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Abstract 

Despite their prevalence in early years‘ education, there seems to be a lack of agreement 

over how or indeed whether physical objects support children's learning. Understanding 

the role of physically manipulating representations has gained impetus with the increasing 

potential to integrate digital technology into physical objects: tangible technology. This 

thesis aimed to evaluate the potential for tangible technologies to support numerical 

development by examining young children‘s (4-8 years) use of physical objects in a 

numerical task. This task required them to find all the different ways in which a number 

(e.g., 7) can be decomposed (e.g., into 2 & 5). 

 Seven carefully designed studies compared children‘s numerical strategies using 

physical objects (cubes) with other materials (paper/virtual representations) or no 

materials. The studies showed that physical objects not only helped children identify 

solutions through simple physical actions, but fostered strategies that related solutions 

such as swapping groups of cubes or moving just one cube to get a new solution. This 

led to predictions about how a computer might influence strategies by constraining 

children‘s actions to moving just one object at a time using the mouse. These predictions 

were confirmed, and a further study showed how using materials that changed colour 

according to the number grouped could support strategies by drawing children‘s 

attention to numerical changes.  

 The research showed that, to help children identify ways to break down a number 

efficiently, it was more effective to constrain their actions using a graphical, rather than 

tangible, interface. However, when multiple (physical) objects could be manipulated, 

children were able to constrain their own actions and used a wider range of strategies. 

Although moving multiple objects can be facilitated through interfaces such as tabletop 

computers, this research indicated certain cognitive benefits of physically manipulating 

representations for children‘s numerical development that may inform tangible designs. 
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Extended Summary 

Physical learning materials, or ‗manipulatives‘ (e.g., cubes or tiles), are a common learning 

resource in early years‘ education across several cultures. However, despite their historical 

and widespread use, it remains unclear how, or even if, they support children‘s learning. 

Establishing the role of manipulatives in education has therefore been identified as an 

important goal for educational research. More recently, the development of our 

understanding in this area has gained increased impetus through the potential to augment 

physical materials with technology (‗tangible technologies‘) to support learning. 

Understanding the potential of tangible technologies is not only key to designing novel 

and effective pedagogical materials, but can also help identify the value, or limitations, of 

other forms of interaction with technology, such as a mouse or tabletop interface. 

 The aim of this doctoral research was to evaluate the potential of tangible 

technologies for learning by examining the role of physically manipulating 

representations within a specific learning activity. This activity centred on a key concept 

in young children‘s numerical development – additive composition, which refers to an 

understanding of how numbers are composed of smaller numbers (e.g., 7 is composed of 

3 and 4). Understanding how numbers can be decomposed in different ways is key to the 

use of more flexible calculation strategies and has been proposed as a foundation to 

understanding how multidigit numbers are composed of different multiples of ten (e.g., 

that 17 can be decomposed into 10 and 7 (Nunes & Bryant, 1996). Indeed, developing an 

understanding of additive composition has been described as a key step in numerical 

development for children (Fuson, 1992). The main question in this research was 

therefore: does physically manipulating digital representations present any unique 

benefits for supporting children‘s understanding of additive composition? 
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 In order to address the main research question, children‘s interactions with 

physical representations (small plastic cubes) were compared with other forms of 

representation (e.g., pictorial/virtual materials) as a means of helping young children 

(aged 4-8 years) explore the concept of additive composition. The task used to explore 

this concept throughout the research studies was adapted from Jones et al (1996), and 

required children to identify all the ways of partitioning a single digit number (e.g., 7) into 

combinations of two parts (e.g., 2 & 5, 6 & 1) using a story context. This activity was 

hence called the partitioning task. In order to answer the main research question, a total 

of seven studies were carried out. These addressed four subsidiary questions that were 

identified from a review of the research literature. Findings relating to these subsidiary 

questions and the main research question are summarised as follows: 

 

1. Do physical objects support children’s strategies for partitioning numbers? 

The first, exploratory, study compared the use of physical materials (cubes) with pictorial 

materials (squares) and a control condition (no materials) in helping children (aged 4-8 

years) solve two numerical tasks: an addition task and a partitioning task. Measures were 

taken of the number of correct scores and whether the representation was used for each 

problem. No significant differences were found between the numbers of correct scores 

for the different conditions. Although children used cubes more than squares in both 

tasks, this did not lead to more correct solutions. This lack of advantage seemed 

attributable to the demands of having to count out objects. Indeed, children often used 

more efficient counting strategies (e.g., counting-on) when they chose not to use 

materials. This study thereby highlighted the need to take account of the initial demands 

of counting out the total amount when starting the partitioning task. 
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 The second study addressed this issue by examining whether children identified 

more partitioning solutions using physical materials than no materials when given the 

correct number of counted out cubes. As expected, children identified more correct 

solutions using cubes than with no external representation. However, arguably of greater 

interest was the effect of physical materials on children‘s strategies. By developing a 

coding system, solutions were categorised according to their relationship with the 

previous solution. A compensation solution was coded when the solution was one different 

from the previous solution (e.g., 2 & 6 following 1 & 7) and a commutative solution when 

the solution was the reverse of the previous one (e.g., 2 & 6 following 6 & 2). It was 

found that when children used physical objects they not only identified more correct 

solutions but identified a significantly greater proportion of solutions that were related 

(those coded as compensation and commutative). This is significant because relating solutions 

reflects important numerical relationships. Another interesting finding from this study 

was how children were more likely to begin with a solution that partitioned a number 

into two equal groups when using materials than no materials. 

 

2. What are the advantages/limitations of physically manipulating 

representations for children’s partitioning strategies? 

Study 3 examined what properties of physical objects influenced children‘s partitioning 

strategies by comparing performance in four conditions in a 2x2 between subjects design: 

where children were provided with either physical or pictorial materials, and were 

provided with either a record or no record of their previous solutions. It was found that 

providing children with a record of the representational configurations they had created 

for previous solutions did not affect their strategies even though this record showed 

which solutions had been identified (and hence which solutions remained). In contrast, 
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physically manipulating representations seemed to be important: children identified 

significantly more correct partitioning solutions using physical than pictorial materials. 

Furthermore, children in the Physical condition identified significantly more solutions 

that were related – i.e. more compensation and commutative solutions. 

 Study 4 was designed to examine how using physical materials influenced 

children‘s partitioning strategies using video observations. Children solved problems first 

with no materials, and then in counterbalanced conditions using physical and pictorial 

materials. Supporting the previous studies‘ findings, children identified more correct 

solutions using physical materials than in the other two conditions. Video records of 

children‘s actions showed how physical objects allowed them to create new spatial 

partitioning configurations with ease and then enumerate (most of) these as valid 

solutions. This study also examined the role of different properties of the physical 

materials. Children touched objects both to help count and to keep track of the position 

of objects (freeing up demands of visual attention). Objects were sometimes stacked 

vertically or moved relative to the child‘s position. However, it was not clear how much 

advantage this provided over the pictorial materials, especially as the amounts being 

counted were small (hence posing limited computational demands). More important 

seemed to be the type of actions children made with the materials when relating 

consecutive solutions. Commutative solutions overwhelmingly reflected children 

interchanging groups of objects. This action involved moving multiple objects using both 

hands, sometimes picking up groups or simply pushing them. In contrast, compensation 

solutions involved more constrained manipulation, where children would move just a 

single object with one hand.  
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3. What is the effect of constraining manipulation on children’s partitioning 

strategies? 

Having identified a relationship between the manipulative properties of representations 

and partitioning strategies, it was predicted that constraining the number of objects that 

could be manipulated at one time would significantly affect the strategies used to identify 

solutions. This prediction addressed the main research question by looking at whether 

physically manipulating representations leads to differences in strategies in comparison to 

other forms of interaction. This study examined the effect of constraining actions so that 

only one object could be manipulated at a time, as this action reflected one of the key 

strategies identified in the previous study (compensation). As predicted, children identified 

significantly less commutative solutions when their actions were constrained than not 

constrained. However, although children identified more compensation solutions, the 

difference was not significant (possibly because children in the constraints condition 

tended to move objects one at a time as quickly as possible using both hands and often 

needed reminding of the constraining rule). 

 Study 6 was therefore carried out to examine the effect of constraining actions 

using a graphical user interface where children could only move one object (on-screen 

square) at a time more slowly using a mouse. Although there were no differences in the 

number of solutions identified in each condition, as predicted, there were significant 

differences in the strategies used. Children identified significantly less commutative 

solutions and significantly more compensation solutions when their actions were 

constrained using the mouse than when manipulating physical materials. This study 

thereby highlighted how different forms of interaction can impact on the strategies 

children use to partition numbers. As these strategies reflect different aspects of additive 
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composition, it is possible that different forms of interface will affect the ideas that 

develop. 

 

4. Can children’s partitioning strategies be supported by augmenting the 

representation’s perceptual information? 

The previous study showed how children could be encouraged to identify compensation 

solutions when they could move only one object at a time. However, they would often 

create a new configuration without identifying it as a new solution. The final study 

therefore examined the effect of a digital perceptual effect on children‘s partitioning 

strategies. With this effect, on-screen squares would change colour according to the 

number grouped together, and changes of groupings would thereby be visually 

emphasised. As predicted, it was found that this prompt led children to identify 

significantly more incremental changes to the representation – i.e. significantly more 

compensation solutions.  

 

Does physically manipulating digital representations present any unique 

benefits for supporting children’s understanding of additive composition? 

The findings from the seven studies were then used to address the main research 

question. The studies highlighted how the ability to spatially manipulate representations 

not only helped children identify more ways to partition a number, but also helped them 

relate solutions to each other better than with representations they could not spatially 

manipulate (paper), or with no materials. However, it is possible to spatially manipulate 

representations on a computer using a mouse, and it was shown in this research how 
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constraining children‘s actions using this form of interface can actually help children to 

identify unitary changes to the representation (solutions differing by just one in each part). 

In this partitioning problem, the verbal identification of such incremental changes 

reflects an efficient strategy – compensation.  

 Hence, when exploring additive composition in this particular partitioning 

problem, constraining children‘s actions using a graphical (rather than tangible) interface 

seemed to encourage more efficient strategies. However, it was shown that constraining 

their actions almost eliminated their use of another strategy – the commutative strategy. It 

was thereby concluded that physically manipulating representations led to a wider range 

of strategies. Furthermore, when children identified compensation solutions using physical 

objects, they had to constrain their own actions. Indeed, many children were observed to 

change strategy, realising the advantage of moving only one object at a time. It might be 

argued that this use of more varied strategies (and potential for children to constrain their 

own actions) is pedagogically advantageous, providing the opportunity for children to 

reflect upon their actions and then select the most appropriate strategy. Further research 

might investigate this possibility through more developmental interventions. 

 Although it is possible to design ways of allowing children to select and 

manipulate multiple objects using a mouse, this research has demonstrated how 

physically manipulating representations allows children to move single or multiple objects 

with ease. Yet, other interfaces such as multi-point touch surface table computers also 

present accessible ways to move multiple objects and moreover, such interfaces can 

present designers with greater flexibility over when (and when not) to constrain actions 

to foster certain numerical strategies. Further research however would be needed to 

explore how certain representational differences may lead to differences in children‘s 

strategies. It is possible that certain physical affordances observed in this research, such 

as the ability to touch objects (to help count), or to gather multiple objects, or even the 
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ability to lift objects over one another as seen in many commutative strategies, indicate that 

a tangible interface would be advantageous.  

 The augmented materials in the final study demonstrated the potential to create 

dynamic perceptual effects to help children identify numerical changes to the 

representation. The particular effect used - where colour corresponded to quantity - 

meant that certain numerical relations were highlighted, such as whether parts were the 

same or when parts were reordered (i.e. commutative). Since actions such as splitting 

groups in half and swapping over groups were more prevalent in the Physical condition 

in this research, this raises an interesting question of whether augmenting physical objects 

with such perceptual effects might support children‘s ability to reflect on certain 

numerical changes. This possibility suggests that physically manipulating digital 

representation may present unique benefits for supporting children‘s understanding of 

additive composition. 
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Chapter 1 

 

Review of the Literature 

 

1.1 Introduction 

1.1.1 Importance of mathematical development 

Mathematics is an essential life skill (Burr, 2008) – from organising budgets to checking 

change when shopping and has important economic implications (NCTM, 2000, p.5). 

Considering the importance of being ‗mathematically able‘ it is of some concern that, 

despite substantial investment, many children still have difficulties with some or most 

aspects of arithmetic (Dowker, 2009). As children‘s mathematical abilities at a young age 

have a close bearing on their later success (Burr, 2008), understanding and addressing 

young children‘s difficulties is a significant goal, and highlights the importance of 

research in this area.  

 One challenge for research is to try to understand the role of mathematical tools 

in supporting mathematical activity. As Sutherland (2007) states: 

“From the perspective of mathematics education, it is important to analyse what a particular tool 

privileges or potentially enables a person to do and the potential purpose of each tool for learning 

and doing mathematics” (p. 6) 
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 Some tools, such as manipulatives, are materials that have been specifically 

designed or chosen to support children‘s learning. Manipulatives are physical materials 

such as tiles and cubes intended to represent more abstract concepts such as numbers, 

and are used widely across early years‘ educational settings to help children learn certain 

ideas. Nevertheless, despite their history and widespread use, it remains unclear how or 

even if they support children‘s learning (see McNeil & Jarvin, 2007). Consequently, 

establishing the role of physical materials in learning has been identified as an important 

goal for educational research (Ginsburg & Golbeck, 2004). 

 The fast evolving capacity of digital technology has played a significant role in the 

development of mathematical tools and this is clearly observable in the development of 

manipulatives. Graphical objects resembling physical manipulatives can now be 

presented and interacted with on computers using a keyboard or mouse, giving rise to the 

term ‗virtual manipulatives‘ (Moyer, Bolyard, & Spikell, 2002). The benefits of these 

virtual representations have been well described (e.g., Clements, 1999) and have led to a 

fast growing generation of online tools. This novel mode of interaction raises important 

new questions – for example (in particular) what is the impact of this form of interaction 

on children‘s learning? 

 Research into the effect of the interface on children‘s interactions has been carried 

out over the last thirty years, and has arguably gained significance in light of emerging 

forms of interaction such as tabletop computers and tangible technologies. Tangible 

technologies, or more simply ‗Tangibles‘, are digitally augmented physical learning 

materials. Although their use in education can be traced back to the first physical 
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embodiments of Logo (floor robots such as Roamer1 for example) that have built upon 

the seminal work of Seymour Papert (see section 1.3.2.3), the mouse and keyboard 

remain the pervasive form of interaction. However, more recently, the increasing capacity 

to integrate more sophisticated technology seamlessly into smaller devices has generated 

a wealth of novel possibilities for developing effective learning materials.  

 The ability to combine the possible benefits of digital technology and physical 

manipulation to support young children‘s learning has generated significant research 

interest as well as novel designs (M. Resnick et al., 1998). Nevertheless, evaluating the 

potential of this form of interface returns us to an important question, namely: what is 

the impact of this form of manipulation on children‘s learning? 

 

1.1.2 Summary 

It is possible that Tangibles offer the potential to help children learn key numerical ideas. 

In order to evaluate this potential however, it is necessary to develop our understanding 

of what advantages this form of interaction brings. By identifying specific advantages and 

limitations of physical manipulation in learning, it may be possible to inform the design 

of effective new learning materials.  

 

                                                      

 

1 (Roamer is a floor robot where children are able to input directional instructions through keys 

on the robot (or via a computer). 
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1.1.3 Aim of thesis 

The aim of this thesis is to evaluate the potential of Tangibles to support young 

children‘s2 numerical development. This will be achieved by first reviewing the literature 

in the following areas:  

 Children‘s numerical development 

 Physical learning materials 

 Digitally augmented manipulatives (including Tangibles and virtual representations 

manipulated using a graphical interface) 

 

 From this review, more specific research questions will be identified. These 

research questions will then be summarised in the final section of the review. 

 

1.2 Children’s Numerical Development 

This section aims to review the literature on young children‘s numerical development in 

order to identify what key concept might be supported through the design of more 

effective learning materials.  

 

                                                      

 

2 Children aged 4-8 years who are in their first few years of schooling. 
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1.2.1 Preschool ability 

1.2.1.1 Innate numerical ability  

In 1954, Tobias Dantzig wrote a book entitled ―Number, the language of science‖ which 

suggested that people were born with a faculty that the author referred to as ‗number 

sense‘ (Dantzig, 1954). The book was written whilst the Piagetian thought dominated, 

which was quite conservative with regard to young children‘s numerical abilities. It took 

nearly twenty years for Dantzig‘s insight to be confirmed.  

 In a pioneering experiment, Starky and Cooper (1980) showed that 4-6 month year 

olds were more likely to attend to visual arrays (dots) that had changed in numerosity 

using a ‗habituation-dishabituation‘ paradigm: they looked for longer at a novel stimulus 

(different number of objects). Clearly, with each change of numerosity, there were other 

factors that could vary such as the area or darkness of the array, therefore Starkey and 

Cooper tried to control for these by changing the arrangement of dots in each trial. 

Nevertheless, Mix, Huttenlocher & Levine (2002) have emphasised the difficulty in ruling 

out other perceptual clues such as shape, size or density rather than quantity in children‘s 

judgements and suggested that children may be responding to continuous rather than 

discrete quantity. Wynn, Bloom, & Chiang (2002) have attempted to address this 

possibility by using a group of moving dots, controlling for factors such as area and 

contour, thereby showing that infants do indeed respond to numerosity. 

 Wynn‘s research has also demonstrated that infants are able to compute basic 

arithmetic consequences of adding and subtracting (e.g., 1+1, 2-1) again using the 

‗habituation-dishabituation‘ paradigm. Although her assertions have been questioned 

(e.g., Cohen & Marks, 2002), the balance of evidence does suggest that infants are able to 

represent the numerosity of sets and carry out mental manipulations of these 

representations.  
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 Infants do have an upper limit for their numerical concept: up to around 4 objects 

(Starkey & Cooper, 1980), which is most likely to reflect their ability to identify the 

numerosity of an array at a glance without counting. This perceptual ability is shared with 

adults and has been called subitising (Mandler & Shebo, 1982), which allows children and 

adults to enumerate small numbers (up to around 5) without having to count. 

 Research continues to develop our understanding of innate mechanisms that may 

provide the foundations of later ability, such as a possible internal number line that 

enables children and adults to approximate the addition and subtraction of larger 

numbers of perceptual objects (Gilmore, McCarthy, & Spelke, 2007). However, in order 

to succeed mathematically, it is necessary to understand how to manipulate and 

communicate mathematical symbols, starting with number words and progressing to 

more complex operations. 

 

1.2.1.2 Pre-School Experience 

Children‘s numerical ability is founded on their early experiences (Baroody, Eiland, & 

Thompson, 2009). Jordan, Kaplan, Ramineni, & Locuniak (2009), for example, have 

demonstrated a strong and significant relationship between children‘s kindergarten (aged 

5.5 years) number competence and their mathematical achievement three years later. The 

start of school does not however mark the beginning of children‘s numerical 

development, because children bring to school a range of skills and understanding gained 

from prior informal experiences (Canobi, 2007) such as the ability to add or subtract 

(Martin Hughes, 1981). Indeed, in a study of over 1,400 children in Australia, Clarke, 

Clarke, & Cheesman (1996) found that much of what had traditionally formed the maths 

curriculum for the first year of school was already understood by many children on 

arrival at school. When children enter school, they already therefore have some 
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knowledge of the number system and possibly some basic operations. However, their 

limited understanding of numbers will still make certain maths problems inaccessible. To 

identify these difficulties, it is important to examine the development of children‘s 

understanding of number words, and how this relates to their ability to apply this 

understanding to more complex problems.  

 

1.2.2 Children’s developing understanding of number words 

When children first say the number words, they do so without understanding exactly 

what these words mean. Indeed, the words may just be part of an inseparable linguistic 

sequence, such as part of a nursery rhyme. Eventually, children not only learn the 

symbolic significance of these words, but also how they are related within a specific 

culturally determined decade system. Fuson (1992) identified specific stages to this 

development. These will be outlined before looking at one of the most difficult 

numerical concepts children have to learn – multidigit understanding. 

 Fuson identified five key levels of development: String, Unbreakable list, 

Breakable chain, Numerable chain and Bidirectional chain. 

 

 String 

Children initially learn the number words, possibly through songs or counting activities, 

and may be able to recite them, albeit not actually being able to distinguish individual 

number words within the linguistic ‗string‘. 
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 Unbreakable list 

In the next stage, children learn to identify the number words, allowing them to take part 

in counting activities which involve reciting these words in the correct order, using each 

word to correspond to each item counted. This one-to-one correspondence between 

object and count words is not however immediately clear; it is a skill that is developed.  

 Although children may become proficient in counting, this does not mean that 

they understand the significance of each count word. For this, children need to realise 

that the last word counted represents the whole set, i.e. ‗three‘ is not just the last word 

counted but represents three objects. The notion that number words refer to a set is 

referred to as the cardinal principle, leading researchers to talk about children‘s 

‗understanding of cardinality‘.  

 In Fuson‘s Unbreakable stage, children make a key developmental step – they are 

able to enumerate quantities, through counting, or possibly subitising if the set is small, 

and understand that the number words can represent quantities. Children are 

consequently able to approach questions asking ‗how many?‘ However, their calculation 

strategies are limited, mainly because they do not yet understand that number words can 

be ‗broken‘. In other words, given two amounts to add, children will want to combine 

the amounts and ‗count-all‘, starting at the first object. Consequently, addition is still 

dependent on objects, or perceptual items as Fuson refers. In fact, young children can often 

find the actual question ‗how many?‘ difficult to understand unless there is a concrete 

referent (Hughes, 1986). 
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 Breakable chain level 

Children‘s first step away from their dependence on perceptual items in counting is 

integral to Fuson‘s Breakable chain level. This level refers to how children can ‗break‘ the 

sequence of numbers by using a number word to represent a quantity within an addition 

(or subtraction) sum. Instead of counting from one, children can begin ‗counting on‘ 

from the number word of the first addend (number to be added). The transition from 

count-all to count-on is considered to reflect a key conceptual step forward and various 

attempts have been made to evaluate interventions supporting this graduation. Secada, 

Fuson, & Hall (1983), for example, analysed this transition and identified three sub-skills: 

a) counting up from an arbitrary point, b) shifting from the cardinal to the counting 

meaning of the first addend and c) beginning the count of the second addend with the 

next counting word. The authors demonstrated the success of measuring these three sub-

skills on predicting counting-on behaviour and furthermore demonstrated the success of 

interventions supporting these skills. In order to assess children‘s ability to count-on, the 

authors examined children‘s strategies for adding two amounts when dots representing 

the first addend were visible and then hidden as illustrated in Figure 1.1, thereby 

emphasising how counting-on marks children‘s first steps away from depending on 

perceptual units to add amounts. 

 

 

   Figure 1.1: Materials used to assess children‟s ability to count-on (Secada et al., 1983) 
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 Numerable chain level  

In the Numerable chain level, both addends are described as embedded within the sum. 

Consequently, when counting on the second addend, children are not dependent on 

perceptual items to know when to stop counting. Instead, they use the number word 

itself as a means to count to the result. For example given the sum 5 + 4, children count-

on from 5 (6, 7, 8, 9), and stop counting when they know they have counted out the 

second addend. This example illustrates how children require a method of knowing how 

many they have counted-on in the absence of perceptual clues. Three methods have been 

proposed (Steffe, von Glaserfield, Richards, & Cobb, 1983) for how this can be managed: 

a) by keeping track of the auditory pattern of the words counted-on; b) by using known 

finger patterns and matching each addend word to a finger extended as the word is said; 

and c) by double counting (alternating between the amount counted-on and the total). 

The skills needed for counting-on are relatively demanding for children, yet are highly 

significant in that they mark the point at which children become independent of external 

materials to carry out basic addition and subtraction problems. This progression from a 

reliance on physical objects has important theoretical implications for this thesis; and it is 

worth examining in greater detail how children are able to achieve this.  

 When counting-on, children have the dual task of keeping track of the amount 

counted-on and the total. This places considerable cognitive demands on children and 

could explain the almost universal strategy of children using fingers to help them without 

instruction to do so. Fingers help because they provide perceptual structures that 

children can enumerate without counting (Fuson, 1992). This is particularly the case for 

smaller numbers where, by raising fingers when counting-on, children can identify when 

to stop counting. However, even with fingers, counting-on is quite a demanding task, 
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especially if the amount to count-on is large. In order to manage larger numbers, children 

therefore need a means to simplify calculations. This can be achieved through more 

flexible strategies that can facilitate calculations requiring a greater understanding of 

numbers than is reflected in Fuson‘s Bidirectional chain level. 

 

 Bidirectional chain 

In Fuson‘s final level, the Bidirectional chain level, the whole number sequence becomes 

a series of embedded cardinal amounts, where each word is part of a series but is also a 

separable cardinal amount. Understanding how each number is composed of smaller 

cardinal amounts enables children to transform calculations to take advantage of the 

number facts that they have begun to learn. For example, the sum 7 + 8 can be 

decomposed to 7 + 7 + 1. As a result, knowledge of doubles allows children to 

transform the problem to 14 + 1 which places fewer demands on counting. It is also 

possible for children to use the decade structure to simplify calculations in a similar way. 

For example the sum 8 + 9 might be broken down into 8 + 2 + 7. Children can 

consequently draw upon possible number knowledge of both the number bonds to ten, 

and their understanding of how ten plus units corresponds to teen numbers. 

 

1.2.2.1 Base ten understanding 

The developmental levels described above refer to understanding the structure of single 

digit numbers. A key challenge and great difficulty for children is in developing an 

understanding of multidigit numbers (Baroody, 1990; Fuson, 1990; Varelas & Becker, 

1997) - how a number such as 16 or 47 is composed of two parts – tens and units. 
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Significantly, this symbolic system, which uses place value according to a base ten 

grouping, is a culturally defined system. 

 According to Fuson (1990), multidigit understanding is difficult because it requires 

children to understand not only how numbers can be partitioned according to the decade 

structure, but also how these values interrelate. Resnick (1983b) uses the term ‗Unique 

partitioning‘ to describe the more basic ability to partition multidigits into tens and units 

and ‗Multiple partitioning‘ to describe the ability to partition multidigits in non-standard 

ways that demonstrate the deeper understanding required for competence with multidigit 

calculations (e.g., a number such as 34 is not just composed of 3 tens and 4 units (unique 

partitioning) but can also be decomposed into 2 tens and 14 units). Such understanding is 

challenging; indeed, Resnick described the introduction to the decimal system as the 

most difficult (and important) instructional task in mathematics in the early years (1983b, 

p.126). 

 According to Nunes and Bryant (1996), the reason that children‘s understanding 

of the decimal structure does not develop until a later age is likely to be that they do not 

understand one or both of the two mathematical principles that underlie its structure. 

These are a) that units can be of different sizes – for example, tens and units, and b) that 

any positive integer can be decomposed into two or more others that precede it in the 

ordinal list of numbers.  

 This understanding of how numbers can be decomposed into smaller numbers is 

reflected in Fuson‘s Bidirectional chain level and is also encompassed in other 

developmental models such as, for example, Saxton and Cakir (2006) who identify 

children‘s ability to partition single digit numbers as a significant predictor of base ten 

understanding or Jones et al. (1996) who describe the ability to partition single digit 

numbers in different ways as a key prerequisite for place value understanding.  
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1.2.3 Summary 

Children are born with certain perceptual mechanisms that allow them to make non-

symbolic quantitative judgements. Although these may support later abilities, children 

need to learn the number words and, importantly, the structural relationship between 

them (e.g., how the number 7 can be broken down into 3 and 4). This understanding of 

how numbers can be partitioned into smaller numbers is referred to as additive composition 

(see following section) and allows children to decompose and recompose addition and 

subtraction problems, thereby providing them with more flexible and efficient calculation 

strategies. It is also possible that understanding additive composition provides a 

foundation for understanding how multidigits are composed.  

 According to Martins-Mourao & Cowan (1998), additive composition is thought 

to form a conceptual base for the development of children‘s elemental arithmetic and 

their understanding of the decade numeration system. This concept will therefore be 

examined in more detail. 

 

1.2.4 Additive composition 

1.2.4.1 Defining Additive composition 

Piaget (1965) coined the term ‗additive composition‘ to refer to the way in which a whole 

relates to its parts, and involves understanding how the whole is the sum of the parts. 

Piaget examined part-whole understanding as an ability to simultaneously process a 

subordinate and basic level concept (e.g., a set of wooden beads consisting of brown and 

white beads). Piaget described three levels of children‘s understanding. At the first level, 
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children are unable to process both levels simultaneously – they are unable to hold in 

mind the relationship of a bead between its inclusion in the basic level set (white/brown) 

and the superordinate level (wooden). At the second level, where children are aged 

around 6/7, they begin to discover this relationship through experience, perhaps through 

trial and error. In the third state, when children are aged around 7-8 years, this ―discovery is 

spontaneous and immediate‖ (Piaget, 1952; p.176) children are able to reason simultaneously 

about the whole and the parts.  

 Piaget then compared children‘s understanding of the additive composition of 

classes with their understanding of number, where “a whole remains constant irrespective of the 

various additive compositions of its parts, e.g., 4 + 4 = 1 + 7 = 2 + 6 = 3 + 5” (p.183). Piaget 

argued that a similar pattern of development was apparent, where at the first stage the 

two sets are not seen as equivalent (i.e. children cannot distinguish changes to the parts 

from changes to the whole), at the third stage they are seen as equivalent, whilst in 

between these two stages, children demonstrate intermediary reactions.  

 Piaget summarised children‘s understanding in terms of the equation A + A‘ = B, 

where A is one part, A‘ is the other part (members not belonging to A), and B is the 

whole. This part-whole relationship describes the schema that plays a role in several 

models of children‘s development of number understanding (Putnam, Debettencourt, & 

Leinhardt, 1990; L. B. Resnick, 1983b; Riley & Greeno, 1988), where PA + PB = W 

(reflected in Figure 1.2). Irwin (1996) chose to use numbering instead of lettering for the 

parts, and is the convention used in this thesis as it helps refer to the order in which parts 

are presented. Therefore: P1 + P2 = W. 
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Figure 1.2: Part-Whole Schema (adapted from  L. B. Resnick, 1983b) 

 

 Piaget explored this concept of additive composition with a question in which 

participants were asked if a child who had four sweets to eat in the morning and four 

sweets to eat in the evening would have had the same number in total as a child who had 

been given one sweet in the morning and seven sweets in the evening. Concrete materials 

were provided for the task. Piaget concluded that only children of 7 years and older could 

answer this question successfully. Presented symbolically, these children needed to know 

that: 

P1 + P2 = (P1- 3) + (P2 + 3), where P1= P2 = 4 

 

 Compensation 

The above statement reflects one of two key aspects of Resnick‘s (1983a) description of 

the part-whole schema: compensation: - that if one part is increased by the same amount as 

the other part is decreased, then the whole will remain the same. Therefore: 

If P1 + P2 = W then (P1 + x) + (P2 – x) = W 
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 In this statement, the same amount taken from one part is added to the other. If 

the amount taken from one part is equal in value but a different token3 the following 

statement applies: 

If P1 + P2 = W then (P1 + m) + (P2 – n) = W, if m = n 

 

 Covariation 

The other part-whole key aspect reflects an understanding of how an increase or decrease 

in one part will lead to an equal increase or decrease in the total as long as the other part 

remains unchanged. This is referred to as the covariation principle: 

If P1 + P2 = W then (P1 + x) + P2 = W + x 

 

or: 

If P1 + P2 = W then (P1 - x) + P2 = W – x 

 

 A concept of additive composition refers to an understanding of the relationship 

between parts and wholes. For example, Resnick describes additive composition as the 

principle that numbers are composed of other numbers, and that any number can be 

decomposed into parts. Farrington-Flint, Canobi, Wood, & Faulkner (2007) use a similar 

description:  

                                                      

 

3 Token here refers to an individual instance of the same symbol – e.g., different instances of the 

amount 3. 
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“Additive composition is the principle that larger numbers are made up of smaller amounts, that is, 

most natural numbers are composed by addition and therefore can be additively decomposed in 

various ways” (p.228) 

 

 Although Baroody (2004a) does not actually use the term ‗additive composition‘, 

he concludes that one of the ‗big ideas‘ children must acquire in their numerical 

development is that: 

 “a quantity (a whole) can consist of parts and can be broken down (decomposed) into them, and 

the parts can be combined (composed) to form the whole” (p.199) 

 

 Clearly, it is possible to decompose or partition a number into many parts, 

although the simplest, and most frequently referred to, is breaking a number into two 

parts. Indeed, Nunes refers to additive composition as how ―any number can be expressed as 

the sum of two other numbers (or decomposed into two other numbers)‖. Similarly, in her 

Bidirectional stage, Fuson makes reference to learning the ways in which a number can 

be partitioned into combinations of two numbers (using five as an example). The next 

section looks at how this concept may develop. 

 

1.2.4.2 Emergence of Additive Composition understanding 

  ‘Protoquantitative’ concept of additive composition 

According to Resnick (1992a), children possess a part-whole understanding from an early 

age, stemming from their interactions with physical objects. Therefore, even before 

children have reliably learnt to quantify objects, they know that a whole quantity can be 
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cut into two or more parts, that the parts can then be recombined to make the whole and 

that the order in which parts are combined does not matter in reconstituting the original 

amount. Then, as children learn to quantify amounts, this ‗protoquantitative‘ knowledge 

supports the development of a quantitative understanding of part-whole relations. 

Resnick describes certain activities, such as combining and comparing sets of objects, as 

providing the basis of this understanding but does also emphasise the importance of the 

context in which these occur, which encourages mathematical statements to be made 

about these actions as indicated in Figure 1.3 (adapted from Resnick, Biull and Lesgold 

(1992).  

 

 

Figure 1.3: Development of the protoquantitative part-whole schema (adapted from L. B. Resnick et al., 

1992) 
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 The proposal that children‘s initial conceptions of additive composition will 

develop from their experiences with objects also reflects Nunes and Bryant‘s (1996) 

suggestion that adding and subtracting with concrete referents can impart knowledge 

about the decomposition of numbers that is crucial for the development of numeracy 

concepts and acquisition of later mathematical skills. 

 

 Additive composition from procedural experience 

Rather than developing from any protoquantitative understanding, an alternative view is 

that children‘s understanding of how numbers can be broken down is developed simply 

through procedural experience. According to this view, it is through repeated calculations 

that children come to realise certain patterns that reflect the relationship between 

quantities. This view consequently reflects a different order between conceptual and 

procedural understanding which Bisanz, Sherman, Rasmussen, & Ho (2005) describe as 

―application before evaluation”. Accordingly, it is argued that children are able to activate a 

procedure without having any former knowledge of the underlying principles or concepts 

that make the procedure valid. For example, a child may realise that the best way to 

calculate 2 + 8 is to begin by counting on from the larger amount without realising the 

quantitative relationship – that parts can be combined in any order without change to the 

total (i.e. commutativity - see Baroody, Wilkins, & Tiilikainen, 2003).  

 Applying this line of argument to additive composition, children may develop 

their understanding through repeated experiences of adding different amounts and 

‗seeing‘ how this often results in the same total. This approach seems to be suggested in 

Fuson‘s developmental model of number previously described in section 1.2.2. 
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According to this model, the concept of additive composition seems to reflect the 

Bidirectional stage where ―any given small number can be broken down into all of its possible 

addend pairs‖. The Bidirectional stage follows the Numerable chain stage where Fuson 

describes children‘s ability to use procedures such as count-on, tending thereby to 

suggest that children‘s understanding of the decomposition of number succeeds rather 

than underlies their developing notion of additive composition. 

 

 Additive composition - Iterative relationship between concept and procedure 

It appears therefore that there exist two distinct accounts of how children develop their 

initial understanding of additive composition. On closer inspection however, the task of 

distinguishing the two accounts becomes less simple. This is because one interpretation - 

the ‗procedures first‘ view (e.g., Baroody, Lai, & Mix, 2006) - describes how children‘s 

experiences with small collections may support their understanding of the additive 

composition of quantities by allowing them to quickly enumerate the parts and whole 

through subitising. This argument is difficult to test, because the process of subitising is 

perceptual and therefore provides little means of identifying whether children are in fact 

developing their understanding from this form of quantification procedure rather than 

from a non-quantitative schema. 

 Baroody (2004b) describes and illustrates a hypothetical trajectory of some key 

number and arithmetical skills in which children‘s understanding of part-whole 

relationships (including composition and decomposition) is developed from their existing 

cardinal concepts of number and verbal number recognition. Significantly, Baroody 

highlights how the relationship between children‘s part-whole understanding and other 

developing concepts of number (ordinal concepts, and addition and subtraction concepts) 

is iterative. In other words, children develop an initial understanding of additive 
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composition from quantifying small amounts, and this understanding then develops from 

mathematical experiences with larger numbers.  

 

1.2.4.3 Summary 

A possible way to describe children‘s developing understanding of additive composition 

is as a balance between the two viewpoints previously described. On the one hand, 

children may first develop an understanding of how amounts can be decomposed and 

recomposed on a perceptual level. Experience with small collections may provide a 

foundation to interpret this concept quantitatively and may even help children to 

interpret certain mathematical situations. On the other hand, it is through experience 

with numerical calculations that children are able to integrate this schema with a more 

developed understanding of how numbers can be broken down and recomposed.  

 In other words, the development of additive composition seems to reflect an 

iterative relationship between children‘s informal understanding of how collections can 

be broken down, and their more formal mathematical experiences from part-whole 

problems.  

 

1.2.4.4 Assessing the emergence of additive composition 

The difficulties of assessing children‘s initial understanding of additive composition 

reflect the difficulties of defining what constitutes such an understanding. Two key 

studies by Sophian & McCorgray (1994), and Irwin (1996), have examined the age at 

which children first demonstrate an understanding of part-whole relations. 
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 Sophian & McCorgray (1994) conducted two studies on the development of 4 to 6 

year olds‘ understanding of part-whole relations. The first study looked at the children‘s 

ability to appreciate the structure of arithmetic problems – where their answers to 

addition and subtraction problems showed their awareness that P1 + P2 = W (e.g., that 

P1 could not be greater than W). Problems were presented using objects that were then 

covered to prevent counting strategies. It was shown that 5 and 6 year olds showed a 

sensitivity to the part-whole structure, whereas 4 year olds tended not to. The second 

study examined young children's appreciation of part-whole relations further, using a 

class inclusion task. As in the first study, it was the older children (5-6 years), and not the 

4-year-olds, who were able to perform reliably in this problem. In this way, although the 

first study showed that only the oldest children were successful in quantifying parts 

(rather than just providing an appropriate estimate) both studies demonstrated how 

children as young as 5 had developed a basic appreciation of part-whole relations. 

 Irwin (1996) also examined the development of children‘s quantitative part-whole 

knowledge. In her study, children aged 4 to 7 years were given a range of problems 

requiring them to predict the effect of changes to one of more parts of uncounted 

quantities, counted quantities and numerical equations. The results were used to show 

how children as young as 4 were able to predict the effect of changes to one or more 

parts of an uncounted whole but were less competent in predicting changes to counted 

quantities. This age is lower than that found by Sophian, although Irwin‘s study does 

contain several methodological problems identified by Baroody (2004b). Baroody 

highlighted how children may not have needed a part-whole schema to solve some 

problems, relying instead on counting strategies. In other words, because the amounts 

given were small (e.g., 4) children may simply have calculated the resultant changes to 

parts and not needed to apply any part-whole schema.  
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 Irwin‘s study also showed how it was only the older, 7 year old, children who were 

able to apply the part-whole schema to a purely numerical context: of derived equations. 

Children were asked to identify three doubles that they knew (e.g., 2 + 2 = 4) and were 

then asked to calculate the answer to a related equation by adding or taking away from 

one of the parts. This calculation is clearly more cognitively demanding, and it is perhaps 

not surprising that none of the 4 or 5 year olds, and only 25% of the 6 year olds, were 

able to do it successfully. Unfortunately, the paper does not make clear what the 

assessment criteria were, nor how one could be certain that children were using part-

whole relations to solve the problems rather than more simple addition strategies.  

 By showing that children are sensitive to part-whole relations earlier than the age 

at which they can apply this knowledge to symbolic problems, both Irwin and Sophian‘s 

studies seem to support Resnick‘s descriptions of a protoquantitative concept – emerging 

around 4 to 5 years - although performance depends greatly on how the problem is 

presented. However, it is not until children are at around school age, 5-6 years, that they 

develop the ability to apply this part-whole understanding within a numerical context, 

and perhaps another year older before they develop strategies in which to apply this part-

whole schema to calculate numerical changes. 

 Sophian and Irwin‘s research focused on the bridge between children‘s pre-

quantitative and quantitative understanding of additive composition. When children are 

in the early years of school, they face increasingly difficult numerical problems to solve. 

This section looks at the development of additive composition by looking at different 

tasks where this concept may play a key role. 
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1.2.4.5 Assessing a developing understanding of additive composition 

 Conservation tasks 

Several tests of children‘s part-whole understanding seem to reflect Piaget‘s (1965) 

conservation task. For example, Fischer (1990) used the following test to assess 

children‘s part-whole knowledge. Children were presented with two sets of cubes that 

shared the same total but were composed of different parts of two types of coloured sets. 

They were required to identify that these quantities were the same. Then, in a similar task, 

they were asked if a total had changed when objects were turned over to reveal a 

different colour. Unfortunately, these part-whole tests were administered with other 

number concepts tests, and data on performance for this task were not provided.  

 Saxton & Cakir (2006) also examined children‘s part-whole knowledge by devising 

a ‗partitioning‘ task which was used to predict base ten knowledge (as well as with tests of 

grouping and counting-on). Children were aged between 78 and 86 months and 

partitioning was assessed using two tasks. In the first, children had to enumerate a 

collection of cubes; the collection was then divided into two groups and children were 

asked again to say how many were in the whole collection. In the second ‗mirror‘ task, 

children first counted the total of two groups of cubes, and were then asked the total 

again when the two groups were combined. Knowledge of partitioning was attributed to 

children who did not hesitate or attempt to recount objects. 

 It was found that performance on Saxton and Cakir‘s two partitioning tasks was 

strongly correlated (r=0.84, p<0.001) and 54.6% children met the criterion for possessing 

knowledge of partitioning (3 out 4 correct). As the average age of children was nearly 7 

years, this seems quite a low score considering that children were required only to know 

that a partitioning of the whole did not change its quantity. It is possible however that 

both Saxton & Cakir‘s and Fischer‘s tasks are susceptible to the same criticisms made of 
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Piaget‘s conversation task, namely linguistic demands (McGarrigle & Donaldson, 1974) 

and double questioning (children may think they should change their answer when asked 

the same question by an adult) (Samuel & Bryant, 1984). 

 In these conservations tasks described, children are being asked to recognise that 

perceptual changes to parts do not change the whole. However, aside from the double 

question issue, it is not clear how much this approach can really assess children‘s 

understanding of how quantitative changes to parts affect the whole. Indeed, although 

these problems have been used to assess children‘s part-whole or partitioning 

understanding, only three tasks have been explicitly related to additive composition 

(Cowan, 2003): missing part questions, the shop task, and decomposition problems. 

 

 Missing part questions 

According to Resnick (1983b), children‘s ability to interpret certain word problems in 

terms of a part-whole schema is good evidence that they have informally understood 

additive composition. One type of problem that requires such understanding is an 

‗unknown start‘ problem. In this question, children have to identify an initial part when 

told the other part and the resultant total. For example, “Paul had some marbles; Charles gave 

him five more. He now he has eight marbles. How many did he have to start with?” It is argued that 

children need a part-whole schema in order to select a suitable strategy for enumerating 

this initial part. The difficulty children have with this type of question was demonstrated 

by Riley and Greeno (1988), who showed that it was not until children were around U.S 

Grade 2 level (7 years old) that they were confident with this type of problem. 
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 Shop task 

The shop task was developed by Nunes (reported in Nunes & Bryant, 1996) to examine 

children‘s understanding of the composition of the decade structure. In this task, children 

are asked to give the examiner a specific amount of money which can only be achieved 

by using single unit coins and a higher value coin (e.g., give 7p when the child has 5 1p 

coins and a 5p coin).  

 Nunes (in Nunes & Bryant, 1996. p.53) described a study examining the 

relationship between children‘s ability to solve the shop task and their use of addition 

strategies. It was found that those children who solved the shop task tended to be able to 

count-on in simple addition problems. This led Nunes to postulate that children‘s 

understanding of the numeration system (namely the ability to count-on from the 

cardinal value of one addend) is necessary, but not by itself sufficient, for understanding 

additive composition. This argument seems to reflect Fuson‘s developmental levels 

where the Breakable chain level (children can break a number, leading to strategies such 

as counting-on) precedes the Bidirectional level (children understand how numbers are 

embedded within others). However, it could be argued that the shop task is still a 

relatively simple test of additive composition because children are simply required to 

identify how a whole can be partitioned rather than reason about how a whole can be 

partitioned in different ways.  

 

 Decomposition task 

In describing the Bidirectional chain level, Fuson refers to how, when given the addition 

problem 7 + 6, children might decompose 7 into 6 and 1, and then use their knowledge 

of doubles to conclude that the answer is one more than 12. In order to use this strategy, 
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children need to decompose and recompose numbers, and it has therefore been argued 

that the use of this decomposition strategy reflects knowledge of additive composition 

(Canobi, Reeve, & Pattison, 2003; Cowan, 2003; Steinberg, 1985). 

 Children use a wealth of strategies for additive problems, such as guessing, 

counting-all, counting-on, retrieval and decomposition. The decomposition strategy has 

been identified as cognitively efficient and numerically more developed (Baroody et al., 

2006; Canobi, Reeve, & Pattison, 1998), but it is much less frequently used and generally 

applied only by older children. For example, Siegler (1987) examined the use of different 

strategies for addition problems and found that decomposition was used on only 11% of 

problems by US Grade 2 children (7 years) compared to only 2% problems by 

Kindergarteners (5 years). 

 It seems from this that decomposition strategies are only used by children at an 

age when they have already developed an understanding of additive composition. 

Nevertheless, it has been argued that some children may appreciate the concept of 

decomposition but lack the procedural skills to apply it spontaneously (Putnam et al., 

1990). To address this, Putnam looked at children‘s ability to identify decomposition as a 

valid strategy when used by a puppet (children are more comfortable identifying that a 

puppet, rather than an adult, is wrong or confused). He found that out of 22 normally 

achieving third graders (8-9 years), about half were able to give adequate explanations of 

decomposition strategies.  

 Providing verbal explanations for whether a strategy is valid or not is arguably 

quite difficult. Canobi at al (2003) therefore looked at children‘s ability to identify 

decomposition strategies using a different set up. In their study, children were asked 

whether a puppet was able to identify the solution to an addition question without 

counting, by using the answer to the previous addition question. Their study focused on 
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children‘s (5 – 8 years) ability to identify problems that were decompositions of the 

previous (e.g., to identify that ‗4 + 2 + 3‘ can be solved by referring to the previous 

question of ‗6 + 3‘) and problems that were reordering of the previous (‗3 + 6‘ following 

‗6 + 3‘). Problems were also presented to each child in three counterbalanced conditions: 

with physical counters, with numbers, and with abstract symbols. Children were asked to 

judge whether the puppet could use the previous problem (which required children to 

identify that the problem was decomposition/reordering of the previous) and then justify 

their answer. It was found that children were better able to notice that addends had been 

reordered than decomposed, and that decomposition of addends was noticed more when 

presented with objects than with symbols. This shift from being able to reason with 

concrete materials before more abstract concepts seems to echo Resnick‘s (1992a) 

description of a protoquantitative to quantitative development in children‘s 

understanding of additive composition.  

 

1.2.4.5 Summary 

Children‘s understanding of additive composition of numbers seems to develop between 

the approximate ages of 5 to 7 years. Unfortunately, differences in forms of assessment 

make it difficult to be more precise. Three key tasks have been postulated as engaging 

children‘s knowledge of additive composition: use of the decomposition strategy in 

addition problems, missing start addition problems, and the shop task. As Cowan notes, 

no study seems to have attempted to compare children‘s performances on all three of 

these tasks, although one study, by Martins-Mourao & Cowan (1998) examined children‘s 

ability on the shop task and the missing part problem. The study looked at 152 children 

aged between 4 and 7 years, finding that children were more likely to succeed in the shop 

task than in the missing part problems. However, these tasks still only require children to 
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apply a part-whole schema to identify single rather than multiple solutions. As Nunes & 

Bryant (1996) state, it would be interesting to discover the age at which children actually 

know that a number such as 6 can be partitioned into different combinations such as 4 

and 2, or 1 and 5. Several tasks described below have explored this ability. 

 

1.2.4.6 Partitioning tasks 

Additive composition refers to an understanding of how a number is made up of smaller 

numbers. Decomposition (partitioning a number into different parts) is therefore central 

to this concept, and the term ‗partitioning task‘ will be used in this thesis to refer to tasks 

requiring children to decompose a number into different combinations – typically of two 

parts. Three tasks have been identified that might be considered partitioning tasks. 

 

 Jones et al (1996) partitioning task  

Jones et al describe their partitioning task in the context of a framework for the 

assessment and intervention of multidigit number sense. It is argued that partitioning is a 

key aspect of the multidigit understanding identified by Resnick (1992a), and the authors 

propose five levels of understanding. The first of these is a pre-place value level of 

understanding. The activity for this pre-place value level of partitioning requires children 

to identify all the ways that the numbers 5, 8 and 10 can be decomposed into 

combinations of two numbers (e.g., 5 into 2 & 3). The problem is presented using a story 

context and concrete materials: 

“The man in the yellow hat shook 2 bags. „I had 10 candies and put some in one bag and the 

rest in the other”, he told George. How many could be in each bag?”‟ (p. 316) 
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 Unfortunately, the authors do not provide a detailed account of what prompts 

were provided to children, or what criteria were used for their assessment of 

understanding. Nevertheless, the task raises interesting questions concerning its relation 

to additive composition that will be returned to later. More than this, rather than just an 

assessment task, Jones et al‘s partitioning problem is also a learning activity where 

children can explore multiple solutions to a single question.  

 

 Fischer’s (1990) part-whole activity 

Fischer describes an activity which asks children to separate a set of five objects into two 

parts and enumerate the parts. For this activity, lessons were designed to foster 

comparisons across the children‘s configurations in order to promote understanding of 

the various combinations of subsets that compose a whole set. An interesting point to 

note in this activity was the use of external configurations to help children infer 

numerical relationships from their solutions. This use of a record of solutions is 

described more recently by Clements (2009). Clements describes how children can be 

encouraged to see patterns in different combinations by listing them in order (6 & 0, 5 & 

1, 4 & 2 etc.). By listing the solutions in order, it is likely that children can see how one 

part goes up and the other down in consecutive solutions, yet it is not exactly clear how 

easily they will understand why this is so.  

 

 Baroody’s (2006) double decomposition game 

Baroody describes a game where children have some cars to move from one side of a 

board to the other. The board is separated into hexagons and children are required to 
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move the cars according to the number on a card they select at random. In one version 

called ‗double additive decomposition‟, children select a card, partition its number mentally into 

two parts and then move two cars according to each part: 

“In double additive decomposition, a child draws a number card such as 5 and can decompose it 

into parts any way she or he wishes (e.g., moving one car five spaces and the other none or moving 

one car three spaces and the other two” (p.28) 

 

 Although children have a concrete referent in which they can act out the 

decomposition, children cannot simply partition the objects to identify a solution. Instead, 

they must identify a solution mentally and then use the cars to externalise that solution.  

 

1.2.4.7 Summary 

This final section has briefly reviewed three tasks that share a common goal – to 

encourage children to identify different ways a number can be partitioned. However, one 

key difference between the tasks is the form of representation used to support children. 

With Jones‘ and Fisher‘s task, children are given concrete materials to identify solutions. 

With Baroody‘s task, they are not. In Fisher‘s task (and the reference to Clements), 

children are encouraged to compare records of solutions. It might be argued that 

differences between these tasks reflect differences in arguments for the development of 

additive composition. If additive composition develops from children‘s protoquantitative 

understanding, it might beneficial for children to use objects to help map this knowledge 

to a quantitative understanding. Alternatively, if children develop additive composition 

by noticing patterns from repeated numerical calculations, it may be beneficial to provide 

them with a means to record and compare their solutions. In reality this distinction may 
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not be so clear – physical objects might be used to facilitate calculations; numerical 

records might be used to encourage children to map their physical understanding to 

symbols. Nevertheless, the tasks described, along with the arguments put forward for the 

development of additive composition, do seem to indicate different roles for the types of 

learning materials that may be most supportive.  

 

1.2.5 Numerical development - Summary 

This section has reviewed children‘s numerical development in their early years of 

schooling and identified a concept – additive composition - that plays a key role in their 

numerical understanding. Additive composition refers to an understanding of the way 

numbers are composed, and has consequently been related to various numerical abilities 

from calculation strategies to multidigit understanding. The concept seems to develop 

during children‘s first few school years, although differences in assessment tasks make it 

difficult to be more exact. What is also not clear is the extent to which children‘s 

numerical understanding builds upon their understanding of how physical collections can 

be composed and decomposed in different ways, or whether children need to discover 

these relations through calculation experience. These two possibilities seem to have 

important implications for the type of materials children are given to learn about how 

numbers can be broken down.  

 Whether physical materials support children in developing numerical concepts 

such as additive composition is a key question, and one that has attracted much research. 

The next section aims to review the literature concerning the role of physical materials in 

learning mathematics in order to help identify when, or if, such mathematical tools can 

support the development of additive composition.  
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1.3 Physical Learning Materials 

The previous section described activities where children explored the different ways in 

which numbers could be broken down. Certain activities suggested a role for physical 

objects in helping children identify different combinations. In contrast, other activities 

did not involve physical objects, thereby making it unclear whether physical objects are 

the most effective representation for learning, or whether they are even necessary. This 

section intends to review the literature on the role of physical materials in supporting 

children‘s numerical development and then draw together these arguments to evaluate 

both the advantages and limitations of physical materials for supporting children in tasks 

such as the partitioning tasks described. 

 

1.3.1 Manipulatives – physical learning materials 

Manipulatives are physical materials used in education to support children‘s learning, 

particularly in mathematics. Manipulatives can vary in many ways, including their shape, 

size, colour and the quantity used. They may be more or less ‗concrete‘. ‗Concrete‘ is 

defined here as pertaining to everyday objects (for a more detailed discussion of the 

origin and meaning of the term see Clements (1999)). A more concrete manipulative 

might be exemplified by a lollypop stick or toy cookie, whilst a less concrete object might 

be a simple plastic cube – one that is most familiar within an educational context.  

 Manipulatives are intended to present mathematical ideas, in this case, as 

representations of number (s). The term representation will be used in this thesis to refer to 

both internal and external manifestations of number, although, as emphasised by Cobb, 

Yackel, & Wood (1992), it is acknowledged that the representational meaning of 

mathematical tools such as manipulatives is socially constructed rather than being a 
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property inherent in materials. In other words, the representational meaning of simple 

physical objects is generated through the particular social context - between the teacher 

and students for example. 

 Lesh, Post, & Behr (1987) describe five forms of external representation: 

manipulative models, static pictures, written symbols, spoken language and real scripts. 

According to Lesh et al, a key goal is to support children‘s ability to reason between these 

modes of representation. Pape & Tchoshanov (2001) describe children‘s learning in 

terms of an interplay between internal and external representations within a social 

context. As illustrated in their diagram (Figure 1.4), they list five forms of external 

representation: written number words, written numerals, pictorial materials, verbal 

number words and manipulatives models.  

 

 

Figure 1.4: The relationship between internal and external representations in developing children‟s 

understanding of the concept of numeracy (Pape & Tchoshanov, 2001) 
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 Comparing the modes of external representation proposed by Lesh et al and by 

Pape & Tchoshanov, it is possible to identify one key distinction: representations that 

have a one-to-one correspondence with the number of items they represent, and those 

that use a symbolic reference to the cardinal value of the set. For example, the written 

numeral ―5‖, or the spoken word ―five‖ are cardinal terms, whilst distinct images or 

physical cubes have one-to-one correspondence with the quantity of items in the set. 

This distinction is certainly problematic – certain manipulatives may have different 

symbolic values (e.g., Dienes‘ cubes) – but it does suggest one apparent appeal of 

physical objects in that they seem to provide a means of communicating certain 

quantitative relations, such as how amounts can be added together or partitioned in 

different ways. However, it is not clear how easily children are able to interpret such 

numerical relationships from these materials. It is also not clear why physically 

manipulating a representation of quantity would be advantageous. In order to address 

these questions, it is important to examine the history of manipulatives and the different 

arguments surrounding their use. 

 

1.3.2 History of manipulatives 

1.3.2.1 Frobel and Montessori 

Two of the first key proponents and designers of manipulatives, Montessori (1912) and 

Froebel (1826), both advocated the importance of playful discovery in learning. 

Interestingly, Froebel (cited in Theissen, 2005) actually proposed a specific system for the 

use of materials in learning mathematics. This system built upon the materials he 

presented: ‗Froebel‘s gifts‘, of which the third gift is most relevant to the level of 

mathematics discussed here. Froebel‘s third gift consisted of a set of eight one inch 
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wooden cubes, presented together to form a 2 inch cube. Froebel (cited in Theissen, 

2005, p.16) 

 “The principle cube appears separated by the mentioned division in this play into eight equal 

cubes. The child thus distinguishes here as a given fact and without any words (purely as the 

perception of an object), a whole and a part, for each component cube is part of the principle cube”  

Froebel (cited in Theissen, 2005, p.16) 

 

 As well as using accompanying rhymes to foster mathematical language, Froebel 

described types of activities with the gifts, which he separated into three stages. The first 

consisted of constructing real life structures with the materials (e.g., a building or chair). 

In the second stage, children were encouraged to create systematic arrangements, or 

patterns. In the third stage, activity was intended to be more formally mathematical (i.e. 

applying to number problems).  

 Although written more than a century ago, it might be argued that some of the 

most prevalent manipulatives used in early learning, such as rods and cubes, are not too 

dissimilar to those proposed by Froebel. What we do have, however, is a stronger 

theoretical framework for the role of such objects in helping children to construct their 

understanding of the world. 

 

1.3.2.2 Piaget and Bruner 

The importance of a child actively exploring the environment and ‗discovering‘ new ideas 

received theoretical support in the work of Piaget in the 1960‘s. Although Piaget‘s (1965) 

work was more a theory of the development of knowledge than a theory of instruction, it 
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did highlight a role for concrete materials in helping younger children develop and 

articulate their understanding of the world, whilst also indicating that developmental 

progress was reflected in gradual independence from these materials. This view of a 

concrete to abstract progression of knowledge, and the possible implications for 

instruction, received more support from the work of Bruner (1966). According to 

Bruner, the instructor should try to encourage students to discover principles by 

themselves. The task of the instructor is to translate information to be learned into a 

format appropriate to the learner's current state of understanding. Bruner described 

children‘s understanding in terms of three levels of representation: enactive, iconic and 

symbolic. Although Bruner did not specifically relate these modes of representation to the 

stages of development proposed by Piaget, he did suggest a sequential graduation 

through these representational forms – with children progressing from working with 

hands-on physical materials, to reasoning with iconic and ultimately symbolic 

representations. 

 

1.3.2.3 Papert 

Papert, who worked under Piaget at the University of Geneva, also proposed an 

educational theory greatly influenced by Piaget‘s constructivism. Papert argued that the 

most effective way in which children are able to develop their internal models of the 

outside world is to externalise these models: through construction, hence the term 

Constructionism given to Papert‘s theoretical approach. 

 Constructionism has clear parallels to Constructivism in its developmental, child-

centred emphasis that views children as the builders of their own cognitive world. One 

area of greatest difference, however, concerns their approaches to the development of 

intelligence. Whilst Piaget‘s emphasis was on the construction of internal stability, Papert 
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was more interested in the dynamics of change (Ackermann, 2001) which had 

implications for the role of the teacher. Papert viewed Constructionism in direct contrast 

to Instructionism (Papert & Harel, 1991) and was highly critical of current approaches to 

the teaching of subjects such as mathematics that required children to absorb numerous 

abstract rules – arguing that this approach led to a negative attitude to the subject, which 

in his book, ‗Mindstorms‘ (Papert, 1980), he referred to as ‗Mathaphobia‟. Instead, Papert 

has argued strongly for the need for children to be able to freely engage in constructing 

and sharing public entities, be they physical models or articulated theories. 

 Papert‘s emphasis on the power of learning tools to allow children to externalise 

their thinking led him to his, arguably visionary, belief in the future role of the computer 

in helping children learn. Papert‘s work was epitomised by the development of Logo – a 

simple computer language in which children must externalise rules to guide an on-screen 

object in order to construct geometric shapes. The success of Logo is evidenced by its 

prevalence today in educational settings in many countries; however, it is not without its 

critics. Whilst Papert described Logo as a means for children to develop various cognitive 

skills from problem solving to planning and reasoning, there is mixed evidence for 

whether the programming skills developed do generalise to such higher order thinking 

(Yelland, 1995). Pea (1983), for example, reports on three studies examining the learning 

benefits of Logo. In the first, particular difficulties children had with Logo are discussed 

(e.g., debugging, using variables). In the second, the depth of children‘s understanding is 

questioned, highlighting instances where children‘s programs often ―displayed production 

without comprehension‖. In the third study, it was shown that children using Logo over a 

school year did not outperform their non-programming peers in measures of planning 

ability.  

  As well as raising doubts over some of the claims surrounding Logo, Pea draws 

attention to the discovery-learning pedagogy advocated by Papert. Arguably, with 
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Papert‘s emphasis on the learner, it is not always clear what role is intended for the 

teacher. This issue is discussed by Sutherland (1993) who emphasises the need for 

educators to become more explicit in their underlying theories that influence their 

teaching. Indeed, differences in teacher involvement may help explain differences in 

findings from Logo research. In trying to resolve discussions over the teacher‘s role, 

Sutherland relates the work of Vygotsky (1962) who focuses on the role of social 

interaction in children‘s development and Wood, Bruner and Ross (1976) who 

introduced the term ‗scaffolding‘ to describe the actions of the teacher in reducing some 

of the cognitive demands of the task in more complex problems.  

 Although it remains unclear to what extent certain tools such as Logo do foster 

children‘s cognitive and social development, Papert‘s work has remained highly 

influential, particularly in the development of Microworlds to support mathematics (e.g., 

Geraniou, Mavrikis, Hoyles, & Noss, 2008; Hoyles, Noss, & Adamson, 2002) 

Importantly for this thesis, Papert‘s theoretical arguments are highly applicable to the use 

of physical objects. By constructing external models using the materials, children are 

provided with a way to externalise, communicate and reflect upon their understanding. 

Indeed, Papert‘s work has been applied to digitally augmented physical objects through 

the creation of floor robots and, more recently, programmable Lego (called Mindstorms in 

honour of his book). 

 

1.3.2.4 Dienes 

The work of Piaget, Bruner and Papert has clearly shaped theoretical and instructional 

approaches to learning, and the physical embodiments of Papert‘s Logo highlight their 

relationship to current developments in tangible designs. Nevertheless, with a focus on 

the use of physical materials to explore numerical relationships, it is also important to 
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consider the pioneering work of the mathematical theorist and practitioner: Zoltan 

Dienes.  

 Arguably, one of the greatest legacies of Dienes‘ (1964) work relates to the 

structured materials he developed for supporting children‘s concepts of place value: the 

base ten version of his Multibase Arithmetic Blocks (hence referred to as Dienes‘ blocks). 

The appeal of these materials is demonstrated through their educational use and focus in 

research literature, although empirical evidence for their effectiveness is less clear (Fuson 

& Briars, 1990; L. B. Resnick & Omanson, 1987; P. Thompson, 1995). Dienes focused 

his work on mathematics, as he believed this differed from other domains in the nature 

of the structural relationships between concepts (such as the relationship between groups 

in different numerical bases). He argued that learning mathematics consisted of 

apprehending such relationships and applying the resulting concepts to real world 

situations. Dienes drew upon Piaget‘s assertion that learning is an active process and 

proposed three stages of learning instruction. These stages were described according to 

the type of ‗games‘ (engaging activities) that might be played and reflected Piaget‘s stages 

of knowledge development. Within these games, Dienes proposed that children should 

be presented with materials that varied perceptually but were all consistent in their 

structural correspondence to the concept to be learnt. The first stage, ‗Preliminary 

games‘, describes a form of undirected activity where children start actively exploring 

materials and making observations about their properties without necessarily 

understanding their significance. The second stage, ‗Structured games‘, describes how 

activities become more directed and purposeful (such as addition or subtraction activities 

with materials). During this stage, Dienes describes a move toward more abstract 

reasoning by using a variety of materials that vary perceptually, but are used in identical 

tasks. In the final stage, ‗Practice games‘, children begin to record activities using 

symbolic notation, which Dienes believed was only a small step away from working 
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without materials. It is interesting to note the similarities of Dienes activities with those 

proposed by Frobel some 100 years earlier.  

 

1.3.2.5 Summary 

The work of Piaget, Bruner and Papert, amongst others, has helped provide a theoretical 

foundation for children‘s cognitive development and identified a possible role for 

physical objects in exploring and articulating ideas when children lack the ability to do so 

more abstractly. Dienes‘ work is of great significance in that it describes not only types of 

activity but the types of material that may be used to support certain mathematical 

concepts. These types of material (e.g., unit cubes, Dienes‘ blocks) are still in common 

use today, thereby raising the question: what evidence do we have that they work? 

 

1.3.3 Empirical evidence for the effectiveness of manipulatives 

Several investigators have examined the use of Dienes‘ base ten blocks in supporting 

children‘s understanding of multidigits and multidigit calculations. Fuson & Briars (1990), 

for example, reported success in the use of the blocks for improving children‘s multidigit 

calculations although their study did not include a control group and many of the 

younger children needed frequent reminders that they should draw upon their 

experiences with the blocks to help solve the multidigit problems. Resnick and Omanson 

(1987) also examined the use of base blocks to support children‘s multidigit algorithm 

procedures. They found that children‘s capabilities for doing arithmetic with the blocks 

were not reflected in a comparable ability for following written arithmetic procedures. 
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 Other studies have also highlighted children‘s difficulties in mapping between base 

ten structures and symbolic notation (I. Thompson, 2000). Children, especially younger 

children, seem to have difficulty in mapping procedures using manipulatives with 

symbolic procedures; although this may reflect the more specific difficulties of mapping 

to base ten and place value notation, both of which are cultural conventions. Indeed, 

Baroody (1990) suggests that it is necessary to introduce a specific sequence of different 

manipulative and recording procedures (see Figure 1.5) that can graduate children‘s 

understanding. As Figure 1.5 illustrates, Baroody describes how this graduation might be 

achieved through both concrete and pictorial materials. 
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Figure 1.5: Graduation in representations to support place value understanding (Baroody, 1990) 

 

 Despite many other studies looking at the potential for manipulatives to support 

learning, there still remains no clear consensus about their effectiveness. Some studies 

have reported benefits (Canobi, 2005; Martin & Schwartz, 2005; Suydam & Higgins, 

1977), whilst others have reported no differences, or even negative effects, from the use 

of physical materials (Ball, 1992; Fennema, 1972; L. B. Resnick & Omanson, 1987; Uttal, 

Scudder, & DeLoache, 1997). Sowell (1989) combined the findings of 60 studies in a 

meta-analysis to evaluate the effectiveness of manipulative instruction (compared to 

pictorial or abstract) and found a positive effect of long term manipulative use. It is 

noted however that this form of instruction tended to be favoured by teachers who had 

had specific teaching instruction, and that this may have led to a more general positive 

effect.  

 

1.3.3.1 Summary 

Although there have been many class-based studies examining whether manipulatives 

‗work‘, conflicting findings leave this question unresolved. The discrepancies between 

findings highlight a key difficulty in trying to establish the effectiveness of manipulatives, 

namely: materials are used to teach a wide range of concepts, to children who differ 

significantly in their abilities, by teachers using a variety of approaches. Manipulatives 

may be implemented in many different ways based on a range of factors: these include 

how structured the activity is (e.g., the different levels described by Dienes), how much 

time the children have to use the materials, how much effort is put into mapping the 

materials to abstract reasoning and differences in the types of manipulatives available 
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(Mix, in press). In short, whether manipulatives ‗work‘ or not in each study may be 

influenced by any of the multiple factors determining the learning context, rather than by 

the properties of the physical materials per se. Manipulatives in no way guarantee success 

(Baroody, 1989) and rather than asking ‗if‘ manipulatives work, the question should 

perhaps focus on when manipulatives work, or do not, and importantly, why. 

Understanding the mechanisms through which physical materials may support children‘s 

learning can help to evaluate the potential of these materials, and the circumstances 

under which this potential can be realised. 

 

1.3.4 Mechanisms 

There have been many reasons put forward on how manipulatives might support 

learning. Halford & Boulton-Lewis (1992), for example, list seven: as a memory aide, 

verifying truth, increasing flexibility, facilitating retrieval, mediating transfer, indirectly 

facilitating abstraction, and generating predictions of unknown facts. Reasons such as 

these are quite high level however, and do not explain why manipulatives may confer 

these benefits. This section therefore attempts to describe some of the possible 

mechanisms in which manipulatives might help children develop certain numerical 

concepts such as additive composition. These will be organised around four themes 

proposed by Mix (in press) for the possible benefits of concrete materials: conceptual 

metaphor, offloading intelligence, focusing attention and generating actions. 

 

1.3.4.1 Conceptual metaphors 

Manipulatives might provide children with perceptual experiences that they can draw 

upon when trying to reason abstractly. For example, Hughes (1986) describes how young 
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children were not able to solve an addition problem when it was presented symbolically, 

but could when the same question was presented with concrete referents. Significantly, 

they also understood the problem when it referred just to hypothetical objects, thereby 

suggesting that concrete experience can provide a reference point with which to reason in 

the absence of materials. Various other studies have shown how young children are able 

to reason about certain concepts such as commutativity (Canobi, Reeve, & Pattison, 2002); 

inverse relations (Canobi, 2005); equivalence (Sherman & Bisanz, 2009) and additive composition 

(Sophian & McCorgray, 1994), and are able to do so with physical objects before they 

can with symbols. It is possible therefore that children are able to draw upon this 

experience in order to rationalise about these concepts at a later stage without these 

materials. In other words, manipulatives might provide a conceptual metaphor for 

subsequent symbolic reasoning. 

 It can be questioned why children need manipulatives when they have experience 

with everyday objects. One reason might be that manipulatives provide an external 

prompt that encourages them to draw upon this previous experience when using more 

formal, symbolic mathematical language in the classroom. Indeed, McNeil & Jarvin 

(2007) propose that one of the key advantages of manipulatives is they allow children to 

draw upon real life experiences. Moreover, in contrast to ‗real life‘ objects, manipulatives 

can be designed to emphasise the features that are most relevant for the mathematical 

concepts being discussed in the classroom – in the way that Dienes designed the Multiple 

Arithmetic Cubes (MAB) to reflect the structure of the base system.  

 

 Embodied Cognition 

By describing how children can draw upon their concrete experience to reason abstractly, 

the above arguments imply a separation between concrete and symbolic reasoning, where 
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the first is dependent on physical experiences, and the latter more abstract and hence 

independent of any perceptual experiences. However, this separation between concrete 

and abstract reasoning has been criticised by proponents of Embodied Cognition (e.g., 

Lackoff & Núñez, 2000). Embodied Cognition is a theoretical viewpoint that argues that 

adults‘ thinking should not be considered as abstract but rather as grounded in prior 

perceptual experiences, and that the tight coupling between experiences and cognition 

should not be separated. This is saying that children‘s concrete experiences do not simply 

serve as a reference for more abstract thinking, but rather become embodied in higher 

order thinking. This view is not without its critics (e.g., Clark, 1999; Mahon & 

Caramazza, 2008), but the growing evidence of the role of visual-spatial imagery (Hatano, 

Shimizu, & Amaiwa, 1987; Hegarty & Kozhevnikov, 1999), and motor activation 

(Wilson, 2001) when individuals are solving problems ‗abstractly‘, does support these 

arguments. It has been shown, with particular relevance to manipulatives, that abacus 

masters have expansive digit spans (retention of numerical digit strings) and arithmetic 

abilities because they have internalised a mental model that can simulate the structure of 

an abacus (Hatano & Osawa, 1983). However, although this research shows the potential 

to internalise a particular external structure to support recall and calculation, it remains 

unclear whether experiences with manipulatives can be internalised to support the 

formation of numerical concepts.  

 One explanation for how perceptual experiences can become embodied in 

concepts has been presented by Lackoff and Nunez (2000). The authors describe a 

process of conflation: the simultaneous activation of distinct areas of the brain that are 

concerned with different aspects of experience, resulting in relevant neural links. One 

example provided is children‘s concept of numbers – if children walk up some stairs 

whilst simultaneously counting them, the conflation of these experiences could develop 

the concept of numbers as points on a line. From this, it might be argued that children‘s 
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concepts of decomposition (how numbers are composed) may be developed by the 

simultaneous experience of partitioning objects whilst verbally identifying numerical 

decomposition solutions. Unfortunately, there is limited neurological evidence at present 

that supports the process of conflation in concept formation. 

 

 Analogical Reasoning 

Rather than actually becoming embodied in developing concepts, it is possible to 

consider how actions with manipulatives may provide a metaphor for children to reason 

about concepts symbolically. As Gentner (1983, p.162) states: ―Many (perhaps most) 

metaphors are predominantly relational comparisons, and are thus essentially analogies.‖ 

 According to Gentner, the ability to use the source domain as an analogy for the 

target domain is determined mainly by the structural relationships between the two. In 

the case of decomposition, the structural mapping between the source domain (concrete 

materials) and the target domain (numerical symbols) is strong (Halford & Boulton-

Lewis, 1992) as it is possible to map the way numbers can be decomposed to the way 

physical materials can be partitioned in different ways. Children‘s familiarity with the 

structural relationships between physical objects thereby provides a base from which to 

reason analogically about the relationships between numerical symbols. If a collection of 

objects can be partitioned into two groups, so might the number 6. However, this 

mapping requires children to appreciate the structural relationship in both the base and 

source domains. Children might know that objects can be partitioned in different ways, 

but they may not focus on the quantitative aspect of partitioning – focusing instead on 

other properties such as how overall length may change with different configurations (as 

highlighted in Piaget‘s class inclusion tasks). With Dienes‘ blocks, children may not focus 

on the intended properties of the materials – namely that a collection of ten objects can 
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be grouped to together to create one collection (Baroody, 1990; Varelas & Becker, 1997). 

Halford & Boulton-Lewis (1992) described such problems as processing loads (the 

cognitive demands of having to process objects and their intended representational 

meanings simultaneously) required by certain types of concrete material. 

 

 Difficulties with linking representations 

The difficulties that children may have in processing the relevant features of both 

concrete materials and numerical symbols is highlighted in the work of Uttal et al (1997). 

Uttal et al conducted research focused on young children‘s ability to use a scale model of 

a room to orientate themselves in order to search for hidden objects. It was found that 

children had significant difficulties in interpreting the scale model as a symbolic 

representation as well as a play object itself. Extending these arguments to the use of 

manipulatives, it was argued that children may still have the same problem of ‗dual 

representation‘: processing the manipulatives as symbolic representations as well as 

objects of interest in themselves. The authors do not go as far as to denounce the use of 

manipulatives but suggest that care should be taken to help children process them as 

symbols - through explicit instruction and the use of simple materials with fewer 

extraneous features that have not been used in non-mathematical contexts.  

 Even if children do address the relevant properties of the materials, they may have 

difficulty in mapping their structural relationship to symbols because they have yet to 

develop this understanding. This paradox is summarised by the experiences of Holt 

(1982, p.138-139). 

“Bill [a colleague] and I were excited about [Cuisenaire] rods because we could see strong 

connections between the world of rods and the world of numbers. We therefore assumed that 
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children, looking at the rods and doing things with them, could see how the world of numbers and 

numerical operations worked. The trouble with this theory was that Bill and I already knew how 

the world of numbers worked. We could say, “Oh, the rods behave just the way the numbers do.” 

But if we had not known how number behaved, would looking at the rods have helped us to find 

out?” 

 

 The difficulty that children may have in interpreting certain physical 

representations highlights a key criticism of manipulatives – namely that the value of 

manipulatives cannot be considered in isolation from the context in which they are used 

(Cobb et al., 1992). As Ball (1992) states: ―understanding does not travel through the fingertips and 

up the arm‖. In other words, it is problematic to think that mathematical meaning is 

transparent within manipulatives (Moyer, 2001); it is more the activity with the 

manipulatives, and the context of this activity, through which transparency emerges 

(Meira, 1998). Reflecting a more socio-cultural perspective therefore, it is important to 

consider the role of manipulatives as a mediating tool within a particular context 

(Vygotsky, 1978). As Dienes (1964, p.55) himself states: ―one cannot over-emphasise that it is 

not the material itself which creates the true mathematical learning-situation‖.  

 

1.3.4.2 Manipulatives focus attention 

There are many factors in the learning context, some of which may potentially distract 

children from focusing on the intended learning activity. Manipulatives might therefore 

help by focusing attention on numerical ideas. For example, if a teacher is discussing an 

addition problem with a child using a story context, the manipulative may help focus the 

child‘s attention on the key information being given – the amounts referred to in the 



71 

 

story, rather than other aspects. Indeed, the role of representations in helping constrain 

inferences has been discussed by Scaife & Roger (1996).  

 The previous example highlights the way in which the materials may support joint 

attention – important in the social construction of knowledge (Tomasello, 1995). In this 

context, this could help both teacher and child attend to the same representational 

properties while communicating mathematically. However, the reservations raised by 

Uttal et al are relevant – namely, how clear is it that children‘s attention is focused upon 

the numerical properties of manipulatives? In this regard, it may be possible to focus 

children‘s attention on numerical ideas by applying Uttal‘s recommendations: use 

materials that minimize extraneous features (i.e. ‗non-relevant‘ properties such as colour 

or shape). This proposition is supported by other research indicating that students are 

more likely to be successful in extracting information when the materials used are more 

‗abstract‘ and less concrete (Kaminski, Sloutsky, & Heckler, 2006; Sloutsky, Kaminski, & 

Heckler, 2005a). However, it should be noted that these studies were carried out with 

undergraduate students who might have been expected to have been more able to reason 

with more abstract representations.  

 An example of a more basic manipulative design is the MAB presented by Dienes. 

These blocks differed only in shape and size in order to represent the decade structure of 

numbers. It is worth noting that Dienes actually advocated using a variety of materials to 

support numerical concepts. These materials included a range of extraneous features such 

as different colours/shapes, but maintained the same structural relationships (e.g., 

groupings of ten).  

 The effect of different types of physical materials on children‘s number concepts 

was examined by Chao, Stigler, & Woodward (2000), who designed a series of nine 

numerical games for a total of 157 kindergarten aged children in three schools over a five 
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week maths program. Classes were allocated to one of two groups: a structured material 

condition (using the same generic materials), and a variety material condition (using a 

variety of materials sharing a similar structure). It was found that the two kinds of 

materials had varying effects on learning in certain tasks (recognising numerical patterns) 

but no effect in others (e.g., numerical inferences, number sequencing, base ten). Further 

research is clearly needed to examine the effects of different types of manipulatives 

although it is again important to consider the activity in which the materials are used.  

 

1.3.4.3 Manipulatives generate actions 

Using manipulatives generates physical actions, typically using both hands. These actions 

tend to be more expansive and expressive than those generated from interacting with 

other representations such as paper or computer based materials. Indeed, the actions 

generated through the use of manipulatives are often put forward as a key advantage of 

this representational medium (Gravemeijer, 1991; McNeil & Jarvin, 2007). Unfortunately, 

despite the popularity of terms such as ‗kinaesthetic learning‘ (e.g., Begel, Garcia, & 

Wolfman, 2004), there is limited evidence that physical actions support learning, 

particularly in ‗more abstract‘ subjects such as maths. Indeed, in describing the benefits 

of computer based materials for maths education, Kaput (1992) specifically notes that 

there is no evidence of physical actions having any benefit on learning in this domain.  

 A central theme around the importance of physical actions in learning abstract 

concepts relates to how easily certain ideas can be labelled as ‗abstract‘ in the sense of 

being disconnected from perceptual experience. Returning to the embodied cognition 

arguments, where thinking is described as being grounded in perceptual and sensory 

experiences, it is possible to think of the relationship between certain mathematical terms 

such as adding, and the actions generated when carrying out this operation with objects. 
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Indeed, many numerical terms, such as adding, taking away and partitioning, apply to actions 

that can be carried out with objects. The difficulty lies in understanding the role of such 

actions in learning related concepts, and how this might be demonstrated empirically.  

 If physical actions are embodied in certain numerical concepts, then it might be 

expected that evidence of certain motor activation would be found when individuals 

engage with these concepts. Arguably, support for this comes from a study showing 

muscle activation in young adults‘ fingers when they were asked to make judgements 

about the parity (odd/even) of visually presented Arabic numbers (Sato, Cattaneo, 

Rizzolatti, & Gallese, 2007). It was found that when judging small numbers (n<5), 

muscle activity was produced in the right hand despite participants claiming not to use 

any finger strategies. In a different study asking participants to make parity judgements, it 

was found that participants were more likely to make precision grip responses when 

presented with small numbers and power grips for larger numbers (Moretto & di 

Pellegrino, 2008). As precision grip is associated with physically grabbing small objects 

and power grips for larger, this study argued for a shared processing of symbolic and 

physical information in the coordination of actions.  

 

 Gestures 

Further support for the embodiment of physical actions in numerical concepts has come 

from studies looking at gesture use. Edwards (2005), for example, investigated young 

adults‘ concepts of fractions and recorded the gestures used when describing fraction 

concepts. Numerous gestures were observed, many of which were judged to originate 

from previous experiences using manipulatives – gestures such as partitioning groups of 

objects. 
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 The last ten years have seen a great number of studies that examine the role of 

gestures in understanding and learning (e.g., Abrahamson, 2004; Broaders, Cook, 

Mitchell, & Goldin-Meadow, 2007; Goldin-Meadow, 2000; Sabena, 2004). This research 

has emphasised the role of gesture in supporting thinking independently of the listener. 

For example, Iverson & GoldinMeadow (1997) showed how congenitally blind children 

used gestures when communicating with other blind children. By supporting thinking, 

gesturing may help free up valuable cognitive resources. Indeed, one study showed that 

children were more able to hold a word list in memory when asked to gesture while 

explaining a maths task (Goldin-Meadow, Nusbaum, Kelly, & Wagner, 2001). The 

potential of gesturing to support cognition was also indicated in a study by Cook (2007) 

showing that children who were required to gesture while learning a new mathematical 

concept were more likely to retain the knowledge. 

 If gestures are linked to individuals‘ thinking, they may also provide a way to 

communicate ideas. Indeed, it has been suggested that they provide teachers with an 

effective means of assessing children‘s understanding (Goldin-Meadow, 2000; Herbert & 

Pierce, 2007; Kelly, Singer, Hicks, & Goldin-Meadow, 2002). Furthermore, the use of 

gesture by the teacher has also been found to support children‘s understanding (Flevares 

& Perry, 2001; Valenzeno, Alibali, & Klatzky, 2003), and it has even been shown that 

children can replicate teachers‘ gestures to help them change their mind about their pre-

existing ideas (Cook & Goldin-Meadow, 2006). 

 Clearly, the link between gesture use and manipulatives is still not clear. Certain 

gestures may be used with objects that could just as easily be enacted with other 

representations. A good example might be the use of pointing to support counting 

(Alibali & DiRusso, 1999; Carlson, Avraamides, Cary, & Strasberg, 2007). Alibali & 

DiRusso (1999) demonstrated how young children would use pointing gestures towards 

objects to help offload the cognitive demands of keeping track of items counted, and to 



75 

 

help correspondence between objects and number words. Such gestures could also be 

enacted toward pictorial representations. Indeed, the authors argue that touching objects 

is simply an extension of pointing (albeit that the tactile feedback may also support visual 

processes). Therefore, despite the increasing evidence for some form of motoric 

encoding in cognition, further research is required to understand the extent to which the 

benefit of using gestures is fostered by manipulatives.  

 

1.3.4.4 Manipulatives help offload intelligence 

Mix (in press) also identifies the potential for manipulatives to support children in 

‗offloading intelligence‘. Offloading intelligence in this context seems to reflect an 

external cognition perspective where intelligence, or cognitive activity, is seen as an 

interaction between internal (mental) and external representations (Rogers, 2004). Rogers 

and Scaife (1998) characterize this relationship in terms of ‗Computational offloading‟ where 

different representations require a different amount of effort to solve problems with 

equivalent information. 

 Manipulatives may help children learn through ‗offloading cognition‘ by reducing 

the cognitive effort to solve numerical problems. However, in order to evaluate this 

possibility it is necessary to examine what information manipulatives provide, as well as 

how interaction with this information can support learning. 

 According to McNeil & Jarvin (2007), one of the key advantages of manipulatives 

is that they provide an additional channel of information which might be regarded as 

predominately visual or tactile. Sensory input provides children with information on 

certain properties of the manipulatives, such as their size, shape, colour, and any 

markings (e.g., numerical values inscribed on coins). This may have symbolic value – for 
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example, Cuisenaire rods use length and colour to represent different numerical values, 

while Dienes‘ blocks use size (and shape) to signify the decade structure. Information 

about the properties of the materials presents certain affordances: perceptual information 

that facilitates certain physical actions (Gibson, 1977; see Hartson, 2003). For example, 

the size of cubes will determine how many can be grabbed by children in one hand and 

moved simultaneously. The shape of objects will determine how they will rest of a flat 

surface or possibly adjoin with other materials. Indeed, physical knowledge – knowledge 

about the rule governing physical materials (e.g., they will collide when moved against 

other materials) – is developed at a young age - around six months (Spelke, 1990). In 

addition, this knowledge may underlie more domain specific numerical skills (Carey & 

Spelke, 1994).  

 It was previously discussed (section 1.2.11) how infants‘ numerical ability is 

strongly related to their capacity to enumerate small collections – by subitising. The 

spatial arrangement of manipulatives may support children by activating such 

mechanisms. Importantly, with respect to manipulatives, this information does not need 

to be visual – children can subitise a collection through touch (Riggs et al., 2006). 

 Spatial properties provide other information to support cognition. Larkin and 

Simon (1987) describe how the spatial relationships between (diagrammatic) objects can 

encode information about their relatedness. Similarly therefore, manipulatives may also 

help offload cognition by allowing information to be spatially organised. According to 

the Gestalt principles of visual perception (see Rock, 1993), items that are closer together 

are more likely to be associated; therefore it is possible to partition a collection of objects 

into parts by moving objects into spatial groups. Again this spatial information can be 

processed through touch – proprioception allows an individual to know the position of 

objects relative to the body. 
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 Offloading intelligence and problem solving 

Zhang and Norman (1994) describe the way in which information from an external 

representation helps to define the structure of a task. They demonstrate, using the Tower 

of Hanoi as an example, how the problem structure, and hence individuals‘ cognitive 

activity, can be shaped by changes to the external representation. According to Neth and 

Muller (2008), it is possible to describe the way cognitive activity adapts to the 

environment in two ways:  

“On one hand, the cognitive system adapts itself to the structure of its environment to transcend its 

inherent limitations (e.g. of attention and memory). On the other hand, cognitive systems exhibit a 

pervasive tendency to adapt and structure their environments in service of their goals” (p. 993) 

 

 Manipulatives can not only help children offload cognition by providing visual and 

tactile information, but they can also allow children to adapt this information (spatially) 

to support cognitive activity. Kirsch & Maglio (1994) distinguish two types of actions: 

pragmatic and epistemic. Pragmatic actions are defined as those that adapt the representation 

intentionally toward a goal state. In contrast, epistemic actions are those that adapt the 

representation in order to provide the user with information that can support the activity. 

This distinction is described with reference to a game of Tetris (a computer game that 

involves using a mouse to rotate falling objects so that they fit together). Pragmatic 

actions are those that rotate objects to a desired angle to ‗fit‘; epistemic actions are those 

that help the user explore different angles of rotation in order to identify the most 

appropriate – distinguishable from pragmatic actions in that they may involve initial 

actions that rotate objects away from the most efficient orientation. Although the 

terminology used by Kirsch has been criticised (H. Neth & Muller, 2008), it does 
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highlight the role of manipulating information in order to support problem solving. 

Other studies have provided further support of this, for example: rearranging scrabble 

tiles to help identify words (Maglio, Matlock, Raphaely, Chernicky, & Kirsh, 1999), or 

arranging coins to support addition (H Neth & Payne, 2001). 

 

 Offloading intelligence and learning 

If, as it is argued, manipulatives provide ways in which children can offload some of the 

cognitive task demands, it is important to question how this will ultimately lead to 

learning. One possibility is that externalising information may reduce the demands on 

working memory, thereby freeing up valuable cognitive resources to encode information 

to memory (Sweller & Chandler, 1994). Manipulatives may therefore confer an advantage 

over other materials such as paper by presenting information in parallel via the motor 

system as well as visually. Indeed, it has been argued (Wilson, 2001) that sensory and 

motoric encoding should be considered as a separate system (in addition to the auditory 

loop and visual-spatial sketchpad described in standard models of working memory 

(Baddeley & Hitch, 1974)). 

 The potential to reduce cognitive processing demands may be significant 

considering that working memory plays a key role in various numerical procedures such 

as addition (Adams & Hitch, 1997; Hecht, 2002; Passolunghi, Vercelloni, & Schadee, 

2007). Using manipulatives may therefore allow children to develop ideas by supporting 

working memory during problem solving. It may even be possible that the use of 

materials supports the development of internal structures that may in turn support 

working memory at a later stage. Lee, Lu & Ko (2007), for example, demonstrated that 

abacus training was able to improve adults and children‘s ability to retain visual-spatial 

information (measured through span tasks, e.g., forward digit span) supporting the 
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proposal that domain-specific training enhances the efficiency of storing and assessing 

task-relevant information (Ericsson & Kintsch, 1995).  

 Evidence that manipulatives can support learning by reducing cognitive task 

demands remains unclear, and it possible that such support (if indeed manipulatives do 

support working memory) is detrimental. In order to reduce certain procedural demands, 

children are able to use more efficient strategies – counting-on instead of counting-all for 

example. Therefore, by reducing certain procedural demands, external representations 

may have the result of reducing the motivation to develop such efficient strategies. 

Indeed, in the study by Secada et al (1983) (see section 1.22), the authors needed to cover 

up the first addend (i.e. remove access to the external representation) in order to 

motivate children to use the more efficient count-on procedure. As Muldoon, Lewis, & 

Towse (2005) have shown, providing objects for numerical problems may sometimes 

encourage children to just count them rather than try to infer numerical relationships. 

 The possibly detrimental effect of reducing problem solving demands by 

providing an ‗easy to use‘ external representation can be compared to research with 

adults that demonstrates how increasing the costs of interacting with external 

information (e.g., a time delay) can increase the use of both planning (O'Hara & Payne, 

1998; Van Nimwegen, Van Oostendorp, Burgos, & Koper, 2006) and of memory based 

strategies (Gray & Fu, 2004) . For example, O‘Hara & Payne (1998) demonstrated how 

individuals made less moves to solve a particular puzzle (8-puzzle4) when implementation 

costs (inputting instructions) were introduced for each move. Gray and Fu (2004) 

                                                      

 

4 The aim of the 8-puzzle is to arrange a 3x3 matrix of tiles by moving them one at a time into the 

empty space until the desired arrangement is reached.  
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demonstrated that individuals were more likely to use memory based strategies when the 

costs of externalising information were increased, preferring to rely on ‗imperfect 

knowledge in the head‘ rather than ‗perfect knowledge in the world‘. 

 The research described above raises the possibility that facilitating problem solving 

by providing an external representation may have the unintended effect of reducing the 

use of more efficient mental strategies. Using the partitioning tasks previously described 

as an example, allowing children to identify ways to partition a number by simply moving 

physical objects and then counting them may reduce their motivation to develop more 

efficient mental strategies that infer relationships between solutions. However, there are 

two key reasons why the literature on problem solving may not generalise well to learning 

tasks for children. These concern differences in the structure of the problems and the 

abilities of the problem solvers. 

 

Problem structure 

Problem solving research has generally focused on ‗well defined‘ problems, where the 

initial and goal states and legal moves are known. Indeed, many of the problems used, 

such as the Tower of Hanoi (TOH) (Zhang & Norman, 1994), Slide Jump puzzle 

(O'Hara & Payne, 1999) and Ball and Boxes (Van Nimwegen, Van Oostendorp, & Schijf, 

2004) permit as few as 2-5 possible operations on different states and have only one 

correct solution. The known solution state and relatively constrained problem space may 

therefore allow the user to consider possible moves and choose the one most appropriate 

before acting on the representation. Evaluating possible actions before performing them 

may consequently result in greater efficiency. 
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 In contrast to this, in less well defined problems, possible states and operations are 

less clear. There may be multiple solutions and multiple pathways (possible 

transformations between different states). Thinking about the range of actions will 

therefore be more cognitively demanding and may consequently increase the advantage 

of supporting cognitive operations with perceptual ones (i.e. use external 

representations). 

 

Problem solver 

Individuals often fail to plan despite the potential gain in terms of problem solving 

efficiency. Children in particular find planning difficult due to cognitive demands and 

motivational reasons (Ellis & Siegler, 1997). Indeed, despite attempts to make the task 

more accessible (such as by displaying the end state and using a cover story) children 

between 4 and 6 have been shown to have quite limited ability to plan in problems based 

on a 3 and even 2 disk version of the Tower of Hanoi (Klahr & Robinson, 1981). It is 

not clear, however, whether such poor performance reflects more motivational factors 

given the decontextualised and abstract nature of tasks such as Tower of Hanoi. Indeed, 

children‘s planning abilities might be more positively exposed through computer games 

where it has been shown that careful designs are able to increase motivation for learning 

(Habgood, Ainsworth, & Benford, 2005).  

 Individuals‘ ability to plan will also be influenced by their domain understanding, 

as this will determine knowledge of what states, actions or solution(s) are possible in a 

task. It is possible, therefore, that when children lack the understanding to plan, the most 

efficient way to progress is to act - thereby changing the external representation and 

generating information to help inform planning in the task. This suggestion is reflected in 

Martin and Schwartz‘s (2005) theory of Physically Distributed Learning (PDL). 
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According to this theory, in problems where the user only has ―incipient‖ (emerging) 

knowledge, actions on the environment can lead to reinterpretation of the problem, and 

thereby lead to learning. Support for this theory has come from examining children‘s use 

of manipulatives in numerical problems and will therefore by looked at more closely in 

the next section. 

 

 Physically Distributed Learning (PDL) 

In their paper describing PDL, Martin and Schwartz (2005) present a simple framework 

for how individuals learn with physical objects using two dimensions: the stability or 

adaptability of the environment (in this case physical objects), and the stability or 

adaptability of one‘s ideas (Figure 1.6). Quadrant 1 of this framework refers to the way in 

which learning is possible just from the structure of the environment, as might be the 

case with the tens and units pieces supporting base ten understanding. The second 

quadrant is referred to as off-loading – where an individual uses a representation simply to 

externalise existing ideas. Quadrant 3, repurposing, describes the same processing of 

offloading, but in this case by actively manipulating the external representation – 

comparable to Kirsch‘s pragmatic and epistemic actions. Quadrant 4, PDL, also describes 

manipulation of the external representation (‗environment‘) but in this case leading to the 

development of qualitatively new ideas. In other words, physical manipulation allows an 

individual to reinterpret the external representation, and this re-interpretation reflects the 

development of new schemata. 
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Figure 1.6: Physical actions and learning (Martin & Schwartz, 2005) 

 

 To test this theory, Martin and Schwartz compared children‘s (11-12 year old) 

learning of fraction concepts using two materials: one that could be physically 

manipulated (tiles and pie pieces), with one that had the same structure but could not be 

physically manipulated (squares on paper). Children solved fraction operator problems 

(such as one third of 12) using both materials in counterbalanced conditions. Each 

solution received an interpretation score that reflected the child‘s verbal answer and an 

adaptation score that reflected the child‘s physical arrangement of the pieces. It was 

found that physical materials conferred an advantage for both the number of adaptations 

(manipulations) and interpretations (correct answers). Although the two scores were not 

significantly related, the finding that children made more changes and provided more 

correct answers with physical objects was used to support PDL. This theory has also 

received support in a study comparing younger children‘s (4-5 years old) use of physical 

and pictorial materials in addition and geometry tasks (Martin, Lukong, & Reaves, 2007), 

although only verbal scores were measured in this instance. 

 In many ways, PDL can be compared to other display based theories (e.g., D. 

Kirsh & Maglio, 1994; Larkin, 1989; Zhang, 1997) where users act on and interpret 
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information within an external system to support their cognitive activity. Indeed, with its 

emphasis on externalising and reconstructing ideas through external models, the theory 

appears to reflect the key arguments described by Papert‘s constructivism. It does seem 

to distinguish itself, however, by focusing on a particular property of manipulatives, 

namely the ability to spatially adapt the representation through physical actions, as well as 

a certain outcome: the development of qualitatively new ideas. The theory is therefore 

particularly apt for examining the potential of manipulatives to develop young children‘s 

numerical concepts such as decomposition. PDL does raise certain questions that should 

first be considered. 

 One question concerns the process by which children are able to ‗reinterpret the 

representation‘. In particular, it is not made clear what role the context plays in 

structuring interpretations. Considering the highly structured nature of Martin and 

Schwartz‘s fraction study (i.e. in a school classroom with an adult asking numerical 

questions), it seems likely that contextual factors do play a key role in guiding children in 

their interpretations, and ‗re-interpretations‘, of the representation – in this case as verbal 

numerical solutions.  

 It is also not clear what is meant by ‗physically‘ adapting the representation. 

Annotating paper requires physical actions, so it might be assumed that physical action 

infers spatial manipulation. In this case, is it important to question whether such spatial 

manipulation needs to be made through direct physical contact with the representation or 

can be achieved more indirectly through a graphical interface. 

 Finally, it is not clear what concepts might be supported through PDL. Although 

the authors describe how PDL is most effective when children have ‗incipient 

knowledge‘ of a certain concept, it is not clear whether this applies to all concepts. It is 

possible that PDL may be highly effective for some concepts, but not for others. A key 
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challenge would therefore be to understand the mechanisms of the theory sufficiently to 

predict when physically manipulating representations may or may not be effective. 

 

1.3.4.5 Summary 

This section has examined the possible mechanisms by which using manipulatives might 

support numerical development. These possible mechanisms were discussed under four 

headings adapted from Mix (in press): conceptual metaphors, focus attention, generate actions and 

offload intelligence. Broadly speaking these mechanisms might be described as those where 

actions with objects become directly integrated into numerical concepts or provide a 

reference for numerical ideas, and those that describe how manipulatives may support 

children‗s problem solving: focusing their attention on relevant information and freeing 

up valuable cognitive resources to encode this information to memory.  

 The review also elucidated possible limitations of objects, most importantly that 

their numerical significance is only granted by the context in which they are used. 

Children need support in interpreting their physical interactions. It is also important to 

acknowledge the demands placed on children in having to simultaneously process 

physical materials as objects in themselves, as well as representations in a mathematical 

domain. This is a key limitation raised by Kaput (1992; 1993) about physical materials – 

they provide no means of mapping physical changes to symbolic changes. Kaput 

identifies a further key criticism: that manipulatives are constrained to the ‗eternal 

present‘ (i.e. that changes to the representation necessarily remove evidence of the 

previous states). Kaput provides an example of how this prevents the materials from 

being able to simultaneously display both process and result in numerical operations. 

Unlike the written notation 2 + 3 = 5, which shows both the process (2 add 3) and the 
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result (is 5) simultaneously, physical materials necessarily show this transformation 

sequentially.  

 What does seem clear from the analysis is that the potential role of manipulatives 

depends on the concept being learnt. Different numerical activities present different 

demands and have different relationships to children‘s prior knowledge. Concepts will 

also vary in how they can be represented through physical actions. Consequently, in 

order to predict the potential of physically manipulating representations to support a 

certain concept, it is necessary to consider the numerical activity and the ways in which 

different properties of the physical representation may support or hinder learning.  

 

1.3.5 Manipulatives to support learning in a partitioning task 

Section one of the literature review identified additive composition as a key numerical 

concept for children. This concept reflects an understanding of how numbers can be 

decomposed and recomposed into smaller numbers. The analysis identified several 

learning tasks that require children to identify different ways in which a number can be 

composed (Baroody, 2006; Clements, 2009; Fischer, 1990; Jones, Thornton, & Putt, 

1994). One key factor that seemed to differ between tasks concerned the materials used 

to support children – whether, for example, physical objects were provided. 

 It is possible to consider many of the possible learning mechanisms identified for 

manipulatives with respect to the partitioning learning task. For example, the activity may 

generate physical actions and visual-spatial experiences that become embodied in 

children‘s concepts of decomposition. Physical objects may also provide conceptual 

metaphors for numerical decomposition by helping children map their prior knowledge 

of how physical collections can be partitioned in different ways. This possibility would 
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support Resnick‘s (1992a) notion of a protoquantitative concept of additive composition, 

although it is possible that physical objects may also be advantageous in helping children 

calculate numerical solutions, encouraging them thereby to explore patterns between 

solutions. Physical objects may support cognition by allowing children to use visual and 

tactile stimuli to offload the task of enumerating solutions. For example, objects can 

provide an external representation of the total amount to be partitioned and allow 

children to enumerate parts using perceptual processes such as subitising. It is also 

possible to consider PDL in relation to a partitioning task. If children have only incipient 

ideas about how numbers can be decomposed, physical objects may allow them to 

manipulate the representation and interpret changes to develop new ideas in this domain. 

 Despite all the advantages promulgated, some consideration should be given to 

the way in which the use of manipulatives might hinder the learning task. If children are 

able to act on the representation with ease, they may be less inclined to plan their 

strategies. More than this, by facilitating the process of identifying solutions and 

enumerating parts, children may be less motivated to develop efficient strategies that 

relate solutions. Importantly, actions on physical objects will remove any record of 

previous solutions. Therefore, unlike other materials such as paper, physical materials 

provide no means for children to examine, compare and reflect on the relationship 

between different solutions. 

 

1.3.6 Summary 

It can be seen that understanding the role of physical materials in the partitioning task 

draws together many of the arguments concerning the role of manipulatives in numerical 

development generally. Consequently, in order to evaluate the potential of physically 
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manipulating representations for supporting children‘s numerical development, it is 

possible to identify two key research questions: 

 Do physical objects support children‟s strategies for partitioning numbers? 

 What are the advantages/limitations of physically manipulating representations for children‟s 

partitioning strategies? 

 

 As well as providing educators with important information, understanding the 

learning mechanisms of manipulatives is important in understanding the potential role 

for technology and novel learning materials. Technology has presented the means to 

build on the advantages as well address the limitations of different representations, and 

indeed, with respect to manipulatives, there has been a proliferation of computer 

representations – virtual manipulatives – to support numerical development. With this 

has also come the recent advance of an increasing ability to integrate technology into 

physical materials – tangible technologies. In order to evaluate the potential of tangible 

technology to support numerical development, it is not only necessary to identify the 

advantages and limitations of using physical objects, but also to understand how different 

learning mechanisms are affected by interaction with other interfaces (e.g., mouse, 

tabletop computers, etc). The next section will examine the literature on digitally 

augmented manipulatives in order to identify key research questions for evaluating the 

potential of tangible technologies in this domain.  
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1.4 Digital manipulatives 

1.4.1 Introduction 

The increasing use of technology in schools is testament to confidence in the potential 

for ‗the digital‘ to support learning. This confidence has extended to the development of 

computer based representations: ‗virtual manipulatives‘, with the hope that they might 

combine the advantages brought by the use of manipulatives with those of technology. 

Notwithstanding this, it should be noted that the previous section identified various 

possible learning mechanisms for physical manipulatives that might not extend to the use 

of computer materials controlled through a standard mouse/keyboard interface, 

particularly those concerned with the role of actions.  

 Identifying the benefits, if any, of physical manipulation is important, especially in 

order to understand the potential of emerging technologies that offer novel ways for 

interacting with digital technology. This can be seen in the development of tangible (or 

hand held) technologies, where the ability to integrate smaller and more sophisticated 

technology into physical materials has generated novel opportunities for supporting 

children‘s learning.  

 

1.4.2 Tangible technologies 

The traditional and most common (certainly in schools) form of interacting with digital 

technology is through a computer, where objects, both textual and graphical, can be 

manipulated on screen using a keyboard and/or mouse. This set up, with its clear 

distinction between input and output, has consequently been referred to as a graphical 

user interface (GUI). Tangible technologies (‗Tangibles‘) attempt to transform this input-
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output distinction by presenting novel ways to interact with digital technology that blend 

the physical and digital worlds together (Ullmer & Ishii, 2000). There exist various 

frameworks to distinguish types of Tangibles (Fishkin, 2004; Hornecker & Buur, 2006; 

Koleva, Benford, Ng, & Rodden, 2003) but common to these designs is the emphasis on 

touch and physicality in both input and output. Tangibles therefore present exciting ways 

to design novel relationships between children‘s interactions and digital technology. This 

form of technology has consequently generated substantial interest in the possibilities for 

designing effective learning materials. 

 

1.4.3 Tangible technology for learning 

In a seminal paper, Mitch Resnick and colleagues (1998) at MIT describe a new 

generation of computationally enhanced manipulative materials called ‗digital 

manipulatives‘. These materials are described as those which embed computational 

capabilities inside traditional children‘s toys – such as cubes, beads, and balls (M. Resnick, 

1998). According to Resnick, digital manipulatives could enable more difficult concepts 

to be explored through physical manipulation. Coming from the same research 

laboratory, it is perhaps not surprising that this belief in the potential of technology to 

make difficult concepts more engaging and accessible echoes the vision described by 

Papert almost 20 years previously. What has changed is the wealth of new possibilities 

generated by advances in technology. 

 Resnick does not identify the particular learning mechanisms in which digital 

manipulatives may lead to learning but places them in a historical context – as extensions 

of manipulatives designed by pioneers such as Montessori and Froebel, whose designs 

have withstood the test of time in educational contexts. Zuckerman (2005), also at MIT, 

used the different approaches of these early works to categorise two different types of 
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digital manipulatives: Montessori inspired Manipulatives (MiMs) – that focus on more abstract 

concepts, and Froebel inspired Manipulatives (FiMs) – that focus on more real life processes. 

These labels are used to taxonomise both traditional and digitally augmented 

manipulative designs.  

 The validity of Zuckerman‘s definitions can be queried, particular with reference 

to Froebel who actually created quite generic materials and activities designed to foster 

symbolic understanding. Nevertheless, the distinction does help define the focus of this 

thesis: on the potential of MiMs, or rather tangible technologies focusing on children‘s 

understanding of more abstract concepts. Zuckerman describes how Tangibles research 

has tended to focus more on FiMs, and hence aims to address this imbalance by 

presenting two research projects reflecting MiMs: SystemBlocks and Flowblocks. The latter 

of these is described briefly below. 

 

 Flowblocks – an example of Tangibles for learning 

Flowblocks (Figure 1.7) were designed to model concepts related to counting, probability, 

looping and branching. The system consists of blocks which sequentially display a light, 

giving the appearance of the light ‗flowing‘ through the cubes. Different blocks allow 

children to explore the dynamic system, for example, by speeding up and slowing down 

the flow. There is a counter cube which displays the number of times light has flowed 

through.  
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Figure 1.7: FlowBlocks (Zuckerman et al., 2005) 

  

 The authors report success with FlowBlocks in terms of children‘s engagement. 

Unfortunately, no information is provided on the important question of what the 

children actually learnt. Answering this question with empirical evidence is difficult, 

requiring more time and attention to other effects on learning such as the amount of 

adult support provided. Nor is it clear why FlowBlocks might support certain concepts 

such as counting better than a computer based representation - it is not clear what unique 

advantages are offered through physical interaction. 

 

1.4.4 Learning Benefits of digital manipulatives 

In a paper entitled ―Do Tangibles support learning?”, Marshall (2007), summarises the 

different approaches that have been taken to identify the benefits of this form of 

technology. These approaches are summarised in Figure 1.8 below. 
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Figure 1.8: Analytical framework for Tangibles for learning (Marshall, 2007) 

  

 Marshall identifies many lines of research not focused upon in this thesis, such as 

the potential for Tangibles to support collaboration (Africano et al., 2004; Price, Rogers, 

Scaife, Stanton, & Neale, 2003; Stanton, Bayon, Abnett, Cobb, & O'Malley, 2002) and 

accessibility and enjoyment (Price et al., 2003; Xie, Antle, & Motamedi, 2008). However, 

one dimension identified which is particularly relevant is the ‗effects of physicality‟. 

Unfortunately, considering the broad coverage within a relatively short paper, Marshall is 

only able to indicate research in this area, such as the possible role of embodiment. 

Nevertheless, the conclusions reached are similar to those made in the debates 

surrounding manipulatives:  

“Thus, despite the common view that the physical materials used in tangible interfaces are 

particularly suitable for learning tasks, there is only limited evidence to support this claim. This 
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suggests that intuitions about the benefits of physical manipulation should be abandoned. Instead, 

empirical research is required to investigate in which (if any) domains and situations physical 

manipulation will be of benefit to the learner.” (p.168)  

  

 A more thorough analysis of the possible learning benefits of Tangibles was 

presented by O'Malley & Stanton-Fraser (2004). The review examines both the 

theoretical and empirical arguments surrounding physical manipulation and learning, and 

links this to frameworks as well as case studies of Tangibles. The main focus of the 

analysis is centred on children‘s ability to map between physical representations and the 

domain they are intended to represent. This focus reflects how, in contrast to analogue 

materials, digital manipulatives (such as computer representations) present a separation 

between input and output. The authors go on to describe at least three levels to such 

interactive learning environments (p. 23): 

1) Representation of the learning domain  

2) Representation of the learning activity  

3) Representation embodied in the tools themselves 

 

 These three levels help describe some of the issues surrounding manipulatives and 

the role of technology.  

 



95 

 

1.4.4.1 Traditional Manipulatives 

With analogue manipulatives like plastic cubes, the learning representation is also the tool 

– input is also output. This direct relationship reflects many of the arguments put 

forward in the previous section for the advantages of manipulatives, such as embodiment 

and tactile feedback. However, it was also suggested that these materials have no implicit 

link to more formal symbolic mathematics: this relationship needs to be created through 

the activities presented by the teacher.  

 

1.4.4.2 Virtual manipulatives 

According to Moyer (2002), a virtual manipulative is defined as ―an interactive web-based 

visual representation of a dynamic object the presents opportunities for constructing mathematical 

knowledge‖. In this thesis, virtual manipulatives will be defined as on-screen objects that 

can be manipulated using a graphical user interface, but which are not necessarily 

accessed through the internet (i.e. not necessarily web-based). 

 Kaput (1992) identifies several key advantages of virtual representations that 

address limitations of physical materials: the potential to link representations, provide 

feedback and provide a trace of past actions. These advantages are echoed by others such 

as Moyer et al (2002) who add more pragmatic factors to the list such as: adaptability, 

availability, ease of setting up and clearing away, and ability to print. Moyer et al also 

highlight how the materials may overcome the stigma that is sometimes associated with 

the use of concrete materials for younger, less able children.  

 Clements (1999) makes the case that the emphasis on the use of physical materials 

results from a desire to make learning concrete, but argues that the benefits of 

concreteness are not simply due to physicality so much as to how well the materials 
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connect ideas to the real world. Using this definition, Clements describes ways in which 

computer based representations can achieve this more effectively, referring to various 

advantages such as how the materials can be designed to help externalise mathematical 

ideas and processes, thus helping to reinforce the link between concrete and symbolic 

representations. 

 Despite the purported benefits of virtual manipulatives, their advantages have yet 

to receive much empirical support. However, the aim here is not so much to evaluate the 

different learning opportunities presented as to focus on certain aspects that help 

examine representational differences with physical manipulatives. Three key aspects are 

discussed below: how the materials can help map to symbolic representations; provide a 

record of representational change; and the different forms of manipulation.  

 

 Mapping to symbolic representations 

One key argument in support of virtual manipulatives is that, unlike analogue materials, 

they can provide a means to link learning representation to symbolic representations 

(Clements, 1999; Kaput, 1992; P. W. Thompson, 1992). Materials can be designed to 

create a dynamic link between the learning representation and more symbolic notation. 

For example, in an activity provided by the National Library of Virtual Manipulatives 

(NLVM, 2007), children are able to manipulate virtual Dienes‘ blocks to try to match a 

written number (Figure 1.9).  



97 

 

 

Figure 1.9: Tens and units activity with Virtual Manipulatives (NLVM, 2007) 

 

 With virtual manipulatives, it is also possible to manipulate symbols and explore 

the resultant changes on the learning representation (P. W. Thompson, 1992). 

Unfortunately, it is not clear whether such a transparent link between representations is 

desirable. As argued by O‘Malley (1992), such transparency does not require the learner 

to reflect upon their actions. Recognising this, designers may opt to incorporate some 

degree of opacity to foster more reflection on the mapping between levels of 

representation. A key challenge might therefore be to design technologies in a way to 

augment representations that draw children‘s attention to important numerical concepts 

without making the link so explicit as to limit reflection. 

 Virtual manipulatives present various ways in which the representation of the 

learning activity can be augmented. Objects can be designed to emulate familiar physical 

materials such as cubes or rods but can also be extended - allowing them, for example, to 

change colour or make sounds. The materials are not constrained by physical laws – they 

can be designed to change shape and size, or be made to appear and disappear 
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instantaneously. On the other hand, certain physical aspects are more difficult to emulate 

– for example, creating the illusion of three dimensional structures and movement. 

However, it is still not clear what design of learning representation is most effective for 

building children‘s understanding of number; including certain features may only serve to 

distract (McNeil & Jarvin, 2007; Uttal et al., 1997).  

 

 Record of Representational change 

Kaput (1992) identified a further limitation of physical materials that can be addressed by 

virtual manipulatives. Unlike physical materials, it is possible to keep a log of actions with 

virtual materials so that a record can be presented of the changes made to a 

representation, thereby facilitating a review of these changes. According to Kaput, this 

ability is important in maths where changes in representational state reflect key numerical 

processes, such as how two objects have been combined in different ways to create a 

whole. This particular feature may be highly relevant for activities such as the partitioning 

task where comparing a list of different solutions may be beneficial (Clements, 2009). It 

is unclear, however, how easily young children can identify and then reflect on such 

symbolic relationships. 

 

 Manipulation 

With virtual manipulatives, representations on screen are typically mouse controlled. 

There is therefore a physical separation between the tool and the learning activity 

representation. In this set up manipulation is indirect, and the designer needs to decide 

what physical actions with the mouse relate to actions on screen. For some actions, such 

as moving on-screen objects, this mapping is quite simple. Indeed, Donker & Reitsma 
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(2007) showed that even 4 year old children were proficient at ‗drag and drop‘ actions 

(although less so than 5 year olds, which indicates possible difficulties for younger 

children and children with physical disabilities). However, other actions, such as attaching 

or detaching objects or moving groups of objects, may require less obvious mouse 

actions, or combinations of mouse and keyboard actions (such as pressing the shift key 

to select multiple objects). The actions can obviously be learnt, but this does raise 

questions about how seamless they will be to young children. Importantly, the indirect 

relationship between actions with the tool (mouse) and the learning representation may 

limit many of the benefits of physical actions (e.g., embodiment, tactile feedback). If 

these learning mechanisms are important, the potential advantages of virtual 

manipulatives may be greatly limited by the form of interaction. Certain limitations of 

mouse-controlled virtual manipulatives may be addressed by emerging interfaces such as 

tabletops where multiple virtual representations can be manipulated through touch, but it 

is possible that there are still limitations presented by the inability to physically interact 

with representations. Digital manipulative may address this limitation by providing a 

tangible interface. 

 

1.4.4.3 Digital manipulatives (including Tangibles) 

Digital manipulatives allow designers to create a tight coupling between physical actions 

and the learning representation. Indeed, the learning representation may actually be 



100 

 

embodied in the object being manipulated5. It is thereby possible to augment the learning 

representation with digital technology, and to explore the effects of so doing through 

direct physical manipulation. Nevertheless, considering the comparative ease and 

availability of virtual manipulatives, it is important to consider what benefits are provided 

by such physical interaction. 

 Several studies have attempted to identify the possible benefits of physical 

manipulation by comparing performance between physical and virtual representations. 

Of these, relatively few have attempted to limit confounding variables, and those that 

have tend to report no significant differences (Klahr, Triona, & Williams, 2007; Triona & 

Klahr, 2003; Zacharia & Constantinou, 2008). Unfortunately, this indicates a key 

difficulty in comparing physical and virtual representations: by controlling variables to 

examine effects, it is easy to ‗design out‘ many of the advantages of either medium. This 

point is exemplified in a study by Triona & Klahr (2003), who compared the effects of 

using virtual and physical materials (springs) on children‘s ability to design experiments. 

No differences were found between the physical and virtual materials although, in order 

to balance conditions, the authors noted that they focused on the length and width of the 

spring rather than the weight of an attached object as ―the effect of the mass of the weight used 

on the springs is not visually discernable‖ (p. 159). In other words, to balance conditions, 

possible unique advantages of either medium may have been eliminated.  

                                                      

 

5 Various taxonomies have been created to describe the range of couplings between interface and 

digital representation in Tangibles. These will not be discussed here but the reader is directed 

toward work such as Fishkin (2004) , Koleva et al (2003), and Price (2008). 
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 It is possible that studies comparing physical and virtual representations have not 

been designed specifically to detect certain benefits of physical manipulation as identified 

in the previous section. Some mechanisms, such as the embodiment of motor actions, 

may be hard to detect. Others, such as the use of tactile information to reduce cognitive 

demands, may be easier. Clearly, the extent to which these processes play a role, and 

consequently the potential benefit of a physical interface, will depend on the nature of 

the task. 

 

1.4.5 Physical versus Graphical interfaces and the partitioning task 

The previous section summarised some of the possible advantages and limitations of 

physical manipulation in a task requiring children to identify different ways to partition 

numbers. It is possible that digital manipulatives offer the potential to build upon these 

mechanisms, although, as discussed with the FlowBlocks as an example, it is important to 

question why physical manipulation offers advantages over and above manipulation 

through a graphical user interface. It has been argued that computers are also able to 

offer concrete experiences (Clements, 1999). Nevertheless, there were some mechanisms 

identified that pertain to physical manipulation, such the role of tactile information in 

supporting the cognitive system, or the generation of motor actions in developing 

embodied concepts.  

 It is not clear how some arguments extend to manipulating objects using a 

graphical user interface. Martin & Schwartz (2005), for example, describe how physical 

manipulation can lead to new ideas yet Martin (2007) has more recently applied the 

theory of Physically Distributed Learning to describe the benefits of virtual manipulatives. 

This suggests that it is the result of manipulation rather than the form of interaction that 

is important. Clearly, different forms of interaction will affect how easily certain 
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representational changes can be made. Young children are able to manipulate physical 

objects with ease, moving individual or multiple objects with one or both hands, and 

moving multiple objects in this way may well allow changes in representational states that 

foster certain ideas. Although it is possible to design ways for such actions to be possible 

using a virtual interface, this may have bearing on how easy they are to enact, and hence 

how likely they are to be used. Indeed, it has been shown that the strategies individual 

employ can be highly sensitive to even the smallest implementation costs of an interface 

(Gray & Boehm-Davis, 2000).  

 If children‘s strategies are affected by the ease with which objects can be 

manipulated, it is possible that some of the constraints presented by an interface have an 

effect on the strategies that children employ, and hence on the ideas that they develop. 

Nevertheless, this does not suggest that physical manipulation would be preferable – it is 

possible that graphical user interfaces offer the potential to allow certain actions not 

possible through physical manipulation or constrain manipulation in ways that foster 

certain advantageous strategies. 

 

1.4.6 Summary 

Digital manipulatives provide exciting new ways to interact with digital technology. 

Evaluating the benefits of this technology to support children‘s numerical development is 

however hindered by a lack of understanding of the unique benefits of physical 

manipulation. Although various arguments have been put forward, it is often unclear why 

certain benefits may not extend to manipulating objects using a graphical user interface. 

Virtual objects are still manipulated using physical actions, albeit that these actions are 

mediated through the mouse or keyboard. This more indirect form of interaction makes 
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it easier for the designer to constrain what actions can be made on the representation. 

This presents a third key research question: 

 What is the effect of constraining manipulation on children‟s partitioning strategies? 

 

 Virtual manipulatives have gained popularity in research and educational practice, 

reflecting the advantages offered by digital technology. One key advantage is that designs 

can include links to more formal symbolic mathematics, thereby addressing a key 

limitation of physical materials. However, it is not clear how representations should be 

augmented to encourage children to reflect on different mappings.  

 With physical manipulatives, it is the activity designed by the teacher that provides 

the context in which children explore numerical relationships. The materials tend to be 

simple to help focus attention and limit distracting features, designed to focus attention 

on mathematical structures, such as using colour and size to represent different quantities 

(e.g., Cuisenaire rods), or different shape and size materials to represent the base 

structure (e.g., Dienes‘ blocks). Digital technology provides ways to introduce new 

structural representations, such as Dienes‘ blocks that can be broken down (NLVM, 

2007), or objects whose colour can be changed to emphasise part-whole relationships 

(NNS, 1997) as shown in Figure 1.10. 
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Figure 1.10: National Numeracy Strategy Interactive teaching program (NNS, 1997) 

 

 It is expected that these perceptual effects will influence the manner in which 

children interact with materials. Tangible technologies provide an opportunity to 

integrate such effects into physical materials, although it is not exactly clear how certain 

perceptual features influence the way children then use the materials. Nevertheless, 

understanding how certain perceptual effects shape children‘s strategies can guide us on 

how best to develop materials to support certain numerical ideas. A final key research 

question is therefore: 

 Can children‟s partitioning strategies be supported by augmenting the representation‟s perceptual 

information? 

 

1.5. Literature Review Summary 

This thesis aims to help evaluate the potential of Tangibles to support children numerical 

development.  In order to identify more specific research questions, the literature review 

has examined three key areas: children‘s numerical development, physical representations, 
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and digitally augmented manipulatives. The review of children‘s numerical development 

identified a key numerical concept – additive composition and possible ‗partitioning‘ 

tasks to support this concept. The second section reviewed the literature on the role of 

physical learning materials – manipulatives, and identified various arguments for how 

these materials might support concepts directly or indirectly by facilitating problem 

solving. However, it is not clear which, if any, of these mechanisms play a role in a 

partitioning task. Importantly, if manipulating representations is supportive, it is not clear 

whether interaction needs to be physical or whether it could be achieved through a 

graphical user interface. As well as comparing the relative benefits/limitations of a 

tangible compared with a graphical interface, the final section highlighted the potential 

for using digital effects to influence children‘s partitioning strategies in order to help 

them explore numerical relationships. By examining the result of certain effects on 

children‘s interactions, it may be possible to predict how these might be integrated into 

tangible designs to support children‘s understanding of additive composition. 

 Consequently, in the literature review four key research questions were identified: 

1. Do physical objects support children‟s strategies for partitioning numbers? 

2. What are the advantages/limitations of physically manipulating representations for children‟s 

partitioning strategies? 

3. What is the effect of constraining manipulation on children‟s partitioning strategies? 

4. Can children‟s partitioning strategies be supported by augmenting the representation‟s perceptual 

information? 

 

 This thesis will report studies that examined these questions in order to address 

the main research question: does physically manipulating digital representations present any unique 
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benefits for supporting children‟s understanding of additive composition? In doing so, the thesis will 

contribute to our understanding of the potential for tangible technologies to support 

young children‘s numerical development. 
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Chapter 2 

 

The Role of Physical Representations for solving 

Addition and Partitioning Problems - Study 1 

 

2.1 Introduction 

As was discussed in the literature review, it remains unclear if and when manipulatives 

support young children‘s learning. A key difficulty has been that arguments for and 

against the materials have tended to be quite high level, focusing on how effectively 

materials can represent and communicate abstract concepts to young children (see 

Gravemeijer, 1991; Halford, 1992; Mix, in press; Williams & Kamii, 1986). Although 

such questions are important, they are limited in helping to identify particular affordances 

of physical materials that would imply they are better than other materials, such as paper, 

or providing any means to predict what numerical tasks or ideas are best supported by 

this form of representation.  

 Identifying when physical materials will confer an advantage is certainly 

challenging and needs to take account of many variables such as the teacher, the task and 

domain, the materials used and individual children‘s abilities and experiences. The 

literature review emphasised the need to consider these different contextual factors when 

attempting to evaluate the potential of learning materials such as manipulatives. 

Nevertheless, different materials have different properties which affect children‘s 



108 

 

interactions. Examining how these properties influence children‘s strategies can not only 

inform educators on when they might use the materials but also help with the design of 

novel materials.  

 The literature review examined the different properties of physical materials and 

the mechanisms in which these might support learning. One key physical affordance that 

was identified was the ability to spatially manipulate one or many objects with simple 

actions using one or both hands. Physical materials also provide tactile information that 

may help process information such as keeping track of the last object counted. However, 

it was also highlighted in the literature review how the roles of different properties would 

depend upon the task in which they were used. One task that was described was a 

partitioning task – where children were asked to identify all the ways a number could be 

partitioned into different combinations of two parts.  

 In order to identify the procedural and conceptual demands involved in carrying 

out particular numerical tasks, it is important to first consider how they relate to 

children‘s numerical development. 

 

2.1.1 Numerical development and numerical problems 

The literature review discussed children‘s early numerical development in relation to 

Fuson‘s model which describes four developmental levels: Unbreakable list, Breakable Chain, 

Numerable chain and Bidirectional Chain. These levels describe children‘s developing 

understanding of key concepts (such as one to one correspondence, cardinality and the 

decomposition of number) and are fundamental to the development of more efficient 

strategies for calculating part-whole number problems such as addition or subtraction, 
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where numerical problems can be interpreted and possibly mentally adapted to reduce 

the computational costs of calculating a solution. 

 Fuson described these stages in relation to children‘s developing addition and 

subtraction strategies. One key step is when children understand that the last word 

counted represents the totality of the set – the cardinal concept. Although children may 

already be familiar with counting as an activity, this understanding allows them to 

recognise that questions asking „how many?‘ require a numerical answer that refers to the 

total of a set. Children can thereby start to answer simple problems such as “how many is 4 

add 4?” However, in order to identify the solution, children require all the objects (or 

‗perceptual items‘) present which they can then count (hence the ‗count-all‘ strategy). An 

important part of counting is maintaining one to one correspondence between objects 

and the count words, and keeping track of the last object counted. Tagging gestures 

support this activity (Alibali & DiRusso, 1999), and tactile feedback may help offload the 

need to visually keep track of objects (Carlson et al., 2007). It may also be helpful to 

move objects to create spatial information showing which objects have been counted. 

Indeed, this may explain why Martin, Lukong and Reaves (2007) found that young 

children identified more correct solutions in addition problems using physical materials 

than pictorial ones.  

 With an understanding of cardinality, children develop a more efficient strategy for 

adding amounts – they are able to count-on from one addend. This is more efficient 

because it only requires children to count the objects of one addend. Although this may 

still be demanding if the second part to be added is large, children learn that they can 

count-on from the largest addend – whether it is the first or second. In other words, 

given the problem 2 + 9, children learn they can count-on from 9. This strategy 

embodies the concept of commutativity – that two amounts can be added in any order with 

no change in the total. However, as with other concepts (including additive composition) 
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it is not clear whether children‘s understanding precedes or follows use of the strategy 

(Baroody et al., 2003). If children do have a ‗protoquantitative‘ understanding of 

commutativity, it is possible that using objects in a numerical task may help them draw 

upon this and apply a more efficient strategy (count-on from the largest) to add amounts. 

 At Fuson‘s Breakable chain level, children are able to count-on but still require 

perceptual items for one addend. In the next stage (the Numerable chain level), they 

learn to enumerate this second part without perceptual items. This procedure is 

cognitively demanding, requiring children to ‗double count‘ (keep track of the total and 

the amount counted-on simultaneously). Interestingly, Fuson does refer to the use of 

fingers as one method to support this process (Steffe, von Glaserfield, Richards, & Cobb, 

1983), suggesting that this level describes the ability to enumerate without the need for 

external materials. Finally, in the Bidirectional chain level, Fuson describes the ability to 

decompose numerical problems to facilitate counting strategies. By decomposing the 

parts of an addition problem, children are able to take advantage of certain number facts 

that they have learnt: most commonly doubles and problems around the decade structure 

(e.g., 10 + 5 = 15)(Carpenter et al., 1999). 

 

2.1.2 Partitioning problem 

Fuson‘s model helps provide a structure for children‘s developing ability to solve 

addition problems. However, it may also be also possible to use this model to reflect on 

children‘s developing ability to solve a partitioning problem. The structure of a 

partitioning problem was described in general terms in the literature review: requiring 

children to identify the different ways in which a number can be broken down into 

different combinations. However, as the problem has been described more in terms of a 

learning activity than an assessment task, it is not clear what criteria are used to evaluate 
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children‘s understanding. Jones, Thorton & Putt (1994) do, however, describe in simple 

terms the performance of several children:  

“When he was told the number of candies in one bag, Bill was able to tell the missing part in the 

other bag by counting back. He claimed there were only four partitions for 10. Nathan and Jeanie 

successfully gave four of the partitions for 10 and Tom and Shannon Figured out 9 of the 11 pairs 

mentally” (p. 134) 

 

 In a later paper, Jones et al (1996) also describe: 

“The level 1 partitioning further underscores the difficulty Sally had in thinking in terms of 

composite units or, for that matter, any kind of group greater than “one”. She could only generate 

one partition of 10 candies – 9 in one bag and 1 in the other” (p.321) 

 

 From these descriptions it is possible to deduce the following points concerning 

the task:  

 It was presented in a story context. 

 The interviewer played an active role (for example, by telling children one part). 

 Counting strategies are one way to identify one part when given another. 

 The number of solutions was deemed to reflect ability – with identifying more 

than one solution being considered significant. 

 The total number of solutions is one more than the amount to partition (11 pairs 

for partitioning 10). 
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 With respect to the previous point, ‗none and all‘ must be regarded as a valid 

solution. 

 If Tom and Shannon solved the problem ‗mentally‘, it seems that other children 

may have used external representations. 

 

2.1.3 Developing ability to solve the partitioning problem 

Using the above observations, as well as Fuson‘s model of developing numerical 

competence, it may be possible to distinguish several progressive stages of ability in 

solving the partitioning task: 

 

1) Identify a single solution 

To make sense of a question asking how to break a number in different ways, children 

need to know that a number can be broken. This understanding is reflected in Fuson‘s 

Breakable chain level. Without it, children may find a question asking them how many 

ways a number such as ‗7‘ can be partitioned quite difficult, although they may 

understand the question if it is presented using physical materials. Children know that a 

collection of objects can be separated into two groups and may therefore reason that a 

specific collection, e.g., 7 objects, can be partitioned and each part enumerated. Indeed 

Canobi, Reeve & Pattison (2003) demonstrated how children were more likely to notice 

how addends could be decomposed when problems were presented using objects than 

with symbols. However, as demonstrated by Hughes (1981), although children may have 

difficulty with symbolically presented problems, they may not actually need physical 

materials but simply a reference to concrete objects to solve problems. Presenting the 
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partitioning problem in a story context may therefore be sufficient to help children 

recognise how an amount can be partitioned into two parts. 

 If children recognise that a number can be broken, they need to identify a strategy 

for enumerating each part. Jones et al (1996) describe how a child was able to count back 

to identify one part. However, this was possible because the interviewer provided the 

first part. Therefore, without support, a key demand for children is to identify this first 

part. For this, children need to identify that a part must be any positive number less than 

(or equal to) the whole.  

 The fact that Jones et al refer to the last pair of children ―figuring out pairs... mentally‖ 

suggests that the other children used materials to support them. Indeed, the authors 

describe earlier in the paper how manipulatives were given. Consequently, children could 

use these materials to reduce the calculation demands – hence reflecting the use of 

perceptual items in Fuson‘s Breakable chain level. Perceptual items may support 

children‘s counting by helping them maintain correspondence between the count word 

and object, and to keep track of the last object counted. Once children have counted out 

the total amount to partition, they can then use this to identify a first part simply by 

counting a selection of these objects. They can then enumerate the other part by 

counting the remaining objects. If children physically partition objects into two spatial 

groups, this may help by a) providing perceptual clues as to which objects need to be 

included in which group when counting and b) creating smaller collections of objects that 

can be enumerated by subitising. Considering the small amounts used by Jones et al (5, 8 

and 10), this may be highly relevant as most parts will be less than five. 
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2) Identify multiple solutions (but less than half) 

Central to the partitioning problem is the fact that there is more than one solution and 

children need to recognise that a number can be decomposed in more than one way. This 

may be unfamiliar to children as many numerical problems only have one solution, but 

the idea is central to the concept of additive composition and seems to reflect Fuson‘s 

Bidirectional level. Fuson even refers to children ‗knowing each number as all the combinations‟. 

 Following Resnick‘s (1992a) arguments, if children are familiar with the way that 

collections of objects can be decomposed in different ways (protoquantitative 

understanding), this may help them recognise how numbers can also be decomposed in 

different ways. Indeed, it is possible to apply Martin & Schwartz‘s (2005) theory of 

Physically Distributed Learning to this problem. If children have incipient knowledge of 

additive composition (or protoquantitative understanding), physically manipulating 

objects may help them to develop numerical ideas (quantitative understanding). This may 

occur because children‘s understanding of the problem may be sufficient to constrain 

their actions to partitioning objects into two groups. Children are then able to count 

objects in each group to identify a correct solution. Then, through simply physical 

actions afforded by the materials, children can create different configurations that they 

can enumerate.  

 By acting on the representation physically, children are hence able to identify 

multiple partitioning solutions. This process may help them map their protoquantitative 

and quantitative understanding of decomposition or, alternatively, may help them 

develop numerical understanding of decomposition simply through the experience of 

identifying repeated numerical combinations (the ‗application before evaluation‘ process 

described by Bisanz, Sherman, Rasmussen & Ho (2005)). As argued in the literature 

review, both accounts might be possible: where children‘s understanding is developed 
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through an iterative process of both building on former knowledge and gaining 

experience by identifying numerical solutions. 

 

3) Identify multiple solutions (more than half) 

In order to solve the partitioning problem, children need to identify multiple solutions, 

but they also need some idea of the range of solutions possible – the problem space. Of 

course, children can just continue to identify different combinations independently of 

one another, but the greater the number of solutions that are identified, the greater the 

chance that children will repeat a solution if they have no means to track what solutions 

have been given. Without a strategy, this would certainly require substantial memorising.  

 Certain representations, such as paper, may help children by providing a record of 

previous solutions. If annotations reflect previous configurations, children can use this to 

determine what solutions have been given as well as an indication of what solutions 

remain. Physical materials do not provide such a record – they are confined to the ‗eternal 

present‟ (Kaput, 1993). However, physical materials may still help children by providing a 

visual (and tactile) representation: children then have an additional source of information 

to recall past solutions (in addition to remembering verbal solutions given), although this 

may still be cognitively demanding. More likely perhaps is that physical objects help 

children by fostering the use of efficient strategies for keeping track of solutions. The 

external representation may help children recognise a simple strategy of progressing 

through different configurations such as moving one object at a time from one group to 

another.  

 In order to identify more than half the solutions, children will need to identify 

‗commutative‟ solutions - those that have the same parts in different orders. This may be 
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difficult for children working mentally because these solutions may sound highly similar 

– they have the same numerical parts, although reordered. Physical objects may help 

children recognise the difference, as it may be clearer to see that objects in a different 

order present a different configuration. 

 

4) Identifying all solutions 

Again it is possible for children to identify all solutions simply through repeatedly 

identifying solutions independently of each other. Without a strategy this may however 

be quite laborious, nor is it clear how easily children will recognise solutions with zero in 

one part and the whole in the other. Contextual clues may help, for example, by 

presenting the validity of choosing to put all biscuits in one bag and none in the other; 

although this may seem quite unpragmatic (why have the other bag?). 

 It is possible that certain strategies help children recognise that ‗all and none‘ is a 

possible solution. For example, by moving one object at a time from one group to 

another, children will eventually reach this configuration. It seems however that without 

previous experience of identifying such a solution children would probably need support 

to recognise its validity. 

 

2.1.4 Summary 

This section has described Fuson‘s model of numerical development and how it relates 

to the development of children‘s strategies in problems such as addition. This model was 

then adapted to consider how children‘s numerical development might influence their 
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ability to solve the partitioning problem, and described four possible levels of increasing 

ability. 

 It was highlighted in this section how children‘s success may be significantly 

supported by the use of external materials. More specifically, it was discussed how certain 

properties of physical objects may support strategies: for example, by helping children 

create spatial configurations through simple actions or the use of tactile information to 

offload counting demands. Alternatively, there may be certain limitations: they might not 

be as easy to manipulate as fingers and, unlike material such as paper, provide no trace of 

previous solutions. 

 

2.1.5 Aim of Study 1 

The aim of this initial exploratory study was to investigate the role of physical materials in 

young children‘s numerical development by examining the use of the materials in two 

types of problems: addition and partitioning. The addition questions were designed to 

vary in their computational demands, so that they would become increasingly more 

difficult for children who lacked more flexible strategies. The partitioning problem was 

intended to reveal children‘s understanding of how numbers can be decomposed.  

 In order to help identify the unique advantages of physical materials, children‘s 

performances using physical materials were compared to a pictorial and control condition. 

The Pictorial condition was created in order to identify whether any differences were 

attributable to the particular characteristics of physical representations such as their 
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dynamic or tactile nature. In the control condition, children were given no materials but 

were able to use their fingers6. In this context, fingers can be described as a unique 

external representation – one where children are able to manipulate two groups (hands) 

of five units (fingers). 

 

2.1.6 Study predictions 

In the study, children were asked to use the representation in each condition if it helped, 

and were expected to use this when lacking adequate mental strategies. It was predicted 

that children in the physical materials condition would identify more solutions than 

children in other conditions in both the addition and partitioning problems. In the 

addition problems, physical objects would allow children to break the problem into two 

stages: count out one or both addends; and then count out the solution. Tactile feedback 

and spatial manipulation would facilitate these processes. Although children can also 

manipulate their fingers, they would be limited by only having ten fingers to count with. 

In the partitioning problems, the physical objects would support children by allowing 

them to count out the whole amount and then use this to easily identify multiple 

solutions by partitioning this amount into two spatially distinct groups in different ways. 

 

                                                      

 

6 It was decided, following a pilot, that it would be difficult to prevent children from using their 

fingers in the absence of other external support. 
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2.2 Method 

2.2.1 Design 

A mixed design was used with Condition (Physical, Paper, No Materials) as the between 

subjects factor, and Problem type (Addition, Partitioning) as the within subjects factor. 

The primary dependent measures were Response (correct/incorrect), and Representation 

Use – whether the representation was or was not used for each problem. Observational 

notes were also made of the strategy that children used in the addition problems.  

 

2.2.2 Participants 

Seventy-five children took part in this study. Children were from Year 1 and Year 2 (US 

equivalent: Kindergarten, Grade 1) of a local infant school in Nottingham where the 

number of children having free school meals is comparable to the national average (a 

measure of Socio Economic Status). All children had English as their first language and 

no special needs were reported. Because class sizes are limited to 30, these two year 

groups were split across three classes with one year one class (lower ability), a mixed Year 

1/2 class (higher ability Year 1, lower ability Year 2) and a higher ability Year 2 class. 

Classes in the UK are not typically mixed, although, this is not uncommon practice.  

 An initial session used the British Ability Scales (second edition (Elliot, 1983)) in 

order to create a numerical score for each child in which to create three equal groups. 

The scale requires completion of mathematics problems presented in various formats, 

but of numerical content only – no reading is required. Children‘s scores from this test 

were put in rank order following which children were systematically allocated to one of 

the three conditions (Physical, Paper, No Materials). Data from two children were not 
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used as these children were not able to complete the tasks in the main session. The final 

sample was therefore 73 (39 girls and 34 boys, range 68 to 92 months; M=88; SD=6.7 

months). Between groups analysis of variance was carried out to ensure that numerical 

ability between groups was balanced. As expected, this revealed no significant differences 

between conditions for numerical score (F(2,72)=0.018, p=ns).  

 

2.2.3 Materials and Procedure 

Sessions took place in a familiar room adjoining one of the classrooms. The interviewer7 

had spent a day in class with the children previously. Sessions lasted between ten and 

twenty minutes and were conducted individually. 

 All children were presented with 12 addition problems followed by three 

partitioning problems. This fixed order was chosen so that children could begin with 

familiar addition problems before progressing to the unfamiliar partitioning problems. 

Before starting the problems, the interviewer put the materials in front of children in the 

Physical or Pictorial conditions. The physical representation consisted of 20 randomly 

placed black Unifix cubes (2cm plastic cubes that can be adjoined linearly - Figure 2.1a). 

The pictorial representations consisted of 20 grey squares randomly located on a sheet of 

laminated paper (Figure 2.1b). A marker pen and board rubber was also provided.  

 

                                                      

 

7 The interviewer for all studies reported in this thesis was the Doctoral candidate and a qualified 

infant teacher 
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Figure 2.1: a) Physical and b) Pictorial materials used in Study 1 

 

2.2.3.1 Addition problems 

The addition problems were presented using laminated cards. Each card had a number 

problem written in the format ‗a + b =__‘ using black size 72 Ariel font. Before reading 

out the sum, the interviewer would present the materials and then ask children to use “the 

cubes/the squares/your fingers if they helped.” The questions were presented in the same order 

and consisted of four blocks. The blocks varied according to two factors: Total: total less 

than 10/total more than 10, and Addend order: biggest addend first/biggest addend second. 

The first six questions had a larger first addend with a total less than 10 for the first three 

questions and more than 10 for the second. The second six questions had a smaller first 

addend with a total less than 10 for the first three questions and more than 10 for the 

second. This fixed order of questions was intended to represent questions of increasing 

difficulty. The questions and their order are shown in Appendix A. 

 Children were given ten seconds to answer each question. If there was no answer, 

the interviewer would ask the child if they he/she were still thinking. Children in the 

Physical and Pictorial condition were told not to use their fingers. If any children did 

start using fingers in the Physical or Pictorial condition, the interviewer would remind 

them not to for now, also reminding them that they could use the cubes/paper if it 

helped. The problem would end if the child gave an answer, said they were not thinking 
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any more, or on the third wait of 10 seconds. For each problem, the interviewer would 

record the solution children gave, whether the representation was used, and the strategy 

used if so. The coding of the strategy is described in the results section. 

 

2.2.3.2 Partitioning problems 

The partitioning problems were all characterised in the form of the same vignette, 

accompanied by an illustration (see Figure 2.2). Children were ‗introduced‘ to a character 

called Mary, and told that she was going shopping. Children were given an initial 

demonstration question to ensure understanding. They were shown a picture of three 

bananas and asked “can you find all the ways that Mary can put the bananas in the bags?” There 

were four acceptable solutions: 0 & 3, 1 & 2, 2 & 1, and 3 & 0. If children independently 

gave two or more solutions then the interviewer would move to the three assessed 

partitioning problems: “well done, see there are different ways Mary can put the fruit in the two bags”. 

If children did not identify any solutions, the interviewer would support the child‘s 

understanding by pointing to one image of the bananas and then to one bag saying: “so, 

one way is there could be one banana is this bag and …” Children would then identify the 

second part, with the interviewer pointing to the image of the other two bags if necessary. 

The interviewer would then ask children “can you find another way Mary could put the bananas 

in the bags?” Again, if children were not able, the interviewer would provide prompts as 

before for the solution 2 & 1. After children had identified at least two solutions, the 

interviewer would move onto the three assessed partitioning problems. 
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Figure 2.2: Supporting illustration 

 

 The children were given three partitioning problems; requiring them to partition 5, 

then 8, and then 10. These were the amounts used by Jones et al (1996) from which this 

partitioning problem was adapted. For each problem, an image of a new character was 

presented along with supporting images of objects to partition which were removed after 

asking the question. Children were introduced to the character and problem context (e.g., 

character packing shirts to go on holiday with two suitcases) and then asked the 

partitioning question: ―How many can be in each bag/suitcase?‖ Children were then reminded 

about using the materials for that condition: ―remember to use the cubes/squares/your fingers if 

they help‖.  

 Children were given a prompt if they did not provide a solution: “there are 5/8/10 

bananas/shirts/ties, try to tell me how many can be in each suitcase/bag.” For pauses after children 

had identified a first solution, the interviewer would prompt: “is that all the ways or can you 

think of any more ways?” The session ended after two prompts had been given, or if the 

child said he/she had finished. If a child used non specific words such as „some‟ or „the rest‟ 

when identifying solutions, the interviewer would prompt by asking “so how many is 

„some‟/„the rest‟?”  

 The interviewer recorded the verbal solutions children gave and whether the 

representation was used on that problem. Much positive praise was given throughout. 
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2.3 Results 

2.3.1 Addition problems 

Children all solved 12 addition problems each. These were made of three problems in 

each of four blocks. For each problem, there were two dependent variables: Response 

(correct/incorrect) and Representation Use (used/not used). Children consequently 

received a score of 0-12 for each of these measures.  

 In the Physical condition, use of the representation was defined by children 

pointing to or moving cubes. In the Pictorial condition, Representation Use was judged 

by children pointing to or marking squares. In the No Materials condition, 

Representation Use was coded if children showed signs of deliberately extending fingers 

on either hand. The addition problems were also coded according to the strategy used: 

count all, count-on, recall, and other, where other was used to refer to strategies not falling into 

the first three listed (see section 2.3.1.4 for coding description).  

 

2.3.1.1 Correct Scores and Representation Use 

The distribution of group data was tested (Kolmogorov-Smirnov) and revealed no 

significant departures from normality for Addition scores on any of the conditions: 

Physical (D(24)=0.17, p=ns); Pictorial (D(25)=0.12, p=ns); and No Materials 

(D(24)=0.17, p=ns). Further tests on Representation Use revealed no significant 

departure from normality for Physical (D(24)=0.15, p=ns) and No Materials (D(24)=0.14, 

p=ns) conditions. Although tests revealed that the Representation Use for Pictorial 

condition was non-normal (D(25)=0.24, p<0.05)- likely attributable to low representation 
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use, multivariate analysis of variance was carried out with Condition (Physical/Pictorial/No 

Materials) as the independent factor and Addition score and Representation Use as 

dependent variables. Age and BAS numerical score were entered as covariates. Analysis 

revealed no significant main effect for Condition (Physical/Pictorial/No Materials) for 

correct scores (F(2,68)=0.32, p=ns). Age was not significantly related to correct score 

(F(1,68)=0.18, p=ns), but BAS number score was (F(1,68)=46.07, p<0.001). 

 For Representation Use (see Table 2.2), analysis revealed a significant main effect 

for Condition (F(2,68)=3.65, p<0.05), Post hoc Bonferoni tests (at p<0.05) were 

conducted to explore these effects further. Pairwise comparison revealed a significant 

difference between the Physical and Pictorial conditions. Neither Age (F(1,68)=0.46, 

p=ns) nor BAS number score (F(1,68)=0.87, p=ns) were significantly related to 

Representation Use.  

 Differences between Correct scores and Representation Use for the different 

subset addition problems were then analysed using Repeated Measures analysis of 

variance with problem type as a within subject factor and Condition as a between. As 

expected, there were significant differences in children‘s addition scores for different 

subsets (F(3,210)=37.22, p<0.001). Post hoc Bonferoni tests (at p<0.05) were conducted 

to explore these effects further. Pairwise comparisons revealed significant differences 

between each problem type. The order of difficulty is illustrated in the means for each 

problem shown in Table 2.1. There was no significant interaction effects found between 

Problem type and Condition. Repeated measures analysis of variance was also conducted 

on Representation Use but revealed no differences between problem types 

(F(3,210)=1.99, p=ns). 
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Table 2.1: Group mean (standard deviation) for Correct scores (out of 3) for each block of Addition 

problems 

 Addition Scores by problem type  

Condition 1st addend 

largest. 

Sum <10 

1st addend 

largest. 

Sum >10 

2nd addend 

largest. 

Sum <10 

2nd addend 

largest. 

Sum >10 

Total score 

Fingers 2.50 (0.83) 1.67 (1.24) 2.17 (1.01) 1.17 (1.24) 7.37 (3.42) 

Paper 2.72 (0.74) 1.72 (1.06) 1.96 (1.10) 1.08 (1.29) 8.24 (2.99) 

Physical 2.58 (0.78) 1.71 (1.20) 2.12 (1.15) 1.67 (1.13) 7.42 (3.66) 

      

Total 2.60 (0.78) 1.70 (1.15) 2.08 (1.08) 1.30 (1.123) 7.68 (3.34) 
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Table 2.2: Group mean (standard deviation) for Representation Use (out of 3) for each Problem Type in 

each block of Addition problems  

 Representation Use by problem type  

Condition 1st addend 

largest. 

Sum <10 

1st addend 

largest. 

Sum >10 

2nd addend 

largest. 

Sum <10 

2nd addend 

largest. 

Sum >10 

Total use 

Fingers 1.38 (1.28) 1.33 (1.27) 1.29 (1.30) 1.29 (1.23) 5.29 (3.84) 

Paper 0.56 (0.96) 0.84 (1.07) 0.68 (1.03) 1.04 (1.34) 3.12 (3.67) 

Physical 1.29 (1.33) 1.58 (1.32) 1.42 (1.32) 1.83 (1.37) 6.12 (4.50) 

 

Total 

 

1.07 (1.24) 

 

1.25 (1.25) 

 

1.12 (1.25) 

 

1.38 (1.34) 

 

4.82 (4.16) 

 

 

2.3.1.2 Relationship between Addition Score and Representation Use 

Analyses were carried out to examine whether children in each condition identified a 

greater proportion of addition problems as correct when they used the representation 

than when they did not use the representation. For each child, a proportional score was 

calculated for Representation Use (Correct with representation / Correct and Incorrect 

with representation) and for No Representation Use (Correct without representation / 

Correct and Incorrect without representation). As some children used or did not use the 

representation throughout the 12 problems, this generated some missing data in each 

condition, however, this was generally low (< 6), apart from in the Paper condition 
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where 9 children did not use the representation8. Median and interquartile ranges for 

proportional scores are illustrated in Table 2.3. 

 Proportional scores in each condition were then examined using non-parametric 

within subjects tests (Wilcoxon) and revealed a significant difference in the No Materials 

condition (Z=-3.01, p<0.005) but not in the Physical (Z=-1.26. p=ns) or Pictorial (Z=-

0.58. p=ns). In other words, children identified a significantly higher proportion of 

correct scores when using their fingers than when not.  

 

Table 2.3: Medians (IQR) for the proportion of solutions correct when Representation Used or not Used 

 Representation Used Representation Not Used 

No Materials (fingers) 0.80 (0.64, 1.0) n=20 0.54 (0.06, 0.89) n=22 

Pictorial 0.71 (0.34, 1.0) n=16 0.71 (0.30, 1.00) n=24 

Physical 0.75 (0.53, 0.95) n=21 0.68 (0.43, 0.91) n=18 

 

 

2.3.1.4 Addition Strategies 

Identifying children‘s strategies was relatively simple when children were using 

representations as it was possible to see which addends of the problem children had 

externalised and counted. Consequently, a coding scheme was created to code strategies 

                                                      

 

8 As differences were not significant, this discrepancy in sample sizes was not analysed further 
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in the problems when children used the representation. The coding scheme simplified 

counting behaviours into four categories, intended to reflect addition strategies (see 

Fuson, 1992b). The coding scheme is shown in Table 2.5. Count-all describes children 

who counted out both addends of the problem. Count-on refers to when children begin 

counting-on one addend from another. As this is computationally demanding when the 

second addend is large, children develop flexible strategies for manipulating the problem 

– counting-on the first addend from the second or decomposing and recomposing the 

problem (e.g., counting-on 4 from 10 when given the problem 9 + 5). Although children 

are still counting-on, these more advanced strategies were coded separately as more 

developed counting-on. The most efficient strategy of recall was not part of the coding system 

as children would not use the representation for this strategy. Any use of the 

representation that did not fall into the above categories was coded as other and typically 

reflected where children were confused and identified an unrelated solution.  
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Table 2.4: Coding scheme for Addition strategies 

Strategy  Behaviour 

Count-all Children count out both addends and then count all  

Count-on the second addend Children count out the second addend and then count on from 

the first 

More developed counting-on 

 

Children count out the smaller first addend and count on from 

larger second addend or children count out amount that shows 

decomposition of problem using decade structure (e.g., counting 

on 4 from 10 for 9 + 5) 

Other Children use the representation unsuccessfully and with no clear 

strategy from above 

 

 

 The coding scheme used is a relatively crude measure of strategies used by 

children. It does, however, illustrate differences between conditions for strategy use. For 

the More developed counting-on strategy, whilst 11 children used this strategy in the No 

Materials condition, only one children used this in the Physical and Pictorial conditions. 

Similarly, whilst 13 children used the Count-on strategy in the No Materials condition, no 

child used this in the Physical condition. Interestingly, 5 children used this strategy in the 

Pictorial condition. The Count-all strategy was used by many more children, 16 in the No 

Materials, 12 in the Pictorial and 19 in the Physical condition. Consequently, a non-

parametric between subjects analysis (Kruskal-Wallis) was carried and revealed a 

significant difference in the number solutions children used this strategy between 

conditions (2(2)=9.75, p<0.01). Mann-Whitney showed that children identified 



131 

 

significantly more Count-all solutions in the Physical condition (Mdn=5) than both the 

No Materials (Mdn=1) (U=179.50, Z=-2.27, p<0.05) and Pictorial condition (Mdn=0) 

(U=160.50, Z=-2.87, p<0.005). 

 

2.3.2 Partitioning Problems 

2.3.2.1 Coding 

 Correct Scores 

Children solved three partitioning problems: requiring them to partition 5, 8 and 10 

respectively. Consequently, the total number of partitions was different for each problem. 

Rather than convert scores to percentages that would generate misleading differences 

(e.g., children identifying one solution would receive a different score in each problem), it 

was decided that it was more appropriate to apply a crude coding system that would 

allow comparisons between problems. The coding system converted scores to an ordinal 

scale of 0 to 3. The levels of this coding system were designed to reflect the stages of 

ability identified in the section 2.1.3.  

 In this coding system, children received a score of zero if they identified no 

solutions and 1 if they identified a single solution. Two levels were assigned for children 

identifying multiple solutions. Children scored 2 if they identified less than half the 

solutions and 3 if they identified more than half. This distinction was not so much 

reflective of conceptual competency as of the efficiency of children‘s strategies for 

identifying the majority of solutions. Identifying the majority of solutions suggests that 

children are more aware of the problem space, and importantly means that children have 

identified at least one set of solutions that are commutative (e.g., 2 & 5 and 5 & 2) 

although these may not necessarily be identified in succession. 
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 Therefore, with a score of 0-3 for each problem, children were able to receive a 

total score between 0-9 for the three partitioning problems. 

 

 Use of Representation 

Although children were able to identify multiple solutions for each partitioning problem, 

it was difficult to identify if and how the representation was used for each solution. 

Moreover, children may have manipulated the representation for an initial solution, and 

simply then used the representation as a visual support to help identify further solutions. 

It was therefore decided to simply code each problem according to whether the 

representation was used at least once or not. Consequently, children were given a total 

score of 0-3 for Representation Use for all three partitioning problems. 

. 

2.3.2.2 Correct Scores and Representation Use 

The distribution of group data was tested (Kolmogorov-Smirnov) and revealed no 

significant departures from normality for Partitioning scores on any of the conditions: 

Physical (D(24)=0.05, p=ns); Pictorial (D(25)=0.14, p=ns); and No Materials 

(D(24)=0.06, p=ns). In contrast, further tests revealed that the data for Representation 

Use in each condition was significantly non-normal: Physical (D(24)=0.38, p<0.01); 

Pictorial (D(25)=0.51, p<0.01); and No Materials (D(24)=0.49, p<0.01). Although 

Representation Use for partitioning problems did not meet assumptions of normality, 

parametric analyses are reported as non-parametric tests revealed differences in the same 

direction and effect size. 

 Multivariate analysis of variance was carried out on Correct scores and 

Representation Use as dependent variables, Condition as an independent factor and Age 
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and BAS Number score as covariates. Analysis revealed no significant main effect for 

Conditions for Partitioning scores (F(2,68)=1.85, p=ns). Age was not significantly related 

to Addition score (F(1,68)=0.35, p=ns), but BAS number score was (F(1,68)=35.85, 

p<0.001). 

 For Representation Use, analysis revealed a significant main effect for Condition 

(F(2,68)=3.46, p<0.05). Post hoc Bonferoni tests (at p<0.05) were conducted to explore 

further these effects. Pairwise comparison revealed a significant difference between the 

between Physical and No Materials conditions and Physical and Pictorial conditions10. 

Neither Age (F(1,68)=1.26, p=ns) nor BAS number score (F(1,68)=0.75, p=ns) were 

significantly related to Representation Use.  

 Differences between Correct scores and Representation Use for the three different 

partitioning problems (partitioning 5, 8 and 10) were then analysed using a mixed design 

Analysis of Variance with Partitioning problem (5, 8, 10) as a within subjects factor and 

Condition as between. Significant differences were found between the scores on the 

three problems (Partitioning 5 (M=1.92, SD=0.89); Partitioning 8 (M=1.42, SD=1.08); 

Partitioning 10 (M=1.53, SD=1.09), but there were no significant interaction effects 

found between the three problems and Condition. Repeated measures analysis of 

variance was also conducted on Representation Use which revealed no differences 

between problem types (F(3,210)=2.37, p=ns). Considering the small use of 

                                                      

 

10 It should be highlighted that this significant difference is attributable to the almost lack of use 

of representations in the Paper and No Materials (fingers) conditions compared with 9 children 

using materials in the Physical condition. 
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representations in each condition, no further analysis was carried out on the relationship 

between Correct scores and Representation Use for Partitioning problems. 

 

2.4 Discussion 

It was predicted in this study that children who had access to physical representations 

would solve more addition and partitioning problems than children who had access to 

paper or their simply their fingers. This was not found. There were no significant 

differences between the three conditions for the number of correct solutions on both 

types of problems. In itself, this finding cannot lead one to conclude that physical 

representations were not supportive; they simply offered no advantage over pictorial 

materials or fingers. However, the data generated in this study does provide a window 

onto how the materials were used and whether children would have been more 

successful had they been encouraged to use the materials more.  

 

2.4.1 Addition problems 

It was found that an addition problem was more likely to be correct if children used their 

fingers in the No Materials condition than when they did not. There was no such effect 

found in the two material conditions. However, this relationship does not show causation. 

There are at least three possible interpretations: that using fingers helped children identify 

more solutions correctly, that children who were more able to answer a solution correctly 

were more likely to use their fingers or that another factor affected both these variables 

leading to a relationship between them. The first explanation was predicted by this study: 

that using external representations would help children identify more solutions correctly. 
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However, if this were so we would expect that children might do better than when they 

did not use representations as much. Instead, it was found that children in the Pictorial 

condition were less likely to use the materials, were not that successful when they did use 

them, and yet identified the same number of correct addition solutions as children in the 

Physical and No Materials conditions. Indeed, more solutions in the Pictorial condition 

were solved with no materials than in other conditions. This finding suggests that 

children‘s use of materials was attributable to their understanding and motivation to use 

the materials rather than because they were needed to solve the problem. Children used 

physical materials because they were more motivated to do so, not because they were 

more helpful. Indeed, this explanation helps explain why physical materials were just as 

likely to be used on simple addition problem as the more difficult ones and why 

Representation Use was not related to numerical ability. Contrary to predictions, children 

did not use the materials to help when they lacked adequate mental strategies. 

Unfortunately, it was difficult to identify from the measures taken in this study why some 

children chose to use the materials whilst others did not. 

 Children were less likely to use the pictorial than physical materials. There are 

several possibilities for this. Children may simply have been confused by how they were 

meant to use the materials since, unlike fingers and cubes, children are able to annotate 

paper in many ways. This was indeed demonstrated. Several children for example chose 

to write out the problem using numerals or re-represent the problem as shown in Figures 

2.3a and 2.3b. Figure 2.3a also highlights how the paper allows children to annotate 

numerical symbols as well as provide a record of solutions. One child did this as a way to 

remember the problem asked. Another reason children may have been more reluctant to 

use the paper was because annotating paper is more time consuming and demanding in 

terms of fine motor control than manipulating objects.  
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Figure 2.3: a) Annotating numerals and b) Re-representing the problem 

 

 When using pictorial materials, most children did so as intended, marking off 

squares to support counting, and did not seem to have difficulty in doing so. However, 

observations of children‘s annotations showed that a key difficulty for children was 

keeping track of which objects had been counted. In the Physical condition, children 

tended to manipulate objects to help keep track of counting by creating a linear 

configuration (which provides children with a means to track which objects by tagging 

objects one by one in a single direction), or by moving objects when they had been 

counted. In contrast, although children could mark squares to show they had been 

counted, the random arrangement meant that children often had difficulty in keeping 

track of which objects they had already counted and which still remained. Indeed, 

children often created a line to help keep track as shown in Figure 2.4. Children‘s fingers 

are linearly arranged, clearly thereby allowing them to keep track of counting by 

extending fingers one by one in a single direction. If being able to create a linear 

configuration does present an advantage for counting, this may be a possible factor 

negatively affecting children‘s performance using paper in studies by Martin & Schwartz 

(2005) where children were presented with random configurations.  
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Figure 2.4: Drawing a line through squares to monitor those counted 

 

 Generally, children did not use the representations as much as predicted, especially 

for the more difficult problems. A key reason may be the ordering of problems: by 

presenting the easiest problem first (which nearly all children identified correctly), the 

study was designed in a way that the representations were not as necessary at the start. It 

is possible that by presenting more difficult problems initially, children may have begun 

by using the representations and this initial use might have prompted greater use for later 

problems.  

 Many children did use the objects for more difficult problems, although the 

findings suggest that this does not confer an advantage. Examination of the strategies 

children used with the materials helps explain this finding. Coding of the strategies was 

relatively crude, yet highlighted how children would use a count-all strategy when using 

the physical materials. The fact that children in the No Materials (and Pictorial) condition 

tended to use more developed count-on strategies suggests that the physical materials 

fostered the less developed count-all strategy even though children were able to use more 

developed strategies. Indeed, although strategy use without materials was not measured, 

it is likely that children not using materials used more developed strategies as the count-

all strategy would be extremely demanding to carry out mentally.  
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 The count-all strategy is quite a time consuming procedure. For example, for the 

problem 7 + 12, children must count out each of these addends and then recount the 

total. Consequently, children need to count objects 38 times (7 then 12 then 19). This is 

time consuming and prone to count errors. An important question then is why children 

did not use the materials more efficiently (e.g., to support counting-on).  

 A key reason for children using the objects to count-all may have been because 

this was their experience of using the materials. In contrast, they had had more 

experience using their fingers for more advanced counting-on strategies. Indeed, the 

teachers of the school believed that the children did not have any experience in using 

manipulatives to count-on. Instead, children had used the number line; which may 

explain why several children used the squares in the Pictorial condition to count-on. 

Another reason that children may have counted-all with the objects was because they 

were able to do so. In a study by Muldoon, Lewis and Towse (2005), it was shown that 

children will tend to count objects if they are there rather than infer numerical 

relationships. Indeed, it is telling that in an intervention by Secada, Fuson and Hall (1983), 

when children were presented with two sets of dots and asked how many, they covered 

up the first set in order to assess if children could count-on. Although it is possible to 

count-all using fingers, children are limited by not being able to simultaneously represent 

addends with a sum greater than 10 which they can then count. This constraint may 

possibly foster the count-on strategy. They may also have had more experience counting-

on using fingers. 

 With respect to addition problems therefore, the findings from this paper would 

suggest that providing children with physical materials does not confer an advantage in 

simple addition problems. Although less able children may be more likely to use the 

materials, use does not lead to more accurate solutions. Indeed, the findings suggest that 

there is a danger that use of materials actually reduces the likelihood that children will use 
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more advanced count-on strategies. What cannot be deduced from this study is whether 

using objects for addition problems helps children‘s develop their numerical 

understanding that may later help them use more advanced strategies: for example, by 

helping them understanding how numbers can be decomposed and recomposed.  

 

2.4.2 Partitioning problems 

In the addition problems, children had to count out the representations for each problem. 

Therefore, the demands of using the representation for each problem were arguably 

relatively high, especially if children had an efficient mental strategy available. In contrast, 

in the partitioning problem, children only needed to count out the initial amount once 

and could then use this to help identify multiple solutions. However, use of materials was 

even less than for the addition problems. One key reason may be ordering effects: 

partitioning problems always followed addition problems and children‘s use might have 

been affected by experiences with the addition problems. However, it is possible to 

identify other reasons why materials tended not to be used or failed to provide an 

advantage when they were used. 

 One reason why children may have chosen not to use the materials is because the 

initial partition amount (5) was small and was relatively easy to partition mentally. In 

contrast, the initial demand of counting out five objects and then using these to count an 

answer may be comparatively greater. This may also have been the case for partitioning 

10: where children had prior experience in class with number combinations to 10, recall 

of at least one combination would be easier than starting to count out 10 objects. Indeed, 

children identified more solutions partitioning 10 than they did for 8. However, although 

children showed they understood the problems (only six children did not identify a 

solution), only 20 out of the 73 children got more than half the solutions when 
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partitioning 5 (and less for larger numbers). It was predicted that physical objects would 

help children identify multiple solutions and possibly foster the use of an efficient 

strategy for keeping track of the different solutions. However, children may not have 

known that the physical objects could provide this support, or may have had relatively 

poor planning skills (see Ellis & Siegler, 1997) with which to identify how an initial 

investment of counting out objects to partition would reduce the demands of identifying 

each solution. Of the children who did use materials to count out the initial amount; 

several seemed to forget the task demands (they simply counted out the partitioning 

amount) or treated the problem differently – as a question about finding half the total. 

Unfortunately, as only 9 out of 24 children used the materials at least once in the Physical 

condition and no video data was captured, it is difficult to draw any firm conclusions 

about how the materials were used. Nevertheless, it would be interesting to see if, and 

how, children used the materials if the initial amount was provided. Indeed, in Martin 

and Schwartz‘s (2005) study where children used objects and paper for fraction problems, 

the initial amount was provided. Furthermore, as the partitioning problem in this study 

involved identifying multiple solutions from the initial amount; it would be relatively 

pragmatic to provide this amount in a classroom context. Indeed, some materials such as 

the bead string in Figure 2.5 are designed for children to explore how to partition a given 

amount (typically ten). 

 

 

Figure 2.5: Bead string with 10 objects 
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 It is also possible that the problems could have been presented differently in order 

to facilitate the use of materials. Indeed, in a typical classroom context, children might 

usually be given at least a demonstration by the class teacher before using materials in a 

task. In order to assess children‘s tendency to choose materials to support problem 

solving, no demonstration was given; it is hence possible that this actually discouraged 

the use of external representations in all conditions.  

 

2.4.3 Summary 

In this study, it was predicted that children in the Physical condition would identify more 

correct addition and partitioning solutions because the representation would provide a 

means to support counting when children lacked adequate mental strategies and would 

provide a means to identify solutions and control the problem space in the partitioning 

problems. These predictions were not supported. However, it is possible to use the 

findings to draw several conclusions about the role of physical materials in numerical 

tasks. Firstly, when evaluating effectiveness, it is important to consider relative 

performance with fingers as a representation. Fingers provide a linear representation that 

can be manipulated. Although we only have ten fingers, more advanced strategies can 

reduce count amounts to smaller amounts, and it is possible that this constraint may 

foster such strategies instead of needing to provide multiple physical objects. A second 

conclusion is that it cannot be assumed that less able children will be more inclined to 

use materials. Indeed, it seems that children may be more likely to externalise if they 

know how to solve the problem. Less able children may therefore need explicit prompts 

and demonstration in using the materials. This point raises a key issue: namely that 

children‘s use and success of using materials will greatly depend on the context in which 
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they are presented. In this study, children were assessed in a relatively unfamiliar context 

and it is unclear how previous experiences affected their interpretations of why certain 

materials were presented in the way they were. This may be particularly important for the 

pictorial materials that are not only less familiar but present a range of ways they can be 

annotated. Clearer instructions on how to use the materials may be important to evaluate 

this form of representation, although it does highlight how this medium allows children 

to construct their own representations – an important means to externalise thinking (Cox, 

1999). A further conclusion is that children may be inclined to count all objects for 

quantities in a question using physical materials. This may be helpful when starting to 

learn to add; supporting the count-all strategy (helping to explain the advantage found by 

Martin, et al (2007) for physical objects over paper in addition problem with younger 

children), but less productive when wishing to encourage the development of more 

efficient counting procedures.  

 An important final conclusion from this study is that when considering the 

demands of using physical objects in numerical problems, it is important to consider the 

demands of initially counting out amounts. Although counting out objects may ultimately 

be cognitively beneficial, children may lack sufficient understanding and planning ability 

to make this initial investment in time and effort. For example, in the partitioning 

problem, it would be interesting to examine differences between representations if 

children were presented with the initial amount to partition. Presenting materials to 

children in this way may greatly influence how they are subsequently used by the children. 
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Chapter 3 

 

The effect of physical representations on 

children’s partitioning strategies - Study 2 

 

3.1 Introduction 

Study 1 examined whether physical materials would help children solve two types of 

numerical problem: addition and partitioning. The children were not given instructions in 

how to use the materials but simply provided with the materials and asked to use them ‗if 

they helped‘. Contrary to predictions, it was found that the children did not use the 

materials to support them when they were unable to solve the problems mentally. 

Moreover, not only was there no relationship found between ability and Representation 

Use, but it appeared that physical materials often fostered the use of less developed 

strategies. 

 Study 1 also helped identify a key reason why physical objects may not have 

conferred the predicted advantage. The initial demands of counting out addends in the 

addition problem or the initial amount to partition in the partitioning problem were 

relatively high compared to attempting the problem mentally. Indeed, an individual‘s 

preference to solve problems mentally when a more accurate solution might be obtained 

using external materials was discussed by Gray and Fu (2004). In this paper, the authors 

examined how individuals‘ strategies rely on memory or action with an interface when 
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the costs of using these are manipulated. It was found that constraints in accessing 

information from the external interface led to individuals‘ reliance on memory strategies 

even when the absolute difference in perceptual-motor versus memory retrieval effort 

was small, and even when relying on memory led to a higher error rate and lower 

performance. 

 The advantages of physical materials were predicted to be greater in the 

partitioning problems for the following reason: having made the initial investment of 

counting the whole, children could manipulate the representation easily to create parts 

that they could then count to identify a solution. Furthermore, it would be possible to 

use this external representation to help identify all the solutions more systematically. 

Unfortunately, the physical materials were not used on about three quarters of problems. 

One reason for this may have been children‘s lack of experience in using the materials for 

this type of problem. Indeed, several children who did use the materials seemed to 

confuse the task demands once they had counted out the initial amount to partition – e.g., 

by simply identifying this initial amount verbally as ‗the‘ answer. The initial requirement 

to count out objects may therefore not only have deterred their use for many children 

but also compromised the potential for the materials to support children when they were 

used. 

 Study 1 was in many ways a preliminary study examining how children would use 

materials to support problem solving in two different types of numerical problem. The 

study highlighted how the demands of counting out the initial amount in the partitioning 

task presented a greater limitation than was predicted. Study 2 therefore was intended to 

re-examine the role of physical materials in this task when the initial task demands were 

reduced. By providing children with a demonstration of how they might use the materials 

and providing them with the initial amount to partition, it was intended to re-evaluate the 

potential of physical objects to support young children‘s partitioning strategies. However, 
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it is not clear exactly how the materials would influence children‘s strategies. In order to 

predict the effect of physical materials on children‘s partitioning strategies, it is necessary 

to examine in more detail the demands of the partitioning task and how these are 

changed with the introduction of physical representations.  

 

3.1.1 Partitioning task demands 

In the partitioning problem, children are given a specific problem within a story context 

in which the aim is to identify all the different combinations of two parts (P1 and P2) for 

a given whole (W). For each valid solution, these parts combine to make the whole: P1 + 

P2 = W. As P1 or P2 can equal zero there are a total of W + 1 solutions. For example, 

when partitioning the amount 3 into two partitions, there are four solutions (3 & 0, 2 & 1, 

1 & 2, 0 & 3). The children‘s task is therefore to identify valid numerical values for P1 

and P2, to then identify more solutions ensuring that the value of P1 and P2 are different 

each time (keeping track of what solutions have been given), and to continue so that all 

possible values of P1 and P2 have been identified (keeping track of solutions left to 

identify). There are at least five identifiable strategies for how a child might identify 

solutions mentally: 

1) Identify P1 such that P1 ≤ W. Then identify P2 through approximation  

2) Identify P1 such that P1 ≤ W. Then calculate P2 by counting on down from W or 

up to W 

3) Recall P1 and P2 of previous solution and reverse such that P1=P2 and P2=P1 

(commutative) 
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4) Recall P1 and P2 of previous solution and change values by one (P1+/-1, P2 +/-1) 

maintaining P1 + P2 = W (compensation) 

5) Recall solution from declarative memory 

 

 Each of these strategies listed above can be evaluated with respect to their costs 

and benefits in time and effort. For example, for strategy 2, it may be relatively easy to 

identify one part as being one less than the whole (e.g., 7 when partitioning 8) then count 

up 1 to get the second part. However, this strategy becomes more difficult when the 

count amount is larger and, moreover, a method is needed to keep track of the solutions 

already given. Strategy 3 (commutative) is relatively undemanding procedurally, requiring 

children to simply hold the numerical values of the previous solution in memory. This 

strategy does however require an understanding that reversal of the parts does not affect 

the whole (commutativity) and is limited because a different strategy is needed to identify 

other pairs of solutions. Strategy 5 (recall) is quick and relatively undemanding once 

combinations have been committed to declarative memory. However, it is unlikely that 

young children have been exposed to sufficient problems to have achieved this, and even 

less likely they are able to recall solutions in such a way that they are able to ensure all 

solutions are given. 

 Arguably, it is strategy 4 (compensation) that provides the most efficient way to 

identify solutions whilst keeping track of the problem space. By starting at one ‗extreme‘ 

(all in one part and none in the other, and working incrementally by identifying parts that 

are one different from the previous), it is possible to identify successive solutions whilst 

monitoring what solutions have been given and what solutions are left to give. However, 

this strategy does present certain procedural and conceptual demands. On a procedural 

level, children must remember the previous solution, and then mentally subtract one 
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from one part and add one to the other part. On a conceptual level, children need to 

understand that numbers can be decomposed in this way. This understanding reflects the 

concept of additive composition, in which, more specifically, Irwin (1996) actually refers to 

one important principle of additive composition: compensation – an understanding that 

taking from one part and adding this to the other leaves the whole unchanged. 

 Strategies 3 and 4 are of particular interest in this study because both require 

children to relate one solution to the previous. The relationships for each strategy can be 

defined as follows:  

 Strategy 3 (commutative) 

 If P1 + P2 = W then P2 + P1 = W 

 E.g., If ‗6 & 1‘ is a solution then ‗1 & 6‘ is also a solution 

 

 Strategy 4 (compensation) 

 If P1 + P2 = W then (P1 + x) + (P2 – x) = W 

 E.g., If ‗5 & 4‘ is a solution then ‗6 & 3‘ and ‗4 & 5‘ are also solutions11  

 

                                                      

 

11 For this example, x=1. In other words, each part is only one less or one more than the previous. 

Henceforth, when referring to the ‗compensation strategy‘, x=1. This is because a) this amount is 

considered small enough to be mentally computed by children and b) there is no logical reason to 

apply a strategy where x>1. 
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 These strategies reflect important quantitative relations between parts and the 

whole which play an important role in children‘s development of number concepts 

(Nunes et al., 2007), although it is not clear how much understanding is required by 

children in order to apply these strategies in the partitioning problem. Nevertheless, 

research highlighting the iterative relationship between children‘s conceptual and 

procedural knowledge (e.g., Rittle-Johnson, Siegler, & Alibali, 1999; Rittle-Johnson, 

Siegler, & Alibali, 2001) suggests that developing the use of these strategies may itself 

help develop children‘s conceptual knowledge in this area.  

 

3.1.2 The effect of physical material on partitioning task demands 

When solving partitioning problems mentally, children initially have to remember the 

amount to partition (W). If children are given a physical instantiation of this amount, 

these demands can be externalised, and when they want to calculate a solution, such as in 

strategy 2, they are able to count the external representations of each part. To help clarify 

to which part an object belongs, children may choose to partition the objects physically, 

thereby creating two spatial collections – as shown in Figure 3.1. Indeed, the initial 

demands of identifying the first part (such that P1≤W) can be offloaded; simply by 

grouping objects physically, children can identify P1 by enumerating one part (e.g., by 

counting/subitising). Moreover, in order to calculate the second part, children now need 

only to enumerate the other group of objects. 
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Figure 3.1: Spatial partitioning of 8 objects 

 

 The demands of strategy 1 and 2 can be supported using physical objects: children 

are able to identify a solution simply by physically acting on the objects, creating two 

spatial groups, and then enumerating each of these groups. Although children may find it 

easier to recall previous spatial configurations than numerical values, it is important to 

highlight how the physical materials do not provide any way of keeping record of which 

solutions have and have not been given previously. Therefore, similarly to the arguments 

made previously, the problem with strategies 1 and 2 is that they do not provide a means 

to monitor the problem space. Indeed, children could simply keep rearranging the cubes 

and identifying solutions without knowing if these had or had not been identified 

previously. 

 It is also possible that physical objects might support the use of strategies 3 and 4. 

Several authors have described how children may hold an understanding of logical 

relations in the physical prior to numerical domain (Herscovics, 1996; Kamii, Lewis, & 

Kirkland, 2001; Piaget, 1965; L. B. Resnick, 1992a) and it is possible that this is reflected 

by children‘s ability to use the physical representation to relate solutions. For example, 

children may recognise that changing the order of two parts is another way to present the 

whole, even if they have yet to develop an understanding of what impact this will have on 

the numerical total (cf. understanding of conservation – see Chapter 1). They may also 

recognise that moving only one object from one pile to another is not only a way to 

create a unique configuration, but is a sustainable strategy that can be repeated to identify 
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further solutions. In other words, children may carry out strategies physically before 

having the conceptual or procedural knowledge of how to apply them numerically. Once 

children have enacted the strategy, they can they enumerate the resultant solution. 

 The process of acting and then interpreting the representation is described by 

Martin and Schwartz (2005) in their theory of Physically Distributed Learning. According 

to Martin and Schwartz, physical changes can help individuals reinterpret the 

environment, leading to learning. Applying this theory to this task, it is possible that 

physical objects foster the use of strategies that relate successive solutions and, by doing 

so, develop children‘s understanding in this domain. Indeed, it is possible that children‘s 

experience of identifying solutions using these strategies with physical objects leads them 

to apply these strategies at a later stage in the absence of physical support. Conversely 

though, it might also be argued that using physical objects will actually decrease the 

likelihood that children use strategies that relate solutions. This is because the 

computational demands of counting out unrelated solutions (strategy 2) are greatly 

reduced. In other words, being able to easily create new groupings and count the 

resultant configuration will decrease the likelihood that children will develop strategies to 

help identify new solutions and monitor the problem space.  

 Two possibilities have been put forward about the effect of physical materials on 

children‘s strategies in the partitioning task; with important differences for how the 

materials might support learning. By examining what solutions children identify when 

using objects, it may be possible to deduce what strategies they are using, and hence 

determine which of these two possibilities is more accurate. 
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3.1.3 Study aims and predictions 

The aim of Study 2 was to determine the effect of physical objects on children‘s 

partitioning strategies by comparing children‘s performance using cubes with no 

materials. It was predicted that by providing the initial amount of cubes, the procedural 

task demands would be reduced and children would identify more correct solutions with 

cubes than without. However, the study also aimed to compare the strategies used, which 

was achieved by developing a means to code the solutions given. By comparing the type 

of solutions given using cubes or using no materials, this study tested whether physically 

manipulating representations encouraged or discouraged the use of strategies that relate 

successive solutions (compensation and commutative strategies).  

 

3.2 Method 

3.2.1 Design 

A within subjects design was used with Condition (Physical/No Materials) as the within 

subjects independent variable. The primary dependent variable was the number of 

correct solutions. These solutions were then coded according to a coding scheme 

developed in this study, thereby creating a further dependent measure: frequency of 

solutions in particular strategy categories.  

 

3.2.2 Participants 

Thirty two children took part in this study (17 girls and 15 boys, range 68 to 82 months; 

M=74.2; SD=3.86 months). Children were from two Year 1 groups in a local school in 
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Nottingham, and their parents had signed and returned a consent form asking if they 

would like their child to take part in the study (56% response). This school was chosen 

from previous research with the university but children had not participated in a previous 

study in this research. The school is a larger than average primary school, with 345 pupils 

and situated in a suburb of Nottingham that is recognised as having a high social, 

educational and economic level. This is reflected in the very small proportion (2%) of 

children that receive free school meals.  

 In this study, all but one child had English as their first language and one child was 

reported as having special needs. These children were competent in the task and were 

included in the analysis. The school requested that no personal information including 

individual ability levels be taken. 

 

3.2.3 Materials and Procedure 

Sessions took place individually on a table in the corridor outside the class. They were 

held during lessons when noise levels in this area were acceptably low, and lasted 

between five and ten minutes. Children were presented with two partitioning problems: 

partitioning 6 followed by partitioning 7, always in this order. The order of condition 

(Physical/No Materials) was counterbalanced, changing for each child in turn. The order 

of children reflected an alphabetic class list, which made it easier for the class teacher to 

know who was next and was deemed sufficiently randomised for this within subjects 

design.  

 As children had only briefly been introduced to the interviewer by the teacher in 

class, the interviewer spent up to a minute at the start of the session chatting informally 
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to help each child relax. The interviewer would then explain that the purpose of the 

research was to find out what children find easy and difficult about number questions. 

 Children were then presented with a partitioning problem which was characterised 

in the form of a vignette, accompanied by an illustration (see Figure 3.2). Children were 

introduced to a character called Jon, and told that he had bought some bananas. Children 

were told that Jon likes to come home and keep the bananas in the two bowls, and that 

Jon was confused because there were ―so many ways to put the bananas in the bowls‖. The 

interviewer explained that the aim was to try to help Jon by telling him all the different 

ways he could keep his bananas in the two bowls. 

 

 

Figure 3.2: Image used in Study 2 to support problem understanding  

 

3.2.4.1 Example problem 

Before each of the two partitioning problems in each condition, the interviewer 

presented an example to help children understand the task demands and what constituted 

a valid solution. The interviewer would explain: “One day, Jon bought 3 bananas [interviewer 

shows image of 3 bananas]. Watch how I use [my head/these cubes] to help me find all the ways the 

three bananas could be in the two bowls.” In the Physical condition the interviewer placed three 

Unifix (2cm plastic cubes) on the table. In the No Materials condition, the interviewer 



154 

 

pointed to his head (the teacher of the class had explained how this prompt was used 

when children were being asked to solve problems mentally). 

 The interviewer would then identify the four ways to partition three in the 

following order: 3 & 0, 1 & 2, 2 & 1, and 0 & 3. In the Physical condition, the interviewer 

would partition the cubes before identifying the solution. Partitioning cubes involved 

moving the cubes into left and right groups in front of the interviewer. In the No 

Materials condition, the interviewer would simply point to the corresponding bowls 

when saying the verbal solutions. In the demonstration, the interviewer would explain 

that there could be “three in the red bowl and none in the green”, “one in the red bowls and two in the 

green”, “two in the red bowl and ...” On this third solution, the interviewer would 

purposefully pause and look at the child to prompt the child to say the solution (two in 

the green). If the child did not answer, the interviewer would use the image of the 

bananas and repeat “two in the red bowl and …” All children were able to complete this, as 

well as the final solution which again the interviewer prompted “and none in the red bowl 

and ….” (three in the green). The prompts for children to complete the solution were to 

ensure understanding and for children to practise giving numerical answers for each part. 

 

3.2.4.2 Partitioning problem 

After the demonstration problem, the interviewer removed the picture of three bananas 

but kept the picture of the stick figure and the two bowls. The children were then told 

that on another day Jon went shopping and bought 6/7 bananas. The order of total 

amount to partition was the same for all children: 6 followed by 7. Similarly to the 

example, in the Physical condition, children were presented with the correct total number 

of cubes to partition, which were placed in a line in front of the child. Children were then 

asked to use the cubes (use their heads in the No Materials condition) to tell the 
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interviewer all the ways Jon could put the 6/7 bananas in the two bowls. The children 

were reminded that, for each way, they were to say how many there were altogether in 

each bowl so that the interviewer could write down their answers. After solving the first 

partitioning problem, the interviewer would present the example and partitioning 

problem in the other condition. Condition order was counterbalanced between children. 

 

3.2.4.3 Prompts during problem solving 

For all problems, if children did not respond after 10 seconds they were prompted by the 

interviewer: “can you think of any ways that Jon can put the 6/7 bananas in the two bags?” For 

pauses after children had identified the first solution, the interviewer would prompt 

saying “is that all the ways or can you think of any more ways?” The session would end after two 

prompts had been given or if the child indicated that he/she had finished. If a child used 

non specific words such as ‗some‘ or ‗the rest‘ when identifying solutions, the interviewer 

would prompt by asking “so how many is „some‟/„the rest‟?  

 The interviewer wrote down all solutions given by the children so that they could 

see that their answers were being recorded (and that they were therefore important to the 

task) although they could not see what was actually being written down. Children would 

generally say or point to the bowl to which they were referring (e.g., “three in that one”) but 

if it was not clear the interviewer would prompt “three in which bowl?” The interviewer 

recorded the left bag as referring to the first part and right as the second.  

 For several children it was necessary to remind them of the need to identify 

partitions verbally in the Physical condition by stating the total amount, not to just show 

the configuration. Although it might be argued that this provided an unfair prompt for 

this condition, the prompt was a) only required for three children and b) only provided 
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once; if the child created a configuration and then looked to the interviewer, this was 

taken to mean that the child had created a solution12.  

 

3.3 Results 

3.3.1 Correct solutions  

Solutions were initially coded as correct or incorrect. Correct solutions were then further 

coded as being unique or repeated (see Figure 3.3). A repeated solution was any solution 

that had been given previously (in the same order of parts). Each child received a score 

for the number of unique correct solutions identified in each condition. Henceforth, 

unique correct solutions will simply be referred to as correct solutions and repeated correct 

solutions will be referred to as repeated solutions. If a score was incorrect, it did not matter 

whether it was repeated or not. The distribution of group data was tested (Kolmogorov-

Smirnov) and revealed significant departures from normality for scores on the first 

problem, partitioning 6 (D(32)=0.17, DF=32, p<0.05) although not the second 

(D(32)=0.13, p=ns). A Wilcoxon test was therefore carried out and showed there were 

no significant differences for correct solutions between the first (Mdn=5) and second 

problems (Mdn=5) (Z=-0.70, p=ns). 

 

                                                      

 

12 Although not expanded upon in this thesis, it is an interesting point to note that in this situation, 

the representation provides children with a means to communicate answers to the adult 

interviewer.  
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Figure 3.3: Coding of correct solutions 

 

 The distribution of group data was tested (Kolmogorov-Smirnov) and revealed no 

significant departures from normality for scores in the Physical condition (Kolmogorov-

Smirnov: D(32)=0.161, p<0.05). A Wilcoxon test revealed that children identified 

significantly more correct solutions in the Physical condition (Mdn=6) than the No 

Materials condition (Mdn=4) (Z=-4.50, p<0.0005)13  (see Table 3.1). In addition, the 

effect size was found to be fairly large (d=1.09, r=0.48) using Cohen‘s d for paired 

samples (Cohen, 1988). Children gave more Incorrect solutions in the No Materials (18 

children) than Physical condition (4 children).  

 

                                                      

 

13 In Study 1, scores were coded to compare condition as the total number of solutions possible 

for partitioning 5, 8 and 10 were substantially different. In this and subsequent studies, the 

partitioning amounts were more comparable (e.g., 7 and 8), and it was found that analyses using 

uncoded data revealed differences in the same direction and magnitude. Therefore, the analyses 

reported henceforth just examined the absolute number of correct solutions.  
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3.3.2 Strategy 

In order to examine differences in the possible strategies used between conditions, a 

coding scheme was first developed for correct solutions. 

 

3.3.2.1 Coding Scheme 

Two key strategies for partitioning were previously identified: commutative and compensation. 

A commutative strategy was defined as when the parts for a solution are identified by 

reversing the order of parts of the previous solution. A compensation strategy was defined 

as when a solution is derived by adding one from one part and taking one from the other 

from the previous solution. It is thereby possible to examine each solution children give 

(after the first solution) in terms of its relationship to the previous solution and use this 

to infer strategy. For example, the solution ‗1 & 6‘ after ‗6 & 1‘ might arguably reflect a 

commutative strategy. Similarly, the solution ‗2 & 5‘ after ‗1 & 6‘ might reflect a compensation 

strategy. 

 Clearly, this form of coding allows both type 1 and 2 errors: a solution identified 

using a strategy might not be coded because children did not actually verbalise the initial 

solution. Equally a solution might be coded although it only followed the previous by 

chance. However, as these errors should be equally as likely to occur in each condition, it 

should be possible to compare conditions to examine any significant differences.  

 The coding scheme was devised to identify compensation or commutative strategies. 

However, for partitioning odd numbers, such as 7, there is a sequence of solutions that 

falls under both coding descriptions: 3 & 4 following 4 & 3. It is possible in the Physical 

condition to infer how this solution might have been identified by looking at how objects 

were moved, although this is less easy in the No Materials condition. It was therefore 
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decided to code all solutions of this type in the same way, and to code this sequence of 

solutions as compensation since observations in the Physical condition suggested that 

children were more inclined to identify this pattern of solutions by moving one from the 

previous solution. 

 It is important to note that a solution that is coded as neither compensation nor 

commutative does not mean that children were not relating successive solutions. Indeed a 

couple of children seemed to apply a combination of commutative and compensation at the 

same time (e.g., swapping over and moving one object: e.g., ‗1 & 6‘ following ‗7 & 0‘). 

However, these were less clear and not frequent, and any solution after the first that was 

not codable as compensation or commutative was coded as other. The coding flow diagram is 

presented in Figure 3.4.  

 A final point concerning the coding scheme: although the coding scheme only 

applied to unique correct solutions (i.e. not repeated), a solution could be coded 

according to strategy even if the previous one was repeated. However, in line with the 

coding definitions, a solution would be coded as other if the previous one was incorrect.  
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Figure 3.4: Coding of Strategies 

 

3.3.2.2 Differences in strategy use between conditions 

Using the coding scheme, it was possible to give each child a score in each condition for 

the number of compensation, commutative and other solutions given. The maximum number 

of commutative solutions possible for partitioning 6 and 7 was three. The maximum 

number of compensation and other solutions for partitioning 6 was 6, and for partitioning 7 

was 7. The median and interquartile scores are shown in Table 3.1. Whilst 19 children 

identified at least one commutative solution in the Physical condition, less than half (10) did 

so when solving the partitioning problems without materials. Similarly, whilst most 

children (28) identified at least one compensation solution in the Physical condition, only 14 
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did so in the No Materials condition. Wilcoxon tests14 showed that children identified 

significantly more commutative solutions (Z=-2.25, p<0.05) and significantly more 

compensation (Z=-3.69, p<0.01) solutions in the Physical condition than the No Materials 

condition (see Figure 3.5). There were no significant differences between conditions for 

the number of other solutions (Z=-0.39, p=ns).  

 

Table 3.1: Medians (IQR) for strategy solutions in the Physical and No Materials conditions 

 Commutative Compensation Other 

Physical 1 (0, 2) 1.5 (1, 2.75) 2 (1, 2) 

No Materials 0 (0, 1) 0 (0, 1) 1 (0.25, 2) 

 

  

 Although these tests revealed a significantly greater number of commutative and 

compensation solutions in the Physical condition, it might be argued that this can be 

explained by children in the Physical condition simply identified more correct solutions 

overall (although the difference in other solutions was not significant). Indeed,  Spearman 

Rank order correlations revealed significant positive relationships between compensation 

solutions and overall solutions in the No Materials (=0.465, p<0.01) and Physical 

                                                      

 

14 Considering the median scores of zero in the No Materials condition, another way to approach 
analysis would have been to categorise scores according to whether children identified at least one 
solution or not,  and then carry out paired sampled tests on the binomial distributions. However, 
Wilcoxon tests will be reported in this thesis as a) this acknowledges the interval data for the 
majority of children in one of the within subjects conditions and b) significance levels for 
differences between conditions were unchanged. 
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conditions (=0.506, p<0.005), and similarly, significant positive relationships between 

commutative solutions and overall solutions in the No Materials (0.606, p<0.001) and 

Physical (=0.471, p<0.01) conditions. However, whilst the correlation between other 

solutions and overall solutions was large in the No Materials condition (=0.718, 

p<0.001), this was not significant in the Physical condition (=0.231, p=ns).  

 Therefore, analysis on the relationship between the number of coded solutions 

identified and overall solutions supports the prior analysis on differences between 

conditions for the strategies used. Children identified more solutions overall in the 

Physical condition and this is reflected in a greater number of compensation and commutative 

solutions but not in other solutions. In contrast, the greater number of solutions identified 

in the No Materials condition seemed to reflect a greater number of all strategy solutions. 

This helps explain why a significantly greater number of compensation and commutative but 

not other solutions were found in the Physical condition compared to the No Materials 

condition. The total numbers of solutions identified by children in each condition are 

illustrated in Figure 3.5.  

 Further comparisons of strategies between conditions in this thesis focused only 

on scores for strategy solutions unless analysis accounting for overall solutions affected 

interpretations of these findings. 

 

. 
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Figure 3.5: Total number of coded strategies identified by children in each condition 

 

3.3.2.3 Initial Solution 

The strategies analysed above were for solutions given after the first. However, it was 

interesting to see differences in the pattern of first solutions given. For many children, 

the first solutions given for partitioning 6 were 3 & 3. This is half of 6. For partitioning 7, 

many children identified a solution that was as close to halving as possible: 3 & 4 or 4 & 

3. These ‗halving‘ solutions will hence be referred to as ‗Equal partitioning‘. By coding 

these solutions, it was possible to examine differences in the number of Equal 

partitioning solutions between the two conditions. A signed ranked test was carried out 

to test differences between binomial data for each condition and found significantly more 

Equal Partitioning solutions in the Physical condition (+ve=18, -ve=4, ties=10, p=0.004). 

 

 



164 

 

3.4 Discussion 

This study examined the effect of physical representations on children‘s partitioning 

strategies. The main prediction was that children would identify more correct solutions 

using physical materials than without. This prediction was confirmed: children identified 

significantly more correct solutions with the cubes, and the effect was quite strong.  

 It is difficult to draw comparisons with Study 1 as the findings from Study 1 led to 

substantial methodological changes in this study. Importantly, the cubes were used by 

children on all problems in the Physical condition compared to only 37.5% of problems 

in the Physical condition in Study 1. Clearly, this could be attributed to the wording 

differences: children in Study 1 were asked to use the cubes „if they helped‟; children in this 

study were simply asked to use the cubes. Children were also provided with a 

demonstration of how to use the cubes to identify solutions, although care was taken to 

ensure that the same solutions and order were provided in both conditions. Study 1 

helped to identify a key demand in using physical objects to solve this problem: the need 

to count out the initial amount. This demand was removed in this study by presenting the 

initial amount. Therefore, by comparing the results of Study 1 and Study 2, it might be 

possible to draw the tentative conclusion that physical objects can support partitioning, 

albeit only when children are clear about how to use the materials and have pre-counted 

materials to reduce this initial task demand. 

 Study 1 showed that children may use different strategies when using physical 

objects and these strategies may be less developed than those used without materials. 

Therefore, an important aim of this current study was to examine what effect physical 

objects had, if any, on children‘s partitioning strategies. More precisely, the study 

examined whether physical objects increased or decreased the use of strategies that 

related solutions: commutative and compensation strategies. Two possibilities were discussed 
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for how physical objects might influence children‘s strategies. On the one hand, physical 

objects might reduce the use of commutative and compensation solutions because the 

computational demands of creating and enumerating parts for unrelated solutions are 

substantially lower than having to calculate unrelated solutions mentally. The motivation 

to relate solutions when solving problems mentally might therefore be greater in order to 

reduce computational demands. On the other hand, physical objects might increase the 

incidence of commutative and compensation strategies by providing an external representation 

that can be spatially manipulated to create ‗related configurations‘; i.e. swapping over 

parts to create a symmetrically opposite configuration and thereby identify a commutative 

solution.  

 The findings from the study clearly supported the second possibility: physical 

objects increased the use of compensation and commutative strategies. Furthermore, analysis 

demonstrated that the differences in strategies between conditions was not solely 

attributable to differences in the total number of solutions identified; no differences were 

found in the number of unrelated (other) solutions between conditions and, unlike in the 

No Materials condition, the number of other solutions was not significantly related to the 

number of overall solutions in the Physical condition .The finding that children identified 

more compensation solutions in the Physical condition has important implications. In 

contrast with Study 1, where physical materials often resulted in the use of less developed 

strategies, in this study, physical materials increased the use of a more developed strategy. 

It has been argued that increasing the use of this more developed compensation strategy is 

beneficial for learning, as the strategy is not only procedurally important in helping 

children manipulate difficult part-whole problems (e.g., 9 + 4 = 10 + 3), but reflects one 

of the numerical ‗big ideas‘ – i.e. that numbers can be broken down in different ways 

(Baroody et al., 2006). As children identified more solutions using physical materials, the 

findings of this study offer support for Martin and Schwartz‘s (2005) theory of Physically 
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Distributed Learning which describes how actions on the representation can lead to new 

interpretations – and thereby learning. Indeed, Nunes and Bryant (1996) have described 

how children who have developed strategies for calculation without materials may still 

develop ideas about how numbers can be decomposed and recomposed through their 

experiences with physical materials. 

 Unfortunately, by only comparing differences in partitioning strategies when using 

physical materials or no materials, this study is limited in identifying what particular 

representational affordances of the physical materials were beneficial. Whilst children did 

physically manipulate the cubes - generating different spatial configuration to identify 

different solutions, this may not have been necessary. It is possible that children were 

simply supported by the external representation of quantity in the question. If so, 

children might have benefited as much from a different representational medium such as 

a paper.  

 Although children in this study identified more correct ways to partition a number 

when they used physical objects, many solutions still seemed to be unrelated to previous 

solutions, as indicated by the number of solutions coded as other. Unlike related solutions, 

unrelated solutions do not emphasise the relationship between parts and whole. For 

example, although the solutions 2 & 6 and 4 & 4 still embody the concept of compensation 

(that taking from one part and adding to the other leaves the whole unchanged), it is 

arguably more difficult for children to see this relationship or apply it as a strategy in 

comparison to solutions that only differ by one, such as 2 & 6 and 3 & 5.  

 Physical materials therefore fostered but did not guarantee the use of more 

efficient strategies. It is not clear whether further use would have led to improvements, 

but the findings in this study do highlight how the materials seemed to encourage an 

initial strategy (partitioning objects equally) that does not seem the most efficient way to 
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begin this problem. By partitioning objects equally in the first question (6 into 3 & 3), 

children could not identify a commutative solution, whilst applying a compensation strategy 

from this point would only identify half the solutions. Children would then need to find a 

way to identify the other half. It is arguably more efficient and more reflective of an 

expert strategy to begin at one ‗extreme‘ (e.g., 6 & 0) and identifying solutions 

incrementally to reach the other extreme (0 & 6). It is not clear why children tended 

toward an initial Equal partitioning solution. Possibly it was identified through recall as 

children had experiences in working with halves and doubles, but this would predict no 

differences between conditions as children could recall as easily without materials. It 

seems therefore that the materials did foster this initial solution. One explanation for this 

is that children had prior experience in activities in halving groups of objects, another is 

that the perceptual properties encouraged such a solution – perhaps because it maintains 

a form of visual symmetry. Nevertheless, although the reasons for this initial strategy are 

unclear, it is possible that by encouraging children to start differently, for example with 

an ‗extreme‘ solution of all in one part and none in the other, children would be more 

successful in this problem. 

 

3.4.1 Summary 

This study has shown that children can identify more partitioning solutions using 

physical materials than with no materials. Furthermore, physical materials can increase 

the likelihood of using more developed strategies that relate solutions to each other. The 

materials may have supported children in different ways: by providing a visual and tactile 

means to enumerate parts from a representation of the whole and/or allowing them to 

recreate new valid groupings through simple physical actions. Whilst some of these 
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properties are shared with other representations, others are unique to physical 

representations.  

 The ability to create new spatial groups with simple physical actions using both 

hands is an affordance of physical materials, and may indeed have helped children 

explore the problem space and identify new configurations with minimal demands on the 

motor system. However, the trade-off from spatially manipulating the physical 

representation is that no record is left of previous configurations. In other words, the 

representation provides no means of identifying what solutions have been given 

previously – and without a record of previous solutions, children have limited means to 

determine what solutions they have yet to identify. Indeed, despite their relative success 

in identifying solutions when using materials compared to no materials, children still 

failed to identify all the solutions. In fact, only three out of 32 children managed to do so 

using materials. It is possible, that with a record of what solutions they had identified, 

children would be more apt at deducing what solutions remained. 

 In contrast to physical materials, using pictorial representations (pen and paper) 

can provide a record of previous changes to the representation. Children can annotate a 

solution and thereby create a record of the solution, which they can then use to monitor 

what solutions have been given and what solutions remain. However, although pictorial 

materials can provide a visual representation of the whole in the same way as physical 

materials, it is not possible to transform the spatial position of objects (although marks 

can be made to indicate such transformations). A question is thereby raised concerning 

the importance of spatial manipulation for solving partitioning problems. According to 

Martin and Schwartz (2005), it is physical adaptations (arrangements) that help children 

to identify new ideas, and indeed children identified new solutions in this problem by 

creating new spatial groups for objects. However, it could be argued that annotating 

pictorial materials also provides a visual clue for groupings. Although it may be more 
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demanding in terms of time and fine motor control for young children to annotate paper 

than to simply move objects, research has shown how increasing the costs of 

manipulating the external representation can actual lead to more efficient problem 

solving by encouraging reflection and planning (O'Hara & Payne, 1998).  

 The current study has shown that physical materials can help children identify 

more correct partitioning solutions and encourage the use of efficient strategies. 

However, there is a ‗trade-off‘ in using the materials between the ability to create spatial 

groups with ease and the ability to create a trace of previous actions. 
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Chapter 4 

 

Examining the trade-off between spatial 

manipulation and representational trace for 

solving partitioning problems - Study 3 

 

4.1 Introduction 

It was shown in Study 2 that physical materials helped children to identify correct ways 

of partitioning a number into two parts. This conclusion may seem unsurprising: by 

providing an external representation of the whole, the cubes helped offload the demands 

of calculating each partitioning solution. However, examination of the strategies used, 

such as identifying incremental solutions or swapping over parts to identify a new 

solution, suggested that the representational properties of the materials fostered 

children‘s strategies for identifying successive solutions. Indeed, it was found that 

children identified significantly more solutions that were related to the previous solution 

with the cubes than without. Unfortunately, it was not clear from Study 2 whether other 

external representations (such as paper) would offer the same benefits.  

 Chapter one described various properties of physical materials that distinguish 

them from other representations, for example, they provide tactile information. They can 

also be manipulated into different spatial configurations; although in so doing they 
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remove all trace of previous representational states. This trade-off helps draw 

comparisons of physical representations with another representation medium: pictorial 

representations. Pictorial representations cannot be spatially manipulated; however, as a 

consequence, changes to the representation (made through annotation) leave a record of 

previous activity. This record of previous changes to the representation will be referred 

to as ‗representational trace‘.  

 The aim of the current study is to understand some of the advantages and 

limitations of physical representations by examining this trade off between spatial 

manipulation and representational trace in solving the partitioning problems. Before 

predicting differences, these two features are examined in further detail. 

 

4.1.1 Spatial manipulation 

Physical objects can be physically manipulated into different spatial configurations. 

Objects can be placed closer together or further apart. Reflecting Gestalt principles of 

proximity (see Rock, 1993), objects that are close together tend to be perceived as 

belonging to the same group under certain circumstances. As discussed in Chapter 2, 

spatially distinct groups may also supporting counting by providing children with a visual 

cue of when to stop counting as well as the faster enumeration process of subitising 

groups of objects smaller than about five (see Mandler & Shebo, 1982). Consequently, 

manipulating cubes may help children to create different numerical groups (with relative 

ease) and then enumerate these groups. 
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4.1.1.1 Actions versus Planning 

The physical and cognitive demands of manipulating physical objects are quite low. 

Children understand the physical laws of materials (such as how objects move as 

connected wholes) from as young as six months (Spelke, 1990). Young children are also 

generally able to manipulate multiple objects using both hands with relative ease 

(depending on the size and shape of the objects). In contrast, working with other 

representations such as paper may be more difficult. Although children of the age 

focused upon in this research are generally competent at using a pencil to make basic 

annotations, the fine motor and attentional demands are greater than those required in 

moving objects. However, it is not quite clear how this ‗implementation cost‘ may affect 

problem solving. It is possible that, as found with adults, increased costs may foster more 

‗planful‘ behaviour (O'Hara & Payne, 1999; Van Nimwegen et al., 2006). In other words, 

because it is more difficult to annotate paper than move cubes, children may think more 

about their actions before carrying them out. 

  Compared to adults, however, children have greater motivational and cognitive 

difficulties with planning (Ellis & Siegler, 1997). Furthermore, whilst adults may find 

planning easier in the well-structured puzzle problems used in many studies, children may 

have much greater difficulty in learning tasks when they have only incipient knowledge. It 

may therefore be easier for children to act on the representation to support cognition 

rather than plan before acting. Indeed, the benefits of manipulating representations to 

support cognition in problem solving have been described in various studies (Anzai & 

Simon, 1979; D. Kirsh & Maglio, 1994). 
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 Physically Distributed Learning (PDL) 

Martin and Schwartz (2005) describe how acting on representations can support ideas, 

although their work makes a distinction between physical actions that help offload 

cognition and physical actions that lead to conceptual learning. They make the argument 

that individuals with incipient knowledge in a domain can physically manipulate the 

environment, perceptually interpret these changes, and hence develop new ideas in the 

domain. Martin and Schwartz support their theory by demonstrating how individuals are 

able to solve more operator fraction problems correctly using physical representations 

that can be spatially manipulated than static pictorial representations that can only be 

annotated. Applying PDL to the partitioning task therefore, it might be argued that 

physically manipulating the cubes helps develop children‘s ideas about how numbers are 

decomposed. 

 The methodological approach used by Martin and Schwartz of comparing a 

material that could be manipulated spatially (physical) with a static material (pictorial) was 

integrated into the design of Study 1. The predictions were not supported: physical 

objects were not found to confer an advantage. However, as previously suggested, the 

lack of any significant difference between the conditions may have been attributable to 

the lack of any demonstration by the experimenter and the lack of an initial counted out 

amount to partition (as was provided by Martin & Schwartz in their own studies). Indeed, 

Study 2 showed a clear advantage of physical materials over no materials when these 

limitations were addressed, and demonstrated that physical objects not only helped 

children identify more ways of partitioning a number, but fostered the use of strategies 

that related one solution to the previous one. The use of such strategies is important in 

the partitioning task because they provide a way of identifying unique solutions. In 

particular, the compensation strategy provides a way of identifying incremental (differing by 

one) solutions. However, children often failed to identify many solutions or identified 
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solutions that were not related to one another. This possibly highlights a key limitation of 

physical objects that was previously discussed – they do not provide a record of previous 

solutions with which to identify what solutions have been given and what solutions 

remain.  

 

4.1.1.2 Trace of interim solutions 

Pictorial materials may support children in the partitioning task because they provide a 

record of interim solutions. Annotations can be used to identify what solutions have 

been given and what solutions remain. It might be argued that multiple sets of physical 

materials could also provide the means to create a record - children could create a 

configuration and move to the next set, leaving a record of the previous solution. 

However, this is much more difficult to achieve practically. Spatially manipulating objects 

not only requires more workspace but groups of objects can easily be moved 

unintentionally or be confused with one another.  

 Pictorial materials may therefore address a key limitation of physical materials: 

they provide an easier means to create a trace of previous activity and hence a means of 

identifying previous solutions. However, the value of this representational characteristic 

is not clear. Not only may it be difficult for children to identify previous solutions from 

their annotations, but they may simply lack a developed understanding of the value of 

these previous annotations. Such reflective activity may be difficult for children without 

explicit prompts or even instruction. Importantly, by using an efficient strategy for 

identifying unique solutions (i.e. compensation) children do not actually need a record of 

solutions. 
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4.1.1.3 Summary and study aims 

Physical objects have unique representational properties that may be beneficial or limiting 

depending on the problem. Physical objects allow children to manipulate the 

representation with ease, which may help them to act on and interpret the representation 

to develop new ideas. This may explain the increased use of the commutative and 

compensation solutions in Study 2. However, it is possible that using pictorial materials will 

increase the costs of manipulating the representation that will encourage children to plan 

and hence use more efficient strategies. Furthermore, pictorial representations provide a 

record of previous solutions. This record may help children identify what solutions they 

have given and what solutions remain. Physical representations do not provide this 

benefit, although it is not clear whether children possess sufficient understanding to be 

able to recognise the value of using these records of past actions.  

 The aim of Study 3 was to evaluate the representational properties of physical 

materials by examining the role of spatial manipulation and representational trace on 

children‘s strategies to solve the partitioning problem used in the previous studies. This 

was addressed by conducting a 2x2 controlled design study, manipulating these two 

representational characteristics (Physical/Pictorial and, Trace/No Trace). It was 

predicted that children in the Physical and Trace conditions would identify significantly 

more correct partitioning solutions. 
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4.2 Method 

4.2.1 Design 

A 2x2 between subjects design was used with Material (Physical/Paper) and Trace 

(Trace/No Trace) as the two independent variables, resulting in four independent groups: 

Physical Trace, Physical No Trace, Pictorial Trace and Pictorial No Trace (see Table 4.1). The 

primary dependent measure was the verbal solutions provided by children, which were 

then coded according to strategy using the coding scheme developed and defined in 

Study 2.  

 

Table 4.1: Four conditions in the study design 

 Trace of solutions provided 

Representation No Trace Trace 

Physical Physical No Trace Pictorial No Trace 

Pictorial Physical Trace Pictorial Trace 

 

 

4.2.2 Participants 

One hundred children took part in this study (54 girls and 46 boys; range 53 months to 

87 months; M=70.79 months; SD=9.98 months). Children were from Reception, Year 1 

and Year 2 classes at a local primary school in the Nottingham area. The School had 

recently amalgamated an Infant and Junior school, and had yet to receive a formal 
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inspection. Based on the reports from the pre-existing schools, the percentage of 

children receiving free school meals is slightly above the national average (a measure of 

Social Economic Status). The classes were mixed, those taking part in the study being: 

one Reception class, two Reception/Year 1 mixed classes (former Infant school building) 

and three mixed Year 2/Year 3 classes (former Junior school building). Only children in 

Year 2 from the Year 2/3 mixed classes took part. There were 2 children with English as 

a second language and 1 with Special needs. The teacher judged that these children would 

not have particular difficulties with the problems so they were included in the study and 

analysis. 

 Children were randomly allocated to one of the four conditions by assigning a 

number to each child using a random number generator in Excel, applying a different 

(sequential) range of numbers to each condition, and then allocating each child to the 

condition corresponding to his/her number. 

 

4.2.3 Materials and Procedure 

Sessions took place in two locations. For children in the former Infant School, sessions 

took place in the lower school library area. Although there were sometimes other 

individual work sessions occurring at the same time, noise levels and distractions were 

low. Children in the former Primary school were tested in a small meeting room off one 

of the corridors. Although the door was left open, the occasional noises of other children 

passing in the corridor did not seem to cause distraction.  

 Sessions lasted between ten and fifteen minutes. The interviewer began by 

welcoming the child and thanking him/her for coming. It was then explained in general 

terms that the aim of the study was to find out what helps children learn about numbers, 
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and asked the child if he/she like to help by ‗having a go at a few questions about numbers‟. 

Every child seemed keen to do so, and the interviewer then explained the story problem.  

 It was decided to present the children in this study with a different story context 

from that given to the children in Study 1. The problem structure was isomorphic but 

used cows in fields rather than fruit in bags for two main reasons. Firstly, because some 

children were younger, it was felt that a clear visual image of the two partitioning areas 

would support children‘s understanding. Secondly, it was expected that this problem was 

less hypothetical: cows can change fields over time, whereas a person is not likely to 

change objects in two bags (or reflect on the change). Importantly, it is also less logical 

for cows to be equally partitioned between two fields than fruit in bags.  

 The interviewer recounted the story problem about a farmer, his two fields and 

the cows he kept in his fields. The laminated image was placed 50cm away from the 

children (to prevent children placing objects actually on the image) and showed a fence 

separating the two fields with a gate in the middle that had been left open. The 

interviewer then explained the problem: the farmer kept cows in the fields but, because 

the gate was open, the cows kept wandering from one field to the other. The interviewer 

used a laminated image of three cows to help children visualise the cows moving between 

fields. A single image of the three cows was used rather than three separate images in 

order not to provide a prompt of spatially partitioning objects. 
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Figure 4.1: Laminated objects used to support understanding 

 

 The interviewer then told the child that because the cows keep moving from one 

field to the other, the farmer is confused: he doesn‘t know how many cows are in each 

field. The interviewer then explained what was required: to help the farmer by telling him 

“all the different ways the cows can be in the two fields‖, and then told the children to watch an 

example showing them what he meant. The materials used in the demonstration and 

problem are described below as they differed according to which condition the child was 

in.  

 

4.2.3.1 Materials in each Condition 

 Physical No Trace 

Children in this group were presented with a line of counted out red cubes (2cm3 

wooden cubes) in front of them for each problem (see Figure 4.2a)  
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 Physical Trace 

Similarly to the Physical No Trace condition, children in this group were presented with a 

line in front of them of counted out red cubes (2cm3 wooden cubes) for each problem. 

However, whenever children verbally identified a solution, the interviewer quickly 

recreated the configuration of the cubes children had made on the right hand side of 

their workspace using black wooden cubes (as illustrated in Figure 4.2b). It was decided 

that the interviewer, not child, would create this record in order not to interrupt 

children‘s use of the physical representation. For the same reason, the interviewer used a 

separate set of cubes (not the cubes children were using) in order not to disrupt how 

children might identify one solution from the previous. The interviewer would start at 

the top of this space and create successive configurations under each other so that a total 

of 13 configurations would fit in this space (therefore balancing the 13 rows provided in 

the Pictorial Trace condition).  

 

  

Figure 4.2: a) Physical materials as presented in both Physical conditions and b) Example of trace 

solutions created in the Physical Trace condition 
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 Pictorial No Trace 

Children in this group were provided with a sheet of paper with rows of squares (equal to 

the partitioning amount). The squares were 2cm2 white with a black border separated by 

a 1.5cm gap (see Figure 4.3). Each sheet of paper was about 6cm (three times the height 

of the squares) by 30cm (the width of A3 paper). However, after each verbal solution, the 

interviewer removed this piece of paper, turned it over and placed it to the right hand 

side of the children‘s workspace. He then gave the children an identical sheet of paper 

with a row of the number of squares. 

 

 

Figure 4.3: Pictorial materials used in conditions 

 

 Pictorial Trace 

Children in this group were provided with an A3 (Portrait) sheet of paper with 13 aligned 

rows of the number of squares to partition15 (Figure 4.4). The squares were identical to 

the Pictorial No Trace condition, and were aligned in order to facilitate comparison 

between solutions. 

                                                      

 

15 In all conditions, it was decided to set a maximum number of solutions for the children. As the 

maximum number of correct solutions was 10 it was decided to stop children after 13 solutions 

(where children would have given at least four incorrect or repeated solutions) 
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Figure 4.4: Pictorial materials used in Pictorial Trace condition (13 rows) 

 

4.2.3.2 Example question 

In the example question, the interviewer drew children‘s attention to the number of cows 

on the laminated image of three cows, and explained that the aim was to ‗find all the 

different ways the 3 cows could be in the two fields‟. The interviewer then placed the cubes (three 

cubes in both Physical conditions) and the paper (sheet with one row of three squares in 

the Pictorial No Trace and sheet with 13 rows of three squares in the Pictorial Trace) in 

front of the children, and asked them to watch how these three cubes/three squares could be 

used to help find the different ways. In all four conditions, the interviewer then used the 

materials to create the four solutions; 3 & 0, 1 & 2, 2 & 1 and 0 & 3; always in this order. 

In the two cubes conditions, the interviewer moved the cubes into 2 spatial groups. In 

the Pictorial condition, the interviewer drew a circle round the number of squares using a 

pencil.  

 In the Physical No Trace condition, the interviewer simply created the 

configuration, verbally identified the solution from the configuration, and then continued 

to create and identify all solutions (similarly to Study 2). In the Physical Trace condition, 
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after the first solution (3 & 0), the interviewer recreated the configuration at the top right 

side of the workspace using the black cubes whilst telling the children: “I am going to use 

these cubes so I have this [pointing to this new row of squares] to remember my answer”. The 

interviewer then proceeded to identify solutions in the same way as for the Physical No 

Trace condition, although recreating each of the four configurations below the previous 

on the right hand side of the workspace. In the Pictorial No Trace condition, the 

interviewer circled the squares, verbally identified the solution, and moved the paper to 

the right turning it upside down. He then repeated this for the remaining solutions using 

new sheets with 3 squares on. In the Pictorial Trace condition, after the first solution, the 

interviewer said ―I am going to use the next row of squares so I have this [pointing to the first solution] 

to remember my answer”. Although only three rows were used, there were 13 rows in the 

Pictorial Trace example (see Figure 4.3 for example of annotation of first three rows). 

 

 

Figure 4.5: Example of interviewer‟s annotation for demonstration with three objects in Physical Trace 

condition (only four of 13 rows shown) 

 

 At the end of the example, the interviewer would say “see, there are lots of ways the 

cows can be in the fields”. In the Physical Trace and Pictorial Trace conditions, the 
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interviewer would point clearly to the rows of four configurations in order to emphasise 

how these provided a record of all the solutions given. 

 

4.2.3.3 Partitioning problem 

Following the demonstration problem, the interviewer explained to the children that the 

farmer bought some more cows and now had 7 altogether. The order of partition 

amount was the same in all conditions: 7 for the first problem, 8 for the second and 9 for 

the last. The interviewer then placed the correct amount of cubes/sheet with the correct 

amount of squares, in front of children and asked them to ‗use the 7 cubes/squares to show the 

farmer all the ways the 7 cows could be in the 2 fields‟. The interviewer asked the children to 

‗remember, for each answer, to say how many were in this field (pointing to left field) and how many in 

this field [pointing in right field]‘. He then said „keep going and let me know when you think you have 

found all the different ways.‟ 

 The interviewer recorded solutions and gave prompts as in Study 2. In addition, 

children were encouraged to use the representations at all times: “remember to use the 

cubes/squares‖. Although there was inevitably a slight delay in the Physical Trace condition 

while the interviewer recreated the configuration, the time was kept to a minimum (about 

3-5 seconds) as a) the interviewer knew the number of cubes being partitioned and b) the 

re-created configuration did not have to be an exact replica. Following the final problem 

(partitioning 9), the interviewer thanked the child and gave them a sticker. 
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4.3 Results 

4.3.1 Correct solutions 

All children were presented with three partitioning questions: partitioning 7, 8 and 9. The 

solutions children gave were coded according to being Correct (and unique), Repeated 

(correct but not unique) and Incorrect. The maximum number of correct solutions for each 

problem was is 8, 9, and 10 respectively. All children therefore received a score between 

0 and 27 for the number of correct solutions identified. The distribution of group data 

was tested (Kolmogorov-Smirnov) and revealed no significant departures from normality 

for scores on any of the conditions: Physical No Trace (D(25)=0.12, p=ns); Physical 

Trace (D(25)=0.12, p=ns); Pictorial No Trace (D(25)=0.14, p=ns); and Pictorial Trace 

(D(25)=0.17, p=ns). Analysis of Variance was therefore carried out with Material 

(Physical/Pictorial) and Trace (Trace/No Trace) as between subjects variables. 

 Analysis revealed a significant main effect for Condition (F(3,96)=4.29, p<0.01) 

but failed to reveal a main effect for Trace (F(1,96)=0.64, p=ns). There were also no 

significant interaction effects (F(1,96)=0.05, p=ns). The means for each condition and 

factor are shown in Figure 4.6.  
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Figure 4.6: Mean Correct Solutions in the four conditions (Physical/Pictorial – Trace/No Trace) 

 

 A Freidman test showed that there were no significant differences in the total 

number of solutions identified between the three partitioning problems (2=0.88, DF=2 

p=ns). 

 

  Incorrect solutions 

Since the number of incorrect scores was independent of the number of correct scores, 

separate analyses were carried out. The distribution of group data was tested 

(Kolmogorov-Smirnov) and revealed significant departures from normality for incorrect 

scores on all conditions. Mann-Whitney tests were therefore carried out to examine main 

effects. These showed significantly more incorrect solutions in the Pictorial Conditions 

than in the Physical Conditions (U=737, Z=-3.73, p<0.0005) but no difference between 

the Trace and No Trace Conditions (U=995, Z=-1.86, p=ns). 
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 Repeated solutions  

A Kruskal-Wallis test revealed a significant difference between conditions for the number 

of repeated solutions identified (2(3)=15.91, p<0.005). Mann-Whitney tests revealed that 

this finding reflected that children in the Physical No Trace condition identified 

significantly more repeated solutions than the other three conditions.  

 

4.3.2 Difference between age groups 

Children from three age groups took part in the study: Reception, Year 1 and Year 2. A 

Kruskal-Wallis test revealed significant differences for Correct scores between the three 

year groups. As expected, separated Mann-Whitney tests showed that Year 1 (Mdn=15) 

scored significantly higher than Reception (Mdn=3) (U=138.0, Z=-4.12, p<0.001), while 

Year 2 (Mdn=21) scored significantly higher than Year 1 (U=471.5, Z=-3.30, p<0.01).  

 Man-Whitney tests were then carried out to examine the main effects of Materials 

and Trace in each of the three age groups. Reflecting analysis carried out on all children, 

no significant differences were found between Trace and No Trace in any of the age 

groups. In contrast, it was found that children identified more correct solutions using 

physical than pictorial materials in all three age groups: Reception (U=10.5, Z=-2.68, 

p<0.01), Year 1(U=166.0, Z=-2.35, p<0.05), Year 2 (U=91.5, Z=-2.04, p<0.05). Median 

scores for each condition for the three age groups are shown in Table 4.1.  
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Table 4.2: Median (IQR) correct scores for Physical and Pictorial conditions for children in Reception, 

Year 1 and Year 2 

 Physical Pictorial 

Reception 9 (3, 13.5) n=8 0 (0, 4) n=10 

Year 1 16.5 (14.25, 22) n=24 14 (3, 17) n=23 

Year 2 22.5 (18, 24.25) n=18 18 (12, 22) n=22 

 

 

4.3.3 Strategy 

Using the Coding scheme developed in Study 2, children‘s solutions were coded 

according to the number of related solutions. Related solutions comprised of commutative 

(reverse of the previous solution) and compensation (one different from the previous 

solution). Mann-Whitney tests revealed no differences in the number of Related solutions 

identified between the Trace (Mdn=5) and No Trace (Mdn=6) conditions, but showed 

that children in the Physical conditions (Mdn=8) identified significantly more Related 

solutions than those in the Pictorial conditions (Mdn=4) (U=810.0, Z=-3.06, p<0.005). 

Breaking this down by strategy, there were significantly more compensation (U=937.5, Z=-

2.18, p<0.05) solutions identified in the Physical conditions than Pictorial. There was a 

more significant difference in commutative solutions (U=722.00, z=-3.98, p<0.0005), 

however, there was arguably insufficient variation in commutative scores in the Pictorial 

conditions for comparing scores by rank. Whilst 32 out of 50 children identified at least 1 

commutative solution in the Physical condition, only 14 out of 50 did in the Pictorial 

conditions and half of these only identified 1 commutative solution. Therefore 
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differences were reanalysed by coding each child according to using the commutative 

strategy or not. As this was a between subjects design, a χ2 analysis was conducted and 

found a significant difference between the Physical and Pictorial condition in the number 

of children who identified at least one commutative solution (χ2=13.04, df=1, p<0.0005) 

 As well as related solutions, it was found that children in the Physical condition 

also identified significantly more other solutions than children in the Pictorial conditions 

(U=941.5, Z=-2.14, p<0.05). Median scores for strategies in the Physical and Pictorial 

conditions are shown in Table 4.2. 

 

Table 4.3: Median (IQR) scores for coded strategies in the Physical and Pictorial conditions 

 Compensation Commutative Other 

Physical 6 (1.75, 9) 1 (0, 3) 7 (2, 9) 

Pictorial 3 (0, 6.25) 0 (0, 1) 4 (0, 8) 

 
 

4.3.4. Equal partitioning 

There were no significant differences in the number of equally partitioned first solutions 

between the groups or main conditions.  
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4.4 Discussion 

The aim of this study was to develop an understanding of the representational benefits 

and limitations of physical materials by comparing children‘s partitioning strategies using 

physical with pictorial representations, and also by examining the possible advantages of 

representation trace. It was predicted that spatial manipulation of the physical materials 

would help children to identify more solutions as would providing a record of each 

representational state created to identify a solution. The findings were clear: children 

using physical materials identified significantly more correct solutions than children using 

pictorial materials, thus supporting the predictions put forward by Martin and Schwartz 

(2005) in their theory of Physically Distributed Learning. However, it was also found in 

this study that, contrary to predictions, providing children with a trace of their previous 

solutions did not lead to more correct solutions. 

 

4.4.1. Role of Trace  

It is possible that children simply forgot, or didn‘t understand, that they had a trace of 

their solutions, especially in the Physical conditions that involved the unusual aspect of 

the interviewer replicating solutions with other cubes. However, not only were explicit 

references made in the demonstration problem, but informal enquiries made after formal 

questioning had been completed suggested that children did understand that these 

conditions presented a trace of previous solutions. Two reasons might therefore be put 

forward for why they did not use this to help the problem solving: (a) they were unable 

to identify the value of the representational trace or (b) they judged the demands of using 

this record as too high.  
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 Identifying the value of the trace, unprompted, requires children to identify the 

need in the task to identify multiple but a finite number of solutions and recognise how 

progress can be monitored by using the trace. This may have been beyond most children 

who may have perceived the representation as a means to simply identify a new solution. 

Furthermore, children who had a more developed understanding of the problem may 

have realised how they could keep track of previous solutions by using a specific strategy 

for identifying solutions such as compensation.  

 Alternatively, children may have understood the value of the trace but chosen not 

to use it due to the procedural demands involved. In order to use the record, children 

needed a quick means of recognising which solutions they had identified previously. If 

this was done numerically, children would need to count the parts of these previous 

solutions whilst trying to track the numerical values they had not yet identified. 

Alternatively, children could have used visual clues to identify which solutions had not 

been given. However, whilst this may be relatively easy with clear and ordered solutions, 

it is quite challenging when previous configurations have been made that are difficult to 

compare. Unfortunately, if configurations were ordered, this would likely be because 

children were using a specific strategy (e.g., compensation), and would therefore remove the 

need for children to use the record.  

 One finding that is not easily explained is the significantly greater number of 

repeated solutions in the Physical No Trace condition. This finding actually implies that 

children did use the trace in the Physical Trace condition, and by doing so were able to 

identify and avoid repeated solutions. However, an alternative explanation is that in the 

Physical Trace condition children were simply slowed down by having to wait for the 

interviewer to recreate the solution and, by slowing down, were more likely to think 

about the solutions they had identified previously. This point highlights a possible 

indirect effect of providing a trace in the Physical condition. However, if children were 



192 

 

slowed down and did think more about their previous solutions, it is interesting to 

speculate why this did not also foster more efficient strategies.  

 The findings in this study thereby demonstrate that, in this partitioning problem, 

children do not use a trace of their solutions without explicit instruction. It is possible 

that children could be encouraged to use a record of their solutions with more prompts 

or if the record was easier to interpret, such as a symbolic record of solutions, but there is 

no strong reason to believe this would encourage children to relate solutions, especially 

as a symbolic record would remove any visual-spatial clues as to how one solution may 

relate to the previous one. 

 

4.4.2. Role of Physical manipulation  

The findings of this study suggest that the advantages of physical materials over no 

material in Study 2 were not simply attributable to an external representation of units. In 

this study, children were able to identify more correct solutions when they were able to 

physically manipulate the representation. There are several possible reasons why physical 

materials provided this advantage. 

 Firstly, it seemed that the materials were more accessible for children with little 

domain knowledge. Whilst six children in Reception and three in Year 1 failed to identify 

any solutions at all in the Pictorial condition, no child failed to do so in the Physical 

condition. This may be because physical objects limit how the representation can be 

acted upon. Therefore, with little understanding, children in this condition may have 

been more likely to use the materials appropriately by creating two spatial groups, than to 

annotate the pictorial materials appropriately by creating lines to separate two groups.  
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 The physical materials may also have supported the procedure of identifying two 

amounts accurately. By creating two spatially separate groups, not only are the 

boundaries of each group clearer but children‘s enumeration may be supported through 

subitising. Tactile feedback and moving objects may also have supported counting. 

Indeed, there were significantly more incorrect solutions in the Pictorial condition. 

However, although there were more incorrect solutions in the Pictorial condition, the 

reason for there being less correct solutions was because far fewer verbal solutions were 

provided.  

 It is predicted in PDL that children will identify more solutions using physical 

materials because they allow children to act on the interpretation with ease, creating 

spatial configurations that can be interpreted to support new ideas. This study did not 

record the number of changes to the representations children made, but informal 

observations indicated that children created more configurations than they identified – 

suggesting that the representation did help children to explore the range of solutions 

possible, and allowed children to identify new solutions by first acting on the 

representation and then enumerating (interpreting) the resulting solution. 

 

4.4.3 Motivation 

Another possible reason that children in the Pictorial condition identified fewer solutions 

may be motivational. The advantages of physical materials may not be so much that 

children become aware of the greater number of solutions possible, but rather that the 

lower demands of manipulating the representations (and/or familiarity) motivate them to 

continue. Physical materials are more easily and quickly manipulated than pictorial 

materials as well as providing both tactile and visual stimuli. Significantly, unlike pictorial 

materials, manipulation does not leave a trace, so that children may be less concerned 
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about ‗going wrong‘. Even in the Physical Trace condition, a trace was only made after 

children had identified a solution.  

 It is not clear how PDL accounts for possible motivational effects. Motivation 

might encourage children to adapt the materials more, thereby leading them to develop 

more ideas, but it is difficult to isolate motivation as a factor. Nevertheless, there was 

reason to believe that the advantage of the materials in this study was not purely 

motivational. Firstly, there were no clear signs of loss of motivation in either condition 

(e.g., loss of visual concentration). Secondly, sessions were relatively short (around 12 

minutes on average), especially for the older children where the advantage of physical 

materials was still clear. Finally, if children were losing motivation, a fall in performance 

over the three problems might have been expected, yet there were no such differences in 

either condition. Therefore, although it is not possible to rule out motivation as a key 

factor in differences between conditions, it is unlikely to be the only factor.  

 

4.4.4 Strategies  

Differences in the ways children identified successive solutions in each condition provide 

a window onto how the representations may have influenced problem solving. Using the 

coding scheme developed in Study 2, it was possible to compare and contrast strategies 

that children may have used. Similarly to Study 2, a large number of solutions were 

related, seemingly derived from the previous solution, with older children identifying 

more related solutions. As this suggests developmental progress, it is possible to argue 

that because children identified more related solutions using physical objects, this 

representation fosters the use of more developed strategies for partitioning. However, 

children in the Physical condition also identified a greater amount of other solutions. 
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Therefore, it seems that the greater number of related solutions reflects a general effect 

of identifying more solutions overall using physical objects.  

 The possibility that the larger number of related solutions in the Physical conditions 

may simply reflect the larger number of solutions found overall does not itself negate the 

benefits of this representation: a greater number of solutions identified this way means 

that children will have more experience of such strategies and hence a possibly greater 

chance of developing related numerical ideas. However, it does suggest that the 

manipulative or perceptual properties that may have fostered certain strategies in Study 2 

are not unique to physical objects. In other words, it may simply be the external, linear 

representation of objects that helps children identify related solutionsIt should be noted, 

however, that difference in the number of commutative solutions identified between 

conditions appeared more substantial. This raises the possibility that the manipulative or 

perceptual properties of physical objects do foster this strategy. Indeed, with cubes, it is 

easy to change a configuration (e.g., 2 and 5) into a unique but symmetrical configuration 

of (i.e.. 5 and 2) through simple actions: grabbing a group with each hand and then 

swapping over hands. Unfortunately, without video data it is difficult to conclude that 

such actions were indeed responsible for the greater use of this strategy. 

 

4.4.5 Summary  

This study has shown that children are able to identify more ways to partition a number 

when using physical than when using pictorial representations. This supports PDL and 

suggests that the implementation costs of having to annotate paper does not result in 

more planful behaviour, as has been found with adult studies (O'Hara & Payne, 1999). 

This may not be surprising considering the evidence suggesting that children find 

planning cognitively challenging and unappealing (Ellis & Siegler, 1997). 
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 The problem used in this study required children to keep track of which solutions 

they had given and which solutions still remained to be identified. The prediction that 

children would utilise a trace of their solutions to meet these demands was not supported. 

This suggests that the cognitive demands of interpreting these previous solutions to 

inform strategies were too high, although it is not clear how children would respond to 

more explicit instruction before starting the problem solving. 

 Although the trace may have been of limited value to children, the value of 

representational trace for the teacher should not be ignored. Having a trace of children‘s 

actions allows the teacher to see the child‘s progress without constant supervision. Whilst 

children‘s use of pictorial materials provides this trace, physical materials do not. 

Developing our understanding of the value of a trace of solutions is important, not only 

in evaluating this representational characteristic but also in evaluating novel digital 

technologies that can provide a trace of solutions even when objects are manipulated 

spatially. Indeed, the ability for computer based manipulatives to provide a trace of 

actions is referred to as a key advantage that these materials have over physical objects 

(Clements, 1999; Kaput, 1993). 

 This study also examined the effect of using the different representations on 

children‘ strategies, and showed that children in the Physical conditions identified more 

solutions that related to the previous one. Although this could simply be a reflection of a 

greater number of solutions having been found overall, it appearedthat one particular 

strategy (commutativity) was more likely to be used in the Physical condition. More focused 

video analysis of children solving partitioning problems may help to explain which 

representational characteristics of the materials encourage the use of this strategy. 

Similarly, there are other questions raised in the studies conducted so far that might be 

addressed using more qualitative analysis. These include questions about the relationship 

between children‘s actions and the solutions identified, and how certain unique 
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properties of physical materials such as sensorimotoric information may play a role. It 

might also be possible to identify which behaviours are related to children‘s use of the 

most efficient strategy for solving this problem (compensation) and possibly thereby begin 

to suggest ways in which the materials themselves can be adapted to foster such a 

strategy.  
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Chapter 5 

 

The role of physical actions in solving partitioning 

problems - Study 4 

 

5.1 Introduction 

It was shown in Study 2 that children were able to identify more correct partitioning 

solutions using physical objects than with no materials. Study 3 then focused on physical 

and pictorial representations to examine the representational trade-off between 

manipulating objects spatially and leaving a record of previous solutions, and 

demonstrated that the conclusions of Study 2 were not simply attributable to children 

having an external representation of the whole. It was found that physical manipulation 

of objects did help children‘s problem solving, whereas having a record of previous 

solutions made no significant difference.  

 Although Studies 2 and 3 both showed that manipulating physical cubes 

supported partitioning, the studies were limited in providing an account of how children‘s 

actions with the material allowed them to identify more verbal solutions. Physical 

materials have many unique representational qualities, both in terms of perceptual 

properties (e.g., spatial configuration/tactile feedback) and how these properties can be 

manipulated. Identifying the role of more specific representational characteristics can not 

only develop our understanding of the advantages and limitations of physical materials 
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but also help suggest ways in which we might design more effective materials to support 

learning.  

 

5.1.1 Physical properties 

In the literature review, it was discussed how physical materials have certain 

representational qualities that may support cognitive activity. For example, objects 

provide tactile information about properties such as the position and quantity being 

touched. The spatial configuration of objects may also help children by emphasising the 

group to which objects belong and allowing children to quickly enumerate objects 

though perceptual mechanisms (subitising). Different sources of information potentially 

help children process greater amounts of information in parallel (e.g., one can hold in a 

form of tactile memory the information that four objects are in the left hand whilst 

counting out two or more objects with the right hand under visual control of movement). 

The potential for different multimodal forms of encoding in memory, or even of 

offloading memory demands onto external representations, may thus provide added 

advantages of using physical materials for certain problems.  

 It was also discussed in the literature review how a key benefit of physical 

representations may reflect the benefits of manipulation. When children are partitioning 

with physical objects, they are able to move objects with ease using both hands into 

different groups that can then be enumerated as parts. This notion that children can act 

on and then interpret the representation is central to the Theory of Physically Distributed 

Learning (PDL) (Martin & Schwartz, 2005). According to PDL, individuals are able to 

adapt the environment to help ‗adapt ideas‘. In this context, the term adapt is 

synonymous with change. 
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 In their paper, Martin and Schwartz examine the relationship between changes to 

the representation and interpretations by developing a means to quantify each of these 

measures. Interpretations are defined in terms of the verbal solutions children give. 

Changes to the representation are defined in terms of the number of ‗adaptations‘. The 

term ‗adaptation‘ is initially defined as a physical arrangement of pieces; however, because 

a measure is also presented of the number of adaptations using pictorial materials; it 

seems that the term is used more generally to refer to how items, physical or pictorial, 

have been grouped perceptually. In the case of physical objects, groups may be spatial, 

while with pictorial materials, groups may be those objects encircled by annotation. Using 

this definition, changes to the way objects have been grouped lead to new adaptations, so 

that it is possible to talk about the ‗number of adaptations‘ generated using 

representations. 

 The finding in Study 3 that children identified more correct solutions using 

physical objects than pictorial seemed to support PDL by suggesting that children were 

able to manipulate the representation – i.e. generate more adaptations – to develop new 

ideas. The study also suggested that representational properties affected how children 

adapted materials leading to different strategies for identifying solutions. However, from 

the measures taken in the study, it was not possible to identify how children interacted 

with the representations – for example, whether they did adapt the physical 

representation more than the pictorial representation. It was also not possible to examine 

how physical properties affected children‘s actions and consequently strategies.  

 

5.1.2 Study aim and hypothesis 

The aim of Study 4 was to address the limitations of Studies 2 and 3 by examining in 

closer detail the role of physical representations in the partitioning problem. As in the 
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previous two studies, comparisons were made with no materials and with pictorial 

representations. Again, it was predicted that children would identify more correct 

solutions and more related solutions using physical objects. Study 4 was designed to carry 

out a more in depth qualitative analysis with a smaller sample of children, with video data 

captured to examine the relationship between children‘s actions using the representations 

and the verbal solutions they provided. In particular, it was possible to evaluate the role 

of physical manipulation in the task by analysing the number and types of adaptations 

made to the representations. It was predicted that children would adapt the physical 

representation more than the pictorial representation and would identify more correct 

solutions.  

 The study also examined the use of strategies by coding solutions in the same way 

as for Studies 2 and 3. However, observational analysis aimed to explain the relationship 

between certain actions with the representations and the strategies used. Finally, the study 

also examined other interactions with the representations (e.g., pointing, touching) to 

identify the role of certain representational properties in supporting problem solving.  

 

5.2 Method 

5.2.1 Design 

The study used a within subject design with Representation (No 

Materials/Paper/Physical) as the independent variable. All children solved three 

partitioning problems: one with No Materials first (the baseline condition), then the two 

others with order of condition for Paper and Physical counterbalanced. The dependent 

measure was the number of correct (and unique – i.e. not repeated) partitions for each 

problem.  
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5.2.2 Participants 

Participants were children invited to the University of Nottingham for the day as part of 

a ‗summer scientist week‘. This event was advertised around several local schools in the 

Nottingham area, describing how children could act as ‗scientists‘ by taking part in 

different projects. This opportunistic sampling resulted in 12 children from different 

social economic backgrounds and schooling (6 girls and 6 boys, range: 62 months to 87 

months; M=73 months; SD=7.0 months). No further details (e.g., English language, 

special needs) were requested. 

 

5.2.3 Materials and Procedure 

Sessions took place in a large room where five other studies were taking place. Each 

study area was partitioned and noise levels were generally low. Children were all 

accompanied by their parents who were asked to sit slightly behind their children to 

avoid unintended prompts. The interviewer, who was unfamiliar to the children, spent a 

few minutes conversing with each child to put him/her at ease before sessions began.  

 The story context was that used for Study 1. This is because the context of the 

fields in the previous study was considered to provide too strong a prompt for how to 

partition objects into two groups (this study aimed to effect of representation on 

grouping). The problems were all characterised in the form of the same vignette, 

accompanied by an illustration (Figure 5.1). Children were ‗introduced‘ to a character 

called Mary, and told that she was going shopping. They were then shown a picture of 

three bananas and asked if they could “say all the ways that Mary could put the bananas in the 

bags”. The interviewer helped children identify solutions, and after allowing them a short 
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time to explore the problem presented them with all the solutions in the following fixed 

order: 0 & 3, 1 & 2, 2 & 1 and, 3 & 0.  

 The picture of three bananas was then removed and not replaced, while the 

picture of the character and bags remained on the table. 

 

    

Figure 5.1: a) & b): Supporting images provided 

 

 The children were then given the partitioning problem requiring them to partition 

the amount 7 with no materials, as follows: “The next day, Mary buys seven bananas. She puts 

some in one bag and some in the other bag. Can you tell me all the ways she can put the seven bananas 

into the two bags?” 

 For all problems, if children did not respond after 10 seconds they were prompted 

by the interviewer: “can you think of any ways that Mary can put the seven bananas in the two 

bags?” For pauses after children had identified the first solution, the interviewer would 

prompt saying “is that all the ways, or can you think of any more ways?” The session would end 

after two prompts had been given or if the child said they had finished. If a child used 

non specific words such as ‗some‘ or ‗the rest‘ when identifying solutions, the interviewer 

would prompt by asking “so how many is „some‟/„the rest‟?” 

 The No Materials condition was followed by the Physical or Paper condition, the 

order of which was counterbalanced between children. In each condition, a 
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demonstration was given using the materials before sessions began. Children were again 

presented with a picture of three objects to be bought and told all the ways these could 

be partitioned between the two bags. However, in this demonstration the interviewer 

asked the children to watch how the cubes/paper could be used to help find all the ways. 

The cubes were blue Unifix cubes (Figure 5.2a). The Paper representation consisted of 

2cm dark grey squares aligned horizontally and separated by a 1.5cm gap across a sheet 

of A4 paper (landscape)(Figure 5.2b). A pencil and eraser were also provided; although it 

was decided to provide only one piece of paper per problem to balance conditions 

(children were only given one set of cubes)16. 

 

  

Figure 5.2: a) Pictorial and b) Physical materials used 

 

 Each child partitioned 8 followed by 9 in counterbalanced conditions. The 

interviewer used the materials to model all the answers by moving the cubes into 

different groups, or by drawing circles around squares in the Pictorial condition to make 

groups. Again the possibilities were identified in the same order; 0 & 3, 1 & 2, 2 & 1 and, 

                                                      

 

16 This also allowed this study to examine whether annotating the same representation would help 

children in the Pictorial condition to relate consecutive solutions – not found in the previous 

study where children used different sheets of paper. 



205 

 

3 & 0. In the Pictorial condition the interviewer briefly showed how the eraser could be 

used to remove any unwanted lines if this helped.  

 All sessions were videoed and the interviewer also wrote children‘s solutions on 

paper so that they could see that their answers were being recorded (and that they were 

therefore important to the task), although they could not see what was actually being 

written. Children would generally point to the bag to which they were referring (e.g., 

“three in that one”) but if it was not clear the interviewer would prompt “three in which bag?” 

The interviewer recorded the left bag as referring to the first part and the right as the 

second.  

 For several children it was necessary to remind them of the need to verbally 

identify partitions by stating the cardinal amounts, and not just show the configuration. 

As identifying the numerical solution from the physical state was integral to the study, it 

was important to apply the same rules for prompting children to verbalise solutions 

across the different conditions. Children were prompted by saying “remember to tell me how 

many in each bag when you have a new answer” if they created a new configuration but made no 

signs of adapting (moving, annotating) the materials for more than several seconds. 

Although it is possible that this criterion resulted in prompting children to enumerate 

when they did not realise they had identified a solution, the same prompts were provided 

across both conditions and were deemed necessary to avoid children creating many 

solutions physically without identifying any verbally due to forgetting or misinterpreting 

the task demands.  
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5.3 Results 

5.3.1 Correct solutions  

Children‘s solutions were scored according to the number of unique correct partitioning 

solutions they gave. The maximum number possible was different for each question, with 

a maximum of 8, 9 and 10 for partitioning 7, 8 and 9 respectively. Because the size and 

direction of effect sizes did not differ when scores were coded (from 0-3 as they were in 

Study 1), the analyses reported were carried out on absolute scores. Nevertheless, despite 

the Physical and Pictorial conditions being counterbalanced, they always followed the No 

Materials condition, therefore order effects cannot be ruled out. 

 The distribution of group data was tested (Kolmogorov-Smirnov) and revealed 

significant departures from normality; non-parametric analyses were therefore carried out. 

A non-parametric Friedman test was used to examine differences in correct scores 

between conditions and revealed significant differences (2(2)=9.90, p<0.01). Wilcoxon 

tests were therefore used to examine differences between conditions and revealed 

significant differences between No Materials (Mdn=1) and Physical conditions (Mdn=4) 

(Z=-2.35, p<0.05) but not between No Materials and Paper conditions (Mdn=1) (Z=-

0.28, p=ns). Children identified significantly more correct solutions in the Physical than 

Paper condition (Z=-2.68, p<0.01). 

 

5.3.2 Adaptations 

A key aim of this study was to examine children‘s use of representations to help identify 

verbal solutions. Consequently, it was important to identify a way to measure and 

compare children‘s use of physical and pictorial representations. It was decided to use the 
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term ‗adapt‟ to describe changes to the representation and the term ‗adaptation‟ as a unit in 

which to quantify the number of changes made. 

 The term ‗adaptation‘ is taken from Martin and Schwartz (2005) who used the 

term to refer to when children arranged objects into equally partitioned groups. 

Unfortunately, no further description was provided to help define this behaviour. In this 

study, the aim was to examine children‘s partitioning behaviour with the representation, 

and the term ‗adaptation‘ was therefore defined more expansively as any configuration that 

resulted from a change in the number of objects grouped together. What constituted as grouped 

together in each condition is described presently. It was also decided to define groupings 

according to a left to right ordering (i.e. swapping objects 2 & 5, and 5 & 2, would 

constitute two adaptations). It was thereby also possible to describe each adaptation by 

the number of groups and objects in each group.  

 In the Physical condition, a grouping was defined as objects placed in close 

proximity to each other relative to another group of objects17. For example, in Figure 5.3, 

this adaptation would be described as 4 & 4 & 1. In the Pictorial condition a grouping 

was defined as objects that were separated by annotation between objects. For example, 

in Figure 5.3b, this adaptation would be coded as 1 & 8. Because of the scope for 

subjectivity in these descriptions, a secondary coder was employed to quantify the 

number of adaptations made by the 12 children in the Physical and Pictorial conditions 

(this could not be done in the No Materials condition). Inter-rater agreement was 

                                                      

 

17 As actual measurements would reflect the space children used, coding necessarily involved an 

element of coders‘ interpretation of when children had placed objects together as part of the same 

group.  
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calculated using an Intra-Class reliability coefficient as data was at least interval. The 

model used assumed the same raters rated all cases and each rating score came from the 

same rater. The coefficient for physical and pictorial materials was 0.978 which shows 

that inter-rater reliability was high. 

 

   

Figure 5.3: a) & b): Examples of physical and pictorial configurations – coded as 4 & 4 & 1.and 1 

& 8 respectively 

 

 In total, 119 adaptations were coded in the Physical condition and 55 in the 

Pictorial condition. A Kolmogorov-Smirnov test of normality revealed that the data met 

assumptions of normality (Physical: D(12)=0.15, p=ns); Pictorial: D(12)=0.22) p=ns), so 

a paired sample t-test was carried out to examine differences in the number of 

adaptations in each condition. This showed that children created significantly more 

adaptations in the Physical condition (M=9.92, SD=7.78) than Pictorial condition 

(M=4.58, SD=4.96) (t=3.26, p<0.01). 

 

5.3.3 Relationship between Adaptations and Correct scores 

In order to examine the relationship between the number of adaptations and the number 

of verbally identified correct scores, a Spearman correlation was carried on these two 
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measures in the Physical and Pictorial conditions. This revealed a significant correlation 

in the Physical condition (=0.74, p<0.01), but not in the Pictorial condition (=0.12, 

p=ns). 

 A significant correlation between the number of solutions identified verbally and 

the number of adaptations does not necessary imply causation. It might be expected, 

however, that if adapting the representation led to new correct solutions, there would be 

more adaptations than correct solutions, as children may not verbally identify some 

adaptations. Indeed, a Wilcoxon test (correct scores were non-normal) revealed that 

children identified significantly more adaptations than correct solutions in the Physical 

condition (Z=-2.95, p<0.05); but that the difference was not significant in the Pictorial 

condition (Z=-1.55, p=ns).  

 As shown in Table 5.1 there were more adaptations than verbal solutions in the 

Pictorial condition, although this difference does highlight a difficulty with the coding 

scheme for adaptations. A couple of children in both the Physical and Pictorial condition 

began partitioning by verbalising a strategy of placing objects one at a time into two 

groups “one in this bag, one in this bag”. In the Physical condition, these children moved 

objects one at a time into two new groups. In the Pictorial condition, they annotated 

around each square one at a time. In both conditions each action was coded as a new 

adaptation but not a verbal solution. This behaviour accounts for the greater number of 

adaptations than verbal solutions in the Pictorial condition: there were no other instances 

where children annotated (adaptation) without identifying a verbal solution. In contrast, 

there were many instances where children moved physical objects during problem 

solving without identifying a new solution.  
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Table 5.1: Median (IQR) scores for Correct solutions and Adaptations in the Physical and Pictorial 

conditions 

 Correct Solutions Adaptations 

Physical 4 (1.25,6) 8 (4.25,13.5)  

Pictorial 1 (1,2.75) 4 (1,6) 

 
 

 Another way to examine whether children identified a solution prior to or 

following adaptation of the representation is to examine counting behaviour. Counting 

could be identified when a child enumerated the number of objects verbally; so that by 

examining counting behaviour it was possible to identify whether children had identified 

a verbal solution before or after adapting the materials for each solution. Unfortunately, 

the small amounts involved in questions meant that instances of observable counting 

behaviour were generally few. Whilst no child was observed counting physical objects 

before moving them, there were 7 observations (3 children) where children counted the 

pictorial squares before annotating them (e.g., Figure 5.5a). One child was even observed 

counting out the initial amount on his fingers before annotating (Figure 5.5b).  

 

  

Figures 5.5: a) & b): Children counting prior to adaptation in the Pictorial condition 
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5.3.4 Strategies 

5.3.4.1 Equal partitioning  

The majority of children‘s initial strategy was to partition objects into two equal groups. 

In order to compare the use of equal partitioning in each condition, initial solutions were 

categorised into: Equal partitioning18; Correct but not Equal partitioning; and Incorrect. 

Table 5.1 shows the distribution of these three categories for the No Materials, Physical, 

and Pictorial conditions. The table illustrates how the majority of children identified an 

Equal Partitioning in both the Physical (8) and Pictorial conditions (7) but not in the No 

Materials conditions (0). 

 

                                                      

 

18 As stated in Study 2, for odd numbers, the two solutions that are nearest to equal partitioning 

were also coded as Equal partitioning (i.e. 3 & 4 and 4 & 3 for partitioning 7; 4 & 5 and 5 & 4 for 

partitioning 9). 
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Table 5.2: Frequency of first solutions in each condition coded as Equal partitioning, Correct but not 

Equal partitioning and Incorrect 

Condition Equal partitioning Correct Not Equal 

Partitioning 

Incorrect first solution 

No Materials 0 7 5 

Physical 8 2 2 

Pictorial 7 3 2 

 

 

5.3.4.2 Relating solutions 

 Verbal solutions 

Children‘s verbal solutions were coded in the same way as for Studies 2 and 3. As shown 

in Table 5.2, children identified 15 compensation solutions in the Physical condition, 8 with 

No Materials, and 5 with Paper. Using a Freidman within subjects test, these differences 

were found not to be significant (2(2)=3.36, p=ns). The number of commutative solutions 

in respective conditions was 4, 2 and 0 – which were too small to detect any differences 

(2(2)=5.00, p=ns). 

 Adaptations  

As well as measuring the quantity of adaptations, the numerical grouping of each 

adaptation was recorded – e.g., 4 & 4 & 1 or 4 & 5 for partitioning 9 objects. It was 

thereby possible to apply the scheme used to code verbal solutions to children‘s 

adaptations (i.e. changes to the representations). Accordingly, a compensation adaptation 
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was coded if successive groupings of objects into two groups differed by one (e.g., with 

groups of 3 and 5 cubes, move one object to create groups of 2 and 6). Commutative 

adaptations were coded if the order of the parts was reversed (e.g., annotating around 

groups of 3 and 5 squares after annotating around 5 and 3). The frequency of coded 

strategies for verbal solutions and adaptations for each condition are shown in Table 5.2. 

 Table 5.2 illustrates that in the Pictorial condition the number of coded strategies 

for verbal solutions and adaptations was the same. In contrast, in the Physical condition, 

the number of compensation adaptations (28) was greater than the number of compensation 

solutions identified verbally (15) A Wilcoxon within subjects test revealed the difference 

to be significant (Z=-1.98, p<0.05). In other words, children often moved one object 

from one group to another, but did not verbally identify this as a new solution. 

 

Table 5.3: Frequency of Adaptations and Verbal solutions coded as Commutative or Compensation in 

each condition 

 Verbal solution Adaptation 

 Compensation Commutative Compensation Commutative 

No Materials 8 2 No external representation 

Physical 15 4 28 4 

Pictorial 5 0 5 0 
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5.3.4.3 Abstracting Strategies 

With respect to the difference between compensation adaptations and compensation verbal 

solutions in the Physical condition, it may be important to highlight one child‘s behaviour. 

Having partitioned the cubes and counted out this solution (pointing to cubes whilst 

counting), the child moved one cube at a time from one group to another creating the 

following adaptations: 5 & 3, 6 & 2, 7 & 1 and 8 & 0. However, this child‘s 

corresponding verbal solutions were: 5 & 3, 4 & 2, 3 & 1. She realised her mistake on the 

final solution. 

 It appeared from this that the child was applying a mental algorithm for 

compensation but making the error of taking from both parts. It might be argued that this 

behaviour thereby indicates that this child did not need the physical representation to 

identify the compensation strategy. However, as this study (as well as Studies 2 and 3) has 

shown how the physical representations increased the use of the compensation strategy, an 

alternative suggestion is that the representation prompted the strategy and that, rather 

than count each group, children sometimes chose to apply the calculation mentally. 

Indeed, observations showed another child beginning to identify compensation solutions by 

counting groups and then continuing to move objects one at a time, but looking away 

from the representation while identifying solutions verbally. When apparently challenged 

by the mental calculation, the child returned to counting objects.  

 

5.3.5 Qualitative Analysis of actions observed 

A further aim of this study was to use observations to examine children‘s interactions 

with the physical objects when problem solving. The most salient actions were to move 

the cubes into separate spatial groups. Children moved individual or multiple cubes at a 
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time: a couple of children often counted objects in twos, moving them in pairs, while 

others did not just move cubes between two groups but would gather all the objects 

together in front of them after each solution and then place them into groups further 

away one by one. Children would often place the cubes just in front or on top of the 

laminated image (Figure 5.6a). One child placed a couple of cubes further away from the 

working area with the result that these cubes were left out in subsequent solutions. 

Although the cubes could be joined together, only one child actually did so. This child 

joined the cubes in order to stack them vertically (Figure 5.6b). 

 

  

Figures 5.6: a) Actions with the cubes and b) Using the laminate objects and stacking cubes 

 

 Children would sometimes move cubes by picking them up and placing them or 

pushing them with their finger or side of hand (e.g., Figure 5.7a) (often using both hands). 

Children would also touch cubes, or make a touching gesture near a cube when counting 

(e.g., Figure 5.7b) (counting behaviour being identified by number words spoken aloud 

or mimed). They would often hold or touch a single or group of cubes when looking at 

another group, possibly as a prompt to remember what to count next (e.g., Figure 5.7c). 
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Figures 5.7: a) moving group of cubes b) pointing gesture to count c) holding cube to remember what to 

place next 

 

5.3.5.1 Actions and strategies 

Only four commutative solutions were coded in the Physical condition. However, the same 

behaviour was observed in three of these: swapping over groups of objects using both 

hands (Figure 5.8a). The other commutative solution was identified by moving the whole 

group of objects from right to left (Figure 5.8b). 15 compensation solutions were identified. 

Almost all of these reflected children moving one object at a time (compensation adaptation 

- Figure 5.8c). 

 

     

Figures 5.8: a) Swapping groups (commutativity), b) Moving the whole group from right to left 

(commutativity) and c) Moving one object (compensation) 
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5.4 Discussion 

Although the study sample was small for this study, comparisons between conditions 

revealed similar findings to Studies 2 and 3: children identified significantly more 

partitioning solutions in the Physical than Paper and No Materials (baseline) conditions. 

This advantage seemed attributable to how children were able to identify a new solution 

through simple physical actions. This finding consequently provides further support for 

PDL that predicts that physical actions on representations will generate more 

interpretations.  

 

5.4.1 Adaptations and ideas 

Further support for PDL came from analysis of children‘s adaptations of the 

representations. Children adapted the physical representation significantly more in the 

Physical than Pictorial condition, and these adaptations were significantly correlated with 

verbal solutions. In contrast, in the Pictorial conditions, there was no significant 

difference between adaptations and verbal solutions. It was also shown how children 

often moved objects one at a time from one group to another in the Physical condition 

and then verbally identified many of these changes as verbal compensation solutions. This 

may help explain the greater use of the compensation strategy found in Study 2. Finally, 

although it was observed how several children counted out a solution before annotating 

paper, observations of counting always followed adaptations in the Physical condition. In 

other words, there seemed to be tentative evidence that, in contrast to the physical 

representation, children were using the pictorial representation to record rather than 

generate ideas. 
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 Observations of children‘s actions highlighted how physical materials fostered 

adaptations and new solutions. Tactile feedback may have supported children‘s visual 

attention in these actions as they were able to move objects quickly and easily with both 

hands. In contrast, adapting the pictorial representation was more procedurally 

demanding, requiring fine motor control and constant visual attention to make pencil 

annotations. Similar conclusions to Study 3 might therefore be drawn – that simple 

physical actions on the representation fostered ideas (number of partitioning solutions 

and related solutions) and that the greater cost of using pictorial materials did not lead to 

more planned behaviour. 

 

5.4.2 Problem solving and the problem context 

When describing the influence of the representations on children‘s ideas, it is clearly 

important to recognise the role of the context. In this way, differences between 

conditions reflect an interaction between representational properties and the problem 

context. For example, the problem described a character and the ways of arranging fruit 

between two bags. For the younger children, this prompted an activity of placing objects 

one by one into different piles. When this was carried out with cubes the children would 

be end up with two groups of objects, but when carried with squares they would end up 

with a series of encircled squares. In other words, unlike squares, partitioning cubes one 

by one resulted in two clear groups. It was also observed that several children placed 

objects on top of the laminate image in the Physical condition – an action that may have 

supported problem solving by emphasising the need to create two groups. 

 The disparity between the number of adaptations and number of verbal solutions 

in the Physical condition highlighted the task demands of verbally identifying new 

configurations. In this regard, it is important to emphasise the role of the interviewer. 
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Many factors, including the example problem and problem question as well as certain 

verbal prompts to quantify certain solutions (―how many?‖) or simply the act of recording 

solutions, were all factors that encouraged children to verbally identify numerical 

solutions. Therefore, the problem context was central to constraining how the objects 

should be manipulated and how children were meant to interpret their actions. In other 

words, it is problematic to think that mathematical meaning is transparent within 

manipulatives (Moyer, 2001). It is more the activity with the manipulatives, and the 

context of this activity, in which transparency emerges (Meira, 1998).  

 

5.4.3 Representational properties 

This study also helped identify the effect of certain representational properties on 

children‘s interactions. For example, one child manipulated cubes by stacking them 

vertically which, interestingly, may have supported problem solving by facilitating 

comparison between groups of objects (using height from the table). Another child 

dropped the cubes in order to create a random arrangement to begin problem solving. 

There were numerous observations of children using the tactile properties of the cubes 

although again it is not clear how much this actually helped offload task demands. For 

example, although children touched cubes to help them count (by keeping track of the 

objects counted), they were also able to touch the squares. Children also used tactile 

feedback to keep track of the position of cubes when looking at other objects. Although 

this seemed to be done to help remind them that a certain cube had still to be moved 

(children would move this object next), it is again not clear how much this behaviour 

supported cognition. It is possible that the use of tactile information provides subtle 

benefits in helping children offload some of the cognitive demands of the activity, but 

this task is not sensitive enough to confirm this advantage. Although a similar study using 
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larger amounts of objects (i.e. more procedurally demanding) may reveal this 

representational benefit, this would change the nature of the task by asking children to 

decompose multidigit numbers. 

 The size and shape of the objects may also have influenced children‘s actions. 

Children seemed to be able to hold about 4-5 objects in one hand. Indeed, several 

children dropped cubes as a result of trying to grab more. It was also possible to attach 

the cubes, although this was only done by the one child who stacked objects vertically. 

Interestingly, the shape of the objects did seem to play a role – a couple of children spent 

a small amount of time moving the cubes so that they all had the attached part facing 

upwards and were roughly aligned on one side. 

 

5.4.4 Representational properties and strategy use 

Although the numbers were too small to detect significant differences, the pattern of 

strategies between conditions reflected the findings from Studies 2 and 3: namely that 

children identified more related solutions using cubes. This study helped identify how the 

representational properties of the physical materials may have fostered these strategies. It 

was shown that a common action was to move one object at a time from one group to 

the next. This action is a systematic way of changing the grouping of objects 

incrementally and presents a way to identify solutions by either counting the cubes after 

each move or applying this ‗incremental change analogy‘ to calculate solutions using a 

mental algorithm (add to one part, take from the other). On the other hand, children 

often moved more than one object at a time. Therefore, an interesting question is 

whether encouraging children to only move one object at a time would increase the 

number of incremental solutions - in other words, a greater number of compensation 

solutions. 
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 This study also helped explain the greater use of the commutative strategy identified 

with cubes than without in Study 2 and with paper in Study 3. It was observed that 

children would identify commutative solutions when they interchanged groups of objects: 

either by pushing groups across the table or grabbing cubes with both hands and 

swapping them over. This reflects a key affordance of the physical representation – the 

ability to move multiple objects with ease. It is possible to envisage ways to facilitate this action. 

If objects were slightly smaller, for example, it may be easier to move larger amounts. 

Alternatively, if cubes were larger or more awkward, children may find it more difficult to 

move multiple objects. It might be expected that this would hinder this strategy.  

 

5.4.5 Summary 

In conclusion, this study has shown how the manipulative properties of the 

representation may affect children‘s strategies for identifying verbal partitioning solutions. 

It would be expected therefore that changing these properties would lead to changes in 

strategy. For example, if children were asked to attach cubes, it would not only be easier 

to move groups of cubes (thereby possibly increasing the commutative strategy) but would 

hinder the ease of moving individual cubes that would have to be unattached first 

(thereby possibly reducing the compensation strategy). Alternatively, it might be expected 

that requiring children to move only one object at a time would foster the use of 

compensation strategy whilst hindering the number of commutative solutions. 
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Chapter 6 

 

The Effect of Constraining Actions on Children’s 

Partitioning Strategies – Study 5 

 

6.1 Introduction 

The findings from Study 4 supported those of the previous two studies, showing that 

physical materials can provide an advantage over no materials or pictorial materials for 

helping children identify ways to partition a number into different combinations. The 

study also helped to explain possible mechanisms: physical materials were manipulated 

frequently and with ease, and included two key actions – moving all objects 

simultaneously and moving single objects incrementally. These two actions led children 

to identify related solutions: i.e. compensation and commutative solutions. 

 

6.1.1 Changes to the representation 

In order to discuss the role of certain actions in solving the partitioning problem, it may 

be useful to represent diagrammatically the different possible representational states 

within the partitioning problem. A ‗representational state‘ is defined here as a unique 

numerical grouping for decomposing a number. The number of combinations is quite 

large if also considering the order of parts – i.e. 3 & 6 is different from 6 & 3. For 
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example, there would be 9 ways to partition 4: 4 & 0, 0 & 4, 3 &1, 1 & 3, 2 & 2, 2 & 1 & 

1, 1 & 2 & 1, 1 & 1 & 2, 1 & 1& 1 & 1. However, in this partitioning problem, the 

problem is presented in way to constrain the number of different parts to two. The story, 

the example problem, the laminate image and even certain prompts by the interviewer all 

help encourage children to partition objects into two parts. Consequently, the number of 

combinations is much less (equal to n + 1). For example, there would be 5 ways to 

partition 4: 4 & 0, 0 & 4, 3 & 1, 1 & 3, 2 & 2.  

 When using physical materials, groupings are represented spatially. Therefore, to 

illustrate possible representational states, spatial configuration will be presented 

diagrammatically. Figure 6.1, for example, illustrates the 7 possible representational states 

for partitioning 6. These states are presented symmetrically to highlight commutative states. 

 

 

Figure 6.1: Diagrammatic representation of the 7 configurations for partitioning 6 into 2 parts 

 

 In the previous study, the term ‗adaptation‘ was used to define a different 

numerical grouping – a change in representational state. However, the term was used to 

describe the resultant state rather than the process of changing one state to another. This 

process of changing one adaptation to another will be referred to as ‗transformation‘. 

Because children are able to move one or many objects from one group to another, there 

are various transformations possible. In fact, when partitioning n objects, there are n 



224 

 

possible transformations from each state. For example, if a child is partitioning 6 objects 

and has made the adaptation 5 & 1, there are 6 possible transformations possible (still 

assuming two groups), as illustrated in Figure 6.2. 

 

 

Figure 6.2: Diagrammatic representation of transformation from one state when partitioning 6 

 

 Using this form of diagram, it is now possible to illustrate the transformations 

reflecting the two key strategies: compensation and commutative. In Study 4, a ‗compensation 

adaptation‘ was defined as an adaptation resulting from moving one object. Therefore, 

from 5 & 1, moving one object to create 6 & 0 or 4 & 2 would be coded as compensation 

adaptations. These two transformations are illustrated in Figure 6.3a. Alternatively, if the 

new adaptation reflected a reversing of the parts of the previous, this was coded as a 

commutative adaptation. For example, from 5 & 1, swapping over objects or simply 

moving 4 objects to create the adaptation 1 & 5 would be coded as a commutative 

adaptation. This single transformation is shown in Figure 6.3b. 
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Figure 6.3: Diagrammatic representation of a) Compensation and b) Commutative adaptations from the 

configuration 5 and 1 

 

 In Study 4 it was found that, of 119 adaptations coded in the Physical condition, 

28 were compensation. Furthermore, it was observed that all 15 compensation solutions 

identified verbally reflected compensation adaptations. The findings in Studies 2, 3 and 4 

that children identified significantly more compensation solutions using physical materials 

than no materials or pictorial materials suggests that this action with physical materials is 

important in helping children identify solutions using the compensation strategy. This 

presents the possibility, raised at the end of the previous chapter, that encouraging 

children to move one object at a time (increasing compensation adaptations) would lead to 

an increase in the number of solutions that differed by one (increase in compensation 

solutions). This makes sense: if children move only one object at a time; they only need 

to recognise that each change can be enumerated verbally in order to identify a 

compensation solution. 

 It was also observed in Study 4 that 4 of the 119 adaptations were commutative 

adaptations, all of which were enumerated - resulting in 4 commutative solutions. Similarly, 

the findings in Studies 2, 3 and 4 that children identified more commutative solutions using 

physical materials than no materials or pictorial materials suggests that this action with 

physical materials is important in helping children identify solutions using the commutative 

strategy. It is possible therefore that encouraging children to move one object at a time 

would actually hinder this strategy. By having to move objects incrementally, the costs of 
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creating a reverse configuration would be greater. For example, as illustrated in Figure 6.4, 

creating the configuration 1 & 5 from 5 & 1 would involve four transformations rather 

than just one. It would therefore be expected that encouraging children to move only one 

object at a time would reduce the number of commutative solutions. 

 

 

Figure 6.4: Four transformations needed to create the configuration 1 and 5 from 5 and 1 when only 

moving one object at a time 

 

6.1.2 Summary and predictions 

In the theory of Physically Distributed Learning (2005), it is proposed that children‘s 

physical actions on a representation can help them to develop new ideas. This theory was 

supported in the previous studies which showed that children‘s actions with physical 

objects not only helped them identify more ways to partition a number, but also helped 

them to relate consecutive solutions. Two strategies were identified for how children 

related solutions: compensation and commutative, and it was shown how these strategies 

reflected different actions: moving individual cubes or moving groups of cubes. This 

study examined the potential to change the strategies children used by manipulating the 

type of actions that could be made on the representation. With reference to PDL, the 

study looked at the potential to influence children‘s ideas by influencing the type of 

physical actions that could be made on the external representation. 



227 

 

 In order to encourage children to move one object at a time, children‘s actions 

were constrained externally (i.e. through verbal instructions and a demonstration). The 

effect of constraining actions was examined by comparing children‘s strategies using 

physical materials in two conditions: one where they could move as many objects as they 

wished, and another where they could move only one object at a time. It was predicted 

that when children‘s actions were constrained to moving one object at a time, they would 

identify significantly more compensation solutions and significantly less commutative solutions 

than when they were able to move as many objects at a time as they wished.  

 

6.2 Method 

6.2.1 Design 

The study used a within subjects design with Manipulation (Constraints/No Constraints) as 

the independent variable. Children used physical objects in both conditions, the 

presentation order of which was counterbalanced. All children solved one partitioning 

question in each condition, the primary dependent measure being their verbal solutions 

which were scored as being either correct (and unique) or not. The number of 

compensation and commutative solutions were then coded from the correct scores. 

 

6.2.2 Participants 

58 children took part in the study (28 girls and 30 boys, ranging from 54 months to 94 

months; M=74 months; SD=13 months). Similarly to Study 4, the sample was taken 

from children who had been invited to the University of Nottingham for the day as part 
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of a ‗summer scientist week‘ (not the same children as for Study 4). This event was 

advertised around several local schools in the Nottingham area, describing how children 

could act as ‗scientists‘ by taking part in different projects. This opportunistic sampling 

resulted in a range of children being selected from different social economic backgrounds 

and schooling.  

 

6.2.3 Materials and Procedure 

Sessions took place in a large room where six other studies were taking place (noise levels 

however were generally low). Children were interviewed individually although almost all 

were accompanied by a parent or guardian who was asked to sit slightly behind their 

child to avoid unintended prompts. The interviewer, who was unfamiliar to the children, 

spent a couple of minutes conversing with each child before presenting the 

demonstration problem. 

 The interviewer explained the story problem to each child. It was decided to use 

the farmer story in Study 3 again in this study as the laminate image of the two fields 

seemed to provide a strong perceptual clue for children to partition into two groups. 

Unlike Study 3, children used physical objects in all conditions and were actively 

encouraged to place objects on the image when partitioning (to further encourage 

children to move objects between two groups only). 

 The interviewer used the materials to recount the story problem: a farmer owned 

two fields that were separated by a fence, but there was also a gate between the fields and 

this had been left open. The interviewer explained the problem: ―because cows kept 

wandering through the open gate, the farmer was confused; he didn‟t know how many cows could be in 

each field”. The interviewer explained that the task was to help the farmer by finding all the 
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different ways in which his cows could be in the two fields. Children were then provided 

with an example in each condition before solving the partitioning problem. 

 

6.2.3.1 Example 

In the example question, the interviewer showed children a picture of three cows and 

explained the aim to „find all the different ways in which the three cows can be in the two fields‟. The 

interviewer then asked children to watch how three cubes could be used to help find the 

different ways. No further attempt was made to make the representational link between 

the cows and cubes explicit. The interviewer then manipulated the cubes to present the 

children with the following partitioning solutions: 3 & 0, 1 & 2, 2 & 1 and 0 & 3, with the 

first part of the solutions referring to cows in the left field. This order was always used 

and was intended to show all possible partitioning solutions without prompting any 

specific strategy. The cubes always started just in front of the laminated picture of the 

fields and were then moved onto the image of the first field with the first solution of 3 & 

0.  

 The interviewer manipulated the cubes differently according to the condition. In 

the Constraints condition, the interviewer moved only one cube at a time. In the No 

Constraints condition, the interviewer moved as many objects as were needed to create the 

solution configuration. The interviewer only moved one cube when showing the solution 

2 & 1 following 1 & 2 in both conditions; he did not swap over the cubes in the No 

Constraints condition. 

 Following the demonstration problem, it was explained to the children that the 

farmer then bought some more cows. The order of conditions was counterbalanced 

across children but the order of partition amounts was kept the same: 7 for the first 
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problem and 8 for the second. It was decided to start with 7, similarly to Studies 3 and 4, 

to avoid any unnecessary prompting of partition into two equal groups as a first strategy. 

The interviewer counted out the appropriate number of cubes in front of the image of 

the fields and then asked the children to ‗use the 7/8 cubes to find all the ways in which the 7/8 

cows can be in the 2 fields‟. According to condition, the interviewer would then say how the 

cubes could be manipulated: „for this question you can only move one cube at a time/move as many 

cubes as you like at a time‟. 

 The interviewer recorded solutions and gave prompts as in the previous study. 

However, if any children in the Constraints condition moved more than one object 

simultaneously, the interviewer would ask them to replace the objects, reminding them 

that in this question they could only move one at a time.  

 

6.3 Results 

6.3.1 Solutions  

The distribution of group data was tested (Kolmogorov-Smirnov). As this revealed 

significant departures from normality, non-parametric analyses were then carried out in 

which Wilcoxon tests revealed a significant difference between the first problem (Mdn=6) 

and the second (Mdn=6) (Z=-2.14, p<0.05). This suggested potential learning effects, 

although when the data were re-coded to scores of 0-3 (using the coding from Study 1) 

the difference was not significant (Z=-1.60, p=ns). It is possible therefore that the 

difference was attributable to there being an additional solution when partitioning 8. As 

conditions were counterbalanced for order, further analysis was carried out on absolute 

scores. Wilcoxon tests revealed no difference between the total number of scores 

identified in the No Constraints condition (Mdn=6) and the Constraints condition (Mdn=6)  
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(Z=-1.52, p=ns). However, the distribution of scores did suggest possible ceiling effects 

(as illustrated in Figure 6.5).  

 

 

Figure 6.5: Number of children identifying number of solutions in Constraints and No Constraints 

conditions 

 

6.3.2 Strategies 

6.3.2.1 Coding 

The correct solutions following the first solution were coded used the coding scheme 

developed in Study 2: into compensation, commutative or other. A commutative solution was 

scored if a solution was the reverse of the previous solution (e.g., 2 & 5 following 5 & 2). 

A compensation solution was scored if a solution differed by one from the previous (e.g., 2 

& 5 following 1 & 6). This means that the total number of compensation solutions possible 
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is 7 for partitioning 7, and 8 for partitioning 8 (first solution not included). There were 4 

possible commutative solutions possible for partitioning 8 and 3 for partitioning 719. 

 

6.3.2.2 Differences in total number of commutative and compensation solutions 

All but 7 children identified at least one solution coded as compensation or commutative. 

Wilcoxon tests revealed that, as predicted, there were more compensation solutions in the 

Constraints condition (Mdn=2) than in the No Constraints condition (M=1.5), although the 

difference was not significant (Z=-1.30, p=ns). In contrast, and in line with predictions, 

there were more commutative solutions in the No Constraints condition (Mdn=1) than in the 

Constraints condition (Mdn=0) (Z=-3.29, p<0.005). As there were no significant 

differences in the total number of solutions given between conditions, no further analysis 

on proportional scores were carried out. 

 

6.3.2.4 Equal partitioning 

The first partitioning amount was odd (7). However, by coding as equal the two solutions 

closest to an equal partitioning (3 & 4, 4 & 3), it was possible to analyse the first solution 

given in both partitioning problems as being Equal partitioning or not. The majority of 

first solutions were coded as Equal partitioning: 72.5% of correct first solutions for 

partitioning 7, and 63.0% for partitioning 8. A Wilcoxon test showed this difference was 

                                                      

 

19 The solution 4 & 3 after 3 & 4 (and vice-versa) was coded as compensation as discussed in 

Chapter 2 
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not significant (Z=-1.15, p=ns), although it did reveal that children identified significantly 

more Equal partitioning solutions in the Constraints condition than the No Constraints. 

(Z=-2.07, p<0.05). 

 

6.3.3 Qualitative analysis 

6.3.3.1 Children’s actions 

Video observations supported explanations for predicted differences in the number of 

commutative solutions found in each condition. In the No Constraints condition, children 

verbally identified nearly all commutative solutions when swapping over all objects 

simultaneously; either by picking up or sweeping groups with their hands (Figure 6.6). 

 

            

Figure 6.6: Moving all objects simultaneously in the No Constraints condition 

 

 Observations also helped explain why there were no significant differences 

between conditions for compensation solutions although this was predicted. Although 

children only moved objects one at a time, they would often do so with great haste and 
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many needed prompting to only move one object when they initially went to grasp 

several. Furthermore, children would often use both hands, moving objects individually 

but in quick succession (Figure 6.7a & b). Consequently, in the Constraints condition, 

successive changes to the representations followed quickly, so that children had very little 

time to see and possibly reflect on incremental adaptations. This lack of visual access to 

new representational states may also have been exacerbated by the fact that children‘s 

hands would often block their sight of several cubes. 

 

     

Figure 6.7: a & b) Moving individual objects quickly in succession in Constraints condition and c) 

Moving two objects at a time in No Constraints condition 

 

6.3.3.2 Effect of laminate image 

Video observations also indicated why children‘s partitioning scores seemed higher than 

in previous studies (although the different samples make comparison difficult). As was 

predicted, the use of the laminate image helped partitioning into two groups - where 

most children would simply move objects from one field to another. It was interesting to 

observe, however, that many children (n=11) continued to remove objects from the 

laminate board after they had given a solution even though this was not demonstrated in 
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the example. Several children actually changed strategy, beginning by moving objects off 

the laminate image to start with, and then simply moving objects from one field to the 

other later. It was expected that this behaviour would be less common when children 

could only move one object at a time; however, this was not found.  

 The way children moved objects onto the board may also help explain why more 

first solutions were equally partitioned in the Constraints condition. In this condition, 

children would move objects one by one in alternate fields (6.8a). In contrast, in the No 

Constraints condition, children tended to grab multiple objects to place on the board 

(Figure 6.8b). Although this usually resulted in an equal distribution, it was clearly not as 

effective as a ‗one for one, one for the other‘ partitioning strategy fostered by the 

Constraints condition.  

 

    

Figure 6.8: Moving objects for first solution a) one by one in Constraints b) as groups in No Constraints 

 

6.4 Discussion 

The aim of the current study was to examine the effect of constraining actions on 

children‘s partitioning strategies. The previous studies have shown the prevalence of two 
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key strategies: compensation and commutative, and Study 4 then demonstrated how these 

actions reflected two mechanisms for adapting the representation: moving objects 

incrementally and moving all objects simultaneously. It was thereby predicted in this 

study that constraining children‘s actions would lead to an increase in compensation 

solutions – as children would be exposed to incremental changes in representation – and 

to a decrease in commutative strategies – as the costs of changing over quantities would 

now be greater.  

 The findings from this study showed that constraining actions did have a 

significant effect on strategies. As predicted, children identified a significantly lower 

number of commutative solutions when asked to move only one object at a time than when 

they could move as many as they wanted. There was also a greater number of compensation 

solutions in the Constraints condition although this difference was not significant.  

 Video observations provided further qualitative support for how constraining 

actions affected strategies. Most commutative solutions were identified by swapping over 

amounts – as observed in Study 4. This action was not possible in the Constraints 

condition where children would have had to move multiple objects in succession in order 

to identify such solutions. Preventing children from moving multiple objects 

simultaneously therefore significantly reduced a key strategy for identifying related 

solutions.  

 

6.4.1 Limitations to the effect of constraining actions 

Together, children in the Constraints condition identified 125 compensation solutions (about 

28% of the total possible). However, children in this condition also identified many 

solutions not coded as compensation: 36 commutative and 109 other. In order to have 
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identified these solutions, children needed to have ‗passed through‘ as least two 

configurations that could have been identified and consequently coded as compensation. 

Video observations provide some indication of why children did not identify these 

intermediate states as valid solutions. Children in the Constraints condition often adapted 

the representation at great speed, moving objects one at a time but in quick succession 

using both hands. Furthermore, the positions of children‘s hands in both conditions may 

have prevented them from seeing all of the cubes. This may have hindered children‘s 

ability to reflect on the unique groupings created after moving individual cubes in the 

Constraints condition. 

 Another possible reason why children may not have identified incremental 

changes in the Constraints condition is that they had an additional cognitive demand of 

remembering to only move one object. It is difficult to assess how much effort this 

required, but the fact that the interviewer needed to prompt several children 

demonstrated difficulties in suppressing a tendency to grab multiple objects. A further 

possible reason why children did not identify as many compensation solutions as predicted 

in the Constraints condition may be due to the demonstration problem. In order to allow 

fair comparisons, the interviewer created the same configurations using three objects in 

both conditions. Whilst in the No Constraints condition this meant creating and identifying 

four configurations, in the Constraints condition the interviewer would create the same 

four configurations but make eight adaptations as changes were incremental. In this 

demonstration, therefore, the interviewer passed through incremental states without 

identifying them as partitioning solutions, and this may have increased the chances that 

children did likewise. 
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6.4.2 Effect of laminate image 

It was intended in this study to encourage children to move objects between two groups 

by using the laminate image of the fields. Unlike the previous studies, the laminate image 

was intentionally placed in front of the children, and the demonstration involved moving 

objects on top of it. This seemed to have the desired effect: in contrast to previous 

studies where children often created more than two groups (as demonstrated in Study 4), 

nearly all children in this study moved objects onto the laminate image and continued by 

moving objects between two groups. Although it is difficult to compare performance 

between studies as different children took part, the children in this study, who were 

similar in age to those in the previous studies, identified a higher proportion of correct 

solutions; indeed there may have been ceiling effects. The laminated image therefore 

seemed to foster correct solutions by encouraging children to move objects between only 

two groups. This highlights the need to consider the effect of other external materials on 

children‘s interactions with different representations. 

 

6.4.3 Initial configuration 

It was decided not to start the session with objects already on the images in order to 

avoid influencing children‘s strategies by presenting an initial solution. It would 

alternatively have been possible to start with objects on the laminate image in a 

prearranged grouping. Indeed, starting with all objects in one field is arguably the most 

efficient way to identify all solutions using a compensation strategy. However, it is not clear 

whether children would identify the value of this initial configuration. Indeed, in a second 

study reported by Martin and Schwartz‘s (2005) it was shown that children began moving 

objects even when they were presented in a configuration reflecting the solution.  
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 An unexpected finding in this study was the difference between the Constraints and 

No Constraints conditions on children‘s tendency to partition objects equally in their first 

solution. When children partitioned objects in the Constraints condition, they were 

significantly more likely to partition the objects into two equal groups. Video 

observations showed how moving objects one at a time encouraged many children to 

adopt a ‗one for one, one for the other‘ sharing strategy. As this strategy is important in 

young children‘s developing understanding of one to one correspondence (Nunes & 

Bryant, 1996), it is an interesting possibility that the manipulative properties of objects 

may influence this strategy.  

 

6.4.4 Summary 

The extent to which children‘s understanding of additive composition will develop from 

experiences in the partitioning task is not known. However, it argued that, in accordance 

with PDL, children‘s actions with physical objects may lead to new ideas in this domain 

by increasing the use of related strategies. The current study examined the effect on 

strategies of manipulating the actions that children could make on the representation and 

found that, in line with predictions, constraining the number of cubes that could be 

moved at one time significantly affected strategies. 

 By suggesting that changing the type of physical actions that are possible may 

change the type of ideas developed, this study intends to extend the arguments of PDL. 

More specifically, constraining children‘s actions to moving one object at a time may 

reduce children‘s tendency to use strategies that reflect moving multiple objects (such as 

the commutative strategy in the partitioning task). The findings also suggest that 

constraining actions may encourage children‘s strategies that reflect incremental changes 

to the representation (such as the compensation strategy in this task). 
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 Although children identified more compensation solutions in the Constraints 

condition, the difference was not significant as was predicted. A number of potential 

reasons for this were identified, many of which are attributable to the constraints being 

external: children were required to remember how they should manipulate objects. Even 

though children knew the interviewer was watching their actions, it was still necessary to 

provide occasional prompts. Such one to one attention would be rather impractical in a 

classroom context, and it may be possible instead to provide a representation that only 

allowed children to move one object at a time. For example, if the activity was carried out 

in a larger area (e.g., school playing field) with much larger cubes, children may only be 

physically able to move one object at a time. Alternatively, with certain physical designs, 

such as a bead string (illustrated in the discussion in Study 1) it is difficult to move more 

than one object at a time (due to friction). 

 Another way to externalise manipulation constraints is to use a graphical user 

interface. As the designer chooses what actions are possible, it is easy to control how and 

how many objects can be manipulated. Using a graphical user interface in this way, it is 

possible to constrain children‘s actions so they can only move one object at a time. It is 

also likely that this form of interface would affect the speed at which children could 

move objects. Although children as young as four are able to use actions such as drag 

and drop using a mouse (Donker & Reitsma, 2007), the fine motor control required 

means that the movement of objects will be slower than the actions observed with 

physical objects in this study. It is possible that using a different interface such as touch 

screen would facilitate actions, although the slower manipulation involved in using a 

mouse may actually be beneficial for this partitioning task. It has been argued that a key 

reason why children did not identify many valid intermediate representational states was 

because they moved objects too quickly and, furthermore, that their hands may have 

hindered their ability to see all the cubes. Consequently, it is possible that manipulating 
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objects indirectly through a mouse would lead children to identify more incremental 

changes because manipulation would be slower and children‘s hands would not get in the 

way of seeing the representation. 
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Chapter 7 

 

The Effect of Constraining Actions using a 

Graphical Interface on Children’s Partitioning 

Strategies- Study 6 

 

7.1 Introduction 

Studies in this thesis have shown that physically manipulating representations can help 

children identify multiple ways in which to partition numbers and, furthermore, that use 

of materials may foster two key strategies allowing children to relate consecutive 

solutions: compensation (where objects are moved incrementally from one group to another) 

and commutative (swapping over whole groups of objects) of objects. From this it was 

predicted in the last study that constraining children‘s actions so that only one object 

could be moved at a time would raise the prevalence of compensation and reduce the 

prevalence of commutative solutions. Indeed, children did identify significantly fewer 

commutative solutions when their actions were constrained, but although they identified 

more compensation solutions, the increase was not found to be significant. It was argued 

that this finding might be explained by the quick adaptations that children made with 

physical cubes - thereby minimizing the amount of time children could see changes to 

the representation, and the cognitive demands of having to remember the instructions 

for manipulating objects. This led to the suggestion that it may be possible to help 
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children identify incremental changes to the representation by a) increasing the amount 

of time children could see changes and b) externalising manipulation constraints to the 

external representation (thereby reducing the cognitive demands of having to remember 

to move only one object at a time). 

 It is possible to use particular physical materials to influence children‘s actions. By 

using large objects, for example, children may only be able to move one at a time and 

consequently take longer to make changes. However, it is also possible that it would then 

be more difficult for children to see all the objects at the same time, thereby hindering 

their ability to identify different configurations. Another way in which it is possible to 

constrain the actions children make on a representation is to use a graphical user 

interface. It was discussed in the literature review that computer or ‗virtual‘ 

representations provide a means to design what actions are permitted. This would make 

it possible to constrain both the number of objects that could be manipulated 

simultaneously, as well as the time taken for each manipulation.  

 The literature review also described other potential benefits of virtual 

manipulatives, such as a means of providing children with dynamically linked 

representations. With the potential benefits attributed to virtual manipulatives, it is 

important to consider how this form of interaction may influence children‘s actions and, 

importantly whether anything might be lost in terms of the perceptual and manipulative 

properties of physical manipulatives. According to Kaput (1992), there is limited 

evidence that physical representations present any unique advantages for problem solving 

in mathematics. Indeed, this assertion has been supported by various studies attempting 

to compare the use of physical and virtual representations in learning activities (e.g., 

Klahr et al., 2007; Triona & Klahr, 2003; Zacharia & Constantinou, 2008). Furthermore, 

the fact that Martin (2007) has applied PDL to virtual manipulatives does suggest that 

actions on the representations do not need to be made through direct physical interaction.  
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 Previous studies, therefore, suggest that the benefits of physically manipulating 

representations can be extended to virtual manipulatives. Another possibility is that the 

design of these studies has not been able to detect important differences. Indeed, in 

studies comparing physical and virtual manipulatives, it is often unclear, what differences 

are expected. Even if there are cognitive differences resulting from different forms of 

interface, the task may not be sufficiently demanding to detect these differences. For 

example, although it was shown in Chapter 5 that children often touched objects to help 

offload the cognitive demands of keeping track of their position, children would also 

sometimes just point to objects, suggesting that any cognitive benefits of this tactile 

information for the partitioning task are small (or even negligible). 

 As well as touching objects when counting, Study 4 demonstrated other instances 

where certain affordances of physical objects could be identified in problem solving. 

Such instances included stacking objects, touching objects to remember to move them 

next, and moving the position of objects in relation to the body. It was unclear, however, 

how significantly these instances affected children‘s strategies, and therefore unclear what 

impact there would be from the use of an interface that did not make such physical 

affordances available. Study 4 did however reveal one property that seemed to 

significantly affect problem solving strategies – the number of objects moved at a time. 

 It was shown in Studies 4 and 5 that the two key strategies for identifying related 

solutions reflected two types of actions: moving objects one at a time and moving 

multiple objects simultaneously. This finding has important implications for the use of 

different forms of interface that may affect how single or multiple objects can be 

manipulated. For example, with a standard mouse controlled computer, there are various 

design options for selecting and manipulating objects. ‗Drag and drop‘ is a method in 
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which even young children are able to select and move single objects (Donker & Reitsma, 

2007). There are also different ways to allow multiple objects to be selected and moved 

(e.g., ‗lassoing‘). A key feature of a graphical user interface is that it is possible to design 

what actions are possible. Such an interface thereby has the potential to constrain 

manipulation on representations. 

 It was shown in Study 5 that constraining the number of objects that could be 

moved at a time significantly influenced strategies – children identified significantly less 

commutative solutions. Contrary to predictions, however, constraining manipulation did 

not lead to a significantly greater number of compensation solutions. It was argued that this 

may be attributable to the speed at which children moved individual cubes, and the fact 

that children were required to remember the constraint rule. Using a graphical user 

interface to constrain manipulation may therefore overcome these limitations. By 

manipulating representations using a mouse, it is not only possible to externalize rules of 

manipulation (which children do not then need to remember), but likely that it would 

take children more time to move objects using a method such as drag and drop than by 

moving objects physically. It might be predicted therefore that manipulating 

representations through a graphical interface, where objects can only be manipulated 

singly, would lead to significantly different strategies than manipulating representations 

physically. It may be expected that the additional demands of having to move several 

objects one at a time would lead to children identifying significantly fewer commutative 

solutions using virtual representations. In contrast however, children may identify 

significantly more compensation solutions when constraints on manipulation limit them to 

making only incremental changes to the representation, and also, significantly, when the 

demands of moving objects with the mouse mean that they would be seeing each 

representational state for a longer time. 
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7.1.3 Study aims and predictions 

This study aimed to examine the effect of constraining manipulation on children‘s 

partitioning strategies. By using a graphical interface to constrain manipulation to moving 

one object at a time, it was predicted that children would identify more compensation and 

less commutative solutions than when using physical materials (when manipulation is 

unconstrained).  

 

7.2 Method 

7.2.1 Design 

The study used a mixed design with Representation (Physical/Virtual) as the within 

subjects variable and Age group (Reception, Year 1, Year 2) as a between subjects 

variable. All children solved two partitioning questions, one in each condition. The order 

of conditions was counterbalanced across participants. Verbal solutions were scored as 

being correct (and unique) or not. The number of compensation and commutative strategies 

were then coded from correct solutions as described previously. 

 

7.2.2 Participants 

Sixty-five children took part in this study (36 girls and 29 boys, range 57 months to 

92 months; M=73.1 months; SD=10 months). In order to compare any developmental 

differences between the use of representations, participants were children from 
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Reception, Year 1 and Year 2. Children attended a local infant school in Nottingham 

whose parents had returned a consent form allowing video data to be captured (54% 

positive response rate). The percentage of children receiving free school meals is within 

the national average (a measure of Social Economic Status) and the proportion of pupils 

with learning difficulties is slightly lower than the national average. Because class sizes are 

limited to 30, these three year groups were actually split across five classes with two 

Reception classes, one Year 1 class (lower ability), a mixed Year 1/2 class (higher ability 

Year 1, lower ability Year 2) and a higher ability Year 2 class.  

 

7.2.3 Materials and Procedure 

Sessions took place in a room adjoining one of the classrooms. Children were 

interviewed individually, and were reasonably familiar with the interviewer from previous 

observational work in the school. The structure of the partitioning problem was kept the 

same as the partitioning problem used throughout this research; however, the story 

vignette from Study 2 was used again for this study. This is because, unlike the farmer 

and two fields scenario used in the previous study, the scenario of a man and two bowls 

in Study 2 seemed to be less constrictive, i.e. children often created more than two 

groups. This was considered important in investigating possible representational 

differences for creating groups in this study.  

 In the task, the interviewer explained how a man had bought some bananas and 

was thinking of all the different ways to keep the bananas in his two bowls. A laminate 

picture was presented showing the character between two bowls (coloured red and green 

– Figure 7.1). The picture was on folded laminate paper placed on the left hand side of 

children‘s workspace for both the Physical and Virtual conditions (children were not 

allowed to place cubes on the image in the Physical condition).  
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Figure 7.1: Laminated image of character and bowls 

 

 Similarly to the previous studies, the interviewer explained the task in each 

condition by first demonstrating the partitioning of three objects, showing children the 

different ways the character could partition three bananas using three cubes in the 

Physical condition and three squares in the Virtual condition. The same order of 

partitions was used; 3 & 0, 1 & 2, 2 & 1 and 0 & 3. The objects in the Virtual condition 

were dark grey squares with a thick black border (to help distinguish overlapping squares). 

These squares were aligned horizontally in the centre and covered about half of the 

screen width. The physical cubes were presented in a left to right line in front of the 

children. The virtual materials squares could be manipulated individually by drag and 

drop (left mouse button held down to drag, released to drop). There was no way of 

moving objects as a group. These materials were created in Macromedia Flash, exported 

as Shockwave Flash files and opened in Adobe Flash player; full screen size. 
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Figure 7.2: Screenshot and set up of Virtual condition 

 

 After the demonstration, the interviewer explained that the man bought six 

bananas the next week and was thinking about all the different ways he could keep them 

in his two bowls. The decision to use six bananas was a) to make the task easier for the 

younger children used in the study and b) to provide an interesting comparison with 

previous studies by starting with an even number. The interviewer then asked children to 

―use the cubes/squares to find all the different ways the 6 bananas can be in the two bowls”. After the 

first problem, the interviewer provided an example (using 3 again) in the other condition 

before the final task of partitioning 7. 

 The prompts provided were the same as for the previous study except for one key 

difference. It was decided in this study to reduce the prompts for children to identify 

more than one solution. If children paused for ten seconds, rather than ask “is that all the 

ways or can you think of more ways”, the interviewer simply asked “are you still thinking?” It was 

agreed with the teachers of the school that this question would help establish whether the 

children were still thinking about another solution without providing a strong prompt for 

them to identify more solutions. 
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7.3 Results 

7.3.1 Correct Solutions 

The distribution of group data was tested (Kolmogorov-Smirnov). This revealed 

significant departures from normality, and non-parametric analyses were therefore carried 

out. Figure 7.3 helps illustrate why the data were non-normal despite the relatively large 

data set. Many children in the first two year groups (11 in Reception, 9 in Year 1) 

identified just one solution in both problems, whereas no children in Year 2 identified 

just one solution in either condition. 

 Wilcoxon tests were carried out on the number of correct solutions and revealed 

no significant differences between the Physical (Mdn=4) or Virtual (Mdn=4) conditions 

(Z=-0.11, p=ns), similarly, no differences were found when these groups were broken 

down by age group. There were also no differences between the number of correct 

solutions identified for the first and second partitioning problems (Z=-0.74, p=ns).  

 Kruskal-Wallis tests revealed Year group effects for correct solutions in both the 

Physical (2(2)=21.72, p<0.001) and Virtual (2(2)=21.43, p<0.001) conditions. Mann-

Whitney tests showed that although Year 1 children identified more correct solutions 

than Reception children, the difference was not significant for either the Physical (U=229, 

Z=-1.72, p=ns) or Virtual (U=239, Z=-1.50, p=ns) conditions. In contrast, children in 

Year 2 identified significantly more correct solutions than Year 1 in both the Physical 

(U=70, Z=-3.34, p<0.001) and Virtual (U=60.5, Z=-3.61, p<0.0005) conditions. Clearly, 

this large difference is attributable largely to the fact that all Year 2 children identified 

more than one correct solution in each condition. 
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Figure 7.3: Frequency of children for partitioning scores in the Physical and Virtual conditions in each 

age group 

 

7.3.4 Strategy 

The correct solutions (after the first solution) were coded according to strategy: 

commutativity, compensation and other. As the number of solutions identified by children in 

Year 1 and Year 2 was generally low, there was limited data to compare strategy use in 

these two age groups. Table 7.1 illustrates the number of children identifying at least one 

strategy solution using physical or virtual materials. Although this data is in the direction 

of the study hypotheses (more children identifying compensation solutions in the Virtual 

condition, more children identifying commutative solutions in the Physical) these difference 

were not significant. In contrast, the large number of strategy solutions identified by 

children in Year 2 allowed comparisons between conditions for strategy use (Wilcoxon). 

In line with predictions, there were significantly more compensation solutions (Z=-2.14, 

p<0.05) in the Virtual condition (Mdn=4) than Physical (Mdn=2) and significantly more 
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commutative solutions (Z=-2.00, p<0.05) in the Physical condition (Mdn=2) than Virtual 

(Mdn=0).  

 

Table 7.1: Number of Reception and Year 1 children identifying at least one strategy solution in the 

Physical and Virtual conditions 

  Compensation Commutative Other 

Reception 

(n=25) 

Physical 4 2 9 

Virtual 8 1 7 

Year 1       

(n=25) 

Physical 10 6 10 

Virtual 15 2 10 

 
 

7.4.3.3 Equal partitioning 

As indicated previously, a large proportion (82%) of first solutions for partitioning 6 were 

equally partitioned (3 & 3) in the first solution. This proportion fell to 51% for 

partitioning 7. This might be expected as 6 is an even number and 7 is an odd number 

(although the coding scheme means that both 3 & 4 and 4 & 3 were coded as Equal 

partitioning for 7). However, it is interesting to note that the fall in proportion of Equal 

partitioning solutions was not the same for each age group. Wilcoxon tests revealed that 

the number of Equal partitioning solutions between the two tasks was not different for 

the Reception children (Z=-1.34, p=ns). However, there were significantly fewer Equal 

partitioning solutions in the second task (partitioning 7) than the first (partitioning 6) for 

both the Year 1 (Z=-2.67 p<0.01) and Year 2 children (Z=-2.33, p<0.05). There were no 
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significant differences for any age group in the number of Equal partitioning solutions 

identified between the Physical or Virtual conditions. 

 

7.4.4 Qualitative analysis: Comparing use of physical and virtual 

representations  

7.4.4.1Visuo-Spatial characteristics 

Observational analysis of the video data showed that, as might be expected, children 

solved the partitioning problems by moving objects into two spatially separate groups 

using both physical and virtual materials. Objects could be manipulated in three 

dimensions; although, with the exception of two children who created towers with the 

cubes (e.g., Figure 7.5a), physical objects were manipulated on the horizontal surface of 

the table. Although some children used more space (e.g., Figure 7.5b), the limited 

number of objects meant that children did not generally require the extra work space 

afforded in the Physical condition. Indeed, apart from the occasional object moved 

slightly off screen (e.g., Figure 7.6a), the limited screen size did not seem to present 

problems. There were also no clear difficulties presented by the two dimensional nature 

of the squares, although one child did enumerate the objects incorrectly when one square 

was ‗hidden‘ behind another (see Figure 7.6b).  
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Figure 7.4: a) Stacking cubes b) use of wider space in Physical condition 

 

   

Figure 7.5: Squares a) moved off screen and b) hidden behind other in Virtual condition 

 

 There did seem to be one clear visual advantage of the mouse interface in the 

Virtual condition – children always had a clear view of objects manipulated on screen. In 

contrast, when manipulating physical objects, children‘s hands and arms would often 

block their line of sight (e.g., Figures 7.7). Although this was not a problem when 

children wanted to count objects (they could just move their hands away), children‘s 

hands did obscure the representation much of the time and they would often therefore 

move objects from one group to another without actually seeing the resulting 

configuration.  
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Figure 7.6: Hand obscuring view of configurations in the Physical condition 

 

7.4.4.2 Tactile or haptic characteristics 

Children often touched the cubes or made a touching gesture to support counting 

(Figures 7.8a). In the Virtual condition, children used the mouse pointer in a similar 

fashion, hovering over each object when counting. However, this action with the mouse 

did seem to place greater demands on fine motor control skills and several children 

preferred to point to objects directly on the screen when counting (Figure 7.8b). If 

touching objects helped children offload the demands of keeping track of them, it might 

be expected that a larger number of partitioning errors would be found in the Virtual 

condition. However, this was not the case, although it is possible that the small number 

of objects used in this study minimized any benefits of such tactile information.  
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Figure 7.7: a) Children touching objects and b) The screen to support enumeration 

 

7.4.4.3 Manipulative characteristics 

In the Physical condition, children manipulated cubes in several ways, including picking 

them up individually, and sliding them along the table using the side of the finger or hand 

(e.g., Figure 7.9). Children would often use both hands, notably when partitioning 

amounts into two equal parts at the start. When identifying commutative solutions, children 

would usually manipulate both groups of objects simultaneously, as described in the 

Study 4. Several children also moved and counted cubes in twos. It was interesting to 

observe that most children seemed to make continual contact with the cubes; often just 

fumbling with cubes when not actually making new adaptations.  

 

       

Figure 7.8: Moving multiple objects using both hands in Physical condition 
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 In contrast, manipulation in the Virtual condition was constrained to making clear 

and distinct changes moving one object at a time using the mouse. All children were able 

to do this, although some of the younger children had difficulties keeping the mouse 

button depressed when dragging objects, or needed help replacing the mouse if it 

reached the edge of the mouse mat. Furthermore, because children could only move one 

object at a time in the Virtual condition, there was no gathering up of objects after a 

solution (as was observed in the Physical condition). Interestingly, although no child used 

the physical cubes to create any pattern (beyond simple groupings), several children did 

begin to create patterns while problem solving in the Virtual condition (Figure 7.10).  

 

    

Figure 7.10: Patterns created by different children in the Virtual condition 

 

7.4 Discussion 

This study examined the effect of constraining children‘s actions on objects so that 

representational changes were incremental and slower. This was achieved by comparing 

children‘s partitioning strategies using physical cubes with those using virtual squares 

manipulated with a mouse. It was predicted that constraining actions in the Virtual 

condition would result in fewer commutative solutions and more compensation solutions. In 

the two younger age groups, more children did identify compensation solutions in the 

Virtual condition and more commutative in the Physical. Unfortunatley, the data was too 
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limited to detect any significant differences. In contrast, analysis on the strategies of 

children in the older age group supported predictions. Children identified significantly 

more compensation solutions using virtual materials and significantly more commutative 

solutions using physical. . These findings have important implications for the theory of 

Physically Distributed Learning (Martin & Schwartz, 2005) by suggesting that changing 

what type of actions can be made on the representation may lead to different strategies 

and hence new ideas in this domain. 

 

7.4.1 Multiple solutions 

A key reason for lack of differences found between conditions for younger children 

seemed to be that many children only identified one correct solution. Although 

identifying a solution shows that nearly all children had a grasp of the task demands (i.e. 

to partition a whole into two parts), the lack of more than one solution raises the 

possibility that children did not fully understand the task demands to identify multiple 

solutions. It is possible that this finding differs from previous studies (where children did 

generally identify multiple solutions) as a result of the change in prompt from ―is that all 

the ways or are there any more ways?” to ―are you still thinking?” However, children were 

provided with several clues to identify multiple solutions – emphasis was placed on the 

initial explanation on identifying the different ways to partition, and was then 

demonstrated by partitioning three in multiple ways in the example. Furthermore “are you 

still thinking?” was still considered a prompt for children to continue. It also possible that 

children‘s concept of number is such that the notion that a whole number has multiple 

ways of being decomposed is difficult. Indeed, many children were younger than the age 

that additive composition is reported to fully develop (Bryant & Nunes, 1996). Another 

interpretation for this finding is that children are simply not used to providing multiple 
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solutions to one question. Indeed, this reason was offered by several teachers when asked 

about the pattern of solutions. If this is the case, it might be regarded as a methodological 

limitation; although an alternative view is that exposure to multiple solution problems 

plays a role in numerical development. Indeed, interventions aiming to encourage 

children to identify multiple solutions have often been effective (e.g., Ainsworth, Wood, 

& O'Malley, 1998). It would be interesting to test whether a more general intervention to 

encourage multiple solutions would transfer to this task.  

 

7.4.2 Equal partitioning 

The finding that even the older children began by partitioning equally (even though they 

then went on to identify multiple solutions) suggests that there is a strong initial 

propensity to divide the materials into two equal groups. This may reflect the affordance 

of the materials: that dividing the objects equally maintains visual symmetry. Indeed, in 

Study 4 children did not tend to partition equally in the initial No Materials baseline 

condition (although children partitioned an odd number in this condition and there was 

quite a small sample size). However, another strong possibility is that children‘s 

propensity to partition objects reflects previous experience of partitioning objects – both 

in more informal sharing activities and in more formal mathematical tasks. 

 Closer analysis of the children‘s initial adaptations highlighted the way in which 

many children began the problem in both the Physical and Virtual conditions by 

partitioning the presented objects one by one into two different groups. This meant that 

a configuration of ‗1 & 5‘ or ‗1 & 6‘ was often coded as the first adaptation. It would be 

interesting to investigate how easy it might be to draw children‘s attention to this 

configuration as a potential solution. Doing so may even affect further strategies by 

prompting children to identify incremental changes. Indeed, this may in turn foster 



260 

 

multiple solutions since when children in this study gave only one solution it was always 

an Equal partitioning one. 

 It was also found in this study that all but the youngest age group significantly 

reduced the number of Equal partitioning solutions in the second task. Although there 

may be more complex interactional effects (older children may have known that seven 

could not be partitioned equally), it is possible that children‘s experiences in the first task 

may have helped them recognise that starting by partitioning equally was not the most 

efficient strategy. Therefore, it is possible that introducing prompts for children to 

identify a solution that is not equal partitioning initially may help them develop ideas 

about how to solve this problem. Consequently, younger children may benefit most from 

such a prompt. 

 

7.4.3 Adaptations and interpretations 

The Virtual condition changed the way children could manipulate objects. Changes were 

constrained to increments of one object at a time, preventing children from moving 

multiple objects as they did when identifying many commutative solutions in the Physical 

condition. As might be expected, changes were slower using a mouse, possibly explaining 

why the impact on strategies was greater than when children were simply asked to move 

objects one by one in Study 5. Furthermore, children may have benefited from the full 

visual access to changes in groupings of objects afforded by mouse interaction in the 

Virtual condition. 

 Although children were able to move objects more quickly in the Physical 

condition, observations suggested that children would often pause – fumbling with 

objects before making the next change. In contrast, actions with virtual objects were 



261 

 

more discreet – manipulation was only in order to change the numerical groupings. 

Despite this, however, children did not identify more partitioning solutions in the Virtual 

condition. This may be because children were simply creating a specific solution they had 

in mind – i.e. following out a plan. Alternatively, children may have been exploring 

changes to the representation and interpreting their actions to inform their ideas for 

partitioning solutions. This latter explanation reflects the arguments of the theory of 

PDL: that actions lead to new ideas. If this is the case, it is again possible that prompts 

might be provided to encourage children to recognise and identify the valid solutions 

created by each incremental change to groups of objects. These prompts might consist of 

influencing children‘s actions on the representation – internally or externally constraining 

manipulation in order to create a delay between representational changes. Alternatively 

the prompts might be perceptual; drawing children‘s attention to the validity of the new 

solutions after incremental changes.  

 

7.4.4 Potential role for technology to support partitioning 

Clearly, a key source of support for understanding and solving the partitioning problem 

effectively can be provided by an adult or perhaps even a more able peer. For example, 

the simply verbal cue of ‗can you think of any other ways?‘ seemed to prompt children to 

identify more solutions in the previous studies. Unfortunately, such support, which also 

needs to be careful not to simply tell children what to do, is impractical in a classroom 

context. Instead, it may be possible to augment representations in order to provide 

prompts for children to develop their understanding of key concepts integral to the 

problem. These might address concepts that relate to identified difficulties throughout 

the studies, such as understanding that: there is more than one solution, that equal 

partitioning is simply one of many solutions, that identifying incremental solutions can 
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help enumerate parts and keep track of the problem space, and that there is a limited but 

wide range of possible solutions. In order to support these task demands, it may be 

possible to use digital technology to augment the manipulative and/or perceptual 

features of the representation. 

 

7.4.5.1 Varying manipulative properties 

This and the previous study have examined the effect of constraining the manipulative 

properties of the representation and showed that, as predicted, this significantly affects 

children‘s strategies. It was argued that the virtual representation may have supported 

children by increasing the time they could see incremental changes of groupings. If so, 

longer exposure, by increasing the time to manipulate objects, may help them further.  

 This suggestion seems to reflect work showing how increasing implementation 

costs can foster planning (e.g., O'Hara & Payne, 1999). However, planning may be 

difficult for young children (Ellis & Siegler, 1997), especially when they only have 

incipient understanding. It was also shown in Studies 2 and 4 that the implementation 

costs of using paper did not improve children‘s planning.  An alternative to increasing 

implementation costs might be to simply introduce a delay after each adaptation in order 

to foster children‘s interpretations of the representation state. In other words, if actions 

lead to ideas, delaying time between actions may encourage interpretation and 

development of new ideas. It is possible however, that introducing such delays between 

adaptations may frustrate children, especially as this behavior would probably not be 

expected. 
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7.4.5.2 Varying perceptual properties 

It might also be possible to change the perceptual features of the representation to 

prompt certain strategies. The objects used throughout these studies have intentionally 

been perceptually invariant: the same size, colour and shape. However, it was discussed 

how the perceptual property of symmetry may still have influenced strategies, even if this 

was not the most efficient cue. It may be interesting to consider therefore how varying 

other perceptual cues may affect problem solving strategies. For example, including 

objects of different size, colour and shape may encourage children to group objects 

differently. It was argued previously that encouraging children to identify initial 

incremental changes might support problem solving. Perceptual prompts might therefore 

be used to encourage children to begin partitioning in ways other than an equal 

partitioning, or highlight how an incremental change in the way objects have been 

grouped is itself a unique numerical solution. Perceptual prompts might also help 

children to explore the whole range of different configurations. 

 

7.4.6 Efficiency and innovation 

Knowing what prompts to give children to solve the problem is difficult: too little 

prompting may lead children not to explore and develop ideas about the problem (as was 

the case with the many children who only identified a single solution). On the other hand, 

too much prompting may simply teach procedure at the cost of developing more 

conceptual understanding – an identified problem that can arise when teaching with 

manipulatives (Ball, 1992; P. Thompson, 1994). In this study for example, the Virtual 

condition constrained children‘s actions to move only one object at a time. This 

constraint consequently encouraged a more efficient strategy (compensation). However, in 

the Physical condition, although children could move multiple objects with ease, they still 
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often moved one object at a time. Some children even began by moving multiple objects 

and then constrained their own actions to moving one at a time. There seems therefore 

to be trade off – promoting a more efficient strategy through constraining actions and 

promoting discovery by allowing children to constrain their own actions. This trade off is 

discussed by Schwartz, Bransford and Sears (2005) as a balance between efficiency and 

innovation. It is argued that the latter is important for transferring learning to new contexts. 

In other words, allowing children to identify their own best way of manipulating objects 

may have developed understanding that is best measured through transfer tasks than 

through measures of efficiency in this particular problem. Unfortunately, assessing 

transfer was beyond the remit of this thesis. 

 

7.4.7 Summary 

This study has shown that constraining children‘s actions on representations can 

significantly influence the strategies for identifying solutions in a partitioning problem. 

Constraining children‘s actions so that only one object could be moved at a time led 

children to identify more solutions that differed by one. Understanding and applying the 

concept that taking one from one part and adding it to another is important in numerical 

development, and it is possible, therefore, that using virtual representations such as those 

used in this study would best support the development of this concept. However, the 

gains accrued from greater exposure to this strategy in the Virtual condition must be 

considered in light of possible benefits from children constraining their own actions in 

the Physical condition. 

 Observations of children using the two representations suggested that although 

children took advantage of certain visual and tactile properties of the physical materials, 

such as touching or stacking them, these properties provided no great advantage over the 
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virtual materials. It is possible, however, that these physical attributes confer a greater 

advantage in tasks in a different domain (one exploring three dimensional shapes, for 

example) or in tasks which present greater procedural demands such as partitioning larger 

amounts.  

 In order to investigate the role of manipulation, it was intended to match the 

physical and virtual materials for perceptual features such as size, colour and shape. As a 

result this study does not compare the relative value of physical and virtual materials 

since this reduces some of the key benefits of digital materials where properties can be 

designed to support learning. One possibility might be to encourage children to interpret 

configurations by introducing a delay after each manipulation. Alternatively, the 

possibility was raised of integrating specific perceptual features that could influence 

children‘s strategies. Such features might help children to recognise that there are 

multiple solutions, or to identify possible solutions from incremental changes made to 

the representation.  
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Chapter 8 

 

The effect of augmenting representations with 

perceptual prompts on children’s partitioning 

strategies- Study 7 

 

8.1 Introduction 

The previous study showed that constraining children‘s actions on a numerical 

representation could lead to differences in the strategies used for identifying ways to 

partition a number. As predicted, children were more likely to identify solutions where 

the parts differed by one (compensation solution) when their actions were constrained to 

moving one object at a time using a graphical interface. It has been argued that increasing 

the use of this strategy has important implications for learning in this domain, as it not 

only reflects an important procedure used to facilitate calculation in various part-whole 

problems but also emphasises an important numerical concept – that taking something 

from one part and adding it to the other leaves the whole unchanged. 

 It was shown in Study 5 that simply asking children to move one object at a time 

was not sufficient to increase the use of the compensation strategy significantly. Although 

the verbal instructions in the study meant children moved objects one by one, it is likely 

that the rapid way they actually moved the cubes (often using both hands) gave them 
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insufficient time to look at each separate resulting change to the representation, and 

consequently therefore insufficient time to identify it as a new and valid partitioning 

solution. In contrast to this, when using the computer in Study 6, children‘s actions were 

constrained by the interface, and manipulation was slowed down by using the mouse. As 

predicted, this increased the likelihood that children would identify incremental 

representational states – demonstrated by the significantly greater number of compensation 

solutions. Despite this constraint however, children still identified many solutions that 

were not compensation (generally ‗other‟ solutions). In other words, children often generated 

a potential new solution by moving one object, but did not identify this solution verbally.  

 Identifying solutions that differ incrementally by one (compensation) is an efficient 

way of identifying different partitioning solutions. Importantly, children are able to 

quantify each part in relation to the previous solution – a strategy that can be applied in 

the absence of objects. It was shown in Chapter 7 that this strategy reflected more 

successful problem solving and was used significantly more by children with greater 

numerical ability. An important question therefore is how this strategy might be 

encouraged – how might children be prompted to identify incremental changes to the 

representation? Clearly, this could be achieved through verbal prompts. The interviewer 

could explicitly ask children to pause and reflect on the novel configuration each time an 

object was moved from one group to another. However, this form of prompting would 

be quite demanding and arguably impractical in a classroom context, in addition, it may 

be necessary to help children understand why it is beneficial to identify each change. 

Another approach would be to augment the graphical representation used in the previous 

study to provide prompts for numerical changes to the representation. If designed well, 

such prompts could not only foster an effective strategy without adult support but also 

help children understand why it is advantageous to identify each new numerical 

configuration. 
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8.1.1 Perceptual prompt for representational changes  

There are many ways in which digital technology might be applied to prompt children to 

identify incremental solutions. Designing the most effective way needs consideration of 

what kind of effect to use, and when it should occur. The digital effect might assume a 

variety of forms, which, with a computer, might typically be visual or auditory. A visual 

stimulus might be beneficial for various reasons. It is, for example, less confusing to 

present multiple effects simultaneously, whilst effects can also be continuous if required 

(i.e. they can remain on screen for children to attend to). For this design, the aim of the 

effect is to provide a simple yet salient prompt for a change in the representation.  

 Colour is a feature that is simple to process and distinguish. One possible design 

approach would therefore be to use a change in colour to emphasise numerical changes 

to the representation. In other words, when children create a new configuration (i.e. 

move an object from one group to another), the objects themselves could change colour 

to emphasise the change in numerical grouping. This effect might therefore prompt 

children to recognise that a novel partitioning solution had been created. 

 A key challenge, however, is know how to define a ‗new numerical configuration‘ 

so that effects can be presented appropriately. In the previous study, numerical groupings 

seemed to reflect the relative distance of virtual objects to each other. Although this form 

of spatial grouping could be programmed (for example, by using an algorithm where the 

groups were identified by the relative distances of on-screen objects), there are potential 

difficulties in deciding when objects should be defined as belonging to a certain group. 

One solution, therefore, is to generate a clear and discrete rule. For example, objects 

linked together are considered grouped; objects not linked are considered as not grouped. 

Although objects could be linked in various ways, observations from the previous studies 
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highlighted how children often placed objects linearly (horizontally) using both graphical 

and physical representations (see Figure 8.1). This seemed to facilitate enumeration by 

helping children keep track of the count amount. 

 

   

Figure 8.1: Placing objects in a line to support enumeration 

 

8.1.1 Design of materials to support partitioning strategy 

Based on the design requirements discussed above, the graphical representation from the 

previous study was developed in two key ways. Firstly, by placing objects next to one 

another, or overlapping, it was possible to link them. This was intended to provide clear 

identification for a prompt when objects were considered grouped together. The second 

change was to provide a perceptual prompt to highlight numerical changes. The graphical 

objects were designed so that a change in the number of objects grouped together would 

result in a change in colour. It was decided that, as the change in colour reflected a 

change in quantity, it was appropriate for all objects grouped together to change colour 

(the cardinal principle – that each object is part of the set). It was also decided to use a 

different colour for each quantity represented. Clearly this would mean a potentially 

infinite number of colours, although for the purposes of this study, children would not 

be presented with more than ten objects at a time. 
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 The use of colour to reflect quantity is not unique in mathematical materials. 

Indeed, Cuisenaire rods (a common mathematical manipulative), uses colour to reflect 

quantity (Figure 8.2). In this design, number is represented by length (1 unit=1 cm) and 

colour. It was decided to use the same ‗colour to quantity‘ mapping of Cuisenaire rods as 

this helped to communicate the resource with the class teacher (who was able to use the 

resource after the study if wanted).  

 

 

Figure 8.2: Cuisenaire rods 

 

 There are examples of virtual resources which use Cuisenaire rods for numerical 

tasks (e.g., http://www.arcytech.org/java/integers/). What was unique about the 

representation created for this study, however, was that it was possible to decompose 

groupings, which would then change colour accordingly. The quantity to colour mapping 

used for the design is shown in Table 8.1 Figure 8.3 illustrates how the change in 

grouping resulting from moving an object from one group to another results in a change 

in colour (5 & 2 changed to 4 & 3).  
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Table 8.1: Colour to Quantity mapping used in the Study 7 virtual materials 

Quantity Colour Image 

1 White 
 

2 Red  

3 Light Green  

4 Purple  

5 Yellow 
 

6 Dark Green  

7 Dark Grey  

8 Brown  

9 Dark Blue  

10 Orange  

 

 



272 

 

   

Figure 8.3: Screen shots of virtual squares in Colour Prompt condition 

 

8.1.2 Summary and predictions 

Study 6 showed that constraining manipulation to just one object at a time using a 

graphical interface increased the number of compensation solutions children identified. It 

was also shown that many intermediate representational states were not identified as 

potentially unique and valid solutions. This study examined the potential to help children 

identify changes to the representation by augmenting the representation with perceptual 

prompts. In order to examine whether such a prompt did help children identify changes, 

this study compared two representations: virtual squares without a perceptual prompt 

(white squares that did not change colour), and virtual squares with a perceptual prompt. 

It was predicted that more incremental changes to the representation (compensation 

solutions) would be identified using the virtual objects with the colour prompt than 

without the colour prompt. A pilot study was first carried out to ensure that children 

were able to manipulate the objects appropriately. 
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8.2 Pilot study 

8.2.1 Method 

8.2.1.1 Design 

A within subjects design was used with Prompt (Colour Prompt/No Prompt) as the 

independent variable. The order of condition was counterbalanced. The primary 

dependent measure was the verbal solutions provided which were then coded for strategy 

(compensation/commutative/other) using the scheme developed in Study 2.  

 

8.2.1.2 Participants 

20 children took part in this pilot study (9 girls and 11 boys, range 69 to 91 months; 

M=76.1months; SD=6.19 months). Children were randomly selected from two year 

groups: Year 1 and Year 2, at a local infant and primary school in the Nottingham area. 

The percentage of children receiving free school meals is average and the proportion of 

pupils with learning difficulties is slightly lower than average. Because class sizes are 

limited to 30, these two year groups were actually split across three classes: a Year 1 class 

(lower ability), a mixed Year 1/2 class (higher ability Year 1, lower ability Year 2) and a 

higher ability Year 2 class.  
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8.2.1.3 Materials 

 Virtual squares 

The squares used in both conditions were identical in size and shape to the squares used 

in Study 6 (i.e. 1.5cm2). However, whilst the squares in the No Prompt condition were 

always white, the squares in the Colour Prompt condition were designed to change 

colour according to the number of squares grouped together. In order to provide a clear 

and discrete means of identifying when squares were grouped, they were programmed to 

‗snap to join‘ (i.e. if an object was released in a position touching or overlapping another 

object, it would automatically move so it was joined horizontally). Accordingly, objects 

joined together were considered as grouped, objects not joined: as not grouped. Squares 

could only be joined horizontally in a line. If an attempt was made to attach the squares 

vertically, the joining square would jump to one end of the horizontal line of squares 

(thus avoiding the need to allow all objects to relocate whenever there was ‗insertion‘ into 

an existing group). 

 The representation in the No Prompt condition could be manipulated identically 

to the Colour Prompt condition, the only difference being that squares would not change 

colour (they remained white). In the Colour Prompt condition, squares would change 

colour according to the number of squares attached using the mapping shown in Figure 

8.4. In this mapping, only individual objects were white, as shown in Figure 8.5 which 

contrasts the same numerical groupings in the two conditions. 
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Figure 8.4: Screen shots of virtual squares in Colour Prompt condition 

 

   

Figure 8.5: Screen shots of virtual squares in No Prompt condition 

 

 Other materials 

It was decided to use the same story context as for Studies 3 and 5 – a farmer trying to 

find all the ways a number of cows can be in two fields – as this context seemed to help 

communicate the need to create only two groups. The materials consisted of images of 

the farmer, the cows and the fields. The field image was placed on the keyboard 

throughout the tasks (the keyboard was not needed as input was through a mouse) while 

the keyboard itself was placed directly in front of the screen (thereby helping prompt 

children to partition objects into two groups). Although it was possible to provide an on 

screen image of the fields, it was decided not to in case this hindered how easily children 

could see the colour prompts of the objects in the Colour Prompt condition.  
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Figure 8.6: Materials used for partitioning story context 

 

8.2.1.4 Procedure 

 Example partitioning question 

Similarly to the previous studies, the interviewer preceded the task in each condition by 

demonstrating partitioning of three objects. The interviewer first presented the story 

context using the laminated images, and then asked children to watch whilst he used ‗these 

three squares‟ to find all the ways that 3 cows can be in the two fields. The order of 

condition was counterbalanced between children. The squares that were presented 

reflected the condition and were initially presented in the centre of the screen, attached in 

a horizontal line. Whilst these squares were white in the No Prompt condition, they were 

light green in the Colour Prompt condition (corresponding to three – see Table 8.1). 

 Similarly to previous studies, the interviewer demonstrated moving the squares 

into groups on the left or right side of the screen reflecting the following solutions in this 

order: 3 & 0, 1 & 2, 2 & 1 and 0 & 3. This quantity change was also illustrated in a 

change of colour as two grouped objects were both coloured red and an individual object 

would be white. The interviewer did not make reference to the colour or change of colour 

in the Colour Prompt condition.  



277 

 

 

   

  

Figure 8.7: Screen shots of partitions in the Colour Prompt condition example 

 

 Partitioning problem 

Following the demonstration problem, the interviewer explained to the children that the 

farmer then bought some more cows; he now had 7 cows. The order of partition amount 

was the same in all conditions; 7 for the first problem and 8 for the second. The 

interviewer started the program with the appropriate number of squares for that 

condition. Similarly to the example, squares were presented attached in the centre of the 

screen. Therefore, whilst squares were white in the No Prompt condition, in the Colour 

Prompt condition they were initially dark green when partitioning 7 and dark grey when 

partitioning 8.  

 The instructions and prompts were similar to previous studies; children were 

asked to use the squares to find all the ways that 7/8 cows could be in the two fields. As 

for previous studies (other than Study 6), children were given prompts to identify more 

solutions if they stopped after the first solution: ―is that all the ways or can you think of any 

more ways?‖ The prompt was given to encourage children to identify multiple solutions, 

thereby creating more solutions in which to compare strategies between conditions. 
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 After the first problem, the interviewer returned to the example question with the 

three squares for the other condition before presenting the final problem requiring 

children to partition 8 using the squares for that condition. Structuring the study in this 

way (demonstration; then problem for the first; then second condition) ensured that 

conditions were counterbalanced.  

 

8.2.3 Results 

8.2.3.1 Correct Scores 

Kolmogorov-Smirnov tests showed that the correct scores in both conditions were 

significantly non-normal; non-parametric analysis was therefore carried out. A Wilcoxon 

repeated measures test revealed no significant differences between correct scores in the 

Colour Prompt (Mdn=6) and No Prompt conditions (Mdn=5.5) (Z=-0.51, p=ns) or 

between partitioning 7 and 8 (Z=-1.07, p=ns). 

 

8.2.3.2 Strategies 

Solutions were coded according to strategy (other for all solutions not coded as 

compensation or commutative). Wilcoxon tests revealed no differences between Colour 

Prompt and No Prompt conditions for compensation (Z=-0.60, p=ns) or other (Z=-0.09, 

p=ns) strategies. As expected considering the use of the graphical user interface, children 

identified very few commutative solutions (5 in the Colour prompt condition and 4 in the 

No Colour promt).  Median and IQR scores are shown in Table 8.2. 

 

 
 



279 

 

Table 8.2: Median (IQR) scores for strategies in Colour Prompt and No Prompt conditions 

 Colour Prompt No Prompt 

Compensation 2 (1,3) 2 (0,3) 

Commutative 0 (0,0.75) 0 (0,0) 

Other 1.5 (1,3.75) 2 (1,3) 

 

 

8.2.3.3 Qualitative observation 

Observations of children‘s actions highlighted a key design issue in this pilot – when 

children manipulated squares in the Colour Prompt condition, they often did not attach 

squares: they moved squares close together but not joined as shown in Figure 8.8. As 

squares in this condition only changed colour when attached, this clearly compromised 

the independent variable differentiating conditions. Several children actually separated all 

objects in the Colour Prompt condition such that all squares were white, as they would 

be in the No Prompt condition.  

 There were two key observations about the reasons objects were not attached. 

Firstly, children had difficulties in attaching objects. The squares were programmed to 

attach when touching, but it appeared that children were expecting objects to attach 

simply when they were close (whereas they actually had to be touching). Consequently, 

children would tend to move squares gradually closer to one another and often stop 

before they were attached. Although children in this study, as in Study 6, had no 

difficulty in moving objects using the mouse, attaching objects did seem to demand 

additional fine motor control as children had to move squares to a more specific position. 
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This problem seemed compounded by the fact that children did not generally realise that 

they could attach objects by simply dropping them onto another object rather than 

having to closely align the sides.  

 It was also clear that children often moved objects into new groups without trying 

to attach them. Figures 8.8a and 8.8b show examples where children have attached 

objects or have placed them close in the expectation of their attaching. The screenshots 

also show where children have moved objects into groups without attaching them. Figure 

8.8c shows a situation where no objects have been attached, and highlights a key problem 

identified in this pilot. When children did not attach objects, the difference between the 

conditions was eliminated – cubes would not change colour when regrouped in the 

Colour Prompt condition. 

 

     

Figure 8.8: a), b), & c): Squares not attached in the Colour Prompt condition 

 

 There was also an indication that children were slightly confused by the change of 

representations from one condition to the next. Although a demonstration was provided 

before each condition, there were several occasions when children verbalised their 

expectation of a colour change for objects in the No Prompt condition following the 

Colour Prompt condition. This may be attributable to the fact that children were not 

given different instructions when they changed conditions that helped explain how the 

representation differed.  
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 Another key problem was that children often appeared to be exploring the 

representation rather than using the objects to solve the problem. This may be 

understandable as children were not given any time in the study to ‗play‘ with the 

representation in order to familiarise themselves with the way objects could be attached 

and the range of colours that could be generated. It is possible that providing children 

with time to explore the representation before using it to solve the problem may reduce 

this potential distraction.  

 

8.2.4 Discussion 

This pilot study aimed to identify any methodological issues in the proposed study 

examining the effect of perceptual prompts to support partitioning strategies. Twenty 

children took part in the study, which was considered a large enough number to provide 

an indication of any main effects. Although children did identify more compensation 

solutions in the Colour  Prompt condition, the difference was small and non-significant. 

However, several issues were raised that might explain why the predicted differences 

between conditions were not found.  

 The key problem highlighted in this pilot was that children often grouped objects 

by moving them close together but not attaching them. Unlike the previous studies, the 

design of the materials in the Colour Prompt condition required children to attach 

squares. It would be possible to adapt the materials to address this issue: for example 

programming squares to change colour when within a certain proximity. However, this 

could introduce new problems – the technology might define objects as grouped when 

children had not intended to group them (and vice versa). Squares were designed to 

change colour when attached as this provided a discrete definition of grouping, yet 

children were not provided with any explanation of this digital behaviour, nor had they 
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any opportunity to accustom themselves to this behaviour before using the objects in the 

partitioning problem. In addition, children were also required to accept that in the other 

condition, objects similarly attached did not change colour. It is entirely possible that the 

demonstration problem was insufficient for children to become familiar with the 

materials so that, as a consequence, not only were objects used in a way not intended (i.e. 

not attached to a group) but important cognitive resources may have been used up in 

trying to understand the behaviour of these novel materials. 

 

 8.2.4.1 Study design changes 

It was decided to make several methodological changes in the light of the findings from 

the pilot.  

 Children would be given a chance to familiarise themselves with the materials 

before problem solving. 

 The study would be a between subjects design so that children would only be 

required to familiarise themselves with one type of material. 

 Children would be given explicit instruction in how to join the squares. 

 If children identified a group verbally (in their solution) and objects were not all 

attached, they would be reminded to attach objects in the same group. 

 Children would be given a tablet computer to manipulate objects with a pen as a 

small test showed that this would be easier than manipulating objects using the 

mouse (the need to attach squares requires greater motor control than simply 

moving objects).  
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8.3 Main Study  

8.3.1. Aims and predictions 

The study addressed the methodological issues highlighted in the pilot study in order to 

examine whether a perceptual clue (change of colour) could prompt children to identify 

numerical changes in the representation. As the interface constrained children‘s actions 

so that only one object could be moved at a time, it was expected that prompting 

children to identify changes to the representation would lead to a greater number of 

compensation solutions (partition solutions that differ by one in each part). Consequently, it 

was predicted that children in the Colour Prompt condition would identify a greater 

number of compensation solutions than children in the No Prompt condition.  

 

8.3.2. Method 

8.3.2.1 Design 

A between subjects design was used with Prompt (Colour Prompt/No Prompt) as the 

independent variable. The primary dependent measure was the verbal solutions provided 

which were then coded for strategy (compensation/commutative/other) using the scheme 

developed in Study 2. 

 

8.3.2.2 Participants 

Thirty eight children took part in this study (20 girls and 18 boys, range 69 to 93 months; 

M=80.84; SD=6.55 months). These children (who had not taken part in the pilot) were 

selected from those in the same classes. The selection was made from Year 1 and Year 2, 
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split across three classes: a Year 1 class (lower ability), a mixed Year 1/2 class (higher 

ability Year 1, lower ability Year 2) and a higher ability Year 2 class. The selected children 

were randomly allocated (using Excel Random number generator) to one of the two 

conditions: Colour Prompt or No Prompt. There were no significant age differences 

between conditions (U=160.5, Z=-0.59, p=ns). 

 

8.3.2.3 Materials and procedure 

 Initial familiarisation with materials 

The same virtual materials were used in this study as the pilot. However, in order to 

address the possible issue of fine motor control skills being needed to manipulate objects, 

it was decided to present the task on a tablet computer (15 inch HP Compaq) after a 

small pilot test established that children were able to move and attach objects with 

greater ease using the pen interface on the tablet than a mouse. 

 Before explaining the task, the interviewer quickly showed children the tablet 

computer pen drawing a line in a paint program and asked children if they had used a 

tablet computer before: no children said they had. The interviewer explained to the 

children that they were going to be asked to solve some problems using squares then 

opened a file with ten squares arranged linearly in the centre of the screen. In line with 

the colour-quantity relationship shown in Figure 8.8, these ten attached squares appeared 

as orange in the Colour Prompt condition (but white in the No Prompt condition). The 

children were then encouraged to move the squares around using the Tablet pen. After 

30 seconds the interviewer stopped the child and explained exactly how the squares could 

be attached. The interviewer demonstrated how the squares needed to be touching in 

order to join; however, an easy way to join the squares is to ‗drop‘ them when they were 
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overlapping. The children were then given a further 30 seconds to continue exploring the 

squares and practise joining them.  

 

 Demonstration problem 

As in the pilot study, after the initial presentation of the materials, the interviewer 

explained the problem. Similarly to the pilot, the laminate image was placed on the 

keyboard to support problem solving (Figure 8.9). The interviewer then showed the 

children the example question with the three squares: three white squares in the No 

Prompt condition and three green squares (changing to red and white for 2 & 1 

respectively) in the Colour Prompt condition. The interviewer drew attention to the 

attaching of squares: “see how I join the squares together if they are in the same group”. Similar to 

previous studies, the interview proceeded to demonstrate solutions in the following order: 

3 & 0, 1 & 2, 2 & 1 and 0 & 3.  

 

 Partitioning tasks 

Following the demonstration, children in each condition were given the problems 

requiring them to partition 6 and 7 respectively. It was decided to use 6 and 7 because it 

was discovered that the teacher in one class (the youngest group) had recently given a 

numeracy lesson looking at number pairs to 10 and had used 8 to demonstrate how to 

break a number down into pairs. Although this demonstration had been short, it is 
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possible that children might have remembered the solutions given, thereby creating an 

external influence for partitioning this amount. 21 

 As this was a between subjects design, children used the same materials in both 

partitioning problems. It was not necessary therefore to provide a further example 

problem between the two partitioning problems. Prompting was the same as in the pilot 

and previous studies, although, if children in either condition moved objects close 

together without actually joining them, the interviewer said “remember to join the squares if 

they are in the same group”.  

 

   

Figure 8.9: Examples of setup of Tablet computers in No Prompt and Colour Prompt condition 

                                                      

 

21 It is possible that this teacher demonstration also prompted a certain strategy – especially as 

solutions were given in a way that reflected the compensation strategy (8 & 0, 7 & 1 etc). However, 

this possibility is not discussed further as there were an equal number of children from this 

teacher‘s class in each condition. 
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8.3.3 Results 

8.3.3.1 Correct Scores 

Since Kolmogorov-Smirnov tests revealed that the correct scores in both conditions 

were not normally distributed; non-parametric analyses were carried out. A Mann-

Whitney test revealed no significant differences between correct scores in the Colour 

Prompt (Mdn=12) and No Prompt conditions (Mdn=12) (U=161, Z=-0.57, p=ns). A 

Wilcoxon test also revealed no differences between partitioning 6 and 7 (Z=-1.07, p=ns). 

Kruskal-Wallis tests revealed no differences between the three class groups for 

partitioning 6 (2(2)=3.55, p=ns) or 7 (2(2)=2.11, p=ns). 

8.3.3.2 Strategies 

Mann-Whitney tests revealed no differences between Colour Prompt (Mdn=1) and No 

Prompt (Mdn=0) conditions for commutative solutions (U=134, Z=-1.46, p=ns). However, 

in line with predictions, there were significantly more compensation solutions found in the 

Colour Prompt (Mdn=6) than No Prompt (Mdn=3) condition (U=109, Z=-2.10, 

p<0.05), and significantly less other solutions in the Colour prompt condition (Mdn=2) 

than No Prompt condition (Mdn=4)(U=94, Z=-2.55, p<0.05).   

.  
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Table 8.3: Median (IQR) scores for strategies in the Colour Prompt and No Prompt conditions 

 Colour Prompt (n=19) No Prompt (n=19) 

Compensation 6 (3,9) 3 (2,5) 

Commutative 1 (0,2) 0 (0,1) 

Other 2 (1,4) 4 (3,5) 

 

 

8.3.3.3 Equal partitioning 

In the Colour Prompt condition, children identified an Equal partitioning solution (3 & 3 

for partitioning 6, and 3 & 4 or 4 & 3 for partitioning 7) on 23 out of 38 problems 

(60.5% with 1 incorrect). In the No Prompt condition, children identified 22 out of 38 

(57.9% with 2 first solutions incorrect). As expected therefore, there were no significant 

differences between conditions for partitioning 6 (Z=0.60, p=ns) or partitioning 7 

(Z=0.71, p=ns). There were also no differences found in the number of equal 

partitioning solutions identified when partitioning 6 or 7 (Z=1.15, p=ns). 

 

8.3.4 Discussion 

Study 7 examined the effect of perceptual prompts on children‘s partitioning strategies. 

Materials were designed to draw children‘s attention to changes in quantity by a change 

of colour according to the number of objects attached. As the graphical interface 

constrained actions to allow only one object to be moved at a time, it was predicted that 

the perceptual prompts would encourage children to identify more solutions that differed 
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by one – i.e. more compensation solutions. This prediction was supported: children did 

identify a greater number of compensation solutions in the Colour Prompt than No Prompt 

condition. This difference was not attributable to children identifying more solutions in 

this condition so much as to the type of strategies used to identify correct solutions that 

differed between conditions. Whilst children in the Colour Prompt condition identified 

more compensation solutions, children in the No Prompt condition identified more other 

solutions. Interestingly, children in the Colour Prompt condition also identified more 

commutative solutions, although the numbers were too small to detect any significant 

effects. 

 Observations of children‘s manipulations of squares indicated that the issues 

raised in the pilot had been addressed by the changes made in this study. The problem of 

attaching objects seemed to have been eliminated, firstly because children were able to 

manipulate objects with greater ease using the tablet computer, and secondly because 

they not only had a chance to familiarise themselves with the representation before the 

problem solving started, but were also given explicit instruction in how to attach objects. 

Consequently, very few prompts were needed for children to attach objects during 

sessions.  

 

8.3.4.1 Colour Prompt and strategy 

The conditions in this study were designed so that the only differences between 

representations were the colour of the squares. As children successfully attached objects 

when grouping them, a significant difference in strategies between the conditions can be 

attributed to this perceptual clue. It was predicted that this prompt would help children 

identify discrete incremental changes in the representation that could be identified as new 

solutions. This prediction was indeed supported – children identified more compensation 
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solutions in the Colour Prompt condition. Figure 8.10 illustrates how each new grouping 

was emphasised by colour changes in this condition. 

  

       

Figure 8.10: Change in colour as a perceptual clue for consecutive solutions in Colour Prompt condition 

 

 It seems therefore that the colour prompt did draw children‘s attention to 

numerical changes in the representation. It might be argued that this effect was partly 

attributable to motivation – the colour representation was more engaging and hence 

increased children‘s general levels of attention to the problem. However, if this was the 

case, it might be expected to have led to a greater number of correct solutions – this was 

not found. Another possibility is that children learnt the colour to quantity mapping of 

the representation in the Colour prompt condition and that this helped them identify 

solutions more easily (removing the need to calculate new parts). However, children did 

not have previous experience in using these materials and it is unlikely that they managed 

to learn the mapping in the duration of the session. 

 Although the changing colour of squares may have helped children identify 

incremental changes in the representation, this prompt was clearly insufficient for 

children to identify all solutions in this way. The proportion of solutions coded as 

compensation in the Colour Prompt condition was high (62.2%) but this still meant that 

37.8% of solutions identified were not compensation. As squares could only be moved one 

by one, this meant that children in this condition would have seen the changes in colour 
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of the new groups but not have identified these as potential new solutions. This is clearly 

demonstrated in children‘s initial solutions. In the Colour Prompt condition, 60.5% of 

first solutions were equal partitioning, and this did not significantly differ in the No 

Prompt condition. In order to identify a fair share solution initially, children had to move 

at least three objects, and each of these changes would have been emphasised by a 

change in colour in the Colour Prompt condition. The colour prompt, therefore, was 

insufficient to draw most children‘s attention to the intermediate solutions generated 

when partitioning objects equally at the start of problem solving. However, as illustrated 

in Figure 8.11 below, apart from the first change (creating groups of 1 and 5), children‘s 

tendency to move objects one by one into two different groups meant that many 

intermediate representational states did not consist of two groups (i.e. they did not reflect 

valid partitioning solutions). It is possible therefore that encouraging children to create 

only two groups (by locating the objects on a virtual image of two fields for example) 

may have helped draw children‘s attention to the valid intermediate representational 

states. 

 

      

    

Figure 8.11: Example of adaptations made to identify initial Equal partitioning solutions in Colour 

Prompt condition 
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8.3.4.2 Colour Prompt and learning 

In this study, the representation in the Colour Prompt condition increased the use of an 

efficient compensation strategy. Importantly, this is an effective strategy for distinguishing 

one solution from the previous one, and can hence be used in the absence of materials. 

Indeed, Study 2 showed instances of children moving objects but applying this strategy 

mentally (not looking at the objects to count out the solution). Unfortunately, this study 

did not include a transfer task to examine whether the increased use of the compensation 

strategy in the Colour Prompt condition would transfer to problem solving without 

materials.  

 It has been argued that in order to facilitate transfer to different contexts, more 

generic manipulative materials with less specific perceptual features should be used 

(Sloutsky, Kaminski, & Heckler, 2005b; Uttal et al., 1997). Therefore it is possible that 

the salient perceptual features of the colour representation could actually impede transfer. 

However, although the colour representation does include more perceptual features, 

these are not irrelevant features – they provide a visual representation of quantity and, 

importantly, a perceptual prompt for numerical change. It is possible, therefore, that 

these features help draw children‘s attention to the more abstract principle that a new 

partitioning solution can be generated by simply taking one from one group and adding 

to the other. If so, the perceptual prompt may facilitate transfer of this strategy to use in 

the absence of materials.  

 The possibility that the colour prompt leads to successful transfer is supported by 

an interesting study by Frydman and Bryant (1988) investigating the development of a 

concept of division in young children. Their studies centred on dividing sweets between 

two people and it was shown that young children were able to partition individual items 

between two groups with ease. However, when the context was changed so that some of 
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the sweets were wrapped in pairs and the children were told that one of the individuals 

preferred to receive sweets in groups of two, children had great difficulty partitioning an 

equal amount. Instead, they tended to treat the group of two sweets as a single item. The 

authors then examined children‘s partitioning behaviour when given colour cues. 

Individual sweets now consisted of two colours, blue and yellow, and the groups of two 

sweets consisted of one of each of these colours. This colour cue significantly helped 

children partition correctly, giving an equal quantity of sweets to the two individuals even 

though one received sweets in groups of two. What was arguably most interesting in this 

study, however, was the finding that when the colour cue was removed, improved 

performance remained. In other words, the colour cue not only helped children to 

problem solve, but also helped them abstract strategies in the absence of the prompt. 

Clearly, the problem in Frydman and Bryant‘s study is different from the partitioning 

problem in this present study, but it does nevertheless raise the possibility that the 

changes in partitioning strategies in the Colour Prompt condition may transfer to 

problem solving in the absence of such prompts. 

 

8.3.4.3 Summary 

It was found in this study that providing children with a salient perceptual prompt for 

changes in quantity increased the use of a compensation strategy. The representation was 

manipulated on a graphical interface which constrained children‘s actions to moving one 

object at a time and this representational feature provided an additional visual stimulus 

for changes in quantity. However, the study raised questions over how well this 

representational feature may support or possibly hinder learning in this domain. Whilst it 

has been argued that this augmented representation may help children by encouraging 
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the use of a strategy, it is possible that the inclusion of a more specific representational 

feature (colour) actually limits children‘s ability to transfer any learning to novel situations. 

 It is also not clear what impact this feature might have on different numerical 

concepts. It has been argued in previous chapters that the partitioning task encapsulates 

other important concepts such as commutativity, and it was therefore interesting to see 

that children identified more commutative solutions in the Colour Prompt condition albeit 

that the number of solutions was too small to detect any possible significant differences. 

As shown in Study 5, the limited number of commutative solutions is likely to be 

attributable to the constraining actions of the interface. Therefore, if an interface was 

used that did allow multiple objects to be moved simultaneously, then it might be 

possible to examine whether the colour perceptual prompt could significantly foster the 

use of the commutative strategy. It is possible (although clearly in need of empirical support) 

that the colour prompt fosters the use of the commutative strategy by emphasising the 

symmetrical nature of commutative solutions as shown in Figure 8.12.  

 

  

Figure 8.12: Commutative representational states with the Colour Prompt representation 

 

 Because the colour prompts used in the representation mapped to the number of 

objects in each group, it is possible to identify other numerical concepts that were 

illustrated through this perceptual cue. For example, the inability to create two equal 
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groups when their total is an odd number was highlighted by the inability to create two 

groups of the same colour (when partitioning 7). This perceptual cue also highlighted 

how numbers could or could not be partitioned into larger groups of equal size: for 

example, the screenshot in Figure 8.14 illustrates how 6, but not 7, could be partitioned 

into 3 equal groups. Furthermore, the principle of inversion was possibly represented in 

the way some children added one object to a group and then took away another (i.e.: a + 

b - c = a, if b = c) as illustrated in Figure 8.15.  

 

  

Figure 8.13: Representations for 4 & 3 and 3 & 4 in Colour Prompt condition, highlighting 

commutative parts 

 

   

Figure 8.14: Partitioning 6 and 7 in larger groups 
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Figure 8.15: Inversion 

  

 It is important to stress that just because the colour prompts may seem to embody 

certain numerical relationships, it is unknown how these prompts may or may not affect 

children‘s understanding. Indeed, as discussed Chapter 1, it has been argued how it the 

transparency of certain representations is only clear once the concepts they are meant to 

represent are understood (Holt, 1982). 

 Researchers (e.g., Ball, 1992; Sutherland, 2007) have emphasised the role of the 

teacher and the learning activity to help foster certain mathematical ideas. What is not 

clear, and arguably worthy of further research, is whether the representation generated in 

this study presents a potential tool to explore and/or communicate certain numerical 

relationships. This final study has demonstrated the potential to influence children‘s 

strategies, and hence possibly their ideas, by using digital technology to draw attention to 

certain representational changes. 



297 

 

Chapter 9 

 

Final Discussion 

 

9.1 Summary of Thesis aims 

The aim of this thesis has been to evaluate the potential for tangible technologies to 

support children‘s understanding of the numerical concept of additive composition. In 

order to design tangible technologies that are effective, it is important to first identify the 

possible advantages, as well as limitations, of using physical representations in this 

domain. Additive composition is a key part of children‘s numerical development (L. B. 

Resnick, 1983b) and it has been suggested that physical materials may support children‘s 

understanding of this concept (Nunes & Bryant, 1996). However, it is not yet clear how, 

or even if, actions with physical materials, as opposed to other materials (or even no 

materials) might lead to learning. This challenge was addressed in this thesis by designing 

a task that required children to decompose single digit numbers into combinations of two 

parts, and then conducting a series of studies examining the role of physical 

representations in the task. The findings of each study were discussed at the end of their 

respective chapters, whilst this discussion chapter draws everything together in order to 

look at the main research question, and examine what implications the findings have for 

related research and practice. 
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9.2 Structure of the discussion 

This discussion begins with a summary of the findings, first addressing each sub-question 

and then the main research question. These will then be evaluated in the light of the 

implications they have for the design of effective tangible technologies in this domain. 

The partitioning problem will then be examined in more detail, identifying the role of 

other contextual factors and their effect in drawing out the key arguments relevant to the 

main question. The limitations of the research will then be discussed before considering 

the wider implications of the findings and possibilities for further research. 

 

9.3 Summary of findings 

9.3.1 Do physical objects support children’s strategies for partitioning 

numbers? 

Study 1 was an exploratory study into the use of physical objects in an addition and 

partitioning task. It was shown that when children were given an uncounted number of 

objects and simply asked to use them if they helped, physical objects did not assist them 

any more than using paper or even no materials (simply their fingers). Although the 

children used physical materials more than paper or fingers in the partitioning task, this 

did not seem to confer any advantage. Study 1 thereby highlighted the need to take 

account of the way materials are presented, and the effort that children must make to 

first count out the initial partitioning amount before they can identify any partitioning 

solutions.  



299 

 

 Study 2 addressed the issues arising in Study 1, examining whether children found 

more partitioning solutions using physical objects than no materials if they were first 

given the initial number to be partitioned. As expected, this help proved effective – the 

use of physical objects clearly did help children identify more correct partitioning 

solutions. Arguably of greater interest was the effect that the use of physical materials 

had on children‘s strategies for identifying solutions. Using a coding system, solutions 

were categorised according to their relationship to the previous solution. A compensation 

solution was coded when the solution was one different from the previous one, and a 

commutative solution when the solution was the reverse of the previous one. Other 

solutions were coded as other. From this, it was found that when children used physical 

objects they identified significantly more solutions that were coded as compensation and 

commutative than when they did not use materials. Another finding from this study related 

to children‘s first solutions: when physical materials were used it was found that a 

significantly higher proportion of children‘s first solutions were Equal partitioning - i.e. 

an equal division of the objects, or (in the case of an odd number) as close to equal as 

possible. 

 

9.3.1.1 Summary 

It was found that the use of physical objects did help develop children‘s strategies for 

partitioning numbers when the initial demand of counting out the amount to partition 

was carried out by the interviewer. Not only did children identify more ways to partition 

a number using objects, but they were also more likely to then relate consecutive 

solutions. Relating solutions is an efficient approach to this problem and, importantly, 

leads to strategies that can be carried out in the absence of materials. Moreover, these 

strategies embody important quantitative relationships.  
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9.3.2. What are the advantages/limitations of physically manipulating 

representations for children’s partitioning strategies? 

Study 3 sought to discover what properties of physical objects supported or limited 

children‘s partitioning strategies. This was done by comparing children‘s performances 

under four different conditions in a 2x2 design: using physical/pictorial materials and 

providing a record/no record of previous states. It was found that providing children 

with a record of previous representational states did not affect their strategies. Children 

did not use this record even though it was demonstrated that this could show previous 

solutions, and despite its potential value as a means of finding solutions that had not yet 

been identified. In contrast to this, there was a significant effect from using physical 

materials: children identified significantly more correct partitioning solutions using 

physical than pictorial materials. Furthermore, using physical materials, children identified 

significantly more solutions that were related (i.e. more compensation and commutative 

solutions) although, it is possible that the greater number of compensation solutions may 

simply reflect the greater number solutions identified overall. A further finding from this 

study was that children‘s propensity to start by partitioning objects into two equal parts 

did not differ between the Physical and Pictorial conditions.  

 Study 4 examined children‘s strategies in greater detail. Children solved problems 

first using no materials, and then using physical and pictorial materials (in 

counterbalanced conditions). In line with the previous studies‘ findings, children 

identified more correct solutions using physical materials than under the other two 

conditions. Video records of children‘s actions highlighted the way in which they were 

able to create new spatial partitioning configurations easily when they were using physical 

materials, and that they were then able to identify most of these as valid solutions. In 
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contrast to this, children created significantly less groupings when using paper. The way 

in which children gave a verbal solution whenever they annotated paper (and sometimes 

before annotating) suggested that they may have used this form of representation to 

record rather than generate ideas. There were also possible signs that children were 

abstracting strategies in the Physical condition: they would begin by moving single 

objects and counting each part and then continue moving objects but calculate each part 

mentally (looking away from the representation). This is speculative but has important 

implications as possible evidence for children using concrete materials to help them 

develop abstract strategies. 

 Study 4 also examined the potential role of different properties of the physical 

materials. Children touched objects to help them count as well as to keep track of their 

position. Objects were sometimes stacked vertically or moved relative to the child‘s 

position, although it was not clear how much advantage this provided over pictorial 

materials, especially as the numbers being counted were small (hence posing limited 

computational demands). More important seemed to be the types of action that children 

made with the materials when relating consecutive solutions. Commutative strategies 

involved children swapping over groups of objects. This action involved moving multiple 

objects using both hands, sometimes picking up groups or simply pushing them. In 

contrast, compensation solutions involved more constrained manipulation, where children 

would move a single object with one hand.  

 

9.3.2.2 Summary 

These studies suggest that the key advantage of physical materials for this problem lies in 

the way they allow children to create new spatial configurations with simple actions, and 

then enumerate these to identify more correct solutions. In so doing the studies provide 
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support for the theory of Physically Distributed Learning (Martin & Schwartz, 2005) that 

describes how such actions can lead to new interpretations. However, rather than simply 

moving objects randomly, the physical representation seemed to foster strategies for 

relating solutions through specific actions: moving all objects in groups (commutative) or 

moving individual objects one by one (compensation). A compensation strategy is arguably a 

more efficient strategy for progressing incrementally through the problem space, 

although, unfortunately, it was not clear from the studies what properties of the materials 

might encourage particular actions. One possibility is their visuo-spatial properties: while 

an Equal partitioning solution creates symmetrical groups, a commutative solution creates a 

symmetrically opposite configuration. 

  

9.3.3 What is the effect of constraining physical manipulation on 

children’s partitioning strategies? 

Study 5 examined the effect on children‘s strategies when their actions were constrained 

by allowing them to move only one object at a time. The outcome, as predicted, was to 

find that they then identified significantly fewer commutative solutions. However, although 

they identified more compensation solutions, the difference was not significant (albeit most 

probably because children in the constraints condition tended to move objects quickly 

using both hands and often needed reminding of the constraining rule). 

 In Study 6, the effect of constraining actions was examined using a graphical 

interface. As predicted, children again identified significantly fewer commutative solutions, 

but were now found to identify significantly more compensation solutions than when they 

were manipulating physical materials. The significant increase in compensation solutions 

resulting from constraining manipulation using a graphical interface (as opposed to 



303 

 

through instructions in Study 5) was attributed to children having longer to see each 

numerical change. Their actions were not only slowed but their hands did not block their 

view of the representation. Children also did not have to remember the need to move 

one object at a time as the constraints were built into the system.  

 Video analysis in Study 6 seemed to support the previous suggestion that although 

children touched objects to support cognition, this affordance did not seem to play an 

important role: no clear disadvantages (such as count errors) were identifiable in the 

graphical condition. An interesting finding in Study 6 was the number of representational 

states that were not identified in either the physical or graphical condition. Of particular 

interest was the number of incremental changes in the Physical condition that were not 

identified verbally. In other words, children often moved physical objects one by one in 

quick succession but did not actually identify the ensuing intermediate states as solutions.  

 

9.3.3.1 Summary 

These studies showed that constraining children‘s actions can significantly affect their 

strategies for identifying partitioning solutions. By requiring children to move objects one 

by one using a graphical interface, it is possible to encourage them towards using a 

compensation strategy, which is the most efficient for solving the problem. Nevertheless, 

there were still many solutions in this study that children did not identify, albeit that this 

may partly be explained by a tendency, in both the Physical and Virtual conditions, not to 

identify many of the incremental changes to the representations.  
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9.3.4 Can children’s partitioning strategies be supported by 

augmenting the representation’s perceptual information? 

The final study was Study 7, which examined the effect of a digital perceptual prompt on 

children‘s partitioning strategies. The effect used was for objects to change colour 

according to the number grouped together so that changes of groupings would result in a 

perceptual prompt of colour change. As expected, it was found that children were 

significantly more likely to identify changes to the representation when manipulating 

squares with this prompt than without it. In other words, children identified significantly 

more compensation solutions with this augmented representation.  

 

9.3.4.1 Summary 

The final study in this thesis demonstrated that it is possible to influence children‘s 

strategies by augmenting the representation with visual prompts. A simple colour prompt 

was enough to significantly increase the number of compensation solutions identified. The 

digital effect was examined using the virtual representation, but this type of perceptual 

prompt could theoretically be integrated into physical objects – and hence articulates a 

possible tangible design to support children‘s numerical development. 
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9.3.5 Does physically manipulating digital representations present any 

unique benefits for supporting children’s understanding of additive 

composition? 

The aim of this section is to draw together the findings in order to answer the main 

research question; and in doing so help evaluate the potential for tangible technologies to 

support children‘s numerical development.  

 By comparing children‘s scores and strategies for solving the partitioning problem, 

it was found that physically manipulating representations supported children‘s ability to 

decompose a single digit number into composite pairs. However, this advantage did not 

seem unique to physical representations: children were able to identify as many correct 

solutions using virtual manipulative manipulated with a mouse. Moreover, using a 

graphical user interface increased the use of an efficient strategy for solving the 

partitioning problem (compensation) – a strategy that allows children to move incrementally 

through the range of solutions, identifying one solution from the previous. Therefore, 

the studies in this research did not identify any clear advantage for physically 

manipulating representations to support children‘s understanding of additive 

composition. However, the research did show significant differences in the strategies 

used when physically manipulating representations and possible cognitive benefits from 

touching objects. Furthermore, by demonstrating the potential to use digital effects to 

draw children‘s attention to numerical changes, the final study raised interesting 

questions around the possible unique benefits of an augmented physical representation. 

 Therefore, this final section will examine in more detail some of the themes to 

emerge from this research that are relevant in evaluating the potential for Tangibles in 

this domain. Although it is not the aim of this discussion to advocate specific design 
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ideas, examples such as a tangible version of the materials used in Study 7 may be drawn 

upon to illustrate certain arguments. 

 

9.3.5.1 Record of solution 

One key limitation of physical objects that has been identified is that no trace is provided 

of previous activity (Kaput, 1993). However, it was shown in Study 3 that, without 

scaffolding or providing any explicit instruction on how to use such a trace, children will 

not make use of it in this task. Furthermore, it is not clear how much the use of a trace 

would actually encourage the development of efficient strategies that work through the 

problem systematically.  

 Although Tangibles might address this limitation: by providing a means of 

recording actions or specific representational states, this research does not show that this 

will necessarily help children. It might however be noted that such a trace may actually be 

more useful for the teacher, not only as a formal record to help subsequent assessment, 

but also as a means of encouraging general class discussion about strategies. 

 

9.3.5.2 Spatial manipulation 

Additive composition involves an understanding of how a number can be broken down 

into smaller numbers, and it has been argued that in a task requiring children to break a 

number into different parts, it is beneficial for them to identify as many partitioning 

combinations as possible. These studies have shown that children identify more 

partitioning combinations when they are able to spatially manipulate the representation. 

Spatial configurations may help important cognitive tasks such as enumerating by 

subitising small groups, or keeping track of objects when counting by creating a linear 
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configuration. Spatially manipulating objects also seems to allow children to act 

(physically) and then interpret the representation (numerically) as described in PDL. 

Importantly, when children manipulate objects, simple transformations can embody key 

numerical concepts (such as swapping over groups, which creates a symmetrical opposite 

configuration and embodies the concept of commutativity). Moreover, moving objects 

from one group to another introduces children to the important concept that the 

quantity of objects in parts can change without any objects being added or taken away 

from the collection as a whole – the central tenet of additive composition.  

 Tangible technologies therefore have the potential to allow children to explore the 

concept of additive composition by transforming the spatial configuration of the 

representation. Although this may seem obvious, some Tangibles do not provide this 

opportunity. For example, the Teaching Table (Khandelwal & Mazalek, 2007) has been 

designed to support children by providing a means of manipulating numerals on tiles 

(Figure 9.1) and giving feedback on answers to numerical questions. However, by using 

numerical symbols, children will not be exposed to spatial configurations as discussed. 

Similarly, when David Merrill presented Siftables at the Technology, Entertainment and 

Development conference in 2009 (see Merrill, Kalanithi, & Maes, 2007 for design 

description), it was demonstrated how tiles could be manipulated to explore numerical 

equations (Figure 9.1). Admittedly, the authors of these designs do not express any 

specific purpose of helping children explore quantitative relations, yet they do raise 

questions about how easily children can explore such relations with designs that require 

them to spatially manipulate numerical symbols. 
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Figure 9.1: Manipulating symbols: Teaching table (Khandelwal & Mazalek, 2007) and Siftables 

(Merrill et al., 2007)  

 

9.3.5.3 Tangible v Graphical Interface 

It is possible to spatially manipulate objects using a graphical interface as well as 

Tangibles. Computer representations have an advantage over Tangibles, in that they are 

relatively easy to create using a range of different digital effects, as demonstrated in the 

design of the representations in Study 7. The relatively low cost and ease of creating 

virtual manipulatives helps explain their growing number in schools (e.g., NLVM, 2007). 

It is important therefore to ask what added value, if any, is offered by tangible interfaces 

to help children develop their understanding of additive composition.  

 

9.3.5.4 Tactile feedback 

Tangible designs can provide children with tactile information. The possible role of this 

affordance was highlighted in the research by numerous observations of children 

collecting multiple objects with ease, touching objects when counting, or placing fingers 

on objects as a ‗marker‘ when looking at other objects. However, there was no evidence 

that these actions significantly influenced children‘s strategies in the task. It is possible 
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that this simply reflected the task demands: as amounts were small, any cognitive benefits 

gained from touching objects may have been too small to detect. Unfortunately, without 

conducting further tasks that are procedurally more demanding, it is not possible to 

conclude that the tactile feedback afforded by physical objects offers any advantage.  

 

9.3.5.5 Controlling manipulation 

A key focus in the studies has been on the strategies children used to identify solutions. 

The pattern of solutions identified provided an indicator of these strategies and a coding 

scheme was devised to quantify solutions identified using different strategies. Two key 

strategies were identified: identifying a solution by reversing the parts of the previous 

solution (commutative) and identifying a solution by adding and taking away from each part 

of the previous solution (compensation). These strategies embody important part-whole 

relationships that are central to additive composition, and a key finding from this 

research was that activity with physical materials seemed to foster these strategies. 

However, it was found that constraining actions using a graphical interface significantly 

affected strategies - increasing the use of the efficient compensation strategy. This finding 

generated an important theme from this research: that with a graphical user interface it is 

relatively easy for the designer to influence children‟s numerical problem solving strategies by controlling 

how many objects can be manipulated at a time and by slowing down the speed at which objects can be 

manipulated.  

 It may be possible to use digital effects to influence the way physical objects are 

manipulated - for example, introducing delays in perceptual prompts might encourage 



310 

 

children to slow down manipulation. However, it is arguably more difficult to control 

manipulation with tangible interfaces because manipulation is highly dependent on 

physical properties such as size and shape, and these are not as easily changed 22 . 

Although it may be possible to design a way that tangible technology can address this 

limitation, (e.g., if materials were attached using some form of digitally controlled 

mechanism such as electromagnetism it might be possible to control how many and how 

easily objects could be separated), this would probably be more expensive and difficult to 

achieve than simply programming virtual objects.  

 It might be argued that, unlike manipulating objects physically, a device such as 

mouse presents a barrier to certain forms of manipulation (such as moving multiple 

objects with ease). Indeed, tablet computers were used in the final study as children had 

experienced difficulty in attaching objects on screen using the mouse. However, graphical 

interfaces are evolving. Multi-touch surfaces already make it possible for multiple objects 

to be moved with simple hand gestures, although further research would be needed to 

establish how easy or seamless manipulation would then be for children compared with 

moving physical objects. Possible limitations were identified from observations in this 

research: for example in the way children used tactile feedback to select and move 

multiple objects, and in the way objects were often moved over one another.  

 

                                                      

 

22  The potential to transform the structure and behaviour of tangible digital materials was 

discussed by Hiroshi Ishii on behalf of his group‘s Radical Atoms project at the CHI 2009 panel on 

April 9th 2009 in Boston (Ishii, 2009). 
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9.3.6 Summary 

The ability to spatially adapt objects may help children to act on and interpret 

representations, thereby providing a means of developing their ideas about how numbers 

can be decomposed into smaller numbers. However, the form of interface may 

significantly affect the strategies children use, and hence their ideas about numbers. It 

was found, for example, that a graphical interface fostered the use of a more efficient 

strategy in this research by constraining children‘s actions. The immediate findings from 

the studies therefore suggest that a graphical, rather than tangible, interface may be more 

effective in supporting children in this particular problem. In other words, in response to 

the main research question, the findings from the studies did not identify any clear 

benefits for physically manipulating representation for supporting children‘s 

understanding of additive composition. However, in order to evaluate more fully the 

potential for Tangibles to support children‘s understanding of additive composition, it is 

important to re-examine the task used in this research and the context in which it was 

presented in light of the findings.  

 

9.4 The partitioning task 

The aim of the partitioning task was to create a context in which children could solve a 

problem using different representations so that differences in their strategies could be 

attributed to unique representational properties. However, in order to create these 

conditions, it is important to acknowledge that the research created a unique context in 

which the representational medium was simply one factor. Significantly, as highlighted by 

Nilholm and Säljö (1996, p.342), interpretations of the findings do make certain 
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assumptions in terms of how activity in this context might generalise to others as well as 

whether certain activity is as reflective of cognitive factors as predicted.  

 It is therefore the aim in this section to examine differences in children‘s strategies 

in the partitioning task in order to try to understand how their interpretation of the 

problem context may have affected their problem solving behaviour and their use of the 

different materials presented. This critical examination of the partitioning task is not 

intended to undermine the findings – rather, it is intended to provide another viewpoint 

from which to evaluate the potential for Tangibles to support children‘s understanding of 

additive composition in an educational setting. In order to break down the partitioning 

task, differences in the types of children‘s responses will be examined. 

 

9.4.1 No solution – single solution 

It was previously argued that children would need at least an initial understanding of 

additive composition to identify a single partitioning solution. A story context was 

presented in an attempt to ensure that any lack of answers did not stem simply from a 

misunderstanding of what was being asked. In this respect, the problem context seemed 

successful – nearly all children in the research identified at least one correct solution. 

Unfortunately, the studies provide limited information as to what age children have 

insufficient understanding to make sense of the task. Whilst Studies 2 and 4 examined 

children‘s problem solving without materials, the children in Study 2 were older (Year 1) 

and there were only a few young children in the small Study 4 (in which the No Materials 

condition was always presented first). It is not therefore possible to identify from this 

research the age at which children have difficulties in identifying even a single solution 

and, importantly, whether materials can help them.  
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 The supportive role of physical materials demonstrated in these studies suggests 

that they would help children who could not solve the partitioning problem without any 

external materials. In comparison to other representations such as paper, physical 

materials are more limited in what changes can be made - and that is to change their 

spatial configuration. With sufficient prompts, as given in this study, children may 

understand that the requirement is to partition objects into two groups. They may then 

need prompts in enumerating these groups – as was done in the research. By allowing a 

problem to be tackled in two stages however (creating a configuration, and then 

enumerating that configuration) the use of physical materials may provide a means for 

younger children to identify a solution that they cannot identify without materials.  

 It is possible that virtual representations are equally supportive for younger 

children. Study 6 showed that young children are quite able to understand how to 

partition virtual objects into groups. Furthermore, whilst it might be argued that physical 

materials are more accessible for younger children (e.g., requiring a lower degree of fine 

motor control), it might also be possible that their prior experience with physical 

materials such as a cubes in a non numerical context is distracting. Indeed the difficulties 

children experience with the dual representation of objects has been raised by Uttal et al 

(1997). In contrast, young children may be less distracted and more focused on the task 

when asked to partition novel digital materials in the context of numerical problem 

solving. 

 

9.4.2 Single - multiple solutions 

What seemed to separate the younger and older children in this research was that the 

youngest age group (4-5 years) tended to give just a single solution. As all children had 

been given a demonstration with multiple solutions, and had been given clear 
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instructions to ―find all the different ways”, it might be argued that this marks a 

developmental step – an awareness that numbers can be partitioned in more than one 

way. However, there is a danger that this difference in ability reflects other factors such 

as children‘s experiences in problems of this type, or confusion of the task demands. 

Indeed, it was shown how the simple prompt ―is that all the ways or can you think of any more 

ways?” had a clear effect on encouraging multiple solutions. Nevertheless, it is still 

interesting to note that older children identified multiple solutions unprompted. An 

important question therefore is whether particular representations might be able to foster 

this behaviour.  

 It was not possible from the studies to examine whether external representations 

help children identify multiple solutions more than no materials. The children in Study 2 

who did not use materials were all able to identify more than a single solution. It is 

possible, however, that children‘s understanding is supported by physical materials - their 

prior knowledge of how physical objects can be grouped in multiple ways may help them 

understand how numbers can be partitioned in multiple ways (as argued by L. B. Resnick, 

1992b). Nevertheless, findings from this research showed that younger children were not 

more likely to identify multiple solutions using physical materials than pictorial or virtual. 

The greatest factor affecting whether children identified multiple answers was not the 

type of material so much as prompts by the interviewer, such as “is that all the ways, or can 

you think of any more ways?” 

 

9.4.3 First solution  

In all the studies conducted, it was clear that children had a tendency to begin by 

identifying a solution that partitioned the whole into two equal groups or as close to this 

as possible. This was true for children who identified multiple solutions as well as for 
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those who identified only a single solution, suggesting therefore that this was not simply 

due to misunderstanding the question. This finding is made more interesting by the fact 

that this initial strategy had not been demonstrated by the interviewer, and also that it is 

arguably not the most efficient strategy for the problem.  

 It appeared that the external representation fostered the use of this strategy. 

Children identified significantly more Equal partitioning solutions in Studies 2 and 4 

using materials than no materials, although there were no differences between physical, 

pictorial and virtual material in the other studies. In Study 5 there were signs that 

constraining children‘s actions increased the number of Equal partitioning solutions 

(based on observations that children would place objects one by one in different groups). 

On the other hand Study 6 did not support this – children did not identify more Equal 

partitioning solutions using the graphical interface (albeit that this might have been partly 

explained by the small quantities used).  

 The initial Equal partitioning strategy is not perhaps surprising - it is certainly the 

most logical way to partition objects in a context such as placing fruit in two bags, 

although the change to cows in fields did not seem to make any difference. It is possible 

therefore that partitioning equally marks an initial step in children‘s understanding of 

how numbers are partitioned. Interestingly, in Study 6, the older children actually 

demonstrated a decrease in this initial strategy in the second problem – possible learning 

effects.  

 This studies conducted did not attempt to address the ways in which digital 

augmentation of a representation might encourage children to begin partitioning 

differently. It was suggested, however, that the colour prompt in Study 7 might affect 

strategies. It was anticipated that a visual prompt would encourage children to identify 

each initial incremental change to the representation but this was not found to be the 
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case. Children‘s motivation to partition objects equally was highlighted in many 

observations of their taking time to place the last ‗odd‘ object. Interestingly, the colour 

representation in Study 7 visually emphasised when groups were or were not equal 

(Figure 9.2), raising the possibility that these materials could be used to help children 

explore what amounts can and cannot be partitioned into two equal amounts (an 

important learning point for younger children). 

 

     

Figure 9.2: Partitioning equally: a) using cubes b) & c) emphasised with colour prompts 

 

9.4.4 Relating solutions 

9.4.4.1 Compensation 

When identifying multiple solutions, older children were more likely to relate consecutive 

solutions. The compensation strategy has been described as the most efficient, and it was 

found that constraining manipulation using the graphical interface increased the use of 

this strategy. The concept of compensation is summarised as follows: if P1 + P2 = W, then 

(P1 + a) + (P2 - a) = W (Irwin, 1996). For the compensation strategy coded in this research, 

a = 1, which allows children to calculate one solution from the previous. However, 

although children may not be able to quantify the change in amounts as easily, the 

concept of compensation is still embodied in changes of groups of more than one. In fact, it 

might be argued that certain changes can make this concept more salient: for example if 
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children separate the whole into two parts and then recompose the whole before creating 

a new grouping, they will have more visual information about the relationship between 

different parts and the unchanged whole. This raises an important theoretical argument 

in this research: although constraining manipulation may foster a particular strategy for identifying new 

parts that relate to the previous, more unconstrained action may still help children explore the relationship 

between different parts and the whole. Clearly, this assertion is speculative, although it does 

reflect Nunes and Bryant (1996) suggestion that decomposing and recomposing physical 

objects may help develop children‘s understanding of additive composition. Arguably, 

this numerical relationship could be further emphasised by the use of visual prompts: 

children could see how they can create different parts (i.e. different colours) when 

partitioning the whole, but always the same whole (i.e. same colour) when objects are 

recomposed as illustrated in Figure 9.3. Again this is speculation, and further research 

would be needed to investigate what impact, if any, such visual information would have. 

 

      

Figure 9.3: Moving multiple objects allows the whole to be decomposed and recomposed in single actions 

(9 into 4 & 5, and then into 7 & 2) 

 

9.4.4.2 Commutativity 

The most efficient procedure for solving the partitioning task was the compensation 

strategy, although the commutative strategy also required children to identify one solution 

from the previous. In Study 6, when 75 children used the graphical interface, only 7 

commutative solutions were identified (compared with 28 in the Physical condition); this 
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might perhaps have been expected in the light of Study 4, which showed that this 

strategy reflected the way in which children moved multiple objects with both hands. The 

commutative strategy embodies the important concept of how parts can be reversed 

without change to the whole and the research raises the possibility that this concept 

could be supported by the unconstrained manipulation allowed in the Physical condition. 

Although this strategy may be limited in this problem (it would need to be used alongside 

another strategy to identify all solutions), it does highlight how the unconstrained actions 

in the Physical condition led to greater variation in the ways children related one solution 

to another. Importantly, although this strategy may not be the most efficient in this 

problem, it is possible that this will support ideas for other problems. Indeed, the teacher 

may see it as a learning opportunity to discuss this aspect of numbers: that they can be 

added in any order.  

 Tangible designs may build upon this affordance. It may even be possible to use 

digital effects to highlight the concept – for example, through perceptual effects. 

Although not significant, there were more commutative solutions in the prompts condition 

in Study 7 even though manipulation was constrained. It is possible that when moving 

objects one by one, children‘s attention was drawn to a commutative configuration that 

had the same colours, reversed (e.g., Figure 9.4). By using the knowledge that the same 

colour meant the same quantity, children may be able to reflect on how the quantities 

had reversed without the need to count each part. It would be interesting to know 

whether this perceptual effect would have encouraged the use of the commutative strategy 

if the representation had allowed manipulation of multiple objects.  
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Figure 9.4: Colour prompt highlighting commutative solutions 

 

9.4.5 Actions – Gestures 

In Chapter 1, it was suggested that one key benefit of using physical objects is that they 

allow actions with objects that might become embodied in the concepts being learnt. 

Although, the research did not focus on gesture, it is important to be aware of the way in 

which their use can have an effect on children‘s actions with different interfaces. 

 Constraining actions in the graphical condition meant that objects were 

manipulated by small indirect actions using the mouse with one hand. In contrast, in the 

Physical condition, children were able to make unconstrained actions using both hands. 

By accommodating a role for sensorimotoric encoding in working memory (Wilson, 

2001), it is possible that these physical actions become encoded in children‘s developing 

ideas. In other words, children‘s concepts of additive composition may become 

embodied in their actions with objects in the partitioning task. Such encoding may then 

be observable through gestures used when expressing thinking at a later stage. Roth 

(2002), for example, demonstrated how students developed certain iconic gestures that 

reflected actions with physical materials when learning about electrostatics. Edwards 

(2005) has also shown how young adults‘ concepts of fractions appeared to embody 

previous physical actions with physical objects (e.g., splitting objects into two groups).  

 Clearly, as well as helping individuals externalise their thinking, gestures play an 

important role in helping communication, and have been shown to help teachers 
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communicate ideas (Valenzeno et al., 2003) as well as provide a way to assess children‘s 

understanding (Kelly et al., 2002). It is important therefore to consider whether certain 

gestures relating to actions with objects might help communication between teacher and 

child. In this research, care was taken not to explain the problem using gestures in case 

this led to an unfair advantage – with children using the gestures to infer how to move 

physical objects, or feeling encouraged towards particular strategies. When the 

interviewer demonstrated the change of 1 & 2 to 2 & 1 in the example problem, only one 

object was moved. Had the two groups just been swapped over, the interviewer would 

effectively have been modelling a commutative strategy. Seeing this gesture may have 

significantly affected children‘s later performance. 

 The importance of gestures might be greater in the classroom context – a teacher 

may wish to communicate ideas to children from a distance without objects to hand, or 

monitor children‘s actions from various locations in the classroom. This section has 

therefore sought to highlight the way in which both the children‘s and interviewer‘s 

actions with physical objects in this task may have important implications for how the 

materials used can support learning (particularly in a classroom context). In this light, it is 

important to note how the physical materials (hence Tangibles) may offer a key 

advantage over other representations such as paper and virtual, where actions are less 

pronounced.  

 

9.4.6 Summary 

It was previously mentioned that, despite physical objects helping children identify 

partitioning solutions and even fostering the use of strategies that relate solutions, 

constraining actions using a graphical interface encouraged the use of a more efficient 

compensation strategy. This section attempted to describe children‘s developing strategies in 
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more detail within the particular context of the research task, and in the process provide 

a more thorough evaluation of the potential for Tangibles to support children‘s 

understanding of additive composition.  

 One point raised concerned the importance of considering the particular context 

in which the representations were compared in the studies. As Ball (1992, p.47) 

emphasises: ―understanding does not travel through the fingers tips and up the arm‖. In the 

partitioning task, the interviewer provided numerous prompts to ensure children 

understood the nature of the problem and to remind them to provide numerical 

solutions. Prompts were even given in some studies for children to identify multiple 

solutions. Clearly, the teacher could provide similar prompts when initially presenting a 

task in class, although it might be difficult to ensure having every child‘s full attention in 

a classroom situation. Effective Tangibles may however be used as a means of giving 

prompts – i.e. as a neutral way of encouraging children to enumerate solutions or of 

providing feedback. 

 A key way in which Tangibles might help is by drawing attention to certain 

numerical changes by using perceptual prompts. This was demonstrated by the digital 

colour prompts used in Study 7, although this effect was simply designed to draw 

children‘s attention to representational changes. It is however possible that providing a 

consistent effect for particular numbers, in this case colour, has unforeseen detrimental 

effects such as removing the need for children to develop calculation strategies.  

 This section has highlighted the way in which physical objects provide a means for 

children to quickly explore different relationships between parts and wholes, and how 

digital augmentation may help draw attention to certain key numerical relations. One key 

theme to emerge is that constraining manipulation to incremental changes may have 

important implications for developing ideas. With respect to PDL, if actions lead to ideas, 
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it might be anticipated that changes to actions may result in changes to the nature of 

ideas developed. Incremental changes may encourage children to enumerate changes 

when parts change by only one. This may explain how children identified incremental 

solutions when their actions were constrained in the graphical condition. In contrast, by 

moving greater numbers of objects simultaneously, children may benefit from exploring 

certain relationships between parts and whole, such as how parts can be swapped without 

changes to the whole, or how the whole can be decomposed and recomposed in different 

ways. By moving multiple objects children may be less likely to enumerate changes, but 

have instead the opportunity to notice important numerical relations between parts and 

whole.  

 The suggestion that that moving multiple objects may support understanding of 

different part-whole relationships clearly needs empirical support. However, the studies 

reported have presented findings demonstrating that moving multiple objects does foster 

an alternative strategy embodying a key numerical principle (commutativity). Different 

tasks may be designed that allow children to explore different part-whole concepts by 

moving multiple objects. 

 

9.4.6.1 Efficiency v Innovation 

The previous section highlights a key pedagogical issue. The graphical interface increased 

the use of the compensation strategy by requiring children to move objects incrementally. In 

contrast, if children identified a compensation solution in the Physical condition, they 

constrained their own actions. This means that the physical objects allowed children to 

discover for themselves the benefits of constraining their actions. This was clearly 

demonstrated by one child in Study 4, who began by moving multiple objects but then 

demonstrated a clear change of strategy by moving objects one by one. It was also shown 
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by children changing strategy from moving objects off the laminate object to moving 

objects from field to field in Study 5.  

 This trade off between constraining actions to foster an efficient strategy or 

allowing more unconstrained action to foster more exploratory behaviour can be 

compared to the work of Schwartz, Bransford and Sears (2005) who describe a trade off 

between efficiency and innovation. It is argued that the benefits of fostering innovation 

are best revealed in tests of transfer as the learner has had an opportunity to practise 

identifying what is and what is not efficient to solve a certain problem. It may be possible 

therefore, that the Physical condition supported innovation by allowing children a greater 

range of actions from which to decide which were the most efficient. In this case, the 

learning benefits may be better revealed through transfer tasks, although further 

developmental research would need to test this argument.  

 

9.5 Limitations of this research 

Many of the limitations of this research have been raised during this discussion. These 

are briefly summarised under the headings of design limitations and theoretical 

limitations. 

 

9.5.1 Design limitations 

This research has focused mainly on children aged around 5 to 8, and demonstrated 

children‘s developing ability from identifying a single solution to identifying all solutions 

using efficient strategies. Unfortunately, although there were several children who did not 

identify a single solution, and some children who identified all solutions in the most 
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efficient way, there were not enough data to analyse the impact of different 

representations at these stages. Consequently, the findings are limited in the extent to 

which they can establish the ages at which there is greatest potential for different 

materials to support young children‘s incipient understanding or ‗expert‘ behaviour. 

 Study 1 showed that it did not really help to just give children materials without a 

good understanding of how they could adapt them. Following Study 1 therefore, it was 

decided to give children a small actual demonstration before the problem solving began. 

A demonstration problem was designed using three objects to help children‘s 

understanding. The demonstration was short however, and although children were 

provided with a story context to support their understanding, the study design did require 

them to begin problem solving with a novel problem that was different from the one 

they had been learning in class. This point is particularly relevant to Study 3 which 

examined children‘s use of ‗representational trace‘, since although children had been 

provided with the demonstration, no explicit instruction had been given on how the trace 

could be used beneficially. It is possible that providing this prior instruction might have 

significantly affected the use and hence advantage of this representational property.  

 In addition to the short demonstration, most studies in the research adopted a 

within subjects design in which children had only a single problem to solve with a certain 

representation. This did not give children an opportunity to familiarise themselves with 

the materials beforehand, and it is possible that this might have had the effect of 

minimising any differences between representational effects in the studies undertaken. 

Although no improvements in performance were found in Study 3 where children used 

the same representation on three consecutive problems, it might be argued that this still 

offered only limited opportunity for children‘s problem solving to develop according to 

each representation.  
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 It is also possible that the demonstration problem itself influenced children‘s 

strategies, thereby disguising the effect of the materials. In the demonstration, four 

solutions were shown: (with the fixed order 3 & 0, 1 & 2, 2 & 1 and 0 & 3). This 

provided three codable solutions (2 other solutions and 1 compensation23 solution), and it is 

possible that demonstrating these solutions in a different order (e.g., 3 & 0, 2 & 1, 1 & 2 

and 0 & 3) might have affected the strategies subsequently used. This might particularly 

have been the case if the demonstration had been accompanied by clear gestures such as 

swapping over objects, as it has been shown that a teacher‘s gestures can help children‘s 

understanding (Valenzeno et al., 2003). However, it is interesting to note that although 

each demonstration began with a particular solution (all in one part and none in the 

other), this did not seem to detract from children‘s tendency to begin by Equal 

partitioning.  

 The demonstration was provided as a prompt to highlight that this problem 

required multiple solutions and which types of solution were considered valid (i.e. that 

commutative solutions were unique, and that ‗none‘ was a valid amount in one part). This 

prompt remained constant throughout the studies, although other prompts were given 

that did change between studies. For example, it was decided to verbally prompt children 

by asking “is that all the ways or are there any more ways?” if children paused for ten seconds. 

This prompt was different in the sixth study: “are you still thinking?” Although the same 

prompts were used for all conditions within each study, the differences make 

                                                      

 

23  It was decided to code such changes as compensation although it also is a reverse of parts 

(commutative) 
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comparisons between studies difficult and, significantly, highlight the strength of other 

factors in influencing children‘s partitioning behaviour. 

 

9.5.2 Theoretical arguments 

9.5.2.1 Context  

The importance of considering the context in which representations were examined in 

the studies was previously discussed. Although the research was carried out in school and 

centred on a curriculum relevant task, there are clear differences between the research 

and an everyday classroom context (e.g., one to one attention, absence of peers, etc.). 

Whilst the aim of this thesis was to examine differences between representations rather 

than how well children‘s performance might generalise to the classroom, it is important 

to consider interactional effects – how the particular research context may have benefited 

children‘s performance with one type of representation. 

 It is likely that children‘s prior experiences with materials influenced the way they 

used them in the sessions. Whilst children had used the cubes in class, they had not seen 

or used the specific pictorial or virtual materials. This may have created an unfair 

advantage for physical materials, although it is equally possible that their prior use acted 

as a deterrent. For example, it was shown in Study 1 that children used less efficient 

procedures with objects when adding, whilst several even made comments suggesting 

that they saw the need to use objects at all as a sign of poor numerical ability: “I don‟t need 

cubes any more”. Prior activity with materials may also have affected their strategies - a 

possible explanation put forward for children‘s inclination to partition objects equally. 

 It is also important to consider how the nature of the task may have minimized 

the possible advantages of the other representations. After Study 1 it was decided to give 
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children the total number of objects at outset. The interviewer would therefore count out 

and present the materials to each child in each problem. In contrast, in the Virtual 

condition, it was possible to create a program showing the total initial number. Although 

there are considerations about how easily children can access and open certain files, this 

does highlight an advantage of these materials in this task. A similar argument could be 

made for pictorial materials, where teachers are able to provide the total by simply 

photocopying and handing out sheets.  

 Another affordance of paper discussed in Study 3 was that it provides a trace of 

solutions. Although this did not seem to influence problem solving, it did provide a 

record of work that the teacher could use to assess progress. In the task, the interviewer 

recorded solutions; this not only provided a record but also made it clear to children that 

they were required to provide a numerical solution. In the classroom, the teacher is able 

to communicate the task and task demands, but realistically children will be given the task 

to solve amongst peers with far less adult supervision. A pictorial representation thereby 

provides a simple way for children to record their own solutions. Tangible designs 

therefore need to take account of these (and other) aspects that may play a greater role 

when activities take place in the classroom (or home).  

 

9.5.2.2 Problem solving and learning 

A key assumption made in these studies is that differences in the ways children solve 

problems with materials will help develop their ideas and strategies to solve problems 

without them. Support for this argument came from observations that children seemed 

to be abstracting strategies – manipulating representations but applying calculations 

without counting the materials. However, the research did not carry out pre- and post-
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tests to examine learning effects, so that it is not clear what gains may or may not have 

been made.  

 Some of the points made in this discussion suggest that the benefits of physical 

materials may have been more clearly demonstrated by extending the design of the 

studies to examine learning effects. It was suggested that tactile information may have 

helped reduce the cognitive demands in the task thereby freeing up more working 

memory for children to learn. It is also possible that motoric coding could have helped 

children recall strategies at a later stage (e.g., children may be able to recall a simple 

gesture of moving objects one at a time using one finger). Importantly, though, the 

process of constraining their own actions and identifying which actions are most efficient 

may support children‘s learning in a way that could be demonstrated through transfer 

tasks (Schwartz et al., 2005). Clearly, these proposals are speculative; they are mainly 

intended to acknowledge that the benefits of physical materials may not have been best 

evaluated through short one-off problem sessions.  

 

9.5.3 Summary 

Although this research has contributed to our understanding of the potential for 

Tangibles to support children‘s learning, it is important to take into account some of the 

limitations when using the findings to generalise on the evaluation of Tangibles in a 

different context. This research has highlighted how children‘s actions with physical 

objects may foster different strategies that relate solutions when exploring how numbers 

are composed. However, it is important to examine how these strategies develop over 

time and how they affect children‘s capabilities in the absence of materials. Importantly, 

in evaluating the potential for Tangibles to support children‘s understanding of additive 
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composition it is necessary to consider how the materials will be implemented in an 

educational context that introduces a variety of different contextual factors. 

 

9.6 Implications 

This research has brought together work from three main research areas: children‘s 

numerical development, external representations and digital manipulatives. This section 

of the discussion looks at the contribution that this research has for these different areas.  

 

9.6.1 Numerical development 

One implication of this research concerns the tendency children displayed toward 

partitioning into two equal groups. It is possible that this tendency marks the emergence 

of children‘s understanding of how numbers are made up of smaller numbers, and may 

influence later learning. This may have implications for teaching – it may, for example, be 

possible to frame difficult part-whole questions around equal partitioning. 

 Another question highlighted in the research was whether younger children‘s 

tendency to identify just a single solution reflected conceptual development, prior 

experience, or possibly an interaction of both. It is likely that children‘s prior maths 

experience may reinforce the notion of there being just a single solution, particularly as 

‗how many?‘ questions tend to require just one solution. It would be interesting to examine 

the impact of interventions encouraging children to identify multiple solutions on their 

concepts of how numbers can be broken down in different ways (additive composition); 

indeed this has proven effective with older children (Ainsworth et al., 1998).  
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9.6.1.1 Assessment of additive composition  

One key contribution this research may have for other research into children‘s numerical 

development is the task used throughout the studies. The task is adapted from Jones et al 

(1996) assessing children‘s skills for multidigit understanding, although the research has 

presented an opportunity to quantify not only the number of correct solutions but also 

the key strategies used. Although the task focuses on the composition of numbers, it has 

not previously been discussed within the literature on additive composition. Previously 

two main tasks have been described as assessing children‘s understanding of additive 

composition: Nunes‘ shop task (in Nunes & Bryant, 1996) and the missing addend 

addition problem. It is likely that the current task is comparatively demanding as children 

are effectively being asked to identify repeated combinations of parts from a given whole. 

Children‘s understanding of additive composition has also been related to more difficult 

tasks such as recomposing an addition problem: e.g., recomposing 9 + 4 to 10 + 3, or 8 

+ 7 to 7 + 7 + 1 (Canobi et al., 2002). It would be interesting to compare children‘s 

performances in the partitioning task used in this research with scores on other tasks 

related to the concept of additive composition. It may even be found that the partitioning 

task provides a valuable assessment tool by being able to measure different stages of 

children‘s development from their initial ability to identify just a single solution through 

to a full awareness of being able to successfully identify all solutions using an efficient 

procedure.  
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9.6.2 External representations 

9.6.2.1 Constructionism 

Chapter 1 highlighted the work of Seymour Papert as highly relevant to the theoretical 

approach adopted in this thesis. According to Papert, children‘s learning can be 

supported by constructing public entities: allowing them to externalise, share and reflect 

on their own thinking. In the partitioning tasks, children were able to externalise their 

thinking using cubes; however, their constructions were greatly constrained by the task 

demands presented by the interviewer. Nevertheless, it has been argued that children‘s 

actions were less constrained using physical objects than virtual materials. In this way, 

children were able to reflect on their actions on the representation and change their 

strategies accordingly. Unfortunately, in the same way that the studies did not assess how 

this supported learning or transfer to other tasks, it is not possible to determine whether 

externalising thinking using the cubes helped children develop any ideas beyond the 

specific task (e.g., planning skills) as suggested by Papert (1980). 

 This discussion has also emphasised the role of the interviewer in scaffolding 

children‘s understanding and behaviour in the task. In doing so, the research re-iterates 

the conclusions of Sutherland (1993) that is it important to consider the interactions 

between the learner and teacher within a Constructionist paradigm.  

 

9.6.2.2 Physically Distributed Learning 

When children manipulated objects in this research, they created new spatial 

configurations. The research showed how they would create these new configurations 

and then interpret some (but not all) of them as new solutions. This finding - that actions 

on the representation supported problem solving, echoes previous literature describing 
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the interactive nature of actions and cognition in problem solving (Anzai & Simon, 1979; 

D Kirsh, 1995; H. Neth & Muller, 2008). However, the task presented was one in which 

the children had incipient understanding and the advantages of using physical materials 

indicated possible benefits for learning in this domain. By showing how children‘s actions 

with physical materials may help them develop new ideas, this research provides support 

for PDL. Indeed, the findings support predictions made by Martin and Schwartz (2005) 

that children will make more adaptations and identify more solutions using physical 

materials than pictorial.  

 Rather than just show that children identified more solutions using physical 

materials, this research has demonstrated how these materials may actually encourage the 

use of strategies that relate consecutive solutions. These strategies can be applied in the 

absence of materials, and observations suggested that some children were indeed 

beginning to apply these strategies mentally whilst manipulating the materials. There were 

also several children who demonstrated important changes in strategy when using 

materials despite the limited opportunity for learning in the short sessions. For example, 

several children constrained their own actions, identifying incremental solutions by 

changing from moving multiple objects each time to moving them one by one. The 

research thereby provides strong support for the potential for actions on the 

representation to lead to new ideas. 

 If actions can lead to new ideas, as proposed by PDL, it might be argued that 

changing the actions that can be made on a representation might influence the nature of 

the ideas developed. The design of this research might indeed be interpreted as testing 

and supporting this suggestion. By changing the way in which children could manipulate 

objects, it was shown that the strategies they used were significantly different. These 

findings highlight the potential differences in learning that might occur when acting on 

virtual rather than physical representations – a difference not discussed in Martin‘s (2007) 
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more recent work which has applied the arguments of PDL to the use of virtual 

manipulatives. 

 Whilst it was shown in this research that physical objects could help children 

partition, the findings from the first study showed that manipulatives may not always be 

beneficial; indeed, children used less developed strategies for addition problems when 

using materials than when using their fingers. Although Martin and Schwartz do propose 

that PDL may only occur when children have incipient domain knowledge, it is still not 

clear when the advantages of manipulating physical objects can be predicted. This 

research provides important points for predicting when PDL may occur.  

 Firstly, it is important that the initial demands of using the materials are not too 

high. In this task it was important to provide children with the total number of objects to 

partition. In Martin and Schwartz‘s (2005) reported studies, children were also given the 

initial number to partition, and it might be expected that the benefits would have been 

more limited had this not been the case. Secondly, physical materials have properties that 

may help offload task demands, such as lining up objects to help keep track when 

counting as demonstrated in Study 1. This may explain why Martin et al (2007) found 

that children were able to solve more addition problems using physical materials than 

pictorial materials - the children were younger than those in Study 1 and might well not 

have been able to use more developed strategies such as count on. A third aspect for 

predicting when PDL may occur reflects a consideration of what visual (or tactile) 

properties may encourage children to create configurations that can be interpreted as 

solutions. This research provides one possibility: visual symmetry. As discussed, there 

was a strong tendency for children to begin by partitioning objects into equal parts, and it 

is possible that this tendency to partition into symmetrical groups also affected the way 

children partitioned objects in the fraction tasks in Martin‘s studies.  
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 Mathematics has a strong relationship with geometry. It may well therefore be 

possible to identify other activities where manipulating objects might help children create 

configurations that can be interpreted numerically to solve a particular problem. 

Examples might include arranging rods of different lengths, or sorting certain 

manipulatives into odds and evens.  

 The way objects are manipulated will largely depend on the context of the 

numerical activity; but the argument being made is in this section is that, when 

considering the circumstances in which actions may lead to ideas, it is important to 

consider what properties of materials may foster certain actions. Different properties may 

foster different actions which may lead to the development of different ideas. 

 

9.6.2.3 Tactile information 

Tactile information was identified as a key affordance of physical representations and 

frequent observations were made throughout the studies of children touching objects to 

support cognition; from tagging objects to count or touching objects to remember to 

move them next. However, it was not clear how much this supported problem solving, 

and indeed children did not seem disadvantaged in the Virtual condition where objects 

could not be touched. Interestingly, in the Virtual condition, children would often point 

the cursor to objects when counting. This indicates that the some of the cognitive 

benefits of tagging an object with fingers can be extended to tagging an onscreen object 

using the mouse pointer. However, it is probable that manipulating the cursor accurately 

using a mouse requires a greater degree of fine motor control than can be expected at a 

young age; importantly, it also requires greater visual attention as, unlike using fingers, no 

tactile feedback is provided for the position of cursor. The small numbers of objects to 

be counted in the numerical task may have rendered the benefits of tactile feedback 
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negligible, but it is possible that they would become significant in a more demanding task 

(counting larger arrays for example). 

 

9.6.2.4 Embodied cognition 

Physical objects can be manipulated in space which can generate actions that can be 

emulated as gestures. For example, various actions observed in this research such as 

taking away, adding, partitioning or swapping over groups of objects can all be enacted 

without materials through gestures. This may have implications, not only for 

communicating these actions, but also for how the concepts refelcted in these actions 

could become encoded in memory. Therefore this task presents a possible platform in 

which to examine the role of embodiment in young children‘s developing concepts. If, 

for example, children were observed to develop gestures (similar to the actions observed 

in the studies) to communicate or support thinking, this would provide strong evidence 

for the embodiment literature and highlight the importance of physical actions in learning. 

 

9.6.3 Manipulative debate 

An important goal for education is developing our understanding of when manipulatives 

support learning (Ginsburg & Golbeck, 2004). The previous sections have attempted to 

expand on PDL by describing how particular representational properties may affect the 

actions taken, and how this in turn may lead to differences in the ideas developed. Key to 

all of this, however, is how children are able to interpret their actions with the 

representations numerically. 
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9.6.3.1 Linking representations 

A key criticism of manipulatives is their dual representation: they represent both numbers 

and objects themselves (see Uttal et al., 1997). Indeed, in a relatively recent summary of 

the ‗manipulatives debate‘ (McNeil & Jarvin, 2007), the main conclusion for educators 

was the importance of using materials that do not distract children from interpreting the 

objects as representations of number: for example, not to use objects from unrelated 

activities. The authors highlighted the importance of bridging the gap between the 

potential for physical manipulatives to tap into children‘s intuitive knowledge and the 

formal language of mathematics they need to develop:  

 “Assuming manipulative do, indeed, foster children‟s understanding, the use of manipulatives 

may simply result in a greater divide between intuitive and formal knowledge. Thus one of the 

primary goals of teachers should be to develop lessons that help students make connections between 

intuitive and formal knowledge” (p. 315) 

 

 In the study sessions of this research, children did use physical materials according 

to the demands of the numerical problem. However, prompts were often needed by the 

interviewer for children to enumerate their solutions. Children were usually then able to 

continue independently; although it is not clear whether younger children who identified 

only one solution would have benefited from more support. Unfortunately, there is rarely 

enough time in an actual classroom to verbally encourage children to enumerate solutions. 

Instead, the teacher needs to provide a means for children to interpret representations 

numerically – often achieved using other materials such as paper. Indeed, there was an 

opportunity during the period of this research to observe a class at a school in Australia, 

and it was interesting to note that the teacher there used physical materials (seeds) to 

explore ways to partition ten and a piece of paper for children to record their solutions. 
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One key advantage of pictorial materials is that they provide a means of ensuring that 

children quantify solutions – and a record for the teacher to examine their solutions. 

 

   

Figure 9.5: Manipulating objects and recording on paper 

 

  In summary, although children may use manipulatives according to the numerical 

context of a problem, it is important to consider how these actions are interpreted 

numerically. In designing effective Tangibles, it is important to consider what will help 

children to interpret their actions without compromising any of the advantages of 

physical interaction. The virtual design used in Study 7 raised the possibility of using 

colour as a bridging metaphor to encourage children to reflect on their actions and 

interpret the representation numerically. Clearly, this proposal would need empirical 

support. 

 

9.6.3.2 Implications for Teachers 

A key limitation identified by this research related to differences between the study 

context and the classroom. Finding a way for children to interpret their actions 

numerically when the teacher cannot attend is difficult. Teachers may understandably be 
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keen for children to learn efficient procedures (particularly if these are described in the 

curriculum and will help with certain tests), and they may need to focus children‘s 

attention on learning the most efficient ways of identifying different partitioning 

solutions. This suggestion is supported by a variety of teaching resources available that 

structure activities such as those shown in Figure 9.6.  

 

       

Figure 9.6: Teaching resources used to support children‟s learning of number combinations 

  

 A key theme raised in this thesis concerns whether children will benefit from 

finding out for themselves how to identify solutions in the most efficient way (as 

opposed to being told). This theme is iterated by Thompson (1994) who argues that the 

key question that should drive the use of manipulatives is not what we want children to 

do, but what we want them to understand. Indeed, an important finding of this research 

for teachers is that providing children with manipulatives may not just allow them to 

explore different strategies for identifying ways to partition numbers, but may actually 

help them discover ways to relate solutions. Although children may not identify all 

solutions, or indeed may use a variety of strategies, the task used in this research does 

offer an opportunity for class discussion. Whilst further research would be needed to 

investigate the extent to which children‘s learning is helped by the use of materials, just 
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providing them with the experience of relating solutions may help them learn ways to 

partition numbers such as ten – which in itself is a key curriculum objective. Indeed, 

Baroody (2006) discusses the importance of helping children understand how parts relate 

in order to develop mastery of number combinations. This research has also shown that, 

if the goal is to foster the use of an efficient procedure for identifying different number 

combinations, then constraining actions using a graphical interface may be most effective. 

 

9.6.4 Tangibles to support numerical development 

In discussing the potential for Tangibles to support children‘s understanding of additive 

composition, many points were raised that apply to wider arguments about the use of 

Tangibles to support children‘s numerical ability. In particular, it was discussed how the 

representation used in the final study exemplified the way in which physical 

representations might be augmented to draw children‘s attention to certain numerical 

relationships (such as how objects can be partitioned equally or added in any order).  

 The digital effects used in the material in Study 7 were designed simply to 

highlight changes in quantity. However, by using colours to represent unique numbers 

the materials also highlighted how Tangibles might be designed to embody certain 

numerical concepts that are not possible with analogue materials. Physical Cuisenaire 

rods, for example, use colour and length to represent different numbers, but 

consequently each rod cannot be broken down into smaller rods. In contrast, the Unifix 

cubes used in the study can be broken down but cannot change perceptual features such 

as colour to represent their numerosity. Arguably, the design in Study 7 exemplifies how 

a tangible design may be able to capture both these concepts – augmented cubes that use 

colour to represent number that can also be broken down (changing colour 

automatically).   



340 

 

 

9.7 Future research 

During this discussion, many references have been made to the need for further research. 

These are summarised in this final section, and, reflecting the different areas brought 

together in this research, are discussed under three headings: numerical development, 

external representations and digital manipulatives.  

 

9.7.1 Numerical development 

Further research might examine the effects of using physical materials for young children 

who cannot identify a partitioning solution without materials. It would be interesting to 

see if materials help develop children‘s incipient understanding of a problem, as well as to 

examine what role materials have in children‘s tendency to divide objects equally, 

especially if they have not had school experience in a related activity. Furthermore, as 

young children have less developed fine motor control skills and less experience with 

graphical interfaces, further research might also examine whether the benefits of physical 

manipulation are more effective at younger ages. 

 Since this research compared children‘s approaches to different representation 

problems in short problem solving sessions, it was not possible to examine changes over 

time. Further research may establish whether children are able to develop their strategies 

using different materials, and possibly throw more light on whether they can abstract 

strategies, a possibility raised in Chapter 5 where video observations showed children 

manipulating objects physically at the same time as they were calculating parts mentally. 
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This would offer a chance to examine whether the use of physical materials leads to 

greater post intervention gains without materials than other representations.  

 One of the arguments made in this discussion is that, since physical manipulation 

has helped children identify what is and is not relevant when solving a problem, the 

advantages of using physical materials may be measured through transfer tasks (Schwartz 

et al., 2005) better than through tests of procedural efficiency. Further research could 

examine whether any gains in using manipulatives in the partitioning task transfer to 

gains in other assessment tasks for additive composition such as Nunes‘ shopping task 

(Nunes & Bryant, 1996) or missing part addition problems. This could also examine the 

relationship between children‘s performance on these tasks and their performance on the 

partitioning tasks developed in this research, increasing further our understanding of the 

development of children‘s concepts in this domain. 

 

9.7.2 External representations 

This research has examined the affordances of physical materials and the roles that 

certain properties of a specific manipulative play in a specific task. The discussion has 

described how these affordances might affect problem solving in other tasks. As well as 

examining these predictions, further research might also examine the role of specific 

physical properties on problem solving. For example, it might be predicted that larger or 

differently shaped objects might influence children‘s actions, whilst comparing tiles with 

cubes might help determine the importance of certain actions such as moving objects 

over each other. Research could also use interfaces such as tabletop computers to 

examine whether tactile feedback (as opposed to just moving objects by hand) can 

support cognition in more demanding problems. In short, there are many ways in which 

further research can build on the findings of this present research in trying to unpick the 



342 

 

complex interaction between representational properties and children‘s problem solving 

strategies, all of which helps to improve the design of novel materials. 

 

9.7.2.1 Gestures 

One affordance of the physical materials used in this study is that their manipulation led 

to actions that could be emulated in the absence of the materials. It is possible therefore 

that the materials themselves foster gestures that support communication or embodied 

cognition. The value of gestures in mathematics has received growing research interest 

(e.g., Abrahamson & Howison, 2008; Cook, 2007), and has indicated a role for physical 

objects in developing such gestures (Edwards, 2005). However, further research is 

certainly needed to establish such a causal link, and the current task may provide a means 

to examine such mechanisms. Studies might be made to examine the use of gestures in 

this partitioning task and whether the introduction of manipulatives results in a greater 

use of gestures than other materials such as virtual representations. 

 

9.7.2.2 Physically Distributed Learning 

PDL describes how children can act on representations, and then interpret their actions 

to develop new ideas. It was suggested in this discussion that in the absence of other 

plans children may tend towards creating geometric patterns. These can often be 

interpreted numerically, and the suggestion therefore offers scope for future research to 

test predictions about which concepts may be supported through this process. The 

present research has also raised the possibility that changing the nature of interaction 

with the representation will influence strategies. Further research might investigate this 

possibility, and in particular examine whether the ability to move single or multiple 
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objects affects strategies in other domains such as fractions. Any differences found may 

have important implications, especially when there is considerable scope for variation in 

the way that virtual materials can be designed to allow manipulation of multiple objects – 

e.g., the instructions for moving multiple objects in Taylor Martins‘ online virtual 

materials require children to press the shift key to allow squares to stick to each other 

when moving (Martin, 2004 - see figure 10.1).  

 

 

Figure 9.7: Screenshot of virtual materials (Martin, n.d.) 

 

 The effects of different actions can also be examined with the physical 

manipulatives used in this research. The Unfix cubes used across studies can be joined 

linearly, but doing so changes the relative cost of moving individual or groups of objects. 

Further research could usefully examine whether asking children to join cubes 

significantly affects the strategies they use. 
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9.7.3 Interface design 

Graphical interfaces allow actions on representations to be controlled by the designer. 

They thereby offer a way of testing some of the hypotheses put forward in this 

discussion – for example a tabletop computer can provide a platform in which to tease 

apart certain arguments such as the importance of tactile feedback when manipulating 

objects on a touch screen. Importantly, tabletop interfaces can provide ways to control 

how objects can be manipulated in groups or individually – research in this area might 

help by identifying the most effective way to allow young children to manipulate multiple 

objects. This would also provide valuable information on whether there are limitations to 

how easily objects can be manipulated using a graphical, as opposed to tangible, interface.  

 The materials used in Study 7 can be adapted to allow children to manipulate 

multiple objects, and further research might usefully test some of the possibilities 

described: namely, how colour prompts may draw children‘s attention to some important 

numerical principles – e.g., how adding and taking away the same amount leaves a 

quantity unchanged, or how a collection of objects can and cannot be decomposed into 

equal groups.  

 

9.7.4 Tangibles in school context 

The possibilities for further research described above should help develop our 

understanding of the potential for tangible designs to support children‘s numerical 

development. However, it has been emphasised throughout this chapter how the effects 

of materials will largely depend on the context in which they are used. If Tangibles are to 

be designed to support learning in an educational context, it is important to extend 

research to this setting. It is possible, for example, that a tangible design such as that 
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discussed in Chapter 8 might provide a basis for class discussion on numerical relations. 

On the other hand, it may be found that such digitally augmented materials simply 

distract children as they focus on the technology rather than the numerical principles they 

are intended to represent. 

 

9.7.5 Summary 

This thesis has focused on examining the potential for Tangibles to support children‘s 

understanding of additive composition – a key concept in children‘s numerical 

development. Clearly, the focused nature of the research means there remains a 

significant gap between the findings and knowledge of the effectiveness of novel 

materials in educational settings. However, the research has produced significant findings 

that shed light on representational properties that influence children‘s strategies for 

exploring how numbers can be decomposed into smaller numbers. This section has 

sought to identify areas where further research can build on these findings to examine 

how problem solving in the task may generalise to other tasks and, importantly, lead to 

learning. This could also test some of the predictions made in this research in terms of 

how actions on representations may support some concepts and not others, and 

importantly, how influencing actions can in turn influence strategies, and ultimately 

therefore the ideas developed. Finally, research might examine the potential for 

augmenting materials to foster certain interpretations. The materials described in the final 

chapters of this thesis provide an example of the type of resource that might be used to 

compare and contrast differences between interfaces and help identify the extent to 

which the use of Tangibles offers unique benefits in this domain.  

________________________________________ 
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Appendix A 

Addition and Partitioning problem order used in Study 1 

 

Addition problems 

3+2 

5+3 

7+2 

9+3 

11+6 

13+7 

1+4 

3+6 

2+8 

4+11 

5+9 

7+12 

Open partitioning problems 

Partition 5 

Partition 8 

Partition 10 

 


