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ARqTP8('T 

A novel approach to the problem of describing interacting magnetic 

ions has been put forward by Stevens. The worK contained herein offers 

the first major test of the new formalism; applied specifically to 

binuclear systems in which magnetic Cr 
3+ 

ions occur in discrete pairs 

of D 3h symmetry. 

Each interacting pair is regarded as a unit; wavefunctions 

suitable for describing the pair are constructed in determinantal 

form. The wavefunctions of D 3h symmetry are used to define the 

unperturbed Hamiltonian. An effective Hamiltonian is then used to 

obtain the energy levels in a restricted energy range. (The region 

of the 
2TI levels of the single Cr 

3+ ion). A set of selection rules 

is derived. 

With direct comparison with experimental results the success o-F 

theoretical. predictions is estimated. Certain interval relations are 

obtained. There is no first order spin-orbit splitting. Through second 

order perturbation the maximum values of the spin-orbit coupling constant 

are found for three materials. The theoretical Zeeman splittings are 

stated. 
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CHAPTER ONE 

AN INTRODUCTION 

EXCHANGE COUPLING 

The phenomenon of exchange between magnetic ions in insulating 

crystals is an area oT solid state physics that has sustained continued 

interest over many years. The reason for such active research is to 

explain the mechanism of exchange and thereby contribute to the 

understanding of magnetic ordering in solids - an essential part of 

modern magnetism. However, despite the abundance of information that 

has now been accumulated the present mathematical for-mulism for dealing 

with exchange interactions still has its limitations; these will be 

pointed out in due course. It is not intended that this account be a 

comprehensive review of all aspects of exchange coupling but rather a 

critical appraisal of the methods most currently employed in this field. 

It is hoped that the reader will gain an appreciation of the novelty of 

the worK contained in this thesis and of the deficiencies in the current 

theories that the worK herein sets out to recti-fy. An excellent review 

entitled 'Exchange Interactions in Magnetic Insulators' is given by 

Stevens [11 in wh-'Lch were laid down the foundations of the new formulism. 

Important discussions on exchý-lnge are also given by Anderson, Herring and 

Levy [2-5] 
. 

In the study of magnetic insulators it is customary when describing 

the low-lying energy levels to use a 'spin-Hamiltonian'. This is a 

method of approximation in which the Hamiltonian of the magnetic ion, 

with all of its states, is replaced by another Hamiltonian which accurately 

describes only the low-lying states. The principle involved is in finding 

an isomorphism between the subspace defined by the low-lying states and a 
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, fictitious spin' space defined by a set of orthogonal spin states. 

The eigenvalues of the latter are Known. 

To describe the pair interactions the magnetic ions are brought 

together with the assumption that their electronic wavefunctions are 

unchanged. This suggests using a spin Hamiltonian Hs: 

= YH +Y 

The terms H1 are quite well Known and are the spin Hamiltonians for 

each ion in isolation, while the H 
ij 

describe the interactions between 

ions taKen in pairs. For H 
ij , most ot"ten chosen is the Heisenberg- 

Dirac Hamiltonian, a cosine coupling between spins at sites i and 

-3 ss 
ij 1j 

The parameter J is expected to decrease rapidly as the ion separation 

increases (although it is often found that the next nearest neighbour 

exchange is greater than the nearest). This seems a valid approximation 

for many of the problems of magnetism in insulators, because the insulating 

property confines electrons with their spins to localised sites so that the 

orbital degrees of freedom are not needed to be included as part o-F the 

magnetic problem. 

The suitability oT the Heisenberg-Dirac Hamiltonian was proved by 

Dirac [6] for a particularly simple case; that of electrons each 

confined to a different orthogonal orbit. He showed that because of 

the antisymmetry principle the subspace of all states obtainable by 

placing one electron in each o-F N orbitals with arbitrary spin directions, 

and taKing linear combinations, is isomorphic to an N-particle spin space. 

if ýi. 4 j, ''', are mutually orthogonal functions at i, j,... there will be 

one electron in i, one in j, etc. All possible Slater determiflants are 

then formed 
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The matrix of the actual Hamiltonian within this manifold of antisymmetric, 

orthogonal many-electron states is set up and it is this matrix that Dirac 

showed to be identical with that of the operator 

sj 

i>j 

where C is a constant and 

le 2Zr, 
ijlý i 

ýi >. 

This parameter J is determined by experiment and is positive for ferro- 

magnetic interactions and negative for antiferromagnetic interactions. 

The discussion by Dirac shows how two apparently different operators 

can have identical matrix representations (within related manifolds of 

states) which hints at the possibility of spin Hamiltonians for more 

complicated sYstems. This also emphasises the fact that each spin 

Hamiltonian has to be defined separately for each problem. 
2 

The first formulation of J in terms of e /r 
ij , which is correct 

for truly orthogonal orbits, is necessarily positive being the self 

energy of the charge distribution ý*ý This fact formed the basis 
i j, 

of the Heisenberg theory of ferromagnetism [7] since the lucst state 

having all spins parallel is -Ferromagnetic. However in insulators, 

the only case in which the Heisenberg-Dirac Hamiltonian is correct, 

the interaction is almost universally antiferromagnetic. The reasons 

for the discrepancy are that the Dirac theory is confined to the states 

of a particular manifold, and being only a first order treatment the 

often more important second order perturbation effects are neglected. 

Among the second order effects is included the phenomenon of super- 

exchange, so called because of its long range, whereby electrons are 



- 

exchanged between magnetic ions via an intermediary closed-shell ion. 

Also observations have been reported interpretable in terms of biquadratic 

2 
exchange terms in the effective Hamiltonian, i. e. terms in (SI. S, ) 

In using this formulism there is yet another serious question to 

be considered, that of the orthogonality of the electronic wavefunctions. 

We have already said that to build up the solid free ions are brought 

together close enough for there to be interactions between them. The 

wavefunctions of course then overlap; which is in fact necessary if 

one is to obtain an antiferromagnetic sign for exchange M, but overlap 

on the other hand, severely complicates the calculations as well as 

indicates that in some sense we are not worKing with the right set of 

functions. Besides overlap, the assumption that the free ion functions 

remain unchanged in the solid is surely invalid; there is every reason 

to believe that they become considerably modified [8]. 

So we have stated a spin Hamiltonian which is valid when describing 

pair interactions in specific cases, i. e. when the interacting ions are 

in states o-F a particular maniTold, deTined by putting each electron in 

a different orbital. The properties of ground state pairs have been 

reviewed by Owen and Harris M and it is fairly certain that the spin 

Hamiltonian description is applicable. However as a general theory oT 

exchange the spin Hamiltonian description is too specific, indeed one 

of the major criticisms oT this method is its lacK oT generality [10] 
. 

The need of a more general interaction was stressed by Van VlecK [11] 

who proposed the use of a variation of the Heisenberg-Dirac Hamiltonian, 

a phenomenological, orbital dependent exchange Hamiltonian: 

J(s 
ai -S i) 

where s. and s. are the spins o-F the electrons occupying various one- 
al -: ý-bj 

electron orbitals on ions a and b in the pair. The operators in a spin 
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Hamiltonian are equivalent to those of the actual Hamiltonian Cin a 

restricted range of states) and these reproduce the energy levels but 

not the eigenstates so it is difficult to give any physical meaning to 

the spin operators. So our, main objective is to produce a formulism 

which is applicable in the general case and through which some physical 

meaning may be given to the mechanisms o-F exchange. By the general 

case is meant interactions between ions having no restrictions on the 

descriptions of the states so can mean states resulting from double 

electron occupancy of the orbitals. This will be particularly useful 

in the optical studies oT pairs since the typical spin Hamiltonian 

fails to describe either the initial or the final states. 

The proposed strategy Tor dealing with interactions between 

magnetic ions will now be brie-Fly described: the prohlem begins with 

a general Hamiltonian H of the form: - 

ýP2 /2m 
ii 

Y Ze 
2 /r 

i>j 

x 
ij i>j 

+ 

and the solving oT the Schroedinger equation containing this Hamiltonian. 

The equation is too complex to solve directly so approximation methods 

are needed. Perturbation theory will be used which necessitates the 

choosing of an unperturbed Hamiltonian H0. This presents no difficulty 

i-F the perturbation theory is to be taKen to inTinite order Tor then 

any de-Ficiencies in H0 should eventually be corrected. But iT convergence 

in low order is required H0 should be chosen to be a good approximation to 

H. 

It has already been stated that the nDrmal practice when describing 

interacting pairs of ions is to split up the Hamiltonian H into two 

parts 

JH YH ij i>i 
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where XH 
1 

is the sum of the individual parts and ýH 
ij 

represents 
i i>j 

the interaction part. The unperturbed Hamiltonian H0 is then taKen 

to be the sum of the individual site operators Y, H, [9,12,13]. The 

difference H-H0 is then regarded as a perturbation and it includes 

the interaction between ions. On experimental grounds this process 

appears to worK but as a starting point for a proper theory the cho, *. -ce 

of H0 must be rejected. The main objection is that the method 

distinguishes between electrons. We have H which is invariant with 

respect to interchanges of all electrons, and YH 
1 which is invariant 

only with respect to interchanges of electrons on the same ion. 

There, c)re electrons are distinguished even though exchange interactions 

primarily arise because electrons are indistinguishable. Also a 

substantial part of the crystal field potential at a site i is due to 

electrons at sites other than i. Since the electrons are not distinguished 

in H, H0 has less symmetry and applying the perturbation H-H0 increases 

the symmetry: an unusual feature for a perturbation theory to have. 

Considering the eigenstates of H, the perturbation development expresses 

them as linear combinations of those of H0. It seems unliKely that the 

higher symmetry of H can appear in the perturbed state unless the 

perturbation development is taken to infinite order. This method is 

unattractive in that the initial ideas are not suitable -For a proper 

general theory, but the difficulties can be avoided by using an 

unperturbed Hamiltonian which has the same symmetries as H. 

An unperturbed Hamiltonian H0 needs to be found which is symmetric 

in electrons so that they are not distinguished and which is a good 

approximation to the actual Hamiltonian H. It is not clear how these 

requirements can be met by a straightforward modification of H, so H0 

is defined using as much of our Knowledge concerning the syste-m as 

possible. To maKe use OTF available perturbation techniques the 



- 

unperturbed Hamiltonian is chosen so that it has the states of interest 

as its eigenfunctions. The first step is to define a set of orthogonal 

many-electron wavefunctions which describe the pair states; the 

wavefunctions also being endowed with the correct sYmmetry. Then 

projection operators Pn for each state In> will be defined by setting 

Pn= ln><nl. Any operator of the form YX 
nPn where Xn are scalars have 

the states In> as eigenstates and the Xn as corresponding eigenvalues 

(which may be chosen as convenient). We have constructed our many- 

electron states to simulate the anticipated eigenstates of H, so it 

is supposed that their mean energies will approximate to the eigenvalues 

of H. Therefore, if Xn is taKen to equal the corresponding expectation 

value o-F H<nlHln>, the corresponding unperturbed Hamiltonian H0 becomes 

Ho = Y<nlHln>P 
n 

= Xln><nlHln><nl. 

The perturb, -,, tion is H-H0. 

The manner in which H0 is defined suggests it will have eigenstates 

that can be regarded as arranged into manifolds of degenerate or nearly 

degenerate states. This is obvious since the eigenvalues oT H0 are 

de-Fined to coincide with the expectation values oT H and the typical 

energy level diagram consists of groups of closely spaced levels 

separated by relatively large energy gaps. At a later stage an effective 

Hamiltonian will be introduced, this has the form of a perturbation 

expansion to in-Finite order and it gives the splitting of the manifolds 

under the perturbation H-H0. 
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1.2 THE STUDY OF Cr3+ ION INTERACTIONS 

Over the years much attention has been paid to the analysis of the 

absorption spectrum of ruby, a mineral consisting of corundum Al 
20 3' 

doped with small concentrations of chromium. The spectrum of weaKly 

doped samples of ruby can be understood in terms of a single Cr 
3+ (d 

3 

ion residing in a field of octahedral symmetry [14]. However the 

absorption spectrum of darK ruby (typically 0.2 - 1% CH contains many 

additional sharp lines attributed to exchange coupled Cr 
3+ 

pairs [15,16] 
. 

The structure of corundum is such that each Cr 3+ ion has at least four 

different near neighbi-jur ion sites, but despite this complication several 

groups of workers have managed to assign most of the fine structure in 

the absorption spectrum to dif f erent Cr3+ pairs [17 
-20] . 

In a regular octahedron of neighbours the ground configuration of 

a single Cr 
3+ 

ion is expected to be t3 [21] Now in order to apply the 2g 

standard theory o-F exchange to Cr 3+ ions the three electrons in the 

d-shell of Cr 3+ 
are placed in the t 2g orbitals in such a way that there 

is precisely one electron in each orbital. A total of eight states can 

be formed by varying the possible spin orientations, these maKe up the 

terms A2 and 
2E 

using the cubic axes, using the trigonal axes one finds 

the terms 
4A2'2A1 

and 
2A 

2' 
With two Cr 

3+ 
ions sixty-four statrz;; can be 

formed and the pattern into which they are split should then be given by 

the Heisenberg-Dirac Hamiltonian. The lowest lying levels that have been 

assigned to pairs (4A2x4A2) (when both ions are in the 
4A2 

electronic 

ground state) are well accounted for by such a Hamiltonian when it 

includes the biquadratic term [17-20]. When applied to the excited 

pair states the correspondence between theory and experiment is poor 

[22] 
. Much better agreement with experiment is found using the Van VlecK 

phenomenological form of spin Hamiltonian which has been applied with some 

success to the (4A 
2x 

2 
E) excited pair states 

[23,24,25]. The analysis of 
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the (4A 
2x 

2 
E) state in the simplest case Of first nearest neighbours, 

because of experimental difficulties, has still proved difficult [20,26]. 

Recently the family of crystals with the general formula 

M Cr X=-CI, Br) has received attention because the crystal 32x9 
(M=: Cs, Rb, K; 

structures are such that the Cr 
3+ 

ions occur in crystallographically 

equivalent pairs, in an arrangement that is very similar to the first 

nearest neighbour pairs in heavily doped ruby. Such crystals are 

examples of so called binuclear systems and in the study of exchange 

interactions the advantages they possess over a doped system are many- 

fold. Suitable samples of ruby are formed by the doping of Cr 
3+ 

ions 

into the host Al 
203 

in sufficient concentrations that pairs are formed 

by chance occupancy of the near neighbour sites. The absorption spectrum 

of the resulting sample may contain features that are due to single 

unpaired ions as well as lines due to several different pair types and 

higher order ion clusters. Consequently the interpretation of the 

spectral features is overly complicated. These prbblems are not 

enc,. -)untered with a binuclear system because the Cr 3+ ions occur in 

isolated, discrete pairs and there-Fore all lines in the spectrum can 

be expected to be due to pairs. Also the symmetry of the pair is high 

(D 
3h 

) so the allowed optical transitions are severely limited; an 

important point in the interpretation o-F spectroscopic data. With 

these comments in mind it seems liKely that the analysis of the spectrum 

of binuclear systems will prove much easier than the analysis of the 

corresponding spectrum o-f ruby. 

Several papers have now appeared concerning the optical absorption 

spectra of binuclear systems: working with Cs 3 
Cr 

2 
E3r 9 

Dubicki et al 

[27,28] have analysed the (4A2x2 E) spectral region using a general spin 

Hamiltonian while Briat et al E29] have studied the same regio. n of the 

spectrum of Cs 
3 

Cr 
2 

Cl 
9' 

However, Briat et al [29] also tried to extend 
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the application of the theory to the (4A2x2T1) excited states, apparently 

ignoring the limitations of the Dirac theory. Their interpretation of 

the data is now in conFlict with the more recent analysis of Johnstone 

et al [30] given in terms of the new Stevens formulism [31]. In order 

to fit the experimental data to theory Briat et al [29] have found it 

necessary to invoke a large spin-orbit effect. Whereas using the new 

formulism [30] the gross features of the spectrum are understood without 

recourse to spin dependent effects,, and only a small second order spin- 

orbit interaction is required to explain some details of the spectrum. 

It has been variously reported, see for instance [32] 
, that the spin- 

orbit coupling parameter is reduced for ions in complexes, so it would 

appear that the spin-orbit effect required in [29] is anomalous and the 

theory in [31] more suitable for a description of the (4A2x2T1) levels. 

Thus arises the first major test of the new formalism. 

The aim of this thesis is to give a detailed study of the (4A2x2TI) 

manifold of states of a pair of Cr 
3+ 

ions haviF,,,, overall symmetry D 
3h ; 

the configuration found in binuclear systems. This study will then be 

applied to 'fitting the spectrum' of several different binuclear 

materials, for which much experimental data is now available 
[30,33] 

. 

The degree to which theory can explain the experimental findings will 

serve as a stringent test as to the generality of the new formulism. 

It should also be possible to give a physical interpretation to the 

mechanisms of exchange and to state which are the dominant factors. 
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1.3 Cr 3+ PAIRS IN BINUCLEAR SYSTEMS 

Each member of the family of crystals typified by the formula 

m3 Cr 
2x9 

(M=Cs, Rb, K and X-=Cl, Br) is is0structural with Cs 
3 

Cr 
2 

cl 
9 

whose structure has been reported by Wessel and Ijdo [34]. The 

structure of these compounds contains discrete (Cr 
2x9) 

3- 
units, with 

each Cr 3+ 
ion in a trigonally distorted octahedron of X atoms having 

C 
3v symmetry. Each Cr 

3+ 
ion is also a member of a pair with the two 

octahedra of X atoms joined by a shared triangular face. This shared 

face, perpendicular to the trigonal axis also forms a plane of reflection 

symmetry so that the overall symmetry of the pair is D 
3h 

C See Fig 1. The crystal c-axis runs parallel to the 
ID3h: ':: C3v + Gh 3v]- ' 

lir; f, joining the two Cr 
3+ 

ions, i. e. the trigonal axis (which will also 

be the axis of quantisation for the pair states). 

To determine the term system of a complex ion such as Cr 
3+ (d 3) 

the strong field method is employed because the crystal field is large 

compared with the interactions between the single d-electrons. The 

d-electrons in an octahedral crystal field are distributed between the 

threefold orbitally degenerate t 
2g states and the doubly degenerate e9 

stdtes [35,36,37]. The single Cr 
3+ ion has three d-electrons and in a 

regular octahedron of neighbours the ground configuration is expected 

to be t 
2g 

[21], this con-Figuration gives rise to the terms 
4A2,2 

T1.9 

2T2 
and 

2E 
of which 

4A2 
is lowest in energy. The term diagram for 

octahedral d3 complexes due to Tanabe and Sugano [38] is shown in 

Fig 2, giving the term energies as -Functions of the parameters 

characterising the crystal field. A very similar term system would 

be expected for a pair of chromium ions provided one ion remains in 

the ground state. For instance, in the optical spectrum of the single 

Cr 
3+ 

ion a group of lines corresponding to the transition 
4A2 

_* 
2T1 
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Fig 1: The (CýL 2x 9) 
3- 

an4loyt tj-nZt [34]. 

is observed (a group of lines because terms in the Hamiltonian not yet 

considered may lift some of the degeneracies). For a pair of Cr 
3+ ions 

one would expect to observe in the same spectral region transitions 

corresponding to one of the ions in the pair being excited from A2 

2 
to T1 while the other. 

_remains 
in the ground state. The gross optical 

spectra of several binuclea. ý. - systems are shown in Fig 3, and it is seen 

by comparison with Fig 2 that the pattern oT the absorption"bands closely 
3+ 

resembles that of a single Cr ion. Approximately, the values of Dq /B 

for the pair would vary from 1.7 for Cs Cr E3r to 2.0 for K Cr Cl 
32932.9' 
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Fig 2: TeAm diayLam 6o)L octahed, ýýtt d3 comptexm (CIB = 4) [38]. 
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However, the pair spectrum compared with the single ion spectrum contains 

additional structure because each ion of the pair is in a distorted 

octahedron of neighbours. Also exchange interactions taKe place between 

members of the pair and an additional type of degeneracy must be 

introduced because eith-er member of the pair may be excited. 

A comparison of the exiiirerimental bands Fig 3 with the theoretical 

bands Fig 2 allows an estimation of the Racah parameter B (and also C, 

since C has been set equal to 4B in the term diagram). These-parameters 

which can be expressed in terms of Slater integrals are a measure of the 
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electron interaction. One finds that the optimum value of B for 

Cs 
3 

Cr 
2 

E3r 
9 

is approximately 660 cm- while for K3 Cr 
2 

cl 
9 the best 

3+ 
. value of B is approximately 680 cm The free Cr ion value for B 

is 918 cm- 
1 [38] so there is a reduction in the free ion B-value of 

about 29% for Cs, 
3 

Cr 
2Br9 and 26% for K3 Cr 

2 
Cl 

9' 
This reduction is to 

be expected since in complexes the charge cloud of the d-electrons 

is more spread out than in theý free ion. 

Each spectrum shown in Fig 3 is arranged into manifolds of states 

designated (4A2x 2- 
F2), (4A2x4T1), (4A2x2T1(4A2x2 E) and (4A2x4T2). 

We shall be concentrating on the (4A2x2T1 group of levels so it will 

be necessary to worK within the basis defined by the states of this 

manifold. The first object to be achieved therefore is the construction 

of a set of orthogonal wavefunctions which describe the (4A2x2T1) 

states and which transform irreducibly under D 
3h symmetry. Later, the 

coupling between the (4A2X2T1) states and other excited states will be 

investigated so basis states for these manifolds need to be constructed 

also. (We note that the 
4T 

and 
4T 

terms arise from the t2e 
12 2g g 

configuration). 

Throughout this discussion it has been assumed that the one-electron 

orbitals are d-orbitals and that each Cr 
3+ 

ion lies in a regular octalt, -, dral 

environment; these assumptions lead to a notation that is quite 

inappropriate for the description of a pair in D 
3h symmetry. The 

notation is retained however because it is readily understood in terms 

of conventional crystal field theory. Therefore, it must be remembered 

3+ 
that each Cr ion lies in a field of C 

3v s ymmetry and in such a field 

the t 2g orbitals are reduced to a 1g +e 
9 

(this point will be incorporated 

into the definition of the one-electron orbitals). The many-electron 

terms are similarly reduced in the descent in symmetry from 0- to c h 3v 
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according to the following: 

A1 -->- 

A2A2 

E 

TA2+E 

T2 



CHAPTER TWO 

STATES OF THE PAIR AND THE PERTURBATION THEORY 

2.1 THE ONE-ELECTRON BASIS STATES 

If one considers the problem of a comple-x containing a single Cr 

ion one finds that the valence electrons are in d-orbitals modified by 

the presence of the crystal field. When the ion lies within a 

trigonally distorted octahedron of neighbours it is usual to worK with 

linear combinations of the d-orbitals so that the trigonal axis becomes 

the axis of quantisation. This procedure cannot be followed in the case 

of a pair of interacting Cr 
3+ ions simply because the electrons can no 

longer be said to occupy d-orbitals; the orbitals occupied by the 

three electrons of one of the ions, due to the presence of the other 

ion are liKely to. be much less localised than d-orbitals. However, the 

symmetry properties of the pair one-electron orbitals are available and 

3+ 
are used in their definition. Centred at one of the Cr ion sites 

three one-electron states IA>, IB> and jC> are defined having the 

following symmetry properties: 

Cc) 1 A> =1 A> 
3 

C' 1 B> =w1E: 3 

c02 31C> =w IC> 

cy 
0 JA> = JA> 
v 

CY0 E3> = c> 
v 

CY' c> = B> 
v 

where W= exp(27Ti/3), Co denotes a rotation through 27T/3 about the 
3 

trigonal axis and cyo denotes reflection in a symmetry plane through 
v 

the trigonal axis (the superscript o indicates that the operators act 

in one-electron co-nfiguration space). In spherical symmetry and taKing 

the trigonal axis to be Oz, -Co-would be exp(-27ril /3) and Ox and Oy 
3z 

would be axes such that CY 0 induces x -+ x, y -+ -y, z -* z. It is important 
v 
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to notice that whereas IB> and IC> can be interchanged by symmetry 

operations there is no way in which JA> can be turned into either IB> 

or IC>, which emphasises the point made at the end of Chapter One. 

The states IA>, IB> and IC> correspond by virtue of their symmetry 

properties to the following combinations of d-orbitals, which in crystal 

field theory would be the t (or a+e) -orbitals having the trigonal 2g 1g 9ý 

axis as the axis of quantisation: 

I A> : --- 

IB> d- 
F3 

23 

IC> d+ 
13 

-2 3 

(th_e indices refer to the mI values of the one-electron d-orbitals). 

In a similar manner the crystal field analogues of the e orbitals 
9 

JD> and JE> are introduced, defined by the symmetry properties: 

c0 ID> w: 3 

c0 JE> =w2 JE> 

and would have the form: 

D> = 
J2 

d_ 
3 

Il 
+ '- d 

". 43 2 

d E> d+1 
j3 

13 -2 

CY 
0 ID> = JE> 
v 

cfolE> = ID>. 
v 

The correspondence between the orbitals IA>, IB>, IC>, JD> and JE> and 

the d-orbitals is one of symmetry only; they can best be regarded as 

derived from a self-consistent model of a large molecule containing 

two Cr 
3+ ions. (The transformation properties of the one-electron 

orbitals are showri in Appendix II). 

The pair has a ref lection- plane perpendicular to the trigonal axis 

0 
and the reflection operator ah relates the two, ions. The one-electron 
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states at the other Cr 
3+ 

site la>, lb>, lc>, Id> and le> are defined 

0 
using this reflection operator ah by: 

1 a> = cr" 1 A> 
h 

b> (ic) 1 B> 
h 

c> = (10 
hlC> 

d> = cio 1 D> h 

1 e> = ao JE> 
h 

The question now arises concerning the orthogonality of the states 

at one site to those at the other site. Suppose that the states are not 

orthogonal and consider JA> + ja> and JA> - ja>. These are certainly 

orthogonal because they behave differently under CT 0 but they may h 

not be normalised. ThereTore consider 

41 > *- (l/N 
1 

){JA> + ja>} and lý 
2>= 

(l/N 
2 

)IIA> - Ja>I 

where N and N are normalising constants. Then >+ 1ý 
122 

and (1/Vr2-)fjý 
1>- 

1ý 
2 >1 are orthogonal and normalised and also approximate 

to JA> and ja>. This 'shows that it is possible to define localised states 

for the two sites which are mutually orthogonal and have the desired 

symmetry properties so there is no loss of generality in assuming that 

the initial choices IA>, IB>, IC>, 
... etc are all mutuailY orthogonal. 

2.2 THE SYMMETRY OPERATORS C 3' CY , Cf h 

Much use will be made of the symmetry operators C 3' av and Gh and 

it will be necessary to apply them to one-electron orbital states, to 

one-electron spin states and to many-electron states. The notation must 

now be extended in anticipation of this. When applied to one-electron 

orbital states the superscript o will be added, as already indicated, 

when applied to one-electron spin states the s6perscript s will be added 
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and when applied to many-electron determinantal states which have both 

orbi't and spin specified no superscript will be added. 

The operators Cs Cf s 
and as which belong to the double group have 3' vh- 

yet to be defined. The components of s are operators acting in a two 

dimensional space in which a possible*'basis is constituted by the two 

eigenvectors 

I"1 
22 I-> = I'-> 

of s2 and sz. Using this basis it is a simple matter to write down 

the matrices representing the operators sxsy and sz 

The rotation operator in spin space is given by 

s 
exp(-iýs uu 

where the rotation is through an angle about some vector u, and 

s U. s. Expanding the exponential and separately summing the terms 
u 

even and odd in s with the aid o-F the relations u 

2n 1)2n 2n+l 
= 

2n+l (s 

u)5 
(s 

u) 
(21S 

u) 

the simple expression is obtained 

s1ý. 
Ru COS! 2ý - 2is 

u sin2 

sss 
This equation is now used in the definition of C 

3' a and ah The 

operator Cs is a simple rotation of 2Tr/3 about the z-axis so that 
3 

csHRs (21T/3) = 
12 

-i vlr3-s 3-zz 

hence 

s C31 +>'= . 21 
(1 

and 



- 

CSI-> = 21(l + ivl-3)i-> -W 
2 

3 

Now Us is equivalent to an inversion followed by a rotation through 
v 

TT about the y-axis. This is defined with reference to the axes set up 

in section 2.1. Since the inversion has no effect in spin space 

(is E RS(IT) = -2is vyy 

and writing sy 
l2i(S 

+- S-) we have 

s av S- - S+ 

so that 

cis +> and CTS vv 

Finally cy 
s is equivalent to an inversion followed by a rotation h 

through 7T about the z-axis. Therefore 

sH Rs(, ff) = -2is h-zz 

and applying to 1+> and 1-> we have 
P 

CY s and hl+> = -'I"> h 

Collecting all these results together 

C, 
91+> 

3 

cs -W 
2 

31 

0'1+> = 1->, 
v 

asl-> = -1+>, v 

cis +> +>, h 

US h 

Supplementary to these results, due to the anticommutivity between s 

s- and as are h 

[S ss 
-, 

CO ,=0 and IS 
+. w CY ý+= 

and because the operators b-e-jun-g-to the double group_ 
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(C, ) 5 
S-C s=w2 S-1 33 

(as) 3s 
cy s 

v-v 

(Gh 2 (cj, ) 2 
hv (Cs)3 = 1. 

2.3 MANY-ELECTRON BASIS STATES, t3 CONFIGURATIO IN 
2g 

Three electrons are placed in the t 2g orbitals IA>, JBý and IC> 

and all possible antisymmetric products are constructed, taKing into 

account the Pauli exclusion principle, i. e. all possible 3x3 Slater 

determinants are formed such as (A, B, C) in which three electrons have 

been placed in the orbitals IA>, IB> and IC> with m. = 
12., !, -and -21 

respectively. 

The total possible product -Functions are 

(A, B, C) 

(A p A, B) 

(B. 
p 

B.. C) 

(ch 5sCs= 
ws 3+3+ 

(cy )s ci = -s , v+V 

MS = 3/2 

(A, B, C) 

(A, B, B) MS = 1/2 

(B, 
pC, 

C) 

(A, B., C) 

(A. p Bv C) 

(A o A, C) 

(A, C, C) 

(A, B, C) (A, B, C) (A, B, C) 

(A. oA, vB) (AvA, C) (A, B , B) ms 1/2 

(B, B, C) (A, C, C) (B, C, C) 

(A, #B, wC) MS -3/2 

Some suitable linear combination of the antisymmetrised products 

must now be found to generate a set of symmetry adapted functions. 

Using the transformation properties of the one-electron orbitals under 

0h symmetry the transformation properties of the quartet function 

(A,, B., C) can be found. These properties are shown below: 



E C3 C2 C4 Cý 

+++............... (A, v Bip C) (A, Bq C) (A, Bs C) (A, 13, C) - (A, B, C) - (A, B, C) 

X, 
11 

1- 

. 

-- 
1 -1 -1 

Comparing with the character table of the 0h symmetry group (Appendix 

- I) it is seen that (A, B, C) transforms according t7o the irreducible 

representation A 2' 
Therefore the quartet term 

4A2 
is present 

14 3 
A 27e ý (A, B, C) 

and the remaining quartet terms are obtained using the s- operator 

14 1 >. +-+ -- ++ A j, 
rl[(A6E) 

+ (ABC) + (ABC)] 
23 

14 + A2 P-12- 
>+ (ABC) + (A-B-C)] 

4A (ABC) 
2' 2 

All other functions that can be constructed from the antisymmetric 

products which are also orthogonal to the quartet -Functions must be 

doublets. There are in total 16 doublet -Functions; 

are numbered 11> to 18> 

1>= (1/, lr6-) [(A+B+C-) + (ABC) -2 ABC)] 

12> = vr5'-[(A+B+C-) - (A+BC)] 

13> = (AAB) 14> (A+A-C+) 

15> = (ABB) 16> (BBC) 

17> = (ACC-) 18> (BCC). 

those with MS = 
12 

The transformation properties of these eight functions under 0h symmetry 

operators are collected in Appendix III. They form the basis for the 

reducible representation which contains the irreducible components 

+ 2T1 + -- 
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The complete basis states are found to be 

2 
aT 1> 2 

+ 
= (llvr6-) [(AB+EC) + (A+6BC) - 2(AAB+C+)] , 

2 la T -'> 12 = (1/v*r6-) [2tA+BC) 
- (ABC) - (ABC+)] -+- 

1 
2 

bT v 
12 > 

= (1/, lr6-) [(AA-B+) +( 
+-+ BBC) - 2(A+C+C)] l 

2 
bTJ, - 

12 > +-- 
= (1/, 'r6-) [(AAB) +( BBC) - 21ACC)] 

, 
jc2 T 22 > (IIV6--)[-(A+AC) + +b) 

- (++-) 2CAB BCC 

IC2 T1 JP-12> (11V6--)[-(A+AC-) + 2(AB+B-) (B-CC-)] 

12 E, I> a2 
+-+ +-+ AAB) + (BBC) p ++ 

+ (ACC 

la 2 E, -12> 
+-- 1[(AAB) 

+ (B+B-C) 
3 

f, -+ 

+ (ACC)] 

2 lb E, 12> ++- 1 [(AA-C+) +'(ABB) 3A 
++ - + (BCC 

lb 2 E, -12> AA-C- A-B+B- Fl P)+() B-CC- +( )l ' , 3 

ja2 T :1 .5> 2' 2 = 
1-(AB'C) Bh] (A 

2 
a 21 

> T 2' - = 
Y112: ABC ABC 

2 1> 
.P2 bT2. = v"2: 1 AAB 1 -+ -[( + 

BBC 
+ 

l2 bT2 12 > + 
= 'r, '- [( AA B- +-- (BBC)] 

jc2 rl- -+ T 2' 2 AAC BCC 

IC2 -! > - -- -+- T2P2 v/1[(AAC) (BCC)] 

2.4 MANY-ELECTRON BASIS STATES, t2e CONFIGURATION 
2g g 

Following exactly similar steps as in the t3 con-Figuration we can 2g 

write down the possible antisymmetrised product states for the t2e 2g g 

configuration; those with MS = 3/2 are labelled ý1 to ý6 and are shown 

below: 

(ABD)., 

(ACD), 
p 

(BCD) 

ý2 = (ABE) 

ý4 = (ACE) 

(BCE) 
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The transformation properties under the symmetry elements of the 0h 

group are collected in the -Following table: 

E C3 c2 c4 Cý 

w2 -k 3 1 
2 

-3 3 
+ 

2, 
3 5 

1 +i 3 
VT3 ) 

2 
1+ 
33 

VT3 

46 4 

2 2 
1 3 2 

2 
-3 4 

2 +3 6 
1 
3+i 

V13 ) 
1 

1+I 
33 

V13) 

,35 3 

ý3 
3 

2 
3 -1 

1 
3 3 

2 
3 -5 

1+1 
33 2 

IT 
3 4- 

( 13 +iV73 6 2 
ý4 Wý 4 _2ý 32 

1 
34 

2 
-36 

1+1 
33 

1 
. 
13r 

3- 
(3+i5 

1 

2 
3 1 

2 
3 3 

1 
3 -5 

1-i 
3 32 

13 +iJ3 )4+36 ý6 

ý6 w6 3ý 2 34 -36 -i 3 V713 1 
(1 3 +iJ3 )3+ 31 

6 0 -2 0 0 

2e) Funetion, 6, with TabZe 2.1: TiLan, 6 6oýmation Pftopextiu o6 (t2g 9 
MS = 312 undex Oh- 

These six functions span a space transforming according to a 

representation o-F the 0h group which contains the irreducible 

components T1 and T 2' It is a simple matter to find the correct linear 

combinations of the functions to reduce the representation into its 

component parts; the 
IL T1 functions are found to be 

23 
V/21 1+ ý6 

while-the combination transforming as 
4TI is 

2 vl (ý2 + ý3 

Written in terms of determinantal states: 

4P ý4 

VI 
27 ' (ý4 + ý5) 

- +-I-+ ... 4 3> V1.1 + la T2 2C(ABE) (ACD)ý 

4 la T, 21 >= (1/v76-)[(A+B+E-)+(A+B-E')+(ABE)+(ACD)+(ACD)-+(AC+D')j 

-E 6- -+)- +C-D-)-+(AC+D-)+(ACD)] la T, 2> (1/vlr6)((ABE)+(ABE)+(ABE +(A 

43 

_ja 
T,. -P"= V3'-[T-Al3E-)+CACD-)] 
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b4T 3> 
2 

b4T 12 > 

b4T, -21 > 

43> 
b Ts-2 

c4T3> 2 

C4 T 12 > 

jC4 T, -21> 

++++(. 
) [(ABD) 

- 13CE 

(1/vr6-)[(A+B+[))+(A+BD)+(ABD)±(BCE)±(BCE)±(BCE)] 

(1/vf6)[( 
, 
A+BD)+(AB+D)+(-ABD)±(BCE)±(BCE)+(BCE)j 

BD BCE 

v7Y [(ACE) +(BCD)] 

(1/vT6-)[(ACE)+(ACE)+CACE)+(BCD)+(BCD)+(BCD)I 

(1/V'6-)[(ACE)+(AC+E-)+(AC-E)-+(B+CD-)-+(BC+D)-+(BCD+)] 

43 Ic T -2> A, -[(ACE)+(BCD)] 

The symmetry species has not been specified but in the signs ± and 

44 the first sign refers to T and the second to T Altogether there 1 2' 

are 36 doublet functions belonging to this configuration; those with 

ms=i 
,, are written in full in Appendix IV together with their 

transformation table under 0 symmetry. h 

2.5 
4A2x2T 

MAN FOLD BASIS STATES (U, V, W) 

3+ 
. From the basis states of the individual Cr ions in the pair it 

is possible to form the basis states of the pair. At present we are 

42 
interested in the states of the (A2x Tj) manifold; there are 48 such 

states having total spin values of either 1 or 2. 

Consider a general pair state with one ion described by the function 

243 la Tl., 5> and the other by IA 
2" 2>- 

be written 

ja 2 T1,912: A 2' 
ý>. 

The pair state in this situation will 

In this particular example the total spin S=2 and MS = 2. The S and 

MS values.. will be used inclassifying the pair states. There are three 

2 
components of TI defined in section 2.3 and to distinguish between these 
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the pair states shall carry the labels U, V and W for one of the ions 

being, in a2 T1, b2TI or c2TI respectively. 

written 

2 
.143 

JU, S=2, Ms 2> = la T1 JI 2: A2 

and in terms of determinantal functions 

The above state is therefore 

U, 2,2> = (1 /vr6-) [I (ABC) + (ABC) -2 (ABC) }i (ab+C+) 

The pair state appears to be written in terms of products of 

determinants, for instance (ABC)x(abc). Each product is antisymmetric 

with respect to interchanges of electrons in the first ion orbitals and 

to interchanges of electrons in the second ion orbitals but not with 

respect to interchanges of electrons between ions. Any physically 

important states must be antisymmetric with respect to electron inter- 

changes so any discussion of the properties of the Hamiltonian using 

basic states that are not symmetric would be invalid. The product of 
++- . 

the determinants CABC)x(abc) becomes antisymmetric with respect to 

interchanges of all pai I rs of electrons if it is replaced by (ABCabc). 

In this way the product (ABC abc) is taKen to mean a6x6 Slater 

determinant formed from the two 3x3 determinants, being then appropriate 

to a six electron system. 

Application of the spin lowering operator S- on the pair state 

JU, 2,2>, already defined, enables those states with lower MS values 

to be Tound. Thus we have: 

2i4 JU, 2,2> = ja T, P 2: A 23 2' 2> 

2 2.4 34> 3> JU, 2,1> = 2-ja 
2: A T1,2-: A 21 2" 222 2' 2 

214 l> +a24 2A222 JU, 2,0> = A-ja T1 2' YF3, T 1: A 2'- 

/3-1 2i4 ! ja 2T 2-: 4A 3> a- -11.0 7.2: A 2' -22122 -9 -2 

2143 JU, 2, -2> = ja T1j, -2: A2 »-2> 
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The state JU, 1,1> is found by virtue of its orthogonality to JU, 2,1> 

and because it is normalised. 

!-1a24 3> 4 J3- A ja2 A 21> 12222 Tl 
v22v2 

2424 
l> -ja 

iJ2 
A 

2- >T 2-: A 
2'- 

1 v/3--1 ä2 Tlvi: A JU, 1, -1> = 'ja T,: A-2- 2> - 1 

The V and W states are easily obtained from the U states by the 

substitution of lb 2T1> 
and ic2T 

1> respectively for-la 2T1>. 

However the U, V and W do not behave irreducibly under CY h so new 

states are defined thus 

u VI-IRI +hU, > 

ju 1- CY h 
lu, i, i> 

and similarly for IV, 1,. l>, IW, 1,1>, JU, 2,2>, IV, 2,2> and IW, 2,2>. The 
. 

prime and double prime notation is consistent with the standard notation 

that prime states are invariant under CT h whereas double prime states 

reverse. 

The spin lowering' operator has a somewhat unexpected ef f ect when 

applied to the prime and double prime states, because of the 

anticommutivity between S- and (5 h" For instance 

S-V/l, (l + ah )lu, l, l> 

cf h 
)S- I U, I, 1> 

h 
)42ýju, 1,0> 

'r2- U10 -ý 

i. e. the spin lowering operator applied to a prime state has produced 

a double prime state. 
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2.6 U, V AND W IN TERMS OF SINGLE ION BASIS STATES 

The manipulation of the pair states is facilitated when they are 

expressed in terms of the single ion basis states (as opposed to writing 

them as determinantal states). We have that 

JU, 2,2> 2 
= la T , 2: 

4 A 3 
pP 1 2 1 

and we shall use the convention that when describing a pair state in 

terms of single ion states the first term in the pair Ket always refers 

to the ion whose electronic states are described by the orbitals IA>, 

IC> etc, and the second term in the pair Ket always refers to the 

ion with states described in terms of la>, lb>, lc>, Id> and le>. 

To write a prime or double prime state in terms of the single ion 

Kets 12T1> and 14 A2> the effects of the operator ah on them must first 

be computed (see sections 2.2,2.3). Now 

2143 
0h1U, 2,2> = CY h 

ja Tli, 2: A 
2' 2> 

2 T1-92i): i( 
4A 3» 

22 

243 ja Tj.. 2: A 
2' 2> 

but it must be remembered that in this case the first of the terms 

refers to the ion with states described by la>, lb>, Ic> ptc. By the 

convention that has been adopted the order of the terms must be reversed 

giving the result 

= _14 J3: 82 1> cy hIU, 
2,2> A22 

the prime and double prime states are then given by 

24 3> 14 32 IU', 2,2> T,, -!: AA2: a T , ->] 2 2'2 212 

IU", 2,2> =-r! 
2T4 3> +432 ill>] 

r] aAA2: a T5 
V2 

-_j 

2 2' 22 
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The lower MS valued states are obtained by applying the spin lowering 

operator, remembering that application of S- on a prime state produces 

a double prime state and vice versa. 

The pair states can now be written in full; the following are a 

generalised form being applicable to . any of the U, V or W by the 

2 insertion of the correct component of T for the T specified. The 1 

and + signs refer to the prime and double prime states with the first 

sign always referring to the prime state. 

3- >] 12,2> 72[IT, 12: A, 3> :ý JA : T, 2 222 

2 
-[IT, 

-22-: A, 3> + v/3 
3 

-: T, 2->+IA : T, 12,1> 22 : A, 1>±ý3JA, 1 -! >] -1 T, 22222 

2,0> 22 T 22 
: Aj2! >T, 21 : A, - 12 > A, - 

12 :T, 12 > A, 22 :T 12 >] 

_3 
JA, 

2: T,; > ± 3JA, -I: T, -1>] -12 : A, IT, I: A, 2 
Ji T, -22> 1- 32 12, 

-1> =2222 

3> + JA, 
_3 : T, - 1>] 12, 

-2> = V'r5. 
[IT, 

-22 : A, -2 22 

-': A 3> ITA IA, I: T, I> ± f3IA 3 
: Tl 2 > T, -: A,! -> + `>] 

22222222 

2222A : T, -! > + IA, I: T, -! >] 11,0> = ! [IT, -!: A, '-> - ITI: A, -'-> ± JA -2 222 

_3 : T, '-> ± IA, -': T, -! >] v73--IT, I: A, -3> 
V3 12 V32 

2 jo 2222222 

2.7 U, V AND W (IN D SYMMETRY) 3h 

The 48 basis states of the A2xT 1) manifold must now be operated 

on by the symmetry operators o-F the D 3h group and hence their transform- 

ation properties within this symmetry group deduced, with the express 

purpose of ascertaining the correct linear combinations of the basis 

states which transform according to the irreducible representations of 

the D 3h group. The elements of the D 3h group are E, a h' c 3' S 
3' 

Cý 

and CT Now CY commutes with C and a so that C and cy have the same 
vh3v3v 

effect on. -both 
primed and double primed states. Also S 3 

C and h3 

Cý = (Yhav so that acting on primed states S 3 
C3a rid C av and acting 
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on double primed states S3= -C 3 and C -cj v 

The transformation properties of the unprimed states are shown in 

the Appendix V and from them a transformation table of the states under 

the D 
3h symmetry elements can be formed. Consider the table of the 

primed states with S=1. 

E cy h c3s3 Cý' av 

u I, 1> u 111> w21u1,1-> u 11> 

jup 
'llo> 

lu' 
, 1,0> IU,, i, o> -lu "l'o> 

jul 
, l, -l> IU, 

, i, -i> WIU-, i, -i> 

lvl 
, 1,1> lvl 

, 1,1> IV,, i, i> 

IV, 
, i, o> IV1 

1110> WIV,, i, o> IW, 
, i, o> 

IV, 
, i, -i> IV, 

, 1, -1> w2 IV-, I, -l> IW, 
, i, i> 

IW, 
, i, i> IW "l '1> wlw,, i, i> IV, 

, i, -i> 

lwp 
lllo> . 

1w, 
, i, o> 

2 
w IW,, i, o> IV, 

, i, o> 

Iw' I J. -1> I jw 1, -l> 
jw. p 

lp 
1 Iv, 

llll> 

x 19 0 -1 

Tabte 2.2: Ttan/s6okmation ptopeAtia o6 pAimed (U, V, W) with 
S=I undut D3h 

Comparing with the character table of the D 3h group Appendix I(ii), 

these 9 functions form the basis for the reducible representation of the 

D 3h group containing the irreducible components 

Al + 2A" + 3E' 
2 

It is easily found that: 
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IU', 1,1> and IUP, 1, -l> form the basis for the representation E' 

jul, 1,0> it of of ty vp 91 Aý 

V/ 15 2[lvl, 
1,1> ± jw 1, -1>1 Aý+Aý 

IV', 1,0> and IW', 1,0> E' 

IV', l, -l> and lw', 1,1> E 

and from now on these are the basis states oT the C4A2x2T1) manifold; 

these and the rest of the symmetry adapted basis states are displayed 

below: 

Orbital 
Parent G +1 h CT h 

3 
Aj IuI11 

. 0> Aý Iulp, 1,1>. p 
Iull, 1, -1> E to 

3 of A 2 
jul, 1,1>, 9 ju 1, -l> E' I Li'l, 1, O> A" 1 

3 
ll 

v1Y1[IV", 1, 1>±IW-, 1. p-1>] Aý+Aý 
11 " ll E Ivy, 1, -l >, lwl, 1,1> Ep 

IV 
1110>1 

IW 
, 1,0> E 

' I 
to, V1,1 > to -i>] +Iw 1, Alf+Alp 12 

E IV 
, 1,0>, fw"1,0> E IV11111-1>1 Iw of, 1,1> 

A; 
IU', 2,0> 

Iul 
, 2,2>, Up , 2, -2> 

A' 

E' 
IU", 2,1>, IU", 2, -l> E 

IU", 2,0> Alp 
5A 

or 2 
luf, 2,1>, IU', 2, -l> E' IU", 2,2>, lu", 2, -2> E 

V' 2,1 W' 2, -1 >] Aý +A' 2 
IV", 2,2>, lw", 2, -2> E to 

5E to 

IV', 2, -l> , 
IW', 2,1> E' 

IVP', 2,0>, IW", 2,0> E 01 

j1ý'[IV"', 2, -2>±IW'p. p2,2>] to A1 +A 2 

lvp-,, 2,2>, IW', 2, -2> E' 
y75'[IV"`, 2,1>-+IW", 2, -1>] go to A1 +A 2 5 E' IV' 2,0>, IWP, 2,0> 0 IV", 2, -l>, IW'!, -2,1> E go 

, 
/5-'[IV', 2, -2>±IWI, 2,2>] A; +Aý 

T, t,, Po 9-3: IqAeducibte Repuzentationz oý D 3h 6o)uned by (U, V, W) - 
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It may be noticed that the table contains a column headed 'orbital 

parent'. This column contains the irreducible representations of the 

orbital component of the pair states, and is obtained by operating on 

the U, V', W' etc states with the symmetry operators of D 
3h which refer 

00 only to the orbital parts; CG aýd Go. The effects of these 3vh 

operators are independent of the total spin S and excepting cYo 
I h' 

independent of the a nature of the states. So one can write: h 

c0 lu> = lu>, CON> = wlv>, c0 Iw> =w2 Iw> 
333 
00 cy 
v 

lu> = lu>, cy IV> = -lw>p cyolw> = -IV>. vv 

00 Combining these results with the operator a (a operating on a state hh 

can only give +1 or -13 and referring to the D 3h character table 

Appendix I, one finds that the orbital parts of the U states transform 

as Aý+A 2 and the V. and W states transform as E'+E" under D 3h* 

The operator a0 mixes states of different symmetries under CY h h' 

i. e. both primed and double primed states, for instance, orbitally the 

it 3 
states ju 

, 1, ±l> and IU', 1,0> form the basis for A; in D 3h" One also 

notices that for stateý with MS =0 the symmetries under both cyo and Cy hh 

are the same so that given the orbital parent it is easy to write down 

all the members of that particular multiplet. 

2.8 BASIS STATES OF THE (4A2x2T2) AND (4A 
2x 

2 E) MANIFOLDS 

When deriving the basis states of the (4A2x2 Tj) manifold it may be 

noticed that only properties concerning the total spin of the states was 

involved, through the use of S- and a h' The form of the states (see 

sections 2.5 and 2-6) does not depend on the orbital trans-Formation 

propertie-s-of the 
2T 

states. By virtue of the fact that 
2T 

and 
2E 

142422 

are spin doublets we can say that the (A2xT2) and-( A2x E) manifold 
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basis states have exactly the -Form as the states already given in 

section 2.6. Thus to obtain the state of the (4A2x2T2) manifold for 

instance, the required component of 
2T2 

is merely substituted for T 

in the U, V and W states, e. g. a prime state of the (4A2x2T2) having 

S=2 and MS =2 might be written: 

243 14 32 IP', 2,2> aT 2' 2: A 2" 2A 2' 2: a T 2' 2 

As in the case of (4A2x2T1) both S and MS are used in classifying the 

states. Now 
2T2 

has three orbital components and 
2E 

has two orbital 

components and these need to be distinguished. Analogous to the 

definition of U, V and W we shall use the letters P, Q and R to 

distinguish between the components a2T 2' b2T2 and c2T2 of the (4A2x2T2) 

manifold and G and H for the a and b components of 
2 E. The symmetry 

properties of the unprimed P, Q and R and the unprimed G and H are 

given in Appendix V. 

2.9 BASIS STATES OF THE (4A2x4T AND (4A2x4T2) MANIFOLDS 

I 

The states to be constructed are those describing the situation 

in which one ion remains in the ground state 
4A (t 3) 

while the other 2 2g 
442 

is ex. cited to either T1 or T2, both of the t 2g eg configuration. In 

both of these cases there are 96 states having possible total spin 

0,1,2,3. 

Beginning with the pair state in which S=3 and MS = 3, all other 

states can be formed by the use of S_ and by implementing the conditions 

of orthonormality. The following will be derived for a general 
4T 

state 

as the result is applicable to any component of either 
4T1 

or 
4T 

2' 

a ), have been applied and the prime and double prime The operators 21(1 h 

pair states produced. Where ± or + is present the. first sign refers to 

the prime states, the second to the double prirýe states. 
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S=3: 

= v/-, 
4 13,3> 4T, 3 

: A, > A, 3T, 3 >] 

4 3> + 14 3341: 4 3> 3,2'> T, 2-: A, T, : A,! > + IA, : T,! -> + IA, T, ] 222222222 

(1/v/-10) [14 T, - 
12 >+, -14 1> + 14 

,3,3: 
4> 13,1> 

vr3- T, 12 
: A. F 2T : A, '> ± JA T, 

2 222 

443 ýNIA, 12: T, 12> ± JA, 
-. I2: T, 2>] 

14 14 14 3 
-3 

(j/j-(3) -3 3> +3T, '-I: A, 2-> +3T, 1-: A, -1> +TA, 3, C> 21: A 22222222 

+, 3: 4 
-3> 

44+-3: 4 JA T, + 3JA, l: T, -2-> + 3JA, -I: T, l> 7 JA, T, 3>] 22222222 

1 c» Ei 4 
-3 + ýf3-1 

4 14 -3> 
4 

-3 
13, 

-1> = T, : A, 2-> T, -2-: A, -2-> + T, !: A, JA, 2-: T, 222222 2> 

4 
-3 

4 
± v/3-1 A, - 

12 : _F 
,- 21 >±1A, 2: T, 21 

13, -2> = 1- [43A, 1 1 T, -2 -12> + 4 T, -21: A, -3> , :4 -3> - JA, -' T, JA, 2 

13, -3> = y/q 
1 4T 3 _3> + 5 : A, -3: 

4 JA, T 3 >] 

S=2: 

2,2> 3 
2 T, 12 

:A, 2> 
3 T 2: A, 12> + JA, 

2 T > 
, 

22 + '21 
43 

>] JA, : T»2 

2, l> . 1[14 3> 
22 

14 3 
,2 -l> T : A, 2 

3: ± JA, 
2 

4 
T, -l> 2 + -2.: 

4 - JA, Tj>] 22 

12,0> [14 3 3> 
25T, 2 : A., 2 + 14 T, - 

22 
: A, 14 l> T , 21 : A, - 14 33> 

2l> T, 2: A, 2 

JA, 3: 4 
Tv -3>- 22 JA, '-: 4 

T, -2-> 2 ± JA, 
-2- 2 :4T, 1-> 2 ± JA, 

-3: 
4 

T3 22 >] 

l> 12, 43 
2 Tv -2 A, 22 >- 14 T, 1: A, _3> 22 1: ±1A, 2 

4 
T, _3> 2 _3: 

4 1 A, T, 1>] +22 

.i 
Ei 4T, 

-3 14 
_3> - _I. 

4T, 
-3> ±-3: 

4 2, -2>- = : A, -'-> - T, : A, JA, 1 A, T, 

s= I 

1.. l> 14 3> 14 314 3 25 13 TI-22: A, 2 -2T, 21: A, 21> T, 2: A, -12> 

3: 4443 
>] v/-31 A, 2 TI-22> :ý 21A121: TIl> t v/-3JA, -22: T, 2 

11,0> (1 1J1 0) [3 1 4T, 
_3 :A j> _ 14 -i-: A, 2-> - 14 T, I: A, -l> +3 14 T, 3: A, -3> 222T, 222222 

3: 4344T3 
>] 2 -l> ± JA, 

-! -: T, l> + 3JA, -3.4 + 31A T il >± JA, 2-: T, -2 222222 

EY/314 3+ 
v/3-1 

4 
_3> 25T, 2: A, 2-> -2T, -I. A, -1-> T, !: A, 2222 

7 _JA, 43 
2JA, 

4A 
_3 

4 
3 22: T, -2> -22: TI-22> , 2: T, 12> 

s=o 
10,0> 433 '[I -2,. A, > T, 2 

14 T, -!: A, I> 22 
14 + T, I: A, -'> 22 

14 33 T, : A, 22 

343 
+IA,, 2: T, -2> L. 4T 

-! > + AP 
22 

4 
A, T, 

21> -21 -3: 
4 3>] AT 22 

As in the procedure previously -Followed, 
-, 

the orbital components of 

pair ataýwe distinguished by the use of letters. The states 
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of the (4A2x4T1) manifold are labelled a, ý and Y for the a, b and c 

comoonents of 
4T1 

respectively, and the (4A2x4T2) states are labelled 

TI, ý and C corresponding to a4Tb4T2 and c4T2 respectively. The 

symmetry properties of the unprimed a, ý, y and TI, C, E are shown in 

Appendix VI. 

For easy reference, the labels used to aistinguish the states in 
I 

the various mani-Folds are collected together in the -Following table: 

Mani-Fold Pair State Label 

A2xT1) ul V, 

4A2x2T2P, I Q, 

4A2x2 E) G, 

AxT ot 2 
4Ax4T 

2.2 

Tabt-e 2.4: PaiA State LabeZ6 

2.10 THE PERTURBATION THEORY 
I 

In order to discuss the many-electron Hamiltonian H which is to 

contain all the usual terms, Kinetic energy of the electrons, electron- 

nucleus interactions, Coulomb repulsion between electrons, spin-orbit 

interactions and so on, perturbation theory will be used. Since the 

-Full Hamiltonian is invariant under all interchanges o-f electrons and 

under the space group operations, the unperturbed Hamiltonian H0 having 

the same properties must be invariant under all interchanges o-F electrons 

and must also possess D 3h symmetry. 

A set of orthogonal functions has been found and defined so that 

3+ 
they correspond to the expected states of a Cr pair of D symmetry. 3h 

H0 will be defined shortly so that it has these functions as its 
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eigenfunctions. It is unliKely that these -Functions will also be 

eigenfunctions of the actual Hamiltonian H since they have not 

resulted from a detailed study of the Hamiltonian, but it is liKely 

they will not be very different from the eigenfunctions of H, therefore 

H-H 
0 can be treated as the perturbation. 

For each many-electron state a projection operator is defined. 

Denoting a typical state by IM>, its projection operator Pm= lm><ml. 

The operator 

ýx 
mPm m 

has each state Im> as an eigenstate with eigenvalue Xm The parameters 

are now chosen to be the mean values of the actual Hamiltonian taKen 
M 

over the family-of states to which that particular state belongs. For 

example, all the b asis. states of the (4A2x2T manifold would be given 

the same X. 
M 

The unperturbed Hamiltonian is defined as 

P m, m 

where PM is the projection operator for all the states in a particular 

manifold (the Mth manifold) and cM is the mean value of H for this 

i 
manifold. The PM are invariant under all electron interchanges and 

transform amongst themselves under all the symmetry operations of D 3h' 

thus H0 has the properties required of it, properties identical to 

those of H. 

If one considers the (4A2x2 Tj) family, it will contain a number 

o-F closely spaced energy levels about some energy E. If a state U1 

(or V', W' etc) is a good approximation to an eigenstate of H then Vie 

expectation value of H-fo. r that state should also be close to E. 

Therefore, the unperturbed Hamiltonian is chosen to- have these 
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approximate states as its eigenfunctions which are arranged to be 

degenerate at an energy close to E, by taKing the average of all the 

expectation values of H for that family of states. 

The unperturbed Hamiltonian has a whole series of degenerate well- 

spaced levels. There is an elegant fomulation of perturbation theory 

for such a system, an expansion to infinite order which gives an 

effective Hamiltonian H 
eff' which can be used to obtain the energy 

level pattern into which any particular degenerate family splits under 

the perturbation H-Ho [39]. 

second order: - 

H 
eff = PM [H - 

The theory yields the expansion, up to 

H pý H 

mlim E-cm 

e -F f 
`: ý' pmH PM - 

MI/M 

P 

H Pý HP 

6A EM 

fSSS 

for the Mth manifold. Inspection of H 
eff shows that it operates wholly 

within the subspace defined by the basis states of the Mth manifold. 

In the second ordt! r term it is seen that the operator H connects states 

of the M and M'th families; M will be chosen to correspond to the 

members of the (4A2x2T manifold, M' will then represent some other 

excited manifold. It was for this reason that the basis states other 

than those belonging to the (4A2x2T1) were constructed, although there 

will be instances when M will be chosen to represent mani-Folds other 

than the (4A2x2T 

When we come to evaluate the matrix elements of H 
eff 

within the 

4Ax2T) the basis states are U', VI, W' etc and the mani-Fold corresponds 21 

to a 48-fold degenerate level. So H 
eff 

will have 48 eigenvalues which are 

to give the levels into wh ich--t-he-48-fold degeneracy of (4A2x2T1) is split 

by the perturbation H-H 
0. 



- 39 - 

CHAPTER THREE 

SELECTION RULES AND EXPERIMENTAL RESULTS 

3.1 PREAMBLE 

In later chapters we are to evaluate the matrix elements of H 
eff 

within the basis of the (4A2x2T1) manifold and at the same time compare 

the theoretical predictions with the observed spectra. It is therefore 

convenient to present at this stage the experimental results together 

with the selection rules used in the identification of the spectral 

lines. 

The bands in the optical absorption spectra o-F transition metal 

complexes arise almost without exception from the so called electric 

dipole transitions between the ground and excited terms. Other sorts 

of transitions e. g. magnetic quadrupole transitions, have in general 

an intensity far too low to be observable in the absorption spectrum. 

The intensity with which an electric dipole transition between two 

states N> and JýM> can taKe place is essentially determined by the 

transition moment P: 

N 
JDJýM>, 

where D is the dipole vector which has the same symmetry behaviour as 

the position vector. (In fact the line intensity is given by IP12). 

Since D is an operator in coordinate space it has no effect on the 

spin coordinates of the wavevectors involved so that in the absence of 

spin-orbit coupling we may write for P: 

qs 1ý s ><ý'JDJý'> NMNm 
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where the superscript s refers to the spin parts and the superscript o 

refers to the space parts of the electronic statefunctions. As a 

consequence of the orthogonality of the spin functions the integral 

over spin functions car) be non-zero only if the spin quantum number S 

for the original and final states are equal. That is, for vanishing 

spin-orbit coupling electric dipole transitions occur only between 

states of the same multiplicity. This fact is readily observed in the 

optical spectra shown in Fig 1.3 when one sees the intensity of the spin 

forbidden bands e. g. 
4A2 

__>_ 
2T1 

much less than the intensity of the normal 

chromium bands (4A2 -* 
4T1 

and 
4T2). 

Needless to say, the spin forbidden 

bands are observed in actuality because the spin-orbit interaction couples 

states whose total spins differ by 0 or ±1. 

We have yet to consider the orbital components of the electronic 

wave-Functions N> and JýM>. In order that a transition can occur 

between them then 

<ý 01 DjýC» 1 0. 
Nm 

This integral can only have non-zero values when the integrand or 

portions o-F the integrand are invariant with respect to all operations 

of the symmetry group of D. In the present context one is worKing with 

a system of D 3h symmetry so one needs to establish the representation 

of D in this symmetry group. In practice absorption experiments are 

carried out with polarised light and it is possible to align the E- 

vector of the light either parallel or perpendicular to the C-axis of 

the crystal. In the first of these cases, Known as 7T-polarisation, D 

is parallel to the C-axis and taKes the form E1 (Z) 
1 which transforms 

according to the A" irreducible representation of D In the second 2 3h' 

case when the E-vector is perpendicular to the C-axis, one has. 

(j-polarisation and in D 3h symmetry D transforms according to the E' 
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representation. 

if FN and Fm are the irreducible representations of the wave- 

functions N> and JýM> in D 
3h 

then the condition that the transition 

moment P be non-zero is that the product representation 

*x A" xF :>A N2 

for Tr-polarisation and 

F* x E' xr --D A N 

for a-polarisation, i. e. the product representation contains the 

identity representation A of D 
3h' 

(The superscript * denotes the 

complex conjugate. 

Using the multiplication table for the D 
3h group (Appendix I (iv) 

it is a simple matter to write down the allowed electric dipole 

transitions and the polarisation of the light for each particular 

transition. The results are shown in the Table 3.1: 

AA2EE 

Aý Tr 

Aý TF 

All 
1 71 Cf 

A" 
2 7T - cr 

E' G cf Cf TF 

E fo -- CF a Tr 0' 

Tabte 3.1: Wowed Etecttic Dipote Ttansitions and theiA 
PotaA, Lsation, s (D 3h)- 

To use the table the representations FN and Fm of D 3h 
hav-e to be 

specif ied - 
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In the previous worK on pairs two types of electric dipole mechanism 

have been introduced. The first of these is the single-ion electric 

dipole transition, so called because only one ion of the pair undergoes 

any transition. The single-ion mechanism has been ascribed to a double 

perturha7tion process in which the constrictions of the parity forbidden 

and spin forbidden transitions are boLh lifted. (The La Porte Rule 

-Forbidding d-d transitions would not be expected to hold in our 

treatment of the pair interactions since we do not expect electrons 

to be in pure d-orbitals). The second transition mechanism has been 

called exchange-induced and is represented by the transition moment: 

P. . 
(s s ex ,j1Ji -ýb i 

[40] where P 
ij contains the electric dipole moment between the ground 

state and some excited state. 

The expressions single-ion and exchange-induced have no direct 

counterparts in the Stevens approach to the problem since here the pair 

is taKen to be a unit but it is possible to show how the transitions 

should be viewed in the context of the present theory. We have said 

that the transition moment P has the form "ýýNl[)IýM > and implicitly 

assumed was that N> and 1ý, > are eigenstates of H. But the effective 

Hamiltonian given in section 2.10 is used to obtain the eigenvalues oT 

a certain group o-F states and not their eigenstates. This is not a 

problem though, since the same theý, ry shows that instead of evaluating 

the matrix elements of D between the actual eigenstates, the matrix 

elements of a related operator D, can be taKen between the eigenstates 

of the respective effective Hamiltonians. 5 is given by 

pNvPnpmvp 
EE 

nNn 
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where PN (P 
M) is the project on operator for the family to which 1ý 

N> 

(1ý 
M 

>) belongs, EN (E 
M) 

is the energy of the Nth(Mth) manifold and the 

primes on the summations me-in that any terms with vanishing denominator's 

are to be omitted [31]. As with H 
eff' 

D can be decomposed into spin- 

independent and spin-dependent terms. The two-electron terms in 6 

which are not specified at this stage can be divided into intraionic 

and interionic processes; it is the former that correspond to the 

single-ion electric dipole transition and the latter to the exchange- 

induced transitions. 

The first term in D is PN DP 
M so that 

N 
JDJýM> % JDJýM> 

which is almost the transition moment we have been considering, the 

difference being that 1ý 
N> and JýM> are now the eigenstates of H0. 

if 1ý 
M> are the excited states corresponding to the U', V', W' etc 

basis states of (4A2x2T1) manifold, N> correspond to the ground pair 

states. In order to see i-F the product representation F* x rn x I'M 
N 

contains A it is necessary to construct the ground pair states and to 

deduce the irreducible representations of D 
3h of each state. We shall 

not attempt to evaluate the matrix elements of further terms of 6 at 

the present because in order to do so it would be necessary to evaluate 

the matrix elements of V (spin-dependent and spin-independent operators) 

between the pair states. Such matrix elements will be calculated in the 

following two chapters. 
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3.2 BASIS STATES OF THE GROUND MANIFOLD (4A2x4A2) 

The many-electron basis states of one ion of the pair being in the 

4A2 
ground state have already been calculated, Section 2.3- The pair 

states of the ground manifold will be defined in an exactly similar 

manner to those of the (4A2x2T1) manifold, Section 2.5, although the 

ground states are of simpler form. For instance, there are no orbital 

components to be distinguished and neither is there any extra degeneracy 

due to a h' 
Therefore the ground term consists of 16 states which have 

spins Sg = 0,1,2,3. The state which has S9=3 and MS =3 is written: 

14 34 3> -3: 3> 13,3> = A2,2: A 2' 2_ 
13 

2 

and those of lower MS are found by the use of S-. 

(A2xA2) mani-Fold are: 

13,3> =3: 
3> 12 
2 

V/1 
[I i: 3>+3 13,2> =22222 

> 23 >+ ý3 >+1 23 >] 

The states of the 

13, O> 5) 2 
[ 1-3: 3> 

22 -1: '-> + + 31 22 i 1> +3 3>] 31 221: - 22 

13, -I> 
3: i> 
22 + F3 1 

-1 : -! > 22 +3 >] 22 

3 1> 3 13, -2> = 
/27 

-2: -2 
'-[I I-2 

33 3, -3> = 
1-2 

2 

3> 31 >] 
-[I 

:2 12,2> = V127 21: 2 
12 

1 : 23> 
13 12,1> = V727EI -12 22 

1>-3> 
> 1-3: 3> + i: l> - 

11: 
- - 

13: 
12,0 2ý221-222222 

1 -3: 
1> 

- 
1.1: 

-3>] 2- 222 2, -1 >= A' 

3 12, -2> 2: -21> 2 

= (1/ V71- 0) [V[3- -1: 3> 
22 + 21 12 : 21 

> 3 22 

0> (1 IV75) 2 
[3 1- 3: 3> 

22 
i 1> - -2: 2 +3133 2222 
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F1 -(j ) Fv/r3 3: 1>3 v22- 21-': -! > + v/3 1 2212 

10,0> 1LI-3.3> 
- 

1_1: 1> 22.222122 

The transformation pi, operties of these unprimed pair states are shown 

in Appendix V(iv). 

The D 
3h symmetry adapted basis states of the (4A2x4A2) manifold 

are shown in Table 3.2: 

Orbital 
Parent Gh +1 h1 

7A2 13,3>+- 13, 
-3> Aý+Aý 13,2>, 13, 

-2> E" 

13,1 >, 13, 
-1 > E' 13,0> A 

5 
Aý 12,2>, 12, 

-2> E' 12,1>, 12, 
-1> E" 

12,0> Aý 

3A2 11,1>1 11, 
-l> E' 11,0> A 

A' 10,0> Aý 

Tabte 3.2: 1, ýAeducibte Rep, ýe, 6evztýons o6 D3h ýoAmed by (4 A2x4A 2) B as is S tat es 

Having found the irreducible representations of D 
3h 

formed by the 

( .4A2x4A2) basis states it is possible to say which electric dipole 

transitions are allowed between states of the ground manifold and states 

of some excited manifold. To do this we shall maKe use of Table 3.1. 

At low enough temperatures only the S9=0 state o-F the (4A 
2 x4A 2) 

ground mani-Fold is appreciably populated. We are interested in 

identifying the lines of the C4A2x2T spectral region so we c an say 

spin selection rules that there will only be transitions to the S=1 

Now from Table 3.2 the S9=0 state transforms according to the 
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A; irreducible representation of D 
3h' 

From Table 3.1 one sees that 

7T-polarised light can induce transitions only to states transforming 

according to A", while in (Y-polarisation states transforming as E' 2 

are accessible from the ground state. The irreducible representations 

of the (4A2x2T1) basis states are given in Table 2.3, examination of 

this shows that only four levels are accessible from S9=0. One level 

in the Tr-polarisation [IV" 
, 1, 1> - 

IW", l, -I>] A2(3 E') and three in 

u-polarisation (IV', 1,0>, IW' 
, I, O>) E'( 

3 
E'), (IV', l, -! >, IW', 1,1>) 

E'( 
3 

E") and (IU', 1,1>, IU', l, -l>) E'( 
3A2), 

where the symt)ols in 

paranthesis indicate the orbital parent in each case. As the crystal 

temperature is raised additional lines are observed due to thermal 

population of higher spin states of the ground manifold and consequent 

transitions from them to both the S=1 and S=2 states of (4A2x2T1). 

It is also remembered that spin-orbit coupling allows transitions only 

between states for which AMS = 0, ±1. 

It is yet possible to find a more accurate set of selection rules. 

Experimentally it is usual to apply a magnetic field to the sample, 

thus lowering the symmetry and to observe the removal of the degeneracy 

of some of the levels (Zeeman effect). The set of selection rules in 

the new lower symmetry may differ from the set in the higher symmetry, 

with pcýrhaps fewer allowed transitions. Since a lowering of symmetry 

cannot remove a transition the predicted allowed transitions in the 

lower sYmmetry must be more accurate. 
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3.3 SAMPLE IN A MAGNETIC FIELD 

The application of a magnetic field parallel to the z-axis of the 

pair, i. e. along the crystal C-axis, lowers the symmetry from D 
3h 

to 

C F, 
group differs from the 0 group in that CY is no 3h ý1]. The C 

3h 3h v 

longer a symmetry element, and C and C2 become distinct symmetry 33 

elements; the character table for C 
3h 

is shown in Appendix I(iii). 

In the descent in symmetry from D 
3h 

to C 
3h 

the many-electron terms 

are reduced according to the following: 

A) 

A 10 E' -*E' +E' E"--E" +E" +-+ 

By similar arguments the symmetry of the electric dipole vector is 

found in C 
3h* 

For TF-polarisation the electric dipole vector transforms 

according to A", while -For a-polarisation it trans-Forms as E' + E'. 

(thus in cr-polarisation two directions o-F polarisation can be disting- 

uished, mutually at right angles to the Z-axis, they are labelled + and 

-). The product representations for the C 
3h group can be found in 

Appendix I. By evaluating the product representations F* xFx rM., 
ND 

the allowed electric dipole transitions and their polarisations in C 
3h 

can be found. The results are shown in Table 3.3: 

AEEE 

7T 
+ 

Tr a+ G- 

IT 

CY cr 

Ci- Tr cr 

CY Tr CY 

Tabte 3.3: Wowed EtectAic Dipof-e Tta"itims and PoZaAi/satioo 
(C 3h) 
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The next step is to evaluate the irreducible representations of 

the C 
3h group formed by the basis states of both the ground manifold 

and the excited (4 A x2T 1) manifold. There are only one dimensional 

representations of C 
3h so that in moving from D 

3h each of the two 

dimensional representations are reduced (i. e. E'-*E'+E' and E"-->-E"+E") 

To determine which member of a doublet transforms as E+ and which as E_ 

it is a matter of operating on each with the operator C 
3' 

For instance 

consider the pair of states IU', l, ±l> transforming as E' under D 3h : 

C 31U ,,, ,>= W21U, 1,1> and C3 IU', l, - l> = WIU', l, -I> (Appendix VM) 

so that lu', 1,1> transforms as E' and IU', l, -l> transforms as E' under 

c 3h' 

One can see now why the selection rules obtained in the presence 

of the perturbing magnetic field are more accurate. To consider a 

specific example, Table 3.1 shows that in cr-polarisation from a ground 

state transforming according to the E' representation of D 
3h 

transitions 

are allowed to all those states of (4A2x2T1) also transforming as E'. 

From the S1 ground states 11, ±1> E' (3 A") we should expect to see 
92 

(Table 2.3) transitions to the following (IV', l, -l>, 
IW', 1,1>) E'( 

3 
E"), 

IW', 1,0>) E'( 
3 

E') and (IU', l, ±l>) E' (3 A2) of the S=1 levels 

of (4A2x2T1). However in C 3h symmetry one finds that of the symmetry 

allowed transitions are 11,1> -+ IU', l, -l> and 11, -1> -->- IU', 1,1>, which 

are both disqualified by the spin selection rules AMS = 0, ±1. There 

are many such examples to be found, of transitions forbidden in C 
3h 

but 

allowed in D 3h' 

When the magnetic field is applied perpendicularly to the z-axis 

the symmetry o-F the pair is reduced to C2 or CS depending on whether 

it is applied along the x-axis or the y-axis. For these cases no 

aJditional information can be found concerning týe selection rules. 

The complete set o-F possible transitions between the ground states 
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Cf h :--1 
E' (±1) 

+Aý (±I) 

E' (0) 

A' (0) 

E' (1) 

S 
I ýfý- -= - - - -- - 

=: F= T 

E" (0) 3E« 

E" (±l 

3E 

A" +A 12 

'3 

A" 10) 3A" 
1 

E' (±2) 
E#IC±l) 
Aý (0) 

E' (±l) 
A" (0) 

1 

Aý (0) 1 Al 

Fig 3.1: Ene, ýjcy tevet zchu-ý, c- to 6it specPwri o6 ; ftanzitions 6ýLom 
4Ax4A42" 

aA, ýz ati 2 2) to the S=1 Zevee6 o6 ( A2x TI) FuU tina a-pol 
buken Zýna 7-po&Aizationj. 

and the (AA2x2T1) excited states is shown schematically in Figs 3.1 and 

3.2. Fig 3. -1 is appropriate for transitions from the S9=0,1,2 states 

of the ground manifold to the S=1 states of (4A2x2T1). Spin selection 

rules forbid transitions from the S9=3 level to the S=1 states of 

(4A2x2T1). Allowed transitions to the S=2 states of (4A2x2T1) are 

shown in Fig 3.2. The upper part of each energy level diagram is divided 

into two families depending on the transformation properties of the states 

under the reflection operator ah of the symmetry group D 3h' Each state is 

labelled by its irreducible representation and MS value, and each set of 

CY 
h= 
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Ck 

Ci') > m cn cn N 11 - - 
CD 1+ 

> m >m m 

> 1+ > CD 1+ 
N) N) 

1+ 1+ 
N) 

Q 
:: T 

> r-ri > Fri m > mm> m 

0 1+ CD 1+ 1+ CD 1+ 1+ > 1+ 

1+ 

Co Ln Ln 

>M > mm >m 
r, j 

CD 1+ > CD 1+ > 1+ 
m N3 M 

1+ f+ 
NI 

L, n Ln 
> m 

M= 

Fig 3.2 - Attowed týLansitions 6torn ( 4A2' 4A 
2) to the S=2 tevds o6 

(4 A2 x2T, ). FFuU Una a-poZaA, (',, Sation, b. token Peines Tr- poZaAisation] 
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states belonging to the same orbital parent is so labelled. The vertical 

lines show allowed transitions in Tr (dashed lines) and G (full lines) 

polarisations. 

3.4 EXPERIME_NTAL RESULTS 

The experimentally observed optical absorption spectra for many 

different binuclear materials are shown in Fig 1.3. Each spectrum 

contains two broad bands of high intensity and half-width 0-3000 cm -1 

and three groups of sharp lines of half-widthl-u300 cm -1 
. The low 

intensity of the sharp bands is understandable because the transitions 

are both parity forbidden and spin forbidden. Spin-orbit coupling is 

responsible for the appearance of such bands as was pointed out in Section 

3.1. The question of the half-width of the absorption bands also deserves 

some discussion. 

As explanation of the simultaneous appearance of broad indistinct 

bands and sharp bands or lines was first given by Tanabe and Sugano [38]. 

In the term diagram Fig 1.2, the slope of the Curve, giving the term 

energy as a function of the field strength is determined by the number 

of electrons in the electronic states t 
2g and e9. For an electronic 

transition between states of different slope, i. e. of different electronic 

configuration, the equilibrium distance metal ion-ligand is changed. One 

then observes a broad absorption band. The greater the difference between 

the slopes of the two states between which the transition taKes place is, 

the greater the halT-width of the band should be. Thus the transitions 

4A (t 3) 
__>_ 

4 T1, v 
4T (t 2e) lead to the broad bands of half-width rý, 3000 cm- 

1 
2 2g 2 2g g 

while transitions such as 
4A2 

_* 
2T1 both of the same configuration contain 

sharp distinct features. 

In order to identify the sharp lines in the (4A2x2T1) regio-n of the 

sp,, A-rum various investigative techniques are employed. High resolution 
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optical absorption experiments are carried out in the temperature range 

1.3K to 70K for both IT- aFid CY-polarisations. Also polarised high field 

Zeeman spectra are obtained for appli-d magnetic fields of up to 13T. 

For details of such experiments the reader is referred to the paper of 

Johnstone et al [30] 
and to the worK of Dean [33]. These worKs together 

with [27] also contain the experimental results which will shortly be 

presented. 

Firstly we need tu give values to cm of the unperturbed Hamiltonian 

defined in Section 2.10. Since F- M is the mean value of the actual 

Hamiltonian for the Mth manifold it must correspond to the energy of 

the centre of each absorption band in the spectra shown in Fig 1.3. 

Next the results of the detailed analyses of the (4A2X2T1) region 

of the spectra will be presented. It is found that the spectral features 

associated with the S=2 levels of (4 A2x2TI) are generally broader and 

weaKer than those o-F the S=1 levels. To obtain transitions to the 

higher spin levels the temperature is increased in order to populate 

the higher energy states of the ground manifold. Individual transitions 

are not well resolved and some of the spectral features are attributed 

not to a single transition but to several transitions in a small energy 

range. 

Finally the energies o-F the spin states in the (4A2x4A2) ground 

mani-Fold will be given, the S9=0 state being the zero o-F energy. 

In comparison of theory and experiment the results that will be 

used are collected in the following tables: 
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Cs 
3 

Cr 
2 

E3rg[33] Rb 
3 

Cr 
2 

Br, 
9 

[33] Cs 
3 

Cr 
2 

cl 
9 

[27] 

T 
2 12250 12900 13130 

E 13900 13900 14090 

2T1 
14400 14500 14680 

4T 
1 16650 17450 18090 

2T2 
19000 19100 19300 

TaHe 3.4: k., vLage eneAgy in cm-7 oý the Ab6nption Band, 6 6ok vaýLiou-6 
Biyu, LcteaA MatuLiats. (The eyte,, Lgy o6 

4T7 
and 

4T2 
wLe ±100 cm-1, the 

ýLmt aAe each ±50 cm- ). 

Cs 3 Cr 
2 

Brgr33] Rb 
3 

Cr 
2 

Brg[33] CS. Cr2C1, [30] 

3 
Aý 409 439 554 

3 
A" 

2 
374 398 514 

5 
A" 

2 
342 343 448 

5 Al 204 193 327 

Aý+ Aý(±1) 456 462 600 

3 
E". E" (0) 458 469 600 

E' (±1) 447 471 609 

App + 1 A" 2 402 445 579 

3E' 
E' (0) 586 

E" - 586 

5E 416 

5E 538 569 

TabZe 3.5: EneAgy 06 the (4 A2ý', 2 TI) teveLs in cm- 
I, 

nmmatized to 

- 1. -I fft doubtetls 14000 cm (typicat ew)L ±1 cm ). FoA the S=2 oAbit 

no accu-Aate vaf-u" can be given. 
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Cs Cr E3r Fý3] 
329 

Rb Cr E3rg [33 
32 c1 [30] Cs 3 Cr 29 

s=1 6 12 12 
9 

S=2 18 34 38 
9 

S=3 31 65 77 
9 

1 -4.9 ±0.3 -10.5±0.5 -13.5 

-0.21±0.06 -0.19±0.08 + 0.25 

Tabte 3.6: EKvLqy o6 th(! (4 A2X 4A2) 

the estimated exchaKqe pa, LcayieteAz J 

Zevel,, s in cm-1 togethvL with 

ayid j (bi-qua&Latic exchange A 

poAcwie, teA) . 
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CHAPTER FOUR 

SPIN INDEPENDENT TERMS IN THE HAMILTONIAN 

4.1 MATRIX ELEMENTS BETWEEN DETERMINANTAL FUNCTIONS 

The -Following sections will be devoted to the evaluation, in some 

detail, of the matrix elements of H 
eff 

between the basis states of the 

(4A2x2T1) manifold, i. e. U', V', W', etc states. It is worth reviewing 

brie-Fly here the method of evaluating matrix elements between determin- 

antal functions as these will be used extensively throughout. The 

details of such methods can be found in many publications, e. g. [35,36,37]. 

The matrix elements that are to be evaluated have the -Form 

<Aý and are Slater determinants. The Hamiltonian H 
, 
IHIA, > where AK 

can be broKen down into a summation oT one-electron operators T and 

two-electron operators g (ignoring higher order electron operators). 

Thus: 

i -F i+Z i>jgij 

The calculation begins with a comparison oT the spin-orbitals 

contained in AK and A 1, The spin-orbitals within AI are then permuted 

until their ordering is as coincident as possible with the ordering of 

the spin-orbitals in A Kj with each interchange of spin-orbitals changing 

the sign of A 1* 
There are then four cases to be differentiated: - 

M When AK and AI differ in no spin-orbitals 

, 
IHIA, > = Ei<ilfli> + Ei>j[<ijlglil> - <ij <Aý JIgI ji>l 

(ii) When AK and A1 differ in one spin-orbita 1 

[<iilgli, j> -, <ijlgljip>l 
, 

IHIAI> <ilfli'> +E j/i <Aý i 
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When AK and AI differ in two spin-orbitals 

<A 
K 

IHIA 
I>= <ijlgli, j, > - <ijlglj, i, > 

(iv) When AK and A1 differ in more than two spin-orbitals 

<AjHIA, > =0 

Thus the matrix elements are reduced to integrals over spin-orbitals. 

An integral of the type <ijlglrs> will vanish if the spin parts of 

orbitals i and r differ or if the spin parts of j and s differ. The 

sp, itial parts of the orbitals are assumed to be orthonormal. 

If spin-orbit interaction and ma. ý, netic terms are disregarded the 
CD 

one-electron terms correspond to the electronic Kinetic and Coulomb 

energies in the field of the nucleus. The two-electron operator may 

then be put into correspondence with the Coulomb interactions between 

electrons, viz 

-Ze 
2 /r. + eV(r. ) 

1 

g 
ij ij 

In the case of an ion having electrons in well defined orbitals 

and f and g having the abovu form, it would be possible to evaluate 

the matrix elements specifically in terms of Slater F and G integrals. 

This is not possible when we use the states defined by the orbitals 

JE3>, IC>, etc since their actual form is not defined (it is only 

on the grounds of symmetry that they are compared with d-orbitals). 

It is possible to obtain an estimated value o-F the F and G integrals 

though, since we were able to find an approximate value for the Racah 

parameters in Section 1.3. 
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4.2 ONE-ELECTRON OPERATORS IN H 
eff 

If we consider only the one-electron terms f of the Hamiltonian H, 

representing the electron Kinetic and Coulomb energies in the nuclear 

field, the effective Hamiltonian H 
eff 

(Section 2.10) has the following 

orm: 

H 
eff ýpm fp 

M, 

To evaluate the matrix elements of H 
eff 

ý'j e shall use specifically 

the basis vectors IU', 2,2> and IU", 2,2>. Now each of these functions 

is composed of two parts JU, 2,2> and a hl 
U, 2,2>. By inspection the two 

parts cannot be connected by one-electron operators, so it -Follows that 

the one-electron contributions to IU', 2,2> are identical to the one- 

electron contributions to IU", 2,2>. Specifically 

<U' , 2,21 H 
eff 

I U' , 2,2> <Ull, 2,21 H 
eff 

I U", 2,2> 

'-[<U, 2,21flU, 2,2> + <U, 2,219 U, 2,2>] ;? h 
f(Y 

hI 

In Section 2.5 both IU, 2,2> and cy hl 
U, 2,2> were found, they are in terms 

of Slater determinants: - 

+ -++++ U, 2,2> = (1 /vý-6--) [(A+BC--a+b+c+) + (A+E3Cabc) -2 (ABCabc)] 

Cf hIU, 
2,2> (1 /ý6--) [(A+B+C+a+b+c) + (A+B+C+abc) -2 (A+B+C+abo)] 

It is evident that <U, 2,21-FIU, 2,2> and <U, 2,2 lahfah JU, 2,2> are identical 

and equal to 

<AlflA> + <BlflB> + <ClflC> + <alfla> + <blflb> + <clflc>. 

If the corresponding expressions are derived for all the other 

42 
basis states of the (A2xT1) manifold it is found that they are all 

identical to that found above. This leads to the simpLe but significant 
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result if H 
eff 

contained only one-electron operators there would be 

42 
manifold. no splitting of the (A2xT1 

4.3 TWO-ELECTRON OPERATORS IN H 
eff 

We shall firstly consider the contribution to the energy of electrons 

in closed shells. With the two-electron operator representing the 

electrostatic interaction between electrons, the matrix elements o-F 

the first term in H 
eff' 

PM gPm. 1 will contain contributions of the type 

<AFle 
2Xr 

ij 
IAF>, <DFI e2Xr ij 

IBF>, etc where F denotes a filled orbital. 

These can be regarded as describing the Coulomb energies in open shells 

due to the electrons in closed shells. For instance a Tilled orbital F 

has the following form 

'ýON 

and a typical contribution to the energy of a(4A2x2T1) level would be 

+2+++ 
,++ e'/r 

+ 
<AFle /r IAF> = <A A, ý 

ii 
ý01-ýON 

ij INN 

N22 
X [2<AQe Zr JAý >- <AQe /r, 

jjý 
A>] 

K=l 
ij KK 

+ X, <ý, ý, Je 2 /r 
ijlýi i> 

4y <ý ý je2 / r, 1ý ý>-2y <ý 
i 

le2 /r 
ijlý ii 

i>i 
ii ij ii 

i>j 

The contributions are then very similar to the one-electron terms and 

as with the one-electron terms do not produce any splittings. 

The unperturbed Hamiltonian H0 has been defined by considering 

the properties of a d-electron system bound in a complex but experiencing 

no electron interaction. We have already shown that one-electron terms 

in H 
eff 

lead to no splitting of the degenerate levels defined by HO. 



- 59 - 

We now come to investigate the splittings induced in the (4 A2x2T1) 

manifold by the two-electron spin-independent operators g. The dominant 

two-electron term will come from the electrostatic energy of repulsion 

between electrons in the outer unfilled shells taken to first order. 

The effect of including the electron interaction is to split the 

degenerate pair states into a number of multiplets each of which is 

characterised by the same total spin angular momentum S. Since we are 

considering an operator that is spin-independent the states whose 

orbital parts transform according to the same irreducible representation 

will remain degenerate. This means that the states in the multiplets 

can further be characterised by the same orbital transformation 

properties. The 48 states will then split up according to the following 

schematic energy level pattern: 

A; degeneracy 5 

At' 
2 

El IF 10 

5E" 
of 10 

3 
Aý 11 3 

3A" 10 3 

3E 

3E 

The states belonging to each multiplet can be obtained from Table 2.3. 
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4.4 FIRST ORDER PERTURBATION 

The effective Hamiltonian has the form 

H 
eff ýpm gp m 

where. M refers to the (4A2x2T1) manifold and g is the two-electron 

operator corresponding to the Coulomb interaction between electrons 

e2 /r 
ij . For brevity we shall refer to the Coulomb interaction as 1/r. 

In the last section we showed that the problem of evaluating all 

48 x 48 matrix elements of H 
eff 

in the (4A2x2T1) manifold has a relatively 

simple solution. We have shown that only the diagonal elements are non- 

zero and among the diagonal elements there are only eight different 

values. Therefore to obtain the splitting of the manifold only eight 

matrix elements need be calculated. 

In order to evaluate the energy of each multiplet we have to 

evaluate the matrix element of H 
eff 

between any member state of that 

multiplet. To have some consistency in choosing the state with which 

to evaluate the multiplet energy only those states which have MS =0 

will be used; we shall also find that this stipulation facilitates 

the calculations. It must be stressed that any multir, ýlet contains both 

primed and double primed states so that the matrix element 

<U', l, OIH 
eff 

IU', 1,0> has the same value as --U", l, ±11H 
eff 

IU", l, ±l>. We 

shall concentrate first of all on the orbital singlet states. 

The U states can be -Found in Section 2.6, those with MS =0 are 

shown below: - 

1 U' 2,0> 

= 2'[IT, -21: A, 12> + 
JT, 

21: 
P�-21> -+ JA, -21: T, 21> + JA, 12: T, -21>] 

IU", 2,0> 

5'[IT, --21: A, 12> IA, -21: T, 21> -+ IA, 
21: T, -12>] 

I ull, 1,0> 
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where the primed and double primed states are indicated by the ± and 

signs; the first sign always refers to the prime state. The following 

shorthand notation is now intr, oduced: 

jxjý> = 
IT, 

-12: A, 
21> 

IX2> = IT, 12: A, -21> 

IX3> = jA, -l: T, 21> 

jA, 
2': T, -l> 

IX4> =2 

whence the U states become 

I U' 2, O> 
=iDx>+ 

IU", 2,0> 
21 lx2> + lx3> + IX4>1 

ul 1,0> 
Dx >- Ix >+ Ix >+ 

Ix I 

up), 1 0> 
1234 

The matrix element of H 
eff 

between the S=2 states then becomes 

<U', 2, OIH 
eff 

IU', 2,0>; <U", 2, OIH 
eff 

IU", 2,0> 

1 = i; 
Ux, 1g1x, >+ <>< 1 

lglx2> + <xl 1g1 x3> + <xl lglx4> 

<>< g -' <x++ 21ýl><1> 21glx2> <x2'g'x3> <x21glx4> 

<x3jgx1> <x3Jgx2> + <x3gx3> + <x3lgjx4> 

+ <X 41gIxi >+ <X 4'g'x2> + <xllglxl> + <xllglx4 

Before continuing with the S=1 states we shall prove the equality of 

many of the integrals containing the x-functions through the use of the 

symmetry operators cr s and (a v h' 

Firstly we can say that the electrostatic repulsion between electrons 

is not dependent on the orientation of electron spin on each ion, provided 

the MS value for the pair remains (in this case) zero. The application of 

Cf 
s will show this. The effect of Cy s is to reverse the sign of the M 
vvS 

value, of each ion. Thus 
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5 Ix > I-T, ': A, `ý> -Ix > 
v222 
sIx> IT, 

- 21 : -A, -Ix > 
v22 
s 

Cf Ix >= I-A, 
21: T, -> = -Ix v324 

a six >= IA, 
-21: -T, 12> = -IX > 

v43 

showing the equality of the following integrals 

<X, Iglx, > <X, Iglx, > 

<><, lglx, > <X, Iglx, > 

<xllglx, > <X, Iglx, > 

<><, 1g1 x'> = <", 1g1x, > 

<X, l gl x, > 

<><, 1g1x, > 

<><, 1g1 

<><, 1g1 

<xl g ><2> 

<X, g xi > 

<><, 1g1 ><4> 

<xl 1g1 x3> 

The Coulomb interactiori energy is obtained with no distinction 

between the ions being made. The application of ah shows the equality 

of the integrals in which the excited ion and the ground state ion are 

interchanged. Thus we have that 

a -1-iA, '-: iT, -'> =-1 X4> hl)ýl> 
22 

a 

hl x 2> -liA, -21: -iT, 12> _IX 

3> 

CY -1-iT, I: iA, -'> - hIX3ý> 
22 IX2> 

(Y hIX4> -liT, -21: -iA, 21> 
_IX 

1> 

from which we deduce 

<X, 1 gl x, > 

<x, g x'> 

<x, g x, > 

<X, 1 gl x, > 

<X, 1g1 x'> 

<X 41 gl x3> 

<X, 1g1x, > 

<X, 1g1 x' > 

<X 31gixl> <x21glx4> 

<X 31glx2> <x21gIX3 > 

<X 31glx3> <x21glx2> 

<X 31glx4> <x21glxl> 

If we combine both sets of results we find that the matrix elements 

of H 
eff 

between the U states are considerably simplified. They are 

reduced to the following: 
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<U' 2,0 IH 
ef f1 

U' 2,0>; <U ", 2,0 1H 
eff 

1U", 2, 

1g1 xi >+ <xl g1 ><2> + <xl 1g1 x'> + ýý<l 1g1 ><4> 

<U', l, OIH 
eff 

lu,, i, o>; <u,,, i, OIFI 
eff 

IU", I, O> 

= Ilgl x l> -<x llg'x2> 
+ <xllglx3> + <xllg'x4> 

We have yet to consider the orbital doublet states V and W. If 

the same process is carried out usinZ the V or W states with MS =0 C, 

one finds exactly the same result as for the U states. This is not 

surý, rising since both V and W have the same transformation properties 

under as and Cf as the U states. When we come to maKe a detailed 
vh 

examination of the matrix elements however, the component of 
2T1 

will 

have to be specified. 

4.5 DETAILED EXAMINATION OF THE MATRIX ELEMENTS 

The determination of the expectation value of H 
eff 

between the U 

states as basis functions, when H contains only the two-electron operator 

g, requires the evaluation of just four integrals: <x 1IgIx1>'<X1 
IgIX2 

<xllglx3> and <X 1IgIX4 >'A similar set of integrals is required to 

evaluate the matrix elements of H 
eff 

between the V (or W) basis states. 

One can prove that the matrix elements between the V states are identical 

to those between the W states by the use o-F cy V, 

To calculate the integrals we must first write the x-functions in 

terms of Slater determinants and then we will be able to use the rules 

laid down in Section 4.1. From Section 2.3: 

lxl> = IT, -12 : A, 21 

äÜ AAC-) -(A äh 1/ýN) f (abc) +(ab c abc) {2 (ABC) - ab V/6 

[2 (ABC ++- ----- - (A-B+C-a+b+c-) - 
1ý721 

abc)+2(AE3Cabc+)+2(A+BCabc) -(ABCabcý') 3 

-+--++------------...... 
-(ABCabc)-(ABCabc)-(AE3Cabc)-(ABCabc)] 
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Ix 
2>= 

IT, 
21: A, -21> 

=1 

1- 

3y2l[()'ý, Býabc)+(AE3Cabc)+(ABCabc)+(ADCabc)+(ABCabc) 

+-+--+++-+ 

+(AE3C--ibc)-2(A, 9Cabc)-2(ABCabc)-2(ABCabc)] 

ix 
4- 

>= 
IA, 12: T, 

-12> 

1-++-+--------------------+-+-+- 

3yý'[2(ABCabc)-(ABCabc)-(ABCabc)+2(ABCabc)-(ABCabc) 
+-+--+ ...... - ++-+- ...... 

- (AE3Cabc) +2 (ABCabc) -( AE3Cabc) - (AE3Cabc)l 

13>= 12 

I-+ -- ++- +--+-+ ------ -+-++- -+-+-+ 

3ýý'[(ABCabc)+(AE3Cabc)-2(AE3Cabc)+(ABCabc)+(ABCabc) 
-+--++--------------+-++ 

-2(/\BCabc)+CABCabc)+(AE3Cabc)-2(ABCabc)] 

The integrals over determinantal -Functions are evaluated in terms 

of integrals over spin-orbitals; particular matrix elements occur so 

frequently that it is convenient to use the notation (following Condon 

and Shortley [35, Chap 6]). 

J (ij )= <ij 1 /rl ij> 
K (ij )= <ij 1 /rj ji> 

where i and j are spin-orbitals. 

The four integrals, now in terms of spin-orbitals are 

<T, -21: A,! 2j1/rjT, -21: A,! 2> 

= (1/18)[183(AE3)+18J(AC)+18J(Aa)+18J(Ab)+18J(Ac) 

+18J(E3C)+IBJ(Ba)+18J(Bb)-118J(Bc)+18J(Ca)+18J(Cb)+18J(Cc) 

+18j(ab)+18J(ac)+18J(bc) 

+9K(AB)+9K(AC)-lDK(Aa)-10K(Ab)-lDK(Ac) 

-18K(BC)-7K(Ba)-7K(E3b)-7K(E3c)-7K(Ca)-7K(Cb)-7K(Cc) 

-18K(ab)-18K(ac)-1,3K', (bc). l 

= (1 /l 8) [723 (AE3) +36J (BC) +l 8J (Aa) +72J (Ab) +36J (6b) +36J (Bc) 

-18K(AB)-36K(BC)-IOK(Aa)-34K(Ab)-14K(Bb)-14K(Bc)] 
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This last line has been obtained by examining the equality of the 

integrals over spin-orbitals using the operators CT 
v 

and Cf h' 
For instance 

by uV one can prove that J(AD) = J(AC) and by CY h 
that J(AB) = J(ah) and 

J(Ab) = J(E3a) = J(Ca) = J(Ac). 

(ii) <T, -2!: A, ljl/rjT, 12: A, -2'> 

= (1/18)[4K(Aa)+4K(Ab)+4K(Ac)-8K(Ba)-8K(Eib)-8K(Bc) 

-BK(Ca)-8K(Cb)-8K(Cc)] 

= (1/18) [4K(Aa)-8K(Ab)-16K(Bb)-16K(Bc)] 

(iii) <T, -! 2: A, 12j1/rjA, -l: T, 12> 

= (1/18)F-8K(Aa)+4K(Ab)+4K(Ac)+4K(Ba)-2K(Bb)-2K(Bc) 

+4K(Ca)-2K(Cb)-2K(Cc)] 

= (1/18)[-8K(Aa)+16K(Ab)-4K(Bb)-4K(E3c)] 

<T, -12 : A, 
12 1 

1/rl A, 
12 

-. T, - -21 

= (1/18)[-4K(Aa)+2K(Ab)+2K(Ac)+2K(Ba)-K(Bb)-K(Bc) 

+2K(Ca)-K(Cb)-K(Cc)] 

= (1/18)[-4K(Aa)+8K(Ab)-2K(Bb)-2K(Bc)I 

Examining the results of these calculations the first thing to 

notice is that 

2<T, -': A, 111/rIA, I: T, -'>, 2222 

which is in our shorthand notation 

<Xllglx, > = 2<xllglx4>« 

Therefore <U', 2, OIH 
eff 

IU', 2,0>; <U", 2, OIH 
eff 

JUII, 2,0> 

= <X llglx2> + 3<xllglx, > 

and <UI 1,0 IH 
eff 

lul, 1,0>; <U", 1, OIH 
eff 

1 upp, i, o> 

<Xllglxl> - <Xllglx, > + <Xllglx, > 
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We are thus lead to the very useful result that 

<U', 2, OIH 
eff 

ju 2,0> - <U", 2, OIH 
eff 

IU", 2,0> 

<U', I, OIH 
eff 

IUI, 1,0> - <U", l,, OIH 
eff 

i upp, 1,0> 

The ratio o-F the splitting between primed and doýble primed U states 

with S=2 to the splitting between the primQd and double primed U 

states with S=1 is 3: -1. This result may be compared with experiment; 

the ratio for Cs 3 Cr 2 Br 9 is approximately 3.9: -1, that for Rb 3 Cr 2 Br 9 is 

rl, 3.6: -1 and f or Cs 3 Cr 2 cl 9 the ratio is rl, 4.0: -I. It is not surprising 

to -find experimental departures from the predicted ratio since no effects 

higher in order than two-electron spin independent terms are considered. 

Another point of interest is that the integrals over spin-orbitals 

can be divided into two distinct classe-s, depending on whether they 

describe electroniQ interactions that are intraionic or interionic in 

nature. For example J(AB) = <ABIl/rIAB> and K(bc) = <bcll/rlcb> are 

intraionic . matrix elements, whi le J (Aa) = <Aa II /r I Aa> is an example 

of an interionic matrix element. With this in mind it is seen that 

I 
the splittings wýthin the U family are due Eýntirely to the interionic 

terms, and further are due to the interionic exchange terms. The 

intraionic terms and the interionic Coulomb terms are +ound only in 
I 

the <xllglxl> integral which is common to all the matrix elements of 

H 
eff 

between the U states. 

To find the energy of the remaining four multiplets we must 

evaluate the expectation value o-F H 
eff 

between either the V or W states. 

The expression containing the x-functions derived in Section 4.4 is 

2 
applicable in this instance i-F the b or c component of T1 is used. 

The x-functions applicable to the V states are: 
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i1 Ix >= IbTP-2: A, 2 

(I/v76)f(AAB)+(BBC)-2(A-C+C)} x (1/v73--I(abc)+(abc)+(abc)} 

=1-+ 
++- +--+-+---- +- -+ +- +--+-+ 

3y'll-F(Aýfiabc) + (-AABabc) + (-AABabc) + (BBCabc) + (BBCabc) 
L. 

+(BBXabc)-2(ACCabc)-2(ACCabc)-2(ACCabc)] 

Ix2: 
ý' ": I bT, 12 

: A, - 
12 

=1+++--+-+-+-+-+--+ 
4-- ++- -+-+-+- 

3 V72'-[(AA-Babc) +(AABabc) +(AABabc) +(BBCabc) +(BBCabc) 

+(BBCabc)-2(ACCabc)-2(ACCabc)-2(ACCabc)] 

ix 
A- 

>= IA, 
21: bT, -22> 

=I-++-+--++-+-- 
++--+- +-++--+-++-- 

3VII 
[(ABCaab) +(ABCbbc) -2(ABCa cc) +(ABCaab) +(ABCbbc) 

+-+-+- ...... ...... 

-2(ABCacc)+(ABCaab)+(ABCbbc)-2(AB+C+ac+-c)] 

IA, -21: bT, 12> 

=1-+ 
-- +-+ +--+-+ +--++- -+-+-+ -+-+-+ 

3v'r5' 
[(ABCaab) +(ABCbbc)-2( ABC a cc)+ (ABCaab) +(ABC bbc) 

-+-++- ------ ------ ------ 

-2(ABCacc)+(ABCaab)+(ABCbbc)-2(ABCacc)I 

The required integrals over these determinantal functions, using 

the rules given in Section 4.1 are: 

<bT, -2j: A, 12j1/rjbTj-2: A, 12> 

= (1/18)[3J(AA)+6J(AB)+24J(AC)+18J(Aa)+18J(Ab)+18J(Ac) 

+3J(BB)+6J(E3C)+9J(Ba)+DJ(Bb)+9J(Bc) - 

+12J(CC)+27J(Ca)+27J(Cb)+27J(Cc) 

83 (ab) +l 83 (ac) +l 83 (bc) 

-3K(AB)-12K(AC)-7K(Aa)-7K(Ab)-7K(Ac) 

-3K(BC)-4K(Ba)-4K(Bb)-4K(Bc)-13K(Ca)-13K(Cb)-13K(Cc) 

-18K(ab)-18K(ac)-18K(bc)-6<AAII/rIBC>+12K<ABIl/rICC> 

+12K<BBIl/rIAC>] 

(1/18)[3J, (AA)+66J(AB)+183(Aa)+72J(Ab) 

+15J(BB)+24J(BC)+36J(Bb)+36J(Bc) 
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-51K(AB)-7K(Aa)-31K(Ab)-21K(BC)-17K(Bb)-17K(Bc) 

-6<AAjl. /rjBC>+24<ABjl/rjCC>] 

(ii) <bT, -21: AAjl/rjbT, 21: A, -12> 

(1/18) [-8K(Aa)-8K(Ab)-8K(Ac)-2K(Ba)-2K(Bb)-2K(Bc) 

-. 2K(Cý)-2K(Cb)-2K(Cc)] 

(1/18)[-BK(Aa)-20K(Ab) -4K(Bb)'4K(Bc)] 

(iii) <bT, -21: A, 12j1/rjA, -21: bT, '21> = 2<bT, -21: A, 21jj/rjA, 21: bT, -21> 

(1/18)[-2<Acll/rIaC>-2<Aall/rIbC>+4<Abll/rIcC> 

-2<Bcll/rlaA>-2<Ball/-rlbA>+4<Bbil/rIcA> 

+4<Ccll/rIaB>+4<Call/rIbB>-8<Cbll/rIcB>] 

= (1/18) [-4<Ac I 1/r I aC>-8<Cb I 1/r I cE3>-4<Aa I 1/r I bC>+16<Ab I 1/r I cC>] 

once again one finds that 

<X llglx3> = 2<xllglx 4> 

which when substituted in the expression derived in Section 4.4 gives 

the result that 

<V', 2, OIH 
eff 

IVI, 2,0> - <V", 2, OIH 
eff 

IV", 2,0> 

<VI, 1,0 H 
eff 

IVI, 1,0> - <V", l, OIH 
eff 

jv, ý-, 1,05 
3 

with-the V and W states remaining degenerate. 

One notices that the intraionic terms leave the (V, W) -Family 

degenerate; it is the interionic exchange terms that are responsible 

for any splittings. The indications from experiment are that the 

above ratio for the V or W states are similar to those reported in 

the case of the U family splittings; for Cs 3 Cr 
2 

Br 9 the ratio is %3.0: -l. 

An interesting approximation at this stage would be to allow no 

interaction to taKe place. between the ions of a pair. Then each inter- 

ionic term would be zero and only non-zero terms would be those of 



- 69 - 

intraionic nature in <x 
1IgIx1 

>. The intraionic terms could then be 

determined in terms of Slater F-integrals, for instance 

J(AA) E <d d 11/rId'd 
0000 

=F+ 4F 
2+ 36F 

4' 

The evaluation of the intraionic matrix elements has been carried out 

using the methods outlined in [35, Chap 61 and the results can be found 

in Appendix VII. The substitution of these values into <xllglxl> for 

both the U and the (V, W) states gives the same result 

6F - 21F 
2- 84F 4' 

A comparison with the single ion term energies of 

4A2: 3F 
ID 

15F 
2 

72F 
4 

2T1: '3F 6F 2 12F 4 

[37, Chap 10. d] shows that the energy of the pair system is simply the 

sum of the energy of two single ions, one in the ground term, the other 

in the 
2T 

term as on6 would expect. It is easy to see that the excited 

manifold lies above the (4Ax4A) ground manifold by an amount equal to 
22 

9F 2 +60F 4" 

In Section 1.3 an approximation to the Racah parameter B was given 

by comparing the pair spectra with the term diagram Fig 1.2 (for which 

-1 .. the third Racah parameter C= 4B). For Cs 
3 

Cr 
2 

Br 
9B 

'U 660 cm giving 

F2 I"u 1040 cm- 
I 

and F4 Iu 76 cm- 
1. 

leading to an energy of %13,920 cm- 
1 

for the (4A2x2T1) manifold. Table 3.4 gives the energy to be 14,400 cm 

so even in this crude approximation the agreement is -Fairly good. 

The next approximation we shall maKe is to let each interionic term 

have a finite value. We shall maKe no distinction between the electronic 

orbitals so that all the interionic Coulomb terms are equal with the value 
I 

and all the interionic exchange terms are equal with the 
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value K. We can no longer write the intraionic terms in terms o-F F- 

integrals and we now expect them to contribute di-Fferent energies to 

the U states than to the (V, W) states, say E and E' respectively. 

Otherwise one finds that the expectation value of H 
eff 

between U states 

and the expectation value of H befween the V (or W) states are equal. eff 
In x-notation for the U states we have: 

<X 
llglxl >= E+9J-4K 

<X llglx2> = -2K 

<X llglx4> =0 

The Coulomb term J in this case cor responds to the electrostatic inter- 

action between electrons on different ions; one would expect nine such 

interactions as there -are three valence electrons on each ion. 

Hence we find. that in this approximation the (4A2x2TI) manifold 

is split into two groups o-F states. The states belonging to each group 

have a different total spin, either S=1 or S=2, and there is no 

dependence on the Gh nature of the states. We also find that the 

matrix elements o-F H between the S=2U states have the value 
eff 

E+ 93 - 6K, 

and the matrix elements of H 
eff 

between the S+1 U states have the value 

E+ 9J - 2K. 

Since K is necessarily positive the S=2 states must lie lower in 

energy than the S=1 states. This suggests a -ferromagnetic interaction 

since the lowest energy of the system occurs when the spins on the ions 

are parallel. A looK at Table 3.5 will show that -For each material the 

ordering -o-F the orbital s; Lnglet states complies with this prediction. 

However the ordering of the orbital doublets is reversed; the S=1 
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states lie lower than the S=2 states. This contradiction o-F theory 

by experiment must be expected in a first order treatment, as was 

pointed out in Section I. I. The higher order two-electron terms must 

also be taKen into account. The terms o-f higher order are expected to 

be of similar form to those of first 'order and are to be regarded as 

renormalising the coefficients of first order. 
I 

The splitting between the ah families of states can only be brought 

about by lifting the constraints of this approximation, by admitting the 

differences that are to be found between the interionic terms. This 

shows the importance of the orbital components of the states in the 

evaluation of the expectation values of H between the basis states eff 
42 

of the 'A 
2xT1 The successive stages of approximation are shown 

diagramatically in Fig 4.1. 

4.6 APPLICATION TO THE GROUND MANIFOLD 

We shall now evaluate the matrix elements o-F H 
eff 

between the 

basis states of the (4Ax4A) ground manifold, using H 2: pgP 
,22 eff MM 

where M in this Case represents the states of the ground manifold. 

The degenerate pair states will be split into multiplets, four in 

number, each characterised by the total spin Sg = 0,1,2, or 3. 

Following the same procedure as in Section 4.4 we begin with the pair 

wave functions - which can be found in Section 3.2. The states with 

MS =0 are: 

13, O> [1 
-3: 

3> +31 -1-:! -> +31 1-: -'-> +13: _3>] =222222222 

2, O> I[J-3: 3> +1-!:! > - 1. >3: -3 =222221 '21 2 -12 2 

[3 33> 
-1-1: 1> -11: -! ->+31 

33 0> = 
32 

2222222 

10,0> = 
! >+11: -I>-13: 

3> 
2222222-2 
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IV, 2>IW, 2> 

(V, W) 

5E' 

u 

V 
lv, i>iw, l>/ 

3E 

Rl', V, 
,W3 

U, 1> 
A 

3A 

u2 

A2 

U, 2> 

NO ION 

INTER- INTRA- INTERIONIC 

ACTION IONK INTERACTION 

Fig 4.1: The (4 A2 ý'- 
2 TI) Statm. 
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Between these states we now examine the expectation values of H 
eff , as 

in Section 4.4 the equality of many integrals is found by the use of 

the symmetry operators Cj 
v 

and CY h'ý The -final result is shown below: 

<3,0 1H 13,0> (1/10)[<-3: 31gi-3: 3 >+6< -3 :3i:! >+g<-!:! :! > 22 2- 222222222 eff 
ki- lgl-l 

+g<-! I 222: -2 
IgIl- 

ý2,0 1H 12,0> 1[<-3: 3ý1-3: 3 3: 3 ! >+<-! i 1> 2222 2>+2< 22222: 222 eff 
lgl lgl-l: 

-<-! 
i 

2: 219112: -12>] 

<1,01H 11,0> 
= (1/10)[g<_3 31gl_3: 3 33 

-i ! >+<-.! i -i 1> 
eff 2: 22 2>-6<-2: 2191 2: 2 2: 21g12: 2 

2 219121:: -2 

1331g3: 3332: 
2 '- 5 

[<-2 
222 21gl-i ! >+<-! i IgI -.! 1> <0,01H 

efflo'o> 
>-2<-2; 2: 2 2: 2 

2: 22 I gI 1- 

To consider these matrix elements in detail each pair state must be 

written in determinantal form by using the single ion states of Section 

2.3. Through the rules laid down in Section 4.1 we arrive at the 

following: 

<-3.31gl-3: 3> = <AAbBCýa+b+c+cll/ri-AB-C-a+b+c+> 22 

= 43(AB)+2J(BC)+J(Aa)+4J(Bb)+2J(Bc)-4K(AB)-2K(BC) 

<. 3.31gi-1: 1-> = 22 '[-K(Aa)-4K(Ab)-2K(Bb)-2K(Bc) 31 

2: 
121gl-21: 12> 

= 4J(AB)+2J(BC)+J(Aa)+4J(Ab)+2J(Bb)+2J(Bc)-4K(AB)-2K(BC) 
I 

+(4/9) [-K(Aa)-4K(Ab)-2K(E3b)-2K(Bc)1 

<-!..! !: - 1* >= (4/9) [-K (Aa) -4K (Ab) -2K (Bb) -2K (Bc)] 2-2 
191 

22 

One notices that there are . some similarities in the -form of these 

results, specifically one notices the following equalities: 

<- 3: 3 lgl- 3: 3> = <-I:. Ilgl_l: l> - <-!: Ilg !: -! > 2222222222122 

3 
-1 

1>2<-1i1> <-2: 2 2: 2 4 2: 2 2: -2 
, Ig I 11gi 

On substitution into the matrix elements of H 
eff 

between the pair states 
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<3,0 1H 13,0> = <-! 1i 2222422> -1 :1 
19 122 

eff 
191-1: 1>+5(! )< 

<2,01H 12,0> = <-I: Ijgj-!: I>-I<-I 222242: 222 eff 
11g1l: -1> 

<1,01H 
eff 

11,0> = <-51:; ! )<- 2 2191-21: 
12>-5(4 

21: 2119112': -21> 

<0,01H 10, D> = <-!:! 
eff 

2 21gl-12: 21>-7(14)<-12: 
221gl2l: 

-21> 

Relative to the S0 level the theory predicts that the S 99 
2 and 3 multiplets lie at 1,3 22 and 3 respectiQely, in units of 

<-I 2: 
1219112: 

-12>. How does this compare with the spin Hamiltonian 

description.? The spin Hamiltonian has the form 

H -J S .S S -1-2 
= -i IsI (S !ý+Ss Slz 2z +2 1+ 2- 1- 2+ 

J is the exchange parameter. It is a simple matter to calculate the 

matrix elements of H between our basis states. One finds the 
s 

f D11DWing: 

<3,01H 
s 

13,0> = -9J/4, 

<1,01H 
s 

11,0> = 11J/4, 

<2,01H 
s 

12,0> 

<0,01H 
s 

10,0> 

3J/4, 

15J/4. 

The energies of the S9=1,2 and 3 multiplets in terms of J relative 

to the S9=0 are J, 3J and 6J respectively. The splitting ratios are 

exactly as predicted using the Stevens approach. 

The two methods have something else in common. They both predict 

a ferromagnetic interaction between the ions so the states with the 

highest spin should be lowest in energy. (The integral <-21: 12jgji: -! > 22 

is a negative number). In actuality the S9=0 level is observed to 

be lowest in energy (see Table 3-6); the interaction between ions is 

antiferromagnetic so that parameters describing the splitting are of 

the wrong sign. 16 Section 1.1 we anticipated this result and put the 

discrepancy of sign down to-Ahe-Jimitations of the Dirac Hamiltonian. 

The same problems are also encountered in the Stevens approach; the 
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result quoted above is a product of the first term in an infinite 

series of terms. If we were to evaluate all of the higher order two- 

electron terms in the series, each would give a splitting of the same 

ratio as in first order but of a different magnitude. Some of the 

higher order terms may be of greater magnitude than first order and 

also of opposite sign. Thus it is possible for an antiferromagnetic 

interaction to be predicted by the theory. 

We shall proceed no -Further with the spin independent operators: 

no further splittings will result fromany of the higher order terms. 

The results of second order perturbation theory using general one- and 

two-electron operators are deduced by the methods o-F second quantisation 

and are described in the review by Stevens [1, Chap 5]. 
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CHAPTER FIVE 

SPIN DEPENDENT TERMS IN THE HAMILTONIAN 

5.1 THE SPIN-ORBIT INTERACTION 

In the discussion of the absorption spectra of the binuclear 

systems we have arrived at a series of multiplets, each characterised 

by the orbital transformation properties of the states, for the 

(4A2x2T1) manifold. To treat the fine details of the spectra more 

accurately the so called spin-orbit interaction must be considered. 

The spin dependent interactions are small but their effects may be 

obser ved experimentally; Table 3.5 shows that the 
3 

E" multiplet is 

split into three unequally spaced doublets with separations of up to 

%10 cm It is hoped that the inclusion o-F the spin-orbit coupling 

into the Hamiltoni'an will provide some explanation of these features. 

The interaction of the spins of a system of d-electrons with their 

own orbital Motions in, a central field of force may be written 

[35,36,37]. 

SO :: Cdli 11s1 

where ýd is a characteristic of the radial part of the d-orbitals and 

of the central field, 1 and s are the orbital angular momentum and 

spin operators. The spin-orbit interactions written in the above form 

are only valid when the field in which the electron moves has spherical 

symmetry. This is, of course, not so in the present case and as it is 

not possible to give a complete relativistic treatment to a many-electron 

system the spin dependent part of the Hamiltonian must be approximated. 

However, we may use the above interaction if is considered to be an d 
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adjustable parameter and into which we may incorporate any deviations 

from'the central field model. In the pair system, to emphasise the 

axial symmetry we can include two such parameters and write the spin- 

orbit interaction as: 

H2 CU S+us so 
ý'- 

lil'zuzsz 
++ 

The two adjustable parameters are Kz and K+. The operatora uz, u+ and 

u- are 'orbital' operators, i. e. operators acting on functions of 

spatial coordinates, analogous to Iz, 1+ and I- of the single ion. 

The matrix elements of uz, u+ and u_ between the electronic 

orbitals IA>, IB>, IC>, ID>, JE> are deduced by symmetry arguments, 

using the following relations: 

(C 02u cl, u 3z3z 

(C UICO wu 3+3 

(C, ) 2uC0w2 
U- 3-3 

00 
Gua 

vzv 
00 

Gvu+Gv 

Gu cy 
v-v 

and the symmetry properties of the orbitals, given in Section 2.1. 

The equality of the matrix elements may be found as in the examples: 

<Alu+IB> = <Alao(cjou+cjo)(YOIB> 
vvvv 

= <Al(j 0u CY 01 C> 
v+v 

= -<Alu_IC> = X, say 

and <Alu IB> = <AIC 0 ((Co) 2uC0 )(C 0)2 IB> 
z33z33 

=w2 <A I(Co)2u Co IB> 
3z3 

=w2 <Alu 
z 

IB> i. e. <Alu 
z 

IB> =0 

i 

Applying these arguments to all the possible matrix elements between 

the one-electron basis states of one ion of the pair the following 

matrices are obtained: 
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4 

u 
Z 

0 

-11 0 

I 

where e, ý and ý-and X, p and V are constants. 

The matrices are divided up to emphasise the fact that the orbitals 

are basis states of the two representations t and e, and to show the 2g 9 

way in which the two representations are connected by the operators uz 

u and u_. For instance, to generate states of the t2e configuration 
+ 2g g 

by the action of the orbital operators on the t3 configuration states 2g 

then the portion o-f the matrix connecting the two sub-spaces must be 

used. 

From the matrices of uz, u+ and u- we can write down the effect 

that these operators have on the one-electron basis states: 
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uZ JA> = 0 

u ZIB> = 616>+ýID> 

UZIC> = -OIC>-ýIE> 

Li Z 
ID> = ýIB>+ý: 

uZ JE> = -IPIC>-ýIE> 

u+IA> = -XIC>-IJIE> 

u+IB> = XIA> 

u+IC> = -'VID> 

I D> = A> 

u+IE> = VIB> 

u-IA> = XIB>+PID> 

u_IB> = VIE> 

U-IC> = -XIA> 

U_ID> = -'VIC> 

u_IE> 
I 

= -ýIIA> 

Now if a similar set of operations are cnrried out using the 

angular momentum operators Iz., 1+ and 1_ and the crystal -field analogues 

of our JAý, IB>, 
p ... etc given in Section 2.1, we obtain a set of 

relations identical to those above if the constants have the following 

values: 6=1, ý=0, ý= V2- and X=-,, r2-, .=2 and V= -2. This result 

is not surprising because to arrive at the relations using uzo u+ and u_ 

we have considered properties of symmetry only, and the symmetry 

properties of uz, u+ and u- are defined to be identical to those of Iz, 

1+ and 1-. We can'now define the magnitudes of uz, u+ and u- operating 

on our one-electron orbitals to be the same as the magnitudes of lzj, 

1+ and 1_ operating on the crystal field analogues. The scaling factors 

which allow this are incorporated in the factors Kz and K+- 
I 

Hence one de'Fines the orbital operators by: 

Z 
JA> 

= 

JB> = u IB>+v72--ID> 
Z 

JC> u Z 
ID> u Z 
JE> = Z 

u.,. IA> = v721C>-21E> 

u., 
_IB> 

= -Vr2-lA> 

u+IC> = 21D> 

u_,. ID> = 21A> 

u+IE> = -21B> 

u-IA> = -Vr2lB>+210> 

u-IB> = -21E> 

u-IC> = lr2lA> 

u-ID> = 21C> 

u-IE> = -21A> 

Acting on the second ion orbitals, the effects of the operators are 

found with the help of cf h'ah uz = uz 1P Gh u+= -u+., so that: 
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uzla> =0 

uz lb> = lb>+v72-ld> 

uzlc> = -lc>-v721e> 

uz Id> = v72-lb> 

uzle> = -v72-lc> 

u --Ic>+21e> u +la> vr2 
_I 

a> = vl"2 I b>-2 I d> 

u+ I b> = v721 a> 

u+lc> = -21d> 

u., 
_Id> 

= -21a> 

u+le> = 21tj> 

5.2 FIRST ORDER PERTURBATION 

0, 
-Ib> 

= 21e> 

u I c> = a> -v, 2 

u-ld> = -21c> 

u-le> = 21a> 

We now have to evaluate all the matrix elements of H 
eff, which 

are linear in spin operators between the basis'states-of the (4A2x2T1) 

mani-Fold. The effective Hamiltonian in this case is 

H 
eff 

pmH so pm 

so we must first operate on all the U, V and W states with the spin- 

orbit operator H SO' The U, V and W states are made up of pair functions 

214 
such as IT1 

. 92: A2 '1.21> - we can operate in turn on each of the component 

single ion terms with uzsz, u+s- and u_s+. Since in first order H 
eff 

is operative within thQ subspace defined by the U, V and W states, we 

need only consider the uz, u+ and u- within the subspace defined by the 

t 2g orbitals. For instance, with reference to Sections 2.3 and 5.1 we 

have 

us 14 A ++- ) +(+-+) + (- 
++ 

zz 2' 2 V731 Uz -9 ZPABC 
ABC ABC)] 

l(ABC)+5' )-l( '(ABC)+51(A-BC)-ý'(A-BC)] (ABC ABC)-ý 

lr3rC(ABC) - (ABC)] 

2 1> = V73 -IaT2p2 

It must be remembered that when using u+s_ and u-s+ we must distinguish 

between the states of the first and second ions. If we operate on each 

of the single-ion terms 
4A2 -an with uzsz, u+s--and u-s+ we find 
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that in each case we generate states only of the 
2T2 

term, the results 

are shown in Table 5.1: 

uzsz u+ S-. u-s+ 

3> IA, 2 0 +1> 21CT 
2'2 

0 

1> A, 
2- 1> v7-37' IaT2'2 1> T2J3 I cT .-2 2 

0 

A, - 
12 > 1> -JaT 

2 2'- 
0 T> ±2v/3 I bT 2 

3> A, -2 0 0 1> 21bT 2 JI-2 

> JaTl 
.2 

> V/31 aT2'2 +> 
Y/23 cT 2'- 2 

0 

-! > aT 112 
-1- 1> -Y/3 aT 2'- 2 

0 1> V23 -I 
bT 

2' 2 

bT,, p 
12 > ! 'V/T3 bT1> 22'2 + v723-1 aT> 2'- 2 

0 

JbT 
12 -1 -1 bT 1> 243 2' -2 0 2 V23-1 

cT2 2' 
1> 

> cTl 2 -1 cT > 2 V731 
2' 2 .1> +2 v/"22-1 bT 

2'- 2 
0 

> IcT 2 -i 
T, 

-1> 2 
V3 I 

cT 22 
0 1> ±V731 

aT 2' 2 

Tabte 5.1: uz, 6 z., u-,,. 6 u-. 6... on . 6ingte ion 
. 6tatez 4A2 

and 
2T1 

The ± and T 
. 6ign. 6 xe6e)t to the 6iut and second io" in the pait 

6unctionz. 

We can apply these results to one of the basic pair states, e. g. 
a 

u aT,,, 
12 

: A,! > v/3'-IaT !: A,! > + v/z3-jaT -I: aT 1> 
zsz2 2' 

221.9 22 

-' 
2 

us- v/71 cT-!: A,! > + 2vlT3-IaT 1 1> 1 .922221 .9 : cT 
_IaT 

!: A,! > 3 2' 
2 

2'- 
2 

It is obvious from these results that if we operate on the states of 

the (A2xT 1) manifold with H so only states of the (4A2x2T2) and 

2Tx2T2) 
manifolds can possibly be generated. In conclusion it may 

be stated -that in fi rst -order perturbation theory there is. no splitting 

42 
of the (A2xT1 manifold due to spin-orbit coupling. 
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5.3 SECOND ORDER PERTURBATION 

The contribution to the energy from the spin-orbit interaction 

taKen to second order is given by' the effective Hamiltonian 

HpmH so PMO 
IH so pm 

eff 
X-I 

MI/M E: mo m 

We shall consider H 
eff as an operator acting from the left on the 

U, V and W states. TaKing as an example IV', 1,1>, the operation by PM 

leaves IV', 1,1> unaltered (by definition). Then we have H S01V "ill> 

which becomes a superposition of a number of states. In the last 

section we saw that the states of (4A2x2T are connected via the 

spin-orbit interaction to the states of the (4A2x2T2 To find the 

combinations of the P, Q and R states of (4A2x2T2) that are produced 

we must apply the results shown in Table 5.1 to IV', 1,1> as given in 

Section 2.6. The resulting states must then be compared to those of 

P, Q and R given in Section 2.8, e. g. 

-i3 us+ [v"3-1 bT : A, >-IbT ': A, '>-IA, I: bT,. v 
1,1> 

2 
7, -1 

23 1 J, 2222 

i> -3 ] 
Ni A, 23 : bT, 12 + 'r3- 2 

3 >] 5 )/3 1/-3.3-1 cT 2A 
>+3.2F3JA, 3 

2 2222: cT 2 

33 
= -EICT 2' 

12 
: A, >-JA : CT 2 il 21 221 >] 

=-2,2 

The complete set of results for uzsz, u+s_ and u-s+ acting on the 

unprimed U, V and W are shown in Appendix VIII(i). 

The spin-orbit interaction however, connects the (U, V, W) to many 

other states besides P, Q and R. If we extend the range of application 

of the orbital operators used in Section 5.2 we can promote electrons 

to the e-, -orbitals JD> anq. jE>. And from states of the t3 configuration 
9 2g 

2 
produce states of the t 2g e9 configuration. Now when- we operate on the 
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2T1 
single ion states of Section 2.3 with the uzsz, u+s_ and u_s+ 

(Secýion 5.1) we will produce a superposition of the t2e states; 2g g 
these are found in Section 2.4 and Appendix IV, of these we retain 

I 
only the 4T1 

and 
4T 

2' 
The results are shown in Table 5-2: 

us zz 

a2Tj. > 2 

2 
±! > lb T, 

.02 
jc2 T , 

±! > 
12 

vr2--l a4T 32"2 

1 V-, = _Vý, IC4 ±! >- 4 TIP 23cT22 

4 
±.! >-l l1b 4T±! 

> =- vl72'1b Tlj, 23 V13 2 
2' 

la 2T AP 
= +lb 

4 Tl, -. 21>±llb 
4T 1> 3 2' -2 

2 
aT1, -! > 2 

4 
vIT- 

43> 
= , r3-l bT3 lb- T2 + 

2' - 

2 lb T, 
0 

!> 2 
4 

-! >±Vrr 
4 

1> Tla 
T12 1123 

la T 
2' - 

+ 2 lb T1 1> =4 3>±j 4 3> +v731 aT -2 3 
la T 

2' -2 

12 c T, 
.9 21 

> = +21C4 1> 3T22 

ic2 * TIP -1> = :k -1 c4 3 2v/T3 T 
2'- 

P 

2 la Ti, '> c4 3 11 c4T 3> 3T- V/3I 2 li-2>+ 2' 

12 aTIP 1> -2 
4 1>-ll 4 1> c Tl,, 

2 +3 cT 2' 2 

lb 2T 

. 
1' 

'>' 5 : ý2v/Tflb 4T 3> 
2' 2 

U-S + 2 lb T1 -2 -2 4 
+31b T2 J' 2 

jc2 T 21> 
43- /r 4 3> +v/3-la Tl, 2>+y3la T22 

IC2 Tljp -'-> 2 
-4 1>-ll 4 1> = +ja Tl, aT12 2 +3 

2 
i 

Tabte 5.2: Combinationz 06 
4 T, and 

4 T2 . 6ingte ion statm ptoduced 

by 6pin-otbit opeAfftox6 acting on 
2 TI. Fo& u-,,. 6- and u-, 6.,, the ± 

and ;: &e6eA to 6iAzt and second ions in pait 6unction-6. 

Therefore the U, V and W are, via the spin-orbit interaction, coupled 

to the (x, a and y of 
4Ax4T) 

and to the fl, C and ý of (4Ax4T 
2122 

The linear -combinations of,, these states that are generated by the 

application of the spin-orbit operators on the U, V -and W unprimed 
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states can be found in Appendix VIII(i). They are obtained by 

applying the results of Table 5.2 to the states given in Section 2.6 

and comparing the resulting states with those given in Section 2.9. 
I 

Thus H so 
IV ', 1,1> is a superposition of states belonging to the 

manifolds (4A2x2T24A2x4T and (4A2x4T2 The next term in H 
eff 

is PM this picKs out the states of each manifold in turn and M' adds 

in the correct energy denominator. For examp le, for M' corresponding 

to the (4A2x2T2) manifold and if we let 

- A=E: ( 

then from Appendix VIII(i): 

PMP H so IV1,1,1> = (1/A)[-LK IQ', 2,1> - lK 'IP', 2,0> z4z VIE, Q1 il 1> 14 K+ A3 

EM 6m 
'IR'., 2., 2>] 1; + 

A3 
- lK -IP'. 

Pl, O> -K v/72 

The second H so turns these states into another superposition o-F 

states but the next operator is Pm so only those belonging to the 

(4A2x2T1) need be retained. The linear combinations of U, V and W 

that are produced by the operation of uzsz, u+s_ and u_s+ on (P, Q, R), 

((x, ý, -y) and (TI, C, C) are given in the Appendices VIII(ii), (iii) and 

Uv) . 
31 

We shall now concentrate on the E' multiplet and attempt to give 

some explanation to the pattern of energy levels found experimentally 

(Table 3.5). The component states of this multiplet are 

vl7, 
"[IVP, 1,1> ± IW', l, -l>], (these two states shall from -now on be Known 

2 

as JAý (3 E")> and JAý( 3 E")>), IV", 1,0> and IW", 1.0> (E") and IV', l, -l> 

and IW', 1,1> (E') and upon these states we shall now operate with H 
eff' 

Continuing with the example of H 
eff 

IV', 1,1>, with the use of Appendix 

VIII(ii)_1M (4 A2x2T2 we can write down the non-zero matrix elements 

of Heff: 

w 
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1 IH IV', 1,1> -(l/A)[-i4'; K (-41K )-41 K V7'3r 
14' K+K+ VIT3- K+ V/r3') eff zzz 

K+ V/13 K+ 451 K+ , rl 'K+ 
4 

22 
-(1/2 4A) [2 Kz+ 13K41 

<V', 2,11 HK v/31 ! K+) 4K 
( 14 -)-14K 

v/13-(-14K )-JK+v/r3(4 
eff zzzz 

'K+ K+) -K+v75l (- K+/vf6)] V/ 
14 

, r3- (K2 /8A) 

4Z4 +) -24k 
Z 

J3 ( 14 K+/r3 14 k+ 1/13 kZ v(3r) 

= -KZK+/8A 

<U', 2,0 1H IV', l, l> = (-(l/A)[-lj*k ( 
-! 4k 

) -24k I/T3 
14 k+ J3 24 k+ v/3 

eff Z+Z 

-74k+J3(-k v/'i3)-k+ý21(0)] 

= -KZK+/8A 

In a similar manner we can find all the non-zero matrix elements of 

H 
eff 

containing the states of the E" multiplet. Now IV', 1,1> is not 

a basis state of the 
3 E" multiplet, we have to use JA; (3 E")> and 

1 (3 1 
Aý Elp)>; this-is a simple tasK if we evaluate the matrix elements 

containing IW', l, -l>, in the above manner, first. 

We now allow M' to represent the remaining manifolds to which the 
A 

3 
E" siates are coupled, namely (4A2x4T and (4A2x4T2 In each case 

we have to specify the energy denominator so we define 

-4- A=E: ( T) -E: ( 

A2 = E: (T2) -E: ( 

We are now in a position to state the non-zero matrix elements of 

A2 
H 

eff 
between all the basis states of the (A2xT1) manifold and the 

states of the 
3 E" multiple" _.. 

As_ in the explicit example for IVI, 1,1> 

42 
when M' represents the (AxT) manifold we shall find that the off- 

22 
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diagonal elements connect the 3 
E" multiplet states with those of 

5E PI 
A 

3 
A; ýnd 5A; 

only. But first of all the diagonal elements are 

<A ;(3 Ell) IH 
eff 

JA; (3 EPP )>IK2 
/72)[(39/A) + (45/A + (17/A 

<Aý( 
3 

EPP) IH 
eff 

JAý (3 Ell)> +2 

<V" 1,01H 
eff 

IV", 1,0> 
2 

<W It'? 
=- (K+/72) [(30/Aý + (36/A 

1+ 
(20/A 

2 
j, I, POIH eff 

lwl, 1,0> 

<V', l, -11H eff 
lvl, l, -l> 2 

..: - (K+/72)[(21/A) + (271A 
I+ 

(23/A 
2 <W', 1,11H 

eff 
lwl, 1,1> 

To each of these we must add the common term 

-(K 
2 /36)[(3/A) + (18/A + (21/A 
z2 

Thus there is a common term in K2 which adds the same energy to each z 

member of the multiplet, shifting in energy the multiplet as a whole. 

2 
The multiplet is then split by the terms in K+ into three equally 

spaced doublets. In order to fit the unequal splittings found by 

experiment to the theorýy the off-diagonal matrix elements must be 

taKen into account and the matrix diagonalised. 

The matrix elements connecting the 3 E" and 
5 

E" multiplets are: 
i 

<A 
5 Ell) IH 

eff 
JAý (3 E") > 

, r3- (K2 /24)[(3/A) + WA (1/A 

<Aý( 
5 Epv)IH 

eff 
JAý (3 Ell) >2 

<V ", 2,0 1 hi 
eff 

1 vv), 1, [: 
=_ (K2 /12) EWA) + WA )- (l /A )] 

,l o> 2,0 
eff 'o> 

<V 1,2, -11 H 
eff 

lv"l, -l> 
K2 /24) [(3/A) 

<WI, 2,11H 
eff 

WA 
1)- 
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The off-diagonal elements connecting the 3 
E" states with those of the 

Aý and 
5 

A; are: 

<ul 11 0 IH 
eff 

jAý (3 E") >ý -)/2-('kzk+/24) [WA) + WA 
1)- 

(i/A 
2 

)] 

<UP? ,i, -, 1H 
eff 

1 vyp ,1, o> 
= -(KZK+/Z4)E(3/A) )] <UlllllllH 

eff 
1 w" ,1, o> 

2,0 1H 
eff 

JAý (3 E")ýý' = -v'2-(KzK+/24) [(3/A) + WA 
1)- (1/A 

2 
)] 

<U", 2, -11H eff 
I VIP, 110> 

'--(K K /24) [(3/A) + WA (1/A v3 
<U", 2, l IH 

eff 
Iw1,0> 

<U', 2, -21H eff 
ivo, l, -l> 

<U', 2,21H 
eff 

lwl, i, i> 
Y"6(KzK+/24)[(3/A) + WA 

1 
(1/A 

2)] 

The contribution to the energy that is given by an off-diagonal 

element such as <U", 2, -11H eff 
IV", 1,0> is obtained by adding to the 

diagonal element the term 

I<UFP, 2, -11H ef -F 
I VIP, 1,0> 12 

F- -X 

where E is the energy of the 5 
A' multiplet (in this case) and X is the 

energy of the (E") level of the 3EP, 
multiplet. We can already say the 

A; and Aý will be split by spin-orbit coupling, since JAý'( 3 E")> is 

coupled to IU', 1,0> and JA; (3 E")> is coupled to IU', 2,0>. 

The spin-orbit operators shown in Appendix VIII act on unprimed 

pair states, the results shown are identical for primed and double 

primed states. Therefore the matrix elements found for the 3E 
11 

3 
multiplet states will be identical to those of the E' multiplet, every 

prime is replaced by a double prime and vice versa. The contributions 

to the energy by the off-diagonal elements will be different in the two 

cases though as the value of E-X is not constant 
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5.4 COMPARISON WITH EXPERIMENT 

We shall now compare the theoretical results given above to the 

experimental results using the d6ta found in Table 3.4 and 3.5. We 

shall concentrate for the moment on the specific example of CS 3 Cr 2 Br 9* 
From Table 3.4 we obtain the values of A' and A 

12 

A= 4600 ± 100; A, = 2250 ± 150; A2=- 2150 ± 150 

With these values the diagonal matrix elements become 

<A 
3 

E")IH JAý (3 E")> = eff -(2.857±0.278) x 10- 4 K2 
+ 

<Vpp, l, OIH 
e 

Ivil, l, O> = ff -(1.836±0.258) x 10-4 K2 
+ 

<V', l, -11H IVP, 1, -l> = eff -(0.815±0.228) x 10- 
4 K2 

+ 

The off-diagonal elements each contain a common factor which we will 

call F: 

(1/24)1(3/A) + WA 
I)- 

(I/A 
2 

)1 

The off-diagonal elements contain among them the following values: 
I 

(1.021±0.055) x 10- 4 

2F = (2.042±0.110) x 10- 
4 

Fvr2- = (1.443±0.078) x 10-4 A 

F, lr3- = (1 . 768±0.095) x 10- 4 

Fv'6- = (2.500±0.135) x 10- 
4 

To incorporate the off-diagonal elements we have to determine the 

energy separations of the 
5 Epp, 

3 Aý and 
5AP 

multiplets from the levels 
1 

3 
in the E" multiplet (split by spin-orbit coupling). For instance the 

5 
energy of the cent*re of the A' multiplet is given in Table 3.5 as I 

14204±1 and the energy of t-he-doublet designated E" (3 E") is given as 

14458±1 - Therefore the contribution to the energy of the E" doublet 
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by <U", 2, -11H eff 
Iv", 1,0> is 

I<U'0,2, 
-11H eff 

lv, tll, O> 12 

E-X 
(1.768±0.095) 2x 

10- 
8K4 

(14204-14458±2) 

= +(1.231±0.094) x 10- 10 K4 

At this stage it will be convenient to drop the subscripts from the 

spin-orbit coupling parameters, we expect that Kz and K+ are unequal 

but we also expect their difference to be too small to maKe any 

contribution to a general test of the Stevens theory. 

When we evaluated the o-F-F-diagonal elements we were able to predict 

that the Aý+Aý (3 E") doublet should-be split; a looK at Table 3.5 

however will show that experimentally the two states are degenerate. 

This means that the splitting must be very small and not more than 

I cm -1 
. Following the above procedure we arrive at the following 

relations concerning the energies E(A; ) and E(Aý) of the two levels: 

E(A; ) =- E+ (0.826 ± 0.066) x 10- 10 K4 

E(Aý) HE E+ (4.434 ± 0.386) x 10- 10 K4 

where E is the sum of all terms common to both. If JECA; ) - E(Aý)j <1 

then 

(3.608±0.452) x 10- 10 K4< 
a 

K< (27.72±3.48) x 10 8 

K< (229.5±7.2) 

K< 236.7 

(if we include the positive error). 

This is just the sort of value we expect for K; it represents a 

reduction, of at least 14A., over the free ion spin-orbit coupling parameter 

f or Cr 
3+ 

of 275 cm- In Sect'ion 
'1 

.3 we pointed ou; t- that for Cs 3 Cr 2 Br 9 
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the Racah parameter E3 is reduced by approximately 29% of its free ion 

value; we might expect a similar reduction for K. Is this value of K 

compatible with that required to explain the overall pattern of levels 

found in the 3 
E" multiplet? 

Before attempting to answer thiý- question we note that the 

contributions made by the off-diagonal elements are very sensitive to 

changes in the magnitude of the energy denominators. The differences 

in the energies of the A and Aý pair are due solely to the off -diagonal 

elements <U', I, OIH 
eff 

JAý( 3 E")> and <U' 2,01H 
eff 

IA; ( 3 E")>. The experimental 

determination of the energies of the levels concerned (A;, +Aý) (3EPP) , 

Aý (3 Aý)- and A; (5 A; ) is accurate (±l'cm- 1 ); '. this leads to a reliable 

value for the energy denominators and hence the value of K is a 

reliable indication as to the magnitude of the spin-orbit coupling 

constant in the pair system Cs 3 Cr 2 Br 9' In order to predict the energy 

of each level in the 3 E" multiplet we have to consider the coupling of 

the 
3 

E" states with those of the 
5 

E" multiplet; the centre of this group 

of states has an energy (14416±1) cm -1 
. It is possible to maKe a guess 

as to the possible positions of the energy levels within the band but 

this is totally unsatisfactory. For instance if we assume that the 

relevant 
5 

Ell levels all lie at 14416±1 we arrive at a value for K of 

(427.9±62.7) cm Then if we maKe a small adjustment and assume that 

Epp (0) (5 Ell) moves to 14418±1, (A; +Aý)(5E") remains at 14416±1 and E'( 
5E 

91) 

lies at 14407±1 (chosen quite arbitrarily) we find the value of K has 

-1 
changed considerably to become (372.7±27.8) cm . Therefore until 

5 
positive identification of the lines in the E" band is made the question 

posed above cannot be answered. 
3 

The matrix elements that have been evaluated for the A; +Aý( Ell) 

3 
pair are-equally applicab4e to the A"+A" pair of ( E' The difference 

12 

in energy be&een the two levels JE(A 
1 

E(A 2 
)j is-given by 
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<UPI, H IA"(3E')>i 2 
eff 1 

E( 
3 

A") 2 

I<U", 2, OIH IA"(3E')> 
eff 2 

5A 
11) -X 2 

2 where both matrix elements have the value (Fvý2-)K , (from Section 5-3) 

and from Table 3.5 E( 3 A") = 14374±1, E( 
5 A") = 14342±1 and 14402±1. 22 

No splitting is detected between A" an'd A" so the difference in their 12- 

energy is at most I cm-1. Therefore: 

(3.966±1.062) x 10- 10 K4<1 

K4< (25.21±6.75) x 10 8 

K< (224.1±15.0) 

K< 239.1 

Thus we set another upper limit on the value of K. This value is larger 

than that -Found earlier so we quote the upper limit on the spin-orbit 

coupling parameter for Cs 3 Cr 2 Br 9 as being 236.7 cm 

In a similar -fashion, by the use of Section 5.3 and Tables 3.4 

and 3.5 we can find the maximum value of K for the materials Rb 3 Cr 
2 

Br 9 

and Cs Cr C1 All the results are collected in Table 5.3: 
32 9' 1 

Cs 
3 

Cr 
2 

Br 
9 Rb 3 Cr 2 Br 9 Cs 3 Cr 2 ci 9 

236.7 cm- 
1 214.0 cm- 

1 248.3 CM- 
1 I 

Tabte 5.3: Maximum 6pin-o)Lbit coupting con, 6tant6 6o)t valtious 
binucteaA matuLiaU - 

The Stevens theory has scored a limited success by predicting a 

value of spin-orbit coupling constant similar to the value anticipated. 

The further predictions of the pattern of energy levels are not possible 

due to insufficient data. '-Howaver- all the required theoretical tools 

necessary for such predictions are presented here awaiting further 
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experimental results. 

5.5 THE ZEEMAN EFFECT 

The effect of external magnetic fields on the energy states of the 

ion pair will now be investigated. If an atomic, ion is subjected to a 

magnetic field then the atomic electrons by virtue of their magnetic 

orbital and spin moments can interact with the field. In a magnetic 

field B the term Hz giving the magnetic energy 

HZ =I jý 
[B. ( 1+2s)] 

1 

must be added to the Hamiltonian. Here ý is the Bohr magneton. 

We now have to modify Hz so that it is applicable to the pair 

system. The spin magnetic moment is insensitive to the influences 

of the environment- of the metal ion but the orbital moment is not. 

With the same considerations that were given to defining the spin- 

orbit operation in Section 5.1 we shall describe the coupling of the 

orbital moments to the external field by 

I 

lg3 Bzuz + lg, (B+U' +Bu 2 

where g1 and g3 are the orbital g-factors (for a free ion 
i 

gl = g3 = 1). 

The , orbital' operators uz, u+ and u- were de-Fined in Section 5.1. The 

coupling of the spin moments has the form 

2ýB. S 

The Zeeman Hamiltonian HZ is the sum of these two terms. 

Experimentally one studies the effect of the magnetic field with 

the field either parallel or perpendicular to the major axis of the 

m, 
(Z) 

crystal, the z-axis; we iay--sp-lit. -H. into two parts HZ and HZ 

We maKe the further approximation replacin B and B- by B+ and write: 9+ 
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H 
(Z) 

=+ 2s ) ý, ßE3z(F, 
3uz Zi 

Z (u 
++ u-) + (s 

++ s-)]i 

The separations within a given multiplet due to a field along the 

z-axis may be expressed in the form g± ýB 
z 

For the field perpendicular 

to z-axis the splittings can be expressed in-the form g+ýB+. Now g z 

and g+ are spectroscopic splitting factors, whose values are determined 

experimentally. 

The 'orbital' operators uz, u+ and u- and their operations on the 

electronic orbitals have already been discussed in Section 5.1. We 

have yet to define their action when operaýting on the (U, V, W) pair 

states; these can be found in Table 5.4. The results given are for 

u 
z 

u 
+ u 

U'> 0 v*r2-l W> - vr2-- V Py > 

V, > V> Y12-1 U> 0 

lw, > IWI> 

I 

0 42-1 UP P> 

Tabte 5.4: u J. u and u acting on the pAim ed (U, V, W) 
z+ 

primed states, to obtain the corresponding results -For double primed 
a 

states each prime is replaced by a double prime and vice versa. Only 

those states belonging to (4A2x2T1) are retained in Table 5.1. 

The spin operators Sz, S+ and S_ have their usual effect on spin 

states; we remember also that S+ changes the ah nature of the state 

upon which it operates (see Section 2.5). 
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5.6 MAGNETIC FIELD PARALLEL TO CRYSTAL AXIS 

The effective Hamiltonian is to first order 

H ": pH 
(Z) 

eff mZ 

where M represents the states of the (4 Ax2 T- ) manifold and 2 11 

H 
(Z) 

= JißBz( + 2s ) g3uz 
Z 

Firstly considering the orbital singlets, we -Find that all the 

off-diagonal elements are zero. The diagonal terms have for the 

general U state the value: 

<u, s, m IH (Z) JU, S, M >= 2M ßB 
sZss 

Thus we predict that in first order the U states should show a spin 

only g value. 

For the orbital doublets one also finds that the only non-zero 

matrix elements are the diagonal elements; these have the values: 

<v, s, m IH Z IV, S, M >= (-g +2M )ßB 
sZs3S 

<W, S, MslH 
(Z) IW, S, M >= (g +2M )ßB 
Zs3sZ 

I-F we apply these results to the S=1 multiplets we see that the orbital 

and spin contributions are additive in the case of E (±I), and for the A- 

states the orbital contribution subtracts from the spin contribution. 

The observed splitting factors should be very different from one another. 
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5.7 MAGNETIC FIELD PERPENDICULAR TO THE CRYSTAL AXIS 

When the magnetic field is applied perpendicularly to the z axis 

we must use the following Hamiltonian 

HzJ, ýB+[I'gl(u+ + u_). + (s+ + sx)], 

in the first term of H 
eff: 

H :-PH 
(±) 

p 
eff mzm 

From Table 5.4 we see that the orbital operators mix states o-F the U 

and (V, W) families. However within any multiplet no states are 

coupled by the orbital operators, so we expect that the splitting 

factors observed in experiment should be primarily free-spin values. 

Firstly we will consider the 
3A2 

multiplet. The non-zero matrix 

elements of H 
eff 

between the states of this multiplet are: 

<U", 1,01 H 
eff 

I U', 1,1> = 42-ýB+ 

<UI , 1,1 IH 
aff 

1 UFO ,1,0> = 'y/2ßB 
+ 

97 7ß B 
eff 

JU 1,0> = v72- + 

<Upt, l, OIH 
eff 

IU', l, -1> = ý2ßE3+ 

our U functions are no longer eigenstates of the Hamiltondan. It is 

a simple matter to diagonalise this matrix to obtain the new basis 

3 
states of A2 when a magnetic field. (The symmetry is reduced to C2 

or C On diagonalising the matrix we obtain three functions 
S 

12> and 13> 
- 

u lu" 1, -1>1 1> 
A52 

12> 12 UP, 1,1> + 4-JUv', 1,0> 

1 [1 U-0 -1 Ulp ,1, O> +IUI* -151 13> 2 1.1> v72 



- 

and now between these new functions we find the following matrix elements 

of H 
eff: 

<11H 
eff 

11> =o 

<21H 
eff 

12> = 2ýB+ 

<31H 
eff 

13> = -2ýB+ 

Similarly we may compute the non-zero matrix elements of H 
eff 

within the basis formed by the orbital doublets., say 
3 E". i. e. between 

the states IA; +Aý> = 
12 [IV' 

1 
11 1> ± IW'l 11 -1>1 

IV" 
11 10>1 

IW po 
, 

1, O> 
I 

IV,, i, -i> 

and jW',, 1,1>. If we diagonalise this matrix we find the following six 

-Functions: 

> = 1242--[Vr2 A; > 21V' + Y'72 , l, -l>] 

12'> = 
2!, *f, '-[, r2-jAý> - vlr2-JAý> 21W' , 1,1>] 

13'> = . 21,, 'r, '-[, r2-jAý> - v'2-IVPP, 1,0> - vl2--lWpll, O> + IVO, 1, -l> + IW' 
, 1,1>] 

4' > 2 '-[ -IA'> T2 
2 - 'r2-lV", 1,0> + v72-IW", 1,0> + IV', l, -l> - IW' 

, I, l >1 

5>= -IA'> 12 [A2 + v, 72-IV", I, O> + vl2-lW", 1,0> + IV', l, -l> + IW' 
, 1,1> 

16'> = '[vý21A'> . 21 2 + vr2-jV", 1,0> - v72-IWP', 1,0> + IVP, 1, -l> - IW' 
, 1,1 >1 

And the expectation value of H between these: 
eff 

<111H 
eff 

11, > 

<3'IH 
eff 

13'> 

<511H 
eff 

15'> 

1H 
e-F-F 

10 

<4'IH 
eff 

14'> = -2ýB+ 

<6#IH 
eff 

16'> = +2ýB+ 

We have ignored any differences in energy between the three doublets 

of this multiplet, differences that have come about because of spin- 

orbit coupling. Thus the new basis states and the predicted splittings 

are for large magnetic fields only. 

We have diagonalised,, th_es_e matrices without consideration of the 

elements connecting the U and (V, W) families. That part of the larger 
I 
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matrix (formed by using the states of 
3 

E" and 
3 

A; multiplets as basis 

states) connecting the two multiplets has the following form: 

<UlllllllH 
eff 

iv', i, V> = -x 

<U�, i, 11H lwl, i, i> x 
eff 

<uvlllolH 
eff 

lvol, l, 0> 4 

<U�l, OIH 
eff 

lw, ', l, o> X 

<Uvp, l, -lIH eff 
lw', 1, -1> X 

<U", l, -11H eff 
lvl, l, -l> -X 

where X , rlg 
1 

ýB+. The amount of orbital contribution to the splitting 

factor is largely determined, in perpendicular field, by the energy 

separation of the two connected multiplets. The contribution being 

of the form -12(g 1 ýB+) 2/(E-X), (E-ý) being the energy difference. 

Nothing new is -Found when we consider the S=2 states. The basis 

states of the S=2 multiplets which lead to a diagonal matrix of H 
eff 

are given in Appendix IX. All the considerations that were given to 

the S=I case apply, the spin-orbit splittings have been ignored and 

the matrix elements c6nnecting different multiplets have also been 

ignored. 

How do these theoretical predictions compare with the results o-f a 

I 
Zeemcýn experiment? We shall briefly consider the observed splittings of 

the E'(±l)( 
31nýpf ) doublet, in both parallel and perpendicular fields. 

2 

The splitting factors for Cs 3 Cr 2 C1 9 are gz = 1.9± 0.2 and g. =1.7±- 0.2 

[301 while for Cs 3 Cr 2 Br 9 we have gz= 1.42ý± 0.08 and g± =1.39-t 0.08 [331. 

In the latter case the g-factors are obviously much reduced from the 

predicted spin only values. This indicates in the case o-F gz a strong 

spin-orbit coupli. ng between the U and the (V, W) states. 
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APPENDIX I 

TABLES FOR SYMMETRY GROUPS 

(i) CHARACTER TABLE OF THE 0h SYMMETRY GROUP 

0h E 8C 3 3c 2 6C 4 6Cý 

A 

A2 111 -1 -1 

E 2 -1 200 

T1 30 -1 1 -1 

T2 30 -1 -1 1 

(ii) CHARACTER TABLE OF THE D 3h SYMMETRY GROUP 

D 3h E 2C 3 3C 2 cr h 2S 3 3CT h 

A; 

Aý 

All 

All 
2 

E' 2 D 2 0 

Ell 2 0 -2 0 
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(iii) CHARACTER TABLE OF THE C 3h SYMMETRY GROUP 

c 
3h Ec 

3 c 
3 ci s h3 CY c2 h3 

A' 
_ 

At' 11 1 -1 

E' 1w 2 
w I 2 

w 

E' 1w2 w w2 w 

E Iw w2 -W 
2 

Elf 2 
w w 

2, 
-W -W 

(iv) MULTIPLICATION TABLE FOR THE D 3h SYMMETRY GROUP 

A; Aý All 1 All 2 E' Ell 

A; A Alp 1 Alp 2 E' E 

Aý Aý A; All 2 All 1 E' E 11 

Alp 1 All 1 All 
.2 

A; Aý E Op E' 

Aplý 2 All 2 All 1 Aý A; E Ol E' 

E E E Ell Ell A; +A? E I Apl+A'P+Epo 12 

Ell Ell Elp E E All +A'I+E 12 A; +Aý +E' 
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MULTIPLICATION TABLE FOR THE C 3h SYMMETRY GROUP 

A' All Epp Epp 

A A Apt E9 . E Ell E lp 
. 

Apt Apt A Ell E 11 E E 

E' E' E E A Ell All 

E' E' E A E Apt E Pt 

E lp Ell E' E All E A 

E E to E' Apt Ell A E 

1' 
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APPENDIX 11 

TRANSFORMATION PROPERTIES OF ONE- ELECTRON ORBITALS IN 0h SYMMETRY 

The crystal field analogues of IA>, JE3>, IC>, JD> and JE> are: 

JA >: --- d0 

B> EI r34d 
1 3d 2 

IC> : :: J3 d1+ V/23-d 
_2 

ID> EI: J3 d_1+ V7V3d 2 

JE> : -::: -ýZ3dl + y7r3d-2 

and under 0h symmetry operators they trans-Form as shown in the following 

table [37] 

E 8c 3 3C 2 6c 4 6cý 

JA> 1 A> JA> +2 IB>+2 IC> 33 3 
1 JA>-( 

31-iJ3) 
lE3>-('+iv/3r) JC> -3 3 1 A> 

JB> WJB> 2 j[3> +2 1 C> 3 
JA>-' 

33 -( '+i, /r3) IB>-' IC>-(1-i. /r3) JA> 333 IC> 

c> w 
2, 

C> 2 +2 1 E3> 31 
Ic> 

3 
lAk 

3 
11 B>- (1i, /r3) JA>-(1-iv7r3) JC> -3 33 JB> 

ID> WID> ID> JE> JE> 

JE> wlE> JE> ID> lo> 
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APPENDIX III 

TRANSFORMATION PROPERTIES OF t3 DOUBLET FUNCTIONS IN 0 SYMMETRY 2g 
,h 

In Section 2.3 the t3 doublet fWnctions were introduced: 2g 

11> = (1/, lr6-) [(ABC) +(ABC) -2(AE3C)] 

13> = (A+AB), 14> = (AAC), 

16> = (B+B-C+), 17> = (ACC), 

12 ý= lr, '-[(A+B+C-)-(A+B-C+)], 

15 >= (ABB) 

18> = (BCC) 

these have the following transformation properties: 

E 8C 3 3C 
2 

6Cý 

1> 11 > -1 1 >-2(, /Vr6--) [j3>-j4>+2 33 j5>+j6>-2 j7>-j8>] - 11 > 

12> 12> -'12>+2 3 3v'55'-[l 3>+ 1 4>- 16>- 1 8>j 1 2> 

1 3> wl 3> 1 /9 ) V16--j 1>+1 v/2-1 2> 3 14> 

+(1/9)[13>+214>+215>+41 6>+417>-4 18>] 

14> w2 14> 1 /9 ) v, 76--1 1 >+ 1 , r2-l 2> 3 13> 

+(119)[213>+14>+415>-41 6>+217>+4 18>1 

15> w2 Is> - (2/9) A-1 1> 17> 

+(1/9)[213>+414>+15>+21 6>-417>+4 18>] 

16> W16> -(l/, ), 'r6-l 1>-', ý2-12> 3 18> 

+(1/9)[413>-414>+215>+1 6>+417>+2 18>] 

17> W17>i (2/9) v76--l 1> 15> 

+(1/9)[413>+214>-415>+4 16>+17>+2 18>] 

18> w2 18> 1 /9 ) , r6-l 1>-1 v12-1 2> 3 16> 

+(1/9)[-413>+414>+415>+ 216>+217> +18>] 

8 0 0 
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The eight doublet functions of the t 2g configuration transform 

among themselves under C. of the 0,, group in the following manner: 
C4 

11> 
-i, lr3r) (1/46-) [1 3>-ý 1 6>-2 1 7>] -( 1+iv/r3) (1/A-) [-14>+2 1 5>- 1 8>] 

13-11>-(13 
3 

12> 
-1 12>-( 1-iv/T3-)v/5-'[l 3>- 16>] V15E14>-18>1 33 

13 +i v/T3 

3> ( 31 -i V"T3-) 1>- v/72"I 2>] - 13 31 +il/T3-) [I 3>-2 1 6>+ 1 7>] +( 1/9) [1 4>+4 S>+4 8>] 

4> ( 13 +i v/3I-) /,, r6-) 11 2>] +( 1/9) [1 3>ýý4 1 6>+4 1 7>] -13 ( 31-iv/3) 
[I 4>+ 5>-2 8>] 

15> 3 
-1 1>+(1/9) E413>+416>+17>]-'('-i 

3)[j4>-2j5>+j8>] 31 +i v/T3) -1 
A6 

33/, 
r 

16> 13 -i V*f 3r) VF) 11 >+ Y/72'-1 2 >] + 13 ý 13 +i AD E2 1 3>- 1 6>+ 1 7>]' 

+(1/9) E4 1 4>+4 1 5>+ 1-8>] 

17> 31-i, 'r3r) - 3146-11 >- 1(1 +iv/13-) [I 3>+ 1 6>. -2 1 7>] +( 1/9) E414>+15>+418>] 33 

18> 
31 +iv/ 3r) E(l 1v 2>] +( 1/9) [4 1 3>+ 1 6>+4 1 7>+13 (13--i, /'3r) 12 1 4>- 1 5>- 1 8>j r6 1>+ v/T 

x 0 

The functions I 11> to 18> span the representation of 0h containing 

the irreducible components 

E+T1+T2 

By the method of 'triaI and error' one finds the combinations to span 

the irreducible representations. 

II> 
(1 IvVI6--) 3> +1 6> -2 1 7>] 

(1 IV6-) 1 4> +2 1 5> -1 8>] 

of T2 are 

12> 

v/, I-' 
[ 13 >6 >] 

8 >] 

The component vectors of T1 are 

i 
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and those o-F E are 

vlr3[j 3>+ 1 6>+ 1 7>] 

3[14>+15>+18>] 

These are written as determinantal furActions in Section 2.3. 
P 

a 
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APPENDIX IV 

TRANSFORMATION PROPERTIES OF t2e DOUBLET FUNCTIONS IN 0 SYMMETRY 2g 9h 

The eighteen t2e doublet functýons with MS 
12, 

referred to in 
2g g 

Section 2.4 are here labelled with the numberýs 1 to 18 and have the 

following form: - 

I 1> (I/ A-) [-2 (A B+D-) +(A B-D+) + (A-B+D+)] 

12> ABD ABD 
++-++ 

13> = (l/, r6-)[-2(ABE)+(ABE)+(ABE)] 

14 >= (ABE)] 

15> = (1/vr6-) E-2(A+C+D-)+(A+C-D+)+(ACD)] 

16> = V-:, '-F(A+C-D+)-(AC+D+)] 

17> = (1/ v/6-) 
E-2(A+CE)+(A+C-E+)+(ACE)] 

18> = 
+-+ -++)] 

5[(ACE)-(ACE 

19> = (1/v/"6-)[-2(B+C+D-)+(B+C-D+)+(B-C+D+)] 

IID> = v/72'-[(BC-D+)-(BCD)] 

Ill> = (1/V-6-)[-2(B+C+'-E)+(B+C-E+)+(BCE)] 

11.2> = v/; '-[(B+C-E+) - (BCE) 

113> = (AAD') 

(AAE) 

11 5> = (BBD) 

116> = -I- -+ (BBE) 

117> = (C+C-D+) 

118> = -1--+ (CCE) 

d 

Under the symmetry operators of 0h group they transform as shown 

in the following tables.. 
_ 
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E 8C 
3 

3C 2 
6Cý 

1> W2 11 > 3E- 
11 >-2 15>+2 19>] 17> 

12> w2 12> (1/9) [5 12>+2 16>+2 110>-2vr2-ll3>-2yr2-ll5>+4v72-117>] 18> 

13> 13> 13 [-13>-2 17>+? Ill >] 15>. 

J4> 14> (1/9) [5 14>+2 18>+2 Il2>-2,, r2-Il4>, -2F2 
116>+4F2 118>j 16> 

15> 15> 13 [-2 11 >- 15>- 19 >1 13> 

16> 16> (1/9) [2 12>+5 16>+2 1 10>-2vr2-ll3>+4F2 115>-2F2 117>1 14> 

17> W17> 13E-2I3>-I7>-Ill>j Il> 

18> W18> (1/9) [2 14>+51 8>+2 112>-2F2 I14>+4, r2-Il, >-2F2 118>] 12> 

19> wig> 13[2Il>-2I5>-I9>] 

110> WIIO> (1/9) [2 12>+2 16>+5 1 l0>+4vr2-Il3>-2F2 115>-2F2 117>] 112> 

Ill> w 
2111> 

31 
E2I3>-2I7>-Ill>] -19> 

112> w2 112> (1 /9) [2'1 4>+2 1 8>+5 112>+4F2 114>-2F2 116>-2F2 118>1 110> 

113> W113> (1/9) E-2r2 I 2>-2vr2-I6>+4v12-I 10>+ 1 13>+4 1 15>+4117>] 114> 

11P w21 14> (1/9) [-2vrf I P-2vr2_18>+4vý2_112>+ 1 l4>+4Il6>+4Il8>] 113> 

115> 115> (1/9) [-2v/2-I2>+4v/2--I6>-2vr2-I 10>+4113>+ 1 15>+4 117>] 118> 

116> wilP (. 1 /9) E 2v/2-. l 4>+4, r2-I8>-2/2--Il2>+4Il4>+ 1 16>+4118>] 117> 

117> w 
21 1P (1/9) E4v, *r2--l 2>-2v/'2-1 6>-2,, r2-l l0>+41lP+4Il5>+j 17>] 116> 

118> 118> (1/9) [4v/*2-1 4>-2V-2-1 8>-2vr2-Il2>+4Il4>+4 116>+ 1 18>] 115> 

18 0 2 0 
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c4 

2 
3[-2w 13>-17>-2wlll>j 

12> (1/9) 2 
vr W2 118>] [2w 14>+518>+2wll2>-2, r2-wll4>+4,72-116>-2 2 

3> 12 3[-2w Il>-I5>-2wI9>] 

14> (,, /9) E22 w -115>-2v2w 117>] 2 12>+5 16>+2w 1 l0>-2v72(bj 13>+4vr2 

Is> '[-13>-2wl7>+2w 2 111 >] 3 

16> (1/9) 2 
vf-w2 

[514>+2wI8>+2w 112>-2 2 114 >-2 v72Y-w 116 > +4 vr2f 118 >] 

17> 
31 

[-11 >-2w 1 5>+2w 
21 

9>] 

18> (1/9) 2 [512>+2wI6>+2w 110>-2 vf2- W2 113 >-2 /25W 115 >+4 Y12-Y 117 >] 

19> 31[-2WI3>+2W 
2 17>+111>] 

110> (1/9) 2 [2W14>+2W 18>+5Il2>+4, r2-Il4>-2 vf2- W2 116 >-2 Vr2--W 118 >j 

Ill> 
31[-2WI1>+2W 

2 15>+19>] 

112> (1/9) 2 [2W12>+2W 16>+5Il0>+4vr2-Il3>--2 
V/2-W21 l5>-2v/2--WIl7>] 

113> (1/9) [-2v/2-W 1 4>-2 /2- W21 8>+4vr2--ll2>+ 1 14> +4W21 16>+4WI18>] 

114> (1/9) [-2Z2-W I 2>-2 vf2- W2 16>+4Vr2--I 10>+ I 13>+4W 
2 115>+4WI17>] 

115> (1/9) [4 r2-I 4> -2 vr2-W 8>-2 vf2- W2 112>+4W2 114 >+ 4W 116 >+ 118 >j 

116> (1/9) r- [4 
vr2_1 2>-2 vr2-W 6>-2 v2W2110>+4W2 11 3> +A-W 1 15>+ 11 7>] 

117> (1/9) , /2-W2 W21 [-2.14> +4vF2f I 8>-2V2yw 1 12> +4W 1 14>+ 11 6> +4 18 >] 

118> (1/9) V72- W2 Il0>+4WIl3>+Il5>+4W2I 17>] [-2 12>+4v/2f I 6>-2v72yw 

x 0 

where w= exp(21/3). The eighteen functions form the basis for the 

representation of 0h containing the irreducible components: 

A1+A2+ 2E + 2T I+ 2T 2 

The functions ll>, 13>, 15>, 17>. 
p 

19> and Ill> transform amongst 

themselves and form the basis for T1+T 2' The components of one of 

the TI are__ 

3> - 15>] [17 >- 19 >] 
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and the components of one of the T2 terms are found to be 

V"51-[jl> - Ill>] ; 
1 --[1 3> + 15>] 12 

v*r5'- 
[17 9 >j . 

The linear combinations of the eighteen functions that transform 

irreducibly under 0h shall be stated 

1A1>= 

JA 

JE (1» 
(l/ý-6)Eý2-12>+ý-2112>+114>+117>] 

21 8>+Y/21 10>+l 13>+l 16>] 

JE(2> 
(1/ 6)[v12-j2>-V2j12>-j14>+j17>] 

1 /v'6) [y, r2 1 8> -V21 1 O> - 11 3> + 11 6>] 

= VY[j1>+j11>] 

1>= vrjl-[ 1 3> -1 5>j 

7> -1 9>] 

= (, /, "r6-) [1,2>-l 12>+, r2-ll4>-, 'r2-ll7>] 

T1 (2> = ýA, -) 4>- 1 6>+Yr2-ll 5>-vl2-ll8>] 

/v/6) 8> - 11 O> +Y12 11 3> -v/2 11 6>] 

> >] 
T2 )/-, ý'-[j3>+j5>j 

vr5'-[17>+ 
19>] 

(lI A-) [,, r2-l 2>+vr2-ll2>- 1 14>- 1 17>] 

- 
IT 

2 
(2) (11V-6-)[vf2-l8>+vr2-llO>-113>-116>] 

(1 ME) Evr2-I 4>+V2_1 6>- 1 15>- 1 18>j 

A 
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In terms of determinantal states the doublet functions of the configuration 

t2 e' having MS = 
12 

are 2g g 

2A 1> 2 (1/vr6--)[(ABE)-(ABE)+(ACD)-(ACD)+(BBD)+(CCE)] 
, 

12A 1> 2 
+-+ ... ... ... ... +-+ (1/v'6)[(ABE)-(ABE)-(ACE))+(ACD)-(BBD)+(CCE)] 

2 

l2 a EM, 12 > + +-+ 
=(1 /46-) [(A+B-D+) 

- (AB+D+) + (B+C-E+) - (B-C+E+) * (A+A-E) + (CCD)j 

2 lb EM, 12 > -+ -++ +)-(B +-+ 
=(1 E(A+CE)-(ACE)+(B+C-D -C+D+)+(A+A-D+)+(BBE)i 

2 la E(2), '> 2 
+-+ 

=(1/, r6-) [(A+B-D+) 
- (AB+D+) - (B+C-E) + (B-CE) - (A+A-E+) +( CCD)l 

2 lb EM 112 
> +-+ -++ +-+ -++ .++++ = (1/vý6-)[(ACE)-(ACE)-(BCD)+(BCD)-(AA-D)+(BBE)] 

2 la T1(1)1 12 > ++ ++- +-+ ++ 
= ! 2v/'3, 

-[-2(A+B+-D)+(A+-BD+)+(ABD)-2(BCE)+(BCE)+(BCE)] 

12 bT1 12 > -+ ++ +-)-(A+C-D+)-(AC+D+)] 
= ! 2v/3T-[-2(A+B+E-)+(A+BE)+(ABE)+2(A+CD 

IC2 I> T1 (1) 
2 = I-vlr3r[-2(++-) +(A+C-E+) +(AC+E+) +2 (B+CD-) - (B+C-D+)'- (BCD 

2 ACE ++)] 

Ia2T (2), 12 > = 
12 

V/ 3rE(A+B-D+)-(A-B+D+)-(B+-CE+)+(B-C+E+)+2(A+-AE+)-2(C+C-D+)] 

lb 2T (2), 32 > = ! -Y/3r[(A+B-E+)-(AB+E+)-(A+C-D+)+(AC+D+)+2(B+-BD+)-2(C+C-E+)] 2 

jc2 T (2), 32- > 2 -E(+A-CE+)-(AC+E+)-(B+-CD+)+(-BC+D+)+. 2(A+AD+)-2(B+-BE+)] =1 v/13 

22 la T2 (1),! -> 2 BD -++)+2(B+C+E-) +-+ -++ 
= 1-v/. Ts-[-2(A+B+D)+(A+ +)+(ABD 

-(BCE)-(BCE) 

12 bT 2 
(1). 

121> 
-[-2(A+B+E-)+(A+B-E+)+(-AB+E+)-2(ACD)+(ACD)+(ACD)] VT ++- +-+ ++ 

= 
12 

3 

jc2 '> T (1) 
+ 

= 'v/3r-[-2(A+C+-E)+(A+-CE+)+(AC+E+)-2(B+C+D-)+(B+ECD+)+(ýBc6D)] 2 , 2 

2 la T2 (2), -! > 2 
+-+ ++ +-+ ++ +-+ 

2 ABD)+(BCE)-(BCE)-2(AAE)-2(CCD)] -E(ABD)-(- +-+ 
= IVII 

2 
bT2 (2), 12 > = Ivl3r[(+-+)-(-++)+(+-+)-(AC+D+)-2(B+-BD+) +-+ 

2 ABE ABE ACD -2(CCE 

C2 1> T2 (2) 12 
A6 6 

=1 vIT3- 
[(A+C- E+) - (ACE) + (B+C-D+) - (B- C+D+) -2 (AAD) -2 (B+BE) 21 
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APPENDIX V 

SYMMETRY PROPERTIES OF THE UNPRIMED PAIR STATES, t3 CONFIGURATION 2g 

(Primed and double primed states have these properties also) 
I 

JUPSI'm 
s >P lvtspm 

s >p plspm ? OF 
4A2x2T 

1)- 

C3 U, 2,2> 

C3 U, 2,1 > 

c 31 
U, 2, O> 

C31 U, 2, -1> 

c 31 
U, 2, -2> 

w U, 2,2> 

w2U, 2, l> 

1 U, 2,0> 

w U, 2, -1 > 

w2U, 2, -2> 

(YVIU, 2,2> = 1 U, 2, -2> 

JU, 2,1> = cy -JU, 2, -1> v 

OVIU, 2,0>. = 1 U, 2,0> 

JU, 2, -1> C -JU, 2,1> 
v 

JU, 2, -2> ci JU, 2,2> 
v 

c3 IV, 2,2> w2 IV, 2,2> 

C3 1 V, 2,1> 
, 

IV, 2,1> 

c3 IV, 2,0> wIV, 2,0> 

C 3 
IV, 2, -l> w2 IV, 2, -l> 

C3 1 V, 2, -2> IV, 2, -2> 

C3 IW, 2,2> IW 
, 2,2> 

c3 IW, 2,1> wlW, 2,1> 

C3 1W, 2,0> w2 IW, 2,0> 

c3 IW, 2, -l> IW, 2, -l> 

c3 IW, 2, -2> wlW, 2, -2> 

c3 lu, i, i> w 
21U,,,, 

> 

c 31U'1'0> 
lu'l, o> 

c 31U'l -J> WIU, l, -l> 

c 31 
V' I"1 

c 31v, 
l 0>- = 

2 
c 31V'l -J> =w 

CY V, 2,2> I W, 2, -2> 

CY V, 2,1 > -IW, 2, -l> 

IV, 2,0> IW, 2,0> 
v 

IV, 2, -l> -IW, 2,1> 
v 

IV, 2, -2> CY IW, 2,2> 
v 

ci 1 W, 2,2> 1 V, 2, -2> v 
IW, 2,1> cy -IV, 2, -1> v 
IW, 2,0> = (5 IV, 2,0j> 

v 

cr IW, 2, -1> = -IV, 2,1> 

IW, 2, -2> CY = IV, 2,2> 
v 

Cf lu, i, l>; = v 
CY v 

lu, i, o> = -lu, i, o> 

cl lu, i, -i> = lu, i, i> 

CFVIV, 1,1> = lw, i, -i> 

cyvlv, l, o> = 

OVI V, 1, -1>. 
= 
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c 31W'1'1ýý' ý WIW'111ý> (Jvlw, 1,1> = lv, i, -i> 

'C 
31W"'O> =w2 1w", O> cyvlw, l, o> = -lv, i, o> 

c 31W" -J> = lw, i, -l> civiwli, -l> = IV, 1,1> 

(ii) lps'stm 
s >) IQSIM 

s >ý JRS, M s> OF% (4A2x2T 
2) 

C3IP, 2,2> 

C3 IP, 2,1> 

c3 IP, 2,0> 

c3 IP, 2, -1> 

c3 IP, 2, -2> 

= WIP, 2,2> 

=w2 IP, 2,1> 

IP, 2,0> 

wIP, 2, -1> 

w2 IP, 2, -2> 

VIP, 
2,2> ci 

CJV 1 P, 2,1 > 

av IP, 2,0> 

CY IP, 2, -1> 

cYv 1 R, 2, -2> 

-IP, 2, -2> 

1 P, 2, -1 > 

-IP, 2,0> 

F, 2,1 > 

= -IP, 2,2> 

C31 Q, 2,2> w2 IQ, 2,2> CYVIQ, 2,2> 
_ 

= -IR, 2, -2> 

c 31 Q, 2, l> IQ, 2,1>' CY v 
IQ, 2,1> IR, 2, -1> 

c3 IQ, 2,0> 

c3 IQ, 2, -1> 

wlQ, 2,0> 

w2 IQ, 2, -1> 

ci v 
IQ, 2,0> 

ci v 
IQ, 2, -1> 

= -IR, 2,0> 

= IR, 2,1> 

c 31 Q, 2, -2> IQ, 2, -2> GVIQ, 2, -2> = -IR, 2,2> 

C3 IR, 2,2> IR�2,2> cYVIR, 2,2> = -IQ, 2, -2> 

c3 IR, 2,1> 

C31 R, 2,0> 

wIR, 2, l> 

2 
=w1R, 2,0> 

cr., 1 R, 2, l> 

cyvlR, 2,0> = 

IQ, 2, -1> 

-IQ, 2,0> 

c3 IR, 2, -1> = 1 R, 2, -l> cYVIR, 2, -1> = IQ, 2,1> 

c3 IR, 2, -2> = wIR, 2, -2> civIR, 2, -2> = -IQ, 2,2> 

C31P'1"> = w 
21p, 

1,1> cyvip, l, l> = -IP, 1, -1> 

c 31 p' l'o> = , P, 1, O> GVIP, 1, o> = 1 P, 1, O> 

c 31p"1 -l> WIP, 1, -i> GVIP, 1, -i> = -IP, 1,1> 

c 31Q'1'1> 
IQ, 1"1> CY IQ, 1,1> = 

cj 31 Q-'-1 0> 

c 31 Q' 1, -l> = 

, o> Q, 1. 
" 

w 
21Q, 1, 

cyv 1 Q, 1, o> R, 1,0> 
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c3 JR, 1,1> = WIR, 1,1> 

c3 JR, 1,0> =w2 JR, 1,0> 

c3 JR, 1, -l> = JR, 1, -l> 

av JR, 1,1> -IQ, I, -l> 

CT v 
JR, 1,0> IQ, 1,0> 

CY JR, I, -l> -IQ, 1,1> 

IG, S,, M, >, IH, S, M > of 
4Ax2 

E)-.. s2-. 

c3 IG, 2,2> w21G, 2,2> 

c3 IG, 2,1> IG, 2,1> 

C3 IG, 2,0> WIG, 2,0> 

C3 1G, 2, -I> w2 IG, 2, -l> 

C3 IG, 2, -2> IG, 2, -2> 

C3 1H, 2,2> = I H, 2,2> 

- C3 1H, 2,1> = wlH, 2,1> 

C3 1H, 2,0> = w2 IH, -2,0> 

c3 IH, 2, -l> IH, 2, -l> 

C3 IH, 2, -2> wlH, 2, -2> 

c3 IG, 1,1> IG, 1,1> 

c3 IG, 1,0> wIG, 1,0> 

2 
cwG, 1, -I> 

C3 IH, 1,1> = WIH, 1,1> 

c3 IH, 1,0> =w2 IH, 1,0> 

c3 IH, 1, -l> = IH, 1, -l> 

v 

IG, 2,2> = -IH, 2, -2> v 

cy IG, 2,1> = IH, 2, -l> v 
IG, 2,0> = cy -IH, 2,0> 

v 
IG, 2, -l> = CY IH, 2,1> 

v 
IG, 2, -2> CY = -IH, 2,2> 

v 

IH, 2,2> G -IG, 2, -2> v 
IH, 2,1> CT IG, 2, -l> v 
IH, 2,0> CY -IG, 2,0> 

v 
IH, 2, -l> CY IG, 2,1> 

v 
IH, 2, -2> a -IG, 2,2> 

v 

CY I G, 1,1> -IH, I, -l> 

cy v 
IG, 1,0> IH, 1,0> 

av IG, 1, -I> -IH, 1,1> 

CY 1, l> 

CY 
v 

JH, 1, o> 1 G, 1 0> 

cr IH, 1, -1> = -IG, 1,1> 



- 112 - 

Ov) UNPRIMED GROUND STATES 
4A2x4A 

2) 

c3 13,3> = 13,3> 13,3> = 13, -3> v 
c3 13,2> = wl3,2> CY 13,2> = -13, -2> 

c3 13,1> = w 13,1> 
v 

cy 13,1> 13, -l> 

C3 13,0> 13,0> cy 13,0> = -13,0> v 
c3 13, -I> = wl3, -l> cy 13, -l> = 13,1> 

c3 13, -2> = w2 13, -2> O 13, -2> = -13,2> V 
c3 13, -3> = 13, -3> 13, -3> = a 13,3> 

v 

c3 12,2> =w 12,2> 

c3 12,1> =w2 12,1> 

c3 12,0> = 12,0> 

c3 12, -l> = W12, -l> 

c3 12, -2> w2 12, -2> 

c 31"1> w2 11 1> 

c 31"0> 
11,0> 

c 31 1 '-'> lol"-"> 

ci 
v 

12,2> 12, -2> 

CY 12,1> 

CY 12,0> 12,0> 

av 12, -1> -12,1> 

CY 
v 

12, -2> 12,2> 

cy 
v 

li, i> li, -i> 

(5, = , 
li, o> -li, o> 

CY li, -i> = li, i> 

c 
31 0'0ý" 10,0 a 10,0> = 10,0> 

i 
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IRREDUCIBLE REPRESENTATIONS OF D 3h FORMED BY (P, Q, R) 

ORBITAL 
PARENT h CY h 

5 
Aý IPI, 2,2>, lp', 2, -2> E IP", 2,1>, ' IP", 2, -l> E lp 

IPP, 2,0> A' 2 

5 
Alp IPD, 2,1>, IP', 2, -l> E IP", 2,2>, ip", 2, -2> E PF 

IP", 2,0> Alp 

5E IQ', 2,2>, IRI, 2, -2> E' [jq", 2j, 1>+jR", 2, -1>] APP+A" 12 

Q12, O>, R', 2, O> EI IQ-", 2, -l> , 
IR", 2,1>- Epp 

[IQ', 2, -2>+-IR', 2,2>] A; tAý 

5E [1Q', 2,1>± jR'ý2, -1>] A; +Aý IQPP, 2,2>, IR", 2, -2> E Fp 

IQI, 2, -l> , 
IR', 2,1> E' IQ", 2, C)>jp IRP', 2,0> E lp 

[I Q ", 2, -2> ±1R P', 2,2>j AIP+A" 12 

3A 
ry 1 

IP1,111>1 JP'111-1> E' IP11,1,0> All 2 

3 
Aý IP 1,0> A; JP'11111>1 of IP 1, -l> E 

3 Epl [IQP, I, 1>+IR', l, -l>] A; +Aý IQ", 1,0>, IR", 1,0> 
i 

E 

IRF, I, l> E# 

3 
E' IQ', I, O>, IR', 1,0> E' D Qpp, 1,1>± I R", 1, -1 >1 App+Alf 12 

IQ", l, -l>, IRIP, 1,1> Epp 

A 
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IRREDUCIBLE REPRESENTATIONS OF D 3h FORMED BY (G, H) 

ORBITAL 
PARENT CY h CY h 

5E IG', 2,2>, P 
IH', 2, -2> El [JG", 2,1ý -+IH", 2, -l>] App+All 

12 
IG', 2,0>, P 

IHP, 2,0> E' IG".. 2,,, -l>p IH", 2., l> E vp 

0GP, 2., -2> -+ I H' , 2,2 >3 A; +Aý 

5 
Epp [jG'p2,1>± jH', 2p-1>] A; +Aý IG"p2,2>.. IH'PP2. -2> E I' 

I GI , 2, -1>, JH' 
, 2p 1> E IG", 2,0>., IH", -2,0> E 

[1-Gpp, 2, -2>± 1 H'p, 2., 2>] A"+Apl 12 

3 Ell [IGP, 1,1>+ IH'.. l, -l>] A; +Aý IGYP, 1,0>, IH", 1,0> Ell 

IH', 1,1> El 

3 
E' IG'PlPO>, IH', 1,0> E' [jGlp, 1,1>± jH", 1, -1>] A"+App 12 

IG", l, -l>, IHP', 1,1> Epp 

i 
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APPENDIX VI 

SYMMETRY PROPERTIES OF THE UNPRIMED PAIR STATES., t2 e CONFIGURATION 2g g 

(Primed and double primed states have these properties also). 

,44 IOL, Sim s >p IýVspms : ýJ, lypspm 
s> OF (A2x T- 1 

I 

c 3la' 3,3> 1 ci, 3, D 1 (y , 3,3> C. i Icc, 3, -3> v 

c3 j(1,3,2> wlet, 3,2> civ 1 (x, 3,2> -1(Y, 3, -2> 

c3 ja, 3, l> = w21 at, 3,1 > av1 ot, 3,1 > 1 ot, 3, -1 > 

c31a, 3,0> 1 (x, 3,0> CY v1 (1,3, o> = - la, 3, o> 

c 31 a, 3, -1> = wicc, 3, -1> CY v1 (1 , 3, -l> = 1 ot, 3,1 >- 

C 31 (x' 3, -2> = w2 ja, 3, -2 cy 
v1 

(x, 3, -2> = -1 (x 
1 

3,2> 

c 31 a, 3, - 3> = 1 (1,3, -3> (ivici, 3, -3> = 1 ot, 3, D 

c 31 
ß, 3,3> =w213,3> CY v1ß, 

3,3> 3, -3> 

c 31 ß,. ý, 2> = Iß, 3,2> aviß, 3,2> 1'Y, 3, -2> 

c 31ß, 3,1> = wlß, 3,1> crv 1 ß, 3,1 > lY, 3, -1 > 

c 3,0> 
3lß, =w21 ß', 3,0> a iß, 3,0> 

v 
1 Y' 3, o> 

c 31 ß, 3, -1> = lß, 3, -l> cyv 1 ß, 3, -1 >= -lY, 3,1> 

c 31 
ß, 3, -2> = wlß, 3, -2> cyv 1 ß, 3, -2> = JY, 3,2> 

c 31 ß, 3, -3> = w2 iß, 3, -3> cyv 1 ß, 3, -3> = 

C31 y, 3,3> = wly, 3,3> CY v 
ly, 3,3> = -lß, 3, -3> 

c3 ly, 3,2> =w21 -y, 3,2> civ 1 y, 3,2> Iß, 3, -2> 

C3 ly, 3,1> IY, 3,1> cyv ly, 3,1 > -Iß, 3, -1> 

c31 -y, 3,0> = wly, 3,0> cyvly, 3,0> =1ß, 3,0> 

c3 1-y, 3, -l> =w2 ly, 3, -l> cy v 
ly, 3, -j> -Iß, 3,1> 

c33, -2> = 3, -2> CY v 
ly, 3, -2> 3,2> 

C ly, 3, -3> 3 = 
ly, *3, -3> v -Iß, 3,3> 
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C, 310t, 2,2> = wlot, 2,2> (i Ict, 2,2> =1 ot, 2, -2> V 
C3I(x, 2,1> =w2 lot, 2, l> CYV 1 ot, 2,1 > = -I(x, 2, -1> 

c 31 oL, 2,0> 1 ct, 2,0> ci 1 (x, 2,0> 1 cc, 2,0> 
v 

c3 j(1,2, -1> wia, 2, -1> lct, 2, -1> (Y -I(x, 2,1> 

c1 oL, 2, -2> 3 w2 ja, 2, -2> 

v 

cY ot, 2, -2> = (x, 2,2> V 

c 
31 ß, 2,2> 1 ß, 2,2> CY 2,2> = -ly, 2, -2> V 

C31 ß, 2, l> wlß, 2,1> (i 1 ß, 2, l> 1-y, 2, -1> 

c 31 ß, 2,0> =W21ß, 2,0> 
v 

av 1 ß, 2,0> = -ly, 2,0> 

c 31 ß, 2, -1> = iß, 2, -1> cy lß, 2, -1> = ly-, 2,1> 
v 

c 31 ß, 2, -2> = wlß, 2, -2> civlß, 2, -2> = -1-y, 2,2> 

c3 ly, 2,2> =w21 -y, 2,2> ly, 2,2> = -Iß, 2, -2> v 
c3 ly, 2,1> = ly, 2,1> cyvly, 2,1> = iß, 2, -1> 

c3 ly, 2,0> = wiy,. 2,0> (jvly, 2,0> = -Iß, 2,0> 

c3 1-y, 2, -1> =w2 ly, 2, -l> (: y ly, 2, -1> = Iß, 2,1> 
v 

c3 ly, 2, -2> =. 1 -y, 2, -2> crvly, 2, -2> = -iß, 2,2> 

c 3l("l, l> =w2 l("01,1> civIct, 1,1> = 

c 310t"'(3> =' (""O> crvlot, l, o> = -IOL, 1,0> 

c 31(""-1> = (1)1("1, -1> cyvl(xlll-l> = ictlill> 

c 
31ß, 1,1> = wlß, 1,1> cyvlß, 1,1> = -1-Y, 1, -1> 

C31 ß' "O> =w21ß, i, O> crvlß, l, o> = ly, i, o> 

c 31 
ß, 1 -j> =1ß, i, -i> cyvlß, l, -1> = -1-Y, 1,1> 

c 3, Y, 1,1> = �y, 1, l> civl-Y, 1,1> = -lß, 1, -1> 

c3 I'y' 1' C» = wl-Y, l, o> cyvi-Y, 1,0> = lß'l'o> 

c 31Y'1'-1> = w2 I-y, 1 GVI-Y, 1, -l> = -iß, 1,1> 

C3 la -' [» 1 (X, 0, O>- 
- -- 

civ 1 (1,0, O> = 1 (X, 0� O> 

c31ß'0, E» = w2 Iß, 0,0> cyv ß, 0, O> = ý-1,1 Y, 0, O> 

C3 IY'0'0> = wly, 0,0> crv Y, 0, O> = -iß, 0,0> 

-. j 
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(ii) IT, 
Is pm s >1 IýVslms>v IEVsgms > OF (4A2x4T 

2) 

c3 TI, 3,3> 

c3 TI, 3,2> 

c3 ITI, 3,1 > 

c31 Ti, 3, O> 

C31TI, 3, -l> 

c3 ITI, 3, -2> 

c31 TI, 
1 
3, -3> 

I TI, 3,3> 

W ITI, 3,2> 

w2 ITI, 3,1> 

I fl, 3, O> 

WITI, 3, -l> 

w2 ITI, 3, -2> 

ITI, 3, -3> 

CY 
v 

CY 
v 

CY 
v 

CY 
v 

CY 

av 

CY 
v 

ri, 3,3> 

TI, 3,2> 

TI, 3,1 > 

I TI , a, 0> 

ITI, 3, -l> 

ITI, 3, -2> 

ITI, 3, -3> 

-lq, 3, -3> 

I q, 3, -2> 

-ITI, 3, -l> 

=I TI, 3, O> 

= -ITI, 3,1> 

=I TI, 3,2> 

= -ITI, 3,3> 

c3 1ý' 3,3> w213,3> a 3,3> = 

c3 1 C, 3,2> 3,2> Cf 
v 

3,2> 3, -2> 

c3 

c3 

1 C, 3,1> 

IC, 3,0> 

w C, 3,1> 

=W 
21 

C, 3,0> 

CT 

av 

3,1> 

IC, 3,0> 

-IC, 3, -J> 

1ý, 3,0> 

c3 1 C, 3, -l> = CF 
V 

IC, 3i-l> = , -JE, 3,1> 

c3 

c3 

1 C, 3, -2> 

1 C, 3, -3> 

=* wIC, 3,, -2> 

=w 
21 

C, 3, -3> 

CY 
v 

CT 
v 

IC, 3, -2> = 

IC, 3, -3> = 

IC, 3,2> 

-IE, 3,3> 

c3 

c3 

1 C, 3,3> 

1 E, 3,2> 

= wjý., 3,3> 

2 
w IE, 3,2> 

cy 
v 

CY 
v 

JE, 3,3> = 

JE, 3,2> 

-IC, 3, -3> 

1ý, 3, -2> 

c3 1 E, 3,1> 1ý, 3,1> CY 
v 

1ý, 3,1> -IC, 3, -l> 

ý3 

c3 

JE, 3,0> 

1 ý, 3, -l> 

wjý, 3,0> 

w2 1ý, 3, -l> 

(5 
v 

CY 
v 

1ý, 3,0> 

JE, 3, -l> 

lc, 3"0> 

I ý, 3,1-> 

c3 1ý, 3, -2> 
1ý, 3, -2> CT 1ý, 3, -2> 1ý, 3,2> 

c3 1 E, 3, -3> wjý, 3, -3> CY 
v 

1ý, 3, -3> -IC, 3,3> 

c3 

c3 

1 TI, 2,2> 

1 TI, 2,1 > 

wIT1,2,2> 

w1 TI, 2,1 > 

CYV 

cr 

I TI, 2,2> 

ITI, 2,1> 

I TI, 2, -2> 

ITI, 2, -l> 

c3 1 T), 2, O> TI, 2, O> Gv 1q, 2,0> -ITI, 2,0> 

C3 ITI, 2, -l> = 

c31 TI, 2, -2> = 

WIT1,2 > 

w21 TI, 2, -2> 

a 
v 

CTV 

I TI, 2, -1 >= 

jTj, 2, -2ý = 

TI, 2,1 > 

TI, 2,2> 

-. x 
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c3 1ý, 2,2> IC, 2,2> 

.c 31 C, 2,1> ý WIC, 2,1> 

c3 IC, 2,0> = W21 C, 2,0> 

c3 IC, 2, -l> = IC, 2, -l> 

c 31 C, 2, -2> = wlý, 2, -2> 

C3 IE, 2,2> 21E, 
2,2> 

c3 JE, 2,1> JE, 2,1> 

c 31 
ý, 2,0> WIE, 2,0> 

c3 1ý, 2, -l> w2 1ý, 2, -l> 

c 31 
E, 2, -2> 1ý, 2, -2> 

3 
IT"" 1ýý' = Lo 1 T1 ,i, i> 

3 
IT"' 

'0> 
IT,, ' 0> 

3 
IT" 1' _l> -: Co IT,, '., -'> 

CY 2,2> 2, -2> 

CY 2,1 > 2, -1 > 

cr 
v 

2, O> 2, O> 

av2, -1 > 2,1 > 

<1 
v 

2, -2> 2,2> 

avjý, 2,2> 

Gv IC, 2,1> 

cr 
v 

JE, 2,0> 

CYV I ý, 2, -1 

CY 1ý,. 2, -2> 

CT ITI, 1,1> 

avI TI, 1,0> IT,, 1,0> 

CT ITI'l, 
-l> = -IT1,1,1> 

a 

c3 1ý""> : -- wk'1'l> 

c3 1ý" 
," O> = w2 lý, i, o> 

c 

c 

c3 1g"'0> = wlg"lo> 

C8 1g, l, _1> = w2 lý, i, -i> 

c31 T', 0' O> ý- 1 T', 0' O> 

c 
31ý'0'0> w2 lý, o, o> 

c 
31ý'0'0> WIý'0'0> 

CY 
v lý, i, i> = -lg, 1, -1> 

CY v 
lý, 1,0> =1g, 1, O> 

cyvlý, 1, -1> = -ig, 1,1> 

cy -1ý, J, -J> 
av1,0> 
(Y 

v -1ý, l, lt> 

ci ri, 0, O> 

CY 0, O> 

(iv 0, O> 

= 

-In, o, o> 
= 

-J, o, o> 
= 

-k, o, o> 
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(iii) IRREDUCIBLE REPRESENTATIONS FOR D 3h FORMED BY (a, ý, y) 

ORBITAL 
PARENT h 

I h 

7 
All 

2 
[I ot', 3,3>± la. 0,3, -3>] A; +Ao*.; 2 

I(x", 3,2>p I(xvp, 3, -2> E lp 

lot', 3,1>, I(xp, 3, -l> 
, E' Ia", -3, O> Apo 

7 
A; la', 3,2>,, lal, 3,, -2> E' (Y. 91 3,3> + 11,3, - 3>] AFP+App 

2 
i(x', 3,0> Aý la", 3,1>, I(x", 3, -l> E P' 

7 
Epp W, 3,3>, lyl, 3, -3> E' [Wp, 3,2>+jy'p, 3, -2>] A'l+A9' 12 

W, 3,1>, iyt, 3, -l> E' 1ý". 3,0>, ly", 3,0> Epp 

3, -1> : ýly 3,1>3 A; +Aý 1ý99,3, -2>, 1-y", 3,2> Elp 

lr, 3, -3>, ly', 3,3> E1- 

7 
E' 11 ý1,3,2>± 1-y ', 3, -2>3 A; +Aý 1ý", 3,3>, ly", 3, -3>* E 91 

1ý', 3,0>, lyp, 3,0> E' W9,3,1>, lylp, 3, -l> E lp 

jý', 3, -2>, ii', 3,2> El -[jý11,3, -l> ±jy", 3,1>] A" +All 12 
W', 3, -3>, ly", 3,3> Epp 

5A la', 2,2>, lot', 2, -2> E' I(Y", 2,1>, lot", 2, -l> Epp 

ot' 2,0); A; 

5A 
2 

i(x', 2,1>, 2, -I> 1(y. E a 2,2> , 
Ia", 2, -2> E 

2, O> A of 2 
5E 2; 2> +Iy2, - 2>] Aý +Aý 1ý", 2,1>, ly", 2, -l> E 

1-yt, 2,0> E' [jý", 2, -l>+jy", 2,1>j App+All 12 
ir, 2, -2>, ly', 2,2> E' 

5 
Epp 1ý1,2,1>, 1-yr, 2, -I> E' [lv, 2,2>± ly", 2, -'2>] AI +A 2 

D 2, -1>± ly p 2,1>] A; +Aý 1ý'1,2,0>, ly", 2,0> Epp 

jý%2, -2>, lyll, 2,2> E to 

3 
Aý E' 1,0> Ago 

3 A; Aý it, 1, -1> la E 

3 
Epp ly F 1"-l> E' 1ý 11,1,0>il ly 11,1 , O> E Pl 

A; +Aý 

3 E' 
P, 1,0>, 

ly 

0,1,0> E I ly 10,1, -J> E 

it 111-1>±Iy 1111>1 Arp +A" 12 

1 A; + All 2 'O'O> 
A; I ot lp, o, O> All 2 

1 E+ E 1.90,0>, ly"O'O> E' Ia 11,0,0>, Iy 11,0,0> E 
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(iv) IRREDUCIBLE REPRESENTATION OF D 3h FORMED BY (Tj, ý, ý) 

ORBITAL 
PARENT 

-h h 

7 
All [jTj', 3,3>+ ', 3, -3>] Ti A; +Aý. jTj", 3,2>, ITI", 3, -2> E If 

ITI', 3,1>, jTjp, 3, -1> Ef Tj ", 3, O> All 2 
7 

Aý ITI', 3,2>, ITI', 3, -2> E' [I Tj ", 3,3>± 1 Tj If , 3, -3>] ApI+All 
12 

ITI 3, O> Aý jTj", 3,1>, jTj", 3, -1> E If 

7 
Ell 1ý', 3,3>, jE, 3, -3> E' 3,2>+ 1E", 3, -2>] A I' +A" 12 

jE', 3, -1> E' 1vl, 3,0>, jE", 3,0> E of 

3, -1 >± I E' , 3,1 >] Aý +Aý jCIf, 3, -2>, iv, 3,2> Epp 
jC', 3, -3>, jE', 3,3> Ep 

7 
E' [1v, 3,2>+ jEI, 3, -2>] Aý +Aý jC`, 3,3>. v 

jE", 3, -3> E If 

1ý', 3,0>, IE', 3,0> E' 1ý", 3,1>, jE", 3, -1> E to 

jý', 3, I-2>, 
jE', 3,2> E' All +A If 12 

jý", 3, I-3>, 
Iv, 3,3> E 

5 
Aý ITI 2,2>, ITI', 2, -2> E' jTj", 2,1>, jTj", 2, -1> E 

IT11,2,0>. Aý 

5 
A; I Ti 0 2,1>, ITI', 2, -I> E' jTj", 2,2>, ITI", 2, -2> E If 

Tj ", 2, O> Apo 
1 

5 E' [I ý', 2,2>± 1 2, -2>j Aý +Aý 1ý", 2,1>, jC", 2, -1> E If 

1ý', 2,0>, IC', 2,0> E' 2, -1> ± 2,1>] Alt +Apo 12 
1v, 2, -2>, 1ý0,2,2> E' 

5 Ell E' C", 2,2>+ 1 Epp, 2, Alp +Alp 12 
2, -1> + 2,1>] A; +Aý 1ý", 2,0>, 1cfp, 2,0> Ell 

jý", 2, -2>, jE", 2,2> Epp 

3 At' 1 
ITI 1>, ITI 1, -I> E' T1 1,0> Apt 2 

3 
Aý IT11,1,0> Aý IT111,1,1>, ITI If 

,1, -1> Ell 

3 
Epp k Ii, i>, W, 1, -1> E' W1,1,0>, Ic It, 1,0> E 

Aý+Aý 

3E E' 1E -1> E 

of it 111 1>3 Ap1+A" 12 

Aý+ Ago 1 , 0,0> T1 K2 . 0> T, 19 A 1 

I E' +1 E" 
I 

Iý90 010>1 IýI0,0> EI 

-I 

Ic 91,0,0>, 

-- - 

1ý If, 0,0> E 11 
9 
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APPENDIX VII 

INTRAIONIC COULOMB AND EXCHANGE INTEGRALS 

J(AA) F +4F 2 +36F 4 

J(AB) J(AC) =F -2F - 4F 
24 

J(AD) = J(AE) = J(BD) = J(BE) = J(CD) = J(CE) =F o- 
14F 4 

J(BB) = J(BC) = J(CC) -F +F 2+ 16F 
4 

J(DD) = J(DE) = J(EE) =F +21F 4 

K(AB) = K(AC) = 3F 2 +20F 4 

K(AD) = K(AE) = K(BD) = K(BE) K(CD) K(CE) I 2F 2 +25F 4 

K(BC) = 6F 2 +40F 4 

K(DE) = 8F 2 +3DF 4 
A 

<AAll/rIBC> 3F 2 +20F 4 

<ABII/riCC> <ACIl/rIBB> =0 
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APPENDIX Vill 

(i) SPIN-ORBIT OPERATORS ON (U, VW) OF (4A2x2T 

Uzsz U 
ý+ 

s- U-s+ 

lull> 
-Ipll> -12 IP21> - 21 V/73 I VT3 -1 R20> +I A3-l R10> ýi 2 "I Q22> 

lulo> 
-J3 I P20> IR1-1, > 12JR2-1> + 12 Vr3 

2 IQ21>+2 V3, -lQ11> 

Jul-l> 
-1 IP2-1>+I-vlr > 223 

JP1-1 
vl27'JR2-2> -i Tj Q20>+12 -IQ'O> 2 

V3 /31 

IVII> 
-1 4IQ21>-I, v/13-lQll> -1 2V73r-l P20>-2! v/3ri P10> - 42-1 R22> 

Ivio> 
-1 J3 1 Q20> 2 -i -1>-21 y, "3 -1> 21P2 

1-1 Pl -I R21 >+v/3rl R 11 > 
IVI-l> -IIQ2-1>+IJ31QI-l> - v/21'IP2-2> -Y/T3-1 R20>+J3 I Rl O> 

lwll> -IIR21>-IJ3lRll> 44 J3 I Q20>+J3 I Ql, O> V27'IP22> 
lwlo> 

-12, /r3-l R20> I Q2-1 >+, /, 3-1 Ql -1 > 121P21> 
- 21 V/T3-l P 11 > 

lwl-l> 
-1 JR2-1>+Iv/13-IRl-l> 44 42-1 Q2-2> iv/T3-IP20>-IJ3 IP10> 22 

JU22> J3lP22> 
-(l/vr6-) JR21>-A21-1 Rl 1> 0 

JU21> 12J3lP21>-12lP1l> 
-i -1 2JR20> 21R10> -(I/ v/'6--) IQ22> 

JU20> _J3 
I Pl O> -'IR2-1>-IJ3lRl-l> 52 -i 2 2 Q21 >+ 1 Ql 1> 

JU2-1> -lv/T3-IP2-1>-! IPI-l> 22 -(l/v/6-)IR2-2> -i 2 2 Q20> +1 1 Ql O> 
JU2-2> - 43] P2-2> 0 -(llvT6-) IQ2-1>+V-I'IQ1-1> 

IV22> 12 Q22> /v/-6) I P21 >+, r, '-l Pl 1> 0 
IV21> ! 4v/T3-1 Q21 >- 14 IQ11>, 21IP20>+12IP10> -y'73-1 R22> 

IV20> 12 A3_1 
Q 10 >ý 21P2-1> 

+ 12 
V/T3 1 -IP1-1> -JR21>+v/13 

-IRII> 

IV2-1> -lv/y3-l Q2-1>-! I Ql-l> (llr6-) I P2-2> -JR20>+IR10> 
IV2-2> -1y, 713-1 Q2-2> 2 0 -v'73-1 R2 -1 > +v'2-1 R1 -1 > 

IW22>. v/T3- 
I R2 2> 2 -v/73-1 Q21>-vr2--l Ql 1> 0 

IW21> ly/13-JR21>-! JR11> -IQ20>-IQ10> 1. / A-) JP22> 

IW20> -11/3I-l R10> 2 -IQ2-1>-vl'3-IQ1-1> 
12lP21>-2! VI3-lPll> 

IW2-1> -lv/r3lR2-1>-IIR1-1> 44 -v/73-1 Q2 -2> 21 
IP20>-12IP10> 

IW2-2> 
-1 v/T3 2 R2 -2> 0 (i/A-) lP2-1>45'--lPl 2 
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u ýs 
zz 

ul i-> (1/6) [, r3-jT12l>+, ý5-jT11l>] 

Ul O> (1 /3) [1 T120>- I TIOO>] 
lul-l> (1 /6 ) [, 'r3-l TI 2-1>- Y/5-1 TI 1-1 >]' 

lvll> 
-'A* [vl"3-IY21>+VS--Iyll>] 1/12) [, r3-l E21>+, 'ý5-1 Ell>] 

ivlo> 

-12[IY20>-IYOO>]-(1/6)[JE20>-ItOC)>] 
Ivl-l> 

-14[v/3-IY2-1>-v/5-lyl-l>]-(1/12) [vr3-jE2-1: ý-v75-JEl-1: ý] 

lwll> il[vr3-1 ý21>+Vr5fl 11>] -( 1/12) [. 73-1 21>+,, r, -l 11>] 
lwlo> 

-12[iý20>-Iý00>]-(1/6)[1ý20>-ICOO>] 
lwl-l> A. [, r3-l ý2-1>4-51 ýl -1>] -(1/12) 

[V-3-1 ý2-1>45--j Cl-l>] 

JU22> 13 [1 T132>+ I T122>] 
JU21> (116V5--) [4v/2-IT131>+V5-JT121>-vr3-lTlll>] 

I U20> (1 /3,, r, -) [3 1 Tj 30>- 1 Til O>] 

JU2-1> (1/6 Y'r5-) 
E4v/2--j Tj 3-1 >-v/-51 T12-1 >-, 'r3-l Tj 1-1 >] 

I U2-2> 13 [1 T13-2>- I T12-2>] 

I V22> -12[l Y32>+ 1 Y22>] -( 1/6) [1 E32>+ I E22>] 

I V21 > -(I 14V-5-) [4 V-2-1 y 31 >+ V-5-1 Y2 1>- Vr3-1 y 11 >] 1/ 12 V-5) [4,, r2-l E 31 > +vr5-l E 21 >- V-3-1 E 11 

I V20> -(1/2vr5-) 
[3ly30>-IY10>]-(1/6vlr5-) [3jE30>-jE10>] 

IV2-1> - (1 /1 2V5--) [4 213 -1 >- 512 -1 > 14 V5--) [4V2--1 y3-I>- v75-1 y2-1>- , r3-j y1-1 >] V7- E V/- E 

- V/331 El -1 >3 

I V2-2> -12[l'y3-2>- 
1 Y2-2>] - (1 /6) [1 E3-2>- I E2-2>j 

IW22> -21[1032>+. 
Iý22>1-(1/6)[1ý32>+IC22>] 

IW21> -1/4, 
r5-) [4 

vr2_1 0 31 >+ , r5-l ý21>- vr3_1 0 11 >] 1/ 12 V-5) [4 V-2-1 ý 31 >+ vr5-1 ,21>- V-3-1 c 11 

IW20>* - (, /2,, r5-) [31 030>- 1ý1 O>] - (1 /6v75) [31 ý30>- 1 Cl o>] 

IW2-1> -1/4 vr5-) 
[4N/-21 03-1>- v75-1 ý2-1>- , r3-l ý1-1 >] 1/ 12 V75-) 

E4vr2-l ý3-1>45-1 ý2-1> 

vý31 Cl -1 >] 

IW2-2> 03-2>- 1 V-2>] - (1/6) El ý3-2>- 1 ý2-1>j 2 
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U+s 

lull> 

-12 
[1 ý20>+, 45-1 M>+2 1 ý00>j + (1/6) [1 C20>+, /r5-l CIO>+2 I COO>] 

IU10: 
)> -12E,, r3-l ý2-1>4"5-1 ýl -1 >j +( 1/6) [V3--1 2-, >+, r5-1 l -1 >]' 

Jul-l> 

-. 21AT[ý2-2>+(VAT) IC2-2>j 

lvll> 

-12[lOL20>+, 'r5-lotlO>+21ocDO>]+(1/6) [IT120>-+v/"5--ITilO>+21TIOO>] 
lvlo> 

l[, /-3-loL2-1>+, /'5-lotl-l>]+(1/6)[, ý3-IT12-1>+vr5lTll-l>] -2 

lvl-l> 

-12,, r6-[oL2-2>+(l/, /6-) IT12-2>] 

lwii> '3 ý ý20>-, Ir5-1 E10>+2 1 COO>] 

lwlo> 1 [, r3-l E2-1>+V5--1 El -1>] 3 

jwl-l> lv'6-1 E2-2> I 3 

U22> -(1/ VI- 0) [v/2--l ý31>+ A-1 ý2 1>+ V'3-1 ý 11 >] 4- (1/3 V1- 0) jv/2--l ý 31 >+ A-1 ý2 1>+ 'r3-l 11 >] 
JU21> -v/(3/20) [2 1 ý30>+V75--l ý20>+ 1 M>] + (I /v/'6-0) [2 1 C30>4-51 C20>+l C10>] 
I U20> -(1 /2 ,, r5-) [2 r6-l ý3 -1 >+ v/1- 5-1 ý2 -1 >+Iý11 >j +1/6 V75-) ý V/6-1 C3-1>+, fl-5 1 ý2 -1> 

+o -I>] 
JU2-1> F[2 1 ý3-2>+ 1 ý2-2>] +lv/7'-[2 1 ý3-2>+ C2-2>] 427 

32 
I 
U2-2> 43-1 ý3-3>431-1 C3-3> 

I V22> -(1/ V9 0) [vr2-l ot 31 >+ vr5-1 a2l >+ V-31 ot 11 >] +(1/3 vrl 0) [v/2-1 TI 31 >+ Vr5_1 Tj 21>+ *r3-l TI 11 

JV21> -, /(3/20) [21(130>+, r5-la2O>+IalO>]+(l/, ý'6-0) [2j"n30>+v/-5jTj2O>+jTjlO>j 

I V20> (1 /2v/-5-) [2v/"6-1 02-1 >+VrIf-51 . 2-1 >+ I (Xl -1: ý] + (1 /6vr5-) [2V6--1 T13-1 >+V-1-5 I T12 -1 > 

+I Till >1 

IV2-1> I F[2lTj3-2>+jTj2-2>j '[2lot3'2>+jot2-2>]+3v/72 -4 
I V2 -2> -v/-31 a3-3> +V/13-1 Tj 3-3> 

1 W22> ', /(2/5) [, r2-l E31>45-1 ý21>+V-31 Ell>] 3 

IW21> - (1 llvl"l--5) [2 1 E30>+v/'5-1 E20>+ I El O>j 

I W20> I/ 3v/-5) [2 v/6-1 E3-1>+ v/'1-5 IE2-1>+IE1 >] 

IW2-1> v/2-[2 1 E3-2>+ 1 C2 -2>] 3 

IW2-2> 2 /,, r3-) IE3- 3> 
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u-s 

lull> -Y22>- (1 /1/-6) ý22> 
lulo> 

12[-#/3--1 Y2 1>-r. -1 y1 >]'- (1/621>- v75-1 911 >] 
lul-l> 12[1 

y20> -V5--1 yl 0>+2 1 -YOO>] (1 /Q. ) [l 920>--ý-5Igl(3>+2 1 900>] 

lvll> 
-131/61ý22> 

Ivlo> -1 . 
[�r3-1 ,21>- v/"5-1 ý 11 >] 

Ivl-l> 
-13 

Ei ý20>-YF5-1 ýlO>ýe2 1 ýOO>] 

iwll> 1T122> 
2 

lwlo> 1 [73-- 1 CL21 >- v/5-1 (111 >] -(1 /6 ) [v/-31 n 21 >- ý-51 Ti 11 >] 2 

lw1-1> 
2 

[1(120>-vF5-Jotl0>+210t00>]-(l/6) [1-T120>-i7f5-1T110>+21T100>] 

1U22> v/-31 y3 3> - /r, 19 3 3> 

1U21> y/-3'[2 1-y32>- ly22>] - 131/'2'-[2 1 932>- 1922>] 

1U20> (l/2ý-5) [2v/-6-1'y31>-v71-51-y21>+lyll>]-(l/6/5-) E2J1ý31>-ý-1-51921>+lýll>j 

1U2-1> )«UM 
[21-y30>-v75-1'y20>+1*y10>]-(l/vr60) [21930>-v75-1g20>+lg10>] 

1 U2-2> 1 /A0) [v/2-1'y3-1 >-v7-5-1y2-1 >+v73-1-yl -1 >] - (1 /3vF10) [v12-1 g3- 1 >-, /-51 g2-1 > 

+ >] 

1V22> -(2/J3--)jý33> 
1V21> -3'V2--[21ý32>-lý22>] 
1V20> (1/ 3vf5-) [2 V6-1 ý 31 >- v/1-5 21 >+ 11 >] 

1V2-1> (1 //1-5ý [2 1 ý3,0>-/5--1 ý20>+ 1 ýl 0>] 

1V2-2> -'3v7(2/51 
[1/2-1 ý3-1>-Y/5-1 ý2-1>+Y/3-1 (1 -1>] 

1W22> -vI3-10t33>-V'3-lT133> 
1W21> -)/, 1-[21(Y32>-10t221-33'v73-'[21'n32>-1T122>] 

1W20> ] 
-(116V-5) 

C2vr6-1T1ýl>-v/1-51T121>+lTlll>] [2v76-1 (Y31 >-/l 51 ot21 >+ 1 otl 1> 

1 W2-1 > -Y/( 3/20) [2 1 ct30>-yf5-1 et20> +1 otl 0>] -(1 /vF60) [2 1 TI 30>-�/5-1 Tl20>+ 1 Til 0>] 

1W2-2> -0) [Y/2--1(Y, 3-1>-v75-1(x2-1>+/3-Iccl -1>3- (113v710) [i, 2-1T13-1>- 5 lr]2-1> 

Ti 1 >] 
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(ii) SPIN-ORBI T OPERATORS ON (P, Q, R) STATES OF 
4A2x2T 

2) 

uzsz u+s u-s+ 

lpll> -IU11> 
-32 

1 
U21> - 

12 
V/13 -1 

-jW20>-IV'3-jW10> 
2A3 2 vlr3'-1 V22> 

IPIO> -Y/'3rl U20> -1> 21 W2 - 
A371 Wl 

2 1>-i 1 JV2 2 2 VI 1> 
lpl-l> 

-21 1 U2-1>+lvIT3-IU1-1> 2 - 
V7211 

W2-2> "I V20>-lv/T3-1 V10> 22 1 V131 

IQ11> - 
14 1 

V21 >- 4! v/r3-l Vl 1> 
21V/r3lU20>+12 V/T3- 

1U 
10 > -YI-2-1 W22> 

IQJO> 
- .1 v/T3- 

I V20> 2 'JU2-1>+Iv/r3lUl-l> 22 W21 >+ v/T3-1 W 11 > 

IQ1-1> -11 V2- I >+ 1-43-1 Vl -1 > 44 I-I U2-2> V/21 -, 
/r3-l W20>+, /r 

3IW10> 

JR11> 
-11 W21 >- lv/T3-j Wl 1> 44 V2 0>+ v/r 3IV10> --V2-7"1 U22> 

IRIO> -1 v/T3-1 W20> 2 
I V2-1>+vr3rl VI -1> -2 

Ul 1> JIU21>+Iv/T3 

IR1-1> 
4IW2-1>+4! v/r -1 3IW1-1> v/2Y-IV2-2> 

1j2 
-ý2 3JU20>+Iv/T3-IU10> 

IP22> 
v/T3-1 U22> (1/v/"6-) IW21>+V! 

2-1 
Wl 1> 0 

IP21> I, /T3-l U21 >- 11 Ul 1> 22 1IW20>+IIW10> 22 (1/vlr6-) I V22> 
I 
P20> - V/13-1 U1 O> ! IW2-1>+l-v73rlWl-l> 

22 lIV21>-IVT3-lVll> 22 

IP2-1> U2-1 >- Ul -1 > 22 (llr6-) IW2-2> lIV20>-IIV10> 22 

IP2-2> 
-, /T3-l U2-2>. 0 (11,116-) IV2-1>-V72'-1 Vl -1> 

IQ22> j2V/r3lV22>' (1 /06-) 1 U21 >-4fl Ul 1> 0 
IQ21> 1-A3-jV21>-IjVll> 44 21 U20>- 11 Ul O> 2 W22> V/23 

IQ20> - 
12 

V/13-1 
VI O> 

2 JU2-1>- 22 
V/13 i 'I Ul -1> W21 > +VT3 -IW11> 

IQ2-1> -ly/r3l V2-1>-! j\/l -1> 44 (1/v/6-)IU2-2> -IW20>+IWIO> 
IQ2-2> -lvý3I-JV2 2> 2 0 -v/-37-IW2-4>+vr2-lWl-l> 

JR22> ! -Y/r3 
I W22> 2 -v/-73-IV21>-vr2-lVll> 0 

JR21> lv/3'-jW21>-IjWll> -IV20>-IV10> -(I/v/6-)IU22> 

JR20> 32 
V/13-1 Wl O> Vl -1> -IV2-1>-VT3 2JU21>+2-VT3 2 

Ul 1> 

JR2-1> 
-lylr3lW2-1>-IIW1-1> 44 v/z3 -2> 

-1 V2 -i 2 2 JU20>+IIU10> 

JR2-2> -1 v/T3-l W2 -2> 2 0 (1 /v/-6) I U2 -1 > +V72-1 Ul -1 > 



- 127 - 

SPIN-ORBIT OPERATORS ON (ct, ý, y) STATES OF 
4A2x4T 

u+s u-s+ 

OL33> -, 'r3-l W22> 0 

1 022 > - 'r2-l W21 > 0 

a3l > -v/(6/5)IW20> -(1/v/"5-) I V22> 

C20> -v/(3/5)IW2-1> -v/(3/-5) IV21>- 

02-1 > - (1 /vr5-) I W2 -2> -v/(6/5) I V20> 

02-2> 0 - vr2_1 V2 -1> 

a3-3> 0 - v/3-1 V2 -2> 

la22> 4-1 W21 >- 1 'r6-l W1 1> 2 
0 

I 

a2l > 21, 
r3_1 W20> -2lV-3lWlD> -VI'IV22> 

1 ot20> Y/-3- i IW2-1>-21 IW1-1> -IV21>-IIVI1> - 21 ýF3 2 

a2-1 > Vr. '_1 W2-2> --I V20> -1 V3-1 VI O> -12 , r3 
2 

o -2> t2 0 411 V2-1>-Iv/6-]Vl-l> 2 

jail> 
2 

(1 /VF5-) [I W20>- 51 Wl 0>] -v/(3/10)IV22> 

I al 0> [, Ir3--j W2 -1>-51W11 >] 2 V21 >, +5 1 Vl I 2 

jal-l> -v/(3/10) IW2-2> -i 2 
(1/yf5-) [IV20>+5lVlO>] 

laoo> -Iwi-i> -Ivii> 

uZsz on all (x states give zero 
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Us 
ZZ 

Us 
+ 

ß33> 0 0 

ß32> W22> 0 

1 ß31 > -V(215) 1W21> (1 /75-) U22> 

1 ß30> - (3/2vF5-) 1 W20> -Y/(3/5) U21 > 

1 ß3-1> -Y/(2/5)1W2-1> -1/(6'/5) 1 U20'> 

Iß3-2> -121W2-2> -vF2-1U2-1> 

Iß3-3> 0 - v/3-1U2-2> 

1 ß22> -i 21 W22> 0, 

iß21> 16 1 W2 1 >- 24- 

v1-31 W 11 > U22> 

1 ß20> 
lwio> 

2 -2 2VF31 U21 >-1- 1 Ul 1> 

Iß2-1> 11W2-1>-14 _V/3 Wl -l> 4 
1U20>-173-1U10> 2 V/3 2 

Iß2-2> 12 1W2-2> U2-1 >- 21 
'r, 1 Ul -1 > 

Ißli> 14 (1 [vr3-1 W21 >-5W 11 >] -v/(3/10) JU22> 

Ißlo> (1 /YF5-) 1 W20> -12 CY/3-1 U21 >+ 51 Ul 1 

Ißl-i> 1-(l/75-) [v73-1W2-1>+51W1-1>] 
4 2 (1 /vF5) [l U20>4-51 Ul 0>] 

1 ßoo> 
21 

IW10> 
-Juli> 

u +s_ on all ý states give zero. 



lk 

- 129 - 

us 
ZZ 

us 
+ 

ly33> 0 v73-1 U22> 

ly32> 
21 V22> U21 > 

ly31> 
-i/(2/5)1V21> v/(6/5)1U20> 

I'y30> - (3/2v75-) 1 V20> v/(3/5)1U2-1> 

ly3-1> -Y/(2/5) 1V2-1> (1175-) 1U2-2> 

ly3-2> -11 V2-2> 2 o- 

y3-3> 0 0 

ly22> V22> 2 1U21>+1 v/6-1 U 11 > 2 

I'y21 > - V21 >- 4 4v73-1 Vl 1> U20> Ul 0> 2 2 VI3 

1 

y20> - 
12 1 vi O> - 2- VF3 -1>+llul-l> 2 

il 
U2 2 

I'y2-1> 14 1 
V2-1 >- 14 y73 -l> Vl U2 -2> 

I'y2-2> 0 

lyll> j4(1/y75)[-, /31V21>-51V11>] -- 1 -- [IU20>-51U10>]" 
2(1/175) 

-yl O> /Y/5-) 1 V20> 2 
1-(1175-) [ý-31U2-1>-51U1-1>] 
2 

lyi 

-1'> 2- l /�r, -) [, 13-1 V2 -1>+51V1-1 >] 4 y/(3/10)1U2-2> 

1 

-YE)0>, l- Ivio> lui-i> 

u_s+ on all y states give zero. 
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APPENDIX IX 

BASIS STATES FOR THE 5Aj MULTIPLET IN PERPENDICULAR MAGNETIC FIELD 

11> = -41[IU', 2,2>+21U", 2,1>+V-F)-IU', 2,0>+21U", 2, -l>+IU', 2, -2>] 

12> = 20 
U' 2,2>+IU", 2,1>-IU", 2, -l>-IU', 2, -2>] 

13> = 
12 (3V-3) [vr6-lU' 2,2>-21U', 2,0>+V6--IUI 2, -2>] 

14> = 12[IUI, 2,2>-IU", 2,1>+IU", 2, -l>-IU', 2, -2>] 

15> = ! [IU', 2,2>-21UP1,2,1>+vý6-JU0,2,0>-21U", 2, -l>+IU', 2, -2>] 16 

BASIS STATES FOR THE 5E' MULTIPLET - 

g= 2 

g= I 

g= 0 

g= -1 

g= -2 

T[I Vfv , 2,1 >± I W" , 2, -1>] I-El v, 2, -2>±IW', 2,2>] and IA"+A"> = V' 27 With IA; +A; > = 
V27 

12 

> = - _IV 0 14 
175[Y/2 2,2>+2 IAPP>+ 

2 2 IAFY>+ 
1 2vF3iV' 2,0>+2vF2IV", 2, -1>+ JAý>+ JAý>] g=4 

12'> -IW' 4 V/3[Y'2 , 2, -2>+21A"> 2 -21A > 1 
W' , 2,0>+2)72--1 W" 2,1 >+ +2)/r3- 1 Aý >- 1 A; >] g=4 

13'> ! E-21VI, 2,2>-, 12--IAI'>-, 'r2-lA9l>+21V", 2, -l>+, F2-IAý>. tr2lA'2>j 
21 g=2 

14'> [-2 1W12, 
-2> -, 'r2--l Alp> +i/2--l A" 421 >+2 I W", 2,1 >+vr2-l Aý >-, r2-l Aý>] g=2 

Is, > = ! -[-vr3-lV', 2,2>-, P, ý3-IW" 
, 2, -2>+ vf2-lV', 2,0>+vl2-iW', 2,0>-vr6-lA ; >] g=o 

16'> = 41[-vr3-iVp, 2,2>+vT3-IWP , 2, -2>+ r2lV', 2,0>-vr2-lW9,2,0>-vlr6lA ý>] g=o 

17'> !. [-21V', 2,2>+, 12-IAIP> 
42 +, F2-'IA"> 

1 -21V", 2, -I>+, 'r2--lA-? >+, r2-lAý>] 
1 g=-2 

181> ! -[-21W' 2, -2>+, lr2-lApp 42 >-, l2--lA" 
1 >-21W", 2,1>+, lr2-lA; >-, ý2-JAý>] g=-2 

191> 1. ýr', -[yr2-lV', 2,2>-21A" J+ 2 >-21A', '> +2V-3-IV', 2,0>-2vr2-lVPl, 2, -l>+ IA; >+lAý>] g= -4 

110'> i-V', -[V-2-IW', 2, -2>-21A 4 IP>+21A" 21 
>+2, "3-IW', 2,0>-2. ýr2-lW", 2,1>+ IAý>+IAý>3 g= -4 
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