVM+prototypes40. This uses an iterative process, taking information

from a trained SVM. The feature space is divided by a combination of the support

vectors and prototype vectors obtained from clustering the data. Beginning with one

prototype, each prototype is used to generate an ellipsoid. This undergoes a

partitioning test to see if it is useful to divide the feature space further. If this test is

negative, a rule is created based on the equation of the ellipsoid. Otherwise, further

 77

partitioning into regions is carried out. The iterative process is completed when no

further partitioning is required, or a threshold for the maximum number of regions is

reached.

Chaves et al.41 generate fuzzy rules to comprehend the models generated by SVM.

The rules are generated from the support vectors, which are projected into a co-

ordinate space. The input data used to generate the rules is used to create fuzzy sets.

These fuzzy sets are used to create a rule for each support vector. The rule is of an “If

… Then” format. The rules are chosen based on the fuzzy set with the highest

membership for the support vector. In the case of similar degrees of membership to

more than one fuzzy set, the rule chosen is the one with the best fuzzy accuracy and

coverage.

The problem of dealing with higher dimensional data in the context of extracting

comprehensible rules is particularly relevant to SVMs, given that they often raise the

data into a high dimensional feature space. However, no rule extraction algorithms

have been created which solve this problem. One possible approach is to map the data

into a lower dimensional feature space, using an algorithm such as a self organising

map. This approach can also be used to relate the model directly back to the training

data or to a low dimensional map of the feature space. A further problem is the fusion

of the domain specific knowledge of experts with rules generated from the rule

extraction algorithm. The rules produced by the algorithm must be relatable to the

domain knowledge. It may be that rules are not generated for things that an expert in

the field would deem to be obvious. Interpretability by experts, is therefore, crucial

and domain knowledge obtained from experts is still preferable in many cases32.

 78

2.6.2.3 Random forest

A random forest model is not easily interpretable. Whilst it is composed of decision

trees, which consist of rules that are in theory interpretable, first of all the rules are

hidden within the bagging of the random forest, and secondly there are a number of

trees which are taken from a random sampling of the data, and thus there will

necessarily be redundancy within the trees, and possibly even disparity or conflict

between different rules. So it is no trivial matter to decipher the decision process of a

random forest. In chapter 4 we approach the interpretability of random forest by using

trepan23 to induce a clear readable decision tree, giving an interpretable model

corresponding to the decision making process of the random forest. Trepan was

chosen over the other methods discussed here, because it is easily adaptable to other

machine learning algorithms and is freely available, whilst maintaining a high fidelity

to the original model. Other methods were either not available, not adaptable to

random forest or did not have the same simplicity of trepan’s M of N rules (see

below). Originally designed for extracting information from neural networks by

Shavelik et al.23, the trepan algorithm has been implemented in matlab42 in a fashion

which allows it to be applied to a variety of machine learning methods. The trepan

algorithm induces a decision tree by submitting the training data to the original

algorithm itself along with some examples generated by trepan based on the attribute

distribution of the training data. The original model is referred to as the oracle. Its

responses are used to induce a decision tree, which has a high fidelity with respect to

the original model. Fidelity is the degree to which the predictions of the decision tree

resemble those of the oracle. Trepan grows decision trees in a best first manner. It

expands the node of the tree that has the greatest potential to increase the fidelity of

the tree. Trepan chooses the best split at a given node using the gain ratio (section

 79

2.3.2.1) combined with a hill climbing approach to select the best M of N rule. The M

of N rules trepan uses are simple “if then” statements, whereby if M out of N

conditions are met then the rule returns true, otherwise the rule returns false. The

stopping criteria for trepan are two fold. The expansion of a node is halted if all

examples reaching that node fall into a single class. The expansion of the tree is

stopped either when all nodes reach this state or when a specified maximum number

of nodes is reached. Trepan also deals with one particular problem of decision trees.

Often very few instances of the training data can reach a given node in the tree,

making the split or classification at a given node somewhat arbitrary. In order to

overcome this shortcoming, trepan generates its own instances following the pattern of

attributes in the training data.

This chapter has explained the rationale behind our choices of machine learning

algorithm for use in this work. We presented the background theory behind each

algorithm and examples, whilst providing a rationale for our final choices. The next

chapter is the first major section of the thesis on predicting real value dihedral angles

and protein secondary structure using the SVR algorithms outline here. Then we

progress to our work on prediction of glycosylation sites in chapter 4 using random

forest and interpreting the model using trepan.

2.7 References

1. Witten IH, and Frank E. Data mining: practical machine learning tools and

techniques, 2nd edition. Morgan Kaufmann, San Francisco, 2005.

2. Rokach L, and Maimon O. Data Mining With Decision Trees Theory and

Applications. Series in machine perception and artificial intelligence Vol. 69,

 80

World Scientific Publishing Co, Pte. Ltd., Singapore, 2008.

3. Quinlan JR. Simplifying decision trees, Int. J. Man-Mach. Stud. 1987, 27:221-

234.

4. Quinlan JR. C4.5 Programs for Machine Learning, Morgan Kaufmann, Los

Altos, 1993.

5. Breiman L, Friedman J, Olshen R and Stone C. Classification and regression

trees. Wadsworth International Group, 1984.

6. Mballo C, and Diday E. The criterion of Kolmogorov-Smirnov for binary

decision tree: Application to interval valued variables. Intelligent Data

Analysis 2006, 10:325-341.

7. Niblett T, and Bratko I. Proc. Expert systems 86 Cambridge, Cambridge

University Press, 1986.

8. Quinlan JR, and Rivest RL. Inferring decision trees using the minimum

description length principle. Inform. Comput. 1989, 80:227-248.

9. Quinlan JR. Induction of decision trees, Mach. Learn. 1986, 1:81-106.

10. Kass GV. An exploratory technique for investigating large quantities of

categorical data. Applied Statistics 1980, 29:119-127.

11. Loh W-Y, and Shih Y-S. Split selection methods for classification trees. Stat.

Sinica 1997, 7:815-840.

12. Provost F, and Kolluri V. A survey of methods for scaling up inductive

algorithms. Data Min. Knowl. Disc. 1999, 2:131-169.

13. Freund Y, and Schapire RE. Proc. Machine Learning thirteenth international

conference, 1996, pp325-332.

 81

14. Breiman L. Bagging predictors. Mach. Learn. 1996, 24:123-140.

15. Bauer E, and Kohavi R. An empirical comparison of voting classification

algorithms: bagging boosting and variants. Mach. Learn. 1999, 35:1-38.

16. Breiman L. Random Forests. Mach. Learn. 2001, 45:5-32.

17. Rosen BE, Ensemble learning using decorrelated neural networks. Connect

Sci. 1996, 8:373-384.

18. Melville P, and Mooney RJ. Constructing diverse classifier ensembles using

artificial training examples. Proc. IJCAI 2003, 505-512.

19. Wang J-Y, Lee HM and Ahmad S. SVM-Cabins: prediction of solvent

accessibility using accumulation cutoff set and support vector machine.

PROTEINS: Struct. Funct. and Bioinf. 2007, 68:82-91.

20. Kohavi R. Scaling up the accuracy of naïve Bayes classifiers: a decision tree

hybrid. Proc. Second international conference on knowledge discovery and

datamining, 1996, 114-119.

21. Cunningham P, and Carney J. Diversity versus quality in classification

ensembles based on feature selection. Machine learning: ECML 2000 Springer

Berlin/Heidelberg, 2000, pp109-116.

22. Zhou Z, and Jiang Y. NeC4.5: Neural Ensemble based C4.5. IEEE Trans.

Knowl. Data En. 2004, 16:770-773.

23. Craven MW, and Shavlik JW. Extracting tree-structured representations of

trained networks. In Advances in Neural Information Processing Systems,

volume 8. MIT Press, Cambridge, MA, 1996.

24. Opitz D, and Shavlik JW. Generating accurate and diverse members of a

 82

neural network ensemble. In Touretsky DS, Mozer MC, Hasselmo ME, eds.

Advances in Neural Information Processing Systems, volume 8 531-541 MIT

press, Cambridge, MA, 1996.

25. Wolpert DH. Stacked generalization, Neural Networks 1992 5:241-259.

26. Chan PK, and Stolfo SJ. Toward parallel and distributed learning by meta-

learning. In AAAI workshop in knowledge discovery in databases, 1993

pp227-240.

27. Chan PK, and Stolfo SJ. On the accuracy of meta-learning for scalable data

mining. J. Intell. Inf. Syst. 1997 8:5-28.

28. Seewald AK, and Furnkranz J. An evaluation of grading classifiers, in

Advances in Intelligent Design, Springer Berlin / Heidelberg, 2001.

29. Cortes C, Vapnik V. Support-vector networks. Mach. Learn. 1995, 20:273-

297.

30. Shawe-Taylor J, and Cristianini N. Kernel methods for pattern analysis.

Cambridge University Press, 2004.

31. Matthews BW. Comparison of the predicted and observed secondary structure

of T4 phage lysozyme. Biochem. Biophys. Acta 1975, 405:442-451.

32. Martens D, Huysmans J, Setiono R, Vanthienem J, and Baesens B. Rule

extraction from support vector machines: An overview of issues and

applications in credit scoring. Studies in Computational Intelligence 2008,

80:33-63.

33. Jacobsson H. Rule extraction from recurrent neural networks: A taxonomy

and review. Neural Computation, 2005, 17:1223-1263.

 83

34. Guo Y. and Selman B. ExOpaque: A framework to explain opaque machine

learning models using inductive logic programming. In 19th international

conference on tools with artificial intelligence, 2007, pp. 226-229.

35. Assche AV, and Blockeel H. Seeing the forest through the trees: Learning a

comprehensible model from an ensemble. In Proc. of the 17th international

conference on inductive logic programming, 2007.

36. Sato M, and Tsukimoto H. Rule extraction from neural networks via decision

tree induction. Neural Networks 2001, 3:1870-1875.

37. Krishnan R, Sivakumar G. and Bhattacharya P, A search technique for rule

extraction from trained neural networks. Pattern Recogn. Lett. 1999, 20:273-

280.

38. Setiono R. Extracting rules from neural networks by pruning and hidden-unit

splitting. Neural Computation 1997, 9:205-225

39. Setiono R, Baesens B and Mues C. Recursive neural network rule extraction

for data with mixed attributes, IEEE Trans. Neur. Networ., 2008, 19:299-307.

40. Nunez H, Angulo C, and Catala A. Rule extraction from support vector

machines. Proc. European symposium on artificial neural networks, D-side

Publications, Bruges, 2002, pp107-112.

41. Chaves A da CF, Vellasco MMBR, and Tanscheit R. Fuzzy rule extraction

from support vector machines. In Fifth international conference on Hybrid

intelligent systems, 2005.

42. Browne A, Hudson BD, Whitley D, Ford MG, and Picton P. Biological data

mining with neural networks: implementation and application of a flexible

decision tree extraction algorithm to genomic problem domains.

 84

Neurocomputing 2004, 57:275-293.

 85

Chapter 3: Dihedral angle prediction

3.1 Introduction

Protein secondary structure prediction1 is an important problem in bioinformatics.

Determination of the structure of proteins is a difficult and sometimes impossible task

to achieve experimentally. Much work has been carried out towards the computational

prediction of the tertiary structure of a protein, but it is impossible by brute force

alone. The number of possible conformations an amino acid sequence can adopt is

huge. Randomly trying conformations for a given protein, it would take up to 1032

years to find the correct one.2 This is due to the vast conformational space available to

proteins and is known as the Levinthal paradox. Currently, accurate 3D structure

prediction is beyond the state of the art. As a stepping stone towards solving this

problem, it is possible to predict the intermediate level of secondary structure and

other properties. Secondary structure is linked to the Ψ backbone dihedral angles, as

shown by Ramachandran3. In fact, the dihedral angles can be said to define, at least

partially, the structure4. Based on this relationship, the program Destruct was

previously developed5, with the intention of using an iterative process to allow the

prediction of dihedral angles to enhance the prediction of secondary structure and

conversely to allow the prediction of secondary structure to enhance the accuracy of

dihedral angle prediction.

Φ dihedral angle restraints are often used in the determination of 3D structures by

experimental methods, such as NMR. These restraints can also play an important role

in molecular dynamics simulations, carried out to analyse the structure and dynamics

of a protein. Thus, it is useful to predict the Φ backbone angles where the 3D-structure

is unknown. Such a prediction may allow the investigation of possible structures for

 86

the protein.

Here, we aim to improve the prediction accuracy of both Φ and Ψ dihedral angles,

both for use in Destruct or a similar method and for use in the prediction of 3D protein

structures. Here we predict Φ and Ψ as independent quantities due to practical

concerns. Support vector regression (SVR) is only capable of predicting one angle at a

time, and even if that were not the case, predicting one value may be easier than

predicting two interdependent values when neither of them are known. Several

previous predictions have been made of both real value and categorical dihedral angle

predictions. The best of these, Real Spine 2, uses twin neural networks, combined

with a normalisation of the dihedral angles6. This normalisation circumvents some of

the deficiencies of the sigmoidal function used in the neural network and significantly

improves accuracy over the previous work by the same authors7. See chapter 1 for a

review of dihedral prediction algorithms. We aim to improve upon this previous work

by using SVR8 to predict the dihedral angles. This machine learning algorithm is as

yet untried for prediction of real value dihedral angles. All previous methodologies

use neural networks, and SVR is known to be successful at solving a range of machine

learning problems8.

This leads us to hypothesize that the use of SVR8 combined with accurate secondary

structure predictions obtained using cascade correlation networks (CASCOR)9 will

lead to an improvement in accuracy of prediction of both Ψ and Φ dihedral angles.

We also implement a similar normalisation scheme (see 3.2.8) to that used by Real

Spine 2, in order to test whether this scheme will give rise to a similar improvement

with a different machine learning algorithm. The effect of parameter optimisation of

 87

the SVR algorithm is investigated, along with the choice of SVR kernel. We will

begin the methods section of this chapter with a description of the data used for

training and testing, followed by detailing the procedures for both secondary structure

prediction and our experiments with the prediction of dihedral angles. The second half

of the chapter will be concerned with the results of these experiments and the

conclusions that can be drawn from them.

3.2 Methods

Our experiments began with a revival of the cascade correlation network9 for the

purposes of protein structure prediction. From the very beginning of the project, it was

intended that CASCOR (an implementation of a cascade correlation neural network

in C) play a role in the experiments. This is building on work previously conducted in

the research group5. Therefore, our initial experiments approximately reproduce their

work. We followed this with experiments for the prediction of dihedral angles. We

begin by describing the datasets and the way we represent them for our experiments,

as well as giving the rationale behind these choices.

3.2.1 Datasets

The CB513 dataset was compiled by Cuff and Barton10 as a non-redundant set for

protein structure prediction. Here, we use it as our main training set. Despite being a

relatively old dataset, it was chosen for this work due to its tried and tested nature. The

fact that it has been used by multiple algorithms allows for direct comparison when

comparing our results with other methods particularly Destruct, and it is large enough

to allow the possibility of accurate prediction without being so large as to hinder

computational effectiveness. It consists of 513 proteins, which are non-redundant to

 88

25% identity. We use all sequences of this dataset in our experiments. The CASP4

and CASP5 datasets11,12 were originally produced for the critical assessment of

techniques for protein structure prediction (CASP). They consist of proteins for

which the structures had been recently determined and not yet published. This was

intended to give a blind test of protein structure prediction methods in a variety of

categories. We use all sequences in each of these datasets for which structures can be

found in the PDB. CASP4 contains 34 protein sequences and CASP5 contains 61

proteins.

3.2.2 Data pre-processing and representation

Sequence data for all experiments was initially obtained in FASTA13 format. Each

sequence was first converted into a position specific scoring matrix (PSSM) using

PSI-BLAST14 against the nr (non-redundant) database15. PSSMs offer a representation

of the data, which takes into account evolutionary information. The PSSM for a given

protein of length L is an L x 20 matrix. Each of the 20 elements representing each

amino acid is a log likelihood, accounting for evolutionary mutation, between that

amino acid and each of the other amino acid types. In PSI-BLAST this fulfils the role

of the substitution matrix, giving a more sensitive measure of the probability of an

amino acid being at a given position. Within PSI-BLAST such matrices are used to

perform multiple alignments in a very similar way to a normal sequence alignment.

Gap scores, however, are taken from the initial BLAST search. See reference12 for

more details. Each residue is, thus, represented by a 20 x 1 vector taken from the

PSSM for that protein.

For these experiments a sliding window approach was used. Each residue in turn is the

 89

centre of a window consisting of the residue under examination and a number of

residues either side of it. This window is moved along the amino acid sequence giving

a separate sequence window for each residue. After generating the PSSM for each

sequence, the data was converted into a sliding window format. We chose a window

length of 15, the target amino acid and seven residues to either side. We decided upon

this length of amino acid sequence based on previous work5 and on the computational

resources available. This means that each amino acid was represented by a sequence

of 15 vectors of length 20 before the addition of labels to the training data.

To obtain the known dihedral angles for the training data, the PDB file for each

protein was downloaded from the PDB15 and the dihedral angles were assigned using

DSSP16. DSSP was also used to assign secondary structure to the same proteins where

required (see later in this chapter). The input values and labels were scaled to between

0.05 and 0.95 for both CASCOR9 and for SVR. Since there is no fixed minimum and

maximum for the PSSM, this was carried out based on the minimum and maximum

values of the PSSM throughout our training and testing dataset, making the

assumption that values outside this range are exceedingly rare. The scaling is shown in

equation 3.1, which appears later. This scaling range was chosen due to restraints on

input values for CASCOR. Due to the implementation of CASCOR, values outside

this range will cause the software to function improperly. The change in network

weights depends on the value of the inputs, e.g. if the input is zero the weights will

never change. The scaling was carried out identically both for dihedral prediction and

for the secondary structure prediction with CASCOR in order to be consistent.

€

y =
x − xmin
xmax − xmin









 ×0.9+0.05 (3.1)

 90

where y is the scaled value, x is the original value, xmin is the minimum value of x in

the training data, and xmax is the maximum value of x in the training data.

We also experimented with the inclusion of additional amino acid properties in the

information supplied to the SVR algorithm. These are included for the central three

residues in the sequence window. These are likely to be the most influential residues

in determining the dihedral angle. We limit the parameters to the central residues in

order to avoid having an exorbitantly long input vector, which would greatly slow

training of the SVR algorithm. These parameters are represented numerically and are

scaled to the same range described above. The Graph shape index, hydrophobicity,

volume, polarizability, iso-electric point, helix probability, and sheet probability were

all taken from Meiler et al.17 The authors used neural networks to reduce the

dimensionality of the parameters. Here we use the initial values with no reduction in

dimensionality, since SVR should be successful at predicting from such high

dimensional data.

3.2.3 Secondary structure prediction with CASCOR

Our initial experiments attempt to reproduce the work of Wood and Hirst5 using

cascade correlation neural networks. Cascade correlation neural networks are a

specific type of neural network that are designed to minimise training time, improving

over back propagation networks9. The network is trained in stages, using the quick

prop algorithm18 as its learning algorithm. Starting with an initial network consisting

of the input nodes and output nodes as specified by the user, all of which are

interconnected, the network adds hidden units one by one, until either an error

threshold is achieved or the maximum number of hidden units is reached. Each hidden

 91

unit is added from a pool of candidates (figure 3.1), which are trained based upon

connections with all nodes that are already part of the network using the examples

from the training data. Training is targeted at maximising the correlation between the

value of the candidate and the error of the output of the existing network. This is

expressed as the sum over all nodes of the correlation between the value of the

candidate unit and the residual output error of a given unit:

€

S = Vp −V () E p,o − E o()
p
∑

o
∑ (3.2)

where Eo is the residual output error at unit o, p is the training pattern, V is the value

of the candidate unit and

€

V and

€

E o are the mean values of V and Eo respectively. S is

maximised using a gradient ascent method and the quick prop algorithm. Once the

value of S has converged, the unit with the best correlation is added to the network

and the process for choosing the next candidate unit begins. This training cycle

continues until either the maximum number of nodes has been added to the network,

or the error threshold required has been passed. Here we use CASCOR for secondary

structure prediction reproducing the methodology of Wood and Hirst19. The network

is trained on the CB513 dataset and tested using the CASP5 dataset, both represented

and scaled as described above. This gives an input vector for training consisting of

300 (20×15) PSSM inputs and 3 example outputs describing the structure type for

training. Each of these are either 0.5 (present) or -0.5 (not present) and are

representative of helix, sheet or coil. An example input vector is shown in figure 3.2

below. The network produces three outputs, which are between 0.5 and -0.5,

representing the three states of secondary structure helix, sheet, and coil. These

outputs are interpreted such that 0.5 is positive and -0.5 is negative. The predicted

secondary structure type is then the one that is closest to 0.5.

 92

Figure 3.1 Schematic of the cascade correlation network: Inputs are represented by
circles and outputs by squares. The hidden units are chosen from a pool of candidates
as described in the text. These are integrated into the network as shown here.

0.391, 0.329, 0.329, 0.298, 0.329, 0.36, 0.174, 0.36, 0.391, 0.236, 0.298, 0.174, 0.143, 0.329, 0.174, 0.143,
0.205, 0.360, 0.329, 0.143, 0.205, 0.174, 0.329, 0.329, 0.360, 0.329, 0.174, 0.391, 0.329, 0.205, 0.267,
0.174, 0.236, 0.329, 0.236, 0.143, 0.267, 0.298, 0.329, 0.143, 0.174, 0.174, 0.329, 0.391, 0.205, 0.174,
0.360, 0.236, 0.205, 0.174, 0.267, 0.298, 0.329, 0.298, 0.360, 0.205, 0.174, 0.236, 0.391, 0.174, 0.205,
0.329, 0.174, 0.174, 0.174, 0.143, 0.205, 0.205, 0.205, 0.143, 0.205, 0.329, 0.329, 0.143, 0.329, 0.546,
0.143, 0.174, 0.205, 0.236, 0.329, 0.236, 0.391, 0.298, 0.298, 0.298, 0.205, 0.329, 0.329, 0.236, 0.205,
0.174, 0.267, 0.360, 0.205, 0.174, 0.205, 0.329, 0.298, 0.174, 0.174, 0.205, 0.329, 0.391, 0.298, 0.267,
0.205, 0.391, 0.360, 0.205, 0.298, 0.205, 0.205, 0.360, 0.205, 0.174, 0.236, 0.298, 0.298, 0.174, 0.205,
0.236, 0.329, 0.236, 0.174, 0.174, 0.391, 0.205, 0.205, 0.205, 0.174, 0.298, 0.422, 0.267, 0.329, 0.267,
0.205, 0.236, 0.267, 0.205, 0.205, 0.298, 0.298, 0.391, 0.298, 0.267, 0.174, 0.298, 0.298, 0.205, 0.298, 0.236,
0.205, 0.453, 0.298, 0.205, 0.205, 0.298, 0.236, 0.174, 0.205, 0.236, 0.391, 0.267, 0.298, 0.298, 0.236,
0.329, 0.360, 0.267, 0.267, 0.174, 0.205, 0.360, 0.205, 0.205, 0.298, 0.329, 0.298, 0.174, 0.236, 0.205,
0.267, 0.329, 0.329, 0.298, 0.143, 0.391, 0.422, 0.205, 0.267, 0.174, 0.205, 0.391, 0.205, 0.205, 0.205,
0.267, 0.236, 0.174, 0.205, 0.174, 0.236, 0.298, 0.422, 0.298, 0.143, 0.298, 0.267, 0.422, 0.267, 0.143,
0.143, 0.391, 0.174, 0.205, 0.267, 0.267, 0.236, 0.143, 0.174, 0.143 => +, -, -;

Figure 3.2. An example input vector for CASCOR, the => symbol differentiates the
training data from its label, binary attributes are represented as + for 0.5 and – for -
0.5.

Output for each input will be displayed as the target amino acid in single letter code

 93

and the predicted structure type as one of H, E, or C (helix, sheet or coil respectively).

Structure predictions from CASCOR are then used as an aid to dihedral angle

predictions (see below).

3.2.4 Dihedral prediction with SVR

Previous work in predicting Ψ dihedral angles has concentrated on the use of neural

networks of varying types5,6,7. Here, we attack the problem using SVR. SVR was

chosen as a regression method that has yet to be investigated for the prediction of real

value dihedral angles, but has shown promising results in other areas. Support vector

machines for classification and regression have been applied to a wide range of

problems,20 including biological ones21. The theory behind this methodology is

explained in chapter 2. However, we give a brief overview here. The basic idea of

SVR is to transform the data into a higher dimensional space in such a way that linear

regression can be used to fit a function to the data. The data are transformed using a

kernel function, which maps the data into a higher dimensional feature space. This

takes the form of the kernel matrix. One useful property of kernel-defined feature

spaces is that often the regression (or indeed classification) can be carried out using

only the inner products (scalar or dot product) between two vectors of the training data

without calculating the full mapping to the kernel defined feature space.

Given a training set X = {x1,……, xl}, with labels yi {i = 1,…,l}, the kernel function

€

k x,y maps the training points x to a feature space F:

€

k x,y = f (x), f (y)() (3.3)

 94

where f(x) and f(y) are members of the feature space F. SVM classification involves

the division of the data by fitting a maximal margin hyperplane to the data within the

kernel feature space. If such a hyperplane exists, it can be found by convex

optimisation of a quadratic function. However, this only gives a hard margin of

classification, leading to misclassification of outliers. The introduction of slack

variables allows for a soft margin classification. The margin of the hyperplane is

defined by the support vectors obtained from the training data. For regression there is

no hyperplane. However, ε-sensitive regression allows the fitting of a function to the

training data. Errors below the threshold ε are ignored to give a tube around the

function fitted to the data, analogous to the margin of the hyperplane in classification.

As with classification, slack variables are used to give a soft margin to the regression

function. The support vectors are those that define the margin of the regression

function.

3.2.5 Kernel functions

The choice of kernel function is important. Since the philosophy of kernel-based

machine learning is to manipulate the data into a feature space that allows the

application of standard machine learning algorithms, the selection of an incorrect

kernel would mean the data would not be optimally transformed. The kernels

considered during this work are those in the PyML machine learning package. This

package is written in C and python and utilises the libSVM library22 for support vector

machine algorithms. Details of the specific kernel functions are given below. The

more general properties of kernel functions are discussed in chapter 2.

Since the requirement was for a rapid test of kernel functions, we choose the kernel

 95

function using the CASP4 dataset as a representative dataset, which is considerably

smaller than the training set, whilst consisting of sequences with a low homology to

the training data. This allowed us to quickly eliminate unsuitable kernel functions,

with the intention of a more thorough examination if needed. However, the results

were clear enough that this was not required. We test each of the kernel functions

given below. For the polynomial kernel, we test various degrees (2, 3, 4, 5).

Linear

€

K(x,xi) = xi
T x (3.4)

Polynomial kernel of degree d

€

K(x,xi) = 1+ xi
T x
c










d

 (3.5)

Gaussian (also known as RBF)

€

K(x,xi) = exp − x − xi 2
2 /σ 2{ } (3.6)

where d, c, and σ are constants.

Input for these experiments was represented in a way similar to that for secondary

structure prediction described above. The first part of the input vector was the PSSM

representation of the 15 amino acid sequence window. This was followed for training

by the dihedral angle scaled to between 0.05 and 0.95. This scaling was chosen to be

within both the range required by the CASCOR software (to allow later use with

secondary structure prediction) and with the SVR algorithm which requires a range of

values between 0 and 1. This input vector was then converted into the sparse data

format as required by the SVR implementation (see below). This has the label first

followed by each of the data points labelled with its position an example of this input

data is given in figure 3.3 below. The output is a real number between 0.05 and 0.95,

which can be converted into a dihedral angle by reversing the scaling process.

We evaluated these experiments by ten-fold cross-validation. From these experiments

 96

the Gaussian kernel was obviously the best choice for our experiments. We therefore

use the Gaussian kernel in all of the experiments described in the remainder of this

chapter.

0.6935 0:0.205 1:0.205 2:0.174 3:0.143 4:0.174 5:0.236 6:0.174 7:0.143 8:0.174 9:0.267 10:0.329 11:0.205 12:0.608 13:0.236
14:0.143 15:0.174 /……/ 289:0.143 290:0.143 291:0.391 292:0.174 293:0.205 294:0.267 295:0.267 296:0.236 297:0.143 298:0.174
299:0.143

Figure 3.3 An example input vector for dihedral angle prediction. Here the label is
given first, followed by the training data as position:value, where position refers to the
values position in the input vector. We have abbreviated this input vector for clarity.
All missing data values have the same format as those shown.

3.2.6 Optimisation

After selecting the kernel, there are three user-defined parameters which require

optimisation: C, ε and γ. ε is an error cut-off, that is, we will accept an error as long

as it is not larger than ε. This allows the margin of the regression function to be a soft

margin fit to the data between the two classes, taking into account variability and

outliers within the data. C is the regularisation parameter for the SVR, which

influences the weighting of the empirical loss function and error cutoff. γ is the kernel

width of the Gaussian kernel. The parameters for the SVR algorithm and kernel can

cover a wide range of values and the chosen values can greatly affect the output. In

order to obtain a ball-park estimate for the parameters and hence narrow the search

space, we used the work of Chersky and Ma23, who present a mathematical method for

finding optimal values for these parameters. The methods in this reference are only

accurate on synthetic data and subsequent optimisation is still required when dealing

with a real world problem, such as the one in this work.

To calculate an estimate of C, we use the following expression, based on the idea that

C should be chosen according to the range of values involved.

 97

€

C =max y − 3σ y , y + 3σ y{ } (3.7)

where

€

y and σ are the mean and standard deviation of y the label of the training data.

We do not estimate the value of the parameter ε. Estimating ε relies on knowing the

level of noise present in the data. For real world data this is generally not known.

Chersky and Ma take the approach of estimating it using k nearest neighbours

regression. In our case, since the usual range of values is small (0-0.2), we merely

proceed with the optimisation for this parameter. For an estimate of the kernel

parameter γ, Cherkassy and Ma propose an expression relating the parameter to the

dimension d of the input to the regression problem.

€

γ =
1

2 md()
2

 (3.8)

 where m is a constant. Using these equations, it is possible to estimate the values for

C and γ. This gives a starting point for the grid-based optimisation described below.

We use a grid-based optimisation method for these experiments. Whilst other methods

such as gradient descent24 may have more accuracy, the major advantage to a grid

based optimisation was the ease of parallelisation, allowing for a relatively fast

optimisation procedure. There is also less risk of a local minimum giving a false

result, since the grid is sampled over the complete search space. Optimisation is

carried out using a randomly chosen subset of the CB513 dataset with an inner and

outer cross-validation approach to prevent bias. Input and output is of an identical

 98

format to the kernel choice experiments described above. A ten-fold cross-validation

is carried out for each set of parameters on each fold of data in the dataset. The

optimisation is carried out on a 10×10×10 grid of points in parameter space, meaning

we have 10 points for each parameter spread over the range of values under

consideration. We did not consider more values, as each combination of values

requires a separate training and cross-validation operation for each fold of the outer

cross-validation, giving 10000 jobs for a 10×10×10 optimisation using ten-fold cross-

validation for both inner and outer parts. Therefore, optimising over a grid of higher

resolution is impractical. For C, we consider values between one and 1000, with steps

of 100, giving plenty of leeway around the result of Chersky and Ma. For ε we

consider the full range of values: 0-0.2 with steps of 0.02 and for the kernel parameter

γ the range is 0-2 with a step size of 0.2. Two is taken as the upper cutoff, as this is the

point at which the kernel begins to behave as a polynomial kernel.

3.2.7 Training and evaluation for dihedral angle prediction

The SVR algorithm was trained on the CB513 dataset represented using PSSM

profiles. The input format was identical to that described above for the kernel choice

experiments. The prediction method was evaluated by ten-fold cross-validation and

also on the CASP4 test set. In order to test whether the optimisation was making an

improvement to prediction accuracy, an initial prediction was carried out using the un-

optimised SVM. This first set of predictions was carried out using the protein

sequence as PSSM alone to represent the data with no additional structural

information. The data were presented the sliding window approach described in

section 3.2.2. The input vector is in the sparse format as previously described. The

second round of predictions was carried out in the same way, using parameter values

 99

obtained through optimisation. Given the level of improvement obtained with the

optimised parameter values, no further optimisation was carried out.

Secondary structure was predicted from sequence via CASCOR, an implementation of

a cascade correlation neural network described above. The data were supplied to

CASCOR in the form of PSSMs, using the same window encoding scheme as for

dihedral angle prediction. The output is obtained in binary form, with three output

nodes indicating a value for each type of structure (as described above). The final

prediction is chosen based on the largest real value of the output. The largest value of

the three nodes is chosen as the predicted type of secondary structure, equivalent to

each being represented as a 0.5 or -0.5, where 0.5 is the structure predicted for each

state and the other two nodes output -0.5.

0.6935 0:0.205 1:0.205 2:0.174 3:0.143 4:0.174 5:0.236 6:0.174 7:0.143 8:0.174 9:0.267 10:0.329 11:0.205 12:0.608 13:0.236
14:0.143 15:0.174 /……/ 289:0.143 290:0.143 291:0.391 292:0.174 293:0.205 294:0.267 295:0.267 296:0.2362 297:0.143103448276
298:0.174 299:0.143 300:1

Figure 3.4. Example input for prediction of dihedral angles with the addition of
secondary structure. We have abbreviated the input vector for clarity. The missing
values have identical format to those shown. The first part of the input vector is as
shown in 3.3. The last attribute represents the predicted structural information as
either a 1, 2 or 3 for helix, sheet or coil.

Structure predictions are converted to a numerical representation for the SVR

algorithm. A 1, 2 or 3 is used to represent helix, sheet or coil, respectively. This

information about the target residue is presented in conjunction with the PSSM profile

for the surrounding sequence window. This gives an input vector in sparse format with

the label followed by 300 PSSM values and one value representing the structure type

at the target residue. An example input vector is shown in figure 3.4 above. The SVR

algorithm is trained and evaluated in the same way as described above using the

parameters obtained by optimisation previously.

 100

3.2.8 Normalisation

Real Spine 2 uses a normalising procedure, employed to alter the distribution of

dihedral angles to better suit a neural network using the sigmoidal activation function.

Here we investigated the possibilities for improvement using the same normalising

procedure with SVR. Our hypothesis was that this transformed distribution of the

dihedral angles will be easier for the SVR algorithm to ‘understand’ and therefore it

will achieve greater accuracy. For Ψ angles, the normalisation is carried out by adding

100° to the angles between -100° and 180° and 460° to the angles between -100 and

-180. For Φ angles, angles below 10° we add 350° and angles above 10° we add -10°

(equation 3.9). We scale all angles to between 0.05 and 0.95. We compare the results

with and without normalisation below.

€

Ψ ≥−100°→Ψn =Ψ +100°

Ψ ≤−100°→Ψn =Ψ + 460°

Φ ≥10°→Φn =Φ +−10°

Φ ≤10°→Φn =Φ + 350°

 (3.9)

Equation 3.9 gives normalisation for different values of Ψ and Φ, where Ψ is the

original value of Ψ, Ψn is the normalised value of Ψ, Φ is the original value of Φ, and

Φn is the normalised value of Φ.

3.3 Results and Discussion

3.3.1 Initial predictions

The best results were obtained with the Gaussian kernel (Table 3.1). The linear kernel

and polynomial kernels of degrees 2 and 3 produced no correlation between predicted

and expected values. This is most likely because the feature space into which the data

are transformed by the kernels is inappropriate for these experiments.

 101

Table 3.1 Performance of SVR kernel functions evaluated by ten-fold cross-

validation. All kernels were used on default settings.

Kernel Pearson Correlation Coefficient r

Linear 0.055

Polynomial degree 2 0.064

Polynomial degree 3 0.059

Polynomial degree 4 0.55

Polynomial degree 5 0.31

Gaussian 0.62

The polynomial kernels of degree 4 and 5 were much better suited for dihedral angle

prediction, although the Gaussian kernel was superior to both and requires less run

time. Polynomial kernels require increased run time as the degree of the polynomial

increases. All subsequent experiments were carried out with the Gaussian kernel. It is

probable that the success of this kernel is a reflection of the underlying distribution of

the data.

In order to monitor the effectiveness of optimisation of the support vector machine

parameters, an initial prediction for Ψ angles was carried out prior to optimisation of

the SVR algorithm. We wished to gain some perspective on the improvement offered

by optimisation of the SVR parameters, versus the time taken for the optimisation.

The results of the initial Ψ angle prediction (Table 3.2) show an improvement over

Destruct, which achieved a PCC (Pearson correlation coefficient) of 0.47, but are still

lagging behind Real Spine (PCC = 0.62) and Real Spine 2 (PCC = 0.74). The

 102

parameters chosen as a result of the optimisation procedure are C=1 ε=0.02 and γ=

0.201. This is based on a grid-based search on partial data with an inner and outer

cross-validation. The improvement given by optimisation in this case is minimal, with

an increase in Pearson correlation coefficient of just +0.02. It is probably coincidental

that the default values for the SVR parameters were so close to those optimal for

dihedral prediction.

Table 3.2. Results of SVR prediction of Ψ dihedral angles and comparison to

previous work.

 SVR Optimised
SVR

Optimised
SVR with
Structure

Optimised
SVR with
Normalisation
and Structure

Destructa Real
Spine

Real
Spine
2.0

Ten–fold
cross-
validation

0.55 0.57 0.58 0.64 0.47 0.62 0.74

CASP 4 0.56 0.57 0.63

a. Whilst Destruct tests secondary structure prediction on both the CASP4 and CASP5

datasets, the corresponding accuracies for dihedral angle prediction are not reported.

The version of CASCOR trained for this work was slightly less accurate than that

published in Wood and Hirst19. This is probably attributable to the lack of a post-

processing step and to small differences in experimental setup, such as the initial

weights of the neural net or the settings for programs such as PSI-BLAST. The

accuracy of structural predictions is given as overall percentage accuracy (Q3) and as

the percentage of correct helix, sheet and coil predictions. We obtain an overall

accuracy of 67.0% Q3, with accuracy for helices of 78.3%, for sheet as 45.5% and

66.6% for coil. Most of the deficiency in prediction of sheet is from incorrect

predictions of the ends of a section of sheet or from short sections of only a few

 103

residues. There is an over-prediction of helix, with some β sheet residues identified as

helix. With the addition of predicted secondary structure produced by CASCOR, the

accuracy of the prediction improves to a Pearson correlation coefficient of r = 0.58, a

0.01 increase over the optimised SVR without predicted secondary structure.

3.3.2 Effect of normalisation

The normalisation procedure improved prediction accuracy to r = 0.64, as evaluated

by ten-fold cross-validation, although this was still not as accurate as Real Spine 2,

nor did it represent as much of an improvement as was achieved by Real Spine 2 over

Real Spine. The reason for the limited improvement is probably related to the

differences between the two machine learning algorithms. Real Spine 2 uses neural

networks with a sigmoidal activation function, and the normalisation step was

introduced in order to overcome a specific deficiency of the sigmoidal function in

relation to Ψ angle prediction. The neural network performed very badly on angles

between -36° and 36°, although all angles in Real Spine 1.0 were scaled to between 0

and 1. The authors used the normalisation to shift the distribution of the dihedral

angles away from the problematic area, which was not approximated well by the

sigmoidal function. Whilst the SVR technique is very different to the neural network,

there is at the same time no real surprise that there is some improvement resulting

from an adjustment to the distribution of dihedral angles in this fashion. The

normalisation spreads out the angles and also removes any wrapping of regions of

accepted angles over the 0-360° boundary.

3.3.3 Effect of addition of amino acid properties

As a further attempt to improve the prediction, we added some parameters associated

 104

with the amino acids in the sequence to the input vector. We added these parameters

for the central three residues of the sequence window. An example input vector is

shown in figure 3.5 below.

0.773 0:0.205 1:0.205 2:0.174 3:0.143 4:0.174 5:0.236 6:0.174 7:0.143 8:0.174 9:0.267 10:0.329 11:0.205 12:0.608 13:0.236 14:0.143
15:0.174 /……/ 289:0.143 290:0.143 291:0.391 292:0.174 293:0.205 294:0.267 295:0.267 296:0.236 297:0.143 298:0.174 299:0.143
300:2.59 301:0.19 302:4.00 303:1.70 304:6.04 305:0.39 306:0.31 307:2.94 308:0.29 309:5.89 310:1.79 311:5.67 312:0.30 313:0.38
314:1.28 315:0.05 316:1.00 317:0.31 318:6.11 319:0.42

Figure 3.5. An example of the input including amino acid parameters. These
parameters are included in the order described in the text between positions 300 and
319 in the input vector. This covers the central three residues of the sliding window.
We have abbreviated the input vector shown for clarity. The missing values are of
identical format to those shown.

We use the residue’s graph shape index, hydrophobicity, volume, polarizability, iso-

electric point, helix probability and sheet probability17. These are the same parameters

as those used by Real Spine. A similar step was taken by Real Spine. However, in

contrast to Real Spine, we saw a decrease in the accuracy of prediction upon inclusion

of these parameters, giving a Pearson correlation coefficient of r = 0.44. The lower

accuracy is likely due to noise being introduced into the data by the increase in the

number of parameters. It is also possible that the SVM can no longer find a kernel

feature space that fits the data as well and so cannot fit a function to the data with the

same degree of accuracy. Real Spine used a second neural network trained on these

parameters alone to represent the amino acid sequence, and combined this with a

network predicting from PSSM. It is possible that a similar approach here would

improve the results.

3.3.4 Predicting Φ Angles

Prediction of Φ angles was carried out by a similar method to that of Ψ angles. Once

 105

again the normalisation procedure was employed. No further optimisation of the SVR

parameters was carried out. The normalisation of Φ angles is anticipated to have less

effect, since there is no particular region apparent which is particularly hard to predict.

However, prediction of Φ is expected to be a harder problem overall, as there is less of

a range of values which Φ can take.

Evaluated by ten-fold cross-validation, the Φ dihedral angles were predicted with a

Pearson correlation coefficient of r = 0.50. This is not as good as Real Spine 2, which

reached an accuracy of 0.70. It is possible that some small improvement could be

gained by optimising the parameters of the SVR. However, this is unlikely to improve

enough to surpass Real Spine. It is possible that the kernel function is not as well

suited to prediction of Φ as it is to Ψ. It may also be possible to improve the

prediction by performing a different normalisation of the data, which better facilitates

the raising of the data into a higher dimensional space by the kernel function. The

distribution of Φ angles does not have the same problems as that of Ψ angles,

namely, that the area of allowed values for Φ does not cross over the central axis or

wrap around from -180° to +180°. However, the angles are distributed over a tighter

range making this a harder prediction problem for the SVR algorithm.

In general, the improvement given by normalising the distribution of dihedral angles

is smaller than that gained by Real Spine 2 over Real Spine. This is most likely

because of the differences between the machine learning methods. There is also to be

taken into account the different scaling of the dihedral angles, which would reduce

any effect presented similar to that observed in Real Spine.

 106

3.3.5 Application of predicted dihedral angles to assigning NMR

spectra

A potential application of predicted dihedral angles is in the assignment of NMR

spectra. J coupling describes the coupling of two nuclear spins due to the bonding

electrons between them. J coupling data obtained experimentally can be used to

determine the dihedral angles along the protein backbone. These dihedral angles can

be calculated using the Karplus equation25:

€

J3 = Acos2 Φ − 60() − BcosΦ − 60() + C (3.10)

where A, B and C are empirically determined constants, Φ is the backbone angle and

J3 is the 3 bond J coupling determined by experiment. However, the Karplus equation

has two possible solutions, and deciding on the correct dihedral angle is not trivial.

Currently, dihedral angles are assigned by comparison of chemical shift data to known

examples from a relatively small set of proteins (186 in the current version) using the

Talos software26. This software is only able to assign 72% of dihedral angles and 1.8%

of those are incorrect. This is done in preference to using the Karplus equation, as

there is currently no easy way to determine which of the two possible solutions of the

Karplus equation represents the correct dihedral angle.

3.3.6 Predicting the correct solution of the Karplus equation

The basic goal was to predict which of the solutions of the Karplus equation is the

correct dihedral angle for a given amino acid in a given protein. Theoretically, each

predicted dihedral angle will be closer to one of the possible solutions. This means

that if the predicted dihedral angle is reasonably accurate then the solution closer to

 107

the predicted angle will be correct. However, this approach assumes that the J

coupling data from which the prospective dihedral angle is calculated, the constants in

the Karplus equation and the predicted dihedral angle are of a reasonable accuracy.

Both Φ and Ψ angles can be calculated using the Karplus equation. However, there is

a lack of data available for Ψ dihedral angles and they are less well used by NMR

spectroscopists. The J couplings for HN-HA, which can be used to calculate Φ, are

readily available for a number of proteins and are the most readily obtainable by

experiment. For this reason we chose to use HN-HA couplings to calculate Φ dihedral

angles. The choice of constants for the Karplus equation was made from the most

recent experimental determination of the three available27,28,29. Therefore, A = 7.90,

B = -1.05, C = 0.65. We took HN-HA J-coupling data from the BioMagRes

databank30. These data were originally compiled from a variety of sources and were

obtained experimentally with varying error rates and procedures. The data are

representative of that typically obtained during NMR spectroscopy work.

We removed sequences with high sequence identity to other sequences within the data

set to leave a dataset of 66 proteins, all with sequence identity of 35% or less with the

CB513 dataset used to train the SVR model for Φ prediction. The proteins also had

low sequence identity among themselves. We took the protein sequences for which we

had J-coupling data, and calculated the two possible solutions to the Karplus equation.

We obtained Φ dihedral angle predictions for these sequences using the method

outlined above. We selected the solution of the Karplus equation that is closest to the

predicted angle as the assigned angle for that particular amino acid. If no J coupling

data is available for a given residue we supply the user with the predicted dihedral

 108

angle (clearly denoted as such) in place of an assigned value, since this may still be

useful to an experimentalist.

To assess the accuracy of the assignment, we compare the dihedral angles we obtain

from J coupling data to those given by DSSP for the same proteins. We calculate the

Pearson correlation coefficient in the same way as described above. This gives a

Pearson correlation coefficient of r = -0.08 with a root mean squared error (RMSE) of

106.9° and a mean absolute error (MAE) of 96.2°. This includes those residues with

predicted dihedral angles assigned to them. Excluding these gives a Pearson

correlation coefficient of r = 0.04 an RMSE of 97.3° and MAE of 92.4°. These results

show little success in assigning dihedral angles.

There are two problems with the concept outlined above, as shown by the results. The

first and most pronounced problem is the experimental accuracy of the J coupling

data. Whilst a reasonable accuracy of dihedral angle prediction is required, this need

only be accurate enough to distinguish between the two values under scrutiny.

However, this assumes an accurate set of experimental data. Error bars on the

experimental data for HN-HA coupling in BioMagRes are between 1.0 and 4.0 radians

per second. This combined with a MAE of 56.3° on the dihedral predictions means,

in some cases, that the error is larger than the difference between the two solutions to

the Karplus equation. Thus, it is impossible to assign Φ correctly more often than a

random choice between the two solutions. This is borne out by the Pearson correlation

coefficient.

 109

3.4 Conclusions

Here, we started this work with the hypothesis that SVR would improve the accuracy

of dihedral angle predictions. Whilst our method improves over Destruct, our method

is not as accurate as the state of the art prediction methods, such as Real Spine 2.0.

Dihedral angles can accurately be predicted by SVR, though not as accurately as with

neural networks. The normalising procedure used with a sigmoidal function is not as

effective. It may be possible to improve upon the predictions using a modified

normalisation of the data or by a differing scaling of the PSSM. This may better

transform the data for prediction by SVR. There is also scope for developing a

specialist kernel to deal with PSSM. Of course, the use of more accurate secondary

structure predictions should also improve dihedral angle accuracy.

Another possibility for dihedral angle prediction is to divide the area of allowable

dihedral backbone angles into bins and then to classify each residue based on the bin

that they fall into. For secondary structure prediction this may be a better approach,

since only areas of the dihedral angle space are required to define the secondary

structure type. However for other applications, e.g. as restraints for molecular

dynamics accurate dihedral angles are necessary and achievable as shown by Real

Spine XI31 a method published after the completion of this work, which improves over

Real Spine 2.0, using conditional random fields. It is claimed the angles produced by

Real Spine XI are accurate enough to be used to assign local protein structure. We

must conclude that whilst SVR is an improvement over cascade correlation networks,

it does not advance the accuracy of dihedral angle predictions over the approach used

by state of the art methods such as Real Spine.

 110

The method we introduce for NMR assignment could possibly be made into a viable

alternative for assigning dihedral angles or providing dihedral angles for molecular

dynamics simulations based on experimental data. However, it depends on both more

accurate J coupling data for the protein as well as accurate dihedral predictions,

perhaps with error bars of less than the error obtained for the Karplus equation.

3.5 References

1. Rost B. Review: Protein Secondary Structure Prediction Continues to Rise. J.

Struct. Biol. 2001, 134:204-218.

2. Levinthal C. Are there pathways for protein folding? Journal de Chimie

Physique et de Phyisico-Chimie Biologique, 1968, 65:44-45.

3. Ramachandran GN, Ramakrishnan C, and Sasisekharan V. Stereochemistry of

polypeptide chain configurations. J. Mol. Bio. 1963 7:95-9.

4. Lovell SC, Davis IW, Arendall WB, deBakker PIW, Word JM, Prisant MG,

Richardson JS, Richardson DC. Structure validation by Cα geometry: φ ψ and

Cβ deviation. PROTEINS: Struct. Fuct. Genet. 2003 50:437-450.

5. Wood MJ, and Hirst JD. Protein secondary structure prediction with dihedral

angles. PROTEINS: Struct. Funct. Bioinf. 59:476-481.

6. Xue B, Dor O, Faraggi E, and Zhou Y. Real-value prediction of backbone

torsion angles. PROTEINS Struct. Funct. Bioinf. 2008, 72:427-433.

7. Dor O, and Zhou Y. Real-SPINE: An integrated system of neural networks for

real-value prediction of protein structural properties. PROTEINS: Struct.

Funct. Bioinf. 2007 68:76-81.

8. Shawe-Taylor J, and Cristianini N. Kernel methods for pattern analysis.

Cambridge University Press 2004.

 111

9. Fahlman SE, and Leibriere C. The cascade-correlation learning architecture.

Carnegie Mellon University 2004 CMU-CS-90-100.

10. Cuff JA, and Barton GJ. Evaluation and improvement of multiple sequence

methods for protein secondary structure prediction. PROTEINS: Struct. Funct.

Genet. 1999 34:508-519.

11. Moult J, Fidelis K, Zemla A, and Hubbard T. Critical assessment of methods

of protein structure prediction (CASP) round IV. PROTEINS: Struct. Funct.

Genet. 2001 suppl. 5:2-7.

12. Moult J, Fidelis K, Zemla A, and Hubbard T. Critical assessment of methods

of protein structure prediction (CASP)-round V. PROTEINS Struct. Funct.

Genet. 2003 53:334-339.

13. Pearson WR, and Lipman DJ. Improved tools for biological sequence

comparison. Proc. Natl. Acad. Sci. USA. 1988, 85:2444-2448.

14. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, and

Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein

database search programs. Nucleic Acids Res. 1997 25:3389-3402.

15. Sayers EW, Barrett T, Benson A, Bryant SH, Canese K, Chetvernin V, Church

DM, DiCuccio M, Edgar R, Federhen S, Feolo M, Geer LY, Helmberg W,

Kapustin Y, Landsman D, Lipman DJ, Madden TL, Maglott DR, Miller V,

Mizrachi I, Ostell J, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Shumway

M, Sirotkin K, Souvorov A, Starchenko G, Tatsusova TA, Wagner L,

Yaschenko E, and Ye J. Database resources of the National Center for

Biotechnology Information. Nucleic Acids Res. 2009, Database Issue 37:D5-

D15.

 112

16. Kabsch W, and Sander C. Dictionary of protein secondary structure: Pattern

recognition of hydrogen-bonded and geometrical features. Biopolymers 1983

22:2577-2637.

17. Meiler J, Muller M, Zeidler A, and Schmaschke F. Generation and evaluation

of dimension reduced amino acid parameter representation by artificial neural

networks. J Mol. Model. 2001 7:360-369.

18. Fahlman SE. Faster-learning variations on back propagation: an empirical

study. Proceedings of the 1988 Connectionist Models Summer School,

Morgan Kaufmann.

19. Wood MJ, Hirst JD. Predicting protein secondary structure by cascade

correlation neural networks. Bioinformatics 2004 20:419-420.

20. Moguerza JM, and Muñoz A. Support vector machines with applications.

Statist. Sci. 2006 21:322-326.

21. He J, Hu H-J, Harrison R, Tai PC, and Pan Y. Rule generation for protein

secondary structure prediction with support vector machines and decision tree.

IEEE Trans. Nanobio. 2006 5:46-53.

22. Chang CC, and Lin CJ. LIBSVM: a library for support vector machines.

[http://www.csie.ntu.edu.tw/~cjlin/libsvm] 2003, Tech. rep., Department of

Computer Science, National Taiwan University.

23. Chersky V. and Ma Y. Practical selection of SVM parameters and noise

estimation for SVM regression. Neural Networks 2004 7:113-126.

24. Chappelle O, Vapnik V, Bousquet O, and Mukherjee S. Choosing multiple

parameters for support vector machines. Mach. Learn. 2002 46 131-159.

25. Karplus M. Contact electron spin coupling of nuclear magnetic moments. J.

Chem. Phys. 1959 30:11-15.

 113

26. Cornilescu G, Delagio F, and Bax A. Protein backbone angle restraints from

searching a database for chemical shift and sequence homology. J. Biomol.

NMR 1999, 13:289-302.

27. Wang AC, and Bax A. Determination of the backbone dihedral angles φ in

human ubiquitin from reparametrized empirical Karplus equations J. Am.

Chem. Soc. 1996, 118:2483-2494.

28. Hu J-S, and Bax A. Determination of φ and χ1 angles in proteins from 13C-13C

three-bond J couplings measured by three-dimensional heteronuclear NMR.

How planar is the peptide bond? J Am. Chem. Soc. 1997, 119:6360-6368.

29. Schmidt JM, Blumel M, Lohr F, and Ruterjans H. Self-consistent 3J coupling

analysis for the joint calibration of Karplus coefficients and evaluation of

torsion angles. J. Biomol. NMR, 1999 14:1-12.

30. Ulrich EL, Akutsu H, Doreleijerd JF, Harano Y, Loannidis YE, Lin J, Livny

M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte CF, Tolmie DE,

Wenger RK, Yao H, and Markley JL. BioMagResBank Nucleic Acids Res.

2007, 36:D402-D408.

31. Faraggi E, Yang Y, Zhang S, and Zhou Y. Predicting consensus local structure

and the effect of its substitution for secondary structure in fragment-free

protein structure prediction. Structure 2009 17:1515-1527.

 114

Chapter 4: Prediction of Glycosylation Sites using Random

Forests

4.1 Background

The second part of this thesis is concerned with the prediction of protein glycosylation

sites. We gave a detailed overview of PTM and glycosylation in chapter 1. Here, we

give a brief overview of glycosylation of proteins and previous prediction methods.

Most proteins do not perform their function without undergoing some form of PTM1.

PTMs occur after the mRNA has been translated into peptide sequence and the

polypeptide has begun to fold2,3,4. The importance of PTMs in protein function makes

their characterisation of particular interest2,3,4. Accurate prediction, using

computational methods, of sites in a protein sequence where a PTM occurs would

facilitate protein annotation and would contribute to efforts in functional genomics.

Glycosylation2,3,4, a common PTM, plays a role in protein folding, transport and half-

life, as well as being involved in cell-cell interactions and antigenicity. Glycosylation

is an enzymatic process, with the exception of glycation, and involves the addition of

sugars to the protein to build up glycan chains. There are four types of glycosylation:

N-linked, O-linked, C-mannosylation and GPI (glycophosphatidyl-inositol) anchor

attachment. C-mannosylation involves the addition of α-mannopyranosyl to the indole

of tryptophan. GPI anchors concern membrane anchoring of a protein by the addition

of GPI near the C-terminus. N-linked and O-linked glycosylation are the most

common types and this study focuses on these modifications.

 N-linked glycosylation consists of the addition of a pre-assembled glycan chain to

 115

Asn. This occurs co-translationally and influences protein folding. After its addition,

the glycan chain undergoes a maturation process, which can produce a glycan of the

high mannose, hybrid or complex types. The sequence motif Asn-Xxx-Ser/Thr5, or in

some rare cases Asn-Xxx-Cys, where Xxx is any amino acid except Pro, is required

for N-glycosylation, although not sufficient on its own. O-linked glycosylation

consists of the stepwise build-up of various sugars on Ser or Thr residues. O-

glycosylation has no known consensus sequence5. However, Pro is often present

around O-glycosylation sites6 and O-glycosylation occurs more often in the β-strands

of proteins5.

Several glycosylation predictors have been produced7,8,9,10. Whilst these are not

directly comparable, due to development on different datasets, the best predictors are

NetOglyc 3.1, which is reported to predict correctly 76% of glycosylated residues11

and 93% of non-glycosylated residues, and Oglyc10 with a reported accuracy of 85%

correctly classified instances. NetOglyc uses both sequence and predicted structural

information (predictions of secondary structure and accessible surface area) to train a

back propagation neural network. Oglyc uses SVMs trained on a combination of

physical properties of amino acids and a binary representation of the sequence. In this

chapter, we attempt to improve the prediction of glycosylation sites, using a new

machine-learning algorithm well suited to prediction from protein sequence data.

Here we aim to develop a new method for predicting glycosylation sites of both O-

and N-linked types. Our hypothesis is that, even when there is no consensus sequence

for glycosylation, motifs in the sequence still play a role in determining whether a site

is glycosylated. For this reason, we combine pairwise patterns and machine learning,

 116

with the hypothesis that this will produce a more accurate prediction. We select

random forest12 as the machine learning algorithm. This has not previously been used

to predict glycosylation sites. However, a decision tree based method is appropriate

for sequence (categorical) data and random forest has the added benefit of not over-

fitting12.

 The random forest algorithm12 is based on decision trees. A decision tree consists of

paths and nodes, with each node using a rule to decide between two or more paths. A

rule is typically of the form ‘If A then do B’, where A is a condition relating to the

descriptors of the input data and B is a step on the path through the trees. The last rule

gives the classification of the input data example. Several decision trees are developed

using a random selection of inputs and random feature selection at each node to grow

the trees. The trees then vote on the class for a given input. There is no previous

research into predicting glycosylation using random forests, although the algorithm

has been widely used, including for prediction of protein-protein interactions13,14, for

analysis of microarray data15 and identification16 and prediction17 of the function of

SNPs (single nucleotide polymorphisms). The algorithm has been used for prediction

of protein structure from NMR data18 and amino acid sequence19. The random forest

algorithm has several features15, which make it suitable for applications such as the

prediction of glycosylation sites. It can be used on a mixture of discrete and

continuous descriptors, to classify binary or multi-class data sets and can cope with

datasets where there are more variables than observations. The algorithm does not

over-fit and continues to be successful, even when there is a large amount of noise in

the data.

 117

However, the models generated by random forest can be challenging to interpret.

Therefore, we have employed trepan20, an algorithm originally designed to allow the

comprehension of neural networks. It has been adapted for use with other machine

learning algorithms21. Trepan uses the machine learning algorithm as an “Oracle”. By

querying the Oracle with the training data and its own generated examples, trepan

induces a decision tree using m of n rules (see section 4.2.4), thus giving a

comprehensible picture of an otherwise opaque machine learning algorithm.

In this chapter, using the database of glycosylation sites OGLYCBASE22 version 6.00,

we analyse the amino acid frequencies around glycosylation sites. Using the O-unique

dataset [http://www.cbs.dtu.dk/OGLYCBASE/cbsoglycbase.html] we apply the

random forest algorithm implemented in weka23, combined with information about

pairwise patterns, to predict the location of glycosylation sites in a given protein.

Pairwise pattern information has previously been used for protein sequence analysis:

for example, to predict whether a coiled coil region adopts a leucine zipper structure24

and to assist in the prediction of protein secondary structure from amino acid

sequence25. We also experiment with the addition of predicted secondary structure,

predicted surface accessibility, and hydrophobicity of the amino acids in an effort to

increase the prediction accuracy. Our prediction program is known as GPP

(glycosylation prediction program) and is available on-line at:

http://comp.chem.nottingham.ac.uk/glyco/. We would like to interpret the models for

the random forest algorithm, and thus gain some biological insight into glycosylation.

Whilst random forest produces individual rules that are human readable, in the case of

GPP for each of the three types of glycosylation there are ten models of ten trees each.

There are redundancies and potentially even conflicts between the different models.

 118

We aggregate these models into a single decision tree using the trepan algorithm20,

providing clear rules for each glycosylation type.

4.2 Methods

4.2.1 The dataset

The data for frequency analysis is taken from OGLYCBASE 6.0022, which is

available online from http://www.cbs.dtu.dk/databases/OGLYCBASE/. The

OGLYCBASE database contains both experimentally verified and putative instances

of N-, O-, and C-linked glycosylation sites. It comprises 242 protein sequences and

2413 verified glycosylation sites. The C-mannosylation data were not considered in

our investigations, because there are too few experimentally verified sites in the

dataset. Although several enzymes catalyse the attachment of a glycan to Ser and Thr,

we have considered all cases in our dataset, with the expectation that the sequence

patterns surrounding the glycosylated residue may nevertheless be similar, or at the

very least that the machine learning algorithms may be able to detect and learn

different sets of patterns within the dataset. For training and evaluation of GPP by ten-

fold cross-validation, we use the O-unique dataset. This is a subset of OGLYCBASE

and was used for the training of NetOGlyc. It contains only mammalian proteins and

is non-redundant. Our predictions were based on only those glycosylation sites that

have been experimentally verified. Unverified sites can sometimes be unreliable and

false results may confound the predictions. The information retained from the

database consisted of the sequence, database reference and the location in the

sequence of the modified residues that have been experimentally verified. Both

datasets were then split into three, according to whether the modified residues are Ser,

 119

Thr or Asn. Within the O-unique dataset, the Ser dataset contains 1219 instances (395

positive and 824 negative), the Thr dataset contains 1068 instances (370 positive and

698 negatives) and the Asn dataset contains 589 instances (200 positive and 389

negatives). After removing duplicate sequence windows from the OGLYCBASE

datasets, the Ser dataset contains 7285 instances (349 positive 6936 negative), the Thr

dataset contains 6389 instances (695 positive and 5694 negative) and the Asn dataset

contains 3508 instances (261 positives and 3247 negatives). Each instance was

considered as the potentially modified residue and seven residues on either side, to

give a 15 amino acid sequence window. This choice of window size was based on

previous work10, providing reasonable computational tractability in determining

pairwise patterns in the data, and still maintaining sufficient information to predict

glycosylation site location. In this work, we use the single letter code to represent the

amino acids in a categorical fashion. The weight of each instance derived from the

patterns was represented by a numerical attribute. The random forest algorithm can

develop trees using a mixture of discrete and continuous data. So no additional

processing of the data was necessary before presenting the data to weka to train the

random forest algorithm. The prediction program outputs true or false for each

glycosylation site. This is then aligned with the sequence to show the status of every

potential glycosylation site in context. An example of the input and output is shown in

figure 4.1.

4.2.2 Frequency Analysis

As a preliminary test of the validity of using pairwise patterns to predict glycosylation

sites, we analysed the frequency of the amino acids surrounding glycosylation sites.

We aim to detect any significant increases or decreases in the various amino acids in

 120

the sequence immediately surrounding the glycosylation site, as they may indicate a

given amino acid improves or inhibits the chances of glycosylation.

Figure 4.1. The flow of data through the prediction program. The top part of the
figure demonstrates the input for random forest, in this case with the inclusion of
predicted structural information. The output is shown below a depiction of a small
random forest.

After removing all duplicate sequence windows of size 15 from OGLYCBASE, we

determined the frequency of each type of amino acid at each position in the window.

This was carried out for both modified and unmodified sites for the Ser, Thr, and Asn

datasets and on all of these combined. The frequencies of the modified sites were

considered to be significant if the difference between the expected frequency and the

actual frequency was greater than 3σ, where σ is the standard deviation. The expected

frequency of the residue i at position j was calculated as:

€

Eij =
FijNm

Nu

 (4.1)

where Nm is the number of sequence windows centred on modified residues, Nu is the

 121

number of windows centred on unmodified residues and Fij is the frequency of

occurrence of residues i at position j in the unmodified windows. The standard

deviation was estimated assuming a binomial distribution. We focus on frequent

patterns in modified sequences, as there is no obvious reason to anticipate that strong

negative sequence motifs have evolved to evade recognition by enzymes catalysing

glycosylation.

The frequency of each possible unique pairwise arrangement of amino acids in the

window was calculated. Patterns below a given frequency threshold were excluded

from the final pattern set. To optimise the threshold for pattern exclusion a single data

set was prepared for each residue type consisting of all positives and an equal number

of negatives; the threshold was increased incrementally and each resulting pattern set

was used for prediction. The thresholds that produced the best accuracy were used in

the final prediction program. These were 22 for Asn, 31 for Ser and 15 for Thr.

Each pattern is given a weighting, to provide a measure of the probability that a

sequence containing that pattern is a member of the modified class. For a pattern x, the

pattern weight Wx is calculated as Fm/Fn, where Fm is the frequency of modified

sequence windows in which pattern x occurs and Fn is the frequency of unmodified

windows in which this pattern occurs. Each sequence window is compared against all

of the significant patterns for that type of glycosylation site. Based on the patterns

found, the sequence is given a pattern weight Wseq.:

€

W seq =
Wx

kx=1

k

∑ (4.2)

 122

where Wx is the weight of pattern x, and k is the number of patterns found in the

sequence. The weight and the sequence window are presented in the form of a string

of letters (the single letter code for amino acid representation) comprising the

sequence window and a numerical value (the weight), making use of the capability of

weka23 to handle a mixture of continuous and categorical data.

Predicted secondary structure information was combined with the pairwise pattern

information described above. The program PsiPred27 was used to predict the

secondary structure of the residue at the centre of each sequence window and this was

then placed after the window sequence and the corresponding weight from pattern

analysis. PsiPred was selected on the basis of its tried-and-tested nature and its

accuracy. The surface accessibility was predicted using the SABLE program28. The

choice of SABLE was motivated by the method’s competitive accuracy as well as its

free availability and the availability of the source code. The surface accessibility is

predicted as a number between 0 and 100, with 0 representing fully buried and 100

fully exposed. The data obtained from SABLE were added to the central residue of

the corresponding instances in the training data. The hydrophobicity value of each

central residue was added to the corresponding instance in the training data. These

hydrophobicity values were taken from the literature29. The data flow through the

prediction program is shown in figure 4.1.

4.2.3 Balancing the dataset

The dataset used for training and cross validation has a common problem encountered

in machine learning applications30. There is a large imbalance between the two classes

in the dataset. This leads to a prediction in which the majority class is over-predicted

 123

and the minority class is predicted inaccurately. We needed to find a way of balancing

the dataset in order to produce an accurate prediction program. Several approaches to

dealing with this problem have been tried, both by artificially balancing the dataset

and by way of algorithmic methods. Here we give an overview of several previous

methods outlining their suitability and deficiencies, before going on to describe our

own algorithm, which we developed to overcome the deficiencies of the algorithms

described here. Random under sampling31 seeks to balance the dataset by removing

randomly selected excess examples from the majority class until it is the same size as

the minority class. The disadvantage of this is that for each example removed from the

dataset some information is lost. This method may not be suitable if the minority class

is too small. Too few examples of the majority class will remain and the accuracy of

the prediction will be drastically reduced. It is thought that the inaccuracy of the

minority class is not solely down to the relative number of examples between the

minority and majority classes but also the amount of information available for the

minority class, i.e. the number of instances, and the level of noise in the data30.

Random over sampling32 adopts the opposite approach to random under sampling.

Duplicate data is randomly sampled from the minority class until it reaches the same

size as the majority class. This does improve accuracy of the minority class. However,

there is a tendency to induce overfitting to the data by duplicating examples, the

dataset may grow to a size that is computationally difficult to deal with.

In this work, based on theoretical considerations, we rejected both of the above

methods as being unsuitable. Random under sampling drastically reduces the size of

the dataset and we lose much of the available information, decreasing the overall

accuracy, whereas random over sampling requires vast duplication of the data. Since

 124

we seek to avoid duplicate data by using the O-unique data set, introducing a large

number of duplicates of the positive examples is counter productive. There is also an

issue with the size of the oversampled dataset and the available computational power.

Alternative methods have been proposed. Tomek links have been used for under

sampling data33. A given pair of values (Ei, Ej) from different classes, separated by

distance d(Ei, Ej) is a tomek link if there is no example Et such that d(Ei,Et) < d(Ei, Ej)

or d(Ej, Et) < d(Ei, Ej). One or both of the examples forming a tomek link can be

considered noise and thus this can be used to remove examples from the data to

perform under sampling. However, this method does not deal with the problem of loss

of information. We also reject the method of generating synthetic minority class

examples used by SMOTE32 for random over sampling, due to the potential

unreliability of using artificially generated examples.

Several methods for balancing datasets combine multiple techniques using multiple

classifiers. A selection of classifiers using a mixture of over and under sampling

methods was tried by Estabrooks and Japkowizc34, taking into account that it is not

clear which sampling method is best. This method gives good results, particularly for

prediction of the positive examples. However, our data is not amenable to

oversampling so this method is not suitable here. Chan and Stolfo35 use preliminary

experiments to find a good class distribution and then create multiple datasets

typically with all minority class instances and a selection from the majority class

selected based on this distribution. A similar method has also been tried using an

ensemble of SVMs36. However, these methods assume knowledge of a good class

distribution and although this can be estimated, this both adds to the run time and is

 125

not certain to identify such a distribution correctly.

Instead of the above methods, we propose a balancing method that loses the minimum

of information, whilst avoiding duplication of data or generation of artificial

examples. The method has similarities to both those described by Chan and Stolfo35

and Yan et al.36 However, we do not attempt to guide the distribution of the data in

each of the data sets we create, since this requires good knowledge of the class

distribution, which we do not have. We make use of ensemble machine learning

methods to train multiple random forests. In order to retain the maximum information

from the dataset, each of the datasets we create contains all of the positive examples,

and a randomly chosen selection of negative examples equal in number to the positive

examples. These examples are chosen without replacement so each of the datasets

contains a different selection of negative data. The number of datasets used can then

be chosen to correspond to the size of the starting dataset. Here we use ten datasets for

each type of glycosylation site. The random forests trained on these datasets vote to

determine class. Therefore, the predicting power of the negative examples is

preserved, whilst we gain the advantages of an equal dataset and avoid the

disadvantages of the under and over sampling methods.

4.2.4 Training the prediction program

Training of GPP has two main components. Firstly, a set of patterns is generated from

the training data for each of the three types of glycosylation site. This is used to

provide a weighting to each instance in the dataset. Secondly, the random forest is

trained on the data and associated weights. Multiple random forests (ten in this work)

are trained, with each voting to determine the class of each test instance. Each of the

 126

random forests was trained using a data set comprising all positive instances from the

cross validation fold and an equal number of randomly chosen negative instances, this

dataset being generated from the training data (see section 4.2.3). We use multiple

forests to allow for as complete as possible representation of negative instances in the

training data without the negatives completely overwhelming the positives in the

dataset. The pattern sets were created from the entire training data within a cross

validation fold. This entire procedure is summarised in figure 4.2. The accuracy of the

prediction was evaluated by cross-validation. The data were divided randomly into ten

sections and the above training procedure was carried out using nine of these, the

tenth providing a test set using all instances. This was repeated ten times on each

occasion with a different section of the data acting as the test set. The measures of

accuracy used to assess GPP are as follows. Sensitivity, expressed as a percentage, is

calculated as TP/(TP+FN) x 100, where TP is the number of true positive predictions

and FN is the number of false negative predictions. Specificity, expressed as a

percentage, is calculated as TN/(FP+TN) x 100, where TN is the number of true negative

predictions and FP is the number of false positive predictions. The number of correctly

classified instances is given as a percentage. We use the Matthews correlation

coefficient37 (see equation 2.22) to compare the accuracy of our prediction program

with that of the NetNglyc [http://www.cbs.dtu.dk/services/NetNGlyc/] and NetOglyc11

glycosylation predictors. We use the number of correctly classified instances, the

sensitivity and the specificity to compare our work with Oglyc10. In order to test the

significance of the differences between the different methods of prediction, a paired t

test38 was conducted on 30 duplicate experiments for pairs of methods.

 127

Figure 4.2. The cross-validation of the GPP prediction program, illustrated for the Ser
dataset. This procedure is repeated 10 times with each fold in turn being used as the
test set in order to conduct a cross validation. The 10 training sets are drawn from the
sum of the 9 folds of training data and are used to train 10 random forests.

 128

Given a set of results Xi from method A and a set of results Yi from method B, each

containing n data points, t is calculated as:

€

t = X −Y ()
n n −1()()

ˆ X i −
ˆ Y i()2

i =1

n
∑

 (4.3)

where is the mean of X and is the mean of Y, ; and p

is the probability of obtaining a value as large or larger than the observed t. If p is

below 0.05 then the difference of means is significant at the 5% level. The t test was

calculated using the R statistics package39.

For the purposes of comparison, we also conducted the above procedure substituting

the naïve Bayes algorithm for random forest. The naïve Bayes algorithm is based on

Bayes rule, which states that for a given input vector x1......Xn the probability of

observing a class M is:

P(M|x1,.....,xn) = P(x1,.....,xn|M)P(M)/P(x1,.....,xn) (4.4)

Whilst it is theoretically possible to estimate the probability for each class M, in

practice the conditional probabilities are not usually known and must be estimated

from the data. For this reason, the naïve Bayes algorithm makes the assumption that

the conditional probabilities are independent given the class in order to simplify

equation 4.4 to:

 129

P(xi|M)=(P(x1)),...,(P(xn)) (4.5)

Although this is a rough approximation of the probability for a given class, the naïve

Bayes classifier has proven to be reasonably robust, because it only matters that the

true class receives the highest probability, not that the probability itself is correct. We

used the implementation of naïve Bayes in weka23. As a further comparison, we also

carried out a basic pattern search using scansite26, which classifies as positive all sites

that have the consensus sequence. This was performed on the entirety of O-unique,

since no training is required for scansite.

4.2.5 Extraction of Rules

Trepan is a method originally used to extract comprehensible rules from neural

networks. Trepan uses an oracle function to represent the network and derives a

decision tree from the classifications made by the oracle function. However, it can be

used for rule extraction from any method that performs binary classification. We use

here a modified version of trepan implemented in Matlab by Browne et al.21, with

GPP as the oracle function. Thus, we derive a decision tree based on the classification

by GPP of the training data, and additional examples created by trepan. The additional

examples are based on the distribution of the attributes in the training data and they

ensure a pre-set minimum number of examples reach each node in the tree. The

splitting test at each node is an m of n test. For each node in the tree there are n

features. If m of these features are evident in a given instance, this instance is deemed

to satisfy the m of n rule for this node. In practice, here we find rules only with m = 1

and n < 3, i.e., simple predicates involving one or two possibilities. Nodes of the tree

are expanded based on a priority calculated as the number of examples misclassified

 130

by the node. Those with highest priority are expanded first, since they have the most

potential to increase the accuracy of the tree.

4.3 Results and Discussion

4.3.1 Frequency Analysis

We conduct the frequency analysis using the OGLYCBASE dataset. This was used,

rather than O-unique, because it has a greater volume and range of sequences,

allowing statistically significant differences to the background to be more visible.

There is also a wider range of sequences than O-unique and it is useful to observe

whether there are trends across the whole spectrum of glyco-proteins, i.e., is our

method likely to be useful for predicting more than just the mammalian glycosylation

sites found in O-unique? The consensus sequence for Asn glycosylation is clearly

exhibited in the frequency table (Table 4.1). The only amino acids in evidence at the

+2 position are Ser, Thr and Cys, with low numbers of Pro at the +1 position. At the

-6 position there is an increase in Asp and at the -5 position there is a significant

increase in Met. Met is hydrophobic in nature, and is the only such amino acid to be

increased around glycosylated Asn residues. At the -2 position Gln is significantly

increased. Cys is increased at the +3 position, indicating that Cys assists glycosylation

at this position. There is an increase in Pro at the +4 position, which is perhaps

surprising, as Pro disfavours glycosylation when found at +1 in almost all cases5. It

may be that Pro helps create a structural conformation favourable for glycosylation

when found at this position.

 131

Position -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7

C 12 9 12 12 10 4 5 11 5 17 11 8 16 9

D 13 23 10 8 9 13 7 8 0 14 6 17 12 19

M 13 2 10 6 3 5 3 5 0 6 4 5 2 4

P 13 22 15 20 7 15 11 1 0 6 31 18 18 14

Q 9 10 10 16 15 21 7 8 1 11 13 16 9 11

S 20 22 25 16 16 14 24 23 102 32 23 28 11 32

T 14 26 15 23 17 17 15 17 151 16 16 13 19 22

Table 4.1. Frequencies of selected amino acids surrounding modified Asn residues.

Frequency is reported as the number of occurrences in the set of 261 instances of

modified Asn residues. Statistically significant increases over the expected

frequencies are represented in bold; significant decreases are represented by italics.

The full table containing all amino acids is included in Appendix B.

Around modified Ser residues there is known to be an abundance of Pro, Ser and Thr

and the frequency analysis (Table 4.2) shows increases of Ser and Thr across the

sequence window and increases in Pro at positions -6, -3, -1, 2, 3 and 4. Of those

positions where Pro is increased, -1 and +3 present the greatest increases. There is an

increase in Ala around the glycosylation site at position –1 perhaps suggesting small

amino acids are preferred here. There is also a decrease in Phe at this position. Leu is

decreased at –6, -2, +2, and +7, and Lys at +3 and +4. This suggests that these amino

acids may have an unfavourable effect on glycosylation.

 132

Position -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7

A 22 36 24 36 29 30 37 31 34 21 26 30 25 19

D 6 12 6 18 14 10 6 4 3 10 11 8 5 5

E 15 19 22 19 23 24 8 16 10 13 10 11 9 6

G 19 26 30 17 20 22 27 40 27 27 16 23 19 41

P 31 38 35 35 41 34 46 28 40 51 42 34 32 35

S 56 42 43 54 53 56 47 48 60 43 56 41 48 49

T 58 43 46 41 48 34 62 61 48 50 58 51 51 47

Table 4.2. Frequencies of selected amino acids surrounding modified Ser residues.

Frequency is reported as the number of occurrences in the set of 388 instances of

modified Ser residues. Statistically significant increases over the expected frequencies

are represented in bold; significant decreases are represented by italics. The full table

containing all amino acids is included in Appendix B.

Modified Thr residues (Table 4.3) exhibit elevations in Thr at all positions, except +7,

and Pro at all odd numbered positions. There is an increase in Ser at the –1 position.

This suggests that where Thr and Ser glycosylation sites are clustered together, they

are almost always consecutive in sequence. Pro is particularly increased at the +3

position, suggesting this is important for glycosylation, as was shown by others6.

There is a decrease in Ile at position –1 and an increase at –2. Gly is increased

downstream at positions -5 and -2, and upstream at positions +1, +4 and +7. Gly is

also decreased at –3 and +3. Gln is decreased at the –1 position, as is Lys, which is

also decreased at –2, and +1, 2 and 3. There is a general decrease in Leu around the

 133

glycosylation site, particularly at the –1 and +1 positions. Arg is decreased at –3, –1

and +3.

position -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7

G 52 40 108 42 21 122 32 101 40 16 106 30 37 112

I 20 16 16 33 23 40 14 17 17 13 18 29 14 18

P 77 61 81 67 99 62 128 103 68 167 59 105 59 89

R 33 22 17 28 8 13 21 11 25 9 15 30 30 16

S 81 67 65 68 74 70 89 67 76 74 63 59 52 70

T 101 168 96 130 117 115 107 95 118 131 127 95 156 87

W 2 10 4 1 2 4 2 2 5 2 3 0 0 0

Table 4.3. Frequencies of selected amino acids surrounding modified Thr residues.

Frequency is reported as the number of occurrences in the set of 2010 instances of

modified Thr residues. Statistically significant increases over the expected frequencies

are represented in bold; significant decreases are represented by italics. The full table

containing all amino acids is included in Appendix B.

4.3.2 Pairwise Patterns

The pairwise patterns for each residue type were ranked by weight to identify those

most likely to be found around modified residues. These patterns have significant

frequencies around unmodified residues, as well as around modified residues. The

weights of some patterns are very similar, especially those for Ser, and statistical

fluctuations due to the relatively small size of the dataset mean that the rank order of

these patterns may not be exact.

 134

Asn Pattern (weight) Thr Pattern (weight) Ser Pattern (weight)

.......N.S..... (4.78)P.T.. (3.39)S..P.... (0.98)

.......N.T..... (3.35) ...T......P.... (2.17) N......S....... (0.90)

.....Q.N....... (1.78) ..T..P......... (2.14) .S.....S....... (0.89)

.......N......Q (1.27) S..T........... (1.74)S......P (0.87)

.......N......S (1.18)S....P (1.57)S.....I. (0.86)

....R..N....... (1.0)T..I.... (1.43)S....P.. (0.83)

......AN....... (1.0)T.....I. (1.39)P..S....... (0.82)

..I....N....... (1.08) ...T..P........ (1.25)SA...... (0.80)

.......N.....F. (1.08)T......M (1.25)S.....H. (0.80)

..S....N....... (1.05)T.....P. (1.24)ST...... (0.79)

S......N....... (0.95)TE...... (1.23)S...V... (0.79)

...R...N....... (0.92)M..T....... (1.22)S..T.... (0.77)

....F..N....... (0.92) Q......T....... (1.15)S....R.. (0.77)

...P...N....... (0.89)SP.... (1.11)S.I..... (0.76)

.I.....N....... (0.88) .M.....T....... (1.0)ES....... (0.76)

.......N....A.. (0.88)P..T....... (1.0)IS....... (0.74)

.......N.....L. (0.88)AT....... (1.0)S...P... (0.73)

.....R.N....... (0.86)T..A.... (1.0)S.....A. (0.73)

.......NV...... (0.82)PT... (1.0) ...S...S....... (0.73)

.......N..S.... (0.81)PS (1.0) .P.....S....... (0.72)
Table 4.4. The 20 most significant patterns for glycosylated residues. The patterns are

shown with amino acids represented by there single letter code and a ‘.’ used to denote

a position that may be occupied by any amino acid.

Around Asn residues (Table 4.4) the consensus sequence for Asn glycosylation was

visible, with the patternsN.T..... (rank 02, weight 3.35) andN.S..... (rank 01,

weight 4.78) as the top two patterns identified. Other patterns have substantially lower

weights indicating the significance of the consensus sequence. Further patterns in the

list indicate that Gln at –2 may be significant, as well as Ser, Ala and Arg at various

positions. Gln at –2 is also increased in the frequency analysis above and so may be a

 135

significant factor. However, there is no significant increase of Ser, Ala and Arg at

corresponding positions in the frequency analysis, so it is possible this is only evident

as part of a pairwise pattern.

The most significant pattern around Ser is Pro at the +3 position, which is in line with

the frequency analysis. Other patterns include Pro, Ser, Ile and Thr at various

positions indicating that these amino acids may play a prominent role when linked

with either Ser or Thr. Many of the patterns around Ser residues have similar weights,

although Pro at +3 is markedly more significant.

Whilst no consensus sequence has been shown for Thr, around Thr residues (Table

4.3) there are correlations between the patterns, which suggest one or more sequence

motifs may enhance the propensity for glycosylation. The majority of the patterns in

the top 20 contain one of Ile, Thr, Pro or Ser, suggesting that these amino acids favour

glycosylation. Given the frequency, and the analysis above (Table 4.3) it is likely that

at least one or more of these amino acids is required for Thr glycosylation. The most

prominent pattern is of Pro and Thr at the +3 and +5 positions, respectively. This

could indicate either a motif that encourages glycosylation or the importance of the

clustering of Ser and Thr glycosylation sites together given the significance of Pro in

the neighbourhood of both. There are also several patterns with high significance

involving Glu always upstream of the glycosylation site, although no significant

increase of this was found in the frequency analysis. It is evident however, that

pairwise patterns in isolation are not sufficient for correctly predicting glycosylation

sites. For example, the consensus sequence for Asn glycosylation is represented by

 136

several pairwise patterns, but not all of the consensus sequences are glycosylated, so

this alone is not sufficient to guarantee the presence of a glycosylation site. Only the

synthesis of all the patterns gives sufficient information to predict whether

glycosylation occurs. This is even more the case for O-linked glycosylation sites

where a number of factors may be in effect as indicated by the frequency analysis. The

complex nature of these overlapping patterns means that machine learning is

necessary to utilise the information presented by the patterns in the form of a patterns

weight and the sequence itself.

4.3.3 Prediction accuracy

To assess the improvement in accuracy of our balancing method, we carried out a

prediction for Ser glycosylation sites using random under sampling and training with a

single random forest. This resulted in an accuracy of 69.2% correctly classified

instances, with a sensitivity of 67.9%, a specificity of 71.5%, and a Matthews

correlation coefficient of 0.38. This is much lower than the results for Ser prediction

given below. We do not consider other balancing methods for the reasons stated above

in section 4.2.

We measured the prediction accuracy of GPP trained using the pattern weight and

sequence only, and using additional structural information. For O-linked glycosylation

sites the change in accuracy with additional information was minimal. For N-linked

glycosylation an increase in accuracy was observed with the addition of predicted

surface accessibility information. There was also a much smaller increase with the

addition of predicted secondary structure information (Table 4.5). The prediction of

Thr sites was more accurate than that of Ser sites. The Matthews correlation

 137

coefficient, specificity and overall accuracy were higher.

 Random Forest Naïve Bayes

Dataset
(size)

Correctly
Classified
Instances
(%)

Sensitivity
(%)

Specificity
(%)

Matthews
Correlation
Coefficient

Correctly
Classified
Instances
(%)

Sensitivity
(%)

Specificity
(%)

Matthews
Correlation
Coefficient

Ser 90.8 96.1 88.9 0.81 83.9 64.4 92.6 0.61

Ser +
SA

91.1 95.5 89.6 0.82 82.3 60.5 92.3 0.58

Ser +
Hydro

89.9 96.4 87.5 0.79 82.7 64.8 90.9 0.59

Ser +
SS

91.7 96.3 90.1 0.83 82.4 62.9 91.3 0.58

Thr 92.0 93.6 92.4 0.84 86.8 74.8 93.3 0.70

Thr +
SA

91.8 91.4 93.2 0.83 85.8 72.5 93.5 0.69

Thr +
Hydro

91.1 91.8 92.2 0.82 85.9 73.0 93.3 0.69

Thr +
SS

91.0 91.8 92.1 0.82 87.2 74.7 94.6 0.72

Asn 92.8 96.6 91.8 0.85 90.3 83.8 94.6 0.79

Asn +
SA

94.0 95.7 94.3 0.88 89.3 81.9 94.5 0.77

Asn +
Hydro

92.4 95.2 91.9 0.84 90.1 82.5 94.8 0.78

Asn +
SS

93.2 96.4 92.4 0.86 89.3 79.8 94.9 0.76

Table 4.5. Accuracy of prediction of glycosylation sites with random forest and naïve

Bayes algorithms. Hydro = Hydrophobicity data; SA = predicted surface accessibility;

SS = predicted secondary structure.

However, the sensitivity was higher for the Ser site predictions. This was also the case

for predictions of Ser and Thr carried out with additional information. In comparison

to naïve Bayes, the prediction by random forest is superior. All predictions by naïve

Bayes have a substantial loss in sensitivity and a much lower Matthews correlation

 138

coefficient.

 GPP NetOglyc NetNglyc Oglyc CKSAAP40 EnsembleGly41 Scan
Site

Ser CCI 90.8 91.8 N/A N/R 83.1 N/R N/A
Ser
Sensitivity

96.1 66.7 N/A N/R 80.7 N/R N/A

Ser
Specificity

88.9 95.3 N/A N/R 85.6 N/R N/A

Ser MCC 0.81 0.62 N/A N/R 0.671 N/R N/A
Thr CCI 92.0 84.9 N/A N/R 81.4 N/R N/A
Thr
Sensitivity

93.6 81.5 N/A N/R 80.3 N/R N/A

Thr
Specificity

92.4 89.5 N/A N/R 82.5 N/R N/A

Thr MCC 0.84 0.67 N/A N/R 0.63 N/R N/A
Asn CCI 92.8 N/A 76.7 N/A N/A 95.0 79.8
Asn
Sensitivity

96.6 N/A 43.9 N/A N/A 98.0 72.7

Asn
Specificity

91.8 N/A 95.7 N/A N/A 77.0b 81.9

Asn MCC 0.85 N/A 0.49 N/A N/A 0.84 0.54
Overall
CCI

91.4a 88.6a N/A 87.0 a N/A 89.0 N/A

Overall
Sensitivity

94.9a 76.0a N/A 92.0a N/A 59.0 N/A

Overall
Specificity

90.7a 92.8a N/A 78.0a N/A 68.0b N/A

Overall
MCC

0.83a 0.66a N/A 0.71a N/A 0.64 N/A

Table 4.6. A comparison of GPP and other glycosylation prediction programs.

a. combined accuracy for Ser and Thr

b. Specificity for EnsembleGly was calculated as Tp/ Tp+Fp. See text for

comparison.

N/A=not applicable; N/R = not reported; CCI = % correctly classified instances; MCC

= Matthews Correlation Coefficient

We first compare the results to the NetOglyc8, Oglyc10 and NetNglyc

[http://www.cbs.dtu.dk/services/NetNGlyc/] prediction servers (Table 4.6). The

 139

comparison with O-glycosylation predictors comes with the caveat that they may have

been trained and tested with different data, which included differing ratios of positive

and negative instances. We also had a slightly different focus than these predictors, in

that we do not restrict ourselves to mucin glycosylation sites. For NetOglyc, we use

data published in Julenius et al.11 The accuracy measures reported did not include

correctly classified instances; so we calculated this from the information published.

No published results are available for NetNglyc; so we submitted the sequences in the

O-unique dataset to the NetNglyc web server and calculated the accuracy measures

described above. We also compare predictions for the Asn dataset to a basic pattern

search for the consensus sequence carried out by scansite26. Li et al.10 did not give the

Matthews correlation coefficient for the Oglyc predictions. Therefore, we calculated it

from the reported data and also use the measures of correctly classified instances,

sensitivity and specificity for this comparison. We converted the values provided by

Li et al. into percentages. Oglyc only report the combined accuracy; separate accuracy

information for Ser and Thr was not available. The comparison with Oglyc was

carried out against their dataset two, which produced the best results for their

predictor. The GPP predictor has a higher correlation coefficient and sensitivity than

NetNglyc. Scansite correctly predicts most positive instances of Asn glycosylation

and has a higher sensitivity and specificity than NetNglyc. However, GPP is more

accurate and has higher Matthews correlation coefficient, sensitivity and specificity.

Our prediction of Thr sites is better in all measures than that of NetOglyc. For Ser

prediction our overall accuracy is comparable, although we have a higher Matthews

correlation coefficient. NetOglyc has a higher specificity and a lower sensitivity than

GPP. There is a higher ratio of negatives to positives in the Ser data set compared to

that for Asn and Thr. This affects the pattern weights, bringing them closer together

 140

and making it more difficult for the random forest to discriminate between modified

and unmodified residues. There are also more types of sugar in more equal

proportions in the Ser dataset, creating a more difficult task for the random forest. The

Asn dataset does not experience similar effects: its consensus sequence motif is easily

picked out (and augmented) by the random forest algorithm. There are no data for

separate Ser and Thr predictions available for Oglyc10. Their overall prediction

accuracy of 87.4% (correctly classified instances) is less than the overall accuracy of

GPP, and we also score better in sensitivity and specificity.

Two more recent predictions servers, EnsembleGly by Carega et al.40 and CKSAAP

by Chen et al.41, were published during the completion of this work. Carega et al. use

ensembles of SVMs to predict O- and N-linked glycosylation sites. Carega et al.

calculate sensitivity as Sn = Tp/ Tp+Fp. We convert this measure into a percentage.

Calculating this measure for GPP, for Asn prediction Sn = 87.17 for Ser Sn = 81.3 for

Thr Sn = 7.53 and for the combined O-Linked predictions Sn = 84.4 GPP has a greater

Matthews correlation coefficient for both N- and O-linked prediction (only an overall

score for O-linked is given). For N-linked sites they have a greater accuracy and

sensitivity, but GPP has greater specificity and Matthews correlation coefficient,

indicating EnsembleGly has a greater number of false negative predictions. For O-

linked sites, GPP scores better for sensitivity, specificity and Matthews correlation

coefficient. Chen et al. predict mucin glycosylation sites using k-spaced pairwise

patterns and SVMs. This method has some similarities with our own and the accuracy

of the two methods is comparable. However, GPP is more accurate for both Ser and

Thr predictions.

 141

4.3.4 Rule extraction

Trepan identifies the consensus motif for Asn glycosylation (figure 4.3) as the most

prominent rules in the decision tree. However, subsequent rules are somewhat

misleading, as they allow glycosylation without the consensus sequence being present.

This is probably an artefact of the generation of additional data by trepan. This

approach is reliant on the distribution of the training data and will highlight patterns

additional to the consensus sequence. The tree corresponding to Thr glycosylation

(figure 4.4) shows features in line with the statistical data. Pro at residue +3 increases

glycosylation when accompanied by a Ser or Thr.

Figure 4.3. Asn glycosylation rules. A subset of the complete decision tree covering
all the rules for Asn glycosylation (the complete tree is available in Appendix C).
Each node is numbered in the order it was added to the tree. All rules are 1 of A, B…
N so only the relevant features are shown. The amino acids are represented using the
single letter code and the positions are indicated with respect to a sequence window of
length 15, with the target residue at position 08.

The end of the sequence seems to be given undue importance. However, other rules

are in line with the frequency analysis. Cys seems to strongly discourage

 142

glycosylation, whilst Ser, Thr and Pro encourage it when accompanied by various

other amino acids.

Figure 4.4. Thr glycosylation rules. A subset of the complete decision tree
encompassing all the rules produced for Thr glycosylation (the complete tree is
available in Appendix C). Each node is numbered in the order it was added to the tree.
All rules are 1 of A, B… N so only the relevant features are shown. The amino acids
are represented using the single letter code and the positions are indicated with respect
to a sequence window of length 15, with the target residue at position 08.

 143

Figure 4.5. Ser glycosylation rules. A subset of the rules produced for Ser (the
complete tree is available Appendix C showing the importance of the +2 position in
glycosylation of Ser. Each node is numbered in the order it was added to the tree. All
rules are 1 of A, B… N so only the relevant features are shown. The amino acids are
represented using the single letter code and the positions are indicated with respect to
a sequence window of length 15, with the target residue at position 08.

Some rules may be inexact, due to the limited data in O-unique that trepan can base its

derived examples on. This is also true for the Ser tree (figure 4.5). The tree for Ser is

similar to the one for Thr, although more complicated. Once again, the end of the

sequence is implicated, as is the presence of Pro at various positions. Cys again seems

to block glycosylation, whilst Ser, Thr, Glu, and Pro all encourage it when present at

various positions along the sequence, especially in conjunction.

4.3.5 Sugar type

The approach to predicting glycosylation sites described above predicts all

glycosylation sites, and does not differentiate with respect to the type of glycan

attached, or the glycosidic linkage involved. As previously described, there are many

 144

different sugars involved in glycosylation, and in most cases each of these has a

different enzyme catalysing its attachment. Therefore, it is reasonable to assume that

there are differences in the amino acid sequence associated with each type of glycan.

To test this, we classify the data in OGLCYBASE by the sugar type that attaches the

glycan to the protein (linkage sugar). We use OGLYCBASE, as it includes more

sequences and presents a more realistic representation of the distribution of linkage

sugars. Duplicate sequences were removed from the database. However, other ways of

reducing sequence identity were not carried out, as it is expected that glycosylation

sites for different types of sugars will be similar. Sequence representation was as

described above for prediction and rule extraction. Since the number of classes is

large, classification methods such as random forest or SVM are unlikely to distinguish

between the various classes accurately. So we use clustering to distinguish between

the different glycans.

For this work, we use farthest first clustering42, which aims at separating the data

optimally based on distance. The first point of k cluster centres is chosen at random (k

is user defined). The second cluster centre is then the data point furthest away from

the first point. The third cluster centre is the data point furthest from these two points.

This process is continued until k points have been chosen to act as k initial cluster

centres, with the kth point being furthest from the k-1th point. Each data point is

assigned to the closest of these cluster centres using a distance metric. According to

Hochbaum and Shmoys42 this algorithm produces clusters, which are no more than

twice the optimal k centre value. For farthest first clustering, we used k = 7 clusters for

Ser residues and k = 9 for Thr residues. Experiments showed that these produced the

clearest split in the data (data not shown). Although there are sugars with only a few

 145

examples in the data set that do not have their own clusters, increasing the number of

clusters did not separate these instances from the bulk of the data.

Cluster 1
(57)

Mannose
61.4%

GalNAc
33.3%

GlcNAc
3.5%

Xylose
1.8%

Cluster 2
(33)

GalNAc
69.7%

Mannose
24.2%

GlcNAc
6.0%

Cluster 3
(19)

GalNAc
63.2%

Xylose
15.8%

Mannose
10.5%

GlcNAc
10.5%

Cluster 4
(16)

GalNAc
43.8%

Xylose
37.5%

Mannose
6.3%

GlcNAc,
Galactosea
6.3%

Cluster 5
(64)

GalNAc
92.2%

Mannose
4.7%

Xylose
1.6%

GlcNAc
1.6%

Cluster 6
(29)

Mannose
48.3%

GalNAc
37.9

Xylose
10.3%

Gal-
GalNAc
3.4%

Cluster 7
(46)

GalNAc
58.7%

GlcNAc
23.9%

Mannose
17.4%

Table 4.7 Percentage membership of clusters generated by farthest first clustering of

Ser glycosylation sites

a. both sugars have equal percentage so both have been included.

The composition of the clusters is presented in table 4.7. The four most prominent

sugars in each cluster are shown, along with the percentage of the cluster they occupy

and the total number of instances in each cluster. Residues where the sugar type is not

known are marked as unknown. The majority of residues are GalNAc, which is the

most common linkage sugar. The clustering does not differentiate between the type of

linkage sugar.

 146

Cluster 1
(124)

GalNAc
93.5%

Mannose
3.2%

Gal-
GalNAc
0.8%

Galactosamine,
HexNAca 0.8%

Cluster 2
(40)

GalNAc
65.0%

Mannose
30%

GlcNAc
5.0%

Cluster 3
(19)

GalNAc
78.9%

Mannose
15.8%

Xylose
5.263%

Cluster 4
(12)

Fucose
50.0%

Mannose
33.3%

GalNAc
16.7%

Cluster 5
(108)

Mannose
48.1%

GalNAc
46.3%

GlcNAc
4.6%

Xylose 0.9%

Cluster 6
(98)

GalNAc
84.7%

Mannose
10.2%

GlcNAc
5.1%

Cluster 7
(86)

Hexose
87.2%

GalNAc
10.465

Mannose
2.3%

Cluster 8
(47)

GalNAc
68.1%

GlcNAc
14.9%

Mannose
10.6%

HexNAc 4.3%

Cluster 9
(34)

GalNAc
70.5%

Mannose
23.5%

GlcNAc
5.9%

Table 4.8 Percentage membership of clusters generated by farthest first clustering of

Thr glycosylation sites

a. both sugars have equal percentage so both have been included.

There is not one single class per sugar and, in fact, GalNAc features prominently in all

clusters, although mannose is clearly separated as the dominant sugar in two clusters.

Increasing the number of clusters to ten does not alleviate this situation. This suggests

that sequence alone is not sufficient to separate glycosylation types based on linkage

sugar. It is likely that there are other factors involved, such as the structure of the

protein and the properties of the protein surface, in determining which sugar is first

attached to the protein at a given glycosylation site. The clustering of Thr

glycosylation sites by linking sugar has much in common with Ser glycosylation sites.

 147

The clusters are once again dominated by GalNAc, membership with this sugar

featuring prominently in all the clusters. However, there are clusters for several of the

significant sugars involved, such as hexose, mannose and fucose.

In general, no cluster for either Ser or Thr is solely occupied by one linkage sugar.

This may be in part due to the fact that most glycosylation sites are linked with

GalNAc, with other modifications being relatively rare. The clustering may, therefore,

be improved by increasing the amount of data available for non-GalNAc glycosylation

sites. It may also be that a different representation of the data may be more appropriate

for clustering. These experiments use the same representation as the glycosylation

prediction earlier in this chapter. Whilst this is appropriate when looking for pair-wise

patterns, representing the data with PSSMs may well be better for clustering.

However, the idea of clustering glycosylation sites shows some promise if the

methodology were to be refined. This could be used in place of predicting individual

glycosylation types using separate predictors if the accuracy is increased.

4.4 Conclusions

The random forest algorithm was used to predict glycosylation sites, based on

pairwise sequence patterns and the amino acid sequence. The program improved over

the best prediction programs currently available, with significant increases in accuracy

for the prediction of Thr and Asn glycosylation sites. Neither the addition of structural

data, hydrophobicity information, nor surface accessibility data improved the

prediction accuracy of O-linked glycosylation, although N-linked glycosylation

prediction is improved by the addition of surface accessibility data. However, it may

be possible to improve prediction accuracy further through the inclusion of

 148

information on protein disorder and information on the orientation of membrane

proteins. It may also be possible to increase accuracy by extending the initial data set,

or by considering separately proteins whose PTM is catalysed by the same enzyme.

Another option would be to produce prediction programs for each specific glycan

type, or to classify each glycosylation site by type of glycan after prediction. Our use

of the trepan algorithm allows us to extract comprehensible rules describing features

characteristic of a glycosylation site. Our use of clustering to identify the linkage

sugar at a glycosylation site was less fruitful, but shows some promise. It may provide

an alternative to training predictors for each individual glycosylation type.

4.5 References

1. Walsh CT, Garneau-Tsodikova S, Gatto Jr. JR. Protein posttranslational

modifications: the chemistry of proteome diversifications. Angew. Chem. Int.

Ed. 2005, 44:7342-7372.

2. Hart GW. Glycosylation. Curr. Opin. Cell Biol. 1992, 4:1017-1023.

3. Seitz O. Synthesis and the effects of glycosylation on protein structure and

activity. Chem. BioChem. 2000, 1:214-246

4. Spiro RG. Protein glycosylation: nature, distribution, enzymatic formation,

and disease implications of glycopeptide bonds. Glycobiology 2002, 12:43R-

56R.

5. Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S. Prediction of

post-translational glycosylation and phosphorylation of proteins from the

amino acid sequence. Proteomics 2004, 4:1633–1649.

6. Christlet THT, Veluraja K. Database analysis of O-glycosylation sites in

proteins. Biophysical J. 2001, 80:952-960.

 149

7. Gupta R, Jung E, Gooley AA, Williams KL, Brunak S, Hansen J. Scanning the

available Dictyostelium Discoideum proteome for O-linked GlcNAc

glycosylation sites using neural networks. Glycobiology 1999, 9:1009-1022.

8. Hansen JE, Lund O, Tolstrup N, Gooley AA, Williams KL, Brunak S.

NetOglyc: prediction of mucin type O-glycosylation sites based on sequence

context and surface accessibility. Glycoconjugate J. 1998, 15:115–130.

9. Eisenhaber B, Bork P, Eisenhaber F. Prediction of potential GPI-modification

sites in proprotein sequences. J. Mol. Biol. 1999, 292:741-758.

10. Li S, Liu B, Zeng R, Cai Y, Li Y. Predicting O-glycosylation sites in

mammalian proteins by using SVMs. Comput. Biol. Chem. 2006, 30:203-208.

11. Julenius K, Mølgaard A, Gupta R, Brunak, S. Prediction, conservation,

analysis, and structural characterization of mammalian mucin-type O-

glycosylation sites. Glycobiology 2005, 15:153-164.

12. Breiman L. Random Forests. Machine Learning 2001, 45:5-32.

13. Chen X-W, Liu M. Prediction of protein-protein interactions using random

decision forest framework. Bioinformatics 2005, 21:4394-4400.

14. Qi Y, Bar-Joseph Z, Klein-Seetharaman J. Evaluation of different biological

data and computational classification methods for use in protein interaction

prediction. Proteins: Struct., Funct. Bioinf. 2006, 63:490-500.

15. Diaz-Uriarte R, Alvarez de Andres S. Gene selection and classification of

microarray data using random forest. BMC Bioinformatics 2006, 7:3.

16. Bureau A, Dupuis J, Falls K, Lunetta KL, Hayward B, Keith TP, van

Erdewegh P. Identifying SNPs predictive of phenotype using random forests.

Genetic Epidemiology 2005, 28:171-182.

17. Bao L, Cui Y. Prediction of the phenotypic effects of non-synonymous single

 150

nucleotide polymorphisms using structural and evolutionary information.

Bioinformatics 2005, 21:2185-2190

18. Arun K, Langmead CJ. Structure based chemical shift prediction using random

forests. 2005, Article number: CMU-CS-05-163 School of Computer Science,

Carnegie Mellon University.

19. Sander O, Sommer I, Lengauer T. Local protein structure prediction using

discriminative models. BMC Bioinformatics 2006, 7:14.

20. Craven MW, Shavlik JW. Extracting tree-Structured Representations of

Trained Networks. In Advances in Neural Information Processing Systems

volume 8. MIT Press, Cambridge, MA, 1996.

21. Browne A, Hudson BD, Whitley DC, Ford MG, Picton P. Biological data

mining with neural networks: implementation and application of a flexible

decision tree extraction algorithm to genomic problem domains.

Neurocomputing 2004, 57:275-293.

22. Gupta R, Birch H, Rapacki K, Brunak S, Hansen JE. O-GLYCBASE version

4.0 a revised database of O-Glycosylated proteins. Nucleic Acids Res. 1999,

27:370-372.

23. Witten IH, and Frank E. Data mining: practical machine learning tools and

techniques, 2nd edition. Morgan Kaufmann, San Francisco 2005:365-483.

24. Hirst JD, Vieth M, Skolnick J, Brooks CL III. Predicting leucine zipper

structures from sequence. Protein Engineering 1996, 9:657-662.

25. Gibrat JF, Garnier J, Robson B. Further developments of protein secondary

structure prediction using information theory. New parameters and

consideration of residue pairs. J. Mol. Biol. 1987, 198:425-443.

26. Obenauer JC, Cantley LC, Yaffe MB. Scansite 2.0: proteome-wide prediction

 151

of cell signalling interactions using short sequence motifs. Nucleic Acids Res.

2003, 31:3635-3641.

27. Jones DT. Protein secondary structure prediction based on position-specific

scoring matrices. J. Mol. Biol. 1999, 292:195-202.

28. Adamczak R, Porollo A, Meller J. Accurate prediction of solvent accessibility

using neural networks-based regression. Proteins: Struct. Funct. Bioinf. 2004,

56:753-767.

29. Black SD, Mould DR. Development of hydrophobicity parameters to analyze

proteins which bear post- or co-translational modifications. Anal. Biochem.

1991, 193:72-81.

30. Kotsiantis S, Kanellopoulos D, and Pintelas P. Handling imballanced datasets:

a review. GESTS Int. Trans. Comp. Sci. Eng. 2006, 30:25-36.

31. Kotsiantis S, and Pintelas P. Mixture of expert agents for handling imbalanced

data sets. AMCT 2003, 1:46-55

32. Chawla NV, Bowyer KW, Hall LO, and Kegelmeyer WP. SMOTE: Synthetic

minority over-sampling technique. J. Artificial Intelligence Res. 2002, 16:321-

357.

33. Tomek I. Two modifications of CNN. IEEE Transactions on Systems, Man

and Communications 1976, 6:769-772.

34. Estabrooks A and Japkowicz N. A Mixture of experts framework for learning

from imbalanced data sets, in Advances in intelligent data analysis. Lecture

Notes Comput. Sci. 2001, 2189:34-43.

35. Chan PK and Stolfo SJ. Toward scalable learning with non-uniform class and

cost distributions: a case study in credit card fraud detection. In Proceedings of

the fourth international conference on knowledge discovery and data mining

 152

2001, pp164-168.

36. Yan R, Liu Y, Jin R and Hauptmann A. On predicting rare classes with SVM

ensembles in science classification. In IEEE international conference on

acoustics speech and signal processing, 2003.

37. Matthews BW. Comparison of the predicted and observed secondary structure

of T4 phage lysozyme. Biochem. Biophys. Acta 1975, 405:442-451.

38. Zar, J.H. BioStatistical Analysis. 4th edition. Prentice Hall, Upper Saddle

River NJ; 1970:p. 633.

39. R Development Core Team (2007). R: A language and environment for

statistical computing. R Foundation for Statistical Computing, Vienna,

Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

40. Carega C, Sinapov J, Silvescu A, Dobbs I, and Honaver V. Glycosylation site

prediction using ensembles of support vector machines classifiers. BMC

Bioinformatics 2007 8:438.

41. Chen YZ, Tang YR, Sheng ZY and Zhang Z. Prediction of mucin-type O-

glycosylation sites in mammalian proteins using the composition of k-spaced

amino acid pairs. BMC Bioinformatics 2008 9:101.

42. Hochbaum DS, and Shmoys DB. A Best possible heuristic for the k-center

problem. Math. Oper. Res. 1985 10:180-184.

 153

Chapter 5: Conclusions

The topics discussed in this thesis are at the centre of bioinformatics and

computational biology. The prediction of dihedral angles has many potential uses in

protein structure prediction and determination. Glycosylation is a key PTM, which is

heavily involved in the biology of all organisms. It is involved in the regulation of

various biological processes and is be important in signalling between cells, in the

immune system and in many other aspects of biology.

Our hypothesis for the work in chapter 3 was that using the as yet untested method of

SVR would improve prediction accuracy. We also wished to test the use of predicted

secondary structure to enhance the prediction of dihedral angles. For this reason our

initial experiments replicated the work of Wood and Hirst1. Reproduction of the

Cascade Correlation networks predictor was based on incomplete information and was

thus not entirely successful. We nevertheless obtained some potentially useful

predictions, although the accuracy was well below that of state of the art methods such

as PsiPred2. For the remainder of the chapter we focused on dihedral angle prediction,

both with and without the secondary structure predictions obtained from CASCOR.

Dihedral angles have potentially more use than secondary structure predictions. They

give more information about the 3D structure than a three state secondary structure

prediction, since it is possible to infer the orientation of the elements of the protein

structure from the dihedral angles. It is also possible to use predicted dihedral angles

as restraints for molecular dynamics and as a starting point for a complete 3D

structure.

We began by discussing the choice of the Gaussian kernel in the SVR. The selection

 154

of the kernel is a crucial aspect, as is borne out by the differing accuracy of the

kernels. The Gaussian kernel was clearly better based on our results. Optimising of the

user defined parameters of the SVR was also a crucial step to undertake. These

parameters can potentially have a large effect on the results of a given experiment.

The optimisation gave us a useful, but surprisingly small, improvement over un-

optimised SVR. We used predicted secondary structure information to enhance the

sequence representation and improve Ψ dihedral angle prediction. We also used

normalization methods that have been previously employed by Real Spine 23.

Structural information only resulted in a small gain in accuracy. However, the

normalisation method resulted in a large improvement. We predicted Φ using similar

methods, again using Real Spine 2’s normalisation method. No predicted secondary

structure was added to the sequence representation for Φ prediction, since it does not

have the same relevance. The best results are given by the normalised predictions in

the case of Ψ with predicted structural information. In comparison to other work this

method does not beat the state of the art methods such as Real Spine, though it is more

accurate than the prediction of dihedral angles with Destruct1. However, the accuracy

is far behind that of Real Spine XI4, which was published during the writing of this

thesis. The conclusion reached is that there is no improvement over the state of the art

methods to be gained using SVR, although SVR is an improvement on Cascade

correlation networks, and indeed there is also a loss of speed over other methods. In

the wider context of protein structure, prediction of the dihedral angles would be

extremely valuable, and is an important goal on the route to computational

determination of a protein’s structure. In the future the accuracy of dihedral angle

prediction can still be improved upon and it is likely that this improvement will take

the route of highly focused neural networks grouped into ensembles with each

 155

predicting a part of the complete protein structure.

 Also as part of chapter 3, we investigated a potential application of our dihedral angle

predictions in NMR assignment, using Φ angles to assist in the solving of the Karplus

equation. Such an application has not been attempted before, but would be a useful

tool for the assigning of NMR spectra of proteins. This application still has the

potential to be successful. However, this will require a much greater accuracy of the

experimental measurements of 3 bond J couplings and of the prediction of dihedral

angles, as our experiments here have shown. Currently, dihedral angles are assigned

using the Talos software5 from a relatively small subset of proteins. Using the Karplus

equation would allow the assignment of dihedral angles without referring to an

example dataset, but this depends on the ease of obtaining the experimental results.

In Chapter 4, we presented our research into predicting glycosylation sites. To test the

feasibility of our initial hypothesis, we first looked for patterns in the amino acids

surrounding glycosylation sites. Our frequency analysis shows that there are indeed

amino acids, which are significantly increased or decreased in proximity of

glycosylation sites. This has the implication that there are underlying motifs in the

sequence that confer an increase in the likelihood of glycosylation. Pairwise patterns

were generated within sequence windows. The frequency of occurrence of these pairs

of amino acids shows that some patterns are much more likely to occur around

glycosylated residues. This information was used to weight sequences, which were

then used to train random forest. We balanced the dataset utilising an ensemble of

random forests each trained on a balanced dataset created by under sampling from the

training data. The sampling of the negative (majority class) was carried out without

 156

replacement so the maximum information is retained. This method gave a large

improvement in accuracy over both the unbalanced data and balancing the data using

random under sampling alone. The resulting prediction program, GPP, produces

accurate predictions of both N-linked and O-linked glycosylation sites. Comparing

these predictions to other prediction methods it is clear that GPP is the best prediction

method available. It scores higher in both accuracy and in Matthews correlation

coefficient, indicating it makes significantly fewer false positives than other methods.

The most recent prediction methods, are close to GPP in overall accuracy, but worse

in at least some areas. In terms of interpretability all methods are equally black box in

nature, making our work to interpret the random forest all the more important. In the

wider context GPP is a useful tool for allowing the targeting of experiments, and for

computational analysis of a large number of sequences. It is the best software

available for these tasks.

 The model generated by GPP is opaque, i.e. non-interpretable. To address this, the

trepan algorithm was used to generate comprehensive rules in the form of a decision

tree that represents the model generated by random forest. This showed some rules

that were in agreement with experiment. There were, however, some details missed by

trepan, possibly due to the nature of the m of n rules used therein, which did not seem

to allow negative selection. So some sequence motifs that block glycosylation were

not shown. There was also at least one rule that was puzzling in that it has no

experimental evidence supporting it. Despite all this, the rules produce were able to

provide some insight into the glycosylation process. These rules are potentially useful

both for the understanding of the biological mechanism that dictates whether a residue

is glycosylated or not, and to understand the weak points of the machine learning

 157

method and suggest potential improvements. As a further experiment farthest first

clustering was employed to classify the glycosylation site by linkage sugar type. This

had little success and a different approach may be required in order to successfully

determine the linkage sugar from sequence information. Such information would help

to augment proteomics studies by indicating what may be attached to a given

glycosylation site. However, the sugars attached may be tissue specific, so it may not

be possible to determine the glycan attached to a glycosylation site without referring

to factors in the surrounding environment.

The work discussed here gives scope for future studies. Of the work in chapter 4, both

the novel balancing method and the pairwise pattern method could conceivably be

used in other work. The general method of weighting pairwise patterns could be

applied to many different problems involving the classification of sequences.

Particularly interesting would be to apply this to the prediction of other PTMs for

which it would be very much suited. It would also be interesting to see if such a

method could be used to improve upon the dihedral angle prediction method of

chapter 3, since pairs of residues might denote hydrogen bonds that are important for

defining a particular type of secondary structure. The balancing method can be used to

balance any set of imbalanced data, and it would be interesting to look into the

benefits of this method in a wider range of situations. The future course of the

research discussed here promises to lead to the use of accurate predictions of protein

structure which can be used for design of proteins and for targeting experimental

research, although this work leads the methods used away from SVR and suggests that

the methods employed by Real Spine XI are a better bet. Future prediction of PTMs

will yield both targeted experiments but also potential drug targets and a greater

 158

understanding of some of the fundamental process in regulation of the cell and in

intercellular signalling as well as of the diseases associated with these areas of

biology.

5.1 References

1. Wood MJ, and Hirst JD. Protein secondary structure prediction with dihedral

angles. PROTEINS: Struct. Funct. Bioinf. 59:476-481.

2. Jones DT, Protein secondary structure prediction based on position-specific scoring

matrices. J. Mol. Biol. 1999, 292:195-202.

3. Dor O, and Zhou Y. Real-SPINE: An integrated system of neural networks for real-

value prediction of protein structural properties. PROTEINS: Struct. Funct. Bioinf.

2007 68:76-81.

4. Faraggi E, Yang Y, Zhang S, and Zhou Y. Predicting consensus local structure and

the effect of its substitution for secondary structure in fragment-free protein structure

prediction. Structure 2009 17:1515-1527

5. Cornilescu G, Delagio F, and Bax A. Protein backbone angle restraints from

searching a database for chemical shift and sequence homology. J. Biomol. NMR

1999, 13:289-302.

 159

Appendix A

Structures of the 20 standard amino acids

 160

Appendix B

The following tables contain the complete frequency statistics for glycosylated Ser,

Thr and Asn residues. Significant increases are shown in bold significant decreases in

italics. The results in these tables as well as the methods used to obtain them are

discussed in chapter 4.

Table B.1 Frequency statistics for glycosylated Asn residues

Position -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7
A 19 15 18 17 20 18 15 23 0 15 21 22 15 16
C 12 9 12 12 10 4 5 11 5 17 11 8 16 9
D 13 23 10 8 9 13 7 8 0 14 6 17 12 19
E 19 11 11 12 21 13 19 7 0 15 21 18 19 27
F 6 12 10 6 16 13 10 12 0 7 7 5 15 4
G 19 19 15 18 14 9 20 30 0 9 16 17 19 12
H 6 7 6 8 9 8 5 8 0 7 9 7 10 6
I 10 13 15 11 10 6 7 19 0 12 10 4 13 6
K 10 6 11 9 9 14 11 12 0 17 10 9 9 17
L 30 18 23 26 27 28 22 25 0 22 21 18 23 13
M 13 2 10 6 3 5 3 5 0 6 4 5 2 4
N 12 7 14 13 9 18 20 12 0 8 8 12 9 16
P 13 22 15 20 7 15 11 1 0 6 31 18 18 14
Q 9 10 10 16 15 21 7 8 1 11 13 16 9 11
R 14 7 12 10 15 10 15 10 0 15 5 13 10 8
S 20 22 25 16 16 14 24 23 102 32 23 28 11 32
T 14 26 15 23 17 17 15 17 151 16 16 13 19 22
V 14 13 16 17 15 19 25 17 0 18 15 18 19 12
W 7 4 6 0 7 4 6 2 0 6 3 3 3 3
Y 6 14 6 12 12 12 13 10 0 6 9 8 7 5

 161

Table B.2 Frequency statistics for glycosylated Ser residues
Position -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7
A 22 36 24 36 29 30 37 31 34 21 26 30 25 19
C 4 7 3 3 4 13 3 7 3 17 6 5 6 5
D 6 12 6 18 14 10 6 4 3 10 11 8 5 5
E 15 19 22 19 23 24 8 16 10 13 10 11 9 6
F 6 3 4 7 4 3 4 4 7 6 2 6 2 5
G 19 26 30 17 20 22 27 40 27 27 16 23 19 41
H 9 5 4 8 6 9 1 4 0 4 6 8 6 13
I 13 13 7 6 8 11 16 9 15 7 7 4 17 8
K 6 8 15 11 2 6 5 9 11 3 4 11 12 8
L 20 12 20 20 15 11 13 18 12 15 24 16 17 15
M 16 6 10 5 7 4 3 0 5 8 3 5 4 5
N 16 10 12 9 12 12 6 6 7 4 8 21 9 10
P 31 38 35 35 41 34 46 28 40 51 42 34 32 35
Q 8 11 11 9 14 12 9 11 6 9 14 16 11 8
R 12 5 12 11 8 7 4 11 8 8 0 4 11 8
S 56 42 43 54 53 56 47 48 60 43 56 41 48 49
T 58 43 46 41 48 34 62 61 48 50 58 51 51 47
V 17 24 24 20 19 23 28 21 26 24 26 18 20 19
W 3 9 0 4 4 3 2 0 1 1 1 0 5 2
Y 6 5 8 4 5 8 8 2 5 5 3 8 7 4

Table B.3 Frequency statistics for glycosylated Thr residues
position -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7
A 59 54 60 66 48 52 81 51 77 62 47 41 41 47
C 11 3d 16 0 8 3 3 13 3 2 4 9 5 8
D 17 36 21 30 21 10 7 15 19 10 17 29 21 14
E 42 36 41 36 45 30 12 40 29 20 33 40 43 29
F 6 10 4 12 13 8 12 8 9 10 12 4 14 13
G 52 40 108 42 21 122 32 101 40 16 106 30 37 112
H 12 6 7 8 15 4 12 6 20 6 17 17 18 13
I 20 16 16 33 23 40 14 17 17 13 18 29 14 18
K 25 18 17 16 16 12 8 7 13 7 19 18 18 16
L 19 25 34 35 35 26 14 15 27 20 26 34 34 17
M 20 10 5 11 12 9 8 14 13 6 7 13 3 3
N 20 10 14 17 22 18 19 15 24 17 18 21 14 15
P 77 61 81 67 99 62 128 103 68 167 59 105 59 89
Q 22 27 15 25 30 14 19 22 15 28 17 20 24 17
R 33 22 17 28 8 13 21 11 25 9 15 30 30 16
S 81 67 65 68 74 70 89 67 76 74 63 59 52 70
T 101 168 96 130 117 115 107 95 118 131 127 95 156 87
V 47 40 37 33 50 46 69 51 42 35 30 42 32 36
W 2 10 4 1d 2 4 2 2 5 2 3 0 0 0
Y 11 6d 12 11 10 7 11 7 11 11 5 4 16 8

 162

Appendix C

The following are the complete decision trees generated by trepan for Asn, Ser and

Thr glycosylation. Full analysis and methods is given in chapter 4.

 163

Figure C.1 Complete decision tree for Asn glycosylation sites

 164

Figure C.2 Complete decision tree for Ser glycosylation sites

 165

Figure C.3. Complete decision tree for Thr glycosylation sites

 166

Appendix D

Listed below are the commonly found monosaccharides encountered in this thesis

Monosaccharides

Name Abbreviation
Galactose Gal
D-Glucose Glc
D-Mannose Man
L-Fucose Fuc
D-Xylose Xyl
D-Glucuronic acid GlcA
N-Acetyl-D-galactoseamine GalNAc
N-Acetyl-D-glucoseamine GlcNAc
N-Acetyl-Neuraminic acid NeuAc

