
HIPPO - An Adaptive Open Hypertext System

Paul K. Newton

Thesis submitted to the University of Nottingham for the
degree of Doctor of Philosophy, October, 1998

Acknowledgements

I would like to thank all my friends and colleagues who have helped me with this

research. I would like to extend particular thanks to my supervisor, Prof. David

Brailsford for his guidance and to Dr Helen Ashman for her invaluable comments

on this thesis. I would also like to thank the members of the Electronic Publishing

Research Group for their continued support and encouragement.

Paul Newton

1998

1

Contents

Overview 1

1 Introduction To Hypertext 5
1.1 Defining Hypertext Terms 7

1.1.1 The Node
7

1.1.2 The Link 10
1.1.3 The Anchor 15

1.2 Advantages Of The Hypertext Approach 17
1.3 Problems With Early Hypertext Applications 19

1.3.1 Navigation - the disorientation problem 19
1.3.2 Premature Segmentation 22

1.3.3 Maintaining Hypertext Structures 22

1.3.4 Cognitive Overhead
.................. 23

2 Developing The Hypertext Model 24

2.1 Open Hypertext 25

2.1.1 Integrating Applications
28

2.1.2 Hyperbases: hypertext-specific storage engines
31

2.1.3 Computation in open hypertext 31

2.1.4 Extensibility and tailorability
33

2.1.5 Formal models and hypertext standards 34

2.2 Distributed and Collaborative Hypertext 36
2.2.1 Degrees Of Distribution

36

2.2.2 Maintaining Distributed Hypertexts
38

2.2.3 Concurrency and Access Control
.............

39

2.2.4 Modes Of Collaboration 40

2.3 Adaptive Hypertext
42

2.3.1 Adaptive Features
42

2.3.2 Adaptive Techniques 44

2.4 Summary
45

11

Contents

3 Fuzzy Anchors 47
3.1 Limitations Of The Current Anchoring Model

........ 49
3.1.1 Anchors As First-Class Objects 49
3.1.2 Over-Specific Addressing Mechanisms 50
3.1.3 Static Anchors

.......................
52

3.2 Fuzzy Anchors
.......................... 53

3.3 Advantages Of Fuzzy Anchors
................. 55

3.4 Adaptive Fuzzy Anchors
.....................

57

3.5 Anchorbases
............................ 58

3.6 Prototype Implementation 60
3.6.1 Implementation Environment 60

3.6.2 Internal Representation Of Fuzzy Anchors 61

3.6.3 Presentation Of Fuzzy Anchors 64

3.6.4 File Format Of Anchorbases 65

3.6.5 Tools And Functionality 68

3.6.6 Adaptive Server
......................

74

3.7 Summary
.............................. 76

4 Building Adaptive Trees Using Linkbases 79
4.1 Separate Link Structure Using Linkbases 81

4.2 Using Linkbases As Building Blocks 83

4.3 Limitations Of The Linkbase Approach 84

4.4 Linkbase Inheritance Trees 85

4.4.1 Advantages Of Linkbase Trees 88

4.4.2 Extending Trees Using Linkbase Visibility 89

4.5 Adaptive Trees 91

4.5.1 Weighted Links 92

4.5.2 Weighted Inheritance Relationships
93

4.5.3 Adapting Inheritance Values 95
4.6 Distributed Trees 96

4.7 Combining Weighted Links, Weighted Trees and Fuzzy Anchors .. . 98

4.8 A Simple Example 99

4.9 Implementing Adaptive Linkbase Trees In The HIPPO System
103

4.9.1 Linkbases In The HIPPO Prototype 104

4.9.2 Linkbase Format 105

4.9.3 Linkbase Trees In The HIPPO Prototype 108

4.9.4 Linkbase Tree Format 110

4.9.5 Extending The Adaptive Server
111

4.10 Summary 112

111

Contents

5 HIPPO+ - Distributing The HIPPO Model 114

5.1 Summary Of The HIPPO Prototype 116
5.2 The Distributed HIPPO+ Model 119
5.3 Advantages Of A Distributed HIPPO Model 120

5.3.1 Scalability 121
5.3.2 Openness 121
5.3.3 Distribution 121
5.3.4 Heterogeneity 122

5.3.5 Interoperability 122
5.3.6 Extensibility 122
5.3.7 Computation

...................... 123

5.3.8 Tailorability 123

5.4 Existing Distributed Architectures
.............. 124

5.4.1 Inter-Process Communication
............. 124

5.4.2 Distributed Frameworks 125

5.4.3 Compound Documents
126

5.5 The CORBA Model 127

5.5.1 Object Request Broker (ORB)
............. 128

5.5.2 Interface Definition Language (IDL)
......... 129

5.5.3 Object Services 130
5.6 Implementing The HIPPO+ System 134

5.6.1 Node Browser 134

5.6.2 HIPPO+ Buffers 135

5.6.3 HIPPO+ Services Using ONC-RPC
138

5.6.4 HIPPO+ Service Interfaces 141

5.6.5 Execution Manager
142

5.6.6 HIPPO+ Registry
143

5.7 Extending The HIPPO+ Computational Model 145

5.7.1 Query Interface
147

5.7.2 HIPPO+ Trading Service
148

5.7.3 Hypertext Component Hierarchy (HCH)
......

150

5.8 Summary
.............................

152

6A Proposed Adaptive Model For HIPPO+ 156

6.1 Advantages Of An Adaptive HIPPO+ Model
157

6.2 Example Adaptive Services 158

6.2.1 Example 1....................... 158

6.2.2 Example 2............... 160

6.2.3 Example 3.... 162

6.3 Service Contexts 166

iv

Contents

6.3.1 User Stereotypes 166
6.3.2 Goal-Based Model 168
6.3.3 Document Objects 170

6.4 An Example Using Document Objects
........... 171

6.5 Weighted Services 175
6.6 Automatic Identification Of Useful Services 177
6.7 Combining With Other Adaptive Models

179

6.8 Summary
179

7 Discussion 183

7.1 Overview
........................... 183

7.1.1 Adaptive Fuzzy Anchors
185

7.1.2 Adaptive Linkbase Trees
187

7.1.3 Adaptive Distributed Systems
..........

189

7.2 Future Research 192
7.2.1 Developing Fuzzy Anchor Model

192

7.2.2 Developing Linkbase Trees
198

7.2.3 Developing HIPPO+ 200
7.2.4 User Evaluation

205

7.3 In Conclusion
207

A Early Hypertext Applications 208
A. 1 Augment/NLS

209

A. 2 Xanadu
209

A. 3 TEXTNET
209

A. 4 ZOG/KMS
210

A. 5 NoteCards
211

A. 6 Intermedia
212

A. 7 Neptune
212

A. 8 Guide/OWL
213

A. 9 HyperCard 213

B Open Hypertext Systems 215

B. 1 Sun's Link Service
215

B. 2 SP1 /2/3
216

B. 3 Microcosm
218

B. 4 Chimera 220

B. 5 Dexter Hypertext Reference Model
221

B. 6 MultiCard
222

B. 7 D2
224

B. 8 HyperDisco
225

V

List of Figures

B. 9 The Trellis Model 226
B. 10 The Hypertext Design Model (HDM)

................ ... 227
B. 11 MAX 228
B. 12 Hyper-G 229
B. 13 MHEG 230
B. 14 Hypermedia/Time-based Structuring Language (HyTime)

... ... 230
B. 15 Portable Document Format

..................... ... 232

B. 16 World Wide Web 234

C Fuzzy Anchor Specification 238
C. 1 Lexical Specification

............................ 238
C. 2 Grammar

................................... 239

D Linkbase Specification 241
D. 1 Lexical Specification

..................
241

D. 2 Grammar
......................... 242

E Linkbase Tree Hierarchy Specification 244

E. 1 Lexical Specification
..................

244

E. 2 Grammar
......................... 245

F Linkbase Tree Example 247

vi

List of Figures

1.1 A simple hypertext example 7
1.2 Frame-based nodes in Aquanet

...................... 9
1.3 Hierarchical links and cross-hierarchy links

............... 12
1.4 The anchor provides an endpoint for the hypertext link

........ 15
1.5 Anchor definitions using spans of text 16

2.1 Open hypertext using link services 26
2.2 The HAM hyperbase engine 32
2.3 CGI link computations in the World Wide Web 33
2.4 Hypertext interchange models 36
2.5 Distributed hypertext in the WWW 37

3.1 Separation of anchors, nodes and links
............... ... 50

3.2 Fuzzy sets use partial truth values to model uncertainty 54
3.3 Example of a fuzzy anchor 54
3.4 A typical example of a fuzzy anchor on a graphic image 55

3.5 Initial specification of a fuzzy anchor 57
3.6 Fuzzy anchor after adaptive modelling 58
3.7 Separating anchor definitions into anchorbases 59

3.8 Example of Acrobat Exchange software in use 62

3.9 Logical representation of fuzzy anchors 63

3.10 Fuzzy anchors using path descriptions
............... ... 64

3.11 A fuzzy anchor using a matrix of values 64
3.12 Using colour to represent anchors 65

3.13 A complete fuzzy anchor definition
................. ... 68

3.14 The HIPPO toolbar 69
3.15 Selecting anchors in HIPPO 69
3.16 Defining new anchors in HIPPO

70

3.17 Creating a new anchor in HIPPO
71

3.18 Editing anchor details
..................

72

3.19 Reusable anchor patterns in HIPPO
..........

74

3.20 Remote adaptive server
75

vii

List of Figures

3.21 Adapting fuzzy anchors in HIPPO 76

4.1 Using linkbases in open hypertext applications 82
4.2 Update problems with linkbases 84
4.3 Object-Oriented inheritance hierarchies 86
4.4 Linkbase inheritance trees 86
4.5 A simple engineering linkbase hierarchy

.............. ... 87

4.6 Deriving a new engineering linkbase
................ ... 89

4.7 Access control in inheritance hierarchies 90
4.8 Weighted hypertext links 93
4.9 Weighted linkbase hierarchy 94
4.10 Adapting a linkbase tree 96

4.11 Distributing linkbase trees 97

4.12 Simple biology link definition
.................... ... 100

4.13 A medical linkbase tree 101

4.14 Combining weighted links with weighted trees 101

4.15 Defining a fuzzy anchor on a picture of the human body 102
4.16 Using fuzzy anchors to amend the link weights 103

4.17 Anchor definitions maintained separately from links
....... ... 106

4.18 HIPPO linkbase format 106

4.19 An example weighted inheritance hierarchy 109

4.20 Extract from the parent linkbase
................... ... 109

4.21 New link weights inherited by child linkbase
........... ... 110

4.22 An example tree definition 110

4.23 Using the adaptive server to modify a linkbase tree 112

5.1 The HIPPO+ distributed model
119

5.2 The Remote Procedure Call (RPC)
125

5.3 Compound Document Frameworks
127

5.4 The Open Management Architecture
128

5.5 The ORB in the a client-server transaction
129

5.6 Interface Definition Language (IDL) example 130

5.7 Static and dynamic invocation in the ORB
131

5.8 The CORBA Naming Service 132

5.9 Advertising services using trader objects 133

5.10 Federated traders
133

5.11 The HIPPO+ Architecture
135

5.12 The HIPPO+ Node Browser 136

5.13 The HIPPO+ buffer browsing tool
137

q 1A An Pxamnik RPC interface
139

5.15 The RPC development cycle
139

viii

List of Figures

5.16 Using rpcbind in the ONC RPC model 140
5.17 The Execution Manager 142
5.18 Some arguments automatically filled by HIPPO+ client 144
5.19 An extract from the HIPPO+ registry 145

5.20 Extending the computational model to incorporate additional services 147
5.21 The Query Interface browser 149
5.22 The HIPPO trader model 150
5.23 The HIPPO+ trader tool 151
5.24 An example HCH hierarchy 152
5.25 The Hypertext Component Hierarchy browser 153

6.1 A simple default link service 159

6.2 A more complex medical link service 159

6.3 Default viewing service 160

6.4 Multiple viewing services tailored to content formats
....... .. 161

6.5 Alternative semantics of get selection 165

6.6 Stereotype model matches user categories to sets of service imple-

mentations
167

6.7 Each node has an associated service profile 171
6.8 A basic document object for a simple text node 172

6.9 New document object for graphical archive node 173
6.10 Document object for programming example 174
6.11 Weighted document objects

177

6.12 Adapting weighted service values 178

6.13 User stereotyping using multiple document objects 180

7.1 Merging multiple inheritance trees
200

7.2 An adaptive HIPPO+ implementation based on compound documents 203

B. 1 Sun's Link Service
216

B. 2 The SP3 architecture
217

B. 3 The Microcosm model 219

B. 4 The use of views in the Chimera system
220

B. 5 The Dexter Reference Model
222

B. 6 An example using the Dexter model
223

B. 7 The MultiCard system
224

B. 8 HyperDisco class hierarchies 226

B. 9 HyTime modular architecture
232

B. 10 Using Acrobat Exchange to view PDF documents 233

B. 11 An example HTML definition
.................

235

B. 12 Netscape Navigator web browser
...............

236

ix

Abstract

The hypertext paradigm offers a powerful way of modelling complex knowl-

edge structures. Information can be arranged into networks, and connected using
hypertext links. This has led to the development of more open hypertext design,

which allow hypertext services to be integrated seamlessly into the user's environ-
ment. Recent research has also seen the emergence of adaptive hypertext, which
uses feedback from the user to modify objects in the hypertext. The research pre-
sented in this thesis describes the HIPPO hypertext model which combines many
of the ideas in open hypertext research, with existing work on adaptive hypertext

systems.
The idea of fuzzy anchors are introduced which allow authors to express the un-

certainty and vagueness which is inherent in a hypertext anchor. Fuzzy anchors

use partial truth values which allow authors to define a "degree of membership"
for anchors. Anchors no longer have fixed, discrete boundaries, but have more in

common with contour lines used in map design. These fuzzy anchors are used as
the basis for an adaptive model, so that anchors can be modified in response to

user actions. The HIPPO linking model introduces linkbase trees which combine link

collections into inheritance hierarchies. These are used to construct reusable inher-

itance trees, which allow authors to reuse and build on existing link collections.
An adaptive model is also presented to modify these linkbase hierarchies. Finally,

the HIPPO system is re-implemented using a widely distributed architecture. This

distributed model implements a hypertext system as a collection of lightweight,

distributed services. The benefits of this distributed hypertext model are discussed,

and an adaptive model is then suggested.

Overview

The field of hypertext has experienced renewed interest with the recent success of
the World Wide Web. In particular, the hypertext community has seen the emer-
gence of a more open approach to hypertext applications. Hypertext systems are no
longer viewed as closed, monolithic applications, but as ubiquitous services which
can be incorporated into existing environments. This move towards open hypertext
has continued to develop and refine existing hypertext abstractions. Linking infor-

mation can be maintained separately from the underlying node contents to provide
a more loosely-coupled linking model. The role of the anchor in a hypertext has also
been developed to provide a clean separation between the addressing and linking

mechanisms.
Hypertext research has continued to develop in other directions with distributed

and large-scale hypertext environments. Hypertext has been used to manage large

numbers of users and to support collaborative working environments. The idea

of adaptive hypertext has also emerged as a new research area. This incorporates

information about the user into the hypertext model, which can be used to modify

and change the hypertext.

This thesis introduces the HIPPO model which attempts to combine many of
these areas into a single environment. The HIPPO system develops the anchor-
ing and linking models which are widely used in existing open hypertext systems.
This research incorporates adaptive modelling techniques into this new hypertext

model, to provide a responsive and tailorable approach to open hypertext. The idea

of a distributed hypertext environment is explored, and used to implement some of

the ideas in this thesis. This distributed implementation attempts to provide a more

open environment, which embraces ideas from open hypertext, adaptive systems

and distributed software architectures.

Chapter 1 introduces the main ideas behind hypertext modelling. Basic hypertext

objects are introduced - the node, link and anchor. The discussion shows how hyper-

text can be used to offer new opportunities for knowledge structuring, and how this

has been realised in early hypertext applications. The chapter identifies many of the

1

Overview

common problems associated with the hypertext model, and shows how these have
been addressed in the hypertext community.

Chapter 2 shows how hypertext research has developed since these early applica-
tions. The idea of open hypertext is introduced which attempts to move away from

closed, monolithic hypertext applications towards more open link services. Some of
the issues involved in open hypertext are explored, along with a summary of some
important systems. Distributed and collaborative models of hypertext are discussed

which address the problems of large-scale hypertext systems. Distributed hypertext

systems must address additional problems such as concurrency control and sup-
port for collaborative working practices. Finally, the ideas of adaptive hypertext

are introduced which attempt to incorporate some elements of the end-user into
the hypertext model. Some of these existing approaches to adaptive hypertext are
discussed along with some of the most influential adaptive systems.

Chapter 3 introduces the idea of fuzzy anchors. Fuzzy anchors attempt to address

some of the limitations of existing anchoring models. These anchors incorporate the

idea of fuzzy-set membership, to support a more expressive and less discrete notion

of anchoring. The discussion shows how fuzzy anchors can be used in a hypertext,

and explores some of the advantages that this offers. The research introduces an

adaptive model which uses feedback from the user to modify fuzzy anchor defini-

tions. Finally, a prototype implementation of the HIPPO system is discussed which
implements the ideas in the chapter.

Chapter 4 develops the idea of the linkbase which has been used in many open
hypertext systems. The linkbase is used to separate the hypertext linking infor-

mation from the underlying node contents and offers significant advantages over

conventional approaches which embed links in the nodes themselves. The discus-

sion explores some of the limitations of the linkbase approach, and argues that the

linkbase should be viewed as a first-class object in the hypertext model. Linkbase

trees develop the idea of inheritance to support a new model of linkbases based on

reuse and sharing. Linkbases can be expressed in terms of existing link collections,

and can refine and tailor other linkbases. The idea of weighted links and weighted

inheritance trees are introduced to support an adaptive environment, and these are

combined with the fuzzy anchor model described in Chapter 3. The discussion de-

velops the ideas to support a widely distributed model, which allows linkbases to

2

Overview

be located throughout the network domain. The HIPPO system implemented in
Chapter 3 is also extended to support these ideas.

Chapter 5 builds on the ideas which are presented in earlier chapters, and ap-
plies these to a distributed hypertext environment. Chapters 3 and 4 developed
the HIPPO anchoring and linking models to provide a more flexible and adaptive
hypertext model. Anchor and link definitions can be manipulated and modified in

response to user actions, and these new hypertext abstractions help to model more
subtle and changing relationships. The HIPPO prototype which is discussed in

these chapters is implemented as a single closed and monolithic application, which
contrasts with many of the aims of open hypertext described in Chapter 2. This

chapter attempts to re-implement many of the ideas presented in earlier chapters
using a more open and distributed environment. This distributed HIPPO+ appli-
cation identifies fine-grained hypertext operations and implements these as remote
hypertext services. The functionality of the system, and the actual hypertext system
itself is no longer implemented as a single application but is distributed through-

out the network environment. The user invokes remote services to support com-

mon hypertext operations, and the HIPPO+ client provides a number of tools to
help the user manage this new environment. The new prototype builds on some

of the ideas developed in other distributed research fields, and applies some of the
lessons from distributed software systems, to the hypertext community. The chap-
ter identifies some of the advantages of implementing a distributed system over
the existing HIPPO client, and suggests that a more loosely-coupled, widely dis-

tributed approach may be more appropriate for supporting the ideas introduced in

this thesis.

Chapter 6 develops the idea of a distributed HIPPO+ system further, and proposes

an adaptive framework for the HIPPO+ system. The chapter identifies some of

the limitations of the current HIPPO+ implementation, and suggests some of the

advantages of applying adaptive modelling techniques to a distributed hypertext

system. This chapter introduces an adaptive model which allows the particular

components and hypertext services which are presented by the user, to change and

adapt to meet the precise needs of the user. Hypertext operations can be mapped on

to different remote services and instances, so that the definitions of common hyper-

text operations changes over time. A number of alternative adaptive techniques are

considered, before developing the concept of document objects. Document objects de-

fine mappings between abstract hypertext operations and actual remote instances,

and associate these mappings with a particular node. Each node has a different

3

Overview

document object which allows the hypertext service profile to be defined at the doc-

ument level. These document objects are developed further to include the notion of
weighted services, which provide a basis for adaptive modelling. This model has not
been implemented in the current HIPPO and HIPPO+ prototypes.

Chapter 7
This final chapter includes a complete summary of the thesis, and outlines the

key ideas to emerge from the HIPPO research. The chapter identifies the main

achievements of the thesis, and the key contributions of the research to the hyper-

text community. The discussion also identifies problems which were encountered
during the course of the research, and suggests some alternative approaches that

could be considered. The chapter closes with a discussion of future research direc-

tions, and areas that could be developed further in future work.

Appendix A includes a more detailed review of early hypertext applications.

Appendix B provides a detailed summary of existing open hypertext systems.

Appendix C The HIPPO anchor definition language.

Appendix D The HIPPO linkbase definition language.

Appendix E The HIPPO linkbase tree hierarchy language.

Appendix F includes a sample linkbase hierarchy, and shows how this can be spec-
ified using the HIPPO tree language.

4

Chapter 1

Introduction To Hypertext

The field of hypertext has generated much interest in recent years, most notably
with the success of the World Wide Web. While many researchers approach the
discipline from different perspectives, most agree with the hypertext ideas put for-

ward by Ted Nelson in the 1960s [Ne193], as a way of expressing non-linear writings.
Items of information can be arranged into complex structures, connected together
by a series of links and relations. Hypertext frees authors from the linear restric-
tions of conventional media such as paper books, and allows alternative layouts and

structures to be explored. Readers can explore a hypertext by choosing their own

route through the information space - wandering off along links which grab their

attention or examining some branches in more detail. A hypertext does not offer a

single, authoritative reading path, but instead provides many alternative routes. A

hypertext embodies many different paths and opinions, freeing the reader from the

constraints of the printed book.

Researchers such as Engelbart [Eng84a, Eng95] and Nelson [Ne193, Ne195] did

much to popularise the field of hypertext during the 1960s. However, it is widely
acknowledged that the original ideas for hypertext can be attributed to the work of
Vannevar Bush several decades earlier. Bush was Science Advisor to President Roo-

sevelt, and was becoming increasingly concerned with the overwhelming volume

of information made available to academics of the day. Bush looked to better ways

of managing information, and published his findings in a paper titled As We May

Think [Bus45]. In this paper he observed:

... our methods of transmitting and reviewing the results of research are gener-

ations old and by now are totally inadequate for their purpose.

Bush went on to describe the memex system, which an individual could use to

store all their books and records, using microfilm technology. Items could be called

up at the press of a button and records could be easily copied or incorporated into an

individual's private library. Furthermore, Bush suggested mechanisms for associa-

5

Chapter 1: Introduction To Hypertext

tive linking which allowed related items to be joined together using trails. Bush de-

scribes a scenario where a reader explores the information space, creating a trail of
items of interest, and occasionally wandering off on related paths. Future browsers

would explore these trails, benefiting from the previous readers' work, and perhaps
adding extra information of their own. The actual realisation of the memex device

relied on the technology of the day, using microfilm, projectors and photocells, yet
it is the ideas of associative linking and re-use of trails that went on to inspire future

generations of hypertext researchers.
When Bush's vision appeared in Atlantic Monthly in 1945 (although some of

the ideas were developed some 10 years earlier), it provoked considerable discus-

sion, yet we would have to wait almost 20 years before research would begin in the
hypertext field. In 1962, Doug Engelbart began work on the Augment project, de-

signed to "augment human intellectual capabilities". The system included support
for group collaboration, and pioneered the use of multiple windows and mouse
control - concepts that we take for granted in modern systems. The system was
implemented as NLS (oN-Line System), before being marketed commercially as
Augment. This early work pioneered many of todays modern computing concepts,

and was to prove a major influence on the developing hypertext community. Also

around this time, Ted Nelson was developing his Xanadu system - an ambitious vi-

sion of a unified literary environment, where all the world's literature is connected,

or intertwingled, in one universal hypertext [Nel931. These early ideas were among
the most extravagant, and although Nelson's vision has never been fully imple-

mented, work still continues on the Xanadu project to this day.

The study of hypertext theory is a very young discipline compared to many

other areas of computer science research, yet it has a relatively rich history. Further

systems continued to be developed, and some of these more influential projects are
discussed in greater detail, later in the chapter. Early systems created complete

working environments, addressed issues such as group collaboration and sharing

and was designed for processing large volumes of information. In contrast, the

next generation of hypertext applications were aimed at the single user, with more

of a focus on graphics support and presentation issues. These included systems

such as KMS, NoteCards, Intermedia, Guide and HyperCard, many of which were
developed for workstations for personal use. Systems such as HyperCard did much

to popularise hypertext, and make hypertext functionality available to the ordinary

user.
The introduction of powerful graphics engines and workstations has had an

important effect on the development of hypertext applications. In particular, the

widespread use of the point-and-click paradigm, whereby users interact with mul-

tiple windows using a mouse, has had a profound impact on modern hypertext

systems. The majority of contemporary hypertext applications require the user to

6

Chapter 1: Introduction To Hypertext

Figure 1.1: A simple hypertext example

select items of information by clicking on a region, which results in the traversal of
a link. Recent developments in computer graphics and hardware technology have

also given rise to the idea of hypermedia, where information is no longer limited to
textual data but may contain multiple media types such as video and sound. This

terminology has been the cause of much confusion, as many hypertext systems pro-
vide support for graphics and other media. The motivation behind hypertext is to

explore alternative ways of structuring and managing complex information spaces,
and while alternative media can raise interesting technology-specific issues, the un-
derlying principles and goals remain the same. As such, the author does not believe

the distinction to be significant, and the terms are used interchangeably in this the-

sis.

1.1 Defining Hypertext Terms

The underlying principle behind hypertext is very simple - chunks of information,

connected together using links (figure 1.1). However, this simple concept has been

interpreted in vastly different ways by researchers and academics. For this reason,
it seems useful to define what exactly is meant by hypertext, and hypertext sys-
tems, and to introduce some accepted terminology. These terms are then evaluated
in light of some of the more popular hypertext applications, to demonstrate the dif-

ferences between competing applications.

1.1.1 The Node

The node is the fundamental building block of a hypertext, and provides a basis

for structuring and shaping an information space. A hypertext node represents the

7

Chapter 1: Introduction To Hypertext

fragments of a text - the essential information chunks, or objects, which go to make
up a piece of prose, a book, a model etc. The node aims to encapsulate the very
essence of information, providing a tangible object which can be manipulated and
arranged as a whole. The term node has become widely accepted in the hypertext

world, although it has been known under many different names (eg. a card in Note-
Cards [HMT87, Ha187], Landow's lexia [Lan92], writing spaces in Storyspace [BJ871

etc). Similarly, the hypertext node has been realised in widely differing ways, ap-
plying different interpretations and constraints. This section highlights some of the

more significant issues involved in supporting hypertext nodes.

Content Types

One of the most immediate differences between early applications and later genera-
tions of hypertext systems lies with the content restrictions placed upon the hyper-

text node. Traditionally, hypertext systems focussed on the application of hyper-

text ideas to conventional writing practice. Hypertext applications were concerned

mainly with textual representation, so many early systems such as TEXTNET [Tri86,

Tri83] and ZOG [AM84b, AM84a] were limited to simple textual node content. Early

systems were limited by the hardware of the time, so as graphics capabilities devel-

oped, so hypertext systems were extended to allow multiple content types (Hyper-

TIES [Shn87], KMS [AMY88], NoteCards [HMT87]). It is important to note that the

introduction of diverse media types such as graphics and audio raise a number of
issues and problems. Many of the accepted hypertext abstractions and presentation

methods no longer apply to alternative content formats, and have led to the devel-

opment of alternative hypermedia technologies. However, the majority of modern
hypertext systems now offer support for additional node contents and media types.

Size Restrictions

Another issue involved in the definition of the hypertext node concerns the size of

the actual node and the amount of content which is contained. Some systems such

as KMS [AMY88] have fixed size nodes, which restricts the volume of information

which can be stored. Other applications such as TEXTNET [Tri86], do not place any
limit on node size, and allow readers to scroll through a node at their leisure. It

is not clear what the optimum node size should be or exactly how the size of each

node affects the hypertext experience. For example, Akscyn et al [AMY88] argue

that KMS intentionally restricts node size to reduce the reliance on scrolling. Larger

nodes can often be represented as several small nodes; indeed, in some cases a large

node can suggest that the node has not captured the essence of a fragment. How-

ever, despite these arguments there are many cases when larger nodes are required,

and it can be useful to include larger volumes of information. As such, most contem-

8

Chapter 1: Introduction To Hypertext

Name: Ferrari

Type: Car

Price: 200,00

Colour: Red

Speed: 21 0mph

ments: A very fast car'.

Figure 1.2: Frame-based nodes in Aquanet

porary hypertext applications adopt the more flexible policy of allowing arbitrary
sized nodes in the hypertext. This problem of identifying nodes and fragmenting a
body of information in to chunks is explored in more detail later in the chapter.

Node Structure

The previous discussion has focussed on the type and quantity of information en-
capsulated by hypertext nodes, but it is also important to consider the internal struc-
ture of the node. The approach taken by the majority of hypertext applications is

to ignore the issue of content structure. Node information can appear in any form

and can be arranged in any way that the author deems necessary. Other systems
impose a more structured view of nodes; for example, Aquanet [MR92, MIRJ91]

uses highly-structured, frame- based nodes, which consist of fixed fields (figure 1.2).

Similarly, the VIKI system [MS95, MIC941 borrows from the Aquanet approach,

adopting a more relaxed, semi-structured node definition. The World Wide Web

[WWWa] uses the HTML markup-language to define node contents, by identifying

generic blocks, paragraphs, lists etc. This form of logical structuring is largely used
to simplify the display of node contents and interchange between heterogeneous

platforms, but can be used as the basis for further node processing. .
Again, it is unclear which approach to node structuring is the most useful -

highly structured objects or more informal definitions. Akscyn et al discuss how

unstructured approaches can be used to support more formal definitions of node

content. Users of the KMS system would repeatedly use familiar layouts and prac-

tices when defining nodes, so that a form of de facto structure would emerge (eg. a

title followed by the main text body, then a set of links which can be selected). A fa-

miliar layout helps the reader identify common information and to navigate around

the contents of a node. Also, highly-structured nodes allow the hypertext system to

perform additional processing of node contents, to help users in their reading tasks.

9

Chapter 1: Introduction To Hypertext

Node Typing

In addition to an internal node structure, hypertext environments can introduce the
idea of typing, such that nodes are assigned a category or label. For example, the
BIBIS tool [CB89] uses this idea of node typing to aid the design process, so that
users can define issue nodes, positions, arguments etc. The Neptune system [DS86]

allows users to attach arbitrary attribute-value pairs to nodes, to support a form of
node typing. The NoteCards system [HMT87] also supports the idea of different

node types (Browsers, Fileboxes etc). By introducing the idea of node typing, hyper-
text tools can provide additional functionality to the user. Nodes can be viewed
and displayed according to types, unwanted nodes can be filtered out, node types

can be used to enforce particular behaviours or to constrain the available operations
etc. Many systems do not support a node typing system, choosing instead to utilise
a single node type (for example, the KMS system unifies all nodes into a single
frame type). A single node type can greatly simplify the user's interaction with the
hypertext, and can simplify the implementation of the hypertext environment (eg.

reduced command set, no type-checking system etc).

1.1.2 The Link

The motivation behind hypertext is to build a non-linear, branching information

space by arranging nodes into more expressive structures. Objects and pieces of
text do not have to follow sequentially, but can form branching networks which are
connected together using hypertext links. These links encapsulate the relationships
between each of the items, and introduce a richer semantics into the hypertext. Re-

searchers have developed the simple notion of the hyperlink along different lines,

and this section explores some of the more significant issues surrounding the im-

plementation of hypertext linking.

Link Direction

A hyperlink denotes a relationship between two items of information and is most

commonly associated with some form of traversal or navigation. A user typically

selects a link to explore, and is then presented with the destination item which re-

sides at the other end of the link. The idea of navigation associated with a link raises
the issue of link direction. Can a user traverse the link in both directions, or must the

user navigate the structure in a particular direction? The HyperCard [App87] and
Intermedia systems [YHMD88] place no limitation on direction, and allow users
to traverse the link from either end. Conversely, other systems such as NoteCards

[HMT87] and HyperTIES [Shn87] adopt the idea of directional links. The author

specifies a direction for each link, and this determines the direction that the user

10

Chapter 1: Introduction To Hypertext

must navigate. In some cases, hypertext environments support the idea of a his-
tory or backtracking mechanism which allows readers to return to previously visited
nodes (eg. VVWW browsers [Net, MSE]).

However, the notion of directionality becomes more difficult when we explore
the idea of a hypertext link in more detail. A link represents some relationship or
dependency between two objects (a link may support more than two end-points,
but this is discussed later in the section). A hypertext link has an actual meaning,
some semantics, over and above a simple navigational role. In this sense, the idea of
a link direction can be confusing, and may mean many different things. In the dis-

cussion of the Dexter model [GT94], Gronbaek et al identify several interpretations

of link directionality:

" Semantic direction
For example, item A contradicts B. This relationship has a single direction; the

reverse direction is not always valid.

" Creation direction
This depends on the order in which the author created the link.

" Traversal direction
This is the conventional view of directionality, in which the hypertext appli-
cation determines which direction the user can traverse.

Complex Structures

The concept of hypertext linking discussed so far, has focussed on the idea of a sim-

ple connection between two nodes. This allows nodes to be arranged into some
form of interconnected network, which allows readers to explore branches and

choose their own route through the network (eg. HyperTIES [Shn87], Xanadu [Ne193,

Ne195]). However, this simple network can sometimes prove inadequate to express

more complex relationships, and many hypertext researchers have explored alter-

native structuring methods.
A form of hypertext structure which is commonly seen in hypertext systems

is the hierarchy (eg. Emacs INFO [Stal, ZOG [AM84a]), which allows nodes to be

arranged into layers of parent-child relationships. This provides a means of sup-

porting increasing levels of abstraction, and has proved to be a natural structuring

paradigm for the hypertext user. Users can identify a node of interest, and explore

the children of this node for more information. The hierarchy is simple to sup-

port in most hypertext applications, although it does have some limitations. The

main disadvantage of a hierarchy is that the structure is a function of the criteria

used to construct it - what may prove to be a useful hierarchy for some applica-

tions may be ill-suited to other domains. For this reason, many modern systems

11

Chapter 1: Introduction To Hypertext

Figure 1.3: Hierarchical links and cross-hierarchy links

support both hierarchical structures, and cross-hierarchy links (TEXTNET [Tri83],

Intermedia [YHMD88, HKRC92, Mey86], NLS [Eng84a], WE [SWF87], NoteCards
[HMT87]) (figure 1.3).

Linking mechanisms have been developed in other ways to augment the hy-

pertext environment. Multi-way, n-ary links are supported in many applications,
so that a single anchor can act as the source for several branches. Similarly, appli-

cations such as Microcosm [DHHH92] support a generic link which allow multiple

source anchors to map on a single destination. It can also be useful to allow links to

act as the target for other links; in this way, links can be connected together to form

more flexible structures [Tri83].

However, despite the flexibility of the linking schemes described previously,

many researchers have called for better support for complex structures. Parunak

[Par9l] explored ways of supporting aggregations using set-based linking, and Mar-

shall et al introduced the notion of spatial hypertext to express relations such as col-
lections. Halasz [Ha187] identified limitations with conventional linking techniques

and called for improved support for composite objects. Authors should be able to

structure nodes within nodes, to create a truly aggregate object which can be treated

as a first-class entity in the system. While support for composite structures has im-

proved, many systems still fail to fully address the issues involved in supporting

complex structures.

12

Chapter 1: Introduction To Hypertext

Link Typing

The idea of an object typing system was introduced in the previous discussion of
nodes, and has also been applied to the area of hypertext links. Link typing allows
the author to express additional properties when defining relations and node con-
nections. A link type can represent the nature of the link, and provide additional
information to the user. Also, a typing scheme allows the application to provide ad-
ditional processing and functionality (link filters etc). Early attempts at link typing

provided informal support through user-defined labels [HMT87, DS86]; users could
attach their own labels and attributes to links, and these would then be interpreted
in the appropriate way. Other systems such as TEXTNET [Tri83], gIBIS [CB89] and
PHIDIAS [MBD 90] borrowed ideas from semantic networks, and introduced more
formal typing schemes. WE [SWF87] and ABC [SS91] introduced typed structures
(graphs, hierarchies, paths) which support structure-specific behaviour.

Static vs Dynamic Links

Most approaches to hypertext linking have adopted a very static, stable view of a
hypertext environment. Authors construct links between fixed points, which re-
main unchanged for the lifetime of the hypertext. While this can be useful, it is

clear that hypertext, as a knowledge structuring paradigm is widely applicable to

more dynamic situations. Real-world applications demand more flexible linking

mechanisms to handle constantly-changing information. Halasz [Ha187] called for

increased support for virtual structures and hypertext researchers have attempted to

address these requirements by introducing the idea of dynamic links.

Dynamic links can be realised in many different forms, by applying dynamic

computations to different areas of the linking cycle. The ZOG [AM84b] system was

an early application which introduced a simple form of dynamic fink, by automat-
ically constructing a link every time a new node was visited (eg. a link back to the

previous node). Intermedia [YHMD88] introduced hot and warm links which allow
the contents of a link endpoint to be dynamically updated on demand. Other sys-
tems attached scripts to hyperlinks, which would be invoked each time the user tra-

versed a link (KMS [AMY88], Notecards [HMT87], HyperCard [App87], Intermedia

[YHMD88] etc). These would typically be implemented by providing some limited

scripting language, to provide access to hypertext operations - examples of this are
NoteCard's scripting language based around lisp, and the HyperTalk language used
in HyperCard. This approach to dynamic linking, by attaching computational com-

ponents to links provides a very powerful extension to a hypertext environment.

Link destinations can be evaluated at traversal-time, a link can execute queries to

locate objects, and destination node contents can be constructed dynamically on

request.

13

Chapter 1: Introduction To Hypertext

Brown [Bro88] identifies other problems with static hypertext linking mecha-
nisms in large hypertext environments. Links can be difficult to maintain in a chang-
ing environment and can soon appear out of date. It is often unreasonable to expect
authors to provide all links for a user; indeed, it is often simply not possible to

provide a set of links which are suitable for all users. Dynamic links allow queries
and link destinations to be evaluated on a per-user basis, tailored to the needs of

each reader. Also, dynamic links are largely transient so do not interfere with other

users, unlike permanent, static approaches to linking.

However, dynamic links raise many problems and difficulties over conventional
linking schemes. Dynamic links are often less accurate, and it is difficult to construct

a query to locate the precise objects of interest. Dynamic links can introduce side-

effects into a hypertext environment, so that users can traverse links, unaware that

they are executing some script. Should a user be aware of a dynamic link? How

does a user save a dynamically constructed node (for example, a WWW bookmark

which refers to the results of a CGI script [WWWa]) - do they save the node contents

or the query which generated the node? Much of the work on dynamic links ties

in with the development of more open, computational hypertext models, and these

are discussed in more detail in the following chapter.

The previous sections have explored some of the common issues arising from

hypertext linking models; however the issue of hyperlinks raises all kinds of addi-
tional problems. Are links stored as separate components [YHMD88] or are they

simply data values associated with nodes [AMY88]? Are links modelled as formal

relations or should a hypertext environment adopt a more informal, implicit ap-

proach [MS95]? This raises the question of what exactly a link represents - is a link

a purely navigational abstraction or does the link capture some semantics about a

relationship, and if so, what are these semantics? Marshall et al separate links into

permissive, emergent, descriptive and prescriptive categories based on the constraints of

the author [MS95]. Similarly, DeRose [DeR89] offers a taxonomy of link types used

in hypertext applications.
Many researchers have attempted to identify different link types and to clas-

sify hypertext relations, yet the diverse range of approaches suggests the role of

the hypertext link is not entirely clear. A hypertext relation can represent different

semantics depending on the domain and context of the hypertext. Different users

may interpret relationships and collections in different ways depending on their

knowledge and goals. Indeed, Bolter argues that the separation of nodes and links

is somewhat artificial, and that nodes and links can exhibit a form of oscillation.

Links can take on node-like properties, just as nodes can exhibit properties similar

to those of links [Bol91].

14

Chapter 1: Introduction To Hypertext

Figure 1.4: The anchor provides an endpoint for the hypertext link

1.1.3 The Anchor

The previous discussion has described the hypertext paradigm as a model based on
nodes and links. Hypertext nodes represent the atomic fragments of a text, which
are structured and arranged using hypertext links. While this simple model is suffi-
cient, it does have many limitations. Most notably, this model ignores the problem
of addressing mechanisms, and ways in which links can be connected to the nodes
themselves. How does a link connect to a node? Can a link connect to objects in-

side the node? How are users made aware of links? These problems stem from the
idea of anchoring, and this section includes a brief discussion of some approaches to
hypertext anchors.

The concept of hypertext anchors is used to unify relations with the actual hy-

pertext objects themselves. While the link expresses the relationship between two

components, it is the anchor which is responsible for addressing the node content
at each end (figure 1.4). The idea of the anchor is simple, yet hypertext developers

have taken very different approaches to anchoring.

Anchor Granularity

The primary role of the anchor is to support addressing mechanisms - to provide

a means of identifying an object in the hypertext. Many systems have adopted

a very simple view of this, by restricting anchors to the granularity of the nodes
themselves (WE [SWF87], TEXTNET [Tri83], ZOG [AM84a]. Links can only connect

entire nodes - pages, documents, paragraphs - but are unable to address objects at
the sub-node level. Other systems such as NoteCards [HMT87] and KMS [AMY88]

provide additional support for anchoring, by allowing links to originate from within

the node. However, the destination of each link must still resolve to an entire node;

this restriction has been removed in other applications (HyperTIES [Shn87], Nep-

tune [DS86], World Wide Web [WWWa]). Akscyn et al [AMY88] argue that it is

sufficient to provide addressing at the level of the node, on the assumption that the

node represents an atomic concept, and is a sufficient logical unit.

15

Chapter 1: Introduction To Hypertext

IlUlil I LU U UIdI iJC 111C IICIU UI I ly CI ICAL UUI II IIJ. LI IC I. '7UU J. fIUWCVCI, it

widely acknowledged that the original ideas for hypertext can be attribu-
.o the work of several decades earlier. Bush was Scien
advisor to President Roosevelt, and was becoming increasingly concert
with the overwhelming volume of information made available to acaderr L.. .4.... P').... L. I.... i,... J i.. I.... aa l t.......... a:.... J p.. L. I:

Figure 1.5: Anchor definitions using spans of text

Addressing

Another issue surrounding the problem of anchoring is that of content address-
ing - how can a link identify the source and destination anchors, and with what
precision? Small-scale systems can identify nodes with relative ease, perhaps by

assigning a unique identifier to each object, or by using the filename corresponding
to the content. This problem is magnified in larger environments - for example dis-

tributed systems - when nodes can no longer be allocated unique references, and

resources can move location. The World Wide Web [WWWa] in particular is a good
example of a large-scale hypertext system, which has developed naming schemes

and addressing mechanisms to help solve this problem [WWWbI. Hypertext ap-

plications also differ in the precision that they offer the author, to address content

within nodes. The Augment environment [Eng84a] in particular provides a very
flexible addressing model ranging from section numbers and identifiers to relative

addresses and regular expression matching. Similarly, some systems allow anchors
to include a span of text [YHMD88, Nel951 (figure 1.5) while others limit anchors
to a single point [HMT87]. The anchoring model is developed further in Chapter 3

which introduces a more flexible notion of addressing.

Anchor Representations

Not only do applications support vastly different addressing models, they also

adopt diverse representations (both internally and externally) for anchors. While the

term anchor is widely used, and is used consistently in some abstract sense, the ma-
jority of applications do not implement the anchor as a primary, first-class object.
Anchors are often implemented as simple data values, which are then associated

with links. This is an area which has been developed in later systems, especially
in work emerging from open hypertext research [Kac90, GT941. This move towards

anchors as first-class hypertext objects is discussed in more detail in the following

chapter, and the anchor is further developed in the work from chapter 3.

Designers must also address the problem of how links (and in particular, an-

chors) are represented to the user - how are the users made aware of the existence of

a link, and how do they select the anchor? Some applications highlight spans of text

[YHMD88], while others provide a link marker to denote a link endpoint. Other ap-

proaches provide explicit interface objects such as buttons to denote anchors while

16

Chapter 1: Introduction To Hypertext

others may adopt more subtle techniques such as cursor changes, colour codes etc.
Other issues involved in the representation of anchors can cause problems - for ex-
ample, how are overlapping anchors represented to the user? How are separately-
stored anchors maintained when authors edit the underlying content? Chapter 3
also discusses some of the issues involved in representing anchors.

The previous sections have discussed some of the defining features of the hyper-
text discipline, and explored ways in which researchers have developed this model
further. So far, hypertext has been loosely described as a set of node and link ab-
stractions, which can support the task of knowledge structuring. However, this
section attempts to explore the idea of hypertext in more detail, and identify some
of the advantages that hypertext can offer to the author and reader.

1.2 Advantages Of The Hypertext Approach

The conventional means of presenting and structuring information has traditionally
involved the medium of printed text. This linear representation has been widely
used for centuries, and has been used as a vehicle for diverse domains - scientific
texts, prose, popular culture etc. However, it is questionable whether this linear

representation is always the ideal method for knowledge transfer.
The sequentiality of text and the printed book arise from the sequentiality of

language. However, there is nothing which says that the presentation should be se-

quential [Ne193]. Our thoughts and ideas are far from linear; they consist of many

complex, deeply connected thoughts. Ideas emerge from other ideas, opinions are

re-evaluated in light of others; particular ideas gain more importance and reinforce

others. No single idea appears first, and there is no single, linear order to our
thoughts. Conventional methods of presentation force the author to arrange these
ideas into a single, universal order which often loses much of this richness and can
be a destructive practice. A well-constructed linear text may provide a clear direc-

tion and can integrate many different threads. However, linear representations of-
ten fail to express the many complex connections and dependencies between ideas,

and do not acknowledge the subtle processes which gave rise to these threads.

A hypertext model allows a knowledge space to be constructed using a more

expressive, non-linear structure. Ideas lead on to other ideas, which give rise to
branches in a story and alternative paths through a text. This is not to say that this

is the way the human mind manipulates information, but it can be a useful and

effective means of expressing structured information. Human thought seems to be

a parallel, iterative activity and hypertext models can help to represent these ideas

more easily than conventional practices.

17

Chapter 1: Introduction To Hypertext

One could argue that hypertext is nothing new, and that we have been using
these ideas of branching, connected texts for centuries, in the printed book. Conklin
[Con87] points out that literary work often has non-linear elements; readers wander
off to locate references and qualify terms, some sections are skipped and returned
to at a later date and ideas are balanced against previous work. Traditional writing
techniques have long been accepted for signalling branches and changes in the flow

of thought - footnotes refer the reader to items of interest, citations connect isolated
texts to other relevant sources. Authors often use sidebars to offer additional ex-
planations, and for providing detailed indexing systems to help the reader navigate
a course through a book. These are all common practice in modern writings, and
do exhibit many of the characteristics of hypertext. The study of hypertext aims to
explore these informal, ambiguous techniques, and to provide a more formal, richer
environment for non-linear writing. Hypertext encourages authors to think about
the relationships and connections between ideas. Also, hypertext tools support a
new form of knowledge elicitation, in which ideas and structures gradually evolve
into a complete text.

Hypertext offers many advantages to the author, but also provides new opportu-
nities for the reader. The conventional role of the reader is that of the passive observer

- the author prescribes a strict reading order and offers a single interpretation for
the reader. This is not to say that readers do not engage in the subject matter or form

their own opinions, but that the reader is largely seen as a passenger in the reading
experience.

The hypertext approach to knowledge structuring views the reader as a more in-

teractive component; readers decide their own route through an information space
and which branches they explore. Readers become their own author, discovering

new areas and ideas and ignoring others. The reader dictates his or her own experi-
ence as the reading process becomes much more of a collaborative effort. Michalak

et al [MC93] discuss the new role of the reader as receiver of information, and as

maker of meaning. Indeed, hypertext encourages a much more cooperative model

of writing - readers can add additional links to a text which can be shared with

other readers. Experienced readers might add annotations to certain nodes, or join

them with other hypertexts and related sources. Hypertext reduces the replication

of redundant information and promotes sharing of common resources. Conklin

emphasises that hypertext is not simply a collection of nodes and links, and com-

pares this to describing a meal by simply listing the ingredients [Con87]. Hypertext

promotes a dynamic and interactive form of writing in which the knowledge space

grows and evolves to reflect the experiences of the readers.
Just as hypertext offers a new writing medium, so authors must adopt and re-

fine new writing techniques. Moulthrop argues that new forms of hypertext rhetoric

need to be developed to support the particular needs of hypertext [Mou91]. Hyper-

18

Chapter 1: Introduction To Hypertext

text does not aim to replace the book, and direct comparisons with printed media
will always be unproductive. Hypertext no longer has the reassurance of stabil-
ity and certainty which traditional books provide [BJ87]; stories change with each
reading and readers experience a text from different perspectives, reusing ideas and
expressing them in different contexts. A hypertext has no "primary axis of organisa-
tion" [Lan92] so allows each reader to choose, and change the focus of the document.
A hypertext is an "infinitely de-centerable and re-centerable system" [Lan92] which can
be moulded and twisted as the reader sees fit.

Many researchers have explored the role of hypertext in modern writing, and
developed ideas of hypertext literary theory [Lan92, BJ87, MC93, Mou91, Mou92].
The effects of a hypertext model on conventional authoring practices are complex
and far from clear, however this section has attempted to highlight some of the most
notable contributions. Appendix A discusses some of the most influential systems
which have emerged from the hypertext community. This chapter closes with a
brief exploration of some of the key problems that researchers have encountered
regarding the hypertext paradigm and current implementations.

1.3 Problems With Early Hypertext Applications

This chapter introduced the fundamental ideas behind the hypertext discipline, and
explored some of the more influential systems that have emerged. Hypertext sys-
tems have been applied to diverse problem domains and many have been devel-

oped into commercial ventures. However, many people consider that hypertext
has failed to deliver its promises, and to achieve its early potential [Ras87]. Re-

searchers have identified a number of problems with the conventional hypertext

model, which have prevented the widespread adoption of hypertext techniques.
The remainder of this chapter examines some of the more general criticisms, and
Chapter 2 discusses some of the problems which are specific to open hypertext sys-
tems.

1.3.1 Navigation - the disorientation problem

This is perhaps the most common complaint levelled at the hypertext community;
the problem of navigating through a hypertext. System designers developed ap-

plications to support hypertext structuring - non-linear, branching texts - and pro-

vided methods to browse these networks. However, it was soon discovered that

users had great difficulty exploring a hypertext and forming a meaningful cogni-
tive model of the overall structure [Nie90]. Users would explore branches in the

19

Chapter 1: Introduction To Hypertext

hypertext, but find it difficult to decide how these fitted into the main structure.
Readers would find themselves visiting nodes which they had already encountered,
wandering aimlessly through a hypertext without any meaningful direction. While
hypertext offers the reader multiple paths, users often found this freedom over-
whelming, and missed the certainty and structural rigidity of conventional texts.

Early attempts to address this disorientation problem focused on the construc-
tion of maps to provide an overview of the entire hypertext [HMT87]. In this way,
it was hoped that users would be able to find their position in the hypertext easily,
and achieve some sense of context in the larger hypertext. Hypertext maps have

proved very useful in reducing navigational problems, and have been widely sup-
ported in many hypertext applications ([HMT87, DS86, YHMD88]. However, the

support for hypertext maps raises many other complex issues. For example, hyper-
text networks can typically include many nodes and links, which proves imprac-
tical to present in the form of a map. Similarly, the construction of maps does not
scale well to larger numbers of nodes and is computationally intensive. A complex
map can overwhelm the reader with a tangled mess of meaningless links. What is
the best way to lay out a complex map? Should some detail be filtered out from

the map? Does the user need a map of the entire hypertext? Researchers have ex-
plored different methods of displaying and presenting overviews of a hypertext in

an attempt to make navigational mapping more feasible for large-scale networks
[Fur86, Fei88, Noi93, TD92, ZR97]. Other systems offer filtering techniques, and

support for multiple maps at different levels of detail [YHMD88].
However, maps and overviews are not always appropriate for many hypertext

applications. Maps cannot easily embrace dynamic information or hypertexts with

rapidly changing topologies. Shneiderman [Shn87] suggests that much of the dis-

orientation problem originates from poor authoring styles and design. Similarly,

Moulthrop [Mou92] calls for a rhetoric of hypertext writing, and further evalua-
tion of hypertext literary theory. Brown [Bro88] goes further to suggest that readers

should not be made aware of the hypertext structure, any more than users are made

aware of the sub-structure of other information retrieval tools.

Other approaches to the problem of navigation include the idea of breadcrumbs
[Ber88] to inform the user about which nodes have already been visited (eg. WWW
[WWWa]). The guided tours [MI89] in NoteCards and Zellweger's scripted docu-

ments [Ze189] have proved useful in addressing these navigation problems. Nielsen
[Nie90] suggests other techniques: overviews, support for backtracking, timestamps

etc. The idea of link typing has been introduced into many systems (section 1.1.2),

while others offer the reader a summary of the node contents before they traverse

the link [Shn87, SCG89]. Akscyn et al [AMY88] focus on providing a quick response
to link traversal, so that the overhead associated with navigation is minimal. Halasz

[Ha187] calls for better support for queries and searches to help the user locate items

20

Chapter 1: Introduction To Hypertext

of interest. This view of queries and dynamic computation, to help users explore a
hypertext, has been developed by many systems and forms the basis for many of
the open hypertext systems described in chapter 2.

Indeed, the problem of resource discovery - locating items of interest - is proving
to be a difficult problem for hypertext developers. In particular, users of the World
Wide Web [WWWa] find this to be an acute problem as they become overwhelmed
by the sheer volume of information at their disposal. Search engines and spiders
which attempt to index the information space have gained popularity with many
users [Alt]. Although these tools can be useful, they have little idea of context so
cannot deliver accurate, "intelligent" results. Other approaches such as Yahoo! [Yah]

provide a more structured indexing service, in which nodes and web pages are filed

manually. This can provide a more accurate, higher-quality service but suffers from

scalability problems as the information space continues to grow.
Some systems have focussed on the problems of changing contexts as one of

the main causes of disorientation. An interested reader might follow a link, which
results in the presentation of a new node; the previous node (and context) is com-
pletely removed, and the user can experience some confusion. Traditional media
allow readers to decide when (and if) they follow a link, and it is often accepted
what form this will take (eg. look in the index, move on several pages etc). Guide
[Bro89, Bro92] addresses this problem by introducing the idea of replacement but-

tons - when the user selects a link, the button is replaced with the node contents,
rather than relocating to a new node. Modern environments which support mul-
tiple overlapping windows can also help to alleviate this problem, by presenting

several nodes concurrently.
It is not clear that a solution based around maps, which encourages a spatial,

geographical view of hypertext, is entirely beneficial. Hypertext encourages the

author to concentrate on the relationships and dependencies between items of in-

formation. Hyperlinks are not simply connections to be traversed, but represent

rich semantics about a network. Kilov [Ki194] draws an analogy between simple
hypertext links and the infamous goto statements which plagued software develop-

ers. Just as programmers moved away from these "spaghetti-like" dependencies

[Dij68], so too should the hypertext developer. De Young [You90] also identifies

some of the shortcomings of conventional hypertext implementations, and calls for

richer linking models. Conklin [Con87] argues that the experience of disorientation

is in some ways inherent in the hypertext paradigm - there is no natural topology

for an information space so until one is familiar with the document, then they are
by definition, disorientated. Modern systems continue to address this navigational

problem, but this still continues to be an issue in the hypertext community.

21

Chapter 1: Introduction To Hypertext

1.3.2 Premature Segmentation

The task of building a hypertext is a very difficult process, which can place heavy
demands on both the author and reader. Complex ideas need to be distilled into
simple, self-enclosed nodes, and arranged into meaningful structures. This rigid
method of authoring does not reflect the true nature of writing, and provides a
somewhat artificial environment for authors and readers. Ideas are not such tangi-
ble objects; they emerge and develop as the author builds the hypertext. The role
of a node in a hypertext is not immediately obvious, and its place only becomes

apparent as the hypertext structure takes shape.
Most hypertext systems require an author to create nodes in their entirety, then

to place them in the hypertext. This can often force the user to make difficult deci-

sions about the layout and structure of the hypertext, before the true nature of the
information is really known. Authors must decide which content is included in a
node, and which is left out. Halasz [Ha187] noted that users would adopt various
strategies in order to delay this premature segmentation and filing of information by

placing several ideas in a single node before dividing them up into smaller nodes
at a later date. Sketch cards were used to arrange nodes into piles and informal

structures, before finally creating hypertext links. Conklin [Con87] explores this in

more detail, and the VIKI system [MS95] has developed the idea of spatial hypertext

to capture this more informal, emergent view of hypertext. Halasz [Ha187] also calls
for better support for virtual structures to support dynamic, changing information.

1.3.3 Maintaining Hypertext Structures

The hypertext paradigm supports the development of more expressive structures,
to represent the many complex relationships in an information space. However, this

can make hypertexts very difficult to maintain and support over the lifetime of the

network. Some links may become obsolete and irrelevant, others may break as nodes
are moved or deleted. Users may update nodes in the hypertext, which requires all

related links to be modified. Similarly, changes in some areas of the network can

affect other areas of the hypertext, as the changes permeate through the hypertext.

These problems become more serious in large-scale hypertexts which support

multiple users and many nodes and links. The World Wide Web is in a constant

state of flux, containing many millions of nodes - all constantly changing and mov-
ing location. Users frequently encounter links which reference out of date pages or

pages which no longer exist. This is very problematic for hypertext designers, espe-

cially in distributed environments which have no single point of control. The WWW

community has seen the emergence of many tools to test the integrity of links, and
help with the administration of hypertext sites. Other research has explored the

problem of versioning nodes and maintaining multiple versions of nodes over the

22

Chapter 1: Introduction To Hypertext

lifetime of a hypertext [AMY88, WL92]. Some of these issues are developed further
in Chapter 2, in the discussion of distributed and collaborative hypertext.

1.3.4 Cognitive Overhead

The term cognitive overhead was introduced by Conklin [Con87] which identified
the additional mental demands made on authors, in creating and keeping track of
hypertext links. An author may think of some new idea which they wish to capture

- they then have to interrupt their current task to create a new node, then link this
new node into the hypertext. What should the link represent? Where should the
link originate from? Should the link be labelled to suggest the contents of the node,
or to indicate the relationship to the new node? Beyond this, the author needs to
consider how the reader will be affected by this new branch in the hypertext; is the
link meaningful in the current context? Perhaps the node would be better placed
elsewhere in the hypertext? Also, the author cannot know how the reader arrived
at a node and which nodes they have already visited. This can make it difficult
to produce a cohesive hypertext which flows smoothly between nodes (although
Moulthrop argues that this is not a disadvantage [Mou91]).

Similarly, this mental overhead is experienced by the reader of the hypertext.
Just as a hypertext offers the reader new freedom and choices, so they are forced to

make choices at every branch, deciding which links to explore and which to ignore.
How does the reader make these decisions? Has the author provided enough infor-

mation to choose a link? It is also difficult for authors to provide links which are
appropriate to all readers, with different levels of expertise and interests [NK89].

These additional tasks all place extra demands on the reader, and can prove dis-

tracting, in some cases overwhelming, for both author and reader alike.
This cognitive problem has much in common with the earlier disorientation

problems which were discussed, and some of those solutions can be applied to this

area. Hypertext systems can support filtering of nodes and links [SCG89] to reduce
the amount of information available to the reader, and some systems incorporate

adaptive, intelligent elements to tailor the hypertext to the user (see Chapter 2).

Some applications allow users to maintain their own sets of links [GB80, DHHH92,

YHMD88] and personal items of interest [Mos, Net] - this is an area which be-

comes more important in open hypertext research. Other systems support the idea

of activity spaces which provide task-specific operations [SWF87, HHL 921 to help

the authors and readers construct hypertexts. The cost of introducing hypertext

into existing legacy domains is also significant and has been addressed by some

systems using automatic linking [DHHH92] and information retrieval techniques

[FC91, Go197].

23

Chapter 2

Developing The Hypertext Model

The previous chapter introduced the ideas behind hypertext, and identified some of
the more influential systems that have been developed by researchers in the field.

A number of issues relating to node, link and anchor implementations were ex-

plored, together with ways in which different system designers have approached
this. Users and researchers have identified a number of problems with early im-

plementations of hypertext systems, and these were explored in more detail. This

chapter aims to follow on from this, by discussing ways in which the hypertext

paradigm has been developed. The discussion centres around those areas which
have influenced the work in this thesis, and have provided the basis for much of
the work. In particular, the chapter covers open hypertext systems (OHS), distributed

and collaborative systems and adaptive hypertext. These ideas are then incorporated

into the remainder of the thesis, which describes various aspects of the HIPPO sys-
tem.

24

Chapter 2: Developing The Hypertext Model

2.1 Open Hypertext

The previous discussion of hypertext focussed on a number of significant hypertext
applications, and explored each of these in some detail. These systems made many
contributions to the hypertext discipline, and helped shape the view of hypertext.
Researchers would develop their particular system by providing additional func-
tionality and support for different hypertext abstractions. System designers might
develop applications in response to user response, or borrow ideas from other hy-
pertext applications. Users could then choose the hypertext system which best-
suited their needs and provided the appropriate functionality for the task in hand.

However, this form of development is a very closed and insular approach to hy-

pertext design. Hypertext applications are developed independently from others,
and provide a completely immersive, closed hypertext environment for the user.
Users are forced to adopt a single hypertext application to perform all their knowl-

edge structuring, and must commit themselves to the functionality and services
made available by the designer. Hypertext applications are designed as monolithic
systems which aim to provide all the functionality required by the user, and do not
allow other existing applications and tools to be used concurrently. This means that
hypertext users are forced to give up any existing tools and practices, and instead

adopt the view projected by a single hypertext system.
This is an unrealistic situation in modern computing environments; users al-

ready have a diverse range of tools and applications at their disposal which perform
domain-specific, highly-specialised tasks. It is simply not practical to ask a user to

relinquish all these tools, in favour of a single hypertext application. Developers

cannot hope to implement all of the user's existing applications in a single hyper-

text system; this is neither practical nor sustainable, and may explain why many

users have been reluctant to adopt hypertext ideas in their environment [Mey89].

Malcolm [Mal91] discusses a typical scenario in an engineering environment,

and identifies many areas which closed, insular hypertext applications fail to ad-
dress - concurrent engineering tasks, collaborative processes, sharing of informa-

tion and access control mechanisms. Engineers use many diverse applications on
heterogeneous platforms; specialised tools and services; diverse data formats. Mal-

colm calls for more open hypertext systems which no longer aim to "own the world",
but instead offer a more integrated approach. Hypertext can be seen as an overarch-
ing framework which underlies all applications. In this way, hypertext services can
be made available throughout the environment, as a way not only of structuring
information, but also of integrating applications (see figure 2.1).

This view of open hypertext systems (OHS) have proved popular with many re-

searchers, and signals a move away from closed, isolated, monolithic hypertext ap-

plications, towards more open, ubiquitous hypertext services which are integrated

25

Chapter 2: Developing The Hypertext Model

External External
Application Application

AB

traverse
,_ link

Link Services

Figure 2.1: Open hypertext using link services

into the user environment [YHMD88]. Wiil et al [WL96] identify a number of criteria
for evaluating industrial-strength, open hypertext applications:

" scalability
Many early hypertext systems focussed on the needs of the single user, work-
ing in isolation. Modern computing environments need to support many
users and tools, and large quantities of information. Open hypertext systems
must be capable of managing these large spaces, and scale to meet the de-

mands of future environments.

" openness
Closed hypertext systems provide a fixed set of functions and operations, im-

plemented as a single, tightly-coupled application. Open hypertext systems

should provide a means of integrating new tools into the environment, so that
they too can make use of the hypertext services.

" distribution

The majority of early hypertext research was aimed at single users, working
on a single, local machine. Modern computing environments need to em-
brace much larger topologies, incorporating many distributed platforms and
machines. Users need to access remote data and resources, and share informa-
tion with many users. The ideas behind distributed hypertext are discussed

in more detail, later in the chapter.

" heterogeneity
Closed hypertext systems present a homogeneous view of the user environ-

ment - all the tools operate on a single, known platform and share the same
data model. Many aspects of the domain are fixed and defined by the system
designer. While this greatly simplifies the design and implementation of the

hypertext application, it also proves very limiting. Open hypertext systems

26

Chapter 2: Developing The Hypertext Model

must adopt a more heterogeneous model, consisting of diverse tools and ser-
vices, different architectures and data models. An OHS must support many
different tools and data formats, and diverse operations.

" interoperability
There are no standard protocols for communicating between hypertext ser-
vices and user applications 1 Closed systems do not offer any communications
protocol, while a more flexible OHS may support several protocols. This al-
lows users to select the most appropriate means of integrating applications
with the underlying hypertext services.

" extensibility
Many closed systems support a number of diverse data formats and oper-
ations, which can be used by the user. Similarly, open hypertext systems
should provide similar levels of support, to meet the demands of heteroge-

neous computing. However, no system designer can anticipate all the oper-
ations and data types which may be needed by users. For this reason, OHSs

should provide some means of extensibility and tailorability so that the hy-

pertext services can grow and develop with the user. Hypertext services can
be augmented with additional functionality which the user finds lacking, and
hypertext can be integrated with new applications when appropriate.

" computation
The previous chapter explored some of the limitations with conventional hy-

pertext systems, which adopted a very fixed, static view of hypertext. Mod-

ern hypertext support must adapt to a changing world and provide support
for dynamic information, virtual structures and rapidly changing hyper struc-
tures [Ha187]. This idea of computation has been developed by many systems,

and has been applied to different levels of the hypertext model. This support
for computation in open hypertext systems is explored in more detail, later in

the chapter.

Open hypertext systems provide users with a flexible, extensible environment,

which is better suited to meet the demands of modern-day computing tasks. Hyper-

text is no longer simply a means of structuring information, but of also managing

and integrating applications into a single framework. Open hypertext introduces

the idea of link services which provide hypertext functionality to all applications.
Users can continue to use their favourite tools and applications, instead of relin-

quishing control to a single, closed hypertext application. It is the application which

'Readers are referred to the current research into open hypertext protocols and standard open
hypertext frameworks [DLR96, GLD97, And97].

27

Chapter 2: Developing The Hypertext Model

chooses the abstractions and operations which can be supported, and uses the def-
inition of "node" which best suits the problem domain. A number of criteria and
design requirements for OHSs have been included, and the remainder of this sec-
tion explores some of these in more detail, and discusses the different approaches
taken by system designers.

2.1.1 Integrating Applications

This new approach views hypertext as a means of integrating applications into a
common framework, so that all applications can make use of hypertext linking ser-

vices [SLH94, LS94]. Users can continue to use their favourite editor and any spe-

cialist software, but can augment these with additional hypertext services. In order
to provide these link services, designers must address the problem of integrating ap-

plications - that is, provide a means of communicating between the hypertext layer

and the user applications. This section discusses some of the issues which must be

addressed by any OHS.
The conventional approach to integration is for the link service to provide some

form of protocol, which any new application must support if it is to integrate with
the hypertext layer2. Some systems such as Sun's Link Service [Pea89] and the

PROXHY system [KL91, Kac901 adopt a very simple, minimal protocol which great-
ly simplifies the integration of applications into the OHS framework. However,

while this simplified protocol can reduce the effort required to integrate applica-
tions, it is often at the expense of functionality. Other applications such as Multi-

Card [RS92], implement a more complex, expressive hypertext protocol which al-
lows a closer integration between hypertext service and application. User appli-

cations can make more efficient use of the link service, and utilise more powerful
hypertext abstractions. This balance between simple, loosely-coupled protocols and

more complex protocols is a difficult problem which must be addressed by system
designers. Pearl [Pea89] summarises this problem of conflicting goals:

There is a tension between support for heterogeneity that is a goal of such open

systems and the notion of integration ... which is aided by homogeneity.

The effort involved to integrate new applications into an open hypertext is an

important issue, and has significant impact on the cost and popularity of open hy-

pertext systems. Many researchers have attempted to address this problem by of-

fering several degrees of conformance [FHHD90, WL96, RS92]. For example, the Mi-

crocosm project [DHHH92] introduces the idea of fully-aware, partially-aware and

unaware applications, which indicate the degree to which the tool can be integrated

2This section distinguishes between hypertext protocols and any underlying transport protocols
(eg. TCP/IP, UDP etc)

28

Chapter 2: Developing The Hypertext Model

with the link layer. Some applications reveal the entire internal structure of the ap-
plication, which can make integration a relatively simple task. Other applications
are designed as closed tools which cannot be easily tailored, and so may not be able
to support all hypertext services. For example, an application may only be able to
act as a viewer of node contents, and is unable to support links which originate from
the node. This was the approach taken in early generations of the World Wide Web

which used helper applications to view data formats which were not supported by
the hypertext browser. This is a simple method of providing a more open, extensi-
ble hypertext environment, which greatly increases the flexibility of the system, and
allows the users to use their existing tools.

There are other ways in which applications can be integrated with hypertext

services, instead of defining hypertext protocols. Some systems use wrapper appli-
cations which communicate between the application and the link service [Kac90,
DKH94, CS88]. Other systems provide programming libraries which support the

appropriate hypertext operations [ATJ94] which can be linked with the application
executable. Some applications such as HyperDisco [WL96], Intermedia [YHMD88,
HKRC92] and Hyperform [WL92] use Object-Oriented techniques to support ap-
plication integration, by providing a set of core classes which can be tailored and
extended by applications. Some applications support some form of scripting or
macro language which can be used to add menus etc, and provide some level of
integration with an open hypertext system [DKH94]. Also, Kacmar [Kac95] sug-
gests a method of monitoring events and messages to integrate applications which

are unaware of any hypertext functionality. Whitehead [Whi97] describes an archi-
tectural framework which is used to categorise applications and evaluate different

integration models. Also, there have been moves to standardise interchange for-

mats [GNKN97, MHEG97, HS90], and develop a standard open hypertext protocol
[DLR96, GLD97, And97]. Davis et al [DKH94] summarise the different approaches
to integration as:

" tailor-made viewers
Applications written specifically for integration with the hypertext system.

" source code adaptation
Source code for the application is available, which can be modified or ex-
tended to support communication with the hypertext system.

" object oriented re-use
A basic hypertext viewer class is created to implement the general integration

requirements. Viewers for specific data types then inherit from this common

class.

" application interface level adaptation

29

Chapter 2: Developing The Hypertext Model

Many applications and packages provide interfaces and macro programming
languages, which allow hypertext functionality to be added.

" shim or proxy programs
These programs sit between the hypertext link service and the viewer. Actions
from one system are translated into actions that the other can understand.

" launch only viewers
The application cannot support any hypertext functionality, and can simply
be launched with a specific data set.

Another issue related to the integration of applications, is the problem of stor-
age and the responsibilities assigned to applications. Many OHS systems provide
dedicated storage engines (hyperbases) which are explored in more detail later in the
section. These storage services are responsible for managing all of the objects in the
information domain - nodes, anchors, linking information, users, groups etc. Other
hyperbase systems manage the hypertext-related information, but expect the appli-
cation to store and manage the actual node contents. Some OHS projects go fur-
ther and make additional demands on the applications; for example, the PROXHY

and SPx systems expect the applications to manage the anchoring information, and
make provisions for its storage. This is a problem for open hypertext systems which
often assign responsibility for node storage to the native applications, and which
can cause problems with versioning, collaboration, data integrity etc. The separa-
tion of concerns between native applications and some form of hypertext link ser-
vice presents the problem of interface consistency - how to maintain the same look

and feel across heterogeneous applications. Some benefits can be achieved through
the development of user interface conventions [HF92, Hoe891 and combining hy-

pertext tools with windowing libraries.

An approach which has gained popularity in many OHS systems, is to sepa-
rate the linking information from the underlying node contents [DHHH92, GB80,
YHMD88]. These link collections have been described variously as linkbases, webs,
contexts etc, and allow links to be interchanged and combined arbitrarily. Links are
no longer bound intrinsically to nodes, so users can select the appropriate link sets
for their task, or maintain their own personal linkbases. Links can be generated
dynamically or retrieved on demand, before being combined with the node objects.
Nelson makes the distinction between applicative and embedded linking mechanisms
[Ne1951, and shows how the data remains untouched, and so can still be understood
by the native applications. The separation of hypertext information can raise con-

sistency and data integrity problems in open hypertext systems, if node data which
is managed outside the hypertext hypertexts is modified by external applications.
However, this separation of hypertext structure can be useful in shared environ-

ments where users access a common corpus of information, or where nodes cannot

30

Chapter 2: Developing The Hypertext Model

be edited (eg. read-only material, dynamic nodes) [FHHD90]. This idea of separate
linkbases is developed further in chapter 4.

2.1.2 Hyperbases: hypertext-specific storage engines

Previous implementations of hypertext applications used conventional methods for

managing and storing hypertext information. Nodes and links would be stored as
native files and directories, and all access would be done using the underlying file

system operations (read, write, append etc). However, it soon became apparent that
hypertext applications required more complex operations which were not available
using native filesystems. Hypertext applications require efficient retrieval of node
objects, and links needed to be treated as first-class objects. A hypertext engine
must provide efficient support for complex structures, transaction management and
multiple, shared access.

Some hypertext applications provided additional storage management using
database services to manage hypertext objects (eg. Intermedia [YHMD88], VNS
[SCG891). This led to the development of more specialised, dedicated storage en-

gines which implemented hypertext-specific operations, known as hyperbases. The
hyperbase exists as a separate service which can provide hypertext management

operations for a shared environment. For this reason, hyperbases have gained pop-

ularity in the open hypertext community, and are discussed briefly here.

Early work on hyperbases began with the HAM [CG88] hyperbase, developed

by Tektronix. This was a general-purpose hypertext engine which supported mul-
tiple users and was used as the storage engine for the Neptune [DS86] hypertext

engine. HAM supported hypertext-specific objects and data structures, and pro-

vided operations for manipulating these (see figure 2.2). The HAM model proved

very influential and was typical of early hyperbase research, such as DGS [SSS93],

Aalborg's HyperBase [KWO90] and GMD-IPSI's HyperBase [SS90]. Research on hy-

perbases has continued with the development of more open, extensible hypertext

engines such as Hyperform [WL92], HB3 [SLH 93, SLHS93, SLH94], HyperStorM

[BWAH96] etc. Hypertext designers have developed a diverse number of hyperbase

implementations, and offer differing storage models. Some hyperbases attempt to

manage all objects in the hypertext domain, while others only focus on the manage-

ment of links. Readers are referred to the literature for further details of particular

hyperbase engines, and for more information on design criteria etc.

2.1.3 Computation in open hypertext

Halasz identified a number of areas which hypertext systems had failed to address

satisfactorily, in his keynote address entitled "Seven Issues For The Next Generation Of

Hypermedia Systems" [Ha187]. In particular, Halasz called for better support for dy-

31

Chapter 2: Developing The Hypertext Model

User Interface

Application Tools

Hypertext Abstract Machine

Host File Systems

Figure 2.2: The HAM hyperbase engine

namic data structures and computation over hypertext networks. Existing systems
failed to provide adequate search and query functionality, and were based around
a very static notion of hypertext links. Authors could create links between nodes
and group nodes together, yet these were supported as simple, static navigational
links. Many system designers recognised the need to provide a more computational
view of links, by attaching scripts to links (eg. HyperCard [App87], KMS [AM93],
Neptune [DS86] etc). These computations could be evaluated when the user tra-

verses a link, and allow the author to include more complex, flexible actions in the
hypertext.

A computational view of hypertext can offer new opportunities to authors and
users, and allows hypertext to be used in more dynamic, changing environments.
A link can execute a query, generate some additional content or a link computation

may be used to present novel data types etc [CS88, PYS90]. Schnase et al describe

a scenario using the KMS system, in which scripts and computations are used to

maintain a simulation and support program development [SL89]. Bieber [Bie91]

shows how computation in hypertext can be used to support dynamic decision sup-

port systems. The Intermedia system introduces the idea of hot, warm and cold links to

include dynamic information [CBY89]. Some systems even developed specialised

scripting languages to support link computations, such as the HyperTalk language

in the HyperCard system [App87] or the NoteCards Lisp environment [HMT87].

Ashman also [AV94, AVC941 describes a functional linking model which uses pred-
icate logic to dynamically compute links in a hypertext. There has also been some

work on the types of behaviours introduced into the hypertext model, with the de-

velopment of some taxonomy systems [NLS97, Wat97].

The introduction of computations and link scripts builds on much of the work
done on active documents [Spi88, TB90, CCS92, CHP88, ET94, Act]. Active docu-

ments associate a set of behaviours with conventional electronic documents, to pro-

vide a more reactive, dynamic document model. Document content can be gen-

erated on demand, to include up-to-date data or customised information. Actions

32

Chapter 2: Developing The Hypertext Model

Client Network WWW CGI Application Server Process

Submit
Request

Spawn
CGI

Process

Return
Results

Figure 2.3: CGI link computations in the World Wide Web

can be triggered in response to user actions - scrolling a page, opening a document

etc. The layout and structure of the active document can be altered and customised
according to the requirements of the user or some other criteria. Some researchers
have also applied some levels of computation to the hypertext paradigm, to con-
struct presentations and guided tours [M189, Ze189].

The computational view of hypertext has proved very successful in the field of
open hypertext with many systems now providing more dynamic, behavioural sup-
port. The Trellis project [FS89, SF89, FSD921 explores the idea of browsing semantics
and how these can be introduced into a hypertext model. The PROXHY system
[Kac90] has done some excellent work on combining a process model with the con-

ventional hypertext model, and implements a model based on sets of processes.
There are many other influential systems which offer interesting approaches to be-

havioural hypertext, such as D2 [HGC94], SPx [SLH94, LS94], Microcosm [DHHH92,

FHHD90], HOSS [NLS96], HyperDisco [WL96], Hyperform [WL92] etc. The World

Wide Web has also seen the introduction of link behaviours using Common Gate-

way Interface (CGI) [WWWa] (figure 2.3) and the development of mobile program-

ming languages such as Java [GM95], JavaScript [JS] etc. These have all inspired the

work on HIPPO discussed in Chapter 5, which introduces an adaptive behavioural

model, based on communicating processes.

2.1.4 Extensibility and tailorability

The established hypertext model provides the user with a number of very power-
ful abstractions which can be used to manipulate information spaces, and can be

used for a wide range of problems and applications. However, users often find that

33

Chapter 2: Developing The Hypertext Model

existing implementations of hypertext concepts are limiting and not ideally suited
to particular problems. The particular abstractions implemented by the hypertext
system may not sit comfortably with the problem domain, and users may wish to
edit and extend the functionality of the environment. The system designer cannot
always anticipate the needs of the user, or the kinds of tasks that a hypertext envi-
ronment will applied to. For these reasons, hypertext systems must support a more
flexible view of hypertext, and provide a means to extend and tailor the system to
the particular user or problem-domain.

Some systems provide a small degree of tailorability by allowing the user to
select properties and options to control the presentation and interaction with the
hypertext [AMY88, HMT87]. Other systems provide some form of programming
interface to modify the hypertext application, and to augment the functionality.
The NoteCards system is a notable example, which provides a Lisp interface, and
has been used to introduce additional node types etc [TMH87]. Some approaches
to open hypertext have adopted an object-oriented paradigm, and provide a set of
core classes and behaviours which can be extended and tailored to suit the par-
ticular needs (Intermedia [HKRC92], HyperDisco [WL96]). However, there are few

guidelines as to how, and when a hypertext system should be extended and tailored.
The work on HIPPO in Chapter 5 helps to address some of these problems, in an
attempt to design open hypertext systems which are better suited to the demands

of diverse computing environments.

2.1.5 Formal models and hypertext standards

Hypertext researchers have taken a diverse range of approaches to the problem of
hypertext design and open hypertext. This can result in incompatible data mod-

els, and widely differing data formats and protocols. One of the fundamental goals

of open hypertext research is to provide a ubiquitous, integrated environment in

which applications can operate simultaneously, and users can incorporate hyper-

text functionality into their existing tools. However, the hypertext community has

developed systems independently of each other, systems which are largely incom-

patible and cannot easily be integrated together.

This problem of hypertext systems which operate in isolation has seen the de-

velopment of formal models and hypertext standards. Formal models aim to provide a

rigorous framework for defining hypertext applications and hypertext operations.
They offer a number of advantages over more informal techniques by allowing dif-

ferent applications to be compared and contrasted. Interchange and interoperability

standards can be developed to allow hypertexts to be exchanged between diverse

hypertext applications. Also, a formal model establishes a common language for

communicating hypertext ideas, and allows hypertext models to be evaluated in an

abstract fashion. Hypertext abstractions which are expressed in a formal framework

34

Chapter 2: Developing The Hypertext Model

are independent of any implementation, so can be reused in different applications.
One of the first formal models to be devised was the Dexter model [HS90] which

has proved hugely influential in the hypertext community. The Dexter model was
developed towards the end of the 1980s, and was intended to capture the funda-
mental concepts and abstractions which were common to hypertext systems of the
time. Although the Dexter model does not strictly address open hypertext systems,
it does attempt to explore the fundamental abstractions found in classical hyper-
text systems, and has become one of the most important and influential models to
emerge from the field of hypertext research. The Dexter reference model includes

many of the concepts which have found their way into open hypertext theory, such
as the separation of application data from hypertext information, and has influ-

enced the design of many current open systems.
The Dexter model was defined as a layered model, and is explored in more de-

tail in Appendix B. Although some researchers have identified problems with the

model [LS94, GHMS94, Gro94b], the Dexter model has been largely successful in

capturing the essential characteristics of earlier hypertext systems. However, the
Dexter model does not capture many of the more recent advances in hypertext re-
search, and Leggett et al [LS94] argue that it will not scale well to meet the demands

of future open hypertext.

The Dexter model has been developed in a number of ways, through the DHM

system [GT94], and more recently with the Flag Taxonomy [OKW96]. The Flag

model extends the Dexter model, to address issues that relate specifically to open
hypertext, such as application integration etc. Other formal models have been de-

veloped which emphasise different aspects of hypertext design [GP93, FS90, CB89,

Lan90, CT91, dBH92], and a number of formal design methodologies have emerged
from this work [SR95].

The development of hypertext standards and models has helped to address the

problem of hypertext interchange and the exchange of information between diverse

hypertext systems (see figure 2.4). The Dexter model has been used as the basis

for exchanging hypertexts between KMS and Intermedia [LS94, LK91]. Similarly,

The HyTime standard [GNKN97] emerged from work on the SGML [Go190] doc-

ument markup language, to provide a platform independent way of describing

hypertexts. Other standards which relate to hypertext interchange include MHEG

[MHEG97] and CMIF [RvOHB97], and these have much in common with other doc-

ument exchange standards (DSSSL [DSSSL96], ODA [ODA85], SGML [SGML85],

PDF [BC93] etc). The World Wide Web has also been very influential, both in gain-
ing widespread acceptance of hypertext, and in the development of interchange

standards. The HTML [WWW98d] language provides a means of describing sim-

ple hypertext documents, and has seen a number of recent developments such as

XML [VVWW98c], CSS [WWW98a], XSL [ABC 97] and the Document Object Model

35

Chapter 2: Developing The Hypertext Model

System A Interchange
Model System B

Figure 2.4: Hypertext interchange models

(DOM) [WWW98b] etc. The WWW is described in more detail in Appendix B along
with other significant open hypertext systems.

2.2 Distributed and Collaborative Hypertext

As the popularity of hypertext applications has increased, the limitations of a single
user working in isolation have became more apparent. Modern computing tasks
demand an increasingly collaborative environment involving many users and re-
sources. Users need to share information with users who may resides large dis-
tances away, or may need to access information which reside on different machines.
While some open hypertext systems do address some of these aspects, the discus-

sion of modern hypertext has mostly ignored the problems of distributed and collab-
orative hypertext.

Distributed systems provide access to remote applications and data reposito-
ries, and allow efficient sharing of information between users; colleagues are able to

make their work available to others, and discuss and communicate ideas with the

minimum of effort. Distributed systems are more resistant to system failures, and
users can make better use of resources which can be accessed across the network. A
distributed approach to hypertext reduces the redundancy and replication of infor-

mation, and allows computations and data access to be performed at the appropri-
ate location. Collaboration and distribution are vital for communicating ideas and
effective information processing and must be supported by future systems; indeed,

the hypertext paradigm is particularly suited to these areas, by providing a natural
platform for referencing and sharing data and expressing complex relationships.

2.2.1 Degrees Of Distribution

Distributed ideas can be applied at different levels in the hypertext paradigm, and
different systems have interpreted the idea of distribution in widely differing ways.
Many early systems such as KMS [AMY88] allowed users to access remote nodes by

using mechanisms for accessing remote data which were already present in the un-
derlying platform (eg. Sun's Network Filing System [NFS89] which presents remote

36

Chapter 2: Developing The Hypertext Model

Q

Network ": IIIIIIIII: i:

�����d

Figure 2.5: Distributed hypertext in the WWW

disc partitions as if they are local). In this case, the hypertext system is completely
unaware of any distribution, and treats all node accesses as local operations.

Other hypertext applications, such as the WWW [WWWa]3 define their own
transfer protocol to support distribution. In this case, client applications communi-
cate with the document servers using the http protocol [HTTP], to request remote
nodes (figure 2.5). This additional overhead requires all client-server tools to un-
derstand this protocol, but avoids the need for the platform-specific distribution

services described previously (NFS etc).
Other hypertext applications have adopted a more centralised view, by applying

distribution at the application level, while maintaining a single, centralised server
(eg. EHTS [Wii91a]). This can limit the domain of information available to the user,
but has the advantage that all hypertext interaction and requests for information

are performed through a single server. This allows the server to monitor all transac-

tions, and has significant implications for collaborative hypertext - this is discussed

in more detail in the following sections.
However, perhaps the most interesting (and most demanding) approaches to

distributed hypertext attempt to apply distributed concepts to all levels of the hy-

3The term application is used loosely to refer to the collection of client tools, protocols, document
servers and related standards which collectively form the World Wide Web

37

Chapter 2: Developing The Hypertext Model

pertext model. Not only can nodes reside on remote platforms, but the hypertext ap-
plication itself is actually distributed throughout the network domain. The hyper-
text application is no longer a single, monolithic application, but consists of many
resources distributed throughout the domain (PROXHY [Kac90], D2 [HGC94], Mi-
crocosm [GDHR97, HH94]). This allows the computational overhead to be shared
between different hardware platforms, and for resources to reside at the optimal
location. This raises the question of what the term "distributed hypertext" actually
means. Designers use this to support different ideas - remote access, distributed
node information or less commonly, distributed behaviour. This idea of distribut-
ing the actual functionality and behaviour of the hypertext system is developed
later in the thesis in chapters 4,5 and 6.

2.2.2 Maintaining Distributed Hypertexts

Distributed hypertext systems pose new problems for system developers, as hy-

pertexts contain ever growing numbers of nodes and users [ACDC96]. One of the

most immediate concerns is to develop an addressing scheme for locating and ac-
cessing remote objects in the hypertext. The World Wide Web is an obvious example
[WWWa] which has developed the idea of a Uniform Resource Locator (URL) [URL94]

to access remote documents. This addressing method defines an arbitrary object in

the Web, in terms of the protocol used to receive it, the symbolic name of the doc-

ument server it resides on, and some unique path within the remote server space.
This simple method has proved to be quite effective in the web community, and

makes use of existing transfer protocols and the DNS address service. However, the

existing WWW addressing scheme does not scale well to a changing, dynamic sys-
tem in which nodes constantly appear, disappear and move location. Users often
have to deal with broken links and out of date nodes, which has led to some research
into alternative naming schemes such as URIs, URNs etc[WWWb]. This problem is

also seen in more general distributed systems which use trading services to manage

object locations (eg. CORBA [Objc]). These component frameworks are described

in section 5.4.2, and have been explored further in the design of HIPPO in chapters 4

and 5. It is uncertain whether users should be made aware of the distributed nature

of the system, as this can influence the way the user understands the topology of
the hypertext. Some systems such as the World Wide Web emphasise the location

of objects, and make remote accesses apparent, while other systems shield the user
from any distributed model.

A distributed hypertext system must also address the problems of data integrity

and versioning of objects. Distributed systems have many more users than lo-

calised systems, and have the potential for large numbers of complex transactions.

Nodes and links are constantly changing and being updated, and the hypertext

environment must provide some means of managing this change. Halasz [Ha187]

38

Chapter 2: Developing The Hypertext Model

was among the first recognise the need for versioning support, and some early
systems provided version management (Neptune [DS86], PIE [GB80], Intermedia
[YHMD88]). In addition, much of the work on hyperbase development has incor-
porated specific support for versioning of hypertext objects (CoVer [Haa92], HB3
[Hic931, Hyperform [WL92] etc). The application of existing versioning techniques
to the hypertext discipline raises many interesting questions - if an object is up-
dated, should existing links refer to the old or new object? at what granularity
should the versioning mechanisms operate? should links be versioned with the
data objects or separately? Distributed environments also need to ensure that the

system recovers appropriately after system failures, and address the problem of
transmission delays, network errors etc. There is often an increased overhead in-

volved in accessing remote objects, and a distributed system may offer support to

minimise this, or at least make the user aware of any cost or delays.

2.2.3 Concurrency and Access Control

A large-scale, shared environment must provide adequate support for access con-
trol and concurrent transactions [Mal91]. When multiple users can access and up-
date shared information, this raises many problems relating to concurrency - read-
ing out-of-date information, competition for access rights, unexpected results from

caused by interleaving operations, deadlocks etc. Most of the approaches to con-
currency control implement some form of locking mechanism, which grants a user

exclusive access to particular hypertext objects. EHTS [Wii9la], DHM [GKM93],

SEPIA [HHL 92], ABC [SS91], VNS [SCG89], HB3 [Hic93] etc all provide support
for some form of access control and locking mechanisms, and readers are referred
to the literature for more details of these policies.

There are many issues involved in providing a flexible, scalable concurrent ar-

chitecture - how are locks allocated? how are conflicting lock requests resolved?
how long can a user maintain a lock? how does a system prevent deadlock and
livelock? how are others users notified about the status of locked objects? Wiil and
Leggett [WL93] explore the support for concurrency control in a number of popu-
lar hypertext systems, and show the importance of a fine-grained, user controlled
locking policy.

Developers of distributed systems also encounter the problem of access control

and security issues. Some components of a distributed system may restrict the avail-

ability of information or prevent the execution of certain operations. A distributed

hypertext system must also control the way changes are propagated through the

network - are changes made to nodes immediately presented to other users, and
how are redundant copies updated with the appropriate changes?

Many of the traditional concurrency techniques prove unsuitable when used

with hypertext applications, as the access and sharing of information is compli-

39

Chapter 2: Developing The Hypertext Model

cated by hypertext concepts and the working practices of users within hypertext
environments. Alternative concurrency policies have been suggested for hypertext
environments, for example, by creating new versions of objects then attempting to
merge the changes after the objects have been edited [WL93]. Greif [GS87] suggests
relaxing the concurrency requirements so that users may read out-of-date informa-
tion in situations when absolute data integrity is not of paramount importance. Sim-
ilarly, the KMS system [AMY88] adopts an optimistic concurrency policy, in which it
is assumed that the number of user conflicts in a large hypertext system will be
minimal, and so can be ignored in almost all cases. The development of effective
access control and concurrency mechanisms continues to improve with the interest
in dedicated hyperbases, which are seen in an increasing number of open hypertext

systems.

2.2.4 Modes Of Collaboration

The distribution of hypertext systems offers many advantages to the hypertext de-

veloper - larger information spaces, robust systems, scalable architectures. How-

ever, many of the tasks which hypertext have been applied to, demand a more col-
laborative model which allows users to share information and work together with
other colleagues. Malcolm outlines a scenario based around collaborating engineers
[Mal9l], and Streitz [Str96] identifies many advantages of collaborative hypertext

systems - multiple views, links to other people's contributions, development of a
shared space, annotations, comments, reuse of information etc. The ideas of hyper-

text are ideally suited to collaborative environments, because they support complex
information spaces, and encourage these to develop over time. However, it is im-

portant to note that support for multiple users does not indicate a collaborative
environment. Computer supported collaborative work (CSCW) requires support
for the complex demands of group work - sharing information, brainstorming, dis-

cussion, decision making, meetings, argumentation, versioning etc.
Many systems have implemented varying degrees of support for collaboration

ranging from simple sharing of information, to shared views and video-conferenc-
ing (Augment [Eng84b], NoteCards [IT89, TSH86], BIBIS [CB89], DHM [GKM93],

SEPIA [HHL 92], InterNote [CBY89] etc). Many researchers have noted the impor-

tance of notification and awareness [Haa97, Ha187, WL93, HHL 92], so that users

are made aware of any changes to the shared information space. Gronbaek et al
[GHMS931 identify six modes of cooperation in collaborative hypertext systems:

" Separate responsibilities
The information space is divided into disjoint areas, and each part is manipu-
lated by at most one user (eg. VVWW [WWWa]). Other areas of the hypertext

can be explored by users, but the collaboration is minimal.

40

Chapter 2: Developing The Hypertext Model

" Turn taking
As before, each section of the information space is only manipulated by a sin-
gle user, but users can take it in turns to manipulate the same section (eg.
NoteCards [TSH861).

" Dynamic exchange
Users can exchange parts dynamically, using some form of locking mecha-
nism; in this scenario, a user can request a lock which may be held by another
user (eg. EHTS [Wii9lb]).

" Alternative versions
This approach supports concurrent access by maintaining multiple versions
of hypertext objects. These versions may then have to be merged together at a
later date [WL93].

" Mutual sessions
Several users may work on the same data objects at the same time, and any
changes are immediately made available to all other users [HHL 92].

" Fully synchronous sessions
This is similar to the previous mode of cooperation, although users will use
a shared window space, and will each have the same view of the hypertext
[HHL 92].

Halasz also suggests the importance of social interaction support, so that users
can communicate with each other, and discuss ideas before committing them to
the hypertext [Ha187]. The EHTS application [Wii9la] also supports a limited form

of communication, using talk nodes. Collaborative hypertext systems raise many is-

sues in addition to those already mentioned - privacy, security, group management,
group awareness etc - yet this thesis does not explore collaborative hypertext in any
further detail. However, it is important to mention some aspects of this area to show
how the hypertext models have developed since early systems. Hypertext is a nat-

ural paradigm for collaborative work, and many aspects of group interaction and
the effects of multiple users are incorporated into the development of the HIPPO

system. In particular, the development of distributed model of HIPPO in Chapter 5

explores some distributed and collaborative issues.

Distributed systems must address a large and diverse number of issues to meet
the demands of modern information processing, and must tackle many problems

which can be avoided or simplified in single-user, isolated applications. Distributed

systems require a different approach to software design, and these distributed ideas

41

Chapter 2: Developing The Hypertext Model

must be incorporated into the underlying hypertext model at an early stage. Many
hypertext systems were designed as single, localised applications, and designers
have often found it difficult to implement distributed ideas on top of these systems
[Bro94]. Distributed models are an important consideration when designing hyper-
text systems, and designers such as Schnase et. al [SLH94] identify distribution as
a key design objective. In turn, a distributed approach to hypertext design often
promotes a more scalable and open environment, through the use of clearly defined
interfaces and protocols etc. The previous discussion has explored some of the more
important issues involved in implementing large-scale collaborative hypertext sys-
tems. Much of the work on the HIPPO system is influenced by these distributed
ideas, and the work in chapters 4,5 and 6 builds on some of the ideas presented
here.

2.3 Adaptive Hypertext

Adaptive hypertext is a relatively new area of research, which argues that a hyper-

text model should be tailored to meet the needs of the individual user. While a

general-purpose approach to hypertext design can be useful, it is clear that each

user has a different level of expertise and has different goals and interests. An

adaptive hypertext aims to reflect the needs of each individual user by changing

and adapting with the user. An adaptive system identifies some features of the user,

and uses these to shape the content of the hypertext and manipulate the underly-
ing hypertext model. Adaptive hypertext techniques have been applied to many
different areas - education [PLGU95, Bea94, BSW96], on-line information systems
[HBG96, MS96, BE94], help systems [dRCP93, Gru93, GH95], information retrieval
[MC94, KFC931, program development [ON94] etc. This adaptive approach to hy-

pertext has been central to the development of the HIPPO model, and some of the

current approaches are discussed here in this section.

2.3.1 Adaptive Features

Adaptive hypertext systems can identify many different criteria and user features

to influence the adaptation of the system. Brusilovsky [Bru96] identifies four key

areas which are commonly used in current adaptive hypertext systems:

" Knowledge
One of the most important features used to influence adaptation is the knowl-

edge of the user. This means that an adaptive system must be able to recognise

changes in the user's knowledge, and use this accordingly to update the hy-

pertext. A popular technique to achieve this is the overlay model which struc-

tures the domain as a series of related concepts. The concepts form a type of

42

Chapter 2: Developing The Hypertext Model

semantic network, which is intended to represent the subject domain - these
concepts may be information topics, subjects, objects etc. This overlay model
is then used to represent the current state of the user's knowledge about a sub-
ject; each concept is assigned a confidence value to indicate the level of knowl-
edge (these may be binary values, probabilities etc). This simple approach
can be widely generalised to many different subject-domains and has been

used in a number of adaptive hypertext systems (Hypadapter [HBG96], Hy-

perTutor [PLGU95], PUSH [HKr 961 etc). Other applications have adopted a
simpler method for modelling user knowledge, using a stereotype model. This

approach identifies several categories or stereotypes of users, which are con-
sidered representative of the user community (eg. novice-intermediate-expert,
student-teacher-developer etc). This is very simple to implement in adaptive sys-
tems, but often does not have sufficient granularity for many applications. For
this reason, the stereotype model is often combined with an overlay model.

" Goals
Another feature used by adaptive models looks at the aims and goals of the

user, and how best these can be achieved. A user may be looking for infor-

mation on a particular subject area or attempting to solve a particular prob-
lem. The application can represent the goals and tasks that it recognises,
and may structure these as some form of hierarchy, or using probability val-
ues. The system can then identify the user's current task, and use this to

guide them through the hypertext, or present with a particular information

set [Gru93, HKr 96, MS961. Most applications use a goal-driven approach to

provide some adaptive navigation techniques. The goals of the user will often

change between each session, and an adaptive system may identify a set of
low-level goals (perhaps the current problem) and also high-level goals (an

overall aim).

" Background and Experience
This is an area which is similar in nature to the user's knowledge, but has some
important differences. The user's background addresses the information and

user knowledge concerning subjects outside the realm of the particular hy-

pertext. Background knowledge looks at other information which, although
initially unrelated to the hypertext, may affect the way the user interacts with

the hypertext [dRCP93, Bea941. Similarly, the user experience is interested in

the familiarity of the user with the hypertext - can they navigate easily around

the hypertext? are they familiar with the layout and topology? These are all

areas which will affect the user's interpretation of the hypertext, and so can
be used to influence the adaptation of the hypertext.

" Preferences

43

Chapter 2: Developing The Hypertext Model

The final area which is explored here is the idea of user preferences. This ap-
proach allows users to overrule any of the other features, and express a par-
ticular preference for (or rejection of) certain criteria. Unlike the previous fea-
tures, user preferences cannot be deduced by the system, and the applica-
tion must rely on explicit feedback from the user. Some hypertext systems
use preferences in a very simple way to alter the presentation of informa-
tion, and configure the hypertext environment (eg. KMS [AMY88], NoteCards
[HMT87], Netscape [Net] etc). However, Brusilovsky categorises this as adapt-
ability rather then adaptivity; adaptive systems attempt to generalise these pref-
erences and use them to influence the hypertext in other ways. An adaptive
model based on user preferences can be useful for building group models in

which several users inherit the common preferences of an overall group.

2.3.2 Adaptive Techniques

The previous discussion explored a number of common techniques for adapting hy-

pertext systems, but it is important to establish which areas of a hypertext model can
be adapted. The contents of the nodes in the hypertext can be altered and changed to

reflect the needs of the users (content-level), as well as manipulating and adapting
the links in the hypertext (link-level). Links can be filtered and created in response
to user features, and global maps and indexes can be tailored for the individual

user. A novice user may be presented with an outline of a hypertext node, while
more experienced users may have access to more detailed information. Similarly,

expert users may be provided with additional links to further material, or some
links may be included which reflect the particular needs of the individual. Hyper-

text links can be adaptively ordered to present the optimal link to follow, or links

which are considered irrelevant to the user can be hidden from view.
Research into adaptive hypertext has developed many different techniques to

support the adaptation of hypertext content - prerequisite and comparative expla-
nations, variant pages and fragments, conditional text, frame-based adaptation etc.
A number of techniques which focus on adaptive navigation have also been em-
ployed - global and local guidance techniques, orientation, personalised views etc.
Adaptive systems can also monitor the user's browsing patterns to infer informa-

tion about the user, or can ask the user for direct feedback on the hypertext. These

are all ideas which have been used in different adaptive hypertext systems, with
varying degrees of success.

The idea of adaptive hypertext is very promising, and one which has been large-

ly ignored by the open hypertext community. Adaptive methods provide some use-

44

Chapter 2: Developing The Hypertext Model

ful solutions to many of the problems of disorientation and confusion seen in the
hypertext field, and can be useful for managing the large-scale systems which are
discussed later in this thesis. Adaptive hypertext shares many of the ideas used
in artificial intelligence and information retrieval research [Sa189]. Some document

management systems such as Grif [QV86] also allow the user to decide on pre-
sentation mappings and support multiple document views and outlines. Many

of these ideas also lead on from the early work on dynamic hypertext, and some
aspects of adaptation have been used in more general hypertext applications (eg.
Trellis [Sto9l], Knowledge Weasel [LS93], HieNet [Cha93], VNS [SCG89], PHIDIAS
[MBD 90]).

2.4 Summary

This chapter has explored some of the more significant developments in the hy-

pertext field, and has discussed some of the issues arising from this work. The
idea of open hypertext has been introduced which views hypertext, not simply as a
paradigm for structuring information, but as a service for integrating the user's en-

vironment. Hypertext services are no longer implemented as closed, monolithic ap-

plications, but are made available as ubiquitous services for all applications. It is the

role of the application to then implement the suitable domain-specific abstractions,

which are of no concern to the hypertext services. These hypertext architectures

must be scalable to meet future requirements, and cope with diverse information

types, and support extensibility at all levels.

While the benefits of open systems over current working environments are clear,
these future systems give rise to a number of problems. Many of the abstractions

and concepts found in conventional systems do not translate to the idea of open

systems, for example the concept of a node is no longer clearly defined, and the

browsing and authoring of the hypertext becomes the shared responsibility of the

application and the hypertext link services. Open environments cannot assume the

functionality of applications which are to be used within the hypertext, and en-

counter problems with applications which cannot be fully integrated with the hy-

pertext services. Also, many of the object management issues become more compli-

cated in open systems, giving rise to problems of consistency and storage. Open en-

vironments cannot enforce a single interface across all applications, and encounter

problems with dynamic information where the system must process objects which

managed externally by other systems. Modern hypertext must also address the

problems of hypermedia-in-the-large [LS94], and the idea of distributed, collabora-

tive environments has been examined in the chapter. Finally, the ideas of adaptive

hypertext have been introduced, which aim to build a more responsive model of

hypertext. A hypertext system is no longer defined as a fixed, static structure which

45

Chapter 2: Developing The Hypertext Model

must suit all users, but can be tailored to meet the demands of individual users.
These open, distributed and adaptive ideas are used to influence the design and

development of the HIPPO hypertext system which is described in remainder of the
thesis. In particular, the HIPPO research aims to identify key areas which are estab-
lished in the open hypertext field - anchoring mechanisms, separation of hypertext

structure and distributed hypertext models - and develop these further. Chapter
3 recognises the need for hypertext anchors to be viewed as first-class objects, and

proposes a new anchoring mechanism based on fuzzy anchors. This model of hy-

pertext anchors offers a flexible way of addressing which better reflects the true

nature of hypertext authoring. The idea of adaptive anchors is introduced so that

anchor definitions can adapt and change in response to user browsing patterns.
Chapter 4 continues the idea of separating hypertext structure into linkbases, which
is an approach taken by a number of open systems. These linkbases are combined

with object-oriented techniques to provide a model based on inheritance hierar-

chies and distributed link brokers. This hopes to provide a linking model based on

reusing and sharing link sets, and shows how this can support a scalable and dis-

tributed hypertext model. This chapter also incorporates an adaptive model using

a weighted inheritance tree, and shows how this can use feedback from the user to

adapt the tree. Finally, Chapter 5 shows how all of these ideas can be supported us-
ing a distributed hypertext environment based on a set of communicating services.
This chapter also presents an adaptive distributed model using document objects and
fuzzy, weighted services. The HIPPO research which is described aims to develop

key abstractions in the open hypertext model, and to show how these can be used

to provide a responsive, adaptive open hypertext model. Future open hypertext en-

vironments must incorporate adaptive modelling techniques if they are to provide

a view of hypertext which better suits the need of the user.

46

Chapter 3

Fuzzy Anchors

One of the key contributions of open hypertext theory has been the elevation of
conventional hypertext abstractions to the position of first-class objects. Hyperlinks
have been developed to encapsulate dynamic behaviour and exist separately from

the nodes they connect. Similarly, the traditional view of the anchor has under-
gone many changes and is no longer viewed as a simple attribute of a hyperlink.
Chapter 1 outlined many issues relating to hypertext anchoring - granularity, flex-
ible addressing, presentation, selection etc. The anchor was also developed further
in Chapter 2, with systems such as Dexter [HS90], PROXHY [KL91] and Chimera
[ATJ941 which viewed anchors as independent objects.

Open hypertext aims to focus on the essential characteristics of hypertext, and
the fundamental abstractions which are needed to provide effective linking services.
However, most open hypertext research seems to centre around the development of
the link - dynamic links, link computations, separate linkbases etc. The anchor has

been largely ignored by the hypertext community, and while some systems offer in-

teresting contributions, the anchor remains much the same as in early systems. The

anchor provides the basis for all linking structures, and is fundamental to a flexi-

ble hypertext linking service. Open hypertext has taken a deconstructive approach

which identifies key features in the hypertext domain, and reduces these to their es-

sential characteristics. Nodes are viewed as separate objects, and linking structures

are managed at a separate level to the node contents. However, with the notable

exception of a few projects, the hypertext community is less confident about the an-

chor. Anchors are still implemented as attributes of links, and have not been fully

developed as first-class abstractions.
This chapter aims to develop the anchor in open hypertext, by introducing the

concept of fuzzy anchors. Fuzzy anchors provide a more ambiguous, less discrete

notion of link anchoring, which the author feels sits more comfortably with modern

computing tasks. Some adaptive ideas are incorporated into the model, which at-

tempt to provide some level of tailorability and adaptation. Fuzzy anchors respond

47

Chapter 3: Fuzzy Anchors

to the usage patterns of the user community, and use this feedback to refine the an-

chors in the hypertext. The chapter describes this new approach to anchoring and

explores some of the advantages this has over conventional anchoring techniques.
The implementation of a prototype which supports fuzzy anchoring is discussed,

along with some of the key design issues which were considered.

48

Chapter 3: Fuzzy Anchors

3.1 Limitations Of The Current Anchoring Model

This section identifies some of the problems with current approaches to anchoring
in modern hypertext systems. Anchors are usually implemented as data attributes
belonging to the hypertext link, but it is suggested that anchors should be sup-
ported as first-class objects. Furthermore, the limitations of the current approaches
to addressing are explored, along with the fixed, static nature of hypertext anchors.

3.1.1 Anchors As First-Class Objects

Early hypertext models were based around closed, monolithic systems [App87,
HMT87, AMY88], which hid the details of the system from the user. The hypertext
functionality was fixed, and hypertext abstractions were implemented as internal
data structures. Recent research into open hypertext attempts to identify these key

abstractions, and how they can be supported in a more open, loosely-coupled en-
vironment [OHSa]. Hypertext links are viewed as first-class objects which exist in
the model in their own right; these links have data values (link types, ownership
information, directionality), and also behaviour associated with them. Also, many
researchers have explored the benefits of storing and maintaining hypertext links

separately from the node contents [Pea89, FHHD90, GT94, HS901.
However, the anchor is rarely viewed as a fundamental abstraction in a hyper-

text environment, and is usually supported using data values which are associated
with the appropriate links. While this approach can be sufficient for many situ-
ations, the separation of anchors from other hypertext objects can be very useful.
Leggett et al [KL91] separate the anchor behaviour and the anchor addressing from

the links, and show how this provides a more extensible environment. Links can
be maintained independently of any anchoring objects and anchors can be updated
and manipulated without interfering with the links themselves. The separation of
the addressing mechanisms from any hypertext structures means that the hyper-

text service need not be aware of any particular data format or unusual form of

addressing. The view of anchors as first-class objects allows anchors to be shared

and managed as separate entities, so that links can share the same anchor etc. Fur-

thermore, the separation of anchoring concerns allows the anchoring mechanisms
to be developed and refined without affecting the rest of the hypertext system. This

is very important for a scalable, open hypertext system.
These are all persuasive reasons why hypertext anchors should be elevated to

the status of first-class objects, equal to that of nodes and links. The separation

of anchoring mechanisms encourages further research into hypertext anchors, and

provides a more extensible approach to hypertext linking (see figure 3.1). While

a few systems have begun to adopt this approach [Kac90, ATJ941, the majority of

open hypertext systems continue to adopt the conventional view of anchors as link

49

Chapter 3: Fuzzy Anchors

link

IF IF

anchor anchor

_. un would begin in the by
., _ A. In 1962, D rt bey. ie s-j system was one

nrork on the E- project ie pioneering systems in the hyperte>
designed to augmen humar -fld, designed as a problem solving to, 'ntellectual capabilities. The syster planning, analysing and designin-

'luded support for gr- - domains. Augment/NLS
, "ation, and pioneered

node node

Figure 3.1: Separation of anchors, nodes and links

attributes. The concept of fuzzy anchors which is developed in this chapter views
anchors as separate objects which are manipulated and managed separately from

the linking structures.

3.1.2 Over-Specific Addressing Mechanisms

The development of hypertext modelling emerged from the ever-increasing vol-
umes of information made available to the researcher. Users found themselves with
access to overwhelming quantities of data, but with only primitive means of con-
trolling it, so were unable to make full use of the information. Hypertext offered

an alternative way of structuring and managing this data, and aims to provide a

more natural and effective means of retrieving information. Hypertext provided

ways of expressing the many complex and important relationships between objects,

and ways of arranging information into coherent and useful structures. These rela-
tionships can be very subtle and intricate, and allow users to model very complex

and specialised information spaces. While hypertext is a useful tool for knowledge

management, in many respects current methods for defining links and specifying

anchors are not well-suited to this process. Current methods of anchoring hyper-

text links do not allow the user to reflect the uncertainty and ambiguity which is

inherent in any complex knowledge task, and these methods need to be developed

further to meet the demands of modern applications.
When authors wish to model a relationship between a set of concepts, they must

express this relationship within the constraints of the model provided by the hyper-

text system. The author may well be able to express a relationship using a hypertext

50

Chapter 3: Fuzzy Anchors

link -a directed link, a typed relationship or some other form of link - but it is much
more difficult to select suitable end points for this new link. It is often unreasonable
to require the author to reduce the two concepts being linked, down to a pair of
endpoints. Even when the author is afforded the notion of spans of text, or some
other method of content selection to define the link anchors, it is still difficult to
identify a region which sums up the source or destination of the link. The reason
for an anchoring mechanism is to provide some means of encapsulating the source
and target destinations of a hypertext relationship, yet this seems almost impossi-
ble to do using conventional anchoring models. An anchor cannot be reduced to a
single point on a page, or even an anchor which may contain a phrase or several
keywords.

When an author creates a document, a page of text or some other corpus of infor-
mation, he or she may identify a number of relationships which join concepts within
the work and between other documents. However, each of these relationships orig-
inate, not from a single point or span of text, but from more flowing, ambiguous
origins. Concepts and ideas do not simply appear out of the text in an instant, per-
sist for several words, before disappearing again. Instead, an idea emerges much
more gradually; initial ideas are introduced to support the main thread of discus-

sion; the author develops these ideas, and rephrases and reiterates them. Concepts

are referred to in later passages and reinterpreted in light of previous discussion,
before fading away to give rise to further ideas.

Often, there is no single phrase that encapsulates an idea, and the essence of
some concept cannot be expressed as a single word or a point on a page. The true

notion of an anchor is a much more ambiguous, contextual object which does not
have a definite start and end, which cannot be reduced to a single point, or captured
in a span of several words. An anchor should not have specific boundaries which
include some arbitrary special words, while excluding others which may still have a
contribution to make to the anchor.

The conventional notion of a discrete, specific anchor with clear boundaries can
be useful in some situations, indeed there are some applications where single-point

anchors or anchors containing a few select words are preferable. For example, an

on-line dictionary or thesaurus is a natural medium for hypertext, where terms can
be linked to further definitions or alternative phrases. A source anchor would span
the length of the word of interest, while the destination anchor would mark the ap-

propriate definition of the term. Similarly, hypertexts which link citations to the full

documents, or refer readers to footnotes are all applications where the conventional
definition of anchors can be used unchanged.

However, these are very simple applications and do not exploit the full potential
that hypertext promises. The real benefits of hypertext come from the modelling of

more complex information domains, with more subtle and unusual relationships.

51

Chapter 3: Fuzzy Anchors

The construction of a link is no longer a simple, automated task, as the author iden-
tifies less clearly-defined relationships; relating the ideas in an engineering paper
to a discussion on properties of materials; connecting a piece of literary work to a
critique of the author's style etc. This form of linking demands a more subtle an-
choring method, in which an author can identify ideas in a text which do not have
a definite start and end, and which ebb and flow within the document. An anchor
should be more supportive and should recognise the difficulties and uncertainty
that are inherent in hypertext authoring.

3.1.3 Static Anchors

Once the authors have identified a relationship within a hypertext, they must de-
fine a hypertext link, along with the appropriate anchors at each link endpoint.
Whichever anchoring mechanisms are offered by a hypertext system, the author
still decides on an anchor definition, then commits this to the hypertext. These an-
chor (and link) definitions then become part of the hypertext structure, and persist
for the remaining lifetime of the hypertext. The anchor definition is now fixed and
immutable, and remains completely static once it has been stored within the hyper-
text environment.

While this seems to be a natural reflection of the authoring process, it does rely
on the author selecting an accurate and suitable definition for the anchor. The au-
thor must identify the correct phrase or content specification for each anchor, and
must ensure that they define the anchor correctly at the first attempt. It seems un-
likely that the author can provide this ideal specification for each anchor on ev-
ery occasion. Hypertext authoring is widely acknowledged as a very difficult and
time-consuming process, and is very different from the task of writing in a linear

medium. The optimal endpoint for a link is not immediately obvious, and it is only
as the hypertext is used that the true nature and value of an anchor becomes appar-
ent. The author cannot view the hypertext from the perspective of the users, and so

may not understand which anchor definition is most appropriate for the task. What

may appear to be a perfectly natural and accurate anchor definition for the author,

may prove confusing and counter-intuitive for many users.
The construction of a hypertext aims to simplify and structure complex infor-

mation spaces for the user. It therefore seems useful to involve the user in the con-
struction of the hypertext, and to use the experiences and interaction from users as
an important part of the authoring process. As users continue to browse through

a hypertext, it may become clear that the original definition of an anchor could be

improved or altered in some way to better capture the endpoint of a relationship.
A hypertext system can monitor the browsing patterns of users to see how they

perceive and understand hypertext anchors, and then use this feedback as input

into the authoring cycle. The definition of an anchor need not be a one-shot process

52

Chapter 3: Fuzzy Anchors

in which the author must produce the ideal definition, but can be a more iterative
process which constantly changes and updates the anchor.

Chapter 2 reviewed the idea of adaptive hypertext, and showed how knowledge
about the user could be used to infer changes to the underlying hypertext model.
However, the existing work on adaptive hypertext has focussed on the manipula-
tion of links and node contents, and has ignored how adaptive methods could be
used to alter hypertext anchors. This chapter argues that adaptive hypertext tech-
niques should be used to modify and direct the definition of hypertext anchors, and
shows some ways in which this can be achieved with fuzzy anchors. The author
argues that hypertext anchors are an emergent abstraction which only become truly
dear, as users continue to interact with the hypertext. Hypertext anchoring is an
important part of the open hypertext model, which can benefit from more adap-
tive techniques. The anchor must be seen as a key abstraction in its own right, and
should be afforded some of the advantages of adaptive methods.

3.2 Fuzzy Anchors

The concept of fuzzy anchors is introduced in this section, which aims to address
the problems outlined in the previous discussion. The conventional approach to

anchoring adopts a very rigid and discrete addressing mechanism; the author must
select words and images which belong inside the anchor, and reject those that ap-
pear outside of it. An anchor has a strict boundary -a start and an end - and does

not entertain the view that the true definition of an anchor is an emergent, analogue

entity (for example, figure 1.5). Fuzzy anchors try to overcome this rigidity by incor-

porating the idea of fuzzy membership. This idea emerged from the field of set theory
[Zad65], and proposes that objects can have a degree of membership. Objects can
belong inside a set, outside a set, but also somewhere in between - slightly inside,

almost outside etc.
Classical set theory uses boolean classification to define collections - true, false,

black, white, large, small. While this can be sufficient for many applications, some

situations demand partial truth values. For example, if. we consider the concept of
height -a person who is 6 feet tall might be classified as a tall person. Classical set
theory therefore would define tall people, to be those who are above, or equal to this
height. Similarly, anyone below this height would be classified as small. Clearly,

this is not a true reflection of the real world -a 5' 11" person does not suddenly

change from being small to tall, simply by growing 1 inch. Fuzzy sets allow this

uncertainty and vagueness to be modelled explicitly, by using partial membership

values. A fuzzy set may define anyone above 6 foot to be tall, but can also apply a
degree of membership to those who are neither tall nor small (figure 3.2).

A fuzzy anchor uses this less discrete notion of membership, so that areas on

53

Chapter 3: Fuzzy Anchors

set
membership

0

height (ft)

Figure 3.2: Fuzzy sets use partial truth values to model uncertainty

str t comp e the user
er ore se ms natural to use the in ne

e erience of the hypertext users to mo
a apt the ypertext. Some exc : . _, w as
d ne in th area of adapti hypertext fBru 6],
th has foc ssed on the m itication and fill in
Iin and ad tive user inter es, and hio
the le of anc s in an adaptive rt

perte environmen e int ction
us s as t select anchors and links nd use t
infor tion to t the specifica ' of the ancho
that it n nanhP. wA. rnnsirlarad the imi

Figure 3.3: Example of a fuzzy anchor

a page can be anchored, unanchored, strongly anchored, or perhaps slightly an-
chored. For example, a phrase or sentence which discusses a particular concept has

a natural affinity with an anchor, and should be included inside the boundary of an
anchor. This would be true when using conventional anchoring models, but unlike
these approaches, this is not the end of the anchor definition. The neighbouring text

which leads up to the anchor also has a part to play. This introduces the concept

which the anchor hopes to encapsulate, and places the central idea in some form of

context. While not as important as the central text, this introductory text does have

some relevance to the concept being anchored, and will be of use to the reader who

encounters the anchor.
The traditional anchor forces the author to make a decision as to whether the

preceding text belongs in the anchor, with equal status to the central text, or should
be excluded as completely irrelevant to the hypertext link. A fuzzy anchor allows
the author to include it but assign it a lower membership than other items which are

more important. Similarly, some items which appear even earlier in the text may be

considered important in an anchor definition, and so can be included in the fuzzy

anchor, with an even lower membership value. The same is true of any trailing

text which follows the central anchor concept, and perhaps closes the argument or

summarises the anchor in some way (figure 3.3).

The fuzzy anchor no longer defines an anchor as a simple textual element, but

54

56

Chapter 3: Fuzzy Anchors

vt

strong anchor

- value

weaker anchor
presence

Figure 3.4: A typical example of a fuzzy anchor on a graphic image

as a collection of elements combined into a single set. Each of the constituent objects
which form the anchor have membership values which reflect their importance and
contribution to the anchor as a whole. A typical fuzzy anchor might be used in a
graphical image to encapsulate the endpoint of a link. The main focus of the anchor
might be around a particular object on the painting, and this region would have

the highest membership value. Other surrounding objects might also be included
in the anchor, but with lower fuzzy values. This might take the form of concentric

rings which emanate out from the centre of the anchor (figure 3.4). Similar exam-
ples could be applied to textual nodes and other non-graphic media. This use of
fuzzy anchors has a strong analogy with the idea of contour maps used in maps and

engineering surveying. Each contour boundary reflects a change of height, and an
implied change of importance and membership. As with hill heights, fuzzy anchors

are not limited to conical shapes, but can contain any number of complex shapes,

peaks and valleys.

3.3 Advantages Of Fuzzy Anchors

The application of fuzzy membership to an anchoring scheme offers a new flex-

ibility to the author compared to more discrete, rigid anchoring models. Fuzzy

anchors can help express the uncertainty and ambiguity inherent in a hypertext an-

chor, rather than rejecting it and forcing the author to make unnatural compromises.

The fuzzy anchor aims to reflect the true nature of node contents, not as a series of

discrete objects, but as a collection of flowing, emerging ideas and concepts which

develop and reinforce each other. In particular, the notion of fuzzy anchors helps

55

Chapter 3: Fuzzy Anchors

to avoid some of the common practical problems which authors experience when
using conventional anchoring models:

" The author is not forced into reducing a complex idea to a single word or
phrase - this is a frequent problem with the World Wide Web, with phrases
such as "... click here for more information"

" Conversely, authors can have such difficulty collapsing an idea to a single
sound-bite, that they create anchors which are very large, to avoid the risk of
leaving any elements out of an anchor.

" If a link is forced to use an anchor which is a short, precise phrase or a single
span of continuous text, then it is unlikely that the anchor can fully capture the
concept being linked. This can only confuse the reader, perhaps suggesting
that the anchor leads to a definition or contains information specifically about
the phrase that is highlighted. A fuzzy anchor which contains elements of
varying membership and relevance is more descriptive and better embodies
the concept being used in the link.

" With the increasing volumes of information available to the on-line user, and
with the enormous success of the World Wide Web, users are no longer always
satisfied with a single set of links provided by a single author. The Internet

and WWW offer the potential for an almost infinite number of hypertexts,

where everything is linked, and anything can be a potential anchor. Many

of the more open systems are addressing these issues by offering interaction

models based around query mechanisms, whereby users select objects, and

ask "is this linked to anything? " [Ha194]. The existing anchoring methods which
dictate specific, discrete selections make this situation more difficult for a user,
by forcing them to make the very same precise selections that are stored in the
hypertext link-anchor specifications. A fuzzy anchor offers a larger, less well-
defined area, which allows the user to select anchors by selecting the overall

concept or ideas in a document. In this way, users are more likely to find

matching anchors.

" Fuzzy anchors have particular benefits for more graphical content and mul-
timedia applications. Often a user will select a region on an image which
represents a concept, with the hope that the author has provided some hyper-

text link, and an anchor at that point. Current anchoring mechanisms require
the author to define anchors with definite boundaries, and the user may find

that their selection lies outside of this region. However, it is clear that, just

as a graphic image has no formal boundaries or distinct elements, so anchors

should avoid this. Fuzzy anchors would allow users to select a region, with

56

Chapter 3: Fuzzy Anchors

ýý \I
\ýý/

Figure 3.5: Initial specification of a fuzzy anchor

a realistic expectation that they will locate an anchor, instead of "just missing"
the anchor.

3.4 Adaptive Fuzzy Anchors

The previous discussion criticised the static, permanent nature of traditional an-
choring implementations, and argued for a more adaptive environment. It is not
reasonable to require an author to identify the optimal anchor definition, and as-
sume that this will be ideal for the users of the hypertext. A more flexible model
should incorporate the users' actions and knowledge to modify and adapt the an-
chor definitions. An anchor should change throughout the lifetime of a hypertext,

as it converges on the most favourable anchor definition.
Fuzzy anchors are well-suited to this notion of adaptive hypertext, because the

fuzzy membership values which reflect the importance of the anchor elements are a
natural means of supporting adaptation. An adaptive system can monitor the way
a user interacts with a particular anchor, and observe the user's browsing patterns.
These can be then be used to increase particular areas of the fuzzy anchor, and

perhaps to decrease less important elements in the anchor. In this way, the fuzzy

contour map will change and shift in subtle ways to reflect the understanding and
interpretations of the users.

For example, consider an anchor which identifies a particular region of a graph-
ical image, and considers this to be vital to the particular anchor definition. A fuzzy

anchor would include this area and assign a high membership value to reflect its

corresponding importance. The author may consider the surrounding area of this

region to have a smaller, lesser role to play in the anchor, and would assign this a

smaller fuzzy value. The author could continue this process arbitrarily, identifying

areas which lie further from the focus of the anchor, until he or she feels the an-

chor has been fully described. This fuzzy anchor pattern may look like something

resembling figure 3.5.

Once this anchor has been defined, it becomes part of the hypertext, and users

are able to explore the hypertext by selecting the anchor. However, the author may

observe that the user (or particular groups of users) consistently select a different

region of the anchor -a region which may not correspond with the existing central

57

Chapter 3: Fuzzy Anchors

ý/1
ý/'''; j

11

1ýV

1 iý

ýý ý`

__,

Figure 3.6: Fuzzy anchor after adaptive modelling

part of the anchor. In this case, the user does not appear to agree with the author's
definition of the anchor. The user does not feel that the current "peak"1 represents
the true centre of the anchor which embodies the essence of the link endpoint. This
suggests that the author made some form of misjudgement when defining the fuzzy
anchor pattern, and that a more accurate anchor definition could be used, which
corresponds more closely with the users' interpretation. The fuzzy values of the
existing anchor could then be adjusted slightly to reflect what appears to be the true
centre of the anchor (figure 3.6). In this way, the anchor incorporates feedback from
the user, to become a more adaptive hypertext abstraction.

The scenario described above uses a very simple adaptive approach, by sim-
ply increasing regions which are popular, while reducing those that are not. How-

ever, there are many alternative adaptive methods which could be used to mod-
ify anchors, and many of the existing techniques used in adaptive hypertext were
outlined in chapter 2. The current approach used to modify adaptive anchors is
described later in the chapter, in the discussion of the prototype implementation.
What is important is that the fuzzy anchor, and application of fuzzy membership
values, provides a natural and convenient mechanism for adaptation. This was
not possible with existing anchoring models which used simple spans of content or
single points of origin. It is true that the author can modify and edit anchor defi-

nitions using conventional anchoring models, but this does not support adaptation.
The fuzzy anchoring concept introduced in this chapter provides a useful method

of actively and automatically adjusting hypertext anchors. This should provide more

accurate anchor definitions, and support an approach to hypertext which better re-
flects the needs of the user. A number of suggestions for other adaptive techniques

and future work are discussed in more detail in chapter 7.

3.5 Anchorbases

The development of this fuzzy anchor model elevates the anchor to the status of a
first-class, primary object in the hypertext model, currently enjoyed by nodes and

'The term "peak" refers to the area of the fuzzy anchor with the greatest intensity, and therefore
the logical centre of the anchor. In this case, the terms peak and centre can be used interchangeably.
However, it is recognised that a more complex anchor may have several areas of equal importance,

and therefore several centres.

58

Chapter 3: Fuzzy Anchors

1O

ýr

anchorbase

lý
--J

anchorbase

Figure 3.7: Separating anchor definitions into anchorbases

links in many open hypertext systems. Many hypertext systems have shown the
benefits of separating hypertext linking information from the node contents, and
have introduced the idea of the linkbase[FHHD90, Pea89]. Linkbases allow the hy-

pertext system to maintain complex hypertext structures without affecting the un-
derlying node contents which are managed by native applications. Users can also
select the appropriate link sets to use, which allows them to easily tailor their hy-

pertext.
The linkbase has proved a useful abstraction towards achieving open, scalable

hypertext architectures, and this is developed further in chapter 4. However, it

seems natural to apply this idea to the notion of fuzzy anchoring which has been

developed in this chapter. This work has suggested that anchors be viewed as first-

class hypertext objects which should be developed independently of other links and

nodes. It seems natural to group related anchors together into common anchorbases,
just as common hypertext links are collected together into linkbases. This helps to

promote the idea of the anchor as a separate object, and to encourage its develop-

ment, independently of other hypertext objects (figure 3.7).

The anchorbase allows the author to provide different representations for a set of

anchors, tailored to the needs of a particular user, or group of users. For example, a

user who is familiar with the hypertext environment may benefit from very specific
fuzzy anchors, while a less experienced user may require much larger, more general,
fuzzier anchors which cover larger sections of the page. The separation of anchors

from the hypertext links also allows a single anchor to be shared between many

links. If the anchor is edited or adapted (see section 3.4), then these changes will

be reflected in each of the links which use it. Indeed, the anchorbase can be useful

for supporting more specific adaptive models, so that particular sets of users can

be targeted more accurately. The following section describes an approach to user

59

Chapter 3: Fuzzy Anchors

stereotyping using anchorbases, which can be used in the HIPPO model.

User Stereotypes using Anchorbases

The idea of user stereotypes has been used in a number of adaptive hypertext sys-
tems, and was discussed in section 2.3.1. This identifies particular categories and
sub-groups of users that share some common behaviour, and uses this as the basis
for an adaptive model. Section 3.5 suggested that the anchorbase could provide a
suitable method of support user stereotypes in the HIPPO prototype, by identifying
particular anchorbases with groups of users. An anchorbase represents a collection
of anchor definitions which are maintained separately from the hyperlink defini-
tions, and can share some common semantics. Similarly, an anchorbase can be used
to encapsulate anchor definitions which are associated with particular user cate-
gories - for example novice users, or perhaps a user with expertise in some field.

In this way, a group of users with common interests, or shared backgrounds,

experiences etc, can be assigned a stereotype label. All users who belong to this

common group, can share the anchor definitions in a particular anchorbase. When

a user interacts with the anchor definitions, their behaviour is only used to adapt
those definitions belonging to their user group. Their actions do not affect anchors
which are defined outside of their stereotype anchorbase, and so do not affect other
user groups. The adaptation is confined to other members of the group, and does

not affect the rest of the user base. This is a simple, but effective of developing the

adaptive model for fuzzy anchors, and allows adaptive behaviour to be modelled at

a finer level of granularity. The set of user stereotype groups can be easily extended
by simply creating new anchorbases which correspond to a new group.

3.6 Prototype Implementation

This chapter has introduced the idea of fuzzy anchors, and shown how these can be

used to address some of the problems with current anchoring models. The concept

of fuzzy anchors has been implemented as part of the work on the HIPPO system,
to demonstrate fuzzy anchoring, and to evaluate the effectiveness of this new ap-

proach. This section examines the prototype implementation, and explores some of
the issues that were raised during the development of the application.

3.6.1 Implementation Environment

The conventional interface which has been used for hypertext applications is the

familiar point-and-click metaphor (although other paradigms have been used - for

example, non-graphical hypertext applications). Users interact with the hypertext

using a mouse pointer, and are able to select anchors and traverse hypertext links.

60

Chapter 3: Fuzzy Anchors

This is a natural representation for hypertext applications, and has proven to be
effective in the hypertext community. In addition, the idea of fuzzy anchors has a
very strong visual element, and it is important to convey this to the user. For these
reasons, it was decided to use a strong graphical environment for the prototype
implementation of fuzzy anchoring.

This emphasis on a graphical front-end was very influential in the choice of
development environment, and while a number of graphical and windowing envi-
ronments were considered, it was decided to use the Adobe Acrobat suite of tools

as a framework for development. The Acrobat software is a collection of browsers

and support tools, based around the Portable Document Format (PDF) document in-
terchange format [BC93]. This format has been discussed in more detail in the

summary of open hypertext research in Appendix B. The PDF format provides a
platform independent representation of document pages which can be viewed on
heterogeneous platforms. PDF adopts a physical representation of electronic pages,
based on the printed, presentational characteristics (images, text, markings etc). A
flexible imaging model based on the PostScript page description language [Ado90]

is supported, which allows the incorporation of complex text and images. The Acro-
bat software also supports a rich programming interface to allow the customisation

and extension of the Acrobat tools. Additional functionality can be incorporated

into the browsing tools by developing a plug-in component, and this is the approach

adopted by the prototype. An example of the original Acrobat software is shown in

figure 3.8, along with a number of example plug-in components.
The Acrobat programming interface supports the C/C++ language which was

important - C++ in particular is a widely used language which offers a number use-
ful features, and a flexible object-oriented development environment. A number of

core classes were developed using C++, which implement the fuzzy anchoring and

provide additional tools and services to the user. The X11 windowing environment
[Nye92] was also used to provide low-level graphical operations when required,

and is used as the platform for the entire prototype application. The X11 environ-

ment has been widely ported to many platforms, and offers a reliable and powerful

distributed graphical environment.

3.6.2 Internal Representation Of Fuzzy Anchors

One of the main problems encountered when implementing fuzzy anchors in the

HIPPO system, was to develop a flexible internal representation for the anchors.
Initial designs intended to use a generic markup language to define hypertext nodes

- for example the HTML language [WWW98d] - and anchors would be embedded

in the node using special tags. These tags could then be used to indicate changes

in fuzzy membership, and would provide a more descriptive method of defining

fuzzy anchors (figure 3.9). However, this logical representation of hypertext nodes

61

Chapter 3: Fuzzy Anchors

Edit Document I. lew Tools 1Vhdow

Crop 5- {
... _. __ Rotate Ice's... Gtti+S wit>ti

yv
t Pug", -.

Ctri+swt+1

ExUwt PM"... U tii¬trE
RepNace: Pages- Ctti+Shift R
D ei¬ s.... Ctri+SM¬t+D

ýaip

New Hockmark CtII+B

trief tta tote U; m alf t Cbl4t
....... L}rtaie F

oafs

........ Le
to All

s}gaiibnaft

1 . 11 61 1ý"»ýD! z llll<

C3 Parne 3 Of 0I st 73' l 19 7-132 x 1025 in

Figure 3.8: Example of Acrobat Exchange software in use

62

Chapter 3: Fuzzy Anchors

This is a piece of text, which contains
<fuzzyAnchor ID=1799 sublD=l weight=0.2>
fuzzy anchors.
<fuzzyAnchor ID=1799 sublD=2 weight=0.4>
These anchors are defined using a
<fuzzyAnchor id=1799 sublD=3 weight=0.8>
logical markup
<fuzzyAnchor id=1799 sublD=4 weight=0.6>
However, this was considered too complex
to implement reliable graphical display.
<fuzzyAnchor id=1799 sublD=5 weight=0.3>
This logical markup would be a useful
area to explore in future research.
</fuzzyAnchor>

Figure 3.9: Logical representation of fuzzy anchors

and fuzzy anchors did not transfer well to the point-and-click interface which was
considered important. It proved difficult to produce accurate renderings of fuzzy

anchors, and also a non-trivial issue to identify the appropriate fuzzy anchor for a
given mouse click.

Fuzzy anchors have a very physical, visual element and it seems more natural
to use a more graphical metaphor to represent fuzzy anchors, rather then the logical

approach. This was one of the reasons for using the PDF format and Acrobat tools
to implement the prototype, which focus on the physical characteristics of a docu-

ment. PDF pages are viewed solely in terms of graphical marks, and the application
has no notion of the content or semantics of the page. This can have some disad-

vantages, and the idea of developing fuzzy anchors in the context of generic, logical

documents is discussed in Chapter 7. However, the current prototype implementa-

tion adopts a physical representation for fuzzy anchors, so that anchors are viewed

as graphical patterns on the rendered page.
The PDF document format is based very heavily on the imaging model used

in the PostScript language which is popular as a print engine for laser printers.
This makes extensive use of the notion of paths - mathematical descriptions used
to describe lines, curves, outlines, letters etc. The strong analogy between fuzzy

anchors and contour maps which has been discussed previously, suggested that this
idea of paths could prove useful for describing anchors. In this way, each concentric
ring or change in fuzzy value could be described using a path (see figure 3.10). This

provides a very efficient and compact representation for describing anchors, and
suggests a closer integration with the underlying model used in the Acrobat tools.

However, after some initial development, it was decided that this use of paths

presented an unacceptable overhead. For example, whenever a user selected a re-

gion on the page, the application would have to expand each of the path descrip-

tions for each anchor, and generate the actual screen coordinates for each path. The

system would then have to ascertain which paths enclosed the selected region, be-

63

Chapter 3: Fuzzy Anchors

anchor:
path 1={x, y,, x2y2, x3y3... }
path 2={x, y,, x2y2, x3y3... }
path 3={x, y,, xzy2, x3y3... }

Figure 3.10: Fuzzy anchors using path descriptions

3 3 3 3 2 2 1 1
3 3 3 3 3 3 2 2
3 3 3 3 3 3 3 2
3 3 3 7 8 9 8 7
3 3 8 9 9 9 9 9
3 3 9 9 9 9 9 9
3 3 5 9 9 9 9 8
3 3 3 3 3 4 3 3

Figure 3.11: A fuzzy anchor using a matrix of values

fore matching the appropriate anchor. Similarly, the prototype application intended

to offer a number of tools and utilities to help the user manipulate fuzzy anchors
(see section 3.6.5), and it was decided that a representation using mathematical
paths would complicate these tools.

For these reasons, it was finally decided to adopt an internal representation for
fuzzy anchors based on a matrix model. Each anchor is represented using a matrix

which corresponds to the physical page, where each cell represents a pixel on the

screen. Each matrix cell contains a single integer value, to indicate the fuzzy mem-
bership value at that point (see figure 3.11). This anchor model is very simple to

implement, and can be manipulated easily by simply changing the values stored in

the cells. This matrix approach simplifies the process of mapping user selections

on to fuzzy anchor regions, and also allows the easy implementation of tools to

manage and manipulate fuzzy anchors. The section which discusses the adaptive

methods used in the implementation also shows how this matrix model offers a

natural medium for applying adaptive techniques.

3.6.3 Presentation Of Fuzzy Anchors

It had already been decided to adopt a very graphical presentation for the proto-

type, using the familiar point-and-click metaphor. The previous section described

the internal representation of fuzzy anchors, and explained the move to view fuzzy

anchors in terms of physical, graphical objects rather than logical, descriptive ab-

stractions. It seemed natural therefore, to carry this graphical element through into

64

Chapter 3: Fuzzy Anchors

Iit l: V tfu V1 - Al CU1flb IV 5lIII fity` @.

tru r omple ar the user,,
re re see s natural to use te on ar

x rience of the hypertex to mo rta
pt the ypertext. So excellent w has
S .,,, in th' area of ad pave hypertext [ru96],

uu has foc ssed on th odification an filterin
nk and ad tive user incesr. ý has ig r
1e le of an rs in an adaptive hyp ay

}rcýcc ciivý[uýi[ti r rl ril Lnu. -i C'; niE3r ion c
S rS as Select an-hers and links, pF6 use th;

ifor tton to apt the citicatio tie anchor spc
got it o m'i "r 10 t euý ý-f5tnrf fhn

Figure 3.12: Using colour to represent anchors

the presentation of fuzzy anchors and incorporate it into the design of the user in-
terface.

It was decided to use colour as a means of presenting fuzzy anchor values, by

using different shades and hues of colour to indicate each fuzzy membership value
in an anchor. Colour is an intuitive medium for many users, and helps to express
the true nature of a fuzzy anchor, as a form of contour map. The use of graphical
markings also enabled the user interface to incorporate many of the tools and ab-
stractions which are more commonly seen in painting and drawing applications.
For example, a user can draw a fuzzy anchor using a type of paintbrush, and treat
the document as a canvas. Users can erase parts of an anchor by selecting the appro-

priate tools, then brushing over the existing anchor (figure 3.12). Indeed, this paint-
ing metaphor encourages the development of a whole palette of tools and brushes

which can be used to create more complex and expressive fuzzy anchors. Chapter

7 includes a discussion of some more interesting utilities which could be developed

in future work.

3.6.4 File Format Of Anchorbases

As the prototype implementation was developed, the information used to define

each fuzzy anchor and to describe each anchorbase became ever more complex.
Eventually, it was decided that a formal grammar would be developed to define the

format of fuzzy anchor files, rather than using informal, ad-hoc approaches. The

grammar was implemented using the flex and bison language tools, which are im-

plementations of the familiar lex and yacc utilities [Les75, Joh75]. A full specification

for the lexical tokeniser and the anchorbase grammar are included in Appendix C.

The anchorbase defines the following entries:

" id = <number>

65

Chapter 3: Fuzzy Anchors

The prototype implementation is designed to operate in a shared, distributed
environment which supports multiple users. Users can access any of the an-
chors or anchorbases, and use these in their hypertext. Similarly, the adaptive
server which is described later in the chapter takes input from all users in the
environment, and uses this to modify and alter the anchor definitions to pro-
duce a more accurate set of anchors which better reflect the needs of the user.
This requires that each anchor must be uniquely and unambiguously identifi-
able throughout the entire network domain. The problem of unique naming
mechanisms is a common problem in any distributed environment, and the
previous chapter discussed some of the approaches taken in the World Wide
Web community (URLs [URL94], URNs [WWWb] etc). It was decided that a
unique numeric identifier would be sufficient for this initial implementation

which could be used to identify any anchor in hypertext domain. The cur-
rent prototype can also use the filename of the anchorbase which contains the

anchor, so each identifier needs only to be unique within the scope of each
anchorbase file.

" page = <number>
The PDF model used in the prototype implementation presents a page-based
model of each document. The matrix approach discussed earlier, describes the

shape of the fuzzy anchor, and the area of the page which it covers. However,

a complete anchor definition must also include the page on which the anchor

appears. The PDF model does not offer any interpretation of the document

contents, so the page number refers to the logical page number, rather than

any number which may appear on the rendered page.

" dest = <url>
The focus of this work has been to develop the anchor to the status of first-class

object, and to provide an anchoring model which better expresses the uncer-
tainty inherent in a hypertext environment. The benefits of separating anchors
from the hypertext links are numerous, and have been discussed previously.
The notion of anchorbases has been suggested in which links no longer con-
tain the details of anchors, but reference these indirectly. In this way, anchors

can be maintained separately, shared between links, and extended arbitrarily

without affecting the hypertext model. However, the main purpose of the pro-

totype implementation was to evaluate the idea of fuzzy anchors, and explore
how these could be used in a hypertext environment. For this reason, this im-

plementation includes the linking information with the anchor definition, and
is described by the dest token.

The current application supports URL references, as used in the World Wide

Web community. The URL naming scheme references a document using the

66

Chapter 3: Fuzzy Anchors

format:

transfer-protocol: //server-location/document-path

The prototype simply passes each URL address to an appropriate WWW br-

owser, such as Netscape Navigator [Net], and the browser is responsible for

retrieving documents. The URL scheme has also been extended in this im-
plementation, to support linking to other PDF documents. This URL syntax
allows links to reference pages within a PDF document, and can be useful for
defining references to other parts of the same document. In this case, the Acro-
bat plug-in is responsible for locating the appropriate document and moving
to the correct page destination.

" xres = <number>, yres = <number>
The decision to represent fuzzy anchors using a matrix has simplified the im-

plementation of many aspects of the prototype. However, this model based on
grids is heavily tied to the resolution of the rendering device, as each screen
pixel must have a corresponding cell in the anchor. The relatively high reso-
lution of most displays means that this can present an unacceptable overhead
and unreasonable storage requirements. It was recognised that the resolu-
tion of the underlying grid, only needs to represent anchors at the granularity

which is adequate for the document. For example, most fuzzy anchors need

only to differentiate between letters and words in a textual passage, and do

not need to be defined to the accuracy of a single pixel. Therefore, the format

of the anchorbases was extended to allow the author to control the resolution

of the anchor matrix, by defining the horizontal (xres) and vertical (yres) di-

mensions. The units are expressed in terms of number of matrix cells eg. xres

=4 would divide the screen width into four cells.

" range <number>
Each cell in the anchor definition contains a single numeric value, which re-
flects the fuzzy membership of the anchor at that point. This value is used to

indicate the importance of the region, and its contribution to the overall an-

chor. Some situations demand a very high level of accuracy for specifying

these fuzzy values, so that small differences can be expressed. Other scenar-

ios do not require such degrees of accuracy, and may only use several different

fuzzy values to define an anchor. The range token allows the author to specify

the uppermost value which is used in the anchor definition.

" data <matrix>
The previous tokens have been used to define the environment for the anchor,

and parameterise the anchorbase. The remainder of the anchor entry contains

the matrix which includes the actual data values. The matrix consists of space

67

Chapter 3: Fuzzy Anchors

id = 23
page = 12
dest = http: //www. ep. cs. nott. ac. lik
xres 20
yres = 40
range = 10
data
00000000000000000000
00000000000000000000
00000011111110000000
00011112222221100000
00011133334331100000
00011134444432100000
00001344566654420000
00000134578865432100
00000133578986542000
00001134577755432100
00011133455544331000
00001112333332210000
00000111112211100000
00000000111110000000
00000000000000000000
00000000000000000000

Figure 3.13: A complete fuzzy anchor definition

separated numeric values, and should contain a number of values which cor-
responds to the resolution specified earlier (eg. a 10 x 30 matrix should con-
tain 300 entries). The parser will continue to read the matrix until it reaches a
"-" token; this is used to denote the end of an anchor entry, and the start of the

next. By using this token, the parser can also truncate the anchor definition,

and assume that all remaining matrix cells are empty. This reduces the storage

requirements of many anchor definitions which do not cover the entire page.

An example anchor definition is included in figure 3.13), which defines a simple

anchor shape on a 20 times 40 grid.

3.6.5 Tools And Functionality

The previous discussion has explained the idea of fuzzy anchoring, and how this
has been implemented in the HIPPO prototype implementation. The internal rep-

resentation of anchors and the file parsing tools provide the basic support for fuzzy

anchors. This section describes the tools and operations which are made available
to the user by the application.

The Toolbar

The Acrobat software defines a toolbar of icons which run along the top of each
document window, and these are used to invoke commonly used operations (figure

3.14). Each Acrobat plug-in can tailor this toolbar, and provide additional buttons

68

Chapter 3: Fuzzy Anchors

which are considered useful to the user. The fuzzy anchor prototype provides three
key operations which are added to the toolbar, and are also appended to the main
Tools menu.

thesis. pdf

File Edit Doct nt. Mew Tools Window Fuzzy

.,,. 11_ °. ý. 44101 D. i
f? ' ýr,! rýi: ttdie+t'FitH&J rtc; t

Figure 3.14: The HIPPO toolbar

" Follow Anchor
This is the primary means by which the user interacts with the application,

and is used to select anchors and traverse hypertext links. When the user

clicks on a region of the document, the application pops up a dialog box con-

taining all the anchors which have some presence at that point. Each entry

in the dialog box indicates the fuzzy value at that point, and the target desti-

nation of the link. The user then selects the appropriate anchor (and link) to

traverse (figure 3.15). This click-and-query cycle is similar to that seen in other

open hypertext research ([FHHD90]), and this resource-based view of hypertext

is explored later in the chapter.

i3C : (:. '>r. yýý: i} 7i'1 i)r ý. I`. 'i ^:.:....: 1 i" : ', I: i'.: II: 11'

Furzy Anchor List

r ", r: cc. "_ Fuzzy fchors:

ýý' #t{1 tltwtarW ep"C3"nott"lýC Fuzzy Anchor
Value 1, , ý7>t r,. li ý, ' 2: htt{r: I#W mllArg

Link Destination

>il.

Follow Cýt1c
..

#. <3ý3: i: L'S ()i t. 4. SC1AtL2,
'. I:,

.
l11 e"fTiýJt £5`13 ý1: tii i ... ; s.. '+-ýfl

I)Cll '.. 1.:

rat t5-i-.; ", 'fl<'i C; fýi X't. t f'ý1' : t'S! '. 11'1`%S t(1'<f t'; i lý: C t'ti JI't

Figure 3.15: Selecting anchors in HIPPO

" Add Anchor
jJt

Once a user has created a new anchor (see later), the author must define the

69

Chapter 3: Fuzzy Anchors

pattern used to represent the anchor. This dictates which words and regions
contribute to the anchor, and their corresponding fuzzy membership values.
The user defines this contour map by using a cursor to paint on the document.
At any time, the user can alter the current fuzzy value setting using a dialog
box which is displayed at the side of the document. An example of a user
defining a fuzzy anchor pattern is shown below in figure 3.16.

areal <in
i t, ý ý ('firth? iii irrSr1 1+'ý 1171 5. Wllef) 11101t3pltl ,m i<t`tss and uz-Af ite

1'Ei. ": rk inform). Mimi, t 11ti4:: 9 s' an'' prol'lcm, stIiti u- fre ¬ týeL: urft'rllý" tL'ý ýI°

.: 1 ow-o, -kl lti- in 'rmation, lýi! ll t ti*. ()+i tiir Ala; "e'X- rl ht4, unr-,, vti >; d ri''slilt i frr. ni

ie}1.1 4s> Act

C"ýGi: ý l, ý ̀"I

t+

dcL! ri

TatkkPý-ý, Jv, I ýý k"t.,

ýf Value

6
ms, an'd rtadkýrý, IlTt zrllý I'ltýO it ht

ýöli. 31l providing y} fvwý 1Tt , S1 aJ1 71 concurrent cli-

i?
ý hä1v, ' c`TC 9t 1t :L ýýýý. l+iºfýiä' 1t34v my co fhctingg, zock it'. L}ut, st

Figure 3.16: Defining new anchors in HIPPO

" Remove Anchor
Once users have defined a fuzzy anchor pattern, they may wish to edit this
to remove some of the matrix values. The user does this using the delete tool

which allows the user to select a region of the document, which then removes
this from the underlying anchor matrix. This tool is similar to an eraser tool

seen in painting applications.

The Fuzzy Menu

The toolbar operations define commonly used tools and the plug-in also adds an-
other Fuzzy menu to the browser which includes other useful operations.

" Load Fuzzy Data

The idea of anchorbases has been discussed earlier in the chapter, which aim
to group related anchor definitions together. This allows the author to define

several representations of the same anchor, and for anchors to be treated as
first-class objects in their own right. This menu operation allows the user to

replace the current anchorbase with a new anchor file, and prompts the user

with a file selection dialog box. The application then loads the file, and passes

the data to the parser to build the internal data structures.

" Save Fuzzy Data

Similarly, once the user has made any additions or changes to a set of anchor

70

Chapter 3: Fuzzy Anchors

definitions, these new anchor definitions can be written out to a new file. This
allows an existing anchorbase to be updated, or a new, amended anchorbase
to be created.

" New Anchor
The earlier discussion of toolbar operations explained how a user can define
a fuzzy anchor pattern using a "paintbrush" style tool. However, before the
user can define these matrix values, they must first create a new instance of an
anchor. The application displays a dialog box which prompts the user for all
of the information which is necessary to fully define the anchor - link desti-

nation, matrix resolution, and the range of fuzzy values which are supported
(figure 3.17). Once the details have been entered, the application creates a new
anchor object, and the user can proceed to define the anchor by painting on
the document canvas.

it. ', L3i lIF? Sl M 8Ji1J151 at1 l.:; St'ý. Illy : _k'1'i tl lý`fY! pl`. f U£ iii l k'({ iYk': 3ý: (i sl'.! Ti'I

r, rc wý ntrCh<ýtai=nýý ýllrr,:, .., it .ar '� ilh ii-, r i i! t"ra +-1 drilit-mf+i

\ ,, 'tE New Anchor

Icxies lit Page: 1149

b! 1010 Dest t

llmp'TIr?

IF'i? ýj r_ I

X: n il o ýtýt Týy1Oi "Jo
Rargo . i1

a
t &t. '_Eý; il'k'

ncstýt ,: l. OK Carte t
ia'd to,,

lilt IS;; ýi, ýi: f t'. .:
tl ý)F1 il. ýi[`i ie'. ý '1 ii'.:: il ýý': ý 1 iý'. I: I', i i': `. ", II`: '11

En; "E3Cez ,;, ýix, ýti Cýý=: aba, r1 Civt saiýrk t('S(. ý4`{ rq irk- '>aýýxýrt fa: r frt

Figure 3.17: Creating a new anchor in HIPPO

" Select Anchor
A document can contain many anchor definitions, many of which may over-
lap and occupy the same region of the page. If users wish to edit an anchor
definition in any way - either to add new values, or to change existing values

- then they must select the appropriate anchor before making any changes.

This operation asks the user to select a point on the page, and then returns a

list of matching anchors. An anchor can then be selected from the list, and this

becomes the current selection.

" Anchor Parameters

Each anchor definition contains a set of matrix values, along with a number

of other attributes (range, resolution etc). This menu operation displays the

attribute values for the currently selected anchor, and allows the user to edit

71

Chapter 3: Fuzzy Anchors

these (figure 3.18).

iUT r 1p91t .? i"'i1F!. t'1' <: ('tt'-, ii IJAýI

'11NI tt' "fl O'A'. 3! liýflt., I., .i,.; IIi f: ±' tt1 lj lit -. ii .. 2ij

F` ? '" h Anchor Properties

odes tit T'9 Page,

Clestitaiion:

y 0f tilt, ttt, P: jfwww. Csjwtt, &CA1k

ýf 0

OK Cancel

tt ýr ýE, rý; ý : i; ". i .ci:. 1 I o�c' tIot II , Iti". "c t ,.,, "ir: +rt
mtý? t1Eaý i Irtlri Ck$1I ur, at, ý IIrk ¬C�ý . St rt i; <li. rý *t, E pnrt hF

Figure 3.18: Editing anchor details

" Display Anchors
The current implementation adopts a resource-based view of hypertext, and re-
quires the user to query the application for anchors. For example, a user may
show an interest in a particular piece of text, and can select a region using the
tools described earlier. The application then returns a list of anchors which
have some presence at this point, along with the corresponding fuzzy value
for each anchor. The user then selects the appropriate anchor from the list be-
fore traversing the link. This can be a useful approach which encourages the

user to focus on the underlying text, and assumes that a hypertext can have

many anchors defined for any given node. However, it can sometimes be use-
ful for the user to have a graphical indication of any anchors, which they can
select directly. This tool displays each anchor using colour to represent fuzzy

membership values, and paints over the top of the document. The tool uses

an exclusive-or mode of painting so that the user can still read the document

through the anchors. This tool has limited value if a node has many overlap-

ping anchors, because it can be difficult to represent multiple anchors at any

one place. Similarly, this tool has a restricted palette of colours, and the user

may prefer to use the anchor map tool described later.

" Change Threshold
Each page of a document may have many anchors defined over its surface, in-

deed, a highly interconnected hypertext is actively encouraged. However, this

can be confusing if users are presented with many anchors. The application

supports a thresholding function so that all anchor values below a certain limit

are removed from view. In this way, the user is only presented with anchors

which are strongly defined, with high fuzzy values. This is meant to discard

72

Chapter 3: Fuzzy Anchors

some of the less important anchor definitions, and also to reduce the overlap
between successive anchors. The current threshold can be changed using a
dialog box which appears next to the main document window.

" Anchor Map
The display anchors option paints each fuzzy anchor over the top of the docu-
ment, and provides the user with a direct representation of each anchor. The
application encourages a query-based approach for selecting anchors, it can be
useful for the user to see the precise definition of anchors. However, it can be
difficult for the user to read the underlying text when using the display tool.
Furthermore, the nature of the X11 windowing system means that the display
tool only has a restricted number of colours with which to present each anchor.
This can cause problems if the anchor includes a wide range of values, as the
tool soon exhausts the available colours. This anchor map tool avoids these
problems by creating a new window, which is used to display fuzzy anchors.
The window has a private colour map, and has complete access to the entire
palette of available colours. Also, the anchor map does not interfere with the

main document window, so that users can still read the node contents easily.

" Reusable Patterns
As authors begin to use fuzzy anchors in a hypertext application, they can find

that certain patterns and shapes become more popular than others. Authors

may find that a particular anchor shape is useful for expressing fuzzy anchors,

and that they find themselves using it in a wide variety of situations. Different

anchor shapes suggest slightly different semantics, and are more applicable to
different content types. For example, plain text is a very linear representation,

which is based around lines which scan across the page. Any fuzzy anchors

which are used with this form of node content tend to have a symmetrical,

rectangular nature (see figure 3.19). A graphical image does not have the same
limitations for fuzzy anchors, and an author may find more complex patterns

more useful - circles, ellipses etc (figure ?).

The patterns option presents the user with a number of reusable patterns and

shapes to define common fuzzy anchors. The user selects the dimensions of
the pattern by dragging a bounding box across the page. This rectangular

region is used to delimit the pattern - for example, an author could find it

useful to select a rectangular region, which then generates an anchor with

a blend of fuzzy membership values, which increase as they approach the

centre of the rectangle. This could model the common case of a piece of prose

which introduces a concept, before describing the most important points of

the concept. The current implementation offers a limited number of shapes,

although future work could extend this further (Chapter 7).

73

Chapter 3: Fuzzy Anchors

2.3 Adaptive Hypertext

1x..
_... .

.... _ ... _,
Ar

>h� ,... 7 STS

0-4b* -0%1 410 &Z M tic, 0

2.:. 1 Adaptive Features

, i. I m icxas h : art tit c I-rr*. c rar3 Ho-v itv M. oru I ilsý:. rprtii -ri-4nwi <I-H'r I...)IIrruý

Figure 3.19: Reusable anchor patterns in HIPPO

3.6.6 Adaptive Server

Fuzzy anchors have been developed to provide a more ambiguous, flowing defini-
tion than conventional hypertext anchors, which accept the uncertainty involved in

an anchor definition. An anchor concept cannot be encapsulated by a single, rigid
span of text, but is an emergent idea which grows to a central focus before fading

away. It may be unreasonable to expect the author to identify the ideal anchor. The

true nature of a hypertext anchor cannot be ascertained until the hypertext has been

made available to the user community. Only then can the author observe how users
interact with the hypertext, and identify the accuracy of an anchor. The earlier dis-

cussion explained the need for more adaptive modelling techniques, and these have

been implemented in an adaptive server. This section discusses the development of
this server, and shows how this has been implemented in the current prototype

application.
The purpose of adaptive modelling is to provide feedback from the user, which

can then be used to modify and adapt the anchor definitions in the hypertext. How-

ever, this form of adaptation seemed to be a natural area to expand to a larger user

community. The quality of the adaptive modelling is very dependent on the nature

of feedback which is retrieved from the user. Therefore, it seemed advantageous

to involve as many users as possible in this feedback loop, to gain a representative

view of each anchor. For this reason, the adaptive implementation was collected

into a centralised server, which receives information from all user clients (figure

3.20).
Each time a user selects a fuzzy anchor, the user client informs the server of the

74

Chapter 3: Fuzzy Anchors

HIPPO clients

;J -ý-7 -- IM LI

BB

Network

Adaptive
Anchor
Server

I I

r- - ý- - -I

I I

anchorbases

Figure 3.20: Remote adaptive server

75

Chapter 3: Fuzzy Anchors

o©©o

`' Adaptive
Anchor

LJ B Server B

Retrieve Follow Update Retrieve
Anchor Link & Anchor New

Definitions Notify Server Definitions Anchor
Definitions

Adaptive
Anchor
Server

Figure 3.21: Adapting fuzzy anchors in HIPPO

anchor which was selected, and the region of the anchor which was clicked by the
user. The client communicates with the server using Remote Procedure Calls, which
are implemented using the Sun RPC libraries [Sun95a]. Once the server receives
the packaged data from the client, it loads the appropriate anchor definition, then
applies the adaptive algorithm to the anchor.

The current implementation adopts a simple adaptive algorithm - the server in-

crements the fuzzy anchor value which corresponds to the region which was se-
lected by the user, then decrements all other values in the anchor matrix. This

attempts to increase the importance of the user selections, while reducing any re-
gions which are not chosen, and therefore have little importance. This simple ap-
proach demonstrates the idea of adaptive modelling, and how this can be applied to
fuzzy anchors. However, the separation of the server implementation from the user

clients, allows a number of other adaptive techniques to be incorporated in future

implementations. Some possible developments are discussed later in the chapter.

3.7 Summary

This chapter has attempted to identify some of the problems with current approach-

es to the hypertext anchor and anchoring mechanisms. The majority of hypertext

applications implement the anchor as a simple data attribute, associated with the
hypertext link. The development of open hypertext systems has led some designers

to extend the notion of the anchor, and to implement the anchor as a first-class ob-
ject which can be manipulated independently from other hypertext objects [KL91].

This approach has a number advantages, as the specific addressing mechanisms

employed by anchors can be abstracted from the other hypertext linking mecha-

76

Chapter 3: Fuzzy Anchors

nisms. The functionality of anchors can be developed further, without affecting
other hypertext abstractions, and an anchor can be shared between multiple links.
However, contemporary anchoring mechanisms still have a number of limitations,
in particular, the problem of over-specific addressing mechanisms and static anchoring.

The hypertext anchor represents the endpoint of a hypertext link, and aims to

encapsulate the concept at each end of a link. Current approaches require the author
to specify a precise region of content to represent each anchor. The anchor contains
a word or phrase, and have a clear set of boundaries. The author does not feel

that this is a productive view of hypertext anchoring, and does not reflect the true

nature of hypertext authoring. Each' concept which represents a link endpoint, does

not simply appear from the text, with the mention of a particular phrase. A concept
emerges from the prose, building on previous ideas, and reinforcing other concepts.
The semantics of a node are much more flowing and ambiguous, and approaches to

anchoring should provide support for this fuzziness rather than forcing the author to

make unnatural choices. This chapter introduced the idea of the fuzzy anchor to help

address this problem. The fuzzy anchor uses fuzzy membership values to reflect
the contribution of each piece of text, image etc. A fuzzy anchor grows in strength

as the concept becomes more prominent, and builds to a central focus, before fading

away once the concept has been explored.
The static nature of hypertext anchors was also criticised, and it was argued that

anchor definitions should reflect the needs of the users. Fuzzy anchors seem to be a

natural medium for this form of adaptive, and an approach to adaptive anchor mod-

elling was discussed. This allows the anchor patterns to shift and grow in response

to the user browsing patterns. This should result in a more responsive form of an-

choring, which can develop independently to approach the optimal definition. The

chapter also introduces the idea of anchorbases which aim to collect related anchors

together into a single set. The author can then provide multiple representations of

each anchor, to suit particular user groups. Anchorbases have also been used to pro-

vide a more accurate, fine-grained form of adaptation, by limiting adaptive changes

to a single, group-shared anchorbase.

Finally, a prototype implementation has been discussed, which supports this

idea of fuzzy anchoring, and provides some adaptive support. The implementation

is based on the Acrobat PDF browsing software, and extends this to support fuzzy

anchors. A physical, "painting" metaphor was used to represent anchors, which are

defined using different shades and hues of colour. The application provides authors

and users with a number of tools and utilities to help create and manage fuzzy an-

chors. An adaptive server has also been implemented which receives feedback from

user clients, and uses this to modify the anchor values. The prototype implemen-

tation has offered one approach to supporting fuzzy anchors, but has also raised

a number of design issues. The development of the implementation has also sug-

77

Chapter 3: Fuzzy Anchors

gested a number of directions for future research, which are outlined in chapter 7.
This work is also summarised in [New97b].

78

Chapter 4

Building Adaptive Trees Using
Linkbases

The previous chapter showed how the hypertext anchor could be developed as
a separate abstraction, independent of the conventional view of nodes and links.
This separation promotes an open approach to hypertext, and allows the anchor-
ing mechanism to be maintained and extended independently from the rest of the
hypertext model. The concept of fuzzy anchors was introduced which offered a flex-
ible addressing system for defining anchors. However, more importantly, it was
shown how these fuzzy anchors could be used to implement adaptive modelling
techniques. An application could incorporate feedback from the user to help mod-
ify and change anchor definitions, so that hypertext anchors become a more living

abstraction which grow with the user.
This chapter applies many of the same techniques to the concept of hypertext

linking. Many open systems have identified the link as a defining feature of a hy-

pertext environment, and have attempted to abstract and separate this from the rest

of the hypertext model. Many systems separate the hypertext linking information

from the underlying node content, and introduce the idea of linkbases. These pro-

mote a more open and loosely-coupled hypertext system, which allow links to be

maintained and updated independently of other applications. Users can then select

sets of links which are tailored to a particular domain, or can use links with exter-

nal, non-native data. However, current approaches to hypertext linking that use

linkbases, do not fully develop this abstraction. Linkbases are currently viewed as

individual, self-contained objects which are isolated from other sets of links. The

relationships between different linkbases are ignored, and open systems do not ex-

plore the ways in which linkbases can support and reinforce each other.

This chapter develops the linkbase idea further, and shows how linkbases can

be used as a building block for constructing more complex linkbase structures. The

idea of linkbase inheritance is introduced to model more complex hierarchies and

79

Chapter 4: Building Adaptive Trees Using Linkbases

dependencies, referred to here as linkbase trees. This approach to linkbases aims to
provide an additional level of abstraction which promotes link re-use and sharing of
existing linkbases. This model then introduces some adaptive techniques to show
how linkbase trees can automatically develop and grow in response to the users'
browsing patterns. Confidence values are incorporated into the inheritance model,
to capture the idea of weighted inheritance relationships - these are then used to sup-
port a form of adaptive hierarchy. Finally, the prototype of the HIPPO system which
was explored in Chapter 2, is extended to support these ideas of adaptive linkbase

trees.

80

Chapter 4: Building Adaptive Trees Using Linkbases

4.1 Separate Link Structure Using Linkbases

The hypertext link is fundamental to all hypertext systems, and provides the basis
for non-linear writings (see Chapter 1). The hyperlink embodies the very idea of hy-
pertext, and enables the author to express relationships and connections between
disparate units of information. Chapter 1 outlined some of the different approaches
which have been taken by hypertext researchers. Many early systems such as Hy-
perTIES [Shn87], WE [SWF87] and ZOG [AM84b] provided a very simple notion
of links, with limited anchoring support, and were often limited to uni-directional
links. Other hypertext applications developed more powerful linking mechanisms,
ranging from directional linking schemes and n-ary, multi-way links through to
annotated links and typed linking schemes (eg. Intermedia [YHMD88], Neptune
[DS86], NLS/Augment [Eng84a], Notecards [HMT87], TEXTNET [Tri86] etc).

While the hypertext link itself has been developed in many ways to help design-

ers and users of hypertexts, researchers have also acknowledged the collective role
that links play in a hypertext environment. A hypertext link should be viewed, not
simply in isolation, by looking at its individual semantics, but also as a whole, as a
part of the larger hypertext. Many hyperlinks reinforce other connections and offer
alternative paths through the hypertext. These hyperlinks only have real meaning
when used in conjunction with other links, and viewed in the larger context of the

entire hypertext.

For example, a hyperlink often assumes that the reader has followed a particular

reading path and has a certain knowledge of the subject. Similarly, many links

rely on the presence of other links to offer the reader an alternative reading route.
Hypertext links rarely exist in isolation; instead they play a more subtle, complex

role in a hypertext. The true potential of hypertext and hyperlinking can only be

fully realised when the hypertext is viewed as a whole, and all links are viewed in

the context of other supporting links.

This collective view of hypertext links was explored in the PIE system [GB80]

which arranged links (and other hypertext objects) into layers, called contexts. These

layers could be combined together to form a single hypertext and could be used to

select different sets of links or to implement some form of versioning. The reader

could select appropriate layers and combine these together to form a single hyper-

text. The author could also provide several different sets of nodes and links, each

tailored to a particular group of users. Intermedia [YHMD88] also supports a simi-

lar idea of webs which allow links and anchors to be separated into layers.

The idea of extracting links from the node contents and combining them to-

gether into discrete sets has also been developed in the field of open hypertext.

Linkbases are a vital part of open hypertext research and have been used to great

effect (see Chapter 2 for more information). Many open hypertext environments

81

Chapter 4: Building Adaptive Trees Using Linkbases

External External
Application Application

Ag

retrieve follow link display link definitions destination

Iinkbases 0-0 0-0
C--O C-0

o--(D
E{ 0-0

Figure 4.1: Using linkbases in open hypertext applications

address the problem of incorporating hypertext by providing a link services layer.
The user's applications and tools sit on top of this linkbase layer, allowing them to
access hypertext services. Open systems typically store hypertext links and linking
information separately from the node contents - this allows the user's original ap-
plications to operate on the raw content, without having to understand hypertext-

specific information [FHHD90, Pea891. These hyperlinks are often stored together
in separate files, referred to as linkbases, and can then be overlaid on the node con-
tents to offer a seamless hypertext environment (figure 4.1).

The linkbase forms the basis of many open hypertext systems. Linkbases al-
low users to select the appropriate set of links for their application instead of being

forced to adopt a single set which is permanently embedded in the node contents.
Indeed, by leaving the original contents untouched, this allows the original appli-

cations to access the data without modification. Separate links allow users to access

shared data repositories in a collaborative environment or to use read-only media

or data which is not owned by the user. Linkbases also provide a way of support-

ing multiple views on data objects by merging selected link sets together to form

a more coherent and complete set of links. A hypertext environment built on the

idea of linkbases also allows dynamic link sets to be used so that the hypertext is

constructed dynamically for the user, rather than as a static network of nodes.

82

Chapter 4: Building Adaptive Trees Using Linkbases

4.2 Using Linkbases As Building Blocks

The previous section showed how some open hypertext systems have separated
linking information into linkbases, to provide a flexible and tailorable hypertext
system. However, this separation of hypertext links from other hypertext objects
has been used primarily as a means of integrating diverse data formats and appli-
cations. Open hypertext systems have introduced the linkbase to help implement
the idea of a hypertext services layer which manages and maintains hypertext links.
These links can then be superimposed on arbitrary node types, with minimal cus-
tomisation of the user's applications. This has been an effective approach to open
hypertext, and has proved popular in the open hypertext community. In this way,
the linkbase has been seen largely as a practical abstraction, which provides a con-
venient means of implementing open hypertext. However, this approach ignores

many of the advantages of combining individual links into a single abstraction. This

view of linkbases does not develop the collective view of hypertext links.
It is not simply the separation of hypertext structure which is important in a

linkbase, but also the way in which links are combined together to form a collective
view of hypertext links. Links are no longer considered in isolation, but are instead

treated as members of larger sets and structures. The value of a link lies not only in

its intrinsic definition, but also in the way it contributes to the larger set of hyper-

text links. We should be moving away from the idea of the link as a single entity,

and should instead view the linkbase as the fundamental unit of discourse. Just as
isolated links were developed and used to build larger structures, so the linkbase

should be used as the basic building block for constructing increasingly complex

structures.
The remainder of this chapter explores ways in which linkbases can be used to

support a more scalable hypertext model. The author should focus on the linkbase

as a fundamental hypertext object, and should concentrate on the many subtle

and intricate relationships between these link collections. These inter-relationships

should be encouraged and modelled explicitly. Linkbases should be seen as re-

sources to be shared and reused between the hypertext community. The chapter

introduces the idea of linkbase trees and shows how these promote a model for hy-

pertext linking which scales to support larger hypertext structures. Linkbase trees

encourage authors and readers to reuse existing linkbases and to refine and tailor

these to meet their specific demands. The chapter also discusses some of the issues

arising from this tree model, and explores some of the advantages of this approach.

83

Chapter 4: Building Adaptive Trees Using Linkbases

initial document document after editing (linkbase remains unchanged)

anchor

Zinkbase

link: source offset=1245

new anchor
- -wem.: =^=., ý

Zinkbase
............. .

link: source offset=1245

Figure 4.2: Update problems with linkbases

4.3 Limitations Of The Linkbase Approach

Applications which separate hypertext structure can experience some limitations

compared to more integrated linking approaches. For example, it can be difficult
to maintain link sets which are stored separately from the node contents, and are
not managed by native applications. Changes which are made to the underlying
node data must be reflected in the hypertext link structure - anchor positions may
change; some links may reference nodes which no longer exist; a hypertext link

may no longer make sense in the updated hypertext etc (see figure 4.2). Open hy-

pertext systems have acknowledged many of these problems, and must provide

additional support for ensuring data integrity etc. A hypertext application which
adopts a linkbase approach must agree on some common format for specifying link

entries, which is able to express the diverse semantics of hypertext links. The hy-

pertext system must also provide some means of managing linkbases, controlling

updates, merging link sets etc. However, these are all largely implementation prob-
lems, which many OHSs have attempted to address. This section focuses on the

abstract problem of using linkbases, and how the user can maintain and reuse large

numbers of links and link collections.

A linkbase represents a carefully crafted set of links, designed to structure a par-

ticular subject area or set of information. The creation of a linkbase involves a full

understanding of the subject area and an awareness of the particular demands that

hypertext makes on the user. When readers wish to explore a particular subject area,

they should not be forced to conjure up hypertext links themselves or blindly use

some kind of search engine. A linkbase may have been carefully tailored by some

expert, and this expertise should be shared and reused by other users. A linkbase

84

Chapter 4: Building Adaptive Trees Using Linkbases

represents very rich semantics and users should be able to incorporate these links
into their hypertext. However, linkbases should not be considered in isolation. A
linkbase is a rich hypertext resource which should be shared and reused by the
user community. Each linkbase encapsulates information about a specialised sub-
ject area, or provides a collection of links targeted to a particular type of user. A
linkbase can be useful in many situations, and a user will often combine several
linkbases together to represent a more complete and rounded set of hypertext links.

This raises the problem of managing large collections of linkbases. How does
a user decide which set of linkbases to use? Which linkbases should be used for
a particular subject? Some linkbases will fit well with certain other linkbases, and
some link collections will combine more naturally with particular link sets. A mod-
ern hypertext environment should provide ways of expressing these subtle inter-
relationships which exist between different linkbases. Users should be guided as to
which linkbases to use and how they are incorporated into the hypertext. If a user
finds a particular link collection to be of value, then perhaps other related linkbases

could be suggested to the reader. When authors wish to build additional linkbases,
they should be able to build on existing link collections, rather than starting from

scratch. The role of an author should be, not only to provide sets of link defini-

tions, but also to show how linkbases can be used together. An author should be

able to show which linkbases can be used together, and how they should be com-
bined. Linkbases should encourage reuse and promote a shared environment and
users should be able to refine and tailor particular link collections to meet their own
demands.

4.4 Linkbase Inheritance Trees

This method of using linkbases - reusing and sharing link collections; modelling

relationships between linkbases; refining and tailoring link definitions - has much

in common with the goals of Object-Oriented software design. 0-0 research looks

at ways of constructing environments from components; reusing existing designs

and implementations and expressing relationships between components. One of

the key contributions of 0-0 work is the concept of inheritance which arranges

components into hierarchies, to express relationships and commonality among ob-

jects [Lis87, Sny86b]. Booch [Boo94] describes inheritance as "a relationship among

classes, wherein one class shares the structure or behaviour defined in one (sin-

gle inheritance) or more (multiple inheritance) other classes". Inheritance allows

classes to be shared and reused, and components to be extended and tailored to

meet the specific needs of an application (see figure 4.3). These are also useful for

managing and developing hypertext linkbases, so that dependencies between sets

of links can be made explicit.

85

Chapter 4: Building Adaptive Trees Using Linkbases

Transport

Train
II

Car
II

Aeroplane

Hatchback
II

Saloon

Figure 4.3: Object-Oriented inheritance hierarchies

Figure 4.4: Linkbase inheritance trees

Linkbases can also be treated as components which can be arranged into some
form of inheritance hierarchy. Relationships between link collections can be mod-
elled as inheritance relationships, so that linkbases are shared and reused through-

out the hierarchy. A linkbase no longer exists as a single, autonomous collection of
links, but plays a role in a larger inheritance hierarchy. A linkbase can be defined

not simply as a collection of individual links, but also as the combination of several

existing linkbases. A linkbase that is derived in this way, encapsulates the contents

of existing linkbases, but can also include additional link entries which are consid-

ered important by the author (figure 4.4). This linkbase hierarchy allows the author
to express the relationships between linkbases, and show how these can be used to

build larger, more accurate linkbases.

For example, consider the construction of an engineering linkbase which is to be

used by engineers working on a large construction project. A large building project

such as this requires the pooling of information from many diverse disciplines such

86

Chapter 4: Building Adaptive Trees Using Linkbases

Figure 4.5: A simple engineering linkbase hierarchy

as mathematics, materials etc. However, a hypertext framework should encour-
age authors to reuse existing link collections, rather than creating the entire hyper-
text from scratch. Engineers should aim to build on the expertise of other authors,
reusing link collections which have already been carefully constructed. Linkbases
can be combined together, and augmented with additional links which are specific
to the project. Some links may be refined or tailored by the engineering team, while
other link definitions may be excluded altogether. Furthermore, the ways in which
these existing link collections are reused should be made explicit so that future en-
gineering projects can benefit from the experiences of the team.

An inheritance tree can express relationships between linkbases, and offer a use-
ful approach to reusing link definitions. The engineers may decide to combine
multiple linkbases using the tree hierarchy shown in figure 4.5. The engineering
linkbase is derived from existing linkbases - in this case, mathematics and materi-
als. The links which are defined in these parent linkbases are inherited and shared
by the new linkbase, as if they were actually defined in the engineering linkbase
itself 1.

This engineering linkbase which derived from existing collections can be ex-
tended with any additional links which are deemed appropriate to the subject area.
Alternatively, the derived linkbase can specialise links by overriding and updating
links which are defined higher up the tree. For example, the author may decide

that a general purpose link which is defined in the mathematics linkbase should
be revised and overridden with a more engineering-specific definition. Similarly,

the inheritance model can support exclusion which is seen in some 0-0 languages

[Sny86a]. Links which are defined in parent sets can be excluded from derived

linkbases which appear further down the hierarchy. This allows those links which

are considered inappropriate or irrelevant to the project to be removed from the

final linkbase. The IGD system [Fei90] also incorporates some simple inheritance

'This scenario gives an example of multiple inheritance in which a derived class can inherit from

more than one base class. 0-0 academics argue over the relative merits of single and multiple in-

heritance, although multiple inheritance seems to be a more natural choice when applied to sets of
hypertext links. Multiple links for a given subject do not create contradictions, whereas multiple im-

plementations of the same method in an object can provide ambiguities and conflicts.

87

Chapter 4: Building Adaptive Trees Using Linkbases

ideas into the linking model, but this is used to filter links and navigation through
the hypertext. Similarly, some systems arrange link types into a hierarchy to enforce
a rigid link typing system. Other systems such as Neptune [DS86] and HyperPro
[ON94] use link layers and contexts to support some form of hypertext versioning.
These approaches all differ from the way inheritance has been used here, which
allow relationships between linkbases to be modelled explicitly.

4.4.1 Advantages Of Linkbase Trees

This approach to managing linkbases using inheritance hierarchies has many ad-
vantages over the conventional approach to linkbases. Current hypertext applica-
tions view a linkbase simply as a collection of links, and do not attempt to develop
the linkbase as a primary, independent object in the hypertext model. Linkbase
trees allow authors to express the many relationships and dependencies between
link collections, which are ignored in other systems. Link collections are expressed
in terms of existing linkbases, and the relationships between them are made explicit.
Authors can suggest ways in which linkbases can be combined most usefully, for fu-

ture users and authors to use. Linkbases which are based on tree hierarchies also

reduce the redundancy and maintenance overhead associated with conventional
linkbase models. An inheritance relationship represents a reference to an existing
linkbase, instead of forcing an author to make copies of the appropriate link defini-

tions. Any changes which are made to a linkbase permeate throughout the inheri-

tance hierarchy, and are automatically reflected in linkbases further down the tree.

The authors of the parent linkbases are free to add, remove links, or update links,

and these will be reflected further down the inheritance hierarchy, without needing

to notify authors of the derived linkbases.

The application of inheritance to hypertext linkbases provides an intelligent way

of reusing link contexts. Link inheritance promotes the idea of programming-by-

extension - linkbases are constructed by reusing and specialising existing linkbases.

An author is encouraged to think of a linkbase in terms of the wider hypertext and

how it relates to existing link collections. Linkbases can be targeted towards special-

ist areas or particular type of users, in the knowledge that users will be augmenting

each linkbase with definitions from other collections. A linkbase no longer has to

provide a complete and exhaustive set of link definitions, but is just one building

block in a larger hierarchy.

Authors are not limited to reusing individual linkbases, but can reuse entire

sections of an inheritance tree. For example, if we expand the scenario above, so

that an author wishes to construct a linkbase which caters for the design tasks of

bridge construction. The links defined in the engineering linkbase are clearly of

great value to the design staff, and should be included in the new design linkbase.

Also, the design team may require some aspects of architecture and building design

88

Chapter 4: Building Adaptive Trees Using Linkbases

mathematics
I

materials

engineerir

bridge
construction

Figure 4.6: Deriving a new engineering linkbase

- this could also be incorporated into the inheritance tree (figure 4.6). However, the
value of the inheritance model is that the author can inherit from the engineering
linkbase, unaware that this engineering linkbase actually inherits from two further
link sets. Authors can ignore the complexities of the inheritance tree further up the
hierarchy, and can view the engineering linkbase as a single abstraction. In this way,
authors are not only reusing links and linkbases, but are also sharing and reusing
entire trees of linkbases.

4.4.2 Extending Trees Using Linkbase Visibility

The ideas of specialisation and exclusion have been incorporated into the linkbase
inheritance model, to allow links to be overridden or removed from derived nodes.
Many 00 models also introduce the idea of access control to modify the semantics of
the inheritance hierarchy. Access control allows the access and inheritance of certain

properties of each node to be controlled at a finer level of granularity. For example,
the C++ programming language [Str9l] introduces the idea of public, private and pro-
tected protection modes which limit the access of object contents. Private members

can only be accessed from within the same class, while public members can be ac-

cessed freely from external entities. Protected access however, offers a variation on

this model in which only derived classes can access these protected members. Pro-

tected members can be accessed by any node which inherits from the class, but are

hidden from any classes which appear outside of the inheritance hierarchy (figure

4.7).
These access control mechanisms have obvious benefits in the object world, but

collections of hypertext links do not have the same properties as software compo-

nents. In particular, hypertext links do not have the same notions of state and be-

haviour etc, and are largely implemented as static, passive node tuples. However

these protection controls can be applied in a number of interesting ways which are

discussed in more detail below.

89

Chapter 4: Building Adaptive Trees Using Linkbases

a1, a2, a3 private
b1, b2, b3 protected

public

bi, b2, b3

cl, c2, c3 Lc1,
c2, c3

derived external
class class

Figure 4.7: Access control in inheritance hierarchies

"A linkbase has been defined simply as a collection of hypertext links, however
it can be useful to define additional information in a linkbase. For example,
a linkbase could define symbols, authoring information, link ownership or
other data members which could be then be reused in the link specifications
in the remainder of the linkbase. Protection controls could be used to con-
trol access to this information in the hierarchy, or to hide some details from
external linkbases etc.

" While the hypertext link is largely viewed as a simple node pairing, many
hypertext environments have developed the concept of the link further to
include more computational, behavioural aspects. Many hypertext applica-
tions allow scripts to be attached to links, which are executed when the link
is traversed (see section 2.1.3). The World Wide Web [WWWa] in particular
has proved particularly popular, providing computational functionality using
CGI scripting and browser extensions such as JavaScript [JS]. The recent suc-
cess of the Java [GM95] and ActiveX [Act] environments also develop this idea
further. If we allow links to incorporate some behavioural aspects, then access

control mechanisms can be used to limit access to data values and informa-

tion used in the link computations. Furthermore, we can use the inheritance

semantics to indicate that some of these data members must be overridden

when other linkbases derive from this one.

" We could use the more literal definitions of the public, private and protected
keywords to indicate in some way how relevant and important the links in

the linkbase are to the subject. For example, a key link which is universally

applicable may be given a public status, while a less important link which

may not be so useful could be assigned a private value. While this idea of

giving additional semantics to a link is useful, it seems more intuitive and

90

Chapter 4: Building Adaptive Trees Using Linkbases

expressive to assign some form of affinity value to each link. Indeed, this idea
of weighting hypertext links to express the confidence in the relationship has
been incorporated into the HIPPO model, and is explored in section 4.5.1.
The idea of giving a link some kind of status within the linkbase can be refined.
A link which is assigned a private value could be considered so esoteric and
specific to a subject, that it is unusable outside of the linkbase in which it
is defined. For example, a number of links may be defined by authors (to
help them construct the linkbase and navigate through the hypertext), which
are not suitable for general use by other users. Any attempt to use these in
derived linkbases would not be as useful, and so a private assignment could
prevent derived classes from accessing these links. This seems to be a more
sensible and limited use of access control, and could be developed further.
The current implementation of the HIPPO system does not support this idea

of access control, and Chapter 7 suggests future directions for this research.

4.5 Adaptive Trees

The introduction of inheritance relationships into the linkbase model offers a new
level of abstraction for constructing hypertexts. Linkbases are no longer considered

as simple collections of links, but are viewed as fundamental objects in their own

right. These linkbases can be used to build complex hypertexts, and promote a form

of reuse and sharing. Users can amend and refine other linkbases, or incorporate

other users' link sets into their hypertext. A linkbase hierarchy attempts to express
the relationships between different linkbases, and model the dependencies between

different link collections. These relationships can be very complex and subtle, and

may only become apparent over a period of time. However, the current model

requires the author to define a tree hierarchy at the first attempt -a hierarchy which

remains for duration of the hypertext. This is a very static and permanent approach

which does not seem to reflect the true nature of hypertext authoring.

The previous chapter showed how anchor definitions can also be very complex

objects, and place significant demands on the author. The optimum definition of a

hypertext anchor is never entirely clear, and can only be ascertained by observing

the browsing patterns of the user. In time, a more accurate representation of an

anchor becomes clear as users interact with the hypertext. This user feedback can

then be used to adapt and modify the original anchor definition. Similarly, the

construction of a linkbase hierarchy is also a complex task, and one which should

be modified and changed over the duration of the hypertext. An author cannot

be expected to build accurate and useful linkbase trees, without first observing the

way the user interacts with the hypertext. It seems quite natural to incorporate

some level of adaptation into the tree model, so that the hierarchy can respond to

91

Chapter 4: Building Adaptive Trees Using Linkbases

the needs of the users. In this way, linkbase trees can automatically compensate for
any inaccuracies or errors which appear during its initial construction.

For example, the previous scenario outlined the development of an engineering
linkbase, and showed how this new link collection can be defined in terms of ex-
isting linkbases. The author may identify a number of useful parent linkbases, and
might build a linkbase hierarchy resembling that in figure 4.5. This seems to be a
reasonable hierarchy, yet it may transpire that some of the parent linkbases are more
significant than others, or that some of the linkbases in the hierarchy remain unused.
Conversely, some linkbases that were omitted from the tree may be able to make a
useful contribution to the hierarchy. It is important to recognise the problems of
constructing linkbase trees, and to show how initial attempts may prove inaccurate.
The ideal tree hierarchy would have an emergent behaviour, which only becomes
apparent as the users continue to explore and traverse links. The value of a particu-
lar linkbase can only be ascertained by observing the browsing patterns of user, and
by allowing the tree hierarchy to evolve over time.

This section attempts to incorporate some adaptive modelling into the linkbase
tree model. The notion of confidence values are used to augment hypertext links
in the HIPPO model, to associate some degree of certainty with each link relation.
These confidence values are also incorporated into the inheritance hierarchy to ex-
press weighted inheritance relationships. These can then be modified using feedback
from the user, so that the tree automatically responds to the needs of the user.

4.5.1 Weighted Links

Chapter 1 outlined some different approaches to hypertext linking (typing, annota-
tions etc) which attempt to introduce additional semantics into the linking scheme
(see Section 1.1.2). These approaches provide more expressive hyperlinks which
hope to better capture the true nature of a relationship. While this has been success-
ful in many systems it can often be more useful to model, not only the semantics of

a link, but also some measure of certainty in these link semantics. An author may

create many links and relationships in a hypertext, yet some connections may be

more useful than others. Some links may represent very strong relationships, while

others indicate a looser coupling.

This idea of associating confidence values with hyperlinks has been explored by

a number of researches. Furnas introduced the idea of fish-eye views [Fur86] which

attached affinity weightings to links, and used these to aid navigation. Pausch et al.
describe a system in which users are presented with node popularity weightings

which can be used to help the user decide which links to explore [PD90]. The SaTel-

lite system [PT90] uses link affinity values to compute views and dynamically lay

out the hypertext, and Ziv et al [ZR97] uses Bayesian networks to model uncertainty

in software systems. Also, Frisse used hypertext techniques in the medical field in

92

Chapter 4: Building Adaptive Trees Using Linkbases

Figure 4.8: Weighted hypertext links

his Hypertext Medical Handbook [Fri87, FC89], which propagated weighting val-
ues throughout the hypertext to aid users in the retrieval of useful information.

This idea of introducing weights and confidence values into the hypertext link-
ing system has also proved popular in the fields of information retrieval [Le192] and
adaptive hypertext [Bru96]. Link weightings introduce additional semantics into
the hypertext system, which cannot be encapsulated using conventional link typing

mechanisms. Weighted links allow authors to express more subtle relationships, not
simply the type of relationship but also some measure of the intensity of the relation.

The HIPPO model supports this idea of weighted links by associating a confi-
dence value with each link definition in the linkbase (see section 4.9.2). This value

represents the certainty and importance of a particular hyperlink. The author can
then express, not only the nature of a particular relationship, but also the impor-

tance that this has in the overall hypertext (figure 4.8). An author can emphasise

certain links as being fundamental to the "reader experience", while other links are
less important and are only to be followed by more advanced users. Users can filter

out links which are less important, while focusing on those links with higher con-

fidence values. Alternatively, a user may take the opposite approach and may be

more interested in those links which the author considers obscure or less important.

These weighted links also provide a useful means of supporting an adaptive hyper-

text model, and this approach has been seen in some adaptive hypertext systems.

Section 4.7 explains how the HIPPO model combines these weighted links with the

fuzzy anchors presented in the previous chapter, and with a form of weighted in-

heritance hierarchy.

4.5.2 Weighted Inheritance Relationships

Hypertext links can be assigned weightings which can be used to help the user nav-

igate around the hypertext, and to decide which links are most useful. A link is

no longer a discrete, static object, but becomes a fuzzy entity which exists in vari-

ous states of intensity. Weighted links allow an author to express some confidence

93

Chapter 4: Building Adaptive Trees Using Linkbases

mathematics
II

materials

1.2 \/0.4

engineering II architec

0.8 \/3.2

bridge

Figure 4.9: Weighted linkbase hierarchy

or certainty in each relation. This approach can also be applied to the inheritance
model which has been proposed in this chapter. Linkbases can be arranged into
tree hierarchies as before, but instead of treating all linkbases as equal, we can at-
tach some form of fuzzy value to each relationship. An inheritance tree can assign
weighted values to each inheritance relationship to indicate a particular importance
to particular parent linkbases, or emphasise a particular dependency (figure 4.9).
Linkbases which are important to the hierarchy and contain essential link defini-
tions can be emphasised and given increased weightings.

For example, the design team for the bridge construction linkbase described in

section 4.4 may feel that architectural concerns are of greater importance than con-
ventional engineering constraints. The inheritance dependencies for the architec-
tural linkbases could then be increased, while the other branches of the tree could
be reduced. In this way, links defined in some sections of the inheritance hierarchy

are emphasised and play a more important role than other links. These weightings

can be used to emphasise the role of particular linkbases in the hierarchy, while

suppressing less important link collections.
This idea of using confidence values allows us to model degrees of inheritance.

Links and linkbases filter down the tree, some falling effortlessly while others grow

weaker as they reach the bottom of the tree. A form of weighted inheritance rela-

tionships offers a natural means of supporting an adaptive model, and opens up

new opportunities for developing linkbase trees. Chapter 2 discussed a number of

alternative adaptive techniques which have been employed in some hypertext sys-

tems, and Chapter 3 showed how some of these approaches could be incorporated

into fuzzy anchors. Similarly, these confidence values which augment the inheri-

tance tree can also be modified using some adaptive policy. The following section

introduces the adaptive model used in HIPPO, and section 4.9.5 shows how this has

been implemented in the current prototype.

94

Chapter 4: Building Adaptive Trees Using Linkbases

4.5.3 Adapting Inheritance Values

The introduction of confidence values into the inheritance hierarchy, allows authors
to indicate the importance of particular linkbases. Some link sets can be emphasised
by allocating large values, while others can play less important roles. The current
approach requires authors to select appropriate values for each relationship when
they construct the linkbase tree. This is a useful extension to the model which al-
lows the expertise and experience of the author to be captured explicitly. However,
it also seems natural to incorporate some feedback from the users who will actu-
ally be using the link collections. Confidence values can be modified in response to
user browsing patterns, to better reflect the true needs of the user. This can high-
light any tree weightings which are inappropriate or have been misjudged by the
author. Linkbases which were considered important may turn out to be less useful
than expected. Similarly, linkbases which were given low confidence values can be
assigned more major roles where appropriate.

These degrees of inheritance provide a natural platform for supporting an adap-
tive model. The current HIPPO implementation uses a relatively simple adaptive
model which monitors the browsing patterns of the user, to see which links are ex-
plored. Each time a link is explored, the system assumes that this link is of some
value to the user. The system then locates the corresponding linkbase which con-
tains this link definition, and increases the weighting value which is associated with
that link collection. In this way, linkbases which contain useful link definitions are
given high confidence values, and their role in the overall hierarchy is increased.
Conversely, linkbases which remain unused and which do not seem to contain

many links that are of use to the user, are considered less important. The confi-
dence values associated with these linkbases are subsequently reduced, to reflect
this lesser importance. This adaptive model has been implemented in the current
HIPPO system, and is described in more detail later in section 4.9.5.

Figure 4.10 shows an example linkbase inheritance hierarchy, which models a

collection of link definitions. Each of these inheritance relationships has been as-

signed a confidence value to reflect the assumed importance of each linkbase in the

overall hierarchy. Linkbase A contains a particular link definition which is subse-

quently selected by the user. HIPPO locates the linkbase which contains this def-

inition, and increments the associated confidence value. Similarly, the remaining

weighted values associated with the other linkbases in the tree are reduced. This

adapted tree hierarchy reflects the new importance of linkbase A in the overall tree

definition.

The adaptive model which is outlined here uses a very simple adaptive strategy,

by taking user selections and applying these directly to linkbase tree definitions.

The most immediate limitation of this approach is the problem of identifying useful

95

Chapter 4: Building Adaptive Trees Using Linkbases

linkbase A link[bJase B linkbase A Zinkbase B

0.5 \/0.8 0.6\ /0.7

Zinkbase C I Zinkbase C

0.4

linkbase D

0.3

iinkbase

Figure 4.10: Adapting a linkbase tree

links from those hyperlinks which are less important. A system cannot assume
that each link which is traversed is necessarily of benefit to the user. A reader of a
hypertext typically explores many diverse branches, and reaches many dead-ends
and useless paths. Indeed, this is one of the main problems of any hypertext model,
and this disorientation problem is explored in some detail in Chapter 1. Chapter
2 showed how some adaptive hypertext systems have addressed this problem of
identifying positive links. This is an area which could be developed further in future
implementations, and Chapter 7 suggests some possible directions.

An implementation of linkbase tree hierarchies can adopt any combination of
adaptive strategies to modify the hierarchy without affecting the overall approach
to using linkbase trees. Chapter 7 includes some other adaptive ideas which have
been considered for the implementation of linkbase trees in the HIPPO system. In

particular, a simple user stereotyping model is discussed, which identifies groups of
users and maps these on to collections of linkbase hierarchies. Groups of users are

allocated particular tree definitions instead of using individual, global trees. This

provides a finer level of granularity for the adaptive model, and could be easily

added to the current HIPPO implementation. However, what is important is that

confidence values are incorporated into the linkbase tree structure. A linkbase hier-

archy is no longer a static, fixed tree, but has more responsive and adaptive features,

which change over the lifetime of the hypertext.

4.6 Distributed Trees

The inheritance of linkbases promotes the idea of the linkbase as a fundamental

hypertext abstraction, which can be treated as a first-class object. Linkbase trees

encourage the intelligent reuse of link collections and provides a framework for ex-

96

Chapter 4: Building Adaptive Trees Using Linkbases

HIPPO
Client

Network

linkbases

Figure 4.11: Distributing linkbase trees

pressing dependencies between link sets. More complex linkbases can be defined in
terms of existing collections, and users are encouraged to reuse sections of a hierar-
chy. However, this model has only been discussed on a small-scale, using simple ex-
amples and shallow tree hierarchies. The real benefits of the model become clearer
as the environment scales to include many hundreds and thousands of linkbases;

carefully crafted by different authors, with many complex relationships and depen-
dencies between linkbases.

This large-scale approach encourages enormous tree hierarchies, all reusing oth-
er collections of links - refining existing linkbases, overriding current links or ex-
cluding unnecessary link definitions. This is a natural opportunity to introduce a
widely distributed topology. Linkbases no longer have to be located locally, but can
be distributed linkbases throughout the network domain. Linkbases can be stored
throughout the network and only retrieved on demand, when the tree hierarchy is

evaluated (see figure 4.11).

There are numerous advantages to distributing the nodes of each linkbase tree.

Linkbases can be located at the place where they are administered so that they can
be updated without having to maintain redundant copies. The original authors of

each linkbase maintain control of the collection, while at the same time, making this

available to every other user in the network. The location of each linkbase can also

be optimised, based on network topology or based on network traffic etc. Redun-

dant copies of linkbases are removed because tree definitions always use references

to linkbases rather than making physical, local copies of the link collections. This

also avoids any problem of using out-of-date link definitions, because tree defini-

tions always retrieve the current version when required (although long download

times may require some caching technologies such as proxy servers or multiple mir-

97

Chapter 4: Building Adaptive Trees Using Linkbases

rors).
The distribution of linkbase trees remains completely transparent to the user

and the HIPPO system. When users incorporate a remote linkbase, they are un-
aware of the rest of the inheritance tree which may contribute to this linkbase. A
remote linkbase may combine and inherit from multiple link collections, which in
turn may each inherit from other linkbases. Users can treat each linkbase as a dis-
crete, self-contained entity, regardless of the many complex dependencies which
may go towards constructing the object. This provides a more scalable architecture,
because it introduces an additional level of abstraction - users can build on exist-
ing linkbases, unaware of the linkbases which have been used further up the tree.
The user need only consider the child linkbase, without any knowledge of the many
parents which contribute to the overall hierarchy. This approach to distributed trees
is discussed in the implementation of the HIPPO prototype, in section 4.9.4. Chap-
ter 7 also outlines some of the areas where the distributed implementation could be
improved further.

4.7 Combining Weighted Links, Weighted Trees and Fuzzy
Anchors

The discussion so far has shown the value of separating hypertext linking infor-

mation from the underlying node contents. It has been suggested that the linkbase

should be seen, not as an end in itself, but as a building block which can be used
to build complex structures. The idea of linkbase trees has been introduced to ex-

press relationships between linkbases and to build new link collections from exist-
ing linkbases. Furthermore, a number of weighting systems have been explored to

model the importance and value of hypertext objects - weighted links, weighted
linkbase trees and the fuzzy anchors which were introduced in chapter 3. This

section show how these three approaches can be combined to provide a more ex-

pressive, coherent hypertext. These three approaches to weighted objects are sum-

marised below:

. Weighted links
Weighted links have been used, albeit in a slightly different form, in various

adaptive hypertext systems and in some research into navigational systems

[Fur86, PD90, PT90]. In the HIPPO model, weighted links provide the author

with a way of emphasising particular links and showing the importance of

certain relationships. In this way, a link captures the semantics of a particular

relationship, but also a belief and certainty in those semantics.

" Weighted linkbase trees

Linkbase trees offer a useful way of combining linkbases, and for reusing ex-

98

Chapter 4: Building Adaptive Trees Using Linkbases

isting link collections. A linkbase should not expect to provide an exhaustive
set of link definitions, but a more specific, finely-crafted collection. A linkbase
typically supports a specific subject domain, but should also be considered
in the wider context. A linkbase should be used in conjunction with other
linkbases, reinforcing and supplementing these with new links. Linkbase
trees allow the author to explicitly model these inter-relationships. They also
encourage an approach to hypertext linking based on reuse and sharing - linkbases should be defined in terms of other existing linkbases, reusing some
of the carefully chosen links which have been made by other experts and au-
thors. The idea of a weighted hierarchy allows the author to attach confidence
values to each inheritance relationship, to reflect the importance of each col-
lection of links. Some linkbases will play increasingly important roles in a tree
hierarchy, and others, while still useful, play a lesser role.

" Fuzzy anchors
The previous chapter introduced an anchoring model based on fuzzy anchors.
This argued that current approaches to hypertext anchoring do not reflect the
uncertainty and ambiguity which are inherent in hypertext authoring. An
anchor does not simply begin and end, but has emergent, flowing qualities. A
fuzzy anchor uses the idea of fuzzy set membership, to provide an undulating
anchor. Some elements can have a strong presence in a fuzzy anchor, and are
considered vital to the anchor definition. Other elements which surround the

main concept still have a role to play in this anchor definition, and help to set
the central concept in some form of context. These supplementary elements
can be assigned smaller fuzzy values to reflect this reduced importance.

These three approaches to weighted objects each model some form of ambigu-
ity or uncertainty in hypertext and open hypertext in particular. These all use the
idea of confidence values or fuzzy measurements to express the importance (or oth-

erwise) of hypertext abstractions. However, each of these ideas has only been dis-

cussed in isolation, with little regard to how they affect each other. Each approach to

weighting particular hypertext abstractions attempts to introduce additional, more

expressive modelling capabilities. It seems natural to attempt to combine these ap-

proaches into a coherent overall model. This shows this has been achieved in the

current implementation of the HIPPO model.

4.8 A Simple Example

A link in the HIPPO model expresses some semantics or relationship between ob-

jects in the hypertext (the current implementation only supports links between two

objects, although there are no theoretical limitations to the number of anchors in

99

Chapter 4: Building Adaptive Trees Using Linkbases

0.8

biology linkbase

link: src=al; dest=a2; weight=0.8

Figure 4.12: Simple biology link definition

each link definition). The confidence value associated with this link is provided
by the author, to express the importance or confidence in this relation. Important
hyperlinks are assigned large confidence values, while less useful links are given
correspondingly lower values. However, the true value of this link depends, not
only on this initial value provided by the author, but also on the way it has been

used in the linkbase tree hierarchy.
For example, consider a hypertext which explores some aspect of the science of

biology. An author may create a link which combines two objects in the hypertext

- perhaps a discussion with a definition of a scientific term. The author may be

quite confident of the accuracy of this link, and believes it to be extremely useful to

a wider audience. Subsequently, the author assigns the link with a high confidence
value, say 0.8 (we assume weighted values are defined between zero and one). This

scenario is shown in figure 4.12.

However, the real importance of this link depends very much on the domain in

which it is being applied2. This link may well be of vital importance in a biology

hypertext, but what if this link is being used in a more general medical situation? A

different author may be defining a medical linkbase which can be used by medical

students, for exploring a general medical hypertext. They may decide to incorpo-

rate the contents of the previous biology linkbase, along with many others - genet-
ics, physiology, neurology etc. The author can construct a simple inheritance hierarchy

to express these relationships, and can attach weightings to reflect the important of

each constituent linkbase. A typical linkbase tree hierarchy might resemble figure

4.13.

In this case, the author has decided that although these biological link defini-

tions are very useful, they are perhaps less important than a linkbase which sup-

ports Clinical Procedures. The author may feel that an introductory collection of

2In fact, the value of a link depends on many criteria - user knowledge, experience etc - and some

of these areas are discussed further in Chapter 7

100

Chapter 4: Building Adaptive Trees Using Linkbases

clinical
procedures

0.7

Figure 4.13: A medical linkbase tree

biology linkbase

link: src=a1; dest=a2; weight=0.8

0.4

link strength = 0.8 x 0.5 = 0.4

Figure 4.14: Combining weighted links with weighted trees

medical hypertext links should emphasise the practical side of the medical field,

and that biological details are less important at this stage. Clearly, the value of the
link we discussed in figure 4.12, while still as accurate as before, has less of a role to

play in the new medical linkbase. As such, it seems sensible to combine the initial
link confidence value assigned by the first author (0.8), with the weighted tree value

chosen by the second author (0.5). A simple multiplication of the two values seems
to express this idea, so that a new confidence value of (0.4) is generated (figure 4.14).

This newly calculated confidence value intends to represent, not simply the ac-

curacy of the link, but also attempts to place the link in some form of wider context.

The new link value combines the expertise of both authors - the original expert in

biology, with the author who is building a new medical hypertext. This seems to be

a very useful approach to hypertext construction, but we have yet to consider the

role of the fuzzy anchor in this process.

The original author identified a particular relationship in the field of biology,

and decided to make this connection explicit. They must assign some confidence

101

Chapter 4: Building Adaptive Trees Using Linkbases

Trachea -

Fuzzy
Anchor

Human
Lungs

_ `; `

Is

Respiratory
System

Figure 4.15: Defining a fuzzy anchor on a picture of the human body

value to the link, but must also provide a set of anchor definitions for each end-
point. The HIPPO model uses fuzzy anchors to model each link endpoint, in an
effort to provide a flexible anchoring mechanism (see chapter 3 for further expla-
nation). This would result in a set of anchors with varying fuzzy values - different

areas of text or graphic each have a fuzzy value which represents their importance
in the anchor. For example, if we continue with the medical example, the hypertext

may contain a picture of the human body. The author may wish to link an area of
the respiratory system to some further explanation of human respiration. The res-
piratory system has no clear boundaries - no definite start or end - and cannot be

clearly delimited. However, fuzzy anchors allow the author to capture this ambi-

guity and express the uncertainty of the endpoint. The author decides to create a
fuzzy anchor which focuses on the human lungs, but also includes some section of
the trachea and the surrounding region (see figure 4.15). This results in a very rich

and expressive anchor which seems to encapsulate the central concept while still

capturing the wider context.
When the user encounters this picture of the human anatomy, they may decide

to explore this picture of the human body in more detail. The user may have some

interest in the physical problems associated with human respiration, in particular,

perhaps at ways of avoiding choking or blockage of the windpipe. The user clicks

on the trachea, in an effort to find more information. Figure 4.15 showed a fuzzy

anchor which was defined to include some elements of the trachea, and would seem

a natural choice. However, this anchor had a clear focus on the lungs, rather than

the windpipe area, and it may be that other anchors, with a stronger presence over

the windpipe would be more appropriate. The value of a hypertext relation lies

not only in the accuracy of the link (or the way it is used in a linkbase tree), but

also in the definition of the anchor. An anchor attempts to encapsulate fundamental

102

Chapter 4: Building Adaptive Trees Using Linkbases

Selected 1
Fuzzy

Anchor
[value - 0.31 1

i. (1
ý`

Computed value of link = 0.3 x 0.8 x 0.5 = 0.12

j(j

0.8

Figure 4.16: Using fuzzy anchors to amend the link weights

elements at each end of a link, elements which may not have clear boundaries. As
such, it seems sensible to use the fuzzy definition of the anchor to modify the link
weighting that we have calculated so far.

The region of the human windpipe that was selected by the user may have a
rather low rating in the fuzzy anchor definition, say 0.4. This reflects the reduced
importance of the windpipe in the respiratory system, and the greater role of the
lungs etc. We could then generate a new confidence value by incorporating this an-
chor value into our current equation. The final value which represents the true con-
fidence of the relationship becomes the product of the anchor value, link weighting
and tree weightings (0.3 x 0.8 x 0.5 = 0.12). Figure 4.16 shows this final calculation
in effect. This final value can then presented to the user, before deciding whether to
traverse the link or choose another link. The user can then follow links which have

a high confidence value, and ignore lower values.
This method of calculating the certainty values of hypertext relationships is ap-

plied universally to all relationships in the HIPPO system. It attempts to combine

all of the ideas presented so far, and results in a link which reflects the rich semantics

of each weighted object. The expertise of the author who identified the relationship
is combined with the richness and expressive qualities of fuzzy anchors. This then

combines the expertise of the author who constructed the inheritance hierarchy, and
decided how the original link would be used in the overall hypertext. Section 4.9

shows how this overall model has been implemented in HIPPO.

4.9 Implementing Adaptive Linkbase Trees In The HIPPO

System

This chapter has outlined the concept of linkbase trees. Linkbases are viewed as fun-

damental objects which can be arranged into inheritance hierarchies, to promote a

scalable model based on reuse and sharing. Each inheritance dependency is aug-

103

Chapter 4: Building Adaptive Trees Using Linkbases

mented with a confidence value, which represents the strength of the relationship.
This can then be used to model degrees inheritance, to assign particular importance
to certain linkbases. These confidence values were combined with a linking model
base on weighted links. Finally, it was suggested that this model is suitable for large-
scale distribution - linkbases can reside on remote machines to reduce redundancy
and allow authors to maintain ownership of the link collections.

Chapter 3 outlined an initial prototype of the HIPPO system which supported
adaptive fuzzy anchors, and was implemented using the Acrobat document frame-
work [Acr]. This plug-in has been extended to support the ideas which are intro-
duced in this chapter. The new application uses linkbases to separate linking in-
formation from the node and anchor definitions. The HIPPO prototype provides
tools for defining linkbase hierarchies, which allows authors to define more com-
plex inheritance relationships between separate linkbases. The system also imple-

ments a distributed model described in section 4.6, which allows linkbases to re-
side on remote platforms. Some aspects of this distributed model have not been
implemented, and these are discussed in Chapter 7. Finally, the adaptive server
described in Chapter 3, which was used to modify anchor definitions, has been ex-
tended to support adaptation of linkbase hierarchies. This section shows how the
HIPPO system has been extended to support these ideas, and discusses the design

and implementation of this new HIPPO system.

4.9.1 Linkbases In The HIPPO Prototype

The initial implementation of the HIPPO prototype which was described in chap-
ter 3, discussed the idea of fuzzy anchors and anchorbases. A format and grammar

specification for these anchor definitions was included, which contained all of the

information which is required for a complete anchor description. In particular, each

anchor definition included a dest entry, which indicated the target destination of

each link. In this way, the user could select any anchor, then traverse the link to

reach the target document. This approach combines the anchor definitions with the

link specification, and was useful for demonstrating how fuzzy anchors fitted into

an existing hypertext model. However, this chapter has shown the many advan-

tages which can be achieved by separating linking information from the anchoring

details (section 4.1).

The anchor definitions discussed in chapter 3 do not include any reference to a

particular document, and focus entirely on addressing pieces of content within the

node 3. Instead, it is the link definition which defines the document which each

anchor refers to - this allows a single anchor definition to be used in many different

documents. The particular document which contains the anchor is no concern of

3The original prototype did include references to documents in the anchor definitions, but this was

used to demonstrate the benefits of fuzzy anchors, and was removed in later implementations.

104

Chapter 4: Building Adaptive Trees Using Linkbases

the anchor, and can change between subsequent link definitions.
For example, consider a document which contains the author's name at the top

of each page. Other documents may use an identical layout, and also include a
reference to the author at the head of each page. The author may wish to include
a link from this name, to a node containing more information about the author.
In this case, the author could create a link on each page of each document, but
need only make a single anchor definition, which then be shared between each of
the links. This reduces the storage requirements of anchor definitions because they
only appear once (this is especially important when using fuzzy anchors, which can
include large definitions). Furthermore, any changes to the anchor definition, need
only be applied to the single, shared definition.

All of the hypertext links are separated into linkbases, which describe the hy-
pertext relationships, and refer to anchors using their anchor ID numbers (figure
4.17). This approach allows the anchoring and linking mechanisms to be developed

and extended independently of each other. For example, the fuzzy anchor can be

replaced with a simpler, more traditional anchor model, without affecting any of
the hypertext link definitions. Alternatively, any number of different link models
could be used - typed links, weighted links, dynamic links - without affecting any
of the existing anchoring details. Similarly, anchors can be shared between several
links, so that any modifications to an anchor only need to be done once. Users share
the same anchor definitions, while replacing a set of link definitions with another
linkbase - perhaps links which are considered more suitable for the particular user.

The current HIPPO application implements linkbases as traditional files - each
file contains a collection of links which can be loaded into the prototype. The plug-
in provides additional menu operations to load a linkbase file and manipulate links.

The application also defines a standard format for specifying each linkbase, which
is discussed in the section 4.9.2. The author specifies tree hierarchies using a sep-

arate tree definition file - this defines which linkbases inherit from which existing

collections. The implementation then provides tools to read these tree definitions,

and generate the appropriate linkbases. The remainder of this section explains how

linkbase trees and inheritance hierarchies are specified, and how the current imple-

mentation supports these. The adaptive server which updates and modifies anchor

definitions (see Section 3.6.6) has been extended to handle adaptive links and link

trees, and is discussed in section 4.9.5.

4.9.2 Linkbase Format

The first priority for extending the HIPPO application to support linkbase trees, was

to agree on a standard format for linkbases. This specifies the syntax for defining

each hypertext link in a linkbase file. As before, the flex and bison tools were used

to construct a lexical analyser and parsing tools, which could then be used in the

105

Chapter 4: Building Adaptive Trees Using Linkbases

node
layer

linkbase
layer

anchorbase
layer

1o-ß

C-o

a, o-,

o, o,

o, 0-0
e-, 0--0

ý
--,

d--0

0-0

i L
L'

-i i

Figure 4.17: Anchor definitions maintained separately from links

linkbase = <linkbase ID>
strength = <strength of link>

srcDoc = <source document>

srcAnchor = <source anchor ID>
destDoc = <target document>
destAnchor = <destination anchor ID>

Figure 4.18: HIPPO linkbase format

HIPPO system. Readers are referred to [Foub, Foua] for more information on these
language analysis tools. A linkbase contains a collection of link definitions, where

each link definition is of the form:

Each of these fields is discussed here in more detail, and Appendix D includes

a full specification of the lexical analyser and linkbase grammar. Entries which are

marked Optional can be omitted from the link definition, and assume default values.

0 --

Each link definition must begin with this symbol. This simplifies the parsing

of the linkbase, and allows each link definition to contain optional and missing

elements.

" linkbase = <linkbase ID> Optional

The HIPPO application allows authors to define linkbase hierarchies, by spec-

106

Chapter 4: Building Adaptive Trees Using Linkbases

ifying a tree definition in a separate file. The prototype includes an adaptive
server which monitors link traversals, and uses this information to modify
weighted values in the original tree definition (see section 4.5.3 for more in-
formation). However, the adaptive implementation needs to know the origin
of the link, that is, which linkbase actually contains the link definition. This
linkbase field tells HIPPO which linkbase in the tree contained the original link
definition. If the entry is left empty, then the application assumes that the link
is a new definition, which is contained solely in the newly defined linkbase.
If the field contains an entry, then it assumes that the link was originally de-
fined higher up the tree. This identifier is a single string, which must appear
somewhere in the tree hierarchy definition (see section 4.9.4).

" strength = <strength of link> Optional
Section 4.5.1 discussed the idea of associating confidence values with each
link definition, which indicates the strength of each hypertext link. This al-
lows the author to express, not only the occurrence of a hypertext relationship,
but also the strength and importance of this link. Other systems have shown
how weighted links can be incorporated into an adaptive hypertext model.
This strength entry in a link definition associates a weighted value with the
link, and must contain a value between zero and one. Section 4.7 explains
how this confidence value is combined with the weighted inheritance rela-
tionships, and how it is used in the HIPPO system. If the value is omitted,
then the strength is assumed to be the maximum (ie. 1).

" srcDoc = <source document> Optional

Each srcDoc entry must contain a valid Universal Resource Locator (URL) which
indicates which document the source anchor refers to. This uses the standard
URL syntax [URL94].

If the entry is left empty, then the application assumes that the link is valid
for every document. This allows Microcosm-style generic links (section B. 3) to

be supported in the HIPPO application. This can reduce the authoring effort

involved in creating new hypertexts, by allowing a single link definition to be

applied to each document node in the hypertext.

" srcAnchor = <source anchor ID>

As discussed previously, the anchor specifications are maintained separately

from the link definitions. Hypertext links refer to anchor definitions indirectly,

by specifying an anchor identifier. This is then used by the application to

locate the appropriate anchor definition in an anchorbase. Anchor identifiers

can be arbitrary strings, which must match an anchor identifier in the current

anchorbase (see Chapter 3).

107

Chapter 4: Building Adaptive Trees Using Linkbases

" destDoc = <target document>

This field defines the target destination for the current link. As before, the
format uses the standard URL naming scheme to reference documents. The
current implementation uses an appropriate World Wide Web browser to lo-
cate and retrieve the target document. This entry must be included in the link
definition.

" destAnchor = <destination anchor ID> Optional
This entry refers to a destination anchor, which defines the precise target loca-

tion. As with the srcAnchor, the entry must include a valid anchor ID, and is

used to look up an anchor from the current anchorbase. If the entry is omitted,
then the link simply traverses to the node as a whole, and does not reference
any content within the node. It is important to note that the current HIPPO
implementation uses fuzzy anchors which are only supported for PDF docu-

ments. The prototype cannot support links within other content formats, how-

ever, authors can still link to other formats at the node level.

4.9.3 Linkbase Trees In The HIPPO Prototype

Linkbase trees are supported in the new HIPPO prototype, and allow authors to

express inheritance relationships between linkbases. New linkbases can be defined

in terms of existing linkbases, and can refine, extend or modify previous link def-

initions. The current implementation defines these inheritance hierarchies using a

syntax derived from the C++ language which is used to express inheritance rela-

tionships between classes. This has been modified to support linkbases, and the

syntax is discussed in section 4.9.4. Appendix E includes a full specification for the

lexical analyser and grammar for linkbase trees.

The prototype provides a build-tree tool which reads a tree template, and builds

an internal tree. This utility was defined using the flex and bison utilities to generate

parsing functions. Once the tree definition has been parsed, the prototype then

traverses the tree hierarchy, and combines the component linkbases into a single

linkbase definition. This new linkbase contains link definitions from each linkbase

that it inherits from (and in the order that each node appears in the hierarchy).

Each inheritance relationship which is specified in the tree definition, has a con-

fidence value associated with it. This is used to indicate the importance of the

linkbase in the overall hierarchy, and express its value in the linkbase tree (see Sec-

tion 4.5.2). This confidence value is then used to modify the link strengths of each

link definition in that linkbase. For example, consider part of the inheritance hier-

archy in figure 4.19. This defines that child should inherit from parent, and attaches

a weighting of 0.8 to this relationship.

Figure 4.20 includes an extract from the parent linkbase, which shows some of

108

Chapter 4: Building Adaptive Trees Using Linkbases

parent

0.8

L child

Figure 4.19: An example weighted inheritance hierarchy

linkbase = parent
strength = 0.8
srcDoc = index. pdf
srcAnchor = id-0001
destDoc = form. pdf
destAnchor = id-4895

linkbase = parent
strength = 0.5
srcDoc = index. pdf
srcAnchor = id-1003
destDoc = eprg. pdf
destAnchor = id-3845

linkbase = parent
strength = 0.2
srcDoc = eprg. pdf
srcAnchor = id-1923
destDoc = eprg. pdf
destAnchor = id-1924

Figure 4.20: Extract from the parent linkbase

the link definitions which might appear. Each link definition has a confidence value
which expresses the value and importance of each link:

The weighting which was attached to the inheritance relationship (0.8 in this

example) can be used to modify these link definitions. These new link weightings

are calculated as the product of the inheritance value and the original link value.
The new link definitions which are inherited by the child linkbase are shown in

figure 4.21. A full explanation of the way these weightings are combined is given in

sections 4.7 and 4.8.

This approach still allows each link to have an independent weighting, which

can express the importance of each link in the hypertext. However, the introduc-

tion of weighted inheritance values also allows different linkbases to be assigned a
different importance, and for these to be reflected in the final link definitions. Sec-

tion 4.9.5 shows how the prototype uses feedback from the user to modify these

inheritance values.

109

Chapter 4: Building Adaptive Trees Using Linkbases

linkbase = parent
strength = 0.64
srcDoc = index. pdf
srcAnchor = id-0001
destDoc = form. pdf
destAnchor = id-4895

linkbase = parent
strength = 0.4
srcDoc = index. pdf
srcAnchor = id-1003
destDoc = eprg. pdf
destAnchor = id-3845

linkbase = parent
strength = 0.16
srcDoc = eprg. pdf
srcAnchor = id-1923
destDoc = eprg. pdf
destAnchor = id-1924

Figure 4.21: New link weights inherited by child linkbase

Zinkbase A Zinkbase B

0.4

linkbase A{
url http: //www. cs. nott. ac. uk/lb/A. lb;

};

linkbase B{
filename peter. lb;

};

linkbase C: public A(0.5), public B(0.8) {
filename paul. lb;

linkbase D: protected C(0.4) {
finkbase D filename mary. lb;

Figure 4.22: An example tree definition

4.9.4 Linkbase Tree Format

The HIPPO system defines a syntax for specifying linkbase inheritance hierarchies.

An example tree definition is shown in figure 4.22 and a more complex example is

included in Appendix F.

" linkbase medicine

Each node in the inheritance hierarchy must begin with the linkbase key-

word. This must be followed by a linkbase identifier which can be any se-

quence of letters. This identifier does not refer to the actual physical file con-

taining the linkbase, but is used to refer to the linkbase throughout the tree

definition. For example, this example uses the medicine identifier, which then

appears later in the example when other nodes wish to inherit from this link-

base.

110

Chapter 4: Building Adaptive Trees Using Linkbases

" biology (0.5), genetics
Once a new tree node has been introduced, the definition must include a
comma separated list of inheritance specifications. These define which ex-
isting linkbases the new node will inherit from, and provide additional in-
formation about the nature of this inheritance. The public and private
keywords are used to indicate the level of access control. Access control is
an important idea in Object-Oriented design, which controls the level of vis-
ibility of inherited elements. Possible applications of this access control were
discussed in section 4.4.2, although the current implementation ignores these
access specifiers.

Each linkbase identifier can have an optional numeric value contained in paren-
theses. This value is used to indicate the inheritance weighting, which signifies
the importance (or otherwise) of each inheritance relationship (section 4.5.2).
This example uses a value of 0.5. If this numeric entry is omitted, then HIPPO

assumes the value to be the maximum. The current implementation supports
values between zero and one - where one is the maximum weighting, and
zero is a minimum, and effectively ignores the contents of the linkbase.

" filename /HIPPO/linkbases/medicine. lb;

The remainder of the tree node definition contains the main body of the node,

surrounded by parentheses. The current implementation only stores mini-

mal information about the linkbase. The author can include the filename
keyword to specify the physical file which contains the linkbase. The HIPPO

prototype also allows the author to include a url specifier, followed by a valid
URL to refer to linkbases which are stored remotely. In this case, HIPPO will

retrieve the linkbase from the remote machine using a set of Java classes. Fu-

ture implementations can make additions and extensions to the linkbase body

(linkbase author, comments, usage etc).

4.9.5 Extending The Adaptive Server

Section 4.5.3 showed how feedback from the user could be used to modify the

weightings associated with a linkbase tree definition. The construction of a linkbase

inheritance hierarchy can be a complex task, especially as the size of the tree in-

creases. It can be useful to incorporate feedback from the user, to automatically

modify and "tune" a linkbase hierarchy. Chapter 3 described the design and im-

plementation of an adaptive server for modifying fuzzy anchor definitions. This

server has been extended to support adaptive trees, and is explained in this section

in more detail.
Chapter 3 showed how clients communicate with the server using remote pro-

cedure calls. This allows the server to be located centrally, and to service arbitrary

111

Chapter 4: Building Adaptive Trees Using Linkbases

base A Zinkbase B linkbase A{
url http: //www. cs. nott. ac. uk/lb/A. 1b;

0.5 0.8 linkbase B{
filename peter. lb;

linkbase C
linkbase C: public A(0.5), public B(0.8) {

filename paul. lb;
0.4 };

linkbase D: protected C(0.4) {
iinkbase D filename mary. lb;

Figure 4.23: Using the adaptive server to modify a linkbase tree

numbers of clients. Section 4.5 outlined the adaptive model which has been used in
the HIPPO system. Each time a user explores a link, this hyperlink is assumed to be

of value to the user and should be emphasised in the tree hierarchy. Each HIPPO

client notifies the server of each link selection, along with any information which
is needed for adapting anchor definitions. The client sends a linkbase identifier,

and the file containing the tree definition which is currently being used. The server
retrieves this tree definition, then increments the value associated with the appro-
priate linkbase identifier. Similarly, the remaining inheritance weightings which
refer to other linkbases are reduced (see figure 4.10). In this way, popular linkbases

emerge with high confidence values, while less important linkbases tend towards

zero. An inheritance relationship with a zero weighting will effectively ignore the

contents of the linkbase.

4.10 Summary

This chapter has argued that modern hypertext systems should promote a level of

abstraction when dealing with hypertext links, and adopt a constructive view based

on linkbases. The conventional view of a link treats a hyperlink as a discrete entity,

existing in isolation from the rest of the hypertext. However, hyperlinks have a very

important collective role, reinforcing and supporting other links and connections in

the hypertext. Future approaches to link management should borrow from the field

of software design and analysis, moving towards a more maintainable, reusable

view of hypertext links.

The concept of a linkbase -a collection of specific links - is discussed, and it

is suggested that this collective view of links should be used as the basic building

block to construct complex hypertexts. Hypertext research should be moving to-

wards more reusable, maintainable practices, so that new hypertexts can share and

112

Chapter 4: Building Adaptive Trees Using Linkbases

build on existing bodies of work. New linkbases should derive from existing work
and build on other people's link collections. Linkbases should be reused and shared
in different contexts; refining and extending linkbases to produce more specialised
link collections. The concept of inheritance is borrowed from the field of Object-
Oriented software design, to build linkbase trees. These hierarchies are used to ex-
plicitly model the many subtle and complex relationships and inter-dependencies
between linkbases. New linkbases are constructed from existing sets of links, shar-
ing, excluding and overriding links to form more complex linkbases. This model
is developed further to include aspects such as access control, network distribution

and weighted hierarchies.

Authors can use' inheritance techniques such as specialisation and exclusion to

construct more complex linkbases from existing linkbase objects. Some form of ac-

cess control has been introduced to show the benefits of protecting elements in the
linkbase. The inheritance model has also been developed to include weighting val-

ues which can be used to emphasise certain relationships and reduce the importance

of other inheritance paths. These have been combined with the idea of weighted links

which attach confidence values to links, and allow the author to express the impor-

tance or certainty of links. An adaptive model has been developed which incor-

porates feedback from the user to modify and update the confidence values in the

inheritance tree. Finally, a distributed architecture is suggested in which linkbases

are located throughout the network domain and accessed remotely. The HIPPO

prototype described in Chapter 3 has been extended to support this idea of linkbase

hierarchies and is described in detail. Chapter 7 suggests some areas which could

be improved and developed further in future research.

113

Chapter 5

HIPPO+ - Distributing The HIPPO
Model

The opening chapters showed how the hypertext model has been developed over
the years to meet the demands of modern computing tasks. Initial monolithic appli-
cations have been replaced by open approaches to hypertext. These open hypertext
systems attempt to generalise and develop many of the key abstractions which are
common to all hypertext systems. Chapter 2 identified many of the issues arising
from open hypertext research, and explored the idea of link services. The work pre-
sented so far in this thesis has attempted to develop the anchoring and linking mod-
els used in open hypertext, and to show how these have been used in the HIPPO

system to support a flexible hypertext model.
The HIPPO model introduces the idea of fuzzy anchors and linkbase trees to pro-

vide an expressive hypertext model. These address many of the problems in OHSs

- scalability, separation of hypertext information, reuse, distribution of information

etc. In particular, the adaptive model which has been developed helps to address
many of the tailorability and maintenance problems in a hypertext. These adaptive
ideas help to mould and shape the system to match the precise demands of the user.
This moves away from the traditional view of a hypertext as a fixed, static system,
towards a more flowing and responsive environment.

However, the current prototype of the HIPPO system has been largely imple-

mented as a monolithic application. The majority of the functionality and intelli-

gence is embedded deep inside the application, and remains hidden from the user.
Open hypertext systems demand a less tightly-coupled environment which allow

services and operations to be shared and reused. An open hypertext environment

should make this functionality available to other environments so that existing ap-

plications can incorporate this hypertext technology. Existing tools should be able to

make use of the ideas presented in this thesis, without significant re-implementation

and alteration. Users should be able to tailor and extend their hypertext environ-

114

Chapter 5: HIPPO+ - Distributing The HIPPO Model

ment by selecting those services and functionality which they find useful.
This chapter describes the HIPPO+ implementation which re-implements the

HIPPO model using a distributed architecture. The HIPPO prototype has been

broken down into key services and components which can be widely distributed

throughout a network domain. These services can then be made available to all

users, so that the ideas developed in the HIPPO research can be shared and reused
between applications. A distributed model based on communicating services and

components offers many advantages over the monolithic, closed HIPPO implemen-

tation, and these benefits are discussed in more detail. The HIPPO+ system is com-

pared with existing distributed frameworks, and some of the problems which arise

in a distributed environment are discussed.

115

Chapter 5: HIPPO+ - Distributing The HIPPO Model

5.1 Summary Of The HIPPO Prototype

The previous chapters have introduced some of the early research in the hyper-
text community, and shown how this has been developed in recent years. Early
applications offered a variety of linking models and supported numerous naviga-
tional tools to help the user browse a hypertext (see Chapter 1). However, no mat-
ter how useful these additional tools were to the user, these early applications were
implemented as monolithic applications. The hypertext tools and services were
hidden from the user, and could not be used by other applications in the users' en-
vironment. If users wished to incorporate any hypertext functionality, then they
were forced to give up their existing tools and applications, and adopt a single,
all-inclusive hypertext system.

Chapter 2 showed how recent research has moved away from these closed,
monolithic applications, towards open hypertext environments. These applications
reject the view of hypertext as a single application, and provide hypertext services
which can be used as an integrating technology. The chapter discussed some of
the requirements of open hypertext systems, and showed how these have been
achieved in modern applications. OHSs often incorporate the idea of the linkbase
to separate linking information from underlying node contents. Open systems also
have a strong notion of the hypertext anchor, which allows a clean separation be-
tween the linking and anchoring mechanisms.

The work presented in this thesis so far has attempted to develop some of the

common abstractions which are used in open hypertext systems. These have been

combined with adaptive modelling techniques to provide a powerful and expres-
sive hypertext environment. These have been implemented in the HIPPO prototype

which has been described in detail. Chapter 3 introduced fuzzy anchors which offer

a more subtle and flexible anchoring model. Many open hypertext systems have ac-
knowledged the importance of the anchor in a hypertext environment, and shown
the benefits of treating anchors as first-class objects [SLH94, LS941. Fuzzy anchors

can better capture the emergent nature of link endpoints, and can incorporate feed-

back from the user to modify anchor definitions. Chapter 4 developed the notion of

the linkbase and showed how this could be used to build more reusable, maintain-

able data structures. Linkbase trees incorporate the ideas of inheritance used in 00

research, to encourage reuse and specialisation of link collections.

The HIPPO model addresses many of the requirements of open hypertext envi-

ronments which were discussed in chapter 2. Linkbase trees address some of the

scalability problems associated with large hypertext environments and promote a

distributed topology The separation of anchoring and linking information sup-

ports an open hypertext model which allows different link and anchor sets to be

used by different users. Node contents remain untouched so they can continue to

116

Chapter 5: HIPPO+ - Distributing The HIPPO Model

be used with their native applications, and it is easier to integrate different linking
models and formats. More importantly, the previous work has shown how adap-
tive modelling techniques can be incorporated into the open hypertext paradigm.
This helps to address many of the tailorability and maintenance problems which are
typically associated with hypertext applications. Section 2.1 identified a number of
requirements for open hypertext systems, which are re-evaluated here in light of the
current HIPPO implementation:

" scalability
Chapter 4 discusses the idea of linkbase inheritance trees which address some
of the scalability issues involved in hypertext design. Linkbase trees encour-
age an authoring model based on reuse and shared resources. Link collec-
tions are tailored and specialised to meet the demands of specific hypertexts,

and linkbases are used to construct larger link sets. Link trees allow authors
to explicitly model the relationships between diverse link collections, which

supports a scalable and maintainable hypertext model.

. distribution
The current implementation of the HIPPO system incorporates some distrib-

uted techniques into the hypertext model. The adaptive server which sup-

ports the adaptation of fuzzy anchors and link trees has been implemented as

a remote, centralised server. This allows multiple clients to provide feedback

to a central server, and provides some level of distribution. Section 4.6 also

showed how each node in a linkbase tree can be located remotely. Linkbases

can be distributed throughout the network and retrieved on demand.

" heterogeneity
The separation of linking information into linkbases has been widely used

in OHSs to provide some heterogeneous support. Linkbases can be replaced

and tailored to the user, or merged with existing collections. A linkbase can be

used regardless of the underlying node formats, and multiple node contents

can be serviced by the same linkbase. Chapter 3 also showed how anchor def-

initions can be maintained separately from the hyperlink information, which

provides a clean separation between the two layers. This separates any linking

concerns from the specific details of the node addressing mechanisms. Widely

differing node formats can be incorporated into the HIPPO model by provid-

ing a suitable anchoring implementation - this can be done without affecting

any linking model which is used elsewhere in the HIPPO system.

" extensibility
The separation of linking and anchoring information from the node contents

also promotes some degree of extensibility. The underlying linking model can

117

Chapter 5: HIPPO+ - Distributing The HIPPO Model

be extended without affecting the nodes, and the format of link definitions
can be extended arbitrarily. Additional anchoring mechanisms can be intro-
duced independently of the linking model, without having to alter existing
link definitions.

Much of the work in this thesis has also explored ways in which adaptive
modelling can be incorporated into an open hypertext model. Adaptive mod-
els have been presented which use feedback from the user to modify anchor
definitions and linkbase trees. This is a very powerful development which
allows the open hypertext system to respond to the needs of the user commu-
nity. This helps to address some of the tailorability issues involved in hyper-
text design, by helping the author construct a coherent hypertext. While many
open hypertext systems may support some level of extensibility, an adaptive
model attempts to automatically manage these changes. The adaptive model
in the HIPPO system guides the author and user, and tries to suggest useful
modifications to the underlying hypertext.

The HIPPO model addresses some of these requirements which have emerged
from open hypertext research. In particular, the HIPPO model develops the an-

choring and linking abstractions, and offers an interesting application of adaptive
hypertext techniques. However, the current model ignores some of the key require-

ments of open systems, most notably, openness, interoperability and computation.
The HIPPO system does provide some separation of linking and anchor def-

initions from the node information. Some aspects of the HIPPO model are im-

plemented using separate tools and utilities, such as the tools for manipulating
linkbase trees. However, the prototype is still largely implemented as a monolithic

application. Much of the hypertext functionality is embedded deep in the applica-

tion itself, and cannot be used by external applications. HIPPO does not appear to

be a truly open system, and does not offer any means of integrating with the exter-

nal environment. The user cannot use HIPPO with their existing tools, and HIPPO

does not have any notion of link services. Similarly, HIPPO does not have any signif-

icant support for computation, or offer any means of extending and customising the

application.
This chapter shows how the HIPPO prototype has been re-implemented using

a widely distributed model. This new implementation - HIPPO+ - views the hy-

pertext system as a collection of communicating processes and services, which can

be located throughout the network domain. The advantages of this approach(are

discussed along with a number of issues which arise from this new design. A num-

ber of existing distributed architectures are also explored, which have been used to

influence the design of the HIPPO+ system.

118

Chapter 5: HIPPO+ - Distributing The HIPPO Model

Lighweight
HIPPO
Client """

Network

Remote
Hypertext ". "
Services

Figure 5.1: The HIPPO+ distributed model

5.2 The Distributed HIPPO+ Model

With the exception of some key applications (eg. Augment [Eng84a]), the major-
ity of early hypertext projects focused on small-scale, localised implementations
[App87, HMT87]. Hypertext applications were seen as tools to be used by the sin-
gle user, to create small hypertexts and manage personal information spaces. The
popularity of the personal computer encouraged the development of tools aimed
at the individual working in isolation. However, these monolithic tools are unable
to meet the demands of modern computing tasks [Mal9l]. The next generation of
hypertext applications need to cater for much larger hypertexts with many users
and millions of documents. A hypertext must span many networks and platforms,
seamlessly embracing users and their tools. Leggett refers to this new vision of
hypertext as hypermedia-in-the-large [LS94].

The HIPPO+ system attempts to re-implement the ideas which have been pre-
sented in previous chapters using a distributed model. The hypertext system is

viewed as a collection of small components and services which can be distributed

throughout the network (figure 5.1). A simple, lightweight client acts as the main
interface to the system, but the real intelligence of the system is widely distributed

throughout the domain. Each component implements some hypertext abstraction

or service which can be invoked by the client when required. Typical remote ser-

vices might include view node, traverse link, select anchor or load linkbase tree etc. These

were all operations which were implemented in the previous HIPPO prototype, but

were embedded deep inside the application.
For example, as users move through a hypertext, they may wish to explore a

particular node. The previous prototype would have implicitly loaded this node

from a previous file, while the new HIPPO+ model requires the user to invoke a

remote service to perform this task. This service may load the node from a local file,

or perhaps retrieve the node from remote storage engine etc. If the user wishes to

119

Chapter 5: HIPPO+ - Distributing The HIPPO Model

view the node, then he or she invokes an appropriate viewing service which may be
implemented on some remote platform. This allows the user to choose the appro-
priate implementation of the service, while the previous HIPPO system fixed this
behaviour and hid the details from the user. The HIPPO+ system also identifies
other common hypertext operations, and maps these on to remote services which
implement the actual functionality. If users select a piece of text, they invoke a re-
mote service to retrieve this selection. If they require a list of links which provide
more information about this selection, then they might submit the selection to an
appropriate remote linking service. Remote services are used for all operations -
creating new links, deleting nodes etc.

The HIPPO+ model distributes the entire functionality throughout the network
domain instead of implementing each operation locally in a single application. This

provides a robust architecture, and allows services to be located at the most appro-

priate location. Each of these services can be invoked by other existing applications,

which allows the HIPPO ideas to be reused in other tools and utilities. The user is

also not limited to the set of operations which are initially made available by the de-

veloper. New services can be implemented in the network domain, and the user can
invoke these if and when required. This provides a level of extensibility which was

not available in the previous HIPPO system. Section 5.3 discusses the advantages of

this HIPPO+ implementation in more detail. Chapter 6 discusses a proposed adap-

tive model which can use feedback from the user to modify the functionality of the

system.

5.3 Advantages Of A Distributed HIPPO Model

A distributed architecture offers many advantages over conventional software de-

signs. Distributed systems spread the computational load throughout a system, to

reduce the load on any one node. Users are encouraged to share information be-

tween distributed users, and have access to a larger information domain. Many of

the redundancy problems associated with local systems are also avoided, as the user

has access to the original version at all times. Distributed systems offer a durable

and robust architecture which can handle local system failures - the system has no

single point of failure. Also, a widely-distributed model can make use of remote

resources - users are no longer forced to make copies of large databases. Compu-

tations can be executed on high-speed platforms and services can be maintained at

the point of origin.
A distributed model also has particular implications for the hypertext commu-

nity. Section 2.2 discussed some of the hypertext projects which have incorporated

distributed techniques. Nodes no longer need to be maintained locally and can be

accessed remotely over a network. Queries and computations can be executed re-

120

Chapter 5: HIPPO+ - Distributing The HIPPO Model

motely, and have access to much larger resources. Hypertexts are no longer limited
by the constraints of the single machine, but can span large networks with many
hundreds and thousands of platforms. The distributed model used in HIPPO+ also
attempts to address some of the open limitations which were identified in section
5.1. These are summarised below:

5.3.1 Scalability

Distributed systems are better suited to meet the scalability problems associated
with large-scale hypertext systems. Distributed models avoid many of the storage
limitations associated with localised systems, by distributing node and link infor-

mation throughout the domain. Distributed models also resolve many of the re-
dundancy problems which emerge when users are forced to make local copies of
information. However, the most significant advantage of a distributed model, is
that the system itself is distributed. The HIPPO+ system distributes the functional-

ity throughout the network, so has no single point of control. This avoids many of
the bottlenecks associated with conventional implementations, and allows the sys-
tem to grow at will. New components can be added easily and efficiently, which

can then be merged into the overall system. This idea of extending the system is

discussed later in section 5.7.

5.3.2 Openness

The previous implementation of the HIPPO model used a single, monolithic Ac-

robat plug-in to implement the ideas in this thesis. While this demonstrated the

usefulness of the HIPPO research, it was not implemented using an open architec-

ture. Other users could not incorporate these HIPPO ideas into their existing en-

vironment, and the HIPPO prototype did not provide a means of integrating with

other applications. The HIPPO+ system implements the ideas in HIPPO using a

collection of distributed components. These each implement some abstraction or

provide a particular service, and are made available to the entire network domain.

Other applications can then make requests to these services, and incorporate the

HIPPO+ functionality into the existing environment. Existing tools can invoke re-

mote HIPPO+ services by supporting a minimal RPC protocol, so can make use of

HIPPO ideas (eg. linkbase trees, fuzzy anchor tools etc).

5.3.3 Distribution

Chapter 4 showed how the linkbase tree model could be extended with a simple

distributed architecture. Each node in a linkbase tree definition can be located re-

motely, and retrieved on demand. The original HIPPO implementation provided a

121

Chapter 5: HIPPO+ - Distributing The HIPPO Model

collection of Java classes which supported this remote access. Similarly, the adap-
tive model was implemented as a centralised server which could be accessed by
remote clients. However, while this level of distribution can be useful it does not
constitute a truly distributed system. Section 2.2.1 discussed the different degrees of
distribution which have been adopted by hypertext applications. The HIPPO+ sys-
tem aims to distribute every service in the current HIPPO system, so that the entire
functionality is distributed throughout the network. Each operation in a hypertext
is implemented as a small, lightweight component which is invoked remotely. Ser-
vices can be replaced; users can choose alternate implementations; the system can
continue to operate even if some services fail etc. This should provide a robust and
scalable hypertext environment.

5.3.4 Heterogeneity

One of the main problems confronting hypertext developers is the difficulty of sup-
porting diverse formats and heterogeneous node contents. The HIPPO+ system
uses remote services and components to support key hypertext operations (view

node, create link etc). This means that new formats and content types can be inte-

grated into HIPPO+ quite simply, by providing an appropriate remote service. For

example, new node types can be viewed if the developer provides a suitable brows-

ing tool, or perhaps implements some of the fuzzy anchoring ideas for this new con-
tent type. The HIPPO+ client can then simply invoke these new services as if they

were part of the existing hypertext application. The HIPPO+ model does not restrict
the user to particular node formats or hard-wire any services into the system. Sec-

tion 5.7 discusses how the HIPPO+ system is used, and how the system can grow

to include new services.

5.3.5 Interoperability

Open hypertext research has developed the notion of a hypertext link services layer

which replaces the traditional idea of a monolithic application. The OHS defines a

protocol which external applications must support to integrate with the hypertext

service. The distributed HIPPO+ model defines an interface for each remote service,

which dictates how the component is invoked. The HIPPO+ client can then use

this interface to access remote services. This idea of interfaces between clients and

services is fundamental to many distributed architectures and is discussed further

in section 5.5.2. The RPC interface used in HIPPO+ is shown in section 5.6.4.

5.3.6 Extensibility

As discussed previously, the new HIPPO+ implementation adopts a model based

on remote services. A number of common operations are identified, and these are

122

Chapter 5: HIPPO+ - Distributing The HIPPO Model

mapped on to remote services which implement these functions. However, devel-
opers can make additional services available in the network domain. The user can
then invoke these services if required, to augment the existing set of hypertext ser-
vices. New data formats can be incorporated into HIPPO+ by making suitable ser-
vices available, and multiple linking models can be supported by choosing remote
services with different link semantics. The user is not limited to the initial set of
remote services which were suggested by the author, but can augment them with
additional hypertext operations. This computational model is developed further in
section 5.7, which allows user to select arbitrary services. This provides an extensi-
ble environment which allows the user to determine the functionality of the system.

5.3.7 Computation

Section 2.1.3 discussed the importance of supporting computation in an open hy-
pertext system. Links should not always be implemented as simple navigational
relations, but may need to support more computational elements. HIPPO+ imple-
ments each hypertext operation as a remote service, so that every hypertext opera-
tion resolves to some remote computation. Computation is central to the hypertext

model. Each operation - view a node, load a linkbase, follow a link - results in the exe-
cution of some remote process. In this way, computation is not only supported, but
is fundamental to realising the ideas in the HIPPO model.

5.3.8 Tailorability

The previous chapters have shown how an adaptive model has been incorporated
into the HIPPO system, and has been used to modify anchor and link tree defini-

tions. Many open hypertext systems support some level of tailorability, and allow
the user or author to alter the hypertext in some way. However, these systems do

not support and guide these changes, or suggest how the system should adapt. There

is a clear difference between adaptive and adaptable systems; for example, the Hyper-

form system [WL921 provides support for extensibility, but does not attempt to de-

cide how the system will be adapted. An OHS should not only allow tailorability, but

should help manage these changes and automatically adapt the hypertext environ-

ment. Chapter 6 describes how an adaptive model has been incorporated into this

new distributed HIPPO+ system. The inclusion of an adaptive model represents a
fundamental development, which allows the system to automatically develop and

adapt to changes. The functionality of the system is no longer fixed, and the bound-

aries of the system can change to reflect the needs of the user.

123

Chapter 5: HIPPO+ - Distributing The HIPPO Model

5.4 Existing Distributed Architectures

The HIPPO+ system attempts to re-implement the HIPPO ideas presented in this
thesis, using a distributed model. The previous section discussed the benefits of
a distributed approach to software design, and explained the advantages of the
HIPPO+ prototype over the existing HIPPO system. Similarly, software develop-

ers have long recognised the advantages that a distributed model can offer, and
have used distributed techniques in the implementation of applications, database

systems etc. This has led to the development of a number of general-purpose
distributed architectures and frameworks which can be used for developing dis-

tributed systems. These have received particular emphasis with the success of the
World Wide Web and the move towards component-based software (eg. JavaBeans
[JB], ActiveX [Act] etc). This section describes some of the common approaches used
to develop distributed software applications. This discussion begins with some of
the low-level mechanisms for inter-process communication (IPC) such as sockets,
RPC calls etc. Section 5.4.2 introduces the idea of distributed frameworks which pro-

vide more abstract services for building large-scale, distributed applications. Fi-

nally, Section 5.4.3 closes with a discussion of compound documents which provide

container models for building component-based software systems.

5.4.1 Inter-Process Communication

The functionality of distributed systems is located throughout a network. Func-

tion calls and operations are no longer (necessarily) executed in the same address

space or on the same platform. This means that all distributed models must pro-

vide some means of invoking remote services, and collecting results. This support
for inter-process communication UPC) can be implemented using low-level mech-

anisms such as socket interfaces, shared memory etc. However, these communica-

tion methods do not shield the developer from the details of each remote platform,

and can be inadequate for developing distributed applications. This has led to the

introduction of the Remote Procedure Call (RPC) which has been discussed briefly in

Chapters 3 and 4. The RPC model is central to many distributed environments and

has been used in the HIPPO+ system.
The remote procedure call offers an abstract, higher-level mechanism for inter-

process communication. RPC hides the details of remote execution, and allows the

developer to treat remote functions as if they were implemented locally. When a

remote function is encountered, control is passed seamlessly to the RPC environ-

ment, which invokes the remote service, and waits for a result (figure 5.2). RPC

implementations provide reliable and robust support for IPC, and handle complex

issues such as error-handling and addressing in a portable fashion. RPC libraries

also provide a portable representation for exchanging data between machines, and

124

Chapter 5: HIPPO+ - Distributing The HIPPO Model

Execute
Client

Host A Host B
Network

Invoke
Remote

Procedure
Call

Continue
Execution

Send

Figure 5.2: The Remote Procedure Call (RPC)

may support additional services such as authentication (eg. DES [DES93], Kerberos
[KN93] etc).

RPC mechanisms provide an effective model of inter-process communication,
and form the basis of many distributed environments. For example the DCE envi-

ronment (see section 5.4.2) defines a secure RPC transport layer, and this has been

incorporated into the DOOM component framework (section 5.4.2). Separate im-

plementations of RPC libraries are also widely available (eg. ONC-RPC [Sun95a]

which is used in HIPPO+ and RMI [SM97] which supports remote invocation for

the Java environment).

5.4.2 Distributed Frameworks

While RPC mechanisms can be useful for implementing distributed inter-process

communication, they do not offer many of the services which are necessary for

supporting distributed software development. A distributed system needs direc-

tory services for managing remote resources; transaction management; concurrency

control; security; licensing etc. This has led to the development of general-purpose

distributed frameworks which can be used to develop distributed systems.

The Distributed Computing Environment (DCE) [DCE] developed by the Open

Software Foundation (OSF) supports a secure RPC model and provides a transparent

distributed file system. DCE offers directory services based on the X. 500 [Uni93]

and DNS [SP82] standards, which can be used for managing collections of remote

resources. The DCE RPC layer has also been incorporated into the Microsoft Dis-

tributed Component Framework (DCOM). The DCOM model emerged from the OLE

125

Chapter 5: HIPPO+ - Distributing The HIPPO Model

and COM frameworks which form the basis of the Windows operating system. The
DCOM model offers some distributed services, but also provides a compound doc-
ument model (section 5.4.3) which is used to support ActiveX components. The
DCOM model represents a move towards an object-based approach to software de-
sign using reusable components, and is discussed further in section 5.4.3.

Perhaps the most developed and flexible distributed model is offered by the
Common Object Request Broker Architecture (CORBA) [Objc], developed by the Ob-
ject Management Group (OMG) consortium. CORBA provides uses the idea of Object
Request Brokers (ORBs) to service client requests, and provides additional object ser-

vices such as directory services, security support etc [Objb]. CORBA is an open
distributed architecture which is useful as a standard reference model, and is dis-

cussed in more detail in section 5.5. Many of the CORBA ideas have influenced the
implementation of HIPPO+ and these are compared with the implementation of
HIPPO+ in section 5.6.

5.4.3 Compound Documents

The distributed frameworks described previously allow the development of widely-
distributed systems based on remote services. Each service supports an interface

which can be used by any client to invoke requests. This client/server model has

been developed by the Object-Oriented community, to support the idea of reusable

software components. An application can be constructed from existing components,

which can be reused instead of writing applications from scratch. Each component

not only provides data, but also encapsulates some intelligent behaviour which can

be reused in other systems.
The compound document has been developed to support this method of software

design, and provides a means of organising and managing collections of compo-

nents. The document itself is seen as the metaphor for integrating components. The

compound document contains data and components which act on this data, and

must provide storage facilities, layout services, data transfer operations etc (figure

5.3). The compound document becomes the container for each document, each ap-

plication, even an entire desktop. More importantly, compound documents can also

sit on top of distributed transport models such as CORBA, DCOM etc. These com-

pound documents can then be used as the basis for all client/server, distributed

computing.
Compound documents are just beginning to appear, and are starting to play

an increasingly important role in software development. The OpenDoc model was

developed by the CLI consortium [Opel, which integrated with the CORBA model.

Similarly, Microsoft has developed compound document technology as part of their

OLE and DCOM architectures [Act]. The JavaBeans [JB] framework also uses com-

ponents to build software systems, and may incorporate compound document tech-

126

Chapter 5: HIPPO+ - Distributing The HIPPO Model

Compound Part Structured Automation Uniform Data Handlers Srtorage & Scripting Exchange

=_-___ = tt (a ý. raue) IÖ
---- ý- loatlF ilea): Q_

ý--

MfTar4etl)
rrýange. (1:

C= 7-1

Distributed Object Bus

Distributed
Object

Services

Figure 5.3: Compound Document Frameworks

nology. Also, the World Wide Web community is developing a Document Object
Model (DOM) for managing web documents [WWW98b]. The compound document
offers significant advantages, and Chapter 7 discusses how compound documents
could be incorporated into future generations of the HIPPO+ model.

5.5 The CORBA Model

The previous section introduced the CORBA model which provides a framework
for developing distributed applications. This model is becoming increasingly im-

portant and has influenced some aspects of the HIPPO+ system. For this reason, the

model and the CORBA model is explored here in more detail. CORBA supports the
large-scale distribution of components and objects throughout a network domain,

and makes these services available to clients. Client-server requests are handled

seamlessly, and the user remains unaware of the distributed topology. CORBA also

supports a rich layer of object services which can be used to augment the distributed

environment (naming services, transaction management, concurrency control etc)
[Objb].

CORBA provides the distributed communications infrastructure of a distributed

system, and forms part of the larger Object Management Architecture [Obj971. The

OMA defines five layers (figure 5.4):

" Object Request Broker
This layer provides the actual distributed infrastructure of the OMA model,

and is responsible for routing client-server requests. The ORB allows remote

objects to be invoked in a transparent and portable fashion, and is discussed

further in section 5.5.1.

127

Chapter 5: HIPPO+ - Distributing The HIPPO Model

Application Domain Common
Interfaces Interfaces Facilities

Object Request Broker

Object Services

Figure 5.4: The Open Management Architecture

" Object Services
These components provide the additional services which are needed to sup-
port a usable distributed environment [Objb]. These include directory ser-
vices for managing collections of remote objects, trading services for locating
services etc (see Section 5.5.3.

" Common Facilities

The Common Facilities layer includes those application services which can
be tailored to meet the specific needs of the user. These represent tangible,
"real-world" services such as document printing, database queries etc [Objal.

" Domain Interfaces

These services are specific to particular areas and application domains. They

may combine object services and common facilities, but are intended for spe-
cific markets and domains.

" Application Interfaces
This layer represents the highest abstraction, and includes intelligent, reusable
component applications. These components are constructed from large num-
bers of components - object services, domain interfaces, common facilities -
to build entire applications.

Readers are referred to the documentation of the OMG CORBA project [Obj971

which discusses each of these layers in more detail. However, the following sec-

tions identify some key areas in the CORBA model which are important for an un-
derstanding of the model, and have influenced the development of the HIPPO+

system.

5.5.1 Object Request Broker (ORB)

The Object Request Broker or ORB forms the basis for the CORBA model, and is re-

sponsible for managing all client/ server communication in the CORBA system. The

ORB provides seamless and transparent access to the distributed services, and hides

the complexities from the client applications. Figure 5.5 shows how the ORB is used

128

Chapter 5: HIPPO+-Distributing The HIPPO Model

Object
Client Implementation

request

Object Request Broker

Figure 5.5: The ORB in the a client-server transaction

in a typical transaction. A client makes a request to a remote service, which is then
passed to the ORB. The ORB is responsible for finding the appropriate object which
can implement this request, and passes the operation parameters to the remote ob-
ject. The method is invoked, and the ORB waits for the results. In this way, the
client is unaware of the location of the service, the operating system or even the
language which is used to implement it. CORBA systems can also support multi-
ple ORBs and the standard defines the Internet Inter-ORB Protocol (IIOP) [Objc] for

communicating between them.

5.5.2 Interface Definition Language (IDL)

Each remote object in a distributed CORBA system implements a collection of meth-
ods to support a particular service. The CORBA standards is an open model which
allows each component to be implemented using any language, running on any plat-
form. CORBA developers are not limited to a particular implementation platform,
and can choose the appropriate language for the particular domain. This means that

each service must have a platform-independent, language-independent method of
describing the operations which it supports. This is the role of the CORBA Interface

Definition Language (IDL) [Objc].

An example IDL definition is included in figure 5.6, which defines an interface

for a simple library service. The IDL definition provides an abstract definition for

each operation, using standard CORBA data types and semantics. IDL isolates the

CORBA environment from the details of each service implementation, so that each

client need only be aware of the operations that a service provides without needing

to know any implementation details. Each language which is to be incorporated

into the CORBA system must provide a set of mappings between the specific lan-

guage and the language-independent IDL.

The conventional invocation model requires each client to know about the ser-

vices which it is going to use. These static interfaces are generated automatically
from IDL interfaces, and compiled directly with each client. Any type checking and

integrity checks are performed at compile time, and the method calls are more effi-

129

Chapter 5: HIPPO+ - Distributing The HIPPO Model

module library
interface book [

long getPages();
string getTitle();
string getISBNO;

interface dictionary : book
attribute string language;

string lookupWord(string word);
void setLanguage(string lang);

book

getPages()
getTitle()
getISBN()

dictionary

language: string

lookupWord(string word)
setlanguage(string lang)

Figure 5.6: Interface Definition Language (IDL) example

cient. However, CORBA also allows services to store IDL interfaces in an Interface
Repository, so that clients can query and invoke services dynamically. Clients can
retrieve IDL definitions at runtime, and dynamically invoke arbitrary services with-
out having to know the details beforehand. Dynamic invocation is more flexible,
but does incur some efficiency overheads. The ORB model can now be refined to
support dynamic invocation, as shown in figure 5.7.

5.5.3 Object Services

The ORB and IDL models described previously implement the basic communica-
tion between client and server objects. This provides a portable and transparent
distributed environment, but ignores many of the more complex operations which
are needed in a usable distributed system. These services are addressed in the Ob-
ject Services layer[Objb], and the HIPPO+ model does attempt to implement some
of these (see later in chapter). The current CORBAservices specification defines the
following services:

Naming Service Event Service

Persistent Object Service Life Cycle Service

Concurrency Control Service Externalisation Service
Relationship Service Transaction Service

Query Service Licensing Service

Property Service Time Service

Security Service Trading Service

Collections Service

The Naming and Trading services have been especially influential in the devel-

opment of the HIPPO+ implementation. Distributed systems can grow to support

enormous numbers of components and remote services. The environment must

130

Chapter 5: HIPPO+ - Distributing The HIPPO Model

IDL
Definitions

Interface IDL
Repository Stubs

Interface
Repository

Object Request Broker

Figure 5.7: Static and dynamic invocation in the ORB

provide some means of managing this complexity, and allow users to locate desired

services. The Naming and Trading object services are described here in more detail,

and the OMG CORBA documentation also contains further information [Objb].

Naming Service

Each object in the CORBA domain is assigned a unique identifier, which provides
an unambiguous reference to that service. Each client must include an object iden-

tifier in every request that it makes to the ORB. However, a large-scale distributed

environment can contain many hundreds of components and services, and the user
cannot be expected to keep track of all these identifiers etc. The Naming service pro-

vides a service for managing large collections of services, so that components can
be located more easily. The Naming service allows object references to be arranged
into hierarchical graphs, and supports a name-to-object binding mechanism (figure

5.8). These graphs can be widely-distributed throughout the network domain and

combined with other naming contexts to produce federated graphs. Clients can then

issue requests to the Naming service, to find objects with particular names, aliases,

properties etc. This service can also be combined with other object services such as

the query and relationship services, to provide a more flexible service.

131

Chapter 5: HIPPO+ - Distributing The HIPPO Model

Organisation

users / printers admin

staff /\ students griffo/gir-el\ het courses / accounts

programming /\ graphics

Dr. Roberts Dr. John Peter Paul Mary

0: relationship

Q: object
C++ Prolog Intro VR Advanced

Figure 5.8: The CORBA Naming Service

Trading Service

A distributed system can support large numbers of objects throughout a network,
supporting a diverse range of services. A scalable distributed model must provide
some support for managing and locating these objects. The earlier discussion in-
troduced the Naming service which allows objects to be arranged using directed

graphs. This supports a name-object binding system, so that objects can be located

using aliases. However, this simple service may not be sufficient for the effective
management of large systems, which contain ever increasing numbers of objects
and components.

The Trading service provides a more flexible system for locating objects. The

trader object allows objects to advertise their capabilities and describe the services
they offer. Clients can then ask the trader for those objects which match a partic-

ular service description. Figure 5.9 shows how these service descriptions can be

imported/exported.

The trading service is more flexible than the naming service, and can support di-

verse trader implementations, each with different trading policies. A trader object

can recommend particular service entries based on location, network traffic, imple-

mentation etc. A distributed environment can also support multiple traders, which

each manage a particular domain. Traders can then combine service domains to-

gether, to provide a federated trading space (figure 5.10). The Trading service offers

a flexible means of managing object services, and is vital for large-scale distributed

systems.

132

Chapter 5: HIPPO+ - Distributing The HIPPO Model

Trader

register
with trader

Distributed
Objects

Trader

Distributed
Objects

Figure 5.9: Advertising services using trader objects

Client Client Client Client

® advertise
services

combine Trader ® trader spaces
Trader

II

b6 b
register
with trader

Figure 5.10: Federated traders

133

Chapter 5: HIPPO+ - Distributing The HIPPO Model

5.6 Implementing The HIPPO+ System

Section 5.1 discussed the current implementation of the HIPPO system which has
been implemented as a plug-in component for the Acrobat software environment.
This prototype develops many of the abstractions which have been used in open
hypertext systems, and provides a rich anchoring and linking model. Fuzzy an-
chors and adaptive linkbase trees develop many of the abstractions common in
open hypertext research, and support an expressive and adaptive environment (see
Chapters 3 and 4). However, the discussion also identified a number of limitations
with the current HIPPO system, which is not implemented as a truly open hyper-
text system. HIPPO does not make any hypertext services available to the external
environment, and does not allow other applications to incorporate HIPPO ideas.
The support for computation in the prototype is minimal, and the system cannot be

easily extended. This section describes the implementation of the HIPPO+ system
which re-implements the HIPPO model using a widely-distributed model.

HIPPO+ defines the hypertext system as a collection of widely-distributed, com-
municating services. The system identifies each key hypertext operation and ab-
straction in the HIPPO model, and implements each of these using a remote service
instead of embedding the functionality deep inside a monolithic application. The

users interact with HIPPO+ using a lightweight client which can be used to invoke

these remote services. In this way, the functionality of HIPPO+ is no longer embed-
ded in a single monolithic application, but is distributed throughout the network
(see section 5.2). This is an open architecture which allows other applications to in-

voke these services if they wish to incorporate HIPPO abstractions and operations.
New services can be easily added to the HIPPO+ system which allows some degree

of extensibility. The HIPPO+ architecture is shown in figure 5.11.

5.6.1 Node Browser

The user interacts with the HIPPO+ system using a lightweight client which can
invoke remote services. The client itself does not implement any specific hypertext

operations, but simply provides methods for requesting remote services. The actual
implementation of the HIPPO ideas presented in this chapter is supported by re-

mote components. The client invokes remote operations using RPC calls - the RPC

approach was discussed in section 5.4.1, and section 5.6.3 explores the HIPPO+ RPC

implementation in more detail. Figure 5.12 shows the node browser client which

has been implemented using C++ and the X11 /Motif windowing system.

The client shows some details of the current hypertext node, and allows the user

to invoke common hypertext operations - view node, edit node etc. The X11 window-

ing environment provides a simple means of distributing visual applications, so

that remote viewers can display nodes on the user's display. The client supports a

134

Chapter 5: HIPPO+-Distributing The HIPPO Model

HIPPO+
Client

Network

r--
stributed
yýertext

rvlces
®, -- (subset of many)

retrieve follow view create build fuzzy link node link linkbase
anchor tree

Figure 5.11: The HIPPO+ Architecture

rich set of other operations which are commonly used in a hypertext environment -
get current selection, make link, traverse link etc, as well as services which are specific
to the work in this thesis (fuzzy anchors, linkbase trees etc). These are all bound

to buttons which invoke the appropriate remote service when clicked. Note that
the actual node contents and link definitions etc, are all stored in separate buffers,

and can be manipulated using the buffer tools in section 5.6.2. The execution of re-

mote services is also explored in more detail in sections 5.6.3 and 5.6.5. The lower

half of the browser shows the Hypertext Component Hierarchy (HCH) browser, which

supports a hierarchical classification system for remote HIPPO services. This HCH

directory service is used for maintaining large collections of services, and allows

users to augment the "button" operations with other remote services. The HCH

hierarchy and extended computational model is introduced in section 5.7.

5.6.2 HIPPO+ Buffers

Each time a user invokes a remote service, this performs some operation in the

HIPPO model. Typically, each request will return some data associated with the

hypertext or node - perhaps a collection of link definitions, the contents of a node,

a linkbase tree definition etc. The HIPPO+ client stores the result of each service

invocation in dedicated, special-purpose buffers. Each of these buffers represents

a storage place for specific hypertext information (eg. node linkbase, the currently

selected piece of text etc). Figure 5.13 shows an example of the browser which is

used to select and manage buffers in the HIPPO+ system.

Each buffer is implemented as a local file, which is loaded on demand to reduce

135

Chapter 5: HIPPO+-Distributing The HIPPO Model

Fits Window Node HaJp

Node 1ltle: term Flore
Current

HP. @: fl1S@f3 IP COtIi110 Hypertext Node

'w Node febieve Node
Default HIPPO e .ý

Hypertext Operations {mt Mc Rett*ve Oft

(these invoke remote
implementations which AM link FOHOW Link

reside elsewhere in ar . uA M ý� _o., ý mmm
the network) Show Upks Remove Link

retrieve

Get Node Content
Additional Remote Node Location
Hypertext text Services Hypertext

Or anised usin the presentation g g
Hypertext Component

Hierarchy (HCH) View Node

(these are associated convert
with this particular node;

see discussion of
" "

Te -PDF Document Objects
in Chapter 6)

Refresh Exec Exec Recess
Tree Process' less+ Into

,,.., ». S , ý, ,,....,.,. ... x... _... _ ,.,

Figure 5.12: The HIPPO+ Node Browser

136

Chapter 5: HIPPO+ -Distributing The HIPPO Model

Current
Buffer

Available
HIPPO Buffers

Contents of
Buffer

Buffer
Operations

Figure 5.13: The HIPPO+ buffer browsing tool

137

Chapter 5: HIPPO+ - Distributing The HIPPO Model

the storage overhead in the client application. The buffer tool supports a diverse
range of operations on each buffer - viewing, editing, copying etc. Some opera-
tions in the node browser (section 5.6.1) are automatically associated with particu-
lar HIPPO+ buffers. For example, when the user invokes the retrieve node operation,
the client will invoke the corresponding remote service, and automatically place the
results in the Node Contents buffer. Similarly, HIPPO+ has buffers corresponding to
other common operations - Retrieve links, Get Current Selection etc. Users can also
create their own buffers for specific tasks or to store temporary data. This is partic-
ularly useful when the computational model is extended to allow users to invoke
arbitrary services, to augment the existing hypertext operations. These buffers can
be used to store the results of these services, which allows the HIPPO+ client to be
used in ways which were not anticipated by the original system developer.

5.6.3 HIPPO+ Services Using ONC-RPC

HIPPO+ uses remote procedure calls to support inter-process communication, and
to invoke remote services. Section 5.4.1 discussed the idea of the remote procedure
call, and showed how these have been used in distributed systems. The original im-

plementation of HIPPO+ used a rich distributed environment similar to the CORBA

model (section 5.5) which provided additional services such as trading objects, fac-
tories etc. However, it was decided that a system based on RPC libraries offered a

simpler model with a finer-level of control over data exchange. In this way, addi-
tional services could be added to the system as required.

HIPPO+ uses the Open Network Computing (ONC) RPC implementation offered
by Sun Microsystems [Sun95a]. This is available in the public domain, and has
been widely ported to different platforms. The ONC RPC model includes a set of
network libraries and support tools for building distributed applications. Remote

services are defined using an interface definition language similar to IDL in the
CORBA model, and this is used to generate the appropriate stub implementations.
Figure 5.14 includes an example RPC definition for a service which supports three
interface operations. The developer then uses the rpcgen tool to automatically gen-

erate the skeleton code for the remote object. Figure 5.15 shows the steps involved

in developing client-server applications using ONC RPC tools.
Once the server applications have been implemented, these RPC services can be

made available to the larger community. When each service starts up, it must reg-
ister with an rpcbind daemon - this informs the daemon that the server is ready to

receive requests, and explains which unique RPC identifier it will use. An rpcbind
daemon runs on each machine and maintains a list of all currently running RPC

services. Each client invokes a service by contacting rpcbind on the appropriate ma-

chine, which then passes the request to the corresponding service. In this way, each

rpcbind daemon implements a very simple trading service which maintains objects

138

Chapter 5: HIPPO+ - Distributing The HIPPO Model

program MY_RPC_PROG {

version MY_VERSION (-
int getMonth(;
string getDay(;
void printMessage();

= 1;

}= 0x20000004; unique interface ID

Figure 5.14: An example RPC interface

RPC Interface
Definition

rpcgen

XDR data client & RPC
representation server applications

routines RPC stubs

compiler

RPC
executable

Figure 5.15: The RPC development cycle

139

_
interface name
(used to identify service)

version name
(used to support multiple versions)

remote methods
supported by this interface

- version number

Chapter 5: HIPPO+ - Distributing The HIPPO Model

HIPPO.
Client

B

® request services
from rpcbind ,

Host AII Host 81

rpthirrd rpcbind
O register services

w tlm rpcb nd

I

I
Hypertext Hypertext

--

Services

-

Services

HIPPO.
Client

invoke RPC

service
retrieve

results

Host A Host B

rpco nd rpcbind

Hypertext ý Hypertext
Services Services

---_1I---_1

Figure 5.16: Using rpcbind in the ONC RPC model

on a single machine, and acts as an intermediary between clients and servers. Figure
5.16 shows how rpcbind fits into the client/server model.

Remote HIPPO+ services can be uniquely identified using the following entries:

" RPC Program Number

RPC programs are identified using a uniquely assigned program number.
These can be administered centrally by Sun Microsystems or can be allocated
by the user (within certain restrictions).

" RPC Program Version

The ONC RPC model allows a program to support multiple versions, as the

application develops. A typical server will be assigned an initial version num-
ber 1. As the application develops and new operations are added, this new
interface can be allocated a new version number. This idea of version num-
bers allow multiple protocols to be supported by the same server process. The

client must then specify which version of the interface it wishes to invoke,

each time it makes a remote request.

" Transport
This allows a specific transport protocol to be used to communicate with re-

mote services (eg. TCP/IP, UDP etc). The current implementations of the

ONC RPC model allow applications to be developed independently of the tra-

nsport type, although some types of applications may require a particular

transport type to be used (eg. connection-oriented etc).

" Host

Each client needs to know the name of the machine which is currently hosting

the remote service. The client can then contact the rpcbind daemon on the

140

Chapter 5: HIPPO+ - Distributing The HIPPO Model

appropriate machine (figure 5.16). Host aliases are resolved in the usual way
using DNS name lookup services etc.

5.6.4 HIPPO+ Service Interfaces

Each remote service is identified using the details described in the previous section.
This allows clients to contact a service, and execute a particular hypertext operation.
Each remote object implements a different operation, and will be invoked using
different arguments. However, each service in the HIPPO+ system must support
a minimal interface. These are defined as RPC functions, which every object must
support.

Note: All operations return a status flag indicating success/failure, and a string con-
taining any results

" EXEC(string)

This is used to invoke the remote service, and the single parameter contains
the arguments which are required by the remote object. Section 5.6.5 describes
how this is combined with the HIPPO+ registry to support a simple form of
dynamic invocation.

" GET_INFO(void)

Returns a textual description of the service (usage, related services, additional
information etc). Section 5.7.1 describes this query interface in more detail.

" GET-NAME(void)

Returns an alias which can be used to refer to the service. This is defined by

the author, and is used in the trading model to hide the RPC identifiers from

the user (section 5.7.2).

" GET_HCH(void)

Returns a hierarchical path which suggests where the service should be classi-
fied in the HCH hierarchy (see section 5.7.3). Path components are separated
by �/�

" GET_PROTOCOL(void)

Each service in the HIPPO+ network domain implements a different hyper-

text operation which can be invoked by the user client. Each operation may

require different arguments, and is invoked in a slightly different way. This

GET_PROTOCOL operation returns a template string which describes how the

hypertext service must be called. This information can then be used when the

EXEC operation is called. This simple form of dynamic invocation is discussed

in section 5.6.5.

141

Chapter 5: HIPPO+ - Distributing The HIPPO Model

Figure 5.17: The Execution Manager

5.6.5 Execution Manager

Figure 5.17 shows the Execution Manager which is used to control how services are
invoked. HIPPO+ allows services to be located remotely, or they can be stored on
the user's local machine. These local services can be important for some operations

which only have meaningful semantics when invoked locally (eg. store node in local

file, browse file system, check available disk space etc). Local services are identified by

their location in the user's filesystem and the name of the executable program. Re-

mote services require a unique RPC identifier, transport protocol etc (see Section 5.6.3

for details of RPC in HIPPO+).

Each local/remote resource in the HIPPO+ environment implements a differ-

ent service, and supports a different method of invocation. For example, an object

which is responsible for viewing node contents may need to be invoked with the lo-

cation of the particular node. Another service which creates a new link may require

more arguments, and will be invoked in a different way. It is clear that different

142

Chapter 5: HIPPO+ - Distributing The HIPPO Model

services will support different interfaces, and the HIPPO+ model needs some way
of expressing this.

Section 5.5.2 shows how object interfaces are supported in the CORBA model,
using the Interface Definition Language. The CORBA model also incorporates a dy-

namic invocation interface (section 5.5.2), which allows clients to retrieve interface
descriptions from an interface repository, and use these to build dynamic requests
for remote objects. HIPPO+ implements a simple form of dynamic interfaces by

requiring each service to support a GET_PROTOCOL operation (section 5.6.4). When

this function is called, the service returns a textual string which tells the client the
format needed to invoke the remote service.

This textual string can contain special tokens which are stored in the HIPPO+

Registry (see section 5.6.6). These tokens can then be expanded to particular client-

specific values (eg. current node name, current selection etc). For example, if we

consider a particular remote service which searches a linkbase for link definitions

which match a given anchor selection. The user might select an interesting phrase
from a node, then submit this to the link service to find out which nodes contain

more information on this subject. The client begins by invoking the GET_PROTOCOL
function, which returns a format for executing the service. In this case, the template

is returned as:

-s <currentSelection> -1 <linkbase>

This template describes the format the client must use to invoke the link service.

The client must send the phrase that was selected by the user, and some identifier to

describe the set of link definitions which will be matched against the selection. The

client will automatically replace these tokens with the corresponding values, using

the HIPPO+ Registry (see Section 5.6.6).

It is important to note that these interface descriptions for each HIPPO+ ser-

vice are retrieved and evaluated dynamically on demand. This simple method of

dynamic invocation allows the client to request remote services without having to

know the syntactic requirements of each service beforehand. New services can be

incorporated into the HIPPO+ model by simply providing a GET_PROTOCOL tem-

plate string. Furthermore, the precise interface definition can change between re-

quests so that the implementations can be updated dynamically without affecting

other clients in the system. This provides a simple form of the dynamic invocation

interface in the CORBA model.

5.6.6 HIPPO+ Registry

The previous section showed how the GET_PROTOCOL interface is used to inform

clients about the syntactic requirements of each service invocation. The description

tells the user the format of service requests, and which arguments must be passed

to the remote object. However, it is often unreasonable to expect the user to replace

143

Chapter 5: HIPPO+ - Distributing The HIPPO Model

Request Protocol Protocol received Protocol definition from remote service from remote service passed to registry
2-1

EJJ ißtB..

--
"-s <currentSelection>

GET_PROTOCOLO "-s <curre selection> -1 <linkbase>"
-1 <li base>"

Special tags in protocol Invoke remote service Receive results from
definition expanded by registry with newly-parsed parameters

m remote service
(eg. a set of matching links)

B BB --
"-s 'Henry VIII'

-1 'kings. lb'" EXEC("-s enry VIII' 0-0
-1 'kin s. ib'") p__O

O-0

Figure 5.18: Some arguments automatically filled by HIPPO+ client

each of the tokens manually before calling the service. This would significantly add
to the overhead of calling remote services, and would make the HIPPO+ system
unwieldy to use.

However, many of these tokens which appear in the interface descriptions are
known elsewhere in the system and can be automatically replaced by the HIPPO+

client. The previous example discussed a remote service which required the current
anchor selection to be passed as a parameter. This anchor could then be used to

match link definitions in a remote linkbase, and would return interesting links to
the user. The HIPPO+ system uses the Registry to support special tokens, which

can be automatically recognised by the client. The registry examines each of the

tokens in the template string, and expands any that it recognises. In this example,
the registry would replace the <currentSelection> token with the actual phrase
that was selected by the user. Figure 5.18 shows the registry in use.

The Execution Manager (section 5.6.5) includes operations to expand the tokens

in an interface, before the remote service is invoked (figure 5.17). The registry sup-

ports a diverse range of special tokens, which can be automatically expanded. Fig-

ure 5.19 includes an extract from the current registry which is supported in the

HIPPO+ system. This registry reduces the overhead of invoking remote services by

transparently expanding special purpose tokens. The syntax of most requests can be

automatically constructed by the registry, which avoids the need for users to build

service requests by hand. It also provides a simple means by which remote services

can access client-specific information. Although this simple dynamic invocation

support can be useful, Chapter 7 suggests ways in which it could be improved.

144

Chapter 5: HIPPO+ - Distributing The HIPPO Model

%d splay name of X djsplay connection
appctame none of this application
aroft contents of arjinnent bin
fi e current set of links
curSai current selection
node current node contents
curBuffer currant selected buffer contents

Figure 5.19: An extract from the HIPPO+ registry

5.7 Extending The HIPPO+ Computational Model

The implementation which has been discussed so far has identified key operations
and abstractions in the original HIPPO model, and implements these as remote ser-
vices. The lightweight client provides a fixed selection of buttons corresponding
to hypertext operations, which then map on to remote service implementations. In
this way, the functionality of the hypertext system is widely distributed throughout
the network. The buttons which are presented to the user attempt to cover all of the
commonly used hypertext operations (eg. view node, follow link etc). However, these
"commonly used operations" are fixed, and decided in advance by the system devel-

oper. The mappings between buttons and remote services is also fixed and decided

a priori by the developer.

While the HIPPO+ client may offer most hypertext operations that will be of
use to the user, there are also many other operations and services that were not
anticipated by the developer. Many remote services can provide useful function-

ality which may not necessarily be considered a typical "hypertext" operation, and

so were not assigned a button in the client interface. For example, a particular re-

mote service might extract the contents of a hypertext node, then email this to a

colleague using some secure encryption. This is not the kind of service that would

normally be considered a "hypertext" operation. Indeed, this kind of service might

only be useful in a handful of cases, so the system developer quite rightly omitted

this service from the HIPPO+ client. The developer did not provide a button in the

interface, and the service cannot be invoked by the user. However, this is a useful

service, and it seems unreasonable to limit users in this way.
There are many services and operations which could be useful in particular sit-

uations, which might not be considered hypertext operations. Nürnberg [NLS97]

suggests that hypertext is just a specialisation of more general knowledge struc-

turing, and so should incorporate a whole spectrum of knowledge management

operations. One cannot expect the author to anticipate all of the services which will

be useful to the user community. Indeed, these problems are not restricted to the

kinds of unusual email services described previously. One could imagine a whole

host of hypertext services and abstractions which might be developed in the future,

145

Chapter 5: HIPPO+ - Distributing The HIPPO Model

yet were not anticipated by the original HIPPO+ developer. Furthermore, the user
may wish to use one of the author's predefined buttons, but may wish to map this
on to some other implementation of the service. This alternative remote service may
provide a more efficient implementation, or might support additional functionality
etc. These services can be made available throughout the network, yet the current
implementation of HIPPO+ does not provide any way for the user to invoke them.
The user is limited to the fixed set of services that have been predetermined by the
developer.

It is impractical to include a button or option for each possible operation which
the user may wish to use. Hypertext models are widely applicable across all prob-
lem domains, and it is simply not possible to anticipate all of the computations and
services which the user may find useful. Therefore, the HIPPO+ model of remote
services has been extended to allow the user to execute other operations. As be-
fore, each of the buttons in the node browser (section 5.6.1) represents some key

operation or abstraction in the HIPPO model, and these map on to remote services
implementations. These are considered vital to the HIPPO hypertext model, and
often have some implicit semantics (eg. the Retrieve Node Contents operation will
place the results of the operation in the Node Contents buffer). In addition, HIPPO+

also allows the user to select any service in the network domain. The user can locate

any desired service which they feel is useful to the hypertext, and invoke it when

required. The user is no longer limited to the set of operations which were deemed

suitable by the original developer of the system, but can select additional operations
to augment the HIPPO+ system.

This extension to the conventional computational model offers a new level of

extensibility to the HIPPO+ model. The functionality of the system is no longer

fixed by the developer, but can be moulded and shaped to meet the precise demands

of the user and the problem domain (figure 5.20). This encourages the HIPPO+

hypertext system to grow and expand - not only by providing new nodes and links

- but also by providing new services which can be incorporated seamlessly into

the hypertext system. Also, this approach helps to transfer control, away from the

authors and system developers, to the users of the system. It is the users themselves

who should decide which operations they require, and how they should be used.

Therefore, it seems sensible to involve the user in deciding which operations and

services can be used in the HIPPO+ system. Furthermore, this passes more control

the user. The user selects the components which he finds appropriate, and is not

forced to use simply those operations which the developer deems suitable.

This section explores some of the ideas which have been added to the HIPPO+

system to support a flexible approach to computation. In particular, the system

provides additional services to support the management of remote components to

help the user locate useful services. The query interface provides a simple method of

146

Chapter 5: HIPPO+ - Distributing The HIPPO Model

HIPPO+
Client

Default
Selection
Alternative
Selection

--------- ------

etwork

Iýý ICI f l
ICI 1ý1 ICI

Ip
, 1.1

1ý1
, Iý_I I ICI ICI

L= ýýI ýttj I

7
I

©
[m

y,
I

I

Host A Host B Host C Host D

Figure 5.20: Extending the computational model to incorporate additional services

querying remote services before they are invoked. This provides users with infor-
mation about each service, so they can decide whether the operation will be of use.
The trading service supports a simple directory service for locating remote services
using aliases. Finally, the Hypertext Component Hierarchy attempts to provide some
form of classification system for organising collections of components into more
manageable directed graphs.

5.7.1 Query Interface

One of the main difficulties of maintaining a distributed environment is providing
an effective means of managing the remote services and components. A distributed

system can contain many hundreds, perhaps thousands, of components - each of-
fering different services and supporting different hypertext abstractions. The user
needs some way of ascertaining the semantics of each service, and of finding out the

precise details of each service. The CORBA model uses the IDL language to provide

a portable way of defining object interfaces. This can also be used to support a self-
describing system - every object and operation can be expressed unambiguously and

precisely in a platform-independent way. The HIPPO+ registry described in section
5.6.6 offers a simple of defining the format of service invocations, and supporting
dynamic invocation.

However, the IDL and HIPPO+ registry approaches provide a very low-level

way of defining services. They express each operation in terms of standard data

147

Chapter 5: HIPPO+ - Distributing The HIPPO Model

types and function prototypes. While this can be useful (indeed, it is essential for
building ORBs and client applications), it does not explain the true semantics of
service. Although users are aware of the format that each request must take, they
are no clearer as to the nature of the service. What does the service attempt to
achieve? How should it be used? When should it be used? What are its limitations?
Which other components should complement the service?

The query interface is an RPC interface which all services must support. The
function does not take any arguments, and returns a text stream. This stream is
intended to contain a description of the service and provides the user with a more
meaningful description than conventional IDL definitions. The author is free to
include any information in this text which they deem to be useful. A typical entry
might include:

" what the service implements

" explanation of how the service is used (optional parameters etc)

" other services to be used in conjunction with this service

" relevant information (eg. implementation details)

This is a very simple tool for managing HIPPO+ services, but it can provide a
useful method for HIPPO+ users to find out more information about a service. The

query interface is a simple way for authors to include additional information for the

user, and to suggest other services which might of interest. The query interface must
be supported by all services in the HIPPO+ model, so every client can rely on this

minimal functionality. The HIPPO+ application includes a browser for querying

services and viewing the object descriptions (figure 5.21).

5.7.2 HIPPO+ Trading Service

Section 5.5.3 discussed the Object Services layer in the CORBA model, which pro-

vides additional services for a distributed environment. Of particular interest are

the Naming and Trading services which allow clients to locate remote objects. The

CORBA standard describes a powerful trading model which allows objects to ad-

vertise the services that they offer. Clients can then request an object by describing

the type of service they require, and the trader will attempt to locate a suitable ob-

ject. The trader incorporates directory services, query services and allows multiple

trading spaces to be combined together into federated traders. CORBA traders can

also support multiple implementations, and use different policies for matching ser-

vices to client requests.
The extended HIPPO+ system allows users to invoke arbitrary operations to

augment their hypertext environment. The author envisages a large-scale HIPPO+

148

Chapter 5: HIPPO+ - Distributing The HIPPO Model

File

V�N
VAndow

Help
Process ID: S7 Basic HIPPO

Service Details Fuzzy Value: WA
HCH: blame: Ili kftypedlreirievel

Specific Details
for Locally-Stored C . __...

L0ý Directory: s /P IPPUfip'detnor31
HIPPO Services ExeCtitle: GetUNCbfrrl

Specific Details PC Nummer: R
for Remote HIPPO RPC ton

Services Transport:
Host:

Retrieves all Conks oriatitq from a given node. This service supports typed IInldng, similar to that seen in TEXTHET etc. User passes node id.
and an optional tinkhase Id (allows users to use multiple sets of links),
and the service returns a list of fink ids. These id's can be passed to
other services (eg sem_fobw) to return link details etc.

Service description $
retreived from HIPPO t {ýý 'd>j , Sem

service, using
RPC Query interface

Figure 5.21: The Query Interface browser

domain, containing many hundreds of components - each offering different ser-
vices and operations. The user can select objects based on their specific needs -
different implementations; different hardware platforms; diverse hypertext tools

which support different linking semantics etc. The user needs some means of man-
aging this complexity, so that they can locate the desired services quickly and easily.

The current prototype implements a limited trading service which provides a
name resolution mechanism for locating objects. Remote services can be assigned
alias names, which can be used to reference objects in the network domain. This

provides a more natural model which hides the complexity of manipulating RPC

program numbers. This trading model based on alias references does not offer
the flexibility of the CORBA model which allows more complex queries to be re-

solved. The CORBA trader service allows objects to advertise the type of services

they implement and for multiple trading spaces to be combined together. The sim-

ple HIPPO+ alias-service model has more in common with the use of monikers in the

DCOM model [Act]. Monikers provide a level of indirection for accessing DCOM

objects, by providing an alias name for DCOM objects. They are usually maintained

by the system registry, and resolve to a specific DCOM object. Chapter 7 discusses

this idea of directory services in HIPPO+ in more detail, and suggests how this

could be used together with existing standards such as X. 500 [Uni93] etc.

The HIPPO+ trader uses a very simple implementation using the rpcbind ser-

vices discussed in section 5.6.3. The rpcbind daemon maintains a list of all RPC

149

Chapter 5: HIPPO+ - Distributing The HIPPO Model

Service Host
Aa
B
C
Da
ES
FS
Ga
Hß

a Jg
K
L

i- ---- -Host
aý i- ----

Host ß I- ----
Host

rpcbind pcbind II rpcbind 11 rpcbind
1

11
AI1IBK

11 EL

DGIcHIFJ

Figure 5.22: The HIPPO trader model

services which are currently running on the particular machine. The HIPPO+ client
requests these details from the daemon, then asks each remote service to supply an
alias. As in section 5.7.1, each service must support an operation to return an alias
name. The client can then query each rpcbind daemon on each machine in the do-
main, to maintain a list of alias-object mapping (figure 5.22). However, this is not
a complete trading service, and does not allow the flexibility of the CORBA trader
service. For example, the user cannot ask the trader "where is an object called <x>? "

or "give me an object which does this task" etc. Chapter 7 identifies some of limita-
tions of the current trader implementation and suggests some future directions for
development.

The HIPPO+ client maintains a list of every machine in the HIPPO domain, and
allows the user to decide which nodes are included in the trader space. Users can
add new machines to be polled, or remove unwanted machines from the trader

space. This implements a simple form of federation for combining multiple trader
domains together. The application includes a tool for manipulating these trader

spaces and for requesting alias names from remote machines. An example of the

trader tool is included in figure 5.23.

5.7.3 Hypertext Component Hierarchy (HCH)

The previous sections have shown some of the approaches used in HIPPO+ to help

the user manage collections of remote services. The query interface allows the

user to understand more accurately the true nature of each service, before decid-

ing whether to use it. The trader model provides an alias-object mapping to access

remote objects using textual names. It is hoped that these tools will help the user

maintain a distributed domain. However the object space remains an essentially flat

150

Chapter 5: HIPPO+ - Distributing The HIPPO Model

File Mn3dow Traber=s Help

Selected: Available:
Traders chosen Mari Broadway

to query 1051 IT IT W-71mmij
Marian

All available Much
traders

Robin 171

Cwt
.. i¬nksll (udp)

List of services
het Linksft (tcp)

in selected trader Follow typed lines (udp)

Follow typed lit*J1 (tcp)

Trader
Operations

t Dele
Ti ti es Trader

Lookup P ces
Traci j Irýf Done

Figure 5.23: The HIPPO+ trader tool

structure, and the alias-object mappings only provide a limited level of abstraction.
While users can query the services at a particular machine, they have no way of
organising these components into meaningful structures.

The Hypertext Component Hierarchy (HCH) provides a hierarchical classification

system for organising remote services. Services can be arranged into a hierarchy,

and classified according to their semantics etc. This resembles some of the ap-

proaches used in the CORBA Naming and Trading services (section 5.5.3), and di-

rectory services such as X. 500 [Uni93], DNS [SP82] etc. The HCH taxonomy allows

the hierarchy to be constructed using any criteria for the graph - semantics, loca-

tion, security etc. However, early experiences have suggested that the most useful

HCH hierarchy arrangement can be achieved by using a layout which is tailored

towards hypertext systems in particular. We suggest a HCH hierarchy organisa-

tion based around the three fundamental abstractions in a hypertext system - the

node, link and anchor. Services can then be arranged according to the operations that

they perform on each of these abstractions. Figure 5.24 suggests a typical example,

showing a selection of arbitrary hypertext operations classified into a hierarchy.

The current implementation requires the original author of each remote service

to decide on an appropriate HCH entry, which dictates where the service will ap-

pear in the hierarchy. This assumes that the author will understand the true se-

151

Chapter 5: HIPPO+ - Distributing The HIPPO Model

view
text

view view
graphics

view
audio
Emacs

node editor
edit extract text

using OCR

get WWW use basic

node
HTTP

retrieve get FTP use SSL

node
get and

collab -L lock
environment get no

lock

build
linkbase tree

retrieve
retrieve

link linkbase

follow match anchor
to links

get current
selection

select get current
position
match

anchor fuzzy anchor
create

create from span
--Ecreate

from
byte offset

Figure 5.24: An example HCH hierarchy

mantics of the service, so will be better placed to decide on an accurate HCH entry.
Each service must support a GET_HCH RPC operation which returns the hierarchi-

cal HCH path, which is used to position the service in the client HCH hierarchy.
The HIPPO+ client also provides a simple browser for exploring a HCH hierarchy
(see figure 5.25). The hierarchy is displayed as a simple tree widget, and users can

open/close branches as they traverse the hierarchy. When the the user locates a ser-

vice which is of interest, he can invoke this in the usual way (section 5.6.5), or query
the service for more information (section 5.7.1).

This attempt to classify remote services is perhaps too simple for large scale sys-
tems, but suggests a useful route for future development. Chapter 7 explores some

of these directions which could incorporate other directory services and classifica-
tion systems.

5.8 Summary

This chapter has introduced the HIPPO+ system which attempts to re-implement

the existing HIPPO prototype, using a distributed architecture. Section 5.1 sum-

marised the HIPPO application which has been used to evaluate many of the ideas

presented in this thesis. This develops many of the key abstractions in open hyper-

text systems such as fuzzy anchoring models, linkbase inheritance trees, adaptive

models etc. However, the discussion also identifies some of the problems with the

current implementation, which prevent it from being used as a true open hypertext

152

Chapter 5: HIPPO+ - Distributing The HIPPO Model

User can
open & close
sections of
hierarchy

Remote
Hypertext
Service

User can
select & invoke

service

Figure 5.25: The Hypertext Component Hierarchy browser

system. In particular, HIPPO has been largely implemented as a single, monolithic
application. The details of the implementation and the semantics of each hypertext

abstraction are embedded deep inside the application, and are not accessible to ex-
ternal applications. This prevents the existing tools from incorporating the ideas

presented in this thesis, and suffers from many of the same problems as early hy-

pertext implementations.
Section 5.2 shows how the HIPPO implementation has been revised to include

a loosely-coupled view of a hypertext system. HIPPO+ identifies each of the key

operations and functions in the HIPPO system, and implements these as a set of

widely distributed services. The main HIPPO+ application is simply a lightweight

client which can be used to invoke remote services, and collect the results. In this

way, the HIPPO+ client no longer implements any specific hypertext functionality,

but distributes the functionality throughout the network. Section 5.3 goes on to
discuss the advantages that this new model has over the previous HIPPO model.
HIPPO+ develops a strong notion of computation and encourages a more optimal
division of operations.

Distributed systems offer a number of benefits to the user, compared with lo-

cal, centralised applications. As the interest in distributed architectures has grown,

a number of mechanisms for supporting distributed communications have been

developed. Section 5.4 describes some of the common inter-process communica-

tions models such as remote procedure calls which are used in the HIPPO+ sys-

tem. A number of distributed frameworks such as DCE, DOOM, CORBA are intro-

duced which provide environments for developing large-scale distributed applica-

tions. The section closes with a discussion of compound documents which provide

a richer storage model for developing component-based systems. Chapter 7 also

153

Chapter 5: HIPPO+ - Distributing The HIPPO Model

discusses the choice of an RPC model, and suggests ways that HIPPO+ could be
better implemented using a model based on compound documents.

The CORBA standard provides an open reference model for developing dis-
tributed applications. This provides a communications infrastructure and a collec-
tion of additional object services for managing large numbers of distributed com-
ponents. CORBA has been influential in the design of HIPPO+ and section 5.5
explores the key features of the CORBA model in more detail. The naming and
trading services have been particularly important, and some aspects of these have
been implemented in the HIPPO+ system (section 5.7). Chapter 7 also suggests that
a better implementation of the HIPPO+ system could be achieved using CORBA,
and discusses reasons why an implementation based on RPC was used.

The current version of HIPPO+ has been implemented using C++/X11 /Motif,
and ONC-RPC libraries for invoking remote services. Section 5.6 describes the im-
plementation of this prototype, and the tools which have been made available to
the user. The RPC interfaces which are supported by remote HIPPO+ services are
described in sections 5.6.3 and 5.6.4. The HIPPO+ prototype also supports a form of
dynamic invocation which retrieves interface definitions on demand, and matches
these to a system registry (section 5.6.6).

The revised HIPPO+ model introduces a very strong computational element into
the hypertext environment, and views a hypertext system as a collection of ser-
vices. HIPPO+ identifies each key operation in a hypertext system, and implements

these as remote object services. This endorses the view of a number of hypertext re-
searchers [Ha187, Kac90, HGC94, TBR93] which encourage a computational view of
hypertext applications. Hypertext abstractions are no longer viewed as static, pas-

sive objects, but can include a stronger behavioural element. Section 5.7 explains
how the HIPPO+ computational model has been extended to allow users to locate

and execute arbitrary processes and hypertext services. This is an important devel-

opment which allows users to move beyond the limited set of predefined hypertext

operations. The user can incorporate services which were not even considered by

the original system developer, and can choose alternative implementations of com-

mon operations.
This view of a hypertext system as a series of remote services is central to the

HIPPO+ implementation, and provides a useful platform for future research. The

intelligence and functionality of the system is widely distributed throughout the

network domain, to provide a more scalable and robust hypertext environment.

HIPPO+ allows the user to play an increased role in the development of the hyper-

text system, by allowing them to select appropriate services to use in the environ-

ment. This extends the approach taken by systems such as Intermedia [YHMD88]

and Microcosm [FHHD90] etc which do not make any artificial distinction between

the author and user. Fountain suggests that knowledge structuring tasks and link

154

Chapter 5: HIPPO+ - Distributing The HIPPO Model

creation are important learning tasks which do not belong solely to the domain of
the author. Similarly, HIPPO+ suggests that the user should also provide input into
the design and development of the system. Chapter 6 develops this idea further and
suggests an adaptive model which could be incorporated into the HIPPO+ system.
This uses feedback from the users to select appropriate services and implementa-

tions of remote operations, based on the current node being visited. Chapter 7 also

suggests ways in which the HIPPO+ model could be developed further in future

research.

155

Chapter 6

A Proposed Adaptive Model For
HIPPO+

The previous chapter identified some of the limitations of the HIPPO prototype,
which was implemented almost entirely as a single, monolithic application. In that
chapter we proposed a new model based on widely distributed services. These
remote objects are used to implement the functionality and operations which would
previously have been embedded deep in the HIPPO application. By opening up the
workings of the application, it was possible to provide a more open environment in
which services can be shared between users. The new HIPPO+ model also inherits
many of the advantages that distributed systems have over localised applications
(avoid amount of redundancy, robustness, shared resources etc).

The HIPPO+ system identifies a collection of operations which are considered
essential to a hypertext system, and binds these to buttons in the user-interface.
Each of these buttons corresponds to a remote service which is implemented at
some other location in the network domain. This distributed model attempts to

re-implement the same functionality as the original HIPPO client, using a widely-
distributed topology. However, it also can be useful to allow the hypertext sys-
tem to extend its functionality and incorporate new services. Section 5.7 developed

the computational model by allowing users to select and invoke arbitrary services

which can be used to replace or augment the existing services. Existing services can
be replaced by other components, providing alternative implementations or even

slightly different semantics.
The user is no longer restricted to using the small set of designated services

which were considered useful by the system developer. The user is now free to

choose from hundreds, perhaps thousands of services which are available through-

out the network. This new approach opens up limitless opportunities - users can

choose their own linking tools; users can invoke arbitrary computations when tra-

versing links; users can view nodes using different viewers etc. It is the user that

156

Chapter 6: A Proposed Adaptive Model For HIPPO+

controls the functionality of the environment, not some software developer or hy-
pertext author. The user can decide what constitutes a link traversal, what it means
to view a node or which storage operation to use to store hypertext objects.

However, this new freedom to select arbitrary services requires a framework for
managing this new complexity. The HIPPO+ application must provide some means
of managing these large collections of processes and services. Section 5.7 described
some initial steps which have been made in this direction - the Query Interface, Trad-
ing Service and Hypertext Component Hierarchy - which help the user manage remote
objects. These have been compared to the object services available in the CORBA
model, although these are only very early attempts at managing objects, and chap-
ter 7 suggests ways in which the HIPPO+ tools could be developed further. This
chapter proposes an adaptive model which could be used in the HIPPO+ system.
This has not been implemented in the initial version of the current prototype, and
is presented as a theoretical model for future work.

6.1 Advantages Of An Adaptive HIPPO+ Model

The current HIPPO+ model offers many of the advantages of distributed software
systems, and allows the user decide on the operations and functionality in the hy-

pertext environment. However, in some ways, the HIPPO+ system provides the

user with too much flexibility. Users must constantly make decisions as to which
services they should use to perform common hypertext operations. Are the default

services suitable for this node? Could the hypertext operation be implemented bet-

ter using another service? Should the user search for another service which may be

able to offer additional facilities? Perhaps a service in the HIPPO+ domain could of-
fer some operations which would be useful in this situation - operations which the

user would not normally even consider? These questions all add to the overhead of

using the HIPPO+ model. The role of the user is no longer to "simply" browse the

hypertext; the user must now also decide which services they should use to perform

these tasks.
An adaptive model can help to address many of these problems, by suggest-

ing which services and operations to use, based on feedback from previous users.

Many hypertext systems allow the environment to be extended by incorporating

additional functionality into the hypertext model; indeed, many systems offer bet-

ter ways of supporting this integration than HIPPO+. However, these systems do

not help the user decide which services should be incorporated, or when additional

services should be used. It seems natural to take the experiences of each user, and

use these to guide other users that follow them. Novice users can share the ex-

pertise of more experienced users, and do not need to repeat the same mistakes.

Services that particular users found useful in some circumstances will often be use-

157

Chapter 6: A Proposed Adaptive Model For HIPPO+

ful to other users in the future, and modern hypertext systems should help capture
this knowledge. This chapter proposes an adaptive model which has not initially
been implemented, but could be incorporated into the current HIPPO+ prototype
in any future work. This model uses feedback from the users to suggest services
that should be used with particular nodes, or may be particularly useful in certain
situations.

6.2 Example Adaptive Services

This section begins with some example scenarios which show how an adaptive
model could be used in the HIPPO+ hypertext environment. Each example iden-
tifies some common situations which would benefit from adaptive modelling, by

allowing the choice of operations and remote services to change in response to user
feedback.

6.2.1 Example 1

Consider a user reading a node in a medical hypertext, which discusses some medi-

cal subject - perhaps the human nervous system - and includes many medical terms

and concepts. The user is unfamiliar with many of the terms, and finds the docu-

ment content difficult to comprehend. The user uses some default linking service

to support basic hypertext links. The service is passed a single anchor word and

matches this against a specified linkbase; in this case, the user might choose a gen-

eral purpose medical linkbase. The link service then returns a list of matching links,

which users can select if they feel they are appropriate (figure 6.1). This simple link

matching service provides a basic linking model based on the ideas of linkbases,

and would probably prove useful to many users of the HIPPO+ system.

While this linking service satisfies most of the users needs, the user still finds

reading difficult. Finally, the user decides to try to find another implementation

of a link service, which may offer additional facilities. After much searching, the

user chances upon another remote service which offers a complex link matching

service. With this service, the user supplies, not simply a single anchor word, but

can include a larger selection of text - perhaps an entire paragraph. The service then

extracts any terms, ideas, phrases etc from this text which could be problematic

for a user. These terms are used to cross-reference with an exhaustive collection

of medical resources which are stored remotely. The service then returns a set of

links to appropriate definitions for each of these terms. However, the user can also

provide some measure of their expertise (novice, student doctor, consultant etc), which

represents the knowledge level of the user. When the service parses the anchor

text and searches the linkbase, it can then use this expertise indicator to modify its

158

Chapter 6: A Proposed Adaptive Model For HIPPO+

0

Client --_= --

getLinks(keyword)

ö
b, o--o i

1 01 o-o. oý-0 io0 101

e

_
retrieved

- links

0-0
0--0
o--o
0--0

0-0 1 0-0
ö0

-0 0-0
OA 0-0 c, -o

o-0
°

oß-0 oß-0
o--0 i 10-0 ý

Figure 6.1: A simple default link service

retrieved
---= - -- links

getLinks(text)

o-0
0--o
o--o
o-0 Process text

& extract terms

--0 c, --o i 1== -ý- 1ß o- 0
04

oO--a gyp{ oO--O-
ý1 a O-° 0-0

joý ö0
C0+

o-
-o

&
o-ý-o

gl cl 0 C--0
o--o o--o

00 0--0

---ý---ý
__ -io olio-o

Figure 6.2: A more complex medical link service

behaviour (figure 6.2). In this case, this new link service provides a vastly superior

method of retrieving links. The user decides that this link service will be more
helpful for exploring this difficult medical hypertext, and decides to use this service
for all future link requests, instead of the original default service.

The previous example could be typical of many users - they encounter problems
in a hypertext, then locate services which are better suited to their tasks. Section 5.7

showed how HIPPO+ has been extended using query interfaces, a Hypertext Com-

ponent Hierarchy and a simple trading model, to allow users to execute arbitrary

services, in addition to the default services. However, the current HIPPO+ model

forces each user to locate new services independently from all the other users. Each

user must work in isolation, making the same mistakes - would another imple-

0

159

Chapter 6: A Proposed Adaptive Model For HIPPO+

0

Client ==_= =-

0

Qo viewNode(data)

Default
Node

Viewing
Service

Default
Node

Viewing
Service

Figure 6.3: Default viewing service

mentation of this hypertext operation be more appropriate? What should this new
implementation offer? Where can I find it? Can I guarantee that a better imple-
mentation exists? An adaptive model builds on the experiences of users and helps
to share expertise between users. An adaptive HIPPO+ could recognise the value
of a new medical link service, and suggest this the next time other users encounter
the same node. Future groups of users can benefit from the experiences of previous
readers, and the HIPPO+ system can be adapted to include this new service.

6.2.2 Example 2

One could imagine many other situations where the default implementations of hy-

pertext operations may not be suitable for all tasks. The remote objects which are

used to implement the hypertext functionality should change and adapt to match
the needs of the precise situation. For example, consider the simple act of viewing
the contents of a node. The current HIPPO+ system uses a pre-defined service to

implement this operation (eg. display the node contents using the GNU Emacs editor).
This service can be implemented remotely, and does not require the user to have the

viewing editor installed on their local machine (figure 6.3). The viewing service can
be administered remotely, and can be updated centrally. This default viewing ser-

vice has its advantages, and users may find it to be satisfactory for most situations.

However, the Emacs editor only supports textual content, so what happens

when the user encounters a node containing graphics? A short term solution might

replace the default Emacs editor with a more functional browser which supports

multiple media types. Perhaps the Emacs application itself could be extended to

display images and support a variety of graphics formats? This might solve the

problem for most nodes and documents, but what happens when new graphics for-

160

Chapter 6: A Proposed Adaptive Model For HIPPO+

o

Client

viewNode(data)

Multiple Multiple
Content Content
Viewing Viewing
Service Service

Figure 6.4: Multiple viewing services tailored to content formats

mats are introduced? What happens if the node contains more complex image data

- perhaps a PostScript program - does the viewing application need to be extended
to provide a native PostScript interpreter?

It is simply not sustainable to provide viewing support in this fashion. The de-
fault viewing service cannot be extended each time the user wishes to view a node
which contains new content formats. The viewing service cannot be aware of ev-
ery format of every node which may exist in the future. A more scalable approach
should select viewing services based on the underlying node contents themselves.
For example, if an author wishes to incorporate a new content format - perhaps the
PDF document format described in previous chapters - then the user should use a
PDF Viewing service. Similarly, complex graphical images should be viewed using

native applications which provide dedicated support for graphical presentations
(figure 6.4). This idea is often used in open hypertext systems which use native

applications which are tailored to the particular formats of the node contents (al-

though these are rarely implemented as remote services). This is usually achieved
by examining the file type or suffix of node files to determine the appropriate viewer

application (eg. files ending in . pd f use a PDF viewer, .gif suffices use graphics

packages etc).
However, even this flexibility for viewing nodes is not really sufficient for ex-

pressing more complex viewing semantics. While it is true that the choice of viewer

should be based on the node, it seems too simplistic to base the decision solely on

the format used to store the node contents. Of course, the particular data format

which is used inside the node must influence this decision - for example, it seems

natural to view image data using some graphics package. However, the node for-

mat is by no means the only consideration, and the viewing service must take into

161

Chapter 6: A Proposed Adaptive Model For HIPPO+

account all manner of other factors.. Some node data may benefit from particular interpretations; the viewer often depends on the type of user and the task at hand.
For example, a node which contains a complex typographic layout - perhaps

a highly mathematical paper with many equations - may benefit from being pro-
cessed by a quality typesetting package, then presented as a typeset document.
Perhaps an architectural model should not simply be viewed as a plan drawing,
but should be processed and used to generate a 3-dimensional model? The model
could then be explored interactively using a virtual-reality engine. Perhaps a sim-
ple image should be processed using some image analysis tools before presenting
the results to the user? Similarly, a technical computing document may include a
discussion of some programming language etc. The conventional approach would
view this using a simple text editor, yet a more useful viewing model may extract
the relevant code sections, and compile these into executable code. The programs
could then be executed and evaluated while simultaneously viewing the explana-
tory text.

Many open hypertext systems provide methods for adding new viewer appli-
cations, and may allow the user to select how each node is presented. However,
the fundamental advantage of an adaptive model, is that the system itself actually
learns which viewers to use. If a set of users find different viewing models to be

useful with particular nodes, then the system can suggest these viewing services
to other users. The process of viewing a node is a complex operation which aims to
convey the semantics of the node to the user. Many situations may demand a much
richer definition of viewing which does more than simply display the node on the

screen. As such, the user should not be limited to using the viewing service which
has been deemed suitable by the system developer. The user should explore other

services which may bring new benefits to a particular node, so that the precise im-

plementations and semantics of hypertext operations are tailored to the particular

nodes and tasks. An adaptive model should observe which services are most useful

with particular nodes, and suggest these to future users.

6.2.3 Example 3

The two previous examples have shown how an adaptive model can be used to

complement many typical hypertext operations such as viewing nodes and travers-

ing links. Many OHSs already provide some level of extensibility for tailoring these

operations (eg. adding script executions to link traversals or specifying the viewer

for a node). An adaptive model brings a new intelligence to this extensibility, so

that users can benefit from the experiences of other users. Services which are found

to be useful can be reused and incorporated in subsequent sessions. However, it is

important to note that adaptation in HIPPO+ should not be limited solely to view-

ers or the choice of link services. These viewing and linking hypertext operations

162

Chapter 6: A Proposed Adaptive Model For HIPPO+

are indeed central to any hypertext environment, but the HIPPO+ model views the
hypertext system as a far richer collection of arbitrary services. An adaptive model
should apply adaptive modelling to any hypertext operation, not just the viewing
of nodes or link traversal.

For example, a common operation in an open hypertext system is to provide
some means of making selections in an application. A user may wish to select a
piece of text in an editor, then submit this to some linkbase. The link server then
returns a list of matching link definitions, which can then be traversed by the user.
The default get selection operation in HIPPO+ uses the clipboard of the windowing
system for communicating between the client and other applications. This cut-paste
model is widely used in many open systems [Net, FHHD90, ACDC96], and pro-
vides a simple method of making selections from external applications. However,

example 2 showed that the user should be able to use arbitrary services for view-
ing nodes, and that the system will adapt to suggest those that are considered most
useful. As such, the default method of making selections may no longer be so use-
ful. Perhaps the viewing application doesn't support the system clipboard? The

clipboard is widely used to communicate between programs in open hypertext sys-
tems, but it does not scale well in large-scale, distributed programs. The clipboard

mechanisms rely on each application operating within the same domain - either
the same operating system or sharing the same windowing environment (eg. X11).

This becomes increasingly problematic as services are distributed throughout dif-

ferent domains and running on different platforms.
More importantly, the clipboard paradigm may simply be unsuitable in some

situations, and an alternative implementation may be more appropriate. For some

applications, a more efficient means of receiving the current selection would be to

open some network connection, and pass the data across the network. A different

get selection service may copy the selection to some shared storage engine which can
be accessed at a later date by all users. Some users may require a faster implemen-

tation to retrieve the selection, or perhaps a service which transfers the selection

using a secure transfer method. An adaptive model will identify those selection

services which are found to be useful in particular situations, and associate these

more closely so that they are reused by future users.

However, the most interesting opportunities arise when we consider the actual

semantics of the selection operation. This is an important operation which is vital in

any hypertext environment, and HIPPO+ identifies a default implementation of this

service. The semantics of this operation seem clear - to return the contents of the

current selection so that it can be used for matching links and submitting queries

etc. A simple example might involve a user browsing a text document - users could

select a phrase which they find interesting, and then submit this phrase to some

remote link server. This interpretation of the get selection operation is quite natural,

163

Chapter 6: A Proposed Adaptive Model For HIPPO+

and perfectly adequate for most situations. Yet there are many situations when an
alternative understanding of this operation may be of more use.

Consider a user who encounters a document which has been typeset using some
document authoring system, and stored using a rich page-description language,
perhaps the PostScript language. Previous visitors to this node have located a use-
ful service which can be used to view PostScript nodes, and the adaptive model
has acknowledged the value of this service. When subsequent users visit the node,
the HIPPO+ system now suggests this new PostScript viewing service in place of
the default viewing component. The user decides that she wishes to find out more
about a particular phrase that appears in the document, and tries to select this in
the viewer. Previous discussions have suggested that alternative implementations
of the get selection service may be useful. These retrieve the selection using dif-
ferent transport methods etc, but essentially share the same understanding of the
operation, and return the selected word or phrase. However, in this case it is more
important to consider exactly what the semantics of "get current selection" should be.
Should the client adopt the usual semantics of this operation, and simply retrieve
the words which appear in the phrase? This may be perfectly sufficient for most
users, but is completely inappropriate for other tasks and user groups.

A typographer may be more interested in the fonts which are used to typeset
the selected phrase. Alternatively, linguists may want the phrase translated into
their native language. The format used to represent the node may have no notion of
characters and words, and may store the text as a graphical image, in which case the

selection operation may have to invoke some form of optical character recognition.
If users select an area of a graphical image, what do they want returned to them?
Do they want the graphical data stream, or do they simply want to retrieve some
characteristics of the object (eg. colour, dimensions, orientation etc). Similarly, other
sections of the user community way have completely different interpretations of
the "current selection". Graphic designers may be more interested in the abstract
definition of graphical objects - if they select an area of a drawing which resembles

a circle, then they want it to be recognised as such, and a mathematical definition

of a circle object to be returned to them, instead of the graphical data. On the other
hand, if an architect or engineer selects a drawing of some building, they may want

a virtual reality representation to be generated which can be explored and interacted

with (figure 6.5).

Even the simplest of operations such as get selection can have different meanings

and semantics in different situations. An adaptive model should attempt to iden-

tify the most useful interpretations and implementations for each task, and sug-

gest these to future users. The precise functionality of the system (ie. the services

which are bound to interface buttons) should not remain fixed, but should change

and adapt as the user explores different areas of the hypertext. Different tasks and

164

Chapter 6: A Proposed Adaptive Model For HIPPO+

Optical Character
Recognition

77

2x3 + 311y = 583

lp M=Z: &. 2

Natural Language
Processing

Mathematical
Analysis

Virtual Reality

Modelling

Figure 6.5: Alternative semantics of get selection

nodes have different requirements, and an adaptive model should reflect this. It is
important that the experiences of users are shared amongst the user community, so
that useful services are emphasised and reused.

The previous examples have attempted to show the benefits of an adaptive
model in a distributed open hypertext system. The HIPPO+ system identifies com-
mon operations which are fundamental to a hypertext system, and implements

these as remote objects. The system developer decides which hypertext operations

are considered "fundamental", and makes these available to the user as buttons in

the client.
The discussion has shown the limitations of this approach, and suggests that

implementation of these default operations should not remain fixed. The mapping
between buttons and implementations should change to reflect the task at hand

and the type of user. This idea has much in common with the work on activity

spaces [HHL 921 and multi-modal hypertexts [GMP97). The previous examples
have showed how common operations can have widely differing interpretations

and semantics, and that the system should use the appropriate remote service to

implement the operation. An adaptive model can observe which services are used
by users, and can use this information to identify the most useful implementations.

These can then be incorporated into the HIPPO+ system for the benefit of future

165

Chapter 6: A Proposed Adaptive Model For HIPPO+

users. The remainder of this section describes a proposed adaptive model which
could be incorporated into the current HIPPO+ distributed system. This model
attempts to identify useful services, and associate these with tasks and hypertext
nodes for future users.

6.3 Service Contexts

The first priority of the adaptive model is to identify a suitable context for apply-
ing adaptive techniques. The previous sections argued that the services which are
offered to the user should change and adapt, as the user explores the hypertext.
However, which information should be used as the basis for managing this adapta-
tion. Should the system change according to the task currently under consideration
by the user? Perhaps the available services should change according to the node
currently being explored? This section examines some of the service contexts which
have been considered as the basis for an adaptive HIPPO+ model.

6.3.1 User Stereotypes

Perhaps the simplest method of supporting an adaptive model is to adopt a user
stereotype model. This approach was introduced in section 2.3.1, which identifies

general categories to describe some features of the user. These could be arranged
into broad categories (novice, intermediate, expert), or more specific roles (architect,

engineer, graphic designer, mathematician etc). This would be simple to implement in

the HIPPO+ system. The user could specify a suitable category/ categories which
in some way represents the user, and the system could load a corresponding service

profile. This profile would define appropriate mappings between abstract operations
(eg. view node, traverse link etc), and the corresponding remote service implementa-

tion (figure 6.6). Different user stereotypes would include different service map-

pings, and would use remote services that were considered more appropriate to the

particular type of user. Similarly, if a user found a particular service to be useful,

then this could be added to the service profile for the corresponding user category. In

this way, the set of service mappings for each user group can change to adapt based

on the experiences of the users.
However, this stereotype model seems to offer only limited adaptability. Ser-

vice mappings can only be specified at a very general, coarse level of granularity,

and do not allow the services to be tailored to the underlying information. It seems

unreasonable to suggest that a single collection of services (albeit, tailored to the

particular type of user) will be suitable for an entire hypertext. Users will want to

use different services as they encounter different nodes and new sets of information.

Furthermore, it is unlikely that the needs of any collection of users are the same, and

166

Chapter 6: A Proposed Adaptive Model For HIPPO+

Example HIPPO+ Stereotype Clients

Service
Mappings
based on

Stereotype

HIPPO
Hypertext
Services

r--- --- -t- -I r-- -i -1- -- -I --- -
r-

-r--, - -ý- -- ----,

l l IC I I>raj li
!1

Ij

II

i

i

ICI
-

ýI ýtl
i
i

II
Iqý II

CI
ýýI

L_I
! ýý

II +
II

ý RýL g ýý OL
II

Ed ýý 11 II ýgC
d

--_ -_- _---- -_ _-- ýL_ ____L __ -I
Host A Host B Host C Host D

Figure 6.6: Stereotype model matches user categories to sets of service implementa-
tions

can be generalised across any one stereotype. The requirements of each individual

change constantly between sessions, as the user gains new experiences and encoun-
ters new tasks. Section 2.3 also explores the limitations of adaptive systems based

on a user stereotype model.
Section 2.3 introduced another approach to representing knowledge about the

user, using an overlay model. This attempts to structure a knowledge domain as a

series of related concepts arranged into a semantic network. This approach would

offer a finer level of control over services, and allow the HIPPO+ system to adapt

as the user moves through the hypertext. The author could construct a semantic

network to represent the concepts and ideas which are expressed in the hypertext.

The system must provide some means of measuring the user's knowledge of each of

these concepts, which could then form the basis of the adaptive model. The author

could associate particular implementations of services with certain concepts in the

semantic network.
An adaptive model based on an overlay model seems to offer a more intelligent

way of modelling knowledge about the user, and provides a finer level of control

over adaptation. However, an overlay model adds significant overhead to the au-

thoring process. An author must construct a detailed semantic model for the entire

network, which is a complex and non-trivial task. Furthermore, it is unclear how

167

Beginner Advanced
User User Administrator

Chapter 6: A Proposed Adaptive Model For HIPPO+

the author can define a semantic model for a hypertext which includes dynamic,
non-static nodes and links.

Both the overlay and stereotype models attempt to capture knowledge about
the user, which is used to influence and adapt the services which are used HIPPO+.
However, these approaches both suffer from the same fundamental problems which
make it largely unsuitable for the HIPPO+ system. Firstly, user-based models are
concerned solely with representing knowledge and expertise about the user. This
fails to address any issues relating to the current task or the goals that the user aims
to achieve. The services and remote operations which should be offered to the user
depend very much on the task which the user is currently addressing. No matter
how accurately user knowledge is modelled, the overlay and stereotype models can
never fully respond to the specific needs of the user.

However, perhaps the most significant problem arises from the static nature of
these user based models. Both the stereotype models and overlay models require
the author to identify features about a user, and use these to influence the remote
services which will be offered to the HIPPO+ user. However, this a priori definition

requires the author to accurately predict the services that a user will find useful.
Even if the author can accurately model knowledge about a user, the author must
still anticipate the particular remote services that should be used. Yet this is pre-
cisely the reason why an adaptive model is proposed in HIPPO+ - to remove these

responsibilities from the author. The true value of remote services is unclear, and

only emerge as the users interact with the hypertext. The precise implementation of

a service which would be of most benefit to the user can only become apparent after
the user has explored the hypertext and used different services. Indeed, the value

and importance of services can change over time as the user becomes more experi-

enced and attempts new tasks. While the author clearly has some role in suggesting

useful services for the users of a hypertext, he should be considered as just one

of many voices. An adaptive model cannot rely too heavily on predefined, a prori

models which may prove inaccurate. For these reasons, while a stereotype/ overlay

model can be useful and may be combined with other approaches, it is not consid-

ered sufficient for an adaptive HIPPO+ system.

6.3.2 Goal-Based Model

The user stereotype model can be useful as a general guideline to the type of ser-

vices which will be required by the user. The background of the user will influence

the- type of services that he will require, and provides some sort of focus for an

adaptive model. However, the stereotype model does not allow sufficient control

of the services which are offered to the user. An overlay model offers a more flex-

ible model which provides a complex knowledge representation. However, both

models completely ignore the goals of the user and the nature of the current task.

168

Chapter 6: A Proposed Adaptive Model For HIPPO+

Each user uses the hypertext to solve a particular problem; each user has different
requirements and demands which change according to the situation. This suggests
that a better adaptive model could use the current task as the basis for adaptation.

Each user could outline the nature of the problem which they are exploring, and
attempt to describe the task that they are attempting to solve through the hypertext.
The author could then associate particular service implemenations with particular
goals, and use this to implement an adaptive model. The HIPPO+ system would
then incorporate the appropriate set of service mappings and service profile to reflect
these tasks. This approach offers a fine level of adaptive granularity, by allowing
users to define rich task descriptions. The mappings between abstract hypertext
operations and actual service implementations can be tailored to the current task at
hand, to suit the demands of the user. The system could offer task descriptions at
an arbitrary level of detail - engineering, engineering mathematics, mathematical
modelling, mathematical modelling of heat flow etc. Furthermore, users can alter
their current task, and change their task profile at any time. This allows the set of
service mappings to dynamically change as the user moves through the hypertext.

This adaptive model based around some task profile seems to offer a more intel-
ligent context for changing HIPPO+ services. The services can be adapted to suit
the goals of the user, and the user can change their task descriptions at any time.
However, while this approach offers a finer degree of control over the adaptation, it

can be difficult to provide suitable descriptions for each task. For example, consider

a graphic design artist who is exploring a hypertext of documents, and is attempt-
ing to see how typographic standards change over time. The needs of this user, and

the hypertext operations they require are very different from a casual reader who

is exploring a hypertext from a literary point of view. However, the HIPPO+ sys-

tem must provide suitable ways of describing these two points of view. Hypertext

models can be applied to potentially limitless situations and problem domains, and

it is impossible to provide task definitions for every possible goal which might be

anticipated.
A goal-based model seems to be too exhaustive to implement in the current

HIPPO+ system. Furthermore, a goal-based model still requires some a priori model

which is defined by the author. The author must define a complex set of goals for

each hypertext, then decide on an appropriate set of services to be used in each of

these cases. As discussed in the previous section, the aim of an adaptive model is to

move away from these predefined, static a priori definitions towards a more emer-

gent adaptive model. This model should not predetermine which services will be

used in particular cases, but should allow useful services to emerge over time. This

has led to the development of an adaptive model based around the nodes them-

selves - document objects.

169

Chapter 6: A Proposed Adaptive Model For HIPPO+

6.3.3 Document Objects

The previous sections have suggested overlayluser stereotyping and goal-based mod-
els as a platform for managing and adapting HIPPO+ services. The user-stereotype
model is simple to implement, but seems too restrictive for a general hypertext
model which is to be used in diverse situations. The overlay model offers a richer
knowledge representation, but seems to add an unacceptable overhead to the au-
thoring process. The construction of a semantic model is a complex process, and
raises the problem of accurately measuring the user's knowledge of each concept.
A goal-based approach offers a similarly rich representation which has the added
advantage that the services which are suggested to the user can be tailored to each
particular task. However, the range of tasks which could be expected is too over-
whelming for a direct implementation of this model. Furthermore, both approaches
suffer from the same limitation that the author must provide a priori definitions. The

author must decide in advance which services are most appropriate to particular
tasks or types of users. While the author clearly has some level of expertise, she
cannot be expected to accurately identify optimal services in all cases. An adaptive
model should involve the user in establishing an adaptive framework, so that the

value of particular services can emerge over time.

This final approach introduces the idea of document objects and attempts to use
the hypertext nodes themselves as the basis for an adaptive model. Section 6.2 in-

cluded some example scenarios which showed how the needs of different users can
differ dramatically for the same hypertext. Some users can find particular opera-
tions more useful than others, and different users can have widely differing inter-

pretations of even the most fundamental hypertext operations (view node, store link,

get anchor etc). The profile of the user has a big effect on determining the value of

a particular hypertext service - the background of the user, level of expertise, goals

and tasks etc. These have been widely used in a number of adaptive hypertext

systems (section 2.3.1), and have been discussed in the previous section. However,

these approaches fail to recognise the importance of the underlying data which is

being examined. The examples in section 6.2 showed that the choice of services,

and the mapping of hypertext operations to remote objects often depends heavily

on the current node which is being visited. The service which is used to view a

node is (partly) dependent on the data format of the node contents. The service

used to retrieve the current selection is often dependent on the viewing service etc.

Furthermore, it seems natural for the collection of hypertext services to change and

to adapt as the user moves from node to node.
This adaptive model suggests that the document node itself is a useful platform

for an adaptive model, and could form the basis for deciding which services are

presented to the user. The current prototype defines the HIPPO+ system as a fixed

170

Chapter 6: A Proposed Adaptive Model For HIPPO+

Service Mapping

Node
Default HIPPO I Mapping To

Operation Remote Service

get node Host A, Service Id 1282
view node Host B: Service Id 4872

retrieve links Host A: Service Id 8403
follow link Host C: Service Id 4732

create link Host G: Service Id 3092
create anchor Host X: Service Id 3800
get selection Host K: Service Id 9372

get linkbase tree Host R: Service Id 8899

Network

Remote Hypertext
Services

Figure 6.7: Each node has an associated service profile

set of remote services, which are mapped to predefined buttons in the HIPPO+

client. Users are free to select additional services which they may find useful at
any time. However, this model suggests that nodes should also have a service profile
associated with each node. Each node contains, not only the data contents, but also a
set of definitions which map abstract hypertext operations on to particular instances

of remote services. These mappings are tailored to the particular node, and allow
the system functionality to change, depending on the current node (figure 6.7).

6.4 An Example Using Document Objects

Consider a hypertext which is used to provide on-line lecture notes for a Computer

Science programming course. The hypertext allows students to access notes, pro-

gramming examples, additional tutorials etc. A simple node example might have

a textual description of some introductory programming concepts. Hypertext op-

erations are easy to support in this case, and the HIPPO+ system could use simple

remote services to implement the hypertext. A basic text-only editor could be used

to display the node contents, and a clipboard service might be used to retrieve the

current selection. The user could then submit these selections to a simple computer

glossary service, which returns links to further information and definitions. The

user might select a computer acronym which they are unfamiliar with, and pass

this to the remote link service. The service would then return a list of nodes pro-

vide additional information about the selected term. All these mappings of abstract

hypertext operations on to actual remote services are no longer fixed, but are asso-

171

Chapter 6: A Proposed Adaptive Model For HIPPO+

Remote Implementation
of Hypertext Service

Emacs

Get X11-Clipboard

Match Selection
against list of links

Figure 6.8: A basic document object for a simple text node

ciated with this particular node. This document object might resemble that shown in
figure 6.8.

The functionality offered by HIPPO+ using these basic remote services is per-
fectly sufficient for viewing this text node. Items can be selected, and hypertext
links are provided for locating further definitions and other supplementary infor-
mation. However, the user may then move to another node in the hypertext which
contains more complex node contents. Perhaps the node contains some archive
material which has been scanned in from an academic journal? The article may de-

scribe the history of some programming languages, and was considered useful by

the lecturer, as a way of placing the course in some kind of historical context. This

node is stored in a graphical format instead of the usual text representation - per-
haps using PostScript or some graphic image format. Clearly, the services which

were chosen to implement hypertext operations in the previous example are no
longer so useful for this node.

The most obvious requirement is to provide a suitable viewing service - the text

editor which was used in the previous example can no longer provide a meaning-
ful presentation of the graphical node contents. Instead, a graphics package or a
PostScript viewer might be considered more useful. However, the services which

are required to provide a meaningful hypertext extend much further than simply

providing a suitable viewer. For example, the existing method of selecting regions

of the page which copies the text phrase to the clipboard is no longer appropriate.

Perhaps a more complex get selection service is more useful which selects a region of

a window, then performs some Optical Character Recognition on this graphical data?

The resulting text results could then be copied to the the clipboard in the usual way,

or using some alternative transport mechanism. Similarly, a different linking model

172

Chapter 6: A Proposed Adaptive Model For HIPPO+

Document Node

Hypertext Function
Mappings

View Node

Get Current
Selection

Match Hyperlink

"

"

[other hypertext operations]

Remote Implementation
of Hypertext Service

PostScript viewer

OCR software

Link service
using fuzzy anchors

Figure 6.9: New document object for graphical archive node

may be more appropriate than the current link service which simply matches text
phrases against link definitions. A link model based on fuzzy anchors offers some
advantages in graphical environments so might be worth considering (see Chapter
3). Perhaps a fuzzy linking service could be used in place of the traditional basic
linkbase service?

An adaptive model should identify which services are considered most useful
with each node. The system can then alter the mappings between abstract hypertext

operations (buttons in the HIPPO+ client) and actual remote implementations. A
document object is associated with each node, which defines these mappings (figure
6.9).

We have seen how the services which are invoked by the user to implement par-
ticular hypertext services can change as the user moves to a new node. The require-
ments of the initial introductory textual node are very different from the scanned
image of some archive material. Similarly, we could identify other nodes in the
hypertext which also have very different needs, and demand alternative hypertext

services.
After the lecturer has discussed some programming aspects, he may decide to

include an example program to demonstrate the techniques that have been learned

so far. The node can be viewed quite satisfactorily using a text browser, and can
be treated in the same way as other textual documentation. The user can scroll
through the program code, and view it in the usual way. However, this approach

completely ignores the true nature of these node contents -a programming example

which represents a truly executable object. It seems far more sensible to emphasise

these semantics, and to provide suitable hypertext services to support this. A view-
ing service could use an integrated program development environment to view the

173

Chapter 6: A Proposed Adaptive Model For HIPPO+

Document Node Remote Implementation
of Hypertext Service

-------- - Hypertext Function
Mappings

View Node C++ IDE

Get Current
Selection Dynamic Compiler

Match Hyperlink Module Dependency
'"" Analyser

[other hypertext operations] :

Figure 6.10: Document object for programming example

program example, instead of a simple text editor. The user can then see the program
in a more natural environment, where they can use the features of the development

environment to explore the program further.
Similarly, when users select a section of the program, they may not want the

contents to be copied to the clipboard. The user could benefit from a much richer
definition of selection, which extracts the selected text and compiles it into an ex-
ecutable object. This can then be executed separately from the main program, to

see the effects of this small section of code. When a user follows a link, the con-

ventional linkbase service does not seem so appropriate. Perhaps a link service

should dynamically evaluate the dependencies between the program example and

other code modules in the system. The link service could then return a list of re-
lated examples and code extracts. Figure 6.10 shows a document object containing
hypertext services which are more suited to a programming example.

This section has included an example hypertext which is used to explain com-

puter programming techniques. The idea of document objects has been used to tailor

the hypertext services to the node itself. The precise implementations and semantics

of abstract hypertext operations such as view node, get selection, follow link can have

widely differing interpretations between different nodes. The node itself has an im-

portant role to play in defining the functionality of a hypertext system. Each node

presents different information to the user - not simply the format used to represent

the data, but also in a deeper sense. A hypertext system should provide different

services and implementations of hypertext operations which are tailored to each

node. This section has attempted to show the value of an adaptive model which

uses the node as the basis for adaptation. Section 6.5 shows how these document

objects are developed to support an adaptive model using weighted services.

174

Chapter 6: A Proposed Adaptive Model For HIPPO+

6.5 Weighted Services

The previous section suggested that the node itself provides a suitable abstraction
for defining the functionality of the hypertext system, and should be used as the
basis for an adaptive model. The document object has been introduced which defines
the mappings between abstract hypertext operations and specific implementations
of remote services. The current view of a document object provides a fixed defi-
nition for each node. This definition dictates which service instances will be used
when the user encounters the node. It is expected that the original author of the
node will provide a document object definition for each node when they create the
node contents. Indeed, the node may be defined solely in terms of a set of services,
and may not actually have any node contents associated with it. This allows the
contents to be generated dynamically, or retrieved from remote sources or as the
result of service invocations. The author has a good knowledge of the particular
problem domain, and will have a clear idea of the kinds of services which will be

most useful to the user. When the user reaches a node, the document object object
will be used to map these remote instances on to the abstract hypertext buttons in

the client.
However, this approach places great demands on the hypertext author. Not only

must authors meet the usual demands of hypertext authoring - creating node con-

tents, identifying suitable hypertext links etc - but they must now also provide a

set of useful service mappings. The author clearly has a role to play in defining the

services which will offer the greatest benefits to the user, yet the authors opinion

must be considered as simply one contribution. The value of services and partic-

ular functionalities in a hypertext system often only becomes clear by using and

interacting with the hypertext. Some navigational tools may prove themselves to

be particularly useful when viewing certain types of node data, while they may

be less important for general use. Similarly, certain viewing tools, linking models,

selection mechanisms etc may of little interest initially, but prove to be invaluable

for certain nodes and documents. The previous chapters have shown the benefits

of applying adaptive modelling techniques in these kinds of situations. The im-

portance of certain abstractions can emerge gradually over time, in response to the

experiences of users. The author can still offer initial suggestions, yet these can be

modified in light of new information and feedback from the user.

The adaptive model which is described here uses the initial definitions of doc-

ument objects as a starting point in the hypertext system. Each set of service map-

pings is not viewed as fixed, absolute definitions, but can be adapted and modified

to suit the needs of the users. The model achieves this by introducing a means

of expressing the importance of remote hypertext services for each node. The cur-

rent discussion of document objects requires each abstract hypertext operation to

175

Chapter 6: A Proposed Adaptive Model For HIPPO+

be mapped on to a single remote service. Each remote service in the HIPPO+ do-
main is either referenced in a document object definition, or remains unused. The
authors of document objects are forced to make difficult decisions as to which re-
mote services should be included in each node document definition. The author
must choose a single service to be used for a node, and to discard any other service
implementations.

This is a very unrealistic view of the authoring process which views remote ser-
vices as discrete objects. While it is true that some operations may map easily on
to particular service instances, there are many cases then these decisions are more
problematic. It is not always obvious which service implementation should be used
with a particular node. Often, several services may be considered appropriate and
the author is forced to choose between them. Consequently, the author may well
select a particular service which later turns out to be less useful than originally an-
ticipated. Some of the other services which were considered may have turned out
to be a better choice. Indeed, this is the main problem with the current definition of
document objects. The importance of a particular remote service can only be truly
evaluated over time, after users have interacted with the hypertext. Furthermore,
the importance of services may well change as the expertise of the user increases.
As each user becomes more familiar with the hypertext, or changes their particular
goals and tasks - so too, the services and functionalities provided by the hypertext

system must change.
The adaptive model described here addresses this problem by allowing docu-

ment objects to contain, not just one, but several mappings for each hypertext op-
eration. Each abstract hypertext operation (eg. view node) can contain mappings
to multiple service implementations. Each of these mappings then has a weighted

value which reflects the relative importance of the relationship. For example, figure

6.11 shows a document object definition for a particular node. The author may de-

cide that a simple linking model will be sufficient for most users, which provides a
basic link service. Users pass a textual selection to the service, and the remote object

returns a list of matching link definitions. However, the author may also decide that

an alternative linking service may be useful in some cases - perhaps a typed link

model which requires the user to request links of a particular type? Perhaps a link-

ing model which uses the identity of the user to influence the list of links which are

returned? This weighted document object model allows the author to express each

of these suggestions, by attaching weighting values to each mapping. The author is

not forced to choose any one single service, but can suggest that all three services

may be of use. A weighted model can capture the thoughts of the author more

closely, and express the uncertainty which the author experiences when choosing

remote service implementations.

This weighting system provides a way of defining mappings between remote

176

Chapter 6: A Proposed Adaptive Model For HIPPO+

Document Node

- ----------------- Hypertext Function I
Mappings

View Node ' 1.0

Get Current to
Selection

Match Hyperlink 1.0
-_ý

' 0.8
i

110,6 01-

i
[other hypertext operations]

------------------'

Remote Implementation
of Hypertext Service

Simple Text
Editor

Clipboard

Basic link service
using linkbases

Typed link
service

User-customised
link service

Figure 6.11: Weighted document objects

services, and also a means to express the importance of these relationships. Each
weighted value represents a kind of attraction between a node and the surrounding
hypertext services - services with high weightings are considered more important
than those with correspondingly lower values. This could be viewed using an anal-
ogy with chemical modelling, where these weighted relationships correspond to
the strength of bonds between atoms and molecules. The node could be seen as a
nucleus, surrounded by other services with varying degrees of attraction.

The author can suggest several services which may be of value for each node,

and the user can select the service with the highest confidence value. More impor-

tantly, these weighted values can be adapted and changed as the value of each ser-

vice becomes apparent. Users may find that a particular service for viewing mathe-

matical models becomes particularly useful for a certain node in the hypertext. The

adaptive model could then increase the confidence value which is associated with

this service. Figure 6.12 shows an example of this adaptation which increases the

weighting associated with a particular service, as its importance becomes clearer.

The confidence values which are associated with less useful services can be corre-

spondingly reduced.

6.6 Automatic Identification Of Useful Services

These weighted relationships reflect the importance of each service for a particular

node. Those services which show themselves to be particularly useful are given in-

creased confidence values, while less important services are reduced. This raises the

problem of how to identify useful services. Figure 6.11 showed a document object

definition for a node, which suggested three link services that might be useful. The

177

Chapter 6: A Proposed Adaptive Model For HIPPO+

1.0 Basic link service
Initial using linkbases

Match
Document Hyperlink

0.8 Typed link
Object service

0.6 User-customised
link service

HIPPO+ Remote
Client Services

HIPPO No. Times
Users invoke Service Used

different
"Match Hyperlink" "Basic link service" 5

implementations "Typed link service" 20
" "User-customised 10

link service"

Final 0.3 Basic link service
Document using linkbases

Object Match 0.9 Typed li k (Weighted values Hyperlink
are adapted to e service

0
reflect usage) User-customised

service link service

Figure 6.12: Adapting weighted service values

author felt that each of the services could offer some benefits to the user, but was
uncertain which the user would find most useful. The author finally decided that
the basic linking service would perhaps be most widely used, and assigned this the
highest confidence value. The adaptive model needs to test this hypothesis, and
find some way to ascertain which service really is the most useful.

A simple approach could simply observe how much each service is invoked.
The popularity of each service would suggest how useful the user found the ser-

vice. An important component will be widely used, while less useful services are

neglected. Each remote service would be required to maintain an internal counter

which is incremented each time the service is invoked. Alternatively, a separate au-
dit server could be implemented which runs centrally, and maintains usage statistics
for each service in the network domain. In this case, each time a client invokes a

service, they also notify the audit server which increments the corresponding service

counters etc. Each node would also require some unique identifier, so that the audit

server knows which service was used with which node. This raises additional is-

sues relating to unique naming services, which are not discussed here. Readers are

referred to other work on naming schemes [WWWb] and other hypertext systems

which use node identifiers (eg. EHTS [Wii9la), Dexter [HS90] etc).

This is a simple approach which suggests a useful starting point for an adaptive

implementation. However, the frequency of execution is not always an accurate

guide to the real value of a service. This ignores any failed executions and also ig-

nores many of the subtleties of using a hypertext system. The user may invoke a

service, before deciding that this does not actually achieve the desired goal. Some

operations which would be logically considered as one operation may actually in-

178

Chapter 6: A Proposed Adaptive Model For HIPPO+

volve many invocations to a particular service. This would mislead a counting
mechanism which would assume that this increased number of executions actu-
ally indicates a popular service. The user may also invoke a service with incorrect
parameters, which means that they must re-invoke the service again.

Indeed, a frequently used service could actually suggest that the service is failing
to meet its desired aims. For example, a simple link service may not produce par-
ticularly useful link results, which means that the user has to submit many requests
before locating the desired information. A simple counting mechanism would infer,
incorrectly, that this link service is proving to be very popular and should be given
an increased weighting value. A simple counting mechanism is merely suggested
as a starting point which could give an indication as to the importance of particular
services. A more flexible adaptive model could incorporate many of the techniques
which have been used existing adaptive models (Section 2.3). Chapter 7 also dis-

cusses some directions for future development of an adaptive HIPPO+ model.

6.7 Combining With Other Adaptive Models

It seems sensible to combine this node-based approach with some of the previous

models which have been discussed. This allows the adaptive model to use addi-
tional information about the user to influence the choice of services - background,

knowledge, experience, goals etc. The user stereotyping model in particular would
be simple to incorporate into the document object model. The current model as-

sociates a single document object with each node, which contains suggested map-

pings between abstract hypertext operations and actual service implementations.

This model could be extended such that each node could have multiple documents

objects associated with each node. Each of these alternative document objects rep-

resents a set of service mappings for a particular type of user - eg. beginner, interme-

diate, expert or scientist, artist, end-user etc. The user could then select an appropriate

document object based on their user category (figure 6.13). The implementation

of the adaptive mechanisms would also have to be extended to adjust confidence

values based on the type of user executing the service.

6.8 Summary

The HIPPO+ model provides a distributed implementation of the original HIPPO

prototype. The system identifies each key hypertext operation and function, then

implements each of these as a remote lightweight service. This approach provides

an open and extensible environment, which shares many of the advantages of dis-

tributed systems. Chapter 5 discussed the HIPPO+ implementation, and described

the tools which have been developed to help the user manage these remote ser-

179

Chapter 6: A Proposed Adaptive Model For HIPPO+

HIPPO Node

Beginner
Document
Sub-Object

IntermediatE
Document

Sub-Object

Figure 6.13: User stereotyping using multiple document objects

vices. The computational model has also been extended to allow users to select
arbitrary remote services to replace the default, predefined remote services. This
allows users to choose the most appropriate implementations of remote services to
match the task at hand.

This additional flexibility can prove overwhelming for many users, as they sea-
rch through potentially hundreds and thousands of objects to find suitable imple-
mentations of hypertext operations. This chapter has suggested an adaptive model
which could be incorporated into the HIPPO+ system to help manage this complex-
ity. These ideas have not been implemented in the initial version of the HIPPO+ pro-
totype due to lack of time, although some implementation suggestions are included

where appropriate. An adaptive model can be used to identify useful services, so
that these can be suggested to future users. Section 6.1 discusses some of the ad-
vantages of an adaptive model when incorporated into the HIPPO+ environment.
Section 6.2 includes some example scenarios which demonstrate how an adaptive
model might be used.

Section 6.3 begins by exploring some of the different approaches to developing a

suitable adaptive model. A user-based model is considered which attempts to cap-
ture knowledge about the user to influence which services whill be offered to them
(section 6.3.1). This offers only a limited level of control over services, and proves
too general for a widely applicable adaptive model. An overlay model extends this

approach by modelling user knowledge using a semantic net. This adds consider-

able overhead to the authoring process, and relies on the author being able to ac-

curately identify useful services. A goal-based model allows the choice of HIPPO+

services to be tailored to the current user task (section 6.3.2). This allows the map-

pings between abstract hypertext operations to change between user sessions, as

the user explores different problems. However, this also places significant demands

on the author, and fails to acknowledge the value of the underlying node contents

in a hypertext.

The value and importance of remote services is often determined by the type

180

Document
Sub-Object

Chapter 6: A Proposed Adaptive Model For HIPPO+

and content of nodes in a hypertext. The choice of viewer is often a function of the content format, and the selection of link service is heavily influenced by the
semantics of each node. Section 6.3.3 suggests that the hypertext nodes themselves
should be used as the basis of an adaptive model. The idea of document objects is introduced which associate particular services with a given node. Each node has a document object which determines the mappings between abstract hypertext
operations in the client, and actual remote implementations of services. Section 6.4
includes an example which shows how these document objects could be used.

Document objects allow the choice of HIPPO+ services to be tailored to the un-
derlying node contents. It is expected that authors will provide these document
object service mappings, when they create the actual node contents. The author has
a good understanding of the node semantics and is well placed to select services
which the user will find useful. However, this places significant demands on the
author, and the author is not always best placed to select services. The true value of
services often emerges over time, and should involve the user in some way. Section
6.5 introduces the idea of weighted services which associates confidence values to re-
flect the importance of services. Section 6.6 then goes on to discuss how this could
be used to identify useful services, and to form the basis of an adaptive model.

The HIPPO+ model identifies key operations in a hypertext environment, and
implements these as remote services. The lightweight HIPPO+ client provides in-
terface buttons which map on to particular remote implementations. The user can
also select from other services, and use these to augment the existing default ser-
vices. However, the author envisages a HIPPO+ environment which contains hun-
dreds, perhaps thousands of services, and the user can experience problems decid-
ing which services to use. This model shows how the mappings between abstract
operations and remote service implementations can be modified to reflect the value
of particular services. The system does not place sole responsibility for choosing
appropriate services with the author. The true value of a service is not always im-

mediately apparent, and can only be evaluated in light of user experiences.
This adaptive model attempts to capture the uncertainty and ambiguity which is

part of developing hypertext applications. The choice of which operations to offer,

and the implementations to use is not always clear. This adaptive model attempts to

provide a limited way of moving some of the responsibility away from the author.
The author provides an initial definition for a system which dictates which services

will be used with a particular node. These can be used as a starting point, and can be

adapted to towards a more optimum set of services. This is a significant departure

from other adaptive hypertext systems which focus on the adaptation of the user

interface and link definitions etc. The HIPPO+ adaptive model attempts to provide

a deeper level of adaptation which modifies the actual semantics of hypertext op-

erations. The adaptive model described in this chapter has not been implemented

181

Chapter 6: A Proposed Adaptive Model For HIPPO+

in the current HIPPO+ prototype, although could be incorporated in future imple-

mentations. This adaptive model has not been implemented in the current HIPPO+

prototype, and Chapter 7 suggests a way in which this could be implemented using
compound documents (see Chapter 5 for details of compound document models).

182

Chapter 7

Discussion

The previous chapters have discussed the research which I have undertaken as part
of the HIPPO project. The fundamental ideas behind the hypertext paradigm and
the advantages of hypertext modelling have been explored. Some of the early hy-
pertext implementations have been introduced, along with some of the more recent
developments in the hypertext research field. Of particular interest to the HIPPO
project are the ideas of open hypertext, distributed hypertext systems and adaptive
modelling techniques. These have all been developed further, and incorporated into
the HIPPO model which has been presented in this thesis. The main contributions
of the HIPPO research have been described in more detail, in particular: adaptive
fuzzy anchors, adaptive linkbase inheritance trees and a distributed HIPPO model. The
thesis also includes a proposed adaptive model which has been suggested for the
distributed implementation of the HIPPO system. This has not been implemented
in the current prototype due to lack of time, and is left for future implementation.
In this chapter I will discuss these ideas, and show how they were developed over
the course of the research. I will also identify some areas for future research and

explore ways in which the HIPPO model could be developed further.

7.1 Overview

The initial ideas in this thesis grew out of an interest in open hypertext which was
beginning to gain increasing importance in the hypertext community. Open hyper-

text attempts to identify operations and abstractions which are fundamental to the

hypertext paradigm, and separates these out into a link services subsystem. These

link services can then be used to provide hypertext functionality to existing ap-

plications, which are not "hypertext-aware". I was particularly influenced by the

Microcosm [DHHH92], Sun Link Service [Pea89] and Dexter [HS90] models which

demonstrated the advantages of separating linking information from the underly-

ing node contents. Links and anchors were no longer implemented at the interface

183

Chapter 7: Discussion

level, or embedded deep inside an application, but were instead treated as first-
class, primary objects in the hypertext model. This had many practical advantages
such as being able to integrate hypertext functionality into existing environments.
However, I also felt that open hypertext systems extended the hypertext model it-
self, by forcing the designer to think about key hypertext abstractions, and to iden-
tify operations which were fundamental to a hypertext system. Some of the defining
ideas in open hypertext research are discussed in Chapter 2. Appendix B also in-

cludes a summary of the open hypertext systems which have been influential in this

research.
At the same time, I also became interested in the idea of distributed systems and

distributed architectures. Distributed computing has been used for many years in

all manner of areas - operating systems, remote access terminals, database systems

etc - and was gaining popularity with work on distributed architectures such as
CORBA [Objc] and ActiveX [Act]. Distributed ideas had also been incorporated into

some hypertext applications (eg. KMS [AMY88], EHTS [Wii9la]). Chapter 2 also
discusses other important distributed hypertext systems. More recently, the suc-

cess of the Internet and, more importantly, the World Wide Web [WWWa] showed
how distributed techniques could be used in the hypertext community. Distributed

models offer many advantages over traditional, centralised systems, by providing

more robust and scalable architectures. The VVWW is an extreme example, which

provides a global hypertext, on a scale not seen anywhere before. The WWW and

Internet offered many exciting possibilities, and this was an area that I wanted to

develop further.

I began my research on HIPPO by attempting to combine some of the open hy-

pertext work with existing distributed techniques. Some systems such as PROXHY

[Kac90], D2 [HGC94] and SPx [LS94] had already offered some interesting insights

into distributed, open systems. However, I wanted to extend this further, by provid-

ing a completely distributed environment, in which every operation, every resource

and each component of the hypertext system, was accessed remotely. In particu-

lar, I wanted to see how this fine-grained approach could provide a more flexible

model, by allowing users to choose components, and to define their own hypertext

environments. This early work was to become the HIPPO+ prototype described in

Chapter 5.
However, during the development of the distributed HIPPO system, I came

across the concept of adaptive hypertext [Bru961. This was a relatively new dis-

cipline, which moved away from a static view of hypertext. Instead, adaptive hy-

pertext is viewed as a dynamic, flowing network which changes in reponse to the

user. Adaptive hypertext systems recognise that a knowledge structure should be

tailored to the individual user, and indeed, should change as the user gains more

expertise. Adaptive systems use information about the user, and feedback from the

184

Chapter 7: Discussion

user to modify and adjust the hypertext environment. This was an idea which ap-
pealed to me, and I began to explore ways in which I could combine all three areas
of research - open hypertext, distributed hypertext and adaptive hypertext - into
one common system. This vision went on to shape the HIPPO research, and proved
to be the defining direction for the ideas presented in this thesis.

A number of interesting ideas emerged from this work, but the most significant
contributions can be summarised as:

" Adaptive Fuzzy Anchors

" Adaptive Linkbase Trees

" Adaptive Distributed Systems

These were used as the main structure for the thesis, and have each been allo-
cated a chapter of discussion. The remainder of this section will briefly discuss each
of these, and outline how these ideas emerged. I will also explain why I think these
are original, important ideas, and are worthy of future work.

7.1.1 Adaptive Fuzzy Anchors

I began by looking at the most basic of hypertext objects - the hypertext anchor.
This is often seen as a simple abstraction in the hypertext world, and receives corre-
spondingly little attention. I soon realised that existing hypertext systems provided

widely differing anchor implementations - each with slightly different interpreta-

tions [AMY88, HMT87, YHMD88]. However, while many other aspects of the hy-

pertext model have been developed, the anchor remains largely unchanged from

many of the early implementations. The anchor is seen solely as a way of identify-

ing a link endpoint -a single point on a page, or a simple span of text. I feel that the

anchor plays a much richer role in a hypertext - it is more than just a marker, it en-

capsulates the very concepts which form the basis of hypertext links. For this reason,

I began to look at ways in which I could develop the anchor abstraction, by applying

some of the open hypertext and adaptive techniques seen in other systems.

One of the defining characteristics of many open hypertext systems is the strong

notion of a link, and the way this is maintained separately from other node contents.

This is often seen in the form of a linkbase [DHHH92, YHMD881. However, I noticed

that the anchor did not enjoy the same treatment, and was often implemented as an

afterthought - perhaps as an attribute of a link definition. Some open hypertext

models such as PROXHY [Kac90] and D2 [HGC94] did elevate the anchor to that of

a first-class, primary object, and I used this idea in the HIPPO research. The anchor

was an individual hypertext object which could be manipulated in the same way

as any other hypertext abstractions such as nodes and links. I then looked at the

185

Chapter 7: Discussion

advantages that this offered (eg. sharing objects, reusing anchors etc), and readers
are referred to Chapter 3 for more information.

Despite this first-class status given to anchors in my HIPPO system, I was still
unhappy with the addressing model which I was using. Single anchor points [AMY88]
were useful as user interface hints, and spans of text [YHMD88] were interesting an-
chor developments. However, I did not feel that this approach to addressing node
contents was sufficient for complex knowledge structures. An anchor should truly
encapsulate a concept or idea in a node, and it is rarely possible to do this using
existing anchor models. A concept does not simply appear in a piece of text, but
rather emerges and grows as the textual description unfolds.

Furthermore, it seemed natural to apply some adaptive modelling to an anchor
definition, so that an anchor could change and move in response to user actions.
Existing approaches to adaptive hypertext had been concerned mainly with the pre-
sentation of links - providing sets of links which were tailored to the user, or altering
the user interface for a user. Adaptive hypertext had not been applied to the hyper-
text anchor. I wanted to develop a anchor model which could better encapsulate
a concept in a node, as well as providing a natural platform for adaptation. These
ideas led to the development of the fuzzy anchor.

Fuzzy anchors build on the work of Zadeh [Zad65] and others, by applying
fuzzy sets to the hypertext anchor. An anchor is defined as a set of partial truth

values - each representing the strength of an anchor at that point. In this way, a

anchor does not simply have a start and an end, but has a more gradual definition

- an anchor emerges, increasing in strength before reaching the true centre of the

anchor. Chapter 3 describes this idea in more detail, and introduces the analogy of

a contour map on a geographical map. Authors are no longer forced to select a start

and end point for each anchor, but can use a fuzzy anchor to show how an idea

gradually unfolds in a node,
These "fuzzy values" which are used to define fuzzy anchors, also provided a

useful basis for an adaptive model. These values could be modified in response

to user selections, and could be used to adapt an anchor over time. This seemed

an attractive idea which would allow the user to play a role in defining anchors.

Indeed, this was an important idea which went on to shape many of the other ideas

in the thesis. I do feel strongly that the end users of any system should play an

active role in its initial design. The same applies to a hypertext system, so that

feedback from users should be incorporated into the definition of the hypertext.

This feedback should influence all aspects of a hypertext system, not just the link

definitions. Fuzzy anchors seemed to offer one way of achieving this.

Chapter 3 described these fuzzy anchors in more detail, and discussed the HIPPO

prototype which was used to implement these ideas. A number of different presen-

tational approaches were considered in the implementation, and this also raised a

186

Chapter 7: Discussion

number of other areas where the fuzzy anchor could be improved. I discuss some
of the more interesting areas for future research later in this chapter (Section 7.2.1).
In particular, I would like try a fuzzy-anchor system in a real test environment,
to observe how users interact with fuzzy anchors. This was not something I had
time to do in the current research, and I would like to conduct some evaluation
studies in the future. Fuzzy anchors build on some of the work in open systems [Kac90, HGC94] and adaptive hypertext [Bru96], but use the ideas of fuzzy sets
[Zad65] to present a novel approach to hypertext anchoring. This work on adaptive
fuzzy anchors was presented in a paper at the HHPTM conference [New97b].

7.1.2 Adaptive Linkbase Trees

The fuzzy anchor combined the notion of first-class objects from open hypertext, with
ideas from adaptive hypertext. I then began to explore how I could develop the hy-
pertext link in a similar way. The hypertext link is fundamental to the hypertext
model, and has been developed in many ways over the years - ranging from sim-
ple links and multi-way links, through to typed linking models and dynamic links
[YHMD88, DS86, Eng84a, HMT87, Tri861. Much of the research to emerge from the
open hypertext community also identifies the link as a key abstraction, and often
separates linking operations into a separate link services layer [Pea89, YHMD88].
This was an area that I wanted to develop in the HIPPO system, which led to the
idea of adaptive linkbase trees.

One of the interesting ideas to emerge from the work on fuzzy anchors was
the idea of reuse - sharing anchor objects between multiple link definitions. I had

also become very interested in the work on Object-oriented design in software sys-
tems [Boo94]. Object-oriented research proposed software design methodologies
based on reuse and the sharing of existing resources. Units of work are reused in

other situations, extended and specialised for particular tasks, to reduce the mainte-

nance efforts and the overhead of building software systems. I wanted to find ways

of modelling this reuse in hypertext systems, so that links and relations could be

shared between authors.
The current approach to hypertext authoring would see authors working in iso-

lation, creating each link from scratch. Links are not shared between users or au-

thors, and authors are largely unaware of any hypertext work which exists outside

of their domain. I did not feel that this was an efficient way to develop hypertexts,

and began to look at more reusable, object-oriented linking models.

Many systems such as Microcosm [DHHH92] separate linking information into

separate units, known as linkbases or contexts etc. These are used largely as a practi-

cal measure to separate link definitions from the node contents themselves. This al-

lows hypertext services to be integrated more easily with legacy applications, which

would normally be "hypertext-unaware". However, I became more interested in the

187

Chapter 7: Discussion

linkbase, not simply as a collection of links, but as a primary object in a hypertext
model. The linkbase could be seen as first-class object, which could be used to form
the basis of a reusable, object-oriented model. This led to the development of the
linkbase tree.

Linkbase trees combine linkbases into inheritance hierarchies, in the same way
that software objects are used in the object-oriented world. Linkbases become a
basic unit of work, and allow authors to build on existing link definitions. Linkbases
can be augmented with additional link definitions further down the tree, or links
can be overridden by new definitions. This encourages a constructive approach to
hypertext authoring, in which new hypertexts are defined in terms of older, existing
networks. Chapter 4 explains this idea in more detail, and discusses the advantages
of linkbase inheritance hierarchies.

The linkbase tree hierarchy promotes the reuse of existing link definitions. Au-
thors are encouraged to build on other authors' work - adding their own links to ex-
isting definitions. Furthermore, the author is forced to think about the relationships
between linkbases in more detail. However, while this does offer a more reusable
approach to hypertext design, it is still a largely static model. Linkbase hierarchies
do not change over time, and this was an area where I felt adaptive hypertext could
be of use. As before, I wanted to combine open hypertext ideas with an adaptive
model, so that linkbase trees could respond to user actions. This was the next stage

of development.

I felt that the idea of a fuzzy anchor had been quite successful, which had ach-
ieved some degree of adaptability by using confidence values. I began to look at

ways in which I could used a similar idea in the linkbase hierarchy, which could

then form the basis of an adaptive model. I was aware of some existing work which

used weighted hypertext links [Fur86, PD90, PT90, Fri87]. Many of the existing

adaptive implementations also used some form of rating or confidence value for

tailoring links to a particular user. Weighted links seemed to be useful in the HIPPO

model, by allowing the author to model the importance or confidence in a hypertext

link. I was also looking to use these weighted links in a final adaptive model, so

these weighted links were added to the HIPPO prototype as a starting point for

adaptive linking model.
However, I was more interested in pursuing the idea of linkbase inheritance hi-

erarchies, and looking at ways that these could be used in an adaptive model. I

then considered associating weighted values, not only with each link, but also with

each inheritance relationship. Each branch in an inheritance hierarchy is given some

confidence value, which represents the importance of that particular inheritance re-

lationship. This would allow authors to model, not only the importance of each

link, but also the "strength of inheritance". The author can then decide on the rela-

tive importance of each linkbase in the tree, and how much they will contribute to

188

Chapter 7: Discussion

the overall hypertext.
More importantly, these weighted inheritance hierarchies could be used as the

basis for an adaptive model. In this case, I chose a relatively simple approach which
increased a weighted value, each time a link was traversed. Clearly, this is too
simple for a usable system, and a more intelligent adaptive model should be consid-
ered in future work. However, it is the idea of using linkbases as reusable blocks,
and structuring these with weighted inheritance hierarchies which is the important
point. Chapter 4 describes the adaptive model in more detail, and suggests ways in
which this could be improved.

Adaptive linkbase trees combine ideas from open hypertext systems, object-
oriented design and adaptive modelling. The linkbase is a common abstraction
in many open hypertext systems [DHHH92, GB80], and has been combined with
the inheritance model seen in object-oriented research [Boo94]. This linkbase inher-
itance model uses some of the weighted value approaches used in adaptive systems
and other research on weighted-links [Fur86, PD90, PT90, Fri87]. I would like to
develop the adaptive model further in any future work, and some other future di-

rections are discussed in section 7.2.2. In particular, I would like to explore the
impact of linkbase inheritance trees in real-world situations, to see how this idea

can promote reuse of links between authors. This was not something I had time to
do in this research, but even if linkbase inheritance hierarchies are not the best way
to achieve this, I believe that the reuse of hypertext objects between authors is an
important one, and should be considered in future research.

7.1.3 Adaptive Distributed Systems

The final chapters in the thesis explore the idea of a distributed HIPPO model. As

mentioned previously, one of the initial motivations behind the HIPPO research was

to combine existing open hypertext work with distributed techniques. The early

work on a distributed hypertext model changed direction, as I became more inter-

ested in applying adaptive modelling to open hypertext ideas. I had implemented

the HIPPO prototype which supported fuzzy anchors and linkbase trees. However,

I decided to return to the original idea of a distributed hypertext system, to see how

I could incorporate distributed ideas into my current prototype.

The HIPPO application had used a number of different technologies - C++,

X11 /Motif, Acrobat etc. The adaptive servers which were used to support the adap-

tive modelling of anchors and linkbase trees also used some Remote Procedure Calls

to distribute the servers. However, the prototype was largely implemented as a

monolithic application which operated on a single platform. Despite offering some

interesting ideas, it did not sit easily with my vision of an open, distributed system.

Wiil et al [WL96] also identified the importance of a distributed architecture in open

hypertext systems. The remainder of my research looked at ways in which I could

189

Chapter 7: Discussion

re-implement the HIPPO application using a more distributed model.
My initial idea had been to view a hypertext system as a collection of lightweight

components which offered specific hypertext services. I was very interested in ex-
ploiting the advantages of distributed architectures, to provide a more robust and
scalable system. I had been influenced by the early work of Nelson [Ne195], Engel-
bart [Eng84a] and others, who developed large-scale, collaborative hypertext sys-
tems. Hypertext was seen as more of an environment or a way of working, rather
than a particular application. The PROXHY [Kac90] and D2 [HGC94] systes also
used distributed ideas to good effect. This was something that I wanted to explore
in my HIPPO research, and I felt that distributed ideas offered one way to do this.

I decided to re-implement some of the ideas in my initial HIPPO prototype, us-
ing a distributed approach. The CORBA model [Objc] has been a very influential
distributed architecture, which provides a well defined layered model for develop-
ing distributed systems. At the time I started my initial distributed implementation,
CORBA research was still in its infancy, and there were very few available imple-
mentations. For these reasons, I decided to use a relatively low-level and simple
distributed mechanism - the Remote Procedure Call [Sun95a] - to distribute hyper-
text services. However, some aspects of the CORBA model such as interface trad-
ing, directory services and other CORBA services [Objb] did influence later work
on HIPPO+.

The original HIPPO prototype was re-implemented using distributed compo-
nents, and became the HIPPO+ system. I wanted to build on the work of PROXHY
[Kac90] and D2 [HGC94] and other open hypertext systems, to show how existing
distributed techniques could be used in hypertext systems. Furthermore, I wanted
to explore the effect of widely distributed hypertext systems on the user - remote

access to particular hypertext operations, tailorable hypertext systems, blurring the

boundary between user and developer. These were all ideas that shaped the devel-

opment of the distributed HIPPO+ system.
My initial approach to HIPPO+ was to identify key operations which I consid-

ered fundamental to the hypertext paradigm - view node, retrieve links, follow

links etc. I also included some of the newer ideas which I had implemented in the

original HIPPO prototype (fuzzy anchors, linkbase trees etc). This gave me a usable

distributed hypertext system. The main area where my system differs from other

existing hypertext systems was the level of distribution - distribution is applied to

all aspects of the model. Not only is node data and link data distributed throughout

a network, but also the actual components themselves. In this way, there is no such

thing as "the application"; instead, the system becomes a collection of components.

This fine-grained approach was an area which I wanted to develop further.

In particular, I was interested in the idea of involving the user in the definition

and construction of the hypertext system. Current approaches to hypertext design

190

Chapter 7: Discussion

are very strict and "one-way". The developer defines the functionality of the hy-
pertext application, and the user is seen largely as a passive participant. However,
the fundamental idea of adaptive hypertext is that a hypertext should be tailored
and customised to meet the needs of the user. This HIPPO research attempts to
combine ideas from adaptive hypertext with existing work on open hypertext and
distributed systems. As a result, I wanted to look at ways in which I could apply
some adaptive modelling to the existing distributed HIPPO+ system. This was to
form the remainder of my research into HIPPO.

The first step towards an "adaptive distributed HIPPO model" was to look at
the mappings between abstract hypertext operations (view node, follow link etc) and
the actual remote implementations. It occurred to me that these mappings could be
use to provide some degree of customisation. A user could decide to use alterna-
tive implementations of a particular hypertext function, and was free to select the
appropriate service from somewhere in the network. This was inspired by the use
of interfaces and object references used in the CORBA and OMA models [Obj971.
This was added to the HIPPO+ prototype, so that users could choose which im-
plementation was used for each hypertext operation. I also allowed users to add
their own hypertext operations, in addition to the pre-defined set of functions. This

would allow HIPPO to be used in situations which were not originally envisaged
by myself.

While this approach did offer some additional flexibility, it was still a long way
from the vision of a truly adaptive hypertext system. Most approaches to adaptive
hypertext have focussed on modifying link definitions or some customisation of
the graphical interfaces. However, adaptive hypertext systems do not apply this
level of adaptivity to the actual functionality of the hypertext system. This was my

ultimate goal, to provide an adaptive system which actually changed the meaning

of hypertext operations. For example, it seems quite natural that the act of viewing

a node should mean different things depending on the contents of the node under

examination. Similarly, follow link can, and should have many different meanings
depending on the context.

Chapter 6 details the final phase of my research which was to propose an adap-

tive model for the HIPPO+ system. The chapter introduces the idea of document

objects which use the node as the unit of adaptivity, so that the actual implementa-

tions of hypertext operations changes according to the current node. Each of these

hypertext operations is assigned a confidence value, which is modified each time a

user invokes the particular service. In this way, the mappings between abstract hy-

pertext operations and actual implementations will change - not simply from node

to node, but will also adapt and be modified over time.

This work on an adaptive HIPPO+ attempts to combine adaptive techniques

with the existing open, distributed hypertext system. However, this differs from

191

Chapter 7: Discussion

existing work by applying adaptive ideas to a distributed architecture. Also, the
adaptivity applies, not just to the hypertext network, but to the actual hypertext
system itself. The meaning of operations will change and adapt, to select the most
appropriate service for a particular node. I consider this a real departure from ex- isting adaptive work, and I would like to see how this approach could be applied to
a more general audience, in the adaptivity of actual software systems. Some of this
work was presented at the HTF Workshop held during the Hypertext 1997 confer-
ence [New97a].

I did not have time to implement the adaptive model in the intial version of
HIPPO+ which is described here, and it is included only as a theoretical proposal.
However, I feel that this model could be implemented, and this is an area for future
work. This is an area of my research which I would like to develop further, and some
possible areas are discussed later in the chapter. The adaptive algorithms which are
used to modify the weightings for each hypertext service, are an obvious candidate
for more work. I would also like to see how my adaptive model would work in a
real environment, with real users and some more rigorous analysis. In particular,
I am interested to see how a user would react to a constantly changing hypertext

system. I am concerned that this level of change could prove disorientating for

users, and that a user would like some way of controlling the adaptivity. Users often
need some features which remain constant and act as reference points. Similarly,

the user of an adaptive system may require a way of "fixing" the system, to prevent

any changes taking place. Indeed, this could be a problem for the entire adaptive
hypertext community, and is an area I would explore in the future.

7.2 Future Research

The previous discussion has provided an overview of the HIPPO research, and has

shown how each of the ideas were developed. The key contributions and original

research which has emerged from the work on HIPPO have also been outlined. This

final section explores some of the areas which have caused some problems and are

considered useful directions for future research.

7.2.1 Developing Fuzzy Anchor Model

Alternative Metaphors For Fuzzy Anchors

The prototype discussed in this chapter adopted a very visual representation for

fuzzy anchors, using colour to indicate fuzzy membership values. Each anchor is

maintained internally as a matrix grid which represents the physical display, such

that each cell has a direct mapping to an area of the display window. This approach

has proved very successful, and the visual, point-and-click metaphor has been very

192

Chapter 7: Discussion

intuitive. However, the use of colour to indicate fuzzy values does have some lim-
itations. In particular, the limitation of colours which were available caused some
problems, and the prototype application encountered problems when displaying
larger ranges of values. Some improvements were made by mapping large ranges
of values on to a smaller range of colours, or by using private colourmaps in the X11
windowing system. While the use of colour has proved very successful, this does
raise the possibility of using alternative metaphors to represent fuzzy anchors.

One alternative might be to use the interaction between the mouse and cursor
to indicate the presence of fuzzy anchors. This could emphasise the analogy with
contour maps and landscapes, so that the cursor may move more slowly as the user
"climbs" an anchor, and accelerates as they descend the other side. This physical
view of fuzzy anchors as a form of terrain or landscape seems to hold much promise
and could be developed further. One avenue of research might be to introduce some
virtual reality and 3-dimensional modelling techniques. The series of fuzzy anchors
could be represented as a series of hills, and the document could be overlayed on
top of these anchors. The document of a surface becomes more analagous to a rough
landscape, and the user could explore valleys and peaks using some of the existing
techniques used in virtual reality modelling.

Managing Complexity

A document space of any non-trivial size has many complex relationships and de-

pendencies, and a single node could (and should) have many links originating and

converging on the node. Each phrase can act as an anchor for many links, and

many anchors may overlap with each other. A particular concept described by a

node could mean many things to many users, and could provide the basis for many

competing regions. This shares many of the ideas put forward by Nelson in the

Xanadu system [Nel93], in which many hundreds and thousands of documents are

interconnected. It is the role of a hypertext application to embrace this richness, and

provide tools for managing the complexity, rather than restricting the user to simple

hypertext structures.
The prototype discussed here has adopted a resource-based approach to hyper-

text anchoring, similar to the linking mechanisms used in the Microcosm system

[FHHD90]. Users identify a concept in the text, then query the application to see

which fuzzy anchors have some presence at that position. The idea of fuzzy an-

chors encourages a larger, more expressive anchor which includes more content

than a simple span of text. When a user selects a region, they are more likely to

locate some anchors; this is just as it should be, because every phrase and piece of

content in the node has some part to play and should contribute to other links and

anchors.
However, these larger, more expressive fuzzy anchors can raise some complexity

193

Chapter 7: Discussion

issues. Each time a user selects a region of a node, the application may return a long
list of possible anchors which appear at that location. The prototype provides some
simple thresholding operations so that the application only acknowledges anchors
which have fuzzy values above a certain limit. This could be seen as viewing only
the highest peaks, and ignoring the smaller, less important hills. Also, the chapter em-
phasises the idea of anchorbases in which related anchors are grouped together into
a single file. This allows the author to provide several interpretations and represen-
tations of each anchor to suit different users, and the user can select the appropriate
anchorbase which is most suitable.

However, if the prototype is developed further, it would be beneficial to consider
alternative methods for managing the number and complexity of fuzzy anchors.
This could borrow from much of the existing work in the hypertext community for
managing hypertext links, which help address the infamous disorientation problem
[Nie90]. Perhaps an application which supports fuzzy anchoring could provide
more advanced filtering operations which reflect the more complex nature of fuzzy
anchors. A user could select anchors based on the gradient of the anchor, or perhaps
the distribution of values etc. These are all areas which should be addressed in
future implementations of the prototype.

Logical Fuzzy Anchors

The discussion of the prototype implementation explained the presentational, gra-
phical approach to anchors. Each fuzzy anchor was viewed in terms of graphical
marks which were painted over the document image. This was a useful approach

which greatly simplified the implementation of the prototype and associated tools.
However, the idea of a more logical, descriptive approach to anchors was suggested
for defining fuzzy anchors. Similarly, the idea of using generic, logical documents

as the underlying node content was considered, which would define the logical ele-

ments of each document (title, heading etc). This contrasts with the presentational,

physical view of documents which is supported by the PDF document standard
[BC93].

This logical representation of documents raises many interesting possibilities for

fuzzy anchoring. Anchors could be defined using a series of tags to delimit elements

with the same membership value. Perhaps an anchor could be defined in terms of

the elements it encapsulates, along with a distribution function which defines the

gradient of the anchor. For example, the author could define a fuzzy anchor which

includes an entire paragraph, followed by an image, and the opening subsection of

another paragraph. The author could describe how the fuzzy anchor will change

over the region, and explain the gradient and type of contours. Some situations

require very specific anchors which identify the central concept, then immediately

fade away. In contrast, other scenarios might benefit from a more ambiguous an-

194

Chapter 7: Discussion

chor which fades away gently from the central concept, to include many of the
surrounding elements.

Indeed, a more descriptive approach to fuzzy anchors could be developed in a
number of useful ways. An application could support a number of different pat-
terns and shapes which indicate different anchoring semantics. Perhaps an author
could refer to fuzzy anchors by the intended meaning rather than the graphical pat-
tern eg. general concept, definition, emphasis etc. In this way, the anchor becomes a
truly logical abstraction which is defined by the semantics of the anchor, and is not
tied to any particular appearance or display. Furthermore, an application could use
these anchor semantics to infer anchors and types of anchors from logical docu-
ments. For example, an application would automatically know the shape and type
of fuzzy anchor which should be used for a quote, a heading, a mathematical for-

mula etc. This would provide more accurate methods for defining anchors, and
could reduce the time and effort involved in authoring hypertext applications.

Logical descriptions also simplify the problem of maintaining a hypertext. Many

researchers have identified problems which arise when authors edit the underlying
node content, and how a hypertext application must ensure that anchors and links

are updated and remain consistent. This can be complicated further in more open

systems, when hypertext information is maintained separately from the node con-
tents. Researchers have suggested alternative solutions to this consistency problem

- heuristics in HyperTED, generic links in Microcosm [FHHD90] etc. Also, HyTime

[GNKN97, CBDW94, Buf961 and Augment [Eng84a] both show the advantages of

anchoring methods which are based around descriptive methods (eg. paragraph
3, chapter 2). A descriptive approach to fuzzy anchors which defines the elements

to be included would provide a more maintainable anchoring system, which can
better respond to any edits and changes which are made to the node contents.

The development of a more logical approach to fuzzy anchors shows much

promise, and is an area that should be continued in future work. Logical anchor

descriptions open up new possibilities for tools and utilities, and provide a more

maintainable environment. An approach to fuzzy anchors which views the anchor

as a more logical abstraction helps to express the true semantics of the anchor. An

anchor is defined, no longer as a graphical object, but in terms of the concept be-

ing anchored. It is hoped that the semantics of logical anchors can be developed

to the point where the author can define anchors simply by the intended meaning

-a definition, an introductory concept, a repetition - and the application gener-

ates the appropriate anchor definition. This is clearly a long way from the current

implementation of fuzzy anchors, but offers a fruitful area for future research.

195

Chapter 7: Discussion

Efficient Storage

The current implementation of fuzzy anchors uses a hidden matrix to divide the
visible page into cells, which are then used to define fuzzy anchors. Each cell in the
anchor grid corresponds to a physical region of the page, and contains a numeric
value to indicate the fuzzy value at that region. This approach is very simple, but
has proved to be very effective in the current model, and has simplified the imple-
mentation of the prototype. However, one of the main problems which arises from
this approach is the large amount of storage space required for each anchor defini-
tion. Each anchor demands an entire grid to represent the page, and although the
application allows the author to specify the resolution of this grid (xres, yres), a typ-
ical anchor still incurs an unacceptable overhead. The previous subsection which
discussed a logical description for anchors offers one possibility for reducing the
space requirements, and an earlier discussion suggested using mathematical de-

scriptions to define splines etc. Other alternatives might be to incorporate some
form of compression to reduce the total storage size. The majority of the anchor
grid remains empty, and this could almost certainly be compressed, and other ap-
proaches such as run-length encoding might be useful. Future development of the
implementation must address these storage problems if fuzzy anchors are to be-

come more widely used

Authoring Tools

The prototype application supports a number of tools to help the user define and

manipulate fuzzy anchors. A number of paintbrush-style tools allow the author to

create new fuzzy anchors, and these appear to be quite effective. A number of an-

chor patterns are provided which allow authors to reuse common shapes, along with

some simple utilities for manipulating anchors (thresholding functions, editing pa-

rameters etc). However, there is considerable scope for more development in this

area, and a more usable environment should provide additional utilities and tools.

For example, the implementation is currently lacking any means of managing sets

of anchors (anchorbases), and would also benefit from better tools to edit and change

existing anchors. Future applications should provide tools for manipulating anchor

values, perhaps smoothing a range of fuzzy values to remove high frequency vari-

ations which may distract from the anchor definition. Users may wish to sharpen

and accentuate any variations, as these may suggest concepts which may be better

expressed as separate anchors. Also, the author may wish to alter the resolution of

the underlying matrix used to define the fuzzy anchors, to increase or decrease the

level of detail, and will require tools to control how existing values are mapped to

the new matrix.

196

Chapter 7: Discussion

Alternative Adaptive Models

One of the most important contributions to emerge from the work on fuzzy anchors
has been the idea of more adaptive anchors which reflect the needs of the users.
The prototype implementation adopts a very simple adaptive model which uses a
centralised server to receive feedback from the user clients, which are then used
to adapt the anchor definitions. The current algorithm monitors the region that is
selected by a user, then increments the corresponding value in the matching an-
chor definition. Conversely, the remaining values in the anchor are also decreased.
This simple approach is very effective and allows anchors to grow and evolve, in
response to the users' browsing patterns. However, while this implementation is
sufficient to demonstrate the idea of adaptive anchoring, it does raise the possibil-
ity of more complex, intelligent adaptive techniques.

For example, it could be argued that the current form of adaptive anchors is
very volatile, and that anchors are too easily influenced by a single user. These

effects should be reduced by the large numbers of users that are expected to use the
system, so that any anomalies are avoided. However, a simple improvement would
be to reduce the increments, and perhaps reduce the rate of decay which is used to
decrease surrounding cells. Indeed, it would be useful to experiment with different

rates of change, to see which growth rate produces the most accurate and stable
fuzzy anchor. More complex techniques could be used to alter the distribution of
the fuzzy values, perhaps altering the most important values, but leaving the lower

membership values untouched, assuming that these have little impact on the anchor

specification. Alternatively, the author may wish to specify some areas of a fuzzy

anchor as immutable, so that other fuzzy values may be increased, while some areas

cannot be changed. Chapter 2 outlined a number of different approaches which
have been used in adaptive modelling (user knowledge, goal-driven models etc),

and these could all be incorporated into future applications.

The possibility of including some form of neural network model has been con-

sidered, so that the application can learn from the user feedback, rather than blindly

applying changes to anchor definitions. It would also be useful to gain some more

reliable experimental data, using a larger sample space of users. It would be bene-

ficial to observe users, to see how they interpret fuzzy anchors, and how different

types of users adopt different browsing patterns. Some anchor patterns may prove

more useful than others, and it may transpire that users do not require the flexibility

of fuzzy anchoring in certain situations. Future implementations almost certainly

require some form of group management, so that users can be separated according

to therir experience, background, goals etc. It is too simplistic to allow the browsing

patterns of every user to influence the anchor definitions for every other user. These

are all areas which need to be considered if the adaptive modelling of fuzzy anchors

197

Chapter 7: Discussion

is to be improved.

7.2.2 Developing Linkbase Trees

While it is hoped that the idea of inheritance hierarchies for linkbase management
can offer a more flexible and powerful view of hypertext linking, a number of issues
need to be explored further. The use of 00-techniques such as inheritance promotes
a form of link reuse and encourages authors to build on other existing hypertexts

and link definitions. However, the true effect of inheritance has not been explored
in proper use. It is important to understand how the inheritance hierarchies affect
the way in which linkbases are used. Should hierarchies be complex, deep trees or
should more shallow, simpler trees be used? Are inheritance trees too dependent

on the initial parent linkbases? How do changes higher up the hierarchy affect the
linkbases lower down the tree? What are the effects of poor quality and inaccurate
linkbases on the derived linkbases further down the tree? These are all aspects

which have a direct analogy in object-oriented design methodologies, and many of
the heuristics and guidelines which have been developed in 0-0 design could be

usefully employed here.

The thesis showed how these weighted linkbase trees could be combined with

the work on fuzzy anchors, to produce an overall weighting for each user selection.

In this case, the fuzzy value of the anchor was multiplied with the weighting of the

appropriate link, which was finally multiplied with the inheritance weighting of

the linkbase. The idea of combining each of these new hypertext abstractions into a

single, coherent weighting seems to be useful. However, it is not clear that a simple

multiplication is the most appropriate way to achieve this. Future work could look

at the relative importance of each of the weighted objects - fuzzy anchors, weighted

links and weighted trees - and suggest alternative ways of combining these.

There are also a number of implementation issues which must be addressed

in a practical system. The environment must check for cycles in the inheritance

hierarchy when multiple inheritance is used, to avoid any circular dependencies.

The environment must also decide on policies for detecting and resolving conflicts

- for example, what happens if the same link is defined in more than one linkbase?

The idea of weighted inheritance relationships is a novel approach which holds

much promise, and future development could explore many different avenues of

adaptive strategies.
This research has showed the benefits of applying the techniques and method-

ologies developed in Object-Oriented research to the field of hypertext. Linkbases

can be reused and shared, producing higher quality hypertexts which can be de-

veloped faster and maintained more easily. This has attempted to show the value

of viewing links at a more abstract level, using collections of links as the unit of

granularity in a hypertext. This suggests that linkbases could now be viewed in the

198

Chapter 7: Discussion

same light as single, isolated links once were, and perhaps much of the research
into hypertext links could now be usefully applied to hypertext linkbases. Perhaps
linkbases could benefit from a form of typing, just as the hypertext link was devel-
oped to include this aspect? Does it make sense to have directed linkbases? What is
an n-ary linkbase?

Indeed, the similarities with Object Oriented design and implementation could
be usefully exploited further. 00 research has developed many techniques and for-
mal theory which could be incorporated into the hypertext community. The recent
work on design patterns [A1e77, GHJV941 which attempts to identify recurrent de-
sign strategies and reusable components seems an obvious area which could be of
interest. Perhaps hypertext researchers could identify fundamental hypertext com-
ponents, link types or patterns of use which can be generalised and widely reused
in other hypertext contexts. Indeed, there is already some interesting work in the
application of patterns in the hypertext community which looks set to play an im-

portant role in hypertext design [GMP96, RSG97]. This raises some other interesting

questions - what constitutes a well-designed linkbase? How can an author create a
reusable linkbase? What dictates reusability? When should an existing linkbase be

reused, and when should a new linkbase be created from scratch?

Tree Brokers

While the reuse of linkbases to construct other link sets can be very flexible, the
inheritance model can also raise a number of complexity issues. In particular, a

system needs to address the problem of building the inheritance trees and how to

manage the many interdependencies between linkbases. For example, in the en-

gineering scenario which was discussed in Chapter 4, who should decide that a

specialised linkbase covering bridge construction should be derived from linkbases

from the mathematics and materials disciplines? An obvious approach is to delegate

these tasks to the author of the new linkbase - when an author constructs a linkbase,

they are also expected to construct the appropriate inheritance hierarchy for the new

linkbase. However, while these inheritance relationships are an integral part of the

linkbase authoring process, it is sometimes desirable to separate the construction of

the inheritance hierarchy from the actual definition of new links. For example, one

could imagine a number of different inheritance trees which could be overlaid on to

the linkbases, which all offer different solutions to the same problem. Users could

then select the optimal inheritance tree to use for their hypertext.

An interesting development would be to allow users to consult several expert

sources or brokers, which each suggest the best inheritance relationships to use for

a particular subject area. The particular hierarchy which is returned by the broker

could be based on any number of criteria - availability of linkbase components,

network topology, linkbase popularity, user profiles etc. Users could then select

199

Chapter 7: Disctitssion

Figure 7.1: Merging multiple inheritance trees

one tree, or more interestingly, they could combine several of the trees together
to form a more rounded, inclusive tree which incorporates several hiearchies. For
example, the user might select three inheritance trees which each produce a linkbase

- the user could then merge these linkbases together to form a new, more complete
linkbase. Furthermore, they could apply some form of weighting factors to each
tree, as discussed earlier, so that they can express a preference or attach greater
importance to a particular tree (figure 7.2.2).

7.2.3 Developing HIPPO+

Improve Component Model

The work on the distributed HIPPO+ explored the idea of a widely distributed hy-

pertext system, based on a collection of remote hypertext services. This developed

the idea of a "component-based approach" to hypertext design, in which developers

make components available to clients, who can then incorporate them into their
hypertext environment. This component-based approach is beginning to emerge
from some of the work which combines object-oriented ideas into the hypertext

field [Gro94a, SR95, OHSa]. The Microcosm-TNG model uses a distributed model
to provide an open hypertext framework [GDHR97], and the idea of link resolving

components was used to good effect by Tompa et al [TBR93].

The current implementation of HIPPO+ uses a very simple communications

model based on low-level Remote Procedure Calls. Hypertext services are imple-

mented as RPC services, and data are passed around as arbitrary text-streams. This

model is useful to demonstrate some of the advantages of distributed hypertext

systems, and provided a basis for developing the adaptive model in chapter 6. The

RPC model was chosen because these libraries were widely available, and offered

200

Chapter 7: Discussion

a simple means of supporting a distributed environment. Early implementations of
the CORBA standard introduced significant overheads, and had limited availabil-
ity. The CORBA model and related technologies were still very immature when the
initial implementation of HIPPO+ began, so these component models were not a
practical option.

The loose coupling between RPC services is an advantage of many distributed
systems, but this is often achieved at the cost of a less integrated environment. In
particular, the simple call-response communication in the RPC model is not satis-
factory for more flexible interaction between components. All data in the HIPPO+
system is transferred using opaque text streams which, while suitable for simple
hypertext services such as retrieving links and nodes, is unable to transfer richer
data contents such as objects or structured messages. The current implementation
of service interfaces is also too simple for a scalable system, and the dynamic invo-
cation model using the HIPPO+ registry service, while useful as a general concept,
is unsuitable for a large-scale software system.

Any further research on the HIPPO+ system would benefit from a more for-

mal implementation of a component model. HIPPO+ should move away from the

procedural, function-based environment which uses RPC services as the basic unit
of distribution. Future HIPPO+ implementations should move towards an object-
based implementation. This would lend itself to one of the emerging distributed

messaging architectures which were discussed in chapter 5, such as CORBA, Java

RMI, JavaBeans etc. Indeed, many of the current Object-Oriented languages and
technologies such as Java would provide many benefits for future HIPPO+ imple-

mentations. Java could be used to support dynamic class loading, to allow the users

client to integrate new hypertext services on demand. The platform-independence

provided by Java objects would allow users to execute services locally, when remote

invocations are less appropriate. Also, much of the work in the Java world could be

incorporated into HIPPO+ - object directory services [SM98d], messaging interfaces

[SM98a], object serialisation [SM96], transaction services [SM98b] etc.

Distributed approaches to software design are playing an increasingly impor-

tant role in the open hypertext community (eg. SP3 [LS94], Microcosm-TNG [GDHR971),

and this could be used to build on the current HIPPO model. The idea of distributed

hypertext toolkits has much in common with the HIPPO model of distributed ser-

vices. Similarly, the idea of link services badges proposed by Arents et al could be a

useful starting point for extending the Hypertext Component Hierarchy used in the

HIPPO+ prototype. There is also some emerging work on the use of component

models to implement open hypertext frameworks and support communication be-

tween hypertext applications [OHSa], which could tie in with this HIPPO research.

201

Chapter 7: Discussion

Using Compound Document Models in HIPPO+

Chapter 6 described a proposed adaptive model which could be used to provide a
more dynamic and adaptive distributed hypertext system. The document or nodes
were used as the basic unit of adaptation, and document objects were introduced
to map abstract hypertext services on to specific remote implementations. Each of
these mappings used weighted values to control the relevance and importance of
each services, and these were then modified in response to the users actions.

The adaptive model described in the chapter has only been developed on a the-
oretical level, and has not been implemented in the HIPPO+ system described here.
One of the priorities of any future development on HIPPO+ would be to implement
this adaptive model, and evaluate how effective it is in supporting an adaptive dis-
tributed system. Chapter 5 introduced the idea of compound document models
such as OpenDoc which have been developed to support component based sys-
tems. These compound documents could be used in HIPPO+ to manage collections
of hypertext components. In particular, a compound document could be used to
implement the adaptive model developed in Chapter 6. Each document or node
in the hypertext could be modelled as a compound document which contains, not
only the data associated with the node, but also the appropriate hypertext service
components to implement a suitable hypertext model. Each document would use
a different compound document, which would in turn contain the hypertext ser-
vices and components which are most appropriate to the node. Services could then
be built on top of the existing storage layers, to support the weighted fuzzy rela-
tionships between components, and for adapting these values in response to user

actions. An adaptive HIPPO+ model based on compound documents may resemble
that shown in figure 7.2.

Infrastructure Issues

Distributed systems offer a number of advantages over conventional localised soft-

ware models - more robust architectures, exploitation of remote resources, shared

resources etc. However, one of the most significant drawbacks of a distributed

model relates to the performance. The HIPPO+ uses remote services to implement

hypertext services, which can involve a significant amount of network traffic. In the

current implementation of HIPPO+ even the simplest of hypertext services must in-

voke a remote implementation. The user's client requests the interface that should

be used to invoke the service, and the service must return a text stream which de-

scribes this. The client then sends the required parameters over the network to the

service, the service then processes these instructions, before the results are finally

returned over the network.
When the HIPPO+ prototype is running on a small-scale, local-area network,

202

Chapter 7: Discussion

Hypertext
Node Data

Hypertext
Component

Data

---------------------- Fuzzy Relationship
Manager

Hypertext
Components

Figure 7.2: An adaptive HIPPO+ implementation based on compound documents

this overhead is not significant. However, as the number of the components grow
and the load on the network increases, then this performance can cause problems.
This is a problem which must be addressed by all distributed systems, and should
be explored in any further research on HIPPO.

One approach might be to develop the transport mechanisms which are used
by HIPPO to transfer the low-level data between components and client. For ex-
ample, components could use some form of compression to reduce the size of any
data packets. Future implementations may consider alternative inter-process com-
munication and messaging systems such as those described in chapter 5, when
larger quantities of data need to be transferred between components. This also
raises the larger problem of messaging and data transport. The current approach
based on RPC is useful for invoking remote services, but is less suited when large

data streams - perhaps node contents or link definitions - need to be transferred.
HIPPO+ ignores the issue of guaranteed-delivery - what happens if there is a net-

work failure, or if the receiver becomes temporarily unavailable? Should the sender

resend lost packets? Should the receiver provide acknowledgements?
HIPPO+ should also provide some form of fault tolerance, so that the hypertext

system can continue to operate, should some components become unavailable. A

distributed system already offers some degree of fault tolerance, by distributing

components throughout the network, so that there is no single point of failure. If a

component fails, then the user can continue to use other components, and can look

elsewhere for the service. However, future HIPPO+ systems should provide some

additional fault-tolerant support - starting new services when existing services fail,

203

Chapter 7: Discussion

mirroring components, load balancing etc. These are all areas which have been
developed in other messaging and middleware systems, and could also be applied
to the HIPPO+ domain.

The HIPPO+ client could also optimise performance in a number of other ar-
eas. For example, the client could cache results of remote requests, and return these
local copies instead of sending requests over the network. Similarly, remote com-
ponents could look at the ID of any clients, and optimise processing based on this.
The previous section discussed some of the advantages of implementing HIPPO+
using a more mobile, platform-independent language such as Java. This would al-
low HIPPO+ clients to download commonly used remote components, and execute
them locally. This could significantly reduce network traffic for common operations,
at the cost of the initial transfer of the component.

One final area which has been ignored in the current design of HIPPO+ and
should be addressed in future versions, is that of security. The current implementa-
tion does not implement any security control - any service can be invoked by any
client and data streams are transferred unencrypted. Any large-scale implementa-
tion of HIPPO+ which is to be used by larger numbers of users needs to address
these security issues. A robust implementation must provide authentication to pre-
vent unauthorised service invocation. The ONC RPC libraries which are used in
the current implementation provide some support for authentication and encryp-
tion using DES, Kerberos etc, and these may be a useful starting point. Security is

a complex area which is beyond the scope of this thesis, and has not been imple-

mented in the HIPPO research. However, security issues become more important

in any distributed system, which introduces large numbers of users under different

jurisdictions and controlling authorities. Furthermore, the computational aspects of
the HIPPO+ model raise the possibilities of malicious or accidental damage, which

makes suitable security policies even more important. This is an area which should
be explored in any future development of HIPPO and the HIPPO+ system.

Management of Hypertext Services

The HIPPO+ model implements a hypertext system as a collection of remote com-

ponents which provide common hypertext services. This approach to hypertext en-

courages the development of many lightweight components - hundreds and thou-

sands of services throughout a network. Only a small subset of these will be used

by the user at any one time, but the user is always free to use new components at

any one time. This can raise the problem of managing large numbers of components

- how to arrange hypertext services into some meaningful structure, and to prevent

the user becoming overwhelmed by the sheer volume of services. Section 5.7 in

chapter 5 discussed some of the approaches that have been used to address this in

the HIPPO+ system - most notably the Query Interface, Trading Model and Hypertext

204

Chapter 7: Discussion

Component Hierarchy.
While these approaches to managing remote hypertext components have ach-

ieved some degree of success, they do not fully address the problem. The query
interface is useful for inspecting particular components, but is not feasible for large
numbers of services. The trading model which has been implemented is still only
very simple, and does not manage large numbers of components well. The Hyper-
text Component Hierarchy is an interesting attempt to develop a classification system
for hypertext services, but represents only a very simple taxonomy.

Future versions of HIPPO+ need to look at this problem of managing services
and resource discovery in more detail. The trading model needs to be extended
to allow more flexible registration and query support. The trader should support
a flexible way of querying the trader contents, so that services which match some

criteria can be retrieved. The HCH classification system also needs to be developed

further, to see how it performs in real-world situations. The Hypertext Component

Hierarchy can build on existing work on directory services such as JNDI [SM98d],

JavaSpace [SM98c], NIS [NIS], LDAP [YHK93] etc.
Other approaches to resource discovery such as Harvest, WAIS etc may also

prove useful for managing HIPPO hypertext services. One possible direction for

future development is to use the hypertext paradigm itself for managing hyper-

text components. Remote hypertext services could be arranged into a hypertext

network, and the hyperlinks used to express relationships between components eg.

which components should be used together, with which documents etc. In this way,

the entire body of hypertext research could be used to provide an effective means of

managing hypertext services. Indeed, it may prove possible to use some elements

of the actual HIPPO+ system to manage HIPPO components. This would allow

HIPPO+ to manage itself - using fuzzy anchors, linkbase trees, adaptive modelling

etc. This offers a nice form of closure, and could provide some interesting opportu-

nities.

7.2.4 User Evaluation

The work in this thesis has presented a number of new ideas which combine some

of the work in open and distributed systems with that on adaptive hypertext mod-

els. The author has shown how these concepts have emerged, and discussed some

of the advantages that these offer to hypertext authors and users. The discussion

of the HIPPO and HIPPO+ models has included a justification for each of these

concepts, and for the methods that have been used for implementation. However,

any discussion of these ideas should include a more formal evaluation of the hyper-

text model. The thesis has including some compelling reasons for introducing new

concepts such as fuzzy anchors, linkbase trees or distributed hypertext services -

however, the real advantages of these can only truly be explored after further user

205

Chapter 7: Discussion

evaluation.
The constraints of time and resources have meant that any evaluation of the

HIPPO and HIPPO+ models has been necessarily limited and informal. The au-
thor has attempted to gain feedback from other colleagues and users and used this
to develop the ideas in this thesis. While this has been useful, any future work
should include a more exhaustive and formal evaluation using larger numbers of
users in a controlled environment. An evaluation should get feedback from real
users, either using evaluation surveys, observational methods or more automated
evaluation methods. This raises all manner of issues concerning the evaluation of
a hypertext system - how do you measure a good hypertext system? how do you
extract useful feedback from the user without influencing their responses? do new
hypertext concepts require new methods of evaluation?

Any evaluation of the HIPPO and HIPPO+ models should explore the real value
of these new hypertext concepts to the user, and how these impact the way in which
the user works. Fuzzy anchors, linkbase trees etc may all have a useful research
contribution, but their value should also be measured in terms of how useful they

are to the end user. The hypertext model has to be implemented in a way which is

meaningful to the user, so that they can exploit the advantages that fuzzy anchors,
link trees etc purport to offer.

A user evaluation would need to explore the impact of the user interface which
has been used in the HIPPO and HIPPO+ systems. Can the point-and-click model

used in HIPPO still be used to support fuzzy anchors? How effective is the use of

colour to represent different intensity values of anchors? The user may find alterna-
tive graphical representations more useful, and some of these have been discussed

elsewhere in this chapter. Similarly, a user evaluation may find that the user re-

quires a more concrete representation of linkbase trees, perhaps with some graphi-

cal interface which can be used to display and manipulate linkbase hierarchies. The

HIPPO+ interface in particular would benefit from some form of user testing and in-

terface evaluation. The implementation described in this work is a prototype which

aims to demonstrate the advantages of distributed hypertext services. However,

the interface which allows users to interact with these hypertext services could be

developed further, and some form of iterative prototyping phase would be useful.

The testing plan should also assess the ways in which the HIPPO model impacts

the working patterns of the user. Do fuzzy anchors alter the way in which a user

perceives a hypertext? Does the user gain a stronger sense of anchoring when using

these fuzzy anchors? Do authors share and reuse existing link collections? Are users

encouraged to think in more fuzzy, less discrete terms, by examining the strength

of hypertext links and relationships? This might be done by casual observation

of users interacting with the system, or via more structured methods - question

and answer sessions, comparisons with other hypertext systems, the logging user

206

Chapter 7: Discussion

navigation etc. Finally, it would be interesting to examine the way in which HIPPO
and HIPPO+ can support larger numbers of users. Many of the ideas presented
in this thesis encourage a more collaborative approach to hypertext in which users
share resources and build on existing work. The adaptive modelling ideas allow
users to influence other users of the system - suggesting useful link collections or
important hypertext services. This is also an area which should be explored further,
perhaps using some form of user trials, involving larger numbers of users. The user
testing of the HIPPO and HIPPO+ systems has been largely ignored in the current
work, but this is vital to fully evaluate the ideas presented in this thesis, and should
be incorporated into any future work.

7.3 In Conclusion...

This chapter has attempted to summarise the key points of my research on the
HIPPO system. I have outlined some of the main ideas, and showed how these

were developed over the duration of my work. This thesis combines ideas from a

number of different disciplines - open systems, distributed architectures, adaptive
hypertext, object-oriented design. These are all very exciting areas of research which

are undergoing constant change and development. The success of the Internet and
World Wide Web have also made a significant impact on the hypertext community

and continue to influence the development of open hypertext environments. The

work which I have presented here offers just one way of combining these diverse

areas, and this initial attempt may not prove to be the best way. However, I do feel

that future research into open hypertext systems should continue to combine ideas

from other disciplines, and I hope that this thesis has offered some interesting ways

of achieving this.

Paul Newton

1998

207

Appendix A

Early Hypertext Applications

Researchers have widely interpreted the ideas of hypertext, and applied these to
many different domains - macro literary systems, problem exploration tools, brows-
ing systems, general hypertext applications [Con87] etc. Indeed, it is often difficult
to identify what exactly constitutes a hypertext system, or even what the defining
features of hypertext should be. One could argue that this is precisely as it should
be; hypertext addresses the universal problem of knowledge structuring and in-
formation management, and it is only natural that this should appear in many en-

vironments. Engelbart [Eng95] argues that all documents are inherently hypertext

documents - reports, programs, notes, manuals etc. For this reason, elements of
hypertext have been applied universally, and it is difficult to identify any closure
in the hypertext domain. This appendix focuses on some of the more important

hypertext systems which are widely viewed as significant contributions to the field.

It should be noted that these systems are all typical of the early generation of hy-

pertext, which gave rise to more open, flexible hypertext environments. These later

systems are not included here, but are discussed in more detail in Appendix B.

208

Appendix A: Early Hypertext Applications

A. 1 Augment/NLS

The Augment/NLS system[Eng84a] was one of the pioneering systems in the hy-
pertext field, designed as a problem solving tool for "planning, analysing and de-
signing in complex domains". Augment/NLS was not developed specifically as a
hypertext system, but employed many hypertext features for managing the many
thousands of reports and papers at the Stanford Research Institute. NLS/Augment
files consisted of hierarchically organised nodes, which could each contain a vari-
ety of data types (text, graphics etc). In addition to this hierarchical structure, links

could be established between statements and files.
Augment supported a flexible addressing mechanism for nodes, allowing ex-

plicit selection, relative addressing, node identifiers etc-these are then used in
Augment commands to manipulate the hypertext. Augment also developed the
idea of views, using multiple windows and user- controlled view filters to control
the display of information. Augment/NLS also gave special consideration to group

collaboration which was considered an important part of information processing,

providing facilities such as teleconferencing, which allowed several users to view

and edit files, and integrated electronic mail.

A. 2 Xanadu

Ted Nelson was another early researcher in the field of hypertext, and his ambitious

vision was of a completely integrated hypertext containing all the world's literary

works [Ne193]. This unifying system allows any data to be linked to any other

object in a non-hierarchical manner, and never deletes objects, instead storing the

original document along with any changes. Nelson's vision is based on a combina-

tion of back-end and local storage systems, and allows any object throughout the

Xanadu universe to be uniquely addressed, and transparently accessed. Xanadu

makes a strong separation between user interface and database storage, predicting

many frönt-ends running over a single back-end. Xanadu addresses many of the

wider issues of information dissemination such as copyright, security, auditing and

payment etc, neglecting traditional copyright measures, but paying royalties based

on the access to information. Some parts of the Xanadu system have been imple-

mented, and Project Xanadu has continued through a number of commercial sources

(Xanadu Operating Company, AutoDesk Inc.).

A. 3 TEXTNET

TEXTNET [Tri83] was designed for structuring and manipulating scientific liter-

ature- addressing all aspects of critiquing, refereeing and paper writing in the

209

Appendix A: Early Hypertext Applications

"on-line scientific community". A TEXTNET network defines two types of nodes-
chunks and toc nodes: chunks an be thought of as the primitive content, and toc
nodes correspond to organisational nodes (cf. an entry in a table of contents).
TEXTNET implements a typing mechanism for links, connecting nodes with typed
links which are meant to capture the relationship between nodes.

Chunk nodes consist of structured attribute/value pairs which contain informa-
tion about the node (author, date, list of links etc), and a pointer to the actual node
data; this allows arbitrary size node contents. These chunk nodes are then organ-
ised into directed, acyclic hierarchies, using toc nodes. Links connect chunk and toc
nodes and capture the explicit relationship of two nodes, with a link type - such
as Summary, Argument-by-Analogy, Example, Continuation. Users can augment the
network in any way-by commenting on the text, linking to other nodes, or even
critiquing other users comments. Readers can also formulate multiple structures
and create paths through the document space, which allows subsequent readers to
follow these threads. This is in many ways similar to Bush's idea of trails in his

memex device, whereby readers can benefit from the work of others.
TEXTNET incorporates ideas from the previous systems, Xanadu and Augment,

supporting tree structures, but implemented using a graph structure at its core.
However, it is the focus on the typing of links to capture the essence of a relation-
ship which separates it from many systems, a feature which is often lacking in many

modern day systems.

A. 4 ZOG/KMS

Work began on the ZOG Project[AM84b] in 1972, at Carnegie-Mellon University, to

design a general purpose system combining features of database, word processing

and operating systems. ZOG was later developed into a commercial version, known

as KMS. The KMS data model consists of screen-sized nodes, called frames, which

may contain combinations of text and graphics. These frame nodes are organised

into hierarchies, and frames may also be linked together across hierarchies, using

annotation links. Links are contained within the fixed-size frames, linking an area

of text to a node (links cannot link to parts of nodes). KMS supports two types

of links - tree items and annotation items; tree links are used for the hierarchical

structures and annotation items are used for referencing peripheral material such

as comments and other frames. Versioning of frames is supported using stacks of

frames, representing the history of changes of a node.

KMS provides some support for collaboration, by distributing the hypertext net-

work across multiple servers, so the physical location of a frame is transparent to the

user. KMS assumes that interference between users editing the same frame is rare in

a large hypertext, and so assumes an optimistic concurrency policy where users can

210

Appendix A: Early Hypertext Applications

access the same frame yet only one author may save changes. Users are expected to
leave messages on frames to indicate that they are editing the information, and can be used to support simple communication. The use of annotation links allows users
to easily add items to frames, to add comments and discuss work with other users.
In addition, KMS provides a general purpose programming language for manipu-
lating KMS structures which allows the functionality of KMS to be extended by the
users.

A. 5 NoteCards

This system, developed at Xerox PARC is one of the most well-known hypertext sys-
tems, and its design and implementation are well documented. NoteCards[HMT87)

operates under the Xerox InterLisp environment, and was designed to aid people
with the formulation and structuring of ideas. The system is based around four

main ideas - notecards, links, browsers and fileboxes. A notecard encapsulates the
idea of a hypertext node which may contain arbitrary amounts of text, graphics etc,
and are arranged into networks using links. These links are typed, directional con-
nections between cards, and like KMS links, allow a specific sub-node anchor to
link to a complete node. Users specify the type of link by including a label, which
denotes the nature of the relationship. A browser is a specialised form of notecard,

which contains a structural overview of the hypertext network showing the note-

cards and interconnecting links, and allows users to edit and alter the structure of
the hypertext. Fileboxes are also forms of notecards, which can be used to organise

and categorise large collections of notecards and encourages users to use additional
hierarchical structures to arrange the notecard.

Users access the notecards either by navigating through the network, or using

the overview browsers to select items of information. The system also provides a

limited search facility, allowing the user to locate cards in the hypertext structure.

The functionality of the system can be extended using the Xerox InterLisp program-

ming environment, allowing the user to create new types of cards or integrate other

applications, for example, the Instructional Design Environment (IDE) was built on

top of the NoteCards system, and completely customised to produce a new system.

The original version of NoteCards has been used within the Xerox organisation,

and externally in industry and academic institutions, and has been a very influen-

tial system in the hypertext community. Halasz' important paper on the future of

hypertext research discussed the lessons learnt from the design of the NoteCards

system, and highlighted some of the issues which must be addressed by next gen-

eration hypertext systems (see Chapter 2).

211

Appendix A: Early Hypertext Applications

A. 6 Intermedia

Intermedia[YHMD88] was another very influential hypertext system - developed at Brown University - designed to support teaching and research in an academic envi-
ronment. The system is heavily influenced by the copy/paste interface and allows
users to connect regions using bidirectional links. Anchor and link information is
not stored with the documents, but is stored in a database managements system,
and superimposed on the documents. Links can be grouped together into webs -
this allows users to maintain their own sets of links. This is a technique developed
in open hypertext systems, which are discussed further in chapter 2. Central to the
idea of Intermedia is the development of a linking protocol, allowing applications
to be integrated into the Intermedia environment. In this way, users can incorpo-
rate hypertext linking into their applications, allowing their documents to be the
source and destination of links. The system provides a number of integrated appli-
cations to manipulate text, graphics, animations etc, the user is also provided with a
number of browser applications for viewing files and link information. Intermedia

supports multiple users accessing the hypertext, which can be distributed over a
network; concurrency control is implemented using a locking mechanism.

The Intermedia system aimed to provide a seamless information environment
for educational use, and was successfully used to teach several university courses.
The educational focus had some impact on the design of the system, and despite a
promising future, government funding was discontinued in 1991.

A. 7 Neptune

The Neptune system[DS86] was designed for use in the field of engineering and
Computer Aided Design, and provided explicit support for collaborative work.
Neptune is designed as a layered architecture, built on top of a transaction-based

server, the Hypertext Abstract Machine (HAM). The HAM was designed as a gen-

eral purpose hypertext engine which can be used as the base engine for other hy-

pertext systems, and provides storage and access mechanisms for nodes and links.

The HAM runs as a central server, which provides distributed, multi-user access

and supports complete recovery from any aborted transactions.

Neptune maintains a complete version history of the hypertext network, allow-

ing instant access to any version of the graph, and direct comparisons of differ-

ent node versions. Neptune provides browsers for viewing the hypertext: a graph

browser which provides a pictorial view of the hypertext, a document browser for

viewing hierarchical structures, and a node browser for examining the content of

the nodes. Other browsers are provided for viewing attributes, version histories

etc, and future development focused on multiple threads and additional support

212

Appendix A: Early Hypertext Applications

for collaborative authoring. Neptune was another of the early hypertext systems
to pay particular attention to collaborative authoring and version control, and the
HAM server was one of the first general-purpose hypertext models to have a sig-
nificant influence on the development of hypertext engines. The idea of hyperbases
is explored in more detail in chapter 2.

AS Guide/OWL

The GUIDE hypertext system[Bro891 began as a research project at the University

of Kent, and was later developed by OWL as one of the first popular commercial
hypertext systems. Guide was developed to aid the reading of electronic docu-

ments, and adopts the scrollable window model of hypertext. Hypertext links are
implemented as embedded buttons - the system supports three forms of button:

replacements, pop-ups and reference buttons. Replacement buttons are used to ex-
pand text in-line, these implement hierarchical structures within the text, and are

useful for the traditional modelling of document chapters and sections etc. Pop-

up buttons are used to generate out of line information, which is displayed in a

separate window and are used for adding annotations, extra information etc. The

final type of button models most closely the traditional view of a hypertext link -
the reference buttons allow the user to jump to another location in the hypertext.

Guide has proved to be a popular commercial system, and offers a different view of
hypertext to many other systems.

A. 9 HyperCard

HyperCard[App87] has played a major part in the history of hypertext systems,

and was perhaps the most famous hypertext application during the late 1980's. Hy-

perCard was not designed as a hypertext system, but as a graphic programming

environment.. Much of its success was due to the aggressive marketing by Apple

Computers, who distributed the system free with every Macintosh computer sold.

HyperCard, as its name implies, is based on the card metaphor, much like the KMS

system described previously. Cards are grouped together into stacks, and may be

connected using buttons, which when activated, jump to another card in the hyper-

text.
One of the features of the HyperCard environment, and one of the reasons for

its popularity, is the inclusion of a programming language, HyperTalk, which en-

ables buttons to be programmed with arbitrary actions. This allows more complex

actions to be invoked, such as computed links, and conditional actions, allowing

the functionality of the system to be altered and extended. Although not strictly a

hypertext system, HyperCard and its various incarnations on other platforms (Su-

213

Appendix A: Early Hypertext Applications

perCard, Plus, MetaCard etc) have been an important influence on the hypertext

community, and for many, have been their first experience of a hypertext system.

214

Appendix B

Open Hypertext Systems

Chapter 2 introduced the idea of open hypertext, where hypertext is used to integrate
applications. An open hypertext system provides link services which can be used by
any existing tools and applications, instead of implementing hypertext as a closed,
monolithic application. This section describes some of the more significant systems
which have been developed, and which influenced much of the work on HIPPO.
This is not an exhaustive review of open hypertext research, and readers are referred
to the literature for more information on some applications.

B. 1 Sun's Link Service

Sun's Link Service[Pea89] is a product shipped by Sun Microsystems with their Net-

work Software Environment (NSE), and provides conventional applications with a
set of hypertext link services. Sun's LS loosely couples the management of links and
data, by separating hyperlinks from the node contents. The Link Service stores only
representations of the hypertext nodes, which allows nodes to contain arbitrary data
formats, and so any application can be integrated into the link service environment.
The Link Service provides persistent storage for linking information, and supports

a protocol which applications can use to incorporate hypertext functionality (figure

B. 1). By separating the hypertext linking mechanisms from the storage of node data,

the Link Service provides generic hypertext services, which allow users to make use

of existing applications without adapting to a new environment.
The link service has no control over objects within the hypertext environment,

and it is left to the managing application to define hypertext nodes; in this way,

the hypertext makes use of abstractions which are suitable for the particular appli-

cation. The Link Service is designed to have minimal impact on the user interface

layer, and it is the responsibility of applications to provide suitable mechanisms for

selecting objects, and provide visual indications for links. Pearl recommends the

adherence to user interface standards such as the OpenLook[Hoe891 specification,

215

Appendix B: Open Hypertext Systems

Stored Application Application
Document Stored

Document
Link Link

Library Library

Link Service

Ebases

Figure B. 1: Sun's Link Service

to improve consistency between applications.
The Sun Link Service is designed for use in distributed environments, and sup-

ports access to remote file systems using the distributed Sun workstation environ-
ment. Links are defined as untyped and directionless, but the system does support
multiple branching links, allowing an anchor to reference multiple objects, and also
be the destination of multiple links. Users must run a link server process on their
local machine, and applications are required to register with the server if they wish
to use the hypertext services, and the server will then inform applications of any
state changes. The Link Service protocol is defined to be as simple and unrestrictive

as possible, in an attempt to "... preserve the autonomy of individual tools, yet pro-

vide some measure of integration". Sun's Link Service was one of the earliest open

system implementations, and has proved very influential in much of the research
in this area, however the system does have a number of drawbacks, as there are no
facilities for extending the semantics of hypertext links, and there is little support

for distributed and collaborative applications.

B. 2 SP1/2/3

The SP3 [LS94] system was developed from work on the SP1, SP2 and PROXHY

architectures, designed for managing "hypermedia-in-the-large" by supporting the

distribution of hypertexts across heterogeneous platforms and applications. The

SP3 model adopts a computational view of hypertext, which defines links and an-

chors as behavioural entities. The SP3 model defines six elements to support hy-

pertext services: applications, components, persistent selections, anchors, links and

216

Appendix B: Open Hypertext Systems

Association

Aft(

Link Services Subsystem

Particpating Applications

Application

Persistent
Selection

I Application

Persistent
Selection

Component II Component

Figure B. 2: The SP3 architecture

associations. Applications are the programs and tools which are used by the user
to manipulate specialised information. Components are the actual data elements
which are manipulated by these applications. Persistent selections are selections
within the components which exist between sessions, and can be recalled at a later
time. Anchors are associated with persistent selections and links with anchors, and
are implemented as program processes. These links and anchors are tied together
by associations, and it is these three elements which implement the hypertext be-
haviour (see figure B. 2).

The SP3 system is built on top of the HB3 multi-user storage engine, which im-

plements the versioning of objects and provides persistent and sharable storage.
Applications participate in the SP3 hypertext services by interacting with the Link

Services Manager, which requires them to handle persistent selections and respond
to LSM requests. Applications are responsible for creating, deleting and display-

ing these persistent selections, and for manipulating the PST data structures. All

message passing is performed using X Window System IPC facilities, and the de-

velopment of an X Link Services Toolkit allows processes to implement client-server

communication.
The SP3 model offers a very different view of hypertext than most other ap-

proaches to open hypertext systems, by defining a computational, behavioural view

of hypermedia. The system abstracts information, structure and behaviour from a

hypertext environment. This contrasts with previous systems which focused on

information and structure, and encapsulated hypertext behaviour in the system it-

self. SP3 has a strong notion of anchors, in contrast to other systems which imple-

ment anchors as data structures to specify the end-points of links. SP3 anchors are

217

Appendix B: Open Hypertext Systems

implemented as arbitrary processes, which can perform complex computations to
customise views, filter information etc. Indeed, Leggett et al. point out that these behavioural anchors can be as complex as required, and can even be information
systems themselves. By separating anchors from link objects, the linking mecha-
nism is independent of the data, so the system can be incorporated to include ar- bitrary data types and applications. This notion of anchors as first-class objects is
important, and is developed in chapter 3. The abstraction of structural information,
using associations permits support for contexts, and allows more complex anchor-
link relationships, for example a link may relate as many anchors as required. The
modular nature of the system promotes distribution and network optimisation and
supports a scalable architecture. This behavioural model of hypertext is a power-
ful view of future hypertext systems, and has led to the development of the HOSS
hypermedia operating system [NLS96] at Texas A&M. The work on computational
hypertext has heavily influenced some aspects of the HIPPO model, and is explored
further in chapter 5.

B. 3 Microcosm

Microcosm [DHHH92] is a model for open hypertext which has been developed

at the University of Southampton. Like many other approaches to open hypertext,
Microcosm separates the linking information from data objects, which does not im-

pose any markup on the data itself - this allows existing tools and applications be
integrated more easily into the Microcosm environment. All information is stored
in separate link files called linkbases, and the hypertext services are supported by

a number of autonomous communicating processes. Messages are passed through

a chain of these filters, and each filter responds to the message as required (figure

B. 3). The Microcosm model supports three different forms of linking: specific links,

local links and generic links:

1. Specific links refer to particular objects at a specific points in the source and
destination documents.

2. Local links connect an object which appears anywhere in a specific document,

to an object in a destination document.

3. Generic links join a particular object which appears anywhere in any docu-

ment, with an object in a destination document.

The implementation of specific links most closely matches the linking policies

in conventional systems, but the notion of local and generic links represents a de-

parture from conventional linking practices. For example a generic link from the

textual anchor Paris would become active in all documents within the Microcosm

218

Appendix B: Open Hypertext Systems

Viewer

Viewer

---- ,7
Viewer

Viewer 1

Document Filter
Control Management
System System

I Filter 1

I Filter 2
I

I Filter n

Figure B. 3: The Microcosm model

domain, so all references to the word Paris would include a hypertext link. This
might reference a geographical definition or a tourist guide for example, and is de-
signed to help reduce the often overwhelming authoring effort required to incorpo-
rate information into current hypertext systems [FHHD90]. Any document which is
included in the Microcosm system automatically absorbs any relevant generic links,

and is seen as a powerful mechanism for expanding the hypertext environment.
Microcosm adopts a resource based approach to hypertext, which means that

users must select items of interest, and query the link services to see if a link exists
for the object, rather than the more usual method of displaying links. However,
Microcosm does support buttons in fully-aware viewers, which consist of visual
link markers bound to specific links - these can be selected and traversed in the

same way as conventional hypertext links. The system of filters which implement

the Microcosm hypertext functionality are a very simple yet effective method for

supporting link services. Users can dynamically configure the chain, and can in-

corporate arbitrary filters to provide additional services, for example, a filter has

been implemented which maintains a history of user requests by monitoring the

messages which are routed through the filters. Other filters allow users to compute
links based on user input, or mimic filters generate messages which provide the

user with a guided tour. Also, by including linkbases in the filter chain, users can

easily add and remove sets of links, which implements a form of link contexts.

The separation of Microcosm linkbases does not impose markup on existing

data formats, and allows the linking information to be processed externally, for ex-

ample, computing a set of links which match a query. However, Microcosm does

not develop the notions of anchors and links as much as the SP3 system, and does

219

Appendix B: Open Hypertext Systems

Set of 4

Set of L

Set of An

Figure B. 4: The use of views in the Chimera system

not fully address the behavioural, computational aspects of hypertext. In addition,
Microcosm requires the linkbases to manage persistent selections, which can give
rise to consistency problems if applications edit anchors and links without notifying
the linkbases. However, the ideas of communicating filters which can be dynami-
cally configured has greatly influenced the work on HIPPO covered in chapter 5.
Also, the separation of linking information, while not unique to Microcosm is used
as the basis of chapter 4. The Distributed Link Service (available commercially as
Webcosm [Web]) also provides an implementation of this linkbase model using the
World Wide Web.

B. 4 Chimera

Chimera [ATJ94] is a hypertext system designed for use in software development

environments (SDEs), and for providing hypertext services across heterogeneous

applications. Anderson et al [ATJ94] argue that hypertext anchors are more nat-

urally associated with a view of an object, and so Chimera defines anchors with

respect to views on objects rather than the objects themselves (figure B. 4). In this

way, anchors can be expressed in terms of presentation, run-time objects such as
buttons etc.

The Chimera system is implemented as a client-server architecture, with the
Chimera server providing hypertext services to other applications, and managing
the routing of system messages. Chimera clients are responsible for defining the

object and view concepts, and for supporting the manipulation of hypertext an-

chors. It is also the responsibility of the application to provide persistent storage of

220

Appendix B: Open Hypertext Systems

object data - the Chimera server only manages hypertext information, and is not
concerned with any application information.

Chimera chooses not to enforce a single object store but allows multiple stor-
age mechanisms, so does not handle persistent storage of application object - this
makes issues such as versioning more problematic, and must be a shared responsi-
bility between Chimera and client applications. Also, Chimera does not address any
collaborative issues - this is in part due to limitations in the Chimera architecture,
although future versions of the system plan to address this restriction.

B. 5 Dexter Hypertext Reference Model

The Dexter reference model[HS90] was the result of two workshops on hypertext
theory held in October 1988 at the Dexter Inn, New Hampshire, which gathered to-
gether many important representatives from the hypertext community. Although
the Dexter model does not strictly address open hypertext systems, it does attempt
to explore the fundamental abstractions found in classical hypertext systems, and
has become one of the most important and influential models to emerge from the
field of hypertext research. Chapter 2 showed how these can be of great benefit

in the hypertext field, because they allow us to reason about alternative abstrac-
tions, and use formal techniques to compare different systems. Reference models

are precise and unambiguous, and provide a basis for developing standards for in-

teroperability and interchange between systems.
The Dexter model addresses the dynamic, interactional aspects of hypertext, but

focuses more on the structures involved in implementing hypertext systems. The

model is specified precisely using the Z-specification language, and defines three

layers: a run-time layer, a storage layer and a within-component layer, although the

focus of the model is on the intermediate storage layer (figure B. 5). The Dexter

model acknowledges the widely varying definitions of fundamental concepts in

different hypertext systems, and adopts less ambiguous terms such as component.

The storage layer addresses the basic node-link structures of a hypertext, and

is composed of a network of components, interconnected by links. These compo-

nents are treated as generic containers, and do not address any modelling of in-

ternal structures. A hypertext is defined as a finite set of components, and a set

of resolver and access functions which are used to manipulate the hypertext. The

within-component layer is used to model the content and internal structure of the

hypertext data, but this is not elaborated further by the Dexter model. This gives

the Dexter model the flexibility of not being limited to certain data types, an aspect

which is seen in many implementations of contemporary open systems. Finally,

the run-time layer is designed to support presentation mechanisms in the hypertext

system, and captures the essentials of the dynamic and interactional aspects.

221

Appendix B: Open Hypertext Systems

Runtime Layer
Presentation of the hypertext;

user interaction; dynamics

Presentation Specifications

Storage Layer

a'database' containing a
network of nodes and links

Anchoring

Within Component Layer

the content/structure inside
the nodes

Figure B. 5: The Dexter Reference Model

Dexter uses the anchoring mechanism to interface between the storage and wi-
thin component layers, and uses presentation specifications as an interface between
the storage and runtime layers (figure B. 5). These interfaces are an important part
of the model, because they allow a clean separation between layers. Presentation
specifications specify how the component or network is presented to the user by
the runtime layer, which may depend on the application or some other properties
of the component. A hypertext link consists of anchor specifiers, which can contain
arbitrary contents, and are interpreted by the particular application.

The Dexter model is perhaps more powerful and abstract than many classical
hypertext systems, supporting features such as multiway links, links to links and
computed links, and this has made the model difficult to implement. A number of
systems have attempted to implement the Dexter model, or have been based largely

on the model [GT94, RS92]. Since the model was designed, a number of problems

and limitations have been identified with the model (problems with dangling links,

reuse of anchors, composite nodes etc [GT94, LS941). However, the Dexter refer-

ence model is a very powerful design, which captures many of the best ideas from

classical systems, and has proved to be very influential in the hypertext community.
Although the system was defined with respect to conventional monolithic systems,

the model does exhibit many open design policies by distinguishing between ob-

jects belonging to hypermedia, and objects belonging to the applications. However,

the model fails to develop some key abstractions such as link, anchor and composite

semantics, and does not address key issues such as sharing, versioning etc.

B. 6 MultiCard

MultiCard [RS921 is an implementation based on the Dexter reference model which

supports the runtime, storage and within-component layers, and provides a pro-

222

Appendix B: Open Hypertext Systems

Atom #3346

Component Info

Attributes =

Presentation Spec.

Anchors Value ID #1

Composite #3346

Component Info
Attributes =

Presentation Spec.

Anchors Valu-el D #1

Content

Some Crary text that is
the of this node

Content

Some text in here

Specifier
Component Spec #3346
Anchor ID #1

Direction: FROM

Presentation Spec

Specifier
Component Spec #4112
Anchor ID #1
Direction: TO

Presentation Spec

Figure B. 6: An example using the Dexter model

tocol which implements the Dexter anchoring interface. The MultiCard system
consists of a set of hypermedia classes, a distributed persistent storage system, an
authoring and navigation tool, a communications protocol and a series of editor ap-
plications. This MultiCard architecture is shown in figure B. 6. MultiCard manages
the structure of nodes, and uses the M2000 protocol to access parts of documents,

but as with many other open systems, the actual node content is managed by the

editing applications. MultiCard anchor objects are responsible for carrying links,

scripts and other objects, and define a sensitive area of a hypertext node. MultiCard

extends the behaviour objects by attaching scripts to nodes, groups and anchors,

which are used to manipulate editor contents, define functions etc.
Editors can provide different levels of support for the M2000 protocol, but must

support the minimum requests to open and close nodes. Users then traverse links

by clicking on anchors and MultiCard executes the appropriate script, although it is

the responsibility of the editor to define what is meant by an anchor. This approach

has much in common with the computational view of open hypertext which was

discussed earlier, and seen in systems such as PROXHY, SPx etc. Using this model,

MultiCard separates the hypertext structure from the application data, and provides

a set of hypertext services to applications which comply with the M2000 protocol.

223

Appendix B: Open Hypertext Systems

Authored
Applications

Eö
mv

ö
CL

aQ Hypermedia
Authoring Tool

M2000 ov Compliant öä
Hypermedia Objects

Editors ý cnäý

Persistent Storage Platform

M2000 ov
Compliant öä

Editors
Hypermedia Objects

cnäý

Figure B. 7: The MultiCard system

B. 7 D2

The Distributed Documents architecture (D2) [HGC94] continues work on open sys-
tems, by providing a set of generic hypertext services in a distributed environment.
The architecture exploits a networked environment to provide access to remote in-
formation and services by distributing application services as well as the hypertext
documents themselves. The D2architecture is based on the notion of service pro-
vision and consumption - services are accessed by objects using a series of well-
defined interfaces, and it is these co-operating objects which provide the hypertext

services. The D2model defines a number of basic entities: documents, nodes, links

and anchors. The D2model also defines view documents which support the concept
of dynamic documents. These view documents may contain sets of links and nodes,
but also execute a computation to produce references to other nodes and links. In

this way, view documents support active documents which introduce an additional
form of structuring to the conventional document object.

D2defines three separate layers: the storage layer, the hypertext layer and the

presentation layer. The storage layer consists of storage objects such as database

managers, file systems etc, which provide the storage and retrieval services for the

system. The presentation layer provides the services for displaying and presenting

nodes, using presentation objects. These presentation services should support the

display of anchors and links, and be capable of supporting composite nodes. The

layer also provides services for displaying an entire document, using document

presentation objects.
An architecture which is suitable for open computing must be simple to imple-

ment in a distributed environment, consisting of heterogeneous platforms across a

network. Most current systems implement distribution using a single, centralised

server, which does not take full advantage of the distributed paradigm. The D2

224

Appendix B: Open Hypertext Systems

model instead allocates parts of the hypertext system to different areas of the net-
work, making full use of the facilities available in the distributed environment. The
document is the unit of distribution, which can be made active on any workstation
throughout the network, in this way a document process is completely indepen-
dent of any other document process. This approach to open hypertext, as a set of
distributed, communicating process has been very influential in the development of
the HIPPO model, and is developed further in chapter 5. Some of the issues arising
from distributed hypertext are also discussed in more detail in Chapters 2 and 6.

B. 8 HyperDisco

The HyperDisco project aimed to provide an open hypertext platform, to support
the flexible integration of existing tools. The application supports many of the de-

sign criteria outlined previously, such as computation, concurrency, distribution,

versioning etc, but also focuses on the problems of flexible integration and exten-
sion of tools. Unlike most systems, which provide a fixed model of integration,
HyperDisco allows tools to integrate at different levels. An application can have

its own particular model of integration, and support its own specific protocol for

accessing hypertext services. This builds on some of the earlier approaches to tool

integration taken by MultiCard and Microcosm etc which allowed tools to provide
different levels of hypertext support.

HyperDisco provides two layers of hypertext services - an integration layer to

provide basic hypertext linking services, and a data model layer which implements

basic storage services for hypertext objects. The HyperDisco implementation is

based around an object-oriented paradigm, and the two layers are implemented

as object hierarchies (figure B. 8). These classes implement basic hypertext abstrac-

tions, and tools integrate with HyperDisco by extending and tailoring the class be-

haviour. Tools communicate with HyperDisco using an object-oriented message

passing mechanisms, to service requests and invoke HyperDisco operations.

The HyperDisco system supports a diverse range of node media types, and al-

lows new types to be added by specialising the class hierarchy. Multi-headed, direc-

tional are provided, and arbitrary computations can be associated with link traver-

sal. HyperDisco supports many different aspects of hypertext behaviour - compos-

ites, access control, versioning of components and also some degree of collaboration

between users - however, it is the approaches to tool integration and extensibility

which are most interesting.

225

Appendix B: Open Hypertext Systems

Integration
Model Layer

Data Model
Layer

Object

Concurrency Notification Version Access
Control Control Control Control

Component

Node II Composite II Link

Figure B. 8: HyperDisco class hierarchies

B. 9 The Trellis Model

Query &
Search

Most hypertext implementations and formal models focus on the structural proper-
ties of hypertext, and ways in which hyper-links can be supported. However, very
few models address the browsing semantics of a hypertext, and the way that a user
interacts with the hypertext. This is the main purpose of the Trellis hypertext model,

which provides a formalism based on Petri nets, for both describing hypertexts and

reasoning about their behaviour. Petri nets are directed graphs which uses tokens to
decide whether transitions can be traversed. For example, a transition between two

nodes can only be enabled, if the source node has a token marking; the absence of a

token prevents the transition being fired.

This approach using petri nets builds on the work of directed graphs which

are widely used in the hypertext community, but also allow the model to express

and manage the browsing paths through a hypertext. Particular branches can be

enabled or restricted, by careful placing of tokens and transitions. The model can

control how a user moves through a hypertext and which paths they can choose. In

this way, the petri net model provides the descriptive power of directed graphs, but

also a mathematically precise abstract machine for execution.

The Trellis model views a hypertext, not as a passive structure, but as an au-

tomata which is executed. The model allows authors to specify the precise browsing

semantics of the hypertext, and to define the ways in which the user can interact.

There is also a substantial body of petri net theory which can be used to analyse

and evaluate hypertexts which are defined using this model. The Trellis model can

identify which nodes which can be reached, and which nodes cannot be reached by

a browser. The petri net formalism is inherently concurrent, so can be used to ex-

226

Appendix B: Open Hypertext Systems

press concurrent browsing paths and sychronisation issues. The petri net model can
also be extended in a number of ways by using coloured tokens and timed nets to
support access control, guided tours etc. The Trellis model is a very powerful model
which is notable for its attention to the browsing semantics of a hypertext. The gen-
eralised model also offers a useful model of computational, behavioural hypetext
systems, which has some analogy to the work developed in chapter 5.

B. 10 The Hypertext Design Model (HDM)

The Hypertext Design Model (HDM) is a model for describing hypertext applica-
tions which already exist, or are being developed, in a system independent man-
ner. While the Dexter model address very specific abstractions and aims to include
the underlying primitives of particular systems, HDM is a more generalised model.
HDM does not make as many assumptions about the nature of nodes, links, anchors
etc, and does not assume any specific browsing semantics. This generalised model
is intended to form the basis of hypertext design tools and hypertext development

environments in the future.
The model defines a number of components - entities, components and units -

which represent various abstractions of the underlying information. HDM also sup-

ports a number of different link types - perspective, structural and application links

- which support the different roles of linking in a hypertext. These can include mul-
tiple representations of the same node, or some domain-specific relationships etc.
HDM provides a number of other powerful modelling concepts such as hypertext

outlines and anchor types to group multiple links etc. However, one of the most

interesting areas of the model is its approach to browsing semantics.
The HDM model defines an abstract schema for a hypertext structure, yet it

can also be used to create the hypertext applications themselves, by generating in-

stances of the schema. This is done by defining the browsing semantics which map

the underlying model to an actual application instance; this defines all the dynamic

behaviour and the way in which a user interacts with the system (presentation in-

formation, link traversal behaviour, link visibility etc). In this way, the same HDM

model can be used to generate different versions of an application, by providing

multiple browsing mappings. the t-ILM moaei proviues a numueI U1uvvo

ing sematics which are considered appropriate for a simple hypertext application,

which minimises the effort involved in generating applications. The separation of

browsing semantics from the hypertext structure definition is a very powerful as-

pect of the HDM model, and shares some of the behavioural concerns of other mod-

els such as the Trellis model discussed earlier.

227

Appendix B: Open Hypertext Systems

B. 11 MAX

Many hypertext systems are based around static, fixed problem domains in which
the information remains largely constant over time. However, many disciplines
require a more dynamic view of hypertext, in which the information sources are
often not known in advance. Components can change and are often computed in
response to user actions. In these cases, it is not feasible to define all nodes and links
in advance, and these require a dynamic implementation of hypertext ideas.

Bieber explored the area Decision Support Systems [Bie9l], and looked at ways in
which these could be augmented with hypertext functionality. The MAX prototype
identifies the following main components in a dynamic system:

1. Back-end Application Manager
The Back-end Application Manager acts as layer between the decision support
applications and the main hypertext interface layers. This back-end subsys-
tem manages the knowledge bases and applications, and provides support for

data management. Dyanmic information and requests are passed between the
knowledge applications and the main hypertext engine. The other two layers

are then responsible for processing the data, to dynamically create hypertext

documents.

2. Interface Control Subsystem (CS)

The CS handles all communication between the user interface and the back-

end applications. The queries and reports which used to interact with applica-

tions are passed to the CS, and are compiled into (display-independent) inter-

active documents. These dynamically compiled documents are then passed

on to the main interface, where they are presented to the user.

3. Display Subsystem (DS)
The DS receives display-independent documents from the Interface Control

Subsystem, which have been generated in response to user queries and ac-

tions. The DS is then responsible for formatting this information into a form

which is suitable for display. The DS maintains an internal representation

of all elements, to allow user actions to be processed (eg. Which marker is

selected etc). The DS also maintains configuration-specific templates, format-

ting information, session histories etc.

The key difference between dynamic problem domains such as decision support

systems, and conventional, static environments, is that the hypertext structure is

not known in advance. Insetad, the hypertext engine must infer hypertext links,

and dynamically construct hypertext objects at runtime. This task is supported by

the Interface Control Subsystem described previously, which receives data from the

228

Appendix B: Open Hypertext Systems

back-end application manager, and must identify suitable link endpoints. This can be done by examining the data stream for embedded keywords, which are placed by
the back-end to identify hypertext objects. A more generalised approach is achieved
using bridge laws; these are predicate rules which can be used to map application
objects on to hypertext objects. These bridge laws can be used to generate hypertext
objects for entire groups of application objects - in this way, a rich hypertext can be
created using only a small number of bridge rules. In addition, MAX also supports
explicit, user-defined links and task-oriented filters whcih allow the hypertext to be
customised to the user. The MAX prototype is an important system which explores
the role of hypertext in dynamic environments, and examines many of the issues
which arise from adding hypertext functionality to third-party applications.

B. 12 Hyper-G

Hyper-G has been developed as a large-scale open hypertext system, using a dis-
tributed architecture to provide hypertext services [AKM95]. The focus of Hyper-G
has been to provide a hypertext model for managing large collections or documents,

and to provide effective support for multiple users. Hyper-G provides a number of
navigational paradigms to help the user explore a hypertext:

" collections
Hyper-G documents can be organised into separate groups, known as collec-
tions. This allows related documents to be arranged into separate aggrega-
tions, which can then be used to form the basis of content searches, access

control etc.

" hyperlinks
Hypertext links are maintained separately from the underlying node con-
tent in the same way as some other open hypertext systems (eg. Microcosm

[DHHH92], Intermedia [YHMD881). The advantage of separate linking infor-

mation is discussed further in chapter 4.

" attribute and content search
Hyper-G also allows a set of keywords to be associated with documents and

collections, so that users can perform searches on the document space. Hyper-

G documents are also automatically indexed, so that the document contents

can be searched. These searches can be used in conjunction with document

collections to limit the scope of any queries.

In addition to the rich structuring services provided by Hyper-G, the model also

provides a number of distributed services. Hypertext collections can be distributed

229

Appendix B: Open Hypertext Systems

across a number of Hyper-G servers, and replication services are provided to update
remote servers and to maintain consistency throughout the hypertext.

Users can connect using a special-purpose Hyper-G client (Harmony, Amadeus
etc), or can use an existing web browser. The servers will also provide some integra-
tion with existing information systems such as Gopher, WAIS, FTP and other WWW
servers. Hyper-G also offers a number of other features such as multi-lingual sup-
port, user access control and data storage services. The Hyper-G system is available
as a commercial product known as HyperWave [Mau96].

B. 13 MHEG

Some of the earlier discussions explored the idea of formal hypertext models, and
showed how these could be used to reason about abstract hypertext ideas. These
have led to the development of hypertext interchange standards which can be used
to communicate hypertexts between heterogeneous systems. MHEG [MHEG97] is

an international ISO standard developed by the Multimedia Hypermedia Experts
Group which defines the representation and encoding of hypertext objects, for in-

terchange between applications and services. Unlike many other approaches, the
MHEG standard focuses on the runtime presentation of hypertext objects, and the
interaction of the user with the hypertext.

MHEG assumes a minimal environment to ensure that the hypertext can be

viewed on a variety of platforms. It makes a distinction between actual objects,

and views of objects which are defined during the runtime presentation of the ob-
ject. MHEG provides support for synchronisation, which allows the detailed co-

ordination of hypermedia objects, and MHEG hypertext links provide references

to external objects, which are interpreted appropriately by the application. MHEG

also separates the contents of objects from the applications and defines anchors as

presentation objects, and although the MHEG standard has been developed inde-

pendently from the Dexter reference model, the two models are very similar.

The MHEG standard provides a means of communicating hypertext presenta-

tions between diverse platforms, and has a very simple notion of hypertext links.

This contrasts with other approaches such as HyTime, described in the follwing sec-

tion, which provides a richer environment aimed at the long-term storage of more

complex hypertexts. In this way, it is hoped that presentational standards such as

MHEG can complement more expressive models such as HyTime [RvOHB97].

B. 14 Hypermedia/Time-based Structuring Language (HyTime)

HyTime [GNKN97] is another ISO standard designed for representing the structure

and relationships of multimedia, hypertext and time-based documents. HyTime

230

Appendix B: Open Hypertext Systems

does not address any of the issues arising from user interfaces, query languages or
data notations, but does provide a way of describing document structures and the
relationships between different parts of documents. Unlike the MHEG standard
which focuses on the more presentational issues, HyTime provides a more expres-
sive model for storing hypertext structures. The HyTime standard provides a very
flexible means of addressing and locating objects in the hypertext, which allows the
definition of complex hyperlinks. For example, HyTime allows the addressing of
objects by specifying an offset from an object, by specifying a position in a hierar-
chical structure, or by using a query to specify the required object etc. HyTime also
supports linking between documents, the specification of spatial information, and
the co-ordination and manipulation of temporal data.

The HyTime standard developed from work done with the Standard Generalised
Markup Language (SGML) [SGML85] used for describing the generic structure of
documents. Document structures are defined using a Document Type Definition
(DTD) which describe the elements in a hypertext, and how they relate to each other.
HyTime is defined as a series of modular "architectural forms", which allows sys-
tems to support only those modules which are required for a particular application.
The standard defines five HyTime modules (see figure B. 14):

1. base module

The HyTime "base module" provides the fundamental facilities for represent-
ing and addressing objects and must be supported by all HyTime applications.

2. location address module

This defines the different kinds of addressing mechanisms supported by the

HyTime standard, and allows the referencing of objects using some arbitrary

measurement scheme. For example, an object address might use offsets of let-

ters in a textual element, or a path through a hierarchical tree. The module

also provides addressing using semantic constructs, which requires the inter-

pretation of data objects by the application, for example "the red square in the

middle".

3. hyperlink module

This is used to support the notion of hypertext linking and to establish rela-

tionships between objects. The module defines a number of forms for defining

arbitrary link types - hyperlink, contextual, aggregate, variable and indepen-

dent. In this way, HyTime can support a diverse range of flexible linking

mechanisms.

4. scheduling module

231

Appendix B: Open Hypertext Systems

location
address I /

object
module / I modification

module

'Ile

finite
base

/
coordinate

module space(FCS)
module /

hyperlink event
module /

I projection

\ /
\ module

Figure B. 9: HyTime modular architecture

This optional module is used to schedule objects, and define their positions
relative to other objects. Objects are projected on to the axes of finite coordinate
spaces, and measurements can be in terms of spatial or temporal units. The
module defines a number standard units of measurement.

5. rendition module
This final optional module can be used in conjunction with the scheduling
module, to express object modification and event projection. Object modification
allows changes to objects and the processing of information objects to be con-
trolled during rendition (although HyTime does not define the semantics of
these changes). Event projection is used to map objects between different co-
ordinate spaces (for example, projecting an object in a virtual time space on to

a real time space).

HyTime provides a flexible means of describing hypertext documents, and of-
fers a useful standard for hypertext interchange. There have been few implemen-

tations of HyTime technologies, and developer's have been reluctant to adopt the

HyTime standard. This is due in part, to the complexity of the standard and the

difficulties of implementing HyTime engines. However, the HyTime model does

offer some interesting and powerful modelling ideas, and HyTime may prove to be

useful in the development of open hypertext systems.

B. 15 Portable Document Format

The Portable Document Format (PDF)[BC93] has been developed by Adobe Sys-

tems, as a page description language for exchanging documents across platforms.

This enables users to share traditional electronic documents with no knowledge of

the resources and applications available to the recipient. Users create and browse

PDF documents using the Acrobat suite of applications (figure B. 15), and generate

PDF files from existing legacy PostScript[Ado901 formats or directly from the native

232

Appendix B: Open Hypertext Systems

Fite Edit Vie Tools 1 sw

iL ýJ. ýý Ni »J ýýP

r-ý
\b b

.... _....:

cn p.
ýiircCl

cfA ignEd o L,,, ý.
atr? i, 'ý: crual ; spar�rý - The syster

Iuce Su p01'. 10f yfr
"Atkin. and picnee? Ed

--r)_ r3 ri .-y by
GrCC; lem scly:

^; anr, ;,? rta; ;, q c (k1 Uesr9
a Rmai;; S_ AijgrnentNLC

1
ClJL"FJ

Fiz? uw :. 1: Separation of anchors. nodes Qaiu9 links

ý,
, U,

Help

t' pt Of fuzzy anchors which is developed in this drapier views anchors as
rrt)jects which are manipulated and managed separately fr-r_rrrr the linking

es, and it is hoped that the benefits of this approach are made apparent.

er-Specific Addressing Mechanisms

67 r, l{)1J1flenr of hypertext iii i elting einer ed ft-urn the ever increasing vol
il: furrnal. ir: >ri made dv ilat)le to die rcsear IR'r. t tic r f: wunr: l ttrf Enstdvf: s \\ iti¬

OveTu°taChfitifiif, ý (lcuM1ti0t>s of data. but with only prirrtittve rnea rrs of i: onr
¬1. so were unable to make full use uf't1k information. 11ypt rtext offered an

Ile "Ay of Sirucaust; 7 and maiid 11 ; As data. to provide il more i7äitltra1

fiif ii Z741 147%119025 % TY ä9 in -- "" v

Figure B. 10: Using Acrobat Exchange to view PDF documents

applications used to create the original document. The PDF format is derived from

the PostScript page description language, and adopts a similar syntax and imaging

model.
PDF is designed as a means of exchanging electronic documents between het-

erogenous platforms, although the standard does support some simple hypertext

functionality. Users can connect specific areas of a page to other parts of a document

using uni-directional links, and documents can be interfaced with the World Wide

Web. Applications which support the PDF format have been developed to operate

seamlessly in a WWW environment, and the PDF format is becoming increasingly

popular as a platform for document interchange. While the Portable Document For-

mat offers only very simple hypertext behaviour, the success of the technology may

mean that it will play an important role in the development of hypertext interchange

standards.

233

Appendix B: Open Hypertext Systems

B. 16 World Wide Web

The World Wide Web [WWWa] is a hypertext environment which has gained enor-
mous success, and is largely responsible for the explosive growth and interest in the
Internet in recent years. The WWW or "web" as it is variously known, was origi-
nally developed to share information between widely distributed colleagues in the
physics community, and began life at the CERN science institute. The popularity
of the project grew beyond all expectations, and soon spread to other fields and
groups of users. The nature of the web means that it is difficult to form an accurate
view of the overall hypertext, yet many estimates suggest many millions of users
and documents.

Many of the approaches to hypertext seen in the VVWW are very simple, and
echo much of the earlier work in the hypertext field. However, the web also in-
cludes many interesting approaches to hypertext such as dynamic linking using CGI
technology, a distributed node model, generic document descriptions etc. Also, the
development of mobile executable languages [GM95, JS], component frameworks
[JB, Act, Objc] and more advanced browsers [Net, MSE, Sun95b], have resulted in a
much more open hypertext environment. The enormous success of the web, means
that any developments in the WWW will continue to have a significant impact on
the hypertext community, and so any discussion of influential hypertext research
must acknowledge the presence of the World Wide Web.

The WWW was designed as a distributed hypertext system, based around a

simple client-server model. Users request hypertext nodes from a remote docu-

ment server, using a simple client known as a web browser. Documents are uniquely
identified in the network domain using a Universal Resource Locator (URL) which

provides a fixed, unambiguous address for each web document. Hypertext nodes

are defined using a generic markup language called HTML (Hypertext Markup Lan-

guage), which describes the content and node structure in a platform specific way
(figure B. 16). This simple idea allows WWW documents to be processed and viewed

on a diverse range of platforms, and is one of the many reasons for its success. The

distributed aspects of the web are also discussed in more detail in section 2.2.

The web supports a simple linking model, in which links are embedded in the

node contents. Hyperlinks are uni-directional, but can reference elements either

in the same documents, or remote objects which reside elsewhere in the network

domain. The first WWW browsers such as Lynx supported simple textual nodes,

but the emergence of graphical browsers such as Netscape Navigator [Net], Mi-

crosoft Internet Explorer [MSE] and HotJava [Sun95b] support an increasing range

of graphics formats B. 16. These web browsers also support simple navigational

tools such as backtracking features and bookmark lists to record places of interest.

It is important to note some of the more open aspects of the World Wide Web

234

Appendix B: Open Hypertext Systems

<title>
This is a HTML document
</title>

<body>
<hl>This is a main heading</h2>

<p>
A HTML document uses markup tags
to define each logical element.
</p>

<p>
The document can also include
hypertext links.

This is a link.

</p>

Figure B. 11: An example HTML definition

model, which have helped integrate the web with the user community. One of the
most important contributions was the ability to support diverse media types, by

using helper applications. Many browsers would provide native support for textual
nodes and some simple images, but if an unknown media type was encountered,
then this would be passed to the appropriate application. This third party would be

responsible for interpreting the node data, which allows the web to support many
node formats. In addition to helper applications, the WWW was also designed

around existing standards and tools. Unlike many other approaches to open hyper-

text, the web does not require a complex hyperbase or database service to manage
the storage of objects. While this can limit the functionality of the system, it greatly

simplifies the task of adding new users and documents into the WWW. Users need

only a simple web browser to access web documents, and authors can publish doc-

uments by running a web server. The World Wide Web can accomodate new users

and authors with the minimum amount of effort and cost, and it is this which is

perhaps the main reason for the phenomenal success of the web.
The WWW also introduces the ideas of computation into the hypertext model,

which were discussed earlier in section 2.1.3 when the ideas of open hypertext were

outlined. The initial approach taken by web developers was to use the Common

Gateway Interface to extend the functionality of the web. Authors could provide

scripts and programs which could be indirectly attached to links, and executed by

users. This simple form of computation was widely used in the web to achieve di-

verse tasks - dynamic links, submit queries, provide user information or any num-

ber of other computations. However, the limitations of this approach which were

restricted to the simple exchange of data, have led to the development of richer

execution models. Some web browsers offer their own scripting languages (eg.

235

Appendix B: Open Hypertext Systems

Fite Edit View Go Bookmarks Options Directory

"mal
Seeck HomeN Reto i Open Print Find

Location:
,
Ihttp: //wvv. ep. cs. nott. ac. uk/

What's New? Mint's Cool? ', Destinations l Niet Search 1 Pei

Window Help

,
Ox
Stop

ýple Software

Electronic Publishing Research Group

Deparzmenz of Computer Science, University of Nottingham, University Park, Nottingham) NG7
2RD, UK

Telephone: (+44) 115 9514230
Facsimile: (+44) 115 9514254
E-mail: e. p)cs. ILott. ac. uk

--

Welcome to the home page of the Electronic Publishing Research Group's
World-Wide Web server

ELECTRONIC PUBLISHING RESEARCH GROUP I RESEARCH PROJECTS I TOPICS OF
INTEREST I OTHER INFORMATION I SLIDESHOW (Netscape only) I EPRG GREY AREA

Top of nage

Electronic Publishing Research Group

Current Members

"H eleri Ashman

Figure B. 12: Netscape Navigator web browser

236

Appendix B: Open Hypertext Systems

JavaScript [JS]), which can respond to user actions and events. The Java language
[GM95] offers a more powerful programming language which operates inside a vir-
tual machine, and can execute on heterogeneous platforms. Also, the development
of component architectures such as Java Beans [JB] and Active X [Act] continues to
extend the power of the web.

The VVWW offers a very simple hypertext model, and ignores much of the ex-
isting work in the hypertext community. However, this minimal approach to hy-

pertext has captured the interest of the IT community, and has shown the benefits

of using hypertext in a global information network. The web continues to expe-
rience great change, and recent work has developed the computational aspects of
the WWW. Current work on the Extensible Markup Language (XML) and Document
Object Model (DOM) aim to provide a richer web architecture. The VVWW is no
longer seen as a simple point-and-click hypertext system, and instead forms a much

more integrated part of the computing environment. The boundary between hy-

pertext system and operating system continues to blur, and this trend looks set to

continue. These ideas of global information systems and distributed services have

proved very influential, and have influenced the development of many aspects of

the HIPPO model.

237

Appendix C

Fuzzy Anchor Specification

C. 1 Lexical Specification

* flex rules for fuzzy anchors
*

* Paul Newton

/* marks end of input */
int flex_eof = 0;

/* error recovery */

static tokenpos = 0;

static int lineno = 1;

static char linebuf[500];

%}

%s NEED ARG NEED DATA

%%

\n. * { /* subsequent lines */
strcpy(linebuf, yytext+l); /* save next line */
lineno++;

tokenpos = 0;

yyless(l); /* pass back everything except \n */
I

[\t] /* ignore whitespace */;

id { BEGIN NEED_ ARG; return ID; }

page { BEGIN NEED_ ARG; return PAGE; }

dest { BEGIN NEED_ ARG; return DEST; }

data { return DATA;)

xres { BEGIN NEED_ ARG; return XRES; }

238

Appendix C: Fuzzy Anchor Specification

yres { BEGIN NEED_ARG; return YRES; }
range { BEGIN NEED_ARG; return RANGE; }
-- { BEGIN 0; return EOR; }

return yytext[0]; }

<NEED_ARG>[^ ^\n]* { BEGIN 0;

yylval. sym = strdup(yytext);

return STRING;

]
[0-9]+ { yylval. num = atoi(yytext);

return INTEGER;

}

«EOF» { flex_eof = 1; return THE_END;)

C. 2 Grammar

/*

* yacc grammar for fuzzy anchors

*

* pkn, 10/2/97
*/

/* current anchor */

static FAD* yyNewFAD = NULL;

%}

/* current token */

%union {

char *sym;

int num;
I

%token <sym> STRING

%token <num> INTEGER

%token ID PAGE DEST RES DATA XRES YRES RANGE THE_END FOR

%start entry

entry: THE_END { yyNewFAD = NULL; YYACCEPT; }

id page dest resolution range data {

YYACCEPT;

};

id: ID '_' STRING {

yyNewFAD = new FAD;

yyNewFAD->FADsetID(atoi($3));

/* reset indices */

addAnotherElem(NULL, 0);

}

239

Appendix C: Fuzzy Anchor Specification

page: PAGE '=' STRING {

yyNewFAD->FADsetPage(atoi($3));

dest: DEST '=' STRING f

yyNewFAD->FADsetDest($3);

}

resolution: xres yres

xres: XRES '=' STRING {

yyNewFAD->FADsetXres(atoi($3));

}

yres: YRES '=' STRING {

yyNewFAD->FADsetYres(atoi($3));

}

range: RANGE '=' STRING {

yyNewFAD->FADsetRange(atoi($3));

}

data: DATA { yyNewFAD->FADallocData(); } data_elem

data_elem: INTEGER {

addAnotherElem(yyNewFAD, $1);

}

data_elem INTEGER {

addAnotherElem(yyNewFAD, $2);

}

240

Appendix D

Linkbase Specification

D. 1 Lexical Specification

* flex rules for linkbases
*

* Paul Newton

/* marks end of input */
int LTlb_flex_eof = 0;

/* error recovery */

static tokenpos = 0;

static int lineno = 1;

static char linebuf[500};

%}

%S NEED ARG NEED DATA

%%

\n. * { /* subsequent lines */

strcpy(linebuf, LTlb_yytext+l); /* save next line

lineno++;

tokenpos = 0;

yyless(1); /* pass back everything except \n */

[\t] /* ignore whitespace */;

linkbase { BEGIN NEED_ARG; return LINKBASE; I

strength { BEGIN NEED_ARG; return LINK_STRENGTH;

srcDoc { BEGIN NEED_ARG; return SRC_DOC; }

srcAnchor { BEGIN NEED_ARG; return SRC_ANCHOR; }

destDoc { BEGIN NEED_ARG; return DEST_DOC; }

241

Appendix D: Linkbase Specification

destAnchor { BEGIN NEED ARG; return DEST_ANCHOR; }
-- { BEGIN 0; return EOR; }

return LTlb_yytext[0]; }
<NEED_ARG>[^ ^\n]* { BEGIN 0;

LTlb_yylval. sym = strdup(yytext);

return STRING;

}

«EOF» { LTlb_flex_eof = 1; return THE_END; }

D. 2 Grammar
%{

/*

* yacc grammar for linkbases

*

* pkn, 3/12/96

/* current link */

static LTlink *yyNewLink = NULL;

/* current token */

%union {

char *sym;

int num;
I

%token <sym> STRING
%token LINKBASE LINK_STRENGTH SRC_DOC SRC-ANCHOR

%token DEST_DOC DEST_ANCHOR THE_END FOR

%start entry

entry: THE_END { yyNewLink = NULL; YYACCEPT; }

start linkbase link-strength

src_doc src_anchor dest_doc dest_anchor {

YYACCEPT;

};

start: FOR {

yyNewLink = new LTlink;

}

linkbase: /* empty */

LINKBASE '=' STRING {

yyNewLink->setLinkbase($3);

free($3);

};

242

Appendix D: Linkbase Specification

link-strength: /* empty */
LINK_STRENGTH '_' STRING f

yyNewLink->setLinkStrength(atof($3));

free($3);

}

src_doc: /* empty */
SRC_DOC '_' STRING {

yyNewLink->setSrcDoc($3);

src_anchor: SRC_ANCHOR '_' STRING {

yyNewLink->setSrcAnchor(atoi($3));
};

dest_doc: /* empty */

DEST_DOC '=' STRING {

yyNewLink->setDestDoc($3);

dest_anchor: /* empty */

DEST_ANCHOR '=' STRING {

yyNewLink->setDestAnchor(atoi($3));

243

Appendix E

Linkbase Tree Hierarchy
Specification

E. 1 Lexical Specification

1*

* lexer for linkbase inheritance tool
*

* Paul Newton

/* error recovery

static int lineno = 0;

#. * { lineno++; }; /* comments */

linkbase { return LINKBASE; }

publicjprivate {

LTinherit_yylval. sym = strdup(LTinherit_yytext);

return SPECIFIER;

}

url { return URL; }

filename { return FILENAME; }

build { return BUILD; }

[(){}:;,] { return LTinherit_yytext[O]; }

[-: -. /_a-zA-ZO-9]*[/_a-zA-ZO-9] {

LTinherit_yylval. sym = strdup(LTinherit_yytext);

return ID;

)

[\t) /* ignore whitespace
\n lineno++;

244

Appendix E: Linkbase Tree Hierarchy Specification

E. 2 Grammar

* parser for linkbase inheritance tools
*

* pkn, 25/10/96

*/

/* current tree and tree node */
static LTtree yyLTtree;
static LTtreeE *yyNewNode;

/* current token */
%union {

char *sym;
I

%token <sym> ID SPECIFIER LB_REF

%token LINKBASE FILENAME URL BUILD

linkLTtree: /* empty
linkLTtree linknode

linkLTtree buildnode

linknode: newLinkbase ': ' inheritSpec contents
I newLinkbase contents '; '

newLinkbase: LINKBASE ID

{

yyNewNode = new LTtreeE($2);

free($2);

yyLTtree. addNode(yyNewNode);

}

inheritSpec: SPECIFIER ID

{

yyNewNode->addParent(yyLTtree. getNode($2),

BaseAccess($l));

free ($l)

free($2);

I

SPECIFIER ID '(' ID ')'

{

yyNewNode->addParent(yyLTtree. getNode($2),

BaseAccess($l),

atof($4));

free($1);

245

Appendix E: Linkbase Tree Hierarchy Specification

free($2);

free ($4)
}

inheritSpec ', ' SPECIFIER ID
{

yyNewNode->addParent(yyLTtree. getNode($4),

BaseAccess($3));

free($3);

free($4);

}

inheritSpec ', ' SPECIFIER ID '(' ID

{

yyNewNode->addParent(yyLTtree. getNode($4),

BaseAccess($3),

atof($6));

free($3);

free ($4)

free($6);

}

contents: '{' 1bLoc '}'

lbLoc: FILENAME ID '; '

{

yyNewNode->setFilename($2);
free($2);

}

URL ID '; '

{

yyNewNode->setURL($2);

free($2);

}

buildnode: BUILD ID

{

LTtreeE *node = yyLTtree. getNode($2);

yyLTtree. buildTree(node);

free($2);

}

BUILD ID ID '; '

{

LTtreeE *node = yyLTtree. getNode($2);

yyLTtree. buildTree(node, $3);

free($2); free($3);

}

246

Appendix F

Linkbase Tree Example

247

Appendix F: Linkbase Tree Example

linkbase mathematics {
url http: //www. ucl. ac. uk/public/appliedMathli. 1b;

linkbase materials (
url http: //www. british-library. org/lb/science/ref/metalProperties. 1b;

linkbase engineering : mathematics(O. 9), materials(O. 8) {
url http: //www. acme. com/local/acmeEng. 1b;

};

linkbase architectural-principles [
url http: //www. tekon. org/basicArch. 1b;

linkbase modern-architecture: architectural_principles(0.7) {
url http: //www. british-library/org/lb/history/ref/modernArch. 1b;

linkbase patterns-in-architecture : architectural-principles(l)
filename /archive/patterns/alexander. lb;

};

linkbase bridge-construction : engineering(0.8),
modern_architecture (0.6),
patterns_in_architecture(0.3) {

filename /projects/EBridge/ref/suspB. 1b;

linkbase UK-building-regulations [

url http: //www. ieee. org/public/oct93/12AB9/33_3XA. 1b;
};

linkbase ACME_company_guidelines : UK_building_regulations(0.8) {

filename /policy/archive/currentACME. 1b;

};

linkbase ACME_suspension_bridge_project : suspension_bridge_design(. 5),

ACME_company_guidelines(. 6) {

filename /projects/EBridge/current/EB. lb;

248

Bibliography

[ABC+ 97] Sharon Adler, Anders Berglund, James Clark, Istvan Cseri, Paul Grosso, Jonathan Marsh,
Gavin Nicol, Jean Paoli, David Schach, Henry S. Thompson, and Chris Wilson. A Pro-
posal for XSL, August 1997. Work in progress. The latest documentation is available from
the W3C WWW site (URL: http: //www. w3. org).

[ACDC96] Helen Ashman, Tim Cawley, Scott Davis, and Greg Chase. Issues in the Use of External
and Remote Services in Hypermedia Systems. In Workshop on Incorporating Hypertext
Functionality into Software Systems (HTFII), 1996. Held in conjunction with Hypertext
1996 Conference.

[Acr] Documentation on the Acrobat suite of software products is available from the Adobe
WWW site (URL: http: //www. adobe. com).

[Act] ActiveX and DCOM documentation available from the Microsoft WWW site
(URL: http: //www. microsoft. com).

[Ado90] Adobe Systems, Inc. PostScript Language Reference Manual, 2nd edition, 1990.

[AKM95] Keith Andrews, Frank Kappe, and Hermann Maurer. Hyper-G and Harmony: Towards
the Next Generation of Networked Inofrmation Technology. In Proceedings of CHI '95,
ACM, Denver, May 1995.

[A1e77] Christopher Alexander. A Pattern Language: Towns, Buildings, Construction. Oxford Uni-

versity Press, 1977.

[Alt] The AltaVista WWW site. http: //www. altavista. digital. com.

[AM84a] Robert M. Akscyn and Donald L. McCacken. ZOG and the USS Carl Vinson: Lessons in

System Development. In Proceedings of the First IFIP Conference on Human-Computer Inter-

action, pages 901-906, London, England, September 1984. Elsevier Science Publishers.

[AM84b] Robert M. Akscyn and Donald L. McCracken. The ZOG Approach to Database Man-

agement. In Proceedings of the Trends and Applications Conference: Making Databases Work,

pages 217-225, Gaithersburg, Maryland, May 1984.

[AM93] Robert M. Akscyn and Donald L. McCracken. Design of Hypermedia script languages:

the KMS experience. In Proceedings of the 1993 Hypertext Conference, pages 268-269,

November 1993.

[AMY88] Robert M. Akscyn, Donald L. McCracken, and Elise A. Yoder. KMS: A Distributed Hy-

permedia System for Managing Knowledge in Organizations. Communications of the

ACM, 31(7): 820-835, July 1988.

[And97] Kenneth M. Anderson. A Critique of the Open Hypermedia Protocol. In Proceedings of

the 3rd Workshop on Open Hypermedia Systems, 1997. Held in conjunction with Hypertext

1997 Conference.

[App87] Apple Computer Inc. Macintosh HyperCard User's Guide, 1987.

249

Bibliography

[ATJ94] Kenneth M. Anderson, Richard N. Taylor, and E. James Whitehead Jr. Chimera: Hyper-
text for Heterogeneous Software Environments. In Proceedings of the European Conference
on Hypertext (ECHT '94), pages 94-107, Milano, September 1994.

[AV94] H. L. Ashman and J. L. M. Verbyla. Dynamic Link Management Via the Functional Model
of the Link. In Proceedings of the Basque International Workshop on Information Technology,
Feb 1994.

[AVC94] H. L. Ashman, J. L. M. Verbyla, and T. Cawley. Hypermedia Management in Large-Scale
Information Systems Using the Functional Model of the Link. In Proceedings of the Fifth
Australasian Database Conference, pages 247-257, Jan 1994.

[BC93] Tim Bienz and Richard Cohn. Portable Document Format Reference Manual. Adobe Systems
Incorporated, Mountain View, California, June 1993.

[BE94] C. Boyle and A. O. Encarnacion. MetaDoc: an adaptive hypertext reading system. User
Models and User Adapted Interaction, 4(1): 1-19,1994.

[Bea94] I. Beaumont. User modeling in the interactive anatomy tutoring system ANATOM-
TUTOR. User Models and User Adapted Interaction, 4(1): 21-45,1994.

[Ber88] M. Bernstein. The bookmark and the compass: Orientation tools for hypertext users.
ACM SIGOIS Bulletin, 9(4): 34-45, October 1988.

[Bie9l] Michael Bieber. Issues in modeling a dynamic hypertext interface for non-hypertext sys-
tems. In Proceedings of the 1991 Hypertext Conference, pages 203-217, December 1991.

[BJ87] Jay Bolter and Michael Joyce. Hypertext and Creative Writing. In Proceedings of Hypertext
1987, pages 41-50. ACM, November 1987.

[Bo191] J. D. Bolter. Writing Space: The Computer, Hypertext, and the History of Writing. Lawrence
Erlbaum Associates, 1991.

[Boo94] Grady Booch. Object-Oriented analysis and design. Benjamin-Cummings, 1994.

[Bro88] P. J Brown. Linking And Searching Within Hypertext. Electronic Publishing: Origination,

Dissemination and Design, 1(1): 45-53, April 1988.

[Bro891 P. J. Brown. Do We Need Maps To Navigate Round Hypertext Documents? Electronic

Publishing: Origination, Dissemination and Design, 2(2): 91-100, July 1989.

[Bro92] P. J Brown. UNIX Guide: Lessons From Ten Years' Development. In Proceedings of the

4th ACM European Conference on Hypertext (ECHT 1992), pages 63-70, Milano, November

1992. ACM.

[Bro94] Peter Brown. Adding Networking to Hypertext: Can it be done transparently? In Pro-

ceedings of the European Conference on Hypertext (ECHT '94), pages 51-58, September 1994.

[Bru96] Peter Brusilovsky. Methods and techniques of adaptive hypermedia. User Modelling and

User Adapted Interaction, 6(2-3), 1996.

[BSW96] P. Brusilovsky, E. Schwarz, and G. Weber. ELM-ART: An intelligent tutoring system on

World Wide Web. In Third International Conferenceon Intelligent Tutoring Systems (ITS '96),

1996.

[Buf96] John F. Buford. Evaluating HyTime: an examination of implementation experience. In

Proceedings of the 7th ACM Conference on Hypertext, pages 105-115. ACM, March 1996.

[Bus451 Vannevar Bush. As We May Think. Atlantic Monthly, July 1945.

[BWAH96] Ajit Bapat, Jürgen Wäsch, Karl Aberer, and Jörg M. Haake. HyperStorM: An Extensible

Object-Oriented Hypermedia Engine. In Proceedings of Hypertext 1996, pages 203-214.

ACM, March 1996.

250

Bibliography

[CB891 Jeff Conklin and Michael L. Begeman. gIBIS: A tool for all reasons. Journal of the American
Society for Information Science, 40(3): 200-213,1989.

[CBDW94] L. A. Carr, D. W. Barron, H. C. Davis, and W. Hall. Why use HyTime? Electronic Publishing:
Origination, Dissemination and Design, 7(3): 163-178, September 1994.

[CBY89] Timothy Catlin, Paulette Bush, and Nicole Yankelovich. InterNote: Extending a Hy-
permedia Framework to Support Annotative Collaboration. In Proceedings of the 1989
Hypertext Conference, pages 365-378, November 1989.

[CCS92] Silvano Pozzi Cefriel, Augusto Celentano, and Luisa Salemme. ALIVE: A Distributed
Live-Link Documentation System. Electronic Publishing: Origination, Dissemination and
Design, 5(3): 131-142, September 1992.

[CG88] Brad Campbell and Joseph M. Goodman. HAM: A General Purpose Hypertext Abstract
Machine. Communications Of The ACM, 31(7): 856-861, July 1988.

[Cha93] Daniel T. Chang. HieNet: A User-Centered Approach for Automatic Link Generation. In
Proceedings of the 1993 Hypertext Conference, pages 145-158, November 1993.

[CHP88] Donald D. Chamberlin, Helmut F. Hasselmeier, and Dieter P. Paris. Defining Document
Styles for WYSIWYG Processing. In Proceedings of the International Conference on Electronic
Publishing, Document Manipulation and Typography (EP '88), pages 121-137, April 1988.

[Con87] Jeff Conklin. Hypertext: An Introduction And Survey. Computer, pages 17-40, September

1987.

[CS88] T. J. O Catlin and K. E Smith. Anchors For Shifting Tides: Designing a Seaworthy Hy-

permedia System. In Proceedings of the 12th International Online Meeting, pages 15-25,

London, 1988.

[CT91] Marco A. Casanova and Luiz Tucherman. The Nested Context Model for Hyperdocu-

ments. In Proceedings of the 1991 Hypertext Conference, pages 193-201, December 1991.

[dBH92] Paul de Bra and Geert-Jan Houben. An Extensible Data Model for Hyperdocuments. In

Proceedings of the 4th ACM European Conference on Hypertext (ECHT 1992), pages 222-231,

Milano, November 1992.

[DCE] Open Group. DCE documentation available from the Open Group WWW site

(URL: http: //www. opengroup-org).

[DeR89] Steven J. DeRose. Expanding the Notion of Links. In Proceedings of the Hypertext 1989

Conference, pages 249-257, November 1989.

[DES93] National Institute of Standards and Technology. Data Encryption Standard (DES). Fed-

eral Information Processing Standards publication, December 1993.

[DHHH92] Hugh Davis, Wendy Hall, Ian Heath, and Gary Hill. Towards an Integrated Information

Environment with Open Hypermedia Systems. In Proceedings of the 4th ACM European

Conference on Hypertext (ECHT 1992), pages 181-190. ACM, December 1992.

[Dij68] E. W. Dijkstra. Goto statement considered harmful. Communications of the ACM, 11(3): 147-

148, March 1968.

[DKH94] Hugh C. Davis, Simon Knight, and Wendy Hall. Light Hypermedia Link Services: A

Study of Third Party Application Integration. In Proceedings of the 1994 ECHT Conference,

pages 41-50. ACM, September 1994.

[DLR96] Hugh Davis, Andy Lewis, and Antoine Rizk. OHP: A Draft Proposal for a Standard Open

Hypermedia Protocol (Levels 0 and 1: Revision 1.2). In Proceedings of the 2nd Workshop on

Open Hypermedia Systems, 1996. Held in conjunction with Hypertext 1996 Conference.

251

Bibliography

[dRCP93] F. de Rosis, B. De Carolis, and S. Pizzutilo. User tailored hypermedia explanations. In INTERCHI '93 Adjunct Proceedings, pages 169-170,1993.
[DS86] Norman Delisle and Mayer Schwartz. Neptune: A Hypertext System For CAD Appli-

cations. In Proceedings of the ACM SIGMOD International Conference On Management Of Data, pages 132-143, Washington D. C, May 1986.
[DSSSL96] International Standards Organisation. Document Style Semantics and Specification Lan-

guage (DSSSL). ISO/IEC IS 10179: 1996,1996.
[Eng84a] Douglas C. Engelbart. Authorship Provisions In Augment. In Proceedings of the 1984

COMPCON Conference, pages 465-472, San Francisco, February 1984. IEEE.
[Eng84b] Douglas C. Engelbart. Collaboration Support Provisions in Augment. In Proceedings of

the 1984 AFIPS Office Automation Conference, pages 51-58, Los Angeles, February 1984.
[Eng95] Douglas C. Engelbart. Toward augmenting the human intellect and boosting our collec-

tive IQ. Communications of the ACM, 38(8): 30-31, August 1995.
[ET94] Paul M. English and Raman Tenneti. Interleaf Active Documents. Electronic Publishing:

Origination, Dissemination and Design, 7(2): 75-87, June 1994.
[FC89] Mark E. Frisse and Steve B. Cousins. Information retrieval from hypertext: Update on

the Dynamic Medical Handbook Project. In Proceedings of Hypertext 1989, pages 199-212.
ACM, November 1989.

[FC91] Mark F. Frisse and Steve B. Cousins. Models for Hypertext. Journal of the American Society
for Information Science, 43(2): 183-191,1991.

[Fei88] Steven Feiner. Seeing the Forest for the Trees: Hierarchical Display of Hypertext Struc-
ture. In Conference on Office Computing Systems, pages 205-212,1988.

[Fei90] Steven K. Feiner. Authoring Large Hypermedia Documents With IGD. Electronic Pub-
lishing: Origination, Dissemination and Design, 3(1): 29-46, February 1990.

[FHHD90] Andrew M. Fountain, Wendy Hall, Ian Heath, and Hugh Davis. Microcosm: An Open
Model for Hypermedia With Dynamic Linking. In Hypertext: Concepts, Systems and Ap-

plications. The Proceeedings of the European Conference on Hypertext, pages 298-311, France,
1990. Cambridge University Press.

[Foua] Free Software Foundation. The Bison general-purpose parser generator. Available from

GNU software archives.

[Foub] Free Software Foundation. The Flex lexical analyzer generator. Available from GNU

software archives.

[Fri87] Mark Edwin Frisse. Searching for Information in a Hypertext Medical Handbook. In

Proceedings of Hypertext 1987, pages 57-66. ACM, November 1987.

[FS89] Richard Furuta and P. David Stotts. Programmable Browsing Semantics in Trellis. In

Proceedings of Hypertext 1989, pages 27-42. ACM, November 1989.

[FS90] Richard Furuta and P. David Stotts. A functional meta-structure for hypertext models

and systems. Electronic Publishing: Origination, Dissemination and Design, 3(4): 179-205,

November 1990.

[FSD92] Richard Furuta, P. David Stotts, and Gregory D. Drew. Experiences with a Client-Server-

Based Architecture for a Distributed Structured Hypertext System. In Proceedings of Elec-

tronic Publishing, pages 113-125, Apr, 1992. Cambridge University Press.

[Fur86] G. Furnas. Generalized Fisheye Views. In Proceedings of CHI'86, Human Factors in Com-

puting Systems, pages 16-23, April 1986.

252

Bibliography

[GB80] Ira P. Goldstein and Daniel G. Bobrow. A layered approach to software design. Technical
Report CSL-80-5, Xerox PARC, Xerox Corporation, December 1980.

[GDHR97] Stuart Goose, Jonathan Dale, Wendy Hall, and David De Roure. Microcosm TNG: A
Distributed Architecture to Support Reflexive Hypermedia Applications. In Proceedings
of Hypertext 1997, pages 226-227. ACM, April 1997.

[GH95] M. Gonschorek and C. Herzog. Using hypertext for an adaptive help system in an intel-
ligent tutoring system. In 7th World Conference on Artificial Intelligence in Education, pages
274-281,1995.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison Wesley, 1994.

[GHMS93] Kaj Grenbaek, Jens A. Hem, Ole L. Madsen, and Lennert Sloth. Designing Dexter-
Based Hypermedia Systems. In Proceedings of the 1993 Hypertext Conference, pages 25-38,
November 1993.

[GHMS94] Kaj Grenbaek, Jens A. Hem, Ole L. Madsen, and Lennert Sloth. Hypermedia Systems: A
Dexter-based Architecture. Communications of the ACM, 37(2): 65-74, February 1994.

[GKM93] Kaj Gronbaek, Morten Kyng, and Preben Mogensen. CSCW Challenges: Cooperative
Design In Engineering Projects. Communications of the ACM, 36(4): 67-77, June 1993.

[GLD97] Stuart Goose, Andy Lewis, and Hugh Davis. OHRA: Towards an Open Hypermedia
Reference Architecture and a Migration Path for Existing Systems. In Proceedings of the

3rd Workshop on Open Hypermedia Systems, 1997. Held in conjunction with Hypertext 1997

Conference.

[GM95] James Gosling and Henry McGilton. The Java Language Environment- A White Pape

r. Technical report, Sun Microsystems, Mountain View, California, May 1995. Available

from the JavaSoft WWW site
(URL: http: //java. sun. com).

[GMP96] Franca Garzotto, Luca Mainetti, and Paolo Paolini. Information Reuse in Hypermedia

Applications. In Proceedings of Hypertext 1996, pages 93-104. ACM, March 1996.

[GMP97] Franca Garzotto, Luca Mainetti, and Paolo Paolini. Designing Modal Hypermedia Ap-

plications. In Proceedings of Hypertext 1997, pages 38-47. ACM, April 1997.

[GNKN97] Charles F. Goldfarb, Steven R. Newcomb, W. Eliot Kimber, and Peter J. Newcomb. In-

formation processing - Hypermedia/Time-based Structuring Language HyTime - 2nd

edition. Technical Report ISO/IEC JTC l /SC 18 WG8 N1920rev, International Standards

Organisation (ISO), May 1997.

[Go190] Charles Goldfarb. The SGML Handbook. Oxford University Press, 1990.

[Go197] Gene Golovchinsky. What the Query Told the Link: The Integration of Hypertext and

Information Retrieval. In Proceedings of Hypertext 1997, pages 67-74. ACM, April 1997.

[GP93] Franca Garzotto and Paolo Paolini. HDM -A model-based approach to hypertext appli-

cation design. ACM Transactions on Information Systems, 11(1): 1-26, January 1993.

[Gro94a] Kaj Grenbaek. Building tailorable hypermedia systems: the embecaaea-interpreLel dy-

proach. In Proceedings of Object Oriented Programming Systems, Languages and Applications

(OOPSLA) 1986, Aarhus University, October 1994. SIGPLAN.

[Gro94b] Kaj Grenbaek. Composites in a Dexter-based Hypermedia Framework. In Proceedings of

ECHT 1994, pages 59-69. ACM, September 1994.

[Gru93] G. Grunst. Adaptive hypermedia. Adaptive user interfaces: Principles and practice, pages

269-283,1993.

253

Bibliography

[GS87] Irene Greif and Sunil Sarin. Data Sharing in Group Work. ACM Transactions On Office
Information Systems, 5(2): 187-211, April 1987.

[GT94] Kaj Grenbaek and Randall H. Trigg. Design Issues for a Dexter-based Hypermedia Sys-
tem. Communications of the ACM, 37(2): 41-49, February 1994.

[Haa92] A. Haake. CoVer: A contextual version server for hypertext applications. In Proceedings
of the European Conference on Hypertext (ECHT '92), pages 43-52. ACM, November 1992.

[Haa97] Jörg Haake. Colaboration via OHS: A Scenario. In Proceedings of the 3rd Workshop on Open
Hypermedia Systems, 1997. Held in conjunction with Hypertext 1997 Conference.

[Ha187] Frank G. Halasz. Reflections on NoteCards: Seven Issues for the Next Generation of
Hypermedia Systems. In Proceedings of Hypertext 1987, pages 345-365. ACM, November
1987.

[Ha194] Wendy Hall. Ending the tyranny of the button. IEEE Multimedia, 1(1), 1994.
[HBG96] H. Hohl, H. D. Bäcker, and R. Gunzenhäuser. Hypadapter: An adaptive hypertext system

for exploratory learning and programming. User Models and User Adapted Interaction, 6,
1996.

[HF92] Dan Heller and Paula M. Ferguson. Motif Programming Manual, volume 6A. O'Reilly and
Associates, Inc., 1992.

[HGC94] A. Hatzimanikatis, I. Gaviotis, and D. Christodoulakis. Distributed Documents: An Ar-
chitecture for Open Distributed Hypertext. Electronic Publishing: Origination, Dissemina-
tion and Design, 7(1): 35-48, March 1994.

[HH94] Gary Hill and Wendy Hall. Extending the Microcosm Model to a Distributed Environ-

ment. In Proceedings of the European Conference on Hypertext (ECHT '94), pages 32-40.
ACM, September 1994.

[HHL+92] Jorg Haake, Jorg Hannemann, Andreas Lemke, Wolfgang Schuler, Helge Schutt, and
Manfred Thuring. SEPIA: A Cooperative Hypermedia Authoring Environment. In Pro-

ceedings of the 4th ACM European Conference on Hypertext (ECHT 1992), pages 12-22, Mi-

lano, November 1992.

[Hic931 D. L. Hicks. A version control architecture for advanced hypermedia environments. PhD thesis,

Department of Computer Science, Texas A&M University, 1993.

[HKr+96] K. Höök, J. Karlgren, A. Wem, N. Dahlbäck, C. G. Jansson, K. Karlgren, and B. Lemaire.

A glass box approach to adaptive hypermedia. User Models and User Adapted Interaction,

6,1996.

[HKRC92] Bernard J. Haan, Paul Kahn, Victor A. Riley, and James H. Coombs. IRIS Hypermedia

Services. Communications Of The ACM, 35(1): 36-51, January 1992.

[HMT87] Frank G. Halasz, Thomas P. Moran, and Randall H. Trigg. Notecards In A Nutshell. In

Proceedings of Human Factors in Computing Systems, pages 45-52. ACM, 1987.

[Hoe89] T. Hoeber. The OPEN LOOK Graphical User Interface Style Guide. Sun Microsystems, May

1989.

[HS90] Frank Halasz and Mayer Schwartz. The Dexter Hypertext Reference Model. Submitted

to the NIST Hypertext Standardisation Workshop, Gaithersburg, January 1990.

[HTTP] Network Working Group. Hypertext Transfer Protocol - HTTP/1.1, January 1997. Re-

quest for Comments (RFC): 2068.

[IT89] Peggy M. Irish and Randall H. Trigg. Supporting Collaboration in Hypermedia: Issues

and Experiences. Journal of the American Society for Information Science, 40(3): 192-199,1989.

254

Bibliography

[Joh75] S. C. Johnson. Yacc - Yet Another Compiler-Compiler. Technical Report CS Technical
Report No. 32, Bell Laboratories, July 1975.

[JB] Sun Microsystems. JavaBeans API Specification v1.01. Available from the JavaSoft WWW
site (URL: http: //java. sun. com).

[JS] JavaScript documentation can be found on the Netscape Communications WWW site (URL: http: //www. netscape. com).
[Kac90] Charles J. Kacmar. PROXHY: A Process-oriented extensible hypertext architecture. PhD the-

sis, Texas AM University, 1990.

[Kac95] Charles J. Kacmar. A process approach for providing hypermedia services to existing,
non-hypermedia applications. Electronic Publishing: Origination, Dissemination and De-
sign, 8(1): 31-48, March 1995.

[KFC93] C. Kaplan, J. Fenwick, and J. Chen. Adaptive hypertext navigation based on user goals
and context. User Models and User Adapted Interaction, 3(3): 193-220,1993.

[Ki194] Haim Kilov. On Understanding Hypertext: Are Links Essential? Software Engineering
Notes, 19(1): 30, January 1994.

[KL91] Charles J. Kacmar and John J. Leggett. PROXHY: A Process-Oriented Extensible Hyper-
text Architecture. ACM Transactions on Information Systems, 9(4): 399-419, October 1991.

[KN93] J. Kohl and C. Neuman. The Kerberos Network Authentication Service v5, September
1993. Request for Comments (RFC): 1510.

[KWO90] Uffe Kock Wiil and Kasper Osterbye. Experiences with HyperBase -A multi-user back-

end for hypertext applications with emphasis on collaboration support. Technical Report
R 90-38, Department of Computer Science, University of Aalborg, October 1990.

[Lan90] Danny Lange. A Formal Model of Hypertext. In NIST Hypertext Standardisation Workshop,

pages 145-166, January 1990.

[Lan92] George P. Landow. Hypertext: The Convergence of Contemporary Critical Theory and Technol-

ogy. Johns Hopkins University Press, 1992.

[Le192] Alain Lelu. Hypertext paradigm in the field of information retrieval: a neural approach.

In Proceedings of the 4th ACM European Conference on Hypertext (ECHT 1992), pages 112-

121. ACM, December 1992.

[Les75] M. E. Lesk. Lex -A Lexical Analyzer Generator. Technical Report CS Technical Report

No. 39, Bell Laboratories, October 1975.

[Lis87] Barbara Liskov. Data Abstraction and Hierarchy. In Proceedings of Object Oriented Pro-

gramming Systems, Languages and Applications (OOPSLA) 1987 (Addendum), MIT Labora-

tory of Computer Science, October 1987. SIGPLAN.

[LK91] John J. Leggett and Ronnie L. Killough. Issues in Hypertext Interchange. Hypermedia,

3(3): 159-186,1991.

[LS93] Daryl T. Lawton and Ian E. Smith. The Knowledge Weasel Hypermedia Authoring Sys-

tem. In Proceedings of the 1993 Hypertext Conference, pages 106-117, November 1993.

[LS94] John J. Leggett and John L. Schnase. Dexter With Open Eyes. Communications of the ACM,

37(2): 77-86, February 1994.

[Mal91] Kathryn C. Malcolm. Industrial Strength Hypermedia: Requirements for a Large Engi-

neering Enterprise. In Proceedings of the 1991 Hypertext Conference, pages 13-23, December

1991.

[Mau96] Hermann Maurer. Hyper Wave - The Next Generation Web Solution. Addison-Wesley, 1996.

255

Bibliography

[MBD+90] Raymond J. McCall, Patrick R. Bennett, Peter S. D'Oronzio, Jonathan L. Ostwald, Frank M. Shipman III, and Nathan F. Wallace. PHIDIAS: Integrating CAD Graphics into Dy-
namic Hypertext. In Hypertext: Concepts, Systems and Applications. The Proceeedings of the European Conference on Hypertext, pages 152-165, France, 1990. Cambridge University
Press.

[MC93] Susan Michalak and Mary Coney. Hypertext and the Author/Reader Dialogue. In Pro-
ceedings of the 1993 Hypertext Conference, pages 174-182, November 1993.

[MC94] N. Mathe and J. Chen. A user-centred approach to adaptive hypertext based on an infor-
mation relevance model. In 4th International Conference on User Modeling, pages 107-114,
1994.

[Mey86] Norman Meyrowitz. Intermedia: The Architecture and Construction of an Object-
Oriented Hypermedia system. In Proceedings of Object Oriented Programming Systems,
Languages and Applications (OOPSLA) 1986, ACM, Brown University, Institute for Re-
search in Information and Scholarship, October 1986. SIGPLAN.

[Mey89] Norman Meyrowitz. The Missing Link: Why Were All Doing Hypertext Wrong. The
Society of Text, pages 107-114,1989.

[MHEG97] International Standards Organisation. MHEG Part 5. ISO/IEC IS 13522-5,1997.

[MI89] Catherine C. Marshall and Peggy M. Irish. Guided Tours and On-Line Presentations:
How Authors Make Existing Hypertext Intelligible for Readers. In Proceedings of Hyper-
text 1989, pages 15-26. ACM, November 1989.

[M1C94] Catherine C. Marshall, Frank M. Shipman III, and James H. Coombs. VIKI: Spatial Hy-

pertext Supporting Emergent Structure. In Proceedings of ECHT 1994, pages 13-23. ACM,
September 1994.

[MIRJ91] Catherine C. Marshall, Frank M. Shipman III, Russell A. Rogers, and William C. Janssen
Jr. Aquanet: a hypertext tool to hold your knowledge in place. In Proceedings of Hypertext
1991, pages 261-275. ACM, December 1991.

[Mos] Documentation on the Mosaic web browser is available on the NCSA WWW site
(URL: http: //www. ncsa. uiuc. edu).

[Mou91] Stuart Moulthrop. Beyond the Electronic Book: A Critique of Hypertext Rhetoric. In

Proceedings of Hypertext 1991, pages 291-298. ACM, December 1991.

[Mou92] Stuart Moulthrop. Toward a Rhetoric of Informating Texts. In Proceedings of ECHT 1991,

pages 171-180. ACM, November 1992.

[MR92] Catherine C. Marshall and Russell A. Rogers. Two Years Before the Mist: Experiences

with AquaNet. In Proceedings of the 4th ACM European Conference on Hypertext (ECHT

1992), pages 53-62, Milano, November 1992.

[MS95] Catherine C. Marshall and Frank M. Shipman III. Spatial Hypertext: Designing for

Change. Communications of the ACM, 38(8): 88-97, August 1995.

[MS96] A. Micarelli and F. Sciarrone. A case-based toolbox for guided hypermedia navigation.

In Fifth International Conference on User Modeling (UM '96), pages 129-136,1996.

[MSE] Information on the MicroSoft web browser can be found on the MicroSoft WWW site

(URL: http: //www. micrOsOft-COm)-

[Ne1931 Theodor Nelson. Literary Machines. Mindful Press, 1993.

[Ne195] Theodor Holm Nelson. The Heart of Connection: Hypermedia Unified by Transclusion.

Communications of the ACM, 38(8): 31-33, August 1995.

256

Bibliography

[Net] Information on the Netscape Navigator web browser can be found on the Netscape Com-
munications WWW site (URL: http: //www. netscape. com).

[New97a] Paul Newton. Hypertext using fuzzy anchors. In Proceedings of Hypertext and Hypermedia:
Products, Tool and Methods (H2PTM '97), pages 353-366. Hermes, September 1997.

[New97b] Paul Newton. Incorporating Hypertext using Fuzzy Components. In Workshop on Incor-
porating Hypertext Functionality into Software Systems (HTFIII), 1997. Held in conjunction
with Hypertext'97.

[NFS89] Sun Microsystems, Inc. NFS: Network File System Protocol Specification, March 1989.
Request for Comments (RFC): 1094.

[Nie90] Jakob Nielsen. Through Hypertext. Communcations Of The ACM, 33(3): 296-310, March
1990.

[NIS] Sun Microsystems. Network Information Service Plus (NIS+): An Enterprise Naming
Service. Available from the Sun Microsystems WWW site
(URL: http: // 192.9.48.5 / solaris /wp-nisplus /).

[NK89] James M. Nyce and Paul Kahn. Innovation, Pragmaticism and Technological Continuity:
Vannevar Bush's Memex. Journal of the American Society for Information Science, 40(3): 214-
220,1989.

[NLS96] Peter J. Nürnberg, John J. Leggett, and John L. Schnase. Hypermedia Operating Systems:
A New Paradigm for Computing. In Proceedings of Hypertext 1996, pages 194-202. ACM,
1996.

[NLS97] Peter J. Nürnberg, John J. Leggett, and Erich R. Schneider. As We Should Have Thought.
In Proceedings of Hypertext 1997, pages 96-102. ACM, April 1997.

[Noi93] Emanual G. Noik. Exploring Large Hyperdocuments: Fisheye Views of Nested Net-

works. In Proceedings of Hypertext 1993, pages 192-205. ACM, November 1993.

[Nye92] Adrian Nye. Xlib Programming Manual, volume 1. O'Reilly and Associates, Inc., 1992.

[Obja] Object Management Group, Inc. Common Facilities Architecture v4.0. Available from

the OMG WWW site (URL: http: //www. omg. org).

[Objb] Object Management Group, Inc. CORBAservices: Common Object Services Specification.

Available from the OMG WWW site (URL: http: //www. omg. org).

[Objc] Object Management Group, Inc. The Common Object Request Broker Architecture and

Specification v2.1. Available from the OMG WWW site (URL: http: / /www. omg. org).

[Obj97] Object Management Group, Inc. A Discussion of the Object Management Architecture.

Available from the OMG WWW site (URL: http: //www. omg. org), January 1997.

[ODA85] International Standards Organisation. Office Document Architecture (ODA) and Inter-

change Format. ISO/IEC 8613 Parts 1-8,1985.

[OHSa] The Open Hypermedia Systems Working Group WWW site

(URL: http: //www. csdl. tamu. edu/ohs).

[OKW96] Kasper Jsterbye and Uffe Kock Wiil. The Flag Taxonomy of Open Hypermedia Systems.

In Proceedings of Hypertext 1996, pages 129-139. ACM, March 1996.

[ON941 Kasper Osterbye and Kurt Nermark. An Interaction Engine for Rich Hypertexts. In

Proceedings of ECHT 1994, pages 167-176. ACM, September 1994.

[Opel OpenDoc documentation available from the IBM WWW site

(URL: http: //www. software. ibm. com/ad/opendoc).

257

Bibliography

[Par91] H. Van Dyke Parunak. Don't Link Me In: Set Based Hypermedia for Taxonomic Reason- ing. In Proceedings of Hypertext 1991, pages 233-242. ACM, December 1991.
[PD90] R. Pausch and J. Detmer. Node popularity as a hypertext browsing aid. Electronic Pub-

lishing: Origination, Dissemination and Design, 3(4): 227-234, November 1990.
[Pea89] Amy Pearl. Sun's Link Service: A Protocol For Open Linking. In Proceedings of the 1989

Hypertext Conference, pages 137-146, November 1989.
[PLGU95] T. Perez, P. Lopisteguy, J. Gutierrez, and I. Usandizaga. HyperTutor: From hypermedia

to intelligent adaptive hypermedia. In Proceedings of the World conference on educational
multimedia and hypermedia (ED-MEDIA '95), pages 529-534,1995.

[PT90] Xavier Pintado and Dennis Tsichritzis. SaTellite: Hypermedia Navigation by Affinity.
In Proceedings of the European Conference on Hypertext (ECHT 1990), pages 274-287. ACM,
November 1990.

[PYS90] Murugappan Palaniappan, Nicole Yankelovich, and Mark Sawtelle. Linking active an-
chors: a stage in the evolution of hypermedia. Hypermedia, 2(1): 47-66,1990.

[QV86] Vincent Quint and Irene Vatton. Grif: An Interactive System for Structured Document
Manipulation. In J. C. van Vliet, editor, Text Processing and Document Manipulation - Pro-
ceedings of the International Conference, pages 200-213, April 1986.

[Ras87] Jef Raskin. The Hyper in Hypertext. In Proceedings of Hypertext 1987, pages 325-330.
ACM, November 1987.

[RS92] Antoine Rizk and Louis Sauter. Multicard: An Open Hypermedia System. In Proceed-
ings of the 4th ACM European Conference on Hypertext (ECHT 1992), pages 4-10, Milano,
November 1992.

[RSG97] Gustavo Rossi, Daniel Schwabe, and Alejandra Garrido. Design Reuse in Hypermedia
Applications Development. In Proceedings of Hypertext 1997, pages 57-66. ACM, April

1997.

[RvOHB97] Lloyd Rutledge, Jacco van Ossenbruggen, Lynda Hardman, and Dick C. A. Bulterman.

Cooperative use of MHEG-5 and HyTime. In Proceedings of Hypertext and Hypermedia:

Products, Tool and Methods (H2PTM '97), pages 57-73. Hermes, September 1997.

[Sa189] G. Salton. Automatic Text Processing - The Transformation Analysis and Retrieval of Informa-

tion by Computer. Addison Wesley, 1989.

[SCG89] Frank M. Shipman, R. Jesse Chaney, and G. Anthony Gorry. Distributed Hypertext for

Collaborative Research: The Virtual Notebook System. In Proceedings of the 1989 Hyper-

text Conference, pages 129-135, November 1989.

[SF89] P. David Stotts and Richard Furuta. Petri-Net-Based Hypertext: Document Structure

with Browsing Semantics. ACM Transactions on Information Systems, 7(1): 3-29, January

1989.

[SGML85] International Standards Organisation. Standard Generalized Markup Language (SGML).

ISO/IEC IS 8879,1985.

[Shn87] Ben Shneiderman. User interface design for the Hyperties electronic encyclopaedia. In

Proceedings of Hypertext 1989, pages 189-194. ACM, November 1987.

[SL89] John L. Schnase and John J. Leggett. Computational Hypertext in Biological Modelling.

In Proceedings of Hypertext 1989, pages 181-197. ACM, November 1989.

[SLH+93] John L. Schnase, John J. Leggett, David L. Hicks, Peter J. Nuernberg, and J. Alfredo

Sanchez. Design and Implementation of the HB1 Hyperbase Management System. Elec-

tronic Publishing: Origination, Dissemination and Design, 6(1): 35-63, June 1993.

258

Bibliography

[SLH94] John L. Schnase, John J. Leggett, and David L. Hicks. Open Architectures For Integrated Hypermedia-Based Information Systems. In Proceedings of the Twenty-Seventh Annual Hawaii International Conference on System Sciences, pages 386-395, January 1994.
[SLHS93] John L. Schnase, John J. Leggett, David L. Hicks, and Ron L. Szabo. Semantic Data Mod-

eling of Hypermedia Associations. ACM Transactions on Information Systems, 11(1): 27-50,
January 1993.

[SM96] Sun Microsystems. Java Object Serialization Specification vl. 2. Available from the Java-
Soft WWW site (URL: http: //java. sun. com), December 1996.

[SM97] Sun Microsystems. Java Remote Method Invocation Specification vl. 42/jdk 1.2 beta 1.
Available from the JavaSoft WWW site (URL: http: //java. sun. com), October 1997.

[SM98a] Sun Microsystems. Java Message Service vO. 91. Available from the JavaSoft WWW site
(URL: http: //java. sun. com), March 1998.

[SM98b] Sun Microsystems. Java Transaction Specification v1.0. Available from the JavaSoft
WWW site (URL: http: //java. sun. com), March 1998.

[SM98c] Sun Microsystems. JavaSpace Specification vO. 999. Available from the JavaSoft WWW
site (URL: http: //java. sun. com), March 1998.

[SM98d] Sun Microsystems. JNDI: Java Naming and Directory Interface vl. l. Available from the
JavaSoft WWW site (URL: http: //java. sun. com), January 1998.

[Sny86a] Alan Snyder. Commonobjects: An overview. ACM SIGPLAN Notices, 21(10): 19-28, Oc-
tober 1986.

[Sny86b] Alan Snyder. Encapsulation and Inheritance in Object-Oriented Programming Lan-

guages. In Proceedings of Object Oriented Programming Systems, Languages and Applications
(OOPSLA) 1986, Hewlett-Packard Laboratories, October 1986. SIGPLAN.

[SP82] Zaw-Sing Su and Jon Postel. The Domain Naming Convention for Internet User Appli-

cationst, August 1982. Request for Comments (RFC): 819.

[Spi88] Robert Spinrad. Dynamic Documents. Harvard University Information Technology Quar-

terly, 7(1): 15-18,1988.

[SR95] Daniel Schwabe and Gustavo Rossi. The Object-Oriented Hypermedia Design Model.

Communications of the ACM, 38(8): 45-46, August 1995.

[SS90] H. A. Schutt and N. Streitz. HyperBase: A hypermedia engine based on a relational

database management system. In Proceedings of the European Conference on Hypertext

(ECHT 1990), pages 95-108, November 1990.

[SS91] John B. Smith and F. Donelson Smith. ABC: A Hypermedia System for Artifact-Based

Collaboration. In Proceedings of the 1991 Hypertext Proceedings, pages 179-192, December

1991.

[SSS93] Douglas E. Shackleford, John B. Smith, and F. Donelson Smith. The Architecture and

Implementation of a Distributed Hypermedia Storage System. In Proceedings of the 1993

Hypertext Conference, pages 1-13, November 1993.

[Sta] Richard Stallman. GNU Emacs Manual. Free Software Foundation, 6.0 edition.

[Sto9l] P. David Stotts. Dynamic Adaptation of Hypertext Structure. In Proceedings of Hypertext

1991, pages 219-231. ACM, December 1991.

[Str9l] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 1991.

[Str96] N. A. Streitz. Designing Collaboration Environments Based on the Common Ground of

Hypermedia and CSCW. Tutorial held in conjunction with Hypertext '96, March 1996.

259

Bibliography

[Sun95a] Sun Microsystems. The ONC+ Developer's Guide, 1995.
[Sun95b] Sun Microsystems, Inc. The Hotjava Browser: A White Paper. Available from Sun Mi-

crosystems, 1995.

[SWF87] John B. Smith, Stephen F. Weiss, and Gordon J. Ferguson. A Hypertext Writing Envi-
ronment and its Cognitive Basis. In Proceedings of Hypertext 1987, pages 195-214. ACM,
November 1987.

[TB90] Douglas B. Terry and Donald G. Baker. Active Tioga Documents: An Exploration of Two
Paradigms. Electronic Publishing: Origination, Dissemination and Design, 3(2): 105-122, May
1990.

[TBR93] Frank Wm. Tompa, G. Elizabeth Blake, and Darrell R. Raymond. Hypertext by Link-
Resolving Components. In Proceedings of the 1993 Hypertext Conference, pages 118-130,
November 1993.

[TD92] K. Tochtermann and G. Dittrich. Fishing for Clarity in Hyperdocuments with Enhanced
Fisheye-Views. In Proceedings of the 4th ACM European Conference on Hypertext (ECHT
1992), pages 212-221. ACM, November 1992.

[TMH87] Randall H. Trigg, Thomas P. Moran, and Frank G. Halasz. Adaptability and Tailorability
in NoteCards. In Proceedings of INTERACT 1987, pages 723-728. Elsevier Science Pub-
lishers, 1987.

[Tri83] Randall H. Trigg. A Network-Based Approach to Text Handling for the Online Scientific Com-

munity. PhD thesis, University of Maryland, 1983.

[Tri86] Randall H. Trigg. TEXTNET: a Network-Based Approach to Text Handling. ACM Trans-

actions on Office Information Systems, 4(1): 1-23, January 1986.

[TSH86] Randall H. Trigg, Lucy A. Suchman, and Frank G. Halasz. Supporting Collaboration In
Notecards. In Proceedings of Computer Supported Cooperative Work, pages 153-162, Austin,

Texas, December 1986.

[Uni93] International Telecommunications Union. The Directory - overview of concepts, models

and service, 1993.

[URL94] Internet Engineering Task Force. Uniform Resource Locators (URL), 1994. Request for

Comments (RFC): 1738.

[Wat97] Carolyn Watters. Link Levels in an Open Hypertext View. In Workshop on Incorporating

Hypertext Functionality into Software Systems (HTFIII), 1997. Held in conjunction with

Hypertext '97.

[Web] The Webcosm WWW site
(URL: http: //www. webcosm. com).

[Whi97] E. James Whitehead Jr. An Architectural Model for Application Integration in Open

Hypermedia Environments. In Proceedings of Hypertext 1997, pages 1-12. ACM, April

1997.

[Wii9lal Uffe Kock Wiil. Issues in the Design of EHTS: A Multiuser Hypertext System for Collab-

oration. Technical Report R 91-24, Department of Mathematics and Computer Science,

University of Aalborg, June 1991.

[Wii9lb] Uffe Kock Wiil. Using Events as Support for Data Sharing in Collaborative Work. In

Proceedings of the International Workshop on CSC W, pages 162-176,1991.

[WL92] Uffe Kock Wiil and John J. Leggett. Hyperform: Using Extensibility to Develop Dy-

namic, Open and Distributed Hypertext Systems. In Proceedings of the 4th ACM European

Conference on Hypertext (ECHT 1992), pages 251-261. ACM, November 1992.

260

Bibliography

[WL93] Uffe Kock Wiil and John J. Leggett. Concurrency Control in Collaborative Hypertext
Systems. In Proceedings of the 1993 Hypertext Conference, pages 14-24, November 1993.

[WL96] Uffe Kock Wiil and John J. Leggett. The HyperDisco Approach to Open Hypermedia
Systems. In Proceedings of the Hypertext 1996 Conference, pages 140-148, Washington, DC,
March 1996.

[WWWa] The World Wide Web Consortium WWW site (URL: http: //www. w3. org).
[VVWWb] Information on URIs, URLs and URNs available from the World Wide Web Consortium

WWW site (URL: http: //www. w3. org/addressing).
[WWW98a] World Wide Web Consortium (W3C). Cascading Style Sheets, level 2, May 1998. The

latest documentation is available from the W3C WWW site (URL: http: / /www. w3. org).
[WWW98b] World Wide Web Consortium (W3C). Document Object Model Specification v1.0, April

1998. Work in progress. The latest documentation is available from the W3C WWW site
(URL: http: //www. w3. org).

[WWW98c] World Wide Web Consortium (W3C). Extensible Markup Language (XML v1.0, February
1998. The latest documentation is available from the W3C WWW site
(URL: http: //www. w3. org).

[WWW98d] World Wide Web Consortium (W3C). Hypertext Markup Language (HTML) 4.0 Specifi-
cation, April 1998. The latest documentation is available from the W3C WWW site
(URL: http: //www. w3. org).

[Yah] The Yahoo! WWW site. http: //www. yahoo. com.

[YHK93] W. Yeong, T. Howes, and S. Kille. X. 500 Lightweight Directory Access Protocol, July 1993.
Request for Comments (RFC): 1487.

[YHMD88] Nicole Yankelovich, Bernard J. Haan, Norman K. Meyrowitz, and Steven M. Drucker. In-

termedia: The Concept and Construction of a Seamless Information Environment. Com-

puter, pages 81-96, January 1988.

[You90] Laura De Young. Linking Considered Harmful. In Proceedings of the European Conference

on Hypertext (ECHT 1990), pages 238-249. ACM, November 1990.

[Zad65] L. A. Zadeh. Fuzzy Sets. Information and Control, 8: 338-353,1965.

[Ze189] Polle T. Zellweger. Scripted Documents: A Hypermedia Path Mechanism. In Proceedings

of Hypertext 1989, pages 1-14. ACM, November 1989.

[ZR97] Hada Ziv and Debra J. Richardson. Adding Uncertainty to Hypertext Models of Soft-

ware Systems. In Workshop on Incorporating Hypertext Functionality into Software Systems

(HTFIII), 1997. Held in conjunction with Hypertext ' 97.

261

