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Abstract

Urban ground motion due to natural or man-made geological processes is an

issue of major importance for local authorities, property developers, planners and

buyers. Increased knowledge of this phenomena would benefit all involved but the

measurement techniques in common use have either spatial or temporal inadequacies.

A technique known as Persistent Scatterer Interferometry (PSI) has been developed

which can map ground motion to high precision over large areas with a temporal

scale measured in years. PSI takes advantage of the high number of Synthetic

Aperture Radar (SAR) images available to mitigate the atmospheric effects that

inhibit standard Interferometric SAR (InSAR) techniques. This however involves

assumptions about the nature of atmospheric variability, such as its randomness over

time, or its spatial extent. In addition, little is known about the Persistent Scatterers

(PS) themselves and PSI is only able to provide results relative to a reference PS. The

reference PS point is often arbitrarily chosen and may itself be in an area undergoing

ground motion, thus adding a degree of ambiguity to any relatively derived motion.

The purpose of this work is to investigate possible solutions to these shortfalls and

quantify any improvements made.

A corner reflector network is established in the Nottingham area of the UK. A

data archive is collated over three years containing Global Positioning System (GPS)

data at the corner reflector sites, data from surrounding Continuous GPS (CGPS)

sites and levelling data. Due to conflicts with the European Space Agency (ESA)

Environmental Satellite (ENVISAT), there were insufficient SAR images to com-

pute a fully integrated corner reflector PSI study. Instead, the project focussed on

atmospheric correction of PSI results using absolute ZWD estimates. Zenith Wet

Delay (ZWD) estimates are derived from a Precise Point Positioning (PPP) GPS

processing method which does not rely on a network of ground stations and therefore

produces absolute ZWD estimates which are less prone to biases and noise. These are

interpolated across a PSI study area and used to mitigate the long wavelength effects

of atmopheric water vapour in the PSI differential interferograms. The corrected PSI

results are then compared to uncorrected results, GPS derived motion and levelling
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data.

Results between the ZWD corrected PSI study and the uncorrected study show

statistical improvements in some areas and reductions in others. Correlation factors

between double-differenced levelling observations and double-differenced PSI results

improve from 0.67 to 0.81. PSI deformation rates also show improvement when

compared to GPS deformation rates, although some results do not satisfy statistical

tests.
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Chapter 1

Introduction

1.1 Background

Monitoring the urban environment is extremely important. As populations rise,

cities expand into areas of greater potential natural and man-made hazards. In the

UK, applications for new building developments now have to be submitted with a

subsidence report. This is a very costly process, and subsequently there is an ever

increasing requirement for knowledge that might influence decision making. Surveying

techniques are useful in this respect but they often only provide sparse but accurate

results, such as those provided by Thames Valley network of GPS stations (Bingley

et al., 1999). With the advent of InSAR, a remote sensing technique known as PSI

(Ferretti et al., 2001) has become possible that is capable of giving good results over

a much denser network of points (around 100 to 500/km2). However, it too has

limitations and concerns about its consistency have also been voiced (Racoules et al.,

2006).

1.2 Urban Planning History

Many modern cities in the UK are literally built on the foundations of the less well

informed past. Prior to the industrial age, building material extraction and mineral

extraction for fuel was an unregulated activity and has a history that reaches into the

middle ages (Charsley et al., 1990).

1
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Throughout the industrial age the geological environment underpinned the eco-

nomic development of many urban areas and the requirement for underground re-

sources such as building materials and fossil fuels outweighed any real concern for

the environment. To exacerbate this, many cities expanded so rapidly that planning

decisions were often poorly made (Childe, 1950, Howard et al., 2010), and the legacy

of ground motion due to mineral extraction, backfill and urban waste is widespread

(Bell et al., 2009).

Consequently, the location, depth and extent of many types of shallow underground

voids is completely unknown (Waltham, 1989, Howard et al., 2010) and these can

sometimes lead to ground motion or even catastrophic collapse (see figure 1.1). Much

of this activity occurred on the edges of population centres as they were then, many

of which are now at the heart of modern cities.

Figure 1.1: An example of sudden collapse resulting from unknown underground voids
(Waltham, 1989).
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1.3 Urban Ground Motion

The characteristics and causes of ground motion in urban areas are wide and varied

and provide a constant challenge to geologists, scientists and engineers (Galloway

et al., 1999, Capes and Marsh, 2009). In this age of enhanced environmental aware-

ness, quantifying these motions is at the forefront of risk awareness and planning

strategies. Insurance companies, planners, developers and property buyers would all

benefit from better knowledge of urban ground motion and its underlying causes.

Damage to buildings and infrastructure costs insurance companies hundreds of mil-

lions of pounds each year (BGS, 2002), a cost which is then reflected in premiums and

policy excess. Geohazards, as they are termed, can also threaten livelihoods, seriously

injure and endanger life. An understanding of the factors behind urban ground motion

can come from a number of different sources, including historic evidence, hydrology,

geology and knowledge of the nature and precise location of the motion. These

motions may lie undetected until they manifest as structural damage which ranges

from slight to catastrophic. Methods that are able to alert planners and engineers

before this occurs, are therefore invaluable.

1.4 Detection and Measurement of Subsidence

There are methods that can be used to measure subsidence post detection such as

GPS, which can be placed optimally with the benefit of hindsight. A greater challenge

is detecting subsidence in the first place. This can be done in a number of ways

including methods involving airborne imagery (Eyers and Mills, 2002), photogram-

metry (Faig, 1984) and High Resolution Stereo Scanners (HRSC) (Spreckels, 1999).

The equipment, planning and continued financial outlay required for these methods

puts them beyond the reach of many though.

PSI studies are playing an increasing role in ground motion studies (Capes and

Marsh, 2009). To some extent, this has probably become self perpetuating as high

profile PSI results have generated media attention (Smith, 2002, Amos, 2007) which

has led to a wider awareness of geohazards and a demand for more data.
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There are however, issues with the technique that hinder its wider application.

These include:

• Atmospheric error can only be mitigated to a certain degree

• Only relative deformations can usually be derived

• Attempts to validate the technique have not always been successful (Racoules

et al., 2006)

• It is not clear how this new approach can be optimally integrated with other

data

• The temporal sampling rate is generally poor

All techniques tend to have established strengths and weaknesses and dealing with

these optimally is part of the wider challenge of integrated research. Often, a solution

to an issue may be to combine existing techniques in order to somehow play off their

strengths and weaknesses which leads to something that is more useful than the sum

of its parts.

1.5 Integration

One strategy to minimise the issues mentioned above would be to integrate PSI with

sources of data that complement its weaknesses. GPS is one such source; atmospheric

error can be estimated to a high degree, it can estimate absolute deformation, it is

well validated and its temporal sampling rate is excellent.

There is no obvious solution as to how a link between the two techniques might be

facilitated, but one method is through the use of trihedral corner reflectors. Corner

reflectors provide a precise, identifiable position both in the image as a high intensity

pixel, and on the ground as a pre-surveyed control point. They also provide an

opportunity to create artificial point scatterers in the PSI process. These might be

used to somehow control or validate the PSI process.

By-products from GPS processing, such as the atmospheric delay term could be

used to mitigate the atmospheric error term in a PSI analysis. Both GPS and PSI are
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affected by the atmosphere in similar ways, therefore correlation and the potential for

correcting PSI studies is a theoretical possibility.

1.6 Aims and Objectives

Considering the statements above, the overarching theme in this work concerns the

subject of GPS and PSI integration both through the use of corner reflectors and

through the relation and potential correlation of their respective parameters. Three

project aims are now stated regarding this:

• Study background areas and conduct a literature search concerning GPS and

PSI integration.

• Analyse what value corner reflectors might bring to PSI.

• Consider how GPS might be integrated with PSI.

These project aims are necessarily broadly defined. They can be further broken

down where necessary into a set of project objectives:

• Identify gaps in GPS and PSI integration research.

• Investigate the potential for long-term corner reflectors and their use as artificial

PS points.

• Investigate the potential for reference point bias removal using corner reflectors.

• Consider how GPS might be used to improve PSI atmospheric phase screens.

• Determine how GPS might be used to validate PSI studies.

1.7 Research Methodology

Having stated explicitly what the objectives of the project are, the research method-

ology now gives an outline of how these objectives may be achieved:
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• Detail the background topics relevant to this research, referencing definitive

sources.

• Select a suitable test site for the project and establish a network of small, passive

corner reflectors.

• Design an observation model involving high precision GPS concurrent with SAR

overpasses and build a catalogue of SAR images with the reflectors in place.

• Build a large enough catalogue of SAR images for a PSI study with the corner

reflectors as valid PS points.

• Use PPP GPS derived Zenith Wet Delay (ZWD) parameters to correct long-

wavelength effects in PSI differential interferograms.

• Compare GPS and PSI derived velocities before and after ZWD correction.

• Provide recommendations for further work.

1.8 Thesis Overview

This thesis is arranged into eight chapters which are now outlined.

Following this chapter, chapter 2 explains many of the fundamental principles and

techniques relevant to the thesis. These include SAR, InSAR, PSI, GPS, PPP.

This leads into chapter 3 which is a literature search involving the relevant subjects

of the mitigation of atmospheric delay in InSAR and PSI through the integration of

other data sources. Also, corner reflector research is reviewed and the chapter finishes

by detailing research gaps in the field.

Chapter 4 discusses the choice of Nottingham as the test site for the project. This

includes the geography and geology, the availability of existing SAR data and GPS

data and logistical concerns.

Chapter 5 then leads on from this describing the observations that were required

from the field observation stage of the project and how these were obtained. This in-

cludes a section detailing the establishment of a corner reflector array in Nottinghamshire.
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The chapter finishes by summarising what data was collected during the field cam-

paign and how the various successes and failures of this resulted in a shift in emphasis

from PSI corner reflector research to atmospheric correction of PSI studies.

Chapter 6 presents the methodology used to process the GPS and SAR and levelling

datasets. Results are then presented, and a discussion of their respective quality is

analysed. The datasets are also compared to other sources or information wherever

possible. Finally, the PSI and GPS datasets are compared with each other which

naturally leads into the next chapter.

Chapter 7 uses the GPS results processed in the previous chapter to compute ZWD

estimates for the ENVISAT acquisition times at stations both inside and outside the

AOI. ZWD values for every pixel in the AOI are then interpolated and the estimates

are integrated into a PSI analysis. The results from this are then analysed against

the existing PSI analysis, the precise levelling data and the height components of the

GPS station velocities.

Chapter 8 provides reflective comment on the various aspects of the project. The

aims and objectives are restated, summarising how each was achieved, to what level

of success and what could be done in future to improve results. This leads to a list of

recommendations for future work.

1.9 Summary

The opening chapter of the thesis has provided a backdrop to the relevance of monitor-

ing geohazards, pointing out how current monitoring strategies suffer from limitations

that might be overcome through integration with other data sources. Aims and

objectives followed by research methodologies were then stated. An overview of the

thesis was then provided briefly describing each chapter in turn.



Chapter 2

Background

The following chapter begins with a short background to early developments in Radio

Detection And Ranging (RADAR) which then progresses onto SAR. Following a

discussion of relevant principles, InSAR is introduced which naturally leads onto

Differential InSAR (DInSAR) and a detailed description of PSI. The basics of GPS

and the associated observables are then introduced which leads to a section discussing

the PPP technique.

2.1 Radar Overview

Radar is a system that uses transmitted and received electromagnetic waves to de-

termine the presence and range of fixed or moving objects. Generally speaking,

microwaves or radio waves are emitted by a transmitter, reflected by a target and

then detected by a receiver, which is often co-located with the transmitter. The time

taken for the pulses to be transmitted, reflected and received is directly proportional

to the distance to the object that reflected them (Ulaby et al., 1982). An optimised

system has advantages over conventional optical imagery in that it can operated day

and night, through clouds, fog and rain, as well as at long ranges (Madisetti and

Williams, 1998).

8
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2.1.1 Early Radar

The history of radar can be traced back to 1904 when Christian Hülsmeyer patented

a rudimentary device called a Telemobiloscope which could detect distant metallic

objects by means of transmitting and receiving electromagnetic waves using a one

metre wavelength and a tunable Pulse Repetition Frequency (PRF) (Thumm, 2007).

The two world wars were a driving force for radar and its many military applications.

Post war efforts by the Massachusetts Institute of Technology (MIT) laboratory

produced the first radars capable of operating at microwave wavelengths through

perfection of the cavity magnetron (MIT, 1952). Radar imaging at this time was

generally radial in nature with the distance to the object as one coordinate, and the

angle to the object relative to the orientation of the radar antenna as the other. An

improvement to this system and the removal of most of the large distortions inherent

in it came with development of the Plan Position Indicator wherein the antenna was

rotated about an axis to produce an image similar to a ground map (Ulaby et al.,

1982).

2.1.2 Side Looking Airborne Radar (SLAR)

The basic SLAR design involved a non-rotating antenna which was fixed parallel to

an aircraft fuselage with a fixed beam perpendicular to this being moved along by

the aircraft’s motion. Because non-rotating antenna size was less of an issue, a much

higher spatial resolution was achievable. In radar imagery, the two dimensions are

range or cross-track (perpendicular to the sensor) and azimuth or along-track (parallel

to the flight direction). Good range resolution is achieved using a high bandwidth

pulsed waveform (Madisetti and Williams, 1998). The SLAR azimuth resolution is

dependent on the ground range and the beam width, with the beam width dependent

only on the wavelength and the antenna length (Messina, 1996). The upshot of this is

that with an optimised (as short as possible) wavelength, higher resolution can only

be achieved by either flying lower or using a smaller beam width, which is achieved

by using a larger antenna.
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2.1.3 SAR

Despite the advances that SLAR brought, physical limitations were inevitably reached

by those exploiting the data as they made increasing demands of the system (Lillesand

et al., 2004). In 1951, Carl Wiley of the Goodyear Aircraft Company (later Lockheed

Martin) in Arizona began working on a Doppler Beam Sharpening (DBS) technique.

This provided a solution to the limitations of SLAR by synthesising a much larger

antenna than was actually available from the motion of the platform (Lasswell, 2002).

The basic idea of the synthesis requires a processor to store the returned signals

as amplitudes and phases for a given time period T whilst moving between two

points at a velocity v. The processor then reconstructs the signal as if it were

obtained by a single antenna of length v · T which for reasons mentioned above,

means a higher resolution can be achieved, especially in the azimuth direction. In

fact, the consequences of this relationship are such that the along-track resolution

is theoretically independent of the range. The pixel dimension in the along-track

direction for SAR can be as small as

ra =
l

2
(2.1)

where l is the along-track length of the real aperture. So, whereas SLAR requires a

large antenna, SAR calls for a short antenna (Ulaby et al., 1982), but this too has

physical limits (§2.2.4).

Entire branches of scientific research have evolved through the success of ESA’s

space based SAR program (Castel, 2000). ESA’s most recent SAR platform, ENVISAT,

was launched in 2002 and provides the SAR data used in this project. Henceforth,

unless otherwise stated, SAR is taken to mean space based SAR.

2.2 SAR Operation

Some fundamental aspects of the SAR system are now discussed.
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2.2.1 Coherent Imaging

SAR is a coherent active microwave imaging system (Skolnik, 1990). In a coherent

system, two or more waves may be different in amplitude and initial phase but have

the same frequency so that they vibrate in unison. The main advantage of a coherent

system is that it preserves the phase of the received signal for later processing; this is

in contrast to optical systems which use non-coherent and hence non-phase preserving

natural light from the Sun. The SAR phase observation offers users remarkable

opportunities to exploit the data in ways which are therefore not available with optical

imagery.

2.2.2 SAR Geometry

Figure 2.1 below shows the basic geometry of a SAR system. Received echoes are

converted to range and sorted into range bins; any two echoes from the same pulse

that return at the same time will have an equivalent range and will therefore be

superimposed. The side looking configuration eliminates this ambiguity as echoes from

the far range will take longer to return than those from the near range (Woodhouse,

2006).

The flight path of the satellite is known as the velocity vector. The microwave

beam illuminates an area on the ground known as the swath; the width of this swath

depends on the elevation beamwidth, and this is proportional to the wavelength and

the length of the antenna. The portion of the swath closest to the satellite’s nadir is

known as the near range, whilst the portion furthest from nadir is the far range. The

angle between the transmitted microwave beam and the nadir of the satellite is the

incidence angle (θ), which will increase as the beam moves from near to far range.

The range from the SAR to a given target is the slant range (ρ) which is clearly a

function of the incidence angle amongst other things such as topography. The antenna

pattern is generally aimed perpendicular to the velocity vector which is known as the

look direction, nevertheless, there is always a slight squint angle steering the antenna

away from the zero-Doppler direction.
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Figure 2.1: The geometry of a SAR system. Pulses are emitted at high frequency as the
platform moves along the velocity vector (Skolnik, 1990). The footprint of each pulse is
indicated by successive ellipses in the swath. The entire image is bound in range by the
near and far range limits and in azimuth by the early and late azimuth times. The side
looking nature of the instrument reduces range ambiguity in the echos.

2.2.3 Range Resolution

Spatial resolution (in either direction) is the shortest distance between two points such

that they can be discerned as separate objects in the image. For range resolution,

two targets must be separated by a distance (in slant range) greater than half the



2.2 SAR Operation 13

physical length of the pulse (Curlander and McDonough, 1991).

Prior to transmission, a pulse is Frequency Modulated (FM); this is called chirping.

The pulse is then transmitted and reflected from scatterers or targets on the Earth; the

reflectance depends mainly on the roughness and dielectric properties of the imaged

surface. The echoes from the pulse are then received by the sensor at different times

which are directly proportional to their ranges (Skolnik, 1990). Chirping means that

a matched filter can be applied to the received signal; here the different frequency

components of the signal are individually delayed so that they all arrive at the same

time. This is analogous to transmitting a short high powered pulse but requires less

energy. This is important because the shorter the pulse, the closer two objects can

be resolved before their echoes overlap. (Woodhouse, 2006)

2.2.4 Azimuth Resolution

For two objects to be resolved in the azimuth direction, they must be separated by a

distance greater than the focused beamwidth on the ground (Levrini and Zink, 2002).

Azimuth resolution is dependent on the synthetic aperture of the system. The Doppler

effect due to the motion of the platform causes a frequency shift in the received signal.

From the moment a target first enters the beam, multiple backscattered echoes from

pulses are recorded which continues until the target leaves the beam. The beam

footprint on the ground is a few kilometres in the azimuth direction for ENVISAT;

this is the azimuth resolution of the real aperture. The synthesis involves resolving the

multiple returns from a single target into a single response which effectively reduces

the azimuth resolution from a few kilometres to a few metres (Hanssen, 2001).

The process of synthesising the returns is called azimuth compression and is anal-

ogous to the matched filtering (also known as range compression) that is used to

improve the range resolution, albeit this time with a natural, Doppler chirp. For a

more complete description of azimuth resolution, refer to Ulaby et al. (1982).
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2.2.5 Geometric Distortion

A consequence of the side looking nature of SAR (and SLAR) is geometric distortion

which manifests itself in several distinct ways. These are foreshortening, layover

and shadow, which are all distortions created by topographic relief features. These

distortions are all linked to fundamental operational parameters of the SAR such as

the incidence angle, the PRF and the antenna design (Woodhouse, 2006).

Foreshortening occurs when features such as the sides of hills face the look direction.

In figure 2.2, the base of the slope (A) and the summit (B) will return pulses which

will arrive back at the sensor at similar times because of the near equivalent slant

range, irrespective of the actual ground range between them.

Figure 2.2: (Left) Two cases of foreshortening. Points A and B will appear much closer
in the radar image than in reality because echoes from the points will arrive at the sensor at
similar times because the path lengths are similar. Points C and D are indistinguishable in
the radar image because their echoes arrive at the sensor at exactly the same time because
the path lengths are the same. (Right) a radar image with foreshortening areas facing
the look direction (left side of the image) of the SAR. Radar image c© Natural Resources
Canada.

Layover can be considered an even more extreme version of foreshortening where

the slant range to the top of a feature (B in figure 2.3) is less than the slant range to

the bottom (A). The return signal from B will be received before the return signal

from A and therefore will be placed in the wrong range bin.

Shadow occurs when the radar beam is unable to illuminate one side of a feature. In

the diagram, A is a relief feature where the slope facing away from the look direction
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Figure 2.3: (Left) The echo from B will be received before the echo from A despite
the fact that B is further in terms of ground range. Consequently B will be laid over A.
(Right) A real example of layover in a radar image. Radar image c© Natural Resources
Canada.

is too steep to be illuminated by the SAR. This casts a shadow on the far range side

of the feature and no information can be discerned about the area labelled B.

Figure 2.4: (Left) Area A casts a shadow and no information can be determined from
B. This is exacerbated with low elevation angles. (Right) A low elevation angle airborne
SAR image with heavy shadowing on the far range (right) side of the trees. Radar image
c© Natural Resources Canada.

2.2.6 Properties of SAR Images

SAR images used in interferometry are often focussed into slant range, Single-Look

Complex (SLC) arrays of pixels. Each complex pixel with coordinates x and y has a
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real in-phase component (q) and an imaginary quadrature (i) component. Figure 2.5

shows how these are related to the amplitude and phase values. Deriving the phase

and amplitude values is equivalent to a cartesian to polar coordinate conversion, which

for the quadrant shown is

α =
√
x2 + y2 (2.2)

ϕ = tan−1
(y
x

)
(2.3)

Figure 2.5: An SLC pixel with coordinates x and y represented using an Argand diagram.
The real, in-phase value (q) and imaginary, quadrature value (i) are stored in complex
form and relate to the phase (ϕ) and amplitude (α) via a cartesian to polar coordinate
conversion.

The image resolution of an SLC image pixel (approximately 20m in range for

ENVISAT) compared to the wavelength (5.6cm) is large and the area represented by

a pixel can contain hundreds of individual targets, each of which has its own complex

reflection coefficient. Any of these elements can cause delay or rotation in the phase,

or put another way, each pixel’s phase value is the sum of many unknown complex

numbers and this resultant sum is therefore random and not a useful parameter on

its own (Massonnet and Feigl, 1998).

If the elementary targets for a pixel remain stable between the acquisition of

two images and the corresponding phases are differenced, the random element is
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eliminated. This can isolate useful contributions to the phase or to the way the phase

may have changed, and is the basis for InSAR.

2.3 InSAR

Interference is a consequence of the principle of the superposition of waves first noted

by Thomas Young in 1801 in his two slit experiment (Born et al., 1959). Superimposed

waves of electromagnetic energy interact in such a way that the resultant wave

amplitude is the sum of the amplitudes of the individual waves (Towne, 1988). As the

SAR frequency is fixed, the phase difference between the waves will remain constant

and be preserved; systems with this property are said to be coherent. Figure 2.6

depicts superposition of two coherent waves (a) constructively interfering and (b)

destructively interfering where a is the amplitude and λ is the wavelength.

Figure 2.6: Combining coherent waves produces (A) constructive interference when they
are in phase and (B) destructive interference when they are out of phase. These are the
maxima and minima cases, all other cases in between are also possible.

As discussed in §2.2.2, it is not possible to distinguish between points that are

horizontally displaced that have the same slant range, such as P and P0 in figure 2.7.

However, figure 2.7 also suggests that trigonometry could be used whereby two SAR

acquisitions from slightly different positions are used to observe the angular difference

between P0 on an ellipsoid and P on the Earth. Because the angle from P to S1 and

S2 is so small, the problem must be solved using distances but the required accuracy

for the distances is in the mm range and the range information from the orbits is

three orders of magnitude worse than this (Hanssen, 2001). The solution lies in using

the phase. The SAR phase measurement for any given pixel contains a dominant
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random element due to scattering, but the quantity is similar (to varying degrees) for

both the acquisitions and therefore differencing removes most of it. The essence of

InSAR can therefore be summed up as the use of differenced or interferometric phase

information to derive high resolution spatial information.

2.3.1 Interferometric Phase

The interferometric phase results in interference fringes in accordance with the same

principles evident in Young’s experiment; fringes in an interferogram occur because

the sources are coherent but come from different positions. The further apart the

sensor positions are affects how many fringes appear in the image. SAR geometry

implies that the fringe rate is dependent on the perpendicular baseline (B⊥). Fringes

will occur across the image because of the increasing distance from sensor to ground

between near range and far range objects, this is exacerbated with Earth curvature.

Knowledge of the interferometric phase requires knowledge of the positions of the

sensors at the time of the acquisitions to reconstruct the SAR geometry.

Usually the two images are taken from the same orbit track, which means the

minimum temporal baseline for a repeat-pass configuration is equal to the orbital

cycle (thirty-five days for ERS-1, ERS-2 and ENVISAT). If targets in an area remain

stable over time, then repeat-pass interferometry may be possible with a temporal

baseline measured in years. In general though most targets decorrelate temporally;

surface water or snow will come and go, sand will be blown, seasons and weather will

affect vegetation and human intervention such as agriculture will cause significant

change. In addition, geometric decorrelation occurs proportional to B⊥, because as

B⊥ increases, so does the fringe rate, and high fringe rates are more sensitive to noise

effects. A B⊥ value which results in a fringe rate > 2π per resolution cell is known

as the critical baseline and images from baselines greater than this are not useful in

standard InSAR. The critical baseline for ENVISAT is 1100m (Holzner et al., 2002).

2.3.2 Phase Contributions

The phase in a single SAR image can be thought of as the sum of three components:
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• Phase due to range

• Phase due to scattering

• Phase due to noise

Although the scattering component is unpredictable, it is a deterministic quantity; if

two acquisitions occurred under identical conditions, then the scattering components

would be identical. In real terms, the scattering components are often similar in

the images; under these circumstances, the image can be thought of as coherent

(Hanssen, 2001). The level of correlation depends on temporal decorrelation, the

baseline geometry and the determination of the Doppler-centroid frequency. The

noise component is Gaussian and much of it can be filtered reasonably effectively.

Thus, the phase difference (δρ in figure 2.7) is mainly dependent on the difference in

range (Zebker et al., 1994). This takes no account of variations in phase delay due to

atmospheric inhomogeneity as yet.

Due to the differencing of the scattering component, the InSAR phase is a much

more useful parameter than SAR phase. The InSAR phase can also be thought of as

the sum of a number of contributions:

• Phase due to the Earth curvature over the scene

• Phase due to topographic features such as hills and valleys.

• Phase due to motion that may have occurred between the two acquisition dates

• Phase due to the delaying effect of the atmosphere on electro-magnetic waves

• Phase due to noise

The InSAR phase model in equation form is:

Φ = φEarth + φtopography + φdeformation + φatmosphere + φnoise (2.4)

2.3.3 InSAR Geometry

The geometric configuration for repeat-pass InSAR can be seen in figure 2.7.
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Two SAR acquisitions, S1 and S2, are separated in time and by a geometric baseline

B and a perpendicular baseline (B⊥). In an error free environment, the measured

phases at S1 and S2 are mainly proportional to the round trip distances (ρ and ρ+δρ)

from the sensor to the surface and back again (Zebker et al., 1994).

2.3.4 The InSAR Model

A geometric description of the interferometric phase (φ) begins with:

φ =
4π

λ
δρ (2.5)

where λ is the SAR wavelength and δρ represents the path difference between S1 and

S2. δρ can be determined by

(ρ+ δρ)2 = ρ2 +B2 − 2ρBsin(θ − α) (2.6)

Figure 2.7: Earth and ellipsoidal InSAR Geometry. The interferometric phase is related
to the extra path length (δρ) between S2 and P . The dashed triangle represents InSAR
geometry with respect to the Earth’s surface whilst the bold triangle refers to the ellipsoid.
Terms labelled with a subscripted 0 refer to ellipsoidal geometry (Hanssen, 2001).
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where θ is the look angle and α is the angle between the baseline and the horizontal

at S1. Rearranging gives

2ρδρ+ δρ2 = B2 − 2ρBsin(θ − α) (2.7)

dividing by 2ρ throughout and assuming δρ2

2ρ
to be negligible in space based SAR

geometry gives

δρ =
B2

2ρ
−Bsin(θ − α) (2.8)

Adopting the far-field approximation, the first term on the right hand side of equation

2.8 is considered negligible (Zebker and Goldstein, 1986) and the difference in path

length becomes

δρ = −Bsin(θ − α) (2.9)

substituting into equation 2.5 gives

φ = −4π

λ
Bsin(θ − α) (2.10)

In practice, determining δρ in equation 2.9 in this purely geometric sense is not

possible due to the 2π phase ambiguity (§2.4.3) and orbit inaccuracies but the rela-

tionship between the changes in δρ and θ can be determined using a simple derivative

and an initial value of θ with respect to the reference ellipsoid. For a full explanation

see Hanssen (2001).

2.3.5 Interferogram Processing Flow

The following sections follow typical steps involved in interferogram creation. Initially,

unfocused or raw data, must first be focussed into SLC data. The raw signal data

for a point target is spread in azimuth and range and focusing collects the dispersed

energy into a single pixel. The two main focusing techniques are the range-Doppler

and wavenumber domain techniques (Bamler, 1992). Typically, interferograms are

then formed as follows.
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2.3.5.1 Coregistration

The repeat-pass configuration involves two SAR images taken from different times

from orbits that are only known to a certain degree and are only repeatable to a

certain degree which means the start times (the acquisition times of the first azimuth

line) will vary and the corresponding look angles and therefore scattering features

of the area will be different. This results in images different in area, size, rotation

and backscatter. The aim of coregistration is to determine a transformation that

will map the location of each slave pixel in the master image. For interferometry to

succeed, the images must be co-registered to within 0.12 of a pixel which yields a

negligible 4% decrease in coherence (Just and Bamler, 1994). A standard approach

to this issue is to estimate coregistration offsets between a master (truth) image and

a slave image. This process is usually sub-divided into two stages termed coarse and

fine coregistration, interested readers should refer to Hanssen (2001).

2.3.5.2 Resampling and Interpolation

Interpolation is required to determine the values of the slave image pixels at their new

locations. The choice of interpolation kernel is again a trade-off between accuracy and

computational effort. An investigation into interpolation kernels was conducted by

Hanssen and Bamler (1999) who concluded that the choosing the optimal interpolation

kernel depends on the correlation properties of the signal. Li and Bethel (2008) also

tested various resampling algorithms making the point that computing power had

reached a point where many processor intensive algorithms were now viable options.

They concluded that there is no single interpolation kernel that fits all SAR resampling

situations.

2.3.5.3 Interferogram Generation

Post resampling, the slave and master images can be considered two identically sized

complex arrays of values. Interferograms are formed by multiplying each complex

pixel from the master with the complex conjugate of the corresponding pixel in the



2.3 InSAR 23

slave image:

p(x, y) = s1(x, y)s∗2(x, y) (2.11)

where p(x, y) is the interferogram pixel value at (x, y), s1 is the master SLC pixel value

at (x, y) and s∗2(x, y) is the complex conjugate of the slave SLC pixel value at (x, y).

This multiplies the amplitude values but differences the phase. The resulting array

is itself complex consisting of the multiple of the two amplitudes and interferometric

(InSAR) phase. Figure 2.8 is an interferogram centred on the city of Nottingham

in the UK, covering an area of approximately 1500km2. The image shows phase as

a periodic colour cycle and the product of the amplitudes as brightness. Areas of

low amplitude, especially in the left of the image, correspond to rural areas which

have decorrelated much more than the more stable urban mass of Nottingham in the

centre. Stable amplitude over time is therefore a reasonably good measure of fringe

visibility.

Figure 2.8: Interferogram of the Nottinghamshire area showing phase as a periodic colour
cycle and magnitude as brightness. From ENVISAT data: 12 June 2004 and 17 July 2004,
B⊥ = 34m. One colour cycle represents 2π rad.
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2.3.5.4 Coherence Estimation

Coherence in SAR interferometry is a useful by-product of the interferogram creation

process and is a measure of the correlation of the phase information of two corre-

sponding signals from a minimum of zero (no correlation) to a maximum of 1 (perfect

correlation). Coherence is only useful when considered over a finite interval of time or

space (Woodhouse, 2006). The coherence as a measure of phase correlation between

two numbered SAR scenes (γS1S2) is defined as:

γS1S2 =

∣∣∣∣∣ 〈S1S2∗2〉√
〈|S1|2〉 〈|S2|2〉

∣∣∣∣∣ (2.12)

where S1 and S2 represent the complex pixel values for the two scenes and 〈 〉

represents averaging over a neighbourhood. As urban structures tend to change less

over time than vegetation, higher coherence is usually found in towns and cities in the

mid latitudes, this can be seen in figure 2.9 which shows the corresponding coherence

image (left) and amplitude image (right) for the interferogram shown in figure 2.8 of

the Nottinghamshire area.

Figure 2.9: (A) Coherence Image of the Nottinghamshire area showing coherence as
brightness. (B) The corresponding amplitude image taken from an average of thirty-four
scenes. The two images show how lower (darker) coherence is correlated with rural areas.
Coherence computed from ENVISAT data: 12 June 2004 and 17 July 2004, B⊥ = 34m.

2.3.5.5 Filtering

Generally speaking, filtering attenuates frequencies in an image outside of a given

range and is commonly used to reduce Gaussian noise. Two-dimensional bandpass
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filters specified in terms of normalized centre frequencies are common in SAR in-

terferometry. Adaptive filtering methods are becoming more and more common in

InSAR, these are filters with no fixed impulse response width. Instead the impulse

response width is adapted based on certain data characteristics including signal-to-

noise ratio, coherence, fringe rate and the terrain gradient (Goldstein and Werner,

1998). The general aim is apply a stronger filter to areas that may require it more

whilst preserving areas that do not.

2.3.5.6 Multilooking

Here, complex interferogram data in a specified window is averaged to decrease noise.

This is often prescribed in a multilook ratio such as 1:5 or 2:10, the latter corresponds

to an averaging of twice in range and ten times in azimuth. These are common ratios

for ENVISAT data as they result in almost square pixels. This of course increases

the pixel size by the same amount in the respective direction, but improves phase

statistics (Lee et al., 1994) because the standard deviation of the estimated phase is

proportional to the number of pixels over which the average is computed. This in

turn improves the reliability of phase unwrapping (Goldstein et al., 1988).

2.4 Differential Interferometry

DInSAR is an extension to InSAR involving either two SAR interferograms (three

or four-pass) or one SAR interferogram and a simulated interferogram synthesized

from a Digital Elevation Model (DEM) (two-pass). DInSAR differences the coherent

combinations of interferograms for change detection studies and was demonstrated

as a technique for mapping elevation changes in agricultural areas in California to

centimetre level accuracy using SEASAT data by Gabriel et al. (1989). Since then

it has been has been used in a wide array of subjects involving such as the study of

the Landers earthquake (Massonnet et al., 1993). Here the author used a two-pass

approach with ERS-1 data utilising a DEM to remove the topographic signal. Zebker

et al. (1994) developed the three-pass method and was able to show good agreement

between DInSAR results and standard survey measurements. Other applications
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include glacial motion (Goldstein et al., 1993), vulcanology (Massonnet et al., 1995),

landslides (Fruneau et al., 1996) and subsidence (Massonnet and Feigl, 1998).

2.4.1 Two-pass DInSAR

High resolution DEMs have become widely available in recent years (Farr et al.,

2007). Synthesising the topographic interferogram from an existing DEM has several

advantages over the three-pass method:

• Atmospheric phase error is eliminated for the topographic interferogram.

• Phase noise due to differencing is reduced.

• There is no chance of any unknown deformation events contaminating the

topographic interferogram.

• Potential decorrelation issues will be reduced.

• There is only one interferogram requiring unwrapping.

However, in order to create the simulated interferogram, a number of issues must

be overcome. The DEM will probably be georeferenced with respect to an orthogonal

mapping projection and with a different spatial resolution to the SAR data. Below is

a typical processing chain to create the topographic interferogram using DEM data:

• Using the SAR orbits, transform the DEM data to Range-Doppler Coordinates

(RDC).

• Over or undersample DEM pixels to roughly the same resolution as the master

scene, interpolating any gaps as necessary.

• Simulate the amplitude for the DEM as though the DEM were viewed from the

geometry of the master SLC.

• Estimate a linear offset between the DEM and the SAR master scene.

• Estimate a polynomial (typically third order) between the DEM and the SAR

master scene.
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• Coregister and resample the DEM using a method described in §2.3.5.1 and

2.3.5.2.

2.4.2 DInSAR Errors and Limitations

DInSAR is in effect a double-differencing technique; SAR phase is differenced to create

the interferogram and two interferograms are differenced to create the differential

interferogram. Differencing techniques in general suffer because there are multiple

sources of noise to contend with. Two-pass DInSAR has the advantage over three

pass in that there are less sources of phase noise, but it introduces a DEM error.

Data availability is also an issue. SAR platforms are a sparse data source and

conflicts between users are common. DInSAR requires that the dates spanning a

deformation event such as an earthquake are ideally as uncontaminated as possible

from other influences such as temporal decorrelation and unrelated motion; this may

not be possible.

2.4.3 Phase Unwrapping

§2.3 postulated that spatial information may be determined from the angular dif-

ferences between two SAR acquisitions. This is equivalent to measuring cumulative

angular phase differences between neighbouring resolution cells in a SAR interfero-

gram (Hanssen, 2001). The interferometric phase is only known modulo 2π, therefore

an integer number of 2π cycles has to be added to this to determine the absolute phase

difference. The relationship between modulo phase and absolute phase is illustrated

in figure 2.10. The top diagram represents the wrapped modulo phase measurement

in an interferogram with the ‘sawtooth’ jumps of 2π. The bottom diagram represents

the smoother reconstructed phase post unwrapping. The phase here has no noise,

no discontinuities and it is a one dimensional example making unwrapping a trivial

computational task.

In reality, a number of issues make phase unwrapping the single most difficult

computational task in InSAR. Most of these issues span from a much deeper, general

issue in signal processing; real, continuous signals must be sampled and converted to
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digital signals for computing purposes and a sufficient sampling rate is required if the

original signal is to be represented satisfactorily (Ghiglia and Pritt, 1998). At some

later stage, the ideal is to reconstruct the original continuous form of the data from

the discrete samples. If the data is complete, without error and sampled at a high

enough rate, then reconstruction is reduced to a computational exercise. In many

real scenarios however, the signal cannot be perfectly reconstructed and unwrapping

some interferograms to an acceptable degree may be impossible.

Figure 2.10: The measurable, wrapped modulo 2π interferometric phase between
two points in an interferogram (top) and the reconstructed unambiguous phase post
unwrapping (bottom).

Making use of phase measurements in InSAR and DInSAR routinely involves

unwrapping at some point. Incorrect phase unwrapping is a source of error and

according to Zebker et al. (1994) the performance of a phase unwrapping algorithm

depends on two factors: the SNR of the interferogram and the interferometric fringe

spacing. The two main approaches to phase unwrapping are residue-based algorithms

as proposed by Goldstein et al. (1988) and least squares algorithms proposed by

Zebker and Lu (1998). In contrast to the example shown in figure 2.10, phase is

often unwrapped in two orthogonal directions. Gradients between adjacent pixels

are computed and integrated over a given path and therefore the resulting interfero-
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gram describes phase values relative to the starting point (Ghiglia and Pritt, 1998).

Atmospheric phase, poor coherence, discontinuities, temporal decorrelation and large

perpendicular baselines all exacerbate the issue. A comprehensive examination of

phase unwrapping is provided by Ghiglia and Pritt (1998).

2.4.4 Stacking

Stacking is a means of combining multiple interferograms of the same area. One

of the issues with standard interferometry is the large number of parameters which

must be estimated from a relatively small number of observations. Stacking involves

averaging the stack to improve the Signal to Noise Ratio (SNR) (Sandwell and Price,

1998, Sandwell and Sichoix, 2000). Assuming that the error statistics for all the

interferograms in the stack are the same, the quality of the SNR improves because

unwrapped phases from interferograms add up linearly (e.g., interferograms with

one and two year temporal baselines (BT ) result in an unwrapped phase effectively

covering three year interval) whilst error terms only increase with the square root of

the number of pairs. This means that the standard deviation of the phase rate from

any single interferogram is proportional to the inverse of the cumulative time interval

(Wegmüller et al., 2000):

σ(φ̇i) =
σ(φ)

∆Ti
(2.13)

where σ(φ̇i) is the standard deviation of the phase rate of interferogram i, and ∆T

is the cumulative time interval. As ∆T increases, σ(φ̇i) decreases. The estimate of

the average φ̇i from any point in the interferogram stack is:

φ̇i =
∑

wiφi (2.14)

where wi represents the weights derived from the square of the time intervals of the

individual interferograms. Stacking does not need to have a common master, so

arbitrary pairs with optimum BT and B⊥ can be selected. Stacking can be used

for designing filters to suppress noise (Wegmüller et al., 2000), to improve the ratio

between the subsidence signal and atmospheric error (ibid) or as an priori estimate
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of motion for PSI.

2.5 Atmospheric Effects in InSAR

InSAR images tend to exhibit irregular artefacts which according to Zebker et al.

(1997), Delacourt et al. (1998), Hanssen (1998) and Massonnet and Feigl (1998) are

due to spatial and temporal atmospheric inhomogeneity across the SAR scene. In

particular, Zebker et al. (1997) states that these artefacts result mainly from signal

delay as radar waves pass through areas of atmospheric water vapour; these delays are

usually around 2-3m in Northern temperate Europe (Hanssen, 1998). Tropospheric

variations in pressure and temperature also contribute to the distortions, but these

effects are much smaller in magnitude.

The corresponding phases φ1 and φ2 from two SAR acquisitions for a given pixel

are:

φ1 =
4π

λ
L1, φ2 =

4π

λ
L2 (2.15)

where λ is the radar wavelength and L1 and L2 are the slant ranges. The propagation

delay of radar signals corresponding to each acquisition can be expressed as:

φ1 =
4π

λ
(L1 + ∆L1), φ2 =

4π

λ
(L2 + ∆L2) (2.16)

where ∆L1 and ∆L2 are the respective propagation delays. The interferometric phase

(φ) then becomes:

φ =
4π

λ
(L1 − L2) +

4π

λ
(∆L1 −∆L2) (2.17)

The first term on the right hand side of equation 2.17 is interferometric phase induced

by topography and deformation whereas the second term is induced by atmospheric

phase errors. The challenge is separating the two terms accurately as one can be

interpreted as the other.

For repeat-pass interferometry, localised inhomogeneity at the time of the first

acquisition would result in a slower propagation velocity with respect to the reference
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phase resulting in a positive phase change in the interferogram. A similar effect

at the time of the second acquisition would result in a negative phase change in the

interferogram. The sign of the phase change is therefore independent of perpendicular

baseline considerations (ibid). Also, because of the relative nature of interferometric

observations, only variations in the signal delay can be measured, and not absolute at-

mospheric delay. Note that in areas of significant topography, changes in atmospheric

conditions due to height cannot be ignored (Delacourt et al., 1998).

Understanding the varying scales at which water vapour can manifest is a crucial

factor when designing an effective mitigation strategy. Water vapour fields that are

most likely to affect interferograms occur at the microscale (1km horizontally and

vertically) and the mesoscale (a few to several hundred kilometres horizontally and

from the surface of the Earth to 10km vertically). A full account of the atmospheric

effects on InSAR is given by Hanssen (1998).

2.6 Persistent Scatterer Interferometry

PSI exploits the spatial and temporal characteristics of the differential phases of PS

points in a stack of SAR images to map deformation rates over time. PS points are

temporally phase stable points that by definition are the dominant scatterer within

a resolution cell. PS points do not exhibit geometric decorrelation in the way that

distributed targets do; this permits a more complete use of available data including

interferometric pairs with baselines longer than the critical baseline. PSI requires a

much larger number of scenes than standard InSAR in order to select statistically

reliable PS points and also to enable more reliable estimates of atmospheric phase.

This extension to the conventional InSAR model was first proposed by Ferretti et al.

(1999) which was later named and patented as the Permanent Scatterer Technique

(Ferretti et al., 2001). The authors selected pixels within the stack with low amplitude

dispersion over time; these points are thought to relate to optimally aligned features

that give consistently stable amplitude reflectance such as hard urban features. The

process of isolating the deformation phase from other phase contributions then follows.

Since Ferretti’s original contribution, numerous variations on this theme have been
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postulated and tested such as the Small Baseline Subset (SBAS) (Berardino et al.,

2002), the Coherent Pixel Technique (Mora et al., 2003), the Interferometric Point

Target Analysis (IPTA) (Werner et al., 2003), the Stable Point Network (Duro et al.,

2004), the Stanford Method for Persistent Scatterers (Hooper et al., 2004), the Spatio-

Temporal Unwrapping Network (STUN) (Kampes, 2006), and the 3-Pass Persistent

Scatterer Processor (3PaPS) (Warren, 2007). The applications of PSI techniques are

many and varied and such as monitoring subsidence due to mineral or gas extraction

(Kemeling et al., 2004, Cuenca and Hanssen, 2008, Ketelaar, 2009), urban subsidence

monitoring (Ferretti et al., 2000a, Worawattanamateekul et al., 2003) and volcanic and

crustal deformation monitoring (Hooper and Pedersen, 2008, Paganelli and Hooper,

2008, Perski et al., 2008).

The main stages of PSI analysis are now discussed. This follows a typical processing

chain involving a stack of coregistered SLC ENVISAT images with a resampled and

coregistered DEM.

2.6.1 Identification of Candidate PS Points

Generally, a deformation model cannot be applied to every pixel in a given area

because of temporal decorrelation. Therefore, individual pixels must be examined as

to the quality of the differential phase over time before phase contributions can be

separated. Reliably determining this at the outset is not directly achievable as error

terms such as atmospheric phase dominate the process (Mora et al., 2003). Therefore,

a number of strategies exist to first determine potential or candidate PS points as a

starting point. This list can later be revised as knowledge of the contributing phase

terms increases.

Several methods exist for finding candidate PS points. Original methods involved

an examination of a pixel’s amplitude variation over time. Ferretti et al. (2001)

computed the ratio of the standard deviation of the amplitude over the mean for

each pixel. This was then thresholded at a given level. Pixels dominated by a point

scatterer will show less random speckle behaviour over time and they ought to show

similar intensity when viewed from different angles (Werner et al., 2003).

Another method that uses amplitude examines whether pixels display low spectral
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diversity (Werner et al., 2003); this is based on the theory that dominating point

targets in a resolution cell have a spectral diversity different to that of distributed

targets, even when viewed from different directions. Rabus et al. (2004) found that

combining the backscatter and spectral diversity methods produced more robust

results (for stacks with less than 40 scenes) than Ferretti’s original method.

Coherence can also be used as a measure of point quality as coherent pixels are

more likely to be PS points (Mora et al., 2003). This however involves a trade-off

with a permanent decrease in image resolution, but unlike Ferretti et al. (2001), the

technique is not dependent upon such large stacks of (30 or more) images to obtain

statistically reliable points. Differential interferograms must first be formed to first

estimate the coherence.

Hooper (2006) used differential interferograms to determine pixels with low noise.

The noise term was separated from the interferometric phase through a patch averag-

ing technique. The averaging technique requires that the location of other PS points

are already known which is achieved through an iterative amplitude dispersion and

coherence computation.

2.6.2 Differential Phase

Using either an existing DEM or a DEM generated from a subset of the available

images (§2.4), the differential phase is revealed by subtracting the DEM from the in-

terferometric pairs. The quality of the differential interferograms will vary depending

on the quality of DInSAR model parameters such as the orbits and the size of the

baselines (Bamler and Hartl, 1998). The quality of the DEM will have an effect on

the differential interferograms, although the PS results do not depend on it (Kampes,

2006) since height corrections are estimated in the PS process.

The differential phase consists of:

Φ = φatm + φorb + φdefm + φDEM + φn (2.18)

where Φ is the differential phase and φatm, φorb, φdefm, φDEM , φn are the respective

phase terms due to atmosphere, orbit errors, deformation, DEM errors and noise.
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Briefly examining these in turn:

• The atmospheric and orbit errors are both spatially correlated and random over

time. This makes them difficult to separate and the so called Atmospheric

Phase Screens (APSs) determined per interferogram may contain some degree

of orbital error within them depending on the processing method used.

• The deformation phase is correlated temporally and spatially. Some methods

divide this term into non-linear and linear deformation (Ferretti et al., 2000b,

Mora et al., 2003, Werner et al., 2003), while others assume all deformation to

be linear (Ferretti et al., 2001).

• The DEM error is a temporal constant through the stack and can be modelled

as a function of the individual baselines (Ferretti et al., 2001).

• The noise term is random temporally and spatially and is mitigated by the

fact the PS points are often selected based on the fact that they have low

noise characteristics (Hooper, 2006). Filtering methods can also be employed

to reduce noise (Lyons and Sandwell, 2003).

2.6.3 Estimating Linear Deformation

Strategies to determine deformation estimates from a stack of coregistered wrapped

differential interferograms vary widely in detail although they usually have common

processes. Offered here is a general explanation of the main steps with no focus on any

particular method. Non-linear deformation is referred to from time to time although

the focus is linear deformation which is more relevant to this work.

2.6.3.1 Applying the Phase Model

The original method (Ferretti et al., 2001) first involved iteratively estimating and

removing linear phase ramps from the interferograms; these were assumed to be

related to atmospheric and orbit error (Kampes, 2006). This limited the process to

areas of 5 x 5km. Improvements on this were made (Ferretti et al., 2000b, Colesanti

et al., 2003a) whereby the atmospheric phase was not assumed to be planar and
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determined later in the process (see below). Assuming the latter strategy above,

an algorithm (see Kampes (2006) for a description of this) is used to fit a model

to the wrapped differential phases which determines the DEM error and the linear

deformation velocities; this process is now described in more detail.

The PS points are first connected through a network process such as Delaunay

triangulation (Delaunay, 1934). If the distance between two neighbouring points

does not exceed some pre-determined limit (this ranges from between 1km (Hanssen,

1998, Mora et al., 2003) to 2-3km (Colesanti et al., 2003a, Kampes, 2006)) then an

assumption is made that the atmospheric variability between them is negligible. The

short distances will also hopefully mean that phase differences are smaller than π

since the observed data is wrapped.

From this optimised network, phase differences between neighbouring points are

determined through the stack and a two-dimensional phase regression computation

takes place. This involves an examination of the linear correlation between the phase

differences and the respective perpendicular baselines. Such correlations are directly

related to errors in height, although at this stage only differences in the height errors

can be determined because only phase differences are known. The phase differences

between the points are also examined to see how they vary over time. Smoothly

varying phases are related to the deformation estimate. Again, at this stage, only

differences in the deformation estimates are determined. The two aspects of the

phase regression can be computed using a periodogram (Ferretti et al., 2001, Adam

et al., 2003).

Figure 2.11 shows four plots of the two-dimensional phase regression process. The

left hand pair show the baseline dependence of the phase difference (top) and the

time dependence of the phase difference between two neighbouring points in the

triangulation network; a relatively low height correction is indicated. The right hand

pair show a much higher height correction. Also revealed in the process is the standard

deviation of the phase which can be used as a quality measure for rejecting erroneous

PS candidates.

Phase that is not be attributable to either deformation phase or height correction

phase is termed residual phase. This is usually assumed to contain atmospheric error,
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Figure 2.11: Two examples (left and right) of the PSI phase regression process are
shown, each with two plots (top and bottom). The baseline dependence of the phase
differences between a reference pixel and another pixel for a stack of interferograms is
shown in each of the top images; this is related to the relative height correction between
the points. The time dependence of the phase difference between the same points is
shown in the bottom images; this is related to the relative deformation estimate. The
left hand case indicates a small height correction whilst in the right hand pair it is much
larger. Both the deformation estimates indicate similar (relative) subsidence.

non-linear deformation and noise; this is discussed below.

2.6.3.2 Phase Unwrapping

Since the observed phase data is only known modulo 2π, spatial phase unwrapping

reveals the PS point phases from the phase differences. This can only succeed if the

residual phase difference terms are < π (Kampes, 2006) although lower estimates have

been suggested as being more realistic (Colesanti et al., 2003b).

The components of the residual phase differences should be small in a well con-

ditioned PSI analysis. For instance, the atmospheric delay phase difference between

points <1km is commonly below 0.3 rad (Ferretti et al., 2000b); non-linear phase is

assumed to be low if the linear model provides a good approximation and the phase

noise should be low because PS points with low amplitude dispersion usually relate

to a low noise standard deviation (Kampes, 2006).

The unwrapping is initiated at a sufficiently high quality reference PS point; this
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point must also necessarily be connected to other points to allow unwrapping a

sufficient chance to succeed. The resulting phases at each PS point are of course

relative values as they are derived with respect to the initial phase value at the

reference point.

2.6.3.3 Atmospheric Phase

For the linear method, atmospheric phase is now estimated from the unwrapped

residual phase; the non-linear method here deviates by estimating non-linear defor-

mation first (Ferretti et al., 2000b). The atmospheric phase is spatially correlated over

short distances and assumed to be temporally random (Mora et al., 2003, Kampes,

2006), and therefore with a sufficiently large enough stack of interferograms, it can

be estimated by low pass filtering in the spatial domain and high pass filtering in

the temporal domain. Most methods interpolate the atmospheric phase for every

pixel (Ferretti et al., 2001); this can happen concurrently with the filtering (Colesanti

et al., 2003a) through Kriging (Matheron, 1963). Other methods do not interpolate

and instead rely on a sufficiently dense set of PS points that permits spatial filtering

of the points alone (Werner et al., 2003).

The atmospheric phase can then be subtracted from the differential interferograms.

Methods deviate here, for instance Ferretti et al. (2001) conducts a fresh search

for PS points using phase stability as the criteria and the parameter estimation is

repeated. Werner et al. (2003) only uses the amplitude derived candidate points for

the whole (iterative) process; points may be rejected and later re-introduced, but the

process does not permit a search for new PS points. Methods for deriving non-linear

deformation often do not iterate.

The PSI process is optimised with a uniformly distributed interferogram stack (both

temporally through the stack and spatially distributed PS points in the images), an

area of study small enough not to invalidate assumptions about the atmosphere and

low enough rates of deformation to avoid aliasing (Ferretti et al., 2001).
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2.7 GPS

GPS is one of the Global Navigation Satellite Systems (GNSS) in use today; it was

developed by the United States Department of Defence for military purposes and

is now operated by the United States Air Force. It is capable of providing users

operating suitably equipped receivers on or close to the Earth with timing, position

and velocity.

This section aims to give an overview of the system highlighting topics particularly

relevant to the research presented in this thesis. More thorough descriptions of GPS

can be found in Hofmann-Wellenhof et al. (2001); Leick (1994) and Parkinson and

Spilker (1996).

2.7.1 History and Concept

Space based global trilateration (a means of determining position using distances)

became a theoretical possibility when scientists realised they could measure Doppler

shift from Sputnik, launched by the Soviet Union in 1957 (Hofmann-Wellenhof et al.,

2001). This led on to the Navy Navigation Satellite System (NNSS or TRANSIT)

which used the Doppler signal as a means of determining the time of closest approach

of a TRANSIT satellite, which when combined with other similar measurements and

a knowledge of satellite ephemerides could provide users with position.

GPS was conceived in order to replace TRANSIT after prototype testing in 1972

using balloon carried transmitters. The GPS concept was approved and ratified in

1973 and the research and developmental phase began in earnest. The first block-I

satellite was launched in 1978 and the system was declared operational in 1993. By

1994 a constellation of twenty-four satellites were in orbit.

Today, over thirty satellites from different generations exist in six orbital planes and

provide huge benefit to a vast array of diverse fields and disciplines such as navigation,

banking and meteorology. The system is designed to provide instantaneous position

and velocity in any weather conditions, twenty-four hours a day, anywhere on the

Earth. Ranges from satellite to receiver are computed from the transit time of the

signals, these are known as pseudo-ranges as they are not corrected for any errors
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that may exist in the clocks. The satellite positions are measured frequently and vary

smoothly, therefore with enough pseudo-ranges, a position in a suitable coordinate

system is resolvable using trilateration.

2.7.2 System Overview

GPS consists of three distinct segments:

• The space segment

• The control segment

• The user segment

These are now discussed in turn.

2.7.2.1 The Space Segment

The operational satellite constellation consists of twenty-four spacecraft plus spares in

six near circular orbital planes inclined at 55◦ from the equator at around 20,200km

above the Earth. The planes are arranged 60◦ apart providing coverage from at least

four satellites from any position on or near Earth. Although generations of GPS

satellite vary, the payload generally consists of four atomic clocks and transceivers to

receive input data from the control segment and transmit navigation signals. Each

satellite transmits the same two L-band carrier-waves known as L1 (1575.42Mhz) and

L2 (1227.60Mhz); receivers can distinguish between the satellites because the system

employs spread-spectrum Code Division Multiple Access (CDMA). Here, each satellite

has its own Pseudo-Random Noise (PRN) sequence encoded into its signal; these are

know as Gold Codes (Gold and Dixon, 1998).

2.7.2.2 The Control Segment

The satellite orbits are tracked from Earth based ground control stations in Hawaii,

Kwajalein, Ascension Island, Diego Garcia and Cape Canaveral with a Master Control

Station (MCS) in Colorado Springs. Four of these stations also have ground antennas.
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The purpose of this segment is to monitor the health of the constellation. Monitoring

stations relay information to the MCS which then computes the orbital parameters

and clock corrections. This information is then passed to the ground antennas and

uploaded to the satellites. The satellites then transmit this ephemeris data in their

navigation message which is modulated onto the L1 carrier-wave.

2.7.2.3 The User Segment

Since its initial conception for military purposes, GPS now has an ever increasing

plethora of applications and uses throughout the scientific, commercial and leisure

domains. GPS receivers are simplex, allowing an unlimited number of users and the

technology has become much cheaper in recent years due to mass production. Receiver

antenna pairs can be roughly classified into two main groups: 1. Low cost, which have

an integrated antenna and are now common place in the mobile phone industry and

2. Geodetic, which have a separate antenna and make the best use of the observables

available.

2.7.3 Observables and Signal Structure

The GPS signal is a complex combination of modulations (Spilker Jr, 1978) as illus-

trated in figure 2.12. Atomic clock timing produces the fundamental frequency (f0)

of 10.23MHz from which the two carrier-wave frequencies are derived. The Coarse

Acquisition (CA) code is a repeating PRN code which is different for each satellite

and is modulated onto L1, repeating every millisecond. The Precise (P) code is much

longer and is modulated onto both L1 and L2 repeating every seven days. By default,

the P Code is encrypted for non-authorised users into the Y Code, more about this

below. The navigation message is a 50Hz signal modulated onto the L1 signal and

contains data bits that describe orbits, clock corrections and other system parameters.

The ranges determined from each part of the signal are the GPS observables and are

based on measured time or phase difference between a code transmitted from a satellite

and an identical code generated in the receiver.

A complete description of the GPS signal structure is given in the Interface Control
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Figure 2.12: The GPS signal structure. The L1 and L2 carrier-waves are derived from
the fundamental frequency of 10.23Mhz. Codes and a navigation message are modulated
onto the carrier-waves (Seeber, 2003).

Document on the United States Coast Guard website (http://www.navcen.uscg.

gov/pubs/gps/icd200/).

2.7.3.1 The Pseudo-Range Observable

The term ‘pseudo-range’ in this thesis refers specifically to code measurements. Pseudo-

ranges are a fundamental observable used for determining a satellite-receiver distance.

In principle, an identical continuous code is generated by a satellite and a receiver at

the same time. The satellite’s version of the code takes time to reach the receiver and

the offset between the receiver’s generated code and the satellite’s transmitted code

is directly proportional to the distance between the two antennas. This is illustrated

in figure 2.13.

In practice, the receiver’s clock is usually of quartz quality and therefore signifi-

http://www.navcen.uscg.gov/pubs/gps/icd200/
http://www.navcen.uscg.gov/pubs/gps/icd200/
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Figure 2.13: GPS receivers compare a time stamped internally generated code and a
time stamped satellite transmitted code to obtain an offset which is proportional to the
distance between them.

cantly less accurate than the satellite’s, and the satellite’s clocks will also drift with

respect to GPS system time. Adopting conventions used in Bingley (2005), the explicit

time frames of a receiver (τ), a satellite (t) and the GPS system time (T ), the system

time is related to the receiver and satellite clocks by

T = t+ δt (2.19)

T = τ + δτ (2.20)

where δt and δτ are the satellite and receiver clock offsets respectively. A pseudo-

range (PR) between receiver r and satellite s is the difference between the time of

reception in the receiver time frame (τr) and the time of transmission in the satellite

time frame (ts) scaled by the speed of light in vacuo (c)

PRs
r = c(τr − ts) (2.21)

The true geometric range (ρ) is the difference between the time of reception in the

GPS time frame (Tr) and the time of transmission in the GPS time frame (T s) scaled

by the speed of light in vacuo
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ρsr = c(Tr − T s) (2.22)

Substituting 2.19 and 2.20 into 2.22 gives

ρsr = c((τr + δτr)− (ts + δts)) (2.23)

which can be rearranged to

ρsr = c(τr − ts)− c(δτr − δts) (2.24)

and finally substituting equation 2.21 into 2.24 yields the basic pseudo-range equa-

tion

PRs
r = ρsr − c[δτr − δts] (2.25)

Some of the terms in 2.25 do not have rigorously defined time frames. Expressing

time frames in brackets after each term, equation 2.25 can be re-written as

PRs
r(τr) = ρsr(T

s, Tr)− c[δτr(τr)− δts(ts)] (2.26)

Adding terms to account for the errors in the satellite’s ephemeris (dephsr), the

signal delay biases due to the ionosphere (dionsr) and the troposphere (dtropsr), and

including an observation residual (vsr), a more rigorous expression for a pseudo-range

is given by

PRs
r(τr) = ρsr(T

s, Tr)− c[δτr(τr)− δts(ts)] + dephsr + dionsr + dtropsr + vsr (2.27)

2.7.3.2 The Carrier Phase Observable

The pseudo-ranges discussed above are modulated onto a carrier wave using binary

bi-phase modulation. It is this modulated carrier wave that is transmitted from the

satellite. The phase of the carrier wave offers a much more precise observable because

the resolution is in the order of decimetres, compared to the code’s which are 30
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to 300m long per bit. The carrier phase observable (φsr(τr)) between satellite s and

receiver r consists of the fractional part of the wavelength and the change in the integer

number of cycles that have occurred since the receiver locked on to the satellite. The

carrier phase observable therefore contains an integer ambiguity (N s
r ) term; this is

the unknown number of integer cycles between satellite s and receiver r and cannot

be determined directly.

Substituting the pseudo-range on the left hand side of equation 2.27 for the integer

ambiguity and carrier phase, and changing the units from metres to cycles, gives the

basic carrier phase equation when rearranged

φsr(τr) =
f

c
ρsr(T

s, Tr)− f [δτr(τr)− δts(ts)] +N s
r (2.28)

Equation 2.28 shows the basic carrier phase equation. In reality the receiver will

make an arbitrary guess at the value of the integer ambiguity when it first locks on

to each satellite. Thus N s
r represents the correction required to that guess in order

to determine the true integer ambiguity. Adding in the error terms introduced in

equation 2.27 yields the full carrier phase equation

φsr(τr) =
f

c
ρsr(T

s, Tr)−f [δτr(τr)−δts(ts)]+N s
r +

f

c
dephsr−

f

c
dionsr+

f

c
tropsr+v

s
r (2.29)

Note that f
c
dionsr is negative for the carrier phase observable because the carrier

wave signal is advanced by the ionosphere. The user’s position is implicit within the

geometric range

ρsr(T
s, Tr) =

√
(Xs −Xr)2 + (Y s − Yr)2 + (Zs − Zr)2 (2.30)

where Xs, Y s and Zs are the earth frame co-ordinates of the satellite and Xr, Yr

and Zr are the earth frame co-ordinates of the receiver. The satellite positions are

calculated from the ephemeris data leaving four unknowns to be solved, and

requiring pseudo-range measurements from at least four satellites. Note that unlike

the pseudo-range observable, it is not normally possible to determine an
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instantaneous stand-alone position using the carrier phase observable because each

observation has its own integer ambiguity term and in any case, the errors and biases

are around two orders of magnitude larger than the size of the observable. These

obstacles are usually overcome through relative positioning. For a fuller account of

this and related subjects, interested readers should consult Hofmann-Wellenhof et al.

(2001), Seeber (2003) and Leick (2004). Alternatively, an advanced technique known

as PPP that utilises carrier phase observations is also able to overcome these issues.

2.8 PPP

PPP brings together undifferenced carrier phase and pseudo-range observations from a

user’s GPS receiver, and highly accurate clock and orbit data computed from globally

distributed networks such as the International GNSS Service (IGS). This enables

users to compute a precise position without the need to resort to concurrent data

or positions from other sources for error mitigation. Station effects that result from

geophysical and atmospheric phenomena are present in the solution and users can

choose to apply models to remove or mitigate certain factors so that others may be

preserved. Satellite specific errors and biases may also be modelled.

Although PPP type experiments preceded it (Héroux and Kouba, 1995, Henriksen

et al., 1996, Lachapelle et al., 1996), PPP in its most common current form was first

proposed by Zumberge et al. (1997a). The aim was to develop an efficient approach

to offer the accuracy achieved at IGS stations to other users. The approach was

tested by analysing daily carrier phase data from CGPS stations, achieving millimetre

repeatabilities horizontally and centimetre repeatabilities vertically. In a follow up

paper Zumberge et al. (1997b) computed satellite clock and orbit information using

a subset of the IGS network known as the Fiducial Laboratories for an International

Natural sciences Network (FLINN). Many FLINN stations are equipped with atomic

clocks which provide a much more stable time reference at the receiver site. Three

dimensional positional accuracies for a receiver utilising FLINN orbits were 0.004m

with daily repeatabilities of 0.019m.

From a theoretical point of view, the fundamental difference between PPP and
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relative positioning is the treatment of the clocks and the ambiguity modelling.

Relative techniques are able to remove the clock biases and the ambiguity through

single, double and triple differencing. In PPP, the clock biases and the ambiguities

are considered unknowns and are estimated using a stochastic model with a sequential

filter such as the Square-Root Information Filter (SRIF); this is a modified Kalman

filter developed at the Jet Propulsion Laboratory (JPL) by Bierman (1977). SRIF

allows parameters to have either time uncorrelated behaviour (white noise) or time

dependent behaviour (random walk) or non-varying behaviour (Blewitt, 1993). These

different aspects are applicable to different parameters; for instance, a white noise

model is used to estimate satellite clock bias (Kouba and Héroux, 2000) whereas a

random walk model is used to estimate the tropospheric delay (ibid).

2.8.1 The PPP Observation Model

Continuing the observation model in §2.7.3, equations 2.27 and 2.29 are the two

fundamental GPS observables; the pseudo-range and carrier phase respectively. PPP

requires both of these to succeed and is usually performed using dual frequency data

for reasons explained below. For relative positioning, single differencing between two

receivers and one satellite removes the satellite clock error and the satellite ephemeris

error (δts(ts) and dephsr) and double differencing (between two single differences)

removes the receiver clock error (δts(ts)) and (indirectly) the integer ambiguity term

(N s
r ) (Hofmann-Wellenhof et al., 2001).

Obviously in PPP, these terms remain, but since high precision orbit and clock

products are being used, δts(ts) and dephsr can be considered known and can be

removed. The ionospheric advance can be removed using dual frequency data to form

the ionospherically free observable (Leick, 1994) and irregularities in the ionosphere

due to the Total Electron Content are mitigated using a model included in the orbit

products (Feltens and Schaer, 1998). Furthermore, the tropospheric delay (dtropsr)

can be divided into a hydrostatic component and a wet component (§2.8.2.6). The

hydrostatic component is dominant and predictable which accounts for 90% of the

tropospheric delay. The remaining wet delay can be expressed as a product of the

ZWD and a mapping function. The PPP observation model (Kouba, 2009a) for the



2.8 PPP 47

pseudo-range and the carrier phase observables is therefore

PRs
r(τr) = ρsr(T

s, Tr)− c[δτr(τr)] +MZWDs
r + vsr (2.31)

φsr(τr) =
f

c
ρsr(T

s, Tr)− f [δτr(τr)] +N s
r +

f

c
MZWD + vsr (2.32)

where MZWD is the weighted average of the mapped slant delays. Because the

equations above now only contain station specific terms, there is no point attempting

relative processing as it would result in uncorrelated station solutions that are equiv-

alent to independent PPP solutions (Kouba, 2009a). In reality, precise solutions must

also consider the temporally varying nature of the hydrostatic delay, this is discussed

below in 2.8.2.6.

The receiver clock (δτr(τr)) is a large error source within PPP. The timing of

operations within a GPS receiver is usually governed by a quartz clock, which is

significantly less stable than the atomic clocks used on board the satellites. The

drift in typical quartz clocks of 0.1ns/sec in receivers generates errors in the order

of several centimetres per second (Kouba, 2009a). The receiver clock can either be

modelled as a white noise process (Zumberge et al., 1997b) or as a random walk

process (Witchayangkoon, 2000).

The carrier phase ambiguities (N s
r ) can not normally be fixed to integer values

due to code biases in the receiver and satellites; these normally difference in relative

solutions. Various cutting-edge strategies exist (Blewitt, 2008, Kouba, 2009a) to

resolve this, but they are not applicable to episodic campaigns (Blewitt, 2008).

2.8.2 PPP Errors and Models

To provide a progressive account, the description of PPP thus far has been simplified

somewhat; many errors and biases occurring at the satellite and receiver have been

omitted. Those particularly relevant to the work in this thesis are now discussed.
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2.8.2.1 Multipath

Multipath is the term given to an error source that is caused by the signal from the

GPS satellite taking one or more indirect routes to the antenna (Hofmann-Wellenhof

et al., 2001). Signals that reflect in this way result in a range measurement that

appears longer than it should. Mitigation strategies include site selection and use of

high quality antennas.

Prior to PPP processing, GPS data can be pre-processed using a Linux command

line software package known as Translation, Editing, and Quality Check (TEQC),

which is used to quantify site specific issues such as multipath that may affect the

quality of the end results. TEQC was developed by the University Navstar Consortium

(UNAVCO) (Estey and Meertens, 1999) (http://facility.unavco.org/software/

teqc/teqc.html) and is a widely used tool in the GPS research community (Afraimovich

et al., 2003, Ogaja and Hedfors, 2007).

Amongst other things TEQC outputs the RMS values of the de-trended estimates of

the P-code multipath on the two GPS carrier signals L1 and L2 (Estey and Meertens,

1999); these are referred to as MP1 and MP2. Figure 2.14 shows skyplots of the MP1

and MP2 values for each satellite track (top left and right) along with the azimuth

and elevation spread of the satellites for the session (bottom left) and an azimuth and

elevation spread of the MP1 values for each satellite track (bottom right). The plotting

routines were created by Dr Norman Teferle at the Institute of Engineering Surveying

and Space Geodesy (IESSG), University of Nottingham for his own research.

The multipath values can be used to either determine a station’s suitability or

identify specific sources of multipath error.

2.8.2.2 Absolute Antenna Phase Centre Corrections

The physical phase centres (one each for L1 and L2) of GPS receiver antennas are

not measurable points for a user because they lie within the antenna housing. Instead

they are determined by offsets from a measurable point on the antenna such as the

Antenna Reference Point (ARP); these are referred to as Phase Centre Offsets (PCOs).

Furthermore, the L1 and L2 electrical phase centres are actually theoretical points in

http://facility.unavco.org/software/teqc/teqc.html
http://facility.unavco.org/software/teqc/teqc.html
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Figure 2.14: Examples of analysis of TEQC quality control output from a six hour session
at Askerton Ordnance Survey Pillar (ASKE) on 21 June 2008. The two ’skyplots’ (top)
show the L1 (left) and L2 (right) P-code multipath values for individual satellites known
as MP1 and MP2; the centre of these plots relate to the observers zenith. Multipath
values ought to be low unless satellites are close to the horizon. The bottom left plot
is a means of plotting the azimuth spread of satellite tracks and the bottom right plot
is similar except MP1 values are used to colour code the tracks. These plots and others
tend to be used to justify data rejection or to assess the suitability of a site.

space that vary with the elevation and azimuth of the satellite being tracked; these are

referred to as Phase Centre Variations (PCVs), which in turn vary between antenna

models. Strategies in the past to account for PCOs and PCVs in a given antenna

involved calibration over a short baseline with a globally accepted reference antenna:

the Allen Osborne Associates Dorne Margolin model T (AOAD/M T). This process

involved various assumptions and limitations which led to systematic errors in GPS

results. For instance, the PCVs on the reference antenna were ignored (Schmid et al.,

2005), not to mention the PCOs and PCVs on the satellite antennas.

Coinciding with the realisation of the International Terrestrial Reference Frame

2005 (ITRF2005) (http://igscb.jpl.nasa.gov/network/refframe.html), an ab-

http://igscb.jpl.nasa.gov/network/refframe.html
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solute antenna PCV and PCO strategy for both receivers and satellites has been

adopted by the IGS (Schmid et al., 2007). As more and more antennas are absolutely

calibrated, the IGS collates the offsets and variations and releases them periodically

(ftp://igscb.jpl.nasa.gov/pub/station/general).

2.8.2.3 Ocean Tide Loading

Large open ocean water masses are redistributed around the globe because of the

gravitational pull of mainly the Sun and the Moon; this has a deforming effect on

the solid Earth surface known as Ocean Tide Loading (OTL). For a GPS station,

this manifests mainly as cyclical vertical motion with some horizontal effect also over

mainly diurnal and semi-diurnal periods. OTL varies spatially and temporally and

can be described through the complex interaction of eleven tidal harmonics (Wilhelm

et al., 1997). Site specific OTL coefficients computed using a range of models have

been made available by Bos and Scherneck (2006).

2.8.2.4 Earth Body Tides

The solid Earth undergoes elastic deformation as it moves through the gravitational

fields of the Moon and the Sun and these motions are known as Earth Body Tides

(EBT) or solid Earth tides (Melchior, 1974). For geodesists, there are four tidal

constituents of note; the diurnal and semi-diurnal effects of the Moon and the Sun.

Rather than the complex interactions of harmonics that produce motion from OTL,

EBT has a very much more direct and predictable effect on surface deformation

and 98% of the effect can be adequately described using the dimensionless elasticity

parameters known as the Love numbers and the Shida number. For further reading

see Torge (2001) and Bomford (1980).

2.8.2.5 Tectonic Plate Motion

Tectonic plate motion has been an intense field or research for several decades and is

a leading research topic for GPS scientists (http://sideshow.jpl.nasa.gov/mbh/

series.html). As solutions from PPP processing are computed independently of a

network, the Terrestrial Reference Frame (TRF) used to compute the positions of the

ftp://igscb.jpl.nasa.gov/pub/station/general
http://sideshow.jpl.nasa.gov/mbh/series.html
http://sideshow.jpl.nasa.gov/mbh/series.html
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satellites is automatically implied in the station solutions. This is usually a global

TRF, which unlike local TRFs such as the European TRF 1989 (ETRF89), is not

fixed in time to a specific epoch. Plate tectonic motions will therefore be present

in the solutions. As the motions are uniform on the time scale of millions of years

for areas not close to plate boundaries, their removal is usually trivial (Lambeck and

Canberra, 1989).

2.8.2.6 Tropospheric Delay

The troposphere is the region of the earth’s atmosphere between the surface of the

earth and an altitude of 17km. This region of the atmosphere causes delay in the

propagation of GPS signals (and radio signals in general) typically between 2-3m

(Kouba, 2009b). The troposphere is a non-dispersive medium so the delay experienced

by both the L1 and L2 signals is the same. Also, the delay to pseudo-ranges is the same

as that to carrier phase observations. The troposphere consists of a wet component

and a hydrostatic component and the integrated total delay can be estimated using

PPP techniques (Bevis et al., 1992). It can also be estimated from relative solutions,

but often this causes a bias in the results, especially with smaller networks (<500km)

(Gendt, 1998); this was an influencing factor in the choice of PPP for this work.

As mentioned, the integrated total tropospheric delay, which is the sum of the

hydrostatic and wet delays, can be estimated from GPS data, but this is less useful

than the wet delay alone, and usually the hydrostatic delay is subtracted. The

hydrostatic delay is predictable as it is mainly a function of pressure and height,

and it accounts for around 90% of the total delay. The wet delay is much harder

to predict and is caused by the spatial variability of water vapour. The wet delay

values have been shown to resemble real atmospheric water vapour estimates from

water vapour radiometers (Bar-Sever et al., 1997), and consequently for some, it is

not just another error term, it has useful real world and research applications (Bevis

et al., 1994, Williams et al., 1998, Wadge et al., 2002, de Haan et al., 2006), including

those detailed in this thesis. Figure 2.15 is an example of a near real-time Zenith

Total Delay (ZTD) map of Japan (Iwabuchi et al., 2006) computed from a network

of CGPS PPP solutions; this is used to estimate Integrated Water Vapour (IWV).
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Figure 2.15: A ZTD map of Japan. CGPS stations stationed around Japan each compute
their own ZTD values which are used to form a ZTD map of the area; this can be used
in weather nowcasting c© GEONET.

Because observations are not normally made in the zenith direction, the GPS

tropospheric delay term is estimated from a cone of observations above the station

antenna, the size of which is dependent on the elevation mask. These estimates

are then mapped to zenith and a single weighted average estimate termed the ZTD

is estimated (Bevis et al., 1994) from which the ZWD can be derived. To prevent

solution instability in the SRIF, usually only one tropospheric delay value is estimated

per epoch, either as a stochastic variable or as random parameters valid over short

intervals spanning several epochs (Kouba, 2009b).

The hydrostatic component can be modelled in various ways, including as a single

polytropic layer (Hopfield, 1970) or as a function of height and pressure (Saastamoinen,

1972). Pressure values are required for both of these, for instance the simplified

Saastamoinen equation (Saastamoinen, 1972) is given by:
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ZHD = P · 0.00227 · e(−0.000116·h) (2.33)

where ZHD is the Zenith Hydrostatic Delay, P is pressure in millibars and h is the

station orthometric height in metres. If this pressure value is not available, then a

default standard atmospheric pressure will be assumed of 1013.25mb. Kouba (2009a)

suggests that the best solutions for ZHD are obtained using station pressure values

which is why they were employed in this project.

Because the amount of troposphere encountered by a GPS signal is dependent

on the elevation angle, it is also standard practice to employ a mapping function to

account for this in PPP solutions. There are a large number of mapping functions and

comprehensive reviews exists detailing their respective merits (Mendes and Langley,

1998, Witchayangkoon, 2000, Kouba, 2009b). Kouba (2009b) concludes that the

current state-of-the-art Global Mapping Function (GMF) is the Vienna Mapping

Function-1 (VMF1) (Boehm et al., 2006a), hence its choice for this project. VMF1

was computed from an archive of forty years of empirical data from the European

Centre for Medium-Range Weather Forecasts (ECMWF) and provides global grids of

2.0◦ in latitude by 2.5◦ with a temporal resolution of six hours of hydrostatic and the

wet mapping functions (http://ggosatm.hg.tuwien.ac.at/DELAY/).

2.9 Summary

Several subjects relevant to this thesis have been reviewed. Firstly, the basics of SAR

and InSAR were discussed followed by an examination of the PSI technique. GPS and

the more advanced PPP processing technique were then examined. These subjects

now form the basis of the literature review in the next chapter.

http://ggosatm.hg.tuwien.ac.at/DELAY/


Chapter 3

InSAR Integration Review

This chapter begins with a brief review of how InSAR has been integrated with other

geodetic observations over the years. There then follows a review of the problems

of atmospheric delay in InSAR and the use of GPS in meteorology. This sets the

scene for a focussed review of the current state of the art in research concerning the

integration of InSAR (including PSI) with GPS and other data sources. This includes

the mitigation of atmospheric phase artefacts in InSAR and the use of corner reflectors.

There then follows a section discussing the knowledge gaps in InSAR integration that

motivated this research followed by a brief summary.

3.1 Introduction

The reasons for integrating InSAR with other geodetic or meteorological observations

are wide and varied. In its infancy, modern InSAR was used for DEM creation,

and survey observations provided a means of ground control to constrain errors in the

process; examples of this are numerous (Small et al., 1996, Slob et al., 2000, Mallorqui

et al., 2001, Crosetto, 2002). The ultimate InSAR integration for DEM construction

is undoubtedly the Shuttle Radar Topography Mission (SRTM) which utilised GPS

transects as the main method for verifying the geolocation accuracy of the data and

employed corner reflectors as a means of ground truth.

Another reason for integration is to validate the InSAR process itself, to understand

its sources of error and potentially improve it. Examples of this include corner

54
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reflectors for radiometric calibration and validation studies with some higher order

observations used as a truth measurement.

A third class of reasons for InSAR integration is employed by those who want to

utilise the complimentary nature of InSAR with other techniques to improve their

results. For instance, deformation studies may be improved with the addition of GPS

or meteorological models.

The main focus of this literature review is the integration of InSAR (including PSI)

and GPS with special attention paid to corner reflector experiments and atmospheric

delay mitigation.

3.2 InSAR Integration Research

3.2.1 Atmospheric Delay Background

InSAR images tend to exhibit irregular artefacts which according to Zebker et al.

(1997), Delacourt et al. (1998), Hanssen (1998) and Massonnet and Feigl (1998) are

due to spatial and temporal atmospheric inhomogeneity across the SAR scene. In

particular, Zebker et al. (1997) state that these artefacts result mainly from variations

in atmospheric water vapour. Variations in pressure and temperature also contribute

to the distortions, but these effects are much smaller in magnitude.

Early attempts to define and correct for atmospheric effects in radio signals from

satellites determined relationships for the altitude dependence of pressure, humid-

ity and temperature (Hopfield, 1970, Saastamoinen, 1972). These were good at

estimating the more predictable hydrostatic delay which suited many applications

as this represents around 90% of the total delay. The wet portion of the delay,

however, is far less predictable. Hanssen and Feijt (1996) and Zebker et al. (1997)

applied the problem of atmospheric error correction specifically to InSAR, suggesting

modification of Saastamoinen’s relationship using meteorological data. In the same

paper, Zebker et al. (1997) also suggested stacking independent interferograms as a

means of averaging out tropospheric errors.

The use of GPS in meteorology had been suggested as early as 1992 (Bevis et al.,
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1992), and this was utilized by Delacourt et al. (1998) who proposed a model us-

ing GPS and Doppler Orbitography and Radiopositioning Integrated by Satellite

(DORIS) measurements as a means of correcting InSAR atmospheric delay. Their

results showed that tropospheric corrections reached two fringes for some interfero-

grams, and that on average the accuracy of the interferograms was about plus or minus

one fringe after the corrections were applied. This approach and Zebker’s multiple

interferogram approach condensed potential solutions to the issue in to two groups;

calibration and stacking. Stacking is a simple averaging of interferograms and is not

discussed further in the context of atmospheric delay. Interested readers should refer

to Zebker et al. (1997), Williams et al. (1998), Sandwell and Price (1998) and Ferretti

et al. (1999). Calibration, however, is one of the dominant arguments for InSAR

integration and is discussed in detail below.

3.2.2 InSAR Atmospheric Calibration

A major focus for InSAR integration is that of atmospheric determination or mitiga-

tion. This is most often conducted as a strategy to attempt to remove all or some

part of the atmospheric contribution in InSAR images, although it has also been

suggested that such integrations may be useful as a tool for high resolution water

vapour mapping (Hanssen et al., 1999).

Bock and Williams (1997) experimented with GPS zenith delay corrections in

the densely distributed Southern California Integrated GPS Network (SCIGN) and

reported through a cross validation analysis that in areas where the GPS network was

sufficiently dense, more than 90% of the atmospheric delay in a SAR image could be

corrected using Kriging interpolation. Success was roughly halved in regions where

the GPS stations were less dense and it should be noted that this level of density and

worse is more common outside of the SCIGN. Other validation experiments followed

later, notably with Webley et al. (2002) and Janssen et al. (2004).

Williams et al. (1998) proposed using much sparser GPS zenith delay observa-

tions with a model based on variations in atmospheric water vapour developed by

Treuhaft and Lanyi (1987). Williams et al. (1998) postulated that the variations

approximate a power law dependence on frequency, characteristic of Kolmogorov
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turbulence. They showed that sparsely distributed GPS data can be used to reduce

the long wavelength effects in the more densely distributed InSAR data. Bonforte

et al. (1999) calibrated interferograms using GPS zenith delay measurements and

compared them to interferograms calibrated using ground meteorological data; the

conclusion was that meteorological data, GPS data or both were all valid means for

calibrating InSAR data. In Hanssen (2001), relative delays were compared between

GPS observations and InSAR interferograms, although results suffered due to the fact

that there was limited variation in the troposphere on the acquisition days. Hanssen

(2001) concluded that using double differenced GPS data introduced error margins

in the zenith delay estimates that exceeded the atmospheric delay variation. He then

went on to say that GPS networks may rarely be optimally scaled for such purposes;

they are very often too sparse, but also they may be too dense as the ZWD estimates

are resolved from a wide ‘cone’ of data which results in an increased smoothing of the

signal whenever GPS receivers are too close. Van der Hoeven et al. (2000) showed

that under favourable atmospheric conditions, long-wavelength effects of InSAR delay

could be reduced using a single GPS time series coupled with knowledge of wind speed

and direction. As long as the wind conditions were similar for both passes, it was

possible to correlate delay variation between the techniques. In a similar experiment,

Onn and Zebker (2006) suggested using Taylor’s frozen-flow hypothesis with GPS

zenith delay observations from before and after an acquisition to infer a dense spatial

network from one that is sparse. This led to a 31% reduction in RMS errors from

simple time interpolation of GPS zenith delay estimates alone. Other significant

contributions to GPS corrected InSAR include Li et al. (2004, 2005) and many other

examples of InSAR correction using meteorological data exist, most notably Wadge

et al. (2002), Foster et al. (2006) and Puysségur et al. (2007) although these efforts

were often limited by the poor resolution of the models and data compared to the

highly variable atmospheric refractive index (Onn and Zebker, 2006).

3.2.3 Corner Reflectors in InSAR

The use of corner reflectors in radar technologies has been an established means of

calibration for a number of years. NASA’s Apache Point Observatory Lunar Laser-



3.2 InSAR Integration Research 58

ranging Operation (APOLLO) missions (Murphy et al., 2007) in the 1960s and 70s

placed man-made retro-reflectors on the moon in order to determine lunar distances.

Discourse on radiometric calibration using corner reflectors and their optimisation for

remote sensed SAR include Curlander and McDonough (1991), Ulander (1991), Groot

and Otten (1994), Corona and Ferrara (1995), Sarabandi and Chiu (1995) and Jezek

et al. (2003).

Directly integrating precisely surveyed artificial point targets with InSAR obser-

vations is less established; the potential for using them in precise change detection

experiments became possible with the arrival of SAR platforms of sufficient resolution.

As a footnote to a paper discussing speckle and noise in InSAR images, Prati et al.

(1989) postulated a number of applications for which precisely located corner reflectors

may be of use in SAR remote sensing. Three years later in March 1992, some of these

hypotheses were tested using the newly launched ERS-1 satellite. Taking advantage

of the three day repeat cycle during the satellite’s initial phases, 19 corner reflectors

were placed linearly along a 15km stretch of land to the west of Bonn in what later

became commonly referred to as ‘The Bonn experiment’ (Monti Guarnieri et al.,

1993). The work was an important proof of concept for ESA, and its success at

measuring sub-centimetric motion in blindly adjusted corner reflectors heralded a

new era in European remote sensing geodesy. An obvious follow-up challenge was

to then observe real, verifiable ground motion using surveyed corner reflectors in

known areas of instability (Coulson, 1993). Timmen et al. (1996) noted however, in a

successful experiment to observe deformation using corner reflectors in a mining area

in Germany, that artificial point targets were not immune to atmospheric error.

Gray and Farris-Manning (1993) used corner reflectors as part of their experiment

to conduct repeat-pass interferometry using airborne radar. The corner reflector was

moved between passes and they detected this movement to an accuracy of around

1mm. (Xia et al., 2002) discussed the potential for corner reflectors for improving

coregistration in areas of low coherence. Reflectors were mounted on an unstable

slope detecting motion of 1cm over four months.

Marinkovic et al. (2004) used corner reflectors and PSI to compare the quality of

ERS-2 and ENVISAT phase observations with precise levelling observations. A double
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differenced (in height and time) comparison between levelled heights and PS points

mapped to metres in height, found InSAR phase measurements to have a precision

of around 3.5-4mm. In a follow-up experiment, with the benefit of more observations

and a better treatment of errors, Marinkovic et al. (2008) revised these estimates to

sub 3mm stating that PSI has the potential to approach levelling precision in the

right circumstances.

3.3 Research Motivations

Following on from the literature review presented above, gaps in the research are now

identified.

3.3.1 Corner Reflectors for PSI

Whilst there is comprehensive literature on many areas relating the integration of

InSAR and other techniques, there remain some areas which would benefit from a

slightly different approach. Integration strategies are wide and varied in standard

InSAR, but there is currently very little research which integrates PSI with other

geodetic measurements and very few PSI corner reflector experiments. If the corner

reflectors were in place long enough to become persistent scatterers in a stack large

enough for a valid PSI analysis, many fresh opportunities arise:

• Utilising artificial ‘test’ PS points permits direct comparison with natural PS

points. This could provide a better understanding of the physical nature of real

PS points and why some are selected and others not.

• A comparison of the velocities from GPS and PSI at precisely the same point

could enable a better quantification of error sources and their mitigation.

• PSI provides velocities of PS points relative to a reference point along the

satellite line of sight. If the reference point were a corner reflector in place

throughout the stack, with a time series of GPS data overlapping the PSI

acquisitions, it would be possible to remove the reference point bias and derive
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absolute velocities. This would lead to simpler, more direct comparisons with

other observations.

One difficulty of corner reflector surveys, especially in urban situations, is finding

enough secure sites where reflectors can be left in place. Unlike GPS, placing them

on roofs etc is not usually an option as the surrounding clutter may preclude their

visibility in the imagery. On the other hand, constantly deploying and then disman-

tling the reflector for each pass may compromise the accuracy of its position. There is

currently no research involving ’episodic’ corner reflector networks, which are able to

precisely and repeatedly relocate into position, ideally into a pre-existing monument

or structure. The project sponsor, BGS, have shown interest in the potential for

making corner reflector surveys for PSI more routine straightforward and repeatable

anywhere in the UK, as they have their own corner reflector network.

3.3.2 Atmospheric Phase Assumptions

PSI is regarded as a solution to the problem of atmospheric phase mitigation in

InSAR by many, but the validity of the APS approach is questionable, especially in

light of experiments such as the PSI Codes Cross-Comparison and Certification for

Long-Term Differential Interferometry (PSIC4) (Racoules et al., 2006) which brought

together the major PSI methods of the day to blindly compare results computed for a

pre-selected test site. Part of the remit of PSIC4 was a comparison of the APSs which

concluded that “In some cases there is practically no correlation between APS from

different teams”. The fact that the APS estimates between teams in PSIC4 varied so

much, indicates that there is no single accepted method which is clearly favoured or

superior which itself indicates that there is still work to be done in the field.

Many PSI techniques assume that a statistical model is sufficiently robust to remove

the majority of atmospheric contribution. This may be true, but it may also be the

case that phase contributions from deformation processes are partly consumed in this

process. Atmospheric path delay is assumed to be low pass in the spatial domain,

but uncorrelated temporally, whereas the non-linear deformation is assumed to be

lowpass in both the spatial and temporal domains. It is straightforward to see how
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these assumptions could be invalidated with either non-random atmospheric patterns

or complex deformation behaviour such as fast non-linear deformations (Racoules

et al., 2006). In such cases, it is hard to see how the situation could be resolved

without resorting to augmentation data that may be used to weight or constrain

observations.

An assumption of randomness over time (for sampling periods of thirty-five days

or multiples thereof) is often made for atmospheric contributions (Ferretti et al.,

2001, Mora et al., 2003), this enables them to be modelled as white noise. However,

even large interferogram stacks of 100 images or more are unlikely to contain enough

atmospheric phase to approximate normal distribution, because according to central

limit theorem, the sample size is too small (Durrett, 1996). The main contribution

to atmospheric inhomogeneity in interferograms is from spatial variations in water

vapour content Zebker et al. (1997), Hanssen (1998), but water vapour is well under-

stood to vary seasonally (Zawodny and Oltmans, 2001) and whether an interferogram

stack is seasonally distributed well enough to attempt to account for this cannot

necessarily be assumed.

3.3.3 GPS in PSI

Experiments that integrate GPS and InSAR or PSI often use double-difference car-

rier phase solutions (Stolk, 1997, Hanssen, 2001, Webley et al., 2002). This can

be undesirable if attempting to characterise behaviour at a point as station errors

will propagate through the network (Héroux and Kouba, 1995, King et al., 2002).

Furthermore, GPS zenith delay parameters are relatively derived and the differencing

process introduces noise into their solutions (Hanssen, 2001). When comparing GPS

zenith delay with InSAR, further differencing is usually required (between master

and slave dates), exacerbating the issue such that the resulting uncertainties in the

ZWD values may be greater than the variations under examination (Hanssen, 2001).

Also, GPS zenith delay estimated from relative solutions usually contains a bias in

the results, especially for smaller networks (<500km) (Gendt, 1998). Network zenith

delay solutions usually require at least one PPP zenith delay solution to calibrate the

other stations (Kouba, 2009a) if the bias is to be accounted for.
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3.3.4 PSI Validation

Whilst PSI shows great promise as a tool for creating deformation maps over wide

areas, a number of questions remain about the accuracy and precision of PSI and

consistency between rival PSI techniques. The PSIC4 project was designed as a

validation exercise to assess these issues (Racoules et al., 2006). The project suffered

a number of difficulties which included the non-linear nature of the motion at the test

site and the fact that teams had no information as to the nature or location of potential

deformation (participants argued that the blind nature of the experiment was in

contrast to most scenarios involving PSI). The teams also had varying definitions of

what constituted a PS point, which led to very different densities of PS points. These

factors and more led to very different results from each of the teams.

PSI validation should also be seen in the light of the Terrafirma (Capes and

Marsh, 2009) project. Terrafirma is a project funded through ESA which seeks

to provide ground motion hazard information in Europe through a consortium of

providers. This encompasses a Product Validation Workgroup (PVW) aimed at

comparing PSI methods and results from different providers to determine their level of

relative consistency and provide analysis of their deviation from comparable datasets;

namely tachymetry and levelling. The validation exercise was divided in this way

with hindsight of the comparison issues in PSIC4 (Racoules et al., 2006), and it was

purposely designed to be less blind without compromising results. The experiment

was declared a success (Crosetto et al., 2008) but did highlight certain areas: the

quality of the ground truth data was not well defined; the deformation rates of the

test sites were low (which can produce smooth and comparable statistics); and a

requirement for further study was identified.

3.4 Summary of Limitations

Considering the review presented in the previous sections, a summary of the limita-

tions can be outlined as follows:

• Research involving precisely repeatable episodic reflector sites is non-existent.
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• Research involving long term reflector sites integrated with PSI studies is lim-

ited.

• Statistical assumptions involved when removing APS from PSI stacks requires

validation.

• There is very little research integrating absolute GPS parameters with PSI.

• Whilst PSI is a useful tool for studying ground motion, further validation is

required.

3.5 Summary

A review of the current state of the art research in InSAR integration has been

presented and relevant areas that would benefit from further research have been

highlighted. These involve integrating corner reflectors into PSI studies, questionable

assumptions regarding atmospheric phase in PSI and ways in which GPS might be

integrated with PSI. These issues were also set against the need for validation in PSI.



Chapter 4

The Nottinghamshire Site

This chapter discusses the choice of Nottingham as the chosen test area for this

project. Following background information regarding the project’s origins, details

relevant to Nottingham’s selection as a site for the project are discussed. This includes

information regarding its geology and the availability of SAR and GPS data.

4.1 Introduction

Damage due to ground movement in the UK can be very significant. For example,

it is estimated that such movements have cost the UK economy an estimated £3

billion over the last decade (NERC, 2010). The British Geological Survey (BGS)

Urban Geoscience and Geohazards Programme is systematically assessing the extent

of such hazards in the UK and has begun to monitor specific hazards on a regular

basis with a view to monitoring them in the longer term. Part of this strategy is to

contribute towards an ESA funded pan-European ground motion hazard information

service based on PSI results; this is known as the Terrafirma project (Capes and

Marsh, 2009).

Through geological research and evidence linked to the Terrafirma project, a short-

list of potential sites for this work was created. Sites included Nottingham, Stoke on

Trent, Bristol, London and Newcastle. Following further consultation with BGS,

Nottingham City Council city development department and an extensive reconnais-

sance of the ground, Nottingham was chosen. The following sections provide the
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specifics of the chosen site and the reasoning that influenced its choice.

4.2 Orientation

The Area of Interest (AOI) is centred on Nottingham in the UK, but encompasses

a much wider area including much of the county of Nottinghamshire and including

parts of Derbyshire, Leicestershire and Lincolnshire. Figure 4.1 shows the AOI with

many minor roads and features omitted for ease of viewing. The boundaries of the

AOI were chosen in order to incorporate areas of geological interest (discussed below)

and as much urban conurbation as possible whilst not being too large for a PSI study.

4.3 Geography

The AOI consists of the major urban area of Nottingham and its suburbs. Outside

of this are several satellite towns and villages, most notably Mansfield to the north

and Newark to the northeast, and the city of Derby to the southwest. The area to

the east of Nottingham is mainly sparsely populated agricultural land whilst the area

to the west has many sizeable towns interconnected with major roads such as the

north-south aligned M1 and the east-west aligned A52. Most of the area is mildly

undulating, typically varying between 30 to 100m Above Mean Sea Level (AMSL).

North of Nottingham and in the far west of the area, heights increase to a maximum

of around 200m. The western edge of the AOI is marked by north-south ridgelines as

the eastern edge of the Pennines is approached. The major water feature of the area is

the River Trent and its floodplain and valley flowing from southwest to northeast. The

floodplain is around 3km wide and the valley floor is relatively flat at 15-30m AMSL.

Further east is the Vale of Belvoir, which is very flat marshland and agricultural fields.

4.4 Geological Setting

Nottingham lies on the boundary between the Palaeozoic rocks to the North and

West, and Mesozoic and Cenozoic strata to the south and east (Bell et al., 2009).
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Figure 4.1: The Nottingham site AOI centred on Nottingham encompassing parts of
Derbyshire, Leicestershire and Lincolnshire. Many features including smaller roads have
been omitted for clarity. c© Crown copyright/database right 2009, Ordnance Survey /
EDINA.

Any area can be split into three geological tiers; bedrock, unconsolidated superficial

or drift deposits and man-made or disturbed material at the surface.

The bedrock layer for the area consists of a wide variety of sedimentary rock types

including sandstones, mudstones and coal (Charsley et al., 1990). The coal measures

tend to thin towards the east where volcanic rocks become more common. Coal

measures have been proved at depth over much of Nottingham and to the west of

Nottingham. Many faults are apparent in the area, often running parallel along

southeast-northwest lines.

The superficial layer consists of sand and gravels including alluvium mainly in the

valleys and broad depressions south of the Trent.

The man-made and disturbed ground layer influence on the geology of the area has

been substantial. Artificial deposits due to urban waste, construction and mineral

extraction activities are widespread. In the past, the geological environment under-

pinned the economic development of the area through coal mining and many other

extraction activities including gypsum extraction, brickmaking from clays and alluvial
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sand and gravel extraction (Bell et al., 2009).

A number of environmental hazards have arisen from the exploitation of mineral

deposits. These include changes in the groundwater levels, many abandoned mine

shafts and a legacy of mining subsidence. Pre-industrial coal mining activities are a

particular concern. Many shallow bell pits are thought to exist throughout the city

and the surrounding areas (Charsley et al., 1990); the location and extent of most

of these is unknown. The city itself is prone to the occasional collapse of artificial

cavities in the sandstone and contaminated land left by industrial activities (Charsley

et al., 1990, Bell et al., 2009). The area is also prone to infrequent landslides, rockfalls,

swellshrink clay problems, flooding and minor earthquakes, which in the past have

been attributed to coal mining (Bishop et al., 1993).

4.5 Potential Geohazards

Through consultation with BGS (Culshaw, 2006) and Nottingham City Council city

development department (Thompson, 2007) and following examination of public sources

(Charsley et al., 1990), the following points were considered worthy of note when

considering potential areas of ground motion that may be visible in PSI studies.

4.5.1 Coal Mining

Coal was mined in the area for hundreds of years in the form of shallow ‘bell pits’, long-

wall mining and opencast mining. The excavation and removal of material whether

on the surface or sub-surface leaves voids or pits. Furthermore, opencast mines or

quarries may have had material added as fill (see below). Many of these activities

started before records began and shallow bell pit mining in particular has left a legacy

of potential hazards as a lack of knowledge exists as to their location, extent and depth.

Following legislation and formal recording in 1872, records still didn’t show levels or

provide any geological information. Subsidence is assumed to have ceased from all but

the most recent workings, which were Gedling and Cotgrave; both of these closed in

the early 1990s (Charsley et al., 1990). Subsidence due to coal extraction is a function

(mainly) of the depth of the seam; the greater the depth, the wider the effects are
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spread which results in less damage to the surface. Subsidence starts within hours of

extraction and can last for more than 10 years (McLean and Gribble, 1985, Donnelly,

1999).

An indirect source of subsidence from underground mines is caused by water

displacement. Mine voids can serve as low-pressure sinks inducing the displacement of

groundwater resulting in dewatering of nearby geology which can have a destabilising

effect (Cifelli and Rauch, 1986). In addition, there is evidence to suggest that when

mines close and water pumps are shut down, the groundwater level rebounds which

can cause ground motion (Dumpleton et al., 2001).

4.5.2 Boreholes

There are five public water supply boreholes that draw water from the Sherwood

Sandstones; Basford, Bestwood, Lambley, Epperstone and Burton Joyce. Consultation

with BGS (Culshaw, 2006) and established research (Kim and Choi, 2005) suggested

that ground motion may be apparent close to these sites.

4.5.3 Caves

There are a huge amount of caves in Nottingham, especially in the city centre where

there are over 200 in the square kilometre of the Lace Market alone (Charsley et al.,

1990, Bell et al., 2009). The vast majority of these are sandstone and at varying levels

of stability.

4.5.4 Alluvial Deposits

Urban loading on uncompressed alluvial sediments, such as those in the Trent Valley

has been known to cause subsidence (Devleeschouwer et al., 2007). BGS have high-

lighted the Trent alluvial plain as a potential source of ground motion for this reason.

4.5.5 Made Ground

When fill is deposited onto an original ground surface, artificial landforms are created.

If the fill is composed of low strength or highly compressible material or of organic
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waste, compaction may occur; this process can take years (Charsley et al., 1990).

There are many areas of made ground running through the city particularly along the

south bank of the Trent.

4.6 Climate and Meteorology

The climate in Nottingham and the UK is classed as a mid-latitude oceanic climate

(Peel et al., 2007) which involves a moderately varying temperature range and copious

precipitation. The convergence boundary between tropical and polar air currents lies

over the UK creating atmospheric turbulence at the micro, meso and synoptic scales

that characterises the unsettled nature of UK weather. The main effects of this in the

field of InSAR are high temporal decorrelation due to the abundance of vegetation

and a strong potential for turbulent atmospheric conditions during acquisitions. This

turbulence is directly related to high variability of spatial water vapour in the tro-

posphere leading to non-homogeneous atmospheric phase in interferograms (Zebker

et al., 1997, Delacourt et al., 1998, Hanssen, 1998, Massonnet and Feigl, 1998).

4.7 Logistics and Resources

It can not be overstated that from a logistics and resources point of view, the Nottingham

site had major advantages over other choices. Field parties conducting observations at

potential sites can deploy and return within a standard working day and consequently

the project budget can be stretched much further than otherwise. The cost of oper-

ating at any of the alternative sites would certainly have precluded field observations

during every available satellite pass and the quality of the resulting dataset would

be far inferior to Nottingham’s. Also located in Nottinghamshire is the main PhD

sponsor, BGS, who have a fleet of vehicles ideally suited to field observations. Their

offer of these for observations in the local area was another influencing factor.
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4.8 Data Sources

This section provides details of the available data sources and datasets for Nottingham

at the start of the project.

4.8.1 SAR Data

The requirement from the projects aims and objectives was for a project area with

multiple potential reflector sites at which GPS data could be collected concurrently

with SAR acquisitions suitable for InSAR. The SAR platforms at the time included

ENVISAT, the Canadian RADARSAT-1 satellite and the Japanese Earth Resources

Satellite (JERS). ERS was operational at the time but was in gyro-less mode and

therefore unsuitable for standard interferometry.

4.8.2 Continuous GPS Stations

Two CGPS stations were operating within the Nottingham AOI during the planning

stages; Nottingham (NOTT) operated by the Ordnance Survey (OS) and the IESSG

station (IESG) at the University of Nottingham. NOTT was later shutdown on 15

August 2007 and replaced with Keyworth (KEYW) at a different site with an overlap

of two months. A number of other CGPS stations operate outside of the AOI. Table

4.1 gives details of the stations and figure 4.2 shows their approximate locations with

respect to the AOI.

Station Name (4 fig code) Date from Date to Agency

Hoober (HOOB) 24 May 2004 Current OS

IESSG (IESG) 27 April 1997 Current IESSG

Keyworth (KEYW) 8 June 2007 Current OS

Leek (LEEK) 24 May 2004 Current OS

Lichfield (LICF) 24 May 2004 Current OS

Lincoln (LINO) 24 May 2004 Current OS

Nottingham (NOTT) 2 January 2000 15 August 2007 OS

Table 4.1: CGPS stations in and around the AOI.
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Figure 4.2: CGPS stations shown as black dots in and around the AOI shown with a red
box. The top left of the image gives an indication as to where the AOI is in relation to
the rest of the UK. c© Crown copyright/database right 2009, Ordnance Survey / EDINA.

4.9 Summary

Information regarding Nottingham’s suitability as a site that could fulfil the project’s

aims and objectives have been presented. Nottingham’s geological setting and in

particular its history of coal mining make it an ideal candidate for the study of ground

motion and the integration of PSI with other techniques and datasets. The availability

of GPS and SAR data, past and future, add to the case and its location make logistical

costs more bearable than elsewhere.



Chapter 5

Data Acquisition

The previous chapter discussed how Nottingham was deemed the most suitable test

area for the project. This chapter leads on from that describing specifically what field

observations were required to fulfil the aims and objectives. The establishment of

the corner reflector network is discussed at length along with the reasoning behind

the design and implementation of the fieldwork. This includes a section testing the

outcomes of various GPS data collection strategies. Finally, an analysis of the datasets

post field observations is provided including a reflector visibility analysis.

5.1 Introduction

Before field observations could begin in earnest, a number of tasks were apparent:

• Establish a corner reflector array in the area of interest

• Arrange for the acquisition of suitable SAR data encompassing the network

• Design a field observation plan around this network

These are now discussed in turn.
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5.2 The Nottinghamshire Corner Reflector Array

(NCRA)

This section describes the concept, planning and establishment of the project reflector

network (Leighton et al., 2007), hereafter referred to as the NCRA.

5.2.1 Size Constraints

Passive trihedral corner reflectors designed for SAR applications usually consist of

three mutually perpendicular plates bolted or welded together and mounted on a

stand. These reflectors vary in size, from around 80cm to 2.5m per side. The six

trihedral reflectors used in this project were procured from Nigel Press Associates

Ltd (NPA) and are pre-trimmed to save on weight and bulk so that they offer only

the effective, hexagonal area when viewed along the axis of symmetry. The sides would

measure 0.8m from apex to apex if the plates were triangular. They are made of light

alloy and are fitted with a stand which can be used to adjust and fix the elevation.

The NPA reflectors are small in comparison to reflectors for other projects, but their

size meant they could fit inside the BGS field vehicles without being completely

dismantled. This was desirable because of the episodic nature of some of the reflector

locations (see §5.2.4), the preservation of orthogonality of the plates and the pre-set

elevation angles. Discourse on the theory of corner reflector design for SAR is in

Appendix A. The type of reflector used in the project can be seen in figure 5.1.

5.2.2 Site Selection Criteria

The rationale behind the selection of reflector sites is firstly set against the available

resources. The sites had to be close enough to Nottingham city centre to be able

to deploy and recover field teams in a single day; they also had to be accessible by

two wheel drive vehicles and preferably secure enough to leave unattended. The more

technical aspects of site requirements are outlined below.
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Figure 5.1: Trihedral corner reflector used in the NCRA, supplied by NPA. The reflector
has an adjustable elevation and has sides measuring 0.8m from apex to apex making them
transportable by car.

5.2.2.1 Stability

Reflectors positioned at locations with zero deformation would inevitably make future

comparisons and calibrations simpler. BGS (Culshaw, 2006) and publicly available

sources (Charsley et al., 1990, Donnelly, 1999, Howard et al., 2010) were reviewed and

sites were examined for potential stability issues. Obviously this provided no certainty

that sites would indeed be stable, but meant that areas with a history of deformation

and areas with higher probabilities of deformation could be avoided. These included

areas with a mining history, areas on or near alluvial plains such as rivers, areas near

water pumping stations and sites on recently made ground. Where possible, sites with

existing foundations were favoured over sites that would require new monumentation

which may have a settling period.



5.2 The Nottinghamshire Corner Reflector Array (NCRA) 75

5.2.2.2 GPS Considerations

The main desirable criteria affecting site choice in terms of GPS are low multipath

and minimal obstructions, such as open areas with a low horizon in all directions.

5.2.2.3 Site Clutter

To be unambiguously identifiable, corner reflectors should ideally be placed in areas

with minimal background clutter, especially in the line of sight direction. The ground

range pixel spacing of modern SAR platforms tends to be around 20m, therefore sites

with a minimum clutter free radius of 50m were sought. As there were no previously

acquired amplitude images available at the time, and as very few sites completely

passed the 50m test, it was difficult to predict the backscattering properties of some

sites and say whether a reflector would be visible or not. There was also a requirement

to place at least one reflector on the University of Nottingham main campus for reasons

that will become apparent below. This area has many large green spaces, but none on

which a corner reflector would be tolerated: building roofs were the only choice here.

In the end, a range of sites were chosen which varied from those in areas of probable

low backscatter intensity, where they would almost certainly be seen, to others in

more urban areas which were less certain.

5.2.3 NCRA Sites

The six chosen sites are summarised in table 5.1.

5.2.4 Reflector Modifications

Low cost, secure, permanent sites were in short supply and a means of repeatedly

and precisely re-locating reflectors was sought. Three of the reflectors were modified

to interface with standard OS triangulation pillars. OS pillars are part of the UK’s

historic geodetic monument network; they are usually constructed from concrete, 1.2m

high and where possible attached to underlying bedrock or they have a substantial

foundation. They have a brass ’spider’ in the top with a large screw thread housing in
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Station (4 fig code) Latitude (N) Longitude (W) Remarks

Askerton Pillar (ASKE) 53◦00’26”.3821 000◦48’23”.3152 OS pillar

British Geological

Survey (BGS1)

52◦52’47”.7904 001◦04’49”.2403 Bolted to a concrete

plinth

Milford Pillar (MILF) 53◦00’07”.5675 001◦29’07”.3909 OS pillar

University 1 (UNI1) 52◦56’28”.84764 001◦11’20”.3472 Roof of the Coates

building

University 2 (UNI2) 52◦56’27”.7419 001◦11’16”.8040 Roof of the L2 building

West Notts College

Pillar (WNCO)

53◦07’15”.7116 001◦11’38”.8489 OS pillar

Table 5.1: NCRA Site Locations. Three locate precisely into existing OS triangulation
pillars (ASKE, MILF and WNCO) and can therefore be sited temporarily as and when
required (§5.2.4) whilst the other three are sited permanently (BGS1, UNI1 and UNI2).

the centre; this was originally designed to fix survey lights for night observations and

provided an ideal opportunity to interface a reflector with any servicable OS pillar.

A hollow mount was designed to screw inside the light housing, inside which a

modified reflector base with a locating spindle or a GPS antenna with a brass adaptor

could be fitted. Figure 5.2 is a diagram of the modified reflector base and associated

triangulation pillar mount. Figure 5.3 shows how a reflector or a GPS antenna

interface with the pillar mount.

5.2.5 Alignment

Bhattacharyya and Sengupta (1991) state that as long as trihedral reflectors are

nominally aligned in both elevation and azimuth, then the drop off in response is

minimal for pointing errors of up to a few degrees. However, because of the relatively

small reflector size (see §5.5.2), optimal alignment was sought in order to offer the

optimum Radar Cross Section (RCS) to the radar line of sight. Good alignment also

meant that a consistent backscatter signal in the radar intensity images would aid in

NCRA reflector identification.

A diagram of a perfect corner reflector is shown in figure 5.4, where three mutually

perpendicular lines can be defined; OA, OB and OC. These are given by the

intersection of the three reflector planes, as the axes of a three-dimensional cartesian
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Figure 5.2: Reflector base modifications and OS pillar mount. The reflector base has
been modified with a spindle that locates precisely into a mount. Alternatively, a brass
insert can be placed in the mount onto which a GPS antenna can be fixed via a standard
survey tribrach. The mount itself screws into any standard OS triangulation pillar.

coordinate system. The unit vector
−→
OA is defined as the vertical (z) axis, with

coordinates (0, 0, 1). The alignment vector
−−→
OD is a unit vector given by

(1, 1, 1)√
3

(5.1)

and is equidistant from each axis, and should point directly at the satellite if optimal

RCS is to be achieved. The angle between
−−→
OD and

−→
OA is therefore given by

θ = Cos−1
1√
3

(5.2)
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Figure 5.3: The OS pillar mount. (A) An OS pillar with the thread exposed. (B) The
mount fitting into an OS pillar. (C) A reflector with modified base in the mount. (D) A
GPS antenna in the mount.

Thus, if the incidence angle of the satellite (with the surface normal) is α, the

reflector must be tilted back by an amount of θ − α to give the optimal RCS.

Subtracting the mid swath incidence angle from θ gives an angle of 31◦. The

NCRA reflector elevations were set (allowing for the local incidence angle) using

an engineering grade clinometer. Once set they were fixed in place and checked

periodically.

Horizontal alignment was computed by calculating the ellipsoidal azimuth (Vincenty,

1975) from the sensor’s far to near range positions along a given range line. For

descending passes, this is around 103◦ from true north at these latitudes. Using a

Wild GAK1 Gyro theodolite attachment, suitable bearing pickets were identified at

each site. These are points, which when lined up with aiming grooves cut into the

base of the reflectors, ensure that horizontal reflector alignment can be repeatably
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Figure 5.4: To maximise the reflector’s RCS,
−−→
OD should be aligned with the SAR look

vector, which is defined by the local incidence angle θ. For ENVISAT, this means tilting
the reflector back about 31◦.

achieved to within half a degree, if care is taken. The bearing pickets usually took

the form of a physical mark a few metres from the point and another on the horizon

marked on a photograph. The GAK1 accuracy is around 30” of arc (Deumlich and

Staiger, 2002) and therefore well within requirements.

5.2.6 Permanent Sites

At the reflector sites not involving OS pillars (BGS1, UNI1 and UNI2), the reflectors

were permanently fixed to concrete structures and horizontal alignment was achieved

using the Wild GAK1 Gyro theodolite. BGS1 had a 2m deep plinth of concrete sunk

into a mound in the grounds of the BGS headquarters at Keyworth, Nottingham.

UNI1 and UNI2 are on building roofs at University Park which is the main campus

for the University of Nottingham.



5.3 SAR Data 80

5.3 SAR Data

Of the available platforms recording SAR data suitable for interferometry, ESA’s

ENVISAT platform was an obvious choice. Amongst others, ENVISAT carries the

C-band Advanced SAR (ASAR) instrument; this can operate in several modes, the

standard for interferometry being image mode which is a narrow swath configuration

which defaults to VV polarisation. There was a reasonable back catalogue of ASAR

data for Nottingham in this mode (fourteen images starting in November 2002). At

the time the system was less than four years old and expected to continue past the

end date of the project, acquiring SAR data suitable for interferometry. Hereafter,

references to ENVISAT are taken to mean the ENVISAT ASAR instrument in image

mode.

5.3.1 Cat-1 Project

A category-1 (Cat-1) project with ESA with Dr Andrew Sowter at the University

of Nottingham as the principal investigator was established (Sowter and Leighton,

2006). Not only was this a means by which to order catalogued data, requests for

future ENVISAT passes in the required mode could also be specified. Cat-1 projects

are generally for academic, non-commercial use and as such are given lower priority

status compared to paying commercial users. A certain amount of risk is therefore

involved with Cat-1 status projects, in that spacecraft conflicts with commercial users

are usually resolved in their favour. This was deemed an acceptable risk due to the

following factors:

• At the time (October 2005), there existed a potential of forty acquisitions

between then and the planned thesis submission date of 30 September 2009,

which is a reasonable margin above the recommended thirty scenes (Ferretti

et al., 2001) for a statistically valid PSI analysis.

• The recent image mode acquisition rate over Nottingham suggested that it was

realistic to expect enough observations would be forthcoming.
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• The cost of acquiring new ENVISAT scenes via a commercial arrangement

though ESA or from a different SAR platform was prohibitive.

5.3.2 ENVISAT Pass Geometries

The AOI was overlapped by six different ENVISAT pass geometries. To prioritise

these, the available archived data for each pass geometry was examined; despite the

lack of reflectors in these scenes, they are useful for coherence analysis, training and

acquiring preliminary PSI results. The best of these was track 366, which had fourteen

archived scenes between 30 November 2002 to 19 November 2005 and within this,

floating frame 2538 was chosen as Nottingham was roughly central within it. This is

a descending orbit, passing over the AOI at around 10:30UTC every thirty-five days.

Figures 5.5 shows the location of the entire frame and the selected subscene.

Figure 5.5: Central UK, the ASAR Frame and the AOI with selected sites. The red box
shows the boundaries of floating frame 2538 in orbit track 366. The blue box shows the
project AOI, with CGPS and reflector sites in green.
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5.3.3 Selecting the AOI

The AOI was chosen to be large enough to incorporate the reflector sites, encompass

the largest conurbations around Nottingham and encompass an area large enough for

significant spatial atmospheric variability. Figure 5.6 is an enlarged version of figure

5.5. The resulting AOI is approximately 50km from near to far range and 33km in

the azimuth direction. This equates to 2390 range and 1596 azimuth pixels when

multilooked at a ratio of 1:5.

Figure 5.6: An enlarged map of figure 5.5.

5.4 Field Observation Planning

The design of the field observation campaign was mainly governed by the available

resources. For any given acquisition day, two field teams of two people each were

budgeted for and four dual frequency Leica SR530 geodetic GPS receivers were avail-

able. Three high quality Leica AT504 choke ring antennas were also used along with

a standard Leica AT502 antenna.
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Although it was not possible to conduct GPS observations at all six sites for every

pass, a compromise was reached whereby the GPS receiver at BGS1 was left unmanned

at their secure site, field team 1 remained static at ASKE during most passes and

the second field team cycled between MILF and WNCO. The fourth GPS receiver

was set up the day before the pass at either UNI1 or UNI2; because both of these

reflectors were on roofs, the equipment was not set up during periods of high wind.

This provided two sites with good GPS data continuity (ASKE and BGS1 - which also

contained the least clutter around the reflectors) and another four with reasonable

GPS time series. Whether GPS was observed or not, all six reflectors were put in

place for each ENVISAT pass.

5.4.1 GPS Observation Planning

A number of decisions were required prior to observing GPS data, such as:

• Processing aims

• Session length

• Session timing

These are now discussed in turn.

5.4.2 Processing Aims

The required parameters from the GPS data were position and ZWD estimation.

Whilst position is a fairly common requirement from GPS data, ZWD is not and

processing choices are limited. Whether the the position is determined in a relative

or non-relative sense is another fundamental choice. PPP (Zumberge et al., 1997a)

offered some key advantages over relative positioning.

The parameters estimated at a ground station are not biased either by the propaga-

tion of network errors or by real motions at a base station; any unmodelled real motion

in a network base station can be misinterpreted, either changing the error ellipse at

the unknown station or worse, the motion may be attributed to the unknown station
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(King et al., 2002). Also, because the differencing element is eliminated, the noise

normally generated in this process is absent; this means any subsequent differencing

necessary for comparison with InSAR data (such as between master and slave dates)

ought to have a higher SNR than otherwise. Furthermore, ZWD estimates from

relative processing techniques have been shown to contain biases not present in PPP

results, especially with network baselines <500km (Gendt, 1998).

PPP provides direct access to a global TRF, this is because the reference frame of

the results is implied by the satellite orbits rather than reference stations. When the

results are required in a global TRF, this removes the need for transformation to a

local frame which can introduce error.

Lastly, PPP approaches generally offer much greater control over processing than

standard relative techniques, such as the incorporation of up-to-date modelling strate-

gies. GPS Inferred Positioning System and Orbit Analysis Simulation Software II

(GIPSY-OASIS II or GOA-II) V5.0 (Zumberge et al., 1997a, Webb and Zumberge,

1997, Lichten et al., 2005) was used, as this has been widely used in academic research

(Larson et al., 1997, Xu et al., 2006, Brunt et al., 2010).

5.4.3 Session Length

Observation periods of twenty-four hours are common for PPP solutions because

this is an obvious way to archive data from continuously operating stations. Also a

twenty-four hour session encompasses cycles of diurnal length and below which allows

for their mitigation or removal. Observing for 24 hour periods at the NCRA reflector

sites was not usually possible as the sites were either not secure enough to leave the

equipment in place or had to be loosely manned for health and safety reasons (such

as UNI1 and UNI2 sited on roofs). The one exception was BGS1; this station was

operated by staff at BGS and left running to observe for twenty-four hours or more.

For the others, the decision to observe for a minimum of six hours was based on the

fact that this was still a substantial amount of data for a static observation and it

could be encompassed into a day’s work from a logistical and cost point of view. Tests

regarding how six hour data might impact position and ZWD values when compared

to twenty-four hour data were undertaken and are discussed in the next section.
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5.4.4 Session Timing

Because both GPS ZWD and position vary temporally, optimal data collection would

involve GPS observations concurrent with the ENVISAT pass at around 10:30UTC

every thirty-five days. However, the mount shown at figure 5.3 was designed to

incorporate either the GPS antenna or the reflector, but not both, which precluded

uninterrupted concurrent observations. This intentional design aspect was to avoid

problems in either of the datasets; the GPS antenna altering the RCS of the reflector

or the reflector creating multipath issues for the GPS antenna. This left three obvious

choices:

a. Observe GPS before the pass: 04:30 to 10:30.

b. Observe GPS after the pass: 10:30 to 16:30.

c. Observe GPS either side of the pass: 07:30 to 10:25 and 10:40 to 13:45.

To evaluate these choices, tests were conducted using GPS data from six CGPS

stations (HOOB, IESG, KEYW, LEEK, LINO and NOTT). Results from 24 hour

sessions were compared against the three different six hour sessions mentioned above

and a fourth running from 07:30 to 13:45 with no gap, to evaluate how a gap might

affect results. Position values were estimated every 300 seconds from GOA-II kine-

matic processing and ZWD values were estimated every 300 seconds from GOA-II

static processing (see §6.1 for GOA-II processing details). Note that because results

were processed as kinematic solutions (to show position behaviour over a session)

their accuracies are generally much lower that the static solutions computed later in

this thesis (§6.4).

The ZWD values were also compared against Near RealTime (NRT) ZWD esti-

mates processed by Dr Richard Bingley at the IESSG as part of the IESSG’s con-

tribution to the European National Meteorological Services Network (EUMETNET)

GPS water vapour programme (de Haan et al., 2006); this data was only available

sporadically from June 2008 onwards. The NRT ZWD estimates are produced using

the previous hour’s data only, as they are designed for inclusion into the constantly

updated Met Office’s numerical weather model. It is therefore not surprising that
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Figure 5.7: Examples of ZWD profiles for two stations on two different dates as shown
in the titles. The plots compare GPS ZWD values estimated every five minutes processed
using GOA-II from a twenty-four hour session (red), and four types of six hour sessions as
shown. NRT ZWD are also shown in the right hand plots; these are only processed using
the previous hours data for the Met Offices numerical weather model.

there is disagreement between the NRT estimates and the GOA-II estimates, and

their inclusion was intended only as a gross error check. The GPS data was supplied

by the British Isles continuous GNSS Facility (www.bigf.ac.uk) for thirty ENVISAT

acquisition dates from 30 November 2002 onwards (where available).

Four example plots of the estimated ZWD values computed from all the various

strategies and sessions for a given station on a given day are shown in figure 5.7. Figure

5.8 shows how the position estimates vary. For clarity, the position comparisons only

show the 07:30 to 13:45 sessions, with (blue) and without (green) the gap against the

24 hour data (red). Separate sub plots are shown for the different position elements.

The dashed line represents the ENVISAT acquisition time in both figures.

The selected ZWD processing examples in figure 5.7 show that whilst the six hour

sessions behave unpredictably, the 07:30 to 13:45 sessions with and without the gap

www.bigf.ac.uk
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are closer to the twenty-four hour session, especially at the acquisition time which is

key here. This behaviour may be due to the modified Kalman filter used in GOA-II

modelling the ZWD parameter as a random walk process (Kouba and Héroux, 2000).

Figure 5.8: Examples of kinematic height profiles for the different processing strategies
for two stations (LEEK and IESG). The six hour data sets with and without an enforced
gap to simulate the ENVISAT pass are compared to twenty-four hours of data in red.

The position plots are more erratic when comparing the 24 and 6 hour sessions.

In particular, the gap introduced into the six hour data can have pronounced effects.

To evaluate this fully, a comparative quantitative analysis of all the ZWD and height

estimates was conducted.

5.4.5 Session Test Analysis

Table 5.2 is a statistical analysis of all the ZWD and kinematic height profiles. The

table contains the mean and standard deviation of differences in results for all available

acquisition dates between a given six hour session and the twenty-four hour session

for a given station at the time closest to the acquisition. For instance, the first column

contains the statistics of the differences seen at HOOB at 10:30, between the 04:30 to

10:30 sessions and the twenty-four hour sessions. The number in brackets after the

station name is the number of acquisition dates that had reliable twenty-four sessions

from which to compute the means and standard deviations. The four rows per station

relate to the following:

1. The mean of the differences in ZWD (∆̄Z).
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2. The standard deviation of the differences in the ZWD (σ∆Z).

3. The mean of the differences in height (∆̄H).

4. The standard deviation of the differences in height (σ∆H).

Discussing the session columns in turn, the sessions computed before the acquisition

(04:30 to 10:30) show ∆̄Z values of ∼2mm and σ∆Z values at around 4-6mm with

one at 20mm (IESG). The ∆̄H values are about 17-20mm with one of 85mm (HOOB)

and σ∆H values from 6-14cm with one of 34cm (HOOB). The same figures for the

centred session with no gap are the best of the four sessions; ∆̄Z < 1mm, σ∆Z ∼3-

5mm, ∆̄H scattered between 6mm and 9cm and σ∆H ∼3-8cm except for HOOB at

40cm. The introduction of the 20 minute gap halfway through the data brings about

a general increase in values; ∆̄Z ∼1-3mm, σ∆Z 5-10mm with one at 20mm (HOOB),

∆̄H ∼2-10cm and σ∆H ∼10-16cm with one at 49cm (HOOB). Figures for data after

the acquisition (10:30 to 16:30) are similar in some cases, but in others worse. The

increase in noise in solutions for HOOB was later shown to be linked to sporadic

changes in data slip activity (§6.1.2) the source of which is unknown.

Considering the test analysis, the choices for session timing were between observing

before the acquisition or centred around the acquisition and as differences between

the two were not significant, the latter, logistically simpler option was chosen.

5.5 The NCRA Dataset

This next section discusses the GPS and SAR data acquired during the project. Table

5.3 summarises the acquisition dates along the top row and summarises the activity

at each site.

5.5.1 Dataset Analysis

Overall, the field campaign was a success, albeit with some important caveats. Several

factors had an impact on the amount of ENVISAT scenes acquired:
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Station 04:30-10:30 07:30-13:30 07:30-13:30 +gap 10:30-16:30

HOOB[27] ∆̄Z 0.0018 0.0009 0.0022 -0.0057

HOOB σ∆Z 0.0068 0.0051 0.0095 0.0285

HOOB ∆̄H -0.0856 -0.0997 0.0109 -0.0503

HOOB σ∆H 0.3418 0.3936 0.4875 0.2707

IESG[34] ∆̄Z -0.0021 0.0006 -0.0033 -0.0005

IESG σ∆Z 0.0204 0.0030 0.0196 0.0078

IESG ∆̄H 0.0176 -0.0005 -0.0186 0.0141

IESG σ∆H 0.0811 -0.0361 0.0778 0.0750

KEYW[9] ∆̄Z -0.0015 0.0002 -0.0020 -0.0037

KEYW σ∆Z 0.0041 0.0032 0.0059 0.0059

KEYW ∆̄H -0.0187 -0.0095 0.0228 0.0226

KEYW σ∆H 0.0474 0.0317 0.1033 0.1072

LEEK[26] ∆̄Z -0.0008 -0.0009 -0.0006 0.0005

LEEK σ∆Z 0.0045 0.0041 0.0048 0.0063

LEEK ∆̄H -0.0048 0.0060 -0.0449 -0.0422

LEEK σ∆H 0.0770 0.0260 0.1380 0.1116

LINO[27] ∆̄Z -0.0011 0.0006 -0.0010 -0.0005

LINO σ∆Z 0.0058 0.0044 0.0050 0.0058

LINO ∆̄H -0.0197 -0.0069 0.0006 0.0105

LINO σ∆H 0.0603 0.0250 0.1061 0.0608

NOTT[23] ∆̄Z -0.0020 -0.0009 -0.0014 -0.0001

NOTT σ∆Z 0.0060 0.0028 -0.0060 0.0062

NOTT ∆̄H 0.0174 0.0391 -0.0746 -0.0267

NOTT σ∆H 0.1498 -0.0787 0.1624 0.0487

Table 5.2: GPS profile analysis. Means of differences and standard deviations of
differences (for ZWD values and height) between the six hour sessions in each column
and the relevant twenty-four hour session are shown; differences and means are computed
using the GPS values closest to the acquisition time (around 10:33UTC). All available
ENVISAT acquisition dates are used and the number in square brackets after station
names indicates how many days were available at that station. All figures shown are in
metres.
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• Requesting future acquisitions from ESA is not possible without an accepted

Cat-1 proposal. This was submitted in November 2005 but was not accepted

until February 2006.

• Spacecraft conflicts from March 2006 to February 2009 were much higher than

expected; only twenty-two requests from a potential thirty-two were successful.

• New ENVISAT orbit parameters introduced after the February 2009 acquisition

made the SAR data unsuitable for standard interferometry (ESA, 2010).
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Table 5.3: Reflector sites and ASAR acquisition dates. Key: ‘-’ reflector not yet
established, ‘!’ spacecraft conflict, ‘b’ both GPS and reflector observations, ‘r’ reflector
observations only, ‘o’ no observations.

These three factors meant that from a total of forty potential acquisitions, only

twenty-two were acquired. The implications of this are discussed below in §5.7.

It is worth noting here that the design of the pillar mount (§5.2.4) proved to be

very successful. For each occupation, the height of the reflector above the pillar was

measured and found to vary less than 1mm for any of the sites. Furthermore, the

GPS antenna heights were measured four times for each of the acquisition days at the

non-permanent sites (at the beginning, at the end and either side of the ENVISAT

pass), remembering of course that the GPS antenna had to be removed prior to the

ENVISAT pass and then re-established afterwards. Special procedures were put in

place whereby the GPS tribrach would only require very minimal adjustment, and

this resulted in better antenna height precision than at the permanent reflector sites

requiring a tripod for the GPS antenna.
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5.5.2 Site Visibility

Because of the logistical reasons mentioned, the passive trihedral reflectors chosen for

the experiment were smaller than any used with published ENVISAT research before

and are comparable to the smallest reflectors used in any openly published SAR corner

reflector research. With an RCS of 135.8m2, it was apparent at the start of the project

that it might be some time before enough acquisitions were available to unambiguously

say whether the reflectors were definitely visible. During the site selection process it

was clear that ASKE and BGS1 both have minimal clutter within a 50m radius.

MILF has similar characteristics, except for ground sloping away steeply towards

the look direction which had the potential to give foreshortening issues. WNCO

has between 25 and 50m with very little clutter, after which there are several large

potential scatterers. UNI1 and UNI2 are both in the University campus science park

on building roofs. These reflectors both posed serious challenges as the possibility

of them being dominant was limited. Furthermore, shortly after the siting of UNI1,

several air conditioning units were installed next to it which exacerbated matters and

after siting UNI2, building work commenced on the construction of a new office block

within 30m of the reflector. This does not obstruct the line of sight but complicates

the identification of the reflector in the intensity image.

To compute the location of the reflectors in the intensity images, the GPS results

of the reflector positions were transformed to RDC using the polynomial determined

when resampling the SRTM DEM to RDC during PSI processing (§6.2.2.4). Using

table 5.3, six averages (one per site) of the intensity images were created; these were

optimised by site as certain reflectors only appear in certain images. The thirteen

acquisitions that took place prior to any reflector deployment were also averaged

and a reflector visibility analysis was undertaken using the before and after averaged

intensities.

As corner reflectors in SAR images produce a Sine Cardinal (SinC) signal pattern,

this is the most appropriate interpolator to analyse the target responses (Jerri, 1977).

16 x 16 pixel grids of the sites cropped from the intensity images, with the estimated

reflector position in the centre, were SinC interpolated by a factor of 8 by means of a
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zero-padded inverse Fourier transform as shown in figure 5.9.

Figure 5.9: SinC interpolation of corner reflector sites. A 16 x 16 pixel area centred
on ASKE (left) is SinC interpolated by a factor of 8 by means of a zero-padded inverse
Fourier transform (right).

The different sites were analysed using this method alongside the ’dark’, pre-

reflector intensity. Figure 5.10 shows the various sites with their before and after

intensities along with 3D plots of the SinC function responses.

Stations ASKE and BGS1 both have strong SinC related responses along with

unambiguous before and after averaged intensity images. MILF and WNCO are less

certain, but do show amplitude spikes at the correct locations that did not exist before

although the SinC responses from both of these reflectors are cluttered. UNI1 and

2 also show higher than before intensity values at the correct locations, but in both

cases, this may be due to nearby changes to the area mentioned above. Furthermore,

their SinC responses are both extremely noisy and therefore visibility of these two

sites is uncertain.

5.6 Existing PSI Results and Levelling

A separate, commercial PSI result was commissioned by BGS using 117 scenes of

ERS data, all of which dates before the ENVISAT data (1993-1999). Because of
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Figure 5.10: Before and after 16 x 16 averaged amplitudes are shown for each reflector
site. The corresponding SinC interpolations are plotted alongside in three dimensions.
Some sites clearly show responses that are related to the reflector whilst others are more
ambiguous.
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its commercial sensitivity, the results cannot be shown here or discussed at length.

However, through private communication with BGS, specific areas of Hucknall were

highlighted as area of potential motion. Because of this, it was decided to undertake

a one year precise levelling campaign between August 2007 and August 2008. The

aim was to determine the relative motion between a point outside of the deforming

area and a point in the centre of the deforming area. This can then be used as a

comparison against the PSI results generated in this project.

5.7 Implications of the Reduced Dataset

Only twenty-two scenes were acquired with the reflectors present, this is normally

seen as an insufficient quantity of images with which to conduct a robust PSI analysis

(Ferretti et al., 2001, Mora et al., 2003). The archived ENVISAT data together with

the twenty-two scenes collected during the field campaign comprises a total of thirty-

six scenes.

In order to ascertain the consequences of a reduced stack using the IPTA method,

two test PSI analyses were conducted; one using the twenty-two scene stack (stack

A) and the other the thirty-six scene stack (stack B). As expected, the reflectors in

stack A show as persistent scatterers (candidate and confirmed) whilst in stack B

they do not. However, many aspects of the results for stack A caused concern; the

deformation rate uncertainties were much higher and in some cases PSI points for the

different stacks show phase histories in opposite directions. Because of these and other

factors, it was decided to abandon the idea of a PSI stack containing only images with

reflectors present, and instead incorporate the fourteen archived scenes.

Using the augmented thirty-six scene stack, opportunities for novel research still

existed which satisfy the aims and objectives. These are now stated as follows:

• Compute absolute ZWD values for all available GPS stations inside and sur-

rounding the NCRA using PPP techniques.

• Examine the correlation between ZWD values and APSs.
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• Interpolate ZWD screens of the AOI for ENVISAT acquisition dates and map

values to the radar line of sight.

• Use ZWD screens to augment a PSI analysis.

• Conduct comparisons between PSI results with and without ZWD screens and

also against GPS and levelling data.

5.8 Summary

The NCRA was successfully established, consisting of both episodic and permanent

corner reflectors sites. A Cat-1 proposal was submitted and accepted around which

an observation programme was devised based on a robust analysis of test data.

Observations were conducted at the reflector sites from May 2006 to February 2009.

Through analysis of before and after SinC responses of the reflector sites, the sub-

metre reflectors used in the NCRA are unambiguously visible in ENVISAT ASAR

data in areas of sufficiently low backscatter intensity. Despite lost acquisitions due

to spacecraft conflicts or other reasons, a strategy involving novel integration of GPS

and InSAR was devised which fulfils the project’s aims and objectives.



Chapter 6

Methodology and Results

This chapter presents the processing methodologies used to process the GPS and

SAR datasets. The results of both are then presented, drawing attention to their

respective quality. As well as their internal consistency, the datasets are also compared

to other sources or information wherever possible. The methodology and results of

the precise levelling campaign are also presented. Finally, the PSI and GPS datasets

are compared with each other which naturally leads into the next chapter.

6.1 GPS Data Processing

6.1.1 Overview

As discussed in chapter 5, GPS data was collected at reflector sites episodically by

field teams and obtained from CGPS stations within or close to the AOI (supplied

by the The British Isles continuous GNSS Facility (BIGF): www.bigf.ac.uk). Unless

otherwise stated, GPS position estimates were resolved using an undifferenced PPP

approach whereby receiver parameters, such as the receiver clock, are solved or

mitigated through modelling rather than being differenced away. Precise orbit and

clock products computed from a globally distributed network are used to assist in

this process. PPP processing was conducted using GOA-II which is a Linux suite of

command line programs written by JPL. Interested readers are referred to Zumberge

et al. (1997a), Webb and Zumberge (1997), Gregorius (1996) and Lichten et al. (2005).

96

www.bigf.ac.uk
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As well as PPP processing, pre and post processing checks were used to monitor

the integrity of the data and of the results. The various stages of the GPS processing

strategy are now reviewed in detail.

6.1.2 Pre-Processing Checks

It was noted repeatedly that the PPP process is very sensitive to noisy data. Therefore,

prior to PPP analysis, a thorough set of pre-processing checks were conducted on all

GPS data. TEQC (see §2.8.2.1) was used to conduct this (Estey and Meertens, 1999)

which is widely used in the GPS community, including the IGS who conduct daily

quality control checks using TEQC on all their stations (http://igscb.jpl.nasa.

gov/network/list.html). Pre-processing involved the following steps:

• Convert all data to the Receiver Independent Exchange (RINEX) format

• Check header information and correct where necessary

• Crop files to within the acquisition calendar day

• Reject files with less than 80% of the expected observations

• Analyse P-code multipath RMS values

• Assess data for cycle slips

Figures 6.1 and 6.2 show two sub-plots per station for NCRA GPS stations and

CGPS stations respectively. Each data point represents a GPS session that coincides

with an ENVISAT pass over the AOI. The bottom plots show three sets of superim-

posed data; red and blue circles are the RMS values of the de-trended estimates of

the P-code multipath on the two GPS carrier signals L1 and L2 respectively (MP1

and MP2), the green circles represent the amount of data slips per 1000 observations

(approximately four hours of data). Data slips here are defined as either a slip in the

ionospheric delay observable or a slip on both MP1 and MP2 occurring during the

same epoch (Estey and Meertens, 1999). The top plots show the ratio of the amount

of collected data over the amount of expected data expressed as a percentage. The

http://igscb.jpl.nasa.gov/network/list.html
http://igscb.jpl.nasa.gov/network/list.html
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Figure 6.1: GPS Pre-processing checks for NCRA Stations. Each data point represents an
ENVISAT acquisition day. In the bottom plots for each station, red and blue circles are the
RMS values of the L1 and L2 multipath estimates. Green circles represent data slips/1000
observations. The top plots show the ratio collected over expected data expressed as a
percentage. The red hashed line is the 80% cut-off below which sessions were rejected;
circle fill relates to session length as indicated by the scale bar at the bottom of the figure.

red hashed line is the 80% cut-off below which sessions were omitted from further

processing. The colour of the circles in the top plots represents the session length, as

per the scale bars at the bottom of each figure.

The most important information is the multipath estimates and the percentages.

As shown, CGPS stations NOTT and LICF had several days worth of data rejected.

NOTT shows above average noise in its continuous daily time series (§6.10) when

compared to other UK OS sites, which may go some way to explaining why the
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station was abandoned in 2007 and replaced with KEYW.

Figure 6.2: GPS Pre-processing checks for CGPS Stations. Each data point represents an
ENVISAT acquisition day. In the bottom plots for each station, red and blue circles are the
RMS values of the L1 and L2 multipath estimates. Green circles represent data slips/1000
observations. The top plots show the ratio collected over expected data expressed as a
percentage. The red hashed line is the 80% cut-off below which sessions were rejected;
circle fill relates to session length as indicated by the scale bar at the bottom right of the
figure.

IESG has slightly elevated MP2 values, which whilst odd, was not considered a

major concern. In general, changes in station behaviour are regarded as more of an

issue than the values themselves (Teferle, 2003). A sudden jump in multipath or
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observation ratio might indicate new sources of noise warranting site investigation.

Apart from rejecting sessions with less than 80% of their expected data, no other

action was taken at this stage. As is usually the case with GPS time series, these

results were used to investigate issues further along the processing chain.

6.1.3 A Priori Position Estimates

A priori station positions are required to seed PPP processing. Although station

estimates are present in the session headers, these tend to be navigation quality only

for unknown stations such as those in the NCRA. Here, double difference carrier phase

solutions were estimated using Leica Geo Office; the five nearest CGPS stations were

used as control. IGS final product precise orbits were used and the maximum baseline

was ∼76km. Accumulated position estimates for each station with respect to ETRS89

were averaged. For the CGPS stations, the published geodetic quality coordinates

(http://www.ordnancesurvey.co.uk/oswebsite/gps/) were used as the a priori

position estimates. Any difference between ETRS89 and ITRF05 for these purposes

was considered insignificant.

6.1.4 PPP Processing

The PPP approach (Zumberge et al., 1997a) is a means of deriving high accuracy

positioning based on the data from a single receiver. As opposed to relative posi-

tioning, which eliminates parameters such as the receiver clock through differencing,

PPP treats these as unknowns and they are estimated using a statistical model. The

model used in GOA-II utilises the SRIF (Blewitt, 1993), which is a modified Kalman

filter.

Solutions are computed in three main steps:

• Fit the satellite positions from the precise orbits files to the orbit model using

the associated Earth Rotation Parameters (ERPs).

• Pre-process the clocks and RINEX observations to detect and eliminate clock

jumps and cycle slips.

http://www.ordnancesurvey.co.uk/oswebsite/gps/
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• Reduce data with iterative post-fit cleaning to examine carrier phase and code

data for outliers.

Various models are incorporated into this process. The sections below describe

the models and augmentation data chosen for this processing strategy. Particular

attention is paid to details which set this strategy aside from the standard PPP

processing methodology. See §2.8 for a wider discussion of PPP theory.

6.1.4.1 Orbits and Clocks

Orbit and clock products provided by JPL are derived from a globally distributed

network of GNSS stations known as the FLINN network (NASA, 1991), which is

a subset of the IGS network. Unlike other IGS stations, FLINN stations are often

equipped with a hydrogen maser clock or a good quality rubidium or caesium clock;

this provides a very stable time reference which is useful when estimating satellite

clock corrections (Capra and Dietrich, 2008).

Standard fiducial orbits that are used to constrain terrestrial observations automat-

ically imply the TRF of the orbit onto the station solutions. However, as well as these

standard products, JPL also offer non-fiducial (or fiducial free) orbits (Heflin et al.,

1992) which were used for PPP processing for this work (final products in all cases).

When producing non-fiducial orbits, the FLINN network is largely unconstrained;

this means that the relative geometry of the orbits is determined by the GPS data

alone and the orbits are therefore not perturbed by any imperfect knowledge of the

ground stations (Panafidina and Malkin, 2001). Once solutions are obtained, a daily

transformation file (X-file), also produced by JPL, is used to remove the uncertainty

in the solutions and express them in ITRF05.

In December 2009, JPL retrospectively reprocessed FLINN fiducial and non-fiducial

orbits and clocks from 1996 to 2009; this was part of a wider strategy to incorporate

the latest models and product formats into historic JPL products (Desai, 2009).

Daily median orbit accuracies improved from 5.4 to 3.2cm and the average variance

reduction was 65% (ibid).



6.1 GPS Data Processing 102

6.1.4.2 Absolute Antenna Phase Centre Corrections

On 5 November 2006 (GPS week 1400), the IGS 2005 (IGS05) TRF was introduced

(http://igscb.jpl.nasa.gov/network/refframe.html), realised from a subset of

132 high quality IGS stations. IGS05 stations adopted various strict conventions

including a consistent strategy for PCOs and PCVs for receiver and satellite antennas

(Schmid et al., 2007). IGS05 is the basis for the realisation of the ITRF05 and

therefore for consistency, IGS05 antenna PCOs and PCVs were adopted for all stations

and satellites used in this study (Kouba, 2009a).

Consistency is also maintained for data collected prior to 5 November 2006 as JPL

reprocessed orbit and clock products from 1996 to 2009 using the IGS05 absolute

phase centre strategy (Desai, 2009).

6.1.4.3 Solid Earth Tides

Vertical and horizontal displacements of the solid Earth due to gravitational attrac-

tions from celestial bodies is accounted for using the Wahr model (Wahr, 1981) which

was incorporated into the PPP processing strategy. This is a description of how the

tidal coefficients known as the Love numbers and the Shida number vary with latitude

and tidal frequency. Interested readers should refer to Bomford (1980) and McCarthy

and Petit (2003).

6.1.4.4 Polar Tides

In order to maintain consistency with the way in which the orbit and clock products

are computed, changes in the Earth’s spin axis are accounted for using polar tide

corrections; that is, these corrections must be subtracted from the position solutions

in order to be consistent with ITRF (McCarthy and Petit, 2003).

6.1.4.5 Ocean Tides

OTL coefficients were explicitly computed for all sites in the network using the Finite

Element Solution 1999 (FES99) model. This is based on the resolution of the tidal

barotropic equations on a global finite element grid which has been improved with

http://igscb.jpl.nasa.gov/network/refframe.html


6.1 GPS Data Processing 103

the assimilation of 700 tide gauges and 687 TOPEX/Poseidon altimeter measurements

(Lefevre et al., 2002). This data was provided pre-formatted via M.S. Bos’ and H.G.

Scherneck’s OTL provider website (www.oso.chalmers.se/~loading). The choice

of model was influenced by Penna et al. (2005), which described inconsistencies in

later models when changes in processing strategy occurred in August 2007. FES99

was not corrected for the centre of mass motion of the Earth due to ocean tides for

consistency, as FLINN orbits are not computed in this way either.

6.1.4.6 Hydrostatic Troposphere Mapping

VMF1 was used to map the hydrostatic estimates of the troposphere to zenith. VMF1

utilises forty years of empirical data from the ECMWF and, unlike its predecessors,

it is date and latitude dependent. Implementation of VMF1 at Very Long Baseline

Interferometry (VLBI) stations has been shown to yield improvements in baseline

repeatabilities (Boehm et al., 2006b).

6.1.5 Post-Processing Checks

The Automatic Precise Positioning Service (APPS) is a means of obtaining a PPP

result through an internet interface; this is operated and maintained by JPL (apps.

gdgps.net) and was formerly known as Auto-GIPSY. This service was used periodi-

cally to assess the validity of GOA-II results during the learning and testing stages.

6.1.6 Tropospheric Zenith Delay Estimates

A main requirement of the PPP results was the estimation of ZWD values. ZWD

estimates can be derived from GOA-II processing which usually uses an assumed

atmospheric model to remove the ZHD. In this case however, hourly mean sea level

pressure data from the UK’s Met Office were used to compute the station ZHD

estimates making the resulting ZWD estimates more realistic (Kouba, 2009a).

ZHD values for the time of the ENVISAT pass were computed using hourly pressure

values from the UK Met Office (when available) for a number of met stations in

the area; as the ENVISAT pass occurred around 10:30 UTC, the 10:00 and 11:00

www.oso.chalmers.se/~loading
apps.gdgps.net
apps.gdgps.net
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estimates were averaged. An examination of the pressure values from different met

stations revealed how little pressure varied over the AOI (between 0.1 and 0.6mb over

a distance of ∼28km between Watnall and Cranwell met stations on any particular

day). ZHD at a GPS station was therefore computed by identifying the nearest met

station and scaling the pressure by the height difference between the GPS and the

met stations through application of the relationship identified by Saastamoinen (1972)

which assumes smoothly decreasing pressure with height:

ZHD = P · 0.00227 · e(−0.000116·h) (6.1)

where P is the pressure of the met station at mean sea level, and h is orthometric

height of the GPS station. Geoid separation values were accounted for as Met Office

pressure values are referenced to mean sea level whereas GPS heights are referenced

to the Geodetic Reference System 1980 (GRS80) ellipsoid.

The ZWD estimates are determined as a parameter in the SRIF. ZWD values were

estimated every 300 seconds with the final FLINN non-fiducial products held fixed.

After one full estimation of station coordinates, ZWDs and station biases, the process

is iterated using the output from the previous run. Convergence occurs after two to

three iterations.

6.2 SAR Data Processing

As discussed in previous chapters, a suitable site was identified to satisfy the aims

and objectives laid out in §1.6. Twenty-two ENVISAT ASAR scenes were acquired

for this site over a period of three years (13 May 2006 to 21 February 2009), see table

5.3. Along with an archived dataset of fourteen scenes, the entire Nottingham stack

therefore consists of thirty-six scenes running from 30 November 2002 to 21 February

2009. This next section describes the processing chain involved to obtain the fully

formed PSI results from the SLC data (ESA data designation: ASA IMS 1P).
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6.2.1 Overview

The processing strategy firstly involved choosing a master scene for coregistration

purposes, cropping it to the AOI and resampling a DEM covering this area into SAR

geometry. Slave images were then coregistered and cropped to the same area. Multi-

reference interferograms were then created and stacked. The stacking result was used

to yield early indications of likely areas of motion in the AOI and to aid in precise

baseline estimation as discussed in §6.2.2.6.

Candidate PS points were then selected in the coregistered SLC images and inter-

ferograms were formed between a chosen interferometry master scene and the slave

scenes. Using the SRTM DEM, differential interferograms were created followed

by a quality control check of the candidate PS points. A reference PS point was

then selected followed by an iterative process to estimate optimal height corrections,

deformation estimates, baseline parameters, and residual phases from the differential

interferograms. PSI processing was conducted using modules of the Gamma software

(Werner et al., 2003) which is a suite of command line programs designed to run on

a Linux platform.

6.2.2 PSI Preparation

PSI preparation is defined here as steps required prior to PS candidate point selection.

The raw ASAR data was pre-processed into SLC format by the Italian Processing and

Archiving Facility (IPAF) at Matera and supplied by ESA through Cat-1 proposal

3518 (Sowter and Leighton, 2006).

6.2.2.1 Calibration

ESA ASAR external calibration files (ASA XCA files: http://envisat.esa.int/

services/auxiliary_data/asar/) were used to determine the platform parameters

and to assist with radiometric calibration (Levrini and Zink, 2002). The main cali-

bration steps were:

• Range spreading loss correction.

http://envisat.esa.int/services/auxiliary_data/asar/
http://envisat.esa.int/services/auxiliary_data/asar/
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• Antenna gain correction.

• Normalization reference area correction.

• Absolute calibration using the calibration constant.

6.2.2.2 Orbits

ESA final delivery orbits based on SLR and DORIS observations were obtained

and used throughout the processing stages (ftp://diss-nas-fp.eo.esa.int/vor

through a pre-arranged account). The absolute accuracy of these products is thought

to be around 10cm with a radial orbit error of 3cm (Otten and Boomkamp, 2004).

The option of using Delft processed EIGEN-CG03C orbits was considered, but these

were not available for the whole period.

6.2.2.3 Baselines

A perpendicular baselines chart computed with respect to the reference date of 17

Jun 2006 is shown in figure 6.3.

6.2.2.4 DEM Preparation

The 90m SRTM DEM (Jordan et al., 1996) was used to create the topographic phase.

The 1 degree x 1 degree tiles that covered the AOI were mosaicked, re-projected to

Universal Transverse Mercator (UTM) and oversampled to a pixel spacing of 10m;

this is so the pixel sizes of the respective geometries are roughly the same which

reduces gaps when interpolating. The transformation to UTM is useful later as it

provides a means of presenting results in a meaningful reference frame. The 10m

UTM DEM was then geocoded into RDC using the method stated in Wegmüller

(1999), the resampling method used was nearest neighbour.

Initially, the DEM was first transformed to RDC using the orbits. Then a lookup

table was iteratively refined between a pre-cropped SLC coregistration master and

the DEM using cross-correlation and the estimation of a third order transformation

polynomial; to aid coregistration a version of the DEM was created as though observed

from SAR look geometry (ibid). Following this the DEM data was resampled to the

ftp://diss-nas-fp.eo.esa.int/vor
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Figure 6.3: Perpendicular baseline chart. Crosses mark each ENVISAT acquisition in
time and in terms of its perpendicular baseline with respect to the reference date of 17
Jun 2006.

geometry of the master. The end product is a DEM in RDC (RDC DEM) with a pixel

spacing equivalent to that of the coregistration master. The reported cross-correlation

offsets between the RDC DEM and the master at the end of the process were <0.01

pixels.

6.2.2.5 Slave Scene Coregistration

The slave scenes were coregistered using the lookup table process described above,

except that the RDC DEM itself was used to correct for terrain effects. This was

first conducted at 1:5 multilooked resolution followed by a refinement involving full

resolution; SinC interpolation is used as the interpolation algorithm. The averaged

multi-looked intensity image from all thirty-six scenes was created for displaying

results; this can be seen alongside the master multi-looked intensity image in figure

6.4.
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Figure 6.4: A section of the master multi-looked intensity image (left) and the averaged
multi-looked intensity image from thirty-six coregistered scenes right.

6.2.2.6 Stacking

Stacking is a means of averaging multiple interferograms of the same areas to estimate

linear displacement rates; the averaging improves the ratio between the differential

phase and the atmospheric error, assuming that the atmospheric statistics are sta-

tionary from one observation to the next (Wegmüller et al., 2000). The stacking result

prior to PSI processing was useful for the following reasons:

• Adjusting the AOI. Prior knowledge of linear deformation rates across a wide

area means that the PSI process can operate in a more focused manner.

• As an a priori deformation rate for the PSI process.

• Reference point selection. Selecting a PSI reference point in an area with no de-

formation motion or at least estimated deformation makes relative deformation

estimates more meaningful.

• Baseline modelling. Linear trends in the atmospheric phases or deformation

signals can be absorbed by poorly modeled baselines. The stacking result is used

here to omit unstable points from the Ground Control Point (GCP) selection

process (see below) in the baseline refinement

To create the stacking result, differential interferograms were created by subtracting

the topographic phase scaled by the baselines from each of the sixty-four multi-

reference SLC pairs with B⊥ values less than 200m and BT values less than 500 days;
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baselines were estimated from precise orbits. The differential interferograms were

then adaptively filtered based on their individual power spectra using the algorithm

developed by Goldstein and Werner (1998), this vastly reduced the number of phase

residues and consequently subsequent phase unwrapping was far more successful with

this step.

Phase unwrapping of the filtered differential interferograms was conducted using

the Minimum Cost Flow approach (MCF) (Costantini, 1998) tied to a Delaunay tri-

angulation network (Bern and Eppstein, 1992); the integration of these two strategies

was achieved by Werner et al. (2002). The MCF process seeks to minimize the total

cost of phase discontinuities. The process was weighted using coherence values which

dictate where discontinuities ought to and ought not to occur.

Using the unwrapped phase, improved baselines were then estimated using Ground

Control Points (GCPs). The GCP list of 2304 points were compiled from a mixture of

the GPS stations, known survey marks (both transformed to RDC using the lookup

table mentioned in §6.2.2.4) and automatically selected GCPs from the RDC DEM.

Corresponding unwrapped interferometric phase values were then extracted for the

GCP locations, permitting estimates of baseline parameters using a non-linear Single

Value Decomposition (SVD) method (Wegmüller and Werner, 1997). Analysis of the

resulting quality parameters showed that the technique was poor at estimating short

baselines due to their low fringe rate; only pairs with B⊥ >30m were therefore used.

The improved baselines were then used to recreate the differential interferograms,

adaptively filter them and unwrap them. The unwrapped differential interferograms

were then stacked using the method stated in Strozzi et al. (2000) and line of sight

deformation rates in millimetres per year were estimated. The deformation rates esti-

mated from stacking along side an image of the standard deviation of the deformation

rates with respect to a reference pixel can be seen in figure 6.5. The reference pixel

was chosen because it was phase stable and because it was very close to the IESG

CGPS station which has an eleven year time series describing no significant vertical

motion (§6.4.1).



6.2 SAR Data Processing 110

Figure 6.5: (A)The deformation rate map from the stacking result and (B) the
deformation rate standard deviation with respect to a reference pixel near the IESG CGPS
station. In the image on the left, the brightness of the pixel values are scaled by the
product of the amplitudes which gives an idea of areas of phase stability. Images are
shown in RDC geometry.

6.2.3 PSI Processing

The adopted PSI processing strategy is now detailed. Despite the fact that there

are techniques that can approximate higher order deformation, the PSI processing

adopted here is based on a linear model. This strategy was adopted because the

emphasis of the work concerns integration with GPS as opposed to providing discourse

on the merits of advanced PSI processing techniques. Furthermore, the other datasets

involved in this work are only sampled at rates suitable for linear regression and

therefore a linear PSI strategy is a more meaningful choice.

It should be noted however, that whilst the deformation rates are modelled linearly,

the APSs are filtered for non-linear deformation and this is added to the linear defor-

mation estimates at the end of the processing. The end result is deformation histories

that are very well approximated by a linear fit, but also have small interpretable non-

linear components. Figure 6.6 is an overview of the adopted PSI processing chain.

Readers should also note that unlike most PSI softwares, the IPTA method (Werner

et al., 2003) used here, does not use every pixel of the entire image for PSI processing

once candidate points have been chosen. Instead, all PSI operations are conducted

on only the points themselves.

The methodology may give the impression that the PSI processing stages were fully
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Figure 6.6: The PSI processing flow. Five iterations through a regression model are
involved, each time making improvements to knowledge about the differential phase.

automated. This was by no means the case and many manual interactions are required

throughout the process such as the reference point selection process and visual checks

after stages such as phase unwrapping.

The next sections describe a process involving five iterations of a regression model

which seeks to gradually increase knowledge of the differential phase components,

eventually resulting in optimised linear deformation estimates.

6.2.3.1 Candidate PS Selection

The PS point selection strategy involves initially selecting a large number of candidate

points by setting selection criteria with moderate thresholds. This means many points

are rejected during the course of the processing (there are six PS quality checks

during the course of the PSI processing) using more realistic phase standard deviation

thresholds. This strategy is adopted because there is no stage involving a fresh search

for new PS points, but old rejected points can be re-examined and re-introduced.

Gross error checks were also employed whereby the scene was examined for PS points
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where none could exist, such as in a body of water.

Candidate PS points were selected on two separate criteria, following which, the

lists were merged. Firstly, pixels were selected based on amplitude dispersion. Taking

each pixel in turn, the ratio of the (temporal) mean over the standard deviation of a

pixels amplitude was examined (Ferretti et al., 2001). Pixels dominated by a point

scatterer should show less random speckle behaviour over time and they ought to

show similar intensity when viewed from different angles. Points with an intensity

below 0.5 (relative to the spatial average) were ignored and a minimum threshold of

1.4 was used for the ratio.

The second criteria used for selection was based on the spectral diversity of the

amplitude (Werner et al., 2003). This is based on the theory that dominating point

targets in a resolution cell have a spectral diversity different to that of distributed

targets, even when viewed from different directions. Rabus et al. (2004) found that

combining the backscatter and spectral diversity methods seemed to produce more

robust results for stacks with less than 40 scenes than Ferretti’s original method.

From the two combined lists, a total of 343,989 PS points were selected as candi-

dates which is around 9% of the total pixels in the AOI and just over 208 PS/km2.

6.2.3.2 Quality Control

Following selection of the reference scene (17 June 2006; the scene closest to the centre

of the stack with optimal baselines), differential interferograms were created with

the current knowledge available; baselines computed from orbits and the simulated

topographic phases from the RDC DEM.

A quality control of PS candidates was then conducted. Here, the phase standard

deviation between pairs of neighbouring PS points was used as the quality estimator.

This stage is equivalent to a phase regression analysis of a delaunay triangulated

network except the only objectives are to determine phase standard deviation for

reference point selection and reject PS points with a phase standard deviation above

0.7 rad. Unwrapping was then undertaken to determine the phase standard deviations

per PS point.
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6.2.3.3 Regression Analyses

As discussed, an iterative cycle of five regression analyses (see §2.6 for an explanation

of the purpose of the regression) was undertaken to determine height corrections

and linear deformation rates; phase that fitted neither of these models was assumed

to contain non-linear deformation, atmospheric phase, phase due to baseline error

and noise. Temporal unwrapping was then used to reveal the height corrections and

deformation rates per point. After every regression, new differential interferograms

were created whereby the updated topographic phases were subtracted from the

original interferograms. Each regression run also created new PS phase standard

deviations and a threshold of 1.2 rad (unless otherwise stated) was used to reject PS

points. The whole process is now described in more detail.

6.2.3.4 First Regression

The phase stability of a chosen global reference point is fundamental to the quality of

the PSI result because the resulting PS deformation rates are determined with respect

to this point. The selection of a reference point with negligible motion through the

stack also ensures that these relative velocities are closer to their absolute values.

With these points in mind, a low phase standard deviation (0.34 rad) reference

point was chosen as close to the IESG CGPS station as possible (701m). The

assumption is made that the absolute reference point velocity is similar to that of

IESG, this assumption is reinforced by the available geological sources (Charsley

et al., 1990, Donnelly, 1999, EDINA, 2009, Howard et al., 2010). IESG has a long,

high quality GPS time series spanning over eleven years with a very low estimated

velocity rate of 0.2 ± 0.3mm/yr. This time series was processed using Bernese GPS

software (Dach et al., 2007), see §6.4 for more details.

Following reference point selection, the deformation phases, height corrections and

residual phases were estimated in the first regression. At this early stage, all phase

contributions were present in the differential phases and the baselines had not yet

been optimised; the differential phase therefore contains variations that may hinder

unwrapping. To that end, a patch-wise method was used for this regression. Here,
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the stack is spatially divided into patches, each of which has its own local reference

point. The regression is conducted between these reference points and the PS point

neighbours in each patch, following which interferograms are unwrapped as a whole.

The deformation rates from the stacking result were used to constrain the regression

(Werner et al., 2003). Following this, the initial candidate point list was re-examined

using the 1.2 rad threshold; points above the threshold were rejected and good points

that had been previously falsely rejected were re-introduced.

6.2.3.5 Baseline Improvement

A re-examination of the baselines was then made using the same method stated

in §6.2.2.6, smoothing the differential interferograms prior to unwrapping. Points

with a deformation rate (from the stacking result) of larger than ±0.5mm/yr were

ignored for GCP selection. Differential interferograms were then re-estimated using

the improved baselines (which are used in all subsequent stages). Note that the

smoothed interferograms mentioned here were only used for the baseline improvement

step.

6.2.3.6 Second Regression

The second regression also used the patch-wise method on wrapped differential in-

terferograms (created above). The residual phase was then spatially filtered using a

radius of 1km to estimate the APSs. The filtering fits weighted least squares planes

through areas of points defined by a given radius. The weighting is based on the

distance to the pixels from the centre. Note that APS layers were created per SLC

rather than per layer. This is possible because the two dimensional regression plane

does not go through zero rad for zero time and zero baseline, but the plane has an

offset which is directly related to the atmosphere and phase noise of the corresponding

point of the reference SLC (Wegmüller et al., 2003). New differential interferograms

were then created which have the the atmospheric phase estimates subtracted.
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6.2.3.7 Third Regression

The third regression was conducted using a single global reference point (see §6.2.3.4);

the single reference point method is used from this point forward. Following this,

the topographic phases are updated with the new height corrections. The differential

interferograms were then created using the original interferograms; this means that the

residual phases are (intentionally) re-introduced here. The differential interferograms

are then unwrapped spatially.

6.2.3.8 Fourth Regression

For the fourth regression, unwrapped differential interferograms were used to estimate

the model parameters. Because the residual phases were present in the standard devi-

ation threshold was increased to 2 rad. Spatial filtering was then used to estimate the

APSs from the residual phases using the same method given in §6.2.3.6. Differential

interferograms (minus the APSs) were then created for the last time using the best

height and deformation rate estimates.

6.2.3.9 Fifth Regression

The final regression was undertaken creating final updates for the height and defor-

mation estimates. The APSs were then temporally filtered for non-linear deformation

estimates as before (§6.2.3.6), which were removed and added to the linear deformation

estimates. The PS point quantity at the end of the regression was 174,487, a reduction

of nearly 50% from the original candidate list. The PS point results are analysed in

§6.5.

6.3 Precise Levelling

As proposed in §5.6, a precise levelling was conducted in the area of Hucknall, this

area is highlighted as A2 in §6.5.1.
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6.3.1 Levelling Methodology

The design of the campaign involved three levelling loops arranged in a line between

an area thought not to have any active motion and another showing uplift in the

BGS PSI result (§5.6). Twenty-five staff position were permanently marked with

maximum distance of 60m between any two staff points. The instrument positions

were also measured and marked in order to ensure backsights and foresights were kept

equal. The area is very flat and therefore refraction error was negligible. The staff

positions and the area in question is shown in figure 6.7.

Figure 6.7: The Hucknall precise levelling campaign. White diamonds show the
permanently marked staff positions.

A Wild NA2000 digital level capable of measuring to a precision of ±0.4mm/km

was used in conjunction with a barcode levelling staff.

6.3.2 Levelling Results

Levelling precision is measured as a function of the distance where the maximum

permissible error (E) is expressed as a coefficient of the adopted precision level (C)
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multiplied by the square root of the distance in kilometres (K)

E = C
√
K

The maximum loop misclosure was 2.2mm, with a mean of 0.9mm. The levelling

loops were 1.10km, 0.82km and 1.04km. In first order levelling, C = 4 (Chandra,

2007) which translates to maximum permissible misclosures of 4.2mm, 3.6mm and

4.1mm over the distances involved. The levelling campaign is therefore well within

first order levelling criteria. The levelling results are analysed against PSI results in

the next chapter (§7.2.2).

6.4 GPS Results and Analysis

The CGPS stations discussed in §4.8.2 and the NCRA GPS stations discussed in

§5.2.3 were processed with GOA-II using the rationale addressed in §5.4.1, with the

resulting dataset discussed in §5.5. This next section focusses on the quality of the

GPS results.

6.4.1 GPS Time series

Figure 6.8 shows the NCRA GPS station time series sampled at the ENVISAT

acquisition dates and figure 6.9 shows the CGPS station time series. The green

(accepted) and red (outlier) points correspond to coordinates at the acquisition dates

and the blue trendlines are linear regression fits. The software used to generate the

time series is Create and Analyse Time Series (CATS) (Williams, 2008) which is based

on a Maximum Likelihood Estimator (MLE) that allows the computation of a linear

trend, periodic signals, coordinate offset magnitudes and stochastic noise amplitudes,

assuming both white an coloured noise. Periodic signals were not estimated for the

acquisition date only GPS time series as they were considered too sparse.

Any individual solution with an RMS value greater than three times the time series

RMS was flagged as an outlier and not used for computing the rate and trendline.

Outlier rejection is iterative and occurs until no further outliers are found. All stations
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Figure 6.8: GPS position time series for NCRA stations transformed into a north, east
and height reference frame. Green and red (outliers) dots represent GPS data collected
on ENVISAT acquisition days. Blue lines represent the linear trends of the green dots.
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Figure 6.9: The GPS position time series for CGPS stations transformed into a north, east
and height reference frame. Green and red (outliers) dots represent GPS data collected
on ENVISAT acquisition days. Blue lines represent the linear trends of the green dots.
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show a uniform northeasterly velocity over time. This is the expected motion of

stations on this part of the Eurasian tectonic plate with respect to ITRF2005 (http:

//sideshow.jpl.nasa.gov/mbh/all/table2.txt).

RMS values are noticeably smaller for the CGPS time series, which is mainly

attributable to the fact the CGPS solutions were usually computed from twenty-four

hours of data. NOTT has an above average amount of noise in its dataset (§6.1.2 and

figure 6.10), but following the rejection of three days of data, the acquisition date time

series is comparable to the other CGPS stations. Most solutions have outliers and

for the NCRA stations, it is assumed that these are mainly due the session length.

Also, because of the episodic nature of the NCRA station observations (especially for

the tripod stations:UNI1, UNI2 and BGS), there are bound to be small setup errors

and whilst potential blunders are guarded against with procedure, their presence is

possible.

UNI1 and 2, which are both permanently fixed reflector sites at the University of

Nottingham main campus, have larger RMS values than the temporary triangulation

pillar sites despite the fact that these two stations were often left running for much

longer than the required six hours. An explanation for this may be due to the fact

that UNI1 and 2 are both on roofs, with more potential for multipath and signal

degradation; although the station pre-processing checks (§6.1.2) do not show this. It

is also possible that building expansion may be affecting these points which has been

known to affect stations in these situations (Çelebi et al., 1998). Also, UNI1 and

2 both require a tripod setup, which will undoubtedly be less stable than the pillar

sites. BGS1 also requires a tripod, but this was left in place for the majority of the

campaign and is in a more stable location. Whilst there are still outliers for BGS1,

RMS values are comparable or better than the other NCRA stations, despite the fact

that only a standard surveying antenna was available for this station.

There is a lack of data apparent in some of the time series, particularly for UNI1

and UNI2. Reasons for this are given in §5.4 and 5.5. As the precision of the time

series for both of these stations is relatively poor, their usefulness from the perspective

of the aims and objectives is limited in any case.

Table 6.1 summarises the results by showing the north, east and height RMS values

http://sideshow.jpl.nasa.gov/mbh/all/table2.txt
http://sideshow.jpl.nasa.gov/mbh/all/table2.txt
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Station North East Height North East Height

[mm] [mm] [mm] [mm/yr] [mm/yr] [mm/yr]

ASKE 6.4 6.6 8.9 16.9± 0.6 20.0± 0.9 0.5± 0.8

BGS1 3.2 5.3 4.2 15.8± 0.8 16.3± 0.3 5.7± 1.0

HOOB 1.7 2.8 5.6 16.2± 0.0 17.1± 0.1 0.4± 0.1

IESG 1.4 2.3 3.4 16.2± 0.1 17.8± 0.1 0.2± 0.0

IESG(B) 1.5 1.2 4.4 16.2± 0.1 17.8± 0.2 0.2± 0.3

KEYW 0.9 2.3 11.4 14.9± 0.3 18.5± 0.3 8.2± 3.8

LEEK 2.2 2.4 3.7 16.4± 0.0 17.3± 0.2 4.5± 0.3

LICF 1.8 2.8 4.4 16.0± 0.0 17.7± 0.1 -0.1± 0.2

MILF 5.3 2.6 9.7 16.6± 0.0 16.8± 0.0 2.8± 0.0

NOTT 2.3 2.5 2.5 16.0± 0.2 17.7± 0.1 0.2± 0.2

NOTT(B) 1.4 1.2 4.3 16.0± 0.3 17.7± 0.4 0.2± 0.4

UNI1 2.1 4.2 12.3 13.4± 0.6 20.4± 1.0 -11.3± 2.7

UNI2 6.2 5.4 34.1 15.1± 1.1 8.8± 1.1 8.0± 4.2

WNCO 5.6 7.0 10.3 17.6± 0.9 17.6± 0.6 2.2± 0.7

Table 6.1: The RMS statistics and station velocity estimates for north, east and height
components. The (B) after IESG and NOTT denote the Bernese processed, daily time
series, processed by staff at the IESSG.

along with the component velocities for each station. With the exception of UNI1

and 2, the results are reasonably consistent. Ignoring UNI1 and 2, the north and

east velocities for the other ten stations have uncertainties of up to 0.9mm/yr; the

assumption being that the north and east velocity rates ought to be similar for all

stations in the network due to the overriding dominant plate motion affecting them

all similarly.

In addition to the internal consistency checks above, comparing the acquisition

date processed time series with the full daily time series for CGPS stations IESG and

NOTT computed by independent means gives another perspective on the validity of

the dataset. The results for the IESG and NOTT daily time series are included in table

6.1 and the time series are shown in figure 6.10. The time series were computed from

double differenced coordinate solutions using 120 stations from the BIGF network

and approximately 50 IGS stations. This was conducted using an in-house modified

version of Bernese version 5.0 (Dach et al., 2007) by Dr Norman Teferle at the IESSG,
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University of Nottingham for his own research. Re-processed satellite orbits and Earth

orientation parameters were used (Steigenberger et al., 2006) absolute satellite and

receiver antenna phase centres (Cardellach et al., 2007, Schmid et al., 2007) were

modelled. The tropospheric delays were based on standard pressure and the GMF

model (Boehm et al., 2006a). The time series was processed using Create and Analyse

Time Series (CATS) software (Williams, 2008).

Figure 6.10: The GPS position time series for CGPS stations transformed into a north,
east and height reference frame. Green and red (outliers) dots represent GPS data collected
on ENVISAT acquisition days. Blue lines represent the non-linear trendlines of the green
dots.

Both the daily time series were cropped to within the ENVISAT dataset period to

provide a more consistent comparison. The rates for the daily time series and acquisi-

tion date time series for both IESG and NOTT compare at the sub 0.1mm/year level;

this is a strong indication that results from GOA-II PPP processing strategy compare

well with previously validated results processed from entirely different methods. When

the entire (uncropped) daily time series for IESG (28 April 1997 to current) and NOTT

(2 January 2000 to 13 August 2007) are compared to the ENVISAT date only time

series, sub mm/yr differences in the rates are apparent. This further indicates that

the shorter, ENVISAT date only time series, compares well with significantly longer

time series.
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6.5 PSI Results and Analysis

Figure 6.11 shows the PSI result for the whole subscene projected to UTM with

reflectors, CGPS stations and the PSI reference point marked. The 174,487 remaining

PS points at the end of the process are scattered over 1650km2 which equates to 109

per km2. Evidently, these are not evenly spread, as the urban conurbations in the

AOI are clumpy and mainly exist on the western side. Mostly, the point velocity rates

are fairly flat, as would be reasonably expected in Nottingham, with some interesting

exceptions. Not considered for this study is the area of apparently high motion in the

northwest of the AOI. It could not be satisfactorily established whether this is a real

signal or the result of unwrapping issues.

A more in-depth discussion of the PSI result now follows, focussing on deformation

signals in the city centre.

6.5.1 Nottingham City Centre

There are four areas of motion of particular interest close to the city centre. Figure

6.12 shows an area cropped from figure 6.11 which is centred around Nottingham city.

Firstly, there appears to be a large area of uplift to the West (A1) and North (A2)

of the centre, these are the Wollaton and Hucknall areas respectively. Also, there are

areas of subsidence in the West (A3), around Dunkirk, and in the East (A4), in the

Gedling area. These are now discussed along with comment on the possible causes of

the deformation signals.

6.5.1.1 Uplift in the Wollaton Area (A1)

An extensive amount of uplift can be seen in this area mainly encompassing typical

suburban residential houses and Wollaton Park. The total area of uplift is large at

around 12km2 with average rates of around 2 to 3mm/yr. Figure 6.14 shows the phase

history of four persistent scatterers, two of which (P3 and P4) lie in the Wollaton

area. Online geological mapping (EDINA, 2009) indicates that this area lies within

the Pennine middle coal measures but provides no data on mining activity that can

be directly correlated with the deformation zone. However, another publicly available
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Figure 6.11: Nottinghamshire PSI result in the UTM projection. The PSI reference point
in yellow lies very close to IESG and UNI1 and UNI2.
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Figure 6.12: Nottingham city PSI result in the UTM projection. Four areas of note, A1
to A4, have been highlighted for further comment. Points P1 to P4 are scatterers selected
within A1 and A2; their phase histories are shown in figure 6.14
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source (Charsley et al., 1990) gives a more detailed description of coal mining activity.

Indeed, a comparison with maps of the extent of the mineworks, in figure 6.13, shows

that the boundary of the mined areas (highlighted in both images) and the boundary

of the uplift region, particularly to the West of the city, are in remarkably close

agreement.

Figure 6.13: The Nottingham city PSI result in the West of Nottingham (left) compared
to a mining and geology map (Charsley et al., 1990) right. The mining boundary, which
is part of the geology map, has been overlaid onto the PSI result.

6.5.1.2 Uplift in the Hucknall Area (A2)

Area A2 lies to the North of A1 around Hucknall and also indicates an area of uplift.

The two areas may or may not be independent, with A2 showing rates typically around

4 to 5mm/yr (see P1 and P2 in figure 6.14) clustered around Hucknall Airfield. There

is a geological fault line running North-South at the Eastern end of the subsiding

area, but these are not uncommon around the AOI and on the whole, do not generally

correlate with other areas of motion. No coal mining data or superficial deposits of

any kind are marked in EDINA (2009). However, it is understood that Hucknall was

a colliery town from 1861 to 1986 with extensive mineworks which are mentioned in
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Figure 6.14: Phase histories of PS points P1 to P4 marked in figure 6.12. Uplift is shown
in each phase history and the fact that PS points do not lie directly on the regression line
is a consequence of filtering the atmospheric phase screens for non-linear deformation and
adding these estimates to the linear deformation at the end of the PSI process.

a number of tertiary sources (Wikipedia, 2009, AddItNow, 2005), not to mention a

bronze statue of a coal miner in the town centre! Although nothing can be found on

public record detailing the locations of shafts, the colliery building itself was within

the area of motion and coal extraction seems to be the most likely explanation for the

observed ground motion.

An alternative explanation is tied to the airfield at the centre of the deformation

signal. RAF Hucknall, as it used to be known, dates back to the early twentieth

century making it one of the oldest airfields in the UK. It has a bunker network which

is now used by Rolls Royce as part of their engine testing facility; this includes a fire
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tunnel (International, 1962). The exact location of the bunker network could not be

established. A third explanation could be that the motion is due to a combination

of both the mining activities and airfield bunker system, as they are probably close

together.

The fact that A1 and A2 are (perhaps counter intuitively) uplifting rather than

subsiding is not necessarily a reason to cast doubt on the results. Water ingress can

lead to mine works causing rebound after pumping ceases (Dumpleton et al., 2001,

Cuenca and Hanssen, 2008) and the void left by a mine can refill and empty with the

water table which may occur seasonally or because of more complex cycles or events,

such as underground collapse (Bekendam and Pottgens, 1995, Mouélic et al., 2002).

6.5.1.3 Subsidence in the Lenton Industrial Area (A3)

Area A3 is a region of subsidence in a small but well-defined zone to the West of

the city. It is an area of industrial units and, more recently, hypermarkets, bowling

facilities, restaurants and a multi-screen cinema. Members of Nottingham city council

were able to verbally corroborate that the area is known as being an area of landfill

from the 1950s, variously overfilled at times with the current units sitting on rafts

above the substrate dating back to the 1970s and early 1980s. The cinema area

is particularly notorious for being over landfill as the methane generated has to be

pumped out throughout the year, the pumps being noticeable features above-ground.

6.5.1.4 Subsidence in the Gedling Area (A4)

Area A4 extends approximately in a North-South direction for 4km through a subur-

ban residential area. It follows a shallow ridge of topography at low level in the South

to a relatively high altitude in the North. In the centre of the subsidence zone is a

golf course to the west and a landscaped area to the east that was used for colliery

waste in the past (Charsley et al., 1990); although this area has no PS points, it is

reasonable to assume that the signal to the north and south are connected here.

The subsidence area was definitely mined for coal (Charsley et al., 1990), but this

can be said of most of north Nottingham. There is nothing on public record to indicate

the most recent mining activity in terms of depth and extent. There is however a
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history of subsidence in the region including damage to the nearby Mapperley railway

tunnel in 1926 (Anderson, 1973) and ongoing subsidence on a playing field within A4

(KKP, 2003). The site of Gedling Colliery is less than a kilometre east of the centre

of the subsidence signal. Gedling colliery closed in 1991 and was the last mine to

close in Nottingham; this is fourteen years from the temporal average of the stack,

which is a reasonable period for subsidence due to coal mining to still continue to

occur (McLean and Gribble, 1985, Donnelly, 1999).

6.5.2 PSI Statistics

The following sections provide a statistical evaluation of the PSI results.

6.5.2.1 Geocoding Accuracy

To assess the accuracy of the geocoding, sub pixel RDC coordinates of the reflectors

taken from the SinC responses computed in §5.5.2 were transformed to the World

Geodetic System 1984 (WGS84) in UTM and compared to the averages of the GPS

processed results for the reflectors. Differences between ITRF2005 and WGS84 were

assumed to be negligible for these purposes. The average error vector was 8.4m, which

is better than the quoted horizontal accuracy of the SRTM 90m DEM (Farr et al.,

2007) on which the geocoding accuracy mainly depends.

6.5.2.2 PSI Consistency

Three histograms are shown in figure 6.15 that provide a summary of statistics

computed from the PS points. The mean of the residual phase standard deviations

is just over 1 rad. A significant part of the residual phase may be due to remaining

atmospheric contributions that did not fit the applied model.

The deformation rates are, as might be expected, mostly very low. The histogram

is slightly offset from zero with a mean of 0.62mm/yr and a standard deviation

of 1.48mm/yr. The bottom left plot shows the difference between the RDC DEM

(resampled from the SRTM 90m DEM) and the final PSI height estimates; note that

these are with respect to the reference point height correction which is unknown,
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Figure 6.15: Histograms of the 174,487 PS points that remained at the end of the
PS processing. Shown are the standard deviations of the residual phases (top left), the
deformation rates (top right), the height corrections (bottom left) and the comparison
with the NEXTMap 5m DSM (bottom right).

but the discussion here concerns variations in the height corrections and therefore

absolute values are irrelevant. With urban PSI studies, marked variations in the

height corrections locally are often correlated with how many tall buildings exist in

the area. Nottingham being a fairly average UK city typically has many buildings

ranging from 5 to 20m or more and most of the large height corrections are clustered

nearer the centre. Also, the building sizes in plan compared to the SAR pixel spacing

of 20m in ground range will often mean misrepresented heights in urban areas. A

higher resolution DEM in this case is not directly useful as it would still require

undersampling to the SAR pixel size, during which detail will be lost.

The bottom right plot shows the difference in height between the RDC DEM and

the NEXTMap 5m Digital Surface Model (DSM) (Intermap Technologies, 2008). The

DSM is an airborne InSAR product with vertical accuracy of 1m RMSE. Because of

its resolution, building heights are modelled much better than in the SRTM DEM.
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The comparison between the RDC DEM and the DSM was not straightforward

as the PS points must be transformed to the WGS84 datum using the SRTM DEM

which relies on the Earth Gravitational Model 1996 (EGM96), whereas the DSM

was in a local datum with heights derived from the Ordnance Survey National Geoid

Model (OSGM91). The difference between the geoid models was not accounted for,

although Bingley et al. (2002) suggests the difference is at the sub metre level. The

plot suggests that height differences in order of a few metres are common. The mean

is -1.521m with a standard deviation is 4.713m. The comparison mainly relies on

the horizontal accuracies of the geocoding (§6.5.2.1) and the accuracy of the DSM

which are 8m and 1m respectively; therefore many points, especially near or on tall

buildings, may still be incorrectly represented here.

6.6 PSI and GPS Comparison

Comparing the GPS data with the PSI result can be done in a number of ways. If the

surveyed reflector sites are also PS points, then the most logical comparison would be

a direct one, as long as the reflector PS point was typical for that area. However, for

the reasons discussed in §5.5.1 and 6.2.3, fourteen scenes had to be incorporated into

the ENVISAT stack which occured prior to the establishment of the NCRA which

precluded the chance that the reflectors would become stable PS points.

Instead, a slight variation of the method used by Bingley et al. (2007) was adopted.

Here, the authors considered that PS points within 300m of a GPS station could be

assumed to be on the same geological setting and the PS point velocities fitting this

criteria were averaged. The deformation rate standard deviations were examined

and statistical outliers were removed. In this study, the overall rate is achieved by

averaging PS points epoch by epoch, again rejecting statistical outliers iteratively. In

all cases, the 300m assumption is made and this is consistent with available geological

data (Charsley et al., 1990, Donnelly, 1999, EDINA, 2009, Howard et al., 2010).

Also, prior to the establishment of the NCRA, advice was sought from subject matter

experts at BGS (Culshaw, 2006) who stated that “there is no reason to suspect that

the geological setting around the chosen reflector sites is not stable”.
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The comparison of PSI and GPS results was undertaken for all GPS stations within

the AOI apart from ASKE and MILF, which had no PS points within 300m, and UNI1

and 2 for the reasons mentioned in §6.4. Figure 6.16 is a series of plots showing the

correlation between GPS and PS time series. GPS data is depicted by green dots

with associated error bars in grey and associated trendlines in blue. The PSI data

is shown using red dots, black error bars and orange trendlines which represent the

velocity of the slope of the derived deformation.

It is worth remembering that all the PS point velocities are relative to the reference

point. The chosen reference point was the closest point to IESG that had a phase

standard deviation below 0.4 rad. The PSI and GPS rates both suggest that IESG

itself is not moving up or down appreciably and it is assumed this is also the case for

the reference point which is 701m away. It follows then that if the deformation phases

have been accurately modelled, then the other PSI velocities will be close to their

absolute values with the understanding that this becomes less valid with increasing

distance from the reference point due to atmospheric phase errors.

The rates for both PSI and GPS are positive in all cases. For IESG and NOTT,

the two trends are comparable with differences in the GPS and PSI rates of 0.6 and

1.6mm/yr respectively. For BGS1, KEYW and WNCO the rates do not compare

as well, and most of the GPS points are flagged as outliers from the perspective of

the PSI time series. As it has been established that the GPS velocities are close

to their true values, then the issue can be assumed to be due to the PSI result.

These stations are significantly further from the reference point than IESG or NOTT

and therefore there is less chance that atmospheric phase contributions are being

accurately modelled. As discussed in §3.3, constraining the PSI process satisfactorily

so that the various constituents of the phase are correctly attributed, especially over

the distances involved here, is difficult without resorting to augmentation data. This

is addressed in the next chapter.
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Figure 6.16: GPS and PSI velocity estimates comparisons; black represents GPS and red
represents PSI. PSI velocities are estimated by averaging velocities epoch by epoch for all
the PS points within 300m of a given GPS station.

6.7 Summary

The processing strategies for the GPS and SAR datasets have been presented. The

GPS results are consistent with other more established processing methods. This

indicates that the adopted field observation model and processing strategy are both

valid means for satisfying the aims and objectives. The PSI result indicates some areas

of motion in the city centre, some of which show good correlation with existing sources

of information. The GPS and PSI velocities agree within 2mm for stations close to

the reference point but stations further away are less correlated with the PSI result

with differences of 6 to 8mm; this may be due to atmospheric phase errors which tend

to be proportional to the distance to the reference point. The next chapter addresses
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the issue of augmentation data for PSI studies by using ZWD values to correct the

APSs.



Chapter 7

ZWD Correction for PSI

This chapter uses the GPS results processed in chapter 6 to compute ZWD estimates

for the ENVISAT acquisition times at stations inside and outside the AOI. ZWD

values for every pixel in the AOI are then interpolated and the estimates are integrated

into a PSI analysis. The results from this are then analysed against the existing PSI

analysis, the precise levelling data and the height components of the GPS station

velocities.

7.1 APS Correction using ZWD

A discussion of the assumptions usually made when determining APSs was given

in §3.3.2. These assumptions are tested here to improve PSI results through the

integration of ZWD screens into the process. As the spatial resolution of the GPS

stations will not be sufficient to estimate small scale atmospheric variabilities, the

aim here is to mitigate the long wavelength variations that are not estimated from

standard spatial sampling techniques which assume white noise behaviour.

It should also be noted here that the statistical tests (Pearson’s correlation and the

t-test) used in this chapter concerning the APSs, assume random behaviour. For the

reasons stated in §3.3.2, it may be that the atmospheric phase contains non-random

elements within it. This non-random aspect is assumed to be at a low enough level

such that Pearson’s correlation and the t-test are still valid estimators.

135
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7.1.1 ZWD Estimates

ZWD estimates were determined in the PPP process as discussed in §6.1.6 and the

quality of the GPS results from which they are derived is discussed in §6.4. Where

available, real pressure data measurements from the UK Met Office were used to

subtract the hydrostatic delay from the total delay in order to realistically determine

the wet delay. Table 7.1 lists all the SLC dates used on the stack, their respective B⊥

and BT values and whether pressure data was available. For dates with no pressure

data, a standard atmospheric pressure of 1013.25mb was used.

No. Date B⊥ (m) BT (days) P No. Date B⊥ (m) BT (days) P

01 20040612 69.581 -735 N 16 20070217 -176.777 245 Y

02 20040717 35.712 -700 N 17 20070428 -259.903 315 Y

03 20040821 -112.568 -665 N 18 20070707 -69.603 385 Y

04 20041030 136.618 -595 N 19 20070811 -119.849 420 Y

05 20050108 -1056.685 -525 N 20 20071124 137.813 525 Y

06 20050910 -226.642 -280 N 21 20080202 109.682 595 Y

07 20051119 320.339 -210 N 22 20080308 -248.414 630 Y

08 20060513 -168.411 -35 Y 23 20080621 117.443 735 Y

09 20060617 0.000 0 Y 24 20080830 158.678 805 Y

10 20060722 604.639 35 Y 25 20081004 -164.770 840 Y

11 20060826 559.634 70 Y 26 20081108 51.498 875 Y

12 20060930 -779.055 105 Y 27 20081213 -394.466 910 Y

13 20061104 -643.095 140 Y 28 20090117 212.694 945 Y

14 20061209 254.233 175 Y 29 20090221 -92.881 980 Y

15 20070113 640.179 210 Y

Table 7.1: The ZWD corrected PSI interferogram stack. The reference SLC date is
20060617. The ’P’ column shows whether pressure data was available on that date.

7.1.2 Observation Geometry

The respective geometry of the GPS and SAR data sources are quite different. The

ZWD for a given station and epoch is computed from the zenith-mapped weighted

average from a cone of GPS observations described by the station elevation mask.

Naturally, the choice of elevation mask affects not only the location and quantity
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of the incoming observations used in the average, but also the diameter of the cone

described at a given height. The elevation mask angle therefore influences how the

ZWD can be reasonably compared with SAR data. Figure 7.1 is a diagram of the

overlapping GPS and SAR geometries.

7.1.2.1 Elevation Mask

An elevation mask is usually employed as a means of reducing station multipath effects

and recommendations for setting the mask usually range from anywhere between 7◦ to

20◦. Also, a major part of the tropospheric error results from low elevation satellites

which necessarily must transmit through a thicker layer of troposphere. This suggests

a high elevation mask would both reduce these effects and narrow the GPS cone.

As figure 7.1 suggests, a narrower cone also implies that the computed ZWD value

is comparable to a smaller area of the SAR image. This is potentially desirable if

there are many stations close together as it can result in higher resolution ZWD

screens. However, this must be balanced against the loss of observations implied

by a high elevation mask and the decrease in the GPS Geometrical Dilution of

Precision (GDOP), that lower elevation satellites offer. To resolve this, GPS data

for IESG was processed using 10◦, 15◦ and 20◦ elevation masks. The reduction of low

elevation observations led to an excessive increase in noise in the height elements and

15◦ elevation masks were used to estimate the ZWD values.

7.1.2.2 ZWD and APS Comparison Model

Before ZWD values are integrated into a PSI analysis, it is prudent to analyse the level

of correlation between ZWD values and PSI estimated APSs. For a valid comparison

between a ZWD value computed from a cone of GPS observations and an APS

computed from SAR data, some averaging of APS values around a station must occur,

and this must somehow be representative of the GPS geometry. Averaging around a

point for a given radius describes a SAR tube of observations that must overlap with

the GPS cone at a pre-determined height. It has been shown from radiosonde data

that over half the wet delay estimate results from the lower portion of the troposphere

at heights below 1.4km (Hanssen, 2001). This estimate was made with respect to a
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Figure 7.1: GPS wet delay and APS geometry. The GPS ’cone’ of observations that
contribute towards the ZWD and a SAR ’tube’ of PS points can be overlapped at 1.4km
height which is where over half the wet delay results from (Hanssen, 2001). Not to scale.

test area in the northern Netherlands and it is assumed to also be valid for Nottingham

as it has a similar altitude, climate and latitude. Therefore a SAR tube around the

GPS station that has a diameter equivalent to the cone at a height of 1.4km offers

the best overlap in the respective geometries. Because of the SAR incidence angle,

the GPS station lies slightly offset from the centre of the tube (0.6km at mid-swath),

and with a 15◦ elevation mask, the tube has a diameter of 10.8km at mid-swath.

It is worth noting at this stage that most PSI methods estimate the APS values at

each PS point and then interpolate for every pixel in the image (Ferretti et al., 2001).

For the PSI method adopted here (Werner et al., 2003), the APSs are not interpolated

and hence APS values only exist at the PS point locations. As the width of the SAR

tubes exceeds 10km, this is not an issue as this will encompass many hundreds of PS

points and the average value should therefore be representative of the area.

7.1.3 ZWD and APS Correlation

Using the common geometry model shown in figure 7.1, the correlation between the

ZWD observations and the APS estimates was examined. PS point atmospheric phase

estimates computed in §6.2.3.8, were converted to metres and mapped to zenith using
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the inverse of the cosine of the incidence angle. These were then averaged around

the GPS stations as described in §7.1.2.2 above, making allowances for the varying

incidence angle and the concentric nature of the SAR tube.

7.1.3.1 Undifferenced Comparison

Because neither the ZWD or the APS observations are (effectively) differenced (see

sections 6.1.4 and 6.2.3.8 for respective explanations why), a direct comparison be-

tween the two is possible once values have been zero meaned. This undifferenced

comparison should result in a reduction in noise which is characteristic of differencing.

Figure 7.2 shows the correlation between the ZWD and APS estimates at a given GPS

station over time. Figure 7.3 is a scatter plot of all 191 common ZWD and APS values.

KEYW was not included in the comparison as it is very close to BGS1; it is however

included in the ZWD correction process as the difference in the GPS solutions between

BGS1 and KEYW is relevant to the analysis. UNI1 and UNI2 have been omitted from

all further processing because of the reasons mentioned in §6.4 and because they are

close enough to other higher quality GPS stations to be able to positively influence

the end outcome.

7.1.3.2 Results

Typically, the plots vary between ±10mm and the magnitude variations between

the datasets is very similar. Correlation in the results is measured using Pearson’s

formula (Dalgaard, 2008) which is confidence tested at the 95% level using the t-test;

this passes in all cases. The correlations themselves range from between 0.56 to 0.82,

which is within expectations. Assuming that the APSs account for atmospheric phase

to some degree, and also assuming that ZWD is representative of atmospheric water

vapour and that this is the largest source of atmospheric phase variation, then the

expectation is that the two datasets should be correlated to a certain extent, but

variations will also be evident. This can be seen in figure 7.2 where certain epochs

such as 2006.5 appears to have a pronounced bias at all stations; this is in fact due

to the atmospheric conditions not being represented well by the PSI atmospheric

model. Because the model used to estimate the APSs assumes the atmospheric term
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Figure 7.2: ZWD and APS correlation for GPS stations within the AOI. Correlation is T
tested at the 95% level.

to be random over time (Ferretti et al., 2001, Mora et al., 2003), the amount that

the ZWD and the APS vary, will to some degree depend on how non-random the real

atmosphere was over the sampled dates involved. In a normal PSI processing scenario,

this means that any non-random (temporal) variability that is also spatially correlated

at small scales could either remain as residual phase or might be misinterpreted as non-

linear deformation. The reverse of this is also true; non-linear deformation exhibiting

random behaviour may be consumed into the APSs. Although non-linear deformation

is not considered for this work, the adaptation of this method for non-linear studies

is not precluded.
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Figure 7.3: ZWD and APS scatterplot for all data points for ever date for which an APS
value and a ZWD value can be determined. Whilst correlation is moderate at 0.42, this is
not unexpected as variations will exist if the APS do not correctly model real atmospheric
phase.

7.1.4 ZWD Screens

Eleven GPS stations from both inside and outside the AOI were used to create the

ZWD screens. These stations comprised of the seven CGPS sites discussed in §4.8.2

and four of the six NCRA stations discussed in §5.5. ZWD values were collated from

the GPS stations that were active on any given ENVISAT acquisition date. ZWD

screens were then created for the entire interpolation area which is shown along with

the GPS stations in figure 7.4. Green circles are scaled representations of the GPS

cone areas used to compute the ZWD values.

To create the screens, a least squares method of biharmonic spline interpolation

was used based on a linear combination of Green functions (Sandwell, 1987) centred

at each point. This method has been used successfully to interpolate smooth surfaces
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Figure 7.4: GPS stations used to interpolate the ZWD screens. The green circles are
scaled representations of the GPS cones at 1.4km height used to compute the ZWD
screens.

from sparse and irregularly spaced data such as altimeter data (Sandwell, 1987, Brooks

et al., 1999).

7.1.4.1 Interpolation Testing

A test was conducted whereby each station’s ZWD value for each date was estimated

using the interpolator; these were then compared to the real ZWD values and standard

deviations of the differences for each station were computed. As might be expected,

the interpolator performed better for stations close to the centre of the AOI and

for stations close to other stations. IESG is both close to the centre and close to

another station and the standard deviation of the differences for IESG over all the

dates was 4.2mm. ASKE however is on the eastern edge of the AOI with no stations

within 24km, and not being bounded by other stations. The standard deviation of

the differences here was 54mm. To put this in context, the spatial ZWD variation for

this dataset on any one day varies between 14mm and 85mm. Therefore the standard

deviations at the edges of the interpolation might exceed the variation across the scene
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and hence the method is less valid here. Having said that, the main focus is on the

stations closer to Nottingham, which all show standard deviations between 4.2 and

6.3mm which are well within the variations seen on any given day.

7.1.4.2 AOI ZWD Values

A three dimensional example of a ZWD screen for 11 August 2007 is shown in figure

7.5. The area represented here covers all the GPS stations and is therefore much larger

than the AOI. The surface is interpolated from the eight ZWD values available on the

date; the ZWD values have been demeaned and the geometry and pixel spacing for

the plot is RDC multilooked by a ratio of 1:5. The plot shows how the (interpolated)

ZWD values vary over an area of just over 8400km2.

Figure 7.5: A 3D representation of the ZWD screen computed for the ENVISAT pass on
11 August 2007. Eight ZWD observations from GPS stations (marked with black circles)
both inside and outside the AOI were used interpolating the surface using the biharmonic
spline method which seeks to estimate the smoothest surface from a sparse set of data
(Sandwell, 1987).

From these wider area ZWD screens, ZWD values covering the AOI were cropped,

converted to phase measurements and mapped to the radar line of sight using the

inverse of the cosine of the radar incidence angle.
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Unfortunately the dataset does not permit ZWD screen estimation on every date

in the stack. Seven of the dates have only two GPS stations (NOTT and IESG)

operating on any one day and these are within a few kilometres of each other. Figure

7.6 shows twenty-eight of the twenty-nine ZWD screens created for the stack, the last

being omitted purely for reasons of space. Below each figure is the acquisition date

followed by the number of GPS stations used to create it in brackets.

7.1.5 ZWD Integration

Using the the differential interferograms already created, a new PSI analysis was

initiated using only the twenty-nine layers (see table 7.1) for which ZWD screens

could be created. Using all the scenes, some with ZWD correction and some without,

would have biased the results in unpredictable ways and it was decided to process the

stack without them. The SLC stack used comprised of the scenes shown in figure 6.3

minus the first seven dates.

The processing method used was identical to that described in §6.2.3 except that

the ZWD values were extracted for each PS point location from the ZWD screens.

These were then are subtracted from the differential interferograms. This was done

after the candidate PS points had been selected; therefore the quantity and locations

of the PS (at this stage) were identical to the uncorrected PSI analysis conducted in

chapter 6.

This method was chosen in preference to subtracting the ZWD screens at the very

start of the PSI process for practical considerations. Introducing them at the start of

the PSI process makes very little difference to the overall outcome, but does change

the choice and indexing of the points, which means that comparison between the

results is less straightforward.

Following the subtraction of the ZWD screens, the process continues as before.

7.2 Results and Analysis

The results of the ZWD corrected PSI stack are now analysed. As well as a general

comment on the quality of the results, several comparisons with other data can be
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7.6.1: 2004-06-12 (5) 7.6.2: 2004-07-17 (5) 7.6.3: 2004-08-21 (5) 7.6.4: 2004-10-30 (6)

7.6.5: 2005-01-08 (6) 7.6.6: 2005-09-10 (6) 7.6.7: 2005-11-19 (5) 7.6.8: 2006-05-13 (8)

7.6.9: 2006-06-17 (10) 7.6.10: 2006-07-22 (9) 7.6.11: 2006-08-26 (8) 7.6.12: 2006-09-30 (8)

7.6.13: 2006-11-04 (9) 7.6.14: 2006-12-09 (8) 7.6.15: 2007-01-13 (9) 7.6.16: 2007-02-17 (8)

7.6.17: 2007-04-28 (9) 7.6.18: 2007-07-07 (8) 7.6.19: 2007-08-11 (8) 7.6.20: 2007-11-24 (8)

7.6.21: 2008-02-02 (9) 7.6.22: 2008-03-08 (9) 7.6.23: 2008-06-21 (9) 7.6.24: 2008-08-30 (7)

7.6.25: 2008-10-04 (8) 7.6.26: 2008-11-08 (9) 7.6.27: 2008-12-13 (8) 7.6.28: 2009-01-17 (6)

Figure 7.6: The ENVISAT acquisition date ZWD screens interpolated from GPS stations
inside and outside the AOI. One colour cycle represents 8cm of ZWD. The number in
brackets for each sub-caption indicates the amount of GPS stations available to create
the screen.
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made:

• Comparison with the ZWD uncorrected PSI result

• Comparison between the precise levelling results and either PSI result

• Comparison with the GPS velocities

7.2.1 PSI Result Comparison

The ZWD PSI result is shown in figure 7.7 in RDC geometry. From a purely

qualitative standpoint, the result looks similar to the ZWD uncorrected result, with

the same areas of motion and a similar spread of PS points. Just over 4000 more

PS points were rejected in the regression stages of the corrected result. This is a

reduction of about 3%, but the rejected points do not occur in any particular area,

they are scattered throughout the image.

7.2.1.1 PSI Rejection

Rejection criteria is based upon phase standard deviation. During the estimation of

height corrections and deformation phase, the phase differences between neighbouring

scatterers are analysed as to how they vary over time. High standard deviations for

these differences reveal noisy PS points which are then rejected if they exceed a

threshold. The reasons for the increase in phase standard deviation may be due to

the seven rejected scenes. Because the rejected points are scattered over the whole

image, it is unlikely that they are being rejected because of the ZWD screens, as this

would be more likely to show PS being rejected towards the edges, especially in the

eastern part of the image where GPS stations are most scarce. This is where errors in

the ZWD screens are at their highest and therefore the increased variations between

neighbouring points should give rise to higher standard deviations.

7.2.1.2 Deformation Rates

The deformation rates in both results are similar when taken as a whole. Taking

into account the common PS points only, the mean, minimum, maximum, standard
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Figure 7.7: The ZWD corrected PSI result. ZWD screens were subtracted from the
initial differential interferograms once the candidate points had been selected.

deviation and median values are all within 1.5mm/yr of each other. This is perhaps

not surprising with PS point quantities of over 170,000. When the differences in

deformation rates are viewed spatially however, a different picture emerges. Figure

7.8 is a map of the differences in deformation rates (corrected result minus uncorrected

result) shown in RDC geometry. Both results use the same reference point and both

reference point velocities are almost identical (a difference of 0.032mm/yr; the fact

that the reference point has a velocity at all is an artefact of the IPTA method (Werner

et al., 2003)). This is useful because it facilitates a direct comparison between the

results. The image shows a surprising amount of variation across the scene, albeit at

mainly low magnitudes, with PS points of similar magnitudes clustered in groups.

The deformation rates are initially estimated through an analysis of how phase



7.2 Results and Analysis 148

Figure 7.8: Differences in deformation rates between the two PSI analyses; the ZWD
corrected minus the uncorrected PSI analyses. A clustering effect is evident across the
scene. Checks reveal that these differences are not directly related to the seven extra APS
screens present in the ZWD uncorrected PSI result.

differences between neighbouring points vary over time. These differences are later

unwrapped to reveal the deformation rates at each point (with respect to a reference

point). As the ZWD screens are smoothly varying surfaces, it is unlikely that their

subtraction from the differential phase would directly introduce errors into the de-

formation rate estimation process in the clustered manner shown in figure 7.8. One

explanation may be that the ZWD screens introduce systematic differences to the PSI

process, which affects how phase is unwrapped and whether this is representative or

not, this manifests itself (partly) as clustered differences in the deformation rates.

If the removal of the ZWD screens do result in less long-wavelength atmospheric

phase in the differential interferograms, then this ought to mean that there is less

residual phase that is spatially correlated, but temporally uncorrelated. However, as
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discussed in §3.3, the assumption that the atmospheric phase behaves in a temporally

random manner is not necessarily statistically valid for the sample sizes typically

involved in PSI. If then, the subtraction of the ZWD screens also removes non-

random looking atmospheric contributions which might otherwise be interpreted as

deformation, then this should lead to an improvement in the deformation rates.

One other explanation is that the velocity differences relate to the extra seven APSs

present in the ZWD uncorrected result. Comparing the differences with the mean of

the seven APSs does not bear this out however.

7.2.1.3 Residual Phase

An examination of the residual phase standard deviations for the two PSI results

in figure 7.9 show some interesting differences. The values for the ZWD corrected

PSI result are spread over a wider range with a standard deviation (of the standard

deviations) of 0.31 rad as opposed to 0.24 rad for the ZWD uncorrected PSI result.

However, the corrected result has a lower mean value of 0.92 rad compared to 1.07

rad for the uncorrected result.

The wider spread of values suggests that in some areas the residual phase is noisier

than before. This may be because the ZWD screens are introducing spurious phase

values in areas where they are not representative. The lower mean however, indicates

that on average, there is less noise in the PS phase regressions.

Figure 7.9: Residual phase standard deviations for the ZWD uncorrected PSI result (left)
and the corrected result (right). The corrected result has a wider spread but a higher
mean, this may be indicative of ZWD screens that are representative in the central AOI
but less so towards the edges.
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If the ZWD screens are (on average) representative of atmospheric phase, then

it is logical to assume that a reduction in the average residual phase would follow.

Furthermore, the standard PSI model assumes atmospheric phase to be temporally

uncorrelated (Ferretti et al., 2001, Mora et al., 2003), yet statistically it is difficult to

see how this would be so with such a small sample (see §3.3 for a discussion on this).

Therefore, any spatially correlated but (apparently) non-temporally random phase in

a normal PSI study might manifest either as non-linear deformation or unquantified

noise left over at the end on the process in the residual phase.

7.2.1.4 Deformation Uncertainties

Figure 7.10 shows histograms of the deformation uncertainties for the ZWD uncor-

rected (left) and the ZWD corrected PSI results. The term ‘uncertainty’ used here

refers to a statistic which is output by the regression covariance matrix which is

related to the standard deviation of the deformation phase. It is a measure of the

statistical quality of the goodness of fit in the regression slopes. Whilst it can be under

or over-optimistic to varying degrees, the difference between the noise in the phase

measurement and the deformation rate uncertainty is a linear scale factor (Werner

et al., 2003) and therefore it is a useful parameter for a comparison such as this.

Figure 7.10: Deformation uncertainties for the ZWD uncorrected PSI result (left) and
the corrected result (right). The uncertainties are a measure of the statistical quality of
the goodness of fit in the regression slopes. The corrected result is not symmetrical as
would be expected, this may be due to the ZWD screens being unrepresentative towards
the edges of the AOI introducing systematic bias in the uncertainties.

The maximum values are more than double that of the uncorrected result and the
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spread is also larger. An inspection of the spatial distribution of the deformation un-

certainties reveals that these higher values are not clustered in any way and therefore

it is likely that the increase in values has arisen from the reduced number of images

in the corrected result. Figure 7.11 shows the spatial distribution of deformation

uncertainties across the AOI for the ZWD corrected study.

Figure 7.11: The spatial distribution of the increased deformation uncertainties in the
ZWD corrected PSI result. The random spread indicates that the increase is probably not
due to the introduction of the ZWD screens.

The deformation rate uncertainties for the corrected result are skewed in a non-

symmetrical manner. This means that the goodness of fit in the estimations of the

regression slopes is no longer evenly distributed about a mean. There is no obvious

reason why this would be so; a skewed distribution however is unlikely to be due to

a decrease in the number of images in the corrected result. This could be seen as

evidence that the ZWD screens have introduced a systematic bias into the corrected
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result, albeit, a reasonably small one.

7.2.1.5 Height Corrections

An examination of the respective height corrections in figure 7.12 shows almost no

difference between the results. An examination of the perpendicular baselines in

each study also shows almost no difference; it is therefore reasonable to expect little

variation in the height corrections. This is because the PSI method first analyses pairs

of points in the temporal domain to examine how phase differences may be correlated

with the perpendicular baselines (the slope of regression for each PS point indicating

the required height correction). This shows that the baseline improvement process

detailed in §6.2.3.5 has not been biased through the introduction of the ZWD screens.

A comparison with the NEXTMap 5m DEM mentioned in §6.5.2.2 unsurprisingly also

provides very similar results between the two PSI studies.

Figure 7.12: Height corrections between the SRTM 90m DEM and the resulting PSI
heights between the ZWD uncorrected result (left) and the corrected result (right). The
height correction histograms are almost identical.

7.2.2 Levelling Comparison

As discussed in §6.3, a precise levelling campaign was undertaken following advice

from members of BGS that the area was prone to ground motion; this arose mainly

from a commercially sensitive PSI study using ERS data between 1993 and 1999.

Comparing levelling and PSI is not a straightforward process. Levelling is a spatial

difference between two directly measurable points, whilst PSI is a temporally based
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difference between two SLC dates, Marinkovic et al. (2008) sums up the issues well.

A comparison is possible through a double difference in time and space. An overview

of the area with the levelling staff positions and the PS points is shown in figure 7.13;

PS points shown here are taken from the corrected result. The distance between the

start point in the northeast of the image and staff point 24 is 1km.

Figure 7.13: The Hucknall precise levelling campaign. White diamonds show the staff
positions observed four times of the twelve month period from August 2007 to August
2008, coloured dots represent the PS points.

The start point was given an arbitrary height and all other points were levelled with

respect to this four times over the course of a year. The levelling spatial difference was

computed between the point labelled ‘Start’ and an average of the heights observed

for the eight staff points labelled S17 to S25. The PSI spatial difference was taken

from an average of the points within a 100m radius of the start and from those within

a 100m radius of S25.

The temporal difference for both datasets is taken between 21 August 2007 (the

date of the first levelling observations) and each one of the three successive levelling

dates. Because these dates are not coincident with ENVISAT passes (but they are

within ten days) the displacements for the PS points were linearly interpolated.
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Figure 7.14: The Hucknall precise levelling results showed against the two PSI studies.
Observations have been double-differenced (in space and time) to provide a meaningful
comparison. The correlation between the levelling and the ZWD uncorrected PSI result is
0.67 and 0.81 between the levelling and the ZWD corrected PSI result.

Figure 7.14 is a plot of the double differences. The correlation between the levelling

and the ZWD uncorrected PSI result is 0.67 and 0.81 between the levelling and

the ZWD corrected PSI result. The t-test was used to test the significance of the

correlations at the 95% level with both correlations passing the test. Although

the corrected result shows improvement, the dataset is small, as are the variations.

Error bars were not plotted for ease of viewing, but the mean PS point deformation

uncertainties for the corrected result were slightly higher at 1.7mm compared to

1.2mm for the uncorrected result.

7.2.3 GPS Comparison

A comparison of the GPS and two PSI results is shown in figure 7.15. GPS errorbars

have been omitted for clarity; the quality of the GPS results is addressed in §6.4. The

ZWD uncorrected and corrected PSI results are shown in red and blue respectively.

The error bars for the PSI result relate to the deformation uncertainties discussed

in §7.2.1.4 and outliers in all datasets have been removed during their respective

processing. Correlation coefficients (rc for the corrected result and ru for the uncor-

rected result) were computed between the PSI results and the corresponding GPS
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Figure 7.15: GPS and the two PSI result’s velocity estimates. Black represents GPS
while red and blue represent the ZWD uncorrected and corrected PSI results as indicated
above each plot.

result. Significance was determined using the t-test at the 95% confidence level, all

correlations pass the test unless otherwise stated.

7.2.3.1 NOTT and IESG

The CGPS stations IESG and NOTT offer the longest and highest quality GPS time

series for stations within the AOI. Both PSI results are in very good agreement with

the GPS result for IESG with no appreciable difference in rates; correlation coefficients

are close to 1 for both PSI results. Because errors in the atmospheric term are spatially

correlated, it is not surprising that results at IESG agree so well. Agreement at

(effectively) the reference point suggests that there are no evident systematic biases

in the results of the different datasets.
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At NOTT, again the PSI results are very similar but deviate from the GPS rate by

just over 1.5mm/yr; rc=0.77 and ru=0.73. There is also a marked difference between

the uncertainties of the two PSI results. This maybe due to the smaller time series

used for the corrected result. NOTT is approximately 3km from the reference point,

and so it is possible that some minor spatially correlated errors have influenced the

rates. It is also possible that non-linear deformation in the residual phases has caused

the disparity.

7.2.3.2 BGS1 and KEYW

At BGS1, the GPS rate is a much more marked 5.7mm/yr. The small increase in the

RMS and uncertainties compared to IESG or NOTT are minor. The PSI rates also

show a marked difference, the uncorrected rate is almost flat, whereas the corrected

rate is 3.1mm/yr; rc=0.65 whereas ru=0.45. The corrected rate again is slightly noisier

than the uncorrected with an increase in the deformation uncertainly of 3mm/yr. This

uncertainty means the the corrected rate at BGS1 could be as low as the uncorrected

rate.

A similar result occurs at KEYW which is only a few hundred metres from BGS1.

Here, the corrected PSI result is again much closer to the GPS result, but according

to the t-test, the correlation coefficient is not significant for the degrees of freedom

available at the 95% level; significance occurs at the 77% level. This is probably due

the low sample size and high noise in the GPS timeseries (§6.4.1).

7.2.3.3 WNCO

Again, the GPS time series at WNCO shows moderate uplift and the corrected PSI

rate shows better agreement with this than the uncorrected. The differences however

are minimal (rc=0.77 and ru=0.73) and the uncertainty in both the GPS results and

the corrected PSI results are greater than the estimated quantities.
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Figure 7.16: GPS and the two PSI result’s velocity estimates computed with the
atmospheric phase screens added to the PSI time series at the end of processing. Black
represents GPS while red and blue represent the ZWD uncorrected and corrected PSI
results as indicated above each plot.

7.2.4 Atmospheric Effects on PSI Time Series

A further comparison of the GPS and two PSI results is shown in figure 7.16, this

time with the atmospheric phase screens added back to the PSI result at the end of

processing.

The figure shown is in stark contrast to figure 7.15. Clearly both time series exhibit

a good deal more noise as would be expected, but the rates for the uncorrected time

series are virtually unchanged whilst the rates for the corrected time series are very

different. An explanation for this may stem from the fact that the APSs in the ZWD

uncorrected result are all attributable to random (over time) noise, which has little

or no overall effect on the PSI rates. In contrast to this, the ZWD corrected results
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have random and non-random atmospheric effects removed; the overall effect of this

when added back to the result at the end of the processing is pronounced biases in

the time series.

7.3 Discussion

Comparisons between two PSI results show that the ZWD corrected result has a

broader range of residual phase standard deviations, although the mean is lower. It is

difficult to say whether the broader range is due to the reduced stack or whether the

ZWD screens have have influenced the process negatively. Evidence for the former

stems from the fact that the extra rejected PS candidates in the ZWD corrected result

are scattered throughout the image rather than being clustered in areas where the

ZWD screen is not representative. The lower mean residual phase standard deviation

indicates a reduction (on average) in the noise, although this is not apparent at the PS

points close to GPS stations. This reduction may have resulted from a general decrease

in atmospheric phase due to the subtraction of the ZWD screens; it is also possible that

the ZWD screens better represent any non-temporally random atmospheric artefacts,

which might otherwise be classified as residual phase (or non-linear deformation). As

discussed in §7.2.1.2, a reduction in mean residual phase might be indicative of an

improvement in deformation rates, which to some degree, is evident in the levelling

and GPS comparisons discussed in sections 7.2.2 and 7.2.3 respectively.

The fit of the ZWD screens varies from good to bad over the AOI; in the principally

important area of Nottingham city, the measured fit (see §7.1.4.1) is good. As ex-

pected, it is particularly poor where the GPS network is sparse or does not completely

encompass the AOI such as in the southeast. The systematic errors this introduces

into the PSI process may explain the skew introduced into the deformation uncertainty

histogram in §7.2.1.4. Also apparent is a more general increase in the deformation

uncertainties for the ZWD corrected result; these increases occur in no particular area

and are therefore probably attributable to the reduction in the stack.

Overall, the results have shown that the introduction of ZWD screens can have a

positive influence on PSI studies. Comparison with levelling and GPS results show
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improvement when compared to results without ZWD screens, although the datasets

involved are sparse and the statistical significance is at times limited.

When the ZWD corrected and uncorrected PSI time series have the atmospheric

estimates added back to the deformations phase and shown against the GPS time

series (figure 7.16, stark differences are noted. The ZWD uncorrected rates are

virtually unaffected whereas the ZWD corrected results display pronounced biases

introduced by the corrected APSs. It is therefore reasonable to presume that ZWD

corrected APSs are indeed not random over time which creates unpredictable linear

regressions in the deformation rates when re-introduced. It should be noted that the

level and unpredictability of the noise shown maybe an indicator of the multi-stage

iterative processing methodology. These signals may otherwise have been interpreted

as non-linear deformation or residual phase. This further strengthens the case that PSI

analyses can be improved using ZWD correction because (apparently) non-random

atmospheric artefacts are removed and not misinterpreted.

7.4 Summary

An experiment to integrate PSI and GPS has been undertaken which fulfils the

aims and objectives originally stated in §1.6. ZWD screens were interpolated from

discrete points and these were subtracted from differential interferograms used in a

PSI study. Comparisons were then made between the ZWD corrected PSI result and

a previously determined ZWD uncorrected PSI result, a precise levelling campaign

and GPS station heights. A critical analysis was made of the two PSI results together,

analysing differences between them and suggesting reasons for them. The ZWD

screens improved the correlation between the PSI results and the levelling by 0.14.

Comparison with the GPS results showed improvements typically of the order of 1.5-

6mm/yr, although the uncertainties in both the GPS and the PSI study mean that

statistical significance is at times limited. When PSI time series are viewed with the

APSs added back at the end of the processing runs, the ZWD corrected time series

exhibits strong non-random signals which would otherwise be interpreted as either

non-linear deformation or residual phase.



Chapter 8

Conclusions and Recommendations

This chapter reviews the main elements of the thesis. The aims and objectives are

restated after which each aim is visited in turn, summarising how it was achieved, to

what level of success and what could be done in future to improve results. This leads

to a list of recommendations for future work.

8.1 Review of Aims and Objectives

Chapter 1 included a set of aims and objective for the project. The aims were stated

as follows:

• Study background areas and conduct a literature search concerning GPS and

PSI integration.

• Analyse what value corner reflectors might bring to PSI.

• Consider how GPS might be integrated with PSI.

The objectives were:

• Identify gaps in GPS and PSI integration research.

• Investigate the potential for long-term corner reflectors and their use as artificial

PS points.

• Investigate the potential for reference point bias removal using corner reflectors.

160
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• Consider how GPS might be used to improve PSI atmospheric phase screens.

• Determine how GPS might be used to validate PSI studies.

These are now discussed in the context of what was achieved and what could be

improved upon. Following this, recommendations for further work are made.

8.2 Integration Research

Major topics relevant to the project were explained in chapter 2 which also referenced

definitive sources for further information. State of the art research concerning atmo-

spheric delay, calibration for SAR interferograms, corner reflectors in InSAR were then

discussed in chapter 3. This led naturally on to the research motivations including

how corner reflectors might be used in PSI studies, assumptions about atmospheric

phase, the use of GPS in PSI studies and the validation of PSI. The chapter concluded

with a summary of the current gaps in research concerning these subjects.

8.3 Corner Reflectors in PSI

Nottingham was chosen as the test site for the project as it had clear advantages

over other alternatives. Firstly, it is a geologically interesting area, as was shown in

§4.5 and indicated in §6.5. It is also well served by geological literature (Charsley

et al., 1990, Donnelly, 1999, EDINA, 2009, Howard et al., 2010), being home to the

headquarters of BGS. A major advantage was the proximity of the reflector network

to the University, the consequences of this being a larger dataset as more funds were

available for observation campaigns. The existing GPS and SAR data archives (§4.8)

were comparable or better than other potential site choices.

The NCRA consists of six corner reflector sites: three permanent reflectors and

three non-permanent (§5.2). The three non-permanent reflectors use an innovative

pillar mount which interfaces between the pillar and a modified reflector or a GPS

antenna (§5.2.4); the achievable positional precision of these sites is very close to that

of a permanent site (§5.5.1). Also, the modification of the reflectors and the design
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of the pillar mount make possible the potential for many other sites in the UK from

the 6000+ existing triangulation pillars. This of course could be extended to other

countries such as Ireland that also use the OS pillar design.

8.3.1 Observation Model

The design of the observation model was an exercise in achieving the optimal outcome

with the time and resources available (§5.4); in this respect, the adopted strategy

fulfilled the requirements. Tests showed that PPP processed six hour GPS sessions,

even with a fifteen minute gap in the middle, can still provide results comparable with

standard daily solutions (§5.4.5). The increase in uncertainty is apparent, but not to

the extent that the observations become unusable.

8.3.2 ENVISAT Data

The existing ENVISAT dataset prior to the start of the project consisted of fourteen

archived scenes of the area (§4.8.1), which was comparable or better than the other

potential project sites. It was initially envisioned that these scenes would be used

for checking coherence and other lower priority tasks. Following the above average

ENVISAT instrument conflicts that occurred over Nottingham between 2006 and

2009 (§5.5.1), the archived scenes became crucial to satisfying the project aims and

objectives. The reduction in data was exacerbated when ESA redesigned the orbit

cycle making acquisitions after February 2009 unsuitable for SAR interferometry.

It was not possible therefore to build an ENVISAT catalogue of sufficient size (with

the time available) to properly integrate the reflector network into the PSI analysis

(§5.7). Thus an alternative focus for the project was sought which utilised the data

available and fulfilled the project aims and objectives.

8.3.3 Reflector Visibility

The reflectors used in this project, when placed in areas with medium to low clutter,

were unambiguously visible in the SAR data (§5.5.2) and appear as candidate and

confirmed PS points using the PS selection method chosen for this project (§6.2.3.1).
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At the outset of the project, no published research could be found involving corner

reflectors this small with ENVISAT SAR data; therefore there was no evidence that

they would be visible or qualify as PS points. Furthermore, at the time the sites were

being selected, the Cat-1 proposal had not yet been agreed by ESA and therefore

no existing dataset was available for checking site amplitude variation. These risks

were balanced against the available research involving both small corner reflectors and

similar SAR instruments.

8.3.4 Field Observations

Over 800 hours of GPS data was collected by field teams for the six NCRA reflector

sites. Many more hours were added to this from the CGPS stations in and around

Nottingham. This data coincided with the twenty-two successful ENVISAT acqui-

sitions. This is a valuable field observation archive that may be useful to future

projects.

In light of evidence that arose in April 2007, a precise levelling campaign was

devised (§6.3) to assess an area of potential ground motion. The levelling campaign

lasted for a year and the precision of the results was better than the allowable precision

for first order levelling.

8.3.5 Discussion

Given a longer lead-in time, a more thorough search for secure sites could be made

as UNI1 and UNI2 both proved to be inadequate; the reflectors were not visible in

the SAR imagery (§5.5.2), they were too close together to be useful for the ZWD

correction and the GPS time series were poor (§6.4).

The pillar mount was designed to accommodate either a reflector or a GPS antenna

but not both. This is because it was assumed that each of the instruments might

have a negative impact on the other’s results. The author knows of no tests that have

established this as fact and it may be worth further investigation (perhaps utilising an

anechoic chamber) to experiment with different configurations of GPS antenna and

reflector mount. A successful outcome would make possible truly concurrent GPS
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and SAR observations and also eliminate any gaps in the GPS data, which can have

unpredictable consequences (§5.4.4) when processing data using PPP methods that

use a Kalman filter. The same objective could be achieved using a tripod set over

the corner reflector, but this would probably not be as stable as a modified reflector

with an antenna attachment. Furthermore, a tripod setup would rely on varying

antenna heights measured with a tape in the field rather than a fixed offset that can

be measured precisely under laboratory conditions and checked periodically.

The existing GPS dataset for the Nottingham area was reasonable although it was

unfortunate that the two stations with the longest GPS time series (IESG and NOTT:

§6.4.1) were so close together and the other CGPS stations in the area were too far

away to include within a reasonably sized PSI processing area. Further problems

ensued when NOTT was abandoned by the OS in 2007 and KEYW was established

in its place, very close to BGS1. In general, CGPS networks have been densifying over

the last ten years as location based services such as Virtual Reference Station (VRS)

becomes more and more popular (http://www.ordnancesurvey.co.uk/oswebsite/

gps/commercialservices/). This obviously would make the PSI ZWD correction

method more viable, although there are also upper limits to the usefulness of spatially

dense GPS networks (discussed below in §8.5).

Suggesting an idealised corner reflector network is not straightforward as it depends

on the objectives. An ideal corner reflector for this project would be one secure

enough to leave unattended, with fixed continuously operating GPS equipment (see

above), with low backscatter but close to urban areas, close to areas of ground

motion but stable themselves and present in as large an archive of SAR images as

possible. For tropospheric delay experiments, the spatial density of the reflector

network would be based on the measurable spatial variation in the troposphere;

no less than 10.8km if this is conducted using GPS ZWD. A balanced geometry

is also a desirable characteristic for a reflector network as results from tasks such as

interpolation are less likely to contain areas which are not representative of the values

being interpolated.

One of the key points in PSI analyses is that all PS motions are relative to the

motion of the reference point. If therefore, the reference point is a precisely known

http://www.ordnancesurvey.co.uk/oswebsite/gps/commercialservices/
http://www.ordnancesurvey.co.uk/oswebsite/gps/commercialservices/
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point with a precisely known positional time series, then it would be possible to derive

the absolute motions of all the PS points. This could be made possible through the

integration of one or more precisely surveyed corner reflectors, although this was not

possible in this study for the reasons already stated.

The importance of the availability of an existing SAR archive during the planning

stages of projects such as this cannot be overstated. Firstly it means a short list of

reflector sites can be established prior to a field reconnaissance. If there are sufficient

scenes for a PSI analysis, then reflectors can be optimally sited close to the areas

which indicate motion suitable for further investigation.

It is difficult to see how the spacecraft conflict issue can be easily resolved. Cat-1

projects are necessarily low priority for ESA as there is no financial benefit to them

and ordering data at commercial prices is beyond the reach of most research projects.

The only solution is to plan as much redundancy into the project as possible and be

flexible with the objectives.

The levelling campaign introduced midway into the project was a useful addition.

In retrospect, a more extensive levelling campaign would have been invaluable such as

a two or three year campaign with observations temporally close to every successful

ENVISAT pass.

The results of the levelling undertaken here had to be double-differenced to be

comparable with the PSI data (§7.2.2). This may be avoidable with a well chosen

PSI reference point. If the reference point were a corner reflector with a stable GPS

time series indicating no motion, and if this reference point were within reasonable

levelling distance from an area of PSI indicated ground motion then a more rigorous

validation experiment could be devised. Failing this, it would also be possible to level

from the reference point to an artificially moveable point. Assuming zero motion

at the reference point and assuming concurrent levelling observations and ENVISAT

passes, the PSI and levelling results would be directly comparable. An experiment

of a similar nature to this has been conducted (Marinkovic et al., 2008), but double

differencing was necessary as the reference point strategy mentioned above was not

part of the work.
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8.4 GPS and PSI Integration

A novel means of integration between GPS and PSI was found in which absolutely

derived ZWD data was used to remove part of the atmospheric component in the

differential interferograms used in a PSI analysis (§7.1.5).

8.4.1 Data Quality

Prior to the integration stage, the quality of the GPS data was determined prior to

PPP processing and some data had to be rejected (§6.1.2). Following PPP processing,

results were compared to established GPS time series (§6.4), independently processed

using entirely different algorithms. The quality of the PSI results was also examined

whereby deformation signals in Nottingham City were linked to sources of information

that might explain them (§6.5).

8.4.2 PPP Processing Model

It was argued that a PPP method for computing GPS parameters was the best means

of providing realistic ZWD values (§5.4.2). The adopted PPP processing model was

optimised for ZWD estimation (§6.1.4). When available, real pressure data was used to

compute the ZHD estimates (§6.1.6, 7.1.1). Also, the best available tropospheric delay

mapping function (Kouba, 2009b) was used for mapping delays to zenith (§6.1.4.6).

8.4.3 PSI Processing Model

An optimised method for PSI processing was sought (§6.2.3). Although the method

used here is lengthy and complex compared to many other PSI strategies, there is

very little compromise in the method: precise baselines were used initially which were

later improved using GCPs, a stacking step was used to improve several initial PSI

stages, the reference point was carefully selected following a quality check on the PS

points, there was very little filtering, full resolution interferograms were used through-

out and the final regression was computed using the original untouched differential

interferograms.
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8.4.4 Geometry and Interpolation

Correlation between GPS ZWD and PSI was then thoroughly investigated (§7.1.3).

Whilst the degree of correlation was not high (0.42 overall), it was argued that this

was in line with expectations. The ZWD values were then interpolated across the

AOI in to ZWD screens. The interpolation method was tested and shown to produce

good results in areas close to GPS stations and in areas bound by other GPS stations

(§7.1.4.1).

8.4.5 ZWD Correction

Results between a ZWD uncorrected PSI analysis and a corrected PSI analysis were

compared. Here the statistics indicated that whilst improvements were evident in the

ZWD corrected PSI result, such as a lower mean residual phase standard deviation,

there was also a slight increase in deformation rate uncertainties. The ZWD corrected

PSI results were also compared to levelling and GPS results which both indicated

improvements in the PSI deformation rate estimation (§7.2), although statistically

some of these results were not conclusive.

When atmospheric phase screens for both the ZWD corrected and uncorrected

PSI studies were added back to the deformation phase, the respective effects on

the results were marked. The uncorrected deformation rate regression lines were

unaffected whereas the corrected results showed unpredictable behaviour with linear

deformation rates that were clearly not in agreement with GPS rates. It was assumed

that these differences were due to the fact that only temporally random atmospheric

phase is removed in the uncorrected PSI study, whereas the ZWD corrected result

also has non-temporally random atmospheric phase removed; these signals may have

otherwise been interpreted as non-linear deformation or residual phase.

8.4.6 Discussion

As stated by Hanssen (2001), there is an upper limit to densification at which more

GPS stations are not useful. With a GPS elevation mask of 15◦ and considering

overlapping GPS and SAR geometries at 1.4km above the ground (§7.1.2), this is
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10.8km, because this is the area over which the GPS tropospheric delay estimates

are sampled and averaged in order to estimate the ZWD value. This also means that

using this technique, it is not possible to account for atmospheric variations below this

spacial limit and therefore the technique is restricted to the longer wavelength effects

of tropospheric delay. With the prospect of multi-GNSS receivers which are sure to

become available once projects such as ESA’s Galileo project (http://www.esa.int/

esana/galileo.html) become operational, slant wet delay correction may become a

viable option for which the geometric restrictions placed on ZWD estimation will not

apply.

8.5 Recommendations for Further Work

The following items are drawn from the discussion points which indicate that further

research may be useful and perhaps lead to significant results:

• Investigate a configuration whereby a GPS antenna mount and a corner reflector

could be incorporated in such a way the the presence of one instrument does

not inhibit the other.

• Conduct PSI analyses whereby the position and motion of the chosen reference

point is precisely known through the integration of a precisely surveyed corner

reflector. This could then lead on to important validation work whereby real

ground motion could be directly compared to PSI results without the require-

ment for differencing.

• With a suitable constellation of GNSS satellites, investigate the potential for

GNSS Slant Wet Delay correction of PSI results.

8.6 Summary

A review of the work conducted for this thesis has been presented. The aims and

objectives were restated and discourse on how these were achieved was provided,

discussing each objective in turn. A critical analysis was also made suggesting areas

http://www.esa.int/esana/galileo.html
http://www.esa.int/esana/galileo.html
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for improvement and areas for new research. These new research areas were then

listed as recommendations for future work.



References

Adam, N., Kampes, B. M., Eineder, M., Worawattanamateekul, J., Kircher, M., 2003.

The development of a scientific permanent scatterer system. In: ISPRS Workshop

High Resolution Mapping from Space, Hannover, Germany, 2003. p. 6 pp.

AddItNow, 2005. Mine exploration, photographs and mining history for mine explor-

ers, industrial archaeologists, researchers and historians. Online, accessed 17 Jan

2010.

Afraimovich, E., Demyanov, V., Kondakova, T., 2003. Degradation of GPS perfor-

mance in geomagnetically disturbed conditions. GPS Solutions 7 (2), 109–119.

Amos, J., 2007. London’s small but relentless dip. Online, BBC News.

URL http://news.bbc.co.uk/1/low/sci/tech/6231334.stm

Anderson, H. P., 1973. Forgotten railways: the East Midlands. Vol. 2. David &

Charles.

Bamler, R., 1992. A comparison of range-Doppler and wave-number domain SAR

focusing algorithms. IEEE Transactions on Geoscience and Remote Sensing 30 (4),

706–713.

Bamler, R., Hartl, P., 1998. Synthetic aperture radar interferometry. Inverse Problems

14, R1–R54.

URL http://enterprise.lr.tudelft.nl/doris/Literature/bamler98.pdf

Bar-Sever, Y., Kroger, P., Borjesson, J., 1997. Estimating horizontal gradients

of tropospheric path delay with a single GPS receiver. Journal of Geophysical

Research-Solid Earth 103, 5019–5035.

170

http://news.bbc.co.uk/1/low/sci/tech/6231334.stm
http://enterprise.lr.tudelft.nl/doris/Literature/bamler98.pdf


References 171

Bekendam, R., Pottgens, J., 1995. Ground movements over the coal mines of

southern Limburg, The Netherlands, and their relation to rising mine waters. IAHS

Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences

234, 3–12.

Bell, F., Culshaw, M., Forster, A., Nathanail, C., 2009. The engineering geology of

the Nottingham area, UK. Engineering Geology Special Publications 22 (1), 1.

Berardino, P., Fornaro, G., Lanari, R., Sansosti, E., 2002. A new algorithm for surface

deformation monitoring based on small baseline differential SAR interferograms.

IEEE Transactions on Geoscience and Remote Sensing 40 (11), 2375–2383.

Bern, M., Eppstein, D., 1992. Mesh generation and optimal triangulation. Computing

in Euclidean geometry 1, 23–90.

Bevis, M., Businger, S., Herring, T. A., Anthes, R. A., Rocken, C., Ware, R. H., 1994.

GPS meteorology: mapping Zenith Wet Delays onto precipitable water. Journal of

Applied Meteorology 33 (3).

Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., Ware, R. H., 1992.

GPS meteorology: remote sensing of atmospheric water vapor using the Global

Positioning System. Journal of Geophysical Research 97, 15,787–15,801.

BGS, 2002. Earthwise issue 18, geology and planning. Tech. Rep. 18, BGS.

Bhattacharyya, A., Sengupta, D., 1991. Radar Cross Section analysis and control.

Artech House on Demand.

Bierman, G., 1977. Factorization methods for discrete sequential estimation.

Academic Pr.

Bingley, R., Ashkenazi, V., Penna, N., 1999. Monitoring changes in regional ground

level, using high precision GPS. Tech. rep., Environment Agency, Bristol (United

Kingdom).



References 172

Bingley, R., Penna, A., Baker, T., 2002. Using a GPS/MSL geoid to test geoid models

in the UK. In: Vertical reference systems: IAG symposium, Cartagena, Colombia,

February 20-23, 2001. Springer Verlag, p. 197.

Bingley, R. M., 2005. GNSS Principles and Observables: part 2. Institute of

Engineering Surveying and Space Geodesy.

Bingley, R. M., Teferle, F. N., Orliac, E. J., Dodson, A. H., Williams, S. D. P.,

Blackman, D. L., Baker, T. F., Riedmann, M., Haynes, M., Aldiss, D. T., Burke,

H. C., Chacksfield, B. C., Tragheim, D. G., 2007. Absolute fixing of tide gauge

benchmarks and land levels: measuring changes in land and sea levels around the

coast of Great Britain and along the Thames estuary and River Thames using GPS,

absolute gravimetry, Persistent Scatterer Interferometry and tide gauges. Tech. rep.,

Department for Environment, Food and Rural Affairs, FD2319/TR.

Bishop, I., Styles, P., Allen, M., 1993. Mining-induced seismicity in the

Nottinghamshire coalfield. Quarterly Journal of Engineering Geology &

Hydrogeology 26 (4), 253.

Blewitt, G., 1993. Advances in Global Positioning System technology for geodynam-

ics investigations: 1978-1992. Contributions of Space Geodesy to Geodynamics:

Technology 25, 195–213.

Blewitt, G., 2008. Fixed point theorems of GPS carrier phase ambiguity resolution

and their application to massive network processing: Ambizap. J. geophys. Res 113.

Bock, Y., Williams, S., 1997. Integrated satellite interferometry in Southern

California. EOS 78 (29), 293–300.

Boehm, J., Niell, A., Tregoning, P., Schuh, H., 2006a. Global Mapping Function

(GMF): a new empirical mapping function based on numerical weather model data.

Geophysical Research Letters 33, L07304.

Boehm, J., Werl, B., Schuh, H., 2006b. Troposphere mapping functions for GPS

and Very Long Baseline Interferometry from European centre for medium-range



References 173

weather forecasts operational analysis data. Journal of Geophysical Research-Solid

Earth 111 (B2), B02406.

Bomford, G., 1980. Geodesy, Clarendon Press. Oxford, UK.

Bonforte, A., Ferretti, A., Prati, C., Puglisi, G., Rocca, F., 1999. Calibration of

atmospheric effects on SAR interferograms by GPS and local atmosphere models:

first results. Journal of Atmospheric and Terrestrial Physics .

Born, M., Wolf, E., Bhatia, A. B., 1959. Principle of optics; electromagnetic theory

of propagation, interference and diffraction of light. Pergamon Press, New York.

Bos, M., Scherneck, H., 2006. Onsala space observatory. Online, chalmers University

of Technology.

URL http://www.oso.chalmers.se/~loading/index.html

Brooks, I., Goroch, A., Rogers, D., 1999. Observations of strong surface radar ducts

over the Persian Gulf. Journal of Applied Meteorology 38 (9), 1293–1310.

Brunt, K., King, M., Fricker, H., Macayeal, D., 2010. Flow of the Ross Ice Shelf,

Antarctica, is modulated by the ocean tide. Journal of Glaciology 56 (195), 157.

Capes, R., Marsh, S., 2009. The Terrafirma atlas: terrain-motion across Europe. Tech.

rep., European Space Agency, last accessed 15 Feb 2010.

URL http://www.terrafirma.eu.com/index.htm

Capra, A., Dietrich, R., 2008. Geodetic and geophysical observations in Antarctica:

an overview in the IPY perspective. Springer-Verlag.
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Appendix A

Corner Reflector Theory

A.1 Man-made Passive Corner Reflectors

An object exposed to an electro-magnetic wave scatters incident energy in all direc-

tions and the object itself is referred to as a scatterer. SAR imaging works because

some of the signal emitted is scattered back (called backscattering) to the source

of the wave (Skolnik, 1990). This received energy is either reflected back directly

(complex-conjugate reflection) or retro-reflected. Retro-reflection is a well understood

phenomenon in the field of optics whereby the electromagnetic wave front is reflected

back along a vector that is parallel to but opposite in direction from the wave’s

source (O’Brien et al., 1999). This is a natural phenomenon which occurs because

some surfaces modify reciprocally the paths of the incoming and outgoing waves. This

effect can be greatly enhanced through optimally designed reflectors which return a

signal of much greater amplitude than might be expected from the physical size of

the reflector; this effect is maintained over a wide set of incidence angles, especially

for trihedral reflectors.

In measurable terms, the effect of using three plane surfaces in a trihedral arrange-

ment is an increase in its RCS when compared to any other arrangement of the same

three surfaces. RCS (assuming uniform radiation in all directions) is defined as the

projected area of a metal sphere which if substituted for the scatterer would scatter

the same power back to the radar. Any such hypothetical sphere would expand and

contract significantly with the orientation of a scatterer with respect to the energy

A-1
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source (Bhattacharyya and Sengupta, 1991)

Figure A.1: Retro-reflectance in two dimensions. Outgoing electro-magnetic waves are
returned along a path parallel to, but opposite in direction to incoming waves due to a
pair of specular reflections.

Figure A.1 is an example of dihedral retro-reflection. The perpendicularity of the

faces ensures that if a wave enters the aperture of the reflector, a pair of specular

reflections occurs for which the angle of incidence equals the angle of reflection, as

can be seen in figure A.1. This effect returns the wave in the direction it came. The

radar cross section for a dihedral reflector (σ) is (Schaeffer et al., 1985):

σ =
8πa2b2

λ2
(A.1)

where a and b are the dimensions of the sides and λ is the signal wavelength. However,

because some signals reflected by one face will not be intercepted by the opposite face,

a more general expression is:

σ ≈
4πA2

eff

λ2
(A.2)

where Aeff is the effective projected area along the axis of symmetry. Dihedral

reflectors provide a large RCS only in the plane perpendicular to the reflector. The

addition of a third plate to form a trihedral reflector provides a large RCS in the other

two planes also (Bhattacharyya and Sengupta, 1991) and echoes are received from

single, double and triple bounce interactions with the triple bounce being dominant.

Computation of the RCS for a trihedral reflector, as with a dihedral reflector, usually

only involves the effective area; this only includes portions of the surfaces which
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participate in the triple bounce which, when viewed perpendicular to the trihedral

aperture, is the hexagonal area shown in figure A.2.

Figure A.2: When optimally aligned, the effective area of a trihedral reflector is only that
which participates in the triple bounce mechanism and is hexagonal with sides of `

3
.

The RCS for a trihedral reflector along the axis of symmetry using only the effective

area is arrived at by inserting the area for a hexagon into equation A.2 (Knott, 2006):

σ ≈ π`4

3λ2
(A.3)

which for reflectors with sides of 0.8m such as the ones used in this project is 135.8m2.

For a full mathematical description of retro-reflection and corner reflector design, see

Bhattacharyya and Sengupta (1991) and Kim and Lee (2007).
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