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Abstract 

Eutrophication results in the loss of conservation and amenity value from shallow lakes. 

Efforts have been made to restore shallow lakes by reducing the external nutrient loading. 

Removing nutrient-rich inflows can reduce nutrient loading but may alter lake hydrology. 

This thesis is primarily aimed at investigating the effects of a nutrient-rich river on water 

chemistry and plankton by comparing six shallow (<3.5 m) lakes that are connected to and 

isolated from the River Erewash, in the Attenborough Nature Reserve, Nottinghamshire, 

U.K. 

 

Lakes that received River Erewash discharge had higher nutrient concentrations and 

higher phytoplankton biomass than those that were isolated from it. Turbid water was also 

found in a lake isolated from the River Erewash but with a nutrient-rich inflow stream. 

Lakes isolated from the inflows had abundant submerged macrophytes and clear water but 

other lakes were turbid and devoid of macrophytes. In lakes without inflows, cyanobacteria 

were proportionally more abundant. Lakes receiving nutrient-rich water were generally 

dominated by small chlorophytes and centric diatoms. Phosphorus concentrations had little 

effect on the phytoplankton, N and Si in the connected lakes, and zooplankton grazing and 

N in the isolated lakes, probably limited phytoplankton. 

 

A mesocosm experiment found chlorophyll-a concentrations were reduced by the addition 

of silica, and that the biovolume of dinophytes increased in the mesocosms without nitrate 

addition. Total zooplankton biomass did not change significantly between treatments. 

  

Summer floods reduced P concentrations in the connected lakes, suggesting that internal 

P loading was diluted and flushed out. Phytoplankton biomass was also lower during 

floods. Cryptophytes and diatoms dominated the phytoplankton and cyanobacteria were 

rare during flooding. A simulation of lake restoration by river diversion using mesocosms 

confirmed the importance of lake flushing for reducing internal loading. Diverting the River 

Erewash in order to reduce the nutrient loading to Attenborough Nature Reserve may be 

problematic in the short-term, because the lack of flushing may increase the effect of 

internal P loading and favour cyanobacterial growth. Reducing the external supply of N 

may further stimulate the dominance of cyanobacteria while P concentrations remain high.
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Abbreviations used in the text 
 

Abbreviation Definition 
ANOVA Analysis of variance 
CA  Correspondence analysis 
Ca2+ Calcium 
CCA Canonical correspondence analysis 
chl-a Chlorophyll-a 
Cl- Chloride 
Cond. Specific conductivity 
CS-strategist Competitive-stress tolerant species 
C-strategist Competitive species 
DCA Detrended correspondence analysis 
DO Dissolved oxygen 
K+ Potassium 
meq Milliequivalents  
mg  Milligram 
Mg2+ Magnesium 
N Nitrogen 
Na+ Sodium 
NH4-N Ammonium 
NO3-N Nitrate 
P  Phosphorus 
PCA Principle components analysis 
RM-ANOVA Repeated measures analysis of variance 
R-strategist Ruderal species 
S.E. Standard error 
Si  Silica  
SiO3 Silicate 
SRP Soluble reactive phosphorus 
S-strategist Stress-tolerant species 
STW Sewage treatment works 
t Tonnes 
TDP Total dissolved phosphorus 
Temp. Temperature 
TN Total nitrogen 
TP Total phosphorus 
TSS Total suspended solids 
WRT Water retention time 
z Depth 
zmax Maximum depth 
μm Micrometer 
L Litre 
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Chapter 1 Literature Review 
 

1.1 Introduction 

The costs associated with the degradation of freshwater aquatic systems are 

substantial. Whilst ecological and aesthetic status and economic services to humans 

provided by the system are either lost entirely or compromised to some extent, 

increases in ecosystem productivity may provide some advantages. Directly or 

indirectly, eutrophication changes the economic value of aquatic ecosystems (Figure 

1.1, Pretty et al., 2003). These changes are overwhelmingly detrimental, resulting in a 

net loss of value. Pretty et al. (2003) have estimated the annual cost of freshwater 

eutrophication in the U.K. to be £75-114.3 m. Loss of biological diversity is less easily 

quantified although it is an equally, if not a greater, driver of the numerous attempts 

that have been made to reverse or remediate the effects of eutrophication on lakes.  

 

The process of eutrophication is generally well understood. The work of D. W. 

Schindler the late 1960s provided evidence that phosphorus (P) in particular was the 

regulating factor of freshwater phytoplankton production (Schindler et al., 1973; 

Schindler, 1978). Schindler’s research has remained largely unchallenged and now 

forms the basis of our understanding of eutrophication. The Vollenweider model has 

contributed to eutrophication management by describing a linear relationship between 

chlorophyll-a concentration (an index of phytoplankton biomass) and P availability 

(Vollenweider, 1968) (discussed later from page 36).   

 

In shallow lakes, the process of eutrophication begins with an increase in submerged 

macrophyte and periphytic algal biomass initiated by elevated P concentrations 

(Brönmark and Hansson, 1998). Macrophyte communities tend towards floating-

leaved species in order to overcome increased water turbidity from increasing 

phytoplankton populations (Mason, 1996). Cyanobacteria (blue-green algae) and 

chlorophytes (green algae) become increasingly dominant components of the 

phytoplankton as its biomass increases (e.g. Schindler et al., 1973). Cyanobacteria 

present a toxic threat to lake users and animals that may come into contact with the 
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water (Moss et al., 1996a; Pitois et al., 2001). Cyprinid fish populations increase 

dramatically during eutrophication (Jeppesen, 1998). Their consumption of grazing 

invertebrates shifts the zooplankton community towards smaller, and therefore 

inefficient grazers, which reduces grazing pressure on the phytoplankton (Brönmark 

and Hansson, 1998). Increased sedimentation rates of senescent algae and their 

subsequent decomposition deplete water-column oxygen concentrations, potentially 

resulting in fish kills in particularly eutrophicated lakes (Brönmark and Hansson, 1998).  

 

Although the processes that cause eutrophication are well understood, reversing the 

results has proven to be complex in shallow lakes. An extensive literature surrounds 

the restoration of degraded lakes and highlights the variety of responses that have 

been observed (Moss et al., 1996a). A literature review provides a discussion of the 

meaning of restoration and the importance of the alternative stable states model. A 

variety of examples of the responses of shallow lakes to nutrient reduction are given to 

illustrate important concepts. The roles of nitrogen (N) and silica (Si) as mediators of 

ecosystem response to P reduction is receiving growing attention. Based on a 

discussion of their importance, this review argues that their role in shallow lakes may 

be highly significant, and that understanding the influences they exert can improve the 

success of lake restoration projects.  

 

This thesis aims to explore the role that N, P and Si may play in determining the 

biomass and composition of phytoplankton and zooplankton at Attenborough Nature 

Reserve, Nottinghamshire. The thesis also considers the effects of different 

hydrological regimes on the lakes caused by varying connectivity to the nutrient-rich 

River Erewash. As the River Erewash is currently being diverted from the 

Attenborough Nature Reserve in order to reduce the nutrient loading to the lakes 

connected to it, particular reference is given to the potential response of plankton 

communities to changes in hydrology and nutrient loading associated with the river 

diversion.  

 



 

 

 

Figure 1.1 Economic costs and benefits associated with freshwater eutrophication (Pretty et al., 2002). 
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1.2 Semantics 

1.2.1 Restoration or rehabilitation? 

There is an overwhelming trend in the scientific literature to describe any attempt at 

improving the ecological and chemical functioning of lakes as ‘restoration’. For the 

majority of cases, however, this is somewhat misleading. Bradshaw (1996) draws 

attention to this confusing use of terminology. ‘Restoration’ implies a return to an 

original state, which in aquatic ecology is rarely (if ever) achieved (Figure 1.2).  
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Figure 1.2 A graphical illustration of the differences between restoration, 
rehabilitation and replacement as functions of nutrient loading and 
structural complexity. Based on Bradshaw (1996). 

 

‘Rehabilitation’ tends to be a far more realistic proposition for limnologists, as it does 

not imply a return to the perfection of a previous condition, but rather a return to a 

previous status. The picture is further confused when it is realised that the terms 

‘restoration’ and ‘rehabilitation’ can be applied individually to different aspects of the 

system in question (for example a community, a habitat or species). The common 

perception that ‘restoration’ is an active human intervention can be challenged by 

natural processes which may restore ecosystems to, for example, bare soils after ice 

sheet retreat (Bradshaw, 1996) or saltmarsh after land reclamation.  
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Most attempts at shallow lake ‘restoration’ can be argued to be more representative of 

a process of ‘rehabilitation’. Whilst complete restoration may be theoretically possible 

in some circumstances, and is arguably a more ethically desirable result (Bradshaw, 

1996), various constraints (such as incomplete knowledge of the original state, 

economic factors and changes in the surrounding environment) mean it is rarely 

achievable for shallow lakes. Lake managers rarely attempt to create a ‘carbon-copy’ 

of the original state, but create conditions which are amenable to ‘more representative’ 

communities. Further complications arise from individual stakeholder interests in the 

purpose and use of the lake when planning restoration (Moss et al., 1996a). Despite 

its problems, the term ‘restoration’ will be used in its traditional limnological sense (i.e. 

the improvement of ecologically degraded ecosystems) throughout this thesis for 

convenience. 

 

1.2.2 Resilience and resistance 

The concepts of resilience and resistance are fundamental to our understanding of the 

problems faced when attempting to restore shallow lakes. Unlike the ‘restoration’-

rehabilitation’ problem, there is little misuse of ‘resilience’ and ‘resistance’ although it 

is important to be aware of the subtle differences in meaning.  

 

The property of resistance refers to the ‘ability of a system to resist perturbation away 

from its steady state’ (Carpenter et al., 1992) (Figure 1.3). Resilience is the rate of 

return to a steady state after a perturbation, and is considered as the sum of a variety 

of individual mechanisms that maintain ecosystem services (Carpenter and 

Cottingham, 1997). Quicker returns to the original steady state suggest greater 

resilience. A system may be resilient to change in both an ecologically desirable and 

valuable state, as well as in a degraded state (Carpenter and Cottingham, 1997).  

 

The issue of resilience has been the subject of considerable debate in the ecological 

literature since it is pivotal in determining stability (e.g. Connell and Sousa, 1983; 

Sutherland, 1990; Peterson et al., 1998; Beisner et al., 2003). Likewise, defining 

whether a perturbation induces a significant or insignificant change in an ecosystem 

(Sutherland, 1990) is difficult. An analysis of literature discussing the distinction 

between ‘resistance’ and ‘resilience’ and the precise nature of perturbations would 
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merit a substantial discussion of its own. However, for the purposes of this review, it is 

sufficient to point out that the precise definition of resilience is open to various 

interpretations. 
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Figure 1.3 The differences between resilience (top) and resistance (bottom). 
Redrawn from Carpenter et al. (1992). 

 

1.3 Alternative Stable States 

Restoring high macrophyte biomass in shallow lakes is often seen as a measure of 

success in lake restoration. Submerged macrophytes are critical for the establishment 

of an ecologically diverse and valuable ecosystem (Jeppesen, 1998). The reasons for 

this are encapsulated in the alternative stable states theory. It is widely accepted that 

shallow lakes exist in one of two states - one dominated by phytoplankton, with 

depauperate submerged macrophyte communities and turbid water, and one with 

clear water, reduced phytoplankton communities and abundant submerged 

macrophytes (Scheffer et al., 1993; Moss et al., 1996a; Scheffer, 1998; Scheffer and 

Jeppesen, 1998; Scheffer, 2001; Carpenter, 2003).  

 

Each state can occur at a wide range of nutrient concentrations. Pristine conditions 

are only likely to occur at total phosphorus (TP) concentrations of <25 µg P L-1, whilst 

stable plant dominance in shallow water is likely to occur up to 50 µg P L-1 (Moss et 
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al., 1996a). At greater concentrations, submerged plant communities are likely to 

become less diverse and dominated by species such as Ceratophyllum demersum 

and Potamogeton pectinatus. Experimental evidence for reduced plant diversity is 

discussed below. There is an increased risk of a switch to the turbid state above 50 µg 

P L-1, although the upper limit at which a system may not have the potential to exhibit 

either state is likely to be several milligrams of P per litre (Balls et al., 1989). Stability, 

as was alluded to earlier, is a result of the combination of resistance and resilience. 

This is illustrated by the ‘stability landscape’, or ‘marble-in-a-cup’ diagram in Figure 

1.4. The system behaves in the same way as a marble does, by settling in ‘valleys’ of 

the ‘landscape’, representing a point of stable equilibrium. ‘Hilltops’ are unstable 

equilibria and also represent the division between one state and the next (Scheffer et 

al., 1993; Scheffer, 1998, 2001).  

 

 

Figure 1.4 The alternative stable states model from Scheffer (1998) 

 

The model also illustrates two potential mechanisms for a switch to occur. Movement 

of the ‘marble’ represents a disturbance to the ecosystem. Events that would cause 

this might include a fish kill or the destruction of submerged vegetation. Nutrient 

loading however affects the model’s ‘landscape’, and therefore alters the ‘effort’ 
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required to shift the marble into the neighbouring ‘valley’. Either equilibrium becomes 

increasingly unstable, since even a small perturbation could cause a switch when 

stability is low. Nutrient loading increases or decreases may be of sufficient quantity to 

shape the ‘landscape’ to the extent that only one ‘valley’ exists (Scheffer, 1998).  

 

When a lake exists in a clear-water state, and has an abundant, stable submerged 

macrophyte community, a variety of positive-feedback processes operate which 

maintain water clarity (Figure 1.5). These processes alter the stability ‘landscape’ of 

the lake and prevent a change to the turbid, phytoplankton-dominated state. They can 

be categorised as either ‘direct’ or ‘indirect’ mechanisms (Jeppesen, 1998). All 

mechanisms create clear water and therefore increase the availability of light in order 

to further macrophyte growth and the stability of the system in a clear-water ‘valley’. 

Direct mechanisms arise through the physical interaction of the plant with the 

surrounding water. Submerged macrophytes influence sedimentation and 

resuspension (Barko and James, 1998; Madsen et al., 2001) and reduce suspended 

solids concentrations (Van den Berg et al., 1998a; Havens, 2003; Horppila and 

Nurminen, 2003). 

  

One of the indirect mechanisms by which submerged macrophytes create clear water 

is the ‘refuge effect’ which enables zooplankton to conceal themselves from predatory 

zooplanktivorous fish (Timms and Moss, 1984). Research in the Norfolk Broads, U.K. 

suggested that zooplankton congregate around floating-leaved macrophytes to avoid 

predation. Zooplankton migrated to open water during night time in order to graze on 

phytoplankton, a process known as diel horizontal migration (DHM) (Timms and Moss, 

1984). The success of this refuge strategy for zooplankton is dependant on fish and 

macrophyte density (defined by PVI, percentage volume infested). Schriver et al. 

(1995) suggested that above a PVI threshold of 15-20%, Daphnia spp. became more 

resilient to high fish densities (CPUE [catch per unit effort] of 6). When CPUE was 

below 10 (approx. 2 fish m-2), and macrophytes above 15-20% PVI, zooplankton 

grazing was sufficient to potentially consume more than 100% of the phytoplankton 

crop, suggesting that zooplankton were likely to be controlling phytoplankton growth. 

At low PVI (< 15-20%), and high fish density (>20 CPUE), potential grazing pressure 

was too low to be controlling phytoplankton growth (0.5-1% of phytoplankton crop) 

(Schriver et al., 1995). Perrow et al. (1999) argue that DHM as a survival strategy is 
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unsustainable. DHM is not sufficient to sustain Daphnia populations as fish feed in the 

dark. This means Daphnia populations will decline eventually even with abundant 

submerged macrophytes (Perrow et al., 1999).  

 

 

Figure 1.5 Feedbacks that may cause vegetation-dominated states and turbid 
states to be alternative equilibria. The qualitative effects of each route in 
the diagram can be computed by multiplying the signs along the way. 
This shows that both the vegetated and non-vegetated states are self-
reinforcing. From Scheffer et al. (1993). 

 

As macrophyte PVI increases during the year, macrophyte-associated grazers such 

as Ceriodaphnia spp. and Simocephalus spp. become the principle grazers. A PVI of 

30-40% appears necessary to support these species (Perrow et al., 1999). However, 

this is dependent on fish community structure and biomass. The density of fish 

required to nullify the refuge effect reported by Perrow et al. (1999) was 1 m-2, notably 

different from the 2 m-2 suggested by Schriver et al. (1995). This is most likely a 

consequence of roach (Rutilus rutilus) being dominant in the Norfolk Broads, which is 

a more efficient zooplanktivore than stickleback (Gasterosteus aculeatus) used in the 

experiments of Schriver et al. (1995).  

 



Chapter 1: Introduction and literature review 
 

33 

Numerous studies have concluded that plants are capable of reducing phytoplankton 

abundance through the release of allelopathic substances. For example, laboratory 

experiments have suggested that Myriophyllum spicatum and Ceratophyllum 

demersum inhibited the growth of phytoplankton (Körner and Nicklisch, 2002). 

Different phytoplankton groups showed differing responses, with the Oscillatoria spp. 

being more affected by M. spicatum than chlorophytes and diatoms (Körner and 

Nicklisch, 2002). Laboratory microcosm, field surveys and in situ incubation 

experiments have suggested that the presence of Stratoites alodies (or exudates 

derived from it) reduces phytoplankton populations (Mulderij et al., 2006). Erhard and 

Gross (2006) suggest that Elodea canadensis and E. nuttallii reduced the growth of 

epiphytic algae, and cyanobacteria in particular. The chlorophyte Chlorella vulgaris 

was less sensitive to extracts of Elodea spp., whilst Scenedesmus brevispina 

increased in abundance, suggesting a degree of adaptation to the allelopathic effect of 

Elodea spp. (Erhard and Gross, 2006).  

 

Epiphyte communities have been suggested to be a critical factor in determining the 

existence of a lake in either stable state. Phillips et al. (1978) used palaeolimnological 

evidence and microcosm experiments to investigate the effects of increased nutrient 

concentrations on epiphyte development. They presented a hypothesis that argued 

that the development of epiphytic communities on submerged macrophytes 

suppressed their growth, and that this occurred before phytoplankton blooms were 

evident. Epiphyte growth may be sufficiently luxurious to shade macrophytes and 

retard their development even if the water turbidity remains relatively low. Suppression 

of macrophytes then caused increased phytoplankton biomass and water turbidity, 

and the initiation of a positive feedback cycle which reduced macrophyte abundance 

(Phillips et al., 1978). It has been suggested that aquatic macrophytes may be capable 

of favouring an epiphytic community that is grazed preferentially by invertebrates, but 

evidence is lacking for any interaction. Based on replicated laboratory investigations, 

Jones et al. (2000) concluded that a relationship between macrophytes and their 

epiphytic communities was unlikely. Epiphyte communities did not encourage 

consumption by snails (e.g. by being nutritionally superior for invertebrates), and 

neither reproduction nor growth of grazing snails increased. Epiphyte communities 

differed between Elodea sp. and Littorella sp. treatments, although this difference was 

only slightly greater than that observed between inert artificial plants of differing 
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architecture. Grazing was by far the most significant factor affecting epiphytic 

communities (Jones et al., 2000). The density of grazing invertebrates, not nutrient 

concentration, was correlated with the density of epiphytes on aquatic macrophytes in 

plant-dominated lakes in Norfolk, U.K. (Jones and Sayer, 2003). Fish control of 

invertebrate populations was therefore suggested to be the major control of plant 

dominance and the source of stochasicity required by the alternative stable state 

model (Jones and Sayer, 2003).  

 

1.4 Nutrient dynamics in shallow lakes 

Attempts to reverse the effects of eutrophication were first applied to deep lakes, in 

both the USA and Europe (e.g. Lake Washington, Edmondson and Lehman, 1981; 

Lake Maggiore, de Bernardi et al., 1996) with encouraging results. The diversion of 

99% of point source discharge from sewage treatment works (STW) away from Lake 

Washington in 1967 resulted in a decrease in chlorophyll-a and in-lake P 

concentration (Figure 1.6). Furthermore the proportion of cyanobacteria in the 

phytoplankton decreased dramatically (Edmondson and Lehman, 1981). Water quality 

in Lake Maggiore, Italy, declined during the 1960s and 1970s, accompanied by large 

phytoplankton biomass increases and cyanobacterial blooms (de Bernardi et al., 

1996). P control measures, and a decline in industrial activity within the drainage area 

of the lake, resulted in a decrease in both phosphorus and chlorophyll-a 

concentrations from the early 1990s (de Bernardi et al., 1996). 

 

Deep lake restoration successes, such as these, have relied on an oxic hypolimnion in 

order to immobilise P in sediments (see below). Deep lakes also tend to be located 

within landscapes where fewer nutrients are derived from diffuse sources than point 

sources. Point sources are those which are identifiable as a specific nutrient input to 

an aquatic system, and tend to be continuous and show little variability over time 

(Carpenter et al., 1998). However, non-point sources, although they may be 

continuous, are often episodic, and can be related to activities or events such as 

seasonal agriculture and heavy precipitation. Furthermore, diffuse sources may travel 

substantial distances. Consequently, they are considerably more difficult to manage 
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Figure 1.6 Total mass of P and particulate-P in Lake Washington and 
concentration of chlorophyll-a in surface water samples (from 
Edmondson and Lehmann, 1981). 

 

and regulate (Carpenter et al., 1998). A large body of evidence, gathered particularly 

from shallow lakes in Denmark and the U.K., has developed to suggest that the 

response of shallow lakes to nutrient reduction is considerably more complex than 

deep lakes (e.g. Jeppesen et al., 1991; Søndergaard et al., 2000; 2001; 2003), not 

least because they are often subject to higher levels of diffuse pollution. This section 

provides a backdrop to a review of nutrient reduction projects through a discussion of 

the dynamics of three nutrients which are significant in controlling the functioning of 

shallow lakes: N, P and Si. 
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1.4.1 Phosphorus  

In undisturbed temperate catchments, with abundant vegetation and forest, the supply 

of P to waterways is generally low (Kalff, 2002). Human influences, particularly from 

sewage discharge and agricultural sources such as fertilizers and livestock production 

(Figure 1.7), have released many lowland lakes from P limitation. As a result, it has 

received considerable attention as an agent of eutrophication. P concentration, in 

combination with other variables, forms the basis of the widely-used Orgnisation for 

Economic Co-operation and Development (OECD, 1982, in Dodds, 2002) 

classification of lake trophic status (Table 1.1). TP concentrations may also be a good 

predictor of chlorophyll-a concentration across a range of lake types, but considerable 

uncertainties can be associated with these estimates (e.g. Phillips et al., 2008). 
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Figure 1.7 Sources of phosphorus discharges into the freshwaters of the USA. 
Based on Carpenter et al. (1998) (data from Gianessi et al. [1986] and 
Havens and Steinman [1995]). 

 

Table 1.1: Boundary values for trophic classification according to OECD (1982, 
from Dodds, 2002).  

Chlorophyll-a (µg L-1) 
Classification TP (µg L-1) Mean Max 

Mean 
Secchi 

depth (m) 
Ultraoligotrophic <4 <1 <2.5 >12 

Oligotrophic 4-10 1-2.5 2.5-8 12-6 
Mesotrophic 10-35 2.5-8 8-25 6-3 

Eutrophic 35-100 8-25 25-75 3-1.5 
Hypertrophic >100 >25 >75 <1.5 
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The removal of P from wastewater is straightforward. Tertiary treatment at sewage 

treatment works (STWs) utilises a variety of physical, chemical and biological 

techniques. Phosphate stripping involves the precipitation of P with lime and Fe (iron) 

or Al (aluminium) compounds, whilst biological techniques use organisms which store 

P within their cells and then the removal of these organisms from the system (Mason, 

1996). P removal is inexpensive compared to N removal because P does not have an 

atmospheric component to its cycling (Kalff, 2002). A combination of these reasons 

make P management a favoured approach to water quality management and lake 

restoration.  

 

P is deposited within lake sediments as either particulate or dissolved forms (detailed 

in Table 1.2). Particulate P is directly deposited, whilst dissolved P is incorporated into 

organic matter to form particulate P, before sedimentation (Søndergaard et al., 2001). 

P may become part of a variety of different compounds before either its permanent 

sedimentation and immobilisation or release to the water column. As part of the 

sediment, P incorporation into a variety of compounds is governed by the relative 

significance of different biological and chemical processes.  

 

Many attempts have been made to relate inputs of P into a lake with the concentration 

of P within the water column in order to make some prediction of trophic state (Ahlgren 

et al., 1988). The idea that P exerts a control on trophic state originated principally 

from the work of R. A. Vollenweider, based on North American and European lakes 

(e.g. Vollenweider and Kerekes, 1980). Vollenweider’s work was an important 

empirical addition to the scientific literature of its time, when the argument of P as a 

limiting factor (e.g. Schindler, 1978) was being advanced.  

 

Table 1.2 Phosphorus forms and definitions applicable to freshwaters. Based on 
Moss et al. (1996).  

Dissolved 
inorganic 
phosphate-P 

Dissolved 
organic 
phosphate-P 

P attached to 
colloidal clay 
or iron rich 
particles in 
suspension 

P incorporated 
in living 
suspended 
algae and 
bacteria 

P incorporated 
in dead detritus 
suspended in 
the water 

Dissolved P Particulate P 
Soluble 
reactive-P 

P that may become available to plants and phytoplankton due to 
chemical and bacterial activity. 
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Empirically derived steady-state models define the relationships between nutrient 

loading, sediment retention, lake water concentration and phytoplankton biomass and 

production (Ahlgren et al., 1988). These Vollenweider models typically take the form: 

σ)(ρ
L

P
w

p
lake +

=
z

 

 

where P(lake) is in-lake P concentration (µg L-1); Lp, annual P loading (mg m2 yr-1); σ, 

a dimensionless unit of sedimentation; ρw, mean flushing rate (= Q/V, where Q = 

outlet discharge [m3 yr-1] and V = lake volume [m3]) and z average depth (Ahlgren et 

al., 1988). Models of this type highlight the importance of depth in determining in-lake 

P concentration, and suggest that lakes with a higher flushing rate (lower water 

retention time, WRT) retain less P than those with a longer WRT. Vollenweider models 

may not be a reliable method of predicting P concentrations in lakes where P is 

retained in the sediments (Ahlgren et al., 1988). 

 

For shallow lake restoration, empirical steady-state models may not accurately predict 

lake responses to nutrient loading reduction (Reynolds and Davies, 2001). Internal 

cycling and loading of P are significant processes in shallow lakes which provide a 

source of available P to phytoplankton (Jeppesen et al., 1991; Kleeberg and Kozerski, 

1997; Nixdorf and Deneke, 1997; Søndergaard et al., 2001). The relationship between 

P loading and total phytoplankton biomass are not as strong as for deep lakes, and 

reductions in P loading may not necessarily correspond to a reduction of in-lake P 

concentrations as the Vollenweider model suggests. The magnitude of internal release 

of P after nutrient loading reduction from the sediments and the processes which 

govern it are a highly important when considering shallow lake restoration strategies 

(Scheffer, 1998).  

 

P release from sediments is essentially the difference between sedimentation of 

particles and the upward P flux, as the sum of decomposition of organic matter and 

transport across the sediment-water column P concentration gradient (Søndergaard et 

al., 2001). It would therefore be logical to suggest that sedimentary P release would 

be related to the P concentration, although this correlation has not been shown to 

exist (Scheffer, 1998). Early research (e.g. Mortimer, 1941, 1942) highlighted the 
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importance of iron for its ability to prevent P release under aerobic conditions. The 

classic theory of P retention and release from lake sediments suggests that at the 

sediment surface, iron(II) is oxidised to iron oxyhydroxides, and P is precipitated from 

the water column or is adsorbed to iron(III) compounds (Scheffer, 1998; Søndergaard 

et al., 2003; Petzoldt and Uhlmann, 2006). When there is no oxidised microzone, and 

conditions are anoxic, P release can occur. In eutrophic, productive systems, anoxia is 

likely to occur as a result of bacterial degradation of organic matter (Figure 1.8, 

Scheffer, 1998).  

 

Relatively infertile conditions Relatively fertile conditions

water

sediment

Oxidised microzone – oxidised iron bound P 
compounds and prevents P release from deeper 

sediments

O2 diffuses 
from water

Low supply of organic matter to 
fuel bacterial activity

Very little P 
release

Deeper sediments reduced, 
solubilising Fe and P. Normally 

anaerobic

High supply of organic matter to 
fuel bacterial decomposition Use of O2 in 

excess of 
diffusion 

from waterMajor P 
release

No oxidised microzone as oxygen 
consumed by bacteria

All sediments reduced, solubilising 
Fe and P, and allowing substantial 

P release
 

Figure 1.8 Some of the important phosphorus transformations that occur 
between sediment and freshwaters under relatively infertile (low 
productivity) and relatively fertile (high productivity) conditions. Based 
on Moss et al. (1996). 

 

The role of iron as the principal determinant of P flux across the sediment-water 

interface has been challenged by research which suggests that microorganisms exert 

a significant control on P retention and release (Gächter et al., 1988; Gächter and 

Meyer, 1993). The traditional model of P flux (Mortimer, 1941, 1942) suggests that 

microbes play only a ‘catalytic’ role in the release of P by oxidising organic material, 

and since catalysts neither consume nor produce substances, microbes have been 

considered insignificant in comparison to chemical processes (Gächter and Meyer, 

1993). However, microbes may influence P in a variety of ways, for example through 

the storage of P in sediments as refractory organic P in microbial biomass or the 

release of P during their decomposition (Gächter and Meyer, 1993). In oligotrophic 
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lakes, more P derived from organic detritus is stored by microbes as refractory P 

compounds than in eutrophic lakes, which may act as a stabilising mechanism to 

maintain low P concentrations (Gächter and Meyer, 1993). In a deep mesotrophic 

lake, microbial action was sufficient to cause organic detritus to accumulate soluble 

reactive-P (SRP, see Table 1.2 for explanation) during its settling and deposition on 

the sediment surface, suggesting that SRP could only be liberated to the water column 

if the rate of supply from underlying anaerobic sediments exceeded the rate of 

biological or chemical uptake and fixation on the sediment surface (Gächter and 

Mares, 1986).  

 

It has been suggested that silica (Si) may interact with P cycling. Laboratory isotope 

labelling showed Si both displaced P bound in sediments and prevented further 

adsorption of P (Tuominen et al., 1998). Extrapolation of laboratory evidence into the 

field indicated that in eutrophic lakes with Fe-bound P, competition between Si and P 

may be responsible for significant mobilisation of P from the sediment surface to the 

water column. The mechanism is likely to be amplified in lakes with significant diatom 

blooms and high pH. Phytoplankton blooms increased pH, and at high pH, Si-induced 

P release is increased (Tallberg and Koski-Vähälä, 2001). The competitive ability of 

cyanobacteria is also higher at increased pH which may be partly responsible for 

fuelling the bloom with P release (Tallberg and Koski-Vähälä, 2001).  

 

The addition of various salts to shallow lakes in order to precipitate P and seal it within 

sediments (‘phosphorus inactivation’) has received considerable attention as a method 

of overcoming internal P loading (Cooke et al., 1993). Al addition has had long term 

effects of reducing P concentrations (Cooke et al., 1993). Although Al dosing requires 

repeated small applications to maintain effectiveness, the precipitate formed is 

permanent (Lewandowski et al., 2003). In the hypereutrophic Lake Sønderby, 

Denmark, the addition of 31 mg Al m-2 in winter 2001 dramatically reduced in-lake P 

concentrations. Internal loading was reduced by 93% compared to pre-treatment 

years, and Secchi depth increased and submerged plants returned (Reitzel et al., 

2005). Fe dosing has also been experimented with as a lake restoration tool, 

particularly since Fe is less sensitive to sedimentary redox conditions than Al (e.g. 

Deppe and Benndorf, 2002). It also mimics natural processes within shallow lakes (i.e. 

Fe-P binding) and is not toxic to plants as with Al (Moss et al., 1996a). The successes 
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of Fe additions are variable. Fe dosing had sufficient effect on internal P loading to 

induce a switch from phytoplankton to macrophyte dominance in a small drinking-

water reservoir in southern England (Daldorph, 1999). However, the addition of iron 

aluminium sulphate to a deep, stratifying eutrophic lake and consequent reduction in 

SRP resulted in little change in annual populations of Oscillatoria spp. (Foy and 

Fitzsimons, 1987). 

 

Nitrate nitrogen (NO3-N) can also suppress the release of P from lake sediments. 

NO3-N is an efficient oxidiser as it is more soluble in water than O2 and can therefore 

penetrate further into the sediments (Hansen et al., 2003). This results in a larger pool 

of oxidised Fe being available for binding with P and the effective suppression of P 

release. Andersen (1982) found that in shallow Danish lakes, P release was prevented 

when NO3-N concentrations were greater than 0.5 mg L-1. The results of laboratory 

experiments and a whole-lake experiment by Foy (1986) showed that NO3-N addition 

to lake sediments caused a delay in P release and reduced the amount of P diffusing 

into the water column. Jensen and Andersen (1992) found that the oxidised surface 

layer of sediments from Danish lakes increased in thickness when the concentration of 

NO3-N in the overlying water was raised, reducing P release. Hansen et al. (2003) 

used a laboratory experiment to show that NO3-N additions resulted in a reduction of 

P release from sediment cores and Stephen et al. (1998) found that P was scarce in 

mesocosms in Little Mere, U.K., where NO3-N was added to the water. 

 

Resuspension of lake sediments causes turbidity in shallow lakes by increasing 

suspended solid concentrations in the water-column. Particulate P can be 

resuspended simultaneously (Figure 1.9) and cause significant particulate P 

concentration change over short timescales. Soluble reactive phosphorus (SRP), and 

consequently TP, may or may not change under such circumstances as both P forms 

are also controlled by the response of phytoplankton to elevated P and the sediment-

water equilibrium (Søndergaard et al., 1992 in Scheffer, 1998). Resuspension may 

cause a reduction in water-column P concentrations by adsorption to resuspended 

matter, although in eutrophic lakes this is unlikely (Scheffer, 1998). Ultimately, the 

balance between P desorption and adsorption depends on the relative saturation of 

sediments with P compared to water column P concentration (Scheffer, 1998).  
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Figure 1.9 Schematic representation of the effect of turbulence at the sediment 
surface. Based on Scheffer (1998). 

 

 

1.4.2 Nitrogen  

Most N arrives into a lake basin from a range of diffuse sources including, although 

not limited to, arable agriculture, livestock farming and un-sewered urban settlements. 

The excessive application of fertilizers, either as artificial fertilizers or animal manure is 

a particularly important source of N to waterways (Carpenter et al., 1998). The diffuse 

nature of N sources (Figure 1.10) makes a reduction in loading substantially more 

complex than for point-source derived pollutants (Petzoldt and Uhlmann, 2006).  

 

N is present in a variety of oxidised and reduced states in lake ecosystems (Kalff, 

2002). These include nitrate (NO3) and nitrite (NO2), although the majority is present 

as organic N (Brönmark and Hansson, 1998). NO3 may be reduced to NH4 

(ammonium) which is the preferred N source for phytoplankton and macrophytes  
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Figure 1.10 An example of contributors to nitrogen loading in a western 
European catchment (Germany). From Petzoldt and Uhlmann (2006). 

 

(Brönmark and Hansson, 1998). The majority of NH4 is derived from the breakdown of 

organic detritus (ammonification) (Kalff, 2002). Aquatic ecosystems appear to retain N 

as a function of their WRT, with lakes being intermediately retentive compared to 

wetlands and rivers (Saunders and Kalff, 2001b). The apparent retention of N occurs 

through denitrification, when NO3 and NO2 are reduced to produce gaseous N2 and 

N2O which is released to the atmosphere (Kalff, 2002). The uptake of N by 

macrophytes and the sedimentation of N-containing particulate matter are 

mechanisms of actual retention (Saunders and Kalff, 2001b).  

 

Whilst the chemical transformations of N within freshwater systems are well 

understood, the ecological effects of N in shallow lakes and its implications in lake 

restoration have received less attention. Some pertinent points have been identified 

regarding the role it may play for phytoplankton communities and, more recently, 

aquatic macrophytes. For example, the cyanobacteria are a group of prokaryotic 

phytoplankton, some of which are able to utilise gaseous N2 through specialised cells 

(heterocysts). Cyanobacteria assume a range of filamentous, colonial and single-

celled forms (Wetzel, 1983; Kalff, 2002; Reynolds, 2006). Filamentous forms (such as 

species from the genera Aphanizomenon and Oscillatoria) have received particular 

attention from lake managers, as their distinctive appearance is aesthetically 

damaging and, some other forms produce toxins that are potentially fatal to humans 

and animals (Lawton and Codd, 1991; Pitois et al., 2001, Figure 1.11).  
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Figure 1.11 Left, Aphanizomenon viewed under a microscope (from 
http://www.keweenawalgae.mtu.edu/ALGAL_PAGES/cyanobacteria.htm). 
Right, warning sign at Attenborough Nature Reserve, August 2006. 

 

Heterocystous cyanobacterial biomass has been shown to be low in systems where 

TN:TP ratio exceeded 29 to 1 (Smith, 1983) although this assertion has been 

challenged in shallow lakes (Jensen et al., 1994). A range of reasons exists for 

cyanobacterial success in aquatic environments, including their resistance to 

zooplankton grazing and competitive advantage at low light levels over eukaryotic 

phytoplankton (reviewed by Hyenstrand et al., 1998). The effect of TN:TP ratios on 

determining cyanobacterial success is significant since TP is traditionally controlled 

when implementing lake restoration efforts.  

 

Several studies have suggested that N as well as P is important in determining 

ecological structure and functioning in shallow lakes. In the Cheshire Meres, U.K., N 

and P limitation were observed over different spatial and temporal scales (James et 

al., 2003). Bioassays suggested the majority of meres were N limited or co-limited by 

N and P during July, but not in October (James et al., 2003). N has been shown to be 

particularly important in the Qu’Appelle catchment in Canada in structuring total algal 

abundance of a chain of P-rich lakes connected by the Qu’Appelle River (Leavitt et al., 

2006). N derived from urban sources was retained in the lakes, resulting in decreases 

in total abundance of algae with increasing distance downstream. Further studies on 
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the same lakes suggest that N-fixation by cyanobacteria increased with distance 

downstream. N-fixation in upstream lakes was negligible, although reached up to 77% 

of total N supply in downstream lakes (Patoine et al., 2006). In P-rich Lough Neagh, 

Northern Ireland, palaeoecological evidence suggests that historical algal abundance 

was more strongly correlated with inputs of diffuse N than P (Bunting et al., 2007).  

 

In reservoirs in Kansas, USA, Dzialowski et al. (2005) found that the majority of 

reservoir phytoplankton communities responded only to additions of N together with P, 

implying co-limitation. The alleviation of light limitation strengthened the TN:TP and 

chlorophyll concentration relationship. In contrast to findings of James et al. (2003), in 

Kansas nutrient ratios accurately predicted limiting nutrients similarly to other 

published results (Table 1.3).  

 

 

Table 1.3 Occurrence of nutrient limitation at differing molar TN :TP ratios  
reported by two studies. 

 

 

In a survey of upland lakes in the U.K., co-limitation by N and P has also appeared to 

be the most frequent outcome based on bioassays (Maberly et al., 2002). However 

co-limitation was the most likely result when the dissolved inorganic N:total dissolved 

P (DIN:TDP) ratio was low. Cyanobacteria were not abundant when N was scarce 

which may be because low P concentrations and low pH may have inhibited their 

growth. In addition, the high flushing rate of the lakes surveyed is also likely to prevent 

cyanobacterial growth and therefore contribute towards N being more frequently 

limiting (Maberly et al., 2002).  

 

Recent hypotheses and evidence draw parallels with terrestrial environments to 

suggest that elevated N concentration reduces aquatic plant diversity (Moss, 2001; 

González Sagrario et al., 2005; James et al., 2005). Using data from 60 shallow lakes 

located in Poland and the UK, James et al. (2005) showed that winter nitrate 

Limiting 
nutrient 

Guildford and Hecky, 
2000 Dzialowski et al., 2005 

N < 20 < 18 
P > 50 > 65 

N and P 20 - 50 20 - 46 
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concentration was the best predictor of plant species richness. Ceratophyllum 

demersum, Potamogeton pectinatus and Lemna sp. typified low-diversity 

communities. The most diverse plant communities were found at winter N 

concentrations of 1-2 mg NO3-N L-1, substantially lower than is likely to be attained 

under EU Water Framework Directive regulations (James et al., 2005). González 

Sagrario et al. (2005) used a series of mesocosm experiments to investigate trophic 

structure and water clarity responses to N and P enrichment in Lake Stigsholm, 

Denmark. Only when both nutrients were added to the mesocosms were significant 

effects recorded on macrophytes (decrease) and phytoplankton (increase) biomass. 

At mean TP concentrations of 0.07-0.13 mg P L-1 and TN of ≤1.2 mg L-1, enclosures 

remained clear and submerged vegetation biomass high. A switch to a reduced 

macrophyte biomass and reduced water transparency occurred at TP ≥0.2 mg L-1 and 

TN of 1.2-2 mg L-1.  

 

The results concur with a survey of small shallow Danish lakes by González Sagrario 

et al. (2005, Figure 1.12) where the majority of lakes (63%) exceeded the potential TN 

concentration threshold for low macrophyte biomass. Plant loss at TN concentrations 

of 1-2 mg L-1, with moderately high TP, is probably due to the alleviation of N 

limitation, allowing for periphytic and phytoplanktonic shading of macrophytes. Fish 

abundance may be instrumental in determining exactly what concentration of TN is 

required to induce a change from a clear water to turbid state due to their feeding 

upon grazing invertebrates (e.g. Jones and Sayer, 2003). These results suggest that 

consideration of N concentrations during lake recovery may be of importance and 

could account in part for the often slow, or delayed, recovery of submerged 

macrophytes after nutrient reduction.   
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a) 

 

b) 

Figure 1.12 The relationship between submerged macrophyte coverage and (a) 
average summer TN and (b) average summer TP and TN based on 204 
Danish lakes (zaverage = <5m, area >5ha). From Gonzalez-Sagrario et al. 
(2005). 

 

1.4.3 Silica 

Comparative to its abundance as an element in the earth’s crust, silica (SiO2) is 

scarce in aquatic systems since it is somewhat unreactive (Exley, 1998; Reynolds, 

2006). SiO2 in aqueous solution is derived from the hydrolysis and mechanical 

weathering of aluminium silicates (Reynolds, 2006). At a pH of below ~9, monosilicic 

acid (dissolved Si, DSi) is formed (van Dokkum et al., 2004; Reynolds, 2006). 

Anthropogenic releases of SiO2 to the aquatic environment are insignificant at a global 

scale (amounting to <2% of Si from weathering processes) but can be significant 

locally (van Dokkum et al., 2004). These sources include detergents, water and 

wastewater production and paper pulp production (van Dokkum et al., 2004).  

 

Although all species of phytoplankton require SiO2 to some extent (Reynolds, 2006), it 

is the diatoms that exert the greatest influence on the cycling of SiO2 in freshwater 

ecosystems. The only source of SiO2 that can be utilized by phytoplankton and other 

biota is H2SiO4 (Exley, 1998; van Dokkum et al., 2004; Reynolds, 2006). Biogenic Si 

(also referred to as ‘amorphous’ or particulate Si), that forms the frustules of diatoms, 

is created from the condensation and polymerisation of DSi. This occurs on timescales 

of hours to days (Exley, 1998) and proceeds much more rapidly than the dissolution of 

diatom cells. Generally, the majority of Si in freshwaters repeatedly oscillates between 
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biogenic and dissolved forms unless it is removed from the system (e.g. through 

permanent burial, or loss to outflow).  

 

During spring, phytoplankton in temperate lakes undergo exponential increases in 

population size over a period of a few weeks, initiated mainly by increasing 

temperature and light. Fast-growing r-strategist species, such as centric diatoms, often 

dominate during this period (Schmitt and Nixdorf, 1999). DSi is rapidly depleted by 

diatom uptake and is deposited as biogenic Si, a sequence well observed in both 

marine (e.g. Paasche and Østergren, 1980) and freshwater environments (e.g. 

Schelske and Stoermer, 1971; Schelske, 1999).  

 

Bailey-Watts (1976) compared the quantity of biogenic Si in Stephanodiscus rotula 

populations with DSi concentrations in the water column of Loch Leven, Scotland. 

Diatoms are the primary constituent of the phytoplankton community in Loch Leven, a 

large, shallow (zaverage = 4m) and well mixed lake with a ‘rich’ supply of N and P. 

During the period of observation (1968-1971), populations of phytoplankton expanded 

and contracted rapidly, being driven largely (although not exclusively) by changing Si 

concentrations (Bailey-Watts, 1976). Interestingly, diatom maxima appeared not to 

show any relationship with Si concentration (Table 1.4). Confounding factors may 

include the uptake of Si by benthic algae, grazing by zooplankton and undetected 

losses of diatoms (such as through outflow or sinking) (Bailey-Watts, 1976).  

 

Table 1.4 Dissolved Si concentrations at times of diatom maxima in Lough 
Leven (from Bailey-Watts, 1976). 

 

Time of maximum 
Year Month 

Contemporary DSi 
(mg SiO2 L-1) 

1968 April 0.9 
March 6.0 
April 4.0 

1969 

May 0.5 
April 5.4 

September 0.5 
1970 

October 0.05 
March to April 0.25, 0.20 1971 

September 3.3, 3.0 
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Schmitt and Nixdorf (1999) related the loss of planktonic diatoms in Lake Melangsee 

to a shift in the location of the majority of primary production. Si uptake appeared to 

shift from mainly pelagic to benthic habitats, caused by an increase in the quantity of 

light reaching the benthic environment. The observed decrease in Si concentrations in 

this eutrophic shallow lake could not be accounted for through assimilation by pelagic 

diatoms alone. Spring biomass of pelagic diatoms was usually less than 1.5 mm3 L-1, 

requiring only an estimated 0.45 mg SiO2 L-1, whilst Si actually reduced by 2-3 mg L-1 

during this period. The frequent occurrence of resuspended benthic diatoms in 

sediment samples, increased oxygen in the surface sediments and high losses to 

outflow supported this primary production shift theory (Schmitt and Nixdorf, 1999). 

Reductions of P loading in Danish shallow lakes similarly induced a benthic diatom-

mediated reduction in Si (Søndergaard et al., 2005).  

 

The largest inputs to sediment Si reservoirs are often from biogenic sources and any 

abiotic inputs are generally less significant. Diatoms, due to their greater density 

compared to other phytoplankton, generally form a significant fraction of such biogenic 

material. Frustules may aggregate during sedimentation, increasing the rate of settling 

(Miretzky and Cirelli, 2004). Si sedimentation occurs mainly (although not exclusively) 

after diatom blooms and is therefore strongly periodic (Wetzel, 1983). For example, 

bimodal peaks of equal volume (June and November) in diatom sedimentation were 

observed in Lake Michigan following diatom blooms (Parker et al., 1977). 

 

Sedimentation of diatoms can result in the permanent loss of Si from an aquatic 

system. In Lough Neagh, Northern Ireland, an estimated 26% of the inflowing Si was 

retained in the sediments due to diatom valve preservation as sub-fossils (Gibson et 

al., 2000). In deep lakes, Si can be effectively stored in deep waters and sediments 

and be unavailable for diatom uptake (Barbiero et al., 2002). The Laurentian Great 

Lakes have shown long-term decreases in epilimnetic Si concentrations due to 

phosphorus enrichment (Schelske and Stoermer, 1971; Schelske et al., 1983; 

Schelske, 1999). This process has been termed the ‘Si-depletion sequence’ (Schelske 

et al., 1983). The sequence begins with phosphorus-limited diatom production and 

little Si sedimentation. Alleviation of primary phosphorus limitation by anthropogenic 

enrichment induces rapid Si sedimentation, before a transition to secondary Si 

limitation (Figure 1.13).  



Chapter 1: Introduction and literature review 
 

50 

 

Figure 1.13 Hypothetical storage of biogenic silica in Great Lakes sediments 
based on phosphorus loading and the silica depletion sequence (from 
Schelske et al., 1983). 

 

Recent evidence has demonstrated increases in Si concentrations following reduction 

of external P loading in Lake Michigan, USA. Babiero et al. (2002) report an increase 

in spring Si concentrations from 1.1 to 1.5 mg L-1 between 1983 and 2000, with a 

concomitant reduction in TP of approximately 1 µg L-1 over the same period. The large 

effects from such small P changes can be attributed to a likely greater reduction in 

bioavailable P than TP. In addition, the P requirements of diatoms are substantially 

less than for Si, reflected in the high Si:P ratios of diatom cells (Barbiero et al., 2002). 

A small change in the availability of P can therefore result in a proportionally greater 

change in Si assimilation, resulting in substantial change in Si dynamics. Schelske 

(1999) proposes three additional reasons why P enrichment has an greater influence 

on Si utilisation than nutrient ratios alone might explain:  
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1. P cycling is more efficient than Si cycling, as the dissolution of Si is a relatively 

slow process compared to the uptake, excretion and mineralisation of P, 

2. ‘accessory growth substances’ (such as vitamins and trace metals) may be 

present in P-rich inputs, which further enhances the effects of nutrient 

enrichment, 

3. nutrient (and accessory substance) addition stimulates the growth of diatoms 

at light levels which would usually be considered limiting. 

 

As senescent diatoms descend through the water column, they are subjected to 

varying degrees of dissolution. Fauna may further influence dissolution processes, for 

example through zooplankton consumption (Ferrante and Parker, 1977) and 

chironomid activity (Gibson et al., 2000) (discussed below). 

 

Dissolution of diatoms is a highly complex process and is critical for the replenishment 

of DSi in the absence of external sources. Dissolution may occur during the descent of 

senescent frustules through the water column or on the sediment surface. 

Zooplankton consumption and excretion of diatoms has been shown to speed up the 

settling rate of frustules in Lake Michigan (Ferrante and Parker, 1977). On the 

sediment surface, increasing pH, temperature, coarseness of sediment, grazing, 

bioturbation, water depth and exposure all increase the rate of dissolution (Flower, 

1993). Salinity exerts a particularly strong control over diatom dissolution. Experiments 

conducted with natural sediment surface assemblages from Lakes Geneva and 

Nantua, France, by Barker et al. (1994), suggested that different salt solutions caused 

different rates of dissolution. At concentrations of 3.0 Mmol L-1, the dissolution rate 

was higher in Li+, K+ and Na+ solutions than for distilled water. Bivalent cation 

solutions (Mg2+ and Na2+) of the same concentration (3.0 Mmol L-1) caused lower rates 

of dissolution than for the monovalent solutions. Ryves et al. (2006) developed 

dissolution indices based on datasets from Greenland and the Northern Great Plains 

(NGP), USA. Their results suggested that dissolution rate was affected by salt type 

independent of salinity. Carbonate was important, but only for the NGP dataset. No 

lakes with carbonate concentrations above ~250 mg L-1 contained well preserved 

diatoms (Ryves et al., 2006).  
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Diatom frustules are highly adsorptive and remove metal ions such as Al from the 

water column (Exley, 1998) or sediment surface (van Dokkum et al., 2004) resulting in 

a reduction in the dissolution rate of the diatoms. The surface area and solubility of 

frustules decreases during their descent (van Dokkum et al., 2004). Laboratory studies 

have sought to quantify the effects of some of the variables that influence dissolution 

(e.g. Lewin, 1961; Rippey, 1983; Flower, 1993). Evidence from Lough Neagh 

sediment cores presented by Rippey (1977, 1983) demonstrated that temperature 

exerted the most significant influence on the rate of Si release. For example, an 

increase in temperature from 3 to 20˚C increased the rate of Si release by 260% 

(Rippey, 1977). In contrast, Spears et al. (2008) found that Si release was not affected 

by temperature, but increased light at the sediment surface reduced Si release, 

probably because of Si uptake by benthic algae. Published values of Si diffusion from 

sediment vary widely (Table 1.5). 

 

 

Table 1.5 Published values of Si diffusion from sediments in freshwater systems 
(modified from Hofmann et al., 2002). 

System 
Lake 
area 
(km2) 

zmax 
(m) 

Diffusion 
(g m-2 yr-1) Comment Technique* Reference 

Ursee (D) - 11 6.1-12.3 Small bog-lake LC Tessenow, 
1972 

Grane 
Langsø 

(DK) 
0.11 11.5 1.7 Oligotrophic 

Kvindsø 
(DK) 0.14 2.5 7.3-69.3 Eutrophic flux is T 

dependent 

LC 
MB 

Møller-
Andersen, 

1974 

Loch Leven 
(Scotland) 13.3 mean = 

4.0 
19.4-144.6 

(mean = 80.5) Eutrophic LC 
Bailey-
Watts, 
1976 

Lough 
Neagh 

(N. Ireland) 
383 8.9 6.1-36.8 Eutrophic LC Rippey, 

1983 

Toolik Lake 
(Alaska) 1.5 

25 
(mean 
= 7) 

0.2 
Ultraoligotrophic, 

ice free 3 months a 
year 

PWP 

Cornwell 
and 

Banahan, 
1992 

*LC, laboratory cores: laboratory confinements of sediments in core tubes and measurement of 
solute concentrations in overlying water over time. PWP, pore water profiles: flux calculation from 
observed concentration gradients at the sediment-water interface based on Fick’s first law and the 

molecular self-diffusion coefficient of the solute. MB, mass balance calculation. 
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The suggestion that benthic faunal activity increases the rate of nutrient release from 

sediments through bioturbation is long accepted, originating in the work of Tessenow 

(1964, in Gibson et al., 2000). Gibson et al. (2000) refined the concept of chironomid 

‘presence’ into one of ‘activity’. An arbitrary measurement of chironomid activity 

(biomass × respiration) produced a strongly seasonal pattern which agreed with the 

timing of sediment Si release in Lough Neagh (Gibson et al., 2000). No addition to the 

literature has expanded these concepts into a theoretical framework or modelled such 

processes in laboratory studies. 

 

Despite a robust experimental understanding of factors influencing dissolution, 

applying these principles to the field is fraught with difficulty due to the ‘multivariate’ 

nature of diatom preservation (Flower, 1993). Ultimately, provided that pore waters of 

sediments are undersaturated with Si, a degree of dissolution will occur, whilst in high-

energy, exposed settings diatom breakage is possible (Flower, 1993) and likely to 

speed up the dissolution of diatom cells. To appreciate the significance of Si liberation 

through dissolution it is important to set inputs and outputs to sediments in a temporal 

framework. Figure 1.14 shows the temporal changes over the annual cycle of Si  

 

a) 

 

b) 

 

Figure 1.14 a) Calculated monthly average net sediment flux of SiO2 1974-1997 
(positive values are release) in Lough Neagh. b) Sediment input (March – 
June) and release (July – October) of SiO2 1974-1997 (from Gibson et al., 
2000). 
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sedimentation and release from Lough Neagh. Whilst a simple model of sedimentary 

output during late winter to spring appears to be compensated for by the storage of Si 

from early summer to mid winter, a more detailed consideration of sediment fluxes 

reveals a more complex pattern and lack of statistically significant input-output 

coupling on annual timescales. Of particular note are the values for 1975 and 1976, 

when low Si release in 1975 suppressed the spring 1976 diatom bloom, although the 

release of Si in 1976 was above the 1974-1999 average (Gibson et al., 2000). Long 

term averages, however, support a model where spring input corresponds strongly to 

sedimentary Si release. 

 

Si limitation exerts an effect at both the species level initially and ultimately the 

physiological group level. Only species-level resource competition is ‘mechanistically 

predictive’ (Interlandi et al., 1999) although competition theory is often used to explain 

physiological group-level changes in phytoplankton communities (e.g. Krivtsov et al., 

1999; Krivtsov et al., 2000a; van Dokkum et al., 2004, discussed below).  

 

A classic study on the role of nutrients in shaping phytoplankton communities at the 

population level is that of Tilman and Kilham (1976; in Reynolds, 1998). They 

investigated the likely outcome of competition between the two diatom species 

Asterionella  formosa and Cyclotella meneghiniana. Although consuming comparable 

quantities of P and Si, the affinity (ability to meet nutritional requirements at low 

external concentrations) of each species differed substantially. Asterionella showed 

lower affinity (indicated by half-saturation level; KU) for P whilst Cyclotella had lower 

affinity for Si. This would enable Cyclotella to be a more successful competitor than 

Asterionella when Si is low, whilst the reverse is true when P is scarce. Field evidence 

from Lake Michigan echoed these findings (Tilman et al., 1982). A seasonal 

succession of diatom species has been hypothesised as a result of Si depletion by 

preceding species (Tilman et al., 1982, Figure 1.15).  

 

Barberio et al. (2001) used ordination analysis to show a significant change in spring 

and summer diatom species composition as Si concentrations (and by implication Si:P 

ratios) increased due to ongoing reductions in phosphorus loading. Palaeoecological 

work from Lake Michigan (Stoermer et al., 1990) shows high abundance of high Si 

demanding diatoms in the surface sediments whilst species requiring less Si, such as 
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Cyclotella, achieved dominance when anthropogenic phosphorus loading remained 

high during the mid- to late 1800s.  

 

 

Figure 1.15 Interspecific tradeoffs in diatom competitive ability for silicate and 
phosphate at 20˚C. Stephanodiscus is the better competitor for silicate, 
whilst Synedra is a superior competitor for phosphate (from Tilman et 
al., 1982). 

van Dokkum et al. (2004) chart a theoretical five-stage sequence of the effects of Si 

enrichment on physiological groups within phytoplankton communities. Firstly, spring 

and autumn blooms extend (1), with the possible effect of a reduction in chlorophytes 

and cyanobacterial blooms in summer due to the increased utilisation of phosphorus 

by the spring diatom bloom (2). This change is accompanied by (3) a shift in biomass 

from summer to spring and autumn, and (4) a possibility of a perennial increase in 

total phytoplankton. Finally, the effects of changes in algal community composition 

cascade through many trophic levels, since phytoplankton are at the base of many 

food webs.  

 

Mathematical modelling produces results which reproduce this sequence. For 

example, the simple ‘Rostherne’ model was used to simulate the interactions between 

diatoms and cyanobacteria (Krivtsov et al., 1999; Krivtsov et al., 2000a). The model 

illustrated high Si concentrations increasing spring diatom populations with a 

consequent suppression of the summer cyanobacteria population caused by 

enhanced phosphorus uptake. Such processes, where one species influences the 
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next, was termed ‘indirect succession regulation’ (Krivtsov et al., 2000b) and was 

clearly an important mechanism in determining phytoplankton structure in aquatic 

ecosystems. Horn and Uhlman (1995) examined the switch in dominance between 

cyanobacteria and the diatom Fragilaria in the Saidenbach Reservoir, Germany. The 

originally mesotrophic reservoir (area 146 ha; zmax = 45 m) underwent anthropogenic 

eutrophication from the 1970s. Concomitant with increased nutrient loading was an 

increasing dominance of cyanobacteria over diatoms (Table 1.6). Despite an apparent 

transition towards non-siliceous species as Si became limiting, close correlations 

between Si:P ratios and the relative dominance of diatoms and cyanobacteria did not 

exist, although both Si and P controlled the phytoplankton community. N was 

considered unlikely to exert any influence since high agricultural loading maintains 

high N:P ratios (Horn and Uhlmann, 1995). 

 

Table 1.6 Summary of nutrient and algal dynamics in the Saidenbach Reservoir, 
1975-1995. SRP, soluble reactive phosphorus (from Horn and Uhlmann, 
1995). 

 

1.5 The importance of hydrology  

Lakes are intimately connected to hydrological processes in their catchments (Winter, 

2004). Precipitation, ground-water and rivers are the primary sources of water to 

lakes, although the significance of each source varies among lakes. Shallow lakes, 

which are more likely to be located in lowlands, may be connected to rivers and 

therefore river and stream discharge can be particularly important sources of water 

Date Nutrient Conditions Phytoplankton trends 

1975 - 1980  Epilimnetic summer SRP 
 < 4 µg l-1.   

P limited, nearly entirely diatoms. 
Few planktonic cyanobacteria. 

1981 - 1986 Declining external Si loading. 
Diatoms limited by Si.  

Steadily increasing 
cyanobacteria, subsequent to 
Fragilaria bloom.  
Occasional severe Si limitation 
favours earlier development of 
cyanobacteria population. 

1987 - 1989  Higher Si and SRP inputs due 
to greater inflow. 

Simultaneous abundant diatoms 
and cyanobacteria. 

1990 - 1995 Drastic reduction in inflow 
volume and P concentration of 
inflow. Increased Si:P ratios, 
although Si at very low 
concentrations. 

Diatoms become absent as Si 
limiting. Cyanobacteria become 
dominant phytoplankton 
component. 
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(Winter, 2004; Reynolds, 2006). Large shallow lakes may lose considerable volumes 

of water to evaporation (Winter, 2004). Catchment-wide scale processes, such as 

precipitation, snow-melt and changes in surface permeability may alter surface runoff 

(Davie, 2002), and result in variations in the residence time of water within a lake 

(Winter, 2004). Hydrology is often overlooked in studies of shallow lakes. However, 

both nutrients and biology can be altered by variations in WRT.  

 

Flooding events and reductions in WRT can increase or decrease nutrient 

concentrations in lakes. The response of lakes to variability in hydrology differs among 

studies. Alvarez Cobelas et al. (2006) found P concentrations decreased when 

precipitation increased groundwater discharge into a series of lakes. In a Polish 

floodplain, SRP concentrations were higher in lakes that were isolated from river 

inputs, although no clear trend in other nutrients was evident (Glińska-Lewczuk, 

2009). In Lake Peipsi, Estonia, Haldna et al. (2008) found that P and NO3-N 

concentrations were higher during a dry period. The effects of floods during spring 

reduced P and Si concentrations in floodplain lakes of the Daugava River in Latvia, 

but early summer flooding increased the concentrations of both nutrients (Paidere et 

al., 2007). Roozen et al. (2008) found increases in NO3-N, P and Si associated with 

flooding in lakes along the River Waal, the Netherlands. In contrast, nutrient 

concentrations in a wetland in central Spain did not respond clearly to differences of 

water inputs (Angeler et al., 2000). The source of nutrients may explain some of these 

conflicting findings. Elliot et al. (2009) suggest that increases in streamflow increase 

the transport of diffuse nutrients to lakes, but not point-source nutrients. Increased 

river discharge may dilute the increased loading of diffuse source nutrients in lake 

basins (Elliott et al., 2009).  

 

Theoretically, phytoplankton biomass is likely to decrease with increasing water inputs 

to a lake because of washout and dilution of cells. Washout is the loss of 

phytoplankton through outflows, and dilution is the reduction in the concentration of 

phytoplankton caused by an increase in the volume of water throughout which they 

are distributed (Reynolds, 2006). The realised change in phytoplankton abundance as 

a result of washout or dilution depends on the rate of flushing and the reproductive 

rate of the phytoplankton. When the difference between the loss of phytoplankton to 

outflow and phytoplankton reproduction are the same, then phytoplankton biomass is 
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less sensitive to changing flushing rate (Lucas et al., 2009). Lakes with smaller 

volumes and large catchments are more sensitive to inflow compared to large lakes 

with small catchments (Brook and Woodward, 1956), because the discharge to 

smaller lakes is proportionally greater compared to their volume (Reynolds, 2006).  

 

Changes in phytoplankton biomass associated with hydrological regime have been the 

subject of several studies. Brook and Woodward (1956) concluded that the biomass of 

phytoplankton and the abundance of chlorophytes and cyanobacteria was lower in 

Scottish lakes with short WRTs than those with long WRTs. Dickman (1969) found 

that slower-growing species of phytoplankton became more abundant in an isolated 

section of a well-flushed lake in British Columbia, Canada. Rennella and Quirós 

(2006) found that high flushing rates increased phytoplankton biomass in lakes of the 

Pampa Plain in Argentina, because of increased nutrient availability. Longer WRT 

increased chlorophyll-a concentrations in Neuendorfer See, Germany, until the 

residence time reached 15 days, and decreased as residence time became longer 

(Walz and Welker, 1998). Phytoplankton decreased in response to short WRT in 

Mediterranean groundwater-fed lakes (Alvarez Cobelas et al., 2006). Water level 

increases in Lake Võrtsjärv reduced the total phytoplankton abundance, and caused a 

shift from the dominance of Anabaena sp. during low water levels to Plantothrix sp. at 

high water levels, reflecting changing light availability and an increase in the N:P ratio. 

In floodplain lakes of the Danube, increased water depths increased the importance of 

diatoms in the phytoplankton community at the expense of cyanobacteria (Mihaljević 

et al., 2009).  

 

In addition to affecting the total biomass of the phytoplankton community, changes in 

hydrology may affect the composition of the phytoplankton. In highly disturbed 

environments, such as where flushing rates are high, some phytoplankton may have 

certain traits which favour their dominance over other species. For example, high rates 

of washout and dilution of phytoplankton in a lake may favour species with a rapid 

reproduction rate. The theoretical effect of different environmental conditions on 

phytoplankton assemblages has approached by extending Grime’s (1973, 1977) C-, 

S- and R- strategies for terrestrial plants to phytoplankton. Each strategy represents 

an approach to surviving different combinations of stress and disturbance. Reynolds 

(1988) defines stress as ‘nutrient limitation of the rates of cellular growth and 
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replication’, and disturbance as ‘frequent involuntary translocations of individuals out 

of the euphotic layer, especially if these result in the destruction of existing biomass’. 

Highly stressed and highly disturbed environments are not considered suitable for 

growth. C- strategists (‘competitors’) are able to rapidly exploit the available resources 

and have the highest growth rates in productive and undisturbed environments 

(Grime, 1977). S- strategists are slower growing species that can survive in stressful 

unproductive environments (‘stress-tolerant’), and R-strategists (‘ruderal’) are adapted 

to highly disturbed and productive environments (Grime, 1977). Examples of typical 

species and characteristics are given in Table 1.7. However, most phytoplankton  

 

Table 1.7 Summary of morphological and ecological traits of phytoplankton 
classified by Grimes’s (1977) adaptive strategies, and representative 
species. Based on Reynolds (1988) with details from Reynolds (2006) 
and Jones and Elliott (2007).  

Stress intensity  Disturbance 
intensity Low  High 

Low Competitors (C) 
Mainly unicellular, low threshold 
for light and high surface to 
volume ratio. Highly susceptible 
to grazing by zooplankton and 
low rates of sinking. Includes 
Chlamydomonas, Ankyra, 
Rhodomonas.  

Stress-tolerant (S) 
Some unicellular, many coenobial. 
Small surface to volume ratios, 
generally large. Adapted to low 
resource availability (e.g. nitrogen 
fixation). Most are motile, and can 
undertake controlled migrations. 
Includes Microcystis, Anabaena, 
Ceratium, Peridinium.  

High Ruderals (R) 
Some unicellular, many 
coenobial, high surface to 
volume ratio and high maximum 
linear dimension. High light 
requirements, some with high 
sinking rates, some susceptible 
to grazing. Includes Aulacoseira, 
Asterionella. 

None 

 

share traits of each strategy, for example Scenedesmus and Monoraphidium fall on a 

gradient between typically C- and R-strategists (Figure 1.16). These strategy traits 

have been found to correspond to natural phytoplankton assemblages under different 

regimes of disturbance. For example, García de Emiliani (1997) found that in a 

floodplain lake of the Parana River valley, periods of flooding were associated with 

increases in the abundance of R-strategists. Cryptophytes, which share traits of all 

three groups, also increased in abundance during flooding. When the lake became 
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isolated after the recession of the floodwaters, C- strategists, including Scenedesmus 

and Monoraphidium, were replaced with more slow-growing, S- strategist taxa, 

including dinophytes (Peridinium), and the cyanobacteria Anabaena.  

 

Abbreviations:

Ana: Anabaena flos-aquae
Apha: Aphanizomenon flos-aquae
Ast: Asterionella formosa
Aul: Aulacoseira subarctica
Cer: Ceratium hirundinella
Chla: Chlamydomonas
Chlo: Chorella sp.
Chla: Chlamydomonas
Chlo: Chorella sp.
Cry: Cryptomonas ovata
Din: Dinobryon divergens
Eud: Eudorina unicocca
Frag: Fragilaria crotonensis
Lim r: Limnothrix redekei
Mic: Microcystis aeruginosa
Monod: Monodus sp.
Monor: Monoraphidium contortum
Per: Peridinium cinctum
Pla ag: Planktothrix argardhii
Plg: Plagioselmis nannoplanctica
Scq: Scendesmus quadricauda
Sth: Stephanodiscus hantzschii
Syn: Synechococcus sp.
Tab: Tabellaria flocculosa var. asterionelloides
Vol: Volvox aureus

 

Figure 1.16 Morphological properties of some freshwater phytoplankton in 
relation to their surface (µm2) to volume (µm3) ratio (sv-1, µm-1), and 
product of maximum linear dimension (m, µm) and sv-1 (msv-1). 
Approximately spherical cells have an msv-1 value of 6 (from Reynolds, 
2006).  

 

1.6 Practical experiences of nutrient reduction 

There is much evidence that suggests that the use of nutrient reduction as a technique 

for shallow lake restoration is complex and that the outcome may not be entirely as 

predicted. Whilst the Vollenweider model suggests that in-lake P concentrations will 

decline with external loading as a function of WRT, experiences in Denmark 

(Jeppesen et al., 1991) and globally (Jeppesen et al., 2005b) suggest that in lakes 

with short WRT (i.e. lakes that are well flushed), the historic accumulation of P 

outweighs the flushing of P from the lake. Seasonal differences in P release have 
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been shown to have consequences for in-lake P concentrations (e.g. Søndergaard et 

al., 2005). Furthermore, P release during late summer may fail to decline, even after 

considerable periods of time, such as in the case of the restoration of Barton Broad, 

Norfolk, U.K. (Phillips et al., 2005). Understanding seasonal variation in P release 

presents an opportunity for hydrological manipulation of lakes in order to aid nutrient 

reduction measures (e.g. Spears et al., 2006). If in-lake P concentrations are reduced 

and total phytoplankton biomass declines, changes in the structure of the 

phytoplankton have been observed, which can be of significant consequence if 

cyanobacteria increase. Nutrient reduction alone is often not enough to guarantee the 

return of submerged vegetation to shallow lakes and may require manipulations of the 

fish stock in order to bring about a stable and diverse macrophyte community (Moss et 

al., 1996a; 1996b). However, recent evidence suggests that rapid changes in foodweb 

structure can occur naturally after nutrient reduction and achieve a similar outcome to 

artificial manipulation (e.g. Jeppesen et al., 2005a). These issues are discussed in the 

following sections. An overview of the characteristics of the individual sites and 

datasets described are presented in Table 1.8. 

 

1.6.1 In-lake P concentrations and WRT 

Jeppesen et al. (1991) present a series of analyses of shallow eutrophic Danish lakes 

(TP ≈ 0.14 mg L-1, chlorophyll-a, 0.051 mg L-1) subject to high diffuse nutrient loading. 

In the majority of cases, the lakes underwent a 70% reduction in P loading. In most 

cases P concentrations had failed to reduce to levels expected after 4-16 years. This 

can be partly explained by the length of time required to dilute nutrient-rich water in 

the lake. Achieving a 95% reduction in in-lake P in a homogenous system with no 

sediment-water interactions, takes approximately three times the WRT (Sas, 1989 in 

Scheffer, 1998). Lakes with high WRT responded quicker than a simple dilution model 

would predict, attributable to the sedimentation and consequent storage of P in 

sediments. In contrast, lakes with a low WRT responded slower (10-300 times) than 

modelling predictions.  

 

A dataset by Jeppesen et al. (2005b) covered lakes of varying depth, trophic state 

(7.5–3500 µg P L-1 prior to nutrient reduction), latitude and altitude. 5-10 years after 

nutrient loading reduction, in-lake TP concentrations where higher in the majority of 
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lakes than predicted by an equation relating TP to nutrient inflow and WRT, 

suggesting continuing internal loading. By 10-15 years after nutrient loading reduction, 

TP was closer to the equation’s predictions. These results suggest that short-WRT  

 

Table 1.8 Summary of case studies referred to in the text. 

 

lakes accumulated more P within their sediments and were therefore subjected to 

higher sedimentary P release, which outweighed the potential of their faster flushing 

rates to remove P (Jeppesen et al., 1991; 2005b). The experiences described here 

emphasise the caution of Ahlgren et al. (1988) that the application of Vollenweider 

Lake Name / 
Location 

Area 
Depth 
WRT 

Nutrient reduction and other 
restorative measures References 

Various within 
Denmark 
(n = 27) 

Mean = 20 ha 
Mean = 1.8 m 
Mean = 0.3 yrs 

Various. Jeppesen et al., 1991 

Various within 
Denmark 
(n = 16) 

Mean = 91 ha 
Mean = 2.5 m 

Mean = 0.19 yrs 

Mean TP 0.322 mg L-1, significant 
reductions in 4 lakes only. 

Søndergaard et al., 
1999 

Global 
(n = 35) 

3-355,500 ha, 
<5-177 m, 

0.05 – 56 yrs 

Pre-nutrient control = 7.5-3500 
µg P L-1. Various external 

measures used. 

Jeppesen et al., 
2005b 

Augher Lough, 
N. Ireland 

9.25 ha 
Max. = 14.5 m 

0.46 yrs 

Diversion of creamery effluent 
around lough. Anderson et al., 1990 

Various within 
Denmark 

(n = 8) 

Mean = 539 
Mean max. = 4.8 m 

Mean = 0.65 yrs 

Start of P control = TP inlet, 
0.556 mg P L-1 reduced to 

0.126 mg P L-1 mg after 9 years. 
Various techniques. 

Jeppesen et al., 
2005a; Søndergaard 

et al., 2005 

Mügelsee, 
Germany 

730 ha 
Mean = 4.9 m 

0.17 yrs 

Catchment wide P measures to 
reduce external loading. 

Coincidental inflow reduction.  
Köhler et al., 2005 

Barton Broad, 
U.K. 

60 ha 
Mean = 1.4 m 

0.04 yrs 

P removal at upstream STWs 
Sediment dredging after 17 yrs of 

P control.  
Phillips et al., 2005 

Alderfen 
Broad, U. K. 

4.7 ha 
Mean = 0.8 m 

n/a 
Diversion of inflow around Broad. 

Moss et al., 1986, 
Moss et al., 1990; 
Perrow et al., 1994 

Cockshoot 
Broad, U. K. 

3.3 ha 
Mean = 1.0 m 
WRT not given 

Isolation from river and sediment 
removal. Fish community removal 

7 years later. 
Moss et al., 1996b 

Botshol Nature 
Reserve, The 
Netherlands 

287 ha 
1.5-3.0 m 

WRT not given 

70% P reduction through 
chemical stripping at STWs and 
diversion of agricultural runoff. 

Rip et al., 2005 

Llandrindod 
Wells lake, 

Wales, U. K. 

6.75 ha 
Mean = 1.25 m 
WRT not given 

Biomanipulation of fish 
community and macrophyte 

reintroduction. 
Moss et al., 2002 

Loch Leven, 
U.K. 

1332 ha 
Mean = 3.9 m 

WRT = 0.25-0.33 
yrs.  

Reduction in external loading 
(from 20-8 t TP yr-1) 10 yrs prior 

to study. 
Spears et al., 2006 
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models to systems where P is retained is misleading and incorrect (see page 37). This 

is critical when considering shallow lake restoration and highlights the importance of a 

rigorous understanding of the timing and duration of P release from sediments after 

nutrient reduction.  

 

1.6.2 Seasonal differences in P response 

Eight years after nutrient loading reduction, Søndergaard et al. (1999) observed that 

annual retention of P was highest in a variety of lakes with lower P concentrations, 

although this decreased as summer TP increased. In common with other studies 

(Jeppesen et al., 1991; 2005b) retention of P was less than predicted by the 

Vollenweider model (see page 31 for details), particularly in lakes with high TP 

concentrations (> 0.2 mg L-1). In lakes with summer TP below 0.1 mg L-1, retention of 

P was negative only during July and August, although in lakes with summer TP 

>0.1 mg P L-1, this period was extended to between April and September 

(Søndergaard et al., 1999). This can be explained as a result of an increase in the 

biological breakdown of organic matter, an enhanced rate of chemical processes that 

lead to a release of P and an increase in pH by a higher rate of summer-time 

photosynthesis. The spring clear-water phase led to reduced P retention in June, 

possibly as a consequence of reduced sedimentation of organic matter and an 

increase of benthic algal photosynthesis resulting in increased oxidation of the 

sediment surface (Søndergaard et al. 1995). 

 

Søndergaard et al. (2005) examined seasonal responses of nutrients to reduced P 

loading. Late summer TP concentrations declined less than spring and early summer 

TP. This was likely to be a consequence of P available for release in spring and early 

summer being derived from the previous winter’s sedimenting matter, whilst late 

summer P is derived historical P loading at greater depth in the sediments. During 

winter and particularly spring, P from deep sediments would be prevented from being 

released by oxidised sediment layers (Søndergaard et al., 2005). 

 

During the restoration of Barton Broad, Phillips et al. (2005) reported a gradual shift in 

the magnitude and timing of P release from the sediments. Eight years after the 

implementation of nutrient reduction measures, P release occurred during May to July, 
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although by 19 years post-restoration the magnitude of this release had declined and 

occurred later in the year. Spring and early summer P concentrations were possibly 

related to catchment loading, with late summer and autumn P a consequence of 

internal loading (Phillips et al., 2005).  

 

A consideration of the seasonal P dynamics in sediments and the water column 

suggests that manipulation of flushing could be used to reduce internal loading of 

eutrophic Loch Leven, Scotland (Spears et al., 2006). Late summer TP in the loch 

during 2004 was in excess of 80 µg L-1. High water column TP coincided with low 

sediment TP and vice versa which suggested that much of the P contained in 

sediments was sensitive to release. June and July appeared to be the months of most 

retention whilst the largest gain to the sedimentary P pool occurred between 

December and February. Since the loch’s hydrological regime can be controlled via 

sluice gates, there is the potential to coordinate maximum outflow with periods of high 

water column P concentration in order to assist nutrient reduction (Spears et al., 

2006).  

 

The temporal dynamics of P release are of great importance in understanding the 

outcome of nutrient reduction measures. This is particularly true if summertime P 

release continues, as this may be significant in maintaining high in-lake P 

concentrations and high phytoplankton biomass after restoration. Quantifying 

seasonal variation may enable the development of additional restoration measures 

based on carefully timed hydrological manipulation (e.g. Spears et al., 2006) to 

accompany nutrient reduction.  

 

1.6.3 Phytoplankton community response 

Despite nutrient reduction resulting in a decline in total phytoplankton biovolume, 

different algal groups have tended to respond differently to nutrient reduction 

measures. Jeppesen et al. (2005) observed that chlorophytes (as a proportion of total 

algal biomass) fell to <10% in shallow lakes with TP concentrations of <100 µg L-1 

after nutrient reduction. As a proportion of total phytoplankton biovolume, diatoms, 

cryptophytes and chrysophytes increased. Diatoms may have been affected by a 

reduction in silica limitation (Jeppesen et al., 2005b). Diatoms also decreased in total 
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abundance in Barton Broad whilst shifting towards pennate forms away from small 

centric species. Increasing silica availability compared to P availability may have 

favoured larger pennate species (Sommer, 1988 in Phillips et al., 2005).  

 

Palaeolimnological records have been used to investigate planktonic diatom 

responses to nutrient reduction and can be of considerable interest since they often 

provide information on longer timescales that can be derived than from monitoring 

data alone. Anderson et al. (1990) used a core taken from Augher Lough to show a 

clear response of planktonic diatoms to sewage management. When the lake became 

more eutrophic due to the onset of sewage disposal, the planktonic diatom community 

showed a switch from species indicative of mesotrophic conditions (such as 

Aulacoseira and Asterionella) to small Stephanodiscus species suggesting eutrophic 

conditions. When sewage effluent was diverted away from the lake, mesotrophic 

species returned. This is interpreted as a response to Si:P ratios, since Aulacoseira 

and Asterionella may be more dominant in high Si:P conditions (Figure 1.15), and 

could have been competitively advantaged by this when P was reduced by diverting 

the effluent. However, whilst chlorophyll-a and phosphorus data showed a rapid 

response to nutrient reduction, the planktonic diatom community continued to change, 

suggesting that their response was lagged and not in equilibrium with nutrient 

concentrations (Anderson et al., 1990).  

 

In Barton Broad, spring and summer chlorophyll-a concentrations fell progressively at 

each five year interval after restoration as a result of declining TP. These changes 

were not observed in summer-autumn data until 15 years post-restoration. The 

response of cyanobacteria particularly is significant for lake managers. Filamentous 

cyanobacteria, which had been a significant component of the pre-restoration 

phytoplankton community in Barton Broad, remained proportionally abundant despite 

a decrease in their total abundance to near absence after 20 years (Phillips et al., 

2005). Non-heterocystous cyanobacteria (such as Limnothrix and Planktothrix spp.) 

responded more quickly to nutrient reduction than heterocystous species (Anabaena 

spp. and Aphanizomenon flos-aquae), even though the summer N:P ratio increased. 

Zooplankton were not considered to be the cause of the overall decline in 

phytoplankton abundance in the broad, although they continued to create spring clear-

water phases (Phillips et al., 2005). Jeppesen et al. (2005a) also observed that 
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despite a relative increase in the abundance of N, heterocystous cyanobacteria 

increased in biovolume during late summer and autumn, further corroborating the 

suggestion by Jensen (1994) that P may be more important in determining 

cyanobacterial species composition than N in shallow lakes. The same sequence of 

community change was observed in Mügelsee, with N-fixing species forming a higher 

proportion of phytoplankton biovolume, although in this case TN was reduced more 

than TP (Köhler et al., 2005).  

 

1.6.4 Problematic macrophyte re-establishment 

Although the return of submerged macrophytes is a highly important part of the 

restoration of shallow lakes, nutrient reduction measures alone often fail to allow 

recolonisation of vegetation. Studies often show a lack of reestablishment (e.g. Phillips 

et al., 2005), or a partial recovery and instabilities (e.g. Moss et al., 1990; Rip et al., 

2005). Biomanipulation may be required to ameliorate conditions sufficiently for 

submerged vegetation to develop.  

 

Oscillations between submerged macrophyte and phytoplankton dominance was 

evident after nutrient reduction measures in Alderfen Broad (Moss et al., 1990). A 

plant community of only Ceratophyllum spp. grew mainly in late July, which may not 

be sufficiently diverse to create the positive feedback mechanisms suggested by the 

alternative stable states hypothesis (see section 1.3 page 29, Moss et al., 1986). It is 

possible that alternations between phytoplankton and macrophyte dominance was 

caused by a build up of substances (such as sulphide) in the sediment that hindered 

plant growth. The four year period during which phytoplankton were dominant 

indicated the period required for the amelioration of conditions that hindered 

macrophyte growth (Moss et al., 1990). The increase in P release, as a consequence 

of increased detritus on the sediment surface, may have contributed to periods of 

phytoplankton dominance and have been exacerbated by the increased WRT (Perrow 

et al., 1994).  

 

An inconclusive pattern of submerged macrophyte re-establishment was found by 

Jeppesen et al. (2005b) although in most instances colonisation was delayed. 

Reasons for this include a lack of a viable seedbank, hindrance by grazing waterfowl 
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and competition with benthic algae (Jeppesen et al., 2005b). The feeding habits of fish 

have been suggested to delay macrophyte growth. Roach (Rutilus rutilus) and perch 

(Perca fluviatilis) destroy leaves either by consumption or mechanical damage, whilst 

bream (Abramis brama) have been shown to stress macrophytes by sucking at the 

sediments (Körner and Dugdale, 2003).  

 

Biomanipulation of fish stocks towards a reduction in fish that are zooplanktivorous or 

benthivorous species (including bream, roach and carp, Cyprinus carpio) has helped 

to improve macrophyte recovery in some shallow lakes (e.g. Moss et al., 1996b; 

Annadotter et al., 1999; Moss et al., 2002). The technique relies on the establishment 

of clearer water, principally as a result of an increase in grazing zooplankton biomass 

(Perrow et al., 1997a) although a reduction in plant damage and reduced suspended 

solids concentrations (Scheffer, 1998) are also of benefit to macrophyte growth. 

Despite several examples of success, some authors remain sceptical about its 

success as a technique for lake restoration (de Melo et al., 1992) whilst naturally 

occurring changes in fish communities post-restoration appear to achieve similar 

results (Jeppesen et al., 2005b) to labour-intensive and expensive biomanipulation.  

 

1.6.5 Natural adjustments of food-web structure 

Experiences of nutrient reduction suggest that food-web structure may change rapidly. 

In the case studies analysed by Jeppesen et al. (2005b), fish showed surprisingly fast 

responses to re-oligotrophication and this suggested that strong responses to nutrient 

reduction arise from a combination of top-down (predation) and bottom-up (resource) 

control. Fish community structure shifted away from cyprinid species and towards 

piscivores. This occurred with simultaneous reductions in total biomass (Jeppesen et 

al., 2005a). Increases in piscivores increased top-down control of phytoplankton in 

shallow lakes, evident by an increased zooplankton:phytoplankton biomass ratio, 

reduced chlorophyll-a:TP ratio (summer mean TP <100-150 µg L-1) and a greater 

proportion of Daphnia spp. in the zooplankton (Jeppesen et al., 2005a). Incidental fish 

kills in Alderfen Broad, combined with poor recruitment, allowed the development of 

large-bodied zooplankton and contributed to creating clearer water (Perrow et al., 

1994). Such changes appear not to be ubiquitous. The biomass of zooplankton 

(particularly of larger species) declined during the re-oligotrophication of Barton Broad, 
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suggesting that fish species remained largely zooplanktivorous. This may be a 

consequence of the wider connections of the Broads and river network of the area 

(Phillips et al., 2005). This result suggests that the effects of biomanipulation may 

occur naturally after in-lake nutrient concentrations are reduced. However, it is unlikely 

that relying on this as an aid to shallow lake restoration is a realistic option, given that 

no control can be exerted over the nature and extent of fish community change 

without direct intervention.  

 

1.7 Literature Summary  

Eutrophication has substantially damaged many freshwater aquatic systems, with a 

consequent loss in ecological and economic value and aesthetic damage (Moss et al., 

1996a; Carpenter et al., 1998; Scheffer, 1998). The processes by which this occurs 

are well understood. Principles that have related P concentration to changes in lake 

ecology, in particular phytoplankton production (Vollenweider, 1968; Schindler et al., 

1973; Schindler, 1978) have been particularly influential in shaping scientific 

approaches to the remediation of shallow lakes. As a consequence, the vast majority 

of shallow lake restoration attempts are founded on a reduction in the external loading 

of P. An increasing body of evidence shows that in the majority of lake restoration 

efforts, shallow lakes do not respond in line with modelled expectations (Ahlgren et al., 

1988; Moss et al., 1990; Jeppesen et al., 1991; Søndergaard et al., 1999; Jeppesen et 

al., 2005a; 2005b; Søndergaard et al., 2005).  

 

Understanding the dynamics of P in shallow lakes and the interactions of sediments 

with the overlying water column is critical to any shallow lake restoration project, since 

it is this which often accounts for the delayed reduction of phytoplankton production 

when external loadings are reduced (Scheffer, 1998). This phenomenon has been 

frequently observed in shallow lake restoration studies (Jeppesen et al., 1991; 

Søndergaard et al., 1999; Jeppesen et al., 2005b; Phillips et al., 2005). In order to 

determine both the quantity and time span of internal P loading, lake specific studies 

are required due to the many factors which may influence P release rates (including 

Fe binding, the role of microbes and sediment resuspension, Mortimer, 1941, 1942; 
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Gächter and Meyer, 1993; Scheffer, 1998) and their relative significance within 

individual basins.  

 

N has received less attention in shallow lake restoration efforts. The role of N in 

eutrophication has generally been overlooked in favour of that of P. Since it is largely 

derived from diffuse as opposed to point sources (Petzoldt and Uhlmann, 2006), it is 

more difficult to manage external N loading than P loading. In addition, heterocystous 

cyanobacteria species are capable of N fixation and are able to overcome shortages 

of dissolved N. These species represent a significant challenge to lake management 

due to aesthetic damage to lakes and the health risks associated with their presence  

(Scheffer, 1998). Elevated N concentrations have been suggested by a number of 

authors to negatively affect submerged macrophyte communities (e.g. Moss, 2001; 

González Sagrario et al., 2005; James et al., 2005). Given that nutrient reduction 

measures are more frequently targeted towards P, this may in part account for some 

of the problems associated with macrophyte reestablishment during lake restoration in 

addition to, for example, fish foraging habits (Körner and Dugdale, 2003), grazing 

waterfowl, lack of seedbanks and benthic algal competition (Jeppesen et al., 2005b).  

 

Si dynamics in lakes are principally controlled by the uptake of DSi by diatoms. In 

deep lakes this can lead to the permanent burial of Si (Schelske et al., 1983) whilst in 

shallow lakes oscillations of Si between biogenic and dissolved forms occurs due to 

the dissolution of diatom frustules. The release of Si from sediments has been 

demonstrated through laboratory experiments (Rippey, 1977, 1983). The close 

coupling of P enrichment, increased diatom production and Si retention in deep lakes 

has led to the development of the silica depletion hypothesis (Schelske and Stoermer, 

1971; Schelske et al., 1983; Schelske, 1999). However, the applicability of this theory 

to shallow lakes is uncertain.  

 

The practical significance of nutrient ratios in shaping phytoplankton communities 

remains an unresolved issue. Salient theoretical effects of nutrient ratios are given in 

Table 1.9. Field evidence of these patterns is often lacking, with no clear correlations 

between nutrient ratios and the dominance of phytoplankton groups evident (e.g. Horn 

and Uhlmann, 1995). During shallow lake restoration, nutrient ratios may alter 

significantly, for example, as a result of the diversion of nutrient-rich inflow followed by 
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sedimentary release of nutrients, or abatement measures which target one nutrient 

only. This may have significant consequences for phytoplankton communities and the 

success of a restoration project, particularly if prevailing nutrient conditions favour the 

development of cyanobacteria blooms. As Table 1.9, and the preceding discussion of 

the role of N (page 42) and Si (page 47) indicate, practical experiences of the effects 

of N:P and Si:P ratios are often not consistent with the theoretical expectations. 

Developing a deeper understanding of these experiences and expectations will be of 

significant consequence to future restoration attempts.  

 

Table 1.9 Summary of the effects of nutrient ratios on phytoplankton 
communities. 

Potential effects Nutrient 
Ratio High ratio Low ratio 

Si:P 

Promotes growth of siliceous 
phytoplankton groups (e.g. diatoms). 

Diatoms with low affinity for P become 
more dominant within diatom 

community (e.g. Synedra, pennate 
species). 

 

Promotes growth of non-siliceous 
phytoplankton groups (e.g. cyanobacteria, 

chlorophytes). 
Diatom species with low affinity for Si 
become more dominant within diatom 

community (e.g. Cyclotella, centric 
species). 

N:P 
No clear effect on abundance of 

cyanobacteria. 
P more likely to be limiting nutrient. 

Promotes growth of both heterocystous 
(nitrogen-fixing, e.g. Anabaena and 

Aphanizomenon)  and non-heterocystous 
cyanobacteria (e.g. Limnothrix). 

N more likely to be limiting nutrient. 
 

1.8 Thesis aims  

This thesis will use data gathered by monitoring a series of shallow lakes to quantify 

the effects of nutrient-rich river inflows on biological and chemical structure and 

functioning. The thesis will seek to relate chemical and hydrological regimes to 

biological communities and assess the importance of these for Attenborough Nature 

Reserve, by comparing data gathered from lakes of varying connectivity to the 

nutrient-rich River Erewash and contrasting nutrient enrichment. In addition to the 

dataset gathered by regular monitoring of the wetland complex, this thesis will use 

experimental evidence to further investigate how nutrient reduction efforts may affect 

the chemistry and ecological structure of shallow lakes. A mesocosm experiment will 

be used to manipulate the chemistry of lake water and the response of phytoplankton 

and zooplankton will be quantified. This part of the research will also enable an 
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analysis of internal nutrient dynamics, which is of key importance for future restoration 

efforts. Combined with the analysis of the monitoring dataset, this thesis will approach 

lake restoration from differing spatial and temporal scales and aims to provide insights 

into the likely response of the Attenborough Nature Reserve to the up-coming 

diversion of the River Erewash. 

Therefore, the aims of this thesis are: 

1. to compare and contrast the chemical and biological structure and functioning 

of the shallow lakes at Attenborough Nature Reserve isolated from and 

connected to the River Erewash, 

2. to investigate how flooding events may affect the biology and chemistry of 

Attenborough Nature Reserve, 

3. to experimentally simulate lake restoration by river diversion and explore the 

effects of nitrogen and silica on ecosystem community structure at 

Attenborough Nature Reserve, 

4. to explore the likely effects of diverting nutrient-rich water from shallow lakes, 

and evaluate these effects in the context of the Attenborough Nature Reserve. 

 

1.9 Thesis outline 

This thesis has begun with an examination of contemporary and historical literature 

relating to shallow lakes. Key ideas relating to nutrient cycling in shallow lakes, and 

the historical provenance of development of these ideas have been traced to the 

current day. Attention has been given to the meanings of restoration in the context of 

shallow lakes. The causes of eutrophication, and the effects of the nutrients P, N and 

Si have been discussed and the role hydrology may play in determining phytoplankton 

community size and structure has been highlighted. With reference to lake restoration 

attempts, the difficulties encountered have been discussed in terms of the responses 

of chemical and biological components of lake ecosystems.  

 

Chapter 2 (page 73) outlines the field site chosen for this study, and describes the 

development of the lake system to its present state. The results of previous research 

are synthesised to provide a backdrop to the thesis. Chapter 2 also provides an 

overview of the chemical and biological techniques used throughout the research. 
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Chapter 3 (page 91) details the chemistry and biology of the Attenborough Nature 

Reserve. The chapter considers the difference in the structure and functioning of the 

lakes and draws comparisons between those connected to, and isolated from, the 

River Erewash. Chapter 3 also provides a setting for subsequent chapters. 

 

The next chapter (Chapter 4, page 197) explores the mechanisms that may control the 

total biomass of phytoplankton in Attenborough Nature Reserve. Chapter 4 uses 

correlation and multivariate analysis of the data presented in the Chapter 3 to explore 

potential controls of phytoplankton biomass and community structure. 

 

Chapter 5 (page 224) is principally concerned with the hydrology of Attenborough 

Nature Reserve. The chapter uses data originally presented in Chapter 3 to compare 

the structure and functioning among rapidly and slowly flushed lakes, and to explore 

lake responses to extreme flood events. The chapter further investigates the role that 

hydrology might play in the restoration of shallow lakes.  

 

Chapter 6 (page 285) reports the results of a mesocosm experiment. The experiment 

simulates lake restoration transferring water between connected and isolated lakes. 

Additionally, the experiment investigates how N and Si may interact to affect the 

plankton communities of shallow lakes.  

 

In Chapter 7 (page 329), a synthesis of the key findings relating to the aims of this 

thesis is given. The chapter explores the implications of the findings of the previous 

chapters for the management of Attenborough Nature Reserve. Potential restoration 

efforts that may be complementary to using river diversion for lake restoration are 

presented and their potential use in Attenborough Nature Reserve are discussed.  
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Chapter 2  Study area and methods 
 

2.1 Site Description 

Attenborough Nature Reserve is located around 7 km south-west of the city of 

Nottingham in the East Midlands of the U.K (52° 53’ N, 1° 14’ W) adjacent to the River 

Trent (Figure 2.1). The six lakes which comprise the Attenborough Nature Reserve 

are among several in the area created by the extraction of gravel since the early 18th 

century (Godwin, 1923). The lakes of the Attenborough Nature Reserve were dug 

between 1930 and 1968 (Table 2.1). A summary of details regarding each lake is 

given in Table 2.2 and bathymetric maps of the lakes in Figure 2.2 (details regarding 

the data used for the bathymetric maps can be found in Chapter 5). Once the 

extraction ceased, the lakes were left to fill naturally. The land is owned by Cemex 

U.K. Ltd., and managed jointly with the Nottinghamshire Wildlife Trust and Broxtowe 

Borough Council. Much of the reserve is still used by the land owners for the 

transporting of gravel extracts from beyond the south-western boundary of the reserve 

to the processing plant (Figure 2.3).  

 

The River Erewash flows 41 km from Kirkby-in-Ashfield in the north of 

Nottinghamshire in a predominantly southerly direction towards its confluence with the 

River Trent in the Attenborough Nature Reserve complex. Water from the River 

Erewash flows through three of the six lakes before exiting the lakes into the River 

Trent. The River Erewash forms a border with Derbyshire to the west along much of 

its length. The catchment covers an area of 206 km2 (Natural England, 2009). 

Magnesian Limestone overlies the sandstones and mudstones in the Erewash valley. 

Coal is also a prominent component of the local geology, with deposits in the Erewash 

valley forming part of the Derbyshire and Yorkshire Coalfields (Natural England, 

2009).  

 

The Erewash catchment underwent intense urbanisation during the Industrial 

Revolution, particularly associated with the development of the railway network and 

the development of collieries, gas and tar works and blast furnace smelting 

(Environment Agency, 1995). As a result, diffuse and point-source pollution loading  
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Figure 2.1 The Attenborough Nature Reserve, and insets, location in relation to 
local and national regions. Abbreviations and names are shown in Table 
2.1. 
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Table 2.1 Local and abbreviated names of lakes, inflows and outflows 
 

Local Name Abbreviated name Extraction period 
Beeston Pond I3 1941-1951 

Beeston Pond inflow BPI - 
Church Pond I1 1962-1965 
Clifton Pond I2 1964-1968 

Coneries Pond C1 1966-1968 
Erewash after lakes Ea - 

Erewash before lakes Eb - 
Erewash before Toton 

sewage treatment works Ebb - 

Main Pond C3 1939-1960 
Main Pond outflow MPO  

Tween Pond C2 1956-1965 
Explanation of abbreviations: I is used to denote lakes which are currently 

isolated from the River Erewash; C for lakes which are currently connected. 

 

 

Table 2.2 Statistics of the lakes of Attenborough Nature Reserve. WRT is the 
mean for the period March 2005 to March 2008 and calculated for all 
connected lakes together . No WRT estimate is given for isolated lakes 
as the small inflows to these lakes were not quantified. Additional 
discussions regarding the hydrology of the lakes is given in Chapter 5 
(page 224).  

Depth (m) Lake Area (ha) 
Mean Max 

WRT 
(days) 

C1 51.7 1.4 3.3 
C2 19.6 1.5 3.4 
C3 24.9 1.7 3.7 

13.8 

I1 10.8 1.7 5.2 - 
I2 14.7 1.1 3.6 - 
I3 8.5 1.2 2.7 - 
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Figure 2.2 Bathymetric maps of the lakes of Attenborough Nature Reserve: a) 
Lake C1; b) Lake C2 (continued overleaf), c) Lake C3, d) Lake I1; e) Lake 
I2 and f) Lake I3. Note the variation in scale. 
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Figure 2.2 contd. 
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Figure 2.2contd. 

 

have historically been high in the River Erewash. Diffuse pollution has largely been 

derived from mine water although improved management practices implemented in 

the 1990s have reduced this loading (Environment Agency, 1995). Population 

increases in the suburbs of Nottingham resulted in many sewage treatment works  

 (STWs) being established along the River Erewash. Currently, seven STWs 

discharge directly into the River Erewash whilst one discharges into the Giltbrook 
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tributary. Improvements in the processing abilities and capacity of STWs driven by the 

1961 Rivers (Prevention of Pollution) Act helped to mitigate against the effects of point 

source effluent discharge, although STW effluent still dominates the discharge of the 

River Erewash; during periods of low flow, up to 70% of discharge originates from 

STWs (Environment Agency, 1995).  

 

The lakes of Attenborough Nature Reserve have formed part of a highly managed 

Nature Reserve since 1964, encompassing around 365 ha of open water, wetland, 

mixed woodland and grassland. Part of the Nature Reserve is designated a Site of 

Special Scientific Interest (SSSI) due to the importance of the site for overwintering 

wildfowl, particularly pochard (Aythya ferina) and shoveler duck (Anas clypeata), and 

the variety of terrestrial and aquatic habitats (Natural England, 1981). A number of 

other locally and nationally rare bird species have been recorded around the reserve, 

including red kite (Milvus milvus), carageny (Anas querquedula), kingfisher (Alcedo 

atthis) and bittern (Botaurus stellaris). Many areas of the reserve are managed in 

order to encourage wildfowl. For example, areas of mudflats have been created by 

remodelling some shorelines (Figure 2.4) and reedbeds have been established 

adjacent to the visitor centre and Clifton Pond (Figure 2.5). The reserve is a popular 

visitors attraction for educational and recreational purposes. A state-of-the-art visitors 

centre (Figure 2.6) was opened in 2005 to encourage tourism and provide educational 

resources. The lakes are also popular with anglers and used by a local sailing club.  

 

Figure 2.3 Barges transport extracted aggregates through the lakes to the 
aggregate processing plant, on the northern edge of Main Pond. 
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Figure 2.4 Areas of mudflats created in Lake C2. 

 

 

Figure 2.5 Reedbeds established along the western shoreline of Lake I2. 

 

Figure 2.6 The visitor centre at the Attenborough Nature Reserve. 
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The Attenborough Ponds have been subject to numerous alterations to their 

morphology before reaching their current configuration. Before 1972, the River 

Erewash discharged directly into the River Trent. On the completion of aggregate 

extraction, the River Erewash was diverted into the inter-connected lakes C1, C2 and 

C3 to allow the passage of barges associated with extraction activity beyond the 

bounds of the Nature Reserve. The weir along the eastern edge of Lake C3 (MPO) 

became the dominant outflow. As an attempt to reduce the negative impacts of 

nutrient-rich River Erewash water on the Attenborough Ponds, the weir at MPO was 

raised in 1980 causing Ea to become the dominant outflow (Figure 2.1). The last 

significant alteration to the lakes occurred in 1981, when Lake I2 was isolated from all 

other lakes by the construction of earth bunds (Sayer and Roberts, 2001). Lakes I1 

and I2 have no major inflows or outflows, although small quantities of water have been 

observed flowing out through a small pipe in the northern end of Lake I2 and into the 

River Trent. Lake I3 is fed by a small inflow (BPI) along the north-western boundary, 

and discharges through the Delta Sanctuary and into the River Trent. The last 

significant alteration was the diversion of the River Erewash to flow directly into the 

River Trent during August 2009. 

 

2.2 Previous research 

Previous research on the Attenborough Ponds has highlighted the extent of the 

changes in ecology and chemistry that occurred after the 1972 diversion of the River 

Erewash into the lakes. This has been both contemporary (Petts et al., 1995) and 

palaeoecological (Sayer and Roberts, 2001). The most significant changes in the 

Erewash-connected lakes were a decline in submerged (including Potamogeton spp., 

Myriophyllum spp., and Elodea spp.), floating-leaved (including Nuphar lutea and 

Polygonum amphibium) and marginal (including Typha latifolia and Iris pseudacorus) 

macrophyte communities by around 1988 (Petts et al., 1995). A decline in the 

vegetation abundance of Lake I3 occurred prior to 1976, but this is believed to have 

been a consequence of storm sewage overflow, rather than connectivity to the River 

Erewash. Macroinvertebrate populations generally declined in diversity after the River 

Erewash diversion. The abundance of some pollution-tolerant species increased after 

the diversion. In Lake I3, for example, Tubifex and Chironomidae increased and 

Gammarus tigrinus increased in abundance and range throughout the lakes. However, 
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an accurate assessment of the impact of the Erewash diversion on the 

macroinvertebrate community is difficult since the historical data available are sparse 

and often qualitative (Petts et al., 1995). 

 

Sayer and Roberts (2001) used palaeoecological evidence to investigate the effect of 

the 1972 Erewash diversion on the diatom community of the Attenborough Ponds and 

to suggest which of the isolated lakes represents a suitable analogue for a restoration 

target. In Lake C2 after the diversion of the Erewash, a dramatic shift in diatom 

production occurred, from abundant benthic (particularly Gyrosigma spp.) and 

periphytic species towards dominance of planktonic species, suggesting a decline in 

light climate and a loss of submerged macrophytes (Sayer and Roberts, 2001). 

Although diatom species indicative of eutrophic conditions were found in pre-diversion 

sediments, the presence of the typically mesotrophic diatom Cyclotella radiosa in 

those sediments suggests much lower nutrient concentrations pre-diversion. This 

corresponded well with nutrient chemistry data gathered pre-diversion (Figure 2.7).  
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Figure 2.7 Summary of water chemistry data pre- and post- 1972 in Lake C2. Pre 
diversion mean derived from three samples collected between 
September and November 1972. Post diversion means calculated from 
one year of monthly monitoring data subsequent to November 1972 
(data from Britton, 1974, in Sayer and Roberts, 2001). 
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2.3 Rationale for site choice 

Previous research has shown the extent of biological and chemical change within the 

Attenborough Ponds as a result of the diversion of the River Erewash in 1972 (section 

2.2). As has already been illustrated in Chapter 1, there is a clear need to quantify the 

effects of nutrients and hydrology on shallow lakes. This is particularly the case for 

lowland areas where anthropogenic pressures are typically greater than in upland 

areas. Lowlands are often subject to more diffuse nutrient sources from arable 

agriculture, and more point-source nutrient loading associated with urbanisation and 

STWs (see section 1.4, page 34). 

 

The current geography of the Attenborough Ponds allows the nutrient-rich water from 

the River Erewash to penetrate only some of the lakes in the system. The result of this 

is that three lakes are hydrologically connected to the River Erewash and three are 

currently isolated (see Figure 2.1, page 74). This provides a good opportunity to 

quantify the effects of nutrient-rich inflows on shallow lowland lakes, in effect creating 

a semi-experimental system in which external influences (for example climate and 

geology) are controlled, whilst connectivity to the River Erewash varies.  

 

Cemex U.K. Ltd. are implementing a strategy to reduce the nutrient loading on the 

Attenborough Ponds which aims to improve water quality in the lakes connected to the 

River Erewash (HR Wallingford, 2006; White Young & Green, 2006). The River 

Erewash will be diverted from the connected lakes to restore its original confluence 

with the River Trent. The scheme is to be implemented by the construction of an earth 

embankment at the current junction between the River Erewash and Lake C1, such 

that the connected lakes will receive <1% of current annual inflow from the River 

Erewash (White Young & Green, 2006). A gap remains in order to allow the passage 

of barges (Figure 2.8). The scheme became operational in August 2009. Predicting 

the outcome of significant changes to the hydrology and nutrient loadings of the 

connected lakes is of clear management interest.  
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Figure 2.8 The diversion of the River Erewash from Attenborough Nature 
Reserve using earth bunds (left and right of the photograph). A gap 
remains to allow the passage of barges into the Erewash-connected 
lakes. Photograph courtesy of C. Pointer. 

 

2.4 Sampling procedures 

This section describes common field and laboratory methods used in the gathering of 

data. Where methods were modified for specific samples, details are given in the 

relevant chapter. 

 

2.4.1 Water sampling and analysis 

Each of the six lakes were sampled approximately every four weeks for chemical, 

biological and physico-chemical parameters (Figure 2.9). Lakes were sampled at 

points marked using anchored buoys (see Figure 2.1 for approximate locations). 

Sampling sites were chosen to be at the deepest point of the lake that could be 

sampled practically. Care was taken to position sampling sites away from the passage 

of barges. Data collected prior to October 2005 was provided courtesy of S. McGowan 

alone.  

 

At lake sites, a ~4 L water sample from the top 1.5 m of the water column was 

obtained using an flexible polythene sampling tube and pooled. Inflow and outflow 
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sites were sampled by filling a sample bottle with surface water. Water for chemistry 

analysis was placed into an acid-washed Pyrex bottle. For lake samples, 1 L of pooled 

water was put into a plastic bottle for total suspended solids analysis (TSS). Samples 

were kept covered and cool until their return to the laboratory within 6 hours, where 

approximately half of the sample was filtered through Whatman GF/C filter papers 

using a vacuum pump and stored in a Pyrex bottle. Filtered and unfiltered water 

samples were stored in the dark at 4˚C before chemical analysis within 24 hours.  

a) 

 

b) 

 

c) 

 

Figure 2.9 Sampling at Attenborough Nature Reserve. a) measuring Secchi disk 
depth in Lake C1 during August 2006; b) flow gauging at site Ea; c) 
sampling Lake I2, July 2006; d) (overleaf), sampling during April 2007 
(circled). Photographs a and c courtesy of S. McGowan, b, courtesy of T. 
Needham, d, from Google Earth (accessed 21 August 2009). 
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d) 

Figure 2.9 contd. 

Total phosphorus (TP) analysis was performed on unfiltered water. Prior to June 2007, 

TP samples were analysed by digestion in a pressure cooker at 1.5 psi with sulphuric 

acid and potassium persulphate, then concentrations were determined as described 

for the microwave method. Soluble reactive phosphorus (SRP) was analysed 

spectrophotometrically at 885 nm against a reagent blank using filtered water and the 

molybdate blue and ascorbic acid method (Mackereth et al., 1978). From June 2007, 

TP was analysed using a microwave digestion method. Samples for TP were heated 

to 120°C at 3.5 psi for 40 minutes in an Anton Paar Multiwave 3000 microwave 

digester, with a potassium persulphate and sodium hydroxide oxidising solution. 

Concentrations were derived after colourimetric analysis against a reagent blank at 

885 nm as ortho-phosphate using the molybdate blue and ascorbic acid method 

(Mackereth et al., 1978).  

 

Ammonium (NH4-N) analysis was performed on filtered samples. Samples were 

reacted in alkaline conditions with sodium nitroprusside, forming indophenol blue 

which was measured spectrophotometrically at 640 nm (Mackereth et al., 1978) and 

converted to concentrations (µg L-1) using a calibration curve prepared 

simultaneously. Nitrate (NO3-N) was determined using an ion chromatography method 

described below (page 81). 
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Unfiltered samples were analysed for silicate (SiO3) using the molybdate yellow 

reactive method and spectrophotometric measurement at 365 nm (Eaton et al., 1995). 

The molybdate yellow method quantifies only Si which is molybdate-reactive, which is 

the fraction of Si that is cycled through biological processes. Unreactive forms of silica 

may be present in filtered samples in addition to molybdate-reactive forms, 

contributing to the total quantity of dissolved Si present (Eaton et al., 1995). Reactive 

Si, however, forms by far the dominant dissolved fraction in natural waters (Burton et 

al., 1970). 

 

pH, specific conductivity (mS cm-1), temperature (°C) and dissolved oxygen (DO, mg 

L-1) were was determined in the field using a YSI 600QS-O-M multiprobe attached to a 

650MDS data logger, at 50 cm depth intervals from the surface of the lake to sediment 

surface. 

 

Cations (magnesium, Mg2+, calcium, Ca2+, sodium, Na+; and potassium, K+) were 

determined using a Metrohm Basic 792 ion chromatography system using filtered 

samples. Metrosep C2-150 column was used with a 4.0 mmol L-1 tartaric acid and 

0.75 mmol L-1 dipicolonic acid eluent with a flow rate of 1.0 mL min-1. The anions 

Chloride (Cl-) and NO3-N were measured using a Metrosep A Supp 4-250 column and 

eluent containing 1 mmol sodium bicarbonate and 3.2 mmol of sodium carbonate run 

at 1.0 mL min-1. Chromatogram peaks were calibrated using pre-determined 

calibration curves. Total alkalinity (meq L-1) was determined by titration to grey colour 

using phenolapthalein and BDH indicators using unfiltered water samples, and total 

alkalinity defined as the sum of both titrations (Golterman et al., 1978). 

 

Total suspended solids were determined by filtering a known volume of agitated water 

sample using a vacuum pump through pre-weighed Watman GF/C glass fibre filter 

papers. After drying at 105°C for at least 15 hours, the filter papers were re-weighed 

and the weight of suspended solids calculated as mg L-1 using ((W2 – W1) × 1000) / V 

where W1 was the weight after filtering (g), W2 weight before filtering (g) and V the 

volume of water filtered (mL). Light penetration (cm) was measured using the mean 

value of one descending and one ascending Secchi disk depth.  
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2.4.2 Phytoplankton sampling and analysis 

Total algal biomass (measured as chlorophyll-a) was estimated by filtering a known 

quantity of lake water through 47mm Watman GF/C glass-fibre filter papers. Filter 

papers were immediately wrapped in labelled foil, then cut into strips and placed in 

glass vials. After the addition of ~5 mL of extraction solvent (comprising 80% acetone, 

15% methanol and 5% distilled water), samples were placed in a refrigerator at 4°C for 

12 hours. The solvent was then decanted into centrifuge tubes and centrifuged at 

700g for 10 minutes. Samples were then analysed spectrophotometrically against an 

extraction solvent blank according to the equations of Jeffrey and Humphrey (1975). 

Chlorophyll-a data relating to the period March 2005 to October 2005 was provided by 

S. McGowan, 

 

15 mL of the pooled water chemistry sample was placed into a centrifuge tube for 

phytoplankton identification. This sample was preserved immediately using Lugol’s 

iodine. Phytoplankton were quantified and identified using the Untermöhl (1958) 

technique. A known volume of water was placed in a sedimentation cell and left for at 

least 12 hours. Phytoplankton were identified to at least genus level at 400x 

magnification under a Zeiss Axiovert 40c inverted microscope, using Prescott (1954), 

Bellinger (1992) and John et al. (2002). A minimum of 300 phytoplankters were 

counted in each sample. Diatoms were identified to genus level, except for small 

centric types (e.g. Cyclotella spp. and Stephanodiscus spp.). Aulacoseira spp. were 

identified separately because of their filamentous form. Cell biovolume was estimated 

by measurement and geometric approximation of cell shape to 3-dimensional shapes 

(e.g. Wetzel and Likens, 1991; Hillebrand et al., 1999). The biovolume estimates of 

centric diatoms were based on small cells (diameter <5 µm) and large cells (>5 µm). 

Biovolume estimates and a species list are given in Appendix 1. Phytoplankton 

samples were collected by S. McGowan prior to October 2005, although all 

phytoplankton samples were analysed by the author.  
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2.4.3 Zooplankton sampling 

Quantitative estimates of the zooplankton community were made using a custom-built 

device, comprising a weighted bucket of 160 × 160 mm  with a removable 250 µm 

mesh attached to the base (Figure 2.10) approximately 5 cm in diameter. The sampler 

was vertically towed a known distance through the water column. Care was taken to 

ensure that as much of the full height of the water column was sampled as possible 

and that a constant speed of towing (approximately 0.5 m sec-1) was used to avoid the 

formation of a bow wave or to allow individuals to swim free of the trap (Wetzel and 

Likens, 1991). After removing the mesh, zooplankton were rinsed into sampling jars 

using distilled water and immediately preserved using a methanol-sucrose solution. 

The procedure was repeated at least twice and the samples pooled to produce a 

representative sample of the zooplankton community. Zooplankton samples collected 

prior to October 2005 were provided by S. McGowan, although the identification and 

enumeration of all samples was done by the author.  

 

Zooplankton were identified by subsampling a known volume of the sample, and 

counting and identifying at least 100 individuals to genus or species level. Where 

fewer than 100 individuals were present in the total samples, the whole sample was 

counted. The subsample was placed into a counting chamber and examined using a 

4–50× magnification Wild Heerburgg binocular dissecting microscope. Where 

required, zooplankton were examined in further detail using a compound microscope 

at ×100 magnification. Identifications were made with reference to Scourfield and 

Harding (1966) for Cladocera, Harding and Smith (1974) for copepods and Pontin 

(1978) for rotifers. A species list is given in Appendix 2. 
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Figure 2.10 Custom built zooplankton sampler for shallow lakes. 

 

2.4.4 Vegetation Surveys 

Vegetation surveys were conducted on all lakes in 2005 (by S. McGowan), in addition 

the isolated lakes I1 and I2 were also surveyed during 2006 and 2007 by S. McGowan 

(Lake I2, 2007) and the author (all other surverys). Surveys were timed where 

possible to coincide with maximum vegetation abundance, between late July and early 

September. Submerged and emergent vegetation was identified at approximately 100 

randomly chosen sites throughout each lake. The location of each site was recorded 

using a handheld GPS with an accuracy of ±5 m. Species were identified to at least 

genus level with reference to Haslam et al. (1975) using a bathyscope where possible, 

or samples were retrieved for more detailed analysis using a grapnel.  
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Chapter 3 Effects of the River Erewash on 
the lakes of Attenborough Nature 
Reserve: results and trends 

 

3.1 Introduction 

This chapter aims to compare how hydrological connectivity to the nutrient-rich River 

Erewash affects the structure and functioning of the lakes of Attenborough Nature 

Reserve. Using data gathered between March 2005 and March 2008, this is 

addressed by answering the following questions: 

• Are there any differences in water quality and seasonal changes among 

connected and isolated lakes? 

• Are there differences in the total biomass of phytoplankton and zooplankton 

among connected and isolated lakes? 

• Are there differences in phytoplankton and zooplankton communities among 

connected and isolated lakes? 

The data collected represent an opportunity to compare the structure and functioning 

of shallow lakes connected to a nutrient-rich river, subjected to shortened water 

retention times and increased nutrient loading, to those that have remained isolated. 

An understanding of this is essential for the management of shallow lowland lakes, 

given future scenarios of increasing urbanisation pressures and increased variability in 

river discharge resulting from climate change (IPCC, 2008). Some authors have 

suggested that hydrological connectivity increases the concentrations of nutrients, 

except P (Glińska-Lewczuk, 2009). Theoretical and empirical evidence suggests that 

phytoplankton biomass is higher where flushing rates are reduced, and larger species 

become more dominant (e.g. Dickman, 1969, Reynolds, 2006). This chapter evaluates 

these processes in the highly eutrophic lakes of Attenborough Nature Reserve. The 

data presented additionally provide an important baseline of monitoring data to assess 

the future effects of the diversion of the River Erewash on connected lakes.  
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The methods of data collection and laboratory methods are given in Chapter 2 (page 

73). Means are given with the standard error shown in parentheses and the phrase 

‘monitoring period’ refers to March 2005 to March 2008 unless specified otherwise. 

Significance of long-term trends in variables was assessed using Spearman’s rank 

correlation coefficient (rs) computed with SPSS 15.0. Only significant (p ≤0.05) 

coefficients are reported in the text. Analysis of phytoplankton and zooplankton 

communities was done using CANOCO 4.5 (ter Braak and Šmilauer, 2002). 

Phytoplankton species were grouped to genus level, and genera that contributed less 

than 5% of the biovolume to a sample were excluded prior to analysis (e.g. Raikow et 

al., 2004) to remove noise from the dataset. Phytoplankton and zooplankton datasets 

were log(x+1) transformed prior to analysis in order to stabilise variances (Ramette, 

2007).  

 

The presentation of data follows a bottom-up approach by beginning with water 

chemistry, followed by phytoplankton and zooplankton communities. This bottom-up 

approach is based on the theory that the availability of resources (such as nutrients) is 

the main determinant of the biomass of phytoplankton (e.g. Vollenweider, 1968; Dillon 

and Rigler, 1974; Hecky and Kilham, 1988; Elser et al., 1990). Alternative 

explanations suggest that phytoplankton biomass is determined by a combination of 

bottom-up and top-down processes, whereby the potential biomass of phytoplankton 

is a product of bottom-up processes and the ‘realised’ biomass is a result of grazing 

by zooplankton (McQueen et al., 1986). Experimental and observational evidence 

often suggests that both bottom-up and top-down effects may be important (e.g. 

McQueen et al., 1989; Moss et al., 1994; Stephen et al., 1998). Resolving the 

mechanisms controlling phytoplankton biomass is of particular relevance to improving 

the success of lake restoration (de Melo et al., 1992). This uncertainty is addressed in 

Chapter 4. 
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3.2 Lake C1 (Coneries Pond) 

 

Figure 3.1 A south-westerly view across Lake C1 (Coneries Pond), September 
2008. Coneries Pond is the first lake into which the River Erewash 
discharges. The sample buoy is in the centre-right of the photograph. 
Ratcliffe-on-Soar power station is in the background. Attenborough 
Sailing Club can be seen to the right of the image.  

 

3.2.1 Water chemistry 

The mean total phosphorus (TP) concentration in Lake C1 (Figure 3.1) was 549 (±30) 

µg L-1 during the monitoring period (Figure 3.2a). TP concentrations rose throughout 

the summers of 2005 and 2006 to reach maximum concentrations during August (990 

µg L-1 in 2005 and 1158 µg L-1 during 2006). In 2007, TP concentrations rose during 

early summer but did not exceed 620 µg L-1 before declining at the end of the 

monitoring period. Soluble reative phosphorus (SRP) concentrations followed a similar 

seasonal trend. The mean SRP concentration observed during the monitoring period 

was 356 (±23) µg L-1, with the highest concentrations being observed in August 2005 

(710 µg L-1). Maximum SRP concentrations observed during 2006 and 2007 were 689 

µg L-1 and 554 µg L-1 respectively. 
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Figure 3.2 Water chemistry and physico-chemical properties of Lake C1 
(Coneries Pond), March 2005 to March 2008: a) TP and SRP (µg L-1); b) 
NH4-N (µg L-1); c) NO3-N (mg L-1); d) SiO3 (mg L-1); e) pH; f, Mg2+ and Ca2+ 
(meq L-1); g) Na+ and K+ (meq L-1); h) Cl- (meq L-1); i) total alkalinity (meq 
L-1); j) specific conductivity (ms cm-1); k) TSS (mg L-1); l) Secchi disk 
depth (cm, dotted line represents approximate lake depth); m) surface 
temperature (°C); n) DO (mg L-1).  

 

Ammonium (NH4-N) concentrations were highly variable throughout the monitoring 

period (Figure 3.2b). NH4-N concentrations were typically highest during early summer 

and the winter, and were frequently below detectable concentrations during the late 

summer. The highest concentration recorded was 0.47 mg L-1 in February 2006, with a 

mean of 0.17 (±0.03) mg L-1 for the whole monitoring period. Nitrate (NO3-N) 

concentrations in lake C1 ranged between 3.0 and 16.5 mg L-1 throughout the 
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monitoring period. During 2005, NO3-N concentrations fell from 11.0 mg L-1 in March 

to 3.3 mg L-1 by August (Figure 3.2c). Concentrations then rose gradually throughout 

the winter to 11.5 mg L-1 by February 2006, before falling sharply to early summer. 

During 2007, NO3-N did not rise as much as in 2005 and 2006, falling gradually 

throughout the summer from  8.3 mg L-1 in October 2006 to 2.9 mg L-1 in October 

2007 and then rising sharply at the end of the monitoring period to 16.5 mg L-1 in 

March 2008. 

 

Silicate (SiO3) concentrations (Figure 3.2d) varied seasonally in Lake C1. The mean 

SiO3 concentration was 3.3 (±0.3 mg L-1). Concentrations typically rose briefly from < 1 

mg L-1 in spring to in excess of 3 mg L-1 by early summer, before falling sharply during 

late summer and rising abruptly again during winter. The highest SiO3 concentration 

was recorded during January 2007 (6.2 mg L-1) and the lowest concentration (0.7 mg 

L-1) in April 2006. Mean growth season SiO3 concentrations increased slightly 

throughout the monitoring period, from 2.28 (±0.9) in 2005 to 3.00 (±0.6) mg L-1 in 

2008. 

 

Surface pH (Figure 3.2e) ranged from 7.20 to 9.89 throughout the monitoring period. 

In 2005, pH was highest during late summer before declining during the winter. pH 

remained relatively constant throughout 2006, and then fell during spring and early 

summer in 2007. pH oscillated from summer 2006 to the end of the monitoring period. 

Growth season mean pH fell each year, from 8.96 in 2005, to 8.52 in 2007. Profiles of 

pH throughout the water column (Figure 3.3a) show that throughout the monitoring 

period pH did not change substantially from the surface down the water column. 

 

Magnesium (Mg2+) concentrations (Figure 3.2f) in Lake C1 ranged between 0.75 and 

2.20 meq L-1, with a mean of 1.45 (±0.06) meq L-1 throughout the monitoring period. A 

trend towards lower concentrations occurred throughout the monitoring period (rs =  

-0.399, p ≤0.013). Highest concentrations tended to occur during winter months and 

lowest concentrations during the summer, although during 2007 Mg2+ concentrations 

rose gradually throughout the summer, before falling to the end of the monitoring 

period. The mean calcium (Ca2+) concentration in Lake C1 was 2.10 (±0.10) meq L-1, 

ranging between 0.94 and 3.67 meq L-1. Ca2+ concentrations (Figure 3.2f) declined 

throughout 2005 and rose again from December 2005 to April 2006, before declining 
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sharply during summer 2006. During 2007, Ca2+ concentrations did not decrease 

throughout the summer to the same extent as previous years, although they fell 

gradually from August 2008 to the end of the monitoring period.  

 

Sodium (Na+) and potassium (K+) concentrations showed similar trends in 

concentrations (Figure 3.2g) both with a significant declining trend throughout the 

monitoring period (Na+ rs = -0.448, p = 0.005; K+ rs = -0.436, p = 0.006). Na+ 

concentrations ranged from 1.33 meq L-1 to 5.17 meq L-1 (mean 3.35 (±0.16) meq L-1) 

and K+ ranged from 0.12 meq L-1 to 0.37 meq L-1 with a mean of 0.23 (±0.01) meq L-1. 

Both Na+ and K+ concentrations generally decreased from March 2005 to late winter 

2006, before rising until November 2007. Concentrations of both Na+ and K+ fell 

sharply until the end of the monitoring period. The mean chloride (Cl-) concentration 

was 2.85 (±0.13) meq L-1 during the monitoring period. A significant decreasing trend 

in Cl- concentrations was observed (rs = -0.509, p = 0.001). Cl- concentrations (Figure 

3.2h) declined sharply from March 2005 until November 2005 and then increased 

substantially until January 2006. Beyond May 2006, Cl- concentrations became more 

variable, gradually decreasing towards the end of the monitoring period.  

 

Total alkalinity (Figure 3.2j) declined until early 2007. Prolonged increases in total 

alkalinity occurred during 2007, followed by a sharp decrease to March 2008. Mean 

total alkalinity was 3.44 (±0.08) meq L-1 and ranged from 2.10 to 4.50 meq L-1 

throughout the monitoring period. Phenolphthalein alkalinity (Figure 3.2i) ranged 

between 0 and 1.11 meq L-1 (mean 0.46 ± 0.07 meq L-1). In all years, phenolphthalein 

alkalinity was highest during late summer, declined sharply and remained at 0 during 

winter months before increasing throughout summer months.  

 

Specific conductivity in Lake C1 ranged from 0.53 to 1.26 mS cm-1, with a mean of 

0.62 (±0.01) mS cm-1 throughout the monitoring period. Specific conductivity did not 

vary seasonally (Figure 3.2j). During 2005, specific conductivity reached a maximum 

in June and fell during summer, and increased sharply from January to February 

2006. Specific conductivity declined gradually throughout 2006, and increased again 

from January to April 2007. Specific conductivity decreased in summer 2007 

increased during the autumn and declined sharply from November 2007 to January 

2008. Water column profiles (Figure 3.3a) show homogeneity of specific conductivity 
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throughout the depth of Lake C1 during the monitoring period. Only in July 2006 and 

March 2007 did any stratification occur, although on both occasions only a small 

increase in specific conductivity was observed below 2 m.  
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Figure 3.3 Profiles of a) pH; b) specific conductivity (mS cm-1); c) temperature 
(°C); d) dissolved oxygen (mg L-1) in Lake C1 (Coneries Pond), March 
2005 to March 2008.  

 

Total suspended solids (TSS) concentrations (Figure 3.2k) ranged from 3.4 to 61.3 

mg L-1 (mean, 19.0 ±2.0 mg L-1) during the monitoring period. During 2005 and 2006, 

TSS concentrations were typically highest during late summer. TSS concentrations 

decreased from 20.4 to 3.4 mg L-1 from March to June 2005 before rising sharply to 

61.3 mg L-1 by August 2005 and decreased steadily throughout the winter. 

Concentrations rose briefly in spring (reaching 20.8 mg L-1 in April 2006) and reached 
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a maximum of 40.3 mg L-1 in August 2006. A decrease in TSS concentrations during 

the autumn was followed by a brief increase in TSS concentrations (> 20 mg L-1) 

during January and February 2007. TSS concentrations increased gradually 

throughout 2007, reaching 30.0 mg L-1 in September 2007, and then decreased again 

to December. High TSS concentrations were observed in January 2008 (44.0 mg L-1) 

and again in March 2008 (26.4 mg L-1).  

 

Secchi disk depths (Figure 3.2l) were generally low throughout the monitoring period, 

associated with chlorophyll-a during summer and minerogenic turbidity during winter. 

The clearest water occurred in June 2005 (Secchi depth, 185 cm), June 2006 (130 

cm) and April 2007 (155 cm). Clear water also occurred during December 2006 

(Secchi disk depth, 155 cm). The mean Secchi disk depth in Lake C1 was 71 (±6) cm, 

ranging between 25 and 185 cm throughout the monitoring period.  

 

Surface water temperatures (Figure 3.2m) ranged between 4.0 and 22.2°C, with a 

mean of 12.3 (±0.9) °C during the monitoring period. A trend towards lower maximum 

temperatures occurring approximately one month earlier each year was observed 

during the monitoring period. Lowest temperatures each season were recorded during 

December and January and were always < 5°C. Temperature profiles (Figure 3.3c) 

showed that stratification was weak and only occurred during the summer months of 

each year, otherwise remaining largely homogenous.  

 

The mean dissolved oxygen (DO) concentration (Figure 3.2n) in Lake C1 was 13.3 

(±0.9) mg L-1, ranging between 4.2 and 28.1 mg L-1. DO concentrations were highest 

during late summer and early autumn. The highest DO concentrations observed 

during 2006 (16.9 mg L-1) were lower than in 2005 (24.7 mg L-1) and 2007  

(23.6 mg L-1). DO concentrations also rose sharply from January to March 2008. Weak 

stratification occurred during summer 2005 and 2006, although not during 2007 

(Figure 3.3d).  
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3.2.2 Phytoplankton 

Total biomass  

The mean chlorophyll-a concentration in Lake C1 was 73 (±13) µg L-1, and ranged 

between 2 and 287 µg L-1. Concentrations typically increased from June to reach 

highest concentrations during late summer (August in 2005 (287 µg L-1) and 2006 

(218 µg L-1) , and September in 2007 (143 µg L-1), Figure 3.4). Maximum 

concentrations decreased in consecutive summers. Concentrations decreased rapidly 

from summertime maxima. Smaller increases in chlorophyll-a concentration occurred 

during March and April each year, typically of ~100 µg L-1, before rapid collapses, 

generally occurring between April and June.  
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Figure 3.4 Chlorophyll-a concentrations in Lake C1 (Coneries Pond), March 2005 
to March 2008. 

 

Community composition 

Diatoms and chlorophytes were the most abundant phytoplankton groups in Lake C1 

during summer months (Figure 3.5). Diatoms were also abundant during the spring. In 

summer 2007, diatoms were the most abundant phytoplankton group, although in 

2005 and 2006 chlorophytes were more abundant than diatoms. Cyanobacteria only 

formed a significant component of the phytoplankton community during summer. 

Cryptophytes, dinoflagellates and chrysophytes were all observed in Lake C1, 

although they formed a small proportion of the phytoplankton community compared to 

diatoms and chlorophytes.  
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Centric diatoms (including Stephanodiscus spp. and Cyclotella spp.) were present in 

the phytoplankton community throughout the monitoring period (Figure 3.6a). Centric 

taxa were most abundant during summer and autumn in all years. The highest 

biovolume of centric taxa was recorded during August 2005. A large increase in the 

biovolume of centric species was observed in March 2008, substantially greater than 

in previous years. Pennate diatoms (Figure 3.6b) were less abundant than centric 

taxa. During 2005 and 2006, the maximum biovolume of pennate species occurred in 

August. Throughout most of 2007, pennate species were present in very low 

biovolumes, and were only observed in early summer and autumn. Asterionella sp.  
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Figure 3.5 Summary of total phytoplankton group biovolumes in Lake C1 
(Coneries Pond), March 2005 to March 2008. ‘Bacillariophyceae’ refers to 
all diatoms, and ‘others’ comprises dinophytes and chrysophytes. 

(Figure 3.6c) was largely absent throughout the monitoring period, only becoming 

significant in the diatom community in February 2008. Aulacoseira spp. (Figure 3.6d) 

were a significant contributor to the biovolume of diatoms during summer and autumn  

2005, although they formed less than 50% of the total diatom biovolume. Aulacoseira 

spp. were rare throughout 2006, and present throughout the summer of 2007, 

reaching 1.4 × 106 µm3 mL-1 in September 2007. Synedra spp. (Figure 3.6e) were 

present throughout the monitoring period although were a small contributor to the total 

diatom biomass. During 2005, Synedra spp. were present during late summer and 

autumn, and in 2006 were most abundant in April. Synedra spp. were rare throughout 

2007, and in March 2008 the highest biovolume of Synedra spp. in Lake C1 was 

recorded, of 9.9 × 104 µm3 mL-1.  
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Figure 3.6 Timeseries of biovolumes (µm3 mL-1) of selected phytoplankton 
species in Lake C1 (Coneries Pond), March 2005 to March 2008: a-e) 
Bacillariophyceae (diatoms); f-i) Cyanobacteria; j-p) Chlorophyceae; q-r) 
Cryptophyceae. Note the differences in y-axis scales. 

Aphanizomenon flos-aque (Figure 3.6f) was rare in Lake C1, and was only observed 

during April 2005 and May 2007. Anabaena sp. was also rare in the phytoplankton 

community, observed in significant biovolumes only in June 2006 (Figure 3.6g). 

Microcystis sp. (Figure 3.6h) was abundant in the cyanobacteria throughout the 
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monitoring period, observed during August in 2005 and 2006, and from July to 

September in 2007. Although Oscillatoria sp. was observed in late summer and 

autumn in all years, it was substantially more abundant in 2006 than in 2005 and 2007 

(Figure 3.6i). 

 

Chlorophytes were present throughout the monitoring period in Lake C1 and formed a 

large proportion of the phytoplankton community. Ankyra judyaii (Figure 3.6j) was 

present from May to August in 2005 and 2006. During 2007, A. judyaii was observed 

in May, September and October in smaller biovolumes than previous years. 

Chlamydomonas spp. (Figure 3.6k) were present in summer and autumn and again in 

spring and early summer of 2006, and during 2007 Chlamydomonas spp. were 

observed during early spring, summer and autumn. Coelastrum sp. (Figure 3.6l) was a 

significant contributor to the total biomass of chlorophytes in August 2005 and 2006 (in 

excess of 8 × 106 µm3 L-1 in both years), although in 2007 the biovolume of 

Coelastrum sp. was substantially less (2.2 × 106 µm3 mL-1) and occurred in 

September. E. elegans was only recorded during June 2007 (Figure 3.6m). Members 

of the genus Scenedesmus (Figure 3.6n) formed a significant component of the 

chlorophyte community, particularly during summer 2005 and 2006 when the total 

biovolume for the genus exceeded 2.4 × 106 µm3 L-1. During 2007, the biovolume of 

Scenedesmus spp. did not exceed 0.6 × 106 µm3 mL-1. In all years, three species of 

Scenedesmus were recorded: S. communis, S. falcatus and S. opoliensis. All species 

were most frequently observed as four-celled coenobia, although two-celled coenobia 

were also common. Eight-celled coenobia of S. falcatus were observed occasionally. 

Tetraedron spp. (Figure 3.6o) were recorded throughout the summer of all years 

during the monitoring period although did not contribute substantially to the total 

biovolume of the chlorophyte community. T. triangulare was the most frequently 

observed member of the genus, and T. caudatum was also observed occasionally. 

Tetrastrum spp. (Figure 3.6p) were observed in all summers during the monitoring 

period and were most abundant during 2005, peaking at 1.35 × 105 µm3 mL-1 in 

August 2005. In 2006 and 2007, Tetrastrum spp. did not exceed 6 × 105 µm3 mL-1. 

Other chlorophytes observed during the monitoring period include Pediastrum spp. 

(including P. boryanum and P. duplex) were present during summer 2005 and 2006. 

Chlorella sp. was frequently found in small biovolumes throughout the monitoring 

period, particularly during 2007. Staurastrum spp. were observed occasionally in 
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summer 2005 and 2006 although was not present in 2007. Closterium sp. was 

observed in small biovolumes in 2006 and 2007. During August 2005, Closterium sp. 

was a significant component of the chlorophyte community, reaching 

4.0 × 105 µm3 mL-1.  

 

Cryptophytes were present throughout the monitoring period. The biovolume of 

Cryptomonas spp. (Figure 3.6q) were generally greater than Rhodomonas spp. 

(Figure 3.6r). Cryptomonas spp. were generally more abundant during spring and 

summer during 2005 and 2006, with a decline in abundance during May and June. 

The biovolume of Cryptomonas spp. were higher during 2007 than the previous years 

and the largest biovolumes occurred at different times. During late summer 2007 the 

abundance of Cryptomonas spp. were also higher than in previous years. 

Rhodomonas spp. were more abundant during spring each year than other seasons. 

Other than a large peak in Rhodomonas spp. biovolume in April 2005, the abundance 

of Rhodomonas spp. were greater throughout 2007 than other years. 

 

Peridinium spp. (data not shown) were observed during March or April in 2005, 2006 

and 2007. Except for 2006, Peridinium spp. were not recorded in summer months, and 

was absent from April 2007 to the end of the monitoring period. Gymnodinium spp. 

(data not shown) were not observed throughout most of the monitoring period 

although were abundant during March 2008. Mallomonas sp. (data not shown) was a 

rare member of the phytoplankton community, but was abundant during March 2007. 

Trachelomonas sp. (data not shown) was observed occasionally in the phytoplankton 

community, although in relatively small biovolumes compared to other species. 

 

3.2.3 Macrophytes 

Submerged macrophytes were rare in Lake C1. Only Fontinalis antipyretica was 

observed, occurring at one sampling site (Figure 3.7). Filamentous algae were 

recorded at 15 sampling locations, mainly towards the southern edge of the lake. No 

floating-leaved macrophytes were found in Lake C1. Seven species of emergent 

macrophytes were observed. Along the north-western shore of the lake, Acorus 

calamus was the only species found, although the north-eastern and south-eastern 

shores had more diverse emergent macrophyte communities. A. calamus was found 
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at the majority of sampling sites, although occurred with other species, such as 

Glyceria maxima and Typha latifolia, along the north-eastern shore. Phalaris 

arundinacea was recorded along the south-eastern shore of the lake, and Iris 

pseudacorus was found at two sampling sites.  
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Figure 3.7 Schematic map of macrophytes observed in Lake C1 (Coneries Pond) 
during summer 2005.  

 

3.2.4  Zooplankton 

Total zooplankton abundance in Lake C1 (Figure 3.8a) increased steadily from 7 

individuals L-1 in March 2005 to 32 ind. L-1 by October 2005. A more rapid increase in 

total zooplankton abundance occurred in 2006, peaking at 189 ind. L-1 by September 

2006, before collapsing rapidly during late summer and remaining at less than  

1 ind. L-1 until April 2007. Zooplankton abundance fluctuated throughout the summer 

of 2007, without the early to mid summer increases observed in the previous two 

years. From October 2007 until the end of the monitoring period, fewer than 2 ind. L-1 

were observed in each sample. 
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Figure 3.8 Timeseries of zooplankton abundance: a) total abundance; b-g) 
selected groups, March 2005-March 2008 in Lake C1 (Coneries Pond). All 
data are presented as individuals L-1. 

The abundance of Daphnia spp. (Figure 3.8b) was highly seasonal, peaking between 

May and June at around 6–8 ind. L-1 and collapsing to very low densities during 

autumn and winter. Nearly all Daphnia observed were D. hyalina, although D. 

curvirostris was observed in November and December 2008. Ceriodaphnia spp. and 

calanoid copepods were both rarely observed in the Lake C1. Cyclopoid copepods 

were generally the most abundant members of the zooplankton community (Figure 

3.8e). Cyclopoid copepods were most abundant during late summer, in both 2005 and 

2006 reaching  20–30 ind. L-1. However, during 2007, cyclopoid copepods were 

comparatively rare with a maximum abundance of 9 ind. L-1 in June. Bosmina 

longirostris was also a significant contributor to the zooplankton community of Lake 

C1. Peak abundances of B. longirostris occurred during September and October in all 

years, reaching 12.7 and 14.0 ind. L-1 in 2005 and 2007 respectively. During 2006 

over 170 ind. L-1 were recorded in September. In each year, abundances were low (<3 

ind. L-1) throughout the winter. Large rotifers were present in zooplankton samples 

throughout 2005 and 2006, generally in densities of less than 1 ind. L-1, except for 

October 2006 when 2 ind. L-1 were recorded. All individuals were from the genus 

Asplancha. Rotifers were particularly abundant during August 2007 when over 20 ind. 

L-1 were observed, entirely and unusually comprising Keratella spp.
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3.3 Lake C2 (Tween Pond) 

 

Figure 3.9 Lake C2 (Tween Pond), photographed during September 2007. 
Recently constructed mud flat areas are in the foreground. Lake C2 is 
the second lake in the chain connected to the River Erewash. Lake C3 
(Main Pond) lies to the right of the photograph and Lake C1 (Coneries 
Pond) to the left. 

3.3.1 Water chemistry 

TP concentrations in Lake C2 (Figure 3.9) ranged between 192 and 1219  µg L-1 with 

a mean of 506 (±33) µg L-1 during the monitoring period (Figure 3.10a). 

Concentrations of TP were highest during the late summer and decreased throughout 

the winter before increasing between spring and summer. In 2006, TP concentrations 

rose more rapidly than in other years, and in 2007 maximum TP concentrations were 

lower than in previous years (906 µg L-1, 1219 µg L-1 and 653 µg L-1 in 2005, 2006 and 

2007 respectively). The mean SRP concentration in Lake C2 during the monitoring 

period was 331 (±22) µg L-1, and ranged between 49 and 661 µg L-1 (Figure 3.10a). 

SRP concentrations decreased slightly throughout monitoring period. Typically, two 

maxima in SRP concentrations were observed in each year, following increases in  



Chapter 3: Effects of the River Erewash (Lake C2, Tween Pond) 

107 

0

400

800

1200

0

400

800

1200

0

0.2

0.4

0.6

0.8

0

5

10

15

0

5

10

15

0

2

4

6

8

0

2

4

6

8

2

4

6

8

0
0.2
0.4
0.6
0.8
1.0
1.2

0
0.2
0.4
0.6
0.8
1.0
1.2

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

25

0

5

10

15

20

25

0

1

2

3

4

5

6

0

1

2

3

4

5

6

0
1
2
3
4
5
6

0
1
2
3
4
5
6

0

1

2

3

4

0

1

2

3

4

0
1
2
3
4
5

0

0.1

0.2

0.3

0
1
2
3
4
5

0

0.1

0.2

0.3

0

20

40

60

80

0

20

40

60

80

400

100

200

300

400

100

200

300

100

200

300

N
O

3-
N

 (m
g 

L-
1 )

P 
(µ

g 
L-

1 )
N

H
4-

N
 (m

g 
L-

1 )
S

iO
3

(m
g 

L-
1 )

pH

C
on

d.
 (m

S 
cm

-1
)

m
eq

 L
-1

m
eq

 L
-1

C
l-

(m
eq

 L
-1

)
To

t. 
al

k.
 (m

eq
 L

-1
)

S
ec

ch
i (

cm
)

Te
m

p.
 (°

C
)

TS
S 

 (m
g 

L-
1 )

D
O

 (m
g 

L-
1 )

a)

b)

d)

e)

c)

TP 
SRP 

f)

g)

h)

i)

j)

Mg2+

Ca2+
Mg2+

Ca2+

k)

l)

m)

n)

K
+(m

eq L
-1)

FebJun Oct Feb Jun Oct Feb Jun Oct Feb

20082005 2006 2007

FebJun Oct Feb Jun Oct Feb Jun Oct Feb

20082005 2006 2007 20082005 2006 2007

6
7
8
9

10
11

6
7
8
9

10
11

FebJun Oct Feb Jun Oct Feb Jun Oct Feb

20082005 2006 2007

FebJun Oct Feb Jun Oct Feb Jun Oct Feb

20082005 2006 2007 20082005 2006 2007

Na+

K+
Na+

K+

FebJun Oct Feb Jun Oct Feb Jun Oct Feb

20082005 2006 2007

FebJun Oct Feb Jun Oct Feb Jun Oct Feb

20082005 2006 2007 20082005 2006 2007

 

Figure 3.10 Water chemistry and physico-chemical properties of Lake C2 
(Tween Pond) March 2005 to March 2008: a) TP and SRP (µg L-1); b) NH4-
N (mg L-1); c) NO3-N (mg L-1); d) SiO3 (mg L-1); e) pH; f) Mg2+ and Ca2+ 
(meq L-1); g) Na+ and K+ (meq L-1); h) Cl- (meq L-1); i) total alkalinity (meq 
L-1); j) specific conductivity (mS cm-1); k) TSS (mg L-1); l) Secchi disk 
depth (cm, dotted line represents approximate lake depth); m) surface 
temperature (°C); n) DO (mg L-1). 

concentration during early summer and progressive decreases from autumn 

throughout the winter. Peaks in SRP concentrations occurred in July and October in 

2005 and May and August in 2006. In 2007, this pattern was not clearly evident. 

 

NH4-N concentrations were highly variable throughout the monitoring period (Figure 

3.10b), ranging between 0 and 0.87 mg L-1. The mean concentration for the 

monitoring period was 0.18 (±0.03) mg L-1. A trend towards higher peaks in NH4-N 

concentration was apparent from March 2005 to July 2007. Typically, highest 
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concentrations were observed in May and June and from November to February. 

During summer and autumn, NH4-N concentrations were frequently below detectable 

limits. In 2007, large peaks in NH4-N concentrations were observed (0.58 mg L-1 and 

0.87 mg L-1 in May and July) which decreased rapidly to August and remained low 

until December before rising to 0.37 mg L-1 and remained above 0.14 mg L-1 until the 

end of the monitoring period. The mean NO3-N concentration was 5.0 (±0.4) mg L-1 

throughout the monitoring period, ranging between 0 and 12.9 mg L-1. NO3-N 

concentrations generally decreased from concentrations of > 6 mg L-1  in late winter 

throughout spring and summer, typically to less than 2 mg L-1. Then NO3-N 

concentrations increased throughout late summer and autumn. A steep increase in 

NO3-N concentrations was observed from October 2007 (1.5 mg L-1) to March 2008 

(12.9 mg L-1).  

 

SiO3 concentrations (Figure 3.10d) were highly seasonal, ranging from 0.4 to 6.2 

mg L-1 and had a mean of 3.4 (±0.3) during the monitoring period. SiO3 rose between 

March 2005 until July 2005 after which concentrations fell abruptly and remained at ~1 

mg L-1 until November, after which a steep increase to over 5 mg L-1 was observed. 

High concentrations were maintained over winter (> 5.1 mg L-1) and fell sharply from 

4.9 mg L-1 in February to 0.7 mg L-1 in April 2006. SiO3 concentrations were variable 

throughout the summer of 2006, and rose sharply again to peak in November 2006 at 

6.1 mg L-1. In 2007, concentrations again decreased sharply during spring to 

 0.7 mg L-1 in April, and rose throughout the summer and winter to a maximum of 5.8 

mg L-1 in January 2008, except for a sharp fall between August (4.5 mg L-1) and 

September (1.8 mg L-1) 2007.  

 

The mean pH in Lake C2 was 8.6 (±0.1) and ranged between 7.6 and 10.2 throughout 

the monitoring period (Figure 3.10e). A significant decreasing trend in surface pH was 

observed throughout the monitoring period (rs = -0.445, p = 0.004). During 2005 pH 

increased throughout the summer to reach a maximum of 10.2 in August before falling 

sharply during autumn to 7.8 in November 2005. pH increased gradually throughout 

the winter and spring, from 8.1 in January 2006 to 9.2 in April 2006. The highest pH 



Chapter 3: Effects of the River Erewash (Lake C2, Tween Pond) 

109 

6.0 
8.0 
10.0 
12.0 

Cond. (mS cm-1)

pH

2 
8 

14 
20 

DO. (mg L-1)

0.5 
0.7 
0.9 
1.1 

Temp. (°C)
4 
8 
12 
16 
20 
24 

2008
Feb Jun Oct Feb Jun Oct Feb Jun Oct Feb

2005 2006 2007

a)

b)

c)

d)

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

2.0

6.0 
8.0 
10.0 
12.0 

6.0 
8.0 
10.0 
12.0 

Cond. (mS cm-1)

pH

2 
8 

14 
20 

2 
8 

14 
20 

DO. (mg L-1)

0.5 
0.7 
0.9 
1.1 

0.5 
0.7 
0.9 
1.1 

Temp. (°C)
4 
8 
12 
16 
20 
24 

4 
8 
12 
16 
20 
24 

8 
12 
16 
20 
24 

2008
Feb Jun Oct Feb Jun Oct Feb Jun Oct Feb

2005 2006 2007 2008
Feb Jun Oct Feb Jun Oct Feb Jun Oct Feb

2005 2006 2007

a)

b)

c)

d)

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

D
ep

th
 (m

)
D

ep
th

 (m
)

D
ep

th
 (m

)
D

ep
th

 (m
)

 

Figure 3.11 Profiles of a) pH; b) specific conductivity (mS cm-1); c) temperature 
(°C); d) dissolved oxygen (mg L-1) in Lake C2 (Tween Pond) March 2005 
to March 2008.  

during 2006 (9.7 in July) occurred slightly earlier than in 2005, and was followed by a 

more gradual decline until pH reached 8.3 in November 2006. During 2007, 

seasonality was not evident, although the lake was less alkaline than previous 

summers. Throughout 2006 and 2007, pH did not vary substantially with increasing 

water depth (Figure 3.11a). During August 2005, higher pH was observed nearer the 

surface, declining from 10.2 on the surface to 9.4 at 2 m depth. 

 

Mg2+ and Ca2+ (Figure 3.10f) concentrations both fell gradually throughout the 

monitoring period (Mg2+, rs = -0.432, p = 0.007; Ca2+, rs = -0.456, p = 0.004). Mg2+ 

concentrations ranged between 0.7 and 2.6 meq L-1, with a mean of  

1.4 (±0.1) meq L-1. The highest values of Mg2+ tended to occur during early summer 
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and November in all years. The mean concentration of Ca2+ was 2.1 (±0.1) meq L-1 

and ranged between 0.7 and 2.6 meq L-1. Ca2+ concentrations were generally highest 

in late summer and autumn. Na+ and K+ concentrations fell from the beginning of the 

monitoring period until January 2007, before increasing gradually throughout 2007 and 

then decreasing sharply from November 2007 until then end of the monitoring period. 

Throughout the monitoring period, a trend towards lower Na+ and K+ correlations was 

observed (Na+, rs = -0.604, p ≤0.001; K+, rs = -0.536, p = 0.001). Cl- concentrations 

(Figure 3.10h) also fell throughout the monitoring period (rs = -0.622, p ≤0.001). 

Seasonality was not evident, with maximum concentrations occurring in different 

months in each year. Mean Cl- concentration was 2.8 (±0.2) meq L-1, ranging between 

0.9 and 4.7 meq L-1. Total alkalinity (Figure 3.10i) in Lake C2 ranged between 2.1 and 

4.7 meq L-1 with an overall mean of 3.3 (±0.1) meq L-1 throughout the monitoring 

period. Total alkalinity tended to be higher during 2007 than both 2005 and 2006.  

 

Mean specific conductivity in Lake C2 was 0.92 (±0.02) mS cm-1 and ranged between 

0.47 and 1.21 mS cm-1 during the monitoring period (Figure 3.10k). Specific 

conductivity showed a decreasing trend during the monitoring period (rs = -0.416, p = 

0.008) and tended to be higher during winter and summer. During 2007, specific 

conductivity was generally lower than in previous years. Specific conductivity fell 

sharply from November 2007 to January 2008, from 1.08 to 0.47 mS cm-1. Specific 

conductivity was nearly homogenous throughout the water column during the 

monitoring period (Figure 3.11b).  

 

TSS concentrations varied seasonally (Figure 3.10k). During 2005 and 2006, TSS 

concentrations were highest during summer, peaking in excess of 30 mg L-1 in each 

year. In both years, TSS concentrations rose rapidly from May to July and fell sharply 

from October to November. Late winter TSS concentrations were higher in 2006 than 

2005, and reached a maximum later in the year, during September. After December 

2007, TSS concentrations rose rapidly to 66 mg L-1 during January 2008 and 

decreased sharply to 9 mg L-1 during February 2008. 

 

Secchi disk depths (Figure 3.10l) ranged between 18 and 195 cm, and averaged 70 

(±6) cm throughout the monitoring period. Secchi disk depths were greatest 

(exceeding 150 cm) in May 2005 and 2007 and June 2006. Secchi depths then 
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decreased sharply and remained low (<65 cm) during the summer months. Lowest 

summer Secchi disk depths were recorded during September 2006 (27 cm). During 

the winters of 2005 and 2006, Secchi disk depths tended be between 50 and 100 cm, 

whilst during 2007 Secchi disk depths were less than 60 cm. 

 

Surface water temperature (Figure 3.10m) was strongly seasonal throughout the 

monitoring period. Temperature ranged between 3.9 and 22.8°C, with a mean of 12.2 

(±1.0) °C. Maximum summertime temperatures occurred between June and August in 

each year, exceeding 20 °C in 2005 and 2006, although in 2007 the maximum 

temperature recorded was 19.3 °C. Low temperatures were observed for a longer 

period during the winter of 2005 and 2007 than 2006. Little stratification was observed 

(Figure 3.11c), except during the summers of 2005 and 2006 were temperatures at 

the surface were approximately 4°C warmer than at 2 m depth. 

 

DO concentrations (Figure 3.10n) were highly variable throughout the monitoring 

period and ranged between 1.6 and 28.4 mg L-1. The mean DO concentration was 

12.7 (±0.8) mg L-1. DO concentrations tended to be higher during summertime, 

although comparable concentrations were observed during April 2005, January 2007 

and March 2008. DO concentrations were generally higher nearer the surface of the 

lake (Figure 3.11d). Gradients of DO concentration were strongest during the summer 

of 2005 and 2006, when surface DO concentrations were 20.1 and 10.9 mg L-1 greater 

at the surface than 2 m depth respectively.  

 

3.3.2 Phytoplankton 

Total biomass 

Chlorophyll-a concentrations (Figure 3.12) ranged between 2.6 and 279.0 µg L-1 

throughout the monitoring period, with a mean of 67.0 µg L-1. Chlorophyll-a 

concentrations were strongly seasonal. During 2005 and 2006, concentrations rose 

briefly during spring, before falling to less than 10 µg L-1 by May. This was followed by 

rapid increases in chlorophyll-a concentrations to maximum concentrations in August 

2005 and July 2006. In both years, concentrations then decreased rapidly and 

remained low (<20 mg L-1) until January 2006 and February 2007. Chlorophyll-a 

concentrations increased erratically throughout the summer of 2007. A smaller  
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summer maximum in chlorophyll-a concentrations was evident compared to previous 

summers (maximum 107 µg L-1, October 2008). Concentrations of chlorophyll-a then 

decreased to 3.7 µg L-1 in December 2007. Chlorophyll-a concentrations rose from 3.7 

to 43.4 µg L-1 from February to March 2008.  
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Figure 3.12 Chlorophyll-a concentrations in Lake C2 (Tween Pond) March 2005 
to March 2008. 

 

Community composition 

Diatoms and chlorophytes were the most abundant phytoplankton groups in Lake C2 

during the monitoring period (Figure 3.13). During summer 2005, diatoms were 

similarly abundant, although the maximum biovolume of diatoms occurred later in the 

year. Chlorophytes were most abundant during 2006, and diatoms were more 

abundant than other phytoplankton groups during 2007. Cyanobacteria were found in 

the phytoplankton during each year, although the highest biovolume occurred during 

2006. Cryptophytes, dinophytes and chrysophytes were all found in Lake C3 although 

in biovolumes insignificant in comparison to other phytoplankton groups.  
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Figure 3.13 Summary of total phytoplankton group biovolumes in Lake C2 
(Tween Pond) March 2005 to March 2008. ‘Bacillariophyceae’ refers to all 
diatoms, and ‘others’ comprises dinophytes and chrysophytes. 

 

Diatoms were a significant contributor to total phytoplankton biomass in Lake C2 

(Figure 3.14a-e). Centric diatoms (Figure 3.14a) were abundant during July to 

September each year, although were nearly always present in the phytoplankton 

community. The highest biovolume of centric diatoms was recorded during October 

2005 when small centric species dominated the diatom community. Although less 

abundant during 2006 and 2007, centric diatoms still formed a large proportion of the 

phytoplankton community. Large biovolumes (> 5 × 106 µm3 L-1) of centric species 

was observed during July 2006 and September 2007. Pennate diatoms (Figure 3.14b) 

were not so dominant during most of the monitoring period, except during August 

2006 when the biovolume of pennate species exceeded that of centric species. As 

with centric species, pennate diatoms were most abundant during August and 

September in each year. Aulacoseira spp. (Figure 3.14c) was recorded during 

summer 2005 in relatively large biovolumes reaching 8.1 × 106 µm3 mL-1 during 

August 2005, and during the winters of 2005 and 2006 was present in comparatively 

small biovolumes. During July and August 2007 Aulacoseira was again abundant, 

although not to the extent seen in 2006. Synedra spp. (Figure 3.14e) were only 

observed in significant biovolumes during 2005 and 2006. During 2005, Synedra spp. 

were present in early and late summer and October, although during 2006 Synedra 

spp. were more abundant in March than any of the summer months. A slight increase 



Chapter 3: Effects of the River Erewash (Lake C2, Tween Pond) 

114 

in the biovolume of Synedra spp. was observed during February and March 2008. 

Asterionella spp. (Figure 3.14d), although a rare genus throughout most of the 

monitoring period, became a dominant diatom briefly during February 2008, reaching 

a biovolume of 7.1 × 104 µm3 mL-1.  
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Figure 3.14 Timeseries of biovolumes (µm3 mL-1) of selected phytoplankton 
species in Lake C2 (Tween Pond) March 2005-March 2008: a-e) 
Bacillariophyceae (diatoms); f-i) cyanobacteria; j-p) Chlorophyceae; q-r) 
Cryptophyceae.  
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The cyanobacteria community (Figure 3.14 f-i) in Lake C2 comprised Microcystis sp. 

and Oscillatoria sp. in 2005 and 2006, with both genera being present in small 

biovolumes during September and October 2007. Microcystis sp. was most abundant 

during the summer of 2005 and 2006, in both years exceeding 8 × 105 µm3 mL-1 

during late summer. Oscillatoria sp. achieved a substantially higher biovolume in 2006 

than 2005, and was present during the same periods as Microcystis sp. 

Aphanizomenon sp. was not observed during the monitoring period in Lake C2. 

 

Chlorophytes were regularly observed in the phytoplankton community of Lake C2. All 

species were typically most abundant during late summer. Ankyra judyaii (Figure 

3.14j) was present during June and August 2005, and was again abundant in August 

2007, although rarely was observed throughout 2007 and 2008. Chlamydomonas spp. 

(Figure 3.14k) were an abundant member of the phytoplankton community during April 

2006 and were also relatively abundant during July and August 2006. Unlike some 

other chlorophytes, Chlamydomonas spp. were also present during the summer of 

2007, reaching a maximum of 4.4 × 105 µm3 mL-1 in June 2007. Coelastrum sp. 

(Figure 3.14l) was abundant from July to October 2005, reaching a maximum 

biovolume of 1.9 × 107 µm3 mL-1, and was present in the phytoplankton community 

from July to September 2006, although at considerably smaller biovolumes (maximum 

5.1 × 106 µm3 mL-1, July 2006). In 2007, Coelastrum spp. was rare, although observed 

in small (< 1 × 106 µm3 mL-1) biovolumes from July to November. Eudorina elegans 

(Figure 3.14m) was only found during June 2007 in significant biovolumes. 

Scenedesmus spp. (Figure 3.14n) were the most abundant genera of chlorophyte. S. 

falcatus was the most abundant member of the genera during 2005 and 2007, whilst 

S. communis was more abundant during 2006. However, all species were observed in 

all years. Scenedesmus spp. were abundant from July to November in both 2005 and 

2006, and from July to September during 2007. The highest biovolume of 

Scenedesmus spp. was recorded during August 2006 reaching  5.1 × 106 µm3 mL-1. 

Tetraedron spp. (Figure 3.14o) were more abundant during 2005 and 2006 than 2007. 

The highest biovolume of Tetraedron spp. were recorded during late summer and 

autumn 2005, reaching 1.5 × 105 µm3 mL-1 in October. Tetraedron spp. were also 

abundant during summer 2006  (1.3 × 105 µm3 mL-1) and during the late summer in 

2007. T. caudatum, T. regulare and T. triangular were all observed. Tetrastrum spp. 

(Figure 3.14p) were present throughout the late summer of 2005 reaching in excess of 
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8 × 104 µm mL-1 in August 2005, and present in smaller biovolumes during 2006 and 

2007 (~ 3 × 104 µm mL-1). Monoraphidium sp. was present throughout most of the 

monitoring period, although in low biovolumes (< 3 × 104 µm3 mL-1). Actinastrum 

hantzschii and Ankistrodesmus sp. were both recorded during summer 2005 and 

2006. Pediastrum boryanum, and P. simplex were found in the phytoplankton 

occasionally, mainly during late summer in 2007. Micratinium sp. was observed during 

early summer 2007 in small biovolumes, and isolated occurrences of Selenastrum sp. 

was observed during spring and summer 2005. Staurastrum spp. were only observed 

during August 2005, in low biovolumes. 

 

Cryptomonas spp. (Figure 3.14q) and Rhodomonas spp. (Figure 3.14r) were present 

in the phytoplankton community throughout the majority of the monitoring period. The 

biovolume of Cryptomonas spp. were generally highest at the end of summer, and 

were greater in 2005 compared to 2006 and 2007. Smaller increases in the biovolume 

of Cryptomonas spp. were observed during early summer. Annual maxima of 

Rhodomonas spp. biovolume occurred in August 2005 and 2006, and was greatest in 

August 2008. Rhodomonas spp. were present in substantially lower biovolumes 

throughout 2007 compared to previous years.  

 

Euglenophytes (data not shown) were rarely observed in the phytoplankton 

community of Lake C2. Trachelomonas sp., Euglena spp. and Phacus spp. were all 

recorded sporadically, and never formed a significant portion of total phytoplankton 

biomass. The Dinoflagellate (data not shown) genera observed were Gymnodinium 

and Peridinium. Peridinium spp. were abundant briefly during March and August 2006. 

Gymnodinium spp. and the chrysophyte Mallomonas sp. (data not shown) were 

regularly observed although were recorded only in small biovolumes throughout the 

monitoring period. 

 

3.3.3  Macrophytes 

Submerged macrophytes were rare in Lake C2 (Figure 3.15). Only Fontinalis 

antipyretica was observed, and at only one sampling site. Floating-leaved 

macrophytes were also rare. Two species were observed (Lemna. minor and 

Polygonum amphibium) close to south and east shores of the lake. Seven species of 
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emergent macrophytes were observed. The most diverse communities were found 

along the eastern shores of the lake, where Glyceria maxima and Acorus calamus 

were most frequently observed, and Sparganium erectum and Typha latifolia were 

restricted to the eastern-most shore. Few emergent species were recorded along the 

northern and southern shores, where isolated occurrences of G. maxima, and A. 

calamus were recorded. 
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Figure 3.15 Macrophytes observed in Lake C2 (Tween Pond) during summer 
2005.  

3.3.4  Zooplankton 

Total zooplankton abundance in Lake C2 (Figure 3.16a) was characterised by rapid 

increases during early summer followed by rapid decreases from late summer in 2005 

and 2006. In both years, total abundance exceeded 45 ind. L-1, and was slightly higher 

during 2005 (58 ind. L-1) than 2006. During 2007, late summer increases in 

zooplankton abundance were of a substantially smaller magnitude than the previous 

two years, reaching 8 ind. L-1 in August 2007.  

 

The density of Daphnia spp. (Figure 3.16b) did not exceed 6 ind. L-1 throughout the 

monitoring period, and comprised D. hyalina entirely. Peak abundances of Daphnia 

spp. were observed during June during 2005 and 2006, and in April 2007. Daphnia 

spp. were observed at significant densities during 2005 and 2006 for longer periods 

than 2007, when the density of Daphnia spp. only exceeded 1 ind L-1 for April. 

Ceriodaphnia spp. (Figure 3.16c) were rare members of the zooplankton community 

throughout the monitoring period. Except for during May 2005, Ceriodaphnia spp. 
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were mainly observed during November and December in all years. Calanoid 

copepods (Figure 3.16d) were also rarely observed in Lake C2. Isolated occurrences 

were recorded during July and November 2005, although at very low densities. 

Cyclopoid copepods (Figure 3.16e) were the most abundant member of the 

zooplankton community during 2005 and 2006, exceeding 40 ind. L-1 during August in 

both years. During summer 2007, cyclopoid copepods were comparatively rare, 

although still contributed significantly to the total zooplankton abundance. The 

Bosmina genus (Figure 3.16f) was represented only by B. longirostris. The abundance 

of B. longirostris increased gradually throughout the summers of 2005 and 2006, 

reaching maximum abundances of 5 ind. L-1 and 12 ind. L-1 in 2005 and 2006 

respectively. B. longirostris was observed throughout 2007, although at lower 

densities than during 2005 or 2006, and contributed significantly to total zooplankton 

abundance. The majority of rotifers (Figure 3.16g) observed were Asplancha spp. 

Keratella spp. were observed in April 2006 and 2007, and late summer 2007. The 

density of rotifers did not exceed 2 ind. L-1 throughout 2005 and 2006. During 2007 the 

density of rotifers reached 5 ind. L-1 in August. 
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Figure 3.16 Timeseries of zooplankton abundance: a) total abundance; b-g) 
selected groups, March 2005-March 2008 in Lake C2 (Tween Pond). All 
data are presented as individuals L-1. 
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3.4 Lake C3 (Main Pond) 

 

Figure 3.17 A view across Lake C3 (Main Pond), approximately north, September 
2008. Lake C3 is the final lake in the chain connected to the River 
Erewash. The aggregate processing plant is beyond the left-hand side of 
the photograph, and the outflow to the River Trent (MPO), not visible in 
the photograph, is towards the northern end of the lake. 

 

3.4.1 Water chemistry 

TP concentrations in Lake C3 (Figure 3.17) ranged between 196 µg L-1 and 1261 

µg L-1 (Figure 3.18a). Mean TP was 506 (±35) µg L-1 during the monitoring period. TP 

concentrations rose from the start of the monitoring period (240 µg L-1) to July 2007 

(987 µg L-1), before declining gradually until April 2004. TP then rose sharply from 407 

µg L-1 in June to 1261 µg L-1 in August 2006, declining throughout the winter and 

spring to 196 µg L-1 in March 2007. Concentrations rose slightly throughout the 

summer of 2007, although maximum concentrations during 2007 were lower than in 

2005 and 2006 and occurred later in the year (556 µg L-1, October 2007). The mean 

SRP concentration during the monitoring period was 326 (±24 µg L-1), ranging 

between 82 and 724 µg L-1. SRP concentrations (Figure 3.18a) during 2005 and 2006 
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increased rapidly from approximately 100 µg L-1 in April to reach summertime peaks in 

July 2005 and September 2006. Progressive falls in SRP concentrations occurred 

between autumn and the beginning of the subsequent summer. Summertime peaks of 

SRP decreased each year, from 724 µg L-1 in 2005 to 379 µg L-1 in 2007. 
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Figure 3.18 Water chemistry and physico-chemical properties of Lake C3 (Main 
Pond), March 2005 to March 2008: a) TP and SRP (µg L-1); b) NH4-N  
(µg L-1); c) NO3-N (mg L-1); d) SiO3 (mg L-1); e) pH; f) Mg2+ and Ca2+ (meq 
L-1); g) Na+ and K+ (meq L-1); h) Cl- (meq L-1); i) total alkalinity (meq L-1); j) 
specific conductivity (mS cm-1); k) TSS (mg L-1); l) Secchi disk depth (cm, 
dotted line represents approximate lake depth); m) surface temperature 
(°C); n) DO (mg L-1). 

NH4-N concentrations (Figure 3.18b) during the monitoring period ranged between 0 

and 0.80 mg L-1 (mean, 0.19 ±0.03 mg L-1). NH4-N concentrations were highly 

seasonal, characterised by two sharp increases and decreases in early summer, 
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concentrations below detectable limits during late summer, and then significant 

increases and sustained higher concentrations throughout the winter. In 2007, 

summer peaks were around 0.5 mg L-1 greater than in 2005 and 0.2 mg L-1 than in 

2006, and occurred later in the year, although the concentrations of NH4-N during 

winter 2007 were lower than in previous years. The mean NO3-N concentration during 

the monitoring period was 4.1 (±0.4) mg L-1 and ranged between 0.2 and 11.7 mg L-1 

(Figure 3.18c). Concentrations of NO3-N were highest between October and March, 

reaching 8.4 mg L-1 in March 2006 and 6.9 mg L-1 in December 2006. NO3-N 

concentrations in 2005 and 2007 decreased gradually throughout summer, although in 

2006 a rapid decline in NO3-N occurred between March and April. From November 

2007, NO3-N concentrations increased steeply until March 2008. 

 

The mean SiO3 concentration during the monitoring period was 3.3 (±0.3) mg L-1. SiO3 

concentrations were highly seasonal (Figure 3.18d). Concentrations typically rose 

through spring and early summer to between 4 and 5 mg L-1 in June to July, before 

decreasing briefly throughout late summer and then increasing rapidly again in winter. 

Wintertime concentrations were typically > 5 mg L-1. During 2007, SiO3 concentrations 

were not as high in winter as in 2005 and 2006, and a rapid decrease was observed 

from January 2008 to March 2008 (from 5.7 to 0.2 mg L-1).  

 

pH (Figure 3.18e) during the monitoring period ranged between 7.31 and 10.42. Mean 

pH was 8.73 (±0.1) and generally decreased during the monitoring period (rs = -0.403, 

p = 0.011). pH was highest in August 2005 (10.42) and June 2006 (9.77). During 

summer 2007, pH fell to 7.31 after reaching a maximum of 9.09 in June 2007. pH was 

lowest during autumn and winter, ranging between 8.10 and 8.70 during winter 2005 

and 8.46 and 8.87 during winter 2006. Throughout the majority of the monitoring 

period, pH was homogenous throughout the water column (Figure 3.19a). Some of the 

strongest gradients in pH were observed during late summer 2005, when pH at the 

water surface was 10.4 and decreased with increasing depth to reach 9.14 at 2.5 m.  

 

Mg2+ concentrations (Figure 3.18f) ranged between 0.68 and 2.39 meq L-1 (mean, 

1.39 ±0.64 meq L-1) during the monitoring period and showed a declining trend (rs = 

-0.470, p ≤0.003). The highest Mg2+ concentrations occurred during November 2005 

(2.39 meq L-1), October 2006 (2.04 meq L-1) and October 2007 (1.92 meq L-1). The 
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mean Ca2+ concentration during the monitoring period was 2.05 (±0.11) meq L-1, and 

ranged between 0.70 and 3.39 meq L-1 (Figure 3.18f). Ca2+ concentrations were 

highest during April and November 2005 (3.39 and 3.30 meq L-1 respectively). During 

2006 and 2007 Ca2+ concentrations did not exceed 2.7 meq L-1. A substantial 

decrease was observed during late summer and autumn 2006. Ca2+ concentrations 

generally declined during the monitoring period (rs -0.413, p = 0.01).  
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Figure 3.19 Profiles of a) pH; b) specific conductivity (mS cm-1); c) temperature 
(°C); d) dissolved oxygen (mg L-1) in Lake C3 (Main Pond) March 2005 to 
March 2008. 

 

A trend towards decreasing Na+ concentrations was observed throughout the 

monitoring period (Figure 3.18g, rs = -0.713, p ≤0.001). The mean Na+ concentration 

was 3.10 (±0.18) meq L-1, and ranged between 1.00 and 5.38 meq L-1. The highest 

concentrations of Na+ occurred during spring and early summer each year, reaching 
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5.37 meq L-1 in March 2005, 4.11 meq L-1 in March 2006 and 3.81 meq L-1 in June 

2007. Na+ concentrations rose steeply between July and November (from 1.62 to 3.76 

meq L-1) and then fell sharply again from December 2007 to March 2008. K+ 

concentrations (Figure 3.18g) showed a trend of decreasing concentrations 

throughout the monitoring period (rs = -0.630, p ≤0.001). The mean K+ concentration 

was 0.22 (±0.01) meq L-1, and ranged between 0.07 and 0.36 meq L-1. The highest 

concentrations of K+ occurred during November 2005 and November 2007 (0.36 and 

0.26 meq L-1) respectively. During 2006, K+ concentrations were highest in May.  

 

Cl- concentrations (Figure 3.18h) decreased throughout the monitoring period (rs = 

-0.705, p ≤0.001). The mean Cl- concentration was 2.76 (±0.17) meq L-1 and ranged 

between 0.92 and 4.86 meq L-1. Concentrations declined from March (5.06 meq L-1) to 

November 2005 (1.85 meq L-1) and then rose sharply to 4.07 meq L-1 by January 

2006. Cl- concentrations then became more variable and oscillated throughout the rest 

of the monitoring period. Total alkalinity (Figure 3.18i) ranged between 2.10 and 4.70 

meq L-1 (mean, 3.31 ± 0.10 meq L-1). Total alkalinity was highest between July and 

October, although in 2006, the summertime maximum was considerably shorter in 

duration than 2005 and 2007.  

 

Mean specific conductivity during the monitoring period was 0.91 (±0.02) mS cm-1, 

ranging between 0.47 and 1.20 mS cm-1 (Figure 3.18j). Specific conductivity showed a 

decreasing trend over the monitoring period (rs = -0.525, p = 0.001). Seasonal trends 

in specific conductivity were not clearly evident. High specific conductivity was 

recorded during June 2005 (1.18 mS cm-1) and March 2006 (1.20 mS cm-1). During 

2007, the highest specific conductivity was 1.01 mS cm-1 in June. Specific conductivity 

did not show any substantial changes with increasing water depth (Figure 3.19b). 

 

TSS concentrations (Figure 3.18k) ranged between 5.6 and 57.0 mg L-1 (mean, 19.6 

±1.8 mg L-1). TSS concentrations were higher in summer during 2005 and 2006 (40 

and 38 mg L-1 respectively), and in each year rose and fell briefly during early 

summer. TSS concentrations increased sharply to  34 mg L-1 in January 2007 then fell 

gradually to 8 mg L-1 in May 2007. Summertime concentrations of TSS in 2007 were 

less than in both 2005 and 2006, reaching 28.8 mg L-1 in August, and rose sharply to 
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57.0 mg L-1 in January 2008. TSS concentrations rose briefly in May 2005, and after 

declining in June, rose sharply to 40.0 mg L-1 in August 2005.  

 

Secchi disk depths (Figure 3.18l) ranged between 20 and 163 cm in Lake C3. The 

mean Secchi depth for the monitoring period was 68 (±6) cm. The greatest Secchi 

disk depths tended to occur during January and May each year. During 2006, early 

summer increases in Secchi depth were more rapid than in 2005, and a greater depth 

was recorded (112 cm, June 2005; 163 cm, May 2006). Secchi depth tended to 

decreased during later summer, reaching 23 cm and 26 cm in 2005 and 2006 

respectively. In 2007, low Secchi disk depths were observed during January and 

February (33-34 cm), and although early summer increases in Secchi depth were 

observed, the minimum late summer Secchi depth was not as low as in previous 

years, reaching 49 cm in September 2007. 

  

Surface water temperature (Figure 3.18m) was highly seasonal. Maximum 

temperatures occurred during August or September each year. Minimum 

temperatures were recorded between December and January each year. The mean 

temperature throughout the monitoring period was 12.6 (±1.0)°C. Water temperature 

was homogenous throughout the water column for the majority of the monitoring 

period (Figure 3.19c). Temperature gradients from the surface to the bottom of the 

lake only occurred during the summers of 2005 and 2006. In August 2005, the water 

temperature decreased from 23.3°C on the surface to 17.7°C at 2.5 m depth, and in 

July 2006 surface water temperature was 2.8°C warmer than at 2.5 m depth. 

 

DO concentrations in Lake C3 (Figure 3.18n) ranged between 6.8 and 30.0 mg L-1 

(mean, 13.5 ±0.9 mg L-1) during the monitoring period. Peaks in DO concentration 

were recorded during August 2005 and July 2006 and September 2007. During winter 

months, DO typically ranged between 7 and 14 mg L-1. DO concentrations began to 

increase from December 2007 to March 2008. DO concentrations were frequently 

greater nearer the water surface than further down the water column (Figure 3.19d). 

This was particularly evident during summer 2005 and 2006. In both years, DO 

concentrations were around 20 mg L-1 greater at the surface than 2.5 m deep.  
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3.4.2 Phytoplankton 

 

Total biomass 

Chlorophyll-a concentrations ranged between 3 and 286 µg L-1 (mean 68 ±13 µg L-1) 

during the monitoring period. Chlorophyll-a concentrations in 2005 and 2006 were 

strongly seasonal. In both years, chlorophyll-a concentrations decreased from 91-123 

µg L-1 during April to < 8 µg L-1 in May and June, followed by rapid rises in chlorophyll-

a concentrations to reach 281 and 286 µg L-1 in August 2005 and 2006 respectively. 

Chlorophyll-a concentrations decreased rapidly to < 8 µg L-1 in December. In 2007, an 

early summer increase in chlorophyll-a concentrations was not observed, and the 

highest concentration of chlorophyll-a was less than half that of the previous two 

years.  
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Figure 3.20 Chlorophyll-a concentrations in Lake C3 (Main Pond), March 2005 to 
March 2008. 

 

Community composition 

Chlorophytes and diatoms were the most abundant phytoplankton groups in Lake C3 

during summer months (Figure 3.21), particularly during 2005 and 2006. During 

summer 2007, the phytoplankton community was substantially smaller than in 

previous summers and was not clearly dominated by any phytoplankton group. 

Cryptophytes and cyanobacteria were also abundant during the summer months. 

Cyanobacteria were rarely observed outside of summer months. During spring, 

chlorophytes were more abundant in 2005 and diatoms were dominant in 2006 and 
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2007. Chrysophytes and dinophytes were observed in the phytoplankton during the 

monitoring period, although overall were rare compared to diatoms and chlorophytes.  

Feb  Jun  Oct  Feb  Jun  Oct  Feb  Jun  Oct  Feb  

2005 2006 2007 2008

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

B
io

vo
lu

m
e 

(1
07

µm
3

m
L-1

) Chlorophytes 
Cyanobacteria
Cryptophytes
Others

Bacillariophyceae (Diatoms)

2.2 × 1076.7 × 107

 

Figure 3.21 Summary of total phytoplankton group biovolumes in Lake C3 (Main 
Pond), March 2005 to March 2008. ‘Bacillariophyceae’ refers to all 
diatoms, and ‘others’comprises dinophytes and chrysophytes. 

 

Diatoms (Figure 3.22a-e) were present throughout the monitoring period in Lake C3. 

Centric species (Figure 3.22a) were highly abundant during late summer before falling 

sharply in abundance during October and November. In 2005 and 2006, increases in 

the biovolume of centric species were observed in spring. The maximum abundance 

of centric species in 2006 was substantially less than in 2005, reaching 3.4 × 106 µm3 

mL-1 in July 2006. Centric diatoms were less abundant in 2007 than either 2005 or 

2006. From January 2008 to March 2008, the biovolume of centric diatoms rose 

several orders of magnitude. Pennate diatoms (principally Navicula spp., Figure 

3.22b) were considerably less abundant throughout the monitoring period, and tended 

to be present later in the year than centric species. During 2005, pennate species 

were only present in significant biovolumes during October 2005 and in September 

2006 reached 2.2 × 106 µm3 mL-1. Pennate diatoms were again present in the 

phytoplankton community during September 2007, although in low biovolumes 

compared to previous years. Asterionella sp. (Figure 3.22c) was largely absent for 

most of the monitoring period. Aulacoseira spp. (Figure 3.22d) were also often 

observed in the phytoplankton, although did not reach significant biovolumes apart 

from briefly during the summer of 2005 (1.4 × 106 µm3 mL-1). Synedra spp. (Figure 



Chapter 3: Effects of the River Erewash (Lake C3, Main Pond) 

127 

3.22e) were often observed although were not present in large biovolumes regularly, 

except during April 2006. Tabellaria sp. (data not shown) was recorded during October 

2006, September 2007 and in March 2008, although in relatively low biovolumes 

compared to other diatom species.  
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Figure 3.22 Timeseries of biovolumes (µm3 mL-1) of selected phytoplankton 
species in Lake C3 (Main Pond), March 2005-March 2008: a-e) 
Bacillariophyceae (diatoms); f-i) cyanobacteria; j-p) Chlorophyceae; q-r) 
Cryptophyceae. Note the differences in y-axis scales. 
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Cyanobacteria (Figure 3.22f-i) were more abundant during the summer of 2006 than 

other years in Lake C3. During 2005, only Aphanizomenon sp. (Figure 3.22f) and 

Oscillatoria sp. (Figure 3.22i) were present in significant biovolumes. Aphanizomenon 

sp. was present in the phytoplankton during spring 2005, however during 2006 and 

2007 it was very scarce. Microcystis sp. (Figure 3.22h) was abundant during 

September 2006. Microcystis sp. was also present in the phytoplankton during autumn 

2007 with Oscillatoria sp., although in much smaller quantities than during 2006. 

Merismopedia sp. was present in comparatively high biovolumes during August 2005 

(7.9 × 105 µm3 mL-1, data not shown). 

 

Chlorophyte species (Figure 3.22j-p) were abundant through both 2005 and 2006 in 

Lake C3. The genus Ankyra (Figure 3.22j) was represented by A. judyaii alone, 

reaching a biovolume of 2.2 × 105 µm3 mL-1 in June 2005. A. judyaii was frequently 

present during winter 2005 and spring 2006 and spring 2007. Chlamydomonas spp. 

(Figure 3.22k) showed similar patterns of abundance to Ankyra spp. Chlamydomonas 

spp. were abundant briefly during August 2005 (4.6 × 105 µm3 mL-1). During summer 

2006, Chlamydomonas spp. were observed for a longer period (March to August 

2006) although in smaller biovolumes compared to 2005. During 2007, 

Chlamydomonas spp. were observed throughout spring and summer, at biovolumes 

that did not exceed 2.4 × 104 µm3 mL-1. Coelastrum sp. (Figure 3.22l) was consistently 

observed in the phytoplankton community from March to November 2005. Coelastrum 

sp. was more abundant during 2005 than 2006 and was a significant contributor to the 

total biomass of chlorophyte species during 2007. Eudorina sp. (Figure 3.22m) was 

rare throughout the monitoring period. Scenedesmus spp. (Figure 3.22n) were 

represented by S. communis, S. falcatus and S. opoliensis and were observed 

throughout the monitoring period. Scenedesmus spp. were particularly abundant 

during 2005 largely driven by high biovolumes of S. falcatus and S. communis in 

August 2005.. S. falcatus and S. communis were the most abundant species during 

summer 2006. Scenedesmus spp. were comparatively rare during 2007, although 

were the most abundant genera during summer 2007. Tetraedron spp. (Figure 3.22o) 

were frequently observed in the phytoplankton community. T. triangulare, T. regulare 

and T. caudatum were the most frequently observed members of the genus. The 

maximum biovolume of Tetraedron spp. during 2007 was substantially less than in 

previous years. Tetrastrum sp. (Figure 3.22p) was also frequently observed in the 
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phytoplankton community of Lake C3 during late summer. Other chlorophytes that 

formed a significant biovolume of the phytoplankton included Closterium acutum, 

which was present during 2005, largely absent throughout 2006, and present during 

2007. Dictyosphaerium sp. was observed in the summer of 2005 only, and reached 

high biovolumes (4.2 × 106 µm3 mL-1) in August. Monoraphidium sp. was observed 

during early summer and autumn each year, although it was rarely a significant 

member of the chlorophyte community. P. duplex and P. simplex were both observed 

during the monitoring period throughout the summer months in all years, although the 

highest biovolumes occurred during 2006 (7.5 × 104 µm mL-1 in June).  

 

Cryptomonas spp. (Figure 3.22q) were observed throughout the monitoring period. 

The highest biovolumes of Cryptomonas spp. occurred during August 2005 and July 

2006 and 2007, although the highest biovolume recorded fell each year. Rhodomonas 

spp. (Figure 3.22r) were also observed throughout the majority of the monitoring 

period, and although present in smaller biovolumes than Cryptomonas spp., were 

most abundant during 2005. In 2006, the greatest biovolume of Rhodomonas spp. 

were significantly less during 2005, reaching a maximum of 5.7 × 105 µm3 mL-1 in July. 

During 2007, Rhodomonas spp. were rare with the maximum abundance of the genus 

reaching an order of magnitude less than in 2006 (4.6 × 104 µm mL-1 in February). An 

increase in the biovolume of Rhodomonas spp. occurred from January 2008 to March 

2008.  

 

Euglenophytes (data not shown) were generally rare throughout the monitoring period. 

However, Trachelomonas sp. was observed on several occasions throughout the 

monitoring period, particularly during 2005 and 2006. Dinophytes were represented by 

Gymnodinium spp. and Peridinium spp. in Lake C3, and were mainly observed during 

summer. During 2007, dinophytes were not as abundant as in 2006. Mallomonas sp. 

was observed in relatively low biovolumes during 2006 and 2007.  

3.4.3 Macrophytes 

Submerged macrophytes were very rare in Lake C3 (Figure 3.23). Zanichella palustris 

was found towards the north-east of the lake and filamentous algae were found at 

seven sampling sites. The floating-leaved species Nuphar lutea and Nymphea alba 
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were found along the north-western shore, and Polygonum amphibium was observed 

twice, along the north and south shores.  
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Figure 3.23 Macrophytes observed in Lake C3 (Main Pond) during summer 2005.  

 

The emergent macrophyte community of Lake C3 comprised eight species. Glyceria 

maxima, Acorus calamus and Sparganium erectum were the most frequently 

observed emergent species, occurring along all the shores of the lake. Typha latifolia 

was also frequently recorded. Carex sp. was found along the northern-most shore, 

and Juncus sp. along the western edge of Lake C3. Iris pseudacorus was found along 

the southern edge of the lake and at one sampling site on the northern shore. Phalaris 

arundinacea was also found on the southern edge of the lake.  

 

3.4.4 Zooplankton  

Total zooplankton abundance (Figure 3.24a) in Lake C3 decreased during early 

summer 2005 from 52 ind. L-1 to < 2 ind. L-1 by June 2005. Total zooplankton 

abundance increased throughout late summer and decreased during winter. Total 

zooplankton abundance remained low during winter 2005 until a brief increase in April 

2006, followed by a rapid increase in abundance from 8 ind. L-1 in June 2006 to 90 

ind. L-1 in September 2006. Total zooplankton abundance then declined sharply to 
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<0.1 ind. L-1 and remained low until March 2007, before decreasing slightly between 

April and May. The highest abundance of zooplankton in 2007 occurred in June, after 

which a sharp decrease in total abundance occurred. An increase in total zooplankton 

abundance was observed between July and October. Fewer than 4 ind. L-1 were 

present from November 2007 until March 2008.  

 

In Lake C3, the genus Daphnia (Figure 3.24b) was almost exclusively dominated by 

D. hyalina, except for an isolated occurrence of D. cucullata in March 2005. The 

abundance of Daphnia spp. was greatest during early summer in 2005 and 2006. A 

sharp increase in Daphnia spp. abundance occurred between May and June 2006. 

Daphnia spp. were less abundant during 2007 than in previous years. Ceriodaphnia 

spp. (Figure 3.24c) were absent throughout most of the monitoring period.  
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Figure 3.24 Timeseries of zooplankton abundance: a) total abundance; b-g) 
selected groups, March 2005-March 2008 in Lake C3 (Main Pond). All 
data are presented as individuals L-1. 
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Calanoid copepods (Figure 3.24d) were rarely observed in Lake C3. Cyclopoid 

copepods (Figure 3.24e) were the most abundant zooplankton group. Cyclopoid 

copepods were most abundant during spring and summer 2005 and summer 2006. 

The abundance of cyclopoid copepods rose to 66 ind. L-1 during autumn 2006. The 

abundance of calanoid copepods during 2007 was highest in June. Low densities 

were observed during July and August. The genus Bosmina (Figure 3.24f) was 

represented by B. longirostris alone. B. longirostris was substantially more abundant 

(exceeding 15 ind. L-1) during late summer 2006 and 2007 than 2005.  

 

Rotifers found in zooplankton samples (Figure 3.24g) were largely Asplancha sp., 

although Keratella sp. was also observed. Rotifers were generally not found in any 

samples during 2005. 5 ind. L-1 were recorded in April 2006. Rotifers remained rare 

until June 2007, when a sharp increase in abundance was observed, reaching 11 ind. 

L-1. After June 2007, rotifer abundance fell and remained <1 ind. L-1 from September 

until the end of the monitoring period. Eurycercus lamellatus was recorded in April 

2006 and March 2008, and Sida spp. in April 2007 (data not shown). 
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3.5 Lake I1 (Church Pond) 

 

Figure 3.25 A north-easterly view across Lake I1 (Church Pond), September 
2008. Lake I1 is isolated from the River Erewash. To the right of the 
photograph is a platform to encourage nesting wildfowl, particularly 
common terns (Sterna hirunda). 

 

3.5.1 Water chemistry 

In Lake I1 (Figure 3.25) TP concentrations ranged between 69 and 725 µg L-1, and 

SRP concentrations ranged between 14 and 319 µg L-1 (Figure 3.26a and b). Mean 

concentrations of TP and SRP were 192 (± 21) and 103 (±12) µg L-1 respectively. Both 

TP and SRP were present in higher concentrations during  late summer than in other 

seasons and at their lowest during spring. Highest concentrations of TP (725 µg L-1) 

occurred in August 2006, although the highest SRP concentrations (319 µg L-1) were 

recorded in August 2005. Both SRP and TP concentrations were lower during the 

summer of 2007 than the previous two years. 
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Figure 3.26 Water chemistry and physico-chemical properties of Lake I1 (Church 
Pond), March 2005 to March 2008: a) TP and SRP (µg L-1); b) NH4-N (mg 
L-1); c) NO3-N (mg L-1); d) SiO3 (mg L-1); e) pH; f) Mg2+ and Ca2+ (meq L-1); 
g) Na+ and K+ (meq L-1); h) Cl- (meq L-1); i) total alkalinity (meq L-1); j) 
specific conductivity (mS cm-1); k) TSS (mg L-1); l) Secchi disk depth (cm, 
dotted line represents approximate lake depth); m) surface temperature 
(°C); n) DO (mg L-1). 

 

The mean NH4-N concentration was 0.05 (±0.01) mg L-1 during the monitoring period 

(Figure 3.26b) and concentrations were frequently below detectable levels. NH4-N 

concentrations were highly seasonal, highest during late winter (in excess of 0.02 

mg L-1) and less than 0.05 mg L-1 during summer. During summer 2007 

concentrations were slightly higher than previous summers. NO3-N concentrations 

ranged between 0 and 1.7 mg L-1, with a mean of 0.2 ±0.06 mg L-1 over the monitoring 

period (Figure 3.26c). Concentrations of NO3-N were below detectable limits during 
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early summer in 2005 and 2006 (April and May 2006, March and April 2007). During 

2005 and 2006, NO3-N concentrations increased from below detectable 

concentrations in late summer, to winter maxima of 0.3 and 0.6 mg L-1 respectively. In 

2007, NO3-N concentrations rose abruptly in October to 1.7 mg L-1, and remained 

higher in January to March 2008 than previous years.  

 

The mean SiO3 concentration in Lake I1 was 1.4 ±0.2 mg L-1 and ranged between 0.3 

and 4.6 mg L-1 (Figure 3.26d). Strong inter-annual variability was observed in SiO3 

concentrations. Wintertime SiO3 concentrations during 2005 and 2007 were 1.0 and 

1.1 mg L-1 respectively, although higher concentrations were recorded during the 

winter of 2006, rising from 0.4 mg L-1 in June 2006 and reaching a maximum of 4.6 mg 

L-1 in January 2007. After January 2006, SiO3 concentrations decreased abruptly to 

0.5 mg L-1 in May 2007, and remained less than 1 mg L-1 until January 2008 when 

concentrations reached 2 mg L-1 before declining to 0.8 mg L-1 by March 2008. 

 

pH ranged between 7.45 and 9.79 (mean 8.67 ±0.08, Figure 3.26e). During 2005 and 

2006, pH tended to be higher during late summer and lowest during winter. In 2007, 

pH was not clearly higher during the summer, although decreased during the winter 

similarly to previous years. No substantial changes of pH with depth were observed 

(Figure 3.27a). 

 

Mg2+ concentrations ranged between 0.51 and 1.11 meq L-1 during the monitoring 

period with a mean of 0.81 ±0.02 meq L-1 (Figure 3.26f). Mg2+ concentrations 

remained relatively constant throughout 2005, although during 2006 and 2007 

concentrations tended to be higher during late summer. The mean Ca2+ concentration 

was 1.42 ±0.09 meq L-1, ranging between 0.35 and 2.44 meq L-1. Seasonality in 

concentrations was not evident (Figure 3.26f), although during winter 2006 and 

January 2008 Ca2+ concentrations were markedly low. Na+ concentrations ranged 

between 1.13 and 2.94 meg L-1 with a mean of 1.83 ±0.06 meq L-1 (Figure 3.26g). K+ 

concentrations ranged between 0.09 and 0.22 meq L-1, with a mean of 0.14 ± 0.004 

meq L-1 (Figure 3.26g). Na+ and K+ concentrations followed similar trends throughout 

the monitoring period. Noticeable peaks occurred during November 2005. 

Concentrations were relatively constant during 2006 and 2007 and fell from 

September 2007 towards the end of the monitoring period. Cl- concentrations 
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remained relatively constant throughout the monitoring period (Figure 3.26h). The 

mean Cl- concentration was 1.65 ±0.10 meq L-1, and ranged between 0.70 and 2.60 

meq L-1. During 2005 and 2006, total alkalinity was lower in summer than other 

seasons (Figure 3.26i). Mean total alkalinity was 2.40 ±0.06 meq L-1, ranging between 

1.30 and 3.25 meq L-1.  
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Figure 3.27 Profiles of a) pH; b) specific conductivity (mS cm-1); c) temperature 
(°C); d) dissolved oxygen (mg L-1) in Lake I1 (Church Pond) March 2005 
to March 2008.  

Conductivity ranged between 0.34 and 1.09 ms cm-1, with a mean of 0.56 ±0.02 mS 

cm-1 during the monitoring period (Figure 3.26j). Conductivity increased from mid 

summer 2005 until June 2006, after which conductivity decreased briefly before 

increasing again to June 2006. Conductivity then decreased to the end of the 
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monitoring period. Conductivity was generally homogenous throughout the water 

column during the monitoring period (Figure 3.27b) 

 

The mean TSS concentration during the monitoring period was  8.6 ±1.2 mg L-1 

(Figure 3.26k). TSS concentrations were generally less than 20 mg L-1 during the 

monitoring period. However, during summer 2006 TSS increased abruptly to reach 

36.5 mg L-1. TSS concentrations then fell gradually to spring 2007, before increasing 

towards the end of monitoring period to 23.2 mg L-1 by March 2008. 

 

The mean Secchi disk depth was 191 ±14 cm and ranged from 38 to 347 cm, when 

the disk was visible on the lake bed (Figure 3.26l). Secchi disk depths showed distinct 

seasonal trends and were generally greater during winter. The shallowest Secchi disk 

depths were recorded during summer months. Shallow Secchi disk depths were 

sustained during summer 2006. During summer 2007, deeper Secchi disk depths 

were observed than during 2006 and 2005. Secchi depths were much shallower 

during the winter of 2007 than previous winters.  

 

Temperature measurements exhibited a strongly seasonal pattern (Figure 3.26m). 

The highest temperatures were recorded during summer months (> 19°C) and the 

lowest during late winter (< 5°C). The mean water temperature throughout the 

monitoring period was 12.2 ±1.0°C. Temperature showed no evidence of stratification 

of the water column (Figure 3.27c). 

 

The mean DO concentration in Lake I2 was 11.1 ±0.5 mg L-1, and ranged between 5.9 

and 21.0 mg L-1 (Figure 3.26n). No distinct seasonality in DO concentrations was 

observed. From January to March 2008, DO concentrations increased steadily. DO 

concentrations were generally higher near the lake surface throughout the monitoring 

period (Figure 3.27d), although this difference rarely exceeded 2 mg L-1 between 0 

and 3 m depth.  
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3.5.2 Phytoplankton 

Total biomass 

Mean chlorophyll-a concentration in Lake I1 was 23 ± 8 µg L-1 and ranged between 2 

and 299 µg L-1 (Figure 3.28). In 2005 and 2006, the highest concentrations of 

chlorophyll-a were observed in late summer, although the maximum was substantially 

higher in 2006 than 2005. In 2007, there was no summertime maximum, instead 

concentrations remained less than 10 µg L-1 through the summer months. During 

2007, chlorophyll-a concentrations were highest in November and again rose sharply 

from January to March 2008.  
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Figure 3.28 Chlorophyll-a concentrations in Lake I1 (Church Pond) March 2005 
to March 2008. 

 

Community composition 

Cyanobacteria were the most abundant phytoplankton groups during summer 2005 

and 2006 in Lake I1 (Figure 3.29). Chlorophytes were present throughout the 

monitoring period although they were most abundant during the summer of 2006. 

Cryptophytes were more abundant during 2006 and 2007, although they were present 

in smaller biovolumes during 2005. During 2007, maximum abundances of 

phytoplankton occurred later in the year than in 2005 and 2006, with euglenophytes 

and diatoms most abundant. Diatoms were scarce throughout 2005 and 2006, and 

then became an increasingly important group of phytoplankton towards the end of the 

monitoring period. Although dinoflagellates and chrysophytes were observed in Lake 

I1, they were rare compared to other phytoplankton groups during the monitoring 

period.  



Chapter 3: Effects of the River Erewash (Lake I1, Church Pond) 

139 

 

Feb  Jun  Oct  Feb  Jun  Oct  Feb  Jun  Oct  Feb  
0

1

2

3

4

5

6

2005 2006 2007 2008

Chlorophytes 
Cyanobacteria
Cryptophytes
Others

Bacillariophyceae (Diatoms) 

B
io

vo
lu

m
e 

(1
05

µm
3

m
L-1

)

6.8 × 105 8.3 × 105 1.7 1.7 ×× 10106 6 

 

Figure 3.29 Summary of total phytoplankton group biovolumes in Lake I1 
(Church Pond), March 2005 to March 2008. ‘Bacillariophyceae’ refers to 
all diatoms, and ‘others’ comprises dinophytes and chrysophytes. 

 

 

The diatom community of Lake I1 was dominated by centric taxa (Figure 3.30a-e). All 

diatoms were more abundant from summer 2006 to the end of the monitoring period. 

Diatoms were dominant during spring and summer months but also present 

throughout the year. In June 2006 centric diatoms were particularly abundant (Figure 

3.30a) reaching a biovolume of 2 x 105 µm3 mL-1, and throughout 2007 centric species 

were more abundant than in previous years. Pennate diatoms (Figure 3.30b) followed 

a similar pattern of abundance, becoming more abundant after maximum biovolumes 

occurred in June 2006. However, the biovolume of pennate species was less than that 

of centric species. From January to March 2008 all diatom species were more 

abundant than in previous years. Asterionella sp. (Figure 3.30c) was a rare member of 

the diatom community in Lake I1 until February 2008, reaching a biovolume of 1.2 x 

104 µm3 mL-1. Aulacoseira spp. (Figure 3.30d) were absent from diatom community 

throughout the monitoring period, whilst Synedra spp. (Figure 3.30e) were only 

present in significant biovolumes during summer 2006.  
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Figure 3.30 Timeseries of biovolumes (µm3 mL-1) of selected phytoplankton 
species in Lake I1 (Church Pond), March 2005 - March 2008: a-e) 
Bacillariophyceae (diatoms); f-i) cyanobacteria; j-p) Chlorophyceae; q-r) 
Cryptophyceae. Note the differences in y-axis scales. 

 

Aphanizomenon flos-aque was the most abundant member of the cyanobacteria 

community in 2005, although it was only observed during July (Figure 3.30c). 

Anabaena spp. and Microcystis sp. were also present although in comparatively 

smaller biovolumes (Figure 3.30g – h). All cyanobacteria were more abundant during 
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the summer of 2006, when chlorophyll-a concentrations were significantly higher than 

in 2005 and 2007 (Figure 3.28). Microcystis sp. was the most abundant taxon among 

the cyanobacteria during 2006. A. flos-aque and Anabaena spp. were present during 

the early summer and were succeeded by Microcystis sp. from July, which remained a 

member of the phytoplankton community until November 2006. Oscillatoria sp. (Figure 

3.30i) was only present in significant biovolumes during June and November 2006. 

The cyanobacteria community during 2007 was relatively depauperate compared to 

2006. Microcystis sp. was present in small biovolumes during early summer, with 

Anabaena and Oscillatoria sp. both present in September. Subsequently no 

cyanobacterial taxa contributed significantly to phytoplankton biomass until the end of 

the monitoring period.  

 

Chlorophytes were more abundant during summer months (Figure 3.30j – p) . During 

summer 2005, the most abundant chlorophyte taxa were Chlamydomonas spp. 

(Figure 3.30k), Coelastrum spp. (Figure 3.30l) and Scenedesmus spp. (Figure 3.30n, 

principally S. opoliensis). Pediastrum duplex and Tetraedron triangulare (Figure 3.30o) 

were also present. During 2006, chlorophytes were more abundant than in 2005 and 

more species were represented in the community. An increase in the abundance of 

Eudorina elegans, Coelastrum spp., and Scenedesmus spp. coincided with a large 

increase in chlorophyll-a concentration during the summer of 2006 (Figure 3.28). 

Chlamydomonas spp. were also present during the summer of 2006. S. communis, S. 

falcatus and S. opoliensis were present during summer 2006. Staurastrum spp., P. 

boryanum, Monoraphidium spp. and Micratinium spp. were also present in the 

chlorophyte community during 2006. Chlorophytes were rare during 2007 compared to 

2006. Small species such as A. judyaii and Chlamydomonas spp. and S. communis 

were observed from March to July 2007. A. judyaii, Monoraphidium spp. and 

Schroderia spp. increased in abundance from January 2008 to March 2008.  

 

Cryptomonas spp. and Rhodomonas spp. were present throughout the monitoring 

period in Lake I1 (Figure 3.30q-r). During 2005, Cryptomonas spp. was present in 

relatively low biovolumes compared to the rest of the monitoring period, rarely 

exceeding 20,000 µm3 mL-1. Large biovolumes, in excess of 200,000 µm3 mL-1 

occurred during late 2006 and March 2007. Unlike many other phytoplankton species, 

Cryptomonas spp. were present throughout 2007, with significant biovolumes 
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recorded during November 2007. Rhodomonas spp. were comparatively less 

abundant than Cryptomonas spp. but still formed a substantial proportion of the 

phytoplankton community. The highest biovolume of Rhodomonas spp. in 2005 

occurred in October, and was again abundant during spring and early summer of 

2006, reaching a biovolume of 36,300 µm3 mL-1 in May 2006. During early 2007, 

Rhodomonas spp. was not present in biovolumes comparable to early 2006, although 

it was a significant member of the phytoplankton community during autumn and winter 

2007.  

 

Trachelomonas sp. were observed in spring and early summer during 2005 and 2006. 

In 2007, Trachelomonas sp. were abundant from October to December, forming a 

significant proportion of the winter phytoplankton community. Trachelomonas sp. were 

again observed during February and March 2008. Phacus sp. and Euglena spp. were 

never abundant members of the phytoplankton community, both reaching peak 

biovolumes during the summer of 2006 (~3000 µm3 mL-1). The only dinophytes 

observed were Peridinium spp. which was recorded during the summers of 2005 and 

2006, and Dinobryon cylindricum, observed in September 2007 only.  

 

3.5.3 Macrophytes 

Submerged macrophytes were abundant in Lake I1 (Figure 3.31a-c). Elodea 

canadensis was the dominant species of the submerged macrophyte community in all 

years. During 2005, Chara spp. were abundant, principally C. contraria, although C. 

globularis and C. vulgaris var. papillata were also recorded. Only C. contraria was 

found during 2006 and 2007. Potamogeton spp. were abundant during 2005 and 

2007, including P. trichoides and P. pectinatus in 2005 and P. crispus and P. 

pectinatus during 2007. Only P. pectinatus was recorded during 2006. C. 

hermaphroditica was frequently found during 2005, although restricted to only five and 

four sampling sites during 2006 and 2007 respectively. Hydrodictyon sp. was only 

recorded during 2005. Filamentous algae were found during all three years.  

 

In all years, the dominant emergent macrophyte species recorded were G. maxima 

and S. erectum. T. latifolia was found in all years, mainly along the north-eastern 

shore of the lake although was considerably rarer. Carex sp. and Juncus sp. were 
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observed during 2005 and 2006, although Carex sp. was not found in 2007. Acorus 

calamus was recorded during 2006 and 2007. Iris pseudacorus and Schoenoplectus. 

lacustris were both observed in 2005 and 2007 only. The only floating-leaved 

macrophyte observed in Lake I1 was Polygonum amphbium, in 2006 and 2007.  
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Figure 3.31 Schematic maps of the occurrence of aquatic macrophytes 
observed in Lake I1 (Church Pond) during a) 2005; b) 2006 and c) 2007 
(overleaf). 
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Figure 3.31 contd.  

 

 

3.5.4 Zooplankton 

Total zooplankton densities tended to be largest during late summer and winter. 

Throughout the monitoring period, the total number of zooplankton was less than 10 

ind. L-1, except during September and November 2006, and again during March 2005 

when a large peak in total zooplankton biomass (78 ind. L-1) occurred, predominantly 

cyclopoid copepods and B. longirostris.  

 

The zooplankton community in Lake I1 was dominated by D. hyalina, calanoid 

copepods and cyclopoid copepods (Figure 3.32). Calanoid copepods were generally 

less abundant than cyclopoid species. The maximum abundance of cyclopoid 

copepods was observed during September 2006 of over 40 ind. L-1. The maximum 
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abundance of calanoid copepods was 3 ind. L-1, during summer 2005 and 2007. B. 

longirostris was only present in significant densities (maximum 25 ind. L-1) during 

October and November 2006. The rotifer Asplancha sp. was recorded during autumn 

2006 and spring 2007, reaching a maximum of 6 ind. L-1. D. curvirostris was observed 

during January and February 2008 although in low densities (<1 ind. L-1). 

Ceriodaphnia sp. was present in the zooplankton community during the winters of 

2005 and 2006, and during the late summer and autumn of 2007, although in low 

densities. Sida sp. was also occasionally observed during the summer of 2007. 
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Figure 3.32 Timeseries of zooplankton abundance: a) total abundance; b-g) 
selected groups, March 2005-March 2008 in Lake I1 (Church Pond). All 
data are presented as individuals L-1. 
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3.6 Lake I2 (Clifton Pond) 

 

 

Figure 3.33 Lake I2 (Clifton Pond) looking approximately north, September 2007. 
Lake I2 is isolated from the River Erewash. Artificially-established 
reedbeds of P. communis can be seen on the left of the photograph.  

3.6.1 Water chemistry 

The mean TP in Lake I2 (Figure 3.33) was 73 (±7) µg L-1 and ranged between 3 and 

199 µg L-1 during the monitoring period (Figure 3.34a). TP concentrations in 2005 and 

2006 increased during spring and in both years decreased briefly between May and 

June, before increasing rapidly throughout the summer, reaching a maximum in 

August. Concentrations then fell throughout the autumn and winter, to less than 10 µg 

L-1 in March 2006 and May 2007. After May 2007, TP concentrations increased 

abruptly to 115 µg L-1 and fell gradually until December 2007 (73 µg L-1) before 

increasing to 84 µg L-1 in March 2008. Mean SRP during the monitoring period was 26 

(±4) µg L-1, ranging between <1 and 91 µg L-1 (Figure 3.34a). The highest SRP 

concentrations were recorded during September and October with the maximum 

concentrations each year declining throughout the monitoring period, from 91 µg L-1 in 

2005 to 33 µg L-1 in 2007. SRP concentrations typically increased from spring to late 
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summer, with a break in this trend during May to June (except for 2007), after which 

SRP concentrations rose rapidly until the end of summer. Concentrations of SRP 

decreased throughout the winter to reach <10 µg L-1 during winter.  
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Figure 3.34 Water chemistry and physico-chemical properties of Lake I2 (Clifton 
Pond) March 2005 to March 2008: a) TP and SRP (µg L-1); b) NH4-N (mg 
L-1); c) NO3-N (mg L-1); d) SiO3 (mg L-1); e) pH; f) Mg2+ and Ca2+ (meq L-1); 
g) Na+ and K+ (meq L-1); h) Cl- (meq L-1); i) total alkalinity (meq L-1); j) 
specific conductivity (mS cm-1); k) TSS (mg L-1); l) Secchi disk depth (cm, 
dotted line represents approximate lake depth); m) surface temperature 
(°C); n) DO (mg L-1).  

NH4-N concentrations (Figure 3.34b) were highly variable ranging between 0 and 0.28 

mg L-1 (mean, 0.05 ±0.01 mg L-1) during the monitoring period. NH4-N concentrations 

were highest during the winter in 2005 and 2006, typically increasing from below 

detection limits in July and August to 0.13 mg L-1 in December 2005 and 0.28 mg L-1 in 

September 2006. NH4-N concentrations decreased rapidly from wintertime maxima to 
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<0.02 mg L-1 during spring. In 2007, large wintertime increases were not evident, and 

NH4-N oscillated throughout the summer between 0 and > 0.06 mg L-1. NO3-N 

concentrations (Figure 3.34c) were low throughout the monitoring period: the mean 

NO3-N concentration was 0.2 (±0.03) mg L-1, with a range of 0-0.8 mg L-1. Throughout 

the summer of all years, NO3-N concentrations were often undetectable and were 

followed by steep rises during November to reach 0.4 mg L-1 in 2005 and 0.5 mg L-1 in 

2006. Elevated concentrations were maintained throughout the summer before sharp 

falls in early summer. After November 2008, NO3-N concentrations rose rapidly from 

<0.1 mg L-1 to over 0.7 mg L-1 in March 2008. 

 

SiO3 concentrations (Figure 3.34d) increased steadily from 0.2 mg L-1 in March 2005 

to 1.6 mg L-1 by December 2005, then decreased rapidly to 0.1 mg L-1 in April 2006. 

SiO3 concentrations rose rapidly throughout summer and autumn 2006 to reach 2.8 

mg L-1 in November 2006, and then decreased  throughout January to May 2007 to 

0.5 mg L-1. SiO3 concentrations were lower during the winter of 2007 than 2005 and 

2006, and decreased sharply from February to March 2008.  

 

pH in Lake I2 (Figure 3.34e) ranged between 7.48 and 9.79 with a mean of 8.67 

(±0.09) throughout the monitoring period. pH showed a decreasing trend during the 

monitoring period (rs = -0.466, p = 0.003). During 2005 and 2006, the highest pH 

occurred during July and August and the lowest in November. In 2007, the highest pH 

was recorded in June (8.91) and the lowest in December (8.18). pH fell from 

September 2007 to February 2008 before increasing sharply to 8.69 in March 2008. 

pH did not change substantially throughout the water column (Figure 3.35a) during the 

monitoring period.  

 

Mg2+ concentrations in Lake I2 (Figure 3.34f) ranged between 0.6 and 2.3 

 meq L-1 with a mean of 1.34 (± 0.05) meq L-1. Mg2+ concentrations throughout 2005 

and 2006 did not show any seasonality. During 2007, Mg2+ concentrations decreased 

from January throughout the spring to 0.9 meq L-1 in May 2007, before increasing to 

1.5 meq L-1 during the autumn. Mg2+ concentrations decreased progressively to 0.7 

meq L-1 by March 2008. Ca2+ concentrations (Figure 3.34f)  ranged between 0.2 and 

2.5 meq L-1 and averaged 1.3 (±0.08) meq L-1. Concentrations of Ca2+ were higher 

during winter and spring in 2005 and 2006, and decreased rapidly from April to August 
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each year. Unlike 2005 and 2006, during 2007, Ca2+ concentrations fell only slightly 

throughout the year.  
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Figure 3.35 Profiles of a) pH; b) specific conductivity (mS cm-1); c) temperature 
(°C); d) dissolved oxygen (mg L-1) in Lake I2 (Clifton Pond), March 2005 
to March 2008. y-axis denotes depth below water surface (m). 

 

The mean Na+ concentration during the monitoring period was 2.1 (±0.5) meq L-1 and 

ranged between 1.2 and 2.8 meq L-1 (Figure 3.34g). During 2005 and summer 2006, 

Na+ concentrations remained between 1.9 and 2.3 meq L-1, and then increased 

sharply between November and December 2006 to ~2.5 meq L-1. From July 2007 to 

March 2008 Na+ concentrations fell, reaching 1.2 meq L-1 by the end of the monitoring 

period. No seasonality was observed in K+ concentrations (Figure 3.34g) which 

ranged between 0.07 and 0.51 meq L-1. (mean, 0.1 ± 0.003 meq L-1). A sharp 
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decrease in K+ concentrations was observed between November 2007 and March 

2008 from 0.15 to 0.07 meq L-1. Cl- concentrations (mean, 1.8 ±0.04 meq L-1; range, 

1.4–2.6 meq L-1, Figure 3.34h) remained relatively constant throughout March 2005 to 

July 2006, increased during the winter of 2006, reaching a maximum of 2.6 meq L-1 

during October 2006. Cl- concentrations remained above 1.8 meq L-1 until May, until 

falling until the end of the monitoring period. Mean total alkalinity (Figure 3.34i) during 

the monitoring period was 2.8 (±0.06) meq L-1 and ranged between 1.85 and 4.00 meq 

L-1. No clear seasonality was evident.  

 

Mean specific conductivity in Lake I2 was 0.64 (±0.02) mS cm-1 and ranged between 

0.40 and 1.16 mS cm-1 during the monitoring period (Figure 3.34j) Specific 

conductivity decreased during the summers of 2005 and 2006, and tended to increase 

throughout autumn and winter. Specific conductivity declined sharply from 0.70 mS 

cm-1 in June 2007 to 0.59 in August 2007, and remained between 0.58 and 0.63 

mS cm-1 until March 2008. Specific conductivity did not change with depth during the 

monitoring period (Figure 3.35b).  

 

TSS concentrations (Figure 3.34k) ranged between 0.9 and 28.8 mg L-1 during the 

monitoring period. The mean TSS concentration was 7.3 (±1.0) mg L-1. From March 

2005 to June 2006, TSS concentrations varied between 2 and 13.8 mg L-1, with 

maximum concentrations occurring during May and August 2005 and January 2006. 

TSS concentrations during the summer of 2006 were considerably higher than either 

2005 or 2007, peaking at 28.8 mg L-1 in August 2007, before falling to <7 mg L-1 until 

December 2007 after which TSS concentrations increased rapidly to 20.8 mg L-1 in 

March 2008.  

 

Secchi disk depths (Figure 3.34l) in Lake I2 frequently exceeded the depth of the lake 

(~2 m) due to the shallowness of the lake. The lowest Secchi disk depth was 40 cm, 

recorded in March 2008. During 2005, Secchi disk depths decreased throughout the 

summer to 68 cm in August, before rapidly increasing to over 200 cm in November. 

Secchi disk depths remained high throughout winter 2005, before decreasing rapidly 

to 58 cm in July. Secchi disk depths increased between August 2006 and June 2005, 

after which Secchi disk depths progressively decreased to the end of the monitoring 

period. 
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Surface water temperature (Figure 3.34m) was strongly seasonal. Mean surface 

temperature was 12.2°C and ranged between 3.7 and 23.4°C throughout the 

monitoring period. Highest temperatures occurred in July or August each year, and in 

2007 the highest temperature was 19.7°C, compared to 22.2°C and 23.6°C in 2005 

and 2006. For much of the monitoring period, water temperature was homogenous 

throughout the water column (Figure 3.35c), although during the summers of 2005 and 

2006 the surface water was 2-3°C warmer that at 1.5 m depth.  

 

DO concentrations (Figure 3.34n) ranged between 7.5 and 22.2 mg L-1 throughout the 

monitoring period; the mean DO concentration was 11.7 (±0.5) mg L-1. Throughout 

2005 and 2006, DO concentrations were variable, with no seasonal trends apparent. 

From early summer 2007, DO concentrations showed a gradual increase towards the 

end of the monitoring period. DO concentrations were generally higher nearer the 

surface of the lake than the bottom (Figure 3.35), by 4-5 mg L-1. From summer 2007 to 

the end of the monitoring period no gradients of DO concentrations were observed.  

 

3.6.2 Phytoplankton 

Chlorophyll-a concentrations 

Chlorophyll-a concentrations (Figure 3.36) were highly seasonal in Lake I2. From 

concentrations of <10 µg L-1 through spring and early summer, rapid increases were 

observed during 2005 and 2006, reaching 30 µg L-1 in August 2005 and 81 µg L-1 

during July 2007. Abrupt decreases in chlorophyll-a concentrations followed 

summertime peaks. During 2007, no late summer increases were observed, with the 

maximum concentration being recorded in December (34 µg L-1). In 2008, chlorophyll-

a concentrations rose sharply from January to 61 µg L-1 in March. Throughout the 

monitoring period, the mean chlorophyll-a concentration was 13 (±3) µg L-1, and 

ranged between 2 and 81 µg L-1.  
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Figure 3.36 Chlorophyll-a concentrations in Lake I2 (Clifton Pond), March 2005 
to March 2008.  

Community composition 

The phytoplankton community of Lake I2 was generally dominated by cryptophytes, 

chlorophytes and cyanobacteria (Figure 3.37). During the summer of 2005, 

cryptophytes and chlorophytes were more abundant than other phytoplankton groups, 

and in 2006 cyanobacteria also formed a significant component of the phytoplankton 

community. In summer 2007, diatoms were the most abundant group of phytoplankton 

and cryptophytes, chlorophytes and cyanobacteria were rare compared to 2005 and 

2006. From winter 2007, to the end of the monitoring period, all phytoplankton groups 

except cyanobacteria became substantially more abundant than in 2005 or 2006. 

Diatoms were abundant during autumn 2007 and cryptophytes and chlorophytes 

became the most abundant phytoplankton groups by the end of the monitoring period.  
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Figure 3.37 Summary of total phytoplankton group biovolumes in Lake I2 
(Clifton Pond), March 2005 to March 2008. ‘Bacillariophyceae’ refers to 
all diatoms, and ‘others’ comprises dinophytes and chrysophytes. 
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Diatoms were generally scarce through most of the monitoring period in Lake I2. 

Centric diatoms (Figure 3.38a), although present in most samples, did not contribute 

significantly to the total biomass of phytoplankton. They were most abundant during 

August and September in 2005 (3.6 × 104 µm3 mL-1) and 2006 (2.1 × 104 µm3 mL-1). 

During 2007, centric diatoms were less abundant during summer (1.5 × 104 µm3 mL-1), 

although a substantial increase in biovolume occurred in December 2007, when 

1.5 × 106 µm mL-1 of  centric species was observed. Although scarce during January 

and February 2008, centric diatoms were again abundant during March (3.6 × 105 µm3 

mL-1). Pennate diatoms (Figure 3.38b) were less abundant during the monitoring 

period than centric species, generally recorded only in small biovolumes. During 2007, 

pennate species became more abundant in phytoplankton samples, reaching 6 × 103 

µm3 mL-1 in August, and increased rapidly between February and March 2008 to  

2.4 × 104 µm3 mL-1. Asterionella sp. (Figure 3.38) was observed occasionally during 

spring and early summer in low biovolumes. Aulacoseira spp. (Figure 3.38d) were first 

recorded during the summer of 2006 (8 × 103 µm3 mL-1 in August 2006), and was 

present in late summer and autumn 2007, although did not contribute significantly to 

the biomass of the diatom community. Synedra spp. (Figure 3.38e) were also rare in 

Lake I2, observed in substantial biovolumes in early summer 2006 and March 2008. 

Meridion sp. was recorded in low biovolumes throughout the monitoring period 

although only contributed substantially to the biovolume of the diatom community in 

March 2008 (3.2 × 103 µm3 mL-1). 

 

Anabaena sp. (Figure 3.38f) was the most frequently recorded member of the 

cyanobacteria community in Lake I2. During 2005, Anabaena sp. was present at up to 

2.7 × 103 µm3 mL-1, and in July 2006 was abundant, reaching 2.0 × 104 µm3 mL-1. 

Although absent throughout most of the monitoring period, Oscillatoria sp. was also 

abundant in July 2007 (4.1 × 104 µm3 mL-1). Aphanizomenon sp. was visible in the 

water column during summer 2006, although the species was not present in the 

sample counted, as colonies had aggregated at the surface, suggesting that the data 

shown in Figure 3.38g probably underestimate the abundance of Aphanizomenon.  
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Figure 3.38 Timeseries of biovolumes (µm3 mL-1) of selected phytoplankton 
species in Lake I2 (Clifton Pond), March 2005-March 2008: a-e) 
Bacillariophyceae (diatoms); f-g) cyanobacteria; j-p) Chlorophyceae; q-r) 
Cryptophyceae. Note the change in y-axis scales. 
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Chlorophyte species were generally present in smaller biovolumes than other groups 

in Lake I2. Although observed throughout the monitoring period, A. judyaii (Figure 

3.38j) did not contribute significantly to the total phytoplankton biomass. A. judyaii was 

most frequently recorded during May and June, however the species was also 

observed during March 2005 and December 2008 in relatively high biovolumes. 

Chlamydomonas spp. (Figure 3.38k) were one of the most abundant chlorophytes 

recorded in Lake I2. The highest biovolume of Chlamydomonas spp. occurred during 

June 2005 (6.7 × 104 µm3 mL-1) and were also present in the phytoplankton 

community during early summer 2006 and 2007, although at substantially lower 

biovolumes (< 9 × 103 µm3 mL-1) than 2005. Coelastrum sp. (Figure 3.38l) was also 

present during summer months in high biovolumes compared to other chlorophytes, 

exceeding 1.1 × 105 µm mL-1 in August 2006. In 2005 and 2007, the biovolume of 

Coelastrum sp. reached ~2.1 × 104 µm3 mL-1. Eudorina sp. (Figure 3.38m) was absent 

in the phytoplankton community throughout the monitoring period except for an 

isolated occurrence during July 2007. Scenedesmus spp. (Figure 3.38n) were most 

abundant during summer 2006 although contributed a relatively small biovolume to the 

phytoplankton community. S. communis and S. opoliensis were the most frequently 

observed members of the genus. Scenedesmus spp. were rare throughout both 2005 

and 2007. Tetrastrum spp. (Figure 3.38o) and Tetraedron spp. (Figure 3.38p) were 

both rare throughout the monitoring period, rarely exceeding 8 × 102 µm mL-1, except 

for May 2006 when 1.3 × 103 µm3 mL-1 of Tetrastrum was recorded. T. caudatum and 

T. triangulare were the most abundant members of the Tetraedron genus. Other 

chlorophytes observed during the monitoring include Dictyosphaerium sp. which was 

present in relatively large biovolumes (>2.7 × 103 µm3 mL-1) during summer 2005 and 

2006, although not observed during 2007. Monoraphidium sp. was observed during 

the summer of 2005 and 2006, and was present in a large biovolume (4.3 ×105 µm3 

mL-1) during March 2008. Small green flagellates also became more dominant from 

October 2007 to March 2008, comprising 1 × 106 µm3 mL-1 in March 2008. 

 

Cryptomonas spp. (Figure 3.38q) were present throughout the monitoring period. In 

2005, the highest abundance (1.4 × 105 µm3 mL-1) of Cryptomonas spp. occurred 

during August, and in 2006 a maximum biovolume of 6.6 × 104 µm3 mL-1 occurred 

during May. During 2007, the biovolume of Cryptomonas spp. reached 5.5 × 105 µm3 
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mL-1 during December, fell to ~5.5 × 104 µm3 mL-1 during January and February 2008 

and then increased by an order of magnitude to 2.1 × 106 µm3 mL-1 in March 2007. 

Rhodomonas spp. (Figure 3.38r) was also common during the monitoring period. 

During 2005, the biovolume of Rhodomonas spp. reached 9.3 × 104 µm3 mL-1 in June 

and continued to be present in the phytoplankton community throughout winter 2005 

and spring 2006. The biovolume of Rhodomonas spp. were generally smaller in 2006 

than 2005, peaking at only 1.7 × 104 µm3 mL-1 in May. Rhodomonas spp. were present 

in small quantities throughout the summer of 2006 and during 2007. From October 

2007 to December 2007 the biovolume of Rhodomonas spp. increased sharply from 

1.7 × 103 to 1.1 × 105 µm3 mL-1, and then decreased during January and February to 

5.0 × 104 µm3 mL-1 before increasing sharply to 4.1 × 105 µm3 mL-1 in March 2008.  

 

Dinophytes were generally rare throughout the monitoring period in Lake I2. Both 

Gymnodinium spp. and Peridinium spp. were observed occasionally, generally during 

summer in small biovolumes (<5 × 103) µm3 mL-1, except for March 2008 when 

Gymnodinium spp. reached 4.9 × 105 µm3 mL-1. Ceratium hirundella was found in 

Lake I2 during July 2006 although was not present otherwise. Euglenophytes were 

also rare throughout the monitoring period, although a large increase in the biovolume 

of Trachelomonas sp. was observed from January 2008 (5 × 103 µm3 mL-1) to March 

2008 (2.4×105 µm3 mL-1). Phacus sp. was rarely observed during the monitoring 

period, only present in significant biovolumes in March 2008 (8.9 × 104 µm3 mL-1).  

 

3.6.3 Macrophytes 

Submerged macrophytes (Figure 3.39a-c) were abundant in Lake I2 during 2005 and 

2007 although were relatively scarce during 2006. Elodea canadensis, Chara spp. and 

Potamogeton spp. were the most abundant submerged species during 2005 and 

2007. Chara spp. were particularly abundant during 2007, although rarely recorded 

during 2006. The genus Chara was represented by C. vulgaris in all years, and 

additionally C. globularis during 2005. Potamogeton spp. were widespread during 

2006, not recorded during 2006 and widespread in 2007. P. pectinatus, P. trichoides 

and P. crispus were observed during 2005. P. trichoides and P. pectinatus were 

recorded during 2007. Filamentous algae, were frequently observed in all years. Less 

abundant submerged species included Callitriche hermaphroditica observed in 2005 
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and 2007, and Myriophyllum spicatum, recorded during 2006 and 2007. Ranunculus 

circinatus was observed in 2005 and 2007 in south-western areas of the lake only. 

The floating-leaved Polygonum amphibium was present in Lake I2 during all years.  

 

Emergent macrophytes were found along all shores of the lake. Phragmites communis 

was frequently encountered along the north-western areas of the lake, where artificial 

reedbeds have been established (see Figure 3.33, page 146). P. communis was more 

widespread during 2006. Glyceria maxima was observed in all years, generally 

restricted to the south-west of the lake. Juncus sp. was found in all years in the west 

of the lake. Iris pseudacorus was found in 2006. Acorus calamus was scarce, and only 

observed during 2005 and 2006. Isolated occurrences of Typha latifolia were 

observed in all years. Phalaris arundinacea was found along the southern shore 

during 2006 and 2007. Sparganium erectum was found in all three years although at 

few sampling sites.  
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Figure 3.39 Schematic maps of the occurrence of aquatic macrophytes 
observed in Lake I2 (Clifton Pond) during a) 2005, and (overleaf) b) 2006 
and c) 2007. 
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3.6.4 Zooplankton 

Total zooplankton abundance in Lake I2 (Figure 3.40a) increased from < 1 to 18 ind. 

L-1 from August to October 2005, before decreasing gradually throughout the winter. 

From July to September 2006, total zooplankton abundance increased sharply and 

then decreased to < 10 ind. L-1 during winter 2006. In 2007, total zooplankton 

abundance briefly increased during spring (to 13 ind. L-1), fell to < 4 ind. L-1 during May 

and June, then rose again in late summer. The total abundance of zooplankton 
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decreased between August and November and remained at densities of  < 3 ind. L-1 

until March 2008. 

 

Daphnia spp. (Figure 3.40b) were regularly observed in the zooplankton community, 

including D. hyalina, D. hyalina var. lacustris, D. pulex, and D. cucullata. Daphnia spp. 

were observed during early summer 2005 at densities up to 3 ind. L-1, and then over 6 

ind. L-1 in late summer. Densities fell progressively until February 2006 and remained 

low during the summer. During September 2006, Daphnia spp. were observed in 

exceptionally high densities (197 ind. L-1). A large early summer increase in Daphnia 

spp. density was observed in 2007, reaching 9 ind. L-1 during May 2007, after which 

Daphnia spp. were rarely present in the zooplankton community. Ceriodaphnia spp. 

(Figure 3.40c) were rare in Lake I2 except for summer 2007, when densities peaked at 

32 ind. L-1 in August 2007. Ceriodaphnia spp. were also observed in autumn 2005 (6 

ind. L-1) and in low densities during 2006 (< 1 ind. L-1). Calanoid copepods (Figure 

3.40d) were present throughout most of the monitoring period, generally in densities 

less than 5 ind. L-1. The highest densities of calanoid copepods were observed during 

the summers of July 2006 and August 2007, reaching 18 and 23 ind. L-1 respectively.  

 

Cyclopoid copepods (Figure 3.40e) were more abundant in spring and late summer in 

all years. Peak abundances in 2005 and 2007 were 5 ind. L-1 and 4 ind. L-1 

respectively, however in 2006 cyclopoid copepods were significantly more abundant, 

reaching 62 ind. L-1 in September 2006. The only members of the genus Bosmina 

(Figure 3.40f) observed in Lake I2 was B. longirostris. Occurrences of B. longirostris 

were mainly limited to late summer, although in 2007 B. longirostris was also recorded 

during early summer. The highest densities of B. longirostris occurred during the 

summer of 2006 (13 ind. L-1), over twice that recorded during 2005 and substantially 

higher than during 2007. Rotifers (principally Asplancha spp.) were frequently 

observed in the zooplankton samples during 2006 and 2007 (Figure 3.40g). 

Eurycercus lamellatus and Chydorus ovalis were both present in the zooplankton 

community during June and July 2006, although at low densities. Alona spp. was 

recorded in October 2005. 
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Figure 3.40 Timeseries of zooplankton abundance: a) total abundance; b-g) 
selected groups, March 2005-March 2008 in Lake I2 (Clifton Pond). All 
data are presented as individuals L-1. 

 

.
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3.7 Lake I3 (Beeston Pond) 

 

Figure 3.41 A westerly view across Lake I3 (Beeston Pond). The culverted inflow 
site BPI is to the centre-left of the photograph. Lake I3 is isolated from 
the River Erewash. 

3.7.1 Water chemistry 

TP concentrations in Lake I3 (Figure 3.41) ranged between 54 and 746 µg L-1 during 

the monitoring period (mean, 228 ±22 µg L-1, Figure 3.42). TP concentrations rose 

steadily from 108 µg L-1 in March 2005 to 326 µg L-1 by August 2005, then declined 

throughout  winter and spring 2006 to 53 µg L-1 in April 2006. A sharp increase in TP 

concentrations occurred between April and May 2006. TP concentrations increased to 

a maximum of 746 µg L-1 in August 2007 then declined to 123 µg L-1 in January 2007. 

During 2007, TP increased and decreased between <100 µg L-1 (May 2007) and 450 

µg L-1 (September 2007). TP concentrations decreased until March 2008. SRP 

concentrations (Figure 3.42a) were highly seasonal. The mean SRP concentration 

during the monitoring period was 112 (±13) µg L-1 and ranged between 3 and 346 µg 

L-1. SRP concentrations rose from 4 µg L-1 in March 2005 to 210 µg L-1 in August, then 

decreased until spring 2006. SRP concentrations increased from <8 µg L-1 in March 

2006 to 291 µg L-1 in May 2006. SRP concentrations reached a maximum of 346 
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 µg L-1 in August 2006 then decreased sharply to 117 µg L-1 in September 2006. SRP 

concentrations decreased until spring 2007, then increased to 115 µg L-1 in July 2007. 

SRP concentrations reached a maximum of 238 µg L-1 in September 2007 and 

declined throughout the remainder of the monitoring period. 
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Figure 3.42 Water chemistry and physico-chemical properties of Lake I3 
(Beeston Pond) March 2005 to March 2008: a) TP and SRP (µg L-1); b) 
NH4-N (mg L-1); c) NO3-N (mg L-1); d) SiO3 (mg L-1); e) pH; f) Mg2+ and Ca2+ 
(meq L-1); g) Na+ and K+ (meq L-1); h) Cl- (meq L-1); i) total alkalinity (meq 
L-1); j) specific conductivity (mS cm-1); k) TSS (mg L-1); l) Secchi disk 
depth (cm, dotted line represents approximate lake depth); m) surface 
temperature (°C); n) DO (mg L-1). 
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NH4-N concentrations (Figure 3.42b) were highly variable. The mean NH4-N 

concentration during the monitoring period was 0.09 (±0.003) mg L-1, ranging between 

0 and 0.76 mg L-1. Between March and April 2005 , NH4-N concentrations fell from 

0.72 mg L-1 to below detectable limits, and remained less than 0.03 mg L-1 until June 

2005. From February to May 2006, NH4-N concentrations were very low then rose 

sharply to reach 0.76 mg L-1 in May 2006 before decreasing rapidly. NH4-N 

concentrations during 2007 were less variable than during 2005 and 2006, rising 

gradually between September 2006 and January 2007. NH4-N concentrations did not 

exceed 0.05 mg L-1 until November 2007. NO3-N concentrations (Figure 3.42c) ranged 

between 0 and 4.0 mg L-1 (mean 1.0 ±0.2 mg L-1) during the monitoring period. The 

highest concentrations of NO3-N were observed during the winter months. In 2005, 

NO3-N concentrations fell from 1.2 mg L-1 in March to below detectable limits during 

August 2006. Then, increases in NO3-N concentration were observed, with a 

substantial increase of 3.5 mg L-1 occurring between November and December. 

NO3-N concentrations fell during spring and summer 2006. Similarly high winter 

concentrations and low summer concentrations occurred during 2007.  

 

The mean SiO3 concentration during the monitoring period was 2.4 (±0.2) mg L-1, and 

ranged between 0.2 and 4.8 mg L-1 (Figure 3.42d). SiO3 concentrations were highly 

seasonal. In each year, increases in SiO3 concentrations were observed in early 

summer and winter and rapid decreases during the spring and autumn. SiO3 

concentrations rose from 0.4 mg L-1 in March 2005 to 3.5 mg L-1 in early August 2005. 

SiO3 concentrations increased rapidly in November 2005. By April 2006, SiO3 

concentrations had decreased to 0.2 mg L-1, although they rose to 3.1 mg L-1 in July 

2006. SiO3 concentrations were 0.5 mg L-1 in October 2006, after which SiO3 

increased to a maximum of 4.3 mg L-1 in January 2007. Increases in SiO3 

concentrations were followed by a sharp decrease to 0.5 mg L-1 in August 2007. SiO3 

concentrations rose to 4.8 mg L-1 in January 2008 before falling to 1.1 mg L-1 in March 

2008. 

 

pH (Figure 3.42e) in Lake I3 ranged between 7.1 and 9.15. The mean pH during the 

monitoring period was 8.51 ±0.07. Little seasonality was noted in pH. A fall in pH was 

observed from March 2005 to November 2005, except for a peak to 9.15 in August 

2005. An increasing trend in pH was observed from winter 2005 to early summer 
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2007, after which pH fell progressively to 7.95 in December 2007, before rising to 8.75 

by the end of the monitoring period. pH did not show any significant changes 

throughout the water column (Figure 3.43a).  
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Figure 3.43 Profiles of a) pH; b) specific conductivity (mS cm-1); c) temperature 
(°C); d) dissolved oxygen (mg L-1) in Lake I3 (Beeston Pond) March 2005 
to March 2008. 

 

The mean Mg2+ concentration was 1.31 (±0.05) meq L-1 and ranged between 0.77 and 

2.27 meq L-1 during the monitoring period (Figure 3.42f). A trend towards decreasing 

Mg2+ concentrations occurred (rs = -0.456, p = 0.004). Peak concentrations of Mg2+ 

occurred during October and November each year and the lowest concentrations each 

year tended to occur in early summer. Ca2+ concentrations (Figure 3.42f) ranged 

between 0.63 and 3.37 meq L-1 during the monitoring period. The mean Ca2+ 
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concentration was 1.82 (±0.1) meq L-1. An overall trend towards a decrease in Ca2+ 

concentrations was observed (rs = -0.340, p = 0.037). The highest concentrations of 

Ca2+ were highest in April, May and November 2005, and the lowest (0.63–0.73 meq 

L-1) during August to October 2006.  

 

Na+ concentrations (Figure 3.42g) declined throughout the monitoring period (rs = 

-0.655, p ≤0.001). The lowest concentrations (~1 meq L-1) occurred in October and 

November during 2005 and 2006, and July 2007, whilst maximum concentrations (in 

excess of 2 meq L-1) tended to occur in March and April each year. In contrast to 2005 

and 2006, Na+ concentrations did not increase during winter 2007 but remained 

relatively constant. K+ concentrations (Figure 3.42g) showed a decreasing trend from 

March 2005 until the beginning of 2007, after which a steep increase in K+ 

concentrations occurred until August 2007 (0.12 meq L-1) before a progressive decline 

to 0.05 meq L-1 in March 2008. During 2005 and 2006, a seasonal trend of higher K+ 

concentrations in early summer and early autumn was observed. The mean K+ 

concentration throughout the monitoring period was 0.82 (±0.04) meq L-1, and ranged 

between 0.03 and 0.12 meq L-1. Cl- concentrations (Figure 3.42h) showed a declining 

trend throughout the monitoring period (rs = -0.511, p = 0.001). The mean Cl- 

concentration was 1.7 (±0.1) meq L-1 and ranged between 0.6 and 3.0 meq L-1. Cl- 

concentration decreased steadily from March 2005 to November 2005 from 3.2 to 1.0 

meq L-1, then rose to 2.5 meq L-1 in March 2006. Cl- concentrations decreased 

erratically throughout 2006 and 2007, then increased from 0.6 meq L-1 in October 

2007 to 1.7 meq L-1 in March 2008. Total alkalinity ranged between 2.65 and 3.90 meq 

L-1 (mean, 3.17 ±0.06 meq L-1) during the monitoring period. A general decline in total 

alkalinity occurred from the beginning of the monitoring period until December 2005, 

after which alkalinity became more variable. Maximum total alkalinity was observed 

during February and November 2006 (3.9 and 3.7 meq L-1 respectively). Total 

alkalinity gradually increased throughout 2007, before declining sharply from 3.8 meq 

L-1 in November 2007 to 2.7 meq L-1 in January 2008.  

 

Specific conductivity (Figure 3.42j) ranged between 0.45 and 0.80 mS cm-1 during the 

monitoring period. The mean specific conductivity was 0.62 (±0.01) mS cm-1. Specific 

conductivity tended to be highest in February and March each year, and then declined 

throughout the summer before rising rapidly from mid to late winter. In 2007, peak 
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specific conductivity (0.71 mS cm-1) was less than in 2005 and 2006 (0.80 and 0.79 

mS cm-1 respectively). Specific conductivity remained largely homogenous throughout 

the water column (Figure 3.43b). 

 

TSS concentrations (Figure 3.42k) ranged between 2 and 67 mg L-1 (mean, 13.7 ±1.8 

mg L-1), although until December 2007 did not exceed 28 mg L-1. Higher TSS 

concentrations occurred in late winter and early spring, and mid summer, typically 

reaching approximately 20 mg L-1. An abrupt increase in TSS concentrations occurred 

between December 2007 (7 mg L-1) and January 2008 (67 mg L-1) followed by a 

decline to 12 mg L-1 in February 2008.  

 

The mean Secchi disk depth in Lake I3 was 88 (±8) cm and ranged between 16 and 

205 cm (Figure 3.42l). Secchi disk depths were characterised by increases during 

early summer and late autumn to winter. During 2005, Secchi disk depths increased 

from 40 cm in March to 134 cm in June. Secchi disk depths decreased to 35cm in 

August 2005 then increased rapidly to 195 cm in October 2005. Secchi disk depths 

decreased over the autumn and winter, increased to ~ 150 cm during May and June, 

then decreased again to 48–66 cm between July and November 2006. Secchi disk 

depths increased to 158 cm in December 2006, and reached 126 cm in May 2007. 

Secchi depths increased sharply to 205 cm in December 2007 and then fell rapidly to 

16 cm in January 2008.  

 

The mean surface water temperature (Figure 3.42m) in Lake I3 was 12.3 (±1.0) °C, 

and ranged between 3.9 and 24.0 °C during the monitoring period. Temperatures 

peaked in each year during July to August, although the highest temperature during 

2006 was around 4°C higher than in 2005 and 2007. Minimum temperatures occurred 

during November to February each winter, and were generally ~5 °C. Water 

temperature was largely homogenous throughout the water column during the 

monitoring period (Figure 3.43c). During summer 2005 and 2006 temperature 

gradients of approximately 2 °C were observed between the surface at 2 m depth, 

although during summer 2007 temperature gradients were insignificant.  

 

DO concentrations (Figure 3.42n) ranged between 4.7 and 13.5 mg L-1 (mean, 12.3 

±1.0 mg L-1). DO concentrations were variable throughout 2005 and 2006. From 
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October 2007 to the end of the monitoring period DO concentrations gradually 

increased, reaching 21.7 mg L-1 during March 2008. DO concentrations were 

generally greater on the water surface than near the bottom of the lake (Figure 3.43d). 

Gradients in DO concentrations were strongest during the summer of 2005 and 2006 

when differences of approximately 9 mg L-1 were observed between the water surface 

and at 2 m depth. 

 

3.7.2 Phytoplankton 

Chlorophyll-a concentration 

Chlorophyll-a concentrations (Figure 3.44) were highly variable throughout the 

monitoring period. During 2006 and 2007, chlorophyll-a concentrations generally 

reached maxima in early summer and late summer to autumn. In 2005, a seasonal 

trend was not so clear. During 2005, the highest chlorophyll-a concentrations occurred 

during April (70 µg L-1), then decreased to 16 µg L-1 in October 2005. Chlorophyll-a 

concentrations rose by 49 µg L-1 between October and November 2005, then 

decreased to less than 5 µg L-1 Chlorophyll-a concentrations reached a maximum 

between February and April 2006 and again during September 2006. 

 

A rapid decline in chlorophyll-a concentrations occurred between September and 

November 2006 to 9 µg L-1. Concentrations of chlorophyll-a increased throughout 

summer 2007, reaching a maximum of 85 µg L-1 in August 2007, and then decreased 

to 7 µg L-1 in December. Between January and March 2008, chlorophyll-a 

concentrations rose from 8 to 78 µg L-1. The mean chlorophyll-a concentrations during 

the monitoring period was 38.9 (±4.3) µg L-1. 
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Figure 3.44 Chlorophyll-a concentrations in Lake I3, March 2005 to March 2008. 
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Community composition 

The phytoplankton community in Lake I3 was dominated by diatoms (Figure 3.45). 

Diatoms were generally most abundant during spring and late summer. Cryptophytes 

were also abundant in the phytoplankton, particularly during the summer of 2007. 

Chlorophytes were not abundant in Lake I3 although were frequently observed in the 

phytoplankton community during spring and summer. Cyanobacteria contributed little 

to the phytoplankton community throughout the monitoring period. Dinophytes and 

chrysophytes were both frequently found in the phytoplankton, particularly during 

spring. 
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Figure 3.45 Summary of total phytoplankton group biovolumes in Lake I3, March 
2003 to March 2008. ‘Bacillariophyceae’ refers to all diatoms, and 
‘others’ comprises dinophytes and chrysophytes. 

Diatoms (Figure 3.46a-e) became increasingly abundant throughout the monitoring 

period. Centric diatoms (Figure 3.46a) were present throughout, although they were 

relatively scarce during 2005. However, a significant biovolume of centric diatoms was 

present during April 2005 (7.7 × 105 µm3 mL-1). A slight increase in the abundance of 

centric species was observed during late summer and autumn 2005 (peaking at 3 × 

104 µm3 mL-1 in August). Centric diatoms were scarce during winter 2005 and briefly 

increased in biovolume to 1.9 × 105 µm3 mL-1 in April 2006. In early summer, centric 

species were virtually absent and then increased to 4.4 × 105 µm3 mL-1 in September 

2006. A large spring peak in centric diatom biovolume occurred in February 2007 (1.4 

× 106 µm3 mL-1). Although rare during early summer 2007, centric diatoms again  
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Figure 3.46 Time series of biovolumes (µm3 mL-1) of selected phytoplankton 
species in Lake I3 (Beeston Pond), March 2005-March 2008: a-e) 
Bacillariophyceae (diatoms); f-i) cyanobacteria; j-p) Chlorophyceae; q-r) 
Cryptophyceae. 

 

became abundant during August and September 2007. A large increase in biovolume 

occurred in February 2008 to over 1.4 × 106 µm3 mL-1. Pennate diatoms (Figure 3.46b) 

were similarly rare during 2005 and 2006 and were generally less abundant than 
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centric species. Isolated peaks in abundance occurred in April 2005 and February 

2006. Pennate species were observed in substantial quantities during June 2007 and 

again in September 2007. Asterionella sp. (Figure 3.46c) was not observed in 

significant biovolumes during the monitoring period. Aulacoseira spp. (Figure 3.46d) 

became more abundant during 2006 reaching a maximum of 7.0 × 106 µm3 mL-1. 

Synedra spp. (Figure 3.46e) were present in significant biovolumes during March and 

April 2005, and were virtually absent until a brief increase in biovolume during 

September 2007. 

 

Cyanobacteria were rare throughout the monitoring period in Lake I3. Aphanizomenon 

spp. (Figure 3.46f) were absent from the phytoplankton community. Anabaena sp. 

(Figure 3.46g) was not observed in significant biovolumes, although was present at 

biovolumes less than 1000 µm3 mL-1 during the summer of 2006. Microcystis sp. 

(Figure 3.46h) was the most abundant cyanobacterium in Lake I3, present during late 

summer 2005 and summer 2006 at biovolumes less than 4.3 × 104 µm3 mL-1. 

Microcystis sp. was not present during 2007. Oscillatoria sp. (Figure 3.46i) was 

observed only in small biovolumes during the monitoring period. The highest 

biovolume of Oscillatoria sp. occurred during March 2006 (1.7 × 104 µm3 mL-1). During 

2007, Oscillatoria sp. was present during summer and autumn, peaking at 

 6.1 ×103 µm3 mL-1 in September 2007.  

 

Chlorophytes (Figure 3.46j-p) were a significant component of the phytoplankton 

community for much of the monitoring period. A. judyaii (Figure 3.46j) was frequently 

observed. The highest biovolumes of A. judyaii tended to occur during early summer, 

although in 2005, the highest biovolume of the species occurred during March. In each 

year of the monitoring period, A. judyaii was present in similar biovolumes (4.3-5.1 × 

104 µm3 mL-1). A brief increase in the biovolume of A. judyaii occurred during February 

2008. Chlamydomonas spp. (Figure 3.46k) were present throughout most of the 

monitoring period. The highest biovolumes of Chlamydomonas spp. were recorded 

during April 2005 (1.7 × 105 µm3 mL-1) and August 2007 (1.5 × 105 µm3 mL-1). 

Chlamydomonas spp. were less abundant during 2006, peaking at only 8 × 103 µm 

mL-1. Coelastrum sp. (Figure 3.46l) was frequently an abundant member of the 

phytoplankton community. During 2005, Coelastrum sp. was present in the 

phytoplankton from June to November. Coelastrum sp. was also abundant during 
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February 2006 (2.1 × 105 µm3 mL-1) and August 2006 (9.4 × 104 µm3 mL-1). In 2007, 

Coelastrum sp. was observed during early and late summer, reaching a maximum of 

8.6 × 105 µm3 mL-1 in October. Eudorina sp. (Figure 3.46m) was not observed in Lake 

I3 during the monitoring period. Scenedesmus spp. were frequently encountered in 

the phytoplankton community. The genera was mainly represented by the species S. 

opoliensis and S. communis. The highest biovolume of Scenedesmus spp. occurred 

during March 2005. During August and September 2006, S. opoliensis was dominant, 

and total biovolume of Scenedesmus spp. reached 2.3 × 104 µm3 mL-1 in September 

2006. Scenedesmus spp. increased in biovolume during April 2007 and during late 

summer 2007. The genus Tetraedron (Figure 3.46o) was dominated by T. triangulare, 

although T. caudatum, T. regulare and T. minimum were also observed. Tetraedron 

spp. were abundant during spring 2005 and were rarely encountered until spring 2006. 

Tetraedron spp. became abundant between August and October. A similar sequence 

of abundance of Tetraedron spp. was observed during 2007. Tetrastrum sp. (Figure 

3.46p) was observed during 2005 and 2006 although in small biovolumes, and in 

March 2008 the biovolume had increased to 6.5 × 103 µm3 mL-1. Pediastrum spp. were 

often present in the phytoplankton community during summer months of 2005 and 

2007 and contributed substantially to the total biovolume of chlorophytes. 

Monoraphidium sp. was present through most of the monitoring period, although in 

small biovolumes. Unidentified flagellates were frequently observed in the 

phytoplankton of Lake I3, and were most abundant during April 2005 (1.2 × 106 µm3 

mL-1) and throughout 2007 (maximum biovolume of 1.5 × 104 µm3 mL-1 in June). Small 

green flagellates were also abundant during March 2008. 

 

Cryptophytes (Figure 3.46q-r) were present throughout the monitoring period and 

were comparatively a highly abundant group in the phytoplankton community. 

Cryptomonas spp. (Figure 3.46q) increased in biovolume between March and April 

2005, to reach 6.2 × 105 µm3 mL-1, then fell throughout the summer until September 

2005 after which a sharp increase in biovolume was observed to 7.5 × 105 µm3 mL-1 in 

November 2005. During 2006, Cryptomonas spp. were present in smaller biovolumes 

than 2005. During 2007 Cryptomonas spp. were abundant in June and September, 

and in March 2008 a sharp increase in Cryptomonas spp. biovolume occurred. 

Rhodomonas spp. (Figure 3.46r) were present throughout the monitoring period 

although in smaller biovolumes than Cryptomonas spp. During 2005 and 2006, 
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Rhodomonas spp. were most abundant during April and February respectively. During 

2007, a similar peak in Rhodomonas spp. biovolume occurred in April 2007 and were 

then highly abundant during June 2007. Between August and September 2007 the 

biovolume of Rhodomonas spp. rose but decreased during the winter of 2007. 

Increases were observed during early 2008. 

 

Euglena spp. were present in the phytoplankton community in 2005 and 2006, 

although rarely contributed significantly to the total phytoplankton biovolume. Phacus 

spp. were occasionally observed throughout the monitoring period in small 

biovolumes, generally less than 1.5 × 103 µm3 mL-1. In February 2006, over 3.3 × 105 

µm3 mL-1 of P. caudatum was observed. Phacus spp. were also abundant in March 

2008, reaching 7.1 × 103 µm3 mL-1. Trachelomonas sp. was also relatively common in 

the phytoplankton of Lake I3 in spring, particularly during March 2005 (1.4 × 104 µm3 

mL-1), 2006 (1.8 × 104 µm3 mL-1) and 2008 (1.7 × 105 µm3 mL-1). The dinophyte 

community was represented by the genera Gymnodinium and Peridinium. Both 

genera were abundant during the spring of 2005. Peridinium spp. was generally the 

most abundant dinoflagellate, particularly during March 2006 (2.9 × 104 µm3 mL-1) and 

September 2006 (1.9 × 105 µm3 mL-1). The chrysophyte Mallomonas sp. was most 

abundant during April 2005 (2.7 × 105 µm3 mL-1) and in September 2007 (4.9 × 105 

µm3 mL-1). 

 

3.7.3 Macrophytes 

Submerged macrophytes were rare in Lake I3. Three submerged species (Callitriche 

stagnalis, Fontinalis antipyretica and Potamogeton trichoides) were found. The 

floating-leaved community entirely comprised P. amphibium, which was only observed 

in the northernmost areas of the lake. Emergent macrophytes were found along most 

of the shores. Acorus calamus was found mainly along southern shores of the lake. 

Sparganium erectum and Typha spp. (T. angustifolia and T. latifolia) were found 

throughout the lakes shores. Glyceria maxima was found at three sampling sites, and 

Carex sp. and Juncus sp. were found mainly along the northern and eastern shores of 

the lake. Iris pseudcorus and Menthe aquatica were each recorded once in the north-

east of Lake I3. 
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Figure 3.47 Schematic map of the occurrence of aquatic macrophytes observed 
in Lake I3 (Beeston Pond). 

 

3.7.4 Zooplankton 

Total zooplankton abundance in Lake I3 (Figure 3.48a) ranged between 0 and 

49 ind. L-1 during the monitoring period. During 2005, zooplankton were most 

abundant during April 2005 and lowest during summer. After increasing to 17 ind. L-1 

during October 2005, total zooplankton biomass declined erratically throughout the 

winter of 2005. Total zooplankton abundance then increased rapidly to 40 ind. L-1 in 

May 2005, and remained low until spring 2007. An increase in total zooplankton 

abundance was observed between March and April 2007, reaching 49 ind. L-1 in April 

2007. Total zooplankton abundance fell to between 5 and 17 ind. L-1 until September, 

and decreased throughout autumn and winter 2007. 

 

Daphnia spp. in Lake I3 (Figure 3.48b) comprised D. hyalina and D. cucullata. D. 

hyalina was generally the more abundant. The abundance of Daphnia spp. fell from 

3.6 ind. L-1 in March 2005 to less than 0.4 ind. L-1 throughout the summer of 2005, 

then increased to 7 ind. L-1 during November and December 2005. 24 ind. L-1 were 

observed in June 2006, comprising D. cucullata. Similarly to 2005 and 2006, Daphnia 
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spp. densities increased to peak at 8 ind. L-1 (mainly D. cucullata) in November 2007 

before falling throughout the rest of the monitoring period. Ceriodaphnia spp. (Figure 

3.48c) were comparatively rare throughout the monitoring period compared to other 

zooplankton groups. During 2005, Ceriodaphnia spp. were rarely found in the 

zooplankton community. Ceriodpahnia spp. were observed in August 2006 after which 

Ceriodaphnia spp. were not recorded until February 2007. During July to September 

2007, Ceriodaphnia spp. were occasionally present. 
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Figure 3.48 Timeseries of zooplankton abundance: a) total abundance; b-g) 
selected groups, March 2005-March 2008 in Lake I3 (Beeston Pond). All 
data are presented as individuals L-1. 

 

Calanoid copepods (Figure 3.48d) were only observed in significant densities between 

February 2006 and May 2007. The highest density of calanoid copepods was 

recorded in May 2006 (1.5 ind. L-1). The abundance of cyclopoid copepods (Figure 

3.48e) was highly variable. During 2005, the abundance of cyclopoid copepods fell 

from 17 ind. L-1 during April to <1 ind. L-1 during May, June and August. A brief 

increase to 12 ind. L-1 occurred during July 2005. From September 2005 to March 

2006, cyclopoid copepod density fell from 16 to <1 ind. L-1. An abrupt increase in the 
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density of cyclopoid copepods occurred between April and May 2006, peaking at  

23 ind. L-1, after which a decline to 3 ind. L-1 was observed, followed by a progressive 

decline throughout winter 2006 to <1 ind. L-1 in March 2007. Peaks in the density of 

cyclopoid copepods to over 15 ind. L-1 occurred in April, June and September 2007, 

followed by rapid decreases in abundance. From November 2007 until March 2008 

the density of cyclopoid copepods did not exceed 2 ind. L-1. The Bosmina genus 

(Figure 3.48f) almost exclusively comprised B. longirostris except for an isolated 

occurrence of B. coregoni in April 2006. Bosmina spp. were not observed during 2005 

at densities more than 0.3 ind. L-1. A brief increase in the density of Bosmina spp. to 3 

ind. L-1 was observed during May 2006, then decreased gradually until the genera was 

absent in January and February 2007. A sharp increase in the abundance of B. 

longirostris was observed in April 2007 (to 24 ind. L-1). Between May and September 

2007, B. longirositris densities remained fewer than 2 ind. L-1, then increased to 21 

ind. L-1 between September and October 2007. From December 2007 to March 2008 

B. longirostris was not observed in the zooplankton community at densities greater 

than 0.06 ind. L-1.  

 

Rotifers (Figure 3.48g) were rare from March 2005 to August 2006, never exceeding 1 

ind. L-1. In September 2006 2.2 ind. L-1 were found in the zooplankton sample. From 

October 2006 to March 2008 no more than 0.5 ind. L-1 were found, with no rotifers 

observed from January to March 2007. Rotifers became briefly more abundant in April 

2007 (reaching 6.8 ind. L-1) before increasing from <0.1 to 13.8 ind. L-1 between May 

and September 2007. From October 2007 to March 2008, rotifer densities did not 

exceed 0.4 ind. L-1. 

 

3.8 Comparisons of phytoplankton community 

structure among lakes 

In order to compare the phytoplankton community structure between lakes 

correspondence analysis was used. Prior to performing CA, a detrended 

correspondence analysis (DCA) was used to assess the length of the first axis. 

Gradients that are greater than 2 standard deviations suggest a unimodal species 

response and datasets are therefore considered appropriate for unimodal analysis 
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techniques (Jongman et al., 1987). DCA showed the first axis to be 4.203 standard 

deviations long. CA has been used in other studies of phytoplankton communities 

(e.g. Fukishima et al., 1999; Takamura et al., 2003) and allows for associations 

between phytoplankton species and samples to be identified. Individual plots of 

phytoplankton species and samples for each lake were produced to facilitate this. In 

this analysis, axes 1 and 2 identified by CA explained 6.1% and 5.3% of correlation 

between sample and species scores, and had eigenvalues of 0.458 and 0.395 

respectively. The first four axes cumulatively explained 21.4% of sample and species 

scores correlation, and total inertia was 7.485.  

 

Figure 3.49 shows that a number of phytoplankton genera observed during the 

monitoring period formed a single cluster after CA. This included species that were 

typically observed during summertime, particularly in connected lakes. Chlorophyte 

genera, such as Scenedesmus, Coelastrum and Pediastrum, formed a cluster towards 

the left of the plot. Single-celled chlorophytes (including Ankyra, Monoraphidium and 

green flagellates) generally scored more highly on axis 1. The genera Eudorina and 

Schroderia were the only chlorophytes to be strongly associated with high axis 1 

scores. Closterium, Oocystis and Dictyosphaerium all had negative axis 1 and two 

scores, and Tetrastrum had a positive axis 2 and negative axis 1 score.  

 

Negative axis 1 scores were associated with centric diatoms, Tabellaria, Asterionella 

and Aulacoseira, whilst pennate diatoms, Synedra, Cocconeis and Meridion had 

positive axis 1 scores. Axis 1 separated cyanobacteria genera into Microcystis and 

Oscillatoria, both of which scored negatively on axis 1, and Anabaena and 

Aphanizomenon with positive axis 1 scores. The genera Cryptomonas and 

Rhodomonas both scored positively on axis 1 and were closely associated with 

chlorophytes and centric diatoms. Peridinium and Phacus were found to be closely 

associated with large chlorophytes and centric diatoms. Trachelomonas, Euglena and 

Dinobryon all had high axis 1 scores. Axis 2 separated the genera Fragilaria, 

Monoraphidium, Gymnodinium, Dinobryon and green flagellates from other genera.  
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Figure 3.49 CA plot of phytoplankton genera from all lakes, March 2005 to March 
2008, scaled by inter-sample distance using Hill’s scaling. 
Phytoplankton genera are colour coded by group: brown, 
Bacillariophyceae; green, chlorophytes; orange, cryptophytes; blue, 
cyanobacteria; black, others (including chrysophytes and 
dinoflagellates). Abbreviations are given in Table 3.1. 
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Table 3.1 Phytoplankton genera abbreviations used in Figure 3.49. 

Abbreviation Genus 

Bacillariophyceae  
Asteri Asterionella 
Aula Aulacoseira 

Centric Centric diatoms 
Cocco Cocconeis 
Frag Fragilaria 
Merid Meridion 
Penn Pennate diatoms 
Syn Synedra 

Tabel Tabellaria 

Chlorophyceae 
 

Ankyr Ankyra 
C Chlorella 

Chlamy Chlamydomonas 
Clost Closterium 
Coel Coelastrum 

Dictyo Dictyosphaerium 
Eudo Eudorina 
Flag Unidentified flagellates 

Monor Monoraphidium 
O Oocystis 

Pedias Pediastrum 
Scen Scenedesmus 
Schro Schroderia 
Tetras Tetrastrum 

Cyanobacteria 
 

Anabae Anabaena 
Aphan Aphanizomenon 
Microcy Microcystis 

Oscil Oscillatoria 

Cryptophytes 
 

Cry Cryptomonas 
Rhodo Rhodomonas 

Others 
 

Dinob Dinobryon 
Euglen Euglena 
Gymn Gymnodinium 

Mallom Mallomonas 
P Peridinium 

Phac Phacus 
Trachel Trachelomonas 
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Sample scores for all connected lakes were generally negative on both axes (Figure 

3.50a-c). Some seasonal differences were observed in sample scores, although 

separate clusters did not occur. Spring samples were generally located near the 

centre of the CA plots implying that the phytoplankton community was associated with 

diatoms, chlorophytes and cryptophytes. In Lake C1, samples taken during February 

and March 2008 were both distinct from other samples, reflecting the dominance of 

Asterionella, Synedra, and centric species of diatom. The March 2008 sample from 

Lake C3 contained a substantial quantity of unidentified green flagellates which 

explains the high axis 2 score and different position from March samples during other 

years. During May and June, sample scores were higher on axis 1, reflecting the 

importance of Ankyra and Synedra. In all connected lakes the lowest scores on axis 1 

were associated with late summer samples, reflecting the dominance of chlorophytes, 

including genera such as Scenedesmus and Coelastrum and diatoms. August 2006 

was an outlier from other summer samples in all connected lakes, most likely due to 

the occurrence of a high biovolume of Oscillatoria observed during late summer 2006. 

In lakes C2 and C3 (Figure 3.50b and c), the August 2007 samples, which had higher 

axis 1  scores than other summertime samples, reflected the comparatively high 

biomass of Tetrastrum, Aulacoseira and other centric diatoms. This was not evident in 

Lake C1 were the August 2008 sample was more closely associated with summer 

samples from other years. Winter samples were generally located near the centre of 

the cluster of samples reflecting the persistence of diatoms throughout the winter 

months. In both lakes C2 and C3, the June 2005 sample was an outlier from other 

early summer samples. In both lakes, unidentified green flagellates were abundant 

which explains their relatively high axis 2 scores.  

 

Seasonal patterns were less evident in isolated lakes I1 and I2 (Figure 3.51a and b). 

CA scores were generally higher on axis 1 than in connected lakes, although axis 2 

scores were not substantially different. In Lake I2, summertime scores on axis 1 were 

low, particularly during 2006 when the cyanobacteria Oscillatoria was abundant. 

During other years and in Lake I1, summertime scores were not as low, which reflects 

the higher biovolumes of chlorophytes observed. Spring and autumn samples were 

not clearly distinguished from other samples in either Lake I1 or Lake I2. In Lake I1,  
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Figure 3.50 CA plots of phytoplankton samples from connected lakes, March 
2005 to March 2008, a) Lake C1; b) Lake C2 and c) Lake C3; scaled by 
inter-sample distance using Hill’s scaling. Samples are labelled by date 
(d.m.y) and colour-coded by year: black, 2005; grey, 2006; white, 2007; 
striped, 2008. 
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Figure 3.51 CA plots of phytoplankton samples from isolated lakes, March 2005 

to March 2008, a) Lake I1; b) Lake I2 and c) Lake I3; scaled by inter-
sample distance using Hill’s scaling. Samples are labelled by date 
(d.m.y) and colour-coded by year: black, 2005; grey, 2006; white, 2007; 
striped, 2008. 
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the samples with the highest axis 1 scores were generally winter samples particularly 

during 2007. Lake I2 winter samples also tended to have high axis 1 scores. During 

winter, pennate diatoms were frequently observed in the phytoplankton of both lakes. 

In both lakes I1 and I2 cryptophytes were a significant component of phytoplankton 

community during winter, particularly during 2007. In Lake I1, the October 2007 

sample was an outlier, due an isolated observation of Dinobryon. In Lake I2, samples 

from May 2006 and March 2008 were both outliers. During May 2006, small green 

flagellates were abundant, and in March 2008 Gymnodinium was abundant. Lake I3 

sample scores (Figure 3.51c) were similar those of connected lakes. Samples in Lake 

I3 were not clearly separated by seasonality or differences between years. The 

majority of samples had low axis 1 scores, reflecting the dominance of diatoms and 

chlorophytes in the phytoplankton community. Late summer 2006 samples grouped 

towards the left of the CA plot due to the presence of Microcystis sp. in the 

phytoplankton. Samples from April 2005 and August 2005 were both outliers from the 

majority of samples because of the presence of abundant small green flagellates and 

Gymnodinium respectively.  
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Zooplankton community structure 

Axes 1 and 2 identified by CA accounted for 14.7% and 14.1% of correlation between 

zooplankton sample and species scores, and had eigenvalues of 0.422 and 0.405 

respectively. The first four axes cumulatively accounted for 54.4% of sample and 

species scores correlation, and total inertia was 2.875.  

 

A CA of the zooplankton community (Figure 3.52) across all lakes revealed two 

clusters of taxa. Cyclopoid copepods, Ceriodaphnia sp., Bosmina spp. co-occurred 

with the rotifer Asplancha sp. and D. longispina, although D. longispina was rarely 

found in the zooplankton community. A second group of D. pulex, Chydorus sp. and 

calanoid copepods were associated with lower axis 1 and higher axis 2 scores. D. 

hyalina was found throughout all lakes and plots in between the two clusters. D. 

cucullata and the rotifer Keratella sp. were separate from both groups and were rarely 

found in any lake. Plant-associated zooplankton genera such as Sida sp. and Alona 

sp. formed a cluster towards the centre of the CA plot, although Chydorus sp. was not 

associated with other members of the Chydoridae.  
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Figure 3.52 CA plot of zooplankton genera and species from all lakes, March 
2005 to March 2008, scaled by inter-sample distance using Hill’s scaling. 
Zooplankton genera and species are colour coded by group: blue, 
Daphnidae; green, copepoda; magenta, Bosminidae; rotifers, black; 
Chydoridae, red.  
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In connected lakes, particularly Lake C1 (Figure 3.53a), CA plots of sample scores 

show a split between early summer samples and other samples. In Lake C1, samples 

from May of all years had higher axis 1 and lower axis 2 scores. This is associated 

with the high abundances of D. hyalina observed during early summer. Samples from 

November and December 2006 plotted close to early summer samples, reflecting that 

D. hyalina was a dominant member of the wintertime zooplankton community during 

2006. Unlike June 2005 and 2006 the June 2007 sample scored negatively on both 

axis 1 and axis 2 as a result of the increase in rotifers (particularly Asplancha sp.) 

observed during June 2007. During August 2008 rotifers remained relatively abundant 

which is reflected by the position of the sample towards Keratella sp. towards the right 

of Figure 3.52. The position of the majority of other samples indicate the dominance of 

cyclopoid copepods in the zooplankton community. A similar pattern was observed in 

Lakes C2 and C3. Samples from May and June 2005 and 2006, and November 2006 

scored less on axis 1 and more highly on axis 2, also due to the relative dominance of 

D. hyalina. Samples from August 2008 were outliers in both lakes C2 and C3 as a 

consequence of the increase in rotifer abundance (mainly Keratella sp.). Samples 

from January 2007, outliers in both lakes C2 and C3 were almost entirely composed of 

D. hyalina.  

 

Sample scores in lakes I1 and I2 (Figure 3.54a and b) were generally lower on axis 1 

than in connected lakes, which can be explained due to higher number of calanoid 

copepods observed in lakes I1 and I2 compared to connected lakes. Seasonality in 

the abundance of zooplankton abundance was not clearly evident in lakes I1 and I2, 

which is reflected in the grouping of sample scores into one cluster. In Lake I1, 

samples from 2007 tended to cluster towards the right of the plot although interannual 

differences were not clear in Lake I2. The outlier from September 2006 is explained by 

the presence of D. cucullata in the zooplankton community.  

 

Sample scores in Lake I3 were clustered towards the centre of the plot (Figure 3.54c) 

implying that the zooplankton community was most closely associated with cyclopoid 

copepods. As in isolated lakes I1 and I3, little seasonality was evident in zooplankton 

community structure, and interannual differences were not clearly visible. During 2007, 

rotifers were more abundant, evident in the positioning of summer 2007 samples close 

to Asplancha sp.  
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Figure 3.53 CA plots of zooplankton samples from connected lakes, March 2005 
to March 2008, a) Lake C1; b) Lake C2 and c) Lake C3; scaled by inter-
sample distance using Hill’s scaling. Samples are labelled by date 
(d.m.y) and colour-coded by year: black, 2005; grey, 2006; white, 2007; 
striped, 2008. 



Chapter 3: Effects of the River Erewash 

186 

-4 2
-3

3

15.4.5

12.5.5

9.6.5

6.7.5

1.8.5

31.8.5

4.10.5

1.11.5

24.11.5
21.12.5

17.1.6

16.2.6

15.3.6

20.4.6

18.5.6

15.6.6

13.7.6

10.8.6

7.9.6

5.10.6

2.11.6

30.11.6 20.12.6
24.1.7

15.2.7

15.3.7

19.4.7
17.5.7

14.6.7

16.7.7

8.8.7

11.9.7

15.10.715.11.7

13.12.7

17.1.8

19.2.8

18.3.8

Axis 1

A
xi

s 
2

22.3.5

15.4.5

12.5.5

9.6.5

6.7.5

1.8.5

31.8.5

4.10.5 1.11.5
24.11.5 21.12.5

17.1.6
16.2.6

15.3.6

18.5.6
13.7.6

10.8.6
7.9.6

5.10.6
2.11.6

30.11.6

20.12.6

24.1.715.2.7
15.3.7

19.4.7

17.5.7

14.6.7

16.7.7

8.8.7

11.9.7

15.10.7

15.11.7

13.12.7

17.1.8

19.2.8

18.3.8

-4 2

-3
3

Axis 1

15.4.5
12.5.5

9.6.5

6.7.5

31.8.5

4.10.5

1.11.5

24.11.5
21.12.5

17.1.6

16.2.6

15.3.6

20.4.618.5.6

15.6.6

13.7.6

10.8.6
7.9.6

5.10.6

2.11.6

30.11.6

24.1.7

15.2.7

15.3.7

19.4.7

17.5.7

14.6.7

16.7.7

8.8.7

11.9.7
15.10.7

15.11.7

13.12.7

17.1.8

19.2.8

18.3.8

-4 2

-3
3

Axis 1

A
xi

s 
2

a)

b)

c)

I1
Church Pond

I2
Clifton Pond

I3
Beeston 

Pond

 
Figure 3.54 CA plots of zooplankton samples from isolated lakes, March 2005 to 

March 2008, a, Lake I1; b, Lake I2 and c, Lake I3; scaled by inter-sample 
distance using Hill’s scaling. Samples are labelled by date (d.m.y) and 
colour-coded by year: black, 2005; grey, 2006; white, 2007; striped, 2008. 
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3.9 Discussion 

Concentrations of TP and SRP in connected lakes at Attenborough Nature Reserve 

were substantially higher than in many other lowland shallow lakes in the U.K., 

Denmark and Germany (e.g. Schmitt and Nixdorf, 1999; Köhler and Hoeg, 2000; Lau 

and Lane, 2002; Jeppesen et al., 2003) and are well in excess of typical ‘hypertrophic’ 

P concentrations defined by the Organisation for Economic Cooperation and 

Development (OECD, 1982 in Dodds, 2002). In isolated lakes, particularly Lake I2, 

mean P concentrations were less than in connected lakes, although still falling within 

OECD classifications (see Table 1.1, page 36) of eutrophic (Lake I2) and hypertrophic 

(lakes I1 and I3). Mean concentrations of NO3-N were also higher in connected lakes 

than isolated lakes. In connected lakes, mean annual NO3-N concentrations were 

comparable with some of the highest concentrations found in south-east England 

(Bennion and Smith, 2000), and maximum winter concentrations were substantially 

higher than in shallow lakes throughout the U.K. and Poland (James et al., 2005). 

Mean NO3-N concentrations in isolated lakes I1 and I2 fall below those observed by 

Bennion and Smith (2000) although are within the highest 50% of lakes with 

submerged vegetation presented by James et al. (2005). Mean NH4-N concentrations 

in all isolated lakes were similar to those observed in Little Mere, U.K., after the 

diversion of sewage effluent (Beklioglu et al., 1999) and in Barton Broad, U.K. (Lau 

and Lane, 2002). In connected lakes values were over twice as high. Conductivity, 

major ions and Si concentrations were higher in connected lakes than isolated lakes. 

Conductivity and Si concentrations in connected lakes were higher than the majority 

surveyed by Bennion and Smith (2000). Higher Si concentrations were observed in 

Barton Broad by Lau and Lane (2002). Isolated lakes had higher conductivity and 

comparable Si concentrations to lakes in the Bennion and Smith (2000) survey. pH 

was similar or more alkaline compared to lakes in the south-east of England (Bennion 

and Smith, 2000) and Poland (Glińska-Lewczuk, 2009). High pH and conductivity are 

typical of lakes in calcareous catchments (e.g. Müller et al., 1998). In lowland areas, 

agricultural and urban land use is often higher, which can increase the release of 

nutrients into surface waters. High nutrient concentrations are not unexpected in the 

Attenborough Nature Reserve. Several STWs discharge into the River Erewash (see 
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section 2.1) which suggests that urbanisation may be particularly associated with the 

high nutrient concentrations.  

 

The concentrations of major ions were generally higher in all connected lakes than 

isolated lakes, which suggests that the River Erewash was probably associated with 

this difference. Major ions are derived from weathering in catchments (Müller et al., 

1998) and the River Erewash is likely to have been important for the transport of 

weathered material. As major ions are not mediated strongly by biological processes 

(Wetzel, 1983; Krivtsov and Sigee, 2005), biological differences between the 

connected and isolated lakes are unlikely to have been important in determining the 

concentrations of major ions, which supports the importance of the inputs from the 

River Erewash. Significant decreases in concentrations over time were observed in 

connected lakes but not in isolated lakes, which may reflect a transition towards more 

lotic conditions during 2007 because of dilution. Reductions in the concentrations of 

major ions over a gradient of increasing hydraulic connectivity have been observed by 

Glińska-Lewczuk (2009). Some decreases in major ion concentrations occurred during 

early 2008 in lakes I1 and I2, which may be associated with the increases in water 

depth and flooding that occurred during winter 2007-2008.  

 

Strong seasonality was observed in the concentrations of nutrients in connected lakes. 

In both connected and isolated lakes, timeseries data showed that P concentrations 

increased during the late summer, which suggests that internal release from 

sediments is an important mechanism in determining late summer P concentration. 

For example, SRP concentrations increased during late summer 2005 and 2006 in 

Lake C3 (Figure 3.18, page 120) and Lake I2 (Figure 3.34a, page 147). Such patterns 

are typical in eutrophic lakes (e.g. Krivtsov et al., 2001; Reynolds and Davies, 2001; 

Tallberg and Koski-Vähälä, 2001; Spears et al., 2006). In highly productive lakes, 

oxygen consumption by bacterial decomposition of organic matter on the sediment 

surface causes anoxic conditions and allows P to be solubilised and released from the 

sediment (Moss et al., 1996a; Scheffer, 1998). In Danish lakes, Søndergaard et al. 

(2001) showed that in lakes with mean summer TP of >100 µg L-1, late summer TP 

increased to a maximum of ~200–300% of winter TP concentrations. The highest 

increases in Attenborough Nature Reserve were comparable to this. For example, in 
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Lake C3 summer TP concentrations during 2006 were 265% of mean winter (January 

to March) TP concentrations. 

 

NO3-N and NH4-N concentrations were higher in connected lakes than isolated lakes, 

reflecting the input of N from the River Erewash. NO3-N and NH4-N concentrations 

were also higher in Lake I3 than in the other isolated lakes, suggesting that the inflow 

to Lake I3 supplied N to the lake. The lack of N inputs into isolated lakes I1 and I2 and 

undetectable concentrations during the summer suggest the potential for N limitation 

of phytoplankton during the summer. A decreasing gradient in NO3-N concentration 

from Lake C1 to lakes C2 and C3 was found. Denitrification (the conversion of NO3-N 

to gaseous N2, Wetzel, 1983) may contribute to this decline in water-column 

concentration. As denitrification depends on residence time (Scheffer, 1998), lakes 

further from the River Erewash inflow will have undergone additional denitrification 

compared to Lake C1 (see Figure 2.1, page 74) and therefore result in reduced water-

column NO3-N concentrations.  

 

NO3-N and NH4-N concentrations generally decreased in all the lakes of Attenborough 

Nature Reserve during the summer. Nitrogen depletion during summer is a common 

feature of temperate lakes (e.g. Moss et al., 1994; Bennion and Smith, 2000; James et 

al., 2003). NH4-N is the preferential form of N for uptake by macrophytes and 

phytoplankton (as NO3-N and NO2-N require reduction before uptake; Bronmark and 

Hannson, 1998). In connected lakes, NH4-N would primarily be utilised by the 

phytoplankton community until reaching limiting levels, when NO3-N may become a 

more important source of N. In the isolated lakes I1 and I2 where submerged 

macrophytes were abundant, N uptake by macrophytes probably contributed to the 

low summertime NO3-N and NH4-N concentrations.  

 

Internal cycling of NH4-N may have been important in determining water column 

concentrations, particularly in isolated lakes where there was no significant external 

input of NH4-N. Zooplankton excretion and release from the sediments are likely to 

have been important processes. In all lakes, NH4-N concentrations tended to increase 

after the summer chlorophyll-a maxima (e.g. Figure 3.10b, page 107), probably as a 

result of the decomposition of organic matter. The release of NH4-N from sediments 

can contribute significantly to water column concentrations. For example, in Lake 
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Balaton, Hungary, Présing et al (2008) suggested that internal regeneration of NH4-N 

was the principal source for phytoplankton. Beutel (2006) used experiments to 

demonstrate that NH4-N release rates increased with eutrophication, which suggests 

that NH4-N release may be comparatively more important in the connected lakes than 

the isolated lakes. Van Luijn (1999) found that release of NH4-N release from 

sediment cores was much higher than NO3-N and NO2-N immediately after the spring 

phytoplankton bloom. In connected lakes, additional peaks of NH4-N were observed in 

early summer. This is most likely to be a consequence of zooplankton excretion of 

NH4-N (e.g. Wen and Peters, 1994; Attayde and Hansson, 1999; Vanni, 2002) during 

the spring clear-water phase. High abundances of Daphnia spp. observed during 

spring support the importance of zooplankton excretion.  

 

Bergin and Hamilton (2007) suggest that NO3-N loss by denitrification may be 

overestimated and that other processes can account for the fate of NO3-N. For 

example, NO3-N may also be reduced by dissimilatory nitrate reduction to ammonium 

(DNRA), potentially returning N in the form of NH4-N, to be released to the water 

column (Bergin and Hamilton, 2007), which may be an important mechanism in 

reducing the degree of N limitation. In isolated lakes I1 and I2, comparatively low 

water-column concentrations on NH4-N and NO3-N can be explained by sedimentary 

conditions that were likely to be conducive for coupled nitrification and denitrification, 

for example by the release of oxygen around the roots of macrophytes during the 

summer months (Ottosen et al., 1999; Saunders and Kalff, 2001a) and lesser oxygen 

demand by mineralizing bacteria due to lower organic sedimentation (e.g. van Luijn et 

al., 1999). Therefore, both oxic and anoxic ‘microenvironments’ in isolated lakes are 

likely to exist, and consequently sedimentary conditions are ideal for coupled 

nitrification-dentrification (van Luijn et al., 1999; Beutel, 2006) which may therefore 

result in N limitation of phytoplankton growth (Seitzinger, 1988).  

 

Strong seasonality was also observed in SiO3 concentrations in connected lakes and 

Lake I3. Very rapid increases and decreases in SiO3 concentration occurred in the 

connected lakes (e.g. Figure 3.2d, page 94). The seasonality of Si concentration in 

connected lakes corresponds to that observed in many other lakes and aquatic 

environments (e.g. Wang and Evans, 1969; Bailey-Watts, 1976; Gibson et al., 2000), 

driven by the uptake of Si by planktonic diatoms during the spring and late summer, 
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followed by the burial of diatom frustules in the sediments (e.g. Schelske and 

Stoermer, 1971; Schelske et al., 1983; Goto et al., 2007). Benthic diatoms may be 

more important than planktonic diatoms in determining Si concentrations in clear-

water lakes such as lakes I1 and I2, due to improved benthic light climates caused by 

reduced pelagic production (e.g. Vadeboncoeur et al., 2001; Talling and Parker, 

2002). Recycling of Si from the sediments is important in maintaining water column Si 

concentrations, particularly in isolated lakes where no significant external inputs exist. 

For example, Gibson et al. (2000) suggest that internal release contributed two-thirds 

of the Si required by diatoms for the spring bloom in Lough Neagh, and Parker et al. 

(1977) showed that less than 5% of silica required for annual diatom production was 

derived from catchment inputs in Lake Michigan. In the isolated lakes, internal release 

is likely to be important in maintaining water-column Si concentrations, although some 

authors have observed that groundwater inputs can be important sources of Si (e.g. 

Miretzky and Cirelli, 2004). Increases in Si concentrations were observed during 

autumn and winter 2006 in both lakes I1 and I2, following high phytoplankton 

productivity in the summer. The uptake of CO2 by phytoplankton photosynthesis would 

cause an increase in pH (Brönmark and Hansson, 1998), which has been 

experimentally demonstrated to cause an increase in Si release (Lewin, 1961; Rippey, 

1977, 1983). Although Si release and diatom dissolution may be driven by other 

processes, such as temperature (Rippey, 1977, 1983), salinity (Parker et al., 1977; 

Ryves et al., 2006) and physical processes (e.g. Flower, 1993), no discernible 

changes in these occurred at Attenborough Nature Reserve that would otherwise 

explain enhanced Si release.  

 

In isolated lakes, mean chlorophyll-a concentrations were lower than in connected 

lakes. Under the OECD classification, lakes I1 and I2 fall into the ‘eutrophic’ category 

and I3 and connected lakes into the ‘hypertrophic’ category. The chlorophyll-a 

concentrations observed in connected lakes were similar to those of other shallow, 

lowland lakes with short retention times in western Europe, for example Lake 

Søbygård, Denmark, (Jeppesen et al., 1998), Barton Broad, U.K. (Lau and Lane, 

2002) and lakes of the Scharmützelsee area of eastern Germany (Nixdorf and 

Deneke, 1997; Schmitt and Nixdorf, 1999). Maximum chlorophyll-a concentrations in 

connected lakes were comparable to some of the highest observed in south-east 

England by Bennion and Smith (2000) and were approximately three times higher 
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than those observed in Lake C2 during 1993 (Sayer and Roberts, 2001). Connected 

lakes were also highly turbid, shown by the low Secchi disk depths during summer 

(<0.4 m) and high total suspended solids concentrations. This suggests that 

phytoplankton probably contributed to turbidity during the summer and minerogenic 

turbidity was greater during the winter in connected lakes. The clearer water in 

isolated lakes I1 and I2 may in part be related to the absence of a source of 

minerogenic turbidity and implies that phytoplankton were the main source of turbidity 

in those lakes. Secchi depths similar to those of the connected lakes have been 

observed in other hypertrophic lakes, for example in Crest Lake, Louisiana (Burden et 

al., 1987) and in a dataset of 178 shallow lakes (Jensen et al., 1994), and shows no 

substantial change since Sayer and Roberts (2001) reporting of Secchi depths during 

1993 in Lake C2. Mean concentrations of chlorophyll-a in lakes I1 and I2 are 

comparable to those of other macrophyte-dominated lakes, for example Little Mere, 

north-west U.K, after the diversion of sewage effluent (Moss et al., 1997), and Lake 

Krankesjön, Sweden (Blindow et al., 2002).  

 

There were clear differences in phytoplankton community structure between isolated 

and connected lakes, but Lake I3 was more similar to the connected lakes than Lakes 

I1 and I2. The phytoplankton community composition of connected lakes during the 

monitoring period was dominated by diatoms, chlorophytes and cryptophytes. 

According to the classification of Reynolds et al. (2002) and Reynolds (2006), the 

phytoplankton community of connected lakes corresponds to groups J, X1 and D, 

considered typical of shallow and well-mixed water columns, and groups X1 and D are 

typical of turbid waters. All groups are considered to be sensitive to nutrient depletion. 

Genera indicative of these groups include Scenedesmus, Coelastrum and Pediastrum 

(J), Chlorella, Ankyra, and Monoraphidium (X1) and Synedra, Nitzschia and 

Stephanodiscus (D). In similar eutrophic shallow lakes, cyanobacteria often comprise 

a greater proportion of the phytoplankton community, such as in Lakes Melangsee 

(Schmitt and Nixdorf, 1999) and Müggelsee (Köhler and Hoeg, 2000), Germany. 

Jensen et al. (1994) suggested that in hypertrophic conditions, chlorophytes may 

dominate over cyanobacteria as their higher growth rates are able to exploit the 

abundance of nutrients more rapidly compared to cyanobacteria. Small rapidly 

reproducing species may also be favoured because of the high flushing rate in the 

connected lakes (Reynolds, 2006). In isolated lakes I1 and I2 cyanobacteria formed a 
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higher percentage of the phytoplankton community than in connected lakes and 

cryptophytes were more abundant than diatoms. The phytoplankton community of 

Lake I1 included genera representative of groups X1 and J, H1 (Anabaena and 

Aphanizomenon), and G (Eudorina types, particularly during 2006). In Lake I2, groups 

X1, H1, Y (Cryptomonas, Peridinium) and Lm (including Ceratium, during 2006 

particularly) were represented during the monitoring period. The phytoplankton 

community of both lakes appears to be related to moderately eutrophic conditions with 

evidence of N limitation and a sensitivity to low light. Lake I3 was dominated by 

cryptophytes and diatoms during the monitoring period. In addition to genera 

representative of the groups X1 and Y and J, groups B and C (principally Aulacoseira 

and including Asterionella) and W1 and W2 (Euglena and Trachelomonas type) 

indicate a community typical of small, mixed and eutrophic ponds (Reynolds et al., 

2002; Reynolds, 2006). The general absence of cyanobacteria and abundance of 

diatoms suggests the phytoplankton community of Lake I3 was more similar to that of 

the connected lakes than the isolated lakes.  

 

Abundant submerged vegetation and clear water was found in lakes I1 and I2, 

although in Lake I3 and connected lakes submerged macrophytes were rare and the 

water turbid. The vegetation communities of lakes I1 and I2 are typical of eutrophic 

lowland standing water. Lake I1 largely corresponds to the A12 Potamogenton 

pectinatus community (Rodwell et al., 1995). The community is known to flourish in 

naturally or artificially enriched water and is tolerant of turbid water. In Lake I2, the 

submerged vegetation community was more diverse, and similar to the A11 P. 

pectinatus - Myriophyllum spicatum community (Rodwell et al., 1995), which is 

considered typical of lowland, mesotrophic to eutrophic water.  

 

Zooplankton abundance differed among connected and isolated lakes. In connected 

lakes and Lake I3, zooplankton abundance frequently reached approximately 40 

ind. L-1, although in lakes I1 and I2 zooplankton abundance rarely exceeded  

20 ind. L-1. One potential explanation for this is that the phytoplankton community of 

connected lakes was dominated by species susceptible to grazing (Reynolds, 2006), 

therefore providing an abundant food source for the grazing community (e.g. Elser and 

Goldman, 1991) in connected lakes. In connected lakes, D. hyalina were more 

abundant during early summer clear-water periods. Similar abundances of Daphnia 
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have been measured in other eutrophic shallow lakes (e.g. Timms and Moss, 1984; 

Jacobsen and Simonsen, 1993; Deneke and Nixdorf, 1999). Cyclopoid copepods and 

Bosmina sp. were abundant in connected lakes during summer, a pattern which has 

also been observed in Hoveton Great Broad (Timms and Moss, 1984). Zooplankton in 

isolated lakes I1 and I2 was more closely associated with calanoid copepods, and 

Daphnia spp. were not just restricted to the spring clear-water phase. The occurrence 

of larger Daphnia, particularly in Lake I2, suggests that the abundance of submerged 

macrophytes may be important in providing a refuge for zooplankton against 

zooplanktivorous fish (e.g. Timms and Moss, 1984; Scheffer, 1998). Large 

zooplanktivorous fish have been observed in both isolated lakes I1 and I2 and in the 

connected lakes, which suggests that predation on zooplankton may be important in 

determining their abundance. The strength of zooplankton grazing as a limiting factor 

for phytoplankton growth is explored further in Chapter 4. 

 

Both clear and turbid states (Moss et al., 1996a; Scheffer and Jeppesen, 1998; 

Scheffer, 2001) are represented in the Attenborough Nature Reserve. The low total 

suspended solids concentrations, low nutrient concentrations and deep Secchi disk 

depths observed in lakes I1 and I2 are consistent with this theory. In connected lakes 

and Lake I3, the water was turbid, higher nutrient concentrations existed, there was a 

lack of submerged vegetation and high chlorophyll-a concentrations which represents 

typical conditions of the turbid state. Sayer and Roberts (2001) suggested that the 

diversion of the River Erewash into lakes C1, C2 and C3 caused a switch from clear 

water to turbid conditions. The data presented in this chapter supports the suggestion 

that the connected lakes are in a turbid state.  

 

During 2007 distinct differences in the chemistry and biology were observed compared 

to the two previous years, particularly in the connected lakes. Maximum P 

concentrations were less than 2005 and 2006, and P concentrations declined more 

slowly during the growth season in both connected and isolated lakes. NH4-N 

concentrations were below detectable limits for longer during the summer of 2007 than 

previous years in the connected lakes. Maximum chlorophyll-a concentrations were 

less than half of that observed during 2005 and 2006 in connected and isolated lakes. 

Late summer Daphnia populations were also lower during 2007 in the connected 

lakes. The reasons for the differences appear to be related to high rainfall and 
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consequent changes in the hydrology of connected lakes. However, the effects of 

extreme short-term hydrological events on shallow lake functioning have not been 

widely investigated. A reduction in the importance of internal processes, such as 

sedimentary nutrient release and grazing, and a switch towards external processes 

dominating in-lake nutrient concentrations is a possible explanation (e.g. Angeler et 

al., 2000). A reduction of chlorophyll-a concentrations with flushing is supported by 

evidence from theoretical (Reynolds, 2006) and modelling perspectives (e.g. Jones 

and Elliot, 2007; Elliott et al., 2009). Empirical evidence of this in shallow lakes is 

lacking, although some authors have found that high-flushing conditions reduce 

chlorophyll-a concentrations (Paidere et al., 2007; Haldna et al., 2008) and favours the 

growth of small, rapidly growing groups, particularly cryptophytes and r-strategist 

diatoms (Huszar and Reynolds, 1997; Schmitt and Nixdorf, 1999; Paidere et al., 

2007). The importance of these processes and observations is analysed in more 

depth in Chapter 5.  

 

3.10 Conclusion 

Evidence presented in this chapter indicates that connectivity to the nutrient-rich River 

Erewash is associated with substantial differences in the lakes of Attenborough Nature 

Reserve. Contrasts were observed in the availability of nutrients, community structure 

and composition of phytoplankton and zooplankton. Lake I3, although isolated from 

the River Erewash had substantially higher nutrient concentrations and different 

phytoplankton, zooplankton and submerged vegetation communities to isolated lakes 

I1 and I2, probably because of a nutrient-rich inflowing stream. 

 

Connectivity to the River Erewash resulted in substantially greater concentrations of 

major nutrients in connected lakes than in isolated lakes. All lakes of Attenborough 

Nature Reserve can be categorised as eutrophic, but connected lakes and Lake I3 are 

representative of hypertrophic conditions. Evidence of internal processes, including 

the recycling of N, P and Si from the sediments, existed in all lakes and are probably 

important in determining in-lake nutrient concentrations. Internal mechanisms are 

more important in the isolated lakes than connected lakes as they are not subjected to 

high external loading of nutrients.  
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Phytoplankton communities differed between connected and isolated lakes. 

Connected lake phytoplankton communities comprised smaller and more rapidly 

reproducing species, probably in order to exploit the abundance of nutrients and low 

WRT. Diatoms in particular were substantially more abundant in connected lakes and 

were associated with rapid changes in Si concentrations. The prolonged periods of 

low N concentrations in isolated lakes I1 and I2, in addition to the lack of flushing, 

were associated with cyanobacteria being relatively more abundant. The potential 

effects of the interactions between zooplankton grazing and phytoplankton 

communities are addressed in Chapter 4. 

 

Preliminary assessments of the timescales of nutrient, phytoplankton and zooplankton 

datasets in the lakes of Attenborough Nature Reserve in this chapter suggest that 

reductions in P concentrations, chlorophyll-a concentrations and zooplankton occurred 

during 2007. Shifts in phytoplankton community structure were also observed, with 

shifts away from cyanobacteria and towards diatoms and cryptophytes. The extent to 

which these changes may be associated with hydrological changes are explored in 

Chapter 5.  
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Chapter 4 Relationships between 
resources, ecosystem structure and 
function in Attenborough Nature Reserve 

 

4.1 Introduction 

This chapter attempts to determine how phytoplankton communities may be affected 

by resource availability, and how structure and functioning may vary among the lakes 

of Attenborough Nature Reserve. The data used in this chapter were discussed in 

detail in Chapter 3 and comprises data from all lakes of Attenborough Nature Reserve. 

The data presented in Chapter 3 suggested that nutrient concentrations in connected 

lakes were strongly affected by the River Erewash, and that zooplankton are abundant 

and could potentially affect total phytoplankton biomass. Evidence was presented to 

show that connectivity to the River Erewash was associated with a phytoplankton 

community dominated by small species that may be more susceptible to grazing, 

whereas isolated lakes I1 and I2 tended to be dominated by larger and possibly 

grazing-resistant species.  

 

Controls of phytoplankton abundance and composition can vary between lakes with 

submerged vegetation and those without. In lakes with abundant submerged 

macrophytes, zooplankton may exert a strong control on phytoplankton communities 

because of the presence of refugia for zooplankton, and maintain top-down control 

even when the abundance of zooplanktivorous fish is high (e.g. Timms and Moss, 

1984). Jeppesen et al. (1999; 2003) have suggested that the effects of zooplankton on 

phytoplankton probably increase with trophic state in lakes with macrophytes because 

of reduced bottom-up control. However, Blindow et al. (2000) found that when 

submerged vegetation is highly abundant, nutrient limitation of phytoplankton may 

have been more important than zooplankton grazing.  

 

Many studies suggest that the effects of grazing and nutrient limitation on lake 

phytoplankton may vary temporally as well as between lakes. For example, 
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zooplankton grazing can be particularly intense in many eutrophic lakes during the 

spring, and as a result the biomass of small and easily-grazed phytoplankton species 

is substantially reduced (e.g. Vanni and Temte, 1990; Talling, 2003). Later in the 

growth season, the strength of top-down control is often reduced. Phytoplankton that 

are resistant to grazing reduce the strength of top-down control. Grazing resistance 

primarily arises because of the size and toxicity of cyanobacteria (Agrawal, 1998; 

Lampert and Sommer, 2007). Cyanobacteria can become more dominant after clear-

water phases in eutrophic lakes, and may be dominant in hypertrophic lakes, resulting 

in a reduction of top-down phytoplankton control. Bottom-up control of phytoplankton 

may also become stronger as dissolved nutrients are assimilated into the 

phytoplankton during the summer in eutrophic lakes (Lampert and Sommer, 2007).  

 

This chapter will use a correlative approach to determine if any correlations exist 

between nutrient and zooplankton variables among the lakes of Attenborough Nature 

Reserve from which casual mechanisms may be inferred. The following questions are 

addressed: 

• Which biological and physico-chemical variables are correlated with 

chlorophyll-a concentrations? 

• Which biological and physico-chemical variables are associated with changes 

in phytoplankton community structure? 

• How do these relationships vary among connected and isolated lakes? 

 

4.2 Methods 

The relationship between chlorophyll-a concentrations and zooplankton, chemical and 

physico-chemical variables was assessed using Spearman’s rank correlation (rs). 

Spearman’s rank correlation is a non-parametric form of correlation. It was chosen 

over parametric correlation approaches (such as the Pearson correlation coefficient) 

for this analysis as it avoided the need for transformations to be applied to 

environmental, physico-chemical and zooplankton datasets in order to meet the 

normal distribution assumptions of parametric correlation (Field, 2000). Using 

Spearman’s rank correlation is also a more flexible analysis of the association 

between two variables, as it measures the consistency of a relationship rather than the 
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strength of a linear relationship as with the Pearson correlation coefficient (Gravetter 

and Wallnau, 2000). Spearman’s rank correlations were computed using SPSS 15. 

 

Canonical correspondence analysis (CCA) was then used in order to relate the 

phytoplankton community composition to biotic and abiotic variables which were 

transformed where required to conform to the assumption of normality (Table 4.1). 

Prior to performing CCA, DCA was used to assess the length of the first axis of the 

phytoplankton dataset, and suggested that a unimodal approach would be appropriate 

(Table 4.2). CCAs were performed using CANOCO 4.5 on phytoplankton species that 

were summed to genus level and log(x+1) transformed. Genera that contributed less 

than 5% of the total biovolume of a sample were excluded from the analysis to reduce 

noise in the dataset. Scaling of ordination scores was focused on interspecies 

correlations in order that CCA plots would show the differences between the 

occurrence of different phytoplankton species and correlation amongst environmental 

variables. Since analysis was based on unimodal species response curves, Hill’s 

scaling was used. In order to determine which environmental variables independently 

explained a significant proportion of species variability, forward selection with 1000 

Monte Carlo permutations was used. Variables were considered significant if p ≤0.05. 

CCA was then performed using the significant explanatory environmental variables 

alone, and both the significance of the first ordination axis and all canonical axes was 

assessed using a Monte Carlo test with 1000 permutations under a reduced model 

(Lepš and Šmilauer, 2003). Reduced models are recommended for small datasets as 

it reduces the likelihood of Type I errors (ter Braak and Šmilauer, 2002). 
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Table 4.1 Transformations applied to chemical, physico-chemical and 
zooplankton variables entered into CCAs by lake. ‘sqrt’, square root. 
Abbreviations used in CCA plots are given in parentheses. 

Transformation applied by lake Variable 
C1 C2 C3 I1 I2 I3 

Chemical variables 
TP - log(x+1) log(x+1) log(x+1) - log(x+1) 

SRP - -  log(x+1) log(x+1) sqrt 
NO3-N log(x+1) log(x+1) log(x+1) 3√ log(x+1) sqrt 
NH4-N sqrt sqrt sqrt 3√ - 3√ 
SiO3 - - - sqrt 3√ - 

Total Alkalinity (Alk) - - - - - - 
Cl- - - - - - - 
Na+ - - - - - - 
K+ - - - - - - 

Mg2+ - - - - - - 
Ca2+ - - - - - - 

Physico-chemical variables 
Temp (T) sqrt sqrt sqrt sqrt sqrt sqrt 

pH - - - - - - 
Cond - - - sqrt - - 

Zooplankton groups 
Daphnia spp. (Dap) log(x+1) log(x+1) log(x+1) log(x+1) log(x+1) log(x+1) 

Ceriodaphnia spp. (Cer) log(x+1) log(x+1) log(x+1) log(x+1) log(x+1) log(x+1) 
Calanoid copepods (Cal) log(x+1) log(x+1) log(x+1) log(x+1) log(x+1) log(x+1) 

Cyclopoid copepods (Cyc) log(x+1) log(x+1) log(x+1) log(x+1) log(x+1) log(x+1) 
Bosmina spp. (Bos) log(x+1) log(x+1) log(x+1) log(x+1) log(x+1) log(x+1) 

 

 

Table 4.2 Axis 1 lengths determined by DCA of phytoplankton data using 
detrending by segments. 

Lake Axis 1 length 
C1 2.885 
C2 4.244 
C3 3.615 
I1 3.907 
I2 4.638 
I3 3.931 

 

4.3 Results 

4.3.1 Lake C1 (Coneries Pond) 

In Lake C1, positive correlations were found between chlorophyll-a concentrations and 

the zooplankton taxa cyclopoid copepods and Bosmina spp. (Table 4.3). Weaker 



Chapter 4: Resources and ecosystem structure and functioning 

201 

correlations existed between chlorophyll-a concentrations and temperature, pH and 

total alkalinity. All of the negative associations with chlorophyll-a concentration were  

nutrients. NH4-N of NO3-N were more strongly negatively correlated with chlorophyll-a 

concentrations than SiO3 concentrations. 

 

 

Table 4.3 Spearman’s rank correlation coefficients between chlorophyll-a 
concentration and zooplankton and environmental variables in Lake C1 
(Coneries Pond), March 2005-March 2008. 

Variable Spearman’s rank correlation 
Cyclopoid 0.564  

Bosmina spp. 0.516  
Temperature 0.505  

pH 0.391  
Total alkalinity 0.377  

Mg2+ 0.331  
NH4-N   -0.781 
SiO3   -0.530 

NO3-N   -0.326 
 

 

 

CCA analysis revealed seven environmental variables which were independently and 

significantly (p <0.05, Monte Carlo test) correlated with variance in the phytoplankton 

dataset using forward selection. Both abiotic variables (NH4-N, NO3-N, Na+,Mg2+, and 

temperature) and biotic variables (Daphnia spp.) were significant explanatory 

variables. Axis 1 explained 9.2% of the variance in the phytoplankton community 

(Table 4.4) and was strongly correlated with NH4-N and Daphnia spp. (r = 0.567 and 

0.531 respectively). Axis 2, which explained an additional 6.4% of phytoplankton 

community variance, was strongly correlated with NO3-N concentration (r = -0.806). 

Temperature was positively correlated with axis 2 (r = 0.450). Axes 3 and 4 were most 

strongly correlated with temperature and SiO3 (r = -0.518 and -0.361 respectively) and 

together explained a further 10.1% of phytoplankton community variance.  
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Table 4.4 Summary of the results of CCA analysis between phytoplankton 
species and biotic and abiotic variables in Lake C1 (Coneries Pond), 
March 2005-March 2008. Significance values are derived from a 1000 
permutation Monte Carlo test.  

 Axis 1 Axis 2 Axis 3 Axis 4 
Eigenvalue 0.315 0.217 0.200 0.145
Species - environment correlation 0.871 0.862 0.839 0.756
Cumulative percentage variance   

 of species data 9.2 15.6 21.5 25.7
 of species - environment relation 28.3 49.9 65.8 78.9

Sum of all eigenvalues 3.412   
Sum of all canonical eigenvalues 1.112   
Variance explained by CCA (%) 32.59   

   
 F p  

Significance of first canonical axis 3.050 0.001  
Significance of all canonical axes 2.073 0.001  
 

The CCA plots (Figure 4.1a and b) show winter samples being more closely 

associated with high concentrations of NO3-N, NH4-N and SiO3 reflecting the higher 

concentrations of these nutrients observed during the winter. Early summer samples 

were associated with Daphnia spp. reflecting frequent presence of Daphnia spp. in the 

zooplankton community during May and June. Samples from the summer of all years 

tended to occur on the left hand side of the plots, indicating their association with 

increased temperature, and higher Mg2+ concentrations, observed particularly during 

2006 and 2007. The distribution of species in the CCA plot (Figure 4.1) shows species 

typically observed during the summer months plotting along the temperature gradient 

(such as the cyanobacteria Microcystis and Oscillatoria). Several genera plotted near 

the centre of the CCA plot, including Cryptomonas spp. and centric and pennate 

diatom species, which suggests their consistent presence throughout the monitoring 

period. Ankyra spp. was associated with Daphnia spp. and higher NH4-N and SiO3 

concentrations which corresponds to the higher abundance of Ankyra spp. observed 

during early summer. Diatom taxa, other than centric species, were negatively 

associated with SiO3 suggesting uptake by diatoms strongly influences seasonal 

variability in SiO3 concentrations.  



 

 

 

Figure 4.1 CCA plots of Lake C1 
(Coneries Pond) constrained by 
the environmental variables. Only 
the first and second axes are 
shown. a) Phytoplankton species 
colour coded by phytoplankton 
group: brown, Bacillariophyceae; 
green, chlorophytes; orange, 
cryptophytes; blue, 
cyanobacteria; black, others 
(including chrysophytes and 
dinophytes). Phytoplankton 
abbreviations are given in Table 
3.1, page 178 and environmental 
variable abbreviations in Table 
4.1, page 200. b) samples, labelled 
by date (d.m.y) and colour-coded 
by year: black, 2005; grey, 2006; 
white, 2007; striped, 2008. 
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4.3.2 Lake C2 (Tween Pond) 

Several positive correlations were found between chlorophyll-a concentration and 

environmental and zooplankton variables (Table 4.5). The strongest correlations with 

chlorophyll-a concentrations were found with pH and zooplankton groups. Chemical 

variables were comparatively more weakly positively associated with chlorophyll-a 

concentrations (rs ≤0.585). Three chemical variables (NH4-N, NO3-N and SiO3 

concentrations) were strongly negatively associated with chlorophyll-a concentrations 

(Table 4.5).  

 

Table 4.5 Spearman’s rank correlation coefficients between chlorophyll-a 
concentration and zooplankton and environmental variables in Lake C2 
(Tween Pond) March 2005-March 2008. 

Variable Spearman’s rank correlation 
pH 0.697  

Cyclopoid 0.695  
Rotifers 0.621  

Total alkalinity 0.585  
Bosmina spp. 0.523  
Temperature 0.497  

TP 0.480  
Mg2+  0.462  
K+ 0.414  

Na+ 0.337  
NH4-N   -0.792 
SiO3   -0.548 

NO3-N   -0.528 
 

CCA analysis showed that seven variables were independently and significantly 

correlated with the phytoplankton dataset after forward selection. The first axis 

identified explained 10.2% of phytoplankton community variance (Table 4.6), and was 

most strongly correlated with Bosmina spp. (r = -0.605) and Daphnia spp. (r = 0.564). 

Axis 2, which explained a further 6.4% of phytoplankton community variance, was 

strongly positively correlated with calanoid copepods (r = 0.748). Axes 3 and 4 

(explaining an additional 10.5% of phytoplankton community composition together) 

were most strongly correlated with Ceriodaphnia spp. (axis 3) and Ca2+ concentrations 

(axis 4). CCA showed positive correlations amongst zooplankton groups. Bosmina sp. 

was correlated with Ceriodaphnia sp. (r = 0.476), and Daphnia spp. with calanoid 
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copepods (r = 0.364). Bosmina sp. were also positively correlated with TP 

concentration.  

 

Table 4.6 Summary of the results of CCA analysis between phytoplankton 
species and environmental variables and zooplankton abundance in 
Lake C2 (Tween Pond), March 2005 to March 2008. Significance values 
are derived from a 1000 permutation Monte Carlo test.  

 Axis 1 Axis 2 Axis 3 Axis 4 
Eigenvalue 0.408 0.256 0.240 0.177
Species - environment correlation 0.906 0.855 0.816 0.795
Cumulative percentage variance   

 of species data 10.2 16.6 22.6 27.1
 of species - environment relation 31.8 51.7 70.4 84.2

Sum of all eigenvalues 3.993   
Sum of all canonical eigenvalues 1.284   
Variance explained by CCA (%) 32.16   

   
 F p  

Significance of first canonical axis 3.414 0.057  
Significance of all canonical axes 2.369 0.001  
 

CCA plots show summer phytoplankton genera and samples plotting towards the left-

hand side of the plots (Figure 4.2a and b), including Microcystis, Oscillatoria, 

Pediastrum and Scenedesmus. Summertime samples tended to be associated with 

high abundance of Bosmina sp. and Ceriodaphnia spp. Spring and early summer 

samples tended to plot towards the right-hand side of Figure 4.2b, with increases in 

the biomass of Ankyra spp. associated with increased abundance of Daphnia sp. 

Other small chlorophytes including Chlorella spp. and Chlamydomonas spp. were 

associated with spring and early summer samples. Wintertime samples plotted 

towards the centre of Figure 4.2b suggesting an association with low zooplankton 

biomass and TP concentrations. Diatoms (except Cocconeis sp.) and cryptophytes 

plotted in the centre of the CCA plot, reflecting their presence in the phytoplankton 

community throughout the monitoring period.  

 



 

 

 

Figure 4.2 CCA plots of Lake C2 
(Tween Pond) constrained by the 
environmental variables. Only 
the first and second axes are 
shown. a) Phytoplankton species 
colour coded by phytoplankton 
group: brown, 
Bacillariophyceae; green, 
chlorophytes; orange, 
cryptophytes; blue, 
cyanobacteria; black, others 
(including chrysophytes and 
dinophytes). Phytoplankton 
abbreviations are given in Table 
3.1, page 178 and environmental 
variable abbreviations in Table 
4.1, page 200. b) samples, 
labelled by date (d.m.y) and 
colour-coded by year: black, 
2005; grey, 2006; white, 2007; 
striped, 2008. 
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4.3.3 Lake C3 (Main Pond) 

Nine positive correlations between chemical, physico-chemical and zooplankton 

variables were found (Table 4.7). The strongest positive correlations existed between 

the abundance of cyclopoid copepods, pH and the abundance of Bosmina spp. 

Weaker positive correlations were found between major ions (Mg2+ and K+), TP, water 

temperature and specific conductivity. The three negative correlates of chlorophyll-a 

concentration were with NH4-N, NO3-N and SiO3 concentrations (Table 4.7).  

 

Table 4.7 Spearman’s rank correlation coefficients between chlorophyll-a 
concentration and zooplankton and environmental variables in Lake C3 
(Main Pond) March 2005-March 2008.  

Variable Spearman’s rank correlation 
Cyclopoid 0.738  

pH 0.649  
Bosmina spp. 0.557  
Temperature 0.538  

Mg2+ 0.489  
K+ 0.437  
TP 0.376  

Total alkalinity 0.368  
Spec. cond. 0.334  

NH4-N   -0.706 
NO3-N   -0.613 
SiO3   -0.572 

 

In Lake C3, CCA suggested that three of the environmental variables independently 

and significantly were correlated with variance in the phytoplankton dataset after 

forward selection. 8.2% of variance in the phytoplankton community was explained by 

axis 1 (Table 4.8), which was positively correlated with Daphnia spp (r = 0.63) and 

less strongly positively correlated with temperature (r = 0.26). Bosmina spp. was 

weakly negatively correlated with axis 1 (r = -0.15). Axis 2 explained an additional 

5.5% of phytoplankton community variation and was positively correlated with all three 

environmental variables, most strongly Bosmina spp. and temperature (r = 0.76 and 

0.43 respectively). Axis 3 explained 4.3% of the phytoplankton community variance 

and was strongly correlated with temperature (r = 0.62). 
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Table 4.8 Summary of the results of CCA analysis between phytoplankton 
species and environmental variables and zooplankton abundance in 
Lake C3 (Main Pond), March 2005 to March 2008. Significance values are 
derived from a 1000 permutation Monte Carlo test.  

 Axis 1 Axis 2 Axis 3 Axis 4 
Eigenvalue 0.408 0.256 0.240 0.177
Species - environment correlation 0.906 0.855 0.816 0.795
Cumulative percentage variance   

 of species data 10.2 16.6 22.6 27.1
 of species - environment relation 31.8 51.7 70.4 84.2

Sum of all eigenvalues 3.993   
Sum of all canonical eigenvalues 1.284   
Variance explained by CCA (%) 32.16   

   
 F p  

Significance of first canonical axis 3.414 0.057  
Significance of all canonical axes 2.369 0.001  
 

 

 

CCA plots (Figure 4.3a and b) show phytoplankton species associated with the 

summer community plotting towards higher surface water temperatures and increased 

abundance of Bosmina spp. during late summer and autumn. Phytoplankton species 

representative of this trend include the cyanobacteria Oscillatoria spp. and Microcystis 

sp., and chlorophytes including the genera Scenedesmus and Coelastrum. Samples 

representing the early-summer clear-water phase plot towards the right-hand side of 

Figure 4.3b and are associated with increased abundances of Daphnia spp. and the 

phytoplankton genera Ankrya and Chlorella. A cluster of phytoplankton species on the 

right of Figure 4.3a appear to be associated with their presence in the phytoplankton 

community during June 2006.  
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Figure 4.3 CCA plots of Lake C3 (Main Pond) constrained by the environmental 
variables. Only the first and second axes are shown. a) Phytoplankton 
species colour coded by phytoplankton group: brown, 
Bacillariophyceae; green, chlorophytes; orange, cryptophytes; blue, 
cyanobacteria; black, others (including chrysophytes and dinophytes). 
Phytoplankton abbreviations are given in Table 3.1, page 178 and 
environmental variable abbreviations in Table 4.1, page 200. b) samples, 
labelled by date (d.m.y) and colour-coded by year: black, 2005; grey, 
2006; white, 2007; striped, 2008. 
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Wintertime samples are concentrated in the lower left-hand side of Figure 4.3b, and 

were mainly associated with diatoms, cryptophytes and euglenophytes. Phytoplankton 

species representative of this trend include the cyanobacteria Oscillatoria spp. and 

Microcystis spp., and chlorophytes including the genera Scenedesmus and 

Coelastrum. Samples representing the early-summer clear-water phase plot towards 

the right-hand side of Figure 4.3b and are associated with increased abundances of 

Daphnia spp. and the phytoplankton genera Ankyra and Chlorella. A cluster of 

phytoplankton species on the right of Figure 4.3a appear to be associated with their 

presence in the phytoplankton community during June 2006. Wintertime samples are 

concentrated in the lower left-hand side of Figure 4.3b, and were mainly associated 

with diatoms, cryptophytes and euglenophytes. 

 

4.3.4 Lake I1 (Church Pond) 

Only three variables that were positively correlated with chlorophyll-a concentrations 

were identified in Lake I1, and the three negatively correlated variables were the 

zooplankton groups calanoid copepods and Ceriodaphnia sp. and total alkalinity 

(Table 4.9). Neither the strongest positive or negative correlations were as strong as 

those in the connected lakes.  

 

Table 4.9 Spearman’s rank correlation coefficients between chlorophyll-a 
concentration and zooplankton and environmental variables in Lake I1 
(Church Pond) March 2005-March 2008.  

Variable Spearman’s rank correlation 
pH 0.435  

SiO3 0.432  
Rotifers 0.400  
Calanoid  -0.543 

Total alkalinity  -0.445 
Ceriodaphnia  -0.365 

 

CCA showed that eight environmental variables were independently and significantly 

correlated with phytoplankton community variance after forward selection. The 

phytoplankton genus Dinobryon was omitted from analysis as it was an outlier within 

the dataset. Only nutrients and physico-chemical parameters were significant in the 

CCA. Axis 1 explained 10.1% of phytoplankton community variance (Table 4.10) and 
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was most strongly correlated with NO3-N concentrations (r = 0.651) and total alkalinity 

(r = 0.644). pH, temperature, SRP and SiO3 concentrations were all negatively 

correlated with axis 1. The second axis was most strongly correlated with SRP and 

NH4-N concentrations (r = -0.453 and -0.410 respectively) and explained an additional 

7.6% of phytoplankton community variance. Together, axes 3 and 4 explained an 

additional 11.3% of phytoplankton community variance. Axis 3 was negatively 

correlated with pH (r = -0.501) and positively correlated with specific conductivity (r = 

0.449). Axis 4 was most strongly negatively correlated with conductivity (-0.240) 

positively correlated with SiO3 concentrations (r = 0.202). 

 

Amongst the variables in the CCA, SRP was negatively correlated with conductivity (r 

= -0.551) and total alkalinity (r = -0.447). pH and total alkalinity were both strongly 

negatively correlated (r = -0.622). NO3-N and NH4-N were negatively correlated with 

temperature (r = -0.502 and -0.500 respectively) and pH was positively correlated with 

temperature (r = 0.592) NH4-N and NO3-N were positively correlated (r = 0.468).  

 

Table 4.10 Summary of the results of CCA analysis between phytoplankton 
species and environmental variables and zooplankton abundance in 
Lake I1 (Church Pond), March 2005 to March 2008. Significance values 
are derived from a 1000 permutation Monte Carlo test. The outlying 
genus Dinobryon was removed from this analysis. 

 Axis 1 Axis 2 Axis 3 Axis 4 
Eigenvalue 0.430 0.322 0.254 0.225
Species - environment correlation 0.895 0.870 0.846 0.785
Cumulative percentage variance   

 of species data 10.1 17.7 23.7 29.0
 of species - environment relation 24.9 43.6 58.3 71.3

Sum of all eigenvalues 4.245   
Sum of all canonical eigenvalues 1.725   
Variance explained by CCA (%) 40.63   

   
 F p  

Significance of first canonical axis 3.045 0.003  
Significance of all canonical axes 1.725 0.001  
 

CCA plots show that cyanobacteria were associated with increased pH and SiO3 

concentrations (Figure 4.4a), most likely as a reflection of the increased pH and SiO3 

concentrations occurring at the end of summer 2006 when cyanobacteria were most  
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Figure 4.4 CCA plots of Lake I1 (Church Pond) constrained by the environmental 
variables. Only the first and second axes are shown. a) Phytoplankton 
species colour coded by phytoplankton group: brown, 
Bacillariophyceae; green, chlorophytes; orange, cryptophytes; blue, 
cyanobacteria; black, others (including chrysophytes and dinophytes). 
Phytoplankton abbreviations are given in Table 3.1, page 178 and 
environmental variable abbreviations in Table 4.1, page 200. b) samples, 
labelled by date (d.m.y) and colour-coded by year: black, 2005; grey, 
2006; white, 2007; striped, 2008. 

 



Chapter 4: Resources and ecosystem structure and functioning 
 

213 

abundant. Samples from summer 2005 and 2006 plotted towards the left of Figure 

4.4b due to the occurrence of cyanobacteria species during the summer. For example 

the August 2006 sample was associated with large biovolumes of Anabaena sp. 

Cyanobacteria were also positively associated with temperature and negatively related 

to NO3-N concentrations. Summer 2007 samples occur closer to the centre and right 

of the plot reflecting the dominance of Cryptomonas spp. and pennate diatoms. 

Samples from November and December 2007 were also largely dominated by 

cryptophytes, and consequently plotted near the centre of Figure 4.4b. Negative 

association between temperature and cryptophytes and centric diatoms suggests their 

relative abundance during the winter. The March 2008 sample is strongly associated 

with Asterionella, which was rarely observed for the rest of the monitoring period.  

 

4.3.5  Lake I2 (Clifton Pond) 

Few correlations between chlorophyll-a and environmental variables were found in 

Lake I2 (Table 4.11). Only Bosmina spp. were positively correlated, albeit weakly, and 

similarly weak negative correlations were found for Mg2+ and Daphnia spp. 

 

Table 4.11 Spearman’s rank correlation coefficients between chlorophyll-a 
concentration and zooplankton and environmental variables in Lake I2 
(Clifton Pond) March 2005-March 2008.  

Variable Spearman’s rank correlation 
Bosmina spp. 0.340  

Mg+   -0.334 
Daphnia spp.  -0.454 

 

CCA analysis showed that 4 variables independently explained a significant proportion 

of variability in the phytoplankton community of Lake I2 after forward selection (Figure 

4.5). Axis 1 was strongly positively correlated with NO3-N concentrations (r = 0.654), 

and negatively correlated with pH (r = -0.448), and explained 6.3% of phytoplankton 

community variance (Table 4.12). 4% of variance in the phytoplankton community was 

explained by axis 2, which was most strongly correlated with K+ (r = -0.631) and 

conductivity (r = -0.600). Axes 3 and 4 explained an additional 6.6% of phytoplankton 

community variability. Axis 3 was most strongly correlated with pH (r = -0.557) and 

axis 4 with NO3-N concentration (r = 0.356). CCA indicated negative correlation 
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between NO3-N and pH (r = -0.424). Weaker negative correlations also existed 

between NO3-N and conductivity (r = -0.278) and K+ (-0.268). Conductivity and pH 

were positively correlated (r = 0.309).  

 

Cyanobacteria appeared to be associated with increased pH in Lake I2 (Figure 4.5a). 

Samples associated with cyanobacteria were mainly from summer 2005 and 2006. 

Summer 2007 samples were more closely associated with chlorophytes such as 

Ankyra spp., and also reflect the increased K+ concentrations observed during the 

summer of 2007. The winter phytoplankton was related to Pediastrum spp., Cocconeis 

sp., Euglena sp. and Trachelmonas sp. Samples from January and March 2008 were 

closely associated with Mallomonas sp. and Gymnodinium sp. respectively. 

Cryptomonas spp. and Rhodomonas spp. plotted towards the centre of Figure 4.5b, 

due to their presence in most phytoplankton samples.  

 

Table 4.12 Summary of the results of CCA analysis between phytoplankton 
species and environmental variables and zooplankton abundance in 
Lake I2 (Clifton Pond), March 2005 to March 2008. Significance values 
are derived from a 1000 permutation Monte Carlo test.  

 Axis 1 Axis 2 Axis 3 Axis 4 
Eigenvalue 0.331 0.208 0.194 0.152
Species - environment correlation 0.821 0.772 0.675 0.730
Cumulative percentage variance   

 of species data 6.3 10.3 14.0 16.9
 of species - environment relation 37.5 60.9 82.8 100.0

Sum of all eigenvalues 5.236   
Sum of all canonical eigenvalues 0.885   
Variance explained by CCA 16.90%   

   
 F p  

Significance of first canonical axis 2.163 0.008  
Significance of all canonical axes 1.627 0.001  
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Figure 4.5 CCA plots of Lake I2 (Clifton Pond) constrained by the environmental 
variables. Only the first and second axes are shown. a) Phytoplankton 
species colour coded by phytoplankton group: brown, 
Bacillariophyceae; green, chlorophytes; orange, cryptophytes; blue, 
cyanobacteria; black, others (including chrysophytes and dinophytes). 
Phytoplankton abbreviations are given in Table 3.1, page 178 and 
environmental variable abbreviations in Table 4.1, page 200. b) samples, 
labelled by date (d.m.y) and colour-coded by year: black, 2005; grey, 
2006; white, 2007; striped, 2008. 
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4.3.6 Lake I3 (Beeston Pond) 

Only two variables were significantly correlated with chlorophyll-a concentrations in 

Lake I3 (Table 4.13). Strong negative correlation was found between NH4-N and 

chlorophyll-a, and Ceriodaphnia spp. were weakly positively correlated with 

chlorophyll-a concentration. 

 

Table 4.13 Spearman’s rank correlation coefficients between chlorophyll-a 
concentration and zooplankton and environmental variables in Lake I3, 
(Beeston Pond) March 2005-March 2008. 

Variable Spearman’s rank correlation 
Ceriodaphnia sp. 0.414  

NH4-N  -0.725 
 

A CCA of Lake I3 showed that two environmental variables independently and 

significantly explained phytoplankton community variance after forward selection. The 

first axis identified by CCA explained 6.4% of variance in the phytoplankton 

community (Table 4.14) and was strongly negatively correlated with SRP 

concentrations (r = -0.751). Axis 2, which explained an additional 4.4% of 

phytoplankton community variance, was strongly positively correlated with Na+ 

concentrations. SRP and Na+ concentrations were weakly negatively correlated (r = -

0.329).  

 

Table 4.14 Summary of the results of CCA analysis between phytoplankton 
species and environmental variables and zooplankton abundance in 
Lake I3 (Beeston Pond), March 2005 to March 2008. Significance values 
are derived from a 1000 permutation Monte Carlo test.  

 Axis 1 Axis 2 Axis 3 Axis 4 
Eigenvalue 0.260 0.177 0.562 0.428
Species - environment correlation 0.754 0.620 - -
Cumulative percentage variance   

 of species data 6.4 10.8 24.7 35.2
 of species - environment relation 59.5 100.0 - -

Sum of all eigenvalues 4.051   
Sum of all canonical eigenvalues 0.437   
Variance explained by CCA (%) 10.78   

   
 F p  

Significance of first canonical axis 2.333 0.026  
Significance of all canonical axes 2.057 0.003  
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Figure 4.6 CCA plots of Lake I3 (Beeston Pond) constrained by the 
environmental variables. Only the first and second axes are shown. a) 
Phytoplankton species colour coded by phytoplankton group: brown, 
Bacillariophyceae; green, chlorophytes; orange, cryptophytes; blue, 
cyanobacteria; black, others (including chrysophytes and dinophytes). 
Phytoplankton abbreviations are given in Table 3.1, page 178 and 
environmental variable abbreviations in Table 4.1, page 200. b) samples, 
labelled by date (d.m.y) and colour-coded by year: black, 2005; grey, 
2006; white, 2007; striped, 2008. 
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Figure 4.6a shows a close association of most chlorophytes found in Lake I3, such as 

Scenedesmus spp., Pediastrum spp. and Ankyra sp., representing their co-occurrence 

in the phytoplankton community.  Samples from summer 2005 and 2006 were 

particularly associated with these chlorophyte species (Figure 4.6b). Summer samples 

from 2005 and 2006, and most chlorophyte species, were associated with increases in 

SRP concentrations observed during July and August each year. Summer 2007 

samples tended to have lower Axis 2 scores than samples from summer 2005 and 

2006, reflecting an increase in the abundance of diatoms during 2007. Autumn and 

winter samples generally had negative axis 1 and 2 scores, which corresponds to the 

reductions in Na+ concentrations which were observed during the winter. Cryptomonas 

spp. plotted close to the centre of Figure 4.6a, reflecting the presence of Cryptomonas 

in the phytoplankton community throughout the monitoring period.  

 

4.4 Discussion 

Negative correlations between NH4-N and chlorophyll-a concentrations suggest that 

NH4-N strongly depleted by phytoplankton uptake in the connected lakes and Lake I3 

(Table 4.15). NH4-N was not significantly associated with chlorophyll-a concentrations 

in lakes I1 and I2. Negative NH4-N correlations with chlorophyll-a concentrations have 

been observed by other authors in eutrophic shallow lakes (e.g. Lau and Lane, 2002). 

NH4-N is the preferred source of N for phytoplankton (Wetzel, 1983; Brönmark and 

Hansson, 1998), and therefore NH4-N concentrations are likely to be depleted when 

phytoplankton growth is rapid. Internal recycling of NH4-N may be important in 

supplementing the supply of NH4-N from the River Erewash during during the 

summer. Internally recycled NH4-N was the most important source of N for 

phytoplankton in Lake Balaton, Hungary where rapid increases in phytoplankton 

biomass could lead to NH4-N limitation during late summer (Présing et al., 2008). 

Rapid increases in NH4-N concentration often occurred after the spring phytoplankton 

bloom and during autumn in the connected lakes of Attenborough Nature Reserve, 

suggesting that excretion and the sedimentary release are likely to be important for 

internal loading in these lakes. Sedimentary release of NH4-N may be particularly 

important when inputs of organic matter to the sediments and temperatures are high 

(van Luijn et al., 1999). The release of NH4-N from sediments may be increased under 
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anoxic conditions (Beutel, 2006) and hence support higher deposition of senescent 

phytoplankton, creating a positive feedback to enhance eutrophication (van Luijn et 

al., 1999).  

 

Table 4.15 Summary of variables significantly (p ≤0.05) correlated with 
chlorophyll-a concentration (Spearman’s correlation) and associated 
with phytoplankton community structure (CCA). Abbreviations: Cyclop. 
cops., cyclopoid copepods; Calan. cops., calanoid copepods; Spec. 
cond., specific conductivity. 

Spearman’s correlations 
Lake 

Positive Negative 
CCA 

C1 Total alkalinity 
Mg2+ 
Cyclop. cops. 
Bosmina spp. 
Temperature 
pH 

NH4-N 
NO3-N 
SiO3 
 

NH4-N 
NO3-N 
SiO3 
Daphnia spp. 
Temperature 
Mg2+ 

C2 TP 
Total alk 
K+ 
Mg2+ 
Cyclop. cops. 
Bosmina spp. 
Temperature 
Spec. cond. 
pH 

NH4-N 
NO3-N 
SiO3 
 

TP 
Daphnia spp. 
Calan. cops. 
Ceriodaphnia 
Bosmina spp. 
Ca2+ 
 

C3 TP 
Total alkalinity 
Na+ 
K+ 
pH 
Temperature 

NH4-N  
NO3-N 
SiO3 
 

Daphnia spp. 
Bosmina spp. 
Temperature 

I1 SiO3 
pH 
Rotifers 

Total alkalinity 
Ceriodaphnia spp. 
Calan. cops. 

NH4-N 
NO3-N 
SRP 
SiO3 
Total alkalinity 
Temperature 
pH 
Spec. cond. 

I2 Bosmina spp. Mg2+ 
Daphnia spp. 

NO3-N 
K+ 
pH 
Spec. cond. 

I3 Ceriodaphnia spp. NH4-N 
 

SRP 
Na+ 

 

Negative correlations between chlorophyll-a and NO3-N concentrations in the 

connected lakes may reflect uptake of NO3-N by phytoplankton. Although NH4-N is the 
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preferred source of N for phytoplankton, Dortch (1990) suggests that NO3-N may 

maintain phytoplankton growth rates in the absence of NH4-N. The depletion of NH4-N 

to undetectable levels during summer in the connected lakes (e.g. Figure 3.2b, page 

94) suggests that this may occur. Uptake of NO3-N by phytoplankton may have 

contributed towards a negative correlation with chlorophyll-a concentrations in the 

connected lakes (Table 4.15). NO3-N denitrification may also have reduced water-

column NO3-N concentrations during the summer (Wetzel, 1983; Bennion and Smith, 

2000). Bergin and Hamilton (2007) have argued that the reduction of NO3-N to NH4-N 

may also account for a significant loss of NO3-N from aquatic systems. In isolated 

lakes I1 and I2, NO3-N was a significantly related to phytoplankton community 

structure (Table 4.15). Uptake of NO3-N by submerged macrophytes in these lakes 

may contribute towards low N concentrations during the summer. Submerged 

macrophytes can obtain nutrients from sediments as well as the water column and so 

are effective competitors for nutrients (Van Donk and Van de Bund, 2002). Species of 

phytoplankton present in both lakes I1 and I2 had heterocysts (e.g. Aphanizomenon 

sp. and Anabaena sp.) suggesting that N-limitation may affect the phytoplankton 

community.  

 

SiO3 concentrations were negatively associated with chlorophyll-a concentration in the 

connected lakes. Rapid decreases and increases in SiO3 concentrations were 

observed in these lakes, probably because of the high biovolumes of planktonic 

diatoms in the phytoplankton of the connected lakes. High productivity of diatoms has 

been observed to be related to high uptake of Si (Bailey-Watts, 1976; Gibson et al., 

2000). In the connected lakes, Si was frequently rapidly depleted to limiting levels 

(~0.5 mg L-1, Reynolds, 2006) during spring and autumn which probably reflects the 

importance of diatoms in the phytoplankton community during those periods (see 

Chapter 3, Figure 3.5, Figure 3.13, Figure 3.21). It is likely that the uptake of Si by 

diatoms exhausted the Si available for uptake provided by the River Erewash, and 

therefore internal recycling may have been of considerable importance for 

supplementing the external supply (e.g. Parker et al., 1977; Gibson et al., 2000; 

Miretzky and Cirelli, 2004). Higher temperatures may increase the release of Si from 

sediments, suggesting that internal recycling could be greater during the spring and 

summer (Rippey, 1977, 1983).  
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Zooplankton appeared to exert more control over total phytoplankton biomass in lakes 

I1 and I2 than in the other lakes. Negative correlations between zooplankton (calanoid 

copepods, Ceriodaphnia and Daphnia spp.) and chlorophyll-a concentrations were 

found. This may be related to the abundance of submerged vegetation. The refuge 

hypothesis (Scheffer et al., 1993; Schriver et al., 1995; Stansfield et al., 1997; Perrow 

et al., 1999) suggests that submerged vegetation provides a refuge for zooplankton 

from zooplanktivorous fish, resulting in more large-bodied zooplankton which are 

normally susceptible to predation (Brooks and Dodson, 1965). The high grazing 

efficiency of larger zooplankton reduces the total abundance of phytoplankton, 

particularly of small centric diatoms and single-celled chlorophytes. This may 

contribute towards the proportional dominance of larger phytoplankton, such as 

cyanobacteria, that are grazing resistant (Bergquist et al., 1985) and may explain the 

relatively weak nature of these correlations. In the connected lakes, predation on 

zooplankton by zooplanktivorous fish is likely to be higher because of a lack of 

refuges. Therefore larger-bodied zooplankton are scarce (Brooks and Dodson, 1965), 

which reduces grazing pressure on phytoplankton and may favour the growth of 

smaller, rapidly reproducing phytoplankton species that can outcompete slower 

growing species for light and nutrients. Postive associations of zooplankton groups 

and chlorophyll-a concentrations were also found in all lakes except Lake C3 (Table 

4.15). This probably reflects simultaneous seasonal increases in phytoplankton 

biomass and zooplankton abundance. The abundance of zooplankton groups tended 

to increase in the early summer and be most abundant during summer when 

chlorophyll-a concentrations were also highest. 

 

However, CCA suggested that top-down control by zooplankton may have played a 

role in determining the phytoplankton community in the connected lakes. This may 

have been particularly strong during spring. Grazing by Daphnia spp. was probably 

the main cause of a spring clear-water phase. Samples from early summer in all of the 

connected lakes were associated with Daphnia spp. and a phytoplankton community 

that may be more easily grazed. Small centric diatoms and chlorophytes such as 

Scenedesmus, Ankyra and Monoraphidium were frequently found in the phytoplankton 

community during early summer in the connected lakes (e.g.Figure 3.14, page 114). 

These species are all susceptible to population losses by filter-feeding zooplankton 

(Agrawal, 1998; Reynolds, 2006). In eutrophic lakes, strong grazing control and the 
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creation of a clear-water period during the spring is a well known phenomenon (e.g. 

Vanni and Temte, 1990; Talling, 2003; Lampert and Sommer, 2007). The higher 

flushing rate of the connected lakes may favour the growth of small, fast reproducing 

phytoplankton (e.g. Brook and Woodward, 1956; García de Emiliani, 1997; Huszar 

and Reynolds, 1997; Paidere et al., 2007) which would reinforce the strength of top-

down control of the phytoplankton. Timms and Moss (1984) related strong grazing 

control by Daphnia and a lack of cyanobacteria to a hydrological regime which 

promoted smaller phytoplankton species. In contrast, clear-water periods during spring 

were less well defined in lakes I1 and I2, mainly because the chlorophyll-a 

concentrations did not increase during the summer as much as those in the connected 

lakes did. 

 

Some significant correlations between chlorophyll-a and the environmental variables 

are probably not directly related, but may reflect other aspects, such as seasonality. 

Major ion and chlorophyll-a concentrations were strongly correlated in the connected 

lakes (Table 4.15). For example, in lakes C2 and C3, significant positive correlation 

between K+ and chlorophyll-a reflects the low concentrations of both variables during 

the winter months (see Figure 3.10, page 120 and Figure 3.18, 120). Major ions are 

not strongy mediated by phytoplankton uptake (e.g. Krivtsov and Sigee, 2005; 

Reynolds, 2006) which suggests that the correlations observed in this analysis are 

likely to be indirectly related by seasonal variations in hydrology, such as dilution 

during the winter and evaporative concentration during summer. 

 

It is possible that the sampling technique deployed led to some errors in the estimates 

of zooplankton biomass. The data used here was obtained from tows at a single 

pelagic sampling site. In turbid lakes with little submerged vegetation, littoral 

macrophytes may be an important refuge for zooplankton (Cazzanelli et al., 2008) 

although complex interactions between fish predation, macrophyte avoidance and 

horizontal migration are likely to moderate this effect (Burks et al., 2001; 2002; 

Geraldes and Boavida, 2004). In isolated lakes I1 and I2 where submerged vegetation 

was abundant, swarms of large-bodied Daphnia were anecdotally observed amongst 

submerged macrophyte beds during summer, a behaviour observed elsewhere in the 

zooplankton (e.g. Colebrook, 1960; Jakobsen and Johnsen, 1988) and possibly 

related to predator avoidance (Walls et al., 1990). The analysis of pelagic samples 
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may therefore have underestimated total zooplankton biomass in both isolated and 

connected lakes, and therefore over-estimated the strength of bottom-up control of the 

phytoplankton.  

 

4.5 Conclusion 

The analysis presented in this chapter has demonstrated that the association of 

phytoplankton biomass and community structure with nutrients and zooplankton varies 

amongst the lakes of Attenborough Nature Reserve. Grazing by zooplankton has been 

identified as a potentially important mechanism for reducing phytoplankton biomass in 

the connected lakes during spring. The dominance of small phytoplankton species 

susceptible to grazing by zooplankton results in strong top-down control of 

phytoplankton biomass and the development of a clear-water phase. This is probably 

strengthened by the hydrological regime which favours the growth of smaller and 

disturbance-tolerant phytoplankton species.  

 

Uptake of NO3-N by phytoplankton probably occurred when NH4-N was depleted, 

which in addition to denitrification during the summer is likely to explain the strong 

negative correlations between NO3-N and chlorophyll-a concentration. N was probably 

more limiting to most non-heterocystous phytoplankton in lakes I1 and I2 than in the 

connected lakes. 

 

In isolated lakes, negative association between total phytoplankton biomass and 

zooplankton groups suggests greater top-down control of phytoplankton compared to 

the connected lakes. In the connected lakes, grazing strongly reduced phytoplankton 

biomass during the spring but not during the summer. The sampling technique used to 

measure zooplankton may underestimate their abundance, particularly in the lakes 

with abundant submerged vegetation where zooplankton appeared to be more 

abundant. 
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Chapter 5 Effects of flood events on the 
lakes of Attenborough Nature Reserve  

 

5.1 Introduction 

The water balance of a lake is governed by the relative inputs and losses. This can be 

altered by catchment scale processes and climate variability (Wetzel, 1983). 

Additionally, specific flood events can cause substantial changes in the hydrology of a 

lake (e.g. Barbiero et al., 1999). At Attenborough Nature Reserve, hydrology may play 

an important role in helping to explain the differences in chemistry and biology 

observed during 2007 (Chapter 3). Future reductions in discharge into the connected 

lakes as a result of the River Erewash diversion may also alter the chemistry and 

biology of the connected lakes. Therefore it is important to determine how hydrological 

changes may affect the lakes of Attenborough Nature Reserve.  

 

Distinct differences in lake depth and flushing rate were observed between 2005, 2006 

and 2007 in both connected and isolated lakes. Examining the differences in 

chemistry and biology observed during these hydrologically different periods allows for 

the short-term effects of flooding in the Attenborough Ponds to be evaluated. This is of 

importance to shallow lake management given the potential for changes in discharge 

to lakes, such as from increased storminess related to climate change (IPCC, 2008) 

and greater flashiness in stream discharge as a result of urbanisation (Davie, 2002).  

 

Diverting the River Erewash to flow directly into the River Trent will reduce the inflow 

from the River Erewash into the connected lakes. Hydrological modelling of the 

diversion (HR Wallingford, 2006) suggests the average annual inflow from the River 

Erewash to the connected lakes will be reduced to 6.25% of the current volume. The 

discharge of summer (1 May-1 October) storms (when discharge is in excess of 

1.5 m3 sec-1) will be reduced to 6.67% of the current volume (HR Wallingford, 2006). 

Predicting how this reduction in flow will affect the chemistry and biology is important 

in developing future successful management plans for Attenborough Nature Reserve. 
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In order to address the effect of flood events and the possible response of connected 

lakes to reductions in discharge, the specific aims of this chapter are to: 

 

1. Describe the changes in hydrological regime during the monitoring period, 

2. Assess the importance of rivers and streams flowing into Attenborough Nature 

Reserve as suppliers of nutrients; 

3. Investigate how hydrological change affects chemical and biological 

components of connected and isolated lakes; 

4. Understand how future hydrological change (i.e. imminent reduction of River 

Erewash inflow to the connected lakes, and possible future enhanced flooding 

due to climate change) may affect the structure and functioning of connected 

lakes; 

5. Recommend an optimal flushing regime for long-term recovery. 

 

5.2 Methods 

5.2.1 Connected lakes 

Hydrology 

River Erewash discharge data were obtained in order to assess the importance of 

river inflow for the water and nutrient budgets of the connected lakes. Discharge data 

were obtained from a Flowline Ultraflux ultrasonic gauging system installed and 

operated at site Eb (see Figure 2.1, page 74) by Cemex Operations U.K. Ltd. Flow 

was measured at 15 minute intervals from which data at 30 minute intervals were 

extracted. These were summed to estimate total discharge for the periods between 

sampling dates. Periods of missing data exist in the discharge record at Eb, 

associated with periods following high flows when debris blocked the flow meter. 

Since strong linear correlation exist between the mean daily discharge observed in the 

River Erewash and daily discharge in River Trent (sourced from the Environment 

Agency gauging station at Colwick, Nottinghamshire, r2 = 0.67, p ≤0.001), missing 

data were calculated daily using the regression equation: 

 

R.Erewash = (0.023 × R.Trent) + 0.20 
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Measurements of discharge from the connected lakes were made at sites Ea (a 

stream from Lake C1, discharging into the River Trent through a single flap) and MPO 

(a six-flap weir located along the north-eastern edge of Lake C3, see Figure 2.1, page 

74, for locations) at approximately four-weekly intervals, usually on the day preceding 

lake sampling. Disharge measurements prior to October 2005 were made exclusively 

by S. McGowan, and from November 2005 to March 2008 measurements were 

obtained collaboratively by S. McGowan and the author. At site Ea, discharge was 

calculated by dividing the width of the stream into thirds. In each third of the stream 

width, the surface area of the stream was calculated by multiplying the water depth by 

the width of the section. One measurement of water velocity was made at 

approximately one-third of the water depth from the surface in each third, using a 

Valeport 801 electromagnetic flow meter to measure mean flow over a 30 sec period. 

Discharge was calculated by multiplying the area of each third by the discharge, and 

then summed together to give one estimate of discharge for Ea. The mean discharge 

for the whole monitoring period was derived using all samples. At site MPO, 

measurements were made in each of the six divisions in the weir (see Figure 5.9a). 

Discharge (m3 sec-1) was calculated by multiplying the velocity of the water in the weir 

division, estimated using a surface float, by the cross-sectional area of water in the 

weir (depth × width) (Davie, 2002). Calculations from each weir division were summed 

to form one estimate of discharge for the outflow. All discharge calculations at MPO 

were used to estimate mean discharge for the monitoring period.  

 

The water retention time (WRT) of the connected lakes was calculated using 

estimated lake volume and the discharge data recorded at Ea, using interpolated data 

where required, on a daily basis. The volume of the connected lakes was based on 

depth measurements taken by S. McGowan during vegetation surveys in 2005 and 

the lake extent derived from GPS co-ordinates of littoral sites, and computed using 

Surfer 8.0 using point kriging to build a DEM at a 20 m resolution. Approximately 470 

measurements of depth were included in the model. Bathymetric maps were 

presented in Figure 2.2 (page 76).  
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Nutrient budget 

The concentrations of nutrients and major ions observed at each of the inflows and 

discharges were compared to the in-lake concentrations using the Wilcoxon signed-

rank test computed using SPSS 15.0. The Wilcoxon signed-rank test z-score statistic 

is the standardised distance between the smallest sum of ranks (either positive or 

negative) and the expected rank (defined as the sum of ranks × 0.5). Regardless of 

the direction of the difference, the z-score is always negative. Shading is used in the 

tables of results to interpret the direction of the difference and therefore determine if 

nutrient concentrations were higher in the lake or stream. Nutrient and major ion 

concentrations were also determined on River Erewash samples taken upstream of 

the Toton seweage treatment works (STW) discharge (site Ebb, Figure 2.1, page 74) 

from July 2006, in order to compare with nutrient concentrations downstream of the 

STW discharge (site Eb). 

 

A simple mass-balance nutrient budget for the connected lakes was developed in 

order to gain an insight into the dynamics of nutrient storage and release, and to 

investigate the relevance of internal processes in determining in-lake nutrient 

concentrations. Monthly loading rates to the lakes were estimated by multiplying inflow 

(site Eb) and outflow (sites Ea and MPO) discharge volumes (m3) by the measured 

concentration of nutrient (µg L-1) (e.g. Beklioglu et al., 1999). The difference between 

the estimated quantity of nutrients entering at inflows and leaving at outflows was 

assumed to represent the retention of the nutrient within the lakes. To gain a further 

insight into TP dynamics, a Vollenweider-type model was developed, using the 

equation  

TP(lake) = L/z(ρ+σ) 

 

where L was TP loading (mg m3 year-1); z, mean depth; ρ, lake flushing rate (defined 

as Q/VL, where Q is inflow volume and VL is lake volume), and σ is a coefficient for in-

lake TP loss (Brett and Benjamin, 2008). L (TP loading) was calculated by dividing the 

total input of TP (discharge × concentration) by the estimated lake volume. Mean 

depth was estimated based on measurements of depth taken during vegetation 

surveys in 2005. Since no direct measurement of σ was available, an estimate was 

made using the equation σ = √(z/Q) / tq where tq is hydraulic residence time (years) 
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and defined as VL/Q (Vollenweider 1976, in Reynolds, 2006). Chlorophyll-a estimates 

were made based on the mean annual in-lake TP concentration using the equation 

log[chl-a] = 0.91[logTP] –0.435 (Vollenwieder and Kerekes, 1980, in Reynolds, 2006). 

The relationship between nutrient loading to the connected lakes and monthly 

discharge of the River Erewash was assessed using Spearman’s rank correlation 

coefficient.  

 

5.2.2 Isolated lakes 

Water depth in lakes I1 and I2 was estimated by measuring against fixed points in 

order to assess the depth response of isolated lakes to flood events. In Lake I1 this 

was a platform built in the centre of the lake for bird nesting (see Figure Figure 3.25, 

page 133), and in Lake I2 depth measurements were made against a fixed fence post 

(see Figure 3.33, page 146). Data for Lake I1 represented the depth below a fixed 

point, so in order to facilitate comparison with Lake I2, values were multiplied by -1. 

For both lakes I1 and I2, depth measurements were converted to z-scores to allow for 

a comparison of variance. z-scores represent the number of standard deviations a 

measurement is from the mean, and were calculated by subtracting the mean from the 

original value and dividing by the standard deviation (Legendre and Legendre, 1998). 

Supplementary data of Lake I2 water depth (for the years 1995, 2000-2004, and 2007-

2008), obtained from Sandy Aitken (pers. comm.) were derived by measuring water 

depth at a fixed point on the lake shore and converted to meters above sea level (m. 

A.S.L:). No water depth measurements were made in Lake I3. 

 

5.2.3 Regional meteorology and hydrology 

Daily rainfall data (mm day-1) were obtained from a Met Office weather station situated 

on the University of Nottingham’s Sutton Bonington Campus (SK 505262), and 

summed to provide monthly totals. Flow data for the River Trent was obtained from 

the Colwick gauging station, located approximately 15 km east (downstream) of the 

Attenborough Ponds (SK 620399) and operated by the Environment Agency. The 

record extended from 1958 to 2007. Yearly mean discharges were calculated based 

on calendar years. 
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5.2.4 Isotopes 

Water for isotope analysis was collected from all connected lakes and isolated lakes I1 

and I2 in order to compare the relative importance of evaporation and river inflow for 

the lakes of Attenborough Nature Reserve. Samples were collected on the same day 

as water for chemical and biological analysis in airtight polyethylene bottles by either 

S. McGowan or the author, and were kept refrigerated at 4°C. Unfiltered samples of 

water were equilibrated with CO2, using an IsoPrep 18 device for oxygen isotope 

analysis and mass spectrometry, performed on a SIRA (both VG IsoGas, 

Middlewhich, U.K.). Analysis was performed at the NERC Isotope Geosciences 

Laboratory, in Keyworth, Nottinghamshire. Isotopic ratios (18O/16O) and δ18O (‰, parts 

per mille) are defined in relation to the international standard Vienna Standard Mean 

Ocean Water (VSMOW) by comparison with laboratory standards calibrated using 

NBS standards. Analytical precision is typically ±0.05‰ for δ18O (Melanie Leng and 

Matthew Jones, pers. comm.). The isotope datasets presented in this thesis were 

provided by Melanie Leng and Matthew Jones.  

 

5.2.5 Chemistry and biology 

The methods by which water chemistry and biological data used in this chapter were 

obtained are described in detail in Chapter 2. The data presented in section 5.6 

presents the data discussed in Chapter 3 on a year-by-year basis to draw 

comparisons between dry years and flood years. In order to assess changes in the 

phytoplankton and zooplankton community as a result of changes in hydrological 

regime, the CA scores derived in Chapter 3 (section 3.8, page 175) were used and 

plotted as a timeseries. The methods used for deriving CA scores are given on page 

92. One CA was used to derive scores for all phytoplankton samples and one for all 

zooplankton samples. 
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5.3 Results - Hydrology 

5.3.1 Rainfall 

Daily rainfall recorded at Sutton Bonington in Nottinghamshire is shown in Figure 5.1. 

During 2005, rainfall was greatest during the autumn which was followed by a dry 

winter with few rainfall events. February and late July 2006 was a dry period, 

particularly during June and July when rainfall did not exceed 3 mm day-1. During the 

autumn and winter of 2006, more rainfall events of a smaller magnitude occurred than 

during the same period in 2005. March and April 2007 were a relatively dry period. 

However, throughout the summer of 2007 rainfall events became more prolonged than 

summer 2005 and 2006, particularly from May to July. Despite a reduction in rainfall 

intensity during the autumn of 2007, several high intensity and prolonged rainfall 

events were recorded between late November 2007 and February 2008. Mean daily 

rainfall during the monitoring period was 1.47 (±0.18) mm in 2005, 1.74 (±0.17) mm in 

2006 and 2.08 (±0.22) mm during 2007. The four highest monthly total rainfalls were 

recorded during 2007 (Figure 5.2). 
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Figure 5.1 Daily rainfall recorded at Sutton Bonington, Nottinghamshire, March 

2005 to March 2008.  
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Figure 5.2 Total monthly rainfall recorded at Sutton Bonington, 
Nottinghamshire, March 2005 to March 2008. 
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5.3.2 River discharge 

River Trent (long-term context) 

Data for the River Trent suggest that discharge during 2005 and 2006 was low 

compared to several previous years (Figure 5.3a). The highest daily discharges 

recorded in the River Trent during the monitoring period generally occurred during 

October - January each year (Figure 5.3b). During winter 2006, discharge remained 

high until May 2007. Discharge in the River Trent during the summer of 2007 was 

considerably higher than during 2005 and 2006. The greatest discharge recorded 

during the monitoring period occurred during January 2008. The mean annual (March 

- March) discharges, calculated from daily values, were 62.1 (±2.1) and 70.1 (±2.4) m3 

sec-1 during 2005 and 2006 respectively, and were the 7th and 13th lowest mean 

discharges recorded between 1959 and 2006 (Figure 5.3c). In contrast, the mean 

discharge between March 2007 to March 2008 was the 4th highest in the record (104.0 

±4.9 m3 sec-1), reflecting the high precipitation during summer and winter 2007 (Figure 

5.2). 

 

River Erewash 

Discharge from the River Erewash at Eb was greater during 2007 than 2005 or 2006. 

During the monitoring period, River Erewash discharge ranged between <1 and 35 m3 

sec-1 (Figure 5.4). Discharge in the River Erewash rarely exceeded 10 m3 sec-1 from 

March 2005 until January 2007 and was characterised by increases in discharge 

between October 2005 and February 2006. Other than a brief increase in discharge 

during May 2006, discharges during summer 2006 were generally lower than 2005. 

Discharge during January - March 2007 was higher than in 2006. This was followed by 

substantially greater discharges during June, July and August 2007 than the same 

period in previous years corresponding to the heavy precipitation observed during 

summer 2007 (Figure 5.2). Discharge was low during the autumn and winter of 2007, 

although discharge increased during January and February 2006.  
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Figure 5.3 Discharge data for the River Trent obtained from the Colwick gauging station operated by the Environment Agency a) Daily discharge 
data (m3 sec-1), October 1958 to March 2008. b) Daily discharge data March 2005 to December 2006. c) Annual mean discharge data (+1 S.E.) 
highlighting 2005, 2006 and 2007.
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Figure 5.4 Discharge data for the River Erewash (gauged at site Eb, see Figure 
2.1, page 74) at 30 min intervals, March 2005 to March 2008., courtesy of 
Cemex U.K. Operations Ltd. Shaded panels represent significant periods 
of missing data from Eb gauge, are mean daily discharges derived from 
interpolated River Trent daily discharge data.  

5.3.3 Lake outflows 

Ea (Lake C1 outflow to River Trent in the south of Attenborough Nature 

Reserve) 

Water depth at Ea (see Figure 2.1, page 74) was highest during 2007 compared to 

2005 and 2006. Water depth, measured approximately every four weeks, ranged 

between 0.56 and 1.80 m during the monitoring period (Figure 5.5). The mean was 

1.00 (±0.05) m. Water depth was generally between 0.5 and 1.0 m during 2005, and 

was highest during August and November. Water depth decreased during 2006 and 

then rapidly increase between September 2006 and February 2007. Water depth 

remained above 0.8 m during 2007, unlike previous years, and exceeded 1.5 m in 

February and July. The greatest water depths during the monitoring period occurred in 

January and March 2008. 

 

The mean discharge recorded at Ea during the monitoring period, calculated on a 

four-weekly basis, was 1.62 (±0.12) m3 sec-1 and ranged between 0.02 and 3.11 m3 

sec-1 (Figure 5.5). Discharge at Ea was observed throughout 2005 and 2006, and was 

generally lowest during the summer of each year. During 2007, stagnation of 

discharge was observed during February and again during winter 2007 and early 

2008, and the highest discharge occurred during July.  
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Figure 5.5 Water depth and estimated discharge at Ea, March 2005 to March 
2008. The dashed line indicates an inferred threshold when discharge no 
longer increases with water depth. 

Water depth and discharge were positively correlated (rs = 0.483, p = 0.004) below a 

threshold of 1.6 m (Figure 5.6) at the Ea outflow. Heavy rainfall events resulted in 

increases in water depth in the outflowing stream and in the River Trent. When depths 

at Ea exceeded 1.6m, the positive linear correlation between water depth and 

discharge broke down because of stagnation of the outflow stream (Figure 5.7). 

Stagnation was associated with increases in the depth of the River Trent to above the 

height of the Ea discharge. Discharge at Ea was reduced to less than 0.5 m3 sec-1 

when the water depth at Ea was greater than 1.6m.  
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Figure 5.6 Water depth and estimated discharge at Ea, March 2005 to March 
2008. The dotted line indicates the 1.6m depth threshold (see Figure 5.5). 
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Figure 5.7 Outflow at Ea showing stagnation of flow during wet periods. The 
River Trent is on the left of the photograph, taken in January 2008. 

MPO (Lake C3 outflow to River Trent, along north-eastern boundary of 

Attenborough Nature Reserve) 

Water depth at MPO ranged between 0 and 0.50 m (Figure 5.8). Mean water depth 

during the monitoring period, based on measurements made on approximately four-

weekly intervals, was 0.06 (±0.02) m. Water did not exit at the MPO outflow during 

2005 until December when the water depth reached 0.05 m. Water depth increased 

slightly during spring 2006, and for the majority of summer 2006 no water exited at 

MPO. Throughout 2007, water depth was greater than in previous years. Water depth 

was briefly high during February 2007 (0.5 m). Water depth increased from 0.02 to 

0.10 m during early summer and increased sharply during July 2007. Water depth was 

low throughout autumn and winter 2007, but increased and remained over 0.2 m 

between January and March 2008.  

 

The mean discharge at MPO (Figure 2.1, page 74) was 2.67 (±1.07) m3 sec-1 during 

the monitoring period and ranged between 0 and 26.28 m3 sec-1. Discharge at MPO 

did not occur substantially during 2005 (Figure 5.8). Low discharges occurred during 

October 2005 to May 2006 and did not exceed 0.5 m3 sec-1 during that period. No 

discharge occurred during the summer of 2006 until September 2006 after which 

discharge increased to 7.5 m3 sec-1 in February 2007. Comparatively high discharges 

were recorded during the spring of 2007, particularly in May (9.0 m3 sec-1). Three 

notable events of high discharge were observed during the remainder of the 

monitoring period. Discharge exceeded 20 m3 sec-1 in July 2007, January 2008 and 

March 2008.  
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Figure 5.8 Estimated discharge and depth measurements at MPO, March 2005 to 
March 2008.  

 

a) 

 
 

b) 

 

Figure 5.9 Outflow from connected lakes to the River Trent from the six-flap 
weir at MPO during a, wet period (January 2008), and b, dry period 
(August 2006). The River Trent is on the left of the photographs.  
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5.3.4 Connected lake hydrology 

Flow patterns through connected lakes 

Varying the discharge into the Erewash-connected lake chain altered the flow route of 

water. Figure 5.10 shows the relative discharges at Ea and MPO outflows during the 

monitoring period, and schematic maps of flow routes in each year are shown in 

Figure 5.11. During 2005, all outflows from connected lakes left through Ea until 

December, when 18% was observed flowing through MPO. Until June 2006, no more 

than 20% of outflow occurred through MPO, and by July 2006 all outflow passed 

through Ea. During 2007, MPO accounted for a higher proportion of outflow than the 

previous two years. From November 2006 to May 2007, over 30% of outflow left 

through MPO, reaching a maximum of 99% in February 2007. Ea became the 

dominant outflow during the early summer of 2007, although in July MPO again 

became the dominant outflow. Outflow was principally through Ea throughout the 

remainder of 2007, and then MPO during January to March 2008.  
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Figure 5.10 Percentage of total discharges observed at outflow sites MPO and 
Ea, March 2005 - March 2008.  
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Figure 5.11 Schematic maps to show the relative flows of water into and out of connected lakes of Attenborough Nature Reserve during the years 
of the monitoring period. Thicker lines denote greater importance of flow during each year.  

 



Chapter 5: Effects of flooding 

239 

Water Retention Time 

Daily water retention time for connected lakes ranged between 1.0 and 25.4 days and 

the mean was 13.8 (±0.2) days during the monitoring period (Figure 5.12). The WRTs 

observed during 2007 were frequently lower compared to 2005 and 2006. During both 

2005 and 2006, water retention times increased during the spring and tended to be 

greatest during the summer. During the winters of 2005 and 2006, WRTs were 

generally between 7 and 15 days except for occasional decreases to ~3 days. In 

2007, WRTs were lower during February than 2005 or 2006 and during in June and 

July 2007, WRTs were exceptionally low, approaching 2 days between mid-June and 

the end of July. Prolonged periods of low WRT were also recorded during the winter 

2007 and January 2008. 
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Figure 5.12 Estimated daily water retention time for connected lakes, March 
2005 - March 2008. Shaded panels correspond to periods when daily 
discharge at Eb was estimated by regression using River Trent 
discharge (see section 5.2.1 for details). 

 

Isotopic variability 

Stable oxygen isotope ratios clearly distinguished between connected and isolated 

lakes throughout the monitoring period (Figure 5.13 and Figure 5.14). Because the 

lighter oxygen isotope 16O is evaporated preferentially over the heavier 18O, oxygen 

isotopes are increasing light with increasing evaporation. Lakes with longer residence 

times are therefore isotopically heavier (less depleted in 18O) (Darling et al., 2005). 

Isolated lakes plotted further from the Global Meteoric Water Line (GMWL) than the 

connected lakes, suggesting an increased influence of evaporation (Figure 5.13). 

Strong trends over time were also visible in the isotope dataset (Figure 5.14). For the 

majority of the monitoring period, connected lakes had δ18O that varied between 5 and 

7‰. Connected lakes showed seasonal variations in δ18O from March 2005 to August 
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2006, with higher 18O values during summer then decreases during the autumn and 

winter. Seasonality was not as strong during 2007 as in previous years. 18O values in 

connected lakes increased slightly throughout 2007 to reach a maximum during 

December 2007. A strong trend towards increasingly depleted 18O conditions occurred 

between December and February 2008. This depleted signal was maintained 

throughout 2008 (Matthew Jones, pers. comm.).  
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Figure 5.13 δ18O and δ2H values from connected lakes and isolated lakes I1 and 
I2, May 2005 – January 2008, shown against the Global Meteoric Water 
Line (GMWL), defined as δ2H = 8 δ18O + 10 (Craig, 1961, in Darling et al., 
2005). 
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Figure 5.14 δ18O values in connected lakes and isolated lakes I1 and I2, May 
2005 - January 2008. 
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In isolated lakes I1 and I2, δ18O values were higher than in connected lakes, reflecting 

increased concentration by evaporation compared to connected lakes. However, the 

seasonal cyclicity in δ 18O values was still visibile, tracking the δ 18O signal in the 

connected lakes. During 2005 and 2006 δ 18O values increased during spring and 

reached maxima of -0.03‰ during late summer 2006. δ18O values decreased between 

August 2006 and March 2007. δ18O values decreased abruptly between July and 

August 2007. Increases in δ18O values were observed in both isolated lakes during the 

late summer and autumn 2007, which was followed by declines between November 

2007 and January 2008. Isotope data were not available for Lake I3.  

 

5.3.5 Isolated lake hydrology 

In both isolated lakes I1 and I2, water depth was generally greater during 2007 than 

either 2005 or 2006 (Figure 5.15a and b). Changes in water depth were proportionally 

and absolutely greater in Lake I2 than in Lake I1 and increases in water depth tended 

to be slightly lagged in Lake I2 compared to Lake I1. In both lakes, water depth was 

lowest during summer 2005, but during 2006 the lowest water depth did not occur until 

October. From October 2006 until April 2007, water depth rose in both lakes. During 

2007, water depth was greatest during spring, and then declined during the summer. 

Water depth during autumn 2007 was higher than in 2005 or 2006, and rose between 

November 2006 and February 2007 in both lakes. During winter 2005 and spring 

2006, increases in water depth were greater in Lake I2 than in Lake I1. Standardised 

water depths in Lake I1 and Lake I2 were significantly positively correlated (Figure 

5.16, rs = 0.680, p ≤0.001).  
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Figure 5.15 Water levels in isolated lakes I1 and I2, June 2005 - March 2008. a) 
For Lake I1, ‘level’ refers to measure of water surface below a fixed 
point, and for Lake I2, ‘level’ is the water depth at a fixed point. Note the 
direction of increases in water depth. b)Water depths expressed as the 
number of standard deviations (S.D.) from the mean, represented by the 
dashed line. The mean water level (± S.E.) and S.D. in square 
parentheses are: Lake I1:  -19.32 (± 1.95) [11.56] cm; Lake I2: 24.60 (± 
3.85) [19.62] cm. 
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Figure 5.16 Correlation between standardised water depths in lakes I1 and I2, 

June 2005 - March 2008.  
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Historical water level data gathered in Lake I2 by S. Aitken (Figure 5.17) suggest a 

clear response to precipitation. Water level changes observed during the summer of 

2007 were anomalous compared to other recorded years since 1995. Water depths 

have historically been greatest during the late winter and shallowest during the late 

summer and autumn. An increase of 107 cm in water depth occurred within only five 

days during June 2007, causing the highest recorded depth. Given the absence of 

substantial surface flows, groundwater and precipitation directly into the lake are likely 

to have accounted for this. Water depths for summer 2007 were at least 100 cm 

greater than comparable periods in other years, although the water depths during 

early 2008 were not unusual compared to previous years.  
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Figure 5.17 Water depths (m A.S.L.) observed in Lake I2 during previous years. 
Data for 2007 and 2008 are highlighted with bold lines. Measurements 
during 2007 were taken only during the wet period, and data for 2008 
were available until April only. Data provided by Sandy Aitken (pers. 
comm.).  
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5.3.6 Hydrological summary 

The location of the Attenborough Ponds at the confluence of the Rivers Trent and 

Erewash caused complex hydrological responses to the variations in rainfall during the 

monitoring period. These effects extended beyond connected lakes alone, with 

substantial changes in water level being observed in isolated lakes I1 and I2. The 

analysis of hydrology has identified a trend towards increasingly lotic conditions in 

connected lakes during 2007. Rainfall during 2005 and 2006 was comparable, whilst 

during 2007 precipitation was anomalously high during summer and early 2008. In the 

connected lakes, the lower δ18O values during the summer of 2007 and sharp fall 

during November 2007 to January 2008 indicate increasingly wet conditions.  

 

The hydrology of the connected lakes was strongly affected by the discharge of water 

to the River Trent. Three distinct regimes occurred during the monitoring period. 

Firstly, when only Ea is flowing, lakes C2 and C3 are effectively isolated and Lake C1 

remains comparatively connected (Figure 5.11). These conditions were observed 

during much of 2005. The second regime occurred throughout 2006 and represents 

an intermediate level of connectivity. Flows were observed at MPO only during the 

winter and spring months, while during the summer, lakes C2 and C3 were effectively 

isolated. The third and most lotic regime occurs when the majority of flow exits the 

connected lakes via MPO. This state was observed largely during 2007, particularly 

during February to March 2007, July 2007 and January to March 2008. WRT during 

these periods was very short, frequently <3 days. 

 

Despite being isolated from the River Erewash, changes in water depth in isolated 

lakes were consistent with those observed in connected lakes. Because of the 

absence of substantial surface inflows, groundwater and precipitation directly into the 

lakes likely to have been principally responsible for changes in water depth. Water 

depths were shallowest during the summer of 2005, greater during 2006 and 

anomalously high during 2007. δ 18O values supported the trend towards a wetter 

system during 2007. In connected lakes a sharp increase in water depth was 

observed after October 2006 in both lake I1 and I2. Water depths were rarely less 

than the long term average after January 2007. Changes in standardised and absolute 

water depth in Lake I2 were greater than in Lake I1, particularly during spring 2007. 
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Lake I2 water level changes were slightly lagged compared to those of Lake I1. Data 

for connected lakes suggests that groundwater and surface runoff are sufficient to 

induce substantial increases in water depth during ‘wet’ periods. However, during the 

highest water event in January 2008, overtopping of water was observed from C3 to I1 

(Figure 5.18), which was not observed at any other time during the monitoring period. 

 

 

Footpath

Lake C2Lake I1

 

Figure 5.18 Water overtopping between lakes C2 and I1, January 2008. Lake C2 
is on the right of the photograph, which was taken facing approximately 
north-east along the dividing embankment. The depth of the water on 
the embankment was approximately 30-40 cm.  
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5.4 Results - Inflow water chemistry 

5.4.1  River Erewash and connected lakes outflow chemistry 

Nutrients 

Nutrient concentrations for Ebb (Figure 2.1, Figure 5.19, Table 5.1) were similar to Eb 

during the monitoring period. Significantly higher concentrations were only observed at 

Eb compared to Ebb between July 2006 and March 2008 for NH4-N and NO3-N 

concentration (Wilcoxon signed rank, z = -3.80 and -3.07 respectively, p ≤0.002) and 

SiO3 (z = -2.98, p = 0.002). The concentrations of inflowing nutrients measured at Eb 

were generally higher than in each of the connected lakes (Figure 5.19). TP 

concentrations at Eb were significantly higher than Lake C2 concentrations during the 

monitoring period (Table 5.2). Figure 5.19a shows that in-lake TP concentrations were 

greater than inflow concentrations during summer 2005 and 2006, but not 2007. TP 

concentrations were negatively correlated with River Erewash mean monthly 

discharge (rs = -0.472, p = 0.003). SRP concentrations were generally greater during 

summer and autumn throughout the monitoring period at Eb than in the connected 

lakes (Figure 5.19b), although for the whole monitoring period were significantly higher 

at Eb. SRP concentrations were negatively correlated with Eb discharge (rs = -0.572, 

p = <0.001). NH4-N concentrations in inflowing water were highly variable (Figure 

5.19c) and were significantly higher than in all connected lakes during the monitoring 

period (Table 5.2), particularly during the summers of 2005 and 2006. NH4-N 

concentrations were not correlated with discharge at Eb. NO3-N concentrations 

exceeded 15 mg L-1 during the winter of each year (Figure 5.19d) and were 

consistently and significantly higher than the in-lake concentrations (Table 5.2). NO3-N 

concentrations at Eb and River Erewash discharge were negatively correlated (rs = -

0.477, p = 0.003). SiO3 concentrations at Eb were positively correlated with River 

Erewash discharge (rs = 0.608, p = 0.608) and were significantly greater than in-lake 

concentrations throughout the monitoring period (Table 5.2). SiO3 concentrations were 

generally higher during the winter and lowest in the spring (Figure 5.19e).  
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Figure 5.19 Chemical variables measured at inflows Eb (April 2005 - March 
2008), and Ebb (July 2007 - March 2008) and outflows Ea and MPO 
(March 2005 - March 2008) to and from connected lakes: a) TP (µg L-1); b) 
SRP (µg L-1); c) NH4-N (mg L-1); d)NO3-N (mg L-1); e)SiO3 (mg L-1). In-lake 
concentrations are shown in grey symbols and lines. 
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Table 5.1 Summary statistics of nutrient concentrations observed at inflow site 
Ebb, July 2006 - March 2008. 

Statistic 
Variable Mean ±1 

S.E. Min Max 

TP (µg L-1) 533 49 223 1027 
SRP (µg L-1) 432 42 170 863 
NH4-N (mg L-1) 0.17 0.05 0 0.85 
NO3-N (mg L-1) 10.1 0.6 5.6 15.9 
SiO3 (mg L-1) 4.3 0.3 0.9 6.1 

 

Some significant differences between in-lake nutrient concentrations and outflow 

concentrations were found (Figure 5.19, Table 5.2). Outflow concentration of TP and 

SRP were both lower than the in-lake concentrations, particularly at MPO. NH4-N 

concentrations were significantly higher at both outflows than in-lake concentrations, 

although NO3-N concentrations were significantly higher at Ea, but lower at MPO. In-

lake SiO3 concentrations were higher in the connected lakes than at the Ea outflow. 

 

Table 5.2 Chemistry variables measured at inflow Eb and outflows Ea and MPO 
during the monitoring period (April 2005 - March 2008). z-scores for the 
Wilcoxon signed-rank test are given for the difference between each 
connected lake and each outflow for the duration of the monitoring 
period. Shaded z-scores indicate higher concentrations in the lake. Only 
significant values are given (*, p ≤0.05, **, p ≤0.001). 

Statistic Wilcoxon Signed Rank 
Test (z) Variable 

Mean ±1 
S.E. Min Max C1 C2 C3 

     Eb  
TP (µg L-1) 593 35 183 1030 - -2.07** -
SRP (µg L-1) 429 28 68 841 -2.00* -2.94** -2.80**
NH4-N (mg L-1) 0.29 0.05 0.02 0.79 -3.14** -2.53*  -2.34* 
NO3-N (mg L-1) 11.6 0.7 2.1 20.0 -4.75** -4.93** -5.08**
SiO3 (mg L-1) 4.6 0.2 1.7 6.3 -4.79** -4.94** -5.11**
     Ea  
TP (µg L-1) 522 29 196 1100 -2.37** - -
SRP (µg L-1) 367 20 163 689 - -2.28* -
NH4-N (mg L-1) 0.34 0.04 0.02 1.00 -3.55** -3.63** -3.03**
NO3-N (mg L-1) 11.6 0.7 2.1 20.0 -4.20** -4.84** -5.00**
SiO3 (mg L-1) 3.8 0.3 0.4 6.2 -2.67* -2.88** -3.44**
     MPO        
TP (µg L-1) 490 34 172 1139 -3.89** -2.15* -3.89**
SRP (µg L-1) 320 22 11 610 -3.10* -2.20* -
NH4-N (mg L-1) 0.15 0.03 0.00 0.48 - -2.58* -3.06**
NO3-N (mg L-1) 8.2 0.4 2.6 14.0 5.11** -4.26** -2.73**
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Major ions and alkalinity 

Major ion concentrations were similar between inflow sites Ebb and Eb (Table 5.3, 

Figure 5.20). However, Wilcoxon’s signed rank test revealed a marginally significantly 

higher K+ concentration at Eb compared to Ebb (z = -2.05, p = 0.04). Major ion 

concentrations at Eb were generally higher than those observed in the connected 

lakes (Table 5.4). The concentrations of major ions at Ea tended to be higher than in-

lake concentrations, although outflow concentrations at MPO were generally higher 

than the in-lake concentrations in lakes C1 and C2.  

 

Table 5.3 Statistics of major ion concentrations and total alkalinity (Tot. alk.) 
observed at inflow site Ebb, July 2006 - March 2008. 

Statistic 
Variable Mean ±1 

S.E. Min Max 

Mg2+ (meq L-1) 1.47 0.12 0.55 2.31 
Ca2+ (meq L-1) 1.96 0.15 0.91 3.15 
Na+ (meq L-1) 3.37 0.29 1.22 5.88 
K+ (meq L-1) 0.22 0.02 0.09 0.36 
Cl- (meq L-1) 2.69 0.21 0.80 4.18 
Tot. alk. (meq L-1) 3.74 0.15 2.60 4.90 
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Table 5.4 Major ions and alkalinity measured at inflow Eb and outflows Ea and 
MPO during the monitoring period (April 2005 - March 2008). z-scores for 
the Wilcoxon signed-rank test are given for the difference between each 
connected lake and each outflow for the duration of the monitoring 
period. Shaded z-scores indicate higher concentrations in the lake. Only 
significant values are given (*, p ≤0.05, **, p ≤0.001). Tot. alk, total 
alkalinity. 

Statistic Wilcoxon Signed Rank 
Test (z) Variable 

Mean ±1 
S.E. Min Max C1 C2 C3 

   Eb  
Mg2+ (meq L-1) 1.45 0.07 0.23 2.62 - - -2.72**
Ca2+ (meq L-1) 2.23 0.13 0.94 4.36 -2.60* -2.34*  -3.29**
Na+ (meq L-1) 3.34 0.18 0.63 4.91 - -2.71** -3.11**
K+ (meq L-1) 0.26 0.01 0.10 0.34 -2.01* -2.34* -3.15**
Cl- (meq L-1) 3.01 0.15 0.78 5.44 - - -
Tot. alk. (meq L-1) 3.56 0.09 2.40 4.65 - -2.36* -2.43* 
   Ea  
Mg2+ (meq L-1) 1.45 0.07 0.41 2.42 - - -2.52* 
Ca2+ (meq L-1) 2.15 0.11 0.91 3.38 - - -3.07**
Na+ (meq L-1) 3.34 0.18 0.63 4.91 - - -1.97* 
K+ (meq L-1) 0.24 0.01 0.06 0.42 - - -2.51**
Cl- (meq L-1) 2.79 0.20 0.04 6.62 - - -
Tot. alk. (meq L-1) 3.48 0.09 2.10 5.00 - - -
   MPO  
Mg2+ (meq L-1) 1.36 0.06 0.67 2.23 -3.64** -3.79** -2.11* 
Ca2+ (meq L-1) 2.02 0.10 3.35 0.70 -2.64** -3.39** -
Na+ (meq L-1) 3.00 0.18 1.03 5.24 -3.55** -2.77** -
K+ (meq L-1) 0.22 0.01 0.12 0.37 -3.05** -2.29*  -
Cl- (meq L-1) 2.82 0.20 0.95 5.78 - - -
Tot. alk. (meq L-1) 3.30 0.10 1.90 4.30 -2.03* - -
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Figure 5.20 Major ions and total alkalinity measured at inflows Eb (April 2005 - 
March 2008), and Ebb (July 2007 - March 2008) and outflows Ea and MPO 
(March 2005 - March 2008) to and from connected lakes: a, Mg2+ (meq 
L-1); b, Ca2+ (meq L-1); c, Na+ (meq L-1), d, K+ (meq L-1); e, Cl-  
(meq L-1) and f, total alkalinity (meq L-1). In-lake concentrations are 
shown in grey symbols and lines. 
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5.4.2 Lake I3 inflow (BPI) chemistry 

All nutrient concentrations, except NH4-N, were significantly higher in the inflowing 

water at site BPI (Figure 2.1, page 74) compared with in Lake I3 (Table 5.5). Little 

seasonality was observed in the concentrations of nutrients measured at BPI (Figure 

5.21). No distinct interannual changes in nutrient concentrations were evident except 

for NH4-N concentrations, which were lower throughout 2007 than in 2005 and 2006. 

Interannual differences and seasonal patterns in the concentrations of major ions and 

nutrients were not found, although temporal trends in Ca2+, Na+, and K+ were similar 

during the monitoring period. The concentrations of most major ions at BPI briefly 

increased during the winter of 2005. Smaller increases in in-lake concentrations were 

observed at the same time. 

 

Table 5.5 Nutrients, major ions and alkalinity measured at inflow BPI during the 
monitoring period (June 2005 - March 2008). z-scores for the Wilcoxon 
signed-rank test are given for the difference between BPI and Lake I3 for 
the duration of the monitoring period. All differences indicate that 
concentrations were higher at inflow BPI than in Lake I3. Only significant 
values are given (**, p ≤0.001). Tot. alk, total alkalinity. 

Statistic 
Variable Mean ±1 

S.E. Min Max 

Wilcoxon 
Signed rank 

test (z) 
TP (µg L-1) 552 36 200 916 -4.90** 
SRP (µg L-1) 475 31 210 790 -5.09** 
NH4-N (mg L-1) 0.09 0.03 0.00 0.70 - 
NO3-N (mg L-1) 5.3 0.3 0.1 7.3 -4.94** 
SiO3 (mg L-1) 4.1 0.1 2.5 6.5 -5.09** 
Mg2+ (meq L-1) 1.69 0.10 0.62 3.49 -3.78** 
Ca2+ (meq L-1) 2.30 0.13 0.34 4.03 -4.10** 
Na+ (meq L-1) 1.55 0.12 0.15 4.54 - 
K+ (meq L-1) 0.88 0.01 0.03 0.18 - 
Cl- (meq L-1) 1.86 0.22 0.16 6.76 - 
Tot. alk. (meq L-1) 4.28 0.16 1.00 5.35 -4.32** 
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Figure 5.21 Chemical variables measured at BPI (June 2005 - March 2008) and in 
Lake I3 (March 2005–March 2008): a) TP (µg L-1); b) SRP (µg L-1); c) NH4-N 
(mg L-1); d) NO3-N (mg L-1); e) SiO3 (mg L-1); f) Mg2+ (meq L-1); g) Ca2+ 
(meq L-1); h) Na+ (meq L-1); i) K+ (meq L-1); j) Cl- (meq L-1); k) total 
alkalinity (meq L-1). In-lake samples from Lake I3 are shown in grey. 
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5.5  Results - Nutrient budget for connected lakes 

5.5.1 Mass balance 

An estimated 22.8 t of TP entered the connected lakes between March 2005 and 

February 2006. For equivalent periods during 2006 and 2007, 29.5 and 28.2 t of TP 

entered the lakes. Estimated SRP loading in the same periods was 20.6, 24.0 and 

24.3 t. More TP was retained in the connected lakes during 2006 (6.1 t) than 2005 (4.8 

t loss, Figure 5.22a). Similarly, SRP was lost during 2005 (3.4 t) and retained during 

2006 (3.4 t). No clear seasonality in retention and loss of TP or SRP was observed. 

High estimates of discharge from the lakes during 2007 show that more TP and SRP 

was lost than entered the lakes. 

 

NH4-N loading varied between years. 9.7 t flowed into the connected lakes during 

2005, although in 2006 and 2007 this rose to 27.2 and 24.5 t respectively. NH4-N was 

lost from the connected lakes during the 2005 (4.4 t) and 1.7 t was retained during 

2006 (Figure 5.22). High estimates of loss during 2007 were associated with high 

discharge from the connected lakes. Large quantities of NH4-N were also released 

from the connected lakes during January and March 2008. 

 

NO3-N inputs during 2005, 2006 and 2007 were 549, 701 and 760 t (1st March to 28th 

February). Inputs of NO3-N to the connected lakes were substantially higher than the 

outflows during 2005 and 2006, suggesting that large quantities of NO3-N were 

retained within the lakes (Figure 5.22). NO3-N was only released from the lakes in 

substantial quantities during April 2005, February and March 2006 and February 2007. 

During 2007, large quantities of NO3-N was lost, and the lakes acted as a NO3-N sink 

during August, September and December 2007. Large losses of NO3-N occurred 

during January and March 2008 although during February 2008 the connected lakes 

appeared to act as a sink of NO3-N.  

 

SiO3 inputs varied among the years of the monitoring period. Between April 2005 and 

March 2006 213 t flowed into the connected lakes. During 2006 and 2007, estimated 

inputs of SiO3 were 342 and 320 t. The retention and release of SiO3 varied 

throughout the monitoring period (Figure 5.22e). Greater quantities of SiO3 appear to 
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have been retained within the connected lakes during 2006 than 2005. For most of 

2006, connected lakes retained SiO3. Retention of SiO3 was strongest during April 

2006, and then decreased throughout the summer. Retention of SiO3 occurred during 

the winters of 2005 and 2006. Large quantities of SiO3 were estimated to have been 

lost from the connected lakes during 2007. SiO3 losses were large between January 

and March 2008, reflecting the high discharge at the outflow site.  
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Figure 5.22 Retention (defined as input - loss) of nutrients within connected 
lakes, April 2005 to March 2008: a, TP; b, SRP; c, NH4-N; d, NO3-N; e, 
SiO3, all calculated as tonnes (t) on a monthly basis. Negative values 
indicate loss of nutrient.  
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5.5.2 Vollenweider modelling 

The Vollenweider model used to predict in-lake TP concentrations showed reasonable 

agreement with the observed data (rs = 0.50, p = 0.001, Figure 5.23) suggesting that 

temporal changes were accurately modelled. However, predicted mean annual TP 

concentrations were less than the observed values for each year of the monitoring 

period (Figure 5.24). The model underestimated summer in-lake TP concentrations 

during 2005 and 2006. Observed concentrations were over 350 µg L-1 higher than the 

predicted concentration between July and October. Similar discrepancies were not so 

evident during 2007. During the winter and spring of all years, the model was more 

accurate and predicted TP concentrations were frequently within 100 µg L-1 of the 

measured value. On average, estimates were 37% below the observed TP 

concentration. The predicted mean annual TP concentrations were then used to 

model chlorophyll-a concentrations. Mean observed annual chlorophyll-a 

concentrations were always lower than the modelled value (Figure 5.24b). The 

difference between modelled and observed mean annual chlorophyll-a concentrations 

was greatest during 2007 (32 µg L-1). 
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Figure 5.23 Observed and modelled in-lake TP concentrations for April 2005 to 
March 2008. 
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Figure 5.24 Comparison of mean annual in-lake TP and chlorophyll-a 
concentrations with modelled estimates. Chlorophyll-a estimates are 
based on the mean annual in-lake TP concentration. 

 

Since the Vollenweider model predicted the measured TP concentrations with 

reasonable accuracy, parameters of discharge and nutrient loading were altered to 

investigate the possible response of the connected lakes to changes in discharge and 

reductions in nutrient loading. The annual mean TP concentrations predicted by the 

model were then used to estimate annual mean chlorophyll-a concentrations. These 

insights are not intended to be accurate predictions of future scenarios, but to 

investigate the sensitivity of in-lake TP and chlorophyll-a concentrations to 

hydrological and nutrient loading changes.  

 

In order to do this, scenarios of reductions in inflow and reductions in nutrient loading 

were created. Discharge scenarios were based on reductions of River Erewash 

monthly inflow, measured at site Ea, to 50%, 75% and 95% of the discharge observed 

during the monitoring period. These were chosen to investigate how sensitive in-lake 

TP concentrations were to variations in discharge. These scenarios were run using the 

observed nutrient concentrations measured at Ea during the monitoring period. The 



Chapter 5: Effects of flooding 

258 

same model was then run with altered concentrations of TP in the inflowing water in 

order to explore how nutrient loading may affect the in-lake TP concentrations. The 

scenarios of nutrient loading assumed that the discharge of the River Erewash would 

not change from the values observed during the monitoring period. Nutrient reduction 

scenarios (10, 25 and 50% reduction from concentrations observed during the 

monitoring period) were based on published examples of decreases in P 

concentrations for lake restoration (Osborne, 1981; Köhler et al., 2005; Phillips et al., 

2005; Rip et al., 2005; Søndergaard et al., 2005). In comparison to the published 

examples, the scenarios chosen here represent a conservative estimate of possible 

nutrient reduction. A final scenario was created using the predicted changes in inflow 

occurring from the diversion of the River Erewash. Summer flows (1 May to 30 

September) and winter flows (1 October to 31 March) are expected to be reduced to 

6% and 8% of pre-diversion discharges (HR Wallingford, 2006). This scenario 

adjusted summer and winter discharges to the predicted values and assumed that 

there would be no change in inflowing nutrient concentrations compared to those 

observed at site Ea during the monitoring period. 

 

The results of the different scenarios suggest that the in-lake TP and chlorophyll-a 

concentrations are not responsive to discharge (Figure 5.25 and Figure 5.26). At the 

greatest reduction in discharge into the connected lakes (to 5% of observed values) 

mean annual in-lake TP concentration was only reduced by less than 1 µg L-1 when 

the model was run with observed TP concentrations. Reductions in chlorophyll-a 

concentration were negligible. A much greater response in in-lake TP and chlorophyll-

a to reductions in nutrient loading was observed. Reducing the inflowing nutrient 

concentrations by 10% each month reduced the in-lake TP concentration by 

approximately 45 µg L–1, and mean chlorophyll-a by 9 µg L-1 during each of the years 

modelled.  
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Figure 5.25 Predicted mean in-lake TP concentrations for connected lakes, April 
2005 to March 2008, at different scenarios of nutrient loading and River 
Erewash discharge.  
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Figure 5.26 Predicted mean annual chlorophyll-a concentrations in connected 
lakes, based on scenarios of alterations in River Erewash flow and 
reduced nutrient loading. Chlorophyll-a concentration was predicted as 
a function of mean annual TP concentration using the equation shown in 
Figure 5.24. D.S. = diversion scenario. 
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5.6 Results - Interannual variability in connected and 

isolated lakes 

5.6.1 Total phosphorus 

TP concentrations (Figure 5.27, originally discussed in Chapter 3) in all connected 

lakes were generally lower between March and October 2007 than the same period in 

2005 and 2006. From October to February the TP concentrations were slightly lower 

during 2006 than other years. Although TP concentrations were generally lower in 

2007 than the other years, the same temporal sequence was observed in all years. 

The summertime increase in TP concentrations was not strong in the connected lakes 

during 2007, particularly in Lake C1 where TP declined by over 200 µg L-1 between 

July and August 2007. In lakes C2 and C3, the highest TP concentrations occurred 

later in the year during 2007 than in 2005 or 2006. In Lake I1, TP concentrations were 

similar each year until early June. Summertime maximum TP was substantially lower 

during 2007 than other years. In Lake I2, the maximum TP concentration during 2007 

also was less than 2005 and 2006. Concentrations during the rest of the year were 

similar each year. In Lake I3, little similarity was observed between each of the three 

years of the monitoring period. The summertime maximum TP concentration was 

greater than during 2005 than 2006 and 2007. Autumn and winter TP concentrations 

in Lake I3 were higher than during 2005 and 2006.  
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Figure 5.27 TP concentrations (µg L-1) plotted against the number of days after 
1st January for each year and each lake. ‘Year’ refers to March to 
February (31st March for 2007). Note the difference in y-axis scales. 
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5.6.2 Soluble reactive phosphorus 

In connected lakes, SRP concentrations (Figure 5.28) generally increased during the 

spring and early summer and declined from late summer to winter. SRP data were 

originally discussed in Chapter 3. In Lake C1 SRP concentrations during 2007 were 

similar to those observed during 2006 and less than 2005 concentrations. The 

maximum SRP concentration occurred later in the year during 2007. Variations in SRP 

concentrations in lakes C2 and C3 were similar throughout the monitoring period. In 

both lakes, SRP concentrations were lower during 2007 than either 2005 or 2006, 

particularly during spring and late summer. 
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Figure 5.28 SRP concentrations (µg L-1) plotted against the number of days after 
1st January for each year and each lake. ‘Year’ refers to March to 

February (31st March for 2007). Note the difference in y-axis scales. 

In Lake I1, SRP concentrations were generally lower during 2007 than 2005 or 2006, 

although the same seasonality was observed. In Lake I2, summer SRP concentrations 

during 2007 were also less than during 2005 or 2006 during summer. In Lake I3 SRP 

concentrations varied between years. SRP concentrations were highest until August in 

2006. From August to March, SRP concentrations were highest during 2007. Similarly 

to the other isolated lakes, SRP concentrations increased from March until September 

and then declined until February. Maximum concentrations of SRP in Lake I3 occurred 

later in 2007 than 2005 or 2006.  
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5.6.3 Nitrate 

NO3-N data were originally presented in Chapter 3. In connected lakes, NO3-N 

concentrations (Figure 5.29) did not clearly differ between years. In all years, NO3-N 

concentrations declined during spring and early summer after which concentrations 

increased throughout the remainder of each year. Rapid rises in NO3-N concentration 

were observed in all connected lakes between January and March 2008. In the 

isolated lakes, NO3-N concentrations were greatest during winter and lowest during 

the summer. NO3-N concentrations during 2007 were similar to those observed during 

2005 and 2006, although rapid rises were observed during autumn and winter 2007. 

Overtopping from Lake C2 probably supplied some NO3-N to Lake I2 during January 

2008 (Figure 5.18, page 245). 
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Figure 5.29 NO3-N concentrations (mg L-1) plotted as numbers of days after 1st 
January for each year and each lake. ‘Year’ refers to March to February 
(31st March for 2007). Note the difference in y-axis scales. 

5.6.4 Ammonia 

In connected lakes, NH4-N concentrations (Figure 5.30, originally presented in 

Chapter 3) observed during 2007 did not differ substantially from those of 2005 or 

2006. A similar seasonality was observed between lakes each year, with 

concentrations being highest during the spring and winter months. NH4-N 

concentrations were higher in lakes C2 and C3 than C1. Little difference in NH4-N 

concentrations between years was observed in Lake C1. In lakes C2 and C3, NH4-N 
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concentrations high NH4-N concentrations were observed in July 2007 although this 

was not observed in either 2005 or 2006. In all connected lakes, increases in NH4-N 

concentration during winter occurred approximately one month later than in 2005 and 

2006 although the increase was of a similar magnitude each year (approximately 0.5 

mg L-1).  
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Figure 5.30 NH4-N concentrations (µg L-1) plotted against the number of days 
after 1st January for each year and each lake. ‘Year’ refers to March to  

February (31st March for 2007). Note the difference in y-axis scales. 

Interannual patterns were more consistent in Lake I1 than in other isolated lakes. 

Concentrations of NH4-N were highest during November to January each year. NH4-N 

concentrations were slightly higher during spring and early summer during 2007 and 

lower in autumn than in 2005 and 2006. In Lake I2, NH4-N concentrations in 2005 and 

2007 were similar although were substantially higher during summer 2006. In Lake I3, 

interannual differences were observed in NH4-N concentrations during the spring and 

summer periods. During 2005 and 2006, sharp increases were observed in March and 

May respectively, although this did not occur in 2007 when concentrations remained 

comparatively low during the same period. From October to February, changes in 

NH4-N concentration were more consistent between each lake.  

5.6.5 Silica 

Amongst connected lakes seasonality in SiO3 concentrations was generally consistent 

between years (Figure 5.31, originally discussed in Chapter 3). This was defined by 



Chapter 5: Effects of flooding 

264 

reductions in SiO3 concentrations during spring and late summer although there were 

differences between the timing and degree of decrease observed each year 

particularly during the summer. SiO3 concentrations in all connected lakes generally 

decreased in spring and then increased throughout summer. Whilst during July and 

August SiO3 concentrations decreased in 2006, during 2005 and 2007 SiO3 

concentrations increased during the same period. The summer decline in SiO3 

concentration was not as large or prolonged during 2007 as in 2005 or 2006. During 

2007, increases in SiO3 concentrations were not as rapid as in 2005 or 2006 although 

the maximum concentration was similar in all three years (approximately 5.5 mg L-1).  

Lakes I1 and I2 did not show such strong seasonality. SiO3 concentrations in lakes I1 

and I2 were generally higher during 2006 than 2005 or 2007. In Lake I1 SiO3 

concentrations remained relatively constant throughout 2005, although during 2006 a 

large increase in SiO3 concentration occurred from July to November. SiO3 

concentrations during 2007 were generally similar to those observed during 2005 after 

decreasing from the large increase observed during 2006. A similar pattern occurred 

in Lake I2 although the magnitude of the increase in SiO3 concentration during 

summer 2006 was less than that observed in Lake I1. SiO3 concentrations in Lake I3 

showed similar seasonality to connected lakes. During both the spring and summer 

maxima, SiO3 concentrations were slightly greater in 2007 than 2005 or 2006.  
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Figure 5.31 SiO3 concentrations (mg L-1) plotted as numbers of days after 1st 
January for each year and each lake. ‘Year’ refers to 1st March to 28th 

February (31st March for 2007). Note the difference in y-axis scales. 
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5.7 Results - Ecological response  

5.7.1 Phytoplankton 

Chlorophyll-a concentration  

In the connected lakes, chlorophyll-a concentrations (originally discussed in Chapter 

3, Figure 5.32) were strongly seasonal during 2005 and 2006. The magnitude and 

timing of changes in chlorophyll-a concentration were similar between each year. 

Substantial differences in chlorophyll-a concentrations were observed during 2007 

compared to other years. Chlorophyll-a concentrations did not rise as rapidly during 

the summer in 2007 as in other years. In Lake C1, the chlorophyll-a concentration 

increased between May and June 2007, a month earlier than the increase observed in 

2005 and 2006. In all connected lakes, chlorophyll-a concentrations decreased during 

mid-summer. During 2007, the highest chlorophyll-a concentration in all connected 

lakes occurred during September, a month later than during 2005 and 2006.  
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Figure 5.32 Chlorophyll-a concentrations (µg L-1) plotted against the number of 
days after 1st January for each year and each lake. ‘Year’ refers to March 
to February (31st March for 2007). Note the difference in y-axis scales. 

Chlorophyll-a concentrations in isolated lakes I1 and I2 were markedly different in 

2007 from those observed in 2005 and 2006. In Lake I1, chlorophyll-a concentrations 

were low throughout the early summer during 2007. During 2005 and 2006 the highest 

chlorophyll-a concentration occurred during June and August respectively. In 2007, 

the highest recorded chlorophyll-a concentration occurred during November. The 



Chapter 5: Effects of flooding 

266 

highest chlorophyll-a concentration occurred during 2006 and was around seven times 

higher than that observed in 2007. In Lake I2, chlorophyll-a concentrations did not 

increase substantially during summer 2007 as in 2005 or 2006. The highest 

concentrations of chlorophyll-a occurred much later in the year during 2007 

(November) compared to 2005 (July) and 2006 (August). Increases in chlorophyll-a 

concentration also occurred from January to March 2008. In Lake I3 chlorophyll-a 

concentrations were similarly variable during 2007 as during 2005 and 2006. During 

spring 2005 and 2006, chlorophyll-a concentrations fell, although increased during 

2007. Maximum chlorophyll-a concentrations occurred at different times each year 

(March 2005, November 2006 and August 2007) and were similar among each year. 

Low concentrations of chlorophyll-a concentrations occurred during December and 

January each year.  

 

Phytoplankton community composition 

Phytoplankton community composition was compared between lakes in section 3.8. 

Axis 1 scores in connected lakes (Figure 5.33a, CA plot shown in Figure 3.49, page 

177) were similar during each year of the monitoring period. Scores typically became 

higher in early summer then decreased between July and September. Low axis 1 

scores were associated with chlorophytes, centric diatoms and the cyanobacterium 

Microcystis sp. Scores then increased during the autumn and winter, reflecting the 

increasing importance of cryptophytes and pennate diatoms in the winter 

phytoplankton community. In Lake C1, little difference was observed in axis 1 scores 

between each year throughout the monitoring period. In Lakes C2 and C3, axis 1 

scores appeared to be slightly less homogenous between years although the same 

seasonal trend was observed in all years. Axis 1 scores during 2007 were slightly less 

than those during 2005 and 2006 during spring, suggesting a greater proportion of 

diatoms and cryptophytes in the phytoplankton community. For the remainder of the 

year, little consistent difference in axis 1 scores was observed. Brief increases in axis 

1 scores were observed during the summer in both lakes C2 and C3, which may be a 

result of the small biovolumes of cyanobacteria observed during summer 2007.  
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Figure 5.33 CA phytoplankton sample scores for a) axis 1, and b) axis 2. Scores 
plotted against the number of days after 1st January for each year and 
each lake. ‘Year’ refers to March to February (31st March for 2007). The 
species CA plot can be found in Figure 3.49 on page 177. 

Phytoplankton axis 2 scores (Figure 5.33b) appeared to be more variable in Lake C1 

than in either of Lake C2 or C3. During summer 2007, axis 2 scores were generally 

lower than during 2005 and 2006. In lakes C2 and C3, axis 2 scores were similar 

between each year, other than in early summer and spring 2005 when a relative 

abundance in small flagellates resulted in higher axis 2 scores. Increases in axis 2 

scores in March 2008 in Lake C3 reflected the increase in Mallomonas sp. 
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Phytoplankton axis 1 scores differed amongst isolated lakes. Scores were generally 

higher in lakes I1 and I2 than I3. In Lake I1, axis 1 scores were lower during 2007 than 

2005 and 2006 in spring and early summer although increased rapidly during the 

autumn and winter, which may reflect the pennate diatoms and Asterionella sp. 

observed in phytoplankton samples in spring, and the large biovolume of 

Trachelomonas sp. observed between October and December 2007. Axis 1 scores fell 

from January to March 2008 as a result of the increase in the biovolume of 

Asterionella sp. In Lake I2, axis 1 scores were generally lower during summer and 

then increased during autumn and winter during 2005 and 2006. In 2007, axis 1 

scores did not increase as much, reflecting the abundance of Cryptomonas and 

Rhodomonas spp. and Phacus sp during winter, except for February 2008 when 

Trachelomonas sp. was relatively abundant. Axis 1 scores in Lake I3 showed a similar 

seasonal pattern as in connected lakes. In spring, Lake I3 axis 1 scores were lower 

than during 2005 and 2006, reflecting the high biovolumes of centric diatoms and 

Aulacoseira spp. During summer and winter, sample scores were similar on axis 1 

during all three years.  

 

Although phytoplankton axis 2 scores in the isolated lakes were largely homogenous 

between years, some samples had distinctly different scores. In Lake I1, 

phytoplankton axis 2 scores were low during late summer 2007 due to a combination 

of comparatively high biovolumes of Dinobryon sp. and Trachelomonas sp., and 

scores increased during February and March 2008 due to the phytoplankton 

community being dominated by Asterionella sp., Mallomonas sp. and centric diatoms. 

In Lake I2, phytoplankton axis 2 scores were high during the autumn and winter of 

2007, particularly March 2008, when Gymnodinium sp., Mallomonas sp. and green 

flagellates became abundant. Lake I3 phytoplankton axis 2 scores were not 

substantially different during 2007 than the other years of the monitoring period. The 

high phytoplankton axis 2 score during spring 2005 was associated with a high 

abundance of green flagellates.  
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5.7.2 Zooplankton 

Zooplankton abundance 

Zooplankton community composition was compared between lakes in section 3.8 and 

the CA plot shown in Figure 3.52 (page 183). In connected lakes, zooplankton 

abundance typically increased during spring and summer although there was 

interannual and between-lake variability in the timing and extent of the increase in 

abundance (Figure 5.34). In Lake C1, zooplankton biomass generally increased 

during the spring to reach maximum abundances during summer then declined 

throughout autumn and remained low during the winter. The number of individual 

zooplankton was similar between 2005 and 2007, although a brief decrease was 

observed in total zooplankton individuals between June and July 2007. The maximum 

number of individual zooplankton occurred during October in 2005, September 2006 

and August 2007. In Lake C2, the total number of zooplankton was similar between 

2005 and 2006. During 2007, a brief increase in the total zooplankton population was 

observed to 13 ind. L-1 during March 2007, and then during the summer total 

zooplankton populations were similar during 2005 and 2006. Declines were observed 

in the total number of zooplankton between summer and winter in all years, after 

which less than 10 ind. L-1 were observed for the remainder of the year. During early 

summer 2007 in Lake C3 the total zooplankton population was similar to 2005 and 

2006, although a large peak was observed during June. Summer zooplankton 

populations during 2007 were smaller than in either 2005 or 2006. In all three years, 

the total zooplankton population declined between October and November and 

remained low (<5 ind. L-1) during the remainder of each year. 

 

In isolated lakes, patterns of zooplankton abundance varied between lakes and 

between each year. In lake I1, the abundance of zooplankton did not exceed  

10 ind. L-1 for the majority of 2005 and 2007. In both years, slight increases in the total 

abundance of zooplankton were observed during spring and late summer, and the 

abundance of zooplankton recorded each year were not substantially different. In Lake 

I2, total zooplankton abundance was similar between 2005 and 2006. In both years, 

zooplankton abundance increased during spring, and after decreasing during the early 

summer, increased throughout the summer. In 2006 the maximum zooplankton 

abundance occurred in September and was substantially higher than that observed 



Chapter 5: Effects of flooding 

270 

during 2005. The greatest total zooplankton abundance during 2007 occurred in 

August (35 ind. L-1), early than either 2005 or 2006. In Lake I3, the highest 

abundances of zooplankton occurred during 2007. Both spring and late summer 

maxima were greater than those in either 2005 or 2006. In all three years, the highest 

zooplankton abundances were observed in April (2005 and 2007) or May (2006). 

During summer, zooplankton abundance was greatest between September and 

October in all years, although during 2007 was approximately twice that of either 2005 

or 2006.  
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Figure 5.34 Total zooplankton abundance (ind. L-1) plotted as numbers of days 
after 1st January for each year and each lake. ‘Year’ refers to March to 
28th February (31st March for 2007). 

 

Zooplankton community structure 

Amongst connected lakes, axis 1 zooplankton sample scores did not vary substantially 

on a seasonal basis (Figure 5.35a). Samples from 2007 tended to have higher axis 1 

scores during August than 2005 and 2006 due to an increase in the abundance of 

rotifers, although this change was stronger in Lake C1 than other connected lakes. 

Axis 1 scores in all three connected lakes decreased during the winter of 2006, 

because of the higher abundance of Bosmina spp. and Ceriodaphnia spp.  
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Zooplankton axis 2 sample scores (Figure 5.35b) in connected lakes were generally 

higher in the spring due to the abundance of D. hyalina. Axis 2 scores then tended to 

decrease during the summer as cyclopoid copepods became increasingly abundant. 

Axis 2 scores in Lake C1 increased sharply during summer 2007, when a large 

proportion of the zooplankton community comprised rotifers. During 2006, axis 2 

scores were higher during winter than in 2005 and 2007, particularly in lakes C2 and 

C3. This may be a reflection of the presence of Daphnia in the winter zooplankton 

community.  

 

Variability among years was evident in axis 1 scores in isolated lakes (Figure 5.35a). 

In lakes I1 and I2, axis 1 scores decreased during summer, indicating that Daphnia 

spp. were less abundant. Sample scores during 2006 and 2007 then increased and 

remained relatively constant for the remainder of the monitoring period. During 2005, 

sample scores remained lower than 2006 and 2007 in Lake I1, reflecting the 

comparatively low number of rotifers observed.  

 

Sample scores in Lake I2 also decreased during the summer of all years of the 

monitoring period. During the autumn and winter of 2006 and 2007 axis 1 scores were 

lower than those observed during 2005 in Lake I2 as a result of the higher abundance 

of calanoid copepods during 2006 and 2007. Axis 1 scores in Lake I3 were generally 

higher than in other isolated lakes, particularly during summer 2005 when the rotifer 

Keratella sp. was present, although in winter 2006 axis 1 scores were low, reflecting 

the occurrence of D. cucullata.  

 

Axis 2 scores were considerably different amongst isolated lakes (Figure 5.35b). In 

Lake I1, no similarity was observed between the axis 2 scores from each year, 

although during 2005 axis 2 scores were generally higher during the summer and 

winter, possibly reflecting the higher abundance of calanoid copepods during 2005. In 

Lake I2, axis 2 scores fell sharply during the summer in all years, suggesting that 

summer samples were associated with Bosmina sp. Sample scores for 2007 were not 

substantially different from those of 2005 and 2006. Axis 2 scores in Lake I3 were 

variable between years. A common feature was a decrease in scores during the winter 

of each year, associated with the presence of D. cucullata in the zooplankton 
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community. Samples from 2007 were not clearly different to those from either 2005 or 

2006.  
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Figure 5.35 CA zooplankton sample scores for a) Axis 1, and b) Axis 2. Scores 
plotted as numbers of days after 1st January for each year and each lake. 
‘Year’ refers to March to February (31st March for 2007). The species plot 
can be found in Figure 3.52 on page 183. Note the change in y-axis 
scores for Lake I3 in part b. 
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5.8 Discussion 

5.8.1 The importance of rivers and streams as suppliers  

of nutrients 

Inflowing rivers and streams to Attenborough Nature Reserve are important for 

supplying nutrients to the connected lakes and Lake I3. The significant differences 

observed between the inflow and in-lake concentrations of nutrients suggests that 

internal processes are important in determining in-lake nutrient concentrations. TP and 

SRP inflow concentrations were generally higher than in-lake concentrations during 

early spring (Figure 5.19a and b). During the spring, uptake of SRP by phytoplankton 

may be related to in-lake decreases in SRP concentration (Lampert and Sommer, 

2007). Declines in SRP concentration during spring are a common feature in shallow 

lakes. Inflowing SRP may be particularly important in maintaining phytoplankton 

growth in the connected lakes and Lake I3 during this period. During the summer 

(particularly in 2005 and 2006), a shift towards internal loading appears to have 

occurred in the connected lakes, as in-lake P concentrations were similar to or higher 

than inflowing concentrations. This is likely to be a consequence of internal P loading. 

The release of P from the sediments of eutrophic lakes can be a highly important 

source of P during the late summer, which may exceed the loading from external 

sources (Søndergaard et al., 1999).  

 

NH4-N concentrations in inflowing water at Ea appeared to be more variable than for 

other nutrients (Figure 5.19c). Concentrations of NH4-N were significantly higher in the 

Ea inflow water than the in-lake concentrations in the connected lakes. In-lake NH4-N 

concentrations probably reflect a balance between the uptake of NH4-N by 

phytoplankton and regeneration by zooplankton and breakdown of organic matter by 

bacteria. The difference between inflow and in-lake NH4-N concentrations in 

connected lakes were greatest during the late summer when phytoplankton uptake is 

likely to be highest, suggesting the importance of external NH4-N sources for 

phytoplankton growth. During spring, in-lake processes may have had a greater effect 

on NH4-N concentrations. Zooplankton grazing appeared to be related to clear-water 

phases during the spring in the connected lakes (Chapter 4), which suggests that 

NH4-N excretion by zooplankton may have been higher during spring. In Lake I3, NH4-
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N concentrations did not differ significantly between the inflow at BPI and in the lake. 

The small discharge of BPI suggests that internal processes are likely to have been 

most important for determining in-lake NH4-N concentration. NO3-N concentrations in 

the Eb inflow were significantly higher than in-lake concentrations, which suggests that 

the River Erewash is an important source of NO3-N for connected lakes. Uptake of 

NO3-N by phytoplankton is likely to be important in determining in-lake NO3-N 

concentrations in the connected lakes and Lake I3, although other processes may 

also have an effect. The denitrification of NH4-N to N2  (Wetzel, 1983) and the 

reduction of NO3-N to NH4-N in anoxic conditions (Lampert and Sommer, 2007) may 

contribute towards the considerably higher inflow concentrations of NO3-N compared 

to the in-lake observations in the connected lakes. The lower concentrations of NO3-N 

measured in the MPO outflow compared to the Ea outflow suggest that the residence 

time of the water has a strong influence on chemical transformations that affect NO3-N 

concentrations, for example by allowing more time for ammonification and 

denitrification (Saunders and Kalff, 2001b) and uptake by phytoplankton.  

 

SiO3 concentrations at Eb were significantly higher than the in-lake concentrations 

during the monitoring period (Figure 5.19e). Internal processes are also likely to 

strongly affect in-lake SiO3 concentrations. The difference between inflow and in-lake 

concentrations was greatest during the spring and autumn when in-lake 

concentrations were substantially lower. Diatoms were abundant in connected lakes 

and in Lake I3, so the uptake of Si by diatoms was probably responsible for these 

decreases in SiO3 concentration (Wetzel, 1983; Gibson et al., 2000). Release of SiO3 

from the sediments was probably important in both connected lakes and Lake I3. 

Since SiO3 concentrations appeared to be almost entirely replenished after the growth 

of diatoms, internal recycling of SiO3 may been an important additional supply of SiO3 

to the water-column in addition to external sources. Gibson et al. (2000) suggest that 

internal recycling of SiO3 can play a significant role in determining in-lake 

concentrations in lakes with a residence time of more than one year, although internal 

recycling may have been important in the connected lakes which had short WRTs 

(<25 days).  

 

The concentration of major ions in the inflows to the connected lakes and Lake I3 and 

observed in-lake concentrations were less seasonal than in lakes I1 and I2 (Figure 
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5.20). Major ions, such as K+, Na+ and Mg2+ are relatively conservative and so their 

concentration is not strongly mediated biologically, suggesting that in-lake 

concentrations of ions are primarily dependant on allochthonous processes and river 

in-flow (Krivtsov and Sigee, 2005), in contrast the uptake and release of major 

nutrients. The lower concentrations of major ions in isolated lakes I1 and I2 compared 

to connected lakes and Lake I3 also supports the importance of inflows as a suppliers 

of major ions. The concentration of major ions was frequently found to be higher than 

the in-lake concentrations which suggests that major ions may have sedimented out of 

the water column (Wetzel, 1983; Sigg, 1987).  

 

The development of mass-balance nutrient budgets is frequently used to aid 

understanding of nutrient budgets in shallow lakes (e.g. Bengtsson, 1975; Nõges et 

al., 1998; Kozerski et al., 1999). The nutrient budgets developed for Attenborough 

Nature Reserve (Figure 5.22) suggest that the intermittent outflows from the 

connected lakes may have led to the retention of nutrients in the connected lakes 

during 2006.  

 

Contrary to expectations, the nutrient budgets did not consistently indicate release of 

P during the summer (Bengtsson, 1975; Søndergaard et al., 1999; Spears et al., 

2006). However, this is more a reflection of discharge to the connected lakes being 

greater than the outflows. It is likely that P release from the sediments did occur, as 

suggested by the higher concentrations of TP during the summers of 2005 and 2006. 

Much of the P released from the sediments during summer is likely to have been 

retained in the connected lakes due to the low outflow. 2007 was the only year during 

which P released from the sediments was diluted and flushed from the connected 

lakes.  

 

The finding that the connected lakes appeared to be a sink of NO3-N during 2005 and 

2006 is in line with the findings of Saunders and Kalff (2001b) that lakes are sinks of 

N, although assessing the relative effects of NO3-N losses from reduction to NH4-N 

and the lack of substantial outflow during the summer of 2005 and 2006 on this 

calculation is difficult. During 2007 large quantities NO3-N were lost from the 

connected lakes, which is probably mainly associated with the high discharge at MPO. 

NH4-N losses were also greatest during 2007, and was retained during 2006.  
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Si has been observed to be released during the autumn and winter in other shallow 

lakes (e.g. Gibson et al., 2000) although this was not apparent from the nutrient 

budget here. Estimates suggest that more SiO3 was retained in the connected lakes 

during 2006 than during 2005. Sedimentary release is likely to have been relatively 

less significant compared to inflow as in-lake concentrations were nearly always less 

than inflow concentrations (Figure 5.19). 

 

It appears that WRT exerts a strong influence on net nutrient retention in the 

connected lakes, although this may be a debateable conclusion since the spot-

measurements made of outflow volume and nutrient concentration are likely to be 

subject to high errors in the measurement of nutrients leaving the lakes. This is 

particularly evident during 2007, when large outflow volumes were observed. Other 

studies have used higher frequency of sampling (e.g. daily, Nõges et al., 1998; 

weekly, Bengtsson, 1975; Kozerski et al., 1999) to provide more robust estimations of 

nutrient loss. Future studies should use higher resolution monitoring of outflows and 

their nutrient concentrations to enable more precise measurements of nutrient loss 

and retention.  

 

5.8.2 Effects of hydrological change on chemistry and 

biology of connected and isolated lakes 

This section discusses the changes in chemical and biological components that were 

observed during the very wet year of 2007. The changes in hydrology that occurred 

are summarised in Figure 5.11 (page 238) and section 5.3.6 (page 244). In connected 

lakes, WRT was reduced, MPO became the dominant outflow (Figure 5.10) and water 

depth increased. In isolated lakes water depth increased but there was no quantifiable 

change in WRT. In summary, the key chemical changes observed in the connected 

lakes were a reduction in summertime P concentrations probably because of dilution 

and flushing, and dilution of the increased loading of other major nutrients. Total 

phytoplankton biomass was reduced and cryptophytes and diatoms became the 

dominant phytoplankton groups. Total zooplankton biomass declined during summer 

2007. In isolated lakes, dilution associated with increased water depth decreased TP 



Chapter 5: Effects of flooding 

277 

and chlorophyll-a concentrations, and reduced the abundance of cyanobacteria and 

chlorophytes during 2007.  

 

Chemical response 

In-lake TP concentrations in the connected lakes were reduced during the wet year of 

2007. This may be related to the dilution and washout of the summertime P release. 

The factors which affect P release from sediments for which measurements were 

made (e.g. temperature, pH, nitrate concentrations; Søndergaard et al., 2003) were 

not substantially different during 2007 compared to 2005 and 2006. Other 

mechanisms may affect P release (e.g. redox conditions, resuspension, bioturbation; 

Søndergaard et al., 2003) were not directly measured, although it is unlikely that they 

would have been significantly different compared to the previous two years. Therefore, 

P release is still likely to have occurred, but washout and dilution of the released P 

reduced in-lake P concentrations. Elliott et al. (2009) suggested that the in-lake 

concentration of nutrients derived entirely from a point-source would be reduced 

because of dilution by increased river discharge. These findings support this as the 

concentration of TP and SRP was negatively correlated with the discharge of the River 

Erewash (Figure 5.36). Cooler water temperatures during 2007 may also have 

reduced P release (Jensen and Andersen, 1992).  
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Figure 5.36 Summary of Spearman’s rank correlation coefficients of monthly 
inflowing nutrient concentration at Eb with River Erewash monthly 
discharge. *, p ≤0.05; **, p ≤0.001; n.s, not significant.  
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No correlation between River Erewash discharge and NH4-N concentration at Eb was 

found. NH4-N concentration in the inflowing water is likely to be affected by the 

treatment of sewage in STWs and anoxic conditions (which may increase NH4-N 

regeneration, e.g. Beutel, 2006). Few published studies have found clear trends in the 

response of in-lake NH4-N concentrations to flood events. Paidere et al. (2007) and 

Glińska-Lewczuk (2009) found that increased hydrological loading increased in-lake 

NH4-N concentrations, although Roozen et al. (2008) have shown that flood events 

reduced NH4-N concentrations in Dutch floodplain lakes due to dilution.  

 

The concentration of NO3-N in inflowing water was negatively correlated with the 

monthly discharge of the River Erewash (Figure 5.36). Since the in-lake 

concentrations of NO3-N did not change substantially in response to the increased 

loading during 2007, it is likely that at high discharge, the increased transport of NO3-

N into the lakes was sufficient to prevent changes in in–lake concentration. Other 

authors (e.g. Paidere et al., 2007; Roozen et al., 2008; Mihaljević et al., 2009) have 

observed increased in-lake concentrations of NO3-N as a result of flooding events, 

although these studies were mainly concerned with more rural catchments where 

diffuse nutrient loading is likely to be higher.  

 

SiO3 concentrations were positively correlated with discharge (Figure 5.36). Si in 

rivers is largely derived from diffuse sources (Sferratore et al., 2006), and so loading 

of SiO3 increases with river discharge. More diffuse-source nutrients are supplied to 

lake basins when discharge increases, although simultaneously are removed from the 

lake by increases in flushing rate (Elliott et al., 2009). This may account for the lack of 

increase in SiO3 concentrations during 2007 despite the increase in SiO3 loading. Few 

published studies have specifically considered the effects of flooding on SiO3 

concentrations in shallow lakes, although both Paidere et al. (2007) and Roozen et al. 

(2008) found increases in SiO3 concentrations as a result of flooding. However, both 

studies considered the impact of flood-pulses rather than changes in hydraulic 

loading.  

 

Biological response 

During 2007, chlorophyll-a concentration was less than during 2005 and 2006 (see 

section 5.7.1). This was observed in both connected and isolated lakes. Connected 
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lake maximum chlorophyll-a concentration was around 50% less than during ‘normal’ 

years, and in isolated lakes I1 and I2 the proportional reduction was substantially 

greater. In the connected lakes, this is most likely to have been the result of 

simultaneous increases in dilution and washout. The absence of significant outflows 

from lakes I1 and I2 suggests dilution related to increases in lake volume is a likely 

cause in the isolated lakes. Estimates suggest that lake volume increased by 

approximately 25% in Lake I1 and 36% in Lake I2 during the summer of 2007. Several 

authors have found reductions in total phytoplankton abundance associated with 

increased flushing rate (e.g. Brook and Woodward, 1956; Jones and Elliot, 2007; 

Paidere et al., 2007; Haldna et al., 2008). Dickman (1969) found that phytoplankton 

biomass increased and larger species became more dominant in an isolated section 

of a well flushed lake. Some evidence suggests that the timing of wet periods alters 

the effects of phytoplankton biomass response. Large flooding events in floodplain 

lakes of the River Danube during March and June delayed the occurrence of 

maximum phytoplankton biomass until September (Mihaljević et al., 2009). During a 

dry year, maximum phytoplankton abundance occurred during June. A similar delay 

was observed in connected lakes and isolated lakes I1 and I2 during 2007, when 

following an early summer wet period, maximum phytoplankton biomass did not occur 

until September to October.  

 

The phytoplankton communities of both isolated and connected lakes during 2007 was 

associated with rapidly reproducing taxa. Diatoms and cryptophytes were relatively 

abundant, whilst cyanobacteria and chlorophytes were rare compared to the previous 

summers. The dominance of Cryptomonas sp. during flood events has also been 

observed by García de Emiliani (1997), Huszar and Reynolds (1997) and Paidere et 

al. (2007) in floodplain lakes. Diatoms appear to be resistant to flood events. Huszar 

and Reynolds (1997) reported that the diatom Cyclotella sp. was abundant during 

flooding and Paidere et al. (2007) observed Synedra sp., Nitzschia sp. and Navicula 

sp. to be dominant taxa during summer flood events. The reasons for the selection of 

cryptophytes and diatoms over cyanobacteria and chlorophytes during wet years may 

be associated with the ability of both cryptophytes and diatoms to reproduce relatively 

quickly (Reynolds, 2006), which could help them to compensate for losses by dilution 

and washout more rapidly than some other genera. Diatoms may also have been 

favoured by high Si loading during wet years. Applying Grime’s (1977) theoretical C- 
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S- R- strategy paradigm to phytoplankton (see Table 1.7), suggests that R strategists, 

which includes some diatoms, could be favoured in highly disturbed environments. 

The low light requirement of R strategists may also be a competitive advantage 

(Reynolds, 2006) when minerogenic turbidity associated with flooding is high. 

 

Differences in total zooplankton abundance were not widely observed during 2007 

(see section 5.7.2) compared with 2005 or 2006. In isolated lakes I1 and I2 

zooplankton abundance was similar to that observed during 2005, although summer 

maxima in 2006 were substantially greater. A lack of response in isolated lakes 

suggests that zooplankton were not affected by the increase in water depth. In 

connected lakes, reductions in zooplankton abundance coincided with the June to July 

flood event in 2007. Brook and Woodward (1956) observed that zooplankton 

abundance was greatest in Scottish lakes with longer residence times. In the 

Neuendorfer See, Germany, Walz and Welker (1998) found that zooplankton 

abundance decreased as WRT decreased. The effect was particularly strong when 

WRT was < 8 days-1. Angeler et al. (2000) found that a decrease in zooplankton 

biomass during more lotic periods resulted in a reduction in the strength of top-down 

effects on phytoplankton in floodplain lakes in Spain. However, zooplankton 

community structure at Attenborough Nature Reserve was largely unresponsive to 

changes in hydrology. Axis scores did not vary substantially between wet and dry 

years, implying that hydrological changes did not alter the zooplankton community. 

Other studies including the response of zooplankton to flood events have found that 

rotifers become more abundant because of their short regeneration times (e.g. Walz 

and Welker, 1998; Angeler et al., 2000; Paidere et al., 2007). The reduced 

zooplankton abundance observed particularly in lakes C2 and C3 suggests that a 

reduction in the strength of top-down processes occurred during 2007 (Angeler et al., 

2000). A side effect of the isolation of connected lakes from the River Erewash may be 

an increase in zooplankton abundance and a strengthening of top-down effects.  

 

5.8.3 Potential effects of future hydrological change 

As discussed in section 5.5.2, a Vollenweider model was used to investigate how 

future hydrological changes may affect the mean annual in-lake TP concentrations in 

the connected lakes (page 256). The model suggested that diverting the River 
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Erewash may have little effect on the mean in-lake TP concentration of connected 

lakes. The degree to which the model can predict future change is strongly dependent 

on its ability to accurately model observed data. Modelled TP concentrations in the 

connected lakes were reasonably similar to mean measured in-lake TP concentrations 

(Figure 5.23). However, the application of basic Vollenweider models to shallow lakes 

is often criticised, as they do not model P release from the sediments during the 

summer, which in eutrophic shallow lakes can account for substantial a proportion of 

in-lake TP concentration (Søndergaard et al., 1999, 2003). This may account for the 

improved performance of the model during summer 2007 when P release was diluted 

by the high inflow. The reasonable correspondence between measured and modelled 

TP concentrations may reflect the short WRT of the connected lakes, particularly 

during 2007, as the effect of internal processes (such as P release from the 

sediments) is reduced with decreasing WRT (Scheffer, 1998).  

 

Mean annual chlorophyll-a concentrations were always overestimated by the 

Vollenweider model (Figure 5.24). A number of potential issues have been identified 

with the interpretation of predicted chlorophyll-a values from Vollenweider models, 

even if they are ‘not the fault of the model [but] relate to its simplistic interpretation’ 

(Reynolds and Davies, 2001). In this case, the interpretation of the models output 

should acknowledge three shortcomings. Firstly, grazing by zooplankton, particularly 

during the spring clear-water phase, may contribute to overestimations of mean 

chlorophyll-a concentration, which may be particularly important in the connected 

lakes due to the strong top-down effects of zooplankton grazing discussed in Chapter 

4. Secondly, self-shading, associated with the high biomass of phytoplankton 

(Reynolds, 1984), and minerogenic turbidity, derived from the River Erewash, may 

also limit the realised phytoplankton abundance (Donohue and Molinos, in press). 

Thirdly, the model does not simulate washout of phytoplankton (Elliott et al., 2009) 

which may account for the particular overestimate of mean chlorophyll-a 

concentrations for 2007. Therefore, direct estimates of chlorophyll-a concentration in 

future hydrological and nutrient loading scenarios must be made with caution, but can 

provide insight into the potential maximum annual chlorophyll-a concentration.  

 

These results have important management implications for Attenborough Nature 

Reserve. Dilution of in-lake TP concentrations has been advocated as a potential 



Chapter 5: Effects of flooding 

282 

restoration technique for other shallow lakes. If river discharge into lakes is restricted 

to the summertime, in-lake P concentrations can be reduced by the flushing of P 

released from the sediments (Spears et al., 2006). Summer 2007 fortuitously showed 

the potential merits of this approach in Attenborough Nature Reserve. Due to the 

existing weirs this technique may be a promising option for reducing in-lake TP 

concentrations. However, hydrological modelling undertaken as part of the River 

Erewash diversion project suggests that the quantity of water entering the connected 

lakes from storms (when discharge exceeds 1.5 m3 sec-1) during the summer (1 May 

to 30 September) will be 6% of total summer storm discharge in the River Erewash 

(HR Wallingford, 2006). This is likely to prevent the flushing of internally-loaded P 

which will accumulate in the water column and may lead to negligible reductions of in-

lake P concentrations. Data also suggest that the River Erewash supplies N and Si to 

the lakes. Reducing the supply of N and Si, whilst P remains abundant, may 

potentially favour the growth of N-fixing cyanobacteria (Krivtsov et al., 2000a) at the 

expense of diatoms and chlorophytes, which would present a significant management 

challenge to Attenborough Nature Reserve. However, the model predicted 

comparatively large decreases in in-lake TP concentrations (Figure 5.24a) as a result 

of reducing inflowing nutrient concentrations, which suggests that restoration 

measures should be targeted towards improving P removal at STW and maintaining 

the current hydrological connectivity.  

 

5.9 Conclusion 

This chapter has demonstrated the importance of integrating hydrology into the 

monitoring of Attenborough Nature Reserve in order to ensure successful 

management. The chapter has shown that inflowing rivers are important suppliers of 

nutrients to lakes into the reserve, as evident in the high concentrations of major 

nutrients in the River Erewash and in the inflow stream to Lake I3. This finding 

suggests that measures to reduce nutrient concentrations in Attenborough Nature 

Reserve must initially focus on inflowing rivers and streams, before internal measures 

are implemented. The development of nutrient budgets suggests that the nutrient 

loading to the connected lakes is dependent on the discharge of the River Erewash 
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and internal loading. High-resolution hydrological data are important for the 

assessment of nutrient retention and release.  

 

The Attenborough Nature Reserve is a complex hydrological system. The water level 

in the connected lakes can be affected by a combination of the discharge of the Rivers 

Erewash and Trent. Isolated lakes appear to respond principally to groundwater 

inputs. The unusually wet year of 2007 enabled a comparison of hydrological 

functioning and chemical and biological response. The route of flows through the 

connected lakes during summer 2007 was altered as a result of the blocking of 

outflows at Ea because of the increase in discharge in the River Trent, and caused 

change to a more lotic system with a very short WRT. These conditions may be 

responsible for three changes observed in lake ecology and chemistry. 1) P 

concentrations were reduced during 2007, particularly during the summer, suggesting 

that a combination of dilution and flushing suppressed the internal loading. A lack of 

change in the concentration of other nutrients appears to be a result of dilution of the 

increased nutrient loading. 2) Total phytoplankton biomass was reduced, with 

cryptophytes and diatoms becoming dominant. 3) Total zooplankton biomass also 

declined. In isolated lakes, reductions in TP and total phytoplankton biomass also 

occurred with cyanobacteria and chlorophytes becoming more scarce.  

 

The application of a Vollenweider model to the connected lakes suggests that in-lake 

TP concentrations are primarily determined by the concentration of inflowing nutrients. 

Modelled TP concentrations did not respond much to reductions in River Erewash 

discharge. Although total isolation would prevent the input of nutrients into the 

connected lakes, a reduction in flushing rate increases the strength of in-lake 

processes, such as P release from the sediments. Since the supply of N and Si is also 

likely to be reduced by the diversion of the River Erewash, the growth of nitrogen-

fixing and possibly bloom-forming cyanobacteria may be favoured. This suggests that 

the use of river diversion to reduce the in-lake nutrient concentration of the connected 

lakes of Attenborough Nature Reserve may not be an effective solution and may lead 

to the maintenance of high P concentrations and aesthetically unacceptable 

cyanobacteria blooms. 
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A potentially effective method for the restoration of the connected lakes could be 

reducing the concentration of P in inflowing water. Maintaining hydrological 

connectivity to the River Erewash could potentially allow dilution during summer 

storms. Maintaining a high flushing rate might also help in preventing the growth of 

bloom-forming cyanobacteria. Existing weir structures could be used in order to allow 

rapid outflow, and therefore increase the flushing rate, during summer storms to aid 

the washout of phytoplankton and nutrients.  
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Chapter 6 Experimental effects of 
isolation and N and Si manipulation on 
lake plankton 

 

6.1 Introduction 

It is well established that the concentration of P is the principal determinant of the 

maximum biomass of phytoplankton that can be supported by a lake (Dillon and 

Rigler, 1974). This has meant that lake restoration has typically been principally 

focussed on reducing P concentrations in order to reduce chlorophyll-a concentrations 

(e.g. Bootsma et al., 1999; Madgwick, 1999; Rip et al., 2005). Changes in the 

concentrations of other nutrients, such as N and Si, may occur when reducing the P 

loading to lakes (Søndergaard et al., 2005). Chapter 5 suggested that changes in P, N 

and Si ratios may occur in lakes connected to nutrient-rich inflows during flood events. 

Both N and Si may play a role in determining the total biomass and composition of 

phytoplankton communities in eutrophic lakes, although the extent of these changes 

and the mechanisms by which they may occur are not well understood in shallow 

lakes. 

 

N may be particularly important in highly eutrophic environments where denitrification 

rates can be high, as phytoplankton communities may be limited by N during the 

summer (section 1.4.2, Wetzel, 1983; Petzoldt and Uhlmann, 2006). Data from 

Attenborough Nature Reserve suggest that in the Erewash-connected lakes, N is 

strongly depleted during the summer months (Chapter 3 and Chapter 4). Low N 

concentrations during the summer in isolated lakes I1 and I2 suggests that N-fixing 

cyanobacteria may be favoured (Schindler, 1978; Smith, 1983). Cyanobacteria are 

aesthetically unpleasant and may pose a danger to the health of humans and livestock 

(Scheffer, 1998). The diversion of the River Erewash may remove an important source 

of N from the connected lakes and increase the likelihood of cyanobacteria becoming 

dominant. Therefore, the effects of N on shallow lake phytoplankton may be of 

importance for lake management, particularly when reducing P loading.  
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Si may also play a role in determining phytoplankton community structure (section 

1.4.3). Si is particularly important for the growth of diatoms, and in eutrophic shallow 

lakes Si can become limiting for diatom growth (e.g. Gibson et al., 2000). SiO3 

concentrations in the connected lakes and Lake I3 of the Attenborough Nature 

Reserve were frequently depleted concentrations that may be limiting (~0.5 mg L-1, 

e.g. Figure 3.2d, page 94) and therefore diatom productivity may have been 

dependent on the Si supply from the River Erewash. Reductions in Si concentrations 

have been simultaneously observed with P reduction measures (Phillips et al., 2005; 

Søndergaard et al., 2005). Si limitation has been associated with a switch from diatom 

to cyanobacteria dominance in eutrophic lakes (e.g. Horn and Uhlmann, 1995; 

Krivtsov et al., 2000a) and at Attenborough Nature Reserve, diatoms were rare in 

lakes without an external supply of Si (Lake I1, Figure 3.29, page 139; Lake I2, Figure 

3.37, page 152). Therefore, understanding the effects of Si concentrations on 

phytoplankton may be advantageous for the management of Attenborough Nature 

Reserve. 

 

River diversion will also substantially alter the hydrological regime of the lakes. 

Evidence presented in Chapter 5 implied that high flushing rates reduced the 

abundance of cyanobacteria and also reduced in-lake P concentration. The discussion 

in section 3.9 (page 187). Chapter 3 suggested that internal release of P may be 

important in determining late summer phytoplankton biomass in the connected lakes. 

Isolation of the connected lakes by river diversion may therefore favour slower-

growing cyanobacteria, as appears to occur in isolated lakes I1 and I2, which could 

represent a significant management challenge for Attenborough Nature Reserve. 

Additionally, P may accumulate in the water column when flushing is low by 

preventing the washout of P released from the sediments (section 5.6.1). However, 

because the diversion of the River Erewash will probably increase the importance of 

groundwater and rainfall as sources of water to the currently connected lakes, there 

may be some dilution of nutrients. Resolving the potential effects of river diversion is 

important for the management of Attenborough Nature Reserve.  

 

This chapter therefore aims to use a mesocosm experiment for two purposes: i) to 

simulate the effects of river diversion on lake plankton and water chemistry, and ii) to 
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investigate the main and interactive effects of N and Si on plankton and water 

chemistry. The unique nature of this experiment is in the transfer of relatively low-

nutrient concentration water from Lake I2 into mesocosms built in Lake C2, which 

does not appear to have been attempted in previous studies at this scale. Monitoring 

data showed that P, N and Si concentrations were lower in Lake I2 (see section 3.6.1, 

page 146) than in Lake C2 (section 3.3.1, page 106) during the summer. The transfer 

of lower nutrient concentration water was designed to simulate the effect of reducing P 

loading to Lake C2, and allowed N and Si concentrations to be manipulated 

individually, including a reduction in concentration. The design of the mesocosms 

maintained contact between the isolated water column and the sediments, to ensure 

that interactions between the water column and the sediment could take place during 

the experiment, simulating the effects of isolating the connected lakes from the River 

Erewash. Specifically, the following hypotheses were tested: 

 

• Simulated lake isolation reduces the total phytoplankton biomass and the 

concentration of nutrients, 

• N addition increases the growth of phytoplankton biomass and reduces the 

abundance of cyanobacteria, 

• Si addition increases the abundance of diatoms in the phytoplankton. 

 

 

6.2 Methods 

Three stages were required to build the mesocosms and apply the nutrient 

manipulations. These were (i), the design and construction of the mesocosms; (ii), 

replacing the water in the mesocosms; and (iii), manipulating the concentrations of 

NO3-N and SiO3 in the mesocosms. Sampling procedures and statistical techniques 

are given in sections 6.2.4 and 6.2.5.  

 

6.2.1 Mesocosm design and construction 

The construction of the mesocosms took place in Lake C2 during July 2007. The 

location of the mesocosms (Figure 6.1) was determined largely by the requirement for 
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soft sediments for ease of construction, suitable water depth and proximity to Lake I2 

to allow the transfer of water. The water in the open-ended mesocosms was in contact 

with the sediments of Lake C2 (Figure 6.2a), in order to maintain the interaction 

between sediments and the water column. The mesocosms were constructed in water 

approximately 1.5 m deep. The diameter of the mesocosms was 1 m, with an area of 

0.78 m2. Each mesocosm held approximately 1200 L of water. 

 

Four frames constructed of wood were used to support the mesocosms (Figure 6.2a 

and b). Fence posts were firmly hammered into the lake sediments to anchor the 

frame, which was then lowered over the top of the fence posts and attached to the top 

of the posts (Figure 6.3a). Flexible translucent polythene tubing, approximately 250 

µm thick, was used to form the walls of the mesocosms. (Figure 6.3b). The top and 

bottom of the tubing was attached to circles of plastic tubing and fixed using cable-

ties. At the bottom, weights were attached to the tube circles and firmly anchored into 

the sediments. The top of each tube was then fixed to the wooden frame in the lake. 

Due to the unexpected increases in water depth associated with the flooding observed 

during the summer of 2007 it was necessary to increase the height of the mesocosms 

after floodwater caused overtopping between the mesocosms and Lake C2 before the 

transfer of water (Figure 6.3c). Fortunately this occurred prior to the transfer of water 

and start of the experiment. After the increase in height, the tops of the tubes were at 

least 30 cm above the surface of the water during the experiment (Figure 6.3d). By the 

end of the experiment, the water surface was around 60 cm below the top of the 

tubes.  
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Figure 6.1 The location of the mesocosms within Attenborough Nature Reserve. 
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Figure 6.2 The design of the mesocosms used during the experiment: a) 
elevation view; b) plan view. 
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a) 

 

 

 

b)

c) 

 

Figure 6.3 Construction of the mesocosms: a) wooden frames attached to fence 
posts hammered into the lake sediments; b) mesocosm walls being 
made from polythene tubing attached to hoops of plastic pipe; c) 
flooding before the experiment causing overtopping (foreground) and in 
the background, extensions added to existing frames. 
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d) 

 

e) 

 

f) 

 

Figure 6.3 contd: d) completed mesocosms; e) removal of water inside 
mesocosms using pump and water butt immersed in mesocosm (not 
visible); f) refilling a control mesocosm with water from Lake C2. 



Chapter 6: Experimental effects of isolation, N and Si  

293 

 

6.2.2 Water replacement 

Water was removed from all mesocosms and replaced using two commercial 

centrifugal water-pumps, each with a capacity to pump at approximately 600 L hr-1. 

Water was pumped from the mesocosm and replaced with water from Lake I2 or C2 

as appropriate. A weighted water-butt with holes drilled into the sides was immersed in 

the mesocosms and gently lowered to the sediment surface, with care taken not to 

avoid excessively disturbing the lake sediments. This was done to prevent the 

mesocosm collapsing as the water was removed (Figure 6.3e). Water from Lake I2 

was obtained by pumping into large water-butts, which were transported on boats and 

then siphoned into the emptied mesocosms. Control mesocosms were emptied of 

water using the same technique and then re-filled using Lake C2 water (Figure 6.3f). 

 

6.2.3 Experimental design  

A randomised design with three replicates of each treatment and control was used. 

The treatments were: NO3-N addition (+N), SiO3 addition (+Si), NO3-N and SiO3 

addition (+N+Si), water transfer from Lake I2 alone (-N-Si) and a control treatment 

(Ctrl) (Lake C2 water) (Table 6.1). The concentration of SiO3 in the mesocosms was 

manipulated through the addition of sodium metasilicate (Na2SiO3), and calcium 

nitrate (Ca(NO3)2) was used to increase the NO3-N concentration. The aim of the 

manipulations was to raise the concentrations of N to 10 mg L-1 and Si concentrations 

to 6 mg L-1. These concentrations were chosen as they were similar to those observed 

in connected lakes during the winter months of the monitoring period (Figure 3.2, 

Figure 3.10, Figure 3.18), and so represent an estimate of NO3-N and SiO3 

concentrations when the influence of uptake by phytoplankton would be lowest. 

Solutions of each nutrient were prepared in the laboratory using distilled water, and 

then the appropriate quantity added in the field. Quantities of concentrated nutrient 

additions were calculated based on analysis of the chemistry of samples taken 24 hrs 

previously and the volume of the water in the mesocosms. The initial addition of 

nutrients took place on 26 July 2007 (day 0), and additions were made as required 

every 7 days after the start of the experiment. 
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Table 6.1 Summary of water sources and the treatments applied to mesocosms. 

Treatment Source water N concentration Si concentration 
+N Lake I2 10 mg L-1  Lake I2 ambient 
+Si Lake I2 Lake I2 ambient 6 mg L-1 

+N+Si Lake I2 10 mg L-1 6 mg L-1 
-N-Si Lake I2 Lake I2 ambient Lake I2 ambient 

Control Lake C2 Lake C2 ambient Lake C2 ambient 
 

6.2.4 Sampling procedures 

The mesocosms were sampled six times, every 7 days after 26 July until 30 August. 

The collection and analysis of water, phytoplankton and zooplankton samples was 

carried out as described in Chapter 2, except that only the top 1.0m of water was 

sampled from the mesocosms using a Perspex tube, and measurements of dissolved 

oxygen, temperature, and specific conductivity were only made at a depth of 50 cm. 

The methods used for water chemistry are also given in Chapter 2. Water chemistry, 

phytoplankton and zooplankton samples from Lake C2 were taken simultaneously 

using the same techniques.  

 

6.2.5 Statistical analysis 

Two analyses were performed on the data obtained from the mesocosm experiment in 

order to investigate the two aspects of the experiment. Both approaches were based 

on repeated-measures analysis of variance (RM-ANOVA), as successive 

measurements were made over time on the same experimental units (mesocosms) 

(Everitt, 1995; Chan, 2004). The first approach was to simulate the effects of lake 

restoration, and the second to investigate the effects of N and Si on lake plankton. The 

effects of lake restoration were investigated using a one-way RM-ANOVA. Time was 

the one repeated factor and treatment (+N, +Si, +N+Si, -N-Si, and control, see Table 

6.1) was the only fixed factor (Von Ende, 2001). A second RM-ANOVA was then used 

to test for the interaction between N and Si. The first RM-ANOVA could not analyse 

the interaction between N and Si because the design was not fully-factorial. By 

excluding the control treatment analysis, N addition and Si addition could each be 

used as fixed factors and the data reanalysed as a fully-factorial experiment as all 
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combinations of addition or non-addition of N and Si were present (Gravetter and 

Wallnau, 2000), allowing for the interaction between them (N × Si) to be analysed. 

Time was also used as the repeated factor in the second RM-ANOVA. 

 

Where a visual examination of residuals suggested a significant departure from 

normality, log(x+1) transformations were applied to the data to stabilise variances. If 

Mauchley’s test indicated the assumption of sphericity had been violated, the 

Greenhouse-Geisser correction was applied to the degrees of freedom used with the 

F ratio (Field, 2000). Since the estimates of sphericity did not exceed 0.75, the 

Greenhouse-Geisser correction was considered most appropriate (Field, 2000). The 

Greenhouse-Geisser correction is more conservative than the Huynh-Feldt adjustment 

reduces and therefore reduces the likelihood of Type I errors (Von Ende, 2001). 

Homogeneity of variance in the ANOVA models was tested using Levene’s test. 

Where significant (p ≤0.05) differences in variance among treatments were detected, 

post-hoc comparisons were made with the Games-Howell test in the first RM-ANOVA. 

The Games-Howell test is considered a robust post-hoc test when sample variances 

are unequal (Field, 2000). Differences in treatment means at the start of the 

experiment (0 days) were tested for using one-way ANOVA with transformed datasets 

where appropriate.  

 

Because RM-ANOVA requires no missing data, and no recognised procedure exists 

for dealing with missing data, missing values were assigned the mean values of other 

mesocosms of the same treatment on the same sampling day (e.g. Hopkins et al., 

2002). Although this increases the degrees of freedom and increases the risk of a 

Type I error (Underwood, 1997), the number of missing data points was small (no 

more than two per variable for the duration of the experiment, except for total alkalinity 

where data was missing for one sampling date), and replacing the missing values 

allowed for a balanced RM-ANOVA to be used. All mean values given in the text have 

one standard error reported in parentheses. SPSS 15.0 was used for all univariate 

analyses. 

 

Lake samples were compared to control samples to analyse the effects of isolation. 

Because there was no replicate of the lake sample, it was assumed that the error in 

the measurement of the control was equal to that error in the measurement of the lake 
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sample, in order to improve the robustness of the test. In order to estimate the 

significance of difference between the lake and control mesocosms, the standard error 

of the mean usually used in a one-sample t-test was substituted for the standard error 

of the difference between the control mesocosm and the lake. By estimating the error 

associated with the lake samples, this approach effectively created an independent-

samples t-test.  

 

Multivariate analysis of phytoplankton and zooplankton samples was performed using 

CANOCO 4.5 (ter Braak and Šmilauer, 2002). Genera which contributed less than 5% 

of the total phytoplankton biovolume of any sample were removed prior to analysis 

(e.g. Raikow et al., 2004). Both phytoplankton and zooplankton datasets were log(x+1) 

transformed prior to analysis to stabilise variances (Ramette, 2007). Initially, a DCA 

was performed on phytoplankton and zooplankton datasets to assess the length of 

axis 1 in order to determine the most appropriate form of multivariate analysis. Since 

the DCAs of each dataset revealed that the length of axis 1 was less than 2 standard 

deviations, the linear ordination technique principal components analysis (PCA) was 

used (Jongman et al., 1987).  

 

Table 6.2 Transformations applied to the datasets (and units of measurement in 
parentheses) used in the analysis of the mesocosm experiment. 

Variable Transform Variable Transform 
Chemical   Phytoplankton  

TP (µg L-1) none Chlorophyll-a (µg L-1) log(x+1) 
SRP (µg L-1) none Bacillariophyceae (µm3 mL-1)  log(x+1) 
NO3-N (mg L-1) log(x+1)  Chlorophytes (µm3 mL-1) log(x+1) 
NH4-N (mg L-1) log(x+1) Cyanobacteria (µm3 mL-1) log(x+1) 
SiO3 (mg L-1) none Cryptophytes (µm3 mL-1) log(x+1) 
Mg2+ (meq L-1) none Dinophytes (µm3 mL-1) log(x+1) 
Ca2+ (meq L-1) none Euglenophytes (µm3 mL-1) log(x+1) 
Na+ (meq L-1) none Chrysophytes (µm3 mL-1) log(x+1) 
K+ (meq L-1) none Zooplankton  
Cl- (meq L-1) log(x+1) Total zooplankton (ind. L-1) log(x+1) 
Total alkalinity (meq L-1) log(x+1) Daphnia spp. (ind. L-1) log(x+1) 

Physico-chemical  Ceriodaphnia spp. (ind. L-1) log(x+1) 
Temperature (°C) none Cyclopoid copepods (ind. L-1) log(x+1) 
Specific conductivity (ms cm-1) none Calanoid copepods (ind. L-1) log(x+1) 
Dissolved oxygen (mg L-1) none Bosmina spp. (ind. L-1) log(x+1) 
pH none Rotifers (ind. L-1) log(x+1) 
Secchi disk depth (cm) none   
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6.3  Results 

6.3.1 Water chemistry and physico-chemical variables 

Treatments 

During the experiment, NO3-N concentrations in Lake C2 did not vary substantially 

(Figure 6.5a), ranging between 1.9 and 2.6 mg L-1. RM-ANOVA showed that NO3-N 

concentrations were significantly higher in the +N and +N+Si treatments than in other 

treatments and in the control mesocosms (Table 6.3) during the experiment, 

suggesting that the manipulation of NO3-N was successful. Decreases in mean NO3-N 

concentration in the control mesocosms at the start of the experiment contributed to a 

significant effect of time during the course of the experiment and the changes in mean 

NO3-N concentration over time were significantly different between treatments (Table 

6.3). No significant interaction effect of N × Si was found (Table 6.3). NO3-N 

concentrations in Lake C2 were significantly higher than those in the control 

mesocosms at the end of the experiment (t >24.69, p = 0.002).  

0 10 20 30 40
0

2

4

6

8

10

12

S
iO

3
(m

g 
L-

1 )

0 10 20 30 40
0

2

4

6

8

10

12

0 10 20 30 40
0

2

4

6

8

10

12

S
iO

3
(m

g 
L-

1 )

N
O

3-
N

 (m
g 

L-
1 )

a) b)

0 10 20 30 40
0

2

4

6

8

10

12

+N +Si +N+Si -N-Si Control Lake+N +Si +N+Si -N-Si Control Lake

Day of experiment Day of experiment

 

Figure 6.4 Mean concentrations of a) NO3-N (mg L-1); b) SiO3 (mg L-1) (±1 S.E.) in 
mesocosms and Lake C2 concentration during the experiment. 

Throughout the experiment, the addition of Na2SiO3 resulted in significantly higher 

mean Si concentrations in +Si and +N+Si treatments (Figure 6.4, Table 6.3) showing 

that the manipulation of Si concentrations was also successful. Significant differences 

in mean Si concentration between treatments occurred over time (Table 6.3). The 

mean Si concentration fell in all mesocosms at the start of the experiment, and 

although the mean Si concentration in the -N-Si treatment continued to fall until day 

28, no significant interactions between time and treatment or N and Si were found 
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(Table 6.3). The mean concentration of Si in the control mesocosms was significantly 

lower than in the lake at the end of the experiment (t = 16.51, p = 0.004). 

 

Table 6.3 Statistical significance of the effects of treatments on the mean SiO3 
and NO3-N concentrations measured by RM-ANOVA. Significant (p ≤0.05) 
pairwise comparisons found using the post hoc Games–Howell test are 
shown. ‘↑’ indicates that the mean of the second treatment of the pair 
was higher (↓, lower). Pairwise abbreviations are given in Table 6.1. ‘df’, 
degrees of freedom; ‘MS’, mean square; ‘Tr’, nutrient treatment (tested 
by one-way RM-ANOVA); ‘t’, time; ‘Tr × t’, treatment × time interaction 
(tested  by one-way RM-ANOVA); N × Si, nitrogen × silica treatment 
interaction (tested by two-way RM-ANOVA). ‘*’ indicates that the F-ratio 
and degrees of freedom was adjusted using the Greenhouse-Geisser 
correction. 

Variable  df MS F p 
Significant 
pairwise 

comparisons 
NO3-N  
(mg L-1)  

 

Tr 4,10 15.83 2257.01 <0.001 (+N,+Si↓)  
(+N,-N-Si↓) 
(+N,Ctrl↓) 
(+Si,+N+Si↑) 
(+N+Si,-N-Si↓)  
(+N+Si, Ctrl↓) 

 t 2.01, 20.05 0.13 18.57* <0.001  
 Tr × t 8.02, 20.05 0.05 6.89* <0.001  

 N × Si 1, 8 0.001 0.113 0.746  
Tr 4,10 70.53 61.89 <0.001 (+N,+Si↑) 

(+N,+N+Si↑) 
(+N,Ctrl↑) 
(+Si,+N+Si↓) 
(+N,+Si,-N-Si↓) 
(+N+Si,Ctrl↓) 

t 1.99,19.90 55.67 30.93* <0.001  

Si  
(mg L-1) 
 

Tr × t 7.96, 19.90 3.76 2.09* 0.087  
 N × Si 1, 8 2.216 1.657 0.234  

 

Nutrients 

TP concentrations in Lake C2 ranged between 368 and 533 µg L-1, and the mean was 

446 (±28) µg L-1 during the experiment (Figure 6.5a). The mean TP concentration in 

the treatments at the beginning of the experiment ranged between 238 (±12) µg L-1 in 

the -N-Si treatment and 376 (±50) µg L-1 in the control mesocosms, although these 

differences were marginally insignificant (one-way ANOVA, F(4,10) = 3.25, p = 0.06). TP 

concentrations in the mescosms increased significantly throughout the experiment, 

except in those with NO3-N added (time and nutrients × time, p = <0.001, Table 6.4).  
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Figure 6.5 Mean concentrations (±1 S.E.) in mesocosms and concentration in 
Lake C2 during the experiment: a) TP (µg L-1); b) SRP (µg L-1);  
c) NH4-N (mg L-1). 

 

Table 6.4 Statistical significance of treatments on the mean TP, SRP and NH4-N 
concentrations measured by RM-ANOVA. Presentation as in Table 6.3. 

Variable  df MS F p 
Significant 

pairwise 
comparisons 

TP 
(µg L-1) 

Tr 4, 10 1053472.74 17.25 <0.001 (+N, -N-Si↑)  
(+N, Ctrl↑)  
(+N+Si, -N-Si↑) 
(+N+Si, Ctrl↑) 
(+N+Si, -N-Si↑) 

 t 5, 50 420210.79 72.36 <0.001  
 Tr × t 20, 50 85964.50 14.80 <0.001  

 N × Si 1, 8 63.96 0.001 0.976  
Tr 4, 10 907120.60 15.72 <0.001 (+N,+Si↑)  

(+N,-N-Si↑)  
(+N, Ctrl↑) 
 (+Si, +N+Si↓) 
(+N+Si, Ctrl↑) 
(+N+Si,-N-Si↑) 

t 2.21, 22.01 1170098.87 151.57* <0.001  

SRP 
(µg L-1) 

 

Tr × t 8.83, 22.01 154346.46 19.99* <0.001  
 N × Si 1, 8 1696.34 0.26 0.877  

Tr 4,10 0.20 0.46 0.765  
t 2.57, 25.72 3.59 11.02* <0.001  

Tr × t 10.29, 25.72 0.55 1.68* 0.138  

NH4-N  
(µg L-1) 
log(x+1) 
 N × Si 1, 8 0.286 0.727 0.419  
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Post-hoc pairwise comparisons showed that differences in TP concentration between 

+N and +N+Si treatments and other mescosms were significant (Table 6.4). The N × 

Si interaction was insignificant (Table 6.4). At the end of the experiment, the TP 

concentration in the lake was not significantly different to that in the +N and +N+Si 

treatments, but was significantly lower than in the control treatments (t = 13.44, p < 

0.006). 

 

Changes in SRP concentration were similar to those observed for TP (Figure 6.5b). 

SRP concentrations in Lake C2 did not change substantially during the monitoring 

period. Significant differences in mean initial SRP concentrations existed between the 

control mesocosms and the +N and -N-Si treatments (F(4,10) = 7.093, p = 0.006). Over 

the duration of the experiment, the mean SRP concentrations were higher in the 

mesocosms without NO3-N additions and the increases over time were significant 

(Table 6.4). In mesocosms with NO3-N additions mean SRP concentrations did not 

increase and the time × treatment interaction was highly significant (p ≤0.001, Table 

6.4). The interaction between N and Si was not significant (Table 6.4). SRP 

concentrations were significantly higher in the control mesocosms than in the lake at 

the end of the experiment (t = 17.35, p <0.005) 

 

The concentration of NH4-N in Lake C2 during the experiment ranged between 0 and 

0.18 mg L-1 (Figure 6.5c) and the mean was 0.09 (±0.04) mg L-1. NH4-N 

concentrations in Lake C2 were slightly lower than those in the mesocosms at the 

beginning of the experiment although the difference was not significant. Mean NH4-N 

concentrations did not vary significantly between mesocosms during the experiment 

(Table 6.4). There was a significant effect of time on mean NH4-N concentrations 

although not of treatment × time (Table 6.4). In all treatments. NH4-N concentrations 

decreased between 0 and 7 days and then rose until 21 days after the start of the 

experiment. Between 21 and 35 days, NH4-N concentrations in all mesocosms 

decreased. NH4-N concentrations in the lake were significantly higher than in the 

control mesocosm (t = 13.07, p <0.006) at the end of the experiment. 
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Major ions and alkalinity 

The concentrations of Mg2+ were similar amongst treatments and between the lake 

and the mesocosms (Figure 6.6a). The mean Mg2+ concentration in Lake C2 was 1.5 

(±0.1) meq L-1, and ranged from 1.1 to 1.9 meq L-1. Significant increases in Mg2+ 

concentrations occurred in all treatments and Lake C2 from the start of the experiment 

until day 21 (Table 6.5). The mean Mg2+ concentration was marginally significantly 

higher in the -N-Si treatment compared to the control mesocosms (p = 0.05, Table 

6.5). Isolation did not significantly affect Mg2+ concentrations the control mesocosms 

compared to Lake C2. 
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Figure 6.6 Mean concentrations of major ions and alkalinity (±1 S.E.) in 
mesocosms and Lake C2 concentration during the experiment: a) Mg2+ 
(meq L-1); b) Ca2+ (meq L-1); c) Na+ (meq L-1), d) K+ (meq L-1);  
e) Cl- (meq L-1); f) total alkalinity (meq L-1).  
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Table 6.5 Statistical significance of the effects of treatments on the mean 
concentrations of major ions and mean total alkalinity, measured by RM-
ANOVA. Presentation as in Table 6.3. 

Variable  df MS F p 
Significant 

pairwise 
comparisons 

Tr 4,10 0.21 3.81 0.039 (Ctrl, -N-Si↓) 
t 2.62, 26.23 0.97 219.22* <0.001  

Tr × t 10.49, 26.23 0.01 1.84* 0.101  

Mg2+  
(meq L-1)  

N × Si 1, 8 0.02 2.22 0.175  
Tr 4, 10 0.23 3.78 0.040 (+N, -N-Si↓)  
T 1.87, 18.67 0.93 18.88* <0.001  

Tr × t 7.46, 18.67 0.39 0.80* 0.604  

Ca2+  
(meq L-1) 
 

N × Si 1, 8 0.02 0.23 0.646  
Tr 4, 10 0.69 62.00 <0.001 (Ctrl, +Si↑)  

(Ctrl, +N+Si↑) 
(Ctrl, -N-Si↑) 

t 1.31, 13.12 0.34 34.69* <0.001  
Tr × t 5.25, 13.12 0.05 5.21* 0.007  

Na+  
(meq L-1)  

N × Si 1, 8 0.004 0.308 0.594  
Tr 4, 10 0.003 5.03 0.018  

t 2.61, 10.42 0.002 5.86 0.005  
Tr × t 10.42, 26.05 0.000 0.90 0.548  

K+  
(meq L-1) 

N × Si 1, 8 0.000 0.02 0.889  
Tr 4, 10 0.006 21.73 <0.001 (Ctrl, +N↑)  

(Ctrl, +Si↑)  
(Ctrl, +N+Si↑) 
(Ctrl, -N-Si↑) 

t 1.33, 13.25 0.009 19.26* <0.001  
Tr × t 5.30, 13.25 0.001 1.33* 0.310  

Cl-  
(meq L-1)  

N × Si 1, 8 0.000 1.49 0.257  
Tr 4, 10 0.002 4.29 0.028  

t 2.84, 28.44 0.019 17.61* <0.001  
Tr × t 11.38, 28.44 0.002 1.42* 0.215  

Total 
alkalinity 
(meq L-1) 
 N × Si 1, 8 0.092 0.37 0.561  

 

The mean Ca2+ concentration in Lake C2 during the experiment was 2.3 

(±0.1) meq L-1, and ranged from 1.9 to 2.7 meq L-1 (Figure 6.6b). Ca2+ concentrations 

in all mesocosms increased slightly between the beginning of the experiment and day 

14, and then fell during the rest of the experiment. Time had a significant effect on 

mean Ca2+ concentrations. The mean Ca2+ concentration was significantly higher in 

the +N than the -N-Si treatments (Table 6.5), probably because of the addition of 

Ca(NO3)2. No significant difference was found between control mesocosms and Lake 

C2 at the end of the experiment. 

 

Na+ concentrations in Lake C2 gradually increased throughout the experiment, from 

1.2 meq L-1 at the beginning of the experiment to 1.9 meq L-1 by day 35 (Figure 6.6c). 
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Na+ concentrations increased significantly during the experiment (Table 6.5), although 

the greater increase in mesocosms with either Si or NO3-N additions contributed 

towards a significant interaction between time and treatment (Table 6.5). Na+ 

concentrations were probably increased by the addition of Na2SiO3 to the +Si and 

+N+Si mesocosms. Na+ concentrations were significantly higher in Lake C2 than the 

control mesocosms at the end of the experiment (t = >88.75, p <0.0001).  

 

K+ concentrations were lower in Lake C2 than in the mesocosms during the 

experiment (Figure 6.6d), and ranged between 0.12 and 0.16 meq L-1 (mean, 0.13 ± 

0.01 meq L-1). In the mesocosms, mean K+ concentrations increased significantly over 

time (Table 6.5). Mean K+ concentrations were higher in the control treatments, 

although the difference was marginally significant (p = 0.08). K+ concentrations in the 

control mesocosms were significantly higher than in Lake C2 (t = 9.16, p = 0.012).  

 

Cl- concentrations in Lake C2 were slightly lower than the mean concentrations 

observed in the mesocosms at the beginning of the experiment, and by the end of the 

experiment they were higher than the mean concentrations in all treatments except 

+N+Si (p ≤0.05, Figure 6.6e). A slight but significant rise in Cl- concentrations occurred 

which was consistent across all mesocosms during the experiment. The nutrient × 

time interaction was insignificant (Table 6.5). The mean concentration of Cl- was lower 

in the control mesocosms than all others throughout the duration of the experiment 

(Table 6.5), and at the end of the experiment was significantly higher in the lake than 

the control mesocosms (t = 33.64, p <0.001). 

 

During the experiment total alkalinity increased significantly over time in all 

mesocosms (Table 6.5). Pairwise comparisons between treatments revealed only 

marginally higher total alkalinity in +N and +Si treatments (p = 0.068) and no 

significant treatment × time or N × Si interactions were found (Table 6.5). Total 

alkalinity did not differ significantly between the lake and the control mesocosms. 

 

Physico-chemical variables 

The water temperature in Lake C2 was slightly higher than in the mesocosms (Figure 

6.7a). Lake C2 water temperature ranged between 17.0 and 19.9°C during the 

experiment (mean 18.2 (±0.5) °C). No significant difference existed in temperature 
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between the treatments during the experiment and the N × Si interaction was 

insignificant. Water temperatures varied significantly over time (Table 6.6). 

 

At the start of the experiment, specific conductivity in Lake C2 was similar to that in 

the mesocosms (Figure 6.7b). After 7 days, specific conductivity in Lake C2 increased 

and remained higher than that in the mesocosms until the end of the experiment. 

Specific conductivity increased significantly during the experiment in all mesocosms 

(Table 6.6). Treatment had a significant effect on mean specific conductivity, and was 

generally highest in the +N+Si and +N treatments although no significant pair-wise 

differences were found. No significant Tr × t or N × Si interactions were found. At the 

end of the experiment, specific conductivity was significantly higher in the control 

treatments compared to the lake (t = 8.37, p = 0.014). 
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Figure 6.7 Mean physico-chemical parameters (±1 S.E.) in mesocosms and 
measurements from Lake C2 during the experiment: a, temperature (°C); 
b, specific conductivity (mS cm-1); c, DO (mg L-1); d, pH; e, Secchi disk 
depth (cm).  
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Table 6.6 Statistical significance of the effects of treatments on the mean 
concentrations of physico-chemical variables, measured by rm-ANOVA. 
‘Temp’, temperature; ‘Spec. cond.’; specific conductivity. Presentation 
as in Table 6.3 

Variable  df MS F p 
Significant 

pairwise 
comparisons

Tr 4, 10 0.004 0.44 0.779  
t 5, 50 16.07 11886.13 <0.001  

Tr × t 20, 50 0.001 0.41 0.984  

Temp. (°C)

N × Si 1, 8 0.003 0.387 0.551  
Tr 4, 10 0.13 6.13 0.009  

t 1.81,18.06 0.43 18.20* <0.001  
Tr × t 7.23, 18.06 0.001 0.37* 0.912  

Spec. 
cond  
(mS cm-1) 
 N × Si 1, 8 0.003 1.18 0.309  

Tr 4, 10 5.01 3.02 0.071  
t 5, 50 75.54 73.94 <0.001  

Tr × t 20, 50 1.83 1.79 0.098  

DO  
(mg L-1) 

N × Si 1, 8 3.47 1.77 0.220  
Tr 4, 10 0.27 3.79 0.040  

t 2.19, 29.94 3.20 56.56* <0.001  
Tr × t 8.78, 29.94 0.11 1.86* 0.115  

pH  
 

N × Si 1, 8 0.04 0.52 0.491  
Tr 4, 10 0.02 2.75 0.089  

t 2.44, 24.38 0.17 22.08* <0.001  
Tr × t 9.75, 24.38 0.02 1.92* 0.092  

Secchi 
depth 
(cm) 
 N × Si 1, 8 338.00 0.88 0.377  

 

In Lake C2, DO concentrations were generally less than the mean DO concentrations 

observed in the mesocosms (Figure 6.7c). The range of DO was 6.8–9.3 mg L-1 and 

the mean concentration was 7.8 mg L-1. Mean DO concentrations in the mesocosms 

increased between the start of the experiment, then declined significantly (Table 6.6) 

to approximately 9.1 mg L-1 at the end of the experiment. There was no significant 

interaction between N and Si. The mean DO concentration in the control mesocosms 

at the end of the experiment did not differ significantly from the lake. 

 

The pH of Lake C2 ranged between 7.8 and 8.7 during the experiment (Figure 6.7d). 

Changes in pH over time were significant (Table 6.6): pH in all of the mesocosms rose 

at the start of the experiment before falling briefly and then increasing until the end of 

the experiment. Treatment had a marginally significant effect on mean pH although no 

significant pair-wise comparisons were found and the interaction between N and Si 
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was not significant (Table 6.6). At the end of the experiment, pH did not vary 

significantly between the lake and control mesocosms.  

 

No significant effect of treatment was found on the mean Secchi depth (Table 6.6, 

Figure 6.7e). The mean Secchi disk depth at the beginning of the experiment was not 

significantly different between treatments. Secchi disk depths increased significantly 

over time (Table 6.6). After the start of the experiment, Secchi disk depths increased 

in all treatments. The Secchi disk was visible on the lake bed in most mesocosms 

after 21 days until the end of the experiment. No significant interaction between 

treatment and time or N and Si was found. The Secchi depth in Lake C2 was greatest 

at the start of the experiment, then decreased and remained at approximately 60 cm 

from day 7. At the end of the experiment, Secchi disk depth was significantly greater in 

the control treatment than in Lake C2 (t = 17.79, p = 0.003).  

 

6.3.2 Phytoplankton 

Chlorophyll-a concentrations at the beginning of the experiment (46 µg L-1) were 

similar in Lake C2 compared to the mesocosms (Figure 6.8a). Mean chlorophyll-a 

concentrations at the start of the experiment (15-26 µg L-1 in treatments and 40 µg L-1 

in the control mesocosms) did not vary significantly between treatments and control 

mesocosms. Mean chlorophyll-a concentrations varied significantly over time (Table 

6.7). After the first sampling the mean chlorophyll-a concentration in all treatments 

increased sharply and decreased between day 7 and day 14, to less than 15 µg L-1 in 

all mesocosms. Mean concentrations of chlorophyll-a remained low for the rest of the 

experiment. RM-ANOVA showed that +Si treatments had significantly lower mean 

chlorophyll-a concentrations than the +N and -N-Si treatments (Table 6.7). No 

significant treatment × time or N × Si interaction was found. An increase in chlorophyll-

a concentration occurred between day 0 and day 7 in Lake C2, and then chlorophyll-a 

concentrations began to decrease towards the end of the experiment. At the end of 

the experiment, chlorophyll-a concentrations in Lake C2 were significantly higher than 

in the control mesocosms (t = 10.51, p = 0.009). 
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Figure 6.8 Mean abundance (µm3 mL-1 ±1 S.E.) of total phytoplankton abundance 
and phytoplankton groups in mesocosms, and measurements from Lake 
C2 during the experiment: a) chlorophyll-a concentration (µg L-1); b) 
Bacillariophyceae; c) chlorophytes; d) cyanobacteria; e) cryptophytes; f) 
dinophytes; g) euglenophytes; h) chrysophytes (all µm3 mL-1). 
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Table 6.7 Statistical significance of the effects of treatments on the mean 
biovolume of phytoplankton groups, measured by RM-ANOVA. 
Presentation as in Table 6.3 

Variable  df MS F p 
Significant 
pairwise 

comparisons 
Tr 4, 10 0.39 5.42 0.014 (+N, +Si↓),  

(-N-Si, +Si↓) 
t 5, 50 2.46 42.67 <0.001  

Tr ×t 20, 50 0.14 1.51 0.121  

Chlorophyll-a  
(µg L-1) 
 

N × Si 1, 8 0.03 0.50 0.500  
Tr 4, 10 0.46 1.09 0.413  

t 2.2, 22.02 24.64 20.73* <0.001  
Tr ×t 8.81, 22.02 1.29 1.08* 0.413  

Bacillariophyceae 
(µm-3 mL-1) 
 

N × Si 1, 8 1.01 3.82 0.086  
Tr 4, 10 151.69 2.63 0.098  

t 2.23, 22.32 25.92 23.34* <0.001  
Tr ×t 8.93, 22.32 1.60 1.45* 0.229  

Chlorophytes 
(µm-3 mL-1) 
 

N × Si 1, 8 0.35 0.64 0.447  
Tr 4, 10 2.52 1.13 0.396  

t 5, 50 11.84 5.14 0.001  
Tr ×t 20, 50 1.97 0.85 0.640  

Cyanobacteria 
(µm-3 mL-1) 
 

N × Si 1, 8 0.04 0.02 0.907  
Tr 4, 10 1.06 2.08 0.159  

t 5, 50 12.65 26.20 <0.001  
Tr ×t 20, 50 0.39 0.81 0.695  

Cryptophytes 
(µm-3 mL-1) 
 

N × Si 1, 8 0.35 0.97 0.353  
Tr 4, 10 0.72 0.27 0.892  

t 5, 50 3.03 1.28 0.289  
Tr ×t 20, 50 2.79 1.18 0.312  

Euglenophytes 
(µm-3 mL-1) 
 

N × Si 1, 8 1.47 0.84 0.386  
Tr 4, 10 40.08 60.69 <0.001 (+N, Ctrl↑) 

(+N+Si, Ctrl↑) 
t 2.45, 24.45 19.254 8.20* 0.001  

Tr ×t 9.78, 24.45 5.23 2.23* 0.053  

Dinophytes 
(µm-3 mL-1) 
 

N × Si 1, 8 0.002 0.003 0.958  
Tr 4, 10 0.15 0.49 0.745  

t 5, 50 17.98 12.46 <0.001  
Tr ×t 20, 50 2.04 1.41 0.162  

Chrysophytes  
(µm-3 mL-1) 
 

N × Si 1, 8 0.66 0.35 0.573  
 

The treatments did not have a significant effect on the mean total biovolume of 

diatoms (Figure 6.8b, Table 6.7). S. acus and small centric diatoms were the most 

abundant diatoms in the mesocosms. At the beginning of the experiment, no 

significant differences were found between the mean total biovolume of diatoms in 

each treatment. The mean biovolume of diatoms changed significantly over time, 

decreasing after the start of the experiment and remaining low until the end (Table 

6.7). In Lake C2, Synedra acus, Cocceneis sp. and Aulacoseira spp. were the 

dominant taxa throughout the experiment. The abundance of all diatoms decreased 
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during the first 21 days of the experiment then increased, and although the biovolume 

of diatoms was higher in Lake C2 than the control mesocosms, the difference was 

only marginally significant at the end of the experiment (t = 3.89, p = 0.06).  

 

No significant effect of nutrients was found on the mean biovolume of chlorophytes. 

The mean biovolume of chlorophytes changed significantly over time (Figure 6.8c, 

Table 6.7). Chlorophytes (mainly Scenedesmus spp. Tetraedron spp, Tetrastrum spp. 

and Chlamydomonas spp.) in the mesocosms generally decreased in abundance at 

the start of the experiment, and increased between days 21 and 28. Changes over 

time were not significantly different between treatments (no significant interaction). No 

significant difference was found between the biovolume of chlorophytes in the control 

mesocosms and Lake C2 at the end of the experiment.  

 

No significant effect in mean cyanobacterial biovolume was observed between 

treatments (Figure 6.8d, Table 6.7). At the beginning of the experiment, no significant 

differences were found in the mean biovolume of cyanobacteria between treatments. 

The mean biovolume of cyanobacteria in the mesocosms varied significantly over time 

(Table 6.7). The biovolume of cyanobacteria decreased in all treatments, except +Si, 

between the first and second sampling. This was associated with a reduction in the 

biovolume of Microcystis sp. Oscillatoria limnetica became the most abundant 

cyanobacteria after 14 days, although the total biovolume of cyanobacteria remained 

substantially less abundant than other phytoplankton groups. There was no significant 

difference between cyanobacteria biovolume in Lake C2 and the control mesocosms 

at the end of the experiment.  

 

The effect of treatment and the interaction between treatment and time had no 

significant effect on the mean biovolume of cryptophytes (Table 6.7, Figure 6.8e). 

Cryptophytes were abundant during the experiment and represented by Cryptomonas 

sp. and Rhodomonas sp., and were strongly correlated with chlorophyll-a 

concentration (rs = 0.697, p ≤0.001). The mean biovolume of cryptophytes was 

strongly affected by time (Table 6.7). The abundance of cryptophytes increased 

between the start of the experiment and day 7, then fell in all treatments, and 

remained low until the end of the experiment. At the end of the experiment cryptophyte 

biovolume did not differ significantly between Lake C2 and the control mesocosms. 
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The mean biovolume of dinophytes (Figure 6.8f) was significantly affected by the 

treatments (Table 6.7). Pair-wise differences revealed a higher mean biovolume of 

dinophytes in control mesocosms than +N and +N+Si treatments. At the beginning of 

the experiment, the mean biovolume of dinophytes was greater in the control 

mesocosms compared to treatment mesocosms (F(4,10) = 6.61, p = 0.007). The mean 

biovolume of dinophytes varied significantly over time. Dinophytes increased in the 

control and -N-Si treatments between the start of the experiment and day 7 then fell 

and remained low until the end of the experiment. At the end of the experiment, no 

dinophytes were found in the control mesocosms, and 5.4 × 103 µm3 mL-1 in Lake C2.  

 

No significant effect of nutrients was observed on the mean biovolume of 

euglenophytes and their biovolume did not vary significantly over time (Figure 6.8, 

Table 6.7). The only genus of euglenophyte that was observed in the mesocosms 

throughout the experiment was Trachelomonas sp. The biovolume of euglenophytes 

at the end of the experiment was not significantly different between the control 

mesocosm and Lake C2.  

 

Treatment, and the treatment × nutrient interaction, did not significantly affect the 

mean biovolume of chrysophytes (Figure 6.8h, Table 6.7). Chrysophytes in Lake C2 

were represented only by Mallomonas sp. The biovolume of Mallomonas sp. in Lake 

C2 increased during the experiment. The only genus of chrysophyte found during the 

experiment in the mesocosms was Mallomonas sp. The mean biovolume of 

Mallomonas sp. changed significantly over time (Table 6.7). Between the start of the 

experiment and day 7, the mean biovolume of Mallomonas sp. in the -N-Si treatments 

increased. During the same period, the mean biovolume of Mallomonas sp. decreased 

in the +N treatment and remained. Mallomonas sp. was rarely found in the 

mesocosms after day 7, and none were found in the control treatment at the end of 

the experiment.  
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Phytoplankton community structure 

The first axis identified by PCA accounted for 30.4% of the variance in the 

phytoplankton dataset. The second axis accounted for an additional 7.2% of 

phytoplankton community variance, and axis 3 and four were associated with a total of 

11.2% of variance. In total, axes 1 to 4 accounted for 48.8% of the phytoplankton 

community variability.  

 

The plot of phytoplankton species (Figure 6.9a) shows all phytoplankton genera 

forming one cluster. No clear differences in sample scores between treatments were 

evident from the PCA plot. At the start of the experiment, phytoplankton of all 

mesocosms plotted towards the bottom right of the PCA plot (Figure 6.9b), with high 

axis 1 scores and low axis 2 scores (Figure 6.10a and b). This suggests a 

phytoplankton community associated with chlorophytes such as Tetrastrum, 

Coelastrum and Pediastrum, and the cyanobacterium Microcystis sp. Sample scores 

on axis 2 increased between day 0 and 7, reflecting the substantial increase in the 

biovolume of the cryptophytes Cryptomonas sp. and Rhodomonas sp. Higher axis 2 

scores also suggest an increase in the importance of the chlorophyte genera 

Monoraphidium, Tetraedron, and Scenedesmus. Increases in axis 2 scores are also 

likely to be related to the decrease in abundance of Microcystis, Scenedesmus, 

Coelastrum and Tetrastrum. From day 14 until the end of the experiment, sample 

scores on both axes 1 and 2 strongly clustered towards the right of Figure 6.9b. This 

was probably a reflection of a decrease in the overall abundance of phytoplankton.  
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Figure 6.9 PCA of phytoplankton genera and samples, with scaling focused on 
inter-species correlation. a) Phytoplankton genera colour-coded by 
group: brown, Bacillariophyceae; green, chlorophytes; orange, 
cryptophytes; blue, cyanobacteria; black, others (including 
chrysophytes, euglenophytes and dinophytes). For abbreviations see 
Table 6.8. b) Samples coded by treatment ( , +N; , +Si; , +N+Si; , -N-
Si; , Control and ×, Lake C2) and annotated with sample day  
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Figure 6.10 Mean phytoplankton PCA scores (±1 S.E.) during the mesocosm 
experiment for all treatments and Lake C2. a) axis 1; b) axis 2. 

 

Table 6.8 Abbreviations used in Figure 6.9a. 

Abbreviation Genus 

Bacillariophyceae 
Asteri Asterionella 
Aula Aulacoseira  

Centric Centric species (Stephanodiscus / Cyclotella type) 
Cocco Cocconeis 
Cymb Cymbella 
Frag Fragilaria 
Merid Meridion 
Penn Pennate diatoms 
Syn Synedra 
Tab Tabellaria 

  
Chlorophytes 

Actin Actinastrum 
Anky Ankyra 

Chlamy Chlamydomonas 
Chlor Chlorella 
Clost Closterium 
Coel Coelastrum 
Cruci Crucinigella  
Dicty Dictyosphaerium  
Eud Eudorina 
FGA Filamentous Green Algae 
Flag Unidentified green flagellates 
Micra Micratinium 
Mono Monoraphidium 

Pedias Pediastrum 
Pter Pteromonas 
Scen Scenedesmus 
Staur Staurastrum 
Tetrae Tetraedron 
Tetras Tetrastrum 
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Table 6.8 contd. 

Abbreviation Genus 

Cryptophytes  
Crypt Cryptomonas 
Rhodo Rhodomonas 

  
Cyanobacteria  

Anab Anabaena 
Aphan Aphanizomenon 
Chroc Chroococcus  
Meris Merismopedia 
Micro Microcystis 
Oscil Oscillatoria 

  
Others  

Euglen Euglena 
Gymn Gymnodinium 
Mall Mallomonas 
Perid Peridinium 
Phac Phacus 
Trach Trachelomonas 

 

 

6.3.3 Zooplankton 

No significant differences in the mean total number of zooplankton (Figure 6.11a) 

occurred between treatments and the N × Si interaction was insignificant. There was 

no difference in total zooplankton biomass at the beginning of the experiment between 

treatments. A significant effect of time was observed (Figure 6.9). The total number of 

zooplankton in all mesocosms was low at the beginning of the experiment, increased 

to day 14 and then declined for the remainder of the experiment. Total zooplankton 

abundance in Lake C2 was lower than in the mesocosms during the experiment, and 

significantly lower than the control mesocosms at the end of the experiment (t = 4.69, 

p = 0.04).  
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Figure 6.11 Mean abundance (ind. L-1, ±1 S.E.) of total zooplankton abundance 
and zooplankton groups in mesocosms, and measurements from Lake 
C2 during the experiment: a) total zooplankton; b) Daphnia spp.; c) 
Ceriodaphnia spp.; d) cyclopoid copepods; e) calanoid copepods; f) 
Bosmina spp.; g) rotifers. 
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Table 6.9 Statistical significance of the effects of treatments on the mean 
abundance of zooplankton, measured by RM-ANOVA. Presentation as in 
Table 6.3. 

Variable  df MS F p 
Significant 
pairwise 

comparisons 
Tr 4, 10 45.38 0.299 0.872  

t 2.33, 23.30 1992.29 14.65* <0.001  
Tr × t 9.32, 23.30 129.10 0.949* 0.505  

Total 
abundance 
(ind. L-1) 

N × Si 1, 8 0.000 0.000 0.992  
Tr 4, 10 0.05 1.50 0.275  

t 5, 50 1.03 17.22 <0.001  
Tr × t 20, 50 0.05 0.85 0.642  

Daphnia spp. 
(ind. L-1)  

N × Si 1, 8 0.03 0.45 0.520  
Tr 4, 10 9.60 1.40 0.304  

t 3.01, 30.12 94.59 7.29* 0.001  
Tr × t 12.05, 30.12 13.00 0.93* 0.536  

Ceriodaphnia 
sp. 
(ind L-1) 
 N × Si 1, 8 0.12 1.24 0.298  

Tr 4, 10 0.07 0.38 0.821  
t 5, 20 2.33 39.30 <0.001  

Tr × t 20, 50 0.07 1.20 0.293  

Cyclopoid. 
copepods   
(ind. L-1)  

N × Si 1, 8 0.19 0.93 0.362  
Tr 4, 10 0.22 3.91 0.037 (-N-Si, Ctrl↓) 

t 5, 20 0.18 7.07 <0.001  
Tr × t 20, 50 0.03 1.10 0.375  

Calanoid 
copepods 
(ind. L-1)  

N × Si 1, 8 0.000 0.000 0.996  
Tr 4, 10 0.07 0.33 0.851  

t 2.45, 24.49 0.25 1.63* 0.214  
Tr × t 9.80, 24.49 0.15 0.95* 0.537  

Bosmina spp.  
(ind. L-1)  

N × Si 1, 8 0.86 0.46 0.518  
Tr 4, 10 0.001 1.94 0.181  

t 2.89, 28.87 0.001 0.78* 0.515  
Tr × t 11.55, 28.87 0.002 1.22* 0.317  

Rotifers   
(ind. L-1)  

N × Si 1, 8 0.000 0.38 0.553  
 

No significant effect of treatment was observed on the mean abundance of Daphnia 

spp. and no significant interaction between N and Si was found (Table 6.9). The genus 

Daphnia was represented by the species D. hyalina and D. pulex in Lake C2 and 

mesocosms, although D. hyalina was more frequently found throughout the 

experiment. Daphnia spp. were generally rare in Lake C2, ranging in abundance 

between 0 and 0.2 ind. L-1 (Figure 6.11b). Significant changes over time were 

observed in the mean abundance of Daphnia spp. (Table 6.9). The mean abundance 

of Daphnia spp. increased from the beginning of the experiment in all treatments until 

day 21 and then began to decrease until the end of the experiment. Control 

mesocosms did not have a significantly different abundance of Daphnia spp. at the 

end of the experiment compared to the control mesocosms.  
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No significant effect of treatment or significant interaction between N and Si was 

detected on the mean abundance of Ceriodaphnia spp. (Table 6.9). Ceriodaphnia spp. 

varied significantly in abundance over the course of the experiment. Increases in 

abundance occurred at the start of the experiment in all treatments. From day 14 until 

the end of the experiment the mean abundance of Ceriodaphnia spp. decreased in all 

treatments (Table 6.9). Ceriodaphnia spp. were not frequently found in Lake C2 during 

the experiment (Figure 6.11c) and were not significantly more abundant in the lake 

than in the control mesocosms at the end of the experiment. The only other 

cladoceran found during the experiment was Scapheloberis mucronata which was 

most abundant between days 28 and 35.  

 

No significant differences in mean cyclopoid copepod abundance were observed 

between treatments and the interaction between N and Si was insignificant (Table 

6.9). Cyclopoid copepod abundance varied significantly over time (Table 6.9). In all 

treatments, the mean number of cyclopoid copepods increased from the beginning of 

the experiment until days 7 to 14 and then decreased for the remainder of the 

experiment. Cyclopoid copepods were found in Lake C2 throughout the experiment 

(Figure 6.11d). No significant difference was found between the mean abundance in 

control mesocosms and Lake C2. 

 

Treatment had a significant effect on the mean abundance of calanoid copepods 

(Table 6.9); mean abundances were significantly higher in -N-Si mesocosms than the 

control mesocosms. No significant interaction occurred between N and Si. The mean 

abundance changed significantly over time (Table 6.9, Figure 6.11e). In +Si and -N-Si 

treatments, the mean abundance of calanoid copepods increased throughout the 

experiment. Calanoid copepods were virtually absent in the control mesocosms and 

Lake C2 during the experiment.  

 

Bosmina longirostris was the most abundant member of the genus in the mesocosms. 

B. coregoni was also recorded in the mesocosms during the second week of the 

experiment. No significant effect of nutrients or interaction between N and Si was 

observed on the abundance of Bosmina spp. (Table 6.9). The mean abundance of 

Bosmina spp. did not vary significantly over time (Figure 6.11, Table 6.9) and was not 

significantly different in the mesocosms than in Lake C2. The abundance of Bosmina 
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spp. did not differ significantly between Lake C2 and the control mesocosms at the 

end of the experiment.  

 

The mean abundance of rotifers was low in all treatments (Figure 6.11g). The rotifers 

found in zooplankton samples were either Keratella spp. or Asplancha spp. The mean 

abundance of rotifers did not vary significantly over time or between treatments, and 

no significant interaction between N and Si was found (Table 6.9). In Lake C2, 

Asplancha sp. was generally more abundant during the experiment. However, at the 

end of the experiment, rotifers were not recorded from either Lake C2 or the control 

mesocosms. 

 

Zooplankton community structure 

Axis 1 of the zooplankton PCA was associated with 38.2% of variance in the dataset, 

and the second axis was associated with an additional 24.3%. In total, the first four 

axes indentified by PCA were related to for 85.0% of variation in the zooplankton 

dataset.  

 

Figure 6.12a shows a plot of the zooplankton taxa PCA scores. Daphnidae were split 

into two groups along axis 1, with higher axis 1 and two scores being associated with 

Ceriodaphnia sp and D. hyalina. Low axis 1 scores were associated with S. mucronata 

and D. pulex. The two groups of copepods observed during the experiment were also 

distinctly separated by the PCA. High axis 1 and low axis 2 scores were associated 

with cyclopoid copepods, and lower axis 1 and higher axis 2 scores corresponding to 

calanoid copepods. Chydoridae, rotifers and Bosmina spp. were all found near the 

centre of the PCA diagram.  

 

A plot of sample scores (Figure 6.12b) shows no clear differences between the 

treatments. Samples from the beginning of the experiment had low axis 1 and two 

scores (Figure 6.13a and b), possibly related to the low abundance of all zooplankton 

groups during the first sample. Samples from the second and third weeks had higher 

axis 1 and two scores, driven by an increase in the abundance of cyclopoid copepods 

in all mesocosms. Increases in the axis 2 scores after 14 days reflect the increase in 

abundance of D. hyalina and Ceriodaphnia sp. Then decreases in the axis 1 scores 
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were observed, most likely a consequence of increases in the abundance of calanoid 

copepods. No significant effect of nutrients × time was found. 
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Figure 6.12 PCA of phytoplankton genera and samples, with scaling focused on 
inter-species correlation. a) Zooplankton genera are colour-coded by 
group: blue, Daphnidae; green, copepods; magenta, Bosminidae; black, 
rotifers and red, others. b) Samples coded by treatment ( , +N; , +Si; , 
+N+Si; , -N-Si; , Control and ×, Lake C2) and annotated with sample 
day. 
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Figure 6.13 Mean zooplankton PCA scores (±1 S.E.) during the mesocosm 
experiment for all treatments and Lake C2. a) axis 1; b) axis 2. 

 

6.4 Discussion 

In mesocosms without N added and the control mesocosms, the concentration of TP 

and SRP increased during the experiment. The release of P from the sediments is 

likely to be responsible for the observed increases in P concentration (see discussion 

in section 3.9, page 187). P release from the sediments of eutrophic lakes is 

frequently observed (section 1.4.1, page 36; Søndergaard et al., 1999, 2001), 

although in-situ evidence of P release is scarce. During the mesocosm experiment the 

most likely cause of P release is probably related to anoxic conditions at the sediment 

surface which allows P to diffuse out of the sediment (Figure 1.8 page 39). The clear 

water and low phytoplankton biomass in the mesocosms suggests P sedimentation 

was high, possibly related to grazing of phytoplankton by zooplankton and 

sedimentation of zooplankton faecal pellets (e.g. Ferrante and Parker, 1977). The 

installation of the mesocosms involved some disturbance of sediments, which may 

have exaggerated the effects of P release. Resuspension of sediments has been 

found to be related to increases in P concentrations in shallow lakes (Zickler et al., 

1956; Scheffer, 1998; Søndergaard et al., 2003).  

 

A consequence of the manipulation of NO3-N concentrations was the suppression of P 

release in the +N and +N+Si mesocosms. NO3-N has been found to be associated 
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with reductions in P release in a variety of laboratory and field studies (see section 

1.4.1, page 41, Andersen, 1982; Foy, 1986; Jensen and Andersen, 1992; Hansen et 

al., 2003). It is likely that the addition of NO3-N to the +N and +N+Si treatments 

resulted in an increase of the available oxidised Fe which could be related to the 

suppression of P release during the experiment in these treatments. NO3-N strongly 

oxidises lake sediments, because it is highly soluble in water and therefore is effective 

at supplying oxygen to the sediments (Hansen et al., 2003). 

 

No significant effect of N addition on mean chlorophyll-a concentration or the mean 

biovolume of phytoplankton groups was observed. This contrasts with the increasing 

evidence that suggests N may limit total phytoplankton productivity (see section 1.4.2, 

page 42; Moss et al., 1994; Weithoff and Walz, 1999; Maberly et al., 2002; Camacho 

et al., 2003; James et al., 2003). This may particularly be the case in eutrophic lakes 

where denitrification rates can be high (Wetzel, 1983; Petzoldt and Uhlmann, 2006). 

Some mesocosms have shown that elevated concentrations of N may favour the 

growth of cryptophytes (e.g. Vrede et al., 1999; González Sagrario et al., 2005). NO3-

N additions to other mesocosms has been associated with rapid chlorophyll-a rises 

driven by cryptophytes (Présing et al., 1997). N enrichment has also been associated 

with a reduction in the biomass of cyanobacteria (e.g. Schindler, 1977) which may be 

favourable for lake management.  

 

Since P was abundant in all N and Si manipulations it is surprising that no effect of 

NO3-N was found. This may be associated with the NH4-N concentrations in the 

mesocosms. NH4-N is the preferred source of N for uptake by phytoplankton (e.g. 

Dortch, 1990) as assimilation of NO3-N requires reduction to NH4-N and is therefore 

less energy efficient (Wetzel, 1983). The high abundance of zooplankton in all 

mesocosm treatments suggests that recycling of NH4-N could occur (Wen and Peters, 

1994; Attayde and Hansson, 1999; Vanni, 2002), which may have been important for 

the growth of phytoplankton in the mesocosms. No significant differences were 

observed in NH4-N concentrations between treatments which suggests that all 

mesocosm had similar NH4-N concentrations. The negative correlation between NH4-

N and chlorophyll-a concentrations across all mesocosms (rs = -0.226, p = 0.032) also 

suggests the uptake of NH4-N by phytoplankton. Decreases in NH4-N concentrations 
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were particularly evident between day 0 and day 7, when mean chlorophyll-a 

concentrations also increased sharply. 

 

The supply of NH4-N may explain the apparently anomalous finding that the biovolume 

of cyanobacteria decreased during the experiment in the mesocosms. It could be 

expected that conditions in the mesocosms would favour cyanobacteria growth, for 

example by low N:P ratios in the mesocosms without N addition (Shapiro, 1973; 

Smith, 1983). Abundant NH4-N has been related to low cyanobacteria biovolume in 

other studies (e.g. Présing et al., 1997). Although zooplankton were abundant in the 

mesocosms, grazing is unlikely to have been related to the low cyanobacterial 

biovolume, as grazing zooplankton would probably consume smaller species in 

preference to cyanobacteria (Agrawal, 1998; Reynolds, 2006). Microcystis, the most 

abundant cyanobacterium in the mesocosms, is resistant to grazing on account of its 

size and toxicity (Agrawal, 1998). The ability of cyanobacteria to regulate their 

buoyancy (Reynolds et al., 1987) might avoid the effects of sedimentation experienced 

by other phytoplankton groups.  

 

The addition of Si to the mesocosms caused a decrease in chlorophyll-a 

concentrations. Mean chlorophyll-a concentrations in the +Si treatment were lower 

than the +N and -N-Si treatments. This difference was probably associated with the 

comparatively smaller increase in chlorophyll-a concentration observed between the 

first and second sampling in the +Si mesocosms. The mean chlorophyll-a 

concentration between day 0 and 7 increased by 24 µg L-1 in the +Si treatment and 

101 and 37 µg L-1 in +N and -N-Si treatments respectively. This may have been 

related to the higher mean abundance of Ceriodaphnia sp. and Bosmina spp. in the 

+Si mesocosms, which could have reduced phytoplankton biomass by grazing. The 

small F ratio associated with this finding suggests that size of this effect was not large 

(Field, 2000; Gravetter and Wallnau, 2000). This is also supported by the similarity in 

mean chlorophyll-a concentrations between the +Si, and +N and -N-Si treatments, 

from the third sampling until the end of the experiment (Figure 6.8a).  

 

The addition of Si did not significantly increase the biomass of diatoms in contrast to 

the expectation that higher Si concentrations may favour diatom growth. Some 

ambiguity exists as to the relationship between concentrations of Si measured in water 
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and the abundance of diatoms. For example, Bailey-Watts (1976) found no clear 

relationship between planktonic diatom abundance and Si concentrations, and 

suggested that this may be related to the sinking of diatom cells (see section 1.4.3, 

page 48). It is possible that the biovolume of diatoms in the mesocosms was 

adversely affected by sedimentation. Sinking is a loss process which can significantly 

affect phytoplankton that are unable to regulate their buoyancy (Reynolds et al., 1982; 

Reynolds, 2006). Diatoms in particular are susceptible to sinking, as sinking rates 

have been estimated to be at least twice as fast as non-siliceous phytoplankters of 

similar geometric shape (Sommer, 1991), and this may have contributed towards the 

decline in their biomass. Sedimentation may have been favoured by the increased 

height of the mesocosm walls because of the increase in water depth in Lake C2 

(Figure 6.3c and d) which would have reduced the potential for wind mixing of the 

water column.  

 

The only significant change in phytoplankton community was the higher dinophyte 

biovolume in the control mesocosms compared to the +N and +N+Si. This finding 

mainly reflects the increase in dinophyte biomass in the control mesocosms at the 

beginning of the experiment. An increase in dinophyte biovolume may be associated 

with the increase in P concentration in the control treatment (>220 µg L-1 between day 

0 and 7). Romo and Villena (2005) found that dinophytes were more abundant in 

mesocosms enriched with both N and P but Gonzalez-Sagrario et al. (2005) found no 

response of dinophytes to N and P enrichment. Peridinium sp. may be associated with 

the phytoplankton of small nutrient-enriched ponds (Reynolds et al., 2002) which 

suggests that their growth may have been favoured by higher P concentrations. 

However, dinophytes were the rarest phytoplankton group during the experiment, and 

even a statistically significant increase in their biovolume appeared to have little effect 

on the overall phytoplankton community composition (Figure 6.10). 

 

The abundance of zooplankton did not vary significantly between treatments. The only 

significant difference found between treatments was a marginally higher abundance of 

calanoid copepods in the -N-Si than the control treatment. This is probably because 

calanoid copepods were transferred in the water from Lake I2, where they were 

considerably more abundant, particularly during summer 2007 when the experiment 

took place (>10 ind. L-1 in Lake I1, Figure 3.40c; <0.5 ind. L-1 in Lake C2 Figure 3.16c). 
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The mean abundance of calanoid copepods for the entire experiment was higher in all 

mesocosms that were filled with water from Lake I2 than the control mesocosms, 

although not sufficiently greater to be significantly different.  

 

Grazing by zooplankton is likely to have had a substantial effect on the phytoplankton 

in the mesocosms. Since the enclosures probably protected the zooplankton from 

zooplanktivorous fish, populations of zooplankton were able to increase substantially 

compared to the abundances observed in Lake C2. The findings of Chapter 4 

suggested that grazing possibly exerted a strong influence on abundance of 

phytoplankton in Lake C2, and across all mesocosms, negative correlations were 

observed between chlorophyll-a concentrations and Daphnia spp. (rs = -0.470, 

p ≤0.001). Grazing has often been suggested as a potentially important modifying 

factor between nutrient concentrations and total phytoplankton biomass (e.g. 

Carvalho, 1994; Moss et al., 1994; Lau and Lane, 2002; Carvalho and Kirika, 2003). 

The potential for a strong grazing effect in this experiment may have been high 

because of the dominance of small and easily grazed species which are considered to 

be susceptible to grazing by zooplankton, such as cryptophytes (Talling, 2003), small 

centric diatoms and the chlorophytes Ankyra and Chlamydomonas (Reynolds, 2006). 

This finding demonstrates the importance of fish in Lake C2 for regulating the trophic 

cascade. 

 

A particularly important finding of this experiment for the management of Attenborough 

Nature Reserve is that there is a large potential for the release of P from the 

sediments. This confirms the findings of Chapter 3 (see section 3.9, page 187) and the 

Vollenweider modelling discussed in section 5.5.2 (page 256). The significantly higher 

P concentrations in the mesocosms without NO3-N added than the lake suggests that 

isolation of the lakes, and removal of the supply of NO3-N from the River Erewash 

(section 5.4.1, page 246; section 5.5.1, page 254) may favour high in-lake P 

concentrations. Nutrient reduction measures in shallow lakes may include the removal 

of sediments in order to reduce the pool of P that may be released to the water 

column (e.g. Jeppesen et al., 1991; Annadotter et al., 1999; Søndergaard et al., 2000), 

and this technique might reduce the magnitude of P release from the sediments, if 

only in the short-term (Phillips et al., 1999). The diversion of the River Erewash and 

subsequent reduction in NO3-N loading to the connected lakes may also increase P 
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release by reducing oxidation of the lake sediments. Adding NO3-N into connected 

lakes may therefore appear to be an effective method for reducing P release after the 

diversion of the River Erewash. However, significant costs are involved with the 

addition of NO3-N to lakes (Foy, 1986). Furthermore, the addition of NO3-N to lakes is 

also unwise given the evidence that diverse and stable vegetation communities 

require very low NO3-N concentrations (1–2 mg L-1), and that high N concentrations 

may ultimately delay recovery from eutrophication (González Sagrario et al., 2005; 

James et al., 2005).  

 

The absence of fish in the mesocosms was probably the main cause of the large 

population of zooplankton during the experiment. Juvenile fish are often 

zooplanktivorous (such as perch, Perca fluviatilis, which becomes piscivorous), whilst 

planktivorous fish (including roach, Rutilus rutilus, and bream, Abramis brama) are 

likely to prey on zooplankton throughout their life (Brönmark and Hansson, 1998). 

Several studies have suggested that predation by planktivorous fish is important for 

determining the size and structure of the zooplankton community (Brooks and 

Dodson, 1965; Lammens, 1999; Attayde and Hansson, 2001). Meijer et al. (1990) 

found that the exclusion of a mixture of cyprinid fish (bream, carp and small roach) 

from sections of a shallow lake resulted in a higher abundance of large-bodied 

zooplankton (e.g. Daphnia hyalina and D. magna), although little difference in total 

zooplankton biomass was found. Hansson et al. (2007) identified the importance of 

young-of-the-year fish in ending the abundance of zooplankton during spring and 

therefore terminating the spring clear-water phase in a Swedish lake. In the connected 

lakes of Attenborough Nature Reserve, it is probable that a large community of 

planktivorous fish existed, therefore the isolation of the water column released 

zooplankton from top-down control by fish. Excluding fish from the mesocosms is 

likely to have affected the interpretation of the effects of nutrients and nutrient 

interactions on the phytoplankton community and is probably the largest limitation to 

the applicability of the experimental results for shallow lake management. Mesocosm 

experiments that have included fish as a treatment in the design have found that they 

alter phytoplankton and zooplankton biomass and community structure. Data gathered 

from a number of mesocosm studies show an increase in total phytoplankton biomass 

with the addition of planktivorous fish (e.g. Lynch and Shapiro, 1981; Proulux et al., 

1996; Moss et al., 2004) although evidence for group level changes can be variable 
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between experiments (Lynch and Shapiro, 1981; Van de Bund et al., 2004). The 

addition of fish would have considerably increased the logistical challenge of replacing 

the water in the mesocosms after their construction. Sourcing fish may particularly 

challenging, and the death of fish in mesocosms (e.g. Romo and Villena, 2005) may 

complicate the treatments unless continually replaced as required. Since this was the 

first mesocosm experiment run in the Attenborough Nature Reserve, the experiment 

aimed to reduce the number of controlling variables and focus on bottom-up 

processes. However, future studies could consider using a fish treatment in addition to 

N and Si manipulations when simulating lake restoration. Experiments including fish 

may be more representative of natural lake ecosystems undergoing restoration and 

could provide more insight into the response of phytoplankton to N, Si and simulated 

restoration by reducing top-down control. 

 

Some criticisms of the use of mesocosms in investigating ecological communities 

have been made (Carpenter and Kitchell, 1988; Schindler, 1998) although 

mesocosms may be complementary to long term monitoring and whole-lake 

experiments (Carpenter, 1997; Drenner and Mazumder, 1999). The argument that 

small-scale ecological experiments exclude some components of ecosystems 

(Carpenter, 1996) was evident during this experiment, for example through exclusion 

of fish which is a clear limitation to this experiment. Other components and processes 

may change so rapidly as to be unrealistic (Carpenter, 1996). For example, the rate of 

change of total phytoplankton biomass in the mesocosms appeared to reach 

approximately 22 µg  L–1 day -1, compared to an estimate (assuming a linear change 

over time) of up to 9 µg L-1 day-1 in the open lake. The small spatial and temporal 

scale of mesocosm experiments can give inconsistent results when compared to 

whole-lake scales (e.g. Carpenter and Kitchell, 1988). In this experiment, the small 

size of the mesocosms probably prevented a realistic stimulation of water column 

turbulence, which may have been significant for the potential of sedimentation of 

phytoplankton. Even if the results of mesocosm experiments are largely replicable 

(Schindler, 1998), extrapolating findings without appreciating the effects of spatial and 

temporal scales on mesocosm results may give erroneous management 

recommendations.  

 



Chapter 6: Experimental effects of isolation, N and Si  

327 

6.5 Conclusions 

The results of the mesocosm experiment suggest that the isolating effect of the 

mesocosms was associated with changes in chemistry and in biology. P 

concentrations at the start of the experiment were not significantly less than the 

ambient lake concentration, and continued to increase throughout the experiment. 

Increases in P concentration may reflect the importance of flushing to prevent the 

accumulation of P in the overlying water column. This finding is supported by the 

findings of Chapter 5, which suggested that a reduction in water retention time was 

associated with decreased in-lake P concentration.  

 

The rapid response of P concentrations in the mesocosms suggests that the diversion 

of the River Erewash and effective isolation of currently connected lakes will probably 

be associated with increased in-lake P concentrations. The addition of NO3-N in the 

+N treatments suppressed P release, as has been observed in other field and 

experimental studies (e.g. Foy, 1986; Jensen and Andersen, 1992).  

 

The isolation of lake water in the mesocosms was also associated with a rise in the 

abundance of zooplankton. The effect was observed across all mesocosms, and was 

probably a result of the exclusion of zooplanktivorous fish from the mesocosms. The 

increase in zooplankton is likely to be related to the sharp decline in total 

phytoplankton abundance after day 7 of the experiment. The response of 

phytoplankton to zooplankton grazing may have been greater than the effect of 

nutrient additions, which could explain why the effects of nutrients were related to few 

changes in chlorophyll-a concentration or mean phytoplankton group biovolumes. The 

decrease in chlorophyll-a concentrations due to grazing may have been particularly 

rapid due to the abundance of cryptophytes and chlorophytes which are susceptible to 

grazing by zooplankton (Reynolds, 2006).  

 

Other mechanisms may have accounted for the decrease in abundance of other 

phytoplankton groups. Diatoms may have been adversely affected by sedimentation 

(Sommer, 1984) in addition to grazing by zooplankton as it is likely that there was little 

turbulence in the mesocosms. Diatom cells are particularly susceptible to sinking as 

they are unable to regulate their buoyancy and the siliceous cell walls increases their 
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density compared to other phytoplankton groups (Sommer, 1984). The abundance of 

cyanobacteria in the mesocosms also decreased. This may be related to the 

abundance of NH4-N which could imply that N-fixing cyanobacteria would have no 

competitive advantage. As NH4-N concentrations did not differ between treatments, 

this may explain why phytoplankton populations did not respond to the addition of 

NO3-N to the mesocosms.  

 

The findings of this chapter suggest that the isolation of currently-connected lakes 

from the River Erewash diversion will be associated with an increase in summertime P 

concentrations, consistent with the conclusions of Chapters 3 and 5 (see sections 3.9 

and 5.9). Isolation of the lakes will prevent the flushing of P from the connected lakes 

and may result in P accumulating in the water column during the summer. Wind 

mixing may have been reduced by increasing the height of the mesocosm walls in 

response to the increase in water depth. This could have over-estimated 

sedimentation. Reducing the supply of NO3-N to the connected lakes may reduce the 

oxidation of the sediments and increase P release further. However, it is unlikely that 

NO3-N addition is a suitable technique for mitigating against internal P loading.  
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Chapter 7 Discussion and conclusions 
 

This chapter examines the key findings that relate to each of the original aims of the 

thesis. The aims were: 

 

1. to compare and contrast the chemical and biological structure and functioning 

of the shallow lakes at Attenborough Nature Reserve isolated from and 

connected to the River Erewash (discussed from page 330); 

2. to investigate how flooding events may affect the biology and chemistry of 

Attenborough Nature Reserve (page 342); 

3. to experimentally simulate lake restoration by river diversion and explore the 

effects of nitrogen and silica on ecosystem community structure at 

Attenborough Nature Reserve (page 346); 

4. to explore the likely effects of diverting nutrient-rich water from shallow lakes, 

and evaluate these effects in the context of the Attenborough Nature Reserve 

(page 351). 

 

The major findings are discussed in relation to the management of Attenborough 

Nature Reserve and more generally in the context of managing shallow eutrophic 

lakes. The chapter also discusses restoration techniques in addition to the diversion of 

the River Erewash which may benefit Attenborough Nature Reserve. 
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7.1 Compare and contrast the chemical and biological 

structure and functioning of shallow lakes isolated 

from and connected to nutrient-rich river inflows 

 

7.1.1 Summary of major findings 

• The River Erewash is an important external source of P, N and Si to the lakes 

and in-lake processing of nutrients appears to have varied among connected 

and isolated lakes; 

• Isolated lakes I1 and I2 exist in the clear-water state and have abundant 

submerged macrophytes, but the connected lakes and lake I3 are turbid, 

devoid of macrophytes and dominated by phytoplankton; 

• Bottom-up processes (nutrients) and flushing rate probably interact to 

strengthen top-down (grazing) control of phytoplankton during spring in the 

connected lakes compared to the isolated lakes;  

• Internal release of P from the sediments probably occurrs in all lakes; 

• The potentially beneficial effects of short WRT caused by connectivity to the 

River Erewash should be considered in management plans.  

 

7.1.2 Nutrient supply and internal cycling 

The River Erewash inflow is an important source of P for the connected lakes, as is 

often the case for shallow lakes which are connected to rivers (see section 5.4.1, page 

246; e.g. Anderson et al., 1990; Beklioglu et al., 1999; Bootsma et al., 1999; Gulati 

and van Donk, 2002). Reducing the nutrient loading from such rivers is usually the 

initial action taken to restore lakes (Moss et al., 1996a; Gulati and van Donk, 2002). 

The diversion of the River Erewash is relatively unusual because the nutrient loading 

will be reduced by the removal of most of the inflow rather than by a reduction of point-

source P discharges. Whether or not such a reduction in external loading has any 

significant effect on in-lake P concentrations is usually dependant on the degree of 

internal loading. This can be of particular importance in lakes with low WRTs. This is 
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because historically short WRTs may be associated with higher inflow of P-rich water 

and therefore higher P retention in the sediments (Jeppesen et al., 1991). P release 

represents a significant challenge for the management of Attenborough Nature 

Reserve. During the 35 days of the mesocosm experiment, TP concentrations in the 

mesocosms without NO3-N added increased by over 800 µg L-1, as discussed in 

section 6.4 (page 320). This suggests that a substantial pool of P exists that could be 

released. Experiences elsewhere suggest that summertime TP concentrations may 

not decline for around 15 years after a reduction in external P loading (Jeppesen et 

al., 2005b; Phillips et al., 2005; Søndergaard et al., 2005). 

 

The River Erewash is an important source of NO3-N because internal processing of 

NO3-N (e.g. uptake by and sedimentation of phytoplankton and denitrification) reduces 

water-column concentration. Isolation of lakes from external N supplies is therefore 

associated with a reduction in NO3-N concentration (e.g. Moss et al., 1986). The 

decline in NO3-N concentration from Lake C1 to Lake C3 suggests increasing 

retention along the Erewash-connected lake chain (see Figure 3.2c and Figure 3.18c; 

section 3.9, page 187). NH4-N is probably rapidly recycled within the connected lakes, 

by processes such as uptake by phytoplankton, regeneration by zooplankton, 

decomposition of organic matter and release from the sediments (Vanni and Temte, 

1990; van Luijn et al., 1999; Présing et al., 2008). The importance of internal NH4-N 

cycling is likely to be greater in lakes that are isolated from nutrient-rich rivers (e.g. 

Moss et al., 1996b). Using river diversion for lake restoration is significantly 

advantageous compared to catchment-scale nutrient control, as the diffuse nature of 

N loading means that N management is considerably more difficult than P loading 

management (see section 1.4.2, page 42 and section 7.4.3, 353; Petzoldt and 

Uhlmann, 2006). If internal P loading maintains an abundant P supply after river 

diversion, there may an increased risk of cyanobacterial blooms unless internal cycling 

of N is sufficient to prevent N limitation (e.g. Moss et al., 1986; 1996b). Evidence from 

lakes I1 and I2 suggests that N reaches limiting concentrations during the summer 

and cyanobacteria are proportionally more abundant in the phytoplankton community, 

although the total phytoplankton biomass was lower. For example, the relative 

abundance of cyanobacteria during summer 2006 in connected lakes was less than 

25%, although in lakes I1 and I2 cyanobacteria, including heterocystous species such 

as Aphanizomenon sp. and Anabaena sp. comprised >50% of total phytoplankton 
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biovolume. A further discussion of cyanobacteria in Attenborough Nature Reserve is 

given in section 7.4.3 (page 353).  

 

The supply of Si to the connected lakes was probably important for the in-lake 

concentration of Si, but internal release of Si may also have contributed to water-

column Si. Inflowing concentrations of Si were significantly higher than those in all of 

the connected lakes during the monitoring period (see section 5.4.1, page 246). 

Diatoms were abundant in the phytoplankton during the spring and particularly during 

the late summer, when SiO3 concentrations were depleted sufficiently to be potentially 

limiting for diatom growth. The biovolume of diatoms and SiO3 concentrations were 

negatively correlated in the connected lakes (rs = -0.565, p <0.001), reflecting the 

importance of diatoms for regulating water-column SiO3 concentrations. Rapid 

increases in SiO3 concentrations occurred (5 mg L-1 in 30 days were not uncommon, 

e.g. Figure 3.10, page 107) after the collapse of diatom populations. The presence of 

diatom frustules in the sediments (Sayer and Roberts, 2001) suggests that some Si is 

retained in the connected lakes. The nutrient budget developed in Chapter 5 (page 

255) also showed that Si was retained during 2005 and 2006 in the connected lakes. 

Internal Si loading has been thought to exceed external loading in several studies (e.g. 

Bailey-Watts, 1976; Parker et al., 1977; Miretzky and Cirelli, 2004). In isolated lakes I1 

and I2, Si concentrations were lower than in the connected lakes (section 3.9, page 

187), suggesting that Si concentrations have declined since the isolation of those 

lakes from the River Erewash in 1981. Si concentrations in lakes I1 and I2 were not 

significantly correlated with the abundance of planktonic diatoms (rs = -0.069, p = 

0.557). It may be that the improvement in benthic light climate has improved the 

growth of benthic diatoms in lakes I1 and I2 consequently reduced the strength of 

correlation between water-column Si concentrations and planktonic diatom 

populations. Diversion of the River Erewash from the currently connected lakes may 

result in a reduction of planktonic diatoms after several years. For example, Philips et 

al. (2005) found that planktonic diatoms may have been replaced with a greater 

benthic diatom community 20 years after a reduction in external nutrient loading. 

However internal recycling of Si may be sufficient to prevent declines in planktonic 

diatom biomass in the short-term after the River Erewash diversion.  
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7.1.3 Alternative Stable States 

Both elements of of the two states of the alternative stable states model (see section 

1.3, page 29 Scheffer et al., 1993; Scheffer and Jeppesen, 1998) appeared to be 

evident in Attenborough Nature Reserve (Figure 7.1). Sayer and Roberts (2001) 

suggested that connectivity to the River Erewash may have induced a switch from 

clear to turbid water in the connected lakes. The results presented in this thesis show 

that the connected lakes are highly turbid (see section 3.9, page 187). Secchi disk 

depths during the monitoring period frequently reached less than 50 cm during the 

summer and the Secchi disk was never visible on the bottom of the connected lakes  
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Figure 7.1 Schematic map of water clarity, phytoplankton biomass and 
submerged macrophytes in Attenborough Nature Reserve. 
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(see Figure 3.2l, Figure 3.10l, Figure 3.18l). During the summer of 2007, Secchi disk 

depths were similar to the previous years although chlorophyll-a concentrations were 

lower, which suggests that there was a greater influence of minerogenic turbidity 

associated with the flooding events. Secchi disk depth was more closely associated 

with the TSS concentration than with chlorophyll-a in the lakes where submerged 

vegetation was absent (connected lakes and Lake I3), than in the vegetation-

dominated lakes I1 and I2 (Figure 7.2). This suggests that minerogenic turbidity may 

be important in maintaining the turbid state due by creating a poor underwater light 

climate, although the exact cause is difficult to interpret because TSS also includes 

the algal component of water turbidity. The estimates of Middelboe and Markager 

(1997) suggest that vegetation in the connected lakes would not grow at depths 

greater than 0.5 m because of the water turbidity. Therefore, except in some littoral 

areas, submerged vegetation is probably unable to grow in the connected lakes and 

Lake I3 because the water depth exceeds 0.5 m.  
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Figure 7.2 Spearman’s rank correlation coefficients (rs) between Secchi disk 
depth and chlorophyll-a (chl-a) and total suspended solids (TSS) 
concentrations during the monitoring period. All correlations shown are 
significant at p ≤ 0.01. n.s., not significant (p ≥0.05). 
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High algal growth associated with nutrient supply derived from the River Erewash may 

have reduced the resilience of the currently connected lakes, causing a switch to the 

turbid state when it was diverted in the currently connected lakes in 1972 (see section 

1.3, page 29; Sayer and Roberts, 2001). The increase in the nutrient loading alone 

might have been sufficient to cause a decline in submerged vegetation, but stochastic 

events may have forced a shift between the clear and turbid states. Stochastic events 

are an underlying assumption of the alternative stable states model (Scheffer et al., 

1993). Connectivity to the River Erewash may increase the likelihood of stochastic 

events occurring. For example, flood events may cause a large increase in 

minerogenic turbidity, such as was observed during January 2008, in the connected 

lakes which may contribute towards a collapse in vegetation. Water depth increases, 

which could be caused by flooding events, may also force a switch towards 

phytoplankton dominance (e.g. Blindow et al., 1993). 

 

The turbid condition of Lake I3 is probably associated with the supply of nutrients from 

the inflow (BPI) (section 5.4.2, page 252). Nutrient concentrations in Lake I3 were 

generally higher than in the other isolated lakes but lower than those in the lakes 

connected to the River Erewash (section 3.9, page 187). Throughout the monitoring 

period, nutrient concentrations at BPI were significantly higher than the in-lake 

concentration suggesting that the inflow is a significant source of nutrients. It is 

possible that the original diversion of the River Erewash into the lakes may have 

caused a loss of submerged vegetation in Lake I3, although the lake was probably 

isolated from nutrient-rich water most of the time (Sayer and Roberts, 2001). The 

‘delta sanctuary’ between lakes C3 and I3 (see Figure 2.1, page 74) may have helped 

protected Lake I3 from the River Erewash inflow. 

 

In contrast, lakes I1 and I2 exist in a clear-water state. Secchi disk depths in both 

lakes were high, and the water turbidity was more strongly correlated with chlorophyll-

a than TSS concentrations suggesting lower minerogenic turbidity than in the River 

Erewash connected lakes and Lake I3. Submerged vegetation was abundant during 

the summer months in both lakes. However, P concentrations in Lake I1 are at the 

higher end of P concentrations that may be expected for a clear-water lake. The 

maximum summer TP concentration during 2005 was approximately 400 µg L-1, and in 

2006 exceeded 600 µg L-1. High TP concentrations suggest that the lake may be 
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susceptible to a switch to the turbid state (Moss et al., 1996a; Scheffer and Jeppesen, 

1998) but winter NO3-N concentrations of <0.6 mg L-1 during 2005 and 2006 are 

probably low enough to maintain stable and diverse vegetation communities 

(González Sagrario et al., 2005; James et al., 2005). Because of the high P 

concentrations, increases in NO3-N concentration associated with very high flood 

events may jeopardise the stability of the clear-water state and cause a switch to 

turbid water. For example flooding events during the winter of 2007–2008 increased 

NO3-N concentrations to over 1.0 mg L-1, possibly related to the overtopping of water  

from Lake C2 (Figure 5.18, page 245). P concentrations in Lake I2 were lower during 

the monitoring period (maximum summer TP <200 µg L-1) than in Lake I1 (see Figure 

3.26a, page 134; and Figure 3.34a, page 147) which suggests that greater forcing 

would be required to switch the lake to a turbid state (Figure 7.3). NO3-N 

concentrations were similarly low in both Lake I1 and Lake I2, and did not exceed 1 

mg L-1 during the monitoring period (Figure 3.26c and Figure 3.34c). Positive feedback 

mechanisms associated with the presence of submerged macrophytes are likely to be 

important for the maintenance of clear-water in Lake I1 and I2 because of the potential 

for high phytoplankton growth. Zooplankton grazing appeared to limit phytoplankton 

biomass (Table 4.15, page 219) which may have been maintained by the refuge effect 

of submerged macrophytes (e.g. Timms and Moss, 1984; Scheffer, 1998). An 

abundance of submerged macrophytes may have shaded phytoplankton (Van Donk 

and Van de Bund, 2002) and may have contributed to the sedimentation of 

phytoplankton (Barko and James, 1998). Chara spp., which were found in both lakes 

I1 and I2, may release allelopathic substances (e.g. Mulderij et al., 2006; 2007) and 

further hinder phytoplankton growth. 

 

Lakes I1 and I2 may be useful references for nutrient-rich and artificial shallow lakes. 

This is important as defining appropriate reference conditions for artificial lakes in 

order to meet the requirements of the Water Framework Directive (European 

Community, 2000) is difficult. The high error associated with modelling type-specific 

lake reference types suggests that a site-specific approach is more robust (e.g. 

Carvalho et al., 2009), further supporting the use of lakes I1 and I2 for establishing 

reference conditions for the Attenborough Nature Reserve. High P concentrations and 

low NO3-N concentrations are potential outcomes of diverting the River Erewash, 

which suggests that the current states of lakes I1 and I2 (abundant submerged 
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macrophyte community and clear water) may be an appropriate target for the 

restoration of the connected lakes. In support of this, palaeoecological evidence 

suggests that submerged macrophytes were abundant in Lake C2 before the River 

Erewash was diverted into the currently connected lakes (Sayer and Roberts, 2001).  

 

 

 

Figure 7.3 Stability landscapes schematically representing nutrient 
concentration and turbidity in the lakes of Attenborough Nature 
Reserve. The balls represent the current state of the lakes, and the depth 
of the valley in which it rests represents the hypothesised stability of the 
current state. Colour-coding is derived from Figure 7.1. Based on 
Scheffer (1998).  
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7.1.4 Top-down and bottom-up control of phytoplankton 

A combination of top-down and bottom-up control of phytoplankton occurred in the 

lakes of Attenborough Nature Reserve during the monitoring period, as discussed in 

Chapter 4 and summarised in Table 4.15, page 219. During spring, zooplankton 

grazing was probably related to the clear-water period in the connected lakes. 

Chlorophyll-a concentrations were reduced to less than 10 µg L-1 and Secchi disk 

depths increased to around 150 cm. In contrast, a spring clear-water period was not 

clearly evident in isolated lakes I1 and I2, although zooplankton were significantly 

related to phytoplankton community composition. In Lake I3, a spring clear-water 

period did not occur and zooplankton were not identified as significant in determining 

either phytoplankton biomass or community structure (Chapter 4). 

 

The well-defined clear-water period observed in the connected lakes might be 

explained by the dominance of smaller, easily-grazed phytoplankton typical of lakes 

with short WRTs and high nutrient loading (Figure 7.4). The physical effects of short 

WRT may have favoured the development of small phytoplankton species that are 

able to reproduce sufficiently quickly to replace their losses from outwash (Brook and 

Woodward, 1956). In the connected lakes, small centric diatoms, and small 

chlorophytes such as Scenedesmus, Ankyra and Monoraphidium were common 

members of the phytoplankton community. Since they are generally considered more 

edible for zooplankton, the top-down control of phytoplankton may have been 

reinforced  by the short WRT (e.g. Timms and Moss, 1984) during the spring. Short 

WRTs may favour rapidly reproducing species that do not form large colonies and are 

therefore more easily grazed by zooplankton (Brook and Woodward, 1956; Dickman, 

1969). 

 

The physical effects of River Erewash may have been augmented by the supply of 

nutrients to the connected lakes. Jensen et al. (1994) argued that in hypertrophic 

temperate shallow lakes, chlorophytes were more dominant than cyanobacteria 

because of their greater requirement for nutrients to satisfy their rapid growth rates. 

The importance of the River Erewash for supplying N to the connected lakes may also 

contribute to the suppression of heterocystous cyanobacteria. This idea is explored in 
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more detail in section 7.3.3, page 347. It is difficult to accurately attribute the increase 

in the importance of chlorophytes to either the effect of flushing rates or nutrient 

supply. 

 

 

Figure 7.4 Potential mechanisms which may favour: a, high phytoplankton 
biomass and the growth of small, easily grazed species (such as 
chlorophytes and diatoms) in lakes connected to nutrient-rich rivers; 
and b, lower phytoplankton biomass and the growth of large, grazing 
resistant phytoplankton species (e.g. cyanobacteria) in lakes isolated 
from rivers. The potential strength of top-down and bottom-up 
processes during spring are shown on the right of the diagram. 

 

In lakes I1 and I2, zooplankton grazing was weakly negatively associated with total 

phytoplankton biomass (rs ≤0.543, see Table 4.15, page 219). This suggests that top-

down control of the zooplankton may be moderated by the higher proportions of 

grazing-resistant cyanobacteria in the phytoplankton of the isolated lakes during the 

summer compared to the connected lakes (Figure 7.5). Cyanobacteria are likely to be 

less easily grazed due to their size (Agrawal, 1998). Zooplankton may also be 
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sensitive to the toxicity of cyanobacteria (Haney, 1987). Another possible competitive 

advantage for cyanobacteria in the connected lakes may be their regulation of 

buoyancy, which may help to avoid sinking losses in a water-column stabilised by 

submerged macrophytes (Reynolds et al., 1987).  
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Figure 7.5 Mean percentage (±1 S.E.) of cyanobacteria in the phytoplankton of 
the lakes of Attenborough Nature Reserve during the growth seasons 
(June-September) of the monitoring period. 

 

Bottom-up control probably also influenced the phytoplankton communities of isolated 

lakes more strongly than in the connected lakes. However, strong negative 

correlations were found between chlorophyll-a and NH4-N, NO3-N and SiO3 

concentrations (Chapter 4, Table 4.15) in the connected lakes suggesting high uptake 

of nutrients associated with the high phytoplankton biomass during summer. NH4-N 

depletion during the summer has been observed in other eutrophic lakes (e.g. Lau and 

Lane, 2002; Présing et al., 2008). NH4-N limitation in the connected lakes may have 

been alleviated by uptake of NO3-N when NH4-N supply was exhausted (Dortch, 

1990). Negative correlation between SiO3 concentrations and chlorophyll-a is likely to 

occur where diatoms form a significant proportion of the planktonic phytoplankton 

biomass. In connected lakes of Attenborough Nature Reserve, diatoms formed more 

than 31% of the phytoplankton community during the monitoring period.  

 

In isolated lakes I1 and I2 NO3-N was significantly related to phytoplankton community 

structure in both lakes I1 and I2 (Table 4.15, page 219). Competition for NO3-N with 

submerged macrophytes (e.g. Ozimek et al., 1990) may have reduced the availability 

of NO3-N for phytoplankton, particularly during the summer, and may have favoured 
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cyanobacteria. NH4-N, SiO3 and SRP were also significantly associated with 

phytoplankton community structure in Lake I1, which may indicate a greater strength 

of bottom up control of phytoplankton than in Lake I2. In Lake I3, both NH4-N and SRP 

were significantly related to phytoplankton community biomass and structure (Table 

4.15, page 219), suggesting that bottom-up control of phytoplankton was stronger than 

top-down controls.  

 

However, the traditional view that cyanobacteria become more dominant at high 

nutrient concentrations may not be applicable where nutrient-rich river inflows 

decrease WRT and increase nutrient concentrations to a hypertrophic state. 

Connectivity to such rivers may, paradoxically, be advantageous for the management 

of eutrophic shallow lakes by favouring a phytoplankton community that is more easily 

controlled by zooplankton grazing. However, predation on zooplankton by fish may 

reduce the strength of top-down control on phytoplankton by favouring smaller and 

more inefficient grazers (Brooks and Dodson, 1965). This has an important implication 

for lake restoration as it suggests that increasing the biomass of zooplankton (for 

example by biomanipulation) has more potential for reducing phytoplankton 

abundance in hypertrophic shallow lakes where cyanobacteria are less abundant, than 

lakes with lower nutrient concentrations, proportionally abundant cyanobacteria and 

long WRTs.  
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7.2 Investigate how flooding events may affect the 

biology and chemistry of shallow lakes 

 

7.2.1 Summary of major findings 

 

• Flooding was associated with lower P concentrations;  

• N and Si concentrations did not change during flooding; 

• Flooding was associated with reduced phytoplankton abundance;  

• Flooding favoured cryptophytes and diatoms and reduced the abundance of 

cyanobacteria; 

• The effects of short WRT associated with connectivity to rivers might be 

advantageous for shallow lake management. 

 

7.2.2 Nutrient concentrations 

P concentrations during the wet year of 2007 were lower than during 2005 and 2006 in 

both connected and isolated lakes. This was probably associated with dilution of P in 

the inflowing River Erewash and washout through outflows in the connected lakes 

(Figure 7.6) and dilution by increased water volumes alone in lakes I1 and I2. This is 

important for the potential of river diversion as a technique for lake restoration, as it 

suggests that maintaining connectivity to inflows and outflows may help to reduce in-

lake P concentrations. A management approach that maintains flushing rates 

contrasts with the River Erewash diversion strategy currently being persued at 

Attenborough Nature Reserve. 

 

 

 



 

 

 

Figure 7.6 Changes in the connected lakes associated with increased precipitation. 
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Management of discharge from the lakes to decrease WRT during summer may allow 

for P released from the sediments to be flushed from the lake in order to reduce water-

column P concentrations. A management strategy which regulates the flushing rates 

of Attenborough Nature Reserve could be particularly advantageous because of the 

high P release from the sediments. Spears et al. (2006) argue that as many lakes that 

are impacted by eutrophication have managed hydrological regimes, flow 

management could be widely used to aid lake recovery. The flow of water through 

Attenborough Nature Reserve could potentially be easily manipulated using existing 

flow management structures, such as the weir at MPO and flaps on Ea outflow. 

Flushing with nutrient-poor water during winter has been suggested to reduce 

cyanobacterial blooms (Hosper, 1998), although the success of this winter flushing 

was hampered by sedimentary P release during summer. Increasing flushing during 

the summer has the advantage of directly removing phytoplankton and reducing the 

effects of summertime P release, as shown by the differences in biology and nutrient 

concentrations observed during the wet year of 2007 (section 5.6, page 260 and 

section 5.7, page 265).  

 

The in-lake concentration of N and Si did not vary much during the wet year of 2007 

compared to 2005 and 2006. As both N and Si are primarily derived from diffuse 

sources (Petzoldt and Uhlmann, 2006; Sferratore et al., 2006), and the transport of 

nutrients derived from diffuse sources increases when the discharge into lakes 

increases (Elliott et al., 2009), dilution and washout are likely to have balanced the 

increase in N and Si transport into the connected lakes. This caused increases in the 

DIN:SRP and Si:SRP ratios (Figure 7.7). This is potentially significant for the 

management of shallow lakes connected to nutrient-rich rivers as it suggests that 

future variations in discharge may have complex effects on in-lake nutrient 

concentrations. Increased discharge may result in lower P concentrations and 

increases in the N:P and Si:P ratios. Reduced discharge may have the opposite effect, 

because the retention of P in the water column associated with reduced flushing rates 

may further decrease N:P and Si:P ratios, potentially promoting cyanobacterial 

blooms. 
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Figure 7.7 Mean molar DIN:SRP and Si:SRP ratios (±1 S.E.) in connected and 
isolated lakes during dry (2005–2006) and wet (2007) growth seasons 
(June–September). Note change in y-axis for isolated lakes.  

 

7.2.3 Phytoplankton abundance and composition 

The effects of reduced WRTs on phytoplankton biomass was desirable for lake 

management and restoration as low WRTs were associated with decreased biomass 

(Figure 7.6). Achieving a decrease in the total biomass of phytoplankton is frequently 

an important part of lake restoration attempts in order to reduce turbidity. However 

Secchi disk depths during 2007 in the connected lakes were only slightly (~10–15 cm)  

greater than during 2005 or 2006, suggesting that minerogenic turbidity was probably 

important during 2007. Short WRTs during the summer may therefore have desirable 

effects on the phytoplankton of lakes, but may not reduce water turbidity. Diverting 

rivers from lakes is likely to prevent episodic flooding events from diluting and 

washing-out phytoplankton.  

 

The changes in the phytoplankton community associated with reductions in WRT were 

also complementary to the aims of lake restoration. Cyanobacterial biomass was 

reduced and diatoms and cryptophytes became more important (Figure 7.6). These 

changes are also advantageous to lake managers as the likelihood of cyanobacteria 
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blooms was reduced. These findings suggest that lake restoration that maintains short 

WRTs may be a more successful strategy than isolation. The lasting effects of the 

flooding during 2007 are unknown from the duration of this study. Therefore, future 

studies should monitor the recovery of lakes from episodic flooding to establish if 

short-term reductions in flushing rate have advantages for lake restoration and 

management or whether sustained reductions are required to reduce phytoplankton 

abundance and composition. 

 

7.3 Investigate the effects of nitrogen and silica on 

ecosystem community structure 

 

7.3.1 Summary of major findings 

• N did not have any significant effect on total phytoplankton biomass;  

• Low N:P ratios are associated with higher biovolumes and proportions of 

cyanobacteria in the phytoplankton; 

• Si did not have any significant effect on phytoplankton biomass or 

composition; 

• Si:P ratios are a poor predictor of absolute and relative diatom abundance in 

Attenborough Nature Reserve. 

 

7.3.2 Effects of N on total phytoplankton biomass 

The evidence presented in this thesis cannot conclusively confirm the idea that 

increases in N concentrations increase the biomass of phytoplankton in eutrophic 

shallow lakes. The results of the mesocosm experiment were inconclusive, so the 

effects of N can only be assessed at a whole-lake scale. A strong positive correlation 

between the mean chlorophyll-a concentration and mean DIN measured during the 

monitoring period (rs = 0.886, p = <0.02) in all of the lakes suggests that higher mean 

DIN concentrations are associated with higher mean chlorophyll-a concentrations. 

NH4-N was closely associated with phytoplankton biomass, and negative correlations 
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were found between NH4-N and chlorophyll-a concentrations in the connected lakes, 

in common with other studies (e.g. Lau and Lane, 2002). In isolated lakes I1 and I2 

the very low N concentrations and presence of N-fixing cyanobacteria (Chapter 3) 

suggests that N may have been limiting during the summer. NH4-N concentrations 

may have been associated with the non-significant response of the mesocosm 

experiment to N enrichment (Chapter 6). The apparent importance of NH4-N for 

phytoplankton suggests that diverting nutrient-rich rivers may result in total 

phytoplankton biomass being controlled by the rates of internal regeneration of NH4-N. 

Mechanisms of internal NH4-N regeneration that may be of significance to 

Attenborough Nature Reserve include release from the sediments (e.g. van Luijn et 

al., 1999; Beutel, 2006) and zooplankton excretion (e.g. Wen and Peters, 1994; 

Attayde and Hansson, 1999; Vanni, 2002). Losses of NH4-N to denitrification may 

further enhance NH4-N limitation (Présing et al., 2008). Future studies could consider 

the NH4-N release from the sediments of connected lakes so that potential for NH4-N 

to become limiting after the diversion of the River Erewash can be assessed. It is 

possible that reducing both NH4-N and P supplies to eutrophic lakes may increase the 

likelihood of cyanobacterial blooms (Présing et al., 2008).  

 

7.3.3 N:P ratios and cyanobacteria 

In Attenborough Nature Reserve, the data tentatively support the hypothesis that low 

N:P ratios may favour cyanobacteria. Cyanobacteria were more abundant in Lakes I1 

and I2 (Figure 7.5), and growth season mean DIN:SRP ratios were lowest in the 

isolated lakes (Figure 7.7). The strength of the correlation between cyanobacterial 

abundance and DIN:SRP ratios appeared to be slightly stronger in the isolated lakes 

than the connected lakes (Figure 7.8). In the connected lakes, cyanobacteria were 

most abundant when the DIN:SRP ratio was <5, and in connected lakes when 

DIN:SRP was between 5.0 and 32. The different strength of the effects of DIN:SRP 

ratios on the relative and absolute biovolume of cyanobacteria between connected 

and isolated lakes suggests that WRT may reduce the effect of DIN:SRP ratios. In the 

connected lakes, flushing may have reduced the abundance of cyanobacteria (see 

Figure 7.4). Additionally, nutrient ratios may not accurately predict phytoplankton 

response if either nutrient is non-limiting (Reynolds, 1984) which may reduce the 

predictive strength of DIN:SRP in connected lakes where N rarely became limiting. For 
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most of the growth season, NO3-N concentrations in the connected lakes were in 

excess of the 0.14 mg L-1 of NO3-N that Présing et al. (1997) suggested may be 

responsible for reducing the abundance of N-fixing cyanobacteria. Dodds (2003) 

suggests that DIN:SRP ratios are not the most accurate measures of nutrient 

availability and limitation. However, because DIN and SRP is easier to measure than 

total-N and total-P, if managing cyanobacteria is a management priority for shallow 

lakes, then the DIN:SRP ratio may be a cost-effective and easily-obtainable 

measurement for predicting the dominance of cyanobacteria compared to TN:TP 

ratios, particularly if ambient N concentrations are generally low.  
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Figure 7.8 The relationship between the DIN:SRP ratio (by molarity) and a) the 
absolute biovolume of cyanobacteria; b) the proportion of total 
phytoplankton biovolume comprising cyanobacteria. Spearman’s rank 
correlation was used to assess the strength of the relationship. 

 

Cyanobacteria were rare (Figure 7.4) in Lake I3, even though the DIN:SRP ratio was 

low. Lake I3 is therefore a clear exception to the hypothesis that low N:P favour 

cyanobacteria. Given that P is more abundant than in Lake I3 than in the other 

isolated lakes, conditions appeared to be ideal for dominance by cyanobacteria. One 

possible explanation is exception that the high Si:P ratio may have favoured the 
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growth of diatoms over cyanobacteria (Holm and Armstrong, 1981; Horn and 

Uhlmann, 1995) although the likelihood of this being important is not high (see below). 

Présing et al. (1997) suggested that cyanobacteria were absent from a hypertrophic 

lake where the N:P ratio was low but, NH4-N abundant. This may be analogous to the 

findings of the mesocosm experiment where NH4-N was apparently high enough to 

prevent cyanobacteria growth, despite very low NO3-N concentrations and an 

abundance of P. N:P ratios may accurately help predict patterns of cyanobacteria 

distribution at landscape scales (e.g. Patoine et al., 2006), but within individual lakes 

may be of less predictive power because of the confounding effects of the relative 

availability of NO3-N and NH4-N.  

 

7.3.4 Effects of Si on total phytoplankton biomass 

Diatoms were a significant component of the phytoplankton community of the 

connected lakes and Lake I3, and were probably responsible for the depletion of Si 

during the spring and early summer. Comparing the mean concentration of Si between 

lakes with the mean biovolume of diatoms (Figure 7.9) shows that among lakes, 

higher Si concentrations favour greater biovolumes of diatoms. Chapter 4 suggested 

that total phytoplankton biomass was strongly negatively associated with Si 

concentration. Negative correlations also exist between diatom biovolume and Si 

concentrations (rs = -0.506 – -0.605, p ≤0.01) in the connected lakes and Lake I3 (rs = 

-0.407, p ≤0.05), probably reflecting uptake of Si by diatoms. No significant correlation 

between diatom biovolume and Si concentration was found in Lakes I1 and I2. The 

strength of negative diatom-Si correlation may have been higher in the connected 

lakes compared to isolated lakes I1 and I2 because the short WRT may have favoured 

small phytoplankton that are capable of rapid reproduction and benefit from more 

turbulent water columns (Figure 7.4a). Many diatoms are classified as R- strategists 

and may be prone to sinking (Reynolds et al., 1982; Poister and Armstrong, 2003; 

Reynolds, 2006) and so thrive in the connected lakes. The diversion of the River 

Erewash may reduce the role of Si in determining total phytoplankton biomass by 

increasing the proportion of non-siliceous species in the phytoplankton community 

(Figure 7.4). Experimental data (Chapter 6) did not provide any further insights into the 

role of Si in shallow lakes. Diatom biomass did not significantly increase where Si was 

added. Zooplankton grazing and sinking may have been related to the scarcity of 
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diatoms in the mesocosms during the experiment. Lower chlorophyll-a concentrations 

in the +Si treatments may have been associated with the higher abundance of 

Ceriodaphnia sp. and Bosmina spp. in the +Si mesocosms (section 6.4).  
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Figure 7.9 Mean SiO3 concentrations and mean diatom abundance (± 1 S.E.) in 
Attenborough Nature Reserve, Mach 2005 to March 2008. 

 

7.3.5 Si:P ratios and diatoms 

Diatoms may have a competitive advantage over other phytoplankton when Si:P ratios 

are high (see section 1.4.3, page 47; Tilman et al., 1986). However, the data collected 

from Attenborough Nature Reserve do not support this, despite the strength of 

correlation between mean Si concentration and mean diatom biovolume. Weak 

negative correlations were found between the Si:P ratio, and the biovolume of diatoms 

or their relative abundance over time (Figure 7.10). The highest biovolumes and 

proportional composition of diatoms generally occurred at the lowest Si:P ratios. Mean 

Si:P ratios during the monitoring period in each lake were not significantly associated 

with either mean diatom biovolume (rs = -0.765, p = 0.08) or the percentage of total 

phytoplankton biovolume as diatoms (rs = -0.530, p = 0.28). These findings are 

probably principally associated with the uptake of Si by diatoms (Bailey-Watts, 1976), 
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which depletes water column concentrations of Si more strongly than for P, and 

therefore reduces the Si:P ratio. 
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Figure 7.10 The relationship between the Si:SRP ratio (by weight) and a) the 
absolute biovolume of diatoms; b, the proportion of total phytoplankton 
biovolume comprising diatoms. Spearman’s rank correlation (rs) was 
used to assess the strength of the relationship. 

 

7.4 Explore the likely effects of diverting the River 

Erewash from Attenborough Nature Reserve 

 

7.4.1 Summary of major findings  

• Internal loading of P may delay lake responses to river diversion; 

• In-lake N concentrations respond rapidly to reductions in N loading, but 

because internal loading maintains high P concentrations, N:P ratios may fall 

and favour cyanobacteria after river diversion; 
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• Submerged vegetation is unlikely to develop rapidly, because the 

mechanisms reinforcing the turbid state are not removed by river diversion 

alone; 

• Additional measures are likely to be required to promote a switch to a stable 

clear-water state in the short term. 

 

7.4.2 Delayed response of in-lake P concentrations 

Data presented in this thesis have suggested that internal P release is an important 

mechanism that increases the late-summer in-lake P concentration of the connected 

lakes (Chapter 3). The mesocosm experiment also provided evidence of the 

importance of P release (Chapter 6). Therefore, the response of water-column P 

concentrations is likely to be delayed until internal loading declines. P concentrations 

in shallow lakes may continue to decline for 10-15 years after external loading 

reductions (Jeppesen et al., 2005b; Phillips et al., 2005). Historically high P loadings 

and high WRTs may delay reductions of P concentration response (Jeppesen et al., 

2005b). The response of spring and early summer P concentrations to loading 

reductions are often quicker than for late summer P concentrations (Köhler et al., 

2005; Phillips et al., 2005; Søndergaard et al., 2005). Isolation may prevent the 

washout and dilution of P released from the sediments, but also decreased water level 

may concentrate internal P loading (Perrow et al., 1994).  

 

The implications for the use of river diversion as a technique for lake restoration is that 

internal loading of P is likely to maintain pre-diversion P concentrations during the late 

summer in Attenborough Nature Reserve because of internal P release, even if 

decreases are possible during the early summer. This may mean that the 

phytoplankton biomass of the connected lakes in the Attenborough Nature Reserve 

would decrease early summer (e.g. Phillips et al., 2005) and remain at pre-diversion 

quantities in late summer. Connected lakes may become strongly N limited as in lakes 

I1 and I2. Moss et al. (1986) found that isolation reduced chlorophyll-a concentrations 

for four years after isolation, but this was probably associated with strong N limitation 

and the growth of submerged macrophytes.  
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7.4.3 Increases in abundance of cyanobacteria 

Diverting nutrient-rich rivers may be a particularly efficient technique for reducing in-

lake N concentrations (see section 7.1.2, page 331). N is often derived from diffuse 

rather than point sources so can be difficult to control in comparison to P unless 

catchment-wide measures are implemented. River diversion therefore substantially 

reduces in-lake concentrations of N (Moss et al., 1986; Perrow et al., 1994). 

Regardless of the nutrient reduction technique used, reductions in external N loading 

frequently result in rapid in-lake responses (e.g. Jeppesen et al., 2005b; Köhler et al., 

2005). In most lake restoration measures, increases in the TN:TP (and DIN:SRP) ratio 

occur, because P is the nutrient targeted for reduction, although river diversions will 

probably decrease this ratio because of isolation from N loading and continued 

internal P loading. As has been discussed, low N:P ratios in Attenborough Nature 

Reserve are associated with a greater proportion and biovolume of cyanobacteria in 

the phytoplankton community (see section 7.3.3, Figure 7.5) and it may be expected 

that a decrease in N:P ratios caused by diverting the River Erewash may favour their 

growth. This has been observed in other shallow lakes. In Alderfen Broad, Norfolk, the 

cyanobacterium Anabaena became an abundant component of the phytoplankton six 

years after isolation (Moss et al., 1986; Perrow et al., 1994), and a shift towards 

Anabaena and a decrease in DIN:SRP ratios to <1 occurred simultaneously in 

Mügelsee (Köhler et al., 2005). The increase in WRT associated with the diversion of 

rivers may further favour cyanobacteria (Figure 7.4b). Cyanobacteria may present a 

significant management problem because few techniques are available to control 

them. One technique that may help manage the risk of large cyanobacteria blooms is 

the addition of barley straw into lakes. The release of substances toxic to 

phytoplankton by decaying barley straw has been shown to successfully reduce the 

abundance of cyanobacteria and other phytoplankton in lakes and reservoirs with no 

observed side effects on other aquatic organisms (e.g. Everall and Lees, 1996; Barrett 

et al., 1999; Brownlee et al., 2003).  

 

7.4.4 Delayed recovery of submerged vegetation 

It is unlikely that the diversion of the River Erewash alone will result in a rapid recovery 

of submerged vegetation in the short-term in the connected lakes, even if NO3-N 
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concentrations will probably be sufficiently low for diverse and stable macrophyte 

communities (<1–2 mg L–1, González Sagrario et al., 2005; James et al., 2005). The 

principal reason for this is because the feedback mechanisms which stabilise shallow 

lakes in a turbid–water state will not be overcome (Lauridsen et al., 2003; Hilt et al., 

2006). As the previous sections have suggested, continued internal loading of P will 

probably maintain a high biomass of phytoplankton, preventing sufficiently clear water 

for macrophyte establishment.  

 

On the assumption that internal P loading will eventually decline, and water clarity 

improve for the potential for submerged macrophyte growth, there remains no 

guarantee that submerged macrophytes may establish a stable community. After 

isolation from a nutrient-rich inflow, Alderfen Broad, Norfolk, rapidly developed an 

abundant community of the submerged macrophyte Ceratophyllum demersum (Moss 

et al., 1986; Moss et al., 1990) although this disappeared after seven years from the 

isolation and phytoplankton became dominant again. This may reflect the 

sedimentation of organic plant matter eventually causing large quantities of P release 

from the sediments, or a build-up of substances that could prevent plant growth, such 

as sulphides (Moss et al., 1990). The lack of flushing to remove these substances may 

have been particularly important (Moss et al., 1990), and emphasises the importance 

of lake flushing. This suggests that the re-establishment of a stable macrophyte 

community may be a particular challenge in the restoration of Attenborough Nature 

Reserve.  

 

The presence of viable propagules in the sediments is of importance for the 

development of a submerged macrophyte community. Charophytes are particularly 

useful in shallow lake restoration because of their strong effects on water clarity (Van 

den Berg et al., 1998a; 1998b). A viable propagule bank has been shown to be 

particularly important for the establishment of Chara spp. (Van den Berg et al., 2001). 

Viable propagules of aquatic macrophytes have been found at depth in lake 

sediments, although this depends on the previous presence of submerged 

macrophytes (Amano et al., 2008). The presence of viable propagules in the 

sediments of the connected lakes is currently unknown. Investigating this could be of 

value for developing an appropriate management strategy for establishing submerged 

vegetation. If insufficient propagules exist for re-establishing vegetation, then the 
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artificial introduction of submerged macrophytes may be required. Lakes I1 and I2 are 

potentially a cost-effective source for macrophytes for this purpose. The abundant bird 

population of Attenborough Nature Reserve may transport macrophyte propagules 

naturally between lakes although this mechanism should probably not be relied on to 

establish a macrophyte community. Emergent macrophytes may provide a refuge for 

zooplankton (Cazzanelli et al., 2008) and reduce sediment resuspension (Horppila 

and Nurminen, 2001) which may be a useful interim measure before submerged 

macrophytes become established. Grazing by birds, particularly coot (Fulica atra), 

may hinder the growth of submerged macrophytes (e.g. Lauridsen et al., 1993) 

although the significance of this remains unresolved (Perrow et al., 1997b; Hilt, 2006). 

Disturbance and grazing by fish may also hamper the development of submerged 

macrophyte communities (De Winton et al., 2002; Körner and Dugdale, 2003; 

Nurminen et al., 2003). Both fish and birds may prove a significant hindrance to the 

development of submerged macrophytes in the connected lakes, because of the large 

waterfowl populations present at the Attenborough Nature Reserve and probable high 

abundance of benthivorous fish (including carp, bream and roach). Enclosure cages 

may be useful for protecting macrophytes from birds and fish if macrophyte 

communities develop (Hilt et al., 2006).  

 

7.4.5 Techniques for complementing the River Erewash 

diversion 

The discussion above has suggested that the diversion of the River Erewash alone is 

unlikely to be sufficient to cause a switch from the turbid-water state to a stable and 

clear-water state in the short term (i.e. <10 years). Evidence from other lake 

restorations supports this (Lauridsen et al., 2003; Jeppesen et al., 2005b), suggesting 

little increase in submerged macrophyte abundance after P-loading reduction. 

However, over the long-term, submerged vegetation may recolonise naturally, as 

appears to have happened in Lake I2. Lake I2 was isolated from the River Erewash in 

1981. Improvements in light penetration and a reduction in nutrient loading were 

probably the main effects that contributed towards the development of a stable 

macrophyte community. Although the decline in nutrient concentrations in Lake I2 

associated with isolation from the River Erewash is unknown, a reduction in NO3-N 
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concentration may have been important for the recolonisation of submerged 

macrophytes. One potential option for the restoration of the connected lakes would be 

to do nothing in addition to river diversion, in the assumption that natural processes 

would complete the restoration (Bradshaw, 1996). Natural processes that may of 

importance include the gradual change towards equilibrium P concentrations and 

increases in submerged macrophytes. The advantages of using natural processes in 

restoration include their low cost, probable self-sustaining nature and suitability for 

large-scale use (Bradshaw, 1996). Allowing natural processes to restore the 

connected lakes may eventually lead to their complete restoration. Meeting the aims 

of the river diversion (reducing P concentrations to 100 µg L-1 and reducing ‘excessive’ 

phytoplankton biomass, White Young & Green, 2006) are unlikely to be achieved for 

10-15 years unless measures are undertaken to aid the development of submerged 

vegetation. This section presents and discusses ideas that could be used after river 

diversion to aid the short-term development of submerged vegetation in Attenborough 

Nature Reserve. These techniques are summarised in Figure 7.11. 

 

Division of connected lakes 

Isolating sections of lakes C1, C2 and C3 may be useful in order to create areas 

where conditions favourable for submerged macrophytes could be created that could 

in future colonise the remainder of the lakes (Qiu et al., 2001). The complex 

geography of the connected lakes would allow for sections of the lakes to be 

separated and isolated from the rest of the lakes easily. Sediment removal and 

biomanipulation could be used in these isolated areas to improve the stability of the 

vegetation communities. This approach would reduce the initial costs of restoration 

due to the smaller areas where expensive techniques would be used, and prevent 

conflict with the passage of gravel barges through the Reserve. The creation of areas 

rich in submerged macrophytes would also be beneficial for the conservation and 

amenity value of Attenborough Nature Reserve. Enclosures could be removed when 

water clarity in the remainder of the lakes is suitable for submerged macrophytes. 

Experiences from the Norfolk Broads have demonstrated the feasibility of isolation of 

sections of lakes. Installing plastic sheeting or solid wooden walls are possible 

techniques for isolation, both resulting in the complete isolation of the water from the 

rest of the lake, which would increase the efficiency of sediment removal, and the 

prevention of the movement of fish across the barrier (Moss, 2001). 



 

 

Sediment removal in 
selected areas to reduce 
internal P loading.  

Building cages may be required to 
reduce bird disturbance of 
macrophytes in order to create 
clear-water patches. Transplanting 
macrophytes from elsewhere, 
possibly lakes I1 and I2, may be 
necessary. 

Floating barley straw bales 
to reduce phytoplankton 
abundance, particulary 
important for managing 
cyanobacteria. 

Littoral reedbeds to provide 
additional refuge for 
zooplankton and help to 
reduce suspended solid 
concentration

Utilise complex geography to 
isolate areas of lakes using 
impermeable materials, 
allowing stable macrophyte-
dominated areas to develop. 
Areas could be rejoined when 
internal P loading has naturally 
decreased (~10-15 years). 

Drastic reduction in fish 
stocks in isolated sections, 
allowing zooplankton 
community to develop and 
reducing resuspension of 
sediments and potential for 
disturbance of submerged 
macrophytes.

Dividing ‘wall’

 

Figure 7.11 Potential techniques that could be used in Attenborough Nature Reserve after the diversion of the River Erewash to improve the 
probability of developing stable dominance by submerged vegetation and clear water. Secchi disks indicate relative expected turbidity  
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Littoral reed beds 

Littoral reed beds could be established both within the enclosures and outside of 

them. Reed beds can help to reduce suspended solid concentrations and may provide 

a refuge for zooplankton which could help reduce phytoplankton abundance (Horppila 

and Nurminen, 2001; Cazzanelli et al., 2008). Reed beds are aesthetically attractive 

and could be established relatively easily in areas where littoral water depths are 

shallow. Reedbeds are currently found throughout Attenborough Nature Reserve, and 

additional reedbed habitat is currently being created in Lake C1 as part of mitigation 

for the flood alleviation scheme in the reserve (Broxtowe Borough Council, 2009). 

Increasing the area of reedbeds would benefit the variety of wildfowl that contribute to 

the site’s classification as a SSSI, including reed buntings (Emberiza schoeniclus), 

reed warblers (Acrocephalus scirpaceus) and sedge warblers (A. schoenobaenus, 

Natural England, 1981), in addition to potentially improving water clarity. 

 

Reducing internal P loading 

In lakes that have received high P loadings for several years, the removal of 

sediments may help to reduce water-column P concentrations (Phillips et al., 1999). In 

Cockshoot Broad, Norfolk, 70 cm of sediment was removed after the lake was isolated 

from nutrient-rich river inflow (Moss et al., 1986; 1996b). Total P and chlorophyll-a 

concentrations declined, and submerged macrophytes and Daphnia increased 

immediately after the sediment removal (Moss et al., 1986; 1996b). However, two 

years later, the P and chlorophyll-a concentrations increased again, which may have 

been related to input to the sediments of large amounts of organic matter from 

submerged vegetation. Unless all sediment is removed, P retained at depth can 

diffuse through the anaerobic sediments into the water column (Moss, 2001). 

Sediment removal is very expensive (Kleeberg and Kozerski, 1997; Annadotter et al., 

1999), and requires careful handling of the dredged material to prevent the return of 

nutrients into lakes and rivers (Moss et al., 1996a). Restricting sediment removal to 

targeted sections of the lakes would help control the cost of dredging and reduce the 

volume of material to be handled. 
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Suppressing algal growth 

The addition of barley straw may be cost effective way of reducing phytoplankton 

abundance after the diversion of the River Erewash whilst in-lake nutrient 

concentrations remain high. Barley straw could be a cost effective method in 

mitigating against the likelihood of cyanobacterial blooms developing after river 

diversion because of the reduction in flushing rate and N:P ratio. Barrett et al. (1999) 

found that distributing small floating bales of straw around a lake was logistically the 

easiest method, and allowed for the straw to decompose, which is important for the 

effectiveness of the method. It would be possible to place hay bales away from littoral 

areas in the Attenborough Nature Reserve to avoid any negative aesthetic impacts 

and interference with angling. Care would need to be taken to avoid conflict with the 

passage of barges through the connected lakes.  

 

Reducing predation on zooplankton 

Manipulation of food webs is often used in shallow lake restoration after the reduction 

of nutrient loading. Compared to chemical methods, biomanipulation is relatively 

cheap (Jeppesen et al., 2007). The principle aim of biomanipulation is to increase the 

abundance of large-bodied zooplankton, in order to increase top-down control of the 

phytoplankton and improve water clarity (Figure 7.12). Biomanipulation can result in 

rapid reductions in the phytoplankton biomass in a relatively short period 

(Søndergaard et al., 2008). The mesocosm experiment demonstrated that the 

zooplankton community of Lake C2 rapidly increased after protection from predators 

(section 6.3.3, page 314), and was probably responsible for the reduction in 

chlorophyll-a concentration in the mesocosms. This suggests that biomanipulation is a 

potentially effective technique to augment responses to a reduction in external nutrient 

loading in Attenborough Nature Reserve. However, conflict with angling interests in 

the Reserve may be problematic unless fish manipulations are restricted to isolated 

areas only. 

 

Biomanipulation is typically done by removing a large proportion of the fish from a 

lake, and returning only piscivorous species, such as pike, in order to remove the 

small remaining number of zooplanktivorous species. Periodically repeating fish 

manipulation measures to maintain the desired biomass is usually required because of 

recruitment by the remaining fish, enhanced by increased food availability (Gulati et 
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al., 2008). The addition of piscivorous species (e.g. pike, Esox lucius) is an alternative 

to fish removal (Moss, 2001), although few successes of using this technique are 

known (Skov et al., 2007; Søndergaard et al., 2007). One of the largest concerns of 

using biomanipulation in shallow lakes is the stability of the clear-water state. In many 

cases, turbid water returns after 5-10 years, which may be associated with insufficient 

reduction in P loading (either internal or external), insufficient fish removal, and poor 

re-establishment of submerged macrophytes (Van Donk and Gulati, 1995; 

Søndergaard et al., 2007; Gulati et al., 2008). Repeated manipulations would probably 

be required in order to avoid create a longer term response (Søndergaard et al., 

2008). A further complication for Attenborough Nature Reserve is the inevitable 

passage of fish from the River Trent and River Erewash during flood events into the 

connected lakes. Also, a fish-manipulation approach to restoring the connected lakes 

may be met with considerable opposition because of the popularity of the site with 

anglers. However, these issues could be overcome to some extent if biomanipulation 

was restricted to large-scale enclosures. 

 

 

Figure 7.12 The potential cascading effects of biomanipulation on water clarity 
in shallow lakes. ‘?’ denotes the uncertainty of establishing stable 
feedback mechanisms to maintain water clarity. 
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7.5 Prospects for future work 

The importance of the River Erewash as a supplier of nutrients to the connected lakes 

suggests that its diversion will have significant consequences. Analysis of the effects 

of the River Erewash diversion, which took place during August 2009, is beyond the 

scope of this thesis. Future studies should use the baseline data presented here to 

investigate how the diversion affects the water chemistry and plankton community. For 

example, determining the extent to which reduced N:P ratios and flushing rate may 

favour cyanobacteria in the short-term is of importance for other shallow lakes. For the 

wider limnological community, monitoring the effects of the diversion are of high 

importance because of the continued pressure to reduce nutrient loading to shallow 

lakes and the potential for anthropogenic interference in the hydrological regime of 

rivers and lakes associated with them. The likely reduction in N loading, in addition to 

P loading reduction, that will occur with the diversion of the River Erewash is unusual 

among studies of nutrient reduction. The data gained by monitoring changes in water 

chemistry, phytoplankton and zooplankton in Attenborough Nature Reserve after the 

diversion of the River Erewash would be of significant importance to limnology.  

 

The role of hydrology in determining the structure and function of shallow lakes has 

considerable potential for future research. The approach taken in this thesis is limited 

by the division of lakes between those with short WRTs (connected lakes) and those 

with effectively infinite WRTs (isolated lakes). The effects of intermediate WRTs could 

be addressed by analysing data from lakes along a continuum of WRTs. Determining 

how the response of lakes to flooding events varies between seasons, and how the 

transport of nutrients from point- or diffuse-sources varies during wet periods, would 

be of benefit for lake management. Extending the temporal span of monitoring the 

effects of flood events may provide greater insight into the value of flushing for 

reducing phytoplankton biomass. This thesis has not investigated the longer term 

response of lakes to flood events, which could be used to develop plans for the 

manipulations of lake hydrology (Spears et al., 2006). Increasing the quantity of data 

regarding the responses of lakes to varied WRT and nutrient sources may help to 

validate the modelling of phytoplankton responses to nutrients and hydrology that is 

currently being developed (e.g. Jones and Elliot, 2007; Elliott et al., 2009).  
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Palaeoecological studies may be of interest for determining how lakes respond to the 

diversion of nutrient rich rivers. This is particularly the case where contemporary 

monitoring data of high temporal resolution can be supplemented with 

palaeolimnological datasets to investigate lake responses to nutrient reduction 

(Battarbee et al., 2005). Combined palaeolimnological and contemporary data has 

been successfully used in acidification studies, such as the UK Acid Water Monitoring 

Network (e.g. Monteith, 2005). Such an approach would be particularly powerful at 

Attenborough Nature Reserve. Palaeolimnological data on the recovery of Lake I2 

following its isolation from the River Erewash in 1981, and data gained by monitoring 

the diversion of the River Erewash from the connected lakes, would provide 

complementary long- and short-term records of lake responses to nutrient reduction 

and hydrological change. A multiproxy study would build upon existing 

palaeoecological data regarding the diversion of the River Erewash into Attenborough 

Nature Reserve (Sayer and Roberts, 2001). Palaeoecological data would be of 

considerable importance for informing our understanding of the role of hydrology in 

affecting shallow lakes, and may further refine an appropriate restoration target 

(Battarbee et al., 2005).  

 

Estimates of the nutrient budget of the Attenborough Nature Reserve were probably 

subject to large errors, most likely as a consequence of the low-resolution of 

measurements at the outflows from the connected lakes. Future monitoring work 

should ensure that higher resolution measurements of outflows are made in order to 

estimate more accurately the storage and retention of nutrients. The installation of 

automated flow-gauges or more frequent monitoring would improve these estimates. 

Understanding the uptake and release of nutrients may help to more fully quantify the 

effects of specific flood events on the loss of nutrients from Attenborough Nature 

Reserve, and to determine the extent to which managing the hydrology of the 

connected lakes may be of use for lake management. However, major flood events 

may still exceed the gauging capacity of automatic flow-gauges. 

 

Future monitoring work should include assessments of the fish communities in 

Attenborough Nature Reserve. Currently, no quantitative evidence exists regarding the 

biomass or species composition. Fish may play an important role in determining the 

structure and functioning of shallow lake ecosystems (Lammens, 1999), for example 
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by determining zooplankton abundance and community composition (e.g. Brooks and 

Dodson, 1965; Stephen et al., 2004), resuspending sediments and disturbing 

submerged vegetation (e.g. Körner and Dugdale, 2003; Nurminen et al., 2003). 

Therefore, the effects of fish may be of importance in determining the response of 

Attenborough Nature Reserve to the diversion of the River Erewash.  

 

The mesocosm experiment found significant decreases in total phytoplankton biomass 

in Si enriched treatments, probably associated with grazing. Increases in 

dinoflagellates were observed in mesocosms without N addition, which be related to 

higher P concentrations in these mesocosms. Intense grazing by zooplankton on the 

phytoplankton community occurred, probably because of their protection from 

zooplanktivorous fish. Further experimental work should more clearly elucidate the 

effects of N and Si and determine how they may interact to affect phytoplankton 

communities, particularly since the diversion of the River Erewash will probably 

significantly affect N and Si supply to the connected lakes. Mesocosm experiments 

could include zooplanktivorous fish to reduce grazing pressure on the phytoplankton. 

An alternative to mesocosm experiments would be microcosm experiments (Nandini 

and Rao, 2000; Camacho et al., 2003; McKee et al., 2003). These could allow for 

zooplankton to be excluded relatively easily compared to field-based mesocosms. The 

relative logistical simplicity of microcosm compared to mesocosm experiments may 

have other advantages. Some studies have suggested that nutrient limitation may vary 

throughout the year, and microcosm experiments could be repeated seasonally to 

determine the temporal variability of N and Si limitation. Because it would be easier to 

increase the number of treatments, the effects of N could be assessed separately as 

NH4-N or NO3-N limitation. Replication also improves the statistical power of 

experiments (Carpenter, 1996). An improved understanding of nutrient limitation 

where P is abundant would be useful for the management of both Attenborough 

Nature Reserve and other eutrophic shallow lakes. 

 

7.6 Conclusions 

The lakes of Attenborough Nature Reserve were monitored between March 2005 and 

March 2008. Water chemistry and plankton biomass and composition datasets have 
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been used to identify the structure (Chapter 3) and functioning (Chapter 4) of the 

constituent lakes. Long-term (three years) whole-lake scale monitoring data was 

complemented with an investigation of the effects of short-term flooding events (one 

year, Chapter 5). The research also used an experimental approach, which was 

conducted on smaller spatial and shorter temporal (35 days) scales, to simulate the 

lake restoration and the effects of N and Si on phytoplankton and zooplankton 

(Chapter 6). The conclusions of the thesis are: 

• Lakes connected to nutrient-rich inflows in Attenborough Nature 

Reserve were turbid and devoid of vegetation, in contrast to the clear-

water and abundant macrophyte communities in Lakes I1 and I2. 

• The River Erewash is an important supplier of nutrients to the connected 

lakes. High concentrations of P, N and Si were associated with connectivity to 

the River Erewash. Phytoplankton biomass and minerogenic turbidity were 

also higher in lakes connected to the River Erewash.  

• Lakes I1 and I2, which were isolated from the River Erewash, had lower 

concentrations of P, N and Si. Water clarity was higher, phytoplankton 

biomass lower and suspended solids concentrations lower in comparison to 

the connected lakes. 

• The inflow to Lake I3 also supplied nutrient-rich water to the 

Attenborough Nature Reserve, and is probably the principal cause of the 

higher nutrient concentrations and higher phytoplankton biomass in Lake I3 

than the other isolated lakes.  

• Internal release of P during the summer was significant in all lakes. 

Internal processes reduced in-lake N concentrations in the connected lakes. 

Si concentrations were strongly mediated by diatoms in the connected lakes 

but not the isolated lakes. 

• High nutrient loading and short WRTs associated with connectivity to 

the River Erewash may have favoured small and rapidly reproducing 

phytoplankton. Chlorophytes, cryptophytes and small centric diatoms were 

abundant in the phytoplankton community of the connected lakes. 

• Isolation from the River Erewash appeared to increase proportionally the 

abundance of cyanobacteria in lakes I1 and I2 compared to the connected 

lakes and Lake I3. N-limitation, low N:P ratios and long WRTs probably 

favoured the growth of cyanobacteria in lakes I1 and I2. 
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• In Lake I3, high concentrations of NO3-N and NH4-N may have 

suppressed cyanobacterial growth. Diatoms and cryptophytes were the 

most abundant phytoplankton groups in Lake I3. 

• The total abundance of zooplankton was higher in the connected lakes 

and Lake I3 than in the isolated lakes. Daphnia hyalina, calanoid copepods 

and Bosmina spp. were the most frequently encountered zooplankton taxa. 

Calanoid copepods were abundant in isolated lakes I1 and I2, and large-

bodied Daphnia (such as D. pulex) were more abundant than in the other 

lakes.  

• Phytoplankton were probably controlled by a combination of top-down 

and bottom-up processes in the connected lakes. Grazing was probably 

principally responsible for the development of a clear-water period during the 

spring. During summer, NH4-N and SiO3 concentrations were strongly 

depleted in the connected lakes. P was not limiting for phytoplankton at any 

time.  

• In isolated lakes I1 and I2, grazing probably exerted a strong control on 

phytoplankton biomass. NO3-N may also have limited phytoplankton growth 

in lakes I1 and I2. P was probably not limiting to phytoplankton in any of the 

lakes in Attenborough Nature Reserve.  

• Flooding reduced P concentrations and total phytoplankton biomass in 

all the lakes of Attenborough Nature Reserve. In-lake concentrations of N 

and Si did not change during flooding in the connected lakes suggesting that 

the transport of diffuse-source derived nutrients increased during flooding.  

• Cyanobacterial biomass was lower and diatoms and cryptophytes were 

the most abundant phytoplankton groups during flooding in both 

connected and isolated lakes.  

• The mesocosm experiments found that manipulations of N, Si, and 

simulated isolation had few significant effects on phytoplankton and 

zooplankton communities. Si additions were associated with slightly 

decreased chlorophyll-a concentration. P concentrations increased in all 

mesocosms to which NO3-N was not added, which may have been associated 

with a significant increase of mean dinophyte biovolume.  

• The effects of connectivity to rivers may be of benefit to lake 

management, by flushing out P, reducing the total abundance of 
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phytoplankton and reducing cyanobacterial biomass. Lake flushing may be 

of benefit to lake restoration. 

• Lake restoration by isolation is likely to result in short-term increases in 

water-column P concentration and total phytoplankton biomass. In the 

long-term, removing diffuse-source derived N inputs from shallow lakes may 

be a significant advantage for the use of river diversion for lake restoration.  

• Specific recommendations for future research of value to Attenborough 

Nature Reserve include continued monitoring of the constituent lakes 

during river diversion, finer resolution temporal monitoring of nutrient 

losses from the currently connected lakes and fish community 

assessments. Palaeolimnological investigations would be highly 

complementary to high temporal resolution monitoring, in order to track past 

responses to river diversion and predict potential recovery trajectories.  
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Appendixes 

A: Water chemistry  
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B: Phytoplankton species 

  Lake 
  
Bacillariophyceae 

Form* / 
Biovolume C1 C2 C3 I1 I2 I3 

 Asterionella formosa Hass. 1850 C 240 X X X X X X 
 Aulacoseira spp. (filament) F 5625 X X X  X X 
 Large centric diatom (Stephanodiscus / Cyclotella types) C 1800 X X X X X X 
 Small centric diatom  (Stephanodiscus / Cyclotella types) C 397 X X X X X X 
 Cocconeis sp. C 1560 X X X X X X 
 Cymbella sp. C 1980    X  X 
 Diatoma sp. C 1387    X  X 
 Fragilaria sp. C 205  X X X X X 
 Gyrosigma sp. C 2006 X X X X X X 
 Meridion sp. C 1580 X X X X X X 
 Navicula sp. C 5023 X X X X X X 
 Nitzschia sp. C 1450 X X X X X X 
 Small un-identified pennate species C 297 X X  X X X 
 Synedra spp. C 110 X X X X X X 
 Tabellaria sp. C 720 X X X X X X 

Chlorophyceae   
      

 Actinastrum hantzschii Lagerheim  Cn 713 X X X X X  
 Ankistrodesmus falcatus (Corda) Ralfs  Cn 200 X X X X X  
 Ankyra ancora (G. M. Smith) Fott  C 723 X  X X X  
 Ankyra judyaii (G. M. Smith) Fott  C 679 X X X X X X 
 Chlamydomonas spp. C 1410 X X X X X X 
 Chlorella vulgaris Beijerinck  C 1376 X  X X X X 
 Chlorococcum sp. C 500   X X   

 Closterium acutum var. variable (Lemmerman) Willi 
Krieger  C 500   X    

 Closterium sp. C 3023 X X X X X X 
 Coelastrum microporum Nägeli in A. Braun  Cn 2974 X X X X X X 
 Cosmarium sp. C 33513 X   X   
 Crucigeniella rectangularis (Nägeli) Komárek  Cn 483 X X  X  X 
 Dictyosphaerium pulchellum H. C. Wood  Cl 1103 X X X X X X 
 Eudorina elegans Ehrenburg  Cn 2803 X X X X X  
 Lagerheimia sp. C 472    X X  
 Micratinium pusillum Fresenius  C 1893 X X  X X X 

 Monoraphidium contortum (Thuret) Komárková-
Legnerova  C 45 X X X X X X 

 Pediastrum boryanum var. longicorne Reinsch  Cn 2821 X X  X  X 
 Pediastrum duplex Meyen  Cn 2813 X  X X X X 
 Pediastrum simplex Meyen  Cn 2886 X  X  X X 
 Pediastrum sp. Cn 2764 X X X X X X 
 Pteromonas sp. C 164 X X X X   
 Quadrigula sp.  Cn 523    X  X 
 Scenedesmus abundans (Kirchner) Chodat  Cn 489**   X    
 Scenedesmus arcuatus (Lemmerman) Lemmerman  Cn 461**  X   X  
 Scenedesmus bicaudatus Dedusenko  Cn 510**     X  
 Scenedesmus communis E. H. Hegewald  Cn 312** X X X X X X 
 Scenedesmus falcatus Chodat  Cn 607** X X X X X X 
 Scenedesmus opoliensis P. G. Richter  Cn 770** X X X X X X 
 Schroderia robusta Korshikov  C 754 X   X X X 
 Selanastrum sp.  Cn 380 X X X X X X 
 Staurastrum planctonicum Teiling  C 1521 X X X    
 Tetradesmus sp. Cn 502  X X   X 
 Tetraedron caudatum (Corda) Hansgirg  C 487 X X X  X X 
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 Tetraedron incus (Teiling) G. M. Smith  C 500     X  
 Tetraedron minimum (A. Braun) Hansgirg  C 500      X 
 Tetraedron regulare Kützing  C 487  X X  X  
 Tetraedron triangulare Korschikoff C 500 X X X X X X 
 Tetrastrum elegans Playfair Cn 390 X X X X  X 
 Ulothrix sp. F 430 X   X X X 
 Un-identified green flagellates C 65 X X X X X X 

Cyanobacteria   
      

 Anabaena aequalis (Kützing) Bornet et Flahault T 3100  X    X 

 Anabaena flos-aquae (Lyngbye) Brébisson Bornet et 
Flahault T 891 X  X X X X 

 Aphanizomenon flos-aquae (Linnaeus) Ralfs ex Bornet 
et Flahault T 1630 X  X X X  

 Aphanocapsa sp. C 2000 X    X  
 Chroococcus sp. C 500    X X  
 Merismopedia sp.  C 64 X X X X X X 
 Microcystis sp. C 14000 X X X X X X 
 Oscillatoria arghardii Gormont T 380 X X X X X X 
 Oscillatoria limnetica Lemmerman 1900 T 250 X X X X X  
 Oscillatoria redekei Goor 1918 T 308   X    
 Oscillatoria sp. T 258 X X X X  X 
 Spirulina sp. T 6250      X 

Cryptophyceae    
     

 Cryptomonas spp. C 1149 X X X X X X 
 Rhodmonas spp. C 361 X X X X X X 

Euglenophyceae   
      

 Euglena sp. C 500 X X X X X X 
 Euglena acus Ehrenburg 1830 C 700   X    
 Phacus sp. C 558 X X X X X X 
 Phacus caudatum  C 221    X  X 
 Trachelomonas sp. L 980 X X X X X X 
 Trachelomonas bacillifera Playfair 1915 L 980     X X 

Dinophyceae   
      

 Ceratium hirundinella (O. F. Müller) Dujardin 1814 C 6500     X  
 Gymnodinium sp. C 978 X X X X X X 
 Peridinium sp. C 6250 X X X X X X 

Chrysophyceae     
     

 Dinobryon cylindricum O. E. Imhof 1887 L 1800    X X  
 Mallomonas sp. C 1491 X X X X X X 

*: Form abbreviations: C, cell; Cl, colony; Cn, coenobial; F, filament; L, lorica; T, 
trichome. 
**: Biovolume estimate for two-celled coenobia.  
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C: Phytoplankton dataset 

 

(all data presented as µm3 mL-1) 
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D: Zooplankton species 

 

Lake   
C1 C2 C3 I1 I2 I3 

Cladocera       
 Alona sp. X    X X 
 Bosmina coregoni (Baird) s. str.   X   X 
 Bosmina longirostris (O. F. Müller) X X X X X X 
 Ceriodaphnia megalops Sars     X  
 Ceriodaphnia sp. X X X X X X 
 Chydorus ovalis (Kurz)     X  
 Daphnia cucullata Sars. s. str. X  X  X X 
 Daphnia curvirostris (Eylmann) X   X   
 Daphnia hyalina (Leydig) X X X X   
 Daphnia hyalina var. galeata Sars   X   X 
 Daphnia hyalina var. lacustris Sars    X X X 
 Daphnia longispina (O. F. Müller)   X    
 Daphnia pulex (De Geer)     X  
 Eurycercus lamellatus (O. F. Müller) X X X  X X 
 Scapheloberis mucronata (O. F. Müller)       
 Sida crystallina (O. F. Müller) X  X X X  
        
Copepods       
 Cyclopoid copepods X X X X X X 
 Calanoid copepods X X X X X X 
        
Rotifers       
 Keratella spp. X X X X X X 
 Asplancha spp. X X X X X X 
        
Ostracoda       
 Un-indentified ostracod     X  
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E: Zooplankton dataset 

 

(All data presented as individuals L-1). 
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