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Abstract

This thesis considers the statistical analysis of diffusion tensor imaging (DTI).

DTI is an advanced magnetic resonance imaging (MRI) method that provides

a unique insight into biological microstructure in vivo by directionally describ-

ing the water molecular diffusion. We firstly develop a Bayesian multi-tensor

model with reparameterisation for capturing water diffusion at voxels with

one or more distinct fibre orientations. Our model substantially alleviates the

non-identifiability issue present in the standard multi-tensor model. A Markov

chain Monte Carlo (MCMC) algorithm is then developed to study the uncer-

tainty of the model parameters based on the posterior distribution. We ap-

ply the Bayesian method to Monte Carlo (MC) simulated datasets as well as

a healthy human brain dataset. A region containing crossing fibre bundles is

investigated using our multi-tensor model with automatic model selection.

A diffusion tensor, a covariance matrix related to the molecular displace-

ment at a particular voxel in the brain, is in the non-Euclidean space of 3 × 3

positive semidefinite symmetric matrices. We define the sample mean of tensor

data to be the Fréchet mean. We carry out the non-Euclidean statistical analysis

of diffusion tensor data. The primary focus is on the use of Procrustes size-

and-shape space. Comparisons are made with other non-Euclidean techniques,

including the log-Euclidean, Riemannian, Cholesky, root Euclidean and power

Euclidean methods. The weighted generalised Procrustes analysis has been de-

veloped to efficiently interpolate and smooth an arbitrary number of tensors

with the flexibility of controlling individual contributions. A new anisotropy

measure, Procrustes Anisotropy is defined and compared with other widely
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used anisotropy measures. All methods are illustrated through synthetic ex-

amples as well as white matter tractography of a healthy human brain.

Finally, we use Giné’s statistic to design uniformly distributed diffusion gra-

dient direction schemes with different numbers of directions. MC simulation

studies are carried out to compare effects of Giné’s and widely used Jones’

schemes on tensor estimation. We conclude by discussing potential areas for

further research.
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Chapter 1

Introduction

The research presented in this thesis is concerned with the statistical analysis

of diffusion tensor imaging (DTI). DTI is a relatively new magnetic resonance

imaging (MRI) method that captures the directionality and magnitude of wa-

ter diffusion in biological tissue using the diffusion tensor [Basser et al., 1994;

Basser and Pierpaoli, 1996; Le Bihan et al., 2001]. DTI has been applied into the

study of diseases such as multiple sclerosis [Hesseltine et al., 2006], schizophre-

nia [Buchsbaum et al., 2006], and stroke [Le Bihan et al., 2001]. White matter

tractography [Basser et al., 2000] is another promising application of DTI for in-

vestigating brain study.

1.1 Background to Diffusion MRI

1.1.1 Molecular diffusion

Diffusion (or Brownian motion) is the random motion of molecules due to ther-

mal energy. Hänggi and Marchesoni [2005] gave a good introduction to the

history of Brownian motion. Brownian motion was first observed by Robert

Brown in 1828 when he monitored the pollen grains moving randomly sus-

pended in water. The theoretical framework that could explain the experimen-

tally observed phenomenon of diffusion was set up by Einstein in 1905. The

theory was tested experimentally by Perrin in 1909, who in so doing proved

the kinetic molecular theory of gases. Perrin was awarded the 1926 Nobel Prize

1



1.1. Background to Diffusion MRI

Figure 1.1: Diffusion in two different types of medium. (a) isotopic diffusion
has similar displacements in all directions (b) anisotropic diffusion in struc-
tured medium has greater molecular displacement along one direction.

in physics for this work.

In this thesis, we focus on the water molecular diffusion in the tissue of the

human brain. The tissue of the human brain can be divided into three classes,

white matter, grey matter and cerebrospinal fluid. In grey matter and cerebrospinal

fluid water molecules can diffuse more or less freely in all directions (isotropic

diffusion) (see Figure 1.1 (a)). However, in white matter, molecular diffusion

is more restricted (see Figure 1.1 (b)). The longitudinally oriented tissue struc-

tures, the densely packed axons and in particular their membranes, which are

widely assumed to be the main barrier for water diffusion, hinder diffusion

perpendicular to the fibres [Kang et al., 2005]. This means that the molecular

diffusion is anisotropic, with a preferential direction. The diffusion carries in-

formation about the underlying anatomical architecture of living tissues. This

is exactly what we try to study using diffusion MRI.

The diffusion of water molecule can be modelled by a probability density

function (p.d.f.) P(r, t) which describes the probability of finding a molecule in

a certain position r at a particular time t, given the initial density P(r, 0). The

diffusion equation is given by [e.g., Crank, 1975]

∂P(r, t)
∂t

= ∇ · (D∇P(r, t)), (1.1.1)

2



1.1. Background to Diffusion MRI

where D is the collective diffusion coefficient, a 3 × 3 symmetric positive semi-

definite matrix. Some authors assume D to be positive definite [e.g., Kingsley,

2006a], i.e., eigenvalues of D are all strictly positive. In our study, eigenvalues

of D can be zeros. In the isotropic medium, D = 4dπt3/2I3×3 where Ik×k is the

k× k identity matrix, and d is a diffusion constant (positive scalar) determined

by the temperature, the mass of the molecules, and the nature (viscosity) of the

medium. The solution to the diffusion equation ( 1.1.1) in the isotropic case is

given by the Gaussian distribution

P(r, t) =
1√

4πtd
exp
− ‖ r ‖2

4td
. (1.1.2)

In the presence of anisotropy, diffusion can no longer be characterised by a

single scalar, but requires a more advanced mathematical quantity which can

fully describe the directional displacement of molecules. For the anisotropic

diffusion, the solution to Equation (1.1.1) is given by

P(r, t) =
1

(4πt)
3
2 |D| 12

exp(−rTD−1r
4t

), (1.1.3)

where D is the diffusion tensor. The covariance matrix of this trivariate Gaus-

sian distribution is 2Dt. The diffusion tensor D plays an important role in our

research. More details about D will be discussed in Section 1.2.1.

1.1.2 Overview of magnetic resonance imaging

It is helpful to understand the background of MRI before gaining a deeper in-

sight into Diffusion MRI.

Magnetic resonance imaging (MRI) is a widely used medical imaging tech-

nique to visualise the structure and function of the body. MRI has particular

3



1.1. Background to Diffusion MRI

advantages. Namely, it is non-invasive, uses non-ionising radiation, and has a

high soft-tissue resolution and discrimination in any imaging plane [Hagmann et al.,

2006]. As with all medical imaging techniques, MRI is a relatively new technol-

ogy with its foundations beginning during the year of 1946. The first successful

nuclear magnetic resonance experiment was made in 1946 independently by

Felix Bloch and Edward Purcell in the United States [Hornak, 2008]. For this

discovery Bloch and Purcell were awarded the Nobel Prize for Physics in 1952

[Vlaardingerbroek and den Boer, 1999, p.1]. Paul Lauterbur in 1973 demon-

strated magnetic resonance imaging on small test tube samples [Woodward,

2001, p.8]. In 1977, Peter Mansfield at the University of Nottingham developed

the echo-planar imaging (EPI) technique. For their discoveries concerning mag-

netic resonance imaging, Paul Lauterbur and Peter Mansfield were awarded the

Nobel Prize in Medicine in 2003 [e.g., see Waxman, 2005, p.16]. The first com-

mercial MR scanner in Europe (from Picker Ltd.) was installed in 1983 in the

Department of Diagnostic Radiology at the University of Manchester Medical

School [Yudofsky and Hales, 2004, p.91]. MRI has been in widespread use for

less than 20 years compared with over 100 years for X-rays. MRI is clearly a

young, but growing science.

What is magnetic resonance imaging? Let us explain it by explaining its fol-

lowing main ingredients: 1) the proton spins without and within a magnetic

field, 2) energetic interaction by applying an additional electromagnetic pulse, 3)

the MRI signal, and 4) how the MRI image is obtained.

As elementary particles, neutrons and protons have the intrinsic quantum

mechanical property of spin. The proton of the hydrogen (1H) nucleus is of the

most interest in clinical MRI. This is because each water molecule (H2O) has

two hydrogen atoms and water is abundant in most parts of the body, and also

because the hydrogen (1H) nucleus is one of the most MR-sensitive isotopes.

4



1.1. Background to Diffusion MRI

Figure 1.2: Proton precession. The “spinning” proton “rotates about” the axis
of the external magnetic field.

According to the Pauli exclusion principle [Casten, 1990, p.16], the net spin of

the nucleus is non-zero if the number of neutrons or protons is odd. Therefore

hydrogen nuclei have non-zero net spin, and they behave like rotating magnets,

represented by vectors. In the absence of an external magnetic field, the protons

present no net (that is to say macroscopic) magnetisation because the spins have

independent and randomly distributed directions.

However, in the presence of an external static magnetic field
−→
B0, the spins

align along
−→
B0, with the same or opposite orientation, which are called parallel

or anti-parallel spins, respectively. According to the Boltzmann statistic, within

the
−→
B0 magnetic field, there are more parallel spins (low energy state) than anti-

parallel spins (high energy state). Due to this slight excess of parallel spins, the

net magnetisation is non-zero, and the protons bias toward the lower energy

state. Meanwhile, the protons also rotate about the axis of
−→
B0 which is called

precession (see Figure 1.2). The frequency of this rotation is termed Larmor fre-

quency (precessional frequency) ω0 which is proportional to |
−→
B0|, i.e. ω0 = γB0,

where γ is a known constant, the gyroscopic ratio.

Exchange of energy between two systems at a specific frequency is called

resonance. Magnetic resonance corresponds to the energetic interaction between

spins and electromagnetic radio frequency (RF) pulse. In response to the RF

pulse, the protons absorb the electromagnetic energy of the pulse, which is

known as excitation. When the system returns from this state of imbalance to

5



1.1. Background to Diffusion MRI

equilibrium (relaxation), two independent forms of energy loss happen : T1 re-

laxation and T2 relaxation. Here T1 and T2 represent two time constants in these

two relaxations. During T1 relaxation, or spin-lattice relaxation, the return of

the excited nuclei from the high energy to the low energy state is associated

with the loss of energy to the surrounding nuclei. T2 relaxation, or spin-spin

relaxation, occurs when the spins in the high and low energy state exchange

energy but do not lose energy to the surrounding lattice.

During the relaxation, there is an emission of electromagnetic energy which

is the MRI signal detected by the scanner. The MRI signal provides the location

of protons and their concentration (proton density). In order to obtain a human

readable MRI image, Mansfield and Grannell [1973] proposed to describe the

MRI signal in a reciprocal space (the k space) and to transform the MRI signal

to the spatial domain by the inverse discrete Fourier transform. The resulting

k-space MRI images have signal intensity proportional to the proton density

[Schempp, 1998].

We now review some general concepts of measurement in medical imaging.

As mentioned before, an MR image is produced by the MRI scanner, and has an

intensity that depends on the characteristic of the scanner and the tissue. The

MR image comes from a slice of tissue, and this slice has a specified thickness

(usually 1-10 mm). Each voxel (volume element) in the image in fact derives

from a cuboidal box-shaped piece of tissue (see Figure 1.3 (a)). If an image con-

sists of a two-dimensional matrix, then each entry of the matrix is called a pixel

(for picture element), and represents a measurement over a 1-4 mm2 region. The

image intensity is the value of each pixel which is characterised by the concen-

tration of protons in the tissue (see Figure 1.3 (b)). A map can be formed by

computing a scalar quantity for each voxel of the same piece of tissue from one

or several MR images, which has the appearance of an image.

6



1.1. Background to Diffusion MRI

Figure 1.3: Elements in a medical image. (a) Voxel (blue) in the brain cutout
adapted from Mäkelä et al. [2001]. ’ ’Voxel’ stands for a volume element which
corresponds to a cuboidal piece of tissue. In Diffusion MRI, the actual voxel
size is commonly between 1 and 10 mm3 (the voxel shown in this Figure has
been magnified for demonstration). (b) ’Pixel’ refers to a picture element. The
image intensity of pixel 1 is different from that of pixel 2, hence the difference
in their brightness levels.

A device capable of producing MR images is called an ’MRI scanner’. An

MRI scanner has its own reference frame, see Figure 1.4 (a). Most human brain

MR images are acquired and displayed in three main orientations: coronal

(frontal-anterior), sagittal (left-right), axial (inferior-superior) orientations (see

Figure 1.4 (b)).

In conventional MRI, T1 and T2-weighted images are two widely used image

contrasts due to their sensitivities to specific tissue properties. Low T1 values

are displayed bright whereas low T2 values are displayed dark. Abnormal tis-

sues tend to have higher signal intensities in T1 and T2-weighted images due to

the increased water content.

1.1.3 Diffusion-weighted imaging

How does water molecular diffusion affect the MRI signal? Diffusion-weighted

imaging (DWI) introduces diffusion weighting along a specific direction and is a

modification of the conventional MRI. The pulsed-gradient spin-echo (PGSE)

sequence [Stejskal and Tanner, 1965; Callaghan, 1995], a phase step approach,

7



1.1. Background to Diffusion MRI

Figure 1.4: Scanner reference frame and viewing orientations. (a) Scanner ref-
erence frame [x, y, z] (adapted from Coyne [1999]) and (b) three viewing orien-
tations of the human head (adapted from Hiroshi [2009]).

has been used commonly for diffusion-weighted MRI. We have discussed that

in an external static magnetic field
−→
B0 maintained by the MRI scanner the net

magnetisation of the spins is non-zero (see Section 1.1.2). After applying a 90◦

RF pulse, the spins rotate perpendicularly to
−→
B0 in a transverse plane and then

precess along
−→
B0 at the Larmor frequency. Gradually the spins precessions to

dephase and the net magnetisation decays. At time t∗, the 180◦ RF pulse is

applied which attenuates the phase of each spin. The spins return to phase at

time TE (echo time) and the ’spin echo’ occurs. A DWI experiment is carried

out by applying diffusion gradients along specific directions (diffusion gradient

directions) during two periods, i.e. 0 to TE/2 and TE/2 to TE respectively. Let gi

be the ith diffusion gradient direction, where gi ∈ RP2 (gi ≡ −gi, and ‖ gi ‖=

1), i = 1, ..., N, and RPk is the real-projective space of unsigned directions in

Rk+1. A known parameter b (called the b-value) characterises the strength of the

diffusion gradient. The diffusion-weighted MRI signal can be described in a q-

space. A reciprocal space vector q is relative to the diffusion gradient direction

and a delta function of molecular displacement from the Fourier transform.

More details of q-space imaging have been discussed in Callaghan [1995].

DWI gives a reduced MRI signal (signal attenuation) in areas where the dif-
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1.1. Background to Diffusion MRI

Figure 1.5: Two raw DWI images (axial view) from FSL package along two
particular diffusion gradient directions. In (a) red region (darker) has higher
diffusion than that in the blue region (brighter); red region in (a) has higher
diffusion than that in (b).

fusion in that direction is higher [e.g., Kingsley, 2006c]. Figure 1.5 shows two

diffusion weighted images of a healthy human brain (inferior-superior or ax-

ial view), obtained by applying two distinct diffusion gradients. These two

images are viewed using the packages FSL (Analysis Group, FMRIB, Oxford,

UK) [Smith et al., 2004]. In FSL, the image is effectively threshold at a minimum

value and these voxels with lower values will be rendered transparent. For this

dataset, FSL automatically thresholds all values at 0. In Figure 1.5 (a), the red

region is darker than blue region, because the diffusion in red region is higher

than that in blue region. Comparing the same region (red) in Figure 1.5 (a) and

(b), the one in (a) is darker (higher diffusion) than that in (b) (lower diffusion).

DWI introduces different contrasts in MRI which provides a particular type

of visualisation of clinical images. However, DWI is very sensitive to the choice

of acquisition parameters in the scanner. Diffusion tensor imaging which is the

next generation of diffusion weighted imaging (DWI) will be discussed mainly

in this thesis.
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1.2. Principles of Diffusion Tensor Imaging

1.2 Principles of Diffusion Tensor Imaging

We have seen (Section1.1.1) that water molecular diffusion is anisotropic due

to the biological barriers (such as cell walls and nerve fibres). Water can dif-

fuse easily along one direction rather than others. This anisotropic diffusion

is of great interest because it carries much information about the underlying

anatomical architecture of living tissues. Diffusion tensor imaging (DTI) is

such a powerful diffusion MRI modality that directionally describes the water

molecular diffusion using the diffusion tensor D.

1.2.1 Diffusion tensor models

The diffusion tensor is a 3 × 3 covariance matrix which is estimated at each

voxel in the brain, and is obtained by fitting a physically-motivated model on

measurements from the Fourier transform of the molecule displacements [Basser et al.,

1994; Alexander, 2005].

In DTI, the water molecules at a voxel diffuse according to a multivariate

Gaussian model centred on the voxel and with covariance matrix 2D. The

displacement of a water molecule x ∈ R3 has probability density function

[Callaghan, 1995]

f (x) =
1

(2π)
3
2 |2D| 12

exp(−1
2

xT (2D)−1 x) (1.2.1)

where

D =


Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 . (1.2.2)

is the diffusion tensor D which is a 3× 3 symmetric positive semi-definite real
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1.2. Principles of Diffusion Tensor Imaging

matrix. An introduction to tensors is in Simmonds [1994]. Thus, a diffusion

tensor D is uniquely determined by the six parameters Dij ∈ R, i, j = x, y, z

which depend on the scanner reference frame, and are usually unknown and

need to be estimated from experimental data. The MR scanner has a set of

magnetic field gradients applied along N diffusion gradient directions g1, ..., gN

with scanner gradient parameter b mentioned in Section 1.1.3. The data at a

voxel consist of signals S = (S0, S1, S2, ..., SN) which are related to the Fourier

transform of the displacements in axial directions gj ∈ RP2, j = 1, ..., N and the

reading S0 is obtained with no gradient (b = 0). The Fourier transform in axial

direction g ∈ RP2 of the multivariate Gaussian displacement is given by

F (g) =
∫

exp(i
√

bgx) f (x)dx

= exp(−bgTDg) (1.2.3)

and the theoretical model for the mean µj of the resulting diffusion attenuated

MR signal Si is

µj = S0F (g)

= S0 exp(−bgT
j Dgj), j = 1, ..., N, (1.2.4)

where S0 > 0 is the unattenuated MR signal (i.e. b = 0) and is assumed to be

error-free.

Asymmetry of f (x) results in complex-valued measurements F (g) in Equa-

tion (1.2.3) [e.g. Alexander, 2005], often only the magnitude of F (g) is retained.

When the distribution of measurement noise in complex MR data are assumed

to be bivariate Gaussian with independent components and equal variance σ2,

the magnitude follows the Rician distribution [Gudbjartsson and Patz, 1995;

Basu et al., 2006], which converges to a Gaussian distribution as the signal to
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1.2. Principles of Diffusion Tensor Imaging

noise ratio (SNR) S0/σ → ∞ [e.g. Alexander, 2005]. A theoretical framework

has been presented for evaluating the effects of noise on estimation of diffusion

tensor at moderate to high SNR (20 to 100) [Anderson, 2001]. The non-Gaussian

diffusion behaviour that appears in the complex tissue microstructure which

can only be studied by applying a higher b-value [Basser, 2002]. In our study,

we consider Gaussian diffusion behaviour from the DWI dataset with lower

b-value (see Section 2.4.2.1).

For each voxel, the noise of the measured signal attenuation is denoted as

εi. It is commonly assumed that εi’s are independent and identically distributed

(i.i.d.) Gaussian variables, εi ∼ N(0, σ2). Thus, Si along the ith diffusion gradi-

ent direction is given by

Si = S0 exp(−bgT
i Dgi) + εi, i = 1, ..., N. (1.2.5)

Consequently, Si, i = 1, ..., N are independent Gaussian variables, i.e., Si ∼

N(µi, σ2). Here, the six coefficients of D and the variance σ2 of the noise are

unknown parameters.

Alternatively, we can assume that log(Si/S0) follows a Gaussian distribu-

tion, i.e.,

log(Si/S0) ∼ N(−bgT
i Dgi, σ2

G), i = 1, ..., N. (1.2.6)

Then Si follows a Log-Gaussian distribution, i.e., Si ∼ Log-Gaussian(µ∗i , σ2
L,i),

where

µ∗i = E(Si) = S0 exp(−bgT
i Dgi +

1
2

σ2
G), (1.2.7)

and

σ2
L,i = Var(Si) = S2

0 exp(−2bgT
i Dgi + σ2

G)[exp(σ2
G)− 1]. (1.2.8)

12
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1.2.2 Tensor estimations

For a measured set of signal attenuations S = (S1, S2, ..., SN) along N diffusion

gradient directions g1, ..., gN, there are a variety of approaches for estimating

the diffusion tensor under the assumption of Gaussian distribution of the noise,

such as the maximum likelihood estimation (MLE) and least squares methods.

Under the assumption of a Gaussian distribution for the noise εi and the

DTI model in Equation (1.2.5), the p.d.f. of Si is given by

f (Si) =
1√

2πσ2
exp

{
− 1

2σ2 (Si − µi)
2
}

, i = 1, ..., N, (1.2.9)

and S1, ..., SN are independent. The likelihood function of D (with 6 unknown

parameters) and σ2 given S is

L(D, σ2 | S) =
N

∏
i=1

f (Si)

=
1

(2πσ2)
N
2

exp

{
− 1

2σ2

N

∑
i=1

[Si − S0 exp
(
−bgT

i Dgi

)
]2

}
.

(1.2.10)

Furthermore, the log-likelihood function is

l(D, σ2 | S) = log L(D, σ2 | S)

= −N
2

log
(

2πσ2
)
− 1

2σ2

N

∑
i=1

[Si − S0 exp
(
−bgT

i Dgi

)
]2.

(1.2.11)

Thus, the maximum likelihood estimators (m.l.e.) of six coefficients of D and σ2

can be calculated by maximising L(D, σ2 | S) in Equation (1.2.10) or l(D, σ2 | S)

in Equation (1.2.11).

Least squares methods can also be used for estimating the diffusion tensor. The
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1.2. Principles of Diffusion Tensor Imaging

objective of least squares methods is to minimise the sum of squared residuals

(RSS) from fitting the estimated model to the data. RSS for the single tensor

model in Equation (1.2.5) is given by[Koay et al., 2006]

RSS =
N

∑
i=1

[Si − S0 exp(Xiβ)]2 (1.2.12)

where Xi is the ith row of

X = −b


g2

1x g2
1y g2

1z 2g1xg1y 2g1yg1z 2g1xg1z

: : : : : :

g2
Nx g2

Ny g2
Nz 2gNxgNy 2gNygNz 2gNxgNz

 , (1.2.13)

and β = (Dxx, Dyy, Dzz, Dxy, Dyz, Dxz)T is the vector representation of D.

Nonlinear least squares (NLLS) estimator of D can be obtained by minimising

RSS in Equation (1.2.12). To solve the NLLS problem, most routines need a

good starting value. However, the single tensor model is transformably linear,

and its linearised version does not require initialisation.

In the following, we apply linear least squares (LLS) method by linearising

Equation (1.2.12) as follows:

RSSLLS =
N

∑
i=1

(yi − Xiβ)2 (1.2.14)

where yi is the ith element of y = [log(S1/S0), ..., log(SN/S0)]T. Hence, the LLS

estimator of D is

βLLS = [XTX]−1XTy, (1.2.15)

which is unique if X is of full rank and N ≥ 6.

The LLS estimates of D are equivalent to the ML estimates of D under the

log-linear model (1.2.6) [Lindgren, 2003], although this does not take into ac-
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1.2. Principles of Diffusion Tensor Imaging

count the positive semi-definiteness.

In DTI studies, the diffusion tensor is assumed to be symmetric positive

semi-definite. However, the positive semi-definiteness of D may not be satis-

fied with LLS, NLLS and MLE methods. Constrained methods, such as con-

strained nonlinear least squares method (CNLLS), have been adapted to ensure

the positive semi-definiteness of D [Koay et al., 2006; Lenglet et al., 2009].

1.2.3 Eigensystem of the diffusion tensor

The eigensystem of the diffusion tensor plays an important role in DTI study.

The spectral decomposition of D is given by

D = EΛET

=
(

v1 v2 v3

) 
λ1 0 0

0 λ2 0

0 0 λ3




vT
1

vT
2

vT
3

 , (1.2.16)

where λ1 ≥ λ2 ≥ λ3 ≥ 0 are the three eigenvalues of D. Three column vectors

vi = (vix, viy, viz)T, i = 1, 2, 3 are the corresponding eigenvectors which are of

unit length and orthogonal. The eigensystem of D provides the available in-

formation about the local diffusion in a clearly interpretable manner. Namely,

the eigenvectors vi, i = 1, 2, 3 and eigenvalues λi, i = 1, 2, 3 correspond to main

diffusion directions and associated diffusivities (strengths of diffusion) respec-

tively. Thus, in particular λ1 is the maximum diffusivity over all directions.

Moreover, in voxels with a single dominant fibre orientation, v1 (the principal

eigenvector) is believed to be aligned with this orientation.

In a particular voxel, the eigensystem of the diffusion tensor may be inter-

preted graphically as an ellipsoidal surface (diffusion ellipsoid) with semi-major
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1.2. Principles of Diffusion Tensor Imaging

axis oriented along the v1 direction and semi-minor axes oriented along v2 and

v3. The lengths of the axes in this diffusion ellipsoid are given by the square

roots of the corresponding eigenvalues of each eigenvector, with semi-major

axis length
√

λ1 and semi-minor axis lengths
√

λ2 and
√

λ3.

In cases of isotropic diffusion, the diffusion ellipsoid takes on a spherical

shape, i.e. λ1 ≈ λ2 ≈ λ3 (see Figure 1.6 (a)). There are two extreme cases

of anisotropic diffusion. For linear anisotropic diffusion, λ1 � λ2 ≈ λ3 (see

Figure 1.6 (b)), the diffusion ellipsoid degenerates into a line pointing in the

v1 direction. In the case of planar anisotropic diffusion, the diffusion ellipsoid

becomes oblate, meaning that λ1 ≈ λ2 � λ3 (see Figure 1.6 (c)).

Figure 1.6: Diffusion ellipsoid is defined by eigensystem of D. (a) Spherical
ellipsoid: isotropic diffusion λ1 ≈ λ2 ≈ λ3. There are two extreme cases of
anisotropic diffusion: (b) linear diffusion (λ1 � λ2 ≈ λ3) and (c) planar diffu-
sion (λ1 ≈ λ2 � λ3).

1.2.4 Tensor reparameterisations

The positive semi-definiteness of D ensures the eigenvalues, which are propor-

tional to the diffusivities along the main diffusion directions, are non-negative.

However the MLE, LLS and NLLS estimators of D may have negative eigen-

values. To ensure the positive semi-definiteness, some reparameterisations of

D have been proposed.

In DTI, symmetry of D ensures that its eigenvalues are real, whereas pos-

itive semi-definiteness further ensures that they are non-negative. Hence, the
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square roots of the eigenvalues are real and proportional to the diffusivities

along the main diffusion directions. Since the parameterisation 1.2.2 does not

ensure (semi-) positive-definiteness, estimators of D (unless appropriately con-

strained) may have negative eigenvalues. This has been acknowledged in par-

ticular for the Maximum Likelihood (ML) and Least Square (LS) estimators [e.g.,

Koay et al., 2006]. We will introduce a new reparameterisation in Section 2.2.2 to

ensure the positive semi-definite symmetric structure of our estimator. Now we

review some commonly known parameterisations that fulfil these conditions.

The Cholesky decomposition [e.g., Koay et al., 2006] provides one such a repa-

rameterisation by decomposing D into a lower triangular matrix L and its trans-

pose, LT, i.e.,

D = LLT =


Lxx 0 0

Lxy Lyy 0

Lxz Lyz Lzz




Lxx Lxy Lxz

0 Lyy Lyz

0 0 Lzz

 , (1.2.17)

where Lii ∈ R+, i = x, y, z, and D is guaranteed to be positive semi-definite.

Note that Cholesky decomposition is unique if and only if D is strictly positive

definite.

Another reparameterisation of D is based on the spectral decomposition in

Equation (1.2.16). Let λi = exp γi, i = 1, 2, 3 where γi ∈ R. The spectral decom-

position of D is then given by

D = EΛET

=
(

v1 v2 v3

) 
exp γ1 0 0

0 exp γ2 0

0 0 exp γ3




vT
1

vT
2

vT
3

 ,

and exp γi > 0 ensures the positive definiteness of D. Note that the spectral
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Figure 1.7: Rotation from the scanner reference frame to the diffusion reference
frame. The rotation matrix E is defined in Equation (1.2.4). The scanner refer-
ence frame: [x, y, z]. The diffusion reference frame: [x′, y′, z′].

decomposition rotates the diagonalised tensor Λ from the scanner reference

frame [x, y, z] to the diffusion frame [x′, y′, z′] at each voxel by multiplying Λ on

the left by a rotation matrix E and on the right by ET. This rotation is described

in Figure 1.7. Then the rotation matrix E can be given by

E =
cos ψ cos φ− cos θ sin φ sin ψ cos ψ sin φ + cos θ cos φ sin ψ sin ψ sin θ

− sin ψ cos φ− cos θ sin φ cos ψ − sin ψ sin φ + cos θ cos φ cos ψ cos ψ sin θ

sin θ sin φ − sin θ cos φ cos θ

 ,

where ψ, φ ∈ [0, 2π) and θ ∈ [0, π). Therefore the reparameterisation of D is

given by a matrix of the six unknown parameters ψ, φ, θ, γ1, γ2 and γ3 which

guarantees the positive semi-definiteness of D. Clearly, this representation is

not unique even if the eigenvalues are distinct and ordered. Indeed, compo-

sition E ◦ A where E is any rotation and A is the rotation by π of any of the

principal planes of D yields the same tensor D = EΛET. Note also that this

representation has singularities. E.g., if θ = 0, then

E =


cos ψ cos φ− sin φ sin ψ cos ψ sin φ + cos φ sin ψ 0

− sin ψ cos φ− sin φ cos ψ − sin ψ sin φ + cos φ cos ψ 0

0 0 1

 ,
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and φ and ψ are not identifiable. But φ + ψ is identifiable, i.e.,

E =


cos (ψ + φ) sin(ψ + φ) 0

− sin (ψ + φ) cos (ψ + φ) 0

0 0 1

 .

This is one of many possible parameterisations of the rotation matrices. Also

E can contain reflection. Then E describes an orthogonal transformation (i.e.

rotation and reflection) and | E |= ±1.

1.3 Visualisation Methods

1.3.1 Tensor-derived image contrasts

A number of tensor-derived scalar indices have been devised to combine the

diffusion information contained in the eigensystem of D. Image contrasts based

on these scalar indices can be used for displaying the diffusion properties in the

tissue and the neuroanatomy. In this section, we will first introduce four com-

monly used diffusion anisotropy indices (DAI), namely mean diffusivity (MD),

fractional anisotropy (FA), relative anisotropy (RA) and volume ratio (VR). Then,

geometrical measures of diffusion and the fibre orientation maps will be intro-

duced.

Mean Diffusivity (MD)

An estimate that summarises the average diffusion properties of a voxel is given

by the average of the eigenvalues of D. It is normally referred to as the mean
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diffusivity (MD) (see Figure 1.8(a)) of the voxel:

MD =
λ1 + λ2 + λ3

3
. (1.3.1)

MD is greater in cerebrospinal fluid (CSF) and smaller in organised brain tissue

and has been suggested for CSF-related disease studies [Narr et al., 2009].

To characterise tissue anisotropy in vivo, a wide range of diffusion anisotropy

indices [Basser et al., 2000] have been investigated in terms of the eigenvalues

of D. All anisotropy indices which depend on D only through its eigenvalues

are rotationally invariant. Here we introduce three commonly used anisotropy

indices.

Fractional Anisotropy (FA)

Fractional anisotropy (FA) is one of the most popular DAI’s in the MRI commu-

nity. FA gives an estimate of the proportion of the ’magnitude’ of D that can

be ascribed to anisotropic diffusion [Kingsley, 2006b]. The definition of FA is

given by

FA =

√
3[(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2]√

2(λ2
1 + λ2

2 + λ2
3)

. (1.3.2)

FA ranges from 0 for complete isotropy to 1 for a linear anisotropy. For exam-

ple, when λ1 � λ2 = λ3, FA≈ 1. When λ1 = λ2 � λ3, FA≈ 1/
√

2. FA maps

are therefore intuitive to interpret when the white matter is rendered white and

grey matter - dark (see Figure 1.8(b)).

Relative Anisotropy (RA)

Relative anisotropy (RA) is a normalised standard deviation of the eigenvalues,
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and is given by equation below [Le Bihan et al., 2001]

RA =

√
(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2

√
3MD

. (1.3.3)

RA varies between 0 (isotropic diffusion) and
√

2 ( anisotropic diffusion). RA

represents the ratio of the anisotropic part of D to its isotropic part (see Fig-

ure 1.8(c)).

Volume Ratio (VR)

Volume Ratio (VR) defines the ratio between the volume of the diffusion el-

lipsoid and the volume of a sphere of diameter MD [Wheeler-Kingshott et al.,

2003]. VR can be represented as

VR =
λ1λ2λ3

MD3 . (1.3.4)

As the range of VR is from 1 (isotropic diffusion) to 0 ( anisotropic diffusion),

many authors prefer to use (1−VR) (see Figure 1.8(d)).

Thus, in FA, RA and 1-VR maps, the brighter the voxel, the higher its degree

of anisotropy. The main differences between FA, RA and VR lie in their sensitiv-

ity to anisotropy: FA is more sensitive to low and VR to high values of diffusion

anisotropy, and RA scales linearly for different levels of anisotropy [Sundgren et al.,

2004].

Geometrical measures of diffusion

The relationship between the eigenvalues of D can be used for classification of

the diffusion tensor according to its geometry. How close the tensor is to the

generic cases of line, plane and sphere is of interest. It is possible to classify the

diffusion tensor according to the generic shape of the diffusion ellipsoid. By us-
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Figure 1.8: Image contrasts from diffusion tensor imaging. (a) MD map, (b)
FA map, (c) RA map, (d) 1-VR map, (e) v1 orientation line map with FA back-
ground, and (f) v1 orientation colour coded map (where the colours red, green
and blue represent diffusion in the x,y,z axes respectively).
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ing the largest eigenvalue λ1 for normalisation, the following shape measures

are obtained for detection of the linear, planar and spherical profiles, respec-

tively [Westin et al., 2002]

cl =
λ1 − λ2

λ1
, cp =

λ2 − λ3

λ1
, cs =

λ3

λ1
.

All these three measures evidently range from 0 to 1, and

cl + cp + cs = 1.

Alternatively, measures can be normalised with the sum of eigenvalues λ1 +

λ2 + λ3 [Westin et al., 1997]

c∗l =
λ1 − λ2

λ1 + λ2 + λ3
, c∗p =

2(λ2 − λ3)
λ1 + λ2 + λ3

, c∗s =
3λ3

λ1 + λ2 + λ3

To ensure the measures remain in the [0, 1] range and sum up to one, the scal-

ing factors of 2 and 3 have been introduced in the planar and spherical cases,

respectively. The typical ranges of tensor-derived quantities of the human brain

in vivo have been reported in [Pierpaoli et al., 1996].

Fibre orientation maps

To demonstrate spatial, directional diffusion anisotropy, more sophisticated meth-

ods, such as line and colour coded orientation maps, have been produced based on

v1. Recall that the principal eigenvector v1 of D represents the main diffusion

direction and dominant fibre orientation at each voxel with a single dominant

fibre orientation. It is a common practice to display these vectors at each voxel

as lines superimposed on FA-coloured images (see Figure 1.8(e)).

Another advanced method that is commonly used in a medical context is
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the colour coded of the main fibre orientation. In this method, the information

contained in the tensor is reduced to v1, and a colour is assigned to each voxel

using v1 = (v1x, v1y, v1z)T. Namely, the absolute value of the v1x, v1y, v1z com-

ponents are used as intensities of the red, green, and blue channels. Therefore

a red pixel in such a map corresponds to a vector oriented in the left-right di-

rection, green - in the anterior-posterior direction and blue - in the feet-head

direction (see Figure 1.8(f)).

1.3.2 Fibre tractography

Assuming there is a single dominant orientation of fibre bundles at any given

voxel, the principal eigenvector of the diffusion tensor describing the orienta-

tion of the water diffusion is aligned with the dominant orientation of fibre bun-

dles at the voxel. This local fibre orientation information provided directly by

DTI can be used to reconstruct the pathways of major white matter structures

through the brain. This three-dimensional reconstruction process is known as

fibre tractography. A number of methods [Nucifora et al., 2007; McGraw et al.,

2004; Basser et al., 2000] have been developed to infer fibre structure and con-

nection between tissues or between brain regions. These methods fall into two

main groups: deterministic approaches (or streamline approaches) that define

a single route of connection for each start voxel, and probabilistic approaches

that attempt to establish the spatially distributed degree of connection in the

region of interest from a given start voxel.

Deterministic Fibre Tractography

In deterministic fibre tractography, the implicit underlying assumption is that

the principal eigenvector v1 forms a tangent to the space curve traced out by

the white matter tract [Basser et al., 2000]. There are three important steps in
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this approach.

First, we have to extract the local fibre orientation at each voxel. While using

v1 as an estimate of fibre orientation is straightforward, this estimate becomes

unreliable for isotropic or planar diffusion profiles. In these extreme cases, the

entire diffusion tensor will be needed.

The second step is to propagate a single pathway bi-directionally from a

seeding point (usually a voxel in the centre of the image), by moving in a di-

rection that is parallel with v1. However, this discrete path is not good because

fibre tracts are believed to be sufficiently smooth. The simplest way to solve

this issue is to convert the discrete voxel information into a continuous track-

ing trajectory (see Figure 1.9(a)). Therefore, sub-voxel estimates of the tensor

are required for this approach. These are obtained either by interpolation of

the raw DWI images before re-estimation of the diffusion tensor [Conturo et al.,

1999] or by interpolation of the diffusion tensors directly at appropriately cho-

sen sub-voxel locations within the imaged region [Basser et al., 2000].

The third step is termination of the propagation. There are two commonly

used criteria. The first is that tracking is terminated if the tract enters into a low-

anisotropy region (the threshold is chosen to differentiate white matter from

grey matter). The second is to stop tracking if a sharp bend occurs. That means

we fix a threshold of the angle that the path can turn through between one step

to the next. Figure 1.9(b) shows an example of the deterministic fibre tractogra-

phy in the corpus callosum region of interest starting from a voxel displayed in

green. We set 0.2 and 64◦ for FA and the angular thresholds respectively. This

tractography is obtained with the software package Camino [Cook et al., 2006].

Probabilistic Fibre Tractography

Uncertainty of the estimates of the main diffusion direction and fibre orienta-

tion exists due to the measurement noise, patient movement and imaging arti-
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Figure 1.9: Deterministic fibre tractography. (a) Primitive discrete tracking
(black) based on v1 (grey) is converted into a smooth trajectory (blue). (b) An
example of deterministic tracking (red) in the corpus callosum region starting
from voxel shown in green, obtained with the software package Camino.

facts. This is the main criticism levied at the deterministic fibre tractography.

Probabilistic fibre tracking incorporates a distribution of possible orientations

into the tracking methods which allows one to assign a confidence measure to

each fibre trajectory. Instead of reconstructing a single trajectory from a given

seeding voxel, probabilistic tractography propagates a large number of path-

ways from the seeding voxel. The probabilistic approaches can generate prob-

abilistic maps of fibre connectivity between brain regions using a voxel-based

connectivity index which is sensitive to structural changes [Behrens et al., 2003].

This voxel-based connectivity may reflect not only the integrity and coherence

of white matter tracts, but also tract geometry and length [Ciccarelli et al., 2006].

Criteria for the termination of probabilistic tracking is slightly different from

the deterministic approach. The latter uses both thresholds on anisotropy and

angular deviation. Probabilistic tractography method uses the angular devia-

tion between successive steps. This allows the reconstruction of trajectory from

and into low-anisotropy regions such as grey matter.
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1.4 Applications

Compared with conventional MRI, DTI can provide four types of new infor-

mation: new contrasts, white matter morphology, refined information about

anatomical locations, and connectivity [Mori, 2007]. We have mentioned some

image contrasts derived from the eigensystem of D in Section 1.3.1, such as

widely used FA map and fibre orientation maps. White matter morphology

is concerned with shape and size of white matter tracts, and DTI can be used

to assess these characteristics [Mori, 2007, p.132]. Deformation of tracts due to

tumour growth can also be captured. By providing an anatomical template of

the white matter, DTI improves our ability to understand the location of abnor-

mality [Pomara et al., 2001] in terms of white matter anatomy and functions.

Recall that DTI can measure white matter tract direction and thereby create

the possibility of non-invasive digital reconstruction of neuronal connectivity

[Tuch et al., 2003]. Since knowledge of neuronal connectivity is tremendously

important for interpreting functional MRI (fMRI) data, DTI can also serve to

complement fMRI [Olesen et al., 2003]. In this section, we review clinical appli-

cations of DTI for human brain studies which use this new modality.

1.4.1 Normal brain development

The human brain needs 10 or 12 years after birth to complete its general de-

velopment. The most dramatic changes during the maturation is in myeli-

nation in the first few years of life [Paus et al., 1999]. Large groups of myeli-

nated axons, which connect various regions in the brain, appear visibly as

white matter. Conventional MRI signal changes in a T2-weighted image may

reflect a decrease in brain water content and an increase in white matter myeli-

nation during brain maturation in children [Dong et al., 2004] (see an example
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Figure 1.10: Comparison of T2-weighted images and tensor-derived images
from diffusion MRI data. The T2-weighted images (a), FA (b) and fibre ori-
entation colour coded (scaling with FA) (c) maps of a three-day-old boy (top
row) and a one-year-old boy (bottom row) without brain abnormalities on clin-
ical MRI are from [Dong et al., 2004]. During the first year of brain matura-
tion, the white matter signal decreases on T2-weighted images; development
of central and peripheral white matter structures are identified with increasing
anisotropy on FA and fibre orientation maps.

in Figure 1.10 (a)). DTI with anisotropy analysis and fibre orientation detec-

tion provides more information in assessing brain development than conven-

tional MRI image contrast [Le Bihan et al., 2001]. The diffusion anisotropy in-

creases with increasing gestational age in some white matter regions in previ-

ous studies [e.g., Hüppi et al., 1998]. Increasing FA continues into childhood

and adolescence (see Figure 1.10(b)). This finding has been shown to correlate

with progressing myelination and increasing organisation of white matter fibre

tracts (see Figure 1.10(c)). Different observation from these normal develop-

ment changes in water diffusion may be an early marker of brain injury and

abnormality in newborns [Dong et al., 2004].
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1.4.2 White matter diseases

DTI has already shown its potential in white matter diseases, such as multi-

ple sclerosis [Tievsky et al., 1999], leukoencephalopathy, Wallerian degenera-

tion [Dong et al., 2004], and Alzheimer’s disease [Medina and Gaviria, 2008].

There has also been an increasing interest in the use of DTI to investigate

various tumour components, and to assess tumoural invasion from normal tis-

sue [Mori et al., 2002]. In general, a brain tumour is an abnormal growth of

cells within the brain or inside the skull. The goal of brain tumour surgery is

to maximise tumour resection while avoiding important adjacent brain struc-

tures since their inadvertent resection can lead to devastating neurological con-

sequences. Despite the information provided by conventional MRI in detecting

the location and in characterising the extent of tumours, radiological specifica-

tion and grading of a brain tumour is still limited [Sundgren et al., 2004]. Fibre

tractography can delineate deformation of white matter tracts in brain tumour

patients which is helpful for neurosurgical planning and postoperative assess-

ment [Mori, 2007].

Figure 1.11 [Lazar et al., 2006] shows image contrasts and fibre tractogra-

phies of a patient before and after surgical resection of a brain tumour. Figure

1.11 (a) is the preoperative fibre orientation colour coded (scaling with FA) map

which allows differentiation of the white matter tracts situated in the tumour

vicinity: the corpus callosum, cingulum bundles, and the corona radiata. The

tumour is visible as a dark region in the colour maps (white arrow). Tractogra-

phies of the cortico-spinal tracts before and after surgery (8 months after surgi-

cal resection) for the patient are shown in Figure 1.11 (b) and (c). Preoperatively,

in Figure 1.11 (b) at least a portion of the callosal body appears interrupted by

the tumour mass. The colour of the fibre trajectories relates to local anisotropy,

with yellow indicating high anisotropy and dark red, low anisotropy. Deviation
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Figure 1.11: Image contrasts and fibre tractographies of a patient before and
after surgical resection of brain tumour from [Lazar et al., 2006]. (a): the pre-
operative fibre orientation colour coded (scaling with FA) map. (b) and (c) are
tractographies of the cortico-spinal tracts before and after surgery. (d) and (e)
are the corresponding tract positions superimposed onto axial FA maps.

and deformation of the ipsilateral tract in the tumour proximity are apparent

in the preoperative tractogram (yellow arrow). The appearance of the corpus

callosum is improved, as shown by higher interhemispheric tract symmetry

in Figure 1.11 (c). The corresponding tract positions are shown superimposed

onto axial FA maps in (d) and (e), respectively.

1.4.3 Brain connectivity

DTI provides directional information of fibre orientation at the voxel which can

be used for brain connectivity studies. DTI is able to describe anatomical con-

nectivity [Lori et al., 2002] by grouping together neighbouring voxels based on a

similarity measure characterising voxels’ relative principal diffusion directions.
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This anatomical connectivity study groups voxels corresponding to anatomical

tracts. DTI can also be used for providing the route of connection between

regions by tracing axonal trajectories [Hagmann et al., 2003]. Hagmann et al.

[2008] applied network analysis into the large-scale structural brain connectiv-

ity of human cerebral cortex. In Hagmann’s paper a comparison of diffusion

imaging and functional MRI (fMRI) data was made for revealing a close rela-

tionship between structural and functional connections in the regions forming

the structure cores.

To visualise anatomic connections between different parts of the brain on

an individual basis is an important potential application of DTI. Brain tissue is

composed of white matter and grey matter. Most normal brain functions re-

quire that specific grey matter regions communicate with each other via white

matter fibre pathways. Therefore, studies of the white matter connections be-

tween different parts of the brain is critical to understanding human brain func-

tion and the establishment of networks underlying cognitive processes [Lori et al.,

2002]. However, this issue is difficult, as one has to infer continuity of fibre ori-

entation from voxel to voxel. In out study, we will focus on fibre tractography.

One may deal with fibres kissing, crossing and branching or merging (see Fig-

ure 1.12).

1.5 Thesis Aims and Organisation

The three main aims of this thesis are (1) to model water molecular diffusion

in the regions containing one or more dominant fibre orientations and carry

out statistical inference of parameters of interest, (2) to define statistics of dif-

fusion tensor data using different metrics and apply these metrics to analyse

the tensor field, and (3) to design diffusion gradient directions with statistics of
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Figure 1.12: Three patterns of fibre bundles. (a) fibres are kissing (b) crossing
and (c) branching or merging at the voxel.

uniformity. We also aim to apply all our methodologies to simulated diffusion

image data and real data from the human brain.

This thesis is divided into five chapters. In Chapter 1, we briefly review the

background to MRI and diffusion-weighted imaging (DWI), have provided the

requisite knowledge of DTI, such as the diffusion tensor model and diffusion

tensor eigensystem, and introduce the main applications of DTI.

In Chapter 2, a multi-tensor model is developed for diffusion tensor image

data. A new parameterisation method guarantees the symmetric positive semi-

definiteness of the diffusion tensor. We set up the Bayesian framework for pa-

rameter estimation from the multi-tensor model. To investigate the uncertainty

of fibre orientations, Markov chain Monte Carlo (MCMC) methods are used to

obtain the credible cone of fibre orientations. A model selection criterion has

also been applied to a healthy human brain dataset.

Since diffusion MRI is a relatively low resolution modality, advanced ten-

sor processing methods such as non-Euclidean interpolation, have been con-

sidered. Yet, reliable and accurate estimation of the highly complex white mat-

ter architecture of the brain remains a challenge despite the many advances in

modelling, processing, and analysis of diffusion MRI data. Once a sample of
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diffusion tensors is available (e.g. generated with MCMC method mentioned

in Chapter 2) we wish to estimate the population mean and then carry out

statistical inference. In Chapter 3, the statistical analysis of diffusion tensor

data is considered which takes into account the non-Euclidean nature of the

space of tensors (positive semi-definite symmetric matrices). We define what is

meant by a mean covariance matrix in a non-Euclidean space, using the Fréchet

mean. We also review some recently proposed techniques based on matrix log-

arithms and also consider estimators based on matrix decompositions, such as

the Cholesky decomposition and the matrix square root. We propose an alter-

native approach, Procrustes analysis, to process the tensor field of the human

brain.

The accuracy of DTI measurements depends on the diffusion gradient di-

rection scheme applied. It is normally assumed that the optimum set will have

uniformly distributed directions over a sphere due to equal noise level along

each gradient direction. However, there appear to be several distinct notions of

uniformity in this context. For example, Jones et al. [1999] proposed to arrange

the directions uniformly in 3-dimensional space using the analogy of repulsive

forces. In Chapter 4, we design a series of uniform schemes with various num-

bers of directions by optimising the spatial uniformity of the directions. By

spatial uniformity we mean that the points have equal probability density over

the sphere with respect to the surface area measure [Mardia and Jupp, 2000,

p167].

Finally, in Chapter 5 we conclude by discussing the main results drawn from

this research. Also possible areas for further work are presented.

In this thesis, the results and graphics have been obtained using the MAT-

LAB (R2009a, The MathWorks, Inc., Natick, Massachusetts, USA). The pack-

ages FSL (Analysis Group, FMRIB, Oxford, UK) [Smith et al., 2004] and Camino
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(Centre for Medical Image Computing, University of London, UK) [Cook et al.,

2006] are used for viewing DWI image data and fibre tracking respectively.
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Chapter 2

Bayesian Multi-tensor Model with

Reparameterisation

2.1 Introduction

In DTI study if fibre bundles at a voxel orientate along only one dominant di-

rection, then water molecules at that voxel will diffuse along that dominant

fibre orientation. Recall that the diffusion behaviour at that voxel can be char-

acterised with the single tensor model (see Section 1.2.1).

Si = µi + εi

= S0 exp(−bgT
i Dgi) + εi, i = 1, ..., N (2.1.1)

where S0 > 0 is the signal attenuation without diffusion gradient applied (i.e.

b = 0). Notation used in the single tensor model is summarised in Table 2.1.

A variety of approaches for estimating the diffusion tensor, such as maxi-

mum likelihood estimation (MLE) and least squares methods have been dis-

cussed in Section 1.2.1.
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Table 2.1: Glossary of terms in single tensor model

Term Meaning Properties
gi the ith diffusion gradient direction gi ∈ RP2, gi ≡ −gi, and

‖ gi ‖= 1
b an known parameter characterising b ≥ 0

the strength of diffusion gradient
εi the noise of the measured signal i.i.d. Gaussian variables,

εi ∼ N(0, σ2)
µi the mean of the measured diffusion µi > 0

weighted signal
Si the measured diffusion weighted independent Gaussian

signal corresponding to gi variables, Si ∼ N(µi, σ2)
S0 the signal without diffusion gradient S0 > 0
N the total number of diffusion N = 1, 2, 3, ......

gradient directions
D the diffusion tensor a 3× 3 symmetric and

positive semi-definite matrix

2.1.1 Multiple compartment model

The single tensor model defined by Equation (2.1.1) is commonly applied under

the assumption that the principal eigenvector v1 is aligned along the dominant

fibre orientation in a voxel. However, there are regions in the brain where more

than one distinct fibre orientation is captured in a single voxel.

Molecular diffusion which takes place in m ≥ 1 distinct compartments en-

closed in a single voxel, is commonly assumed to have no molecular exchange

between compartments. Therefore, such diffusion is commonly described by

a mixture of (trivariate centred) Gaussian distributions, in which diffusion in

compartment j would be represented by a Gaussian with covariance matrix

2tDj, j = 1, ..., m. Using linearity of the Fourier transform in this case, the

mean µi of the ith measured diffusion-weighted signal can be modelled as
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[Alexander, 2005]:

µi =
m

∑
j=1

ajS0 exp(−bgT
i Djgi), i = 1, ..., N. (2.1.2)

where the weights aj ∈ (0, 1], ∑m
j=1 aj = 1, of the individual compartments are

also known as ’volume fractions’ which generally also need to be estimated. We

can assume that the noise of the measured signal attenuation ε1, ..., εn are i.i.d.

Gaussian variables, i.e. εi ∼ N(0, σ2). Thus, Si along the ith diffusion gradient

direction is given by

Si =
m

∑
j=1

ajS0 exp(−bgT
i Djgi) + εi, i = 1, ..., N. (2.1.3)

Appropriately constrained nonlinear optimisation has been used to fit the model

to the data [Alexander, 2005; Lenglet et al., 2009].

General problems accompany the use of multiple compartment models [Alexander,

2006]. First, the choice of the number of compartments m presents a model se-

lection problem. Second, the constrained nonlinear fitting procedure is unstable

and starting-point dependent due to the local minima in the objective function.

Thirdly there is the problem of non-identifiability of the parameters which does

not appear to have been fully appreciated previously in the literature. In Sec-

tion 2.1.2 below we address the third problem with these models.

2.1.2 Non-identifiability of multiple compartment model

The term identifiability has been used in economics [e.g. Hsiao, 1983], engi-

neering, statistics [e.g. Paulino and de Bragança Pereira, 1994] and mathemat-

ical biology [e.g. Cobelli and DiStefano, 1980; van den Hof, 1998]. In this sec-

tion, we first introduce the identifiability of parameters and a model. Then we
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will prove that the multiple compartment model based on Equation (2.1.2) is

nonidentifiable.

Definition 2.1. Consider a model {Pθ}θ∈Θ where parameters θ ∈ Θ ⊆ Rp, and

{Pθ}θ∈Θ is a family of probability distributions describing observed data. A

point θ in the parameter space Θ of the model is called identifiable if for any

other point θ′ ∈ Θ, the equality of the distributions Pθ and Pθ′ implies θ = θ′.

Definition 2.2. Model {Pθ}θ∈Θ is said to be identifiable if every point θ ∈ Θ is

identifiable relative to this model.

In light of Definition 2.1 and Definition 2.2, the multiple compartment model

(with the assumption that S0 is observed noise-free, and the noise is homoscedas-

tic Gaussian) is written as follows: {Pθ}where θ = {a1, a2, ..., am, D1, D2, ..., Dm, σ2}

and Pθ is the multivariate Gaussian distribution with mean vector µ = (µ1, µ2, ...µN)T

and the covariance matrix σ2IN×N.

Let θ1 = {a1, a2, ..., am, D1, D2, ..., Dm} be a setting of parameters in the mul-

tiple compartment model ( 2.1.2). That is,

µi =
m

∑
j=1

ajS0 exp(−bgT
i Djgi), i = 1, ..., N, (2.1.4)

where aj ∈ (0, 1], ∑m
j=1 aj = 1, and Dj is the diffusion tensor of the jth compart-

ment, j = 1, ..., m. Let λ1,j ≥ λ2,j ≥ λ3,j ≥ 0 be the three eigenvalues of Dj. Note

that identifiability will be considered up to permutations on the indexes of the

components.

Lemma 2.1. If b > 0, and cj, j = 1, ..., m satisfy

aj

exp(bλ3,j)
≤ cj ≤ 1, j = 1, ..., m, (2.1.5)

38



2.1. Introduction

and
m

∑
j=1

cj = 1, (2.1.6)

then the matrix Dj −
log(aj/cj)

b I3×3, j = 1, ..., m is symmetric and positive semi-

definite (diffusion tensors).

Proof. It is obvious that D∗j = Dj −
log(aj/cj)

b I3×3 is symmetric.

Since Dj, j = 1, ..., m is symmetric, the eigendecomposition of Dj is given by

Dj = EjΛjET
j

= (v1,j, v2,j, v3,j)


λ1,j 0 0

0 λ2,j 0

0 0 λ3,j




vT
1,j

vT
2,j

vT
3,j

 , (2.1.7)

where λ1,j ≥ λ2,j ≥ λ3,j ≥ 0 are three eigenvalues of Dj, and vi,j, i = 1, 2, 3 is

the eigenvector corresponding to λi,j.

Consequently, the eigendecomposition of D∗j is given by

D∗j = Dj −
log(aj/cj)

b
I3×3

= EjΛ jET
j − Ej

log(aj/cj)
b

I3×3ET
j

= Ej


λ1,j −

log(aj/cj)
b 0 0

0 λ2,j −
log(aj/cj)

b 0

0 0 λ3,j −
log(aj/cj)

b

 ET
j .

(2.1.8)

Hence, λ∗i,j = λi,j −
log(aj/cj)

b is the ith eigenvalue of D∗j . It is simple to see that

λ∗1,j ≥ λ∗2,j ≥ λ∗3,j.
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Since c1, ..., cm satisfy inequality (2.1.5), we know

exp(bλ3,j) ≥ aj/cj

⇐⇒ bλ3,j ≥ log
(
aj/cj

)
⇐⇒ λ3,j −

log (aj/cj)
b ≥ 0

⇐⇒ λ∗3,j ≥ 0. (2.1.9)

Hence, it is true that λ∗1,j ≥ λ∗2,j ≥ λ∗3,j ≥ 0, i.e., three eigenvalues of D∗j are

nonnegative. This completes the proof.

For the multiple compartment model (2.1.2), we can always find a distinct

set of parameter values θ2 = {c1, c2, ..., cm, D1 − h1I3×3, D2 − h2I3×3, ..., Dm − hmI3×3}

where hj =
log(aj/cj)

b ,
aj

exp(bλj,3)
≤ cj ≤ 1 and ∑m

j=1 cj = 1 which give the same

model. Hence, θ2 6= θ1 but Pθ1 = Pθ2 and therefore we have the result: The

multiple compartment model (2.1.2) is non-identifiable.

Example 2.1. Let us fix b = S0 = 1, and m = 2. Let a1 = 0.2, then a2 = 0.8. D1

and D2 are set as follows:

µi = 0.2× exp

−gT
i


1 0 0

0 2 0

0 0 3

 gi

 + 0.8× exp

−gT
i


4 0 0

0 5 0

0 0 1

 gi

 .

(2.1.10)
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Since gT
i gi = 1, µi in Equation (2.1.10) can also be written as follows:

µi = 0.1× exp

−gT
i


1− log 2 0 0

0 2− log 2 0

0 0 3− log 2

 gi

 +

0.9× exp

−gT
i


4 + log 9

8 0 0

0 5 + log 9
8 0

0 0 1 + log 9
8

 gi

 .

Evidently, we have two distinct settings of parameters which result in the iden-

tical model. Thus, the multiple compartment model is non-identifiable in this

example, i.e., the solution to the parameter in multiple compartment model is

not unique.

2.2 Bayesian Multi-tensor Model with Reparameter-

isation

2.2.1 A multi-tensor model

In this subsection, we will develop a new model for capturing the diffusion

behaviours at a voxel based on the multiple compartment model which is es-

sentially identifiable.

If there is no diffusion gradient applied for the experiment i.e. b = 0, then it

is clear that

µi =
m

∑
j=1

ajS0

= S0. (2.2.1)
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Consider a general DWI experiment with diffusion gradients applied i.e.

b > 0. From the multiple compartment model, we can derive

µi =
m

∑
j=1

ajS0 exp(−bgT
i Djgi)

=
m

∑
j=1

S0 exp
{
−bgT

i Djgi + log aj

}
=

m

∑
j=1

S0 exp
{
−bgT

i Djgi − bgT
i (−

log aj

b
)I3×3gi

}
=

m

∑
j=1

S0 exp
{
−bgT

i (Dj −
log aj

b
I3×3)gi

}
, i = 1, ..., N. (2.2.2)

Let qj = − log aj
b , j = 1, ..., m. Since 0 < aj ≤ 1 and b > 0, qj ≥ 0. Now we define

D∗j = Dj + qjI3×3, j = 1, ..., m. (2.2.3)

Applying Lemma 2.1 (with cj = 1) gives that D∗j is symmetric and positive

semi-definite, if Dj are positive semi-definite.

Hence, D∗j can be a diffusion tensor which is used to capture the diffusion

behaviour in the jth compartment.

Now we can define the multi-tensor model given by

µi =

{ m
∑

j=1
S0 exp(−bgT

i D∗j gi) if b > 0

S0 if b = 0.
(2.2.4)

In this multi-tensor model (2.2.4), the diffusion tensor D∗j not only captures

the diffusion property in the jth compartment, but also contains the fraction of

contribution to the overall signal at the voxel.

Since D∗j is a general diffusion tensor, we can replace it with Dj, and rewrite
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the multi-tensor model to be

µi =

{ m
∑

j=1
S0 exp(−bgT

i Djgi) if b > 0

S0 if b = 0.
(2.2.5)

So, we largely circumvent the problem of non-identifiability by not including

the volume fraction explicitly.

2.2.2 A new reparameterisation

In order to guarantee the symmetric positive semi-definiteness of Dj, we repa-

rameterize Dj by decomposing it to a general 3 × 3 matrix Qj and QT
j , i.e.,

Dj = QjQT
j where

Qj =


Q11,j Q12,j Q13,j

Q21,j Q22,j Q23,j

Q31,j Q32,j Q33,j

 . (2.2.6)

Note that this is over-parameterised now.

Then the multi-tensor model is given by

µi =

{ m
∑

j=1
S0 exp(−bgT

i QjQT
j gi) if b > 0

S0 if b = 0.
(2.2.7)

Note that Qj and QjRj where Rj ∈ O(3) result in the same model, and O(3)

is the space of 3× 3 orthogonal matrices. That is,

Dj = QjQT
j

= (QjRj)(QjRj)T, j = 1, ..., m. (2.2.8)

So the terms in Qj are essentially identifiable only up to Rj. Note that the
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Cholesky decomposition is then a special case of our parameterisation, i.e.,

Qj = Lj where Lj is lower triangular with positive diagonal entries.

The advantage of this reparameterisation is that we can carry out uncon-

strained optimisation methods to solve the multi-tensor model. The penalty

is that the dimension of the parameter space increases from 6 for Dj to 9 for

Qj. However, since most voxels in our studies have at most two compartments,

these few extra parameters will not influence much our DTI studies. In fact,

we will control these extra degrees of freedom by specifying appropriate prior

distributions when performing Bayesian estimation (see next section 2.2.3).

2.2.3 Bayesian framework

Bayesian methods provide a complete paradigm for both statistical inference

and decision making under uncertainty, solving many of the difficulties faced

by conventional statistical methods, and extending the applicability of statisti-

cal methods [Bernardo and Smith, 2009]. In particular, Bayesian methods make

it possible to incorporate scientific prior information in the analysis (by means

of the prior distribution) and may be applied to problems whose structure is

too complex for conventional methods to be able to handle. Bayesian estima-

tion methods can be used for the DTI study, in particular for estimating multiple

diffusion tensors [Behrens et al., 2007]. In Behrens et al. [2007], a partial volume

model was used, where the signal is split into infinitely anisotropic compo-

nents for fibre orientations, and single isotropic components. The parameters

of interest are fibre orientation and volume fractions from each diffusion popu-

lation which are different from the parameters (the decomposition of diffusion

tensors) used in our multi-tensor model (see Section 2.2.1).

Bayes’ theorem, the basis of Bayesian inference, tells us that the posterior

probability density function for parameters posterior to the data collection is
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proportional to the product of the density for parameters prior to the data col-

lection and the likelihood for parameters given the data. That is,

posterior density ∝ likelihood function× prior density. (2.2.9)

Bayes’ theorem precisely specifies how the modification of the uncertainty about

the parameters in the light of evidence should be made.

In our DTI study, the essence of the Bayesian approach is as follows:

Treat the collection of the unknown parameters Θ = {Q1, ..., Qm, σ2} as a

random vector and encode all prior information (i.e. before measuring the sig-

nal intensities S = (S1, S2, ..., SN)T) about Θ into the prior distribution of Θ.

Then, update this prior information and thus produce the posterior probability

distribution of Θ and to draw appropriate inference based on this distribution.

Thus, there are four key steps to the Bayesian approach:

1. Specification of the likelihood function L(Θ | S);

2. determination of prior distributions of Q1,...,Qm and σ2 respectively, and

specification of the full joint distribution of Θ;

3. calculation of posterior distribution, p(Θ | S) from Bayes’ Theorem;

4. drawing inferences from p(Θ | S).

2.2.3.1 Single tensor estimation

First let us consider the simple case where there is only one dominant fibre

orientation at a voxel. This means water molecules diffuse mainly along one

direction (the fibre orientation). Then, the single tensor model (multi-tensor
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2.2. Bayesian Multi-tensor Model with Reparameterisation

model with m = 1) is given by

Si = µi + εi

= S0 exp(−bgT
i QQTgi) + εi, i = 1, ..., N. (2.2.10)

where εi’s are i.i.d. Gaussian noise, εi ∼ N(0, σ2
1 ). Consequently, Si’s are inde-

pendent Gaussian variables, i.e. Si ∼ N(µi, σ2
1 ). Thus, the parameter space of

the single tensor model is Θ1 = (Q, σ2
1 ) where Q has nine unknown entries.

The likelihood function of the parameters plays a very important role in

Bayesian analysis. In our study, the likelihood function of Θ1 represents the

information about Θ1 coming from the measured DWI image data.

Since Si’s are independent and follow N(µi, σ2
1 ), the likelihood function of

Θ1 = (Q, σ2
1 ) given signal intensity data is given by

L(Q, σ2
1 | S) =

N

∏
i=1

f (Si | Q, σ2
1 )

= (
1√

2πσ2
1

)N exp{− 1
2σ2

1

N

∑
i=1

[Si − S0 exp(−bgT
i QQTgT

i )]2}.

(2.2.11)

We assume that a priori the individual parameters Q11, Q12, . . . , Q33, σ2
1 are dis-

tributed independently, and we will choose their prior distributions according

to our initial beliefs. Thus, we assume that the prior distribution of Q is a mul-

tivariate Gaussian distribution, i.e.

vec(Q) ∼ N9(vec(I3×3), ξ2I9×9) (2.2.12)

where vec(A) vectorises an n × m matrix A to be a column vector by stacking

the columns of A, and I3×3 and I9×9 are the 3× 3 and 9× 9 identity matrices.
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Or, specifically, the prior distribution of Q is

p(Q) = (2πξ2)−
9
2 exp

{
− 1

2ξ2 (vec(Q)− vec(I3×3))T(vec(Q)− vec(I3×3))
}

.

(2.2.13)

By choosing ξ to be large, we make the prior virtually noninformative.

For the variance of Gaussian noise σ2
1 , a suitable prior is [Lee, 1991]

σ2
1 ∼ Inv-Gamma(α, β), (2.2.14)

i.e.,

p(σ2
1 ) =

βα

Γ(α)
(σ2

1 )−α−1 exp(−β/σ2
1 ) (2.2.15)

where Γ() is the Gamma function, and α, β ∈ R+.

Since the prior distributions of Q and σ2
1 are independent, the full joint prior

distribution is given by

p(Q, σ2
1 ) = p(Q)p(σ2

1 )

∝ ξ−9(σ2
1 )−α−1 βα

Γ(α)
exp{− 1

2ξ2 (vec(Q)− vec(I3×3))T(vec(Q)− vec(I3×3))−

β/σ2
1}. (2.2.16)

By Bayes’ theorem (2.2.9), the posterior distribution of parameters (σ1 and

Q) has density given by

p(Q, σ2
1 | S) ∝ (σ2

1 )−
N
2 −α−1 exp{− 1

2σ2
1

(2β + RSS1)−

1
2ξ2 trace((Q− I3×3)(Q− I3×3)

T)}, (2.2.17)

where RSS1 =
N
∑

i=1
[Si − S0 exp(−bgT

i QQTgi)]2 is the sum of squared residuals.

Consequently, the log-posterior distribution of parameters (σ1 and Q) has
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the following form:

log p(Q, σ2
1 | S) ∝ −(

N
2

+ α + 1) log σ2
1 + {− 1

2σ2
1
(2β + RSS1)−

1
2ξ2 trace((Q− I3×3)(Q− I3×3)

T)}. (2.2.18)

The estimates of σ1 and Q (and, subsequently estimates of D) can be obtained

by maximising the log-posterior density (see Equation (2.2.18)). I.e.,

(Q̂, σ̂1
2) = arg max

Q,σ2
1

{
p(Q, σ2

1 | S)
}

. (2.2.19)

Then, D̂ = Q̂Q̂T. In practice, we use a function fminsearch in MATLAB (R2009a,

The MathWorks, Inc., Natick, Massachusetts, USA) to solve this optimisation

problem. The function fminsearch uses the Nelder-Mead simplex search method

[Lagarias et al., 1998]. The function fminsearch finds the minimum of a scalar

function of several variables, starting at an initial estimate. We use the linear

least squares estimation to produce the initial estimates of the parameters. The

algorithm converges quickly for this study. One can also use random starting

points when run the Nelder-Mead simplex search method to improve the op-

timisation. The conjugate gradient method is a more advaced numerical algo-

rithm for optimisation in which the objective function is decreasing or increas-

ing most rapidly [Daniel, 1967].

2.2.3.2 Double tensor estimation

In some regions of brain, there may be two distinct fibre orientations. Two dif-

fusion tensors, then, need to be employed to characterise diffusion behaviours

at such a voxel containing crossing fibres. Let us set m = 2 in the multi-tensor

48



2.2. Bayesian Multi-tensor Model with Reparameterisation

model, then the double tensor model is given by

Si = µi + εi

= S0[exp(−bgT
i Q1QT

1 gi) + exp(−bgT
i Q2QT

2 gi)] + εi, (2.2.20)

where i = 1, 2, ...N, εi’s are i.i.d. Gaussian noise, with zero mean and σ2
2 as the

variance, i.e. Si ∼ N(µi, σ2
2 ), i = 1, 2, ..., N.

Then, the likelihood function of Θ2 = (Q1, Q2, σ2
2 ) given the measured sig-

nal intensities S is

L(Q1, Q2, σ2
2 | S) = (

1√
2πσ2

2

)N exp{− 1
2σ2

2
RSS2}, (2.2.21)

where RSS2 =
N
∑

i=1
[Si − S0 exp(−bgT

i Q1QT
1 gi) − S0 exp(−bgT

i Q2QT
2 gi)]2 is the

residual sum of squares between the observed and the expected signals.

Now let us state our prior beliefs of the parameters Q1, Q2 and σ2
2 . When

jointed into a single vector HT
Q1,Q2

= (vec(Q1)T, vec(Q2)T), Q1, Q2 become an

18-dimensional random vector. Thus, we need to specify the joint distribution

of (HQ1,Q2 , σ2
2 ). Since σ2

2 is assumed to be distributed independently of HQ1,Q2 ,

we first focus on the specification of the prior distribution for HQ1,Q2 .

vec(Q1) ∼ N9(vec(I3×3), ξ2
1I9×9) (2.2.22)

vec(Q2) ∼ N9(vec(I3×3), ξ2
1I9×9) (2.2.23)

vec(Q1 −Q2) ∼ N9(09×1, ξ2
2I9×9). (2.2.24)

The given formulae (2.2.22), (2.2.23), (2.2.24) do not uniquely specify the joint

distribution of HQ1,Q2 unless we explicitly state that HQ1,Q2 are jointly (18-

variate) normal with the parameters specified by (2.2.22), (2.2.23), (2.2.24) above
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[e.g. Melnick and Tenenbein, 1982].

Thus, we must state that

HQ1,Q2 ∼ N18(I, Σ), (2.2.25)

where IT = (vec(I3×3)T, vec(I3×3)T) and

Σ =

 ξ2
1I9×9 (ξ2

1 − 0.5ξ2
2)I9×9

(ξ2
1 − 0.5ξ2

2)I9×9 ξ2
1I9×9

 . (2.2.26)

Let ρ be the coefficient of correlation between Qij,1 and Qij,2, i, j ∈ 1, 2, 3, then

ρ = 1− ξ2
2

2ξ2
1
. Since −1 ≤ ρ = 1− ξ2

2
2ξ2

1
≤ 1, ξ2

2 ≤ 4ξ2
1. Note that Q1 and Q2 are

independent if and only if 2ξ2
1 = ξ2

2.

For the variance of Gaussian noise σ2
2 , again we use an inverse gamma prior.

I.e.

σ2
2 ∼ Inv-Gamma(α, β). (2.2.27)

The logarithm of the probability density function of the posterior distribu-

tion is given by

log p(Q1, Q2, σ2
2 | S) ∝ −(

N
2

+ α + 1) log σ2
2 −

1
2σ2

2
(2β + RSS2)− (A + B)

(2.2.28)

where

A + B =
1
2
(HQ1,Q2 − I)TΣ−1(HQ1,Q2 − I). (2.2.29)

It is immediate to verify that

Σ−1 =
2

ξ2
2(2ξ2

1 − 0.5ξ2
2)

 ξ2
1I9×9 −(ξ2

1 − 0.5ξ2
2)I9×9

−(ξ2
1 − 0.5ξ2

2)I9×9 ξ2
1I9×9

 . (2.2.30)
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Thus,

A + B = 1
ξ2

2(2ξ2
1−0.5ξ2

2)
[ξ2

1vec(Q1 − I3×3)Tvec(Q1 − I3×3)+

(0.5ξ2
2 − ξ2

1)vec(Q1 − I3×3)Tvec(Q2 − I3×3)+

ξ2
1vec(Q2 − I3×3)Tvec(Q2 − I3×3)+

(0.5ξ2
2 − ξ2

1)vec(Q2 − I3×3)Tvec(Q1 − I3×3)]

= 1
ξ2

2(2ξ2
1−0.5ξ2

2)
[ξ2

2vec(Q1 − I3×3)Tvec(Q2 − I3×3)+

ξ2
1vec(Q1 −Q2)Tvec(Q1 −Q2)]

= 1
ξ2

1ξ2
2(1+ρ)

[ξ2
2trace((Q1 − I3×3)(Q2 − I3×3)T)+

ξ2
1trace((Q1 −Q2)(Q1 −Q2)T)]

= 1
1+ρ [ 1

ξ2
1
trace((Q1 − I3×3)(Q2 − I3×3)T)+

1
ξ2

2
trace((Q1 −Q2)(Q1 −Q2)T)].

Hence the natural choice of A and B:

A =
1

(1 + ρ)ξ2
1

trace((Q1 − I3×3)(Q2 − I3×3)T),

B =
1

(1 + ρ)ξ2
2

trace((Q1 −Q2)(Q1 −Q2)T).

Now, the maximum a posteriori estimates of the parameters can be obtained

by maximising the log-density (2.2.28) of the posterior distribution as stated

below:

(Q̂1, Q̂2, σ̂2
2) = arg max

Q1,Q2,σ2
2

{
log P(Q1, Q2, σ2

2 | S)
}

. (2.2.31)

Then, D̂1 = Q̂1Q̂T
1 , and D̂2 = Q̂2Q̂T

2 are the maximum a posteriori estimators. In

practice, we maximise the log-posterior distribution (2.2.28) using the function

fminsearch in MATLAB.
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2.2.4 Bayesian model selection

In the multi-tensor model, the choice of the number of compartments m presents

a model-selection problem. In the DTI community, it is commonly assumed

that for each voxel, there are at most two distinct fibre orientations. Therefore,

we have to choose between the single tensor model (M1) or the double tensor

model (M2), parameterised by (Q, σ2
1 ) and (Q1, Q2, σ2

2 ) respectively, given as

follows:

M1 : Si = S0 exp(−bgT
i QQTgi) + εi, i = 1, ..., N.

M2 : Si = S0 exp(−bgT
i Q1QT

1 gi) + S0 exp(−bgT
i Q2QT

2 gi) + εi, i = 1, ..., N.

Since we have used Bayesian methods to estimate parameters in the multi-

tensor model, we can directly use the Bayes factor for model selection on the

basis of N measured signal intensities S = (S1, ..., SN)T. The Bayes factor KB in

favour of M2 over M1 is given by [Bernardo and Smith, 2009]

KB(S) =
p(M2 | S)
p(M1 | S)

{
p(M2)
p(M1)

}−1

, (2.2.32)

which is the posterior odds in favour of M2 divided by the prior odds in favour

of M2. A large value of KB gives support for M2 over M1. Note that Bayesian

model selection will not inform about which model is ’true’, but rather about

the preference for the model given the data and other information. A possi-

ble interpretation for Bayes factors [Jeffreys, 1961; Bernardo and Smith, 2009] is

listed in Table 2.2 . We have carried out experiments for determining the num-

ber of diffusion tensors at voxels in some well-known regions (e.g. the corpus

callosum and corana radiata). The thresholds of 3 listed in Table 2.2 are suitable

for our study.
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Table 2.2: Jeffreys’ scale of evidence for Bayes factors
Bayes factor KB Strength of evidence
KB < 1/10 Strong evidence for M1
1/10 < KB < 1/3 Moderate evidence for M1
1/3 < KB < 1 Weak evidence for M1
1 < KB < 3 Weak evidence for M2
3 < KB < 10 Moderate evidence for M2
KB > 10 Strong evidence for M2

2.3 MCMC for the Bayesian Single Tensor Frame-

work

As described in the previous section, the posterior distribution quantifies the

remaining uncertainty in our current knowledge of the parameters.

In addition to point estimates of the parameters, we would also like to ob-

tain a sample of their typical values and assess our confidence in the obtained

estimates. Thus, in this section we use Markov chain Monte Carlo (MCMC)

methods to sample parameters from the posterior distribution. Then, sampled

fibre orientations are extracted from thus sampled diffusion tensors. Conse-

quently, the sample mean of fibre orientations and corresponding credible cone

are drawn which are essential for fibre tractography.

2.3.1 A combination MCMC algorithm

As a class of algorithms for sampling from probability distributions, MCMC

methods have had a profound influence on Bayesian inference. MCMC meth-

ods provide an approximation of posterior statistics such as the posterior mean

and variance. More importantly, we can use MCMC to evaluate posterior prob-

abilities concerning the parameters and to construct corresponding credible in-

tervals. Here, we focus on the single tensor model (the multi-tensor model with

m = 1).
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We use a combination of the Metropolis-Hastings algorithm [Gamerman and Lopes,

2006] and the Gibbs sampler [Gamerman and Lopes, 2006] to sample parame-

ters Q and σ2
1 respectively in the single tensor model. For this algorithm, at

each iteration t, the next state Q(t+1) is chosen by first sampling a candidate

point Q∗ from a proposal distribution q(Q∗ | Q(t), (σ2
1 )(t)). We let q be a Gaussian

distribution depending on the current state Q(t), i.e. N(vec(Q(t)), ξ2I9×9). The

candidate point Q∗ is accepted with probability α(Q(t), Q∗), where:

α(Q(t), Q∗) = min

{
1,

p(Q∗ | S, (σ2
1 )(t))q(Q(t) | Q∗)

p(Q(t) | S, (σ2
1 )(t))q(Q∗ | Q(t)))

}
. (2.3.1)

With the Gibbs sampler, the next state (σ2
1 )(t+1) is generated from p(σ2

1 |

Q, S) which is density of the full conditional distribution of the posterior distri-

bution p(Q, σ2
1 | S) in (2.2.17). The full conditional distribution of σ2

1 is given

by

p(σ2
1 | Q, S) ∝ (σ2

1 )−
N
2 −α−1 exp

{
− 1

2σ2
1

(2β + RSS1)

}
, (2.3.2)

where RSS1 =
N
∑

i=1
[Si − S0 exp(−bgT

i QQTgi)]2. Note that p(σ2
1 | Q, S) is the

density of an Inverse-gamma distribution, i.e. Inv-Gamma(ασ2
1
, βσ2

1
) where

ασ2
1

=
N
2

+ α

βσ2
1

=
1
2
(2β + RSS1). (2.3.3)

Therefore, the algorithm generates samples (Q(t),
(
σ2

1
)(t), t = 0, 1, 2, ...) through

the following steps:

1. Start with an arbitrary initial set of parameter values Q(0),
(
σ2

1
)(0).

2. Update from Q(t) to Q(t+1) with Metropolis-Hasting algorithm:

2.1. Generate Q∗ from q(Q∗ | Q(t), σ
2(t)
1 ), where q follows N9(vec(Q(t)), ξ2I9×9).
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2.2. Evaluate α(Q(t), Q∗) = min
{

1, p(Q∗|S,σ2(t)
1 )q(Q(t)|Q∗)

p(Q(t)|S,σ2(t)
1 )q(Q∗|Q(t)))

}
2.3. Sample a point U from a Uniform(0,1) distribution

2.4. Set

Q(t+1) =

{
Q∗ if U ≤ α(Q(i), Q∗)

Q(t) otherwise.
(2.3.4)

3. Update from
(
σ2

1
)(t) to

(
σ2

1
)(t+1) with the Gibbs sampler by generating(

σ2
1
)(t+1) from p(σ2

1 | Q(t+1), S).

Since the chain is aperiodic and irreducible, after a large number of iterations

we have simulated an observation from the posterior distribution. To ensure

that the results from the MCMC algorithm are reliable, i.e. the equilibrium of

the chain has been reached, a burn in period is taken into account. After the

burn in period, at each iteration, we obtain a dependent sample value from the

posterior distribution P(Q, σ2
1 | S).

2.3.2 Credible cone of fibre orientations

Once a random sample of Q is generated with the MCMC scheme, we also

obtain a sample of diffusion tensors (D = QQT) and consequently a sample

of principal eigenvectors extracted from the diffusion tensors. It is commonly

assumed that at a given voxel, the principal eigenvector of the diffusion tensor

is aligned with the fibre orientation.

Now consider a sample of fibre orientations q1, ..., qm, where each qk ∈ RP2

is an axial direction (qk ≡ −qk and ‖ qk ‖= 1). We consider two methods for

obtaining the mean direction.
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Method 1

Suppose q1, ..., qm are all in the same hemisphere after reflection with respect

to the origin. The mean direction of the sample is given by [Mardia and Jupp,

2000, p.163]

q̄d =‖ q̄ ‖−1 q̄ (2.3.5)

where

q̄ =
1
m

m

∑
k=1

qk (2.3.6)

is the sample mean and ‖ q̄ ‖, the Euclidean norm of q̄, is the mean resultant

length. Note that Method 1 will depend on how to define the hemisphere. Thus,

this method is not satisfactory.

Method 2

Let D̄ be the scatter matrix about the origin, and D̄ is defined by

D̄ =
1
m

m

∑
k=1

qkqT
k . (2.3.7)

Then the extrinsic mean direction is defined as the principal eigenvector a1 of

D̄.

Now let us explain why a1 can be the mean direction q̄d (‖ q̄d ‖= 1) of the

sample. Define ck = q̄T
d qk, k = 1, ..., m. Note that ckqk is the projection of qk

onto the line generated by scalar multiples of qT
d . The aim is to find a mean

direction q̄d minimising the averaged sum of squared dispersions from each

sample point to the line q̄d. We define the kth dispersion of qk as the distance

from the point qk to q̄d (see Figure 2.1).

Then the objective function is given by

min
1
m

m

∑
k=1

(1− c2
k). (2.3.8)
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Figure 2.1: Dispersion from the sample point to the mean direction. The sample
point qk. The mean direction q̄d (blue line).

It is equivalent to

max
1
m

m

∑
k=1

c2
k. (2.3.9)

Now

1
m

m

∑
k=1

c2
k =

1
m

m

∑
k=1

(q̄T
d qk)

2

= q̄T
d [

1
m

m

∑
k=1

(qkqT
k )]q̄d

= q̄T
d D̄q̄d. (2.3.10)

Since D̄ is symmetric, we can use spectral decomposition as follows

D̄ = AΞAT =
3

∑
k=1

ρkakaT
k (2.3.11)

where A is an orthogonal matrix with three eigenvectors a1, a2 and a3 as three

columns, and Ξ is a diagonal matrix with eigenvalues ρ1 ≥ ρ2 ≥ ρ3 as three

diagonal entries. Then

1
m

m

∑
k=1

c2
k = q̄T

d D̄q̄d

= q̄T
d [

3

∑
k=1

ρkakaT
k ]q̄d
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=
3

∑
k=1

ρk(q̄T
d ak)

2

≤ ρ1

3

∑
k=1

(q̄T
d ak)

2

= ρ1q̄T
d [

3

∑
k=1

akaT
k ]q̄d

= ρ1q̄T
d AI3×3ATq̄d

= ρ1. (2.3.12)

Now

aT
1 D̄a1 = aT

1 [
3

∑
k=1

ρkakaT
k ]a1

=
3

∑
k=1

ρk(aT
1 ak)

2

= ρ1, (2.3.13)

since

aT
1 ak =

{
1 if k = 1

0 if k 6= 1
. (2.3.14)

So 1
m ∑m

k=1 c2
k or equivalently the averaged sum of squared dispersions is max-

imised when q̄d = a1. Method 2 can directly provide the mean of axial data

q1, ..., qm without reflecting them onto the same hemisphere, since

D̄ =
1
m

m

∑
k=1

qkqT
k =

m

∑
k=1

(−qk)(−qT
k ). (2.3.15)

Therefore, the mean direction calculated with Method 2 is more preferable for

DTI study.

The 95% credible cone for the sample of fibre orientations can be obtained

by ordering the distances from the mean direction q̄d to the samples and cutting

58



2.4. Applications

off at the 95th percentile. Figure 2.2 shows an example of the 95% credible cone

for the sample of fibre orientations. Note that with this approach the credible

Figure 2.2: An example of the 95% credible cone for the sample of fibre orien-
tations. The red line represents the mean direction. Points in blue are ends of
sample directions that fall in the 95% credible cone.

cone is circular. An alternative method is to fit a bivariate Gaussian distribution

in the tangent plane and then use the usual 95% confidence ellipse.

2.4 Applications

2.4.1 Simulation study

The purpose of this simulation study is to compare three diffusion gradient

direction schemes used with the single and double tensor models, with the

Bayesian and LLS estimates. The accuracy of DTI measurements depends on

the applied schemes of diffusion gradient directions. The MR scanner has a set

of magnetic field gradients applied at directions g1, ..., gN ∈ RP2 (gi ≡ −gi and

‖ gi ‖= 1). Details on how to design diffusion gradient direction schemes can

be found in Chapter 4. In this study, we consider three diffusion gradient direc-

tion schemes, Phillips 15 (Figure 2.3(a)), Phillips 32 (Figure 2.3(b)), and Uniform

32 (Figure 2.3(c)) directions schemes (see Appendix 5.2.6).
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Figure 2.3: Three diffusion gradient direction schemes. (a) Phillips 15 (b)
Phillips 32 and (c) Uniform 32.

When analysing the single tensor model, signal vector S = (S1, ..., SN) has

been sampled n times from the multivariate Gaussian distribution, N(µ, σ2
1 IN×N)

with µ = (µ1, µ2, ..., µN), for the three diffusion direction schemes. Let n be the

sample size, that is, the number of generated values of S from a given diffusion

direction scheme with N directions. Note that in real experiments we usually

have n = 1 sample at each voxel. Let M be the number of Monte Carlo (MC)

simulations. So, from each MC simulation we can estimate one diffusion tensor

from n× N generated signals.

The root mean squared errors (RMSE) of estimators D̂ is one such measure of
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accuracy, and is given by

RMSE(D̂) =

√√√√ 1
M

M

∑
k=1
‖ D̂(k)−D ‖2. (2.4.1)

where D̂(k) is the estimate from the kth MC simulation and ‖ A ‖=
√

trace
{

ATA
}

is the Euclidean norm. We can also define the RMSE of FA values of tensor es-

timators as

RMSE(FA) =

√√√√ 1
M

M

∑
k=1

(FA(k)− FA)2, (2.4.2)

where FA(k) is the FA of D̂(k) from the kth MC simulation, and FA is the true

value.

For the Bayesian single tensor framework, we set the prior parameter ξ = 1

for the prior distribution of Q in (2.2.12), α = 2.1 and β = 1000 (the sum of

squared residuals) for the prior distribution of σ2
1 in (2.2.14).

For the Bayesian double tensor framework, we set the prior parameters ξ1 =

ξ2 = 1, α = 2.1 and β = 1000 for prior distributions of Q1, Q2, Q1 −Q2 and σ2
2

in (2.2.22) to (2.2.27), respectively.

2.4.1.1 Single tensor model

For the single tensor model, a simulation study was performed with the follow-

ing diffusion tensor:

D =


1 0 0

0 2 0

0 0 3

 . (2.4.3)

The eigenvalues are 1, 2 and 3, and the corresponding eigenvectors are along

x, y and z axis respectively (Figure 2.4). The FA value measuring the diffusion

anisotropy is 0.4629.
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Figure 2.4: The diffusion ellipsoid of D.

We carry out two simulation studies for the single tensor as follows:

1. Consider a range of variances σ2
1 ∈ {1, 2, ..., 10}. Fix the sample size n = 1

and S0 = 500, perform M = 100 MC simulations for each σ2
1 . Then, σ1/S0

ranges from 1
500 (= 0.0020) to

√
10

500 (≈ 0.0063). That is, SNR = 500 to SNR

≈ 158.1.

2. Consider a range of sample sizes n ∈ {1, 2, ..., 30}. Fix σ2
1 = 5 and S0 =

500, perform M = 100 MC simulations for each n. Then, σ1/S0 ≈ 0.045

(SNR= 353.55).

After performing simulation study 1, Figure 2.5 and Figure 2.6 show RMSE(D̂)

and RMSE(FA) respectively with Bayesian and LLS estimations from the Phillips

15, Phillips 32 and Uniform 32 diffusion direction schemes as σ2
1 increases from

1 to 10. Since the NLS and LLS methods produce similar estimates for diffu-

sion tensor [Zhou, 2006], in this study we only compare the Bayesian estimates

with the LLS estimates. In Figure 2.5, as σ2
1 increases from 1 to 10, RMSE(D̂)

becomes larger. It clearly shows that Bayesian estimation performs better than

LLS estimation, since given a direction scheme for each σ2
1 , RMSE(D̂) with the

Bayesian method is always smaller than that with LLS method. We can also see

that the Phillips 15 direction scheme has larger RMSE(D̂) than other schemes.

The Uniform 32 direction scheme is more preferable with smaller RMSE(D̂).

In Figure 2.6, RMSE(FA) values were classified clearly according to the three

direction schemes. The Uniform 32 direction scheme is the best one among the

three schemes. Phillips 15 is the worst with similar RMSE(FA) from Bayesian

62



2.4. Applications

and LLS estimators.

Figure 2.5: Root mean squared errors RMSE(D̂) from three diffusion gradient
direction schemes. The Bayesian and LLS estimations are used, and σ2

1 increases
from 1 to 10.

Figure 2.6: Root mean squared errors RMSE(FA) from three direction schemes.
The Bayesian and LLS estimations are used, and σ2

1 increases from 1 to 10.

Figure 2.7 and Figure 2.8 show the results from simulation study 2 as the

sample size n increases from 1 to 30. The values of RMSE(D̂) in Figure 2.7

decrease dramatically from n = 1 to n = 15, and then the improvement is

slower. There is not a large difference between Bayesian and LLS methods for

the two Phillips schemes. However, the Bayesian estimators from the Uniform

32 scheme is significantly better than LLS estimators. Similar patterns can be
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shown in Figure 2.8 where the Bayesian method for Uniform 32 scheme is the

best.

Figure 2.7: Root mean squared errors RMSE(D̂) from three diffusion direction
schemes. The Bayesian and LLS estimations are used, and the sample size n
increases from 1 to 30.

Figure 2.8: Root mean squared errors RMSE(FA) from three diffusion direction
schemes. The Bayesian and LLS estimations are used, and the sample size n
increases from 1 to 30.

To conclude, the Bayesian method is better than LLS method, and the Uni-

form 32 direction scheme are clearly preferable to two Phillips schemes in our

simulation study. It is not surprising that the 32 direction schemes are better.
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2.4.1.2 MCMC sampling

Let us focus on the MCMC sampling from the posterior distribution of the

model parameters. Namely, we fit the single tensor model to a real data consist-

ing of n = 1 vector S acquired with the Uniform 32 scheme and corresponding

to a single voxel. The Bayesian (MAP) estimate of D is as follows:

DMAP =


0.00053 −0.00002 0.00003

−0.00002 0.00058 −0.00022

0.00003 −0.00022 0.00112

 .

It may be noted that the real scale for the tensor coefficients is different from

that in the previous synthetic examples.

Thus, we would also like to sample from the posterior distribution of D

and generate 104 samples of D using our MCMC scheme (see Section 2.3.1).

Figure 2.9 shows samples of the three diagonal elements of D. The samples

appear to become stationary after around 400 iterations, which we then accept

as the burn-in period. Figure 2.10 shows the mean axis and 95% credible cone

of fibre orientations from the MCMC samples after the burn-in period in the

given voxel.

2.4.1.3 Double tensor model

Now consider the double tensor model which captures two distinct diffusion

behaviours at a voxel by fitting two diffusion tensors. Two simulation stud-

ies were carried out (1) to measure the goodness of fit of the Bayesian double

tensor model with MC simulations for two given diffusion tensors, and (2) to

measure the dependence of the estimation on the angle between the two prin-

cipal diffusion directions.
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Figure 2.9: Samples of D11, D22 and D33 with MCMC sampling.

Figure 2.10: Green points are samples in 95% credible cone of fibre orientation.
The blue line between red dots is the mean axis of fibre orientation in the voxel.

In the first simulation study, we fix the true D1 and D2 as follows:

D1 =


1 0 0

0 2 0

0 0 3

 , D2 =


4 0 0

0 5 0

0 0 1

 .
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and corresponding ellipsoids are shown in Figure 2.11.

Figure 2.11: Ellipsoids for the two defined diffusion tensors. D1 is oblate and
D2 is prolate.

Consider a range of sample sizes n ∈ {1, 5, 10, 15, 20, 25, 30}. We fix the vari-

ance σ2
2 = 3, and carry out 100 MC simulations for each n. Figure 2.12 shows the

means and standard errors of the estimates of the diffusion coefficients from the

MC simulations. For both D1 and D2, the Uniform scheme provides excellent

estimators. For example, the true value of D1(3, 3) is 3. The mean of estimates

with the Uniform 32 scheme is almost the same as the true value. However,

the means of estimates with the Phillips 15 scheme are all higher than the true

value. Figure 2.13 shows RMSE plots for the D1 and D2 estimators. The Uni-

form 32 scheme results in much lower RMSE when compared with the Phillips

schemes. It is noticeable that Phillips 32 scheme shows growing RMSE at sam-

ple size 20.

In simulation study 2, we fix one diffusion tensor as:

D1 =


1/4 0 0

0 1/4 0

0 0 20

 ,

which is a strongly linear tensor with eigenvalues 20, 1/4 and 1/4, and with

corresponding eigenvectors along z, y and x axis respectively. Let v1 be the

principal eigenvector of D1, then v1 = [0, 0, 1]T. Now consider four settings of
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Figure 2.12: The mean of diffusion coefficients from MC simulations. The sam-
ple size n ∈ {1, 5, 10, 15, 20, 25, 30}.

Figure 2.13: RMSE of two tensors. The sample size n ∈ {1, 5, 10, 15, 20, 25, 30}.

diffusion tensors Da
2, Db

2, Dc
2 and Dd

2. These four diffusion tensors have same

eigenvalues 15,1/4 and 1/4, but different eigenvectors. Let Ei
2 = [vi

1, vi
2, vi

3], i ∈

{a, b, c, d}, where vi
1, vi

2, and vi
3 are three eigenvectors of Di

2, with vi
1 being prin-

cipal. The angle between v1 and vi
1, i ∈ {a, b, c, d} is denoted as φi, i ∈ {a, b, c, d}.

The eigenvectors of Da
2, Db

2, Dc
2 and Dd

2, and the corresponding angles φa, φb, φc

and φd are listed in Table 2.3. Figure 2.14 shows the diffusion ellipsoids of D1,

Da
2, Db

2, Dc
2 and Dd

2.

For each of the three diffusion direction schemes, signal vectors S = (S1, ..., SN)

were generated from the multivariate Gaussian distribution according to the
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Table 2.3: Settings of eigenvectors of Di
2, i = a, b, c, d, and corresponding angles

φi.

[vi
1, vi

2, vi
3] φi

Da
2

 1.0000 0.0000 0
0 0 1.0000
0 1.0000 0

 90◦

Db
2

 0.9063 −0.4226 0
0 0 1.0000

0.4226 0.9063 0

 65◦

Dc
2

 0.6428 −0.7660 0
0 0 1.0000

0.7660 0.6428 0

 40◦

Dd
2

 0.2588 −0.9659 0
0 0 1.0000

0.9659 0.2588 0

 15◦

Figure 2.14: Diffusion ellipsoids of D1 (in red), Da
2, Db

2, Dc
2 and Dd

2.

double tensor model with one tensor fixed as D1 and the second one set to be

Di
2, i ∈ {a, b, c, d}. For each of these 12 (3× 4) settings, 100 MC simulations were

carried out with variance σ2 = 5 and sample size n = 1. Figure 2.15 shows box

plots of the Bayesian estimates of the angles φa, φb, φc and φd from the Bayesian

estimates. It is clear that the Uniform 32 scheme performs the best with the me-

dians of the Bayesian estimates which are almost the same as the true values.

However, there are big variations of estimators from the two Phillips schemes.

Phillips 15 provides the worst medians and more outliers, which is not surpris-

ing as there are much fewer measurements.
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Figure 2.15: Box plots of angles φa, φb, φc and φd from Bayesian estimates.

Let φ̂i, i = a, b, c, and d be Bayesian estimators of the angles φi, i = a, b, c, d re-

spectively. Figure 2.16 shows histograms of the deviations φ̂i− φi, i ∈ {a, b, c, d}

of φ̂i from the true angles (90◦, 65◦, 40◦ and 15◦) using the Uniform 32 direction

scheme. It is clear that the mean square error of φ̂d is much larger than the

variance of the other three estimates. We also estimate the mean of the estima-

tors φ̂i, i ∈ {a, b, c, d}, namely 90.0007, 65.0080, 40.0038 and 15.0028 respectively.

Overall, the estimator for φa = 90◦ performs best, which is expected given that

φa = 90◦ is the maximal possible separation between any two tensors.
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Figure 2.16: Histograms of errors of Bayesian estimates (φa, φb, φc and φd) ap-
plying the Uniform 32 direction scheme.

2.4.2 Real data

2.4.2.1 Materials

A set of diffusion weighted MR images acquired with the Uniform 32 DTI dif-

fusion gradient direction scheme (see Figure 2.3 (c)) from a healthy human

brain was provided by the Academic Radiology Department of Queen’s Med-

ical Centre, University of Nottingham. The MR images were acquired using a

spin echo EPI (echo planar imaging) sequence with diffusion weighting gradi-

ents applied with a weighting factor of b=1000 s/mm2. 52 interleaved contigu-

ous transaxial slices were acquired throughout the subject’s head in a matrix of

112x112 (interpolated to 224x224) with an acquisition voxel size of 1x1x2 mm3.

For each slice, the acquisition was repeated for each of the 32 non-collinear

directions according to the Uniform 32 direction scheme, and once with no dif-
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fusion weighting (b=0).

All methods used in this section have been programmed with MATLAB

(R2009a, The MathWorks, Inc., Natick, Massachusetts, USA). We also use MAT-

LAB to obtain figures and graphs for visualisation of our results.

2.4.2.2 Single tensor model

Figure 2.17 shows comparison of FA maps obtained using the LLS (Figure 2.17

a, c and e) and the single tensor Bayesian (Figure 2.17 b, d and f) estimators.

FA maps from an axial slice of the brain found with the LLS and the Bayesian

methods are displayed in Figure 2.17 a and b, respectively. Voxels containing

diffusion tensor estimates which are non-positive-definite (i.e. with at least one

negative eigenvalue) are all coloured in red.

It is clear that all the tensor estimators obtained with the Bayesian method

are (semi) positive-definite as expected. However, non positive-definite esti-

mates do appear with the LLS method. For example, insets a1 and b1 of Fig-

ure 2.17 zoom in on the splenium (sp), and it is clear that a1 contains many

non positive-definite estimates. Recall that such estimates violate the basic con-

straint of diffusion modelling and hence may hardly be useful. We also display

FA maps from coronal (Figure 2.17 c and d) and sagittal (Figure 2.17 e and

f) slices. Although our Bayesian estimation, unlike LLS, ensures positive def-

initeness of the tensor, both the methods provide similar brain structures as

represented by the anisotropy maps in this example.

In the DTI community, line and colour coded orientation maps are two use-

ful visualisation methods of displaying the principal eigenvector v1 which rep-

resents the main fibre orientation at the voxel. Figure 2.18 (a) shows a ROI in the

FA map (coronal view) obtained with the Bayesian method. The ROI contains

the following three fibre bundled: the corpus callosum (cc), corana radiata (cr)
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Figure 2.17: Comparison of FA maps from single tensor estimators with LLS
and Bayesian methods. Maps a, c and e are from LLS estimates. Maps b, d,
and f are from Bayesian estimates. a and b are from an axial slice; a1 and b1
are zoomed insets; c and d are from coronal slice; e and f are from sagittal slice.
Red voxels contain non-positive-definite estimators.

and cingulum (cg). Figure 2.18 (b) is the line fibre orientation map of the ROI

with FA background. Each line represents the principal diffusion direction at

the corresponding voxel. We can see that the cingulum is perpendicular to the

plane of the figure, the corona radiata orientates itself vertically, and the corpus

73



2.4. Applications

callosum with high anisotropy has a ’U’ shape tract. Similar features of three

fibre tracts can be seen in Figure 2.18 (c) which is the colour coded orientation

map. A colour is assigned to each voxel using v1 = (v1x, v1y, v1z)T. The absolute

value of the v1x, v1y, v1z components are used as red (left-right direction), green

(front-back) and blue (feet-head) channels. Here, the colour intensities are ad-

ditionally scaled by the FA values. Figure 2.18 (d) is the diffusion ellipsoid map,

where the ellipsoids are also rescaled by the FA values. The diagonal tract on

the lower left is the anterior limb of the internal capsule and on the lower right

we see the superior fronto-occipital fasciculus.
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Figure 2.18: Visualisations of Bayesian diffusion anisotropy and fibre orienta-
tion. The FA map (coronal view) containing the ROI of three main fibre tracts
the corpus callosum (cc), corona radiata (cr) and cingulum (cg) (a), the line
(green) fibre orientation map of the ROI with FA background (b), the colour
coded orientation map scaled by FA (c) with red (left-right direction), green
(front-back) and blue (feet-head) directions, and diffusion ellipsoid map with
the volume of the ellipsoids scaled by FA (d) scaled to have volume propor-
tional to FA.
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2.4.2.3 Multiple tensors fitting with model selection

The Bayesian single tensor and double tensor (multi-tensor model with m = 2)

models were fitted to the data in the ROI shown in Figure 2.19 which is a colour

coded orientation map (axial slice). The Bayes factor with threshold KB = 3

was used for model selection, i.e., when KB < 3, the single tensor model will

be fitted at a given voxel, otherwise, double tensor model will be fitted. In

Figure 2.20 (magnified ROI line fibre orientation map with FA background),

a crossing of the anterior part of the superior longitudinal fasciculus (with a

strong front-back orientation) with a tract of the corona radiata (from inferior

regions) is presented. Such a crossing leads to a lower fit at this point from a

single tensor model, however the crossing is captured very well in the double

tensor model.

Figure 2.19: An axial colour coded orientation map with a region containing
crossing fibre tracts.
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Figure 2.20: The zoomed ROI line fibre orientation map with FA background,
containing a crossing of the anterior part of the superior longitudinal fasciculus
(with a strong front-back orientation) with a tract of the corona radiata (from
inferior regions). Diffusion tensor estimation is carried out by first fitting the
the multi-tensor model (m = 1 or m = 2), and then applying model selection
based on the Bayes factor.

2.4.3 Fibre tractographies

The principal eigenvector of a diffusion tensor at a given voxel represents the lo-

cal fibre orientation. Once diffusion tensors in a ROI have been estimated, the fi-

bre orientation information provided directly by DTI can be used to reconstruct

the pathways of major white matter structures through the brain [Hagmann et al.,

2003; Parker and Alexander, 2003].

2.4.3.1 Comparison of tractographies

LLS, Bayesian (MAP) and MCMC (the average of MCMC samples from the

posterior distribution) methods are used for diffusion tensors estimation with

a single tensor model through the whole brain. Then, the freely available pack-

77



2.4. Applications

age Camino [Cook et al., 2006] and a Matlab program (provided by Mara Cer-

cignani, Institute of Neurology, UCL) are employed for streamline calculations

and visualisation. We set the start voxels along the corpus callosum (see Fig-

ure 2.21). Three tractographies are shown in Figure 2.22. Several differences

of three tractographies are pointed out with circles and arrows. For example,

in coronal views (a.1) and (b.1) estimated with the LLS and Bayesian methods

respectively, the white circle points out the absence of a minor tract - the stria

terminalis (st). However, the st tract can be seen in c.1 (MCMC tractography).

Differences among the three tractographies can be clearly seen from sagittal

views (a.2), (b.2) and (c.2). The white arrow in (a.2) (LLS) points to a short

tract from the corpus callosum to the anterior corona radiata. However, two

corresponding tracts in b.2 (Bayesian) and c.2 (MCMC) are longer and extend

fully to the end of the anterior corona radiata. The pink arrow in (c.2) (MCMC)

points to a tract from the corpus callosum to the posterior coronal radiata. The

tract disappears in (a.2) and (b.2). In (c.2) (MCMC), a vertical tract (pointed

out with a cyan arrow) grows from the splenium of the corpus callosum to

the brain stem which is a well-known feature of the human brain. Hence, the

MCMC tractography method gives better estimation of the fibre orientation in

the corpus callosum.

2.4.3.2 Uncertainty of tractography

To understand the uncertainty of fibre tractography is important for surgical

planning and postoperative assessment. To this effect, we have obtained some

initial results for the uncertainty study of fibre tractography. For example, Fig-

ure 2.23 shows fibre tractographies of the corpus callosum seeded with two

vertically neighbouring voxels (red) from four MCMC simulations from the

posterior distribution. Two differences are pointed out with white and cyan
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Figure 2.21: Seeding voxels (red) of tractography (sagittal view). cc: corpus
callosum, sp: splenium of cc and bs: brain stem.

Figure 2.22: Tractographies of the corpus callosum (CC) based on LLS (green),
Bayesian (yellow) and MCMC (red) estimators. a.1, b.1 and c.1 are coronal
views (from the anterior to the frontal). a.2, b.2 and c.2 are sagittal views (from
the left to the right). Differences between methods are pointed out with arrows
and circles. Splenium: sp.
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arrows. Figure 2.23 (d) gives more information about the brain structure than

the other three tractographies. A more complete tool would be to carry out trac-

tography for many more MCMC simulations and then count the proportion of

times a streamline passes through a voxel. Alternative methods for averaging

the tracts and summarising the variability would be of interest for further study

in future work.

Figure 2.23: Tractographies of the corpus callosum from four MCMC simula-
tions.

2.5 Summary

In this chapter, a multi-tensor model for diffusion MRI measurements of wa-

ter diffusion at voxels with one or more distinct fibre orientations was devel-

oped. We propose a new parametrisation for the symmetry and positive semi-

definiteness of the diffusion tensor. A Bayesian framework has been established

for estimating diffusion tensors under the single tensor model and the double
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tensor model. Inference has been drawn from the posterior distribution. We use

the Bayes factor for model selection, i.e., for deciding between the single and

double tensor models. An combination MCMC algorithm was used to study

the uncertainty of the model parameters based on the posterior distribution

of these parameters. We also define the sample mean of diffusion directions

and the 95% credible cone around the mean direction. The comparisons of the

Bayesian estimation and the LLS method for both the single tensor and double

tensor models were made using three simulated datasets with three diffusion

direction schemes. The anisotropy maps (FA maps), fibre orientation maps (the

line and colour coded orientation maps) and the map of diffusion ellipsoids

were obtained for the corpus callosum region. The multi-tensor model with

automatic model selection has also been applied to a region containing cross-

ing fibre bundles from a healthy human brain dataset. Fibre tractographies of

the corpus callosum were obtained based on the Bayesian, LLS and the mean

MCMC sample mean estimators. Uncertainty study of fibre tractography with

an MCMC method were also discussed.

Once a sample of diffusion tensors generated using MCMC method, we

wish to estimate the mean tensor and then carry out statistical inference. The

key point is to consider that the diffusion tensor is positive semi-definite sym-

metric matrix. In the following chapter (see Chapter 3) we will discuss the non-

Euclidean analysis of diffusion tensor data. The accuracy of DTI measurements

depends on the diffusion gradient direction scheme applied. Consequently the

diffusion gradient direction scheme applied influences the estimation of the dif-

fusion tensor. In Chapter 4, we will design a series of new distributed direction

schemes using directional statistics.
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Chapter 3

Non-Euclidean Analysis of

Diffusion Tensor Data

This chapter is partly based on the paper ’Dryden, I. L., Koloydenko, A., and

Zhou, D. (2009). Non-Euclidean statistics for covariance matrices, with appli-

cations to diffusion tensor imaging. Annals of Applied Statistics, 3(3):1102–1123.’

and the paper ’Zhou, D., Dryden, I. L., Koloydenko, A., and Bai, L. (2009). Pro-

crustes analysis of diffusion tensor data. Proceedings of the International Society

for Magnetic Resonance in Medicine, 17:3584.’

3.1 Introduction

The diffusion tensor corresponding to a covariance matrix in the molecular dis-

placement at a given voxel is required to be 3× 3 symmetric and positive semi-

definite. A variety of methods have been illustrated in Chapter 2 for estimat-

ing the diffusion tensor D from the DWI data at each voxel. Once a sample

of diffusion tensors is available we wish to estimate the population mean and

then carry out statistical inference. The difficulty is that the space of diffusion

tensors is most naturally not Euclidean. Using the arithmetic mean of the sam-

ple to estimate the population mean may not be suitable for diffusion tensor

data. In this chapter, the statistical analysis of diffusion tensor data is consid-

ered which takes into account the non-Euclidean nature of the space of positive

semi-definite symmetric matrices.
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3.1. Introduction

3.1.1 Euclidean distance

Now we consider a sample of N diffusion tensors (symmetric and positive

semi-definite) D1,..., DN. We assume that the Di are independent and identi-

cally distributed (i.i.d.) from a distribution with mean T although care must be

taken in defining what is a mean in a non-Euclidean space (see Section 3.1.2).

The usual approach to estimate the mean covariance matrix in statistics is to

assume a scaled Wishart distribution for the sample covariance matrices, and

then the maximum likelihood estimator (m.l.e.) of the population covariance

matrix is the arithmetic mean of the sample covariance matrices. This estimator

can also be obtained if using a least squares approach by minimising the sum

of square Euclidean distances. The Euclidean distance between two diffusion

tensors is given by

dE(D1, D2) =‖ D1 −D2 ‖, (3.1.1)

where ‖ A ‖=
√

trace
{

ATA
}

is the Euclidean norm (also known as the Frobe-

nius norm). Then the least squares estimator is given by

T̂E = arg inf
T

dE(Di, T)2 =
1
N

N

∑
i=1

Di. (3.1.2)

However, this Euclidean method is often unsatisfactory for diffusion tensors.

One defect with Euclidean calculus is that non-positive semi-definite symmet-

ric matrices can appear during Euclidean computations, e.g. in extrapolation.

Other drawbacks will be discussed in Section 3.4.

3.1.2 The Fréchet mean

As the space of diffusion tensors is non-Euclidean, there is growing need to use

non-Euclidean metrics to estimate the mean diffusion tensor given the sample
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3.2. Non-Euclidean Estimations of Mean Tensor

tensors. Actually, it is first of all necessary to define what is meant by a mean

diffusion tensor in a non-Euclidean space. Let f (D) be a probability density

function of a diffusion tensor D on a Riemannian metric space. The Fréchet

mean is defined as [Fréchet, 1948; Koenker, 2006; Le and Kume, 2000]

T = arg inf
T

1
2

∫
d(D, T)2 f (D)dD, (3.1.3)

where d(·) is a non-Euclidean distance. A Fréchet mean is not necessarily

unique. However, it is possible to prove the uniqueness with sufficient condi-

tions [Le, 1995]. For example, for non-Euclidean spaces with negative sectional

curvature, the Fréchet mean is always unique.

Let us consider a sample of N diffusion tensors D1,......, DN. Then, the sam-

ple Fréchet mean is given by finding

T̂ = arg inf
T

N

∑
i=1

d(Di, T)2. (3.1.4)

3.2 Non-Euclidean Estimations of Mean Tensor

It is more natural to choose non-Euclidean metrics in order to define and esti-

mate the mean tensor due to the positive semi-definiteness of D.

3.2.1 Logarithm-based estimators

Recently, a log-Euclidean approach has been proposed for mean diffusion ten-

sor estimation using matrix logarithms [Arsigny et al., 2006]. We can write the

logarithm of a diffusion tensor D as follows. The usual spectral decomposition

of D is D = EΛET with E ∈ O(3) an orthogonal matrix and Λ diagonal with
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3.2. Non-Euclidean Estimations of Mean Tensor

strictly positive entries. Then, the logarithm of D is given by

log(D) = E log(Λ)ET (3.2.1)

where log(Λ) is a diagonal matrix with logarithm of the diagonal elements of

Λ on the diagonal. Likewise, the exponential of D is given by

exp(D) = E exp(Λ)ET (3.2.2)

where exp(Λ) is a diagonal matrix with exponential of the diagonal elements

on the diagonal. The log-Euclidean distance is the Euclidean distance between

the logarithm of diffusion tensors which is defined as [Arsigny et al., 2006]

dL(D1, D2) =‖ log(D1)− log(D2) ‖ . (3.2.3)

The log-Euclidean estimator for the mean diffusion tensor is given by

T̂L = exp

{
arg inf

T

N

∑
i=1

dL(Di, T)2

}

= exp

{
1
N

N

∑
i=1

log(Di)

}
. (3.2.4)

Another logarithm-based metric is a Riemannian metric described by many

authors [e.g., Fletcher and Joshi, 2007; Pennec et al., 2006; Batchelor et al., 2004]

who viewed the space of symmetric positive definite matrices as a Riemannian

symmetric space. This Riemannian metric is defined for any pair of positive

definite diffusion tensors as

dR(D1, D2) =‖ log(D−1/2
1 D2D−1/2

1 ) ‖ . (3.2.5)

The Riemannian estimator of the mean diffusion tensor is then given by [Pennec et al.,
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2006]

T̂R = arg inf
T

N

∑
i=1

dR(Di, T)2

= arg inf
T

N

∑
i=1
‖ log(D−1/2

i TD−1/2
i ) ‖2 . (3.2.6)

A gradient descent algorithm has been used to obtain the estimate [Pennec et al.,

2006]. Since this Riemannian metric space has negative sectional curvature,

the population and sample Fréchet means are unique in this case [Pennec et al.,

2006].

3.2.2 Estimators with reparameterisation

An alternative way of analysing positive definite tensors is to use a reparame-

terisation of the diffusion tensor, such as the Cholesky decomposition [Wang et al.,

2004], where D = LLT and L = chol(D) is lower triangular with positive diag-

onal entries. Then the Cholesky distance is given by

dC(D1, D2) =‖ chol(D1)− chol(D2) ‖ . (3.2.7)

An estimator can be obtained with the least squares method, i.e.,

T̂C = ∆̂C∆̂
T
C, (3.2.8)

where

∆̂C = arg inf
∆

{
1
N

N

∑
i=1
‖ chol(Di)− ∆ ‖2

}

=
1
N

N

∑
i=1

chol(Di). (3.2.9)
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3.2. Non-Euclidean Estimations of Mean Tensor

We propose an alternative decomposition using the matrix square root where

D1/2 = EΛ1/2ET which has not been used in this context as far as we are aware.

The distance is given by

dH(D1, D2) =‖ D1/2
1 −D1/2

2 ‖ . (3.2.10)

A least squares estimator can be obtained from

T̂H = ∆̂H∆̂
T
H, (3.2.11)

where

∆̂H = arg inf
∆

{
1
N

N

∑
i=1
‖ D1/2

i − ∆ ‖2

}

=
1
N

N

∑
i=1

D1/2
i . (3.2.12)

The power Euclidean metric is another possible metric, i.e.,

dA(D1, D2) =
1
a
‖ Da

1 −Da
2 ‖, (3.2.13)

where Da = EΛaET. The power a is nonzero and a ∈ R. Then the estimate of

the mean tensor is given by

T̂A = (∆̂A)1/a, (3.2.14)

where

∆̂A = arg inf
∆

{
1
N

N

∑
i=1
‖ Da

i − ∆ ‖2

}

=
1
N

N

∑
i=1

Da
i . (3.2.15)

Note that the Euclidean (a = 1) and root Euclidean (a = 1/2) are two special
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3.2. Non-Euclidean Estimations of Mean Tensor

cases of the power Euclidean metric.

3.2.3 Procrustes-based estimators

Yet another approach is to use Procrustes analysis [Gower, 1975] and the statis-

tical shape theory developed in e.g. Dryden and Mardia [1998].

3.2.3.1 Full ordinary Procrustes analysis

Full ordinary Procrustes analysis (FOPA) is used to match two objects as closely as

possible with similarity transformations (translation, rotation and scale). Let us

first consider a pair of diffusion tensors D1 and D2. To ensure the positive semi-

definiteness of Di, i = 1, 2, we use a reparameterisation Di = QiQT
i , where Qi is

a 3× 3 real matrix. For example, Qi = chol(Di) is the Cholesky decomposition,

or Qi = D1/2
i is the matrix square root. In our computation we shall choose the

Cholesky decomposition. Note that Qi and any rotation of it QiR (R ∈ O(3))

result in the same Di, i.e. Di = QiQT
i = QiR(QiR)T.

The objective of FOPA is to minimise SFOPA(D1, D2)2 in ( 3.2.16) the squared

Euclidean distance between D1 and D2 under the similarity transformations.

The squared Euclidean distance is given by

SFOPA(D1, D2)2 =‖ Q1 − βQ2R− 13γT ‖2, (3.2.16)

where a 3× 3 rotation matrix R ∈ O(3), a scale parameter β > 0, and a 3× 1

location vector γ represent three similarity transformations. Note 13 is the 3× 1

vector of ones.

The solution (γ̂, β̂, R̂) to the minimisation of Equation (3.2.16) is given by
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[Dryden and Mardia, 1998, p.84-85]

γ̂ = 03 (3.2.17)

where 03 is the 3× 1 vector of zeros,

R̂ = UVT, (3.2.18)

where U,V ∈ O(3) are obtained from a singular value decomposition:

QT
1 Q2 = V∆UT, (3.2.19)

with ∆ a diagonal 3× 3 matrix of singular values. Furthermore,

β̂ =
trace(QT

1 Q2R̂)
trace(QT

2 Q2)
. (3.2.20)

The full Procrustes shape metric between D1 and D2 is given by

dF(D1, D2) = inf
R∈O(3),β∈R

‖ Q1 − βQ2R ‖

= ‖ Q1 − β̂Q2R̂ ‖ (3.2.21)

3.2.3.2 Procrustes size-and-shape distance

In DTI study, we wish to match Q1 (from D1) and Q2 (from D2) under location,

rotation and reflection while often preserving scale information. Then the joint

study of size-and-shape is of interest. Size-and-shape spaces were introduced

by Kendall [1989]. The definition of the size-and-shape of a configuration ma-

trix was given by Dryden and Mardia [1998, p.57].

The Procrustes size-and-shape distance between two diffusion tensors is de-
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3.2. Non-Euclidean Estimations of Mean Tensor

fined as

dS(D1, D2) = inf
R∈O(3)

‖ Q1 −Q2R ‖ . (3.2.22)

The Procrustes solution R̂ for matching Q1 to Q2 is

R̂ = arg inf
R∈O(3)

‖ Q1 −Q2R ‖

= UVT (3.2.23)

where U and V are from the singular value decomposition in Equation (3.2.19).

3.2.3.3 Procrustes estimators

Consider the general case where there are N > 2 diffusion tensors D1,...,DN,

and Di = QiQT
i , i = 1, ...N. Now the aim is to calculate the Fréchet mean

using the full Procrustes shape metric in Equation (3.2.21) and the Procrustes

size-and-shape metric in Equation (3.2.22).

The sample Fréchet mean relative to the full Procrustes shape metric dF(·) is

given by

T̂F = Q̂FQ̂T
F, (3.2.24)

where

Q̂F = arg inf
Q

N

∑
i=1

inf
Ri∈O(k)

‖ βiQiRi −Q ‖2 . (3.2.25)

The sample Fréchet mean relative to the Procrustes size-and-shape distance

dS(·) is given by

T̂S = arg inf
T

N

∑
i=1

d(Di, T)2. (3.2.26)

where d(·) can be dF(·) or dS(·). Specifically,

T̂S = Q̂SQ̂T
S , (3.2.27)
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where

Q̂S = arg inf
∆

N

∑
i=1

inf
Ri∈O(k)

‖ QiRi − ∆ ‖2 . (3.2.28)

3.2.4 Partial generalised Procrustes analysis with rotations

Consider the general case that there are N > 2 diffusion tensors D1,...,DN,

and Di = QiQT
i , i = 1, ...N. Consider the partial generalised Procrustes analy-

sis (PGPA) [Dryden and Mardia, 1998, p.90-91] which minimises the total sum

SPGPA(D1, ..., DN) of the squared Euclidean distances between all pairs QiRi

and QjRj over the orthogonal transformations R1, R2,..., RN ∈ O(3). The min-

imisation of the sum of squares is given by

SPGPA(D1, ..., DN) = inf
R1,...,RN

1
N

N−1

∑
i=1

N

∑
j=i+1

‖ QiRi −QjRj ‖2

= inf
R1,...,RN

N

∑
i=1
‖ QiRi −

1
N

N

∑
j=1

QjRj ‖2 . (3.2.29)

Let R̂i, i = 1, ..., N be the estimates of rotations which minimising Equation

(3.2.29). An algorithm 1 with iterative procedures for estimating R̂i, i = 1, ..., N

has been adapted from the Generalised Procrustes Algorithm described by Gower

[1975, p.35-50] and Dryden and Mardia [1998, p.90-91]. The algorithm con-

verges quickly in the DTI study.
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Algorithm 1: Partial Generalised Procrustes Method
1: Initial setting: QP

i ← chol(Di), i = 1, ..., N
2: SPGPA from previous iteration: Sp ← 0

3: SPGPA from current iteration: Sc ←
N
∑

i=1
‖ QP

i −
1
N

N
∑

j=1
QP

j ‖
2

4: while |Sp − Sc| > tolerance do
5: for i = 1 to N do
6: Q̂i = 1

N−1 ∑
j 6=i

QP
j

7: Calculate the R̂i minimising ‖ Q̂i−QP
i Ri ‖ (partial ordinary Procrustes

analysis)
8: QP

i ← QP
i R̂i

9: end for
10: Sp ← Sc

11: Sc ←
N
∑

i=1
‖ QP

i −
1
N

N
∑

j=1
QP

j ‖
2

12: end while

13: Q̂PGPA ← 1
N

N
∑

i=1
QP

i

14: return Q̂PGPA

Hence, the Fréchet mean of D1,...,DN with generalised Procrustes analysis

is given by

T̂PGPA = Q̂PGPAQ̂T
PGPA, (3.2.30)

where

Q̂PGPA =
1
N

N

∑
i=1

QR̂i. (3.2.31)

3.2.5 Comparison of approaches

We have discussed several choices of distances between diffusion tensors which

can be applied to DTI studies. For completeness we list the metrics and the

mean tensor estimators considered in this study in Table 3.1, and discuss briefly

some of their properties.

Mean tensor estimators T̂E, T̂C, T̂H, T̂L, T̂A can be calculated straightfor-
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Table 3.1: Notation and definitions of the metrics and mean tensor estimators

Name Notation Form Estimator
Euclidean dE(D1, D2) ‖ D1 −D2 ‖ T̂E
Log-Euclidean dL(D1, D2) ‖ log(D1)− log(D2) ‖ T̂L
Riemannian dR(D1, D2) ‖ log(D−1/2

1 D2D−1/2
1 ) ‖ T̂R

Cholesky dC(D1, D2) ‖ chol(D1)− chol(D2) ‖ T̂C
Root Euclidean dH(D1, D2) ‖ D1/2

1 −D1/2
2 ‖ T̂H

Procrustes size-and-shape dS(D1, D2) inf
R∈O(3)

‖ Q1 −Q2R ‖ T̂S

Full Procrustes shape dF(D1, D2) inf
R∈O(3),β∈R

‖ Q1 − βQ2R ‖ T̂F

Power Euclidean dA(D1, D2) 1
a ‖ Da

1 −Da
2 ‖ T̂A

wardly using arithmetic averages. The Procrustes based estimators T̂S, T̂F are

to be computed using the Generalised Procrustes Algorithm which works very

well in practice. For computing the Riemannian metric estimator T̂R, a gradient

descent algorithm [Pennec et al., 2006] is guaranteed to converge.

All these metrics, except for the Cholesky-based dC, are unchanged when

replacing both Di by WDiWT, W ∈ O(3), i = 1, 2. This means that these met-

rics are invariant under the orthogonal change of coordinates of R3, which is

very important for real life applications. Metrics dL(�), dR(�), dF(�) are invariant

under simultaneous scaling of Di, i = 1, 2, i.e., replacing both Di by βDi. Metric

dR(�) is also affine invariant, i.e., the metrics are unchanged by replacing both

Di by BDiBT, i = 1, 2, where B is a general 3× 3 full rank matrix. Metrics dL(�),

dR(�) have the property that

d(B, I3×3) = d(B−1, I3×3). (3.2.32)

Metrics dL(�), dR(�), dF(�) are not valid for comparing rank deficient covari-

ance matrices. Finally, there are problems with extrapolation with metric dE(�)

extrapolate too far and the result is no longer positive semi-definite.
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3.2.6 Anisotropy indices

Anisotropy measures are useful tools to quantitatively capture the diffusion

anisotropy in tissues [Basser et al., 2000] (see Chapter 1 Section 1.3.1).

3.2.6.1 Metric-based anisotropy indices

The anisotropy indices AIE and AIR [Moakher and Batchelor, 2006, p.291-295]

of D relative to the Euclidean and Riemannian metrics are defined respectively

as follows

AIE(D) = dE(D,
trace(D)

3
I3×3) (3.2.33)

AIR(D) = dR(D, 3
√

det(D)I3×3) (3.2.34)

where I3×3 is the 3× 3 identity matrix, and det(D) is the determinant of D. The

range of both AIE and AIR is [0, ∞).

The Fractional Anisotropy (FA) which is a commonly used anisotropy mea-

sure in the DTI community, can be derived by normalising AIE as follow

FA(D) =

√
3
2

AIE(D)/ ‖ D ‖

=

√
3[(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2]

2(λ2
1 + λ2

2 + λ2
3)

(3.2.35)

where λ1, λ2 and λ3 are three eigenvalues of the diffusion tensor D, and λ̄ =

∑3
i=1 λi/3. FA ranges from 0 (full isotropy) to 1 (complete anisotropy).

The geodesic anisotropy (GA) [Batchelor et al., 2004] is defined to be AIR which

in terms of the eigenvalues is given by

GA(D) = AIR(D)
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=

√√√√ 3

∑
i=1

(log λi − log λ)2 (3.2.36)

where log λ = (∑3
i=1 log λi)/3, 0 6 GA < ∞. Since it is more convenient to

work with the unit range, renormalisation of GA can be defined as given in

Equation (3.2.37) below:

tanh(GA) =
exp {2GA} − 1
exp {2GA}+ 1

(3.2.37)

and tanh(GA) ranges from 0 to 1.

3.2.6.2 Procrustes anisotropy

We define a new anisotropy measure Procrustes anisotropy (PA) with the full

Procrustes shape metric. The definition of PA is given by

PA(D) =

√
3
2

dF(
I3×3√

3
, D)

=

√√√√3
2

3

∑
i=1

(
√

λi −
√

λ)2/
3

∑
i=1

λi (3.2.38)

where
√

λ = ∑3
i=1

√
λi/3. It is clear that PA is a normalisation of the FOPA

distance from any given diffusion tensor D to the identity tensor, representing

the case of ideal isotropy. The range of PA is [0, 1] with PA= 0 indicating full

isotropy and PA ≈ 1 representing the extremely strong anisotropy. PA is in-

variant to the uniform scaling of a diffusion tensor. Now let us prove Equation

(3.2.38).

Proof. The full ordinary Procrustes metric is defined as

dF(D1, D2) = inf
R∈O(3),β∈R

‖ Q1 − βQ2R ‖ .
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The solution (β̂, R̂) has been shown in Section 3.2.3.1.

Now let D1 = I3×3√
3

and D2 = D, where D = QQT. The full ordinary Pro-

crustes metric between I3×3√
3

and D is given by

dF(
I3×3√

3
, D) =‖ I3×3√

3
− β̂QR̂ ‖

where

R̂ = UVT,

and U,V ∈ SO(3) are obtained from a singular value decomposition:

IT
3×3√

3
Q2 = V∆UT,

with ∆ a diagonal 3× 3 matrix of singular values. Furthermore,

β̂ =
trace( IT

3×3√
3

QR̂)

trace(QTQ)

=

1√
3
(

3
∑

i=1

√
λi)

3
∑

i=1
λi

.

Then,

PA(D) =

√
3
2

dF(
I3×3√

3
, D)

=

√
3
2

inf
R∈O(3),β∈R

‖ I3×3√
3
− βQR ‖

=

√
3
2
‖ I3×3√

3
− β̂QR̂ ‖

=

√
3
2

{
trace

[
(

I3×3√
3
− β̂QR̂)T(

I3×3√
3
− β̂QR̂)

]}1/2

=

√
3
2

[
trace(

I3×3

3
)− 2√

3
trace(β̂QR̂) + β̂2trace(R̂TQTQR̂)

]1/2
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=

√
3
2

1− 2
3

(
3
∑

i=1

√
λi)2

3
∑

i=1
λi

+
1
3

(
3
∑

i=1

√
λi)2

3
∑

i=1
λi


1/2

=

√
3
2


3
∑

i=1
(
√

λi)2 − 3(
√

λ)2

λ1 + λ2 + λ3


1/2

=

√√√√3
2

3

∑
i=1

(
√

λi −
√

λ)2/
3

∑
i=1

λi.

3.2.6.3 Comparison of anisotropy indices

To be useful, measures of anisotropy should be invariant to uniform scaling of

the tensor. Indeed, all the measures considered above (i.e. FA, GA) as well as

PA have this invariance.

Figure 3.1 shows a comparison of FA, tanh(GA) and PA values as functions

of t ∈ [0, 1] which defines three eigenvalues as t, (1− t)/2 and (1− t)/2. The

diffusion tensor varies from planar to spherical as t increases from 0 to 1/3. It

then changes to a linear tensor as t grows to 1. PA value is always smaller than

corresponding FA and tanh(GA) values. Figure 3.2 shows the first derivative

of FA, PA and tanh(GA) with respect to t. When approximately t < 0.075 or

t > 0.708, |PA′(t)| is larger than both |FA′(t)| and |tanh(GA)′(t)|. This means

PA is more sensitive to highly planar or highly linear anisotropy of diffusion.

We have discussed the power Euclidean metric in Equation (3.2.13). The

anisotropy index based on the power Euclidean is a generalisation of FA(D)

given by

FA(Da) =

{
3
2

3

∑
i=1

(λa
i − λa)2/

3

∑
i=1

λ2a
i

}1/2

, (3.2.39)
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Figure 3.1: Comparison of FA, tanh(GA) and PA values as functions of t. The
x-axis is t ∈ [0, 1] which defines three eigenvalues as t, (1− t)/2 and (1− t)/2.

Figure 3.2: Derivatives of FA, PA and tanh(GA) with respect to t. When, ap-
proximately, t < 0.075 or t > 0.708, |PA′(t)| is larger than both |FA′(t)| and
|tanh(GA)′(t)|.

where λa = ∑3
i=1 λa

i /3. It is noted that FA and PA of D are two members of

FA(Da) when a = 1 and a = 1/2 respectively.

Theorem 3.1. For any symmetric semi-positive definite D, FA(Da) is an increas-

ing function of a.
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Proof. Let a, b > 0 be such that a < b. We need to show that

3
∑

i=1
(λa

i − λa)2

3
∑

i=1
λ2a

i

≤

3
∑

i=1
(λb

i − λb)2

3
∑

i=1
λ2b

i

⇐⇒ [λb]2λ2a ≤ [λa]2λ2b (3.2.40)

Let q = 2b−a
b , p = 2b−a

b−a , so that 1
q + 1

p = 1, p ≥ 1, q ≥ 1, then write λb
i = λs+t

i ,

i ∈ {1, 2, 3} where s = a
q = ab

2b−a , t = 2b
p = 2b(b−a)

2b−a .

Apply Hölder’s inequality [Mirsky, 1955] with gi = λs
i , fi = λt

i ,i ∈ 1, 2, 3,

3

∑
i=1
|gi fi| ≤ [

3

∑
i=1

gq
i ]

1/q[
3

∑
i=1

f p
i ]1/p (3.2.41)

to obtain

λb ≤ [λa]
b

2b−a [λ2b]
b−a

2b−a

=⇒ [λb]2 ≤ [λa]
2b

2b−a [λ2b]
2b−2a
2b−a . (3.2.42)

Next, take q′ = 2b−a
2b−2a , p′ = 2b−2a

a , note that p′, q′ ≥ 1, 1
q′ +

1
p′ = 1. then write

λ2a
i = λs′+t′

i , and take s′ = a
q′ = 2a(b−a)

2b−a , t′ = 2b
p′ = 2ab

2b−a . Again, let g′i = λs′
i ,

f ′i = λt′
i , i ∈ {1, 2, 3} and apply Hölder’s inequality to get

λ2a = λs′+t′ ≤ [λa]
a(b−a)
2b−a [λ2b]

a
2b−a (3.2.43)

Finally, multiply both sides of inequality (3.2.42) by respective sides of inequal-

ity (3.2.43) to obtain inequality (3.2.40).

Corollary 3.1. ∀D (D is symmetric semi-positive definite), PA(D) ≤ FA(D).

Corollary 3.1 implies that PA maps will be darker that FA maps in the same

ROI, but in some regions of high diffusion anisotropy PA provides better con-
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tract than FA (see Section 3.4.2 for a comparison of PA and FA maps in a real

data study).

3.2.7 Geodesic interpolation

3.2.7.1 Interpolation of two tensors

The minimal geodesic can be used for interpolating between two diffusion ten-

sors. Geodesic paths with different metrics starting at D1 and ending at D2 are

listed in Table 3.2.

Table 3.2: Geodesic paths with different metrics between two diffusion tensors.

Metric Geodesic path
Euclidean w1D1 + w2D2
Log-Euclidean exp {w1 log(D1) + w2 log(D2)}
Riemannian arg inf

T
w1 ‖ log(D−

1
2

1 TD−
1
2

1 ) ‖ +w2 ‖ log(D−
1
2

2 TD−
1
2

2 ) ‖
Cholesky [w1chol(D1) + w2chol(D2)][(w1chol(D1) + [w2chol(D2)]T

Root Euclidean (w1D1/2
1 + w2D1/2

2 )(w1D1/2
1 + w2D1/2

2 )T

Procrustes size-and-shape (w1Q1 + w2Q2R̂)(w1Q1 + w2Q2R̂)T

In Table 3.2, w1 + w2 = 1, wi ≥ 0, i = 1, 2, and R̂ for Procrustes path is the

Procrustes solution given in Equation (3.2.23).

3.2.7.2 Multiple tensor interpolation

In some regions of the human brain, a voxel may contain more than one fibre

bundle orientated in distinct directions. Let us consider two voxels (voxel a and

voxel b) shown in Figure 3.3. Each voxel contains multiple fibre bundles (two

fibre bundles in this example). We can model the diffusion behaviour in each

voxel with our Bayesian multi-tensor model in Section 2.2.3, then estimators of

two diffusion tensors can be obtained at each voxel (Da1 and Da2 at voxel a, and
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Figure 3.3: Two voxels containing multiple fibre bundles. Diffusion behaviours
are modelled with diffusion tensors Da1 and Da2 at voxel a, and Db1 and Db2 at
voxel b.

Db1 and Db2 at voxel b). Now the aim is to interpolate two tensors at voxel a

and two tensors at voxel b with different metrics.

Here, we propose an algorithm for multiple tensor interpolation:

1. Find out the optimal match.

1.1. Calculate distances of possible matches, i.e.,

d(Da1, Db1) and d(Da2, Db2) for match 1

d(Da1, Db2) and d(Da2, Db1) for match 2

where d(·) is a metric.

1.2. Find out the minimal distance, and the corresponding match is

the optimal. Let
{

Dai, Dbj
}

and {Dak, Dbl} be the optimal match, where

i, j ∈ {1, 2} and k ∈ {1, 2} − i, j ∈ {1, 2} − j.
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2. Interpolation.

2.1. Plot the geodesic path between Dai and Dbj with metric d(·).

2.2. Plot the geodesic path between Dak and Dbl with metric d(·).

In Section 3.4.3.3, some experiments on multiple tensor interpolation will be

discussed.

3.3 Weighted Generalised Procrustes Interpolation

and Smoothing

Since diffusion MRI is a relatively low resolution modality, advanced tensor

processing methods such as non-Euclidean interpolation have been considered.

Yet, reliable and accurate estimation of the highly complex white matter archi-

tecture of the brain remains a challenge despite the many advances in mod-

elling, processing, and analysis of diffusion MRI data (Lenglet et al., 2009).

Moreover, further inference, e.g., analysis of variance across groups, depends

critically on tensor processing methods such as interpolation [Chao et al., 2009].

At the same time, the recently introduced DT processing methods based on

Procrustes analysis [Dryden et al., 2009a] have shown promising performance

and deserve further investigation. Thus, this study explores weighted generalised

Procrustes analysis (WGPA) [Zhou et al., 2009b] in which an arbitrary number of

tensors can be interpolated or smoothed efficiently with the additional flexibil-

ity of controlling their individual contributions.
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3.3.1 Weighted generalised Procrustes method

Given a suitable distance function d, the weighted Fréchet sample mean of

D1,. . . , DN is defined by:

T = arg inf
D

N

∑
i=1

wid(Di, D)2, (3.3.1)

where the weights wi satisfy wi ≥ 0 and ∑N
i=1 wi = 1, and in applications can be,

for example, a function of the Euclidean distance from the location of interest

to the sampling locations (e.g., voxels).

Weighted generalised Procrustes analysis (WGPA) is proposed to estimate

T̂ when d = dS is the size-and-shape distance [Dryden et al., 2009a]. It can then

be shown that the WGPA mean tensor is given by

T̂WGPA = Q̂WGPAQ̂T
WGPA, (3.3.2)

where Q̂WGPA =
N
∑

i=1
wiQiR̂i and the orthogonal matrices R̂i, i = 1, . . . , N min-

imise SWGPA, the sum of weighted squared Euclidean norms, which is given

by

SWGPA(D1, ..., DN) = inf
R1,...,RN

N

∑
i=1

wi ‖ QiRi −
n

∑
j=1

wjQjRj ‖2

= inf
R1,...,RN

N

∑
i=1

wi ‖ (1− wi)QiRi −∑
j 6=i

wjQjRj ‖2

= inf
R1,...,RN

n

∑
i=1

wi

(1− wi)2 ‖ QiRi −
1

(1− wi)
∑
j 6=i

wjQjRj ‖2 . (3.3.3)

Below we give Algorithm 2 for computing Q̂WGPA:
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Algorithm 2: Weighted Generalised Procrustes Method
1: Initial setting: QP

i ← chol(Di), i = 1, ..., N
2: SWGPA from previous iteration: Sp ← 0

3: SWGPA from current iteration: Sc ←
N
∑

i=1
wi ‖ QP

i −
N
∑

j=1
wjQP

j ‖
2

4: while |Sp − Sc| > tolerance do
5: for i = 1 to N do
6: Q̂i = 1

1−wi
∑
j 6=i

wjQP
j

7: Calculate the R̂i minimising ‖ Q̂i−QP
i Ri ‖ (partial ordinary Procrustes

analysis)
8: QP

i ← QP
i R̂i

9: end for
10: Sp ← Sc

11: Sc ←
N
∑

i=1
wi ‖ QP

i −
N
∑

j=1
wjQP

j ‖
2

12: end while

13: Q̂WGPA ←
N
∑

i=1
wiQP

i

14: return Q̂WGPA

3.3.2 Weights

In WGPA we assume that the weights wi, i = 1, ..., N are a function of the Eu-

clidean distance from the voxel of interest to the sampling voxel. The simplest

setting for the weights is with the inverse distance function given by

wi =
d−1

i
N
∑

j=1
d−1

j

, i = 1, ..., N (3.3.4)

where di is the Euclidean distance from the voxel containing the weighted mean

to the ith voxel with Di.

For more flexibility of weight setting, an exponential weight function is pro-
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posed as follows:

wi =
exp(−Ad2

i ) + B
N
∑

j=1
[exp(−Ad2

j ) + B]
, i = 1, ..., N (3.3.5)

where A, B ≥ 0. A comparison of the inverse distance and exponential weight

functions is shown in Figure (3.4). As the distance di increases, the exponential

Figure 3.4: Comparison of the inverse distance and exponential weight func-
tions. Black line: linear weights. Blue line: exponential weights with A = 20
and B = 0.01. Red line: exponential weights with A = 1 and B = 0.01.

weight with A = 20 and B = 0.01 (blue line) decreases more significantly than

the inverse distance weight (black line). However, with A = 1 and B = 0.01 the

exponential weight changes more steadily than the inverse distance weight.

In summary, the two parameter exponential weight family is evidently very

flexible. In our experiments (see Section 3.4.5), we will use the exponential

weight function. In the region of homogeneous diffusion behaviour, a set of

equally likely weights is preferable. But for the region of complex diffusion

behaviour, the choice of the weight function is application dependent. Future

work related to automatic selection of weights for tensor smoothing will be

discussed in Section 5.2.5.
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3.3.3 Smoothing

Weighted generalised Procrustes framework can be adapted to smooth the dif-

fusion tensor data. Let Vs be the voxel location in (x,y,z) coordinates. Let Ds be

the original diffusion tensor in voxel Vs. Neighbour voxels of Vs can be defined

by

{V1, V2, ...Vm} = arg
V
‖ V −Vs ‖≤ d∗ (3.3.6)

where d∗ ≥ 0 is a constant.

Given D1,...,Dm at voxels V1,...,Vm, the weighted mean D̄s is the weighted

generalised Procrustes mean of D1,...,Dm and Dm+1, where Dm+1 = Ds. It is

natural to let Ds contribute to the weighted mean, and let Vs be a neighbour of

itself, i.e.Vs = Vm+1. Weights of each diffusion tensor can be set with a weight

function. For example, the exponential weights are given by

wi =
exp

{
−A ‖ Vi −Vs ‖2} + B

m+1
∑

j=1
[exp

{
−A ‖ Vj −Vs ‖2

}
+ B]

, i = 1, ..., m + 1. (3.3.7)

In particular, since ‖ Vm+1 − Vs ‖= 0, Ds with the largest weight wm+1 con-

tributes most.

In a diffusion tensor dataset given each diffusion tensor Ds at voxel Vs and

D1, ..., DN at neighbour voxels V1, ..., VN, we can calculate the weighted mean

tensor D̄s which will replace each Ds. The weights w1, ..., wN and ws are set as

proposed in Equation (3.3.5).

3.3.4 Interpolation

By interpolation of the tensor data we mean construction of new diffusion ten-

sors based on the original data. More specifically, we mesh the three-dimensional
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volume containing diffusion tensor data with regular rigid. For each new born

subvoxel V∗, we will sample a weighted generalised Procrustes mean of diffu-

sion tensors at V∗’s neighbours, and allocate this mean to V∗.

3.4 Applications

3.4.1 Materials

A set of diffusion weighted-MR images from a healthy human brain is used

(see Chapter 2, Section 2.4.2.1).

A Bayesian estimation method [Zhou et al., 2008] discussed in Section 2.2.3

has been carried out to compute the tensor field and all methods considered in

this study are programed with MATLAB (R2009a, The MathWorks, Inc., Natick,

Massachusetts, USA).

3.4.2 Anisotropy study

Now let us compare FA, PA and tanh(GA) maps from real data. Figure 3.5 is FA,

PA and tanh(GA) maps (axial slices) computed from the healthy human brain

data described in Section 2.4.2.1. Since PA of diffusion tensor is always smaller

than FA and tanh(GA) values, the PA map gives a darker colour overall. The

splenium in corpus callosum is one of the regions where the overall anisotropy

is strongly high [Lee et al., 2009]. We take FA, PA and tanh(GA) values along the

green line in the splenium and show them in Figure 3.6. PA has significantly

higher variation than FA and tanh(GA). In general, PA offers better contrast in

highly anisotropic regions.

We have discussed that PA(D) = FA(D1/2) is a member of the family
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Figure 3.5: Anisotropy maps from axial view. Left: FA map. Middle: PA map.
Right: tanh GA map.

Figure 3.6: Comparison of FA, PA and tanh(GA) values. FA, PA and tanh(GA)
values are from tensors at voxels along the green line in Figure 3.5. PA value is
more sensitive than FA and tanh(GA) with significantly higher variation.

FA(Da) where a ∈ [0, 1]. Now let a ∈ {1,3/4,1/2,1/4}, and corresponding

FA(Da) maps are shown in Figure 3.7. We prove that FA(Da) is a increasing

function of a (see Theorem 3.1 in Section 3.2.6.3). Therefore, as we decreases a

from 1 to 1/4, the image of FA(Da) becomes darker. The highlighted cutouts

in the four maps are the cerebral peduncle (cp) which has strongly anisotropic

diffusion. It is obvious that FA(D3/4) and FA(D1/2) provide better contrast in

this region (cp) than FA(D). To investigate how to fix the a value for regional

anisotropy study is a potential topic in our future work. Certainly, the choice of
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a can also be made dynamically by the end user. To develop a practical visual-

isation tool where a can vary will be helpful for choosing a suitable anisotropy

index.

3.4.3 Geodesic interpolation

3.4.3.1 Interpolation of two diffusion tensors

Now we carry out five experiments to investigate the geometric nature of geodesic

paths obtained with different metrics. Descriptions of the five experiments are

listed in Table 3.3.

Table 3.3: Description of five experiments for investigating the geometric nature
of geodesic path obtained with different metrics.

Experiment Description
1 D1 is fully isotropic with small size.

D2 is anisotropic with larger size
2 D1 is fully isotropic.

D2 is anisotropic. Both tensors have same size.
3 D1 and D2 have same orientation (eigenvectors).

Both tensors are anisotropic but with different size.
4 D1 and D2 have same shape (eigenvalues) and

are anisotropic. Orientations of D1 and D2 are orthogonal.
5 A general case: D1 and D2 are not orthogonal

with different shape and size.
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Figure 3.7: FA(Da) maps (coronal slices) from human brain. a: FA(D) map, b:
FA(D3/4) map, c: FA(D1/2)=PA(D) map and d: FA(D1/4) map. The highlight
cutout in the yellow rectangle is the cerebral peduncle. a.1, b.1, c.1 and d.1 are
zoomed cutouts from corresponding maps.
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The settings of D1 and D2 for each experiment are listed as follows.

Experiment 1: D1 =


2 0 0

0 2 0

0 0 2

 , D2 =


25.75 42.8683 0

42.8683 75.25 0

0 0 1

 .

Experiment 2: D1 =


4 0 0

0 4 0

0 0 4

 , D2 =


8.5 7.5 0

7.5 8.5 0

0 0 4

 .

Experiment 3: D1 =


21.9472 12.9878 0

12.9878 4 0

0 0 1

 , D2 =


8.2500 −12.5574 0

−12.5574 22.75 0

0 0 1

 .

Experiment 4: D1 =


46.506 28.2149 0

28.2149 18.494 0

0 0 1

 , D2 =


16.75 −27.2798 0

−27.2798 48.25 0

0 0 1

 .

Experiment 5: D1 =


5.5 4.5 0

4.5 5.5 0

0 0 1

 , D2 =


4.7242 −11.4618 0

−11.4618 36.2758 0

0 0 4

 .

To compare interpolations with different metrics in size, orientation and

anisotropy of tensor, we use four measures: the determinant |D|, φ, FA and PA,

where the angle φ measures the difference of orientations from the synthetic D1

to a interpolated tensor in the geodesic path. The angle φ is the smaller angle

between the principal eigenvectors of D1 and the interpolated tensor. The angle

φ is defined as

φ = arcsin(‖ pv1 × pvi ‖), i = 1, ..., 9 (3.4.1)
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where pv1 is the principal eigenvector of D1, and pvi is the principal eigen-

vector of the ith interpolated tensor (including two synthetic diffusion tensors),

and i = 1, ..., 9, with i = 1 and i = 9 corresponding to the synthetic tensors D1

and D2, respectively. .

In experiment 1, D1 is fully isotropic and D2 is strongly anisotropic. Also,

D1 has smaller size. Geodesic interpolation between D1 and D2 is carried out

with different metrics and results are shown in Figure 3.8. Geodesic paths with

the log-Euclidean and the Riemannian metrics are very similar. The tensors

interpolated with the Euclidean metric are larger. There is no significant differ-

ence in the graphs of φ, FA and PA. Note the most abrupt transitions in FA and

PA occur with the Euclidean distance.

Figure 3.8: Geodesic paths in experiment 1 between an isotropic tensor and an
strongly anisotropic tensor. The size of the isotropic tensor D1 (left in red) is
much smaller than the size of the strongly anisotropic tensor D2 (right in red).
The geodesic paths are obtained with dE(�), dL(�), dR(�), dC(�), dH(�) and dS(�).

Figure 3.9 shows six different geodesic paths in experiment 2. In this ex-

periment, D1 is fully isotropic, whereas D2 is strongly anisotropic. The two

tensors have the same volume. In Figure 3.9, it is clear that the Euclidean met-

ric is prone to swelling. With the Euclidean, log-Euclidean, Riemannian, root

Euclidean and Procrustes metrics, all interpolated tensors in the second column

orientate into the angle which is same as the orientation of the defined tensor
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in the right (red). With the Cholesky metric, however, the angle φ increases

gradually along the geodesic path, it is worth recalling at this point that the

Cholesky interpolation is also problematic in practice due to its lack of rotation

invariance.

Figure 3.9: Geodesic paths in experiment 2 between two tensors with the same
size. The tensor D1 (left in red) is fully isotropic and the tensor D2 is strongly
anisotropic (right in red). The geodesic paths are obtained with dE(�), dL(�),
dR(�), dC(�), dH(�) and dS(�).

Diffusion tensors D1 and D2 in experiment 3 have same orientation (eigen-

vectors). Both the tensors are anisotropic but with different size. In Figure 3.10,

the geodesic paths with the six metrics are similar, and there is little difference

shown in graphs of |D|, φ, FA and PA.

In experiment 4 (Figure 3.11), D1 and D2 have the same shape (eigenvalues)

and are anisotropic. Orientations of D1 and D2 are mutually orthogonal. In Fig-

ure 3.11, there are big differences between geodesic paths with different metrics.

We can see that the Euclidean, log-Euclidean, Riemannian, root Euclidean and

Procrustes metrics provide nearly isotropic tensors in the middle column (5th

column from left). This means that the average of two orthogonal tensors of

the same shape and size is isotropic. However, the Cholesky path looks rather

different from the Procrustes path, due to the lack of rotation invariance. The

swelling effect of the Euclidean metric is more obvious in this example. The
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Figure 3.10: Geodesic paths in experiment 3 between two tensors with same
orientation. Both tensors (in red) are anisotropic but with different sizes. The
geodesic paths are obtained with dE(�), dL(�), dR(�), dC(�), dH(�) and dS(�).

log-Euclidean and Riemannian metrics give strong weights to small volumes.

All but the Cholesky path undergo abrupt angular transitions.

Figure 3.11: Geodesic paths in experiment 4 between two orthogonal tensors.
Both tensors (in red) have same shape (eigenvalues) and are anisotropic. The
geodesic paths are obtained with dE(�), dL(�), dR(�), dC(�), dH(�) and dS(�).

In experiment 5, the setting of D1 and D2 is more general. The tensors D1

and D2 are not orthogonal and are of different shape and size. Figure 3.12

shows six different geodesic paths between D1 and D2. From a variety of exam-

ples it does seem clear that the Euclidean metric is very problematic, especially

due to the parabolic interpolation of the determinant. The Procrustes metric of-

fers somewhat better interpolation in the tensor’s orientation and anisotropy
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(see graphs of |D| and φ). The Cholesky path has a significant cusp in the

tensor’s volume, orientation and anisotropy in this example. In general, the

log-Euclidean and Procrustes size-and-shape methods seem preferable.

Figure 3.12: Geodesic paths in experiment 5 between two general tensors. Two
tensors D1 (left in red) and D2 (right in red) with general (i.e. non-collinear
non-orthogonal) orientation, different shape and size. The geodesic paths are
obtained with dE(�), dL(�), dR(�), dC(�), dH(�) and dS(�).

3.4.3.2 Interpolation under simultaneous rotation

In this study, we also carry out experiments to investigate the geometry of

geodesic path under rotation. The experiment is described as follows:

1. Obtain six pairs of diffusion tensors by simultaneous rotation.

1.1 Start with two orthogonal tensors:

D1 =


37.3875 9.75 0

9.75 3.6125 0.

0 0 2

 , D2 =


3.6125 −9.75 0

−9.75 37.3875 0

0 0 2

 .

with the same setting of eigenvalues 40, 2, 1. Since the largest eigenvalue

is much greater than other two eigenvalues, D1 and D2 are two linear

tensors. Their principal eigenvectors are orthogonal.
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1.2 Rotate eigenstructures of D1 and D2 simultaneously along z-axis

in clockwise direction with step size of 15◦.

2. Plot geodesic paths of each pair of tensors with different metrics.

Figure 3.13 and Figure 3.14 show geodesic paths and graphs of measures

of each pair of tensors (red) with different metrics respectively. It is clear that

the geometric of geodesic path obtained with the Cholesky approach is not in-

variant under simultaneous rotation of D1 and D2, although all the other are

rotationally invariant.
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Figure 3.13: Geodesic paths under simultaneous rotation of two tensors (red)
with different metrics.
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Figure 3.14: Graphs of size, orientation and anisotropy measures of interpolated
tensors with different metrics. Two tensors (red) are rotated simultaneously.
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3.4.3.3 Multiple tensor interpolation

Now consider multiple tensor interpolation with two tensors. We define two

pairs of tensors as follows

Pair a: Da1 =


40 0 0

0 1 0

0 0 2

 , Da2 =


1 0 0

0 40 0

0 0 2

 ,

where Da1 and Da2 are two linear tensor (by setting the largest eigenvalue much

greater than other two eigenvalues), and

Pair b: Db1 =


30.25 16.8875 0

16.8875 10.75 0

0 0 2

 , Db2 =


10.75 −16.8875 0

−16.8875 30.25 0

0 0 2

 .

Within each pair the two tensors have orthogonal orientations and the same

eigenvalues. Let us denote the smaller angle between the principal eigenvectors

of Dai and Dbj by φij, where i, j ∈ {1, 2}. In this example,

φ11 = 30◦, φ22 = 30◦, (3.4.2)

and

φ12 = 60◦, φ21 = 60◦. (3.4.3)

Figure 3.15 shows six geodesic paths between the two pairs of tensors ob-

tained with the different metrics. There is a clear swelling effect in Euclidean

case again in this example. The log-Euclidean and Riemannian paths are more

different in this example. Namely, the Riemannian method clearly deflates

the middle ellipsoids and also makes them more isotropic, and thus the log-
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3.4. Applications

Figure 3.15: Six geodesic paths between two pairs of orthogonal tensors. Pair a:
Da1 and Da2. Pair b: Db1 and Db2. There are two geodesic paths (green path or
red path) obtained with a specific metric in each row.

Euclidean method provides better interpolation in tensor anisotropy and size.

The red path with the Cholesky method tends to be more isotropic in the three

middle columns (3rd, 4th and 5th column) than the green path. This clearly re-

veals the lack of invariance of the Cholesky method to the orthogonal change of

basis. The Procrustes and log-Euclidean methods seems most preferable here

in this example.

Let us next consider two pairs of tensors given as follows:

Pair a: Da1 =


1.6029 2.25 0

2.25 9.3971 0

0 0 2

 , Da2 =


1.6029 2.25 0

2.25 9.3971 0

0 0 2

 ,

and

Pair b: Db1 =


30.25 16.8875 0

16.8875 10.75 0

0 0 2

 , Db2 =


10.75 −16.8875 0

−16.8875 30.25 0

0 0 2

 .
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3.4. Applications

Figure 3.16: Six geodesic paths between two pairs of different tensors. Pair a:
Da1 and Da2. Pair b: Db1 and Db2. There are two geodesic paths (green path or
red path) obtained with a specific metric in each row.

This is an important special case that Da1 = Da2 and can arise around locations

where fibre bundles branch, or, form ’fanning’. In pair b, Db1 and Db2 are or-

thogonal and have the same eigenvalues. In this example, φij = 45◦, i, j ∈ {1, 2}.

Figure 3.16 shows six geodesic paths between these two pairs of tensors

computed with the six metrics. The Euclidean geodesic path is problematic

again. The Cholesky geodesic path is very different from the other paths, i.e.,

for each step of the path (especially from column 2 to column 3), the green and

red tensors have different shape and size. This is, of course, expected since

the method is not invariant to the orthogonal change of basis. Recall (Section

3.2.5) that the other methods do have this mode of invariance, hence in the

other geodesic paths, the green and red tensors have the same shape and size,

although they have different orientations. The Procrustes approach again ap-

pears preferable, giving the most uniform interpolation of size and orientation

and the least distortion of shape.
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3.4.4 Cross validation

For assessing the different metrics, a cross-validation procedure is carried out

over a region of interest (Figure 3.17 (a)). Voxels V1,...,VK (K = 36 for this exam-

ple) with yellow edges are shown in Figure 3.17 (b) containing the validating

tensors D1,..., DK estimated from the Bayesian framework described in Section

2.2.3 [Zhou et al., 2008], and the training tensors are at voxels without edges.

We estimate the tensor at voxel Vi, i = 1,...,K by computing the weighted mean

of six neighbouring tensors (see Figure 3.18) with the Euclidean, log-Euclidean

and Procrustes methods. Let D∗i , ..., D∗K be tensors estimated with a certain

method. To validate results, we can compute the root mean squared metric

(RMSM) between the estimated tensor and the true tensor which is given by

RMSM(d) =

√√√√ 1
K

K

∑
i=1

d(Di, D∗i )
2 (3.4.4)

where d can be any metric, such as dE, dL and dS.

Figure 3.17: Region for cross validation. a: a coronal slice of FA map. b: zoomed
in region for cross-validation. Testing tensor data are from voxels with yellow
edges.
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Figure 3.18: The voxel containing validating tensor (black) and its six neigh-
bouring voxels (white).

We can also calculate the root mean squared error (RMSE) of any tensor-

derived function, such as FA(D). Then, RMSE(FA) is given by

RMSE(FA) =

√√√√ 1
K

K

∑
i=1

[FA(Di)− FA(D∗i )]
2 (3.4.5)

Table 3.4 shows RMSM(dE), RMSM(dL), RMSM(dE) and RMSE(FA) ob-

tained with the Euclidean, log-Euclidean and Procrustes methods respectively.

By comparing RMSM(dL), RMSM(dS) and RMSE(FA), we note that the Eu-

clidean method performs the worst in general. However, it is clear that the

Procrustes method is the best for it provides smaller RMSM(dL), RMSM(dS)

and RMSE(FA) than the other two methods, although there is not such a large

difference between the Procrustes and log-Euclidean methods.

Table 3.4: Measures of the validating results with different methods.

RMSM(dE) RMSM(dL) RMSM(dS) RMSE(FA)
Euclidean 1.95× 10−4 2.26× 10−1 2.12× 10−3 6.225× 10−3

Log-Euclidean 5.82× 10−4 1.99× 10−1 1.30× 10−3 5.38× 10−3

Procrustes 2.81× 10−4 1.62× 10−1 8.86× 10−4 5.31× 10−3

If the diffusion tensor at a certain voxel is significantly different from its
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neighbours, then the estimate calculated by smoothing its neighbours need

not be accurate regardless of the method being used. It is worth observing

the histogram of the K individual errors. Four measures could be considered,

namely εFA (the error between FA values of the estimate and the true, εFA =

|FA(Di)− FA(D∗i )|) and three distances dM(Di, D∗i ) (M = E for the Euclidean

distance, M = L for the log-Euclidean distance, and M = S for the Procrustes

distances) between the true tensors Di and the estimated tensors D∗i (with the

Euclidean, log-Euclidean and Procrustes methods). Histograms of these four

measures are shown in Figure 3.19. Now, as far as the histograms are con-

cerned, there is little difference among the three methods. The log-Euclidean

and Procrustes seem to be more similar to each other than either to the Eu-

clidean. One observation that might be of some interest is that the most signifi-

cant outliers under the dE occur with the log-Euclidean method, whereas under

dS and dL, those come from the Euclidean method. To choose a suitable mea-

sure for assessing different diffusion processing methods is important for real

data study. The cross validation study again illustrates that analysis with the

log-Euclidean and Procrustes methods are rather different from the Euclidean

method.

3.4.5 Interpolation and smoothing of real data

We smooth and interpolate (with 2 interpolations between each pair of original

voxels) the diffusion tensor data from the human brain, and calculate the FA

and PA maps shown in Figure 3.20. Obviously, FA and PA maps from the pro-

cessed tensor data are much smoother than the ones without processing. The

feature that the cingulum (cg) is distinct from the corpus callosum (cc) is clearer

in the anisotropy maps from the processed data than those without processing

in Figure 3.20.
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Figure 3.19: Histograms of measures for cross validation. The Euclidean (first
column), log-Euclidean (second column) and Procrustes (third column) meth-
ods are used for estimating the mean tensors. The FA errors εFA (first row). The
Euclidean distance dE (second row) between the true and estimated tensors.
The log-Euclidean dL (third row). The Procrustes dS (fourth row). The unit of
each vertical axis is the number of validating tensors.
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Results of fibre tractography for the brain stem of a healthy human have

been shown in Figure 3.21. Evidently, the tractography based on the WGPA

processed tensor field is different from the tractography based on the other

methods. For example, in the Euclidean two tracts in Figure 3.21 (b) (Euclidean)

and (c) (WGPA) grow from the corpus callosum to the posterior corona radiata

(pointed out with a green arrow). This feature can not be found in Figure 3.21

(a) (Bayesian estimates). The corticospinal tract grows to the bottom of the brain

stem (pointed out with a pink arrow) with WPGA method. The WGPA method

seems preferable for fibre tractography in this example.

3.5 Summary

In Chapter 3, we defined the Fréchet sample mean of diffusion tensor data con-

sidering the symmetric positive semi-definiteness of the diffusion tensor. Six

non-Euclidean metrics (the Log-Euclidean, affine invariant Riemannian, Cholesky,

root Euclidean, power Euclidean and Procrustes metrics) were proposed and

tested for estimation of population mean tensor. We also developed the weighted

generalised Procrustes analysis (WGPA) in which an arbitrary number of ten-

sors can be interpolated or smoothed efficiently with the additional flexibility

of controlling their individual contributions. A new anisotropy measure, Pro-

crustes Anisotropy (PA), was defined and compared with Fractional Anisotropy

(FA) and Geodesic Anisotropy (GA). We carried out simulation studies for com-

paring different estimations of mean tensor with different metrics. The Eu-

clidean approach is problematic due to its swelling effect in the course of ten-

sor interpolation. The Procrustes and Log-Euclidean methods are shown to be

preferable. A simulation study showed that PA provided slightly better con-

trast in highly anisotropic regions that FA. We applied the WGPA for smooth-
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3.5. Summary

ing and interpolation of tensor fields from a real human brain. Initial results of

fibre tractography using WGPA were also discussed.

The accuracy of DTI measurements depends on the diffusion gradient direc-

tion scheme applied. In Chapter 4 we will discuss optimal designs for diffusion

gradient directions.
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3.5. Summary

Figure 3.20: Smoothing and interpolation of the human brain diffusion ten-
sor data. FA (a) and PA (b) maps based on Bayesian estimates without post-
processing. FA (c) and PA (d) maps from smoothed and interpolated tensor
data obtained with the weighted generalised Procrustes method. (a.1), (b.1),
(c.1) and (d.1) are zoomed inset regions in yellow box. It clearly shows that
the cingulum (pointed by green arrows) is clearly shown to be distinct from the
corpus callosum (the ’U’ shape tract, cyan arrows) in the anisotropy maps with
smoothed and interpolated tensor estimation (c.1, d.1).
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3.5. Summary

Figure 3.21: Fibre tractographies based on different estimated tensors. The
Bayesian estimates (a), Euclidean smoothing (b) and WGPA smoothing (c) are
used. The arrows point out some obvious differences when the WGPA tracts
are compared with the other methods.
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Chapter 4

Optimal Designs for Diffusion

Gradient Directions

4.1 Introduction

The measured signal intensity of a DTI image is obtained by applying diffu-

sion gradients along diffusion gradient directions. The accuracy of DTI mea-

surements depends on the diffusion gradient direction scheme applied. In this

chapter, we will focus on designing diffusion gradient directions which are spa-

tially uniform using directional statistics as mentioned in Section 1.5.

Recall that by a gradient direction scheme we mean a set of three dimen-

sional vectors gi, i = 1, 2, ..., N (see Section 1.1.3). The zero vector is special and

corresponds to no diffusion weighting, and most schemes contain at least one

such setting. Furthermore, we discuss only spherical schemes i.e. in which the

magnitude of all non-zero vectors is constant and is hence conveniently scaled

to unity. The “discarded” magnitude known as the “b - value” is set sepa-

rately and characterises the strength of the diffusion gradient. Below, we focus

on non-zero vectors gi, in effect assuming that the baseline MRI signal corre-

sponding to the zero gradient, is known precisely. It is further assumed that

directions g and −g produce the same signal (in the absence of measurement

noise). Thus, let gi be the ith diffusion gradient direction, where gi ∈ RP2 ,

i = 1, ..., N, where RPk is the real-projective space of axial directions (gi ≡ −gi,
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4.2. Uniform Schemes

and ‖ gi ‖= 1). A minimum of six diffusion gradient directions are necessary

to apply in a DTI experiment in order to obtain unambiguous estimates of the

diffusion tensor (mentioned in Chapter 2).

4.2 Uniform Schemes

It is commonly assumed that the optimum scheme will have uniformly dis-

tributed gradient directions g1, g2,..., gN over a sphere. These diffusion gradi-

ent direction schemes involve approximately equal noise levels in any direction.

However, there appear to be several distinct notions of uniformity in this con-

text. Most currently used diffusion gradient direction schemes can be divided

into three categories: heuristic, numerical, and polyhedral.

Heuristic schemes employ a base set of directions corresponding to the faces

of a cube [Basser and Pierpaoli, 2005]. The cube with an edge length = 2, orig-

inating at (0, 0, 0) defines 13 non-collinear directions at the face centres, edge

bisectors, and body diagonal directions. These base sets are listed in Table 4.1

and shown in Figure 4.1).

Table 4.1: Base sets of heuristic schemes.

Name Directions
B0 [1, 0, 0]; [0, 1, 0]; [0, 0, 1]
B1 [0, 1/

√
2, 1/

√
2]; [1/

√
2, 0, 1/

√
2]; [1/

√
2, 1/

√
2, 0]

B2 [0,−1/
√

2, 1/
√

2]; [1/
√

2, 0,−1/
√

2]; [1/
√

2,−1/
√

2, 0]
B3 [1/

√
3, 1/

√
3, 1/

√
3]; [1/

√
3, 1/

√
3,−1/

√
3];

[−1/
√

3, 1/
√

3, 1/
√

3]; [1/
√

3,−1/
√

3, 1/
√

3]

Orthogonal (ORTH,N = 6), oblique double (ODG, N = 6), orthogonal/tetrahedral

hybrid (S7, N = 7), decahedral (S10, N = 10), and complete heuristic (S13,

N = 13) schemes, are five commonly used heuristic diffusion gradient direction

schemes [Hasan et al., 2001]. Each scheme is a combination of several heuristic

bases. Combinations of bases for these five schemes are listed in Table 4.2.
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Figure 4.1: Heuristic bases in a corresponding cube.

Table 4.2: Heuristic schemes: ORTH, ODG, S7, S10 and S13.

B0 B1 B2 B3
ORTH X X
ODG X X
S7 X X
S10 X X X
S13 X X X X

4.2.1 Numerically optimised schemes

Another widely used approach is to optimise the set of gradient directions for

any N ≥ 6 based on some specified criterion. These criteria are determined by

DTI acquisition and processing. DTI acquisition and processing schemes can be

summarised into two main steps [Basser et al., 1994; Papadakis et al., 1999a]: (a)

First, at least six DW images are acquired by applying diffusion gradient along

N > 6 directions; these DW images are used for estimating a diffusion tensor

D at each voxel. (b) Second, tensor-derived quantities are calculated from D,

such as three main diffusivities represeted by three eigenvalues of the diffu-

sion tensor, mean value of the trace of D, and the anisotropy indices. Maps of

these tensor-derived quantities are important visualisation results in DTI study.

Papadakis et al. [1999a] proposed that an efficient diffusion gradient direction

scheme should minimise noise propagation at each of the two steps.

Minimum total variance
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To minimise the sum of all variances in the estimated tensor elements Dij is one

of the optimisation criteria [Papadakis et al., 1999b]. The total variance is given

by

TV =
3

∑
i=1

3

∑
j=1

Var(D̂ij). (4.2.1)

In the same study, they hypothesised that the variance decreased as N was in-

creased.

Minimum force

A widely used numerical approach proposed by Jones et al. [1999] is to use the

analogy of electrostatic repulsion in chemical hybrid orbitals for selecting gra-

dient directions. Pairs of gradient directions distributed on a unit sphere are re-

garded as pairs of electrons repelling each other in the valence shell of a central

atom. Jones’ algorithm is to arrange the directions uniformly in 3-dimensional

space until the sum of the repulsive forces between every possible pair of elec-

trons is minimised. Let rij ≥ 0 be the distance between gi and gj (see Figure 4.2).

Then r′ij =
√

1− r2
ij is the distance between gi and−gj. According to Coulomb’s

law, the repulsive force between gi and gj is inversely proportional to r2
ij. Hence,

the objective to minimise the total forces is equivalent to minimising the func-

tion given by

JN = ∑
1≤i<j≤N

1
min{r2

ij, r′2ij }
. (4.2.2)

Jones’ JN diffusion gradient direction schemes [Jones et al., 1999; Skare et al.,

2000] with N = 6, 10, 20, 30 are listed in Appendix 5.2.6: Table A-3, A-4, A-5,

A-6 respectively.
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Figure 4.2: Diffusion gradient directions on a sphere. Grey lines: axial direc-
tions gi. Blue lines: distance rij between gi and gj.

4.2.2 Polyhedra schemes

An alternative method for designing the gradient direction scheme is to use

the highest symmetric polyhedra. A series of icosahedral (ICOSA) direction

schemes [Muthupallai et al., 1999] have been generated using icosahedral poly-

hedra. Other polyhedra generated by the regular icosahedra such as the dodec-

ahedron with pentagonal faces [Hasan et al., 2001] can also be used to obtain

diffusion direction schemes.

4.3 Tests of Uniformity

In this section, two test statistics of uniformity are proposed for designing dif-

fusion gradient direction schemes.

4.3.1 Bingham test

The Bingham test is the simplest test of uniformity of axial data [Mardia and Jupp,

2000; Bingham, 1974]. In the Bingham test, we reject uniformity of axial direc-
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tions (gi ∈ RPp−1, i = 1, 2, ..., N) for a large value of

B =
p(p + 2)N

2

{
trace(T̄2)− 1

p

}
(4.3.1)

where p is the dimension and T̄ is the scatter matrix, i.e.

T̄ =
1
N

N

∑
i=1

xixT
i . (4.3.2)

We apply the Bingham test to design the diffusion gradient direction scheme,

i.e. p = 3, xi = gi, i = 1, 2, ..., N. Then the objective is to minimise the Bingham

test statistic given by

B(g) =
15N

2

{
trace(T̄2)− 1

3

}
. (4.3.3)

Mardia and Jupp [2000, p.233] pointed out a disadvantage of the Bingham test

that it is not consistent against all alternatives to E[xxT] = p−1Ip×p where Ip×p

is a p× p identity matrix. That means the power of the Bingham test for all al-

ternatives to E[xxT] = p−1Ip×p does not approach 1 as the sample size becomes

infinitely large.

4.3.2 Giné’s GN test

A consistent test of uniformity for axial data is the Giné’s GN test [Mardia and Jupp,

2000; Giné, 1975]. Giné’s GN test rejects uniformity for large values of

GN = C1 − C2 ∑
1≤i<j≤N

sin φij, (4.3.4)

where

C1 =
N
2

, (4.3.5)
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C2 =
p− 1
2N

{
Γ((p− 1)/2)

Γ(p/2)

}2

(4.3.6)

and φij ∈ [0, 90◦] is the smaller angle between gi and gj. In our study, p = 3,

then

C2 =
1

2N

{
1

Γ(3/2)

}2

. (4.3.7)

We apply GN to arrange the diffusion gradient directions, and name it the GN

scheme with N directions.

4.3.3 Objective functions of Jones’ and Giné’s methods

In this study, Jones’ method and our Giné’s method are of interest for arranging

diffusion gradient directions with fixed number of directions N. In this subsec-

tion, we will summarise three expressions of the objective functions of both

methods.

For simplicity, we assume that rij = min
{

rij, r′ij
}

. Then the objective of

Jones’ method is to minimise

JN = ∑
1≤i<j≤N

1
r2

ij
, where rij ≥ 0. (4.3.8)

Let φij ∈ [0, 90◦] be the smaller angle between two directions gi and gj, 1 ≤

i < j ≤ N (see Figure 4.3). Then function JN can also be represented by φij,

1 ≤ i < j ≤ N, and JN is given by

JN = ∑
1≤i<j≤N

1
4 sin2(φij/2)

= ∑
1≤i<j≤N

1
2(1− cos φij)

(4.3.9)

It is necessary to express the function JN with diffusion gradient directions
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Figure 4.3: The angle between diffusion gradient directions. φij is the smaller
angle between two directions gi and gj.

gi, i = 1, 2, ..., N for computational purposes. Since

cos φij = |gi · gj| (4.3.10)

where a · b is the dot product of vectors a and b with same size, we have

JN = ∑
1≤i<j≤N

1
2(1− cos φij)

= ∑
1≤i<j≤N

1
2(1− |gi · gj|)

. (4.3.11)

For Giné’s method, we can also present the objective function GN with rij.

For a fixed N, the objective of Giné’s method is to minimise

GN = C1 − C2 ∑
1≤i<j≤N

sin φij. (4.3.12)

Since

sin φij = 2 sin
φij

2
cos

φij

2
, (4.3.13)

and

sin
φij

2
=

rij

2
, and cos

φij

2
=

√
1−

r2
ij

4
, (4.3.14)
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we obtain

GN = C1 − C2 ∑
1≤i<j≤N

rij

2

√
4− r2

ij. (4.3.15)

Finally, since

sin φij = |gi × gj| (4.3.16)

where |a× b| is the magnitude of the cross product of vectors a and b with same

size, the function GN can be represented by the directions gi i = 1, 2, ..., N as

follows

GN = C1 − C2 ∑
1≤i<j≤N

|gi × gj|. (4.3.17)

We summarise all of the above expressions of the objective functions JN and

GN in Table 4.3. Note that for both Jones’JN and Giné’s GN arrangements, the

Table 4.3: Objective functions of Jones’ and Giné’s methods.

Jones’ JN Giné’s GN
Function 1 min ∑

i 6=j

1
4 sin2(φij/2)

min C1 − C2 ∑
i 6=j

sin φij

Function 2 min ∑
i 6=j

1
r2

ij
min C1 − C2 ∑

i 6=j

rij
2

√
4− r2

ij

Function 3 min ∑
i 6=j

1
2(1−|gi·gj|)

min C1 − C2 ∑
i 6=j
|gi × gj|

solution to the optimisation problem in practice is not unique. For example,

any simultaneous rotations of g1, ..., gN, i.e. g1R, ..., gNR where R ∈ O(3) can

minimise JN and GN.

4.4 Results

4.4.1 Giné’s GN and Jones’ JN schemes

We obtain Giné’s GN schemes (N = 6, 10, 20 and 30) by minimising Giné’s

GN statistic. The optimisation function f minsearch() which adapts the Nelder-
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Mead simplex method [Lagarias et al., 1998] in MATLAB (R2009a, The Math-

Works, Inc., Natick, Massachusetts, USA) is used to minimise Giné’s objective

functions. Jones’ diffusion gradient directions are used as the starting values

for minimising Giné’s GN functions. We list optimised Giné’s GN schemes in

Appendix 5.2.6: Tables A-3, A-4, A-5, A-6 respectively. Giné’s GN and Jones’

JN schemes are plotted in Figure 4.4. It is clear that when N = 6 and 10, the

GN- and JN-based schemes are similar. For N = 20 and 30, GN and JN schemes

become more different.

We substitute Giné’s and Jones’ schemes into both the objective functions

GN() and JN(). The comparison of these objective function values is made in

Table 4.4. It is noticeable that Giné’s GN schemes provide very slightly smaller

values for both the objective functions GN() and JN() than Jones’ JN schemes,

which is surprising. This may indicate that our numerical optimisation was

carried out to higher precision than Jones’ schemes.

Table 4.4: Giné’s and Jones’ objective function values.

GN() value JN() value
G6 scheme 0.1529 0.4523
J6 scheme 0.1530 0.4523
G10 scheme 0.1182 0.5452
J10 scheme 0.1183 0.5459
G20 scheme 0.0830 0.7049
J20 scheme 0.0842 0.7076
G30 scheme 0.0669 0.7961
J30 scheme 0.0690 0.8012

4.4.2 Simulation study

Monte Carlo simulations are carried out using Matlab to evaluate the effect

of GN schemes on tensor estimation and tensor-derived measures. First, syn-

thetic diffusion tensors D1
∗, D2

∗, ..., DK
∗ are generated by rotating the principal
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4.4. Results

Figure 4.4: Giné’s GN and Jones’ JN diffusion gradient direction schemes.
Giné’s GN and Jones’ optimised directions are plotted in a and b. Their 3D,
x-y, x-z and y-z projection views are in the first, second, third and fourth row,
respectively in each figure. The same viewing angles are used for both schemes.
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eigenvector v1 on a hemisphere (with radius=1). Let (θ, ψ, 1) be the spherical

coordinates of v1, where θ is the azimuthal angle in the x-y plane, ψ is the polar

angle from the positive z semi-axis, and 1 is the radius. We rotate v1 by chang-

ing values of θ and ψ. Let θ increase from −180◦ to 180◦ with step size 18◦. For

a fixed θ, ψ increases from 0 to 90◦ with step size 18◦. The settings of v1 are

shown in Figure 4.5. Since the three eigenvectors of D∗ are orthogonal, we take

v2 = (1, θ + 90◦, ψ), and v3 = v1 × v2. Let D1
∗, D2

∗, ..., DK
∗ (K = 126) have the

same eigenvalues (λ1, λ2, λ3) = (12, 2, 1), then they have same mean diffusivity

MD = 5 and Fractional Anisotropy FA = 0.8631.

We repeat M = 500 Monte Carlo simulations for each synthetic diffusion

tensor Dj
∗, j = 1, 2, ..., K with each Giné’s GN direction scheme gi = (gix, giy, giz),

N =6, 10, 20, 30. For a fixed N and a specified synthetic diffusion tensor Dj
∗,

the Monte Carlo simulations are carried out as follows:

1. Calculate the noise-free signals µ = (µ1, µ2, ..., µN) from the single tensor

model

µi = S0 exp(−bgi
TDj

∗gi), where i = 1, 2, ..., N, j = 1, 2, ..., K. (4.4.1)

2. Simulate the measured signals S = (S1, S2, ..., SN) by adding independent

Gaussian random noise with zero mean and a fixed variance δ2 = 5 to

each of the N noise-free signals.

3. Estimate the diffusion tensor. In this study, we use our Bayesian single

tensor estimation method discussed in Section 2.2.3.

4. Calculate various summary statistics.

141



4.4. Results

Figure 4.5: Each of the blue point on the hemisphere represents the principal
eigenvector of Di

∗, for some i = 1, 2, ..., K.

4.4.2.1 Effects of varying scheme on tensor estimations

The aim of this simulation study is to compare effects of Giné’s GN and Jones’

JN schemes on tensor estimation. We consider the following four measures of

estimation error: The root mean squared error (RMSE(D̂)), the 95th percentile

of the angular dispersion (95% AD), standard deviation std(FA) and standard

deviation std(MD). The RMSE(D̂) measures the Euclidean distance between

the estimated and true diffusion tensors and is given by

RMSE(D̂) =

√√√√ 1
M

M

∑
k=1
‖ D̂(k)−D ‖2. (4.4.2)

where D̂(k) is the kth Monte Carlo estimate of D. Note we are using the Eu-

clidean distance between tensors here. The 95% AD of the estimated principal

eigenvector v̂1 from v1 is also used in Jones [2003] to determine the respective

confidence cone for v1. The angular dispersion is given by

γ = acos(v̂1 · v1). (4.4.3)
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Figure 4.6 shows the surfaces of RMSE(D̂) from JN and GN schemes with

N =6, 1, 20 and 30. It is clear that overall RMSE(D̂) values decrease as N in-

creases. Surfaces of RMSE(D̂) from the G6 and J6 schemes are very similar. For

higher N (N = 10, 20 and 30), GN and JN provide slightly different RMSE(D̂)

surfaces. The same pattern can be shown in the top-down (θ − φ) views of

RMSE(D̂) surfaces (see Figure 4.7).

In Figure 4.8 and Figure 4.9, both G6 and J6 schemes yield large variations

of the 95% AD from approximately 5◦ to 20◦. As N increases, the variations

in orientational uncertainty decrease. There is a marked reduction (approxi-

mately 10◦ reduced) in the mean CI when N increases from 6 to 10. G20 and

G30 schemes provide further improvement in reducing the angular dispersions

of principal eigenvectors estimations. This improvement can also be found in

reducing the variance of FA and MD in Figure 4.10 and 4.12. The top-down

(θ − φ) views of std(FA) and std(MD) surfaces are shown in Figure 4.11 and

Figure 4.13. The surfaces of FA and MD are shown in Appendix 5.2.6.
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Figure 4.6: The surfaces of RMSE(D̂) for GN and JN schemes. N = 6, 10, 20, 30.

Figure 4.7: The top-down (θ − φ) views of RMSE(D̂) surfaces for GN and JN
schemes. N = 6, 10, 20, 30.
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Figure 4.8: Surfaces of 95% AD for JN and GN schemes. N = 6, 10, 20, 30.

Figure 4.9: The top-down (θ − φ) views of 95% AD surfaces for GN and JN
schemes. N = 6, 10, 20, 30.
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Figure 4.10: The surfaces of std(FA) for GN and JN schemes. N = 6, 10, 20, 30.

Figure 4.11: The top-down (θ − φ) views of std(FA) surface for GN and JN
schemes,.N = 6, 10, 20, 30.
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Figure 4.12: The surfaces of std(MD) for GN and JN schemes. N = 6, 10, 20, 30.

Figure 4.13: The top-down (θ − φ) views of std(MD) surfaces for GN and JN
schemes. N = 6, 10, 20, 30.
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4.4.2.2 Overall measures of schemes

To easily understand the performance of each direction scheme, we derive 5

overall measures based on the std(FA), std(MD) and RMSE(D̂). They are given

by

Maximum of sk Ψ1 = max
θ,φ

sk(θ, φ),

Sum of sk Ψ2 =
∫ ∫

sk(θ, φ)dθdφ,

Marginal sum of sk given φ = π/2 Ψ3 =
∫

sk(θ, φ = π/2)dθ,

Sum ofsk cos φ Ψ4 =
∫ ∫

sk(θ, φ) cos φdθdφ,

Standard deviation of sk Ψ5 = std(sk(θ, φ)),

where k = 1, 2, 3 and

s1(θ, φ) = std(FA),

s2(θ, φ) = std(MD),

s3(θ, φ) = RMSE(D̂).

We summarise the overall measures in Table 4.5, 4.6, 4.7. For both G6 and

J6 schemes, the maximum stdFA and maximum RMSE(D̂) i.e. Ψ1(stdFA) were

achieved for a fibre with (θ = 0, φ = −180◦) in Table 4.5 and Table 4.7. The

maximum stdMD obtained with G6 and J6 schemes was achieved for a fibre

with (θ = 90◦, φ = 180◦) and (θ = 90◦, φ = −180◦) respectively in Table 4.6.

For N = 6, Giné’s GN and Jones’ JN schemes have similar effects on tensor

estimation.
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We find that Giné’s G10 scheme is slightly better than Jones’ J10 scheme

through all measures based on std(FA), std(MD) and RMSE(D̂). However,

there is not a large difference between Giné’s and Jones’ schemes with higher

numbers of directions (N = 10). It is worth noting two points: (1) the J20 scheme

performs better than G20 for Ψ2, Ψ3 and Ψ4 through all measures, and (2) the J30

scheme performs better than G30 for Ψ1 and Ψ5 through all measures. We run

the computation several times, and obtain similar results.

Table 4.5: Overall measures on s1(θ, φ) = std(FA).

schemes Ψ1, (θ∗, φ∗) Ψ2 Ψ3 Ψ4 Ψ5
G6 0.0705,(0, -180◦) 3.6285 0.6583 2.2297 0.0131
J6 0.0703,(0, -180◦) 3.6495 0.6568 2.2393 0.0130

G10 0.0225, (18◦,-144◦) 1.2349 0.2200 0.7707 0.0038
J10 0.0250,(72◦, -18◦) 1.2589 0.2234 0.7798 0.0041
G20 0.0054,(18◦, -108◦) 0.3508 0.05436 0.2075 0.0006
J20 0.0061,(36◦,144◦) 0.3376 0.0462 0.2071 0.0008
G30 0.0035,(18◦,-126◦) 0.2276 0.0372 0.1436 0.0003
J30 0.0028 ,(0,-126◦) 0.2326 0.0417 0.1457 0.0003

Table 4.6: Overall measures on s2(θ, φ) = std(MD).

schemes Ψ1, (θ∗, φ∗) Ψ2 Ψ3 Ψ4 Ψ5
G6 0.4251, (90◦,180◦) 21.2961 2.9868 12.2927 0.0545
J6 0.4181,(90◦,-180◦) 21.4583 2.9895 12.3886 0.0551

G10 0.2131, (0,162◦) 18.4709 3.2312 11.0011 0.0384
J10 0.2341,(72◦, -18◦) 18.8294 3.2741 11.1060 0.0417
G20 0.0969,(18◦,-108◦) 7.0116 1.0881 4.1277 0.01085
J20 0.1061,(36◦,144◦) 6.7887 0.9349 4.0938 0.0115
G30 0.0669,(18◦,-126◦) 4.7677 0.7746 2.9818 0.0054
J30 0.0549,(54◦,-162◦) 4.8556 0.8536 3.0212 0.0049

For future work it would be interesting to see how the Jones statistic per-

forms in a test for uniformity compared to Giné’s test.
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Table 4.7: Overall measures on s3(θ, φ) = RMSE(D̂).

schemes Ψ1, (θ∗, φ∗) Ψ2 Ψ3 Ψ4 Ψ5
G6 5.9950, (0,-180◦) 541.7997 96.7310 340.8865 0.8261
J6 5.9890, (0,-180◦) 541.9041 96.7483 340.8255 0.8322

G10 1.6785,(18◦,-144◦) 96.3082 17.9253 56.0071 0.3140
J10 1.7197,(72◦, -18◦) 98.8145 18.2655 56.5059 0.3343
G20 0.3382,(18◦,-108◦) 24.2810 3.7647 14.2870 0.0376
J20 0.3738,(36◦,144◦) 23.5110 3.2362 14.2200 0.0407
G30 0.2252,(18◦,-126◦) 16.1889 2.6222 10.1012 0.0173
J30 0.1836,(54◦, -162◦) 16.4597 2.8890 10.2283 0.0157

4.5 Summary

In this chapter, we designed a series of new uniformly distributed direction

schemes with the number of directions N = 6, 10, 20 and 30 using Giné’s statis-

tic. A Monte Carlo simulation study has been carried out to compare effects

of the Giné’s and widely used Jones’ schemes on tensor estimation. It is clear

that all surfaces of measures reduce as N increases. Giné’s and Jones’ schemes

turned out to be quite similar in terms of performance. Five overall measures

based on the std(FA), std(MD) and RMSE(D̂) have been proposed for the eval-

uation of the diffusion gradient direction scheme.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we have developed some statistical methodologies for diffusion

tensor imaging and covariance matrix analysis. In Chapter 2, we have devel-

oped the multi-tensor model for diffusion MRI measurements of water diffu-

sion at voxels with one or more distinct fibre orientations. Our model substan-

tially alleviates the non-identifiability issue present in the standard multi-tensor

model. A new parametrisation was proposed to ensure the symmetry and pos-

itive semi-definiteness of the diffusion tensor in the multi-tensor model. A

Bayesian framework has been established in Section 2.2.3 to estimate diffusion

tensors under the single tensor model (m = 1 in the multi-tensor model) and the

double tensor model (m = 2) assumptions. Inference has been drawn from the

posterior distribution. Also, the Bayes factor was adapted for model selection,

i.e., for deciding between the single and double tensor models. We developed

an MCMC algorithm, which combines the Metropolis-Hasting algorithm and

Gibbs sampler in Section 2.3, to study the uncertainty of the model parame-

ters (i.e. the diffusion tensor and the variance of the model noise) based on the

posterior distribution of these parameters. We defined the mean fibre orienta-

tion, or direction, to be the extrinsic mean identifying directions with axes. We

then sampled fibre orientations from the posterior distribution and estimated

the true diffusion direction by the sample mean. We also provided the 95%
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credible cone around the mean direction by truncating at the 95th percentile

of the Euclidean distances from the sampled directions to the their mean. The

comparisons of the Bayesian estimation and the LLS method for both the sin-

gle tensor and double tensor models were made using three simulated datasets

with Phillips 15, Phillips 32, and the Uniform 32 diffusion direction schemes.

It was established that the Bayesian approach performed better than the LLS

method, and the Uniform 32 direction scheme was the best among the three

schemes. For real data, we applied Bayesian estimation using the single tensor

model. The anisotropy maps (FA maps), fibre orientation maps (the line and

colour coded orientation maps) and the map of diffusion ellipsoids were ob-

tained for the corpus callosum region. The multi-tensor model with automatic

model selection has also been applied to a region containing crossing fibre bun-

dles from a healthy human brain dataset. Fibre tractographies of the corpus

callosum were obtained based on the Bayesian, LLS and the mean MCMC sam-

ple mean estimators. Uncertainty in fibre tractography was studied using an

MCMC method and results were also discussed.

In Chapter 3, we defined the sample mean of diffusion tensor data to be

the Fréchet mean relative to the symmetric positive semi-definite matrix space

and empirical distribution of the sample. Non-Euclidean metrics, namely, the

Log-Euclidean, affine invariant Riemannian, Cholesky, root Euclidean, power

Euclidean and Procrustes metrics were proposed and tested for estimation of

population mean tensor. The notion of geodesic has been used to interpo-

late two diffusion tensors and two pairs of tensors. We also developed the

weighted generalised Procrustes analysis (WGPA) in which an arbitrary num-

ber of tensors can be interpolated or smoothed efficiently with the additional

flexibility of controlling their individual contributions. An algorithm for com-

puting the weighted mean of tensors was also proposed. A new anisotropy
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measure, Procrustes Anisotropy (PA), was defined and compared with Frac-

tional Anisotropy (FA) and Geodesic Anisotropy (GA). Simulation studies were

carried out to compare different estimations of mean tensor with different met-

rics. The Euclidean approach is problematic due to its swelling effect in the

course of tensor interpolation. From a variety of experiments, the Procrustes

and Log-Euclidean methods are shown to be preferable. A simulation study

was performed for comparing PA, FA and GA. Evidently, PA provides slightly

better contrast in highly anisotropic regions, such as the corpus callosum in our

examples. We applied the WGPA for smoothing and interpolation of tensor

fields from a real human brain. From the results, FA and PA maps from the

processed tensor data were much smoother than the one without processing.

The feature that the cingulum (cg) is distinct from the corpus callosum (cc) was

clearer in the anisotropy maps from the processed data than those without pro-

cessing. Initial results of fibre tractography using WGPA were also discussed.

The accuracy of DTI measurements depends on the diffusion gradient di-

rection scheme applied. In Chapter 4, we reviewed some widely used schemes

such as heuristic and numerical approaches. Some new uniformly distributed

direction schemes with the number of directions N = 6, 10, 20 and 30 have

been designed using Giné’s statistic. A Monte Carlo simulation study has been

carried out to compare effects of the Giné’s and Jones’ schemes on tensor es-

timation. Surfaces of RMSE(D̂), 95% CI, std(FA) and std(MD) were obtained

for the comparison. It is clear that all surfaces of measures reduce as N in-

creases. Giné’s and Jones’ schemes turned out to be quite similar in terms

of performance. Five overall measures based on the std(FA), std(MD) and

RMSE(D̂) have been proposed for the evaluation of the diffusion gradient di-

rection scheme.

The main contributions of this work have appeared in several publications,
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notably, Dryden et al. [2009a], Zhou et al. [2008] and Zhou et al. [2009a]. More-

over, there are various issues that require further study in this fascinating topic

of study.

5.2 Future Work

5.2.1 Multiple tensor model and model selection

In DTI study, how to model the diffusion behaviour at the region containing

more than one distinct fibre orientation is still an open question. In this thesis,

we have developed the Bayesian multi-tensor model (in Chapter 2) to capture

the multiple diffusion properties at the given voxels. We applied this Bayesian

multi-tensor model into a real data from the human brain, and the initial result

of multi-tensor estimation in a region contain crossing fibre bundles has been

obtained (see Section 2.4.2.3). More recent work has involved estimating the ori-

entation distribution function nonparametrically, although the disadvantage is

that many more diffusion gradient directions are needed [see Tuch, 2004]. The

Bayes factor B has been adapted for determining the number of fibre orienta-

tions at a voxel. Other measures could also be used for model selection, e.g. FA

and σ2. It is noted that to manually set the thresholds for B, FA and σ2 was not

simple. To develop an approach for auto model selection could be one of our

future work.

There is an increasing trend to study multi-modal structures in white mat-

ter using high-angular-resolution diffusion imaging (HARDI) [e.g. Tuch et al.,

1999]. The q-ball method [Tuch, 2004], persistent angular structure method

(PAS) [Jansons and Alexander, 2003] and multiple compartment model [Alexander,

2005] are three main implementations of the HARDI approach to capture the
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multi-modal nature of diffusion at the voxel level. Olhede and Whitcher [2008]

developed a statistical framework using a q-space density estimator based on

a wavelet lifting scheme for HARDI data to characterise the diffusion non-

parametrically in terms of its symmetry and directionality. For future work

it would be interesting to use our Bayesian multi-tensor model for HARDI data

analysis, and to compare our results with others.

5.2.2 Power Euclidean approach

In Chapter 3, we have discussed the power Euclidean metric given in Equation

(3.2.13). Recall that the power Euclidean metric is given by

dA(D1, D2) =
1
a
‖ Da

1 −Da
2 ‖, (5.2.1)

where Da = EΛaET. The power a is nonzero, and a ∈ R. We have considered

a ∈ {1/2, 1} earlier. Additional flexibility can be derived by varying a. As

a → 0, the power Euclidean metric approaches the Log-Euclidean metric. The

estimate of the mean tensor is given by

T̂A = (∆̂A)1/a, where ∆̂A = arg inf
∆

{
1
N

N

∑
i=1
‖ Da

i − ∆ ‖2

}
=

1
N

N

∑
i=1

Da
i . (5.2.2)

For positive a the estimators become more resistant to outliers for smaller a, and

for larger a the estimators become less resistant to outliers. For negative a one

is working with powers of the inverse covariance matrix. The anisotropy index

based on the power Euclidean metric (in Equation (3.2.39)) is a generalisation

of FA given by

FA(a) =

{
3
2

3

∑
i=1

(λa
i − λa)2/

3

∑
i=1

λ2a
i

}1/2

, (5.2.3)
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where λa = ∑3
i=1 λa

i /3. A practical visualisation tool is to vary a in order for

a neurologist to help interpret the white fibre tracts in the images. A question

of interest for further work is estimation of the metric from the data itself, e.g.,

estimation of a.

5.2.3 Fibre tractography assessment

In this thesis, we have obtained the fibre tractographies from Bayesian estima-

tors (in Chapter 2), from MCMC simulations and from processed tensor field

with the Procrustes method (in Chapter 3). To develop a statistical assessment

tool for fibre tractography and to create measures of fibre orientation uncer-

tainty would be of great benefit to neuroscientists. In particular it is of great

interest to consider the connectivity of the brain, and how connectivity analysis

is affected by using different metrics and methods.

5.2.4 Tensor regularisation

We have used the weighted generalised Procrustes method to smooth and in-

terpolate the tensor field. We wish to carry out regularisation. Consider a grid

of tensors D1,...,DN at voxels V1, ..., VN and we wish to predict the tensor at

a new site V. We could use the weighted penalised predictor [Dryden et al.,

2009b] obtained by minimising, with respect to D,

T̂τ,ω($) =
N

∑
i=1

wid(Di, D)τ + $d(D, υ)ω (5.2.4)

where the weights wi ≥ 0, ∑N
i=1 w1 = 1 are functions of the distance from Vi to

the site V, $ > 0, τ > 0 and ω > 0 are a regularisation parameters, and υ is a

reference matrix, such as the identity matrix, zero matrix or an overall average.
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For example we could use wi ∝ exp
{
−γ ‖ V −Vi ‖2}, i = 1, ..., n.

Consider now smoothing across an image at the voxels V1, ..., Vn, and so we

need to minimise, with respect to Dj, j = 1, ..., n,

{
n

∑
j=1

n

∑
i=1

wijd(Di, Dj)τ

}
+ $

n

∑
j=1

d(Dj, υ)ω, (5.2.5)

and wij is the weight as a function of the distance between site i and site j.

By varying (τ, ω), different approaches are obtained (see Table 5.1). Also, fur-

Table 5.1: Tensor regularisation methods

(τ, ω) Method
(2,0) Weighted Fréchet mean
(τ,0) M-estimator [Dryden and Mardia, 1998, p.298]
(1,0) Geometric median [Fletcher et al., 2009]
(2,1) Non-Euclidean type of ridge-regression
(2,2) A non-Euclidean type of LASSO [Tibshirani, 1996]

ther tensor processing techniques could be carried out by using various non-

Euclidean approaches. More work is required to understand the implication of

choosing different parameters.

5.2.5 Automatic selection of weights for tensor smoothing

How to process images with some level of optimality is an important and gen-

erally difficult task in many computer vision application. For diffusion tensor

smoothing, the main difficulty lies in the ability to predict how much smoothing

needs to applied at various locations. So, it could be interesting to investigate

algorithms which would modify the weights which determine contribution of

individual voxels. We could firstly start with some large region of interest. We

would then try to alternate iteratively between the two phases. First, to seg-

ment the region into more or less homogeneous subregions, which will gen-
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erally be irregular. Some standard classification tool can be used, eventually

trying also to assure some spatial continuity. These classification/segmentation

can be “soft”, i.e. we would not actually be drawing any boundaries, but rather

estimating class-conditional probabilities. Then we would do smoothing sepa-

rately for each of the subregions, using these probabilities as our weights. So,

the voxels that have higher probability of being part of the currently chosen

subregion will be contributing more. In the beginning we start by allowing

our segmentation algorithm to have many distinct segments/subregions and

very peaked distributions of weights within each. So, we would have very lit-

tle smoothing in the beginning. Once the smoothed values are computed, we

rerun the segmentation algorithm, and so on, gradually influencing the seg-

mentation to be increasingly more conservative in terms of the number of dis-

tinct subregions. We might even allow for disconnected segments/subregions,

which could be important to prevent oversmoothing of structure. So, ideally

we would like to be able to smooth distinct fibre bundles independently of one

another. Or, at least, to be able to smooth a segment of a major fibre tract pre-

serving its boundaries.

5.2.6 Diffusion direction scheme for selected fibre orientation

Most current diffusion gradient direction schemes aim to provide equal noise

levels for fibre in any direction. Therefore, diffusion gradient directions are uni-

formly distributed in 3D space. But, it is also necessary to design diffusion di-

rection schemes for specific fibre bundles with selected orientations such as the

corticospinal tract (CST) or parts of fibre bundles [Peng and Arfanakis, 2007].

Directional statistics could be applied to arrange diffusion gradient directions

for fibres with any orientation or with selected orientations.

With all the aspects of the thesis it must be borne in mind that advances

158



5.2. Future Work

in technology are always occurring. Methods based on diffusion tensor have

been popular because of the long acquisition time of gradient directions in dif-

fusion weighted imaging. It is increasingly possible to sample more directions,

more quickly, and so nonparametric models for diffusion directions will be-

come more commonplace. Nevertheless, methods developed in this thesis that

apply to covariance matrices in general are envisaged to be useful indefinitely.
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Appendices

Appendix 1

Three diffusion gradient direction schemes are tabulated as follows.

Phillips 15
gx gy gz

0.5185 -0.5194 0.6792
0.4830 -0.4775 -0.7339
-0.7056 -0.7086 -0.0033
0.1292 -0.7271 0.6743
-0.2715 -0.7194 0.6393
-0.6090 -0.3529 0.7104
-0.6391 -0.2958 0.7100
0.6860 -0.5551 0.4705
-0.7156 -0.4775 -0.5098
0.6763 -0.2312 -0.6994
0.7069 -0.7041 -0.0664
0.2670 -0.6868 -0.6760
-0.3036 -0.6828 -0.6645
-0.7056 -0.7063 -0.0569
-0.7179 -0.1865 -0.6707

Table A-1: Phillips 15 diffusion gradient direction scheme
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Phillips 32
gx gy gz

0.6533 -0.2706 0.7071
0.2087 -0.6756 0.7071
-0.0197 -0.7068 0.7071
-0.4212 -0.5679 0.7071
-0.6899 -0.1549 0.7071
0.6535 -0.2707 0.7069
0.5000 -0.5000 0.7071
0.2929 -0.7071 0.6436
-0.2945 -0.7064 0.6436
-0.5150 -0.4861 0.7061
-0.7071 -0.2929 0.6436
0.7071 -0.4725 0.5261
0.4725 -0.7071 0.5261
-0.5555 -0.6440 0.5261
-0.7071 -0.4725 0.5261
0.7071 -0.7071 0.0002
-0.7071 -0.7071 0
0.7071 -0.4725 -0.5261
-0.7071 -0.4725 -0.5261
-0.4725 -0.7071 -0.5261
-0.7071 -0.4725 -0.5261
0.6364 -0.4252 -0.6436
0.7060 -0.7060 -0.0547
0.2929 -0.7071 -0.6436
-0.2929 -0.7071 -0.6436
-0.7071 -0.7071 -0.0078
-0.7071 -0.2929 -0.6436
0.5847 -0.3977 -0.7071
0.7063 -0.7063 -0.0489
-0.0347 -0.7063 -0.7071
-0.7071 -0.7071 -0.0115
-0.7071 0 -0.7071

Uniform 32
gx gy gz

0.9888 0.0961 -0.1142
0.0897 0.7766 -0.6235
-0.8228 0.5263 0.2143
0.4690 0.5569 -0.6855
0.4758 0.7849 0.3970
-0.7137 0.5512 -0.4322
-0.0038 0.9861 -0.1661
0.0922 0.3580 0.9292
-0.6416 0.1708 0.7478
-0.4705 0.5419 0.6964
0.8055 0.5880 0.0737
-0.2881 0.1460 0.9464
0.7747 0.2338 -0.5875
-0.8898 0.1794 0.4197
-0.5393 0.7598 0.3631
-0.3393 0.7935 -0.5053
0.9309 0.2272 0.2860
-0.9366 0.3323 -0.1112
0.1060 0.8641 0.4920
-0.8847 0.1268 -0.4485
0.7209 0.4982 0.4818
0.4250 0.1289 0.8959
-0.5892 0.2769 -0.7590
0.7319 0.1509 0.6645
0.6949 0.6389 -0.3301
-0.0952 0.6510 0.7531
-0.0848 0.0241 -0.9961
-0.5547 0.8268 -0.0934
-0.2020 0.9373 0.2838
0.2357 0.2968 0.9254
0.3918 0.5531 0.7352
-0.1869 0.4818 -0.8561

Table A-2: Phillips 32 and Uniform 32 diffusion gradient direction schemes
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Appendix 2

Jones’ J6
gx gy gz

1.0000 0.0000 0.0000
0.4460 0.8950 0.0000
0.4470 0.2750 0.8510
0.4480 -0.7230 -0.5250
0.4470 -0.7240 0.5260
-0.4490 -0.2770 0.8500

Giné’s G6
gx gy gz

1.0000 0.0000 0.0001
0.4472 0.8944 0.0001
0.4472 0.2764 0.8507
0.4473 -0.7236 -0.5257
0.4472 -0.7236 0.5257
-0.4472 -0.2765 0.8506

Table A-3: Jones’ J6 and Giné’s G6 diffusion gradient direction schemes

Jones’ J10
gx gy gz

1.0000 0.0000 0.0000
0.6780 0.7350 0.0000
-0.5560 0.5040 0.6610
0.6720 -0.7330 0.1060
-0.0120 -0.8010 0.5980
-0.6800 -0.3100 0.6640
-0.0450 -0.0110 0.9990
-0.0240 0.9660 0.2570
0.4580 0.5210 0.7210
0.6580 -0.2500 0.7100

Giné’s G10
gx gy gz

0.9980 0.0218 0.0590
0.6624 0.7492 -0.0061
-0.5516 0.4931 0.6728
0.6891 -0.7196 0.0860
-0.0166 -0.8129 0.5822
-0.7098 -0.2941 0.6400
-0.0578 -0.0518 0.9970
-0.0371 0.9619 0.2710
0.4465 0.5150 0.7318
0.6416 -0.2646 0.7200

Table A-4: Jones’ J10 and Giné’s G10 diffusion gradient direction schemes
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Jones’ J20
gx gy gz

1.0000 0.0000 0.0000
0.3360 0.9420 0.0000
-0.4050 0.6060 0.6850
0.8250 -0.5130 -0.2360
0.0060 -0.3630 0.9320
-0.8110 -0.2870 0.5100
0.8520 -0.3200 0.4140
-0.2400 0.9590 0.1490
0.8350 0.2720 0.4780
0.0090 -0.9040 0.4270
-0.0630 -0.8120 -0.5800
-0.2690 -0.3900 -0.8810
-0.4220 -0.6240 0.6580
-0.6010 0.7790 -0.1770
-0.5160 0.0860 -0.8520
-0.7900 -0.6070 0.0870
0.7290 -0.1810 -0.6610
0.2650 -0.0960 -0.9600
-0.5610 -0.7010 -0.4400
-0.4050 0.6310 -0.6620

Giné’s G20
gx gy gz

0.9999 0.0007 -0.0119
0.4139 0.9103 0.0080
-0.4728 0.5422 0.6946
0.8258 -0.5349 -0.1789
-0.0004 -0.2129 0.9771
-0.7068 -0.4933 0.5070
0.8162 -0.3346 0.4711
-0.3614 0.9041 0.2280
0.8460 0.2311 0.4805
0.0059 -0.9596 0.2813
-0.0615 -0.8636 -0.5005
-0.0247 -0.4027 -0.9150
-0.2652 -0.6872 0.6763
-0.5572 0.7814 -0.2810
-0.4882 -0.0301 -0.8722
-0.8180 -0.5752 -0.0033
0.8459 -0.0747 -0.5281
0.4677 0.0370 -0.8831
-0.5046 -0.6244 -0.5962
-0.3228 0.5847 -0.7443

Table A-5: Jones’ J20 and Giné’s G20 diffusion gradient direction schemes
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Jones’ J30
gx gy gz gx gy gz

1.0000 0.0000 0.0000 0.1660 0.9860 0.0000
-0.1100 0.6640 0.7400 0.9010 -0.4190 -0.1100
-0.1690 -0.6010 0.7810 -0.8150 -0.3860 0.4330
0.6560 0.3660 0.6600 0.5820 0.8000 0.1430
0.9000 0.2590 0.3500 0.6930 -0.6980 0.1780
0.3570 -0.9240 -0.1400 0.5430 -0.4880 -0.6830
-0.5250 -0.3960 0.7530 -0.6390 0.6890 0.3410
-0.3300 -0.0130 -0.9440 -0.5240 -0.7830 0.3350
0.6090 -0.0650 -0.7910 0.2200 -0.2330 -0.9470
-0.0040 -0.9100 -0.4150 -0.5110 0.6270 -0.5890
0.4140 0.7370 0.5350 -0.6790 0.1390 -0.7210
0.8840 -0.2960 0.3620 0.2620 0.4320 0.8630
0.0880 0.1850 -0.9790 0.2940 -0.9070 0.3020
0.8870 -0.0890 -0.4530 0.2570 -0.4430 0.8590
0.0860 0.8670 -0.4910 0.8630 0.5040 -0.0250

Giné’s G30
gx gy gz gx gy gz

0.9999 0.0087 -0.0066 0.8851 0.4640 -0.0359
0.3231 0.9464 0.0000 -0.1890 0.6839 0.7047
0.8626 -0.4794 -0.1615 -0.0258 -0.6247 0.7804
-0.8234 -0.3174 0.470 0.5916 0.3902 0.7055
0.6533 0.7110 0.2603 0.8840 0.2500 0.3950
0.6372 -0.7661 0.0840 0.2068 -0.9775 0.0407
0.6187 -0.4440 -0.6481 -0.4674 -0.5247 0.7115
-0.4944 0.7915 0.3592 -0.2678 -0.0052 -0.9635
-0.6063 -0.7371 0.2985 0.5912 0.0547 -0.8047
0.2681 -0.2471 -0.9311 -0.0033 -0.9381 -0.3463
-0.6562 0.5537 -0.5127 0.3317 0.7526 0.5689
-0.7008 0.0654 -0.7104 0.9094 -0.2815 0.3062
0.1589 0.4256 0.8908 0.1508 0.2106 -0.9659
0.2969 -0.8309 0.4705 0.8847 -0.1352 -0.4462
0.3664 -0.4055 0.8374 0.1658 0.8916 -0.4215

Table A-6: Jones’ J30 and Giné’s G30 diffusion gradient direction schemes
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Appendix 3

Figure B-1: The FA surfaces for GN and JN schemes. N = 6, 10, 20, 30.

165



5.2. Future Work

Figure B-2: The MD surfaces for GN and JN schemes. N = 6, 10, 20, 30.
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