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Abstract

Radial glial cells play an important role during embryonic development in mammals. They

are not only important for neural production but help to organise the architecture of the

neocortex. Glial cells proliferate during the development of the brain in the embryo, before

differentiating to produce neurons at a rate which increases towards the end of embryonic

brain development. Glial cells communicate via Adenosine tri-phosphate (ATP) mediated

calcium waves, which may have the effect of locally synchronising cell cycles, so that clusters

of cells proliferate together, shedding cells in uniform sheets. Hence radial glial cells are not

only responsible for the production of most neocortical neurons but also contribute to the

architecture of the brain. It has been argued that human developmental disorders which

are associated with cortical malfunctions such as infantile epilepsies and mental retardation

may involve defects in neuronal production and/or architecture and mathematical modelling

may shed some light upon these disorders.

This thesis investigates, among other things, the conditions under which radial glial cells’

cell cycles become ‘phase locked’, radial glia proliferation and stochastic effects. There are

various models for the cell cycle and for intracellular calcium dynamics. As part of our

work, we marry two such models to form a model which incorporates the effect of calcium

on the cell cycle of a single radial glial cell. Furthermore, with this achieved we consider

populations of cells which communicate with each other via the secretion of ATP.

Through bifurcation analysis, direct numerical simulation and the application of the

theory of weakly coupled oscillators, we investigate and compare the behaviour of two

models which differ from each other in the time during the cell cycle at which ATP is

released. Our results from this suggest that cell cycle synchronisation is highly dependent

upon the timing of ATP release. This in turn suggests that a malfunction in the timing

of ATP release may be responsible for some cortical development disorders. We also show

how the increase in radial glia proliferation may mostly be down to radial glial cells’ ability

to recruit quiescent cells onto the cell cycle. Furthermore, we consider models with an

additive noise term and through the application of numerical techniques show that noise

acts to advance the onset of oscillatory type solutions in both models. We build upon these

results and show as a proof of concept how noise may act to enhance radial glia proliferation.
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Chapter1
Introduction

R
adial glial cells play an important role during the embryonic development of the

mammalian brain. They are a transient cell, only present in the mammalian brain

for a brief period during embryonic development, when they give rise to neurons

[63] and in doing so play a major role in the development of the six layered structure known

as the neocortex, shown in Figure 1.1. Initially glial cells divide symmetrically, with a

parent cell producing two daughter radial glial cells. Further into neurogenesis, glial cells

divide asymmetrically; a parent cell produces one radial glial cell and another cell that dif-

ferentiates to become a neuron [56, 58]. Towards the end of neurogenesis most cell divisions

are of a symmetric nature, but this time the two cells that are produced both differentiate

to become neurons [86]. This process is illustrated in Figure 1.2.

Figure 1.1: Graphic showing the neocortex (coloured blue), the thin layered struc-

ture surrounding the brain of three different mammals. Reproduced from

http://www.nibb.ac.jp/brish/Gallery/cortexE.html. Visited October

2009.
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Figure 1.2: Schematic illustrating the nature of cell divisions during neurogenesis

The intercellular signalling mechanisms that coordinate radial glial cell proliferation are

not well understood. Recently a novel mechanism has been found that regulates radial glial

cell proliferation via calcium waves which propagate through the ventricular zone of the

embryonic brain [93]. The ventricular zone is an area next to the ventricles which are in

turn enclosed within the neocortex. The location of the ventricles within the brain is shown

in Figure 1.3. Wave induced elevations in intracellular calcium may then help drive cells

through the division cycle. Moreover, cell division can provide a stimulus for further wave

propagation.

Calcium waves are initiated by the release of Adenosine triphosphate (ATP), facilitated

through the opening of hemichannels. A hemichannel is an ‘undocked’ gap junction. Gap

junctions are a type of cell junction in which the cell membranes of ‘docked’ cells each

contain a channel that allows the passage of ions and small molecules between the two cells’

cytoplasms. A cell which has an ‘undocked’ gap junction channel, (i.e. a hemichannel) lacks

another cell with which to dock its cell membrane to. This then allows communication be-

tween the cells cytoplasm and extracellular space. An illustration of a gap junction, or two

‘docked’ hemichannels can be seen in Figure 1.4.

It has been shown that calcium is required for a cell to enter a certain phase of the

cell cycle, and can act to recruit a cell in a rest or quiescent state onto the cell cycle

3



Chapter 1: Introduction and Literature Review

Figure 1.3: Graphical illustration of the location of the ventri-

cles within the fully developed brain. Reproduced from

http://en.wikipedia.org/wiki/Ventricular system. Visited Octo-

ber 2009.

[7, 9, 95]. Weissman et al showed that calcium was responsible for increased radial glia

proliferation and they postulate that this was as a consequence of ATP mediated calcium

waves inducing cells to complete part of the cell cycle more quickly and recruiting quiescent

cells onto the cell cycle. They further postulate that the calcium signalling mechanism

enables the synchronisation of the cell cycles of clusters of radial glial cells [93].

Figure 1.4: Graphical illustration of a number of gap junctions, each of which is comprised

of two ‘docked’ hemichannels or connexons. Reproduced with permission from

http://en.wikipedia.org/wiki/Gap junction. Visited October 2009.
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1.1 The Cell Cycle Chapter 1: Introduction and Literature Review

1.1 The Cell Cycle

In order to gain an understanding of how and when calcium affects the cell cycle of radial

glial cells as well as when in the cell cycle ATP is released from radial glial cells, it is im-

portant to consider the cell cycle itself in detail. The cell cycle can be broken down into

several phases which are illustrated in Figure 1.5. G1 phase is the period of greatest growth

for most cells. It is when a cell pauses during G1 phase that it enters the quiescent state,

G0. Whether G0 is distinct from G1 phase or just a name for cells ‘stuck’ in this phase

is currently an open question. G1 is followed by S phase, during which DNA replication

or synthesis occurs, producing chromosomes consisting of two sister chromatids, contained

within the centromere. G2, which can last up to 5 hours, follows S phase. It is during G2

phase that the cell prepares for mitosis.

Mitosis (M phase) is the final phase of the cell cycle. M phase can be broken down into

yet more phases. Metaphase is the phase in which the chromosomes align. It is succeeded

by anaphase, where the chromosomes separate, with the chromatids moving to opposite

poles of the cell. At this point, the cell is prepared for telophase, where new nuclear en-

velopes form around the now separated chromatids. It is shortly after this that the parent

cell separates into two daughter cells, signalling the end of mitosis and the completion of

the cell cycle.

Although traditionally the cell cycle is subdivided into these four phases (G1, S, G2

and M), it has been argued [90] that the process is best understood by considering two

‘states’, the G1 state and the S-G2-M state. With this interpretation, we must consider

two irreversible transitions, the ‘start’ transition taking us from the G1 state to the S-

G2-M state and the ‘finish’ from the S-G2-M state to the G1 state. At ‘start’ the cell is

committed to entering S phase, a commitment that is irreversible. Similarly, at ‘finish’, the

cell is committed to entering anaphase from metaphase. Again this is an irreversible process.

The cell cycle is controlled by a large number of biochemical regulators including Cyclins

and Cyclin dependent kinases (Cdks). Cdks phosphorylate target proteins when paired up

with their respective Cyclin partners. In phosphorylating a protein, a Cdk/Cyclin complex

will have the effect of altering the activity of the protein. There are usually a constant

amount of Cdks during the cell cycle and consequently Cdk activity is highly dependent

5
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upon the availability of their Cyclin partners. Cyclins are produced and degraded as needed

during the cell cycle. Once paired to form Cdk/Cyclin complexes, the complexes will first

migrate into the cell nucleus and then phosphorylate various target proteins and alter their

activity. These target proteins facilitate cell cycle events such as DNA replication, chromo-

some condensation as well as all other events which are part of the cell cycle.

1.1.1 Duration of the Cell Cycle Phases

Although, the total duration of the cell cycle depends upon the type of cell in question, G1

phase is the longest phase. Typically, cells remaining in G1 for nearly half of the cell cycle

[1]. Cells will generally take between a fifth and a quarter of the total cell cycle period to

complete S phase [1]. G2 phase lasts approximately one sixth of the total period [1]. M

phase is the shortest phase, lasting for about one tenth of the total cell cycle period [1].

1.1.2 Key Cell Cycle Proteins

In the mammalian cell cycle, Cyclin D concentrations are high during G1 phase, before

dropping off during S phase [13, 81, 96]. Late G1 phase is associated with high concentra-

tions of Cyclin E [20, 44].

M phase is brought to an end by the activation of the anaphase promoting complex

(APC), which is itself made up of several different proteins. This allows the cell to re-enter

G1 phase and once again embark on the cell cycle.

1.2 Radial Glial cells in the Developing Neocortex

Weissman et al [93] claim that the empirical evidence points towards a calcium signalling

mechanism between cortical radial glial cells. Their results show that ATP mediated cal-

cium waves propagate through the ventricular zone of the embryonic cortex. Recent work

shows that clusters of radial glial cells’ gap junctions have a propensity to form hemichan-

nels in G1 or S phase of the cell cycle [10, 34, 93]. Weissman et al claim that it is at this

6
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Figure 1.5: Graphical illustration showing the phases of the the cell cycle. G0 quiescence.

G1 Gap 1. S DNA synthesis. G2 Gap 2. M mitosis. Reproduced from

http://images.nigms.nih.gov. Visited October 2009.

time that ATP is released [93]. Furthermore they show that ATP leads to inositol 1,4,5-

triphosphate (IP3) mediated calcium release from the internal stores of the radial glial cells.

It has been shown that an increase in intracellular calcium can induce resting cells in G0

phase to re-enter the cell cycle and can also induce a cell to enter S phase from G1 phase

[7, 9, 95]. Berridge [7, 9] and Weissman et al believe that calcium is also required for entry

into M phase of the cell cycle [93]. However recent findings by Kahl and Beauman suggest

that the role of calcium at this stage in the cell cycle may not be as crucial as once thought

[3, 45, 46]. Figure 1.6 illustrates how the cell cycle is likely to be affected by calcium in

radial glial cells and the point during the cell cycle that hemichannels form.

As mentioned previously, Weissman et al speculate that calcium waves may be the mech-

anism by which the cell cycles of a cluster of radial glial cells synchronise (i.e. go through

each phase of the cell cycle at the same time). This would lead to daughter cells, which are

created from proliferation, being shed in uniform sheets. They suggest that a ‘recruiting‘

cell in late G1 or S phase of the cell cycle may induce neighbouring cells into S phase,

synchronising the cell cycles of the cluster of cells in the process. This process is illustrated

in Figure 1.7. Furthermore, Weissman et al go on to speculate that calcium waves would

have the ultimate effect of increasing the rate at which neurons are produced. Cells that

were sluggishly approaching S phase will be induced into it by an increase in intracellular

calcium. Indeed, without this boost, some cells may enter G0, rather than continue cycling.

7
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Calcium
signals

G

S

G

M

Gap Junctions

Hemichannels

0G 1 2

Figure 1.6: Graphical illustration of likely effect of Calcium on the cell cycle. The

schematic illustrates that calcium signals have the effect of inducing a cell

to enter S phase from G1 phase as well as inducing a cell in the quiescent G0

phase onto the cell cycle. The schematic also shows at which point during the

cell cycle hemichannels form from gap junctions, at which point it is claimed

ATP is released. It has been claimed that calcium may affect other phases

of the cell cycle (see text for details), however these particular effects are not

illustrated in this schematic.
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A. No Calcium Waves B. Calcium Waves

Radial Glia

Proliferating

Daughter

Cells

position on Cell Cycle

Clock representing

Figure 1.7: Schematic illustrating how radial glial cells may recruit neighbouring cells so

that clusters of cells cycle in synchrony. Two scenarios are illustrated, (A);

without calcium present and (B); with calcium waves . In (A), cells prolif-

erate in an asynchronous manner (represented by the position of the clock

hands), with some cells entering the quiescent G0 state instead of continuing

or embarking upon the cell cycle. (B) with calcium waves; cycling cells are

recruited by a trigger cell (coloured grey), which initiates an ATP mediated

calcium wave. The trigger cell, when in G1 or S phase, has the effect of syn-

chronising the cell cycles of the cluster of cells in which it resides (represented

by the position of the clock hands), leading to the shedding of daughter cells

in uniform sheets. ATP mediated calcium waves may lead, in turn to an

increase in overall proliferation. Figure adapted from [93].
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The claim that this mechanism may lead to an increase in cortical proliferations is

supported by experimental evidence. Weissman et al investigated the effect of introducing

the ATP receptor antagonist suramin for a period of one hour during day 16 of embryonic

development. Suramin, in preventing a cell’s ATP receptor functioning properly, should

have the effect of disrupting calcium waves and cell proliferation. Weissman et al showed

that when the P2Y1 ATP receptor was inhibited, cells did not exhibit an increase in internal

calcium [93], strongly suggesting that the downstream target of bound ATP is the release

of calcium from internal stores. With suramin present, the developing rat neocortex on day

16 of development contained 54.7 % ± 4.1% of the density of radial glial cells incorporating

BrdU (the chemical label used to detect DNA synthesis) that it contained on the same

day of development in the control case, reflecting the decreased entry into S phase of the

glial cells. Neural production peaks during day 16 of the development of the rat. Day 16

corresponds to the fourth day of neurogenesis of the rat (mid-neurogenesis in Figure 1.2),

which is complete after 6-7 days [2, 12]. Weissman et al ’s discovery that ATP mediated

calcium waves lead to increased neural density is not surprising considering that there is a

large body of evidence suggesting calcium is responsible for increasing proliferation of many

cell types [8, 9] and that the ATP signalling pathway has been shown to have the effect of

increasing the proliferation rate of a number of different cells including glia [59] and neurol

progenitor cells [77, 91].

1.3 Calcium’s Effect on the Cell Cycle

It is clear that in order to successfully model radial glial cell communication and prolif-

eration, we must get a better handle on how exactly calcium affects the cell cycle. Until

recently, the effect calcium has on the various proteins involved within the cell cycle and

indeed the mechanism by which calcium affects these proteins has been given little atten-

tion. Recent work by Kahl [45, 46] and Beauman [3] has gone some way to address this issue.

The intracellular receptor for Ca2+ is calmodulin (CaM) and as such CaM is the means

by which Ca2+ influences the cell cycle. Ca2+/CaM-dependent Kinases (CaMK) are a group

of protein kinases (enzymes that play an important role in intracellular pathways) that are

regulated by phosphorylation. CaMK’s are activated by Ca2+/calmodulin complexes.
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There is some discrepancy in the literature as to which cell cycle proteins are affected

by CaMKs and how such effects are mediated. Several authors have conducted studies on

several different cell types in order to get to the bottom of the issue.

KN-93 is a well known inhibitor of CaMK activity and through its application to NIH

3T3 cells (mouse fibroblast cells), Morris et al showed that it can induce cell cycle arrest

in late G1 phase [60]. They concluded that this was due to a reduction in levels of Cyclin

D, thus preventing the formation of Cdk4/Cyclin D complexes which are integral to the

progression from G1 to S phase of the cell cycle.

Kahl et al conducted similar experiments but this time on WI-38 cells (human fibrob-

last cells originating from the lungs) with slightly different results [45, 46]. Upon KN-93

treatment, WI-38 cells underwent G1 phase arrest in keeping with Morris et al ’s results.

However, unlike with the NIH 3T3 case, normal levels of Cyclin D were detected, lead-

ing to the formation of Cdk4/Cyclin D dimers which then migrated to the nucleus of the

cell. However, these dimers were not active. Kahl et al then produced mutant versions of

both CaMKI and CaMKII (two different types of CaMKs). These mutants had the effect

of inhibiting their respective CaMK’s enzymatic activity. It was discovered through this

process, that CaMKI and not CaMKII was responsible for G1 phase arrest, suggesting that

CaMKI plays an important role in activating Cdk4/Cyclin D complexes during G1 phase

of the cell cycle. The precise mechanism by which it achieves this however remains to be

established. This suggests that CaMKI’s effect on the cell cycle could be modelled phe-

nomenologically. In vitro experiments seem to suggest that CaMKI does not phosphorylate

any proteins involved directly with the regulation of Cdk4 or Cyclin D [46]. This is not

surprising considering CaMKI resides in the cytoplasm, while once Cdk4/Cyclin D dimers

form they migrate into the cell nucleus. Kahl et al suggest that CaMKI has the effect

of regulating the subcellular localisation of a protein or proteins involved in regulating the

activity of Cyclin D/Cdk4 dimers [45, 46]. Perhaps this is achieved by allowing a pro-

tein, normally present in the cytoplasm, to enter into the nucleus where it can promote

Cdk4/Cyclin D activity, for example. Despite this gap in knowledge, there is a consensus

in the literature that calcium has the affect of promoting the activation of Cyclin D/Cdk4

dimers, facilitating a cell’s entry into S phase from G1 phase of the cell cycle and inducing

quiescent cells in G0 to embark upon the cell cycle.
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Weissman et al also argue that Ca2+ may be required for a cell to enter M-phase of the

cell cycle. Both Patel et al [67] and Beaumann et al [3] investigated the role Ca2+ plays in

M-phase or mitotic progression, by investigating its roles in the G2/M transition. Patel et

al showed that CaMKII and not CaMKI played a role in the G2/M transition [67]. Their

in vitro experiments on HeLa cells (a cell line derived from cervical cancer cells) showed

that CaMKII phosphorylated inactive Cdc25, marginally increasing its activity, suggesting

that CaMKII is one of a number of Cdc25C kinases in cells. Active Cdc25 removes the

inhibition from the protein kinase Cdc2 [67]. In relieving Cdc2 inhibition, Cyclin B/Cdc2

complexes are able to form, allowing the cell to undergo the transition from G2 to M phase.

According to Patel’s results Ca2+ mediated by CaMKII appears to play a small role in

helping to facilitate the G2/M transition.

Beauman et al conducted a similar experiment, again on HeLa cells yet came to differ-

ent conclusions [3]. They claim that CaMKII expression had the effect of delaying a cells

entry in to mitosis, contradicting Patel’s results. The precise mechanism by which CaMKII

achieved this was not discovered. They noticed that Cyclin B1 expression increased with

increased levels of active CaMKII, which is in line with Patel et al ’s results. This led them

to conclude that as Cyclin B is required for entry into mitosis, CaMKII must inhibit mi-

totic entry by some other means. One possible mechanism that they propose is through

interfering with DNA synthesis. They also speculate that CaMKII may regulate wee 1 ki-

nase (a protein kinase that inhibits the activity of a Cyclin/Cdk complex) and through this

inhibit Cdc2 activation. It is therefore unclear whether calcium, through CaMKII, actually

facilitates or hinders the G2/M transition. Either way, calcium’s effect on this part of the

cell cycle appears to be rather limited and consequently we do not consider it when forming

our model in Chapter 2.

Other signal transduction pathways affect radial glia behaviour. For example, it has

been discovered that delta-notch signalling plays a role in determining radial glia cell fate

[28, 36]. However, we neglect delta-notch signalling when developing our mathematical

model in this thesis. Instead, we focus upon ATP mediated calcium release within radial

glia, which has been shown to be the dominant mechanism controlling cell proliferation. It

is suspected that this mechanism also acts to promote cell cycle synchronisation [93].
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1.3.1 Nature of the Cell Divisions in the Neocortex

As mentioned above, neurons produced from differentiated radial glial cells are not produced

at a uniform rate throughout embryonic neurogenesis. In order to explore this phenomenon,

it is first of all important to outline the different types of cell divisions that lead to the cre-

ation of daughter cells upon the completion of the cell cycle.

Symmetric division: This is the event whereby two cells produced from a cell division

have the same cell fate. For dividing radial glial cell, symmetric division can take the form

of both daughters being radial glial cells, or both daughters being cells that differentiate

into neurons.

Asymmetric division: This is the event when one daughter cell’s fate is different to that

of the other after cell division. With regard to radial glial cells, this is the case when one

daughter cell is a radial glial cell and the other differentiates into a neuron.

Process by which neurons are produced by radial glial cells

Malatesta et al claim that radial glial cells give rise to neurons via asymmetric division

[58]. Although this is true, it does not provide us with the full story as some of these

neurons, particularly towards the end of neurological development are produced via sym-

metric divisions, whereby a glial cell divides and yields two neurons as daughter cells [86, 93].

In their paper, Takahashi et al publish various results which show the proportions of

different cell types resulting from cell divisions during neurogenesis [86]. They take mice

and record the proportion of cells (represented by ‘Q’) in the pseudostratified ventricular

epithelium (PVE) that leave the cell cycle and become neurons and those that continue

on the cell cycle (represented by ‘P’). The PVE is the area that lines the ventricles of

the developing brain and as such makes up part of the ventricular zone. The location of

the ventricles within the fully developed brain are shown in Figure 1.3. Although it is not

explicitly stated in their paper, the population of P cells is the population of radial glial cells

[40]. The beginning of neurogenesis is signalled when Q rises above 0, i.e. when neurons

are first produced and ends when P=0, i.e when radial glial cell proliferation ceases. With

regard to mice, the period of neurogenesis lasts around 11 cell cycles, with Q=0.5 after 8

cycles and ≈ 0.8 after ten cell cycles. The evolution of these proportions can be seen in

Figure 1.8.
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Figure 1.8: Graph illustrating the evolution of the proportion of different cell types during

neurogenesis. Q represents the proportion of neurons and P the proportion

of neural progenitor cells (P=1-Q). Experimentally determined values for Q

are denoted by solid circles. The solid curve was produced by Takahashi et

al using a least squares curvilinear fit to the experimental data. The dashed

curve was produced by Takahashi et al, using a least squares curvilinear fit to

the experimental data, but disregarding the data point at the origin. Graph

reproduced from [86].

Although Takahashi et al do not provide experimental data as to the exact nature of the

division during neurogenesis, i.e. the proportion of symmetric and asymmetric divisions,

they do produce a model which predicts such proportions [86]. They claim that this model

compares favourably with results obtained by Chenn and McDonnell et al [14]. Chenn

and McDonnell discovered that towards the beginning of embryonic neurogenesis, most cell

divisions are symmetric, with two neural progenitor (radial glial cells) produced. Towards

the middle of embryonic neurogenesis, most cell divisions are asymmetric, with one neural

progenitor cell (radial glial cell) and one cell that differentiates into a neuron being produced.

It is at this stage during neurogenesis that neural production peaks [2, 86]. Finally, towards

the end of embryonic neurogenesis, most cell divisions are symmetric, with two cells who

differentiate into neurons being produced. Their results are shown in Figure 1.8.
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1.4 Coupling Calcium to the Cell Cycle

We are now in a position to consider the coupling between the cell cycle and calcium in a

single radial glial cell in more detail. Figure 1.9 illustrates the biological mechanisms that

lead to the release of calcium and its effect on the cell cycle. In referring to Figure 1.9 we can

see that once a radial glial cell’s P2Y receptor binds ATP, a chain of events is set off which

eventually leads to a release of calcium from a cell’s endoplasmic reticulum. When ATP

binds to a radial glial cell’s surface P2Y receptor it initiates a guanine nucleotide binding

protein (G-protein) cascade. G-proteins are a family of messenger proteins that regulate

cellular processes. This regulation is achieved via a molecular ‘switch’, whereby G-proteins

exchange guanosine diphosphate (GDP) for guanosine triphosphate (GTP). The particular

cellular process that is ‘switched’ on by a G-protein cascade with regard to a radial glial cell

is the production IP3. IP3 has the effect of liberating calcium from internal stores. Calcium

then has the effect of increasing Cyclin D/Cdk activity which can induce the cell to enter

S phase from G1-phase, or re-embark on the cell cycle if the cell is in G0 phase. Figure

1.9 also shows that ATP is released by the cell via hemichannels which form around G1-S

phase of the cell cycle.

As mentioned earlier, it has been proposed that ATP mediated calcium waves have

the effect of locally synchronising the cell cycles of radial glial cells as well as increasing

overall proliferation. This is the phenomenon that we intend to investigate through math-

ematical modelling. We introduce our model in Chapter 2. Before doing so, we need to

consider relevant mathematical models for the cell cycle, calcium dynamics and intercellular

communication via ATP.

1.5 Cell Cycle Models

It is clear that any attempt to model the biological processes outlined above will require a

mathematical model for the cell cycle. Several models of the cell cycle have been produced,

both deterministic [19, 30, 66, 89, 90] and stochastic [84, 98]. We focus upon deterministic

models in this thesis.
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Figure 1.9: Schematic illustrating how calcium is coupled to the cell cycle of a radial

glial cell. Bound ATP leads to a G-protein cascade which in turn leads to

the production of IP3. IP3 allows for the release of ATP and facilities the

liberation of calcium from internal stores. The free calcium then has the effect

of inducing a cell to enter S phase from G1 and/or driving a cell in G0 onto

the cell cycle. During G1 or S phase a cell’s hemichannels open up facilitating

the release of ATP into extracellular space.
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1.5.1 Tyson and Novak’s Model

Perhaps the most well known deterministic models are a series of models due to Tyson and

Novak [89, 90]. In their most basic model of yeast cells, Tyson et al consider the dynamics

of Cyclin B, the cell mass, the Anaphase Promoting Complex (APC) and its subunits to

form a four dimensional model. In their model, Cdks are assumed to be readily available

throughout the cell cycle and form active Cyclin B/Cdk complexes (X in the model) when

Cyclin B becomes available. Similarly, APC is assumed to be in abundant supply and binds

to Cdh1 to form active APC/Cdh1 complexes (Y in the model) when Cdh1 is produced.

Tyson and Novak also consider a protein called Cdc20 (a subunit of APC, given by A) and

the cell mass (m) in their model. Active Cyclin B/Cdk complexes act to increase Cdc20

activity and suppress Cdh1/APC activity. In turn, Cdc20 acts to promote Cdh1/APC,

which in turn degrades Cyclin B. Tyson et al argue that the cell cycle is best subdivided

into two states, the G1 state and the S−G2−M state. The former is characterised by high

Cdh1/APC activity while the latter by high Cyclin B/Cdk activity and low Cdh1/APC

activity. Their model is given by

dX

dt
= k1 − (k′2 + k′′2Y )X, (1.1)

dY

dt
=

(k′3 + k′′3A)(1− Y )
J3 + 1− Y

− k4mXY

J4 + Y
, (1.2)

dA

dt
= k′5 + k′′5

(mX)n

Jn5 + (mX)n
− k6A, (1.3)

dm

dt
= mµ(1− m

m∗
). (1.4)

In this model, k’s are rate constants and J ’s Michaelis constants. In equation (1.1),

k1 provides the synthesis rate and the (k′2 + k′′2Y )X expression represents the degradation

of Cyclin B/Cdk dimers (X). The dynamics of APC/Cdh1 (Y ) are governed by equation

(1.2). From the (k′3+k′′3A)(1−Y )
J3+1−Y expression in equation (1.2), it can be seen that Cdh1/APC

(Y ) activation not only depends upon its own concentration (1− Y ), but also the variable

A. A’s (Cdc20’s) dynamics are described by equation (1.3) and it is activated by Cyclin

B/Cdk (modelled by the mX expression in equation (1.3)) at maximal rate k′′5 .

The mX term which appears in equations (1.2) and (1.3) and contributes to Cdh1/APC
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(Y ) degradation and Cdc20 (A) activation, represents the ‘intranuclear concentration’ of

Cyclin B/Cdk (X) dimers. Essentially, as the cell grows throughout the cell cycle and its

mass m increases so do the number of ribosomes. Ribosomes can be regarded as the fac-

tories of the cells and their function is to build proteins including the Cyclins. Therefore,

as the number of ribosomes increases, the amount of proteins produced increases. Once

formed Cyclin B/Cdk dimers migrate into the nucleus. During the growth process, the size

of the nucleus remains constant and hence the concentration of the protein Cyclin B/Cdk

will increase within the nucleus.

m, whose dynamics are described by equation (1.4) represents the mass of the cell, with

µ the cell growth rate. In their model, Tyson and Novak normalise the parameters such

that the cell mass and concentrations are dimensionless and rate constants have dimensions

min−1. A schematic of the biochemical reactions that model this process is shown in Figure

1.10 and a summary of the parameters used in Tyson et al ’s model is given in Table 1.1.

If we consider the full model (system (1.1)-(1.4)), Tyson et al add a condition to ensure

that solution trajectories do not tend towards a stable fixed point, but instead can oscillate.

When X falls below a certain value, the end of the cell cycle is signalled (i.e. M phase is

complete) and m → m
2 , signalling that the cell has divided into two daughter cells. The

cell then returns to G1 phase and the whole system begins anew, with the cell irreversibly

progressing towards S phase. A simulation of system (1.1)-(1.4) can be seen in Figure 1.11.

Figure 1.11 shows how the variables in Tyson et al ’s model evolve, modelling the cell

cycle of the budding yeast cell in the process. When the mass is low (i.e. the cell is just

beginning the cell cycle), Cyclin/Cdk concentration is low too, as one would expect when

the cell is in G1 phase. As the cell grows and begins to progress towards S phase, it can

be seen that Cyclin B/Cdk (X) activity begins to rise, which is associated with a rise in

Cdh1/APC activity (Y ). This is what one would expect when approaching the S−G2−M
state. It is at this point that Cdc20 is activated, which in turn activates Cdh1/APC at

anaphase. As levels of Cdh1/APC peak, the concentration of Cyclin/Cdk begins to fall,

until Cyclin/Cdk concentration falls below 0.1, signalling the end of mitosis and the cell

cycle.
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Figure 1.10: Schematic illustrating the how the various proteins that Tyson et al are

concerned with interact during the cell cycle. Reproduced from [89] with

permission from Elsevier.
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Figure 1.11: Oscillations of X (average concentration of Cyclin B/Cdk),Y (average con-

centration of Cdh1/APC), A (Cdc20), and M (the cell mass) for Tyson and

Novak’s model of the yeast cell cycle. The cell mass and all protein con-

centrations are dimensionless. Results obtained by numerically integrating

equations (1.1)-(1.4) using the Runge Kutta method of integration. Key:-

solid line corresponds to m, dashed curve to X in the left hand plot; solid

line corresponds to A, dashed curve to Y , in the right hand plot. Pa-

rameter values: k1 = 0.04 min−1, k′2 = 0.04 min−1, k′′2 = 1 min−1, k′′′3 =

1 min−1, k′3 = 1 min−1, k′′3 = 10 min−1, k′4 = 2 min−1, k4 = 35 min−1, k′5 =

0.005 min−1, k′′5 = 0.2 min−1, k6 = 0.1 min−1, J3 = 0.04, J4 = 0.04, J5 =

0.3, n = 4, µ = 0.01 min−1,m? = 10.
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Table 1.1: Description of parameters used in Tyson and Novak’s model

Parameter Unit

k1 min−1 Cyclin B synthesis rate

k′2 min−1 Cyclin B degradation rate

k′′2 min−1 Rate at which APC/Cdh1 degrades Cyclin B

k′3 min−1 Maximal rate at which Cdh1 is synthesised

k′′3 min−1 Maximal rate at which Cdh1 is synthesised by Cdc20

k4 min−1 Maximal rate at which Cdh1 is degraded by Cyclin B

k′5 min−1 Cdc20 synthesis rate

k′′5 min−1 Maximal rate at which Cdc20 is synthesised by Cyclin B

k6 min−1 Rate at which Cdc20 is degraded

J3 dimensionless Michaelis constant

J4 dimensionless Michaelis constant

J5 dimensionless Michaelis constant

n dimensionless Hill coefficient

µ min−1 Cell growth rate

m? dimensionless Maximum cell mass

Suitability of using Tyson and Novak’s model in a radial glial cell model

Tyson and Novak’s model is unsuitable for our purposes as firstly their minimal model does

not include Cyclin D, one of the cell cycle molecules thought to be responsible for calcium

modulation of the cell cycle. A later model of theirs for the mammalian cell cycle does

incorporate Cyclin D [64], yet this is a large model with 17 ODEs and as such will be

computationally very expensive to simulate. This would be particularly problematic when

considering clusters of a large number of coupled cells. Secondly, the discontinuous nature

of mass in both of Tyson et al ’s models presents problems with regards to analysing the

models. Bifurcation analysis would be difficult for example, as the numerical techniques

would have great difficulty resolving the discontinuities. In addition to this, it would be

extremely difficult to apply techniques that explore ‘phase locking’ of coupled oscillators,

which we intend to employ later, if the variables of model are not all continuous.
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1.5.2 Obeyesekere’s and Zimmerman’s Model

A five dimensional system for the mammalian cell cycle, incorporating Cyclin D has been

proposed by Obeyesekere and Zimmerman in which all variables are continuous [66]. Obeye-

sekere et al are mainly concerned with G1 phase of the cell cycle and as such include within

their model many of the proteins involved with this phase in particular, such as Cyclin D,

Cyclin E and retinoblastoma tumour suppressor protein.

As with the Tyson and Novak model, Cdks are assumed to be available in abundance in

Obeyesekere et al ’s model and as soon as Cyclins are produced they immediately bind to

their respective Cdk partners and form active Cyclin/Cdk complexes; Cyclin D binds with

Cdk4 and Cyclin E binds with Cdk2. In their model, active Cyclin D (D in the model)

is synthesised at maximum rate ad and Cyclin E (represented by E), initiates Cyclin D’s

degradation at rate dD. Obeyesekere et al also make Cyclin D production dependent upon

growth factors (GF in the model). Growth factors bind to receptors on the cell membrane,

whereupon they initiate a chain of events, eventually leading to the production of cell cycle

proteins within the cell. Free unphosphorylated retinoblastoma tumour suppressor protein

(RB, R in the model) forms complexes with the E2F transcription factor (E2F’s total con-

centration is given by � in the model). Like the Cdks, the concentrations of RB and E2F

are assumed to be constant throughout the cell cycle. When RB exists in its free unphos-

phorylated form (R), it forms RB/E2F complexes (Rs) at rate ps. E2F acts to promote a

number of genes involved with DNA synthesis and as such helps to drive the cell towards

S phase of the cell cycle. However, it is inert when bound to RB. Active Cyclin D/Cdk4

(D) and Cyclin E/Cdk2 (E) complexes phosphorylate RB bound to E2F (with parameters

pD, qD and pE , qE respectively) and in the process release E2F. Free E2F (Rs−�), liberated

from RB, then acts to promote Cyclin E (E) production at maximal rate af . It is assumed

that the reduction in RB/E2F complexes (Rs) is proportional to the amount of free E2F

(Rs − �) and hence the total E2F (�) will never fall below the concentration of bound

RB/E2F complexes (Rs) in the model. Free E2F in concert with Cyclin E initiates S phase

of the cell cycle.

Obeyesekere et al also consider a variable, which they refer to as the ‘cell progression

indicator’ (CPI, denoted by X in the model). It does not represent any one protein but

allows Obeyesekere et al to model S, G2 and M phase of the cell cycle with one variable.
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As such the CPI indirectly represents the kinases, phosphatases and proteases responsible

for driving the cell through S, G2 and M phase. In the model, the CPI dephosphorylates

RB (with parameters pX , qX), degrades Cyclin E (at rate dE) and degrades its self (at rate

dX). For a detailed discussion of these processes see [65]. Figure 1.12 shows how the various

proteins that Obeyesekere et al model interact with each other and in Table 1.2 we provide

a summary of the variables and parameter values used in their model. Obeyesekere et al ’s

model, which describes the concentrations of five compounds, D (Active Cyclin D/Cdk4

complexes), E (Active Cyclin E/Cdk2 complexes), R (free unphosphorylated RB), Rs (E2F

sequestered by RB) and X (the CPI) is given by

dD

dt
= ad(

kGF

1 + kGF
)− dDED, (1.5)

dE

dt
= aE(1 + af (�−Rs))− dEXE, (1.6)

dR

dt
=

pX(RT −Rs −R)X
qX + (RT −Rs −R) +X

− ps(�−Rs)R, (1.7)

dRs
dt

= ps(�−Rs)R−
pDRsD

qD +Rs +D
− pERsE

qE +Rs + E
, (1.8)

dX

dt
= aXE + f(�−Rs) + gX2E − dXX. (1.9)

The inclusion of the ‘cell progression indicator’ X perhaps makes Obeyesekere’s model

less biologically comprehensive but does mean that the number of ODEs are kept to a mini-

mum. System (1.5) - (1.9) can be numerically integrated to give the results shown in Figure

1.13.

Figure 1.13 shows how Cyclin D and E oscillate in a continuous manner as the cell

progresses through the cycle. As mentioned above, calcium has the effect of increasing the

concentration of active Cyclin D/Cdk4 complexes [45, 46, 79]. In a phenomenological model

incorporating the effect of calcium on the cell cycle, it would therefore seem natural to allow

calcium to affect the Cyclin D synthesis rate. As mentioned above, calcium can have the

effect of inducing quiescent cells onto the cell cycle [7, 9]. Additionally, increased Cyclin

D/Cdk4 shortens the duration of G1 in different cell types leading to an overall reduction

in the period of the cell cycle [55, 72, 74]. Therefore in modelling calcium’s effect on the cell

cycle, one would look for a cell cycle model where an increase in the Cyclin D synthesis rate
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Table 1.2: Description of variables and parameters used in Obeyesekere’s and Zimmer-

man’s Model

Term

D Concentration of active Cyclin D/Cdk4 complexes

E Concentration of active Cyclin E/Cdk2 complexes

R Concentration of free unphosphorylated RB

Rs Concentration of E2F sequestered by RB

X Cell progression indicator

ad Maximum Cyclin D synthesis rate

GF Growth Factors

k Efficiency of Growth Factor signal transduction pathway

dD Rate at which active Cyclin E/Cdk2 degrades Cyclin D

aE E2F independent Cyclin E synthesis rate

af E2F dependent Cyclin E synthesis rate

� Total concentration of E2F

pX Maximal rate at which the CPI dephosphorylates RB

qX Michaelis constant

dE Rate at which the CPI degrades Cyclin E

ps Rate at which free unphosphorylated RB sequesters E2F

pD Maximum rate at which active Cyclin D/Cdk4 phosphorylates RB

qD Michaelis constant

pE Maximum rate at which active Cyclin E/Cdk2 phosphorylates RB

qE Michaelis constant

aX Rate of Cyclin E/Cdk2 dependnet CPI production

f Rate of free E2F dependnet CPI production

g CPI autocatalytic reaction rate

dX CPI degradation rate

RT Total RB
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Figure 1.12: Schematic illustrating how cell cycle proteins modelled by Obeyesekere et al

interact. Reproduced from [66] with permission from Springer Science and

Business Media.
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Figure 1.13: Oscillations of D (Cyclin D concentration) and E (Cyclin E) obtained by nu-

merically integrating equations (1.5)-(1.9) using the 4th order Runge Kutta

method of integration in Matlab. All units are dimensionless. Parameter

values:- aD = 0.4, aE = 0.16, aX = 0.08, k = 0.05, qD = 0.6, qE = 0.6, qX =

0.8, f = 0.2, g = 0.528, ps = 0.6, pD = 0.48, pE = 0.096, pX = 0.48, dD =

0.4, dE = 0.2, dX = 1.04, af = 0.9, Rt = 2.5,� = 1.5 and GF = 6.3. Initial

conditions: D(0) = 0.1376, E(0) = 1.9833, R(0) = 0.2897, Rs(0) = 1.0297

and X(0) = 0.3053.

can induce a dormant cell into an oscillatory regime and also reduce the period of oscillation

of a cell already oscillating. ‘aD’ from equation (1.5) provides the Cyclin D synthesis rate

of the Obeyesekere et al model. Bifurcation diagrams of Obeyesekere et al ’s model with

‘aD’ as the control parameter are shown in Figure 1.14.

By referring to Figure 1.14 it is clear that a branch of low amplitude limit cycle solutions

is created via a Hopf bifurcation point at ad ≈ 0.409957. The stability of this branch is then

lost via a saddle node bifurcation of limit cycle solutions before being regained via another

saddle node bifurcation at ad ≈ 0.3952941. This time however the limit cycle solutions are

of a far higher amplitude. It can also be seen that an increase in the Cyclin D synthesis rate

ad (which is calcium’s downstream target) leads to a reduction in the period of the cell cycle.

Overexpression of Cyclin D in rat-2 fibroblast cells (a cell line derived from the connec-

tive tissue of the rat) resulted in a decrease in G1 phase duration of ≈ 2-3 hours depending

upon the degree of overexpression [72]. This resulted in a total reduction in the period

of the cell cycle of rat-2 cells of ≈ 6.67 - 10 %. Overexpression of Cyclin D in NIH 3T3

cells (a mouse embryonic fibroblast cell line) resulted in the shortening of G1 phase of the
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Figure 1.14: Bifurcation diagrams showing how the Cyclin D synthesis rate given by

aD affects Cyclin D concentration and the period of the cell cycle. aE =

0.16, aX = 0.08, k = 0.05, qD = 0.6, qE = 0.6, qX = 0.8, f = 0.2, g =

0.528, ps = 0.6, pD = 0.48, pE = 0.096, pX = 0.48, dD = 0.4, dE = 0.2, dX =

1.04, af = 0.9, Rt = 2.5,� = 1.5, GF = 6.3 and aD as shown. Diagrams

computed using AUTO within XPP.

cell cycle of around 2 hours, corresponding to a decrease in the duration of the cell cycle

of around 11.63 % [55]. In Obeyesekere et al ’s model increasing the parameter controlling

the Cyclin D synthesis rate ad from 0.41 to 0.6 brings about a reduction in the period of

the cell cycle of ≈ 10.72%, while an increase to 0.8 brings about a decrease in period of ≈
15.60%. These values are very similar to those calculated in the biological literature. In this

sense, it would seem that Obeyesekere et al ’s model is a good candidate when considering

a phenomenological model for calcium’s affect on the cell cycle in radial glial cells.

Furthermore, the stable fixed point below the Hopf bifurcation point and the lower

branch of stable limit cycle solutions are interpreted by Obeyesekere et al as the G0 quies-

cent state of the cell cycle [66]. If a cell lies on this stable fixed point, a sufficiently large

increase in the Cyclin D synthesis rate ad would drive it onto the branch of limit cycle

solutions. This increase could be brought about by calcium and raises the possibility that

it is by this process that calcium’s effect of driving a cell from the G0 state into G1 could

be modelled. This later observation further supports the argument that Obeyesekere et al ’s

model is a suitable candidate for our purposes.
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1.6 A Model Incorporating Calcium’s Effect on Metaphase

II Arrest in Meiosis

Dupont investigates the effect of calcium via CaMKII on metaphase II of meiosis II [18].

Meiosis is a different process to mitosis and occurs in eukaryotic life cycles involving sexual

reproduction. Unlike the mitotic process which continues for a number of cycles, meiosis

occurs only once and consequently it can not be said to engage in a cell cycle, even though it

leads to the creation of daughter cells. Despite this, the start of the meiotic cycle is identical

to that of the mitotic cell cycle and it is for these reasons that we study Dupont’s model

here. Like mitosis, in meiosis a cell enters G1 phase, followed by entry into S and then G2

phase. It is during the next phase of the cell cycle that meiosis differs from the mitotic

cell cycle. A cell undergoing meiosis then enters into meiosis I, where one diploid (a cell

with two sets of chromosomes) divides into two haploid cells (with one set of chromosomes

each). The cell then progresses on to meiosis II where the two haploids divide again by

separation of sister chromatids producing four haploids in all, each with half of the original

cells chromosomes. Meiosis II can be subdivided into prophase II, metaphase II, anaphase

II and finally telophase II. It is metaphase II of meiosis II that Dupont focuses upon, when

the cell is in a state of arrest and can only be activated by fertilisation with another haploid

cell of opposite gender, producing a diploid cell. This arrest is characterised by high levels

of Cyclin B and active Cdc2, as well as high levels of cytostatic factor (CSF) which prevents

the degradation of Cyclin. CSF, by preventing Cyclin degradation, prevents the cell from

proceeding to anaphase II of meiosis II. Fertilisation triggers a train of Ca2+ spikes which

have the effect of inhibiting CSF activity and also that of Cdc2. It is important here to

note that Cdc2 inhibition occurs before CSF inhibition. This leads Dupont to make several

assumptions in the mathematical model as we shall see below.

The Mathematical Model

Dupont intially considers Goldbeter’s model for the mitotic cell cycle [30], with the inten-

tion of adapting it to incorporate the effect of calcium on meiosis. In his model, Golbeter

considers the concentration of Cyclin B (C in the model), the fraction of active Cdc2 (M)

and the fraction of active APC (X). Cdc2 is used interchangeably with Cdk2 in the lit-

erature and exists in its active form when bound to Cyclin B. Active Cdc2 therefore is
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nothing more than the Cyclin B/Cdk2 complexes that we have encountered previously. In

the model, Cyclin B is synthesised at rate vi and degraded by the fraction of active APC

(X) at maximal rate vd. Inactive Cdc2 (1−M) is activated at maximal rate VM1 by Cyclin

B (C). Inactive APC (1 −X) is activated at maximal rate VM3, by the fraction of active

Cdc2 (M). kd provides the degradation rate of Cyclin B (C) in the model. V2 and V4

provide the maximal rates of Cdc2 and APC inactivation respectively. Goldbeter’s model

of the mitotic cell cycle is as follows:

dC

dt
= vi − vdX

C

Kd + C
− kdC, (1.10)

dM

dt
= VM1

C

Kc + C

1−M
K1 + 1−M

− V2
M

K2 +M
, (1.11)

dX

dt
= VM3M

1−X
K3 + 1−X

− V4
X

K4 +X
. (1.12)

In a number of ways, Goldbeter’s model is similar to Tyson’s and Novak’s model which

we studied earlier in the chapter. Both models include a term for Cyclin B and APC for

example, although Goldbeter has in mind the amphibian cell cycle when forming his model

and Tyson et al the cell cycle of budding yeast. In Tyson’s and Novak’s model, Cdks are

assumed to be in abundance and as soon as Cyclin B is produced it binds to Cdk2. This

is not the case for Goldbeter’s model however, where C, whose dynamics are described by

equation (1.10) represents free Cyclin B and Cyclin B/Cdk2 complexes are represented by

M (equation 1.11).

Tyson and Novak also include a term for the mass of the cell, while Goldbeter does not.

The reset condition imposed upon the mass term in Tyson’s and Novak’s model drives the

oscillations in their system, while oscillations in Goldbeter’s model come about due to the

presence of limit cycle solutions in the underlying dynamics of the system. In this dynam-

ical sense, Goldbeter’s model has more in common with Obeyesekere et al ’s model, as in

Obeyesekere et al ’s model oscillations arise as a result of limit cycle solutions present in

the underlying dynamics of the system as well. This is where the similarities with Obeye-

sekere et al ’s model end however. The proteins considered in Obeyesekere et al ’s model for

the mammalian cell cycle differ from the proteins modelled by Tyson et al and Goldbeter,

reflecting the different class of animal that the different authors consider when developing

their respective models.
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Numerically integrating Goldbeter’s model for the cell cycle (system (1.10)-(1.12)) leads

to the results illustrated in Figure 1.15.
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Figure 1.15: Graph showing oscillations of Cyclin B, fraction of active Cdc2 and fraction

of active APC of the model for the mitotic cell cycle, obtained by numerically

integrating system (1.10)-(1.12) using a fourth order Runge Kutta method.

Key:- dotted lines correspond to M (fraction of active Cdc2), dashed to C

(Cyclin B) and solid line to X (fraction of active APC). The concentration

of Cyclin B is of dimension µM. Fractions of active Cdc2 (M) and active

APC (X) are dimensionless. Parameter values: v1 = 0.003 µMmin−1, vd =

0.18 µMmin−1,Kd = 0.05 µM, kd = 0.0012 min−1, VM1 = 0.36 min−1,Kc =

0.5µM, V2 = 0.186min−1, VM3 = 0.072min−1, V4 = 0.048min−1,K1 = K2 =

K3 = K4 = 0.005.

As mentioned above, metaphase II of meiosis II is characterised by high levels of Cyclin

B and active Cdc2 as well as low levels of APC. This situation is modelled using equations

(1.10)-(1.12) in Figure 1.16, where it can be seen that Cdc2 (M) and Cyclin B (C) concen-

trations are high as is the case during metaphase II arrest of the process of meiosis.

Dupont adds a further five equations to the above three in order to model the effect

calcium has on relieving the cell from Metaphase II arrest of meiosis II. The full system is

given by equations (1.10) and (1.11) together with the following set of ODEs
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Figure 1.16: Results of modelling metaphase II arrest. It can be seen that towards the

end of the period of integration, concentrations of active Cdc2 (M , dotted

line) and Cyclin B (C, dashed line) are high and active APC (X, solid line)

are low. This is characteristic of metaphase II arrest. The concentration of

Cyclin B is of dimension µM. Fractions of active Cdc2 (M) and active APC

(X) are dimensionless. Results obtained by numerically integrating equa-

tions (1.10)-(1.12) using a fourth order Runge Kutta method. Parameter

values as in Figure 1.15 except for VM3 = 0.0045 min−1.

dW

dt
= VM5

Z4

K4
A + Z4

1−W
K5 + 1−W

− V6
W

K6 +W
, (1.13)

dS

dt
= V7

1− S
K7 + 1− S

− VM8W
S

K8 + S
, (1.14)

dQ

dt
= VM10(1− S)4 1−Q

K10 + 1−Q
− V11

Q

K11 +Q
, (1.15)

dQ2

dt
= VM12Q

1−Q2

K12 + 1−Q2
− V13

Q2

K13 +Q2
, (1.16)

dCSF

dt
= −VM9Q2

CSF

K9 + CSF
− k9CSF. (1.17)

Equation (1.12) in the model for mitotic cell cycle now becomes

dX

dt
= V ′M3M

K4
i

K4
i + CSF 4

1−X
K3 + 1−X

− V ′M4S
X

K4 +X
. (1.18)

The evolution of the fraction of active CaMKII is given by W in equation (1.13). The Hill

function Z4

K4
A+Z4 in equation (1.13) accounts for the way in which Ca2+ activates CaMKII

(W ). Hence Z represents the level of Ca2+ and in Dupont’s model its behaviour is described
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by the following piecewise linear ODE:

dZ
dt

=

−0.230258509Z t < 240

0 t > 240
(1.19)

with the condition that Z resets to 1 once it falls below 0.1, provided t < 240 min. These

conditions model the spiking nature of the calcium oscillations as well as the transient na-

ture of the spikes.

In Table 1.3 with summarise the variables used in Dupont’s model and in Table 1.4 the

parameters. Figure 1.17 shows how the proteins Dupont considers in her model interact

and serves as a useful reference point in the subsequent discussion on Dupont’s model. As

mentioned above, CSF is inactivated well after Cdc2. It is with this in mind that Dupont

introduces the terms S,Q and Q2 whose behaviour is given by equations (1.14), (1.15) and

(1.16) respectively. S represents a ‘mediator’ protein substrate in its unphosphorylated

form whose existence is postulated by Dupont. S facilitates CaMKII’s activation of APC,

which in turn leads to the de-activation of Cdc2. In order to achieve this CaMKII phos-

phorylates S into its inactive form (−VM8W from equation (1.14)) and in doing so nullifies

the effects of S inhibition upon APC (modelled by the −V ′M4S term in equation (1.18)).

CaMKII through S also has the effect of decreasing the activity of CSF via two more postu-

lated proteins proteins Q and Q2, whose dynamics are represented by equations (1.15) and

(1.16) respectively. The behaviour of active CSF is given by CSF in equation (1.17) with

the ‘−VM9Q2’ term corresponding to its is de-activation by CaMKII via the ‘S −Q −Q2’

pathway. The reason for postulating these two further proteins is to provide a time delay

in the system to ensure that a decrease in Cdc2 activity (facilitated by an increase in APC

activity) will precede a decrease in CSF activity. However, introducing these postulated

proteins S,Q and Q2 makes Dupont’s model less biologically rigorous than perhaps it could

be. The system (1.10), (1.11), (1.13)-(1.19) can be numerically integrated to model the

resumption of the the meiotic process upon fertilisation from metaphase II arrest of meiosis

II. Results of these simulations are shown in Figure 1.18.

Figure 1.18 reveals that calcium spikes of a sufficient intensity and lasting a duration of

240 mins are sufficient to reduce the levels of Cyclin B sufficiently to relieve the cell from
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Figure 1.17: Schematic illustrating how the various proteins interact with each other in

Dupont’s model. Dashed arrows indicate activations, dashed lines termi-

nated with hyphens indicate inhibition. C stands for Cyclin B while M and

X represent active Cdc2 and APC respectively. W stands for CaMKII. +

indicates the active form of protein. Reproduced from [18] with permission

from Elsevier.
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Figure 1.18: Simulation of the full model given by the system (1.10), (1.11), (1.13)-(1.19)

for the resumption of meiosis after metapahse II. Key:- solid lines corre-

spond to W (fraction of active CaMKII), dotted lines to S (the mediator

protein) in (a). Solid lines correspond to C (Cyclin B), dotted lines to X

(APC) and dashed lines to M (fraction of active Cdc2) in (b). It can be

seen in (a), that at t ≈ 500 mins, the majority of CaMKII exists in its active

form (W → 1). Active CaMKII acts to lift the cell from metaphase II ar-

rest by inducing mitotic oscillations in the cell (evidenced by the oscillatory

behaviour of the cell cycle variables C,M and X, which begins at t ≈ 500

mins in (b)). The concentration of Cyclin B is of dimension µM. Fractions

of active Cdc2 (M), active APC (X), active CaMKII (W ) and active medi-

ator protein S are dimensionless. Parameter values as per Figure 1.15 with

V ′M3 = 0.072min−1, VM4′ = 0.048min−1,Ki = 0.5µM, VM5 = 8min−1, V6 =

0.2 min−1,K5 = K6 = 1,KA = 0.7 µM, V7 = 0.0045 min−1, VM8 =

0.03 min−1,K7 = K8 = 0.05, VM9 = 0.015 µMmin−1,K9 = 0.5, k9 =

0.0001min−1, VM10 = 0.2min−1, V11 = 0.14min−1, VM12 = 0.02min−1, V13 =

0.014 min−1,K10 = K11 = K12 = K13 = 0.01. Results obtained using a

fourth order Runge Kutta method of integration.
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Table 1.3: Description of variables used in Dupont’s model

Variable Unit

C µM Concentration of active Cyclin B

M dimensionless Fraction of active Cdc2

X dimensionless Fraction of active APC

W dimensionless Fraction of active CaMKII

S dimensionless Fraction of active mediator protein S

Q dimensionless Fraction of active mediator protein Q

Q2 dimensionless Fraction of active mediator protein Q2

CSF µM Concentration of cytostatic factor

Z µM Concentration of calcium

metaphase II arrest. The cell is then free to proceed onto the mitotic cell cycle which is

evidenced by the oscillations in the cell cycle variables seen in the second plot in Figure

1.18.

1.6.1 Can Dupont’s Model be Utilised to Account for Calcium’s Effect

in Inducing a Cell to Enter S phase of the Mitotic Cell Cycle?

Dupont’s model deals with the effect of calcium on meiosis, while our project is concerned

with calcium’s effect on the mitotic cell cycle. In meiosis calcium effects CaMKII, while in

the mitotic cell cycle calcium predominantly affects CaMKI. Dupont does not incorporate

CaMKI into her model. Hence it would seem unlikely that Dupont’s model could be easily

adapted into a model incorporating the effect of calcium on mitosis. Furthermore, Gold-

beter’s model for the cell cycle [30] which Dupont utilises, does not contain a Cyclin D term,

the very protein affected by calcium during the mitotic cell cycle. All of this suggests that

neither Dupont’s model nor Golbeter’s model for the cell cycle are suitable for building a

model incorporating the effect of calcium on the mitotic cell cycle. In summary Obeyesekere

et al ’s model seems to be the most suitable for our purposes.

1.7 Models of Calcium Release

We will also need to consider models of calcium release from within cells. Although Dupont

achieves this through a piecewise linear ODE, calcium release in her model is prescribed
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Table 1.4: Description of parameters used in Dupont’s model

Parameter Unit

vi µMmin−1 Cyclin B synthesis rate

vd min−1 Maximal rate at which APC degrades Cyclin B

Kd µM Michaelis constant

kd min−1 Cyclin B degradation rate

VM1 min−1 Maximal rate at which inactive Cdc2 is activated by Cyclin B

Kc µM Michaelis constant

K1 dimensionless Michaelis constant

V2 dimensionless Maximal rate at which Cdc2 is inactivated

K2 dimensionless Michaelis constant

VM5 min−1 Maximal rate at which inactive CaMKII is activated by calcium

KA µM Threshold constant of CaMKII activation by calcium

K5 dimensionless Michaelis constant

V6 min−1 Maximal rate of CaMKII inactivation

K6 dimensionless Michaelis constant

V7 min−1 Maximal rate at which inactive S is activated

K7 dimensionless Michaelis constant

VM8 min−1 Maximal rate at which active S is inactivated by active CaMKII

K8 dimensionless Michaelis constant

VM10 min−1 Maximal rate of activation of Q by inactive S

K10 dimensionless Michaelis constant

V11 min−1 Maximal rate of inactivation of Q

K11 dimensionless Michaelis constant

VM12 min−1 Maximal rate of activation of inactive Q2 by active Q

K12 dimensionless Michaelis constant

V13 min−1 Maximal rate of inactivation of Q2

K13 dimensionless Michaelis constant

VM9 µMmin−1 Maximal rate at which Q2 inactivates CSF

K9 µM Michaelis constant

k9 min−1 Rate at which CSF is inactivated

V ′M3 min−1 Maximal rate at which inactive APC is activated

Ki µM Term characterising the inhibition of APC by CSF

K3 dimensionless Michaelis constant

V ′M4 min−1 Maximal rate at which APC is inactivated by S
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and much research has gone into mechanistic modelling of calcium release. We consider two

of these models in detail in this section.

1.7.1 Li and Rinzel’s Model

Li and Rinzel [90] developed a simplified model for the release of calcium from internal

stores based on the high dimensional model produced by De Young and Keizer [97]. Li

and Rinzel consider a closed cell and consequently focus only upon the intracellular mech-

anisms of calcium release. These mechanisms are illustrated in the schematic in Figure 1.19.

In their model, [Ca2+] represents free cytosolic calcium, which is released from the cell’s

internal stores located in the endoplasmic reticulum (ER) of the cell. In the model, calcium

residing in the ER is [Ca2+]ER and total calcium, both cytosolic and ER, is denoted by

Ct. Cytosolic calcium (which is released at rate fi

Vi
from the ER) depends upon the flux of

calcium release from internal stores (JoutER) and the flux that refills the internal stores from

free calcium in the cytosol (J inER). For a detailed description on how Li and Rinzel derive

JoutER and J inER from De Young and Keizer’s model, see [54]. JoutER depends upon calcium leaked

from the internal stores into the cytosol (L) and also the concentration of IP3 (represented

by [IP3]), which acts to stimulate calcium release from internal stores. Furthermore, JoutER

depends upon a ‘gating’ variable (h), representing the fraction of channels which are not

inactivated by calcium and hence available to open upon IP3 activation. The system of

ODEs below constitute Li and Rinzel’s model

d[Ca2+]
dt

=
fi
Vi

(JoutER − J inER), (1.20)

dh

dt
= A[Kd − ([Ca2+] +Kd)h], (1.21)

JoutER =
[
L+

PIP3R[IP3]3[Ca2+]3h3

([IP3] +Ki)3([Ca2+] +Ka)3

]
([Ca2+]ER − [Ca2+]), (1.22)

J inER =
VSERCA[Ca2+]2

[Ca2+]2 +K2
SERCA

, (1.23)

[Ca2+]ER =
Ct − [Ca2+]

σ
. (1.24)

A simulation of system (1.20)-(1.24), together with its bifurcation diagram which shows
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Figure 1.19: Schematic showing the mechanism that leads to calcium release from a cell’s

internal stores. Jout
ER accounts for the release of calcium into the cytosol from

internal stores, while J in
ER accounts for the refilling of internal stores from

the cytosol.

which values for IP3 give rise to calcium oscillations can be seen in Figure 1.20

Figure 1.20 reveals that Li and Rinzel’s model of calcium release captures the temporal

oscillatory behaviour of cytosolic calcium that has been observed in many different cell types

[8, 87, 88].

1.7.2 Fink et al ’s Model

Fink et al have used experimentally determined parameter values to help them form a

model of calcium release [27]. Their model is identical to Li and Rinzel’s model except for a

change of parameters and a slight difference in the construction of equations (1.22) - (1.24).

Fink et al argue that with these changes in parameter values, their model agrees well when

compared to experiments conducted on A7r5 cells (a smooth muscle cell line). However,

with these changes the calcium dynamics in Fink et al ’s model are qualitatively different to

that of Li and Rinzel’s. The bifurcation points that lead to limit cycles which are present in

Li and Rinzel’s model are lost in Fink et al ’s model for the parameter values in [27]. Fink

et al ’s model is given by the system of equations below
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Figure 1.20: Diagram showing calcium oscillations resulting from the numerical integra-

tion of system (1.20)-(1.24) and bifurcation diagram showing which val-

ues for [IP3] give rise to calcium oscillations. Parameter values: fi =

0.01, Vi = 4pL, L = 0.37pLs−1, PIP3R = 26640pLs−1,Ki = 1µM,Ka =

0.4µM, VSERCA = 400Mols−1,KSERCA = 0.2µM, A = 0.5s−1,Kd =

0.4µM, σ = 0.185, Ct = 2µM, [IP3] = 1µM and as indicated in the sec-

ond plot. Initial conditions for first plot were [Ca2+](0) = 0.028128µM and

h(0) = 0.638334. The first plot was calculated using a fourth order Runge

Kutta method, while the bifurcation diagram was calculated using AUTO

within XPP.

d[Ca2+]
dt

= β(Jip3 − Jpump + Jleak), (1.25)

JIP3 = Jmax

[(
[IP3]

[IP3] +KI

)(
[Ca2+]

[Ca2+] +Kact

)
h

]3 [
1− [Ca2+]

[Ca2+]ER

]
, (1.26)

dh

dt
= kon[Kinh − ([Ca2+] +Kinh)h], (1.27)

Jpump = Vmax
[Ca2+]2

[Ca2+]2 +K2
P

, (1.28)

Jleak = PL

(
1− [Ca2+]

[Ca2+]ER

)
. (1.29)

It can be seen by comparing equations (1.23) and (1.28), that Jpump in the Fink et al

model is identical in form to J inER in the Li and Rinzel model. Also, although it is not

apparent initially it can be seen from equations (1.22), (1.26) and (1.29) that JERout =

JIP3 + Jleak, with a change of parameter values. This later observation becomes more

apparent when one substitutes equation (1.24) into equation (1.22) to give the expression
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below

JoutER =
[
L+

PIP3R[IP3]3[Ca2+]3h3

([IP3] +Ki)3([Ca2+] +Ka)3

](
Ct − [Ca2+]

σ
− [Ca2+]

)
. (1.30)

which after factorisation becomes the equation below

JoutER =
[
LCt
σ

+
PIP3RCt[IP3]3[Ca2+]3h3

σ([IP3] +Ki)3([Ca2+] +Ka)3

](
1− [Ca2+](

1
Ct

+ σ)
)
. (1.31)

It can now be seen from equation (1.31), (1.26) and (1.29) that JERout = JIP3 + Jleak, with

a change of parameter values. The differences in the parameter values used in Fink et al ’s

and Li and Rinzel’s model are given in Table 1.5.

Table 1.5: Table showing how the parameter values in Li and Rinzel’s and Fink et al ’s

model differ. Values that differ shown in red.

Parameter in Parameter Value in Value in

Li and Rinzel in Fink et al Li and Rinzel Fink et al
1

1
Ct

+σ
[Ca2+]ER 400 400

LCt
σ PL 4 0.0804
fi

vi
β 0.0025 0.0804

PIP3RCt

σ Jmax 288000 2880

ki KI 1.0 0.03

Ka Kact 0.4 0.17

A Kon 0.5 8

Kd Kinh 0.4 0.1

VSERCA Vmax 400 5.85

KSERCA Kp 0.2 0.24

Simulating system (1.25)-(1.29) leads to the results in Figure 1.21. Fink et al argue

that these results agree favourably with those observed experimentally in A7r5 cells. This

allows them to use the mathematical model to predict how calcium release is dependent

upon the IP3 dynamics of A7r5 cells, something which they argue is very difficult to achieve

experimentally [27].

From Figure 1.21, it can be seen that despite having the same concentration for [IP3]

as in the simulations for the Li and Rinzel model, calcium in Fink et al ’s model does not

oscillate, unlike in Li and Rinzel’s model. If we are to model the excitable, oscillatory
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Figure 1.21: Simulations of system (1.25)-(1.29), illustrating how calcium is released from

a cell’s internal stores when the cell is exposed to a sustained amount

of IP3. The parameter values are β = 0.0244,KI = 0.03µM,Kact =

0.17µM, [Ca2+]ER = 400µM, kon = 8.0µM−1s−1,Kinh = 0.1µM, Vmax =

5.85µMs−1,KP = 0.24µM, PL = 0.67739936µMs−1, [IP3] = 1.0µM. The

initial conditions were [Ca2+](0) = 0µM and h(0) = 0µM. A Fourth order

Runge Kutta method was used to obtain the results.

behaviour of calcium as observed experimentally in cortical cells in our model therefore, it

would make more sense to use Li and Rinzel’s parameter values, rather than Fink et al ’s.

1.8 Bennett et al ’s Model of Calcium Waves in Networks of

Astrocytes

With Obeyesekere et al ’s cell cycle model and Li and Rinzel’s model of calcium release,

we are almost in a position to form a model coupling the calcium dynamics and cell cycle

dynamics of radial glial cells. However, we still have not considered a model for the process

by which ATP leads to calcium release from a cell’s internal stores. Bennett et al have

produced a model for a network of astrocytes (another type of brain cell, closely related to

radial glia [35]) which communicate with each other via calcium waves, in order to investi-

gate the nature of these propagating calcium waves [5]. Radial glial cells exhibit molecular

and cellular characteristics of astrocytes [35]. Indeed the signal transduction pathway that

leads to calcium release as a result of ATP binding described by Weissman et al [93] is

identical to the signal transduction pathway that leads to calcium release as a result of

ATP binding in astrocytes, as described by Bennett et al. This suggests that Bennett et

al ’s model could be a suitable candidate for use in our model. As we have already out-

lined in Section 1.4 the signal transduction pathway that leads to calcium release from ATP
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binding, we do not discuss it again here. Instead, the reader who wishes to refresh their

memory is directed to Figure 1.22.

Figure 1.22: Schematic diagram of the steps from ATP receptor activation to Calcium

release from the internal store. ATP binds to the cell’s receptor which sets

off a G-protein cascade ultimately leading to the production of IP3. IP3 then

leads to the release of Ca2+ by allowing the opening ion channels within the

cell’s endoplasmic reticulum. Figure reproduced from [5] with permission

from Elsevier.

In Bennett et al ’s model, the proportion of G-protein activated by ATP, assuming fast

binding kinetics is given by G∗. It is assumed that G-protein activation is dependent upon

the fraction of bound receptors (ρ) and also the ratio of activities of unbound receptors (δ).

δ allows for G-protein activation in the absence of bound ATP receptors. The concentra-

tion of IP3 (which is assumed to be created on the inner walls of the cell, before diffusing

towards the centre of the cell) is represented by [IP3] in the model. It is synthesised at rate

r∗h by active G-protein and degraded at rate Kdeg. Bennett et al assume that the release of

extracellular ATP ([ATP ]) is dependent upon IP3, although the precise mechanism of ATP

release is not known [5]. They argue that replacing the dependence of ATP release upon

IP3 with the proportion of active G-protein (G∗), or the concentration of intra-cellular ATP

(χ) gives essentially the same qualitative results [5]. The intracellular ATP store (χ) in the

model is depleted at rate Kloss and its inclusion in the model ensures that once ATP stores

are emptied, ATP release will cease. Initially χ = 1 in simulations, representing a fully

stocked ATP store. In the model, ATP is only released if IP3 concentration is higher than

a minimum concentration ([IP3] > [IP3]min). This ensures small amounts of ATP are not
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amplified and do not lead to a propagating wave.

Bennett et al use Fink et al ’s model (system (1.25)-(1.29)) and parameter values for

calcium release within astrocytes. As in Fink et al ’s model, in Bennett et al ’s model [Ca2+]

gives the concentration of free cytosolic calcium. It is dependent upon the flux of calcium

from the ER to the cytosol (Jleak and JIP3) and the flux of calcium from the cytosol into the

ER (Jpump). Bennett et al ’s model for a lane of astrocytes is represented by the following

equations

G∗ =
ρ+ δ

KG + ρ+ δ
, (1.32)

ρ =
[ATP ]

KR + [ATP ]
, (1.33)

∂[IP3]
∂t

= DIP∇2[IP3] + r∗hG
∗ −Kdeg[IP3], (1.34)

∂[ATP ]
∂t

= DATP∇2[ATP ] +H([IP3]− [IP3]min)VATPχ
[IP3]− [IP3]min
Krel + [IP3]

(1.35)

− Vdeg
[ATP ]

Kdeg + [ATP ]
,

dχ

dt
= −H([IP3]− [IP3]min)Klossχ(t)

[IP3]− [IP3]min
Krel + [IP3]

, (1.36)

d[Ca2+]
dt

= β(JIP3 − Jpump + Jleak), (1.37)

JIP3 = Jmax

[(
[IP3]

[IP3] +KI

)(
[Ca2+]

[Ca2+] +Kact

)
h

]3 [
1− [Ca2+]

[Ca2+]ER

]
, (1.38)

dh

dt
= kon[Kinh − ([Ca2+] +Kinh)h], (1.39)

Jpump = Vmax
[Ca2+]2

[Ca2+]2 +K2
P

, (1.40)

Jleak = PL

(
1− [Ca2+]

[Ca2+]ER

)
, (1.41)

H(x) =

{
0 if x ≤ 0,

1 else.
(1.42)

It is illuminating at this point to focus upon how calcium release resulting from ATP

binding is described mathematically. The ratio of bound receptors to total ATP receptors

is given by ρ whose dynamics are governed by equation (1.33). Bound receptors then lead

to G-protein activation as can be seen from equation (1.32) which governs the proportion

of active G-protein (G∗). This in turn leads to production of IP3 at rate r∗h, as can be seen
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from the r∗hG∗ term in equation (1.34) governing the IP3 dynamics. IP3 then allows for the

release of ATP at rate VATP (H([IP3]− [IP3]min)VATPχ
[IP3]−[IP3]min

Krel+[IP3] from equation (1.35))

and the release of calcium from internal stores ( [IP3]
[IP3]+KI

in equation (1.38)).

Although Bennett et al regard cells as 3D cubes and therefore consider IP3 diffusion

within a cell, we shall assume spatial homogeneous distributions within each cell, and ig-

nore the DIP∇2[IP3] term from equation (1.34), reducing the PDE to an ODE. This makes

coding up Bennett et al ’s model a simpler task and also means that numerically solving the

system will be computationally less expensive. We sumarise the variables and parameters

used in Bennett et al ’s model in Tables 1.6 and 1.7. Simulations, ignoring IP3 diffusion, for

one cell subjected to an initiating ATP pulse of 10 µM can be seen in Figure 1.23. These

results show that exposure of a single astrocyte to an ATP pulse leads to a fast increase in

IP3. This increase is accompanied with an increase of calcium, albeit with a time lag.

Table 1.6: Description of variables used in Bennett et al ’s model

Variable Unit

G∗ dimensionless Proportion of activated G-protein

ρ dimensionless Ratio of bound to unbound P2Y receptors

[IP3] µM Concentration of IP3

[ATP ] µM Concentration of extra-cellular ATP

χ dimensionless Intra-cellular ATP concentration normalised to 1

[Ca2+] µM Concentration of calcium released from internal stores

JIP3 µMs−1 Flux of calcium from the ER to the cytosol

h dimensionless Gating variable

Jpump µMs−1 Flux of calcium from the cytosol to the ER

Jleak µMs−1 Term accounting for calcium leaked into the cytosol from the ER

1.8.1 Intercellular Communication between Several Astrocytes

Bennett et al go on to consider calcium release in a lane of astrocytes. It is important to

note Bennett et al consider each cell to be a cube of side 25 µm [5]. For simplicity, it is easier

to regard these cells as points and this is the approach we intend to pursue with regard

to our overall project. Hence in simulating Bennett et al’s model over a spatial domain,
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Table 1.7: Description of parameters used in Bennett et al ’s model

Parameter Unit

δ dimensionless Ratio of activities of the unbound and bound receptors

KG dimensionless Term equal to the G-protein deactivation rate

divided by the G-protein activation rate

KR µM Effective dissassociation constant for P2Y receptor ATP binding

r∗h µMs−1 IP3 production rate

Kdeg s−1 IP3 degradation rate

DATP µm2s−1 ATP diffusion coefficient

[IP3]min µM Minimum IP3 concentration which must be reached

to allow for ATP release

VATP µMµm−2s−1 ATP production rate

Krel µM Michaelis constant

Vdeg µMs−1 Maximal ATP degradation rate

Kdeg µM Michaelis constant

Kloss s−1 Depletion rate parameter

β dimensionless Calcium buffering parameter

Jmax µMs−1 Maximum channel current

KI µM Michaelis constant

Kact µM Michaelis constant

[Ca2+]ER µM Calcium concentration in ER

kon µMs−1 IP3 channel kinetic parameter

Kinh µM IP3 channel kinetic parameter

Vmax µMs−1 Maximum pumping rate of calcium into the ER

KP µM Pump dissociation constant

PL µMs−1 Calcium leak rate from ER
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Figure 1.23: Simulation of system (1.32)-(1.42), for a single cell. Parameter values given

by Kdeg = 1.25s−1,Ka = 0.017s−1,Kd = 0.15s−1, r∗h = 1µmols−1, VATP =

300s−1,Krel = 10µM, [IP3]min = 0.012µM, kloss = 30s−1, DATP =

300µm2s−1, Jmax = 2880µMs−1,KI = 0.03µM,Kact = 0.17µM, kon =

8µMs−1,Kinh = 0.1µM, [Ca2+
ER] = 400µM, Vmax = 5.85µMs−1,Kp =

0.24µM, β = 0.0244,KR = 25, Vdeg = 0.35s−1, δ = 0.0013992 and

PL = 0.08665µMs−1 Initial conditions were [ATP ](0) = 10µM, χ(0) =

1µM, [IP3](0) = 0.01µM, [Ca2+](0) = 0.05µM, h(0) = 0 and [IP3](0) =

0.01µM. Results obtained by using a fourth order Runge Kutta method of

integration.
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cells are regarded as point sources. This presents some problems with regard to obtaining

the qualitative and quantitative results Bennett et al reach when simulating the system

for several cells. The cell walls are impermeable to ATP, hence when considering diffusion

of ATP, ATP will diffuse around cells but will not diffuse into the intracellular space. If

we consider cells as points, there is nothing preventing ATP from diffusing throughout the

entirety of the spatial domain. These two processes are illustrated in Figure 1.24. When

regarding cells as ‘point sources’ therefore, we will effectively be dealing with a different

intercellular space. There will also be differences with regard to ATP uptake and IP3

production in the cells. Consequently, it is necessary to ‘adjust’ various parameters such as

the ATP release and degradation rates (VATP and Vdeg respectively) and the IP3 production

rate (rh∗ ), in order that the results of our simulations are qualitatively and quantitatively

similar to Bennett et al ’s results. Simulating system (1.32)-(1.42), disregarding intra-cellular

IP3 diffusion for 19 astrocytes in one spatial dimension leads to the results illustrated in

Figures 1.25 and 1.26.

From Figures 1.25 and 1.26 we can see that an initiating pulse of ATP, introduced at

the centre of a lane of astrocytes leads to a wave of ATP which propagates throughout the

spatial domain. This wave is shortly followed by a propagating calcium wave. These results

agree very well with Bennett et al ’s results for a similar parameter regime [5].

1.9 Conclusions

In this chapter we have introduced the biology of our project, focussing on Weissman et

al ’s paper [93]. In this paper Weissman et al show that a calcium signalling mechanism is

likely to be responsible for an increase in the proliferation of radial glia during embryonic

development and hypothesise that the same mechanism may lead to the synchronisation of

cell cycles of clusters of radial glia. Additionally, through reviewing the biological literatue

we have identified the salient biological features that will need to be considered in formu-

lating a mathematical model for the coupling between the cell cycle dynamics and calcium

dynamics of radial glial cells. For example, we identified that calcium has the downstream

effect of promoting Cyclin D activity and therefore ideally we would incorporate a cell cycle

model into our model which includes a term for Cyclin D. Furthermore, in this chapter we

have reviewed a number of mathematical models for the cell cycle, two models for IP3 in-

duced calcium release and Bennett et al ’s model of calcium waves in networks of astrocytes,
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Figure 1.24: Diagram illustrating the differences between treating astrocyte cells as cubes

and regarding them as points when considering ATP diffusion. In A, cells

take the form of cubes and it can be seen that ATP diffusing from the

initiating pulse does not penetrate cell walls. ATP binds to cell surface

receptors, leading via a G-protein cascade to the production of IP3 on the

inside of the cell walls, in turn leading to the autocrine release of more ATP

at the cell walls. IP3 also diffuses into the middle of the cell, leading to

the release of calcium from internal stores. If we look at B, where cells are

modelled as point sources, the effective intercellular space is different. ATP

is free to diffuse throughout the whole spatial domain. In this case ATP

binding, IP3 production and ATP autocrine release all occur at the centre

of the cell.
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Figure 1.25: Simulations of system (1.32)-(1.42), disregarding intra-cellular IP3 diffusion.

Results show the evolution of the propagating ATP and Calcium waves

throughout the spatial domain when an initiating pulse of 10µM of ATP is

introduced around the cell in the middle of the lattice at t=0. Parameter

values and initial conditions as for Figure 1.23 except for [ATP ](0) = 0

for all cells except for the cell in the middle of the spatial lattice. Equation

(1.35) was solved numerically using the method of lines, with a mesh interval

of 50µm. Results obtained using a fourth order Runge Kutta method of

integration and Dirichlet boundary conditions of ATP = 0 at all boundaries.
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Figure 1.26: Simulations of system (1.32)-(1.42), disregarding intra-cellular IP3 diffusion.

Results show the evolution of IP3 production and calcium release within cells

10-13 (with cell 1 being the left most cell in the lattice) when an initiating

pulse of 10µM of ATP is introduced around the cell in the middle of the

lattice at t=0. Parameter values and initial conditions as for Figure 1.23

except for [ATP ](0) = 0 for all cells except for the cell in the middle of the

spatial lattice. Equation (1.35) was solved numerically using the method of

lines, with a mesh interval of 50µm. Results obtained using a fourth order

Runge Kutta method of integration and Dirichlet boundary conditions of

ATP = 0 at all boundaries.
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accessing the suitability of each for our purposes.

In summary we identified Obeyesekere et al ’s cell cycle model as being the most suitable

cell cycle model to incorporate into our model for a number of reasons. It has a term for

Cyclin D and an increase in Cyclin D activity in Obeyesekere et al ’s model results in

a modest reduction in the period of the cell cycle, in keeping with the results for many

cell types in the biological literature. Furthermore, it is a relatively low dimensional model

which means that simulations of many cell systems are unlikely to prove as computationally

expensive as if we used a higher dimensional model. Its relatively low dimension coupled

with the fact that it is a temporally continuous model means that it should not be too

difficult to analyse using numerical continuation. Bennett et al ’s model for ATP mediated

calcium release in lanes of astrocytes is likely to be suitable to use to model ATP mediated

calcium release in radial glial cells, as radial glia and astrocytes are molecularly very similar.

With all this in mind therefore, we decided to use Obeyesekere et al ’s cell cycle model and

Bennett et al ’s model for ATP mediated calcium release to form the basis for our model for

the coupling between the calcium and cell cycle dynamics in radial glial cells.

1.10 Thesis Structure

In chapter 2, we discuss the formulation of two models which couple the cell cycle dynamics

to the calcium dynamics in radial glial cells. In the first model, ATP release is modelled

as occurring during mid G1 phase and in the second it occurs at the G1/S transition. We

then, via bifurcation analysis study the dynamics of both models for a single cell. With this

achieved, we study the dynamics of both models for two cell systems by applying the the-

ory of weakly coupled oscillators, bifurcation analysis and direct numerical simulation. In

particular, we investigate the conditions which lead to synchronous phase locked solutions

and other phase locked solutions for both models.

In chapter 3, we build upon our results from chapter 2 and investigate phase locked

behaviour in systems of several cells. We achieve this through the application of the theory

of weakly coupled oscillators, but mainly via direct numerical simulation. The results from

this chapter form the first major result of the thesis and suggest that ATP released at the

G1/S phase transition is more likely to lead to synchronous behaviour than ATP released
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during mid G1 phase.

We, in chapter 4, via bifurcation analysis and direct numerical simulation, investigate

the ability of cycling cells to recruit quiescent cells onto the cell cycle. Our analysis reveals

that phase locked solutions can not be guaranteed in the short term, suggesting the tran-

sient behaviour may have more of an impact during neurogenesis. Both models suggest that

cycling radial glia can successfully recruit quiescent cells within the period of neurogenesis.

However, our results indicate that the model where ATP is released during the G1/S phase

transition is more successful at entraining quiescent cells onto the cell cycle in a synchronous

manner.

In chapter 5, we introduce models for coupled cell cycle and calcium dynamics with an

additive noise term. Using a numerical ensemble prediction system, we show that noise

acts to advance the onset of oscillatory solutions in one and two cell systems. This result

suggests that noise may play an important regulatory role during neurogenesis.
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Chapter2
Coupled Calcium and Cell Cycle Dynamics in

One and Two Cells

2.1 Introduction

I
n this chapter we introduce two models for the coupling between the calcium dynamics

and cell cycle dynamics in radial glial cells. As it is not clear from the literature as

to exactly when hemichannels form (they form some time during G1 phase and the

beginning S phase [10, 34, 93]), allowing for the release of ATP, we consider two models. In

our first model, we consider ATP release as occurring during mid G1 phase. In the second,

we consider ATP release during the G1/S phase transition. Through bifurcation analysis

and direct simulation of a system modelling a single cell, we show that both models capture

the salient biological features of radial glial cells. These features include the release of ATP

from hemichannels, as well as the effect calcium has on the cell cycle of radial glial cells.

Through applying bifurcation theory, weakly coupled non-linear oscillator theory and via

direct simulation we then investigate the behaviour of two coupled cells. In particular we

consider for each model, how the existence and stability of phase locked solutions depends

upon different parameter regimes.

2.2 Coupling the Cell Cycle and Calcium Dynamics

We couple Obeyesekere et al ’s model of the mammalian cell cycle [65] (system (1.5)-(1.9) in

chapter 1) to Li and Rinzel’s model of calcium release [90] (system (1.20)-(1.24) in chapter

1) and Bennett et al ’s model of ATP mediated calcium release in astrocytes [90] (system

(1.32)-(1.41) in chapter 1) to form two phenomenological models of the coupling of the
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calcium dynamics to the cell cycle dynamics of radial glial cells. Obeyesekere et al ’s model

for the cell cycle of cells indexed by i is given by

dDi

dt
= ad

(
kGF

1 + kGF

)
− dDEiDi, (2.1)

dEi
dt

= aE(1 + af (�−Rsi))− dEXiEi, (2.2)

dRi
dt

=
pX(RT −Rsi −Ri)Xi

qX + (RT −Rsi −Ri) +Xi
− ps(�−Rsi)Ri, (2.3)

dRsi
dt

= ps(�−Rsi)R−
pDRsiDi

qD +Rsi + d
− pERsiEi
qE +Rsi + Ei

, (2.4)

dXi

dt
= aXEi + f(�−Rsi) + gX2

i Ei − dXXi. (2.5)

As mentioned in the introduction, calcium has the downstream effect of increasing Cy-

clin D activity. We model this by coupling calcium to the Cyclin D synthesis rate term adi

from equation (2.1) to give

adi = a′d + γ([Ca2+]i − [Ca2+]b). (2.6)

Equation (2.6) ensures that adi, the Cyclin D synthesis rate in cell i, is an increasing

function of calcium in that cell. γ is the strength of the coupling and [Ca2+]b is a basal

concentration of calcium in the cell, which ensures that only calcium transients above the

basal concentration will affect Cyclin D production in our model (we set [Ca2+]b, so that

it is never larger than [Ca2+]i).

We model IP3 dependent calcium release from internal stores using Li and Rinzel’s

model which was discussed in Section 1.7.1 of the previous chapter. Their model is given

by
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d[Ca2+]i
dt

= ts(β(JIP3i − Jpumpi + Jleaki)), (2.7)

dhi
dt

= ts(kon[Kinh − ([Ca2+]i +Kinh)hi]), (2.8)

JIP3i = Jmax

[(
[IP3]i

[IP3]i +KI

)(
[Ca2+]i

[Ca2+]i +Kact

)
h

]3 [
1− [Ca2+]i

[Ca2+]ER

]
, (2.9)

Jpump = Vmax
[Ca2+]2i

[Ca2+]2i +K2
P

, (2.10)

Jleak = PL

(
1− [Ca2+]i

[Ca2+]ER

)
. (2.11)

As radial glial cells exhibit molecular and cellular characteristics of astrocytes [35], we

model ATP mediated calcium release by adapting Bennett et al ’s model of ATP mediated

calcium waves in astrocytes. Indeed the signal transduction pathway described by Weiss-

man et al [93] is identical to the pathway in astrocytes, as modelled by Bennett et al. Our

adapted version of Bennett et al ’s model with our changes coloured blue is given by
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ρi =
[ATPEi]

KR + [ATPEi]
, (2.12)

δ =
KG[IP3]minKdeg

r∗h − [IP3]minKdeg
, (2.13)

G∗i =
ρi + δ

KG + ρi + δ
, (2.14)

d[IP3]i
dt

= ts(r∗hG
∗
i − kdeg[IP3]i), (2.15)

d[ATPI ]i
dt

= ts

(
α([ATPI ]max − [ATPI ]i)

− T (Hi, Hc, %)T ([IP3]i, [IP3]c, %)VATP ([ATPI ]i − [ATPE ]i)
(

[IP3]i − [IP3]min
Krel + [IP3]i

))
,

(2.16)

d[ATPE ]i
dt

= ts

(
DATP

[ATPE ]i−1 − 2[ATPE ]i + [ATPE ]i+1

∆x2

+ T (Hi, Hc, %)T ([IP3]i, [IP3]c, %)VATP ([ATPI ]i − [ATPE ]i)
[IP3]i − [IP3]min
Krel + [IP3]i

− Vdeg
[ATPE ]i

Kdeg + [ATPE ]i

)
, (2.17)

T (Hi, Hc, %) =
1
2

(
tanh

(
Hi −Hc

%

)
+ 1
)
. (2.18)

The first point to note is that we use [ATPI ]i rather than χ to describe the internal ATP

dynamics. We then add the α([ATPI ]max− [ATPI ]i) term to equation (2.16) which governs

the internal ATP dynamics of the cell. This term accounts for internal ATP production at

rate α. In adding this term we are able to account for the production of ATP, something

that Bennett et al who investigated single event ATP mediated calcium waves were not

concerned with. An ATP refilling term is essential to study the long term dynamics of the

system and without it ATP release would be very short lived indeed. We have added the

T (Hi, Hc, %) term to equations (2.16) and (2.17) with T (Hi, Hc, %) defined as in equation

(2.18). This term models the switch like release of ATP from open hemichannels. The H

argument in this term is the concentration of one of the cell cycle variables from (2.1)-(2.5).

As different proteins peak at different times during the cell cycle, we can use the point at

which they do this to signal different stages in cell cycle progression. Hence, in replacing

H with one of the five cell cycle variables from (2.1)-(2.5), we will be able to model ATP

release at different times during the cell cycle. We can form different models by replacing
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H with different cell cycle variables. Hc represents the critical concentration that H must

exceed in order for ATP to be released. % controls the stiffness of the switch.

In addition to including the term which accounts for ATP release via hemichannels in

equation (2.16), we add a ([ATPI ]i − [ATPE ]i) term to this equation as well. This term

ensures that ATP is only secreted into the extracellular space if [ATPI ] > [ATPE ]; other-

wise there would be a countergradient and the secretion would require active pumping of

ATP. This in turn ensures that the concentration of extracellular ATP never exceeds the

maximum value [ATPI ]max. Bennett et al use ATP sinks at all boundaries in their model

to ensure that ATP is degraded and that the extracellular space does not fill up with a

physically unrealistic concentration of ATP. The Kloss component from Bennett’s model

has been replaced with VATP in equation (2.16). This ensures that internal ATP stores

deplete at the same rate ATP is released into extracellular space. The disparity between

the different timescales of the cell cycle dynamics and ATP mediated calcium dynamics are

addressed via the ts term in equations (2.7)-(2.8) and (2.15)-(2.17). The ts term ensures

that one unit of non-dimensional time in equations (2.1)-(2.5) governing the cell cycle is

equivalent to one hour of dimensional time in the rest of the system. Henceforth, in order

to avoid confusion we use dimensional time units. All variables in our model take whatever

dimension they had in Obeyesekere et al ’s, Bennett et al ’s and Li et al ’s models. Hence, in

our model, we have a mix of dimensional and dimensionless variables.

It is possible to reduce our adapted version of Bennett et al ’s model given by equations

(2.12)-(2.17) to its original form. In order to achieve this, one would have to set α to 0,

which ensures internal ATP stores are not refilled. In addition to this, T (Hi, Hc, %) will

have to be set to 1 and [ATPE ]i << [ATPI ]i, removing the dependence of ATP release

upon the extracellular ATP concentration.

With our model formed, it is illuminating to briefly review how ATP release, leading

to increased Cyclin D activity is mathematically described in our model. The reader is

directed as an aid to Figure 1.6 in the previous chapter where this process is illustrated

schematically. The T (Hi, Hc, %) term in equation (2.17) models the release of ATP through

the opening of hemichannels. The point during the cell cycle at which this occurs is de-

termined by the cell cycle variables, whose dynamics are governed by equations (2.1)-(2.5).
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Extracellular ATP leads to an increase in the number of bound receptors (equation (2.12)),

which in turn leads to an increase in G-Protein activity (equation (2.14)). This results in

the release of calcium from internal stores (equation (2.22)), mediated via [IP3] production

(equation (2.15)). Calcium liberated from the cell’s internal store then increases Cyclin D

activity (equation (2.6)).

As a further aid to understanding how, in particular we couple Obeyesekere et al ’s,

Bennett et al ’s and Li et al ’s models to form our model, the reader is directed to Figure

2.1.

We use a finite difference method to discretise the system, approximating the Laplacian

(present in Bennett et al ’s model) on a string of cells as∇2[ATPE ] = [ATPE ]i−1−2[ATPE ]i+[ATPE ]i+1

∆x2

in equation (2.17), where ∆x is the distance between the cells in the lattice. It is this dis-

cretisation of the spatial component of ATP that provides the coupling between our cells.

In subsequent calculations, we use zero flux boundary conditions at all boundaries.

2.2.1 Choice of Parameter Values

We have kept the parameter values for Obeyesekere et al ’s cell cycle model given by equa-

tions (2.1)-(2.5) expect for the Cyclin D synthesis rate ad which we now define via equation

(2.6). We use Li and Rinzel’s parameter values given in [90] for the calcium dynamics. The

parameters used in equations (2.12)-(2.18) are the same as those used by Bennett [5], with

a few notable exceptions outlined below.

With regard to the rate constants governing the ATP dynamics, it is useful to briefly

outline the process by which ATP is degraded. ATP is degraded into Adenosine diphosphate

(ADP) by ecto-nucleotidases present on the extra-cellular surface of cells [43, 73]. It is also

broken down naturally in solution when ecto-nucleotides are not present but at a far slower

rate [80]. In the literature ATP degradation by ecto-nucleotidases is typically modelled

using Michaelis Menten kinetics [68]

d[ATPE ]
dt

=
−Vdeg[ATPE ]
Kdeg + [ATPE ]

. (2.19)

58



2.2 Model Formulation Chapter 2: Coupled Calcium and Cell Cycle Dynamics

ATP

ATP

cell
cycle

ATP release

Eq. (2.17)

to calcium release
bound ATP leads

Eq. (2.7)−(2.15)

ATP depletion

Eq. (2.16)

calcium

activity
Cyclin D
increases
calcium 

Eq. (2.6)

Eq. (2.1)−(2.5)

Figure 2.1: Schematic showing how we couple Obeyesekere et al ’s, Bennett et al ’s and Li

et al ’s models to form our model. The cell cycle variables are modelled using

Obeyesekere et al ’s model (equations (2.1)-(2.5)). At a certain point in the

cell cycle, hemichannels form and ATP is released into the extracellular space

(modelled by the T (Hi, Hc, %) term in equation (2.17)). ATP binds to extra-

cellular receptors, leading via a G-protein cascade (modelled using Bennett

et al ’s model, given by equations (2.12)-(2.15)) to the release of calcium from

internal stores (modelled using Li et al ’s model, given by equations (2.7)-

(2.11)). Free calcium affects the cell cycle by increasing Cyclin D activity

(modelled by equation (2.6)).
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However a consensus has not been reached with regard to the rate constants [5, 82].

Gordon et al investigated the degradation of extracellular ATP by ecto-nucleotidases

in arterial smooth muscle cells and calculated values for Kdeg and Vdeg, using the least

squares method to fit a curve for ATP degradation to experimentally observed data points

[33]. They arrived at values of 221 µM for Kdeg and 2.5 µMs−1 for Vdeg. It is important

to note however that ATP degradation depends heavily upon cell type as well as extracel-

lular concentration. As different cell types express different ecto-nucleotidases in different

proportions, their ability to degrade extra-cellular ATP will differ also. Further results

arrived at by Gordon et al, where the time course of the degradation of ATP in a culture

of smooth muscle cells is compared to the time course in a culture of endothelial cells il-

lustrates this [32, 33]. The profile of ATP degradation as well as the time before all ATP

is degraded in each case differs, leading to different predicted values for Kdeg and Vdeg. As

cellular concentration is increased so will the concentration of ecto-nucleotidases and hence

extracellular ATP will be degraded more quickly. Koike et al showed that the proportion

of ATP degraded in three minutes by ecto-nucleotidases in a cluster of hepatocytes (a type

of liver cell) bore a non-linear relationship to the cellular concentration of hepatocytes [47].

Gordon et al ’s values for Kdeg and Vdeg can therefore only act as a guide when applied to

ATP degradation facilitated by radial glial cells.

Joseph et al [43] also investigated ATP degradation by ecto-nucleotidases, and their re-

sults seem to be at odds with Gordon et al ’s. Joseph et al looked at astrocytes, a cell type

very similar to radial glial cells. By investigating the rate at which various ATP analogs

were degraded they drew conclusions as to the roles different ecto-nucleotidases played in

facilitating the degradation of ATP. Included in the results for the degradation of the ATP

analogs were results for the degradation of ATP itself. These results are reproduced Figure

in 2.2.

It is possible to arrive at estimates for the parameters Vdeg and Kdeg from the raw data

displayed in Figure 2.2. After reading off the values for ATP concentration at all points in

time, one can use fminsearch in Matlab to calculate values for Vdeg and Kdeg for this data,

by fitting the data to the ODE defining ATP degradation defined above. Doing so yields

values of 0.005925 µMs−1 and 5.1434 µM for Vdeg and Kdeg respectively. The second plot in
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Figure 2.2: Joseph et al ’s data concerning ATP degradation by astrocytes is shown in

the left hand plot. The right hand plot consists of Joseph et al ’s data (at 0

µM) complete with a curve of best fit that we produced (see text for details).

Parameter values given by Vdeg=0.005925 µMs−1 and Kdeg =5.1434 µM.

Initial conditions given by [ATPE ](0) =0.0982 µM. Results obtained using

ode45 (a Runge-Kutta formula) within Matlab. Left hand graph reproduced

from [43].

Figure 2.2 shows that for these parameter values our simulated model for ATP degradation

fits well to the raw data produced by Joseph et al. These values for Vdeg and Kdeg are

far lower than the values arrived at by Gordon et al, suggesting that it takes far longer

for astrocytes to degrade ATP than the arterial cells Gordon et al looked at. It would

be desirable however to have more data points particularly for higher ATP concentrations

which we may model in order to ensure that the values for Vdeg and Kdeg arrived at are as

accurate as possible. The lack of such points perhaps renders the conclusions we can draw

from this data less reliable.

Other authors have investigated ATP degradation, but have taken a different approach

to displaying their results. Reigada et al [73] for example assume that ATP degradation

can be modelled by the following ODE,

d[ATPE ]
dt

= − [ATPE ]
τ

, (2.20)

where τ is the time constant.
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They consider an initial concentration of ATP and then measure the concentration that

is left at subsequent points in time. They then fit an exponential curve to this data using

the least squares method to obtain a value for τ . Their plot of the time constant for ATP

degradation by retinal pigment epithelium (RPE) cells against the initial ATP concentra-

tion is shown in Figure 2.3. The fact that the curve intercepts the origin does not seem

realistic if our model for ATP degradation as outlined in equation (2.17) is correct, as it

will lead to a Kdeg value of zero for the reasons that we come to shortly. Reigada et al com-

ment that higher initial concentrations of ATP lead to further ATP release from RPE cells,

leaving the possibility that the time constant Reigada et al arrive at for higher initial ATP

concentrations may be skewed, due to extra ATP being released as a result of the feedback

mechanism. All this suggests that the curve of best fit plotted in Figure 2.3 should be a

line of best fit. If we equate the ODE describing ATP degradation according to Michaelis

Menten kinetics with Reigada et al ’s ODE for ATP degradation (equation (2.20)) we get

τ =
Kdeg + [ATPE ]

Vdeg
. (2.21)

Differentiating this expression with respect to [ATPE ] gives dτ
d[ATPE ] = 1

Vdeg
. By calculat-

ing the slope of the line in Figure 2.3, it will therefore be possible to obtain an approximate

value for Vdeg from Reigada et al ’s results, with Vdeg = 1/slope. Fitting a straight line of

best fit to the Reigada data by hand gives a slope of approximately 0.05, giving a Vdeg value

of approximately 20 nMmin−1, i.e. Vdeg ≈ 0.00033 µMs−1. If we assume the [ATPE ] term

from equation (2.21) to no longer be dynamic but instead just represent the initial ATP

concentration, then it is possible to arrive at an approximate value for Kdeg from Reigada

et al ’s results also. If we return to our expression τ = Kdeg+[ATPE ]
Vdeg

(equation (2.21)), when

[ATPE ] = 0, we get τ = Kdeg

Vdeg
. If we read off the value for τ when [ATPE ] = 0 from our

line of best fit in Figure 2.3, we arrive at a value of τ of around 10s. Substituting the above

value for Vdeg of 0.00033, Kdeg = τ · Vdeg = 600 · 0.00033 ≈ 0.2µM. Note that if our line

of best fit had passed through the origin, then Kdeg = τ · Vdeg = 0 · 0.00033 = 0. These

values for Vdeg and Kdeg do not agree at all well with Gordon et al ’s results. Indeed a

Vdeg value of 0.00033 seems very low and physically unrealistic when applied to large ATP

concentrations as it would take a time longer than the period of the cell cycle for initially

large concentrations of ATP to be degraded. This suggests that fitting the data in Figure

2.3 to a straight line does not yield satisfactory results.
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It therefore seems that we are unable to obtain satisfactory values for Vdeg and Kdeg

from Reigada et al ’s results. It is interesting to note however, that for larger concen-

trations of ATP, the time constant as calculated using Reigada et al ’s exponential curve

of best fit agrees reasonably well with the time constant that it is possible to calculate

from Gordon et al ’s results. Reigada et al curve of best fit shown in Figure 2.3 obeys

y = 60.21(1 − exp−0.03x), and hence τ tends to 60.21 minutes as ATP tends to infinity.

For larger ATP values therefore, of order µM say, τ ≈ 60mins. This is almost within

one order of magnitude of an approximate value of τ it is possible to calculate from Gor-

don et al ’s results. As stated above, assuming that ATP degrades according to Michaelis

Menten kinetics, then τ = Kdeg+[ATPE ]
Vdeg

(equation (2.21)). If as before we assume [ATPE ]

from this expression to be static, representing the initial concentration of ATP, then we

can calculate a time constant from Gordon et al ’s results. For ATP concentration of 0

τ = Kdeg+[ATPE ]
Vdeg

= 221+0
2.5 = 89.6s ≈ 1.47mins. While for an ATP concentration of 500 µM,

τ = 221+500
2.5 ≈ 4.806 mins.

Figure 2.3: Reigada et al ’s results showing a plot of the time constant for ATP degrada-

tion against initial ATP concentrations. ATP concentrations given in units

of nM. Solid line correspond to Reigada’s curve of best fit, broken line corre-

sponds to our proposed line of best fit. Graph adapted from [73].

Koike et al investigated the effect different cellular densities of hepatocytes (a type of
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liver cell) have on ATP degradation [47]. They consider relatively high initial ATP concen-

trations of 100 µM. Koike’s results are shown in Figure 2.4. If one reads off the percentage

of ATP remaining after 3 minutes at a certain cellular concentration from Figure 2.4, then it

is possible to calculate the time constant τ for ATP degradation at this value, assuming as

before d[ATPE ]
dt = − 1

τ [ATPE ] (equation (2.20)). The value for τ ranges from around 2 mins

for a cellular concentration of 6 dry wt/ml up to around 60 mins . These values for τ seem

to agree well with Reigada et al ’s results and seem to lie within one order of magnitude

of the approximate value for τ reached from Gordon et al ’s and Joseph et al ’s results (see

Table 2.1).

Figure 2.4: Curve of best fit to data from [47] showing the proportion of an initial con-

centration of 100 µM of ATP left after three minutes after being exposed to

different cell densities of hepatocytes. Units of cell density are given in dry

weight per ml. Reproduced from [47].

We compiled the various results we obtained from our investigations into Table 2.1. As-

suming Michaelis Menten kinetics, we would expect Kdeg to be independent of cell density,

while Vdeg would be dependent upon it. If we doubled the cellular density, one would expect

Vdeg to double, as the concentration of ecto-nucleos would double. As Gordon et al [32, 33]

and Joseph et al [43] are the only authors to publish how the extracellular ATP concentra-

tion varies over several points in time coupled with the fact that there is evidence to suggest

that ATP degradation exhibits Michaelis Menten kinetics, it seems reasonable to give their
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results more credence over the others. Therefore, in choosing values for Vdeg and Kdeg, it

seems reasonable that they should be heavily influenced by Gordon et al ’s and Joseph et

al ’s results. As radial glial cells bear a closer cellular resemblance to the astrocytes that

Joseph et al studied than to the arterial muscle cells that Gordon et al studied, it seems

reasonable to choose values Vdeg and Kdeg skewed more towards Joseph et al ’s results. We

therefore choose a value for Kdeg of 50 µM and consider values for Vdeg of between 0.01 and

2µMs−1 to be physically realistic.

Interestingly, these values differ from those used in current mathematical models that

include ATP degradation. Although Bennett et al ’s term for ATP degradation is disre-

garded in all simulations, with the ATP boundary conditions ensuring ATP degradation

[5], Stamatakis et al do consider the same form of ATP degradation in their simulations

[82]. They use Vdeg = 6 µMs−1 and Kdeg = 5 µM in their model. Our analysis of ATP

degradation seems to suggest that these values may not be appropriate. Having such a high

value for Vdeg will lead to ATP degradation which is far faster than that physically observed

by Gordon et al and Joseph et al. Indeed, if we calculate τ using the same procedure out-

lined above, but using the values for Vdeg and Kdeg provided by Stamatakis et al and the

ATP concentrations considered in their model, we arrive at an approximate value of be-

tween 0.02 and 0.04 mins. This is far lower than the τ that has either been experimentally

observed or calculated via other means from the biological literature and will lead to very

fast and physically unrealistic ATP degradation. It is difficult to know how Stamatakis et

al arrived at these values as they do not reveal their sources for the values used [82].

Table 2.1: ATP rate constants

Author τ(min) Vdeg(µMs−1) Kdeg (µM)

Gordon et al 1.47-4.806 ∗ 2.5 221

Joseph et al ≈14.468 ∗ 0.005925 5.1434

Reigada et al 0-60 0.00033 ∗ 0.2 ∗

Koike et al 2-30 ∗ - -
∗ Values calculated from paper under certain assumptions.

With regard to the [ATPI ]max term in equation (2.16), representing the maximum in-

tracellular ATP concentration, it has proved very difficult to arrive at a realistic value from

data in the literature. However, Guthrie et al claim that a value of 5000 µM represents
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the upper limit of the cytoplasmic ATP concentration in astrocytes. We therefore consider

values of 500 µM for [ATPI ]max.

The value of the ATP diffusion coefficient DATP from equation (2.17) is based upon

work conducted by de Graaf et al [17] and Bennett et al [6]. Our chosen parameter values

are given in Table 2.2.

2.3 Single Cell Simulations

With our chosen parameter values, we are now in a position to numerically simulate the

system (2.1)-(2.18). As the literature is unclear about the precise timing of ATP release

during the cell cycle [10, 34, 93], we consider two models, one where ATP release is mainly

towards mid G1 phase and another where release occurs later, towards the G1/S phase

transition.

Cyclin D levels are high during G1 phase, before dropping off during S phase [13, 81, 96],

while Cyclin E levels peak during late G1 phase [20, 44]. Therefore, modelling ATP release

as occurring during mid G1 phase can be achieved by setting Hi = Di and Hc = Dc. Dc

is the critical concentration of Cyclin D, above which ATP release is ‘switched on’. This

ensures that high Cyclin D concentrations which signal mid G1 phase allow for the release

of ATP through a cell’s hemichannels. This scenario is shown in the first plot in Figure 2.5.

When modelling ATP release during the G1/S phase transition, our cell cycle protein of

interest becomes Cyclin E, represented by E in our model. Cyclin E activity peaks during

the G1/S phase transition. However, in our model its steady state value, which corresponds

to the quiescent state can be higher than the maximum value of the limit cycle solutions as

seen in Figure 2.5. Therefore, in modelling the quiescent G0 state by allowing the system to

sit on the stable fixed point, there is a danger ATP will be released (a physically unrealistic

event) if we were to replace Hi and Hc with Ei and Ec respectively. This is because at

steady state Cyclin E levels may still be greater than the critical threshold Ec (see Figure

2.5). However, when the system oscillates, Rs reaches its minimum almost exactly at the

same time that Cyclin E reaches its peak. In addition, steady state values of Rs are sig-
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Table 2.2: Parameter values

Parameter Value Source

r∗h 0.6 µMs−1 Section 1.8.1 IP3 production rate

a′D 0.41 [66] Maximum Cyclin D synthesis rate in

absence of calcium

aE 0.16 [66] E2F independent Cyclin E synthesis rate

aX 0.08 [66] Rate of Cyclin E/Cdk2 dependnet CPI

production

k 0.054 [66] Efficiency of Growth Factor signal

transduction pathway

qD 0.6 [66] Michaelis constant

qE 0.6 [66] Michaelis constant

qX 0.8 [66] Michaelis constant

f 0.2 [66] Rate of free E2F dependnet CPI

production

g 0.528 [66] CPI autocatalytic reaction rate

ps 0.6 [66] Rate at which free unphosphorylated RB

sequesters E2F

pD 0.48 [66] Maximum rate at which active

Cyclin D/Cdk4 phosphorylates RB

pE 0.096 [66] Rate at which free unphosphorylated RB

sequesters E2F

pX 0.48 [66] Maximal rate at which the CPI

dephosphorylates RB

dD 0.4 [66] Rate at which active Cyclin E/Cdk2

degrades Cyclin D

dE 0.2 [66] Rate at which the CPI degrades Cyclin E

dX 1.04 [66] CPI degradation rate

af 0.9 [66] E2F dependent Cyclin E synthesis rate

RT 2.5 [66] Total RB

� 1.5 [66] Total concentration of E2F

GF 6.3 [66] Growth Factors

ts 3600 Section 2.2 Time scaling parameter

Vdeg 0.01− 2 µMs−1 [32, 33, 43, 47, 73] Maximal ATP degradation rate

[ATPI ]max 500 µM Section 2.2.1 Maximum internal ATP concentration
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Table 2.2: Parameter values (cont.)

Parameter Value Source

VATP 50 s−1 Section 1.8.1 ATP production rate

[IP3]min 0.013 µM [5] Minimum IP3 concentration

Dc 0.5 Section 2.3 Critical Cyclin D concentration which

must be reached to allow for ATP release

[IP3]c 0.012 µM [5] Minimum IP3 concentration which

must be reached

to allow for ATP release

% 0.01 µM−1 Stiffness of switch

γ 0.4 Calcium coupling strength

DATP 350 µm2s−1 [5] ATP diffusion coefficient

∆x 10 µm Distance between cells

p1 0.0159835 µM Section 2.4 Basal calcium concentration

p2 0.514987 Section 2.4 Hill function coefficient

p3 1.31319 Section 2.4 Hill function coefficient

p4 0.332195 Section 2.4 Hill function coefficient

p5 0.787902 Section 2.4 Hill function coefficient

m 24.1946 Section 2.4 Hill function coefficient

n 9.79183 Section 2.4 Hill function coefficient

α 0.083 s−1 ATP refill rate

Kdeg 50 µM [32, 33, 43, 47, 73] Michaelis constant

[Ca2+]b 0.0159835 µM [90] Basal calcium concentration

kdeg 0.0625 s−1 Section 1.8.1 IP3 degradation rate

Rsc 1 Section 2.3 Critical Cyclin D concentration, below

which ATP is released

β 0.0244 [90] Calcium buffering

KI 0.03 µM [90] IP3 dissociation constant

Kact 0.17 µM [90] Calcium dissociation consant

[Ca2+]ER 400 µM [90] ER calcium concentration

kon 8.0 µM−1s−1 [90] ‘On rate’ of calcium binding

Kinh 0.1 µM [90] Dissociation constant

Vmax 5.85 µMs−1 [90] Maximal pumping rate

KP 0.24 µM [90] Dissociation consant

PL 0.67739936 µMs−1 [90] Leak constant
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nificantly higher than the minimum Rs in the oscillatory regime. Therefore the modelling

of ATP release during the G1/S transition could be achieved by ensuring ATP is released

when Rs is approaching its minimum. If we replace Hi and Hc in our model with Rsc and

Rsi respectively, ATP release will occur when Rs falls below Rsc which will co-incide with

Cyclin E peaking. Again, this scenario is illustrated in Figure 2.5, where it can also be

seen that the steady state value of Rs is so high that there is no danger of ATP release at

steady state. Replacing Hi and Hc in our model with Rsc and Rsi respectively is therefore

the approach we take to model ATP release during the G1/S transition.
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Figure 2.5: Plots of a number of cell cycle variables for Obeyesekere’s cell cycle model

given by equations (2.1)-(2.5). The results show how the limit cycle and

steady state solutions relate to proposed critical thresholds for three different

variables (D,E and Rs) with a view to accurately modelling the timing of

ATP release. Parameter values as for Table 2.2.

Numerically integrating system (2.1)-(2.18) for a single cell, which is achieved by ignoring

the spatial component of equation (2.17) for both the Cyclin D dependent ATP release model

((Hi, Hc) = (Di, Dc)) and the Rs dependent ATP release model ((Hi, Hc) = (Rsc, Rsi)) leads

to oscillations seen in Figure 2.6. It can be seen that the system (2.1)-(2.18) captures many
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Table 2.3: Initial Conditions

Cyclin D dependent Rs dependent

ATP release ATP release

Full model Cell cycle model Full model Cell cycle model

D(0) 0.1564 0.1482 0.6054 0.4975

E(0) 1.2034 1.3467 0.2322 0.2108

R(0) 0.6410 0.6164 0.8940 0.8925

Rs(0) 1.1695 1.1645 1.2422 1.2710

X(0) 2.5225 2.0436 2.0436 2.3819

[ATPE ](0) (µM) 0 - 0 -

[ATPI ](0) (µM) 500 - 500 -

[IP3](0) (µM) 0.013 - 0.013 -

[Ca2+](0) (µM) 0.02 - 0.02 -

h(0) 0.9524 - 0.9524 -

of the qualitative features of cell cycle coupled ATP signalling in radial glial cells for both

Cyclin D and Rs dependent ATP release. Simulations of our model for Cyclin D dependent

release are shown in the first column of plots in the figure. From these plots, it can also

be seen that ATP induced calcium spiking occurs as Cyclin D levels peak, before calcium

returns to steady state when Cyclin D begins to fall below Dc. As outlined above, G1 phase

is associated with high values of Cyclin D and therefore in this model we have successfully

modelled the opening of a cell’s hemichannels, leading to the release of ATP during mid G1

phase.

Similarly, it can be seen from the second column of plots in Figure 2.6, that the model

with Rs dependent release leads to ATP induced calcium release during the G1/S phase

transition. As mentioned above, the G1/S phase transition is associated with high Cyclin

E levels and it at this point that ATP induced calcium spiking occurs.

Additionally, it is clear that Cyclin D production is greater with both forms of autocrine

ATP-[Ca2+] signalling than without such autocrine signalling (c.f. Cyclin D levels in Figure

2.6). This is in keeping with Kahl’s findings that Cyclin D production is increased by the

release of calcium from internal stores [45, 46]. The periods of the coupled models were 28.5
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Figure 2.6: Simulations obtained by numerically integrating system (2.1)-(2.18) for a

single cell. Parameter values as for Table 2.2, except for Vdeg = 2µMs−1.

The first column of plots correspond to Cyclin D dependent ATP release

((Hi, Hc) = (Di, Dc)). They show ATP mediated calcium release occurring

as Cyclin D peaks (mid G1 phase), leading to a decrease in the period of

the cell cycle of the original cell cycle model. The second column of plots

correspond to Rs dependent ATP release ((Hi, Hc) = (Rsc, Rsi)). They show

ATP mediated calcium release occurring as Cyclin E peaks (late G1 phase),

leading to a decrease in the period of the cell cycle of the original cell cycle

model. Initial conditions as for Table 2.3. All results obtained using Stiff

(an adaptive step integrator useful for stiff problems) within XPP a software

tool used to solve differential equations [21].
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hours in the Cyclin D dependent case and 28 hours in the Rs dependent case, compared to

29.1 hours in the original cell cycle model. The reduction in the period although small is

clear upon inspecting the plots in the bottom row in Figure 2.6. If one increases the calcium

coupling strength γ to 1.2, the period of oscillation for the Cyclin D dependent ATP release

model falls further to 26.9 hours and that of the Rs dependent model to 26.55 hours (results

not shown). These reductions are still modest however, which suggests that the modulation

of the frequency of oscillation achieved through a calcium signalling mechanism can not in

itself account for the large increase in neural production observed by Weissman et al [93],

although it may still play an important role in this process, e.g. by inducing oscillations

that would not otherwise occur.

One can also see from Figure 2.6 that calcium spiking lasts longer in the Rs dependent

ATP release model than for the Cyclin D dependent model. It is the choice of Rsc and Dc

that lead to the disparity in the duration of the calcium spikes. We chose values for Rsc
and Dc to ensure that qualitatively speaking, ATP was released predominantly during the

G1/S phase transitions in the Rs dependent ATP release model and during mid G1 phase

in the Cyclin D dependent ATP release model. Although it would be possible to change

the value of Rsc and/or Dc so that the duration of calcium spikes is the same under the

parameter regime considered in Figure 2.6, as soon as the parameter regime is changed

the disparity in the duration of calcium spiking will return. This is because the timing of

the calcium spiking plays an important role in how and by how much the cell cycle vari-

ables are affected. Calcium spiking towards the beginning of the cell cycle may not have

the same effect upon Cyclin D and as a consequence the rest of the cell cycle variables

as the same transients towards the end of the cell cycle for example. Under a parameter

regime whereby calcium is released for a longer period of time than is the case in Figure

2.6, Cyclin D will be affected for a longer period of time. However, in this case the change

brought about by the extra calcium upon Cyclin D activity in the Rs dependent model may

be qualitatively and quantitatively different to the change brought about in the Cyclin D

dependent model due to the different timing of the release of the extra calcium. This is

something that becomes more apparent later in the chapter. In this sense therefore our two

models should only be compared qualitatively and this is the approach we take in this thesis.
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2.4 Reduction of the Model

The calcium dynamics and cell cycle dynamics occur over very different timescales. In order

to faithfully model the calcium dynamics, and in particular the small period of the calcium

oscillations, one has to set a very small time step when numerically integrating the system

(2.1)-(2.18). This will make it extremely computationally expensive to simulate systems of

many cells and will present problems with regard to the production of bifurcation diagrams.

Therefore we explored whether it is reasonable to model the calcium dynamics as a smooth

average instead of allowing calcium to oscillate. Moreover, we do not consider performing

asymptotic analysis on the systems in this thesis, instead focussing upon producing numeri-

cal results. Looking at the bifurcation diagram from Figure 1.20 it would appear that it is a

simple task to calculate a smooth calcium average, as it looks as if the average calcium lev-

els over an oscillatory cycle would be halfway between the maximum and minimum values

indicated in this diagram. If this were the case, an approximation to the average would be

a simple step function. However, due to the spiking nature of the calcium the average can

not be calculated in this way as can be seen from Figure 2.7 which gives the true average

calcium per oscillation. It can be seen that the average concentration of calcium takes on a

more complicated form. In fact by inspection it appears that a curve defined by the sum of

two hill functions could pass through the stable solutions shown in the figure. With this in

mind we collected the data for the average calcium values along with their respective values

of [IP3] with a view to numerically fitting a curve to these values. With this achieved, it will

be possible to replace the values for calcium given by equation (2.7) with this new function.

Not only this, but with equation (2.7) replaced, equations (2.8)-(2.11) governing amongst

other things the calcium ‘gating’ variable h will become superfluous and can be ignored in

future simulations. Our curve of best fit is defined as

[Ca2+]i = p1 +
p2[IP3]mi

p3m + [IP3]mi
+

p4[IP3]ni
p5n + [IP3]ni

. (2.22)

Utilising fit within Gnuplot, which uses an implementation of the non-linear least

squares Marquardt-Levenberg algorithm [57] we arrived at the values for p1, p2, p3, p4, p5, n

and m shown in Table 2.2. Figure 2.7 illustrates how our new function fits the average

calcium data. Note that, although for higher values of [IP3] our function does not fit the

data very well, this should not matter. We are only concerned with [IP3] fluctuations that

sweep the system into the limit cycle solutions from the lower stable steady state and back

out again. Hence, our line of best fit need only fit the data for the lower steady steady state
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and stable oscillatory states.
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Figure 2.7: Bifurcation diagram for the Li and Rinzel model for [IP3] mediated calcium

release, given by equations (2.7)-(2.11) showing which values of the parameter

IP3 give rise to calcium oscillations, as well as a plot of the curve of best fit

given by equation (2.22). Bifurcation diagram calculated using AUTO (a

package for numerical continuation) [21] within XPP. Parameter values given

in Table 2.2 except for [IP3], which is as indicated.

In order to satisfy ourselves that our function approximating the calcium dynamics leads

to results qualitatively and quantitatively very similar to results for the full model, we ran

a number of simulations for each scenario, for each model. Some of the results of these

simulations are shown in Figure 2.8. From this it is clear that the results of the reduced

system are almost identical to those of the full system. We therefore adopt the reduced

system in all further work. In all subsequent simulations and calculations we do not change

the calcium parameters and there is therefore no need for us to recalculate our curve of best

fit at any point.
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Figure 2.8: Simulations obtained by numerically integrating system (2.1)-(2.18) and sys-

tem (2.1)-(2.6), (2.12)-(2.18), (2.22). The results show that the match be-

tween the full model and reduced model is excellent. First row of plots cor-

respond to the system with Cyclin D dependent release, modelled by re-

placing Hi and Hc in the system with Di and Dc respectively. Initial con-

ditions for these simulations were D(0) = 0.4646, E(0) = 0.0857, R(0) =

0.9047, Rs(0) = 1.2763, X(0) = 8.6954, [IP3](0) = 0.013 µM, [ATPI ](0) =

499.9998 µM, [ATPE ](0) = 0.00013 µM, [Ca2+](0) = 0.02 µM, H(0) =

1. The second row of plots correspond to Rs dependent ATP release,

modelled by replacing Hi and Hc with Rsc and Rs. Initial conditions

for these simulations were D(0) = 0.7128, E(0) = 0.2218, R(0) =

0.8919, Rs(0) = 1.2088, X(0) = 2.3361, [IP3](0) = 0.013 µM, [ATPI ](0) =

500 µM, [ATPE ](0) = 0 µM, [Ca2+](0) = 0.02 µM, H(0) = 0.9524. Results

were calculated using the Stiff within XPP. Parameter values as per Table

2.2, except for Vdeg = 2 µMs−1 and γ = 1
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2.5 Analysis of the System for a Single Cell

2.5.1 Bifurcation Analysis

In calculating the bifurcation diagram for a single cell for the system it was necessary to

assume a quasi-steady state approximation for the [IP3] dynamics governed by equation

(2.15). This is because AUTO, the software package we use for continuation, has difficulty

resolving the saddle node bifurcation point of limit cycles (marked FP1D in Figure 2.10(a)

and FP1Rs in Figure 2.10(b)) unless the total number of ODEs is reduced. As the timescale

governing the [IP3] dynamics is very short compared to that of the cell cycle dynamics,

there should be little quantitative difference in the results. Direct simulations of the system,

under different parameter regimes with and without the quasi-steady state approximation

for [IP3], suggest that it has no qualitative effect on the system. The results of one such

simulation are shown in Figure 2.9.

Bifurcation diagrams for both the Cyclin D dependent ATP release and Rs dependent

ATP release model with quasi-steady state approximation for equation (2.15) are shown in

Figure 2.10. Both models yield qualitatively similar bifurcation digrams. If we take the Cy-

clin D dependent case first (Figure 2.10(a)), we see that stable small amplitude oscillations

are created via a Hopf bifurcation point at a′d ≈ 0.409957. The stability of this branch of

limit cycle solutions is lost via a saddle node bifurcation (FP3D) and regained at FP2D,

where a′d ≈ 0.3956. Up until this point the bifurcation diagram for the system is identical

to that of Obeyesekere et al ’s original cell cycle model discussed in the previous chapter.

However, when this branch of solutions begins to approach Dc = 0.5, Cyclin D production

increases as a result of ATP mediated calcium release and the stability of the solution is

again lost via a saddle node bifurcation, before being recovered at FP1D, where a′d ≈ 0.3852.

The bifurcation diagram for Rs dependent ATP release (Figure 2.10(b)) is similar in

form. However, the effect of ATP mediated calcium release is seen earlier than for the

Cyclin D dependent case. This effect is characterised by the dog leg (marked DL) in the

branch of limit cycle solutions at a′d ≈ 0.3965. In this model, under this parameter regime,

increased Cyclin D production, facilitated by ATP mediated calcium release, occurs before

the saddle node bifurcation point (FP1Rs) that we saw in the Cyclin D dependent case and

this is why we do not see a bifurcation point equivalent to FP2D in the Rs dependent model.
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Figure 2.9: Simulations of system (2.1)-(2.6), (2.12)-(2.18), (2.22) with and without

quasi-steady state approximation for equation (2.15). The first row of plots

correspond to Cyclin D dependent release, the bottom row to Rs dependent

release. Parameter values given in Table 2.2 in the Cyclin D dependent case

and as for Table 2.2 except for Vdeg = 0.02 µMs−1 in the Rs dependent case.

Initial conditions for Cyclin D dependent case were D(0) = 0.3168, E(0) =

0.0325, R(0) = 0.8365, Rs(0) = 1.2369, X(0) = 28.2354, [IP3](0) =

0.5137 µM, [ATPI ](0) = 499.9999 µM, [ATPE ](0) = 23.6701 µM. Initial

conditions for Rs dependent case were D(0) = 0.1454, E(0) = 2.1012, R(0) =

0.3818, Rs(0) = 0.9838, X(0) = 0.7823, [IP3](0) = 0.9458 µM, [ATPI ](0) =

499.7765 µM, [ATPE ](0) = 499.7809 µM. Results obtained using ode23s (an

explicit Runge-kutta (2,3) formula useful for solving stiff systems) in Matlab.
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Figure 2.10: Bifurcation diagrams of system (2.1)-(2.6), (2.12)-(2.18), (2.22) with quasi-

steady state approximation for equation (2.15). The bifurcation diagram

shows how the maximum Cyclin D concentration depends upon the Cyclin

D synthesis rate a′d. Plot (a) corresponds to Cyclin D dependent ATP release

model ((Hi, Hc) = (Di, Dc)) and plot (b) to the Rs dependent ATP release

model ((Hi, Hc) = (Rsc, Rsi)). Diagrams calculated using AUTO within

XPP. Parameter values by Table 2.2, except γ = 1, Vdeg = 2 µMs−1 and

a′d which is as shown. FP1D, FP2D, FP3D, FP1Rs and FP2Rs correspond

to fold or saddle node bifurcation points, while HB corresponds to a Hopf

bifurcation point.

It can also be seen from this figure that there exists an area of multistability in the Cy-

clin D dependent model and an area of bistability in the Rs dependent model. By referring

to Figure 2.10(a), it can be seen that the area of mulitstability is bounded to the right hand

side by FP3D and to the left by FP1D in the Cyclin D dependent case. In the Rs dependent

case, FP1Rs and FP2Rs form the bounds of the area of bistability. It is hypothesised in the

literature that a cycling radial glial cell may have the ability to induce a quiescent cell into

the G1 phase of the cell cycle [93]. These areas of multistability and bistability could be

relevant to this process. Let us consider a multicellular model and a parameter regime such

that all cells lie within the area of multistability or bistability. Quiescent cells would have

initial conditions such that they sit on the stable fixed point. A driving cell whose initial

conditions are such that it is oscillating on the upper limit cycle could recruit quiescent

cells to which it is coupled on to the upper limit cycle branch. Such recruitment would

depend, amongst other factors, upon the existence and stability of phase locked solutions

in the chosen model and this forms the basis for the work in Sections 2.6 and 2.7. Alterna-

tively, one could model quiescent cells with a parameter regime so that at rest they sit on
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a stable steady sate that lies outside the area of multistability or bistability. In referring

to Figure 2.10, one can see that this could be achieved by having a value for a′d for the

quiescent cell below FP1D in the Cyclin D dependent model and below FP1Rs in the Rs
dependent model. A pacemaker cell which has parameter values and initial conditions such

that it is oscillating could then release ATP, leading to a release of calcium from the internal

stores of the quiescent cells, thus potentially sweeping the quiescent cells into the area of

multistability or bistability and onto the upper branch of limit cycle solutions. When extra-

cellular ATP falls to zero, the quiescent cells will sweep back out the area of multistability

or bistability and return to the stable steady state which lies outside this area. Again this

possibility would depend upon the existence and stability of phase locked solutions under

different parameter regimes (see Sections 2.6 and 2.7). Whichever approach is taken it will

be instructive to analyse the dependence of the fold points, which form the bounds of the

area of multistability, upon parameter values. Two parameter bifurcation diagrams where

we do just this are shown in Figure 2.11. In this figure we use γ, which represents the

calcium coupling strength as one of the control parameters.
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Figure 2.11: Bifurcation diagrams of system (2.1)-(2.6), (2.12)-(2.18), (2.22) with quasi-

steady state approximation for equation (2.15). The bifurcation diagram

shows how the fold points and Hopf bifurcation points from Figure 2.10

depend upon the calcium coupling strength γ and in turn how this affects

the areas of multistability and bistability in our models. Plot (a) corresponds

to the Cyclin D dependent ATP release model ((Hi, Hc) = (Di, Dc)) and (b)

to the Rs dependent ATP release model ((Hi, Hc) = (Rsc, Rsi)). Diagrams

calculated using AUTO within XPP. Parameter values by Table 2.2, except

Vdeg = 2 µMs−1, a′d and γ as as shown.
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Figure 2.11 illustrates how the boundaries of the areas of multistability and bistability

depend upon γ. For both models the area increases as the calcium coupling strength γ

increases. Interestingly, in the Cyclin D dependent case, for values of γ < 0.3705, FP2D and

not FP1D forms the left hand boundary of the area of multistability. Under the parameter

regime considered in the figure, FP3D and FP2Rs remain unaffected by a change in γ. This

is because the effect of ATP release is only seen above this point. This is also true of the

Hopf bifurcation point HB.

2.6 Weakly Coupled Non-Linear Oscillator Theory

In this section we introduce the theory of weakly coupled non-linear oscillators, which we

shall use to investigate the existence and stability of phase locked solutions of systems of

two coupled cells.

Before we introduce the theory itself, we first of all introduce a number of concepts.

Several mathematical approaches concerning coupled oscillators have been outlined in the

literature [41, 61]. However, a consensus has not been reached as to the definitions of

phase, phase locking, synchronisation, etc. We therefore introduce these concepts here and

the definitions that we will use for them henceforth.

2.6.1 Phase

Let us consider a dynamical system,

dX

dt
= F (X), (2.23)

which has an asymptotically stable solution

X0(t) = X0(t+ T ), (2.24)

with period T (and hence frequency Ω = 1
T ).

Let X(t) be another T periodic solution to equation (2.23), starting from X(0). For

each point on the limit cycle X(t), there is a unique s ∈ [0, T ], such that X0(s) = X(t).
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Now the natural phase θ(t) is a solution to

dθ

dt
= Ω, with θ(t+ T ) = θ(t) (2.25)

and θ(0) = s where

X0(s) = X(0).

As we traverse X0(t), perhaps at a discontinuous speed, the natural phase θ changes at a

constant speed (see Figure 2.12).

0

Figure 2.12: Schematic illustrating the parameterisation Γ that we adopt to calculate the

phase θ(t) of an oscillator

2.6.2 Phase Locking, Synchronisation and the Theory of Weakly Coupled

Oscillators

Before embarking upon our definitions of phase locking and synchronisation, Let us consider

two coupled identical oscillators of the form given by equation (2.23), to give

dX1

dt
= F (X1) + εG(X2, X1), (2.26)

dX2

dt
= F (X2) + εG(X1, X2). (2.27)

In this system, G is a function that provides the isotropic coupling between the two oscil-

lators and ε is the coupling coefficient accounting for the coupling strength. If we let the

phase of the first oscillator be θ1 and that of the second be θ2, with θ defined by equation

(2.25), then the two oscillators are said to be phase locked when the phase difference, Φ =
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θ2− θ1 is equal to a constant. If Φ = 0, then the two oscillators are said to be synchronised.

If Φ = T
2 then the oscillators are said to be anti-phase phase locked. For any other constant

value of Φ this phase locking is said to be out of phase or asynchronous.

The theory of weakly coupled oscillators tells us that if ε � 1, which ensures that the

coupling between the oscillators is weak then system (2.26)-(2.27) can be reduced to the

phase model (see [41] for proof)

dθ1

dt
= Ω + εL(θ2 − θ1), (2.28)

dθ2

dt
= Ω + εL(θ1 − θ2), (2.29)

where the T periodic function L(Φ), known as the phase interaction function, is defined by

L(Φ) =
1
T

∫ T

0
X∗(t)G[X0(t+ Φ), X0(t)]dt. (2.30)

X0(t) in this expression is the asymptotically stable solution (defined in equation (2.24))

of dynamical system (2.23). X∗(t) is a T periodic function called the adjoint or response

function. It is the phase resetting curve of the oscillator in the limit of vanishingly small

perturbations. If X∗(t) > 0 at any point, perturbing the system at this point will advance

the period and if X∗(t) < 0, it will be retard the phase. The response function satisfies the

linear differential equation and normalisation given by

dX∗

dt
= −[DXF (X0(t))]TX∗(t), X∗(t)X

′
0 = 1. (2.31)

where DXF is the derivative of matrix F with respect to X, AT is the transpose of the

matrix A and X ′ denotes the derivative of X with respect to t.

The interaction function L(Φ), defined in equation (2.30), is calculated by averaging

the effect of the coupling, given by G[X0(t + Φ), X0(t)], with the response function X∗(t)

over the period of oscillation. Note also, that the interaction function depends only on the

dynamics of a single oscillator.

The important concept with regard to the phase locking of two oscillators is the phase

difference between the two oscillators which is defined by
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Φ = θ2 − θ1. (2.32)

From equations (2.28), (2.29) and (2.32), it is clear that

Φ′ = ε(L(−Φ)− L(Φ)). (2.33)

Phase locked solutions exist when Φ is constant. Note the synchronous solution Φ = 0

will always exist, due to the isotropic nature of the spatial coupling in the system. As L(Φ)

is T periodic, the anti-phase phase locked state Φ = T
2 will also always be a solution. In

order to find other solutions it will be necessary to calculate M(Φ) = L(−Φ)− L(Φ).

It is next important to investigate the stability of the solutions. Let us consider a small

perturbation Φ̃ to a phase locked solution Φ∗, so that Φ = Φ∗ + Φ̃. Substitution into equa-

tion (2.33) gives

Φ̃′ =ε(M(Φ∗ + Φ̃))

≈ε(M(Φ∗) +M ′(Φ∗)Φ̃)

=ε(M ′(Φ∗)Φ̃). (2.34)

Hence, solutions will be stable if M ′(Φ∗) is negative and unstable if M ′(Φ∗) is positive.

2.7 Analysis of a System of Two Coupled Cells

We are now in a position to consider a system of two coupled identical radial glial cells and

investigate through weakly coupled oscillator theory and bifurcation analysis the existence

and stability of phase locked solutions.

2.7.1 Cyclin D Dependent ATP Release

Let us consider a system of two cells given by (2.1)-(2.6), (2.12)-(2.18), (2.22) for Cyclin

D dependent ATP release ((Hi, Hc) = (Di, Dc)). We let the phase of oscillation of each

cell be θ1 and θ2, with θ as defined above. XPP implements a method devised by Graham

Bowtell to calculate the response curve X(t)∗ [21] and from this we can calculate M(Φ).
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As noted above, the coupling between cells in the system is via the transport of of external

ATP governed by equation (2.17). In our 2 cell system therefore, the coupling function

from equation (2.26), G(X2, X1) will be equivalent to [ATPE ]2− [ATPE ]1 and the coupling

function from equation (2.27), G(X1, X2) will be equivalent to [ATPE ]1− [ATPE ]2. As our

single cell system is 8 dimensional and spatial coupling is facilitated through external ATP

only, all components of the coupling function G[X0(t+ Φ), X0(t)] from equation (2.30) will

be zero except for the external ATP component. This means that with our model, only the

external ATP component of the response function X(t)∗ will be a factor when calculating

L(Φ) and from it M(Φ). A plot of the external ATP component of the response function is

shown in the Figure 2.13.
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Figure 2.13: Plots of the external ATP component of the response function X(t)∗ for

the system given by (2.1)-(2.6), (2.12)-(2.18), (2.22) for Cyclin D depen-

dent ATP release ((Hi, Hc) = (Di, Dc)). The left hand panel indicates how

the phase would be shifted if ATP is perturbed throughout its period of

oscillation. Right hand panel is a zoomed in profile of the left hand panel.

The response function was calculated using XPP. Parameter values given in

Table 2.2, except for Vdeg = 0.01 µMs−1.

From Figure 2.13, it can be seen that the external ATP component of the response

function is initially negative, indicating that if external ATP is perturbed at this point,

the phase of the system will be retarded. However, it quickly becomes positive at t ≈ 1,

indicating that the phase would be advanced if ATP is perturbed at this point in the cycle.

It then becomes negative again, falling sharply around t ≈ 16. However, although it is

difficult to see from the figure, it becomes positive again. Having calculated X(t)∗ for the

system, we are now in a position to calculate M(Φ). The results of these calculations are
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shown in Figure 2.14.

As discussed above, phase locked solutions correspond to M(Φ) = 0. From Figure 2.14,

it can be seen that M(Φ) = 0 four times. As M(Φ) is a periodic function of period T ,

existence of one equilibrium implies the existence of a whole family of solutions that differ

by nT (n ∈ Z). As M(Φ) crosses the horizontal axis 4 times within the period of one

oscillation, we shall consider the system to have four equilibria and we will not consider the

family of solutions with the correspondingly equivalent phase differences. The equilibria we

are concerned with occur at Φ = 0, 6.57, 13.655 and 20.73. The slope of M(Φ) indicates

the stability of these solutions, a negative slope being stable and a positive slope indicating

an unstable solution. Therefore, the synchronous solution Φ = 0 and the anti-phase phase

locked solution Φ = 13.65 (13.65 being half 27.3, the period of oscillation) are stable. The

other two solutions are unstable, indicated by the positive slope of M(Φ) at these points.

The theory of weakly coupled oscillators therefore suggests that whether two coupled os-

cillators settle down to the synchronous or anti-phase phase locked solution will depend

upon the initial conditions of the two different cells. Bifurcation analysis confirms that for

two coupled oscillators, under this parameter regime, two stable limit cycle solutions exist,

supporting the predictions of the weakly coupled oscillator theory. The results from this

analysis are shown in Figure 2.15.

From Figure 2.15, it can be seen that there exist two stable limit cycle solutions. It

may seem that the analysis using weakly coupled oscillator theory is superfluous, as it can

not tell us anything that our bifurcation analysis can not. However, the theory of weakly

coupled oscillators can be extended to larger systems of several cells in one and two spatial

dimensions and this will not be the case for numerical bifurcation analysis where limita-

tions are imposed upon the number of ODEs that AUTO can handle. In the two cell case,

bifurcation analysis acts as a useful tool to confirm the results from the application of the

theory of weakly coupled oscillators.

Results from simulating the system, which can be seen in Figures 2.16 and 2.17, confirm

the findings of our analysis. Figure 2.16 shows that an initial phase difference of 4.5 hours

leads to synchronous phase locked solutions, while Figure 2.17 shows that an initial phase

difference of 8.5 hours leads to solutions that are anti-phase phase locked, as predicted by
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Figure 2.14: Plot of M(Φ) for the system (2.1)-(2.6), (2.12)-(2.18), (2.22) for Cyclin D

dependent ATP release ((Hi, Hc) = (Di, Dc)). Intersections with the x

axis are indicated by coloured dots. Red dots relate to stable phase locked

solutions and blue to unstable phase locked solutions as predicted by the

theory of weakly coupled oscillators. Under this parameter regime, the

theory predicts that the synchronous solution and anti-phase phase locked

solutions are stable. M(Φ) was calculated using XPP. Parameter values

given in Table 2.2, except for Vdeg = 0.01 µMs−1.
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Figure 2.15: Bifurcation diagram of system (2.1)-(2.6), (2.12)-(2.18), (2.22) for two cells

for Cyclin D dependent ATP release ((Hi, Hc) = (Di, Dc)). Parameter

values as for Table 2.2, except for Vdeg = 0.01µMs−1 and a′d of cell 1, which

is as shown and a′d of cell 2 which is 0.41. Diagram produced using AUTO

within XPP. The diagram confirms the existence of a stable synchronous

solution and stable anti-phase phase locked solution.
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the analysis. Interestingly, in this case the coupling leads to a small reduction in the period

of the cell cycle of both cells. This can be seen from Figure 2.17 by comparing the dynamics

of two coupled cells to those of a single cell under the same parameter regime. The coupling

reduces the period of oscillation from 27.3 to 26.9 hours, which is brought about by an

increase in extracellular ATP and consequently a greater increase in the Cyclin D synthesis

rate than would be the case if the cells were uncoupled. This increase in ATP can be seen

by comparing the extracellular ATP dynamics for the coupled case against the extracellu-

lar ATP dynamics of an uncoupled cell in Figure 2.17. There is no such increase in the

frequency of the coupled oscillators in the synchronous case, since synchronous oscillations

are identical to those without coupling.

As mentioned above, the theory of weakly coupled oscillators tells us that, if ε � 1

then the system can be reduced to a phase model. The condition ε � 1 ensures that am-

plitude effects are negligible. In reality, the predictions from this reduction are valid, at

least qualitatively, for larger vales of the coupling strength ε, where the condition ε� 1 is

not strictly satisfied (see [39, 53] for a discussion), although there is no a priori method to

assess whether this is true for any given system. In the anti-phase phase locked solution

shown in Figure 2.17, the coupling is so strong that it has brought amplitude effects into the

oscillations. In fact these amplitude effects are responsible for the reduction in the period

of the cell cycle. From Section 2.6, it is clear that our definition of phase, which is used

in the theory of weakly coupled oscillators, is dependent upon the limit cycle of a single

uncoupled cell. However, as the coupling has introduced amplitude effects into the system

in Figure 2.17, this definition is not valid. When this is the case we use a definition of phase

first proposed by Golomb and Rinzel [31] (discussed in more detail in Section 3.4 of chapter

3) and take the difference in the times the two cells’ Cyclin D concentrations peak to give

us the phase difference. This definition is consistent with the definition of phase used in

the theory of weakly coupled oscillators when amplitude effects are not introduced, as for

all synchronous solutions for example. Even though, strictly speaking, the theory is not

valid in Figure 2.17 because of the amplitude effects introduced by the strong coupling, it

was still able to correctly predict the existence and stability of the anti-phase phase locked

solutions and in such cases it can act as a useful predictive tool.

Different parameter regimes lead to different profiles for M(Φ) and in some cases to a

loss of stability of the synchronous solution. Although our analysis suggests that the syn-
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Figure 2.16: Simulation of system (2.1)-(2.6), (2.12)-(2.18), (2.22) for the Cyclin

D dependent ATP release model ((Hi, Hc) = (Di, Dc)) for one and

two cells. The results were calculated using Stiff within XPP and

show that for a small initial phase difference the solution trajectory

tends towards a stable synchronous solution. In the simulations of

the two cell system, the initial phase difference between the two cells

was 4.5 hours (based on the phase of a single uncoupled cell). Ini-

tial conditions: D1(0) = 0.6010899, D2(0) = 0.6047926, E1(0) =

0.1775467, E2(0) = 0.8364856, R1(0) = 0.9056494, R2(0) =

0.5939475, Rs1(0) = 1.253212, Rs2(0) = 1.110384, X1(0) =

3.161909, X2(0) = 0.1884256, [IP3]1(0) = 0.945814 µM, [IP3]2(0) =

0.945814 µM, [ATPE ]1(0) = 499.733 µM, [ATPE ]2(0) =

499.733 µM, [ATPI ]1(0) = 499.8795 µM, [ATPI ]2(0) = 499.8795 µM.

Transients not shown. Parameter values given in Table 2.2, except for

Vdeg = 0.01 µMs−1.
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Figure 2.17: Simulation of system (2.1)-(2.6), (2.12)-(2.18), (2.22) for the Cyclin D

dependent ATP release model ((Hi, Hc) = (Di, Dc)) for one and two

cells. The results which were calculated using Stiff within XPP show

that if the initial phase difference between two cells is large then the

system settles down to a stable anti-phase phase locked solution. In the

simulations of the two cell system, the initial phase difference between the

two cells was 8.5 hours (based on the phase of a single uncoupled cell).

Initial conditions: D1(0) = 0.6010899, D2(0) = 0.2920837, E1(0) =

0.1775467, E2(0) = 1.550719, R1(0) = 0.9056494, R2(0) =

0.315571, Rs1(0) = 1.253212, Rs2(0) = 0.9876701, X1(0) =

3.161909, X2(0) = 0.2330289, [IP3]1(0) = 0.945814 µM, [IP3]2(0) =

0.9367997 µM, [ATPE ]1(0) = 499.733 µM, [ATPE ]2(0) =

407.1908 µM, [ATPI ]1(0) = 499.8795 µM, [ATPI ]2(0) = 500 µM.

Parameter values given in Table 2.2, except for Vdeg = 0.01 µMs−1.

Transients not shown.
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chronous state is stable for low values of the calcium coupling strength γ, high values of γ,

coupled with high values for the external ATP degradation rate Vdeg, render this state un-

stable according to our analysis. The plot of M(Φ) for such a parameter regime be can seen

in Figure 2.18. There now exist 6 steady states at Φ = 0, 0.35451, 7.8583, 13.41, 18.9617

and 26.4655. Interestingly, however the synchronous state is now unstable, as indicated by

the positive slope at Φ = 0. As before the anti-phase phase locked state remains stable.

Our bifurcation analysis, the results of which are shown in Figure 2.19, confirm that for

large values of γ and Vdeg the synchronous state becomes unstable.

Figure 2.19 reveals that the lower branch of limit cycle solutions (this is the branch

of synchronous solutions) is lost via a bifurcation point at γ ≈ 1.065856, while a higher

branch of limit cycle solutions (the anti-phase phase locked state) persists. Unfortunately,

our attempts at continuing the solution from this bifurcation point using AUTO were un-

successful. It was unclear to us as to precisely why AUTO failed in this regard. However, if

we directly simulate the system from the unstable limit cycle solutions for a value of γ = 1.2

near the bifurcation point with slightly perturbed initial conditions, the system evolves to

the branch of stable anti-phase phase locked solutions (Figure 2.20). This coupled with

the fact that the theory of weakly coupled oscillators predicted the existence of a stable

asynchronous solution for large values of Vdeg and γ, suggests that the bifurcation point

shown in the figure is likely to be a supercritical pitchfork bifurcation point of limit cycles

(the limit cycle analogue of the local pitchfork bifurcation). We were unable to find the

stable asynchronous state predicted by the analysis. This does not necessarily mean that it

does not exist however, as it may exist on a branch of solutions independent of those shown

in Figure 2.19. Finding this state through direct numerical simulation would be akin to

finding a needle in a haystack however. Simulations of the system for two cells under the

parameter regime of Figure 2.19 are shown in Figure 2.20 below.

It can be seen from Figure 2.20 that the system settles down to an anti-phase phase

locked state when it is initialised from a perturbed synchronous state, indicating that the

synchronous phase locked solution is unstable, as predicted by the analysis. As before the

coupling in the anti-phase state reduces the period of oscillation. In this case from 27.02 to

24.85 hours. Again this is ultimately due to the greater concentration of extracellular ATP

in the anti-phase state, as can be seen by comparing the ATP profile of the coupled case to

the uncoupled case in this figure.
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Figure 2.18: Plot of M(Φ) for the system (2.1)-(2.6), (2.12)-(2.18), (2.22). In this case,

the theory of weakly coupled oscillators predicts that the synchronous so-

lution is unstable. This is in contrast to Figure 2.14, where the theory

predicted that the synchronous solution was stable. The theory also pre-

dicts that the anti-phase phase locked solution and asynchronous solution

are stable. M(Φ) was calculated using XPP. Parameter values given in Table

2.2 except for Vdeg = 2 µMs−1 and γ = 1.2.
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Figure 2.19: Bifurcation diagram of system (2.1)-(2.6), (2.12)-(2.18), (2.22) for two cells.

The diagram reveals that the synchronous solution branch loses stability at

a bifurcation point for larger values of γ while the anti-phase phase locked

branch remains stable, as predicted by the theory of weakly coupled oscil-

lators. Parameter values as for Table 2.2, except for Vdeg = 2 µMs−1 and

γ which is as shown. Key: BP corresponds to bifurcation point. Diagram

produced using AUTO within XPP.
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Figure 2.20: Simulation of system (2.1)-(2.6), (2.12)-(2.18), (2.22) for one and two cells.

The simulations confirm that the synchronous state is unstable under this

parameter regime and the system evolves to the stable anti-phase phase

locked solution. Calculated using Stiff within XPP. Initial conditions were

such that the system was slightly perturbed from the synchronous state

(≈ ±0.001) and are given by: D1(0) = 1.010007, D2(0) = 1.011007, E1(0) =

0.7302775, E2(0) = 0.7292775, R1(0) = 0.6201518, R2(0) =

0.6211518, Rs1(0) = 1.049325, Rs2(0) = 1.038325, X1(0) =

0.2490771, X2(0) = 0.2480771, [IP3]1(0) = 0.9436596 µM, [IP3]2(0) =

0.9446596 µM, [ATPE ]1(0) = 474.2088 µM, [ATPE ]2(0) =

474.2078 µM, [ATPI ]1(0) = 474.702 µM, [ATPI ]2(0) = 474.7031 µM.

Parameter values given in Table 2.2 except for Vdeg = 2µMs−1 and γ = 1.2.

Transients not shown.

94



2.7 Two Cell Analysis Chapter 2: Coupled Calcium and Cell Cycle Dynamics

2.7.2 Rs Dependent ATP Release

We next investigated the existence and stability of phase locked solutions for the Rs depen-

dent ATP release case. Like the Cyclin D dependent case, there exist multiple phase locked

solutions. Indeed, as in the Cyclin D case, the stability of the synchronous solutions can be

lost under certain parameter regimes. A plot of M(Φ) under a parameter regime that leads

to stable synchronous solutions is shown in Figure 2.21
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Figure 2.21: Plot of M(Φ) for the system (2.1)-(2.6), (2.12)-(2.18), (2.22) for a single cell,

with (Hi, Hc) = (Rsc, Rsi). Intersections with the x axis are indicated by

coloured dots. Red dots relate to stable phase locked solutions and blue to

unstable phase locked solutions as predicted by the theory of weakly coupled

oscillators. Under this parameter regime, the theory of weakly coupled

oscillators predicts that the stable and anti-phase phase locked solutions are

stable. M(Φ) was calculated using XPP. Parameter values given in Table

2.2 except for Vdeg = 0.1 µMs−1 and γ = 1.4.

From Figure 2.21, it can be seen that the weakly coupled oscillator theory predicts 4

phase locked solutions at Φ = 0, 0.3545, 12.87 and 25.386. The synchronous solution and

anti-phase phase locked solution (corresponding to Φ = 12.87) are stable, while the two

asynchronous solutions are unstable. As mentioned above, the synchronous solution is ren-

dered unstable under certain parameter regimes. The plot of M(Φ) under one such regime

is shown in Figure 2.22.

From Figure 2.22 our analysis predicts four phase locked solutions at Φ = 0, 5.8379, 12.62

and 19.4201. The two asynchronous solutions, corresponding to Φ = 5.8379 and 19.4201

are stable with all other solutions including the synchronous solution being unstable. In
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Figure 2.22: Plot of M(Φ) for the system (2.1)-(2.6), (2.12)-(2.18), (2.22) and (2.22) for

a single cell, with (Hi, Hc) = (Rsc, Rsi). The theory of weakly coupled

oscillators predicts that the synchronous solution is unstable in this case.

M(Φ) was calculated using XPP. Parameter values given in Table 2.2 except

for Vdeg = 0.04 µMs−1 and γ = 1.4.

fact the two asynchronous solutions are the same solution, since 19.4201=T -5.8379, where

T=25.24 hours, the period of oscillation. This is always the case since

M(Φ) =L(−Φ)− L(Φ)

=L(T − Φ)− L(Φ− T )

=L(T − Φ)− L(−T + Φ)

=− (L(−T + Φ)− L(T − Φ))

=−M(T − Φ);

and it follows that

M ′(Φ) = −M ′(T − Φ) · −1 = M ′(T − Φ),

so that if a solution is stable at Φ = Φ∗, it will be stable at Φ = T − Φ∗.

As before, we conducted bifurcation analysis on the system to confirm the predictions

of the weakly coupled oscillator theory. The results of this analysis are shown in Figure 2.23.

In Figure 2.23 we use Vdeg as the control parameter, while for the Cyclin D dependent

ATP release model, we used γ. We change the control parameter here in order to demon-

strate that the Rs dependent ATP release model can exhibit the same interesting behaviour

we saw when studying the Cyclin D dependent model in the previous section. From Figure
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Figure 2.23: Bifurcation diagram of system (2.1)-(2.6), (2.12)-(2.18), (2.22) for two cells

with (Hi, Hc) = (Rsc, Rsi). The right hand plots correspond to zoomed in

sections of the left hand plots. The diagram shows that for a sufficiently

small value for Vdeg the stability of the synchronous branch of solutions is

lost, illustrating that as for the Cyclin D dependent model, the Rs dependent

model can exhibit asynchronous behaviour. Parameter values as for Table

2.2, except for γ = 1.4 and Vdeg which is as shown. BP corresponds to

bifurcation point, PF to a pitchfork bifurcation. Diagram produced using

AUTO within XPP.
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2.23 it can be seen that as Vdeg is reduced the stability of the limit cycle solution which

corresponds to the branch of synchronous solutions is lost at Vdeg ≈ 0.0525 via a pitchfork

bifurcation of limit cycles. The two branches that emanate from the pitchfork bifurcation

point correspond to the two possible stable solutions that each cell will evolve to when the

cells are phase locked in an asynchronous manner. These asynchronous solutions are ini-

tially unstable but become stable at a bifurcation point at Vdeg ≈ 0.0525. For Vdeg < 0.0525,

which cell ends up on which solution branch will depend upon the initial conditions of the

system.

Simulating the system from a perturbed synchronous state for two cells under the two

different parameter regimes considered above shows how the stability of the synchronous

state is lost, as predicted by our analysis. The results of these simulations are shown in Fig-

ures 2.24 and 2.25. Figure 2.24 shows that for certain parameters the system evolves to the

synchronous state when initialised from the perturbed synchronous state, as predicted by

the analysis. The period of the two cells in this case is the same as in the single cell case, i.e.

25.74 hours, as one would expect, as in the synchronous case the cells behave as if uncoupled.

The qualitative conclusions of our analysis are further confirmed by simulations of the

system. Figure 2.25 shows an example where a small perturbation of the synchronous state

evolves to an asynchronous state with a phase difference of 3.49 hours, which differs from

the 5.8379 predicted by the analysis, providing further confirmation that for stronger cou-

pling, the theory of weakly coupled oscillators holds only qualitatively. There is a slight

reduction in the period of oscillation in the asynchronous case. The spatial coupling brings

about a reduction period of oscillation from 25.24 hours to 24.92 hours over and above

the reduction brought about by the internal calcium coupling of the cell. Interestingly, in

the stable asynchronous case the two cells do not evolve to identical oscillatory solutions,

although the period of oscillation of both are the same (e.g. in Figure 2.25 the maximum

Cyclin D concentration of cell 1 is higher than that of cell 2). In Figure 2.25, the initial

conditions of the system were such that cell 1 evolved onto the upper branch of limit cycle

solutions seen in the top left hand plot in Figure 2.23, while cell 2 evolved to the lower

branch of limit cycle solutions seen in the same figure. The fact that these two solutions

are not identical is not a surprising result, since perturbing the cell cycle at different phases

will result in the cycle being retarded or accelerated at different rates. Indeed the fact that

the plot of the Cyclin D component of the response function shown in figure in 2.13 is not
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Figure 2.24: Simulation of system (2.1)-(2.6), (2.12)-(2.18), (2.22) for one and two cells

with (Hi, Hc) = (Rsc, Rsi). Calculated using Stiff within XPP. The results

show that the system initialised from a state that is slightly perturbed from

the synchronous state evolves to the stable synchronous solution. Initial

conditions given by are given by: D1(0) = 0.9379, D2(0) = 0.9389, E1(0) =

0.2122, E2(0) = 0.2132, R1(0) = 0.8804, R2(0) = 0.8814, Rs1(0) =

1.1453, Rs2(0) = 1.1463, X1(0) = 1.1453, X2(0) = 1.1463, [IP3]1(0) =

0.013 µM, [IP3]2(0) = 0.013 µM, [ATPE ]1(0) = 0 µM, [ATPE ]2(0) =

0 µM, [ATPI ]1(0) = 500 µM, [ATPI ]2(0) = 500 µM. Parameter values

given in Table 2.2 except for Vdeg = 0.1 µMs−1 and γ = 1.4. Transients not

shown.
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Figure 2.25: Simulation of system (2.1)-(2.6), (2.12)-(2.18), (2.22) for one and two

cells with (Hi, Hc) = (Rsc, Rsi). Calculated using Stiff within XPP.

The simulations show that the system, which is initialised from a state

very close to the synchronous solution diverges from this solution and

tends towards a stable asynchronous solution. Initial conditions given

by: D1(0) = 1.1113, D2(0) = 1.1114, E1(0) = 0.2518, E2(0) =

0.2519, R1(0) = 0.8581, R2(0) = 0.8582, Rs1(0) = 1.1027, Rs2(0) =

1.1028, X1(0) = 2.2066, X2(0) = 2.2067, [IP3]1(0) = 0.0170µM, [IP3]2(0) =

0.0171µM, [ATPE ]1(0) = 45.75µM, [ATPE ]2(0) = 45.76µM, [ATPI ]1(0) =

500 µM, [ATPI ]2(0) = 500.001 µM. Parameter values given in Table 2.2

except for Vdeg = 0.04 µMs−1 and γ = 1.4. Transients not shown.
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a straight line illustrates this fact well.

This final observation provides us with the reason why the theory of weakly coupled

oscillators failed to correctly predict the phase difference for the stable asynchronous so-

lution, even though it successfully predicted the existence and stability of this solution.

The condition on the coupling strength ε� 1 ensures that amplitude effects caused by the

coupling can be neglected when reducing the system to a phase model [25, 39]. Indeed,

if one refers to equation (2.30), one can see that the interaction function is calculated by

averaging the effect of the coupling and response function over the period of oscillation of a

single uncoupled oscillator. It is clear from Figure 2.25 that the coupling in this case leads

to amplitude effects in both oscillators. It is important to note that the theory of weakly

coupled oscillators is more robust at predicting the stability of the synchronous solution

for stronger coupling. This is because by definition the period and indeed limit cycles of

two oscillators cycling in a synchronous manner will remain invariant when the system is

uncoupled, i.e. no matter what the strength, the coupling will not bring about amplitude

effects in the oscillators in the synchronous state. For this reason, the theory of weakly

coupled oscillators will be far better at successfully predicting the stability and existence of

synchronous solutions than it is at all other phase locked solutions. Nevertheless, the fact

that we have encountered this quantitative limitation of the theory for the system should

act as a cautionary tale when considering asynchronous phase locked solutions of systems

of several cells. These issues are discussed in [39, 53].

2.8 Conclusions and Further work

In this chapter we have introduced a model for the coupling of calcium to the cell cycle dy-

namics of a radial glial cell which captures many of the qualitative characteristics displayed

by radial glial cells, such as ATP induced calcium signalling facilitated via the opening of

a cell’s hemichannels during a point in the cell cycle. Bifurcation analysis of a single cell

model reveals an area of multistability for our Cyclin D dependent ATP release model and

an area of bistability in our Rs dependent ATP release model.

Using a phase averaging technique, bifurcation analysis and direct simulation we have

shown how the existence and stability of phase locked solutions for two cells depends not
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only upon different parameter regimes but also upon the timing of the release of ATP dur-

ing the cell cycle. We have shown that, although stable synchronous solutions exist for

both of our models, their stability is lost under certain parameter regimes. This may seem

like a counter intuitive result, especially if one is familiar with the story of the physicist

Christian Huygens discovering that two clocks connected by a supporting beam synchro-

nise as a result of the passing of vibrations from one clock to the other along the beam.

However, it is perhaps illuminating to note that there are a number of examples in the liter-

ature of coupling between oscillators, which takes the same or similar form to the coupling

in our system, leading to unusual behaviour. Ermentrout and Kopell showed that under

certain circumstances excitatory coupling between oscillators can lead to oscillator death

[24]. There is also an example of diffusive coupling between oscillators leading the system

to display chaotic behaviour [71]. The fact that two oscillators in the system do not always

synchronise is not therefore surprising. These results suggest that, for two cells at least

ATP mediated coupling can lead to the phase locking of cells in a synchronous manner, as

hypothesised by Weissman et al [93]. However, our results also suggest that the stability of

this synchronous state will be highly dependent upon the strength of the calcium coupling

as well as the rate of extra-cellular ATP degradation. This will need to investigated further

by considering systems of several cells under different parameter regimes.

According to Weissman et al [93] the introduction of an ATP receptor agonist over a

period of an hour brought about a decrease in the proportion of proliferating radial glial

cells to 54.7 % of control. This could be due to a decrease in the speed with which cells

cycle or a decrease in the number of cells cycling. ATP induced calcium signals in our

simulations, where both cells are initially oscillating, can not account for this decrease.

However bifurcation analysis of single cell systems revealed an area of multistability in the

Cyclin D dependent ATP release model and an area of bistability in the Rs dependent ATP

release model. These areas could reflect the recruitment of quiescent cells by driving cells

via ATP mediated calcium waves, which could in turn account for the normal proportion

of proliferating cells seen in the literature. This is something we explore in chapters 4 and

5.
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Chapter3
Existence and Stability of Phase Locked So-

lutions in Several Coupled Cells

3.1 Introduction

I
n this chapter we build upon work in the previous chapter concerning the phase locked

behaviour of 2 cells by investigating the existence and stability of phase locked solu-

tions for several cells in 1 and 2 spatial dimensions. We begin by outlining how the

theory of weakly coupled oscillators can be applied to systems of more than two coupled

cells. We then use the theory to make predictions about the existence and stability of phase

locked solutions for several cells in one and two spatial dimensions for both our models

under certain parameter regimes. We then discuss ‘synchrony’ measures with a view to

applying a suitable measure to simulations of large systems of cells in order to characterise

the degree to which the cells within these systems are synchronised. Through direct nu-

merical simulation of both models under different parameter regimes we attempt to confirm

the findings of our analysis and also investigate the degree to which the cells in each model

synchronise under these different parameter regimes.

Let us first remind ourselves of the system of ODEs governing the coupling between the

calcium dynamics and cell cycle dynamics of a cluster of radial glial cells

103



3.1 Introduction Chapter 3: Several Cells in 1D and 2D

dDi

dt
= adi

(
kGF

1 + kGF

)
− dDEiDi, (3.1)

dEi
dt

= aE(1 + af (�−Rsi))− dEXiEi, (3.2)

dRi
dt

=
pX(RT −Rsi −Ri)Xi

qX + (RT −Rsi −Ri) +Xi
− ps(�−Rsi)Ri, (3.3)

dRsi
dt

= ps(�−Rsi)Ri −
pDRsiDi

qD +Rsi + d
− pERsiEi
qE +Rsi + Ei

, (3.4)

dXi

dt
= aXEi + f(�−Rsi) + gX2

i Ei − dXXi, (3.5)

adi = a′d + γ([Ca2+]i − [Ca2+]b), (3.6)

[Ca2+]i = p1 +
p2[IP3]mi

p3m + [IP3]mi
+

p4[IP3]ni
p5n + [IP3]ni

, (3.7)

ρi =
[ATPE ]i

KR + [ATPE ]i
, (3.8)

δ =
KG[IP3]minKdeg

r∗h − [IP3]minKdeg
, (3.9)

G∗i =
ρi + δ

KG + ρi + δ
, (3.10)

d[IP3]i
dt

= ts(r∗hG
∗
i − kdeg[IP3]i), (3.11)

d[ATPI ]i
dt

= ts

(
α([ATPI ]max − [ATPI ]i)

− T (Hi, Hc, %)T ([IP3]i, [IP3]c, %)VATP ([ATPI ]i − [ATPE ]i)
(

[IP3]i − [IP3]min
Krel + [IP3]i

))
,

(3.12)

d[ATPE ]i
dt

= ts

(
DATPLD

+ T (Hi, Hc, %)T ([IP3]i, [IP3]c, %)VATP ([ATPI ]i − [ATPE ]i)
[IP3]i − [IP3]min
Krel + [IP3]i

− Vdeg
[ATPE ]i

Kdeg + [ATPE ]i

)
, (3.13)

T (Hi, Hc, %) =
1
2

(
tanh

(
Hi −Hc

%

)
+ 1
)
. (3.14)

We index variables by i in the one dimensional case and i, j in two spatial dimensions.

LD in equation (3.13) provides the spatial component of the system and in one spatial
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dimension

LD =
[ATPE ]i−1 − 2[ATPE ]i + [ATPE ]i+1

∆x2
. (3.15)

In two spatial dimensions

LD =
[ATPE ]i,j−1 + [ATPE ]i−1,j − 4[ATPE ]i,j + [ATPE ]i+1,j + [ATPE ]i,j+1

∆x2
.

(3.16)

As before, we adopt zero-flux boundary conditions, such that in one spatial dimension

[ATPE ]i−1 = [ATPE ]i+1 at i = 1, l, (3.17)

and in two spatial dimensions

[ATPE ]i−1,j = [ATPE ]i+1,j at i = 1,m,

[ATPE ]i,j−1 = [ATPE ]i,j+1 at j = 1, n,

where l is the total number of cells in the 1D case, m is the width of the 2D array (in

number of cells) and n the height.

3.2 Weak Coupling Theory Applied to Regular Arrays of

Oscillators

As mentioned in the previous chapter, computational limitations make it difficult to extend

our bifurcation analysis to systems of several cells, yet we can extend our weakly coupled

oscillator theory analysis to systems of several cells relatively easily. Let us firstly remind

ourselves briefly of the weakly coupled oscillator theory that we introduced in the previous

chapter. The theory states that it is possible to reduce a higher dimensional system of

coupled oscillators to a system of phase equations. As in the previous chapter we introduce

an oscillator, given by the dynamical system

dX

dt
= F (X), (3.18)

which has an asymptotically stable solution X0(t) = X0(t + T ), with period T and

frequency ω. Let us now consider n identical oscillators indexed by i, coupled firstly in

a one dimensional linear chain and secondly in a two dimensional square grid with zero

flux boundary conditions for each. We let function G(Xi, Xj) provide the coupling between

oscillators i and j and ε is the coupling strength. If we assume all coupling to be isotropic

then our coupled system becomes:
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One spatial dimension

dXi

dt
= F (Xi) + εG(Xi−1, Xi) + εG(Xi+1, Xi), (3.19)

with zero-flux boundary conditions of G(Xi−1, Xi) = G(Xi+1, Xi) for i = 1, l where l is the

the length of the lattice.

Two spatial dimensions

dXi

dt
= F (X1) + εG(Xi−1,j , Xi,j) + εG(Xi+1,j , Xi,j) + εG(Xi,j−1, Xi,j) + εG(Xi,j+1, Xi,j),

(3.20)

with zero flux boundary conditions of G(Xi−1,j , Xi,j) = G(Xi+1,j , Xi,j) for i = 1,m,

G(Xi,j−1, Xi,j) = G(Xi,j+1, Xi,j) for j = 1, n where m is the width of the array and n the

height.

These scenarios are illustrated schematically in Figure 3.1.

Proceeding as in the previous chapter, providing ε � 1, systems (3.19) and (3.20) can

be reduced to the canonical models given by

One spatial dimension

θ′i = ω + ε(L(θi−1 − θi) + L(θi+1 − θi)), (3.21)

with zero-flux boundary conditions of L(θi−1 − θi) = L(θi+1 − θi) for i = 1, l. θi is the

phase of oscillator i defined as in the previous chapter.

Two spatial dimensions

θ′i,j = ω + ε(L(θi−1,j − θi,j) + L(θi+1,j − θi,j) + L(θi,j−1 − θi,j) + L(θi,j+1 − θi,j)), (3.22)

with zero-flux boundary conditions of L(θi−1,j − θi,j) = L(θi+1,j − θi,j) for i = 1,m,

L(θi,j−1 − θi,j) = L(θi,j+1 − θi,j) for j = 1, n. θi,j is the phase of oscillator i, j defined as in
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1D

2D

Figure 3.1: Schematic, illustrating the coupling in a 1D linear chain of n = 4 oscillators

and a 2D square grid of n = 9 oscillators.
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the previous chapter and we define L(Φ) as in equation (2.30).

Phase locked solutions correspond to θ′i = Ω for all i in 1D and θ′i,j = Ω for all i, j in 2D,

where Ω is a constant and can be thought of as a common frequency for all cells, called the

‘ensemble frequency’. By analysing the form of L therefore, it will be possible to identify

phase locked solutions for linear chains and grids of coupled oscillators. Ascertaining the

stability of these solutions however is a more difficult task.

As in the previous chapter, the condition ε � 1 is not necessarily satisfied with the

system, yet as discussed previously the theory of weakly coupled oscillators can still provide

qualitative predictions on the existence and stability of phase locked solutions.

Ermentrout and Kopell have devoted much research into ascertaining the stabil-

ity of phase locked solutions in linear chains of nearest neighbour coupled oscillators

[23, 25, 48, 49, 50]. Their earliest work relied upon an odd L function (i.e. L(Φ) = −L(−Φ))

[23], while their later work relied upon L satisfying the condition L(0) 6= 0 [25, 48, 49, 50].

With isotropic couping L(0) = 0 always and the L function will often contain both even and

odd parts. These approaches will not therefore work with both of our systems. However,

Ermentrout proved that if a phased locked solution satisfies two sufficient conditions then

this solution is asymptotically stable [22]. There is no proof that the converse is true.

We shall provide an outline of the theorem and proof here. The reader who wishes to

study the proof in more detail is directed to [22]. Suppose we have a phase locked solution

of system (3.21) of θ0
j (t) and a phase locked solution of system (3.22) of θ0

j,l(t). Then in 1D

if for coupled oscillators j and k

ajk = Lθ(θ0
k − θ0

j ) > 0 (3.23)

and in 2D if for coupled oscillators j, l and j,m

ajljm = Lθ(θ0
j,m − θ0

j,l) > 0, (3.24)

where Lθ is the derivative of L with respect to θ and if the network is ‘connected’ (i.e.

each oscillator is influenced even indirectly, by every other oscillator) then the solutions
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θ0
j (t) and θ0

j,l(t) are asymptotically stable.

The proof relies upon the use of a continuation argument from a phase locked solution

θ0
j (t) in 1D and θ0

j,l(t) in 2D and is based upon the implicit function theorem. The same

conditions that allow the continuation of a branch of solutions via the implicit function

theorem also prove asymptotic stability.

Indirect influence is defined as follows: oscillator k indirectly influences oscillator j if

there exists a finite sequence i1, ..., in such that ai1kai2i1 · · · ·ajin 6= 0. The diffusion term

ensures that this will be the case for both of our systems.

3.3 The Application of Weakly Coupled Oscillator Theory in

1 and 2 Spatial Dimensions

3.3.1 Cyclin D Dependent ATP Release

We first focus upon our Cyclin D dependent ATP release model where ATP release dur-

ing mid G1 phase is ensured by replacing Hi and Hc in equation (3.14) with Di and Dc

respectively. In the previous chapter we showed that for two cells there existed param-

eter regimes that lead to a stable synchronous solution as well as regimes that lead to

an unstable synchronous solution. When calculating L(θi−1 − θi), L(θi+1 − θi) in 1D and

L(θi,j−1 − θi,j), L(θi,j+1 − θi,j) in 2D, it is important to note that as the coupling between

neighbouring cells is identical in the system, in 1D L(θi−1 − θi) will be identical for all i

and in 2D L(θi,j−1 − θi,j) will be identical for all i, j’s. This is because the calculation

for L depends only upon the nature of the coupling and the response function of a sin-

gle cell (see equation (2.30)). Likewise L(θi+1 − θi) will be of identical form for all i and

L(θi,j+1 − θi,j) for all i, j’s. For simplicity we therefore let the phase difference between

oscillators Φ = θi−1− θi for all i in the 1D case and Φ = θi−1,j − θi,j and θi,j−1− θi,j , for all

i, j’s in the 2D case. We begin our analysis by calculating L(Φ) and L(−Φ) for the system

under the parameter regime that gave rise to a stable synchronous solution for two cells.

The results of these calculations are shown in Figure 3.2.
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Figure 3.2: Plots of L(Φ) (first column) and L(−Φ) (second column), with L(Φ) defined

as in equation (2.30) for system (3.1)-(3.14) with Cyclin D dependent ATP

release ((Hi, Hc) = (Di, Dc)). The bottom row plots show the region around

Φ = 0. The positive slope at L(0) in the first column of plots (LΦ(0) > 0) and

negative slope in the second column (L−Φ(0) > 0) indicate that the analysis

predicts that the synchronous solution is stable. Parameter values as in Table

2.2, except for Vdeg = 0.01µMs−1. All plots calculated using XPP.
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It is clear from Figure 3.2 that L(0) = 0 and this corresponds to the synchronous

solution. This is because if we substitute Φ = 0 into system (3.21), we get θ′i =

ω + ε(L(Φ) + L(−Φ)) = ω + ε(L(0) + L(0)) = ω = Ω for all i’s. Similarly from system

(3.22), we get θ′i,j = ω = Ω for all i, j’s. It is more difficult to ascertain the stability of this

solution which depends upon the slope of the curve at L(0) from Figure 3.2. One can make

out that from the plot of L(Φ), the slope is positive at Φ = 0 and for the plot of L(−Φ), the

slope is negative at Φ = 0. Therefore, for the synchronous solution Φ = 0, LΦ(0) > 0 and

L−Φ(0) > 0 meaning that ajk > 0 in 1D (equation (3.23)) and ajljm > 0 in 2D (equation

3.24). Therefore, as ajk, ajljm > 0 and the system is ‘connected’, the theory of weakly cou-

pled oscillators predicts that the synchronous solution is stable under this parameter regime.

In principle it would be possible to use our numerical calculation for L(Φ) to determine

the existence of non-synchronous phase locked solutions. However, as was noted in the

previous chapter in some cases the strong coupling in the system led to amplitude effects in

the limit cycle solutions which can lead to the theory of weakly coupled oscillators failing

to correctly predict the phase difference of asynchronous phase locked solutions. This prob-

lem is further complicated when considering systems of several cells as the phase difference

between all of the respective cells needs to be considered, not just the phase difference be-

tween two. Therefore, the theory of weakly coupled oscillators will become even less useful

in predicting the existence and stability of asynchronous phase locked solutions for systems

of several cells than it is for a system for two. For these reasons in this chapter, we do not

use the theory to predict the existence and stability of phase locked solutions other than

the synchronous solution.

We now turn our attention to the second parameter regime that we considered in the

previous chapter, that lead to unstable synchronous solutions in a system of two cells. Plots

of our numerical calculations of L(Φ) and L(−Φ) for this system are shown in Figure 3.3. It

can be seen that in this case, at Φ = 0, LΦ(0) < 0 and L−Φ(0) < 0 and consequently we can

not comment upon the stability of this solution as it does not satisfy the sufficient condition

which ensures stability. However, we show via direct numerical simulation in Sections 3.5.1

and 3.6.1 that the synchronous solution is also unstable in 1 and 2 spatial dimensions with

these parameter values.
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Figure 3.3: Plots of L(Φ) (first column) and L(−Φ) (second column) for system (3.1)-

(3.14) with Cyclin D dependent ATP release ((Hi, Hc) = (Di, Dc)). The

negative slope at Φ = 0 in the first column of plots (LΦ(0) < 0) and positive

slope in the second column (L−Φ(0) < 0) mean that the stability of the

synchronous solutions is not guaranteed. However, the results of simulations

discussed in Section 3.5.1 and 3.6.1 indicate it is unstable. Parameter values

as in Table 2.2, except for Vdeg = 2 µMs−1 and γ = 1.2. All plots calculated

using XPP.
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3.3.2 Rs Dependent ATP Release

We now consider the release of ATP as occurring during the G1/S phase transition. We

begin by calculating L(Φ) and L(−Φ) under the parameter regime that lead to stable syn-

chronous behaviour for two cells in Section 2.7.2. The results of these calculations are shown

in Figure 3.4.
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Figure 3.4: Plots of L(Φ) and L(−Φ) for system (3.1)-(3.14) with Rs dependent ATP

release ((Hi, Hc) = (Rsc, Rsi)). The bottom row plots show the region around

Φ = 0. The positive slope at L(0) in the first column of plots (LΦ(0) > 0) and

negative slope in the second column (L−Φ(0) > 0) indicate that the analysis

predicts that the synchronous solution is stable. Parameter values given in

Table 2.2 except for Vdeg = 0.1µMs−1 and γ = 1.4. All plots calculated using

XPP. To note, even though the magnitudes of L(Φ) and L(−Φ) are small in

this case, we do not believe that this will result in a degenerative system.

Figure 3.4 reveals that LΦ(0) > 0 and L−Φ(0) > 0 and our analysis predicts that the syn-

chronous solution is stable. Plots of L(Φ) and L(−Φ) under the parameter regime that lead
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to an unstable synchronous solution for two cells are shown in Figure 3.5. In this case, as

LΦ(0) < 0 and L−Φ(0) < 0 at Φ = 0 we can not comment upon the stability of this solution.

However in Sections 3.5.2 and 3.6.2 we show that it is unstable in 1 and 2 spatial dimensions.
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Figure 3.5: Plots of L(Φ) and L(−Φ) for system (3.1)-(3.14) with Rs D dependent ATP

release ((Hi, Hc) = (Rsc, Rsi)). The negative slope at L(0) in the first column

of plots (LΦ(0) < 0) and positive slope in the second column (L−Φ(0) < 0)

mean that stability of the synchronous solutions is not guaranteed. Parameter

values given in Table 2.2 except for Vdeg = 0.04µMs−1 and γ = 1.4. All plots

calculated using XPP.

3.4 Synchrony Measures

It is important to introduce a quantitative measure of the degree to which several cells cycle

in a synchronous manner. Any such measure should be consistent with the definition of

phase we introduced in the previous chapter when we studied two cell systems, but also

flexible enough to provide us with a realistic synchrony measure when the coupling leads to
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amplitude effects or other more complex behaviour and our current definition of phase is no

longer applicable. Several measures of synchrony have been proposed for coupled oscilla-

tors, most of which were developed to measure synchronous behaviour in clusters of spiking

neurons, although they can be adapted to networks of any oscillators [51, 52, 83, 92]. We

consider two of these measures here.

Wang-Buzsáki Measure

Wang et al propose a coherence measure or synchrony measure of a network of neurons

which is based upon dividing time into small segments and investigating whether or not the

neurons which make up a network ‘spike’ within these segments [92]. In order to outline

the Wang-Buzsáki Measure let us first consider a long time interval which we segment into

a number of regular time bins τ . Let us then consider two neurons l and m and introduce

the functions Sl(j) and Sm(j), j = 1, 2 ....... K, where K is the total number of time bins.

Now let Sl(j) = 1 if oscillator l spikes within time bin j and 0 otherwise and likewise for

Sm. The coherence measure for a pair of neurons is then given by

klm(τ) =

K∑
j=0

Sl(j)Sm(j)√√√√ K∑
j=1

Sl(j)
K∑
j=1

Sm(j)

. (3.25)

The numerator in equation (3.25) gives the total number of bins that both neurons spike

in. While the denominator is the square root of the product between the total number bins

with spikes for neuron l and the total number of bins with spikes for neuron m.

It is then possible to average over many pairs of neurons in a large network to obtain

the coherence measure of the population k(τ) which is the arithmetic mean of klm(τ) for all

combinations of pairs of neurons l,m. This method could be adapted to provide a coherence

measure of a population of radial glial cells by instead of considering the ‘spiking’ time of

a neuron, considering the time at which one of the cell cycle variables such as Cyclin D peaks.
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There are two obvious weaknesses with adopting Wang et al ’s coherence measure. Firstly

one will obtain different results depending upon the size of the time bins τ that one chooses,

with no obvious way in which to select the size of τ in a non-arbitrary manner (although

perhaps this problem could be resolved by introducing a very high bin size resolution).

Secondly, the measure proposed by Wang et al is of a ‘binary’ nature in the sense that two

oscillators l and m will have a value for klm(τ) of 1 if they are synchronised, or 0 otherwise.

The measure can not differentiate from two cells that are oscillating in a near synchronous

manner and two cells that are oscillating in an anti-phase phase locked manner as both

would be given a value for klm(τ) of 0. Qualitatively speaking these two behaviours are

very different and it would be desirable for a synchrony measure to reflect this fact.

Pinsky-Rinzel Measure

Pinsky and Rinzel proposed a measure which captures many of the intuitive concepts asso-

ciated with phase [11, 69]. As for the Wang-Buzsáki measure, Pinsky and Rinzel considered

populations of spiking neurons when developing their synchrony measure. When calculating

the phase of the neurons in their system, they considered the firing times of these neurons,

with the delay (if any) of firing times between one neuron and the next being used as basis

to form a vector of phases associated with each neuron. It is possible in our system to

consider the times at which the cell cycle variables such as Cyclin D ‘peak’ to form such a

vector of phases

Φi(t) = [Φi
1(t),Φi

2(t),Φi
3(t), ......,Φi

k(t), .....,Φ
i
n(t)], (3.26)

where Φi(t) is the vector of phases associated with oscillator i, n the total number of

oscillators and Φi
k(t), the phase of oscillator k in relation to oscillator i normalised to 1,

which is calculated as follows

Φi
k(t) =

T (k,m)− ti,m
ti,m+1 − ti,m

, ti,m ≤ T (k,m) < ti,m+1 and 1 ≤ k ≤ n. (3.27)

Here ti,m is the mth Cyclin D peak time of radial glial cell i and T (k,m) is the peak

Cyclin D time of cell k in the interval [ti,m, ti,m+1).

Essentially, if we take a cell i and attribute a phase value of 0 to when its Cyclin D vari-

able peaks, then we can form a vector of phases associated with it as defined in equations
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(3.26) and (3.27). The phase values for the cells other than cell i are determined by the first

time after the Cyclin D in cell i peaks that the Cyclin D in these cells peak. These times

are then normalised so that they lie in the interval [0, 1). This definition of phase was first

proposed by Golomb and Rinzel [31] and it is consistent with the definition of phase used

in chapter 2 when identical oscillators are considered and where the coupling does not lead

to amplitude effects.

The Pinsky-Rinzel synchrony measure associated with oscillator i is then defined by

r2
i =

1
n2

n∑
j,l=1

cos 2π(Φi
j − Φi

l). (3.28)

When r2
i = 1, all of the cells are oscillating in a synchronous manner (see Figure 3.6). A

value of 0 indicates maximal asynchrony analogous to the anti-phase phase locked state for

two cells commonly referred to as the splay state, where the cells are uniformly distributed

throughout phase space (see Figure 3.6). Consequently, the closer the value of r2
i is to 1, the

more synchronous the behaviour can be considered, the closer to 0, the more asynchronous

the behaviour. Finally, to obtain an overall synchrony measure SPR we average r2
i over all

oscillators, i.

It is clear that this measure can differentiate between two cells that are oscillating in

a near synchronous manner and two cells that are phase locked in an anti-phase manner.

A system where almost all cells are cycling in a synchronous manner will have SPR ≈ 1,

while a system whereby all cells are in the splay state will have SPR = 0, reflecting the

greater asynchrony in this case. Pinsky and Rinzel’s definition of phase is also consistent

with the definition of phase used in the previous chapter and used with regard to the theory

of weakly coupled oscillators. For these reasons we adopt Pinsky and Rinzel’s synchrony

measure when considering systems of several cells.
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Figure 3.6: Schematic where the relative phases associated with oscillator 1 (defined by

equations (3.27)and (3.28)) in a four cell system is represented on the unit

circle. The diagram illustrates the phase differences between the cells that

lead to values for r2
1 of 1 (the synchronous state) and 0 (the splay state).

3.5 One Dimensional Simulations

Choice of initial conditions and stability analysis

The initial conditions are such that all cells sit on the branch of stable limit cycle solutions

(Figure 2.10). When calculating the initial phase difference between cells, we use the limit

cycle solution of a single uncoupled cell. We then specify a maximum initial phase difference

PDmax between cells, before using Matlab’s uniformly distributed pseudo-random number

generator rand on the open interval (0,PDmax) to set the initial phase differences between

cells. To ascertain the stability of a solution, we simulated the system for a long period of

time (60 000 hours of simulated time) and recorded the solution over the last 150 hours of

simulated time, to produce a solution ‘snapshot’. Next, we perturbed all variables (± 0.001)

and numerically integrated the system again for a further 10 000 hours of simulated time.

We then compared the results of this second simulation with our ‘snapshot’, in order to

investigate if the system had returned to the ‘snapshot’ solution, which we took to indicate

that the solution was stable.
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3.5.1 Cyclin D Dependent ATP Release

We first consider the model where ATP release is modelled as occurring during the middle

of G1 phase of the cell cycle (equations (3.1)-(3.14), with (Hi, Hc) = (Di, Dc)).

Fixed calcium coupling strength γ

We consider the parameter regime that lead to stable synchronous solutions for two cells

(chapter 2, Section 2.7.1) and has been predicted to lead to stable synchronous solutions

in systems of many cells (Section 3.3.1). Numerical integration of our model for a line of

30 cells with zero flux boundary conditions given by equation (3.17) and an initial phase

difference between each cell of no more than 1 hour (PDmax = 1), leads to results il-

lustrated in Figure 3.7. The results reveal that if the initial phase difference is small, the

cells settle down to a synchronous phase locked state under this particular parameter regime

with a synchrony measure SPR of 1, as predicted by the theory of weakly coupled oscillators.

Next we investigated how the system behaves when the initial phase difference between

the cells is larger. These results are illustrated in Figure 3.8. In the two cell case, a

large enough initial phase difference between the cells resulted in the cells locking in an

anti-phase manner. The results from Figure 3.8 suggest that if the initial phase difference

between each cell is sufficiently large in a system of several cells, then the cells lock in

an asynchronous manner with a synchrony measure SPR of 0.007154346, indicating that

the system is very close to the splay state. In this case, due to the larger concentration of

ATP in the extracellular space, the period of the cell cycle is reduced from 27.3 to 26.8 hours.

Next we investigated the behaviour of a system under the parameter regime that yielded

an unstable synchronous phase locked state for two cells. Our analysis in Section 3.5.1

proved inconclusive with regard to ascertaining the stability of this solution in systems of

several cells. Simulations for several cells can be seen in Figure 3.9 which suggest that the

synchronous solution remains unstable under this parameter regime for several cells too.

The cells settle down to an asynchronous phase locked state of synchrony measure SPR
= 0.02148381. Again as in the previous asynchronous case, the period of the cell cycle is

reduced from 26.235 to 24.8, due to the increased concentration of extra-cellular ATP.
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Figure 3.7: Simulations of system (3.1)-(3.14) for 30 cells, with Cyclin D dependent ATP

release ((Hi, Hc) = (Di, Dc)). The top four plots show the evolution of Cyclin

D, Cyclin E, external ATP and calcium against time. The bottom two plots

are colour plots, showing the concentrations of Cyclin D and external ATP

across the spatial domain. The results show that for a small initial phase

difference the system tends towards the synchronous solution, indicating that

this solution is stable. Parameter values given in Table 2.2, except for Vdeg =

0.01µMs−1. Each cell was started at a different position on the cell cycle but

at an initial phase difference (PDmax) from any other cell of no more than 1

hour. Solutions obtained using ode23s within Matlab. Transients not shown.
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Figure 3.8: Simulations of system (3.1)-(3.14) for 30 cells, with Cyclin D dependent ATP

release ((Hi, Hc) = (Di, Dc)). The simulations reveal that for a larger initial

phase difference the system evolves to an asynchronous solution, indicating

that the 30 cell system is bistable under this parameter regime. Parameter

values as in Table 2.2, except for Vdeg = 0.01µMs−1. PDmax = 27 hours.

Transients not shown.
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Following on from the work on two cells, we investigated which values of Vdeg render

the synchronous state unstable for a system of 10 cells. This we achieved by running simu-

lations for different values of Vdeg with two different sets of initial conditions: one set such

that the cells were initially close to the synchronous state, achieved by setting PDmax = 1

and the other where we allowed for larger initial phase differences by setting PDmax = 27.

The results are plotted in Figure 3.10 which indicates that the synchronous state becomes

unstable for a system of 10 cells at Vdeg ≈ 0.06 µMs−1. However, even when this occurs,

the bistability of the system with regard to the phase locked behaviour seems to persist

as different initial conditions lead to different values of the synchrony measure SPR. Once

the synchronous state becomes unstable the asynchronous phase locked state that results

becomes increasingly asynchronous as Vdeg is increased. The phase locked state that results

from a large initial phase difference seems almost invariant under changes to the rate of

external ATP degradation. The value for the synchrony measure for this state is very close

to that for the splay state (i.e. close to zero).

Fixed ATP degradation rate Vdeg

In Section 2.7.1 of chapter 2 we showed that in the Cyclin D dependent ATP release model,

when Vdeg = 2, the synchronous solution was only stable for γ < 1.065856. Here we in-

vestigate if this behaviour persists in this model in systems of several cells. Numerical

integrating of our Cyclin D dependent ATP release model for 30 cells with zero flux bound-

ary conditions with Vdeg = 2 and γ = 0.4, leads to results illustrated in Figures 3.11 and 3.12.

It can be seen from Figure 3.11 that the synchronous state is stable for a system of

several cells under this particular parameter regime. Figure 3.12 reveals that the system

exhibits bistability with regard to phase locked solutions. The trajectory of the solution in

this case tends towards a stable asynchronous state of synchrony measure 0.0356548, close

to the splay state. In this case, the spatial coupling leads to a reduction in the period of

the cell cycle from 28.6 to 27 hours.

In the two cell case, we showed that if the calcium coupling strength γ was sufficiently

large when Vdeg = 2 then the stability of the phase locked state was lost. We investigated
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Figure 3.9: Simulations of system (3.1)-(3.14) for 30 cells, with Cyclin D dependent ATP

release ((Hi, Hc) = (Di, Dc)). The results show that with a small initial phase

difference the system evolves to an asynchronous solution indicating that the

synchronous solution is unstable. Parameter values given in Table 2.2 except

for Vdeg = 2 µMs−1 and γ = 1.2. PDmax = 1 hour. Transients not shown.
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Figure 3.10: Plot showing how the synchrony measure depends upon Vdeg for system

(3.1)-(3.14) of 10 cells with Cyclin D dependent ATP release ((Hi, Hc) =

(Di, Dc)). The results indicate that two phase locked solutions exist and at

Vdeg ≈ 0.06 the stability of the synchronous solution is lost. The system was

simulated twice for each value of Vdeg considered, once with PDmax = 1

(small initial phase difference) and once with PDmax = 27 (large initial

phase difference). The synchrony measure SPR was taken once the system

had settled down to a stable oscillatory solution. Parameter values as in

Table 2.2, except for Vdeg as given and γ = 1.2.
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Figure 3.11: Simulations of system (3.1)-(3.14) for 30 cells, with Cyclin D dependent ATP

release ((Hi, Hc) = (Di, Dc)). The simulations show that for an initially

small initial phase difference, the system evolves to the synchronous solution,

indicating that this solution is stable. Parameter values as in Table 2.2,

except for Vdeg = 2 µMs−1. PDmax = 1. Transients not shown.
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Figure 3.12: Simulations of system (3.1)-(3.14) for 30 cells, with Cyclin D dependent

ATP release ((Hi, Hc) = (Di, Dc)). For a larger initial phase difference,

the system evolves to an asynchronous solution, indicating that not only is

this solution stable but it co-exists with the synchronous solution shown in

Figure 3.11. Parameter values as in Table 2.2, except for Vdeg = 2 µMs−1.

PDmax = 27. Transients not shown.
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if this was the case for several cells by simulating a system of 10 cells several times but

each time with different value for γ and calculated the corresponding synchrony measure

SPR. The results can be seen in Figure 3.13. which suggest that the synchronous state

becomes unstable at γ ≈ 0.65 for 10 cells in a 1-D lattice. The stability of this branch of

solutions is then lost completely at γ ≈ 0.95, with all trajectories tending towards the stable

asynchronous state. In the two cell system that we considered in the previous chapter, under

this parameter regime, we showed that the synchronous solution branch became unstable

at γ ≈ 1.065856, with all trajectories we studied after this point tending to the anti-phase

phase locked state. Qualitatively speaking therefore, our results for 10 cells are similar to

those of the two cell system, as in both cases the the stability of the synchronous branch is

lost as γ is increased and in both cases for larger values of γ we were only able to find one

phase locked solution as opposed to two for smaller values of γ.
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Figure 3.13: Plot showing how the synchrony measure SPR defined in equation (3.28)

depends upon γ for system (3.1)-(3.14) for 10 cells with Cyclin D dependent

ATP release ((Hi, Hc) = (Di, Dc)). The results indicate that for low values

of γ the system exhibits bistability with regard to phase locked solutions.

However at γ ≈ 0.65, the stability of the synchronous solution is lost at

γ ≈ 0.95 the system appears to undergo another bifurcation, leaving one

stable oscillatory solution. The system was simulated twice for each value

of Vdeg, once with PDmax = 1 (small initial phase difference) and once with

PDmax = 27 (large initial phase difference). The synchrony measure SPR

was taken once the system had settled down to a stable oscillatory solution.

Parameter values as in Table 2.2, except for γ as given and Vdeg = 2µMs−1.
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3.5.2 Rs Dependent ATP Release

Fixed calcium coupling strength γ

We begin our investigations for the Rs dependent ATP release model by attempting to

confirm the results of the analysis conducted in Section 3.3.2 of this chapter. Our analysis

predicted that for γ = 1.4 and Vdeg = 0.1 µMs−1 the synchronous solution for a system of

several cells in one and two spatial dimensions is stable. In the previous chapter we showed

that this was the case for two cells under this parameter regime. Simulating the system

under this parameter regime leads to the results shown in Figure 3.14.

Figure 3.14 suggests that the synchronous solution is in fact unstable, with the system

evolving to a near synchronous solution with a synchrony measure SPR of 0.9926183. Other

realisations from different sets of initial conditions will lead to different near synchronous

solutions, where the cell cycling asynchronously differs, although the value of SPR in such

cases will be the same. We first encountered this phenomenon in Section 2.7.2 in chapter

2 where we showed in Figure 2.25 that two stable asynchronous solutions existed. In this

case the trajectories of the two cells differed, with the initial conditions of the system de-

termining which cell would evolve to which asynchronous solution. In order to show that

something similar is happening here, and to confirm that, contrary to the predictions of the

analysis, the synchronous solution is unstable, we simulated the system again, from a set

of initial conditions very close to the synchronous state. The results of this simulation are

shown in Figure 3.15.

The reason why the analysis fails becomes clear when one inspects the Cyclin D profile

of the ‘rogue’ cell and notices that it differs to that of the other cells. This means that the

coupling has introduced amplitude effects into the system. As in the Cyclin D dependent

model we investigated whether other phase locked solutions exist by considering a larger

initial phase difference between the cells. Figure 3.16 shows that, in addition to the near

synchronous state, there also exists a stable asynchronous phase locked state, of synchrony

measure 0.08822138. There is a slight increase in the period of the cell cycle from 25.74 to

26 hours for this case.

We next turned our attention to the parameter set that led to unstable phase locked so-
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Figure 3.14: Simulations of system (3.1)-(3.14) for 30 cells with Rs dependent ATP re-

lease ((Hi, Hc) = (Rsc, Rsi)). As for the the results in the previous subsec-

tion, the top four plots show the evolution of Cyclin D, Cyclin E, external

ATP and calcium against time. The bottom two plots are colour plots,

showing the concentrations of Cyclin D and external ATP across the spatial

domain. The results suggest that the synchronous solution is unstable, with

the system evolving to a stable near synchronous solution. Parameter val-

ues given in Table 2.2 except for γ = 1.4 and Vdeg = 0.1 µMs−1. Each cell

was started at a different position on the cell cycle but at an initial phase

difference (PDmax) from any other cell of no more than 1 hour. System

solved using ode23s within Matlab. Transients not shown.
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Figure 3.15: Simulations of system (3.1)-(3.14) for 30 cells with Rs dependent ATP re-

lease ((Hi, Hc) = (Rsc, Rsi)). The results augment the results in Figure

3.14. In this instance the near synchronous solution differs to that shown in

Figure 3.14 due to the different initial conditions, although the value of the

synchrony measure SPR in both cases is identical. Parameter values as in

Figure 3.14. The system was initialised from a perturbed synchronous state

where the perturbation was smaller than that in Figure 3.14. Transients not

shown.
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Figure 3.16: Simulations of system (3.1)-(3.14) for 30 cells with Rs dependent ATP re-

lease ((Hi, Hc) = (Rsc, Rsi)). The results show for the same parameter set

as in Figure 3.14, a larger initial phase difference leads to the system evolv-

ing to a highly asynchronous solution. Parameter values as in Figure 3.14.

PDmax = 27. Transients not shown.
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lutions for two cells. Our analysis was inconclusive with regard to ascertaining the stability

of the synchronous solution in large numbers of cells. The results of simulating the system

under this parameter regime are shown in Figure 3.17. As in the two cell case (Figure

2.25), Figure 3.17 indicates that, for several cells, the synchronous state is unstable and the

system settles down to an asynchronous (but near synchronous) phase locked state. The

value of the synchrony measure SPR in this case is 0.9743544. In this case the coupling

brings about a reduction in the period of the cell cycle of 0.64 hours. In order to confirm

that the synchronous solution was unstable, we simulated the system from a initial state

slightly perturbed from the synchronous state (results not shown). In this instance the

system evolved to a near synchronous solution. Our numerical simulations also revealed

that as is the case for the results shown in Figure 3.14, there are many near synchronous

solutions, each with the same value for SPR, with the initial conditions determining which

cell cycled out of phase with all other cells (results not shown).

As for the Cyclin D dependent model, we investigated via direct simulation how the

ATP degradation rate Vdeg affects the existence and stability of phase locked solutions for

the Rs dependent ATP release model. The results of such simulations are displayed in

Figure 3.18.

Although it appears that the synchronous state is unstable for all values of Vdeg investi-

gated, there exists a near synchronous solution in the Rs dependent model for all parameter

values considered. The same can not be said of the Cyclin D dependent model, the results of

which are shown in Figure 3.10, as in the case when the stability of the synchronous solution

is lost at Vdeg ≈ 0.06 the two phase locked solutions that persist were highly asynchronous.

Fixed ATP degradation rate Vdeg

Up until this point we have considered parameter regimes with relatively low values for the

ATP degradation rate Vdeg for the Rs dependent ATP release model. Our results for the Cy-

clin D dependent model showed that the system displayed different qualitative behaviour

under parameter sets which included high values of Vdeg. In this section we investigate

whether such parameter regimes significantly change the dynamics of the system in the Rs
dependent ATP release model.
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Figure 3.17: Simulations of system (3.1)-(3.14) for 30 cells with Rs dependent ATP re-

lease ((Hi, Hc) = (Rsc, Rsi)). The simulations indicate that the synchronous

solution is unstable, although there exists a stable near synchronous solution,

as was the case for the two cell system for this parameter set (Figure 2.23).

Parameter values given in Table 2.2 except for γ = 1.4 and Vdeg = 0.04.

PDmax = 27. Transients not shown.

133



3.5 One Dimensional Simulations Chapter 3: Several Cells in 1D and 2D

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vdeg

S
P

R

 

 

small initial phase difference

large initial phase difference

Figure 3.18: Plot showing how the synchrony measure SPR depends upon Vdeg for sys-

tem (3.1)-(3.14) of 10 cells with Rs dependent ATP release ((Hi, Hc) =

(Rsc, Rsi)). The results indicate that that stable near synchronous and sta-

ble asynchronous solutions co-exist. The system was simulated twice for

each value of Vdeg considered, once with PDmax = 1 (small initial phase

difference) and once with PDmax = 27 (large initial phase difference). The

synchrony measure SPR was taken once the system had settled down to a

stable oscillatory solution. Parameter values as in Table 2.2, except for Vdeg

as given and γ = 1.2. Solutions obtained using ode23s within Matlab
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As for the Cyclin D dependent release model under a similar parameter regime, for a

small initial phase difference between the cells the trajectory of the system settles down to

a stable synchronous state (Figure 3.19) and there also exists a stable asynchronous phase

locked state (Figure 3.20). In the latter case the spatial coupling brings about a reduction

in the period of the cell cycle from 28.13 to 26.925 hours. The synchrony measure of this

particular solution is 0.1680679.

As before, via direct numerical integration we investigated the dependence of the ex-

istence and stability of the phase locked solutions on the value for the calcium coupling

strength γ for a system of 10 cells. The results shown in Figure 3.21 show that the stability

of the synchronous solution for the Rs dependent ATP release is far more tolerant of changes

in γ than in the Cyclin D dependent case, although it it is eventually rendered unstable

for a sufficiently large value of γ ≈ 1.2. However, even after this point the solutions are

near synchronous. At γ = 1.3, for example, the synchrony measure is 0.9994. It is also

apparent from Figure 3.21 that there exists a branch of asynchronous solutions under this

parameter regime, which persists as γ is increased. In summary, there always exist a stable

synchronous or near synchronous solution for the Rs dependent model under parameter sets

where Vdeg is relatively high. The results displayed in Figure 3.13 reveal that this is not the

case for the Cyclin D dependent model however.

3.6 Two Dimensional Simulations

In this section we simulate our two models on square grids. As two dimensional simulations

are computationally expensive (the simulations in Figure 3.23 took nearly 24 hours on a sin-

gle AMD Opteron 64-bit processor in a Sun X4100 machine for example) we consider only

a small number of specific cases in order to investigate whether the results of our analysis

hold for several cells in two spatial dimensions and to investigate whether the behaviour

discovered in the previous section persists in two spatial dimensions.
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Figure 3.19: Simulations of system (3.1)-(3.14) for 30 cells with Rs dependent ATP

release ((Hi, Hc) = (Rsc, Rsi)). The results show that with a small ini-

tial phase difference the system evolves to a stable synchronous solution

for this parameter set. Parameter values given in Table 2.2 except for

Vdeg = 2 µMs−1. PDmax = 1. Transients not shown.
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Figure 3.20: Simulations of system (3.1)-(3.14) for 30 cells with Rs dependent ATP re-

lease ((Hi, Hc) = (Rsc, Rsi)). The results indicate that in addition to the

stable synchronous solution shown in Figure 3.19, a stable asynchronous so-

lution also exists under the same parameter regime. Parameter values given

in Table 2.2, except for Vdeg = 0.01µMs−1. PDmax = 27 hours. Transients

not shown.
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Figure 3.21: Plot showing how the synchrony measure SPR (defined in Section 3.4) de-

pends upon γ for system (3.1)-(3.14) of 10 cells with Rs dependent ATP

release ((Hi, Hc) = (Rsc, Rsi)). The results indicate that that the stability

of synchronous solutions is lost at γ ≈ 1.2, however beyond this stable near

synchronous solutions were discovered. Stable highly asynchronous solu-

tions also exist for all parameter sets considered. The system was simulated

twice for each value of γ considered, once with PDmax = 1 (small initial

phase difference) and once with PDmax = 27 (large initial phase difference).

The synchrony measure SPR was taken once the system had settled down

to a stable oscillatory solution. Parameter values as in Table 2.2, except for

Vdeg = 2 µMs−1 and γ as shown. Solutions obtained using ode23s within

Matlab.
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3.6.1 Cyclin D Dependent ATP Release

We first consider the Cyclin D dependent model and attempt to confirm the results of our

analysis. In Section 3.3.1 the theory of weakly coupled oscillators predicted that for γ = 0.4

and Vdeg = 0.01µMs−1 the synchronous solution would be stable for systems of several cells

in two spatial dimensions. Figure 3.22 reveals that this is indeed the case, showing that,

for a small initial phase difference, the system settles down to a synchronous solution. As

in the one dimensional case, we investigated whether another phase locked solution existed

by simulating the system again but with a larger initial phase difference. Figure 3.23 shows

that, as in the one dimensional case, the system exhibits bistability with regard to stable

phase locked solutions in two spatial dimensions. In this particular case the system settled

down to an asynchronous state of synchrony measure 0.02622549. As for all previous asyn-

chronous solutions that we have encountered, the increased release of ATP brings about a

reduction in the period of the cell cycle; in this case from 27.3 to 24.8 hours.

3.6.2 Rs Dependent ATP Release

We next turned our attention to the Rs dependent model. As before we attempted to

confirm the predictions of our analysis for the two dimensional case. The theory of weakly

coupled oscillators predicted that under a parameter regime which included γ = 1.4 and

Vdeg = 0.1 µMs−1, a stable synchronous solution existed. We initiated the system with a

small initial phase difference in an attempt to confirm this. The results shown in Figure 3.24

reveal that the system settles down to a near synchronous solution of synchrony measure

0.997439, indeed only one cell out of 100 is cycling out of phase. This is similar to the

one dimensional case under this parameter regime, where we saw that one cell was cycling

out of phase, with all others synchronised. Our analysis therefore has failed to predict

the stability of the synchronous solution in the two dimensional case as well, although the

solution shown in Figure 3.24 is very close to the synchronous solution. If the perturbation

is very small (smaller than that in Figure 3.24), the synchronous solution is still lost, with

SPR of the resulting solution taking the same value as in Figure 3.24. In this case the initial

conditions determine which cell ends up cycling out of phase from all other cells. This is

the same phenomenon we encountered for the one dimensional case (discussed in Section

3.5.2). We next investigated whether a stable strongly asynchronous solution exists, as we

saw was the case in one spatial dimension.
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Figure 3.22: Simulations of system (3.1)-(3.14) for 100 cells for the Cyclin D dependent

ATP release model ((Hi, Hc) = (Di, Dc)). The plots show the concentra-

tions of Cyclin D across the spatial domain at various times during the period

of integration. To note, different colours represent different concentrations of

Cyclin D. The results show that for a small initial phase difference between

cells the solution trajectory of the system tends towards the synchronous

solution, indicating that this solution is stable. PDmax = 1. System solved

using ode23s within Matlab. Parameter values as in Table 2.2, except for

Vdeg = 0.01µMs−1.
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Figure 3.23: Simulations of system (3.1)-(3.14) for 100 cells for the Cyclin D dependent

ATP release model ((Hi, Hc) = (Di, Dc)). The results show that under the

same parameter regime as in Figure 3.22, there exists a stable asynchronous

solution, as was the case in one spatial dimension. PDmax = 27. Parameter

values as in Figure 3.22.
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Figure 3.24: Simulations of system (3.1)-(3.14) for 100 cells for the Rs dependent ATP

release model (T (Hi, Hc, %) = T (Rsc, Rsi, %)). The simulations show that

for an initially small phase difference between cells, the system evolves to a

near synchronous solution, suggesting the synchronous solution is unstable,

contrary to the predictions of the analysis. PDmax = 1. Parameter values

as in Table 2.2 except for γ = 1.4 and Vdeg = 0.1 µMs−1.
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Figure 3.25: Simulations of system (3.1)-(3.14) for 100 cells for the Rs dependent ATP

release model (T (Hi, Hc, %) = T (Rsc, Rsi, %)). The simulations show that

for the same parameter set as in Figure 3.24, there exists a stable highly

asynchronous solution. PDmax = 27. Parameter values as in Figure 3.24.
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Figure 3.25 shows that as in the one dimensional case, a highly asynchronous stable

solution exists, of synchrony measure SPR = 0.0093874 (cf. SPR = 0.08822138 for 30 cells

in 1D (Figure 3.16)).

3.7 Conclusions and Further work

The results of this chapter suggest that release of ATP towards the middle of G1 phase

(Cyclin D dependent release) and release towards the end of G1 phase (Rs dependent ATP

release) can both lead to the synchronous phase locked solutions which have been hypothe-

sised in the biological literature. Generally speaking, the behaviour of the system observed

for two cells seems to persist when several cells in one and two spatial dimensions are con-

sidered. Indeed, bistability of phase locked solutions for both models was discovered under

most, but not all, parameter regimes.

Our results in this chapter, which are summarised in Table 3.1, suggest that ATP release

during the G1/S phase transition (the Rs dependent ATP release model) is more likely to

lead to synchronous or near synchronous behaviour than the case where ATP is released

predominantly during mid G1 phase (the Cyclin D dependent model). Indeed, for all pa-

rameter regimes considered there exists a stable synchronous or near synchronous solution

for the Rs dependent ATP release model. This is not the case however in the Cyclin D

dependent ATP model, where a stable synchronous solution only exists under a minority

of the parameter regimes that we considered (12 out of the 48 considered in Figures 3.10

and 3.13). Under all other parameter regimes, a stable asynchronous solution or solutions

existed.

As covered in chapter 1, it has been postulated that synchronised radial glial cells may

be responsible for the co-ordination of uniform cortical layers [93]. The results in this chap-

ter suggest that ATP release as occurring during the G1/S transition is likely to lead to

radial glial cells cycling in a synchronous or near synchronous manner and hence may allow

for the formation of uniform cortical layers during embryonic neurogenesis. The results

from the Cyclin D dependent ATP release model suggest that ATP release during mid G1

phase is more likely to lead to cells cycling asynchronously. Clusters of cells cycling in this
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manner may interfere with the co-ordination of cortical layer formation. This suggests that

the timing of ATP release by radial glial cells plays an important role during embryonic

neurogenesis, with a malfunction in this timing potentially leading to irregular cortical for-

mation which may be the cause of some neurological development disorders. It has been

hypothesised that irregularities in cortical formation during embryonic development may

lead to infantile epilepsies, mental retardation, dyslexia and in certain conditions, even

Huntington’s and Alzheimer’s disease [4, 70] for example. In order to confirm this however

it would be desirable to run more simulations to extend the parameter regimes considered

and also investigate more deeply the relationship between the number of cells and the degree

to which the system is synchronised.

Additionally, it may be interesting to incorporate cell death and daughter cell production

into our model. The introduction of daughter cells into the cellular population (resulting

from the completion of the cell cycle) and the removal of cells from the population (due

to apoptosis), during the period of integration may have an effect upon the existence and

stability of phase locked solutions. However, for reasons of time, we do not consider such

effects in our models, in this thesis.

Although the coupling in our model can act to promote synchrony and hence can account

for well co-ordinated cortical layer formation, it can not account for the degree to which ATP

release enhances overall cell proliferation in a system where all cells are initially cycling. In

the previous chapter we postulated that the areas of bistability and multistability present

in the bifurcation diagram of the single cell system (see Figure 2.10) may play a key role

in the mechanism that is responsible for increased radial glia proliferation. We postulated

that a ‘driver’ cell, may via the release of extracellular ATP induce a quiescent cell in G0

phase onto the cell cycle, which may account for increased cell proliferation. In the next

chapter we investigate whether this is possible.
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Table 3.1: Summary of results

mid G1 ATP release G1/S ATP release

Cyclin D dependent Rs dependent

ATP release model ATP release model

low γ, high Vdeg Stable synchronous and Stable synchronous and

asynchronous solutions. asynchronous solutions.

Figures 3.11,3.12 and 3.13. Figures 3.19, 3.20 and 3.21.

high γ, high Vdeg Unstable synchronous solution Unstable synchronous. Stable near

stable asynchronous solution. synchronous and asynchronous.

Figures 3.9, 3.10 and 3.13. Figures 3.18 and 3.21.

low γ, low Vdeg Stable synchronous and

asynchronous solutions.

Figures 3.7, 3.8, 3.22 and 3.23.

high γ, low Vdeg Unstable synchronous. Two Unstable synchronous. Stable near

stable asynchronous solutions. synchronous and asynchronous.

Figure 3.10. Figures 3.14, 3.15, 3.16, 3.17, 3.18,

3.24 and 3.25.
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Chapter4
Cell Cycle Recruitment of Quiescent Cells

4.1 Introduction

A
lthough the results of the previous chapters proved promising in accounting for

synchronous behaviour in radial glial cells, they also suggested that calcium cou-

pling alone could not account for the increase in the rate of radial glia proliferation,

where all cells are initially cycling. In this chapter, we investigate whether the increase in

proliferation can be accounted for by the ability of radial glial cells to recruit quiescent cells

in G0 phase into G1 phase and onto the cell cycle.

We begin our investigation by re-introducing the bifurcation diagrams of a single cell

system for both models and comment upon how the area of multistability in both models

may provide a mechanism for the recruitment of a quiescent cell onto the cell cycle by a driv-

ing cell. We then, through bifurcation analysis and direct numerical simulations consider

systems of two cells for both models in order to explore the range of behaviour exhibited

for the two cell system.

With this complete, we then investigate via direct numerical simulation not only the

ability of a driving cell to recruit a quiescent cell onto the cell cycle, but also the duration

for which (if at all) the two cells remain entrained in a synchronous manner for both models

under several different parameter regimes. We then devote the remainder of the chapter to

extending the results of two cells to systems of several cells. Due to lack of time, we do

not consider the continuum analogue of our models in this chapter; instead we focus upon

obtaining numerical results from our discrete models.
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4.2 Bifurcation Analysis

4.2.1 Cyclin D Dependent ATP Release

We begin our analysis by re-introducing in Figure 4.1 the bifurcation diagrams we first saw

in chapter 2 for the Cyclin D dependent ATP release model, where ATP is modelled as

predominantly occurring during mid G1 phase of the cell cycle. In order to do this, we

replace (Hi, Hc) in equation (3.14) with (Di, Dc) in all calculations. From Figure 4.1 it

is clear that there exists an area of multistability which is bounded on one side by either

the point marked FP1D or FP2D depending on the parameter regime chosen. A cell is

considered quiescent when it sits on the stable fixed point branch at the bottom of the

figure, or on the stable branch of low amplitude limit cycle solutions which bifurcates from

this branch at the Hopf bifurcation point [66]. Consequently, a quiescent cell will either lie

within the area of multistability or, when a′d1 (the Cyclin D synthesis rate in absence of

calcium) is sufficiently small (a′d1 < min(FP1D,FP2D)), outside the area of multistability.

In the former case one would intuitively expect that a pacemaker cell could induce the

quiescent cell onto the branch of stable high amplitude limit cycle solutions above, where

it would remain. In the latter case one would expect that a pacemaker cell could, via the

release of extracellular ATP, sweep a quiescent cell into and out of the area of multistability.

In this particular case we anticipate that the sweeping of the quiescent cell into and out of

the area of multistability would be sufficient to induce oscillations in this cell.

In order to study whether our intuition is correct, we calculated the bifurcation diagram

for two cells, shown in Figure 4.2. In calculating this diagram we fixed the value of a′d1 (the

value of the Cyclin D synthesis rate in cell 1) and varied a′d2 (the value of the Cyclin D

synthesis rate in cell 2).

Figure 4.2 reveals that for small values of a′d2 < 0.3795 (TB), there exists a stable branch

of limit cycle solutions. However, the amplitude of the oscillations of the entrained cell is

so small that it can not be considered as being on the cell cycle. Increasing a′d2 eventually

leads to a torus bifurcation point (marked TB on the diagram) beyond which the solution

trajectory of our 2 cell system sits on a n-dimensional torus. In addition to the torus so-
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Figure 4.1: Bifurcation diagrams for a single cell of system (3.1)-(3.14) for the Cyclin D

dependent ATP release model ((Hi, Hc) = (Di, Dc)). As we have previously

done when calculating single cell bifurcation diagrams, we replace equation

(3.11) with its steady state approximation. HB corresponds to a Hopf bifur-

cation point. The first bifurcation diagram reveals an area of multistability

which is bounded on one side by one of two fold points (FP1D and FP2D),

depending on the value of γ and on the other side by the fold point marked

FP3D. In this area there exists either a branch containing stable limit cycle

solutions or a branch containing stable limit cycle solutions and a branch of

stable fixed point solutions. The second diagram shows how these fold points

(FP1D, FP2D and FP3D) depend upon γ and a′d1. Parameter values as for

Table 4.2, except for Vdeg = 2 µMs−1, γ = 1 or as shown and a′d1 as shown.

AUTO within XPP was used to produce both diagrams.
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Figure 4.2: Bifurcation diagram of two cell Cyclin D dependent ATP release system

((Hi, Hc) = (Di, Dc)). TB corresponds to a torus bifurcation point, FP1D
s ,

FP1D
a , FP2D

s , FP2D
a correspond to saddle node bifurcation or fold points of

the limit cycle solutions. The diagram reveals the existence of torus solutions

and two branches of high amplitude limit cycle solutions in the two cell sys-

tem. The parameter values are as in Table 4.2, except for Vdeg = 2 µMs−1

and ad2 as shown.
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lution there also exist two more stable high amplitude limit cycle solutions. Although we

have named the lower branch the synchronous solution branch and the upper branch the

anti-phase phase locked solution branch, this is slightly misleading. This is because it is

only for a′d1 = a′d2 = 0.41 that these branches correspond to the synchronous and anti-phase

phase locked solutions. For a′d1 6= a′d2, both solutions are in fact asynchronous. Naming the

two branches the synchronous branch and anti-phase branch provides a convenient way to

distinguish between the two branches. When a′d1 6= a′d2 6= 0.41, the ‘synchronous’ branch

is in fact near synchronous and the ‘anti-phase’ branch is highly asynchronous. Both of

these branches correspond to phase locked solutions and it appears that for sufficiently

disparate values for the two cells’ intrinsic frequencies, which are partly governed by a′d2,

their stability is lost via saddle node bifurcations of limit cycle solutions (marked FP1Ds ,

FP1Da , FP2Ds and FP2Da ). We were unable to continue beyond FP1Ds , FP1Da , FP2Ds and

FP2Da to detect the unstable limit cycle solutions. However, we took the last stable solution

detected, changed the value of the control parameter slightly and then numerically inte-

grated the system. In all cases, the system evolved to a solution which was qualitatively

different to the limit cycle solution of the original parameter value. This suggests that

FP1Ds , FP1Da , FP2Ds and FP2Da correspond to saddle node bifurcation points. Furthermore,

XPP does not have the capacity to continue torus solutions and consequently we were un-

able to detect where the branch of torus solutions goes nor ascertain where the stability

of the branch of torus solutions is lost. Our numerical simulations revealed that the sta-

ble phase locked solutions and stable torus solutions co-exist, at least for some values of a′d2.

In order to demonstrate the different behaviours that are indicated in Figure 4.2, we

simulated the system for two different parameter regimes, one where torus solutions existed

and one where they did not. Figure 4.3 shows that, for sufficiently small values of a′d2

(a′d2 = 0.35 in the first row of plots), there exists a low amplitude stable limit cycle solution

and it can be seen in this case that the two cells cycle in an almost synchronous manner.

However, the amplitude of oscillation of the entrained cell is so small that it can not be

considered to be cycling. For a′d2 = 0.4 (the second row of plots), the system exhibits torus

solutions, although it is interesting to note by referring to Figure 4.1, that there also exist

phase locked solutions under this parameter regime. With the particular initial conditions

of Figure 4.3 the trajectory of the solutions tends to the torus solutions rather than the

phase locked solutions. It is possible, by integrating the system from other sets of initial

conditions, for the system to display limit cycle solutions. Interestingly, the torus solu-
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tion appears to oscillate between a near synchronous solution and a near anti-phase phase

locked solution. We next, through the calculation of a two parameter bifurcation diagram,

explored how the stability of the high amplitude phase locked solutions depended upon both

a′d2 and γ, which represents the strength of the calcium coupling. Our results are displayed

in Figure 4.4.

Figure 4.4 indicates that there exists a large area in parameter space where the sys-

tem exhibits stable phase locked solutions with both cells on the cell cycle. Interestingly,

it is clear from the plots of FP1D,FP2D and FP3D in Figure 4.4 that this area lies far

outside the area of multistability seen in Figure 4.1. Although this area is large, direct

numerical simulation suggests that it co-exists with the branch of stable torus solutions

for at least some of the parameter values considered in the figure and therefore it can not

be guaranteed that a system would always exhibit limit cycle solutions, even if they existed.

These results suggest that our two cell Cyclin D dependent ATP release model is capable

of sustaining oscillations in both cells, where both cells can be considered as being on the

cell cycle. This appears to be the case under several different parameter regimes, with these

oscillations resulting from limit cycle or torus solutions. This is a promising result with

regard to investigating a driving cell’s ability to recruit a quiescent cell onto the cell cycle.

4.2.2 Rs Dependent ATP Release

We next turned our attention to the model for ATP release during the G1/S phase tran-

sition, using (Hi, Hc) = (Rsc, Rsi) in equation (3.14). The single cell bifurcation diagram

for this model, that we first encountered in chapter 2 is reproduced in Figure 4.5. It is

clear from this figure that, similar to the Cyclin D dependent case, there exists an area

of bistability which is bounded on one side by the point marked FP1Rs and on the other

by a point marked FP2Rs. As before, a cell is considered to be quiescent when it sits on

the stable fixed branch at the bottom of the figure, or the stable branch of low amplitude

limit cycle solutions that bifurcates off this branch at the Hopf bifurcation point. As for

the Cyclin D dependent model, we calculated the bifurcation diagram for a two cell system,

using a′d2, the Cyclin D synthesis rate in cell 2 in the absence of calcium as the bifurcation

parameter. This diagram can be seen in Figure 4.6.
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Figure 4.3: Simulations for 2 cells of system (3.1)-(3.14) for Cyclin D dependent ATP

release ((Hi, Hc) = (Di, Dc)) . The parameter values are as in Table 4.2,

except for Vdeg = 2 µMs−1, and a′d2 = 0.35 in the first row of plots and

a′d2 = 0.4 in the second row of plots. Initial conditions were such that cell 1

(the driving cell) sat on the branch of stable limit cycle solutions and cell 2

(the quiescent cell) sat on the branch stable fixed point solutions shown in

Figure 4.1. The plots confirm the existence of the low amplitude limit cycle

solutions and torus solutions indicated by the bifurcation diagrams in Figure

4.2. Results were obtained using ode23 within Matlab.
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Figure 4.4: Two parameter bifurcation diagram for the existence of stable phase locked so-

lutions of system (3.1)-(3.14) for Cyclin D dependent ATP release ((Hi, Hc) =

(Di, Dc)). FP1D, FP2D and FP3D correspond to the fold points from Fig-

ure 4.1, while FP1D
s , FP1D

a , FP2D
s and FP2D

a correspond to the fold points

from Figure 4.2. The area where anti-phase phase locked solutions exist is

coloured red, while the area where synchronous solutions exist is coloured

light grey. Note that all synchronous solutions co-exist with anti-phase phase

locked solutions and the stability of synchronous solutions is lost at γ ≈ 1.05

(discussed in chapter 2). The figure shows that phase locked solutions for

two cells (bounded by FP1D
a and FP2D

a ) exist under parameter regimes that

lie outside the area of multistability of the single cell system (bounded by

FP1D, FP2D and FP3D). The parameter values are as in Table 4.2, except

for Vdeg = 2 µMs−1, γ and ad2 as shown. AUTO was used to calculate the

bifurcation diagram except for FP1D
a and FP2D

a , which were calculated via

direct numerical simulation using ode23 within Matlab using a prediction-

correction scheme. Under this scheme, we numerically integrated the system

under a certain parameter regime and then used the method outlined in Sec-

tion 3.5 to ascertain the stability of the resultant solution. We then changed

the value of the control parameter and repeated the process until the resulting

solution did not exhibit limit cycle behaviour.
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Figure 4.5: Bifurcation diagrams for a single cell of system (3.1)-(3.14) for the Rs de-

pendent ATP release model ((Hi, Hc) = (Rsc, Rsi)). As before, in order

to produce the single cell bifurcation diagram, the steady state approxima-

tion is assumed for equation (3.11). HB corresponds to a Hopf bifurcation

point, FP1Rs and FP2Rs to fold or saddle node bifurcation points. The di-

agrams reveal an area of bistability where both stable limit cycle and stable

fixed point solutions co-exist. Parameter values as for Table 4.2, except for

Vdeg = 2 µMs−1, a′d1 as shown in all plots and γ as shown in the second plot.

AUTO within XPP was used to produce both diagrams.

The parameter space in Figure 4.6 is similar to the one we encountered for the Cy-

clin D dependent model in Figure 4.2. There exists a branch of limit cycle solutions for

a′d2 < 0.366313, where the amplitude of oscillations of the second cell are very small. In-

terestingly, at a′d2 ≈ 0.366313 (TB) the stability of these solutions is lost at a supercritical

torus bifurcation point. At a′d2 ≈ 0.4026 (FP1Rss ), a branch of large amplitude limit cycle

solutions is created via a saddle node bifurcation, before being destroyed by a saddle node

bifurcation at a′d2 ≈ 0.415 (FP2Rss ). This is the branch of solutions that connects to the

synchronous solution we first encountered in chapter 2. We were unable to continue the

branch of torus solutions, but as was the case for the Cyclin D dependent model, numer-

ical simulations indicate that torus solutions and higher amplitude phase locked solutions

co-exist for some parameter regimes at least. Simulations of a 2 cell system which confirm

the behaviour discovered by our analysis can be seen in Figure 4.7.

The first row of simulations in Figure 4.7 show that for a′d2 sufficiently small (here

a′d2 = 0.35), stable limit cycle solutions exist for both cells, although the amplitude of the

oscillations of the second, initially quiescent cell are very small. In this case, the cells do
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Figure 4.6: Bifurcation diagram of system (3.1)-(3.14) for 2 cells for the Rs dependent

ATP release model ((Hi, Hc) = (Rsc, Rsi)). TB corresponds to a torus bi-

furcation point, FP1Rs
s and FP2Rs

s correspond to saddle node bifurcation or

fold points of the limit cycle solutions. The diagram reveals the existence of

torus solutions and a branch of limit cycle solutions. The parameter values

are as in Table 4.2, except for Vdeg = 2 µMs−1 and a′d2 as shown. AUTO

within XPP was used to produce the bifurcation diagram.
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Figure 4.7: Simulations for 2 cells of the system (3.1)-(3.14) for the Rs dependent ATP

release model ((Hi, Hc) = (Rsc, Rsi)). The parameter values are as in Table

4.2, except for Vdeg = 2 µMs−1, with a′d2 = 0.35 in the first row of plots and

a′d2 = 0.38 in the second row of plots. Initial conditions were such that cell

1, the driving cell, sat on the branch of stable limit cycle solutions and cell

2, the initially quiescent cell sat on the branch of stable fixed point solutions

in Figure 4.5. The results illustrate how our two cell system can sustain low

amplitude limit cycle as well as torus solutions, confirming the behaviour

discovered by our bifurcation analysis.
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not cycle synchronously as is clear when one compares the peaks of the Cyclin D levels

of the two cells against each other in the top right hand plot of the figure. When a′d2 is

sufficiently large (here a′d2 = 0.38) the system moves past the torus bifurcation point shown

in Figure 4.6 and the stability of the stable low amplitude limit cycle solution is lost. Here

the solution trajectory of the system sits on a higher dimensional analogue of a torus as can

clearly be seen in the second row of plots in Figure 4.7. The maximum Cyclin D concen-

tration of the formerly quiescent cell is far larger under the parameter regime that leads to

torus solutions than it is under the regime that lead to the lower branch of stable limit cycle

solutions, even though the difference in the value for a′d2 between these regimes is relatively

modest. This becomes clear when one inspects the second column of plots in Figure 4.7

Under the parameter regime considered above, the low amplitude stable limit cycle so-

lutions become unstable at a′d2 ≈ 0.366313, which is very close to the left boundary of the

area of bistability for a single cell (a′d1 = 0.3673167, marked FP Rs in Figure 4.5).

Figure 4.8 shows a two parameter bifurcation diagram, including the bistability bound-

ary and the region where low amplitude limit cycles are stable. It is clear that the point at

which the stable limit cycle solutions become unstable does not necessarily correspond to

the point at which the quiescent cell enters the area of bistability. There exist stable torus

solutions for the system, where the parameter regime for the quiescent cell is such that it

lies outside the area of bistability shown in Figure 4.5. Indeed as γ is increased, the torus

bifurcation point moves further away from the boundary of the area of bistability and hence

further away from the area of bistability itself. This result is confirmed by simulating the

system for two cells but with a high value for γ and with a value a′d2 such that the quiescent

cell lies outside the area of bistability. The results of these simulations can be seen in the

Figure 4.9.

In Figure 4.9, a′d2 takes a value of 0.33 which means that cell 2 lies outside the area of

bistability for a single cell (Figure 4.5). However it can be seen that as predicted by our

bifurcation analysis, the branch of low amplitude limit cycle solutions is unstable and the

solution trajectory of the system sits on a n-dimensional torus.

Interestingly, by comparing Figures 4.8 and 4.4, the system with Cyclin D dependent
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Figure 4.8: Two parameter bifurcation diagram of system (3.1)-(3.14) for two cells for the

Rs dependent ATP release model ((Hi, Hc) = (Rsc, Rsi)). TB corresponds

to a torus bifurcation point, FP1Rs
s and FP2Rs

s correspond to the fold points

from Figure 4.6. At γ ≈ 1.088 the stability of the synchronous solution is

lost via a pitch fork bifurcation, leading to the creation of a stable near syn-

chronous solution (discussed in chapter 2). FP1Rs
n and FP2Rs

n correspond to

the points at which this solution is lost via saddle node bifurcation points.

The diagram also contains a plot showing how the fold points (FP1Rs and

FP2Rs) from Figure 4.5 which form the bounds of the area of bistability in

the single cell system relate to γ and a′d. The parameter values are as in Table

4.2, except for Vdeg = 2 µMs−1 and ad2 as shown. The diagram was calcu-

lated using AUTO within XPP, except for the calculating the area of near

synchronous solutions. This was calculated via direct numerical integration

using the same method as outlined in Figure 4.4.
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Figure 4.9: Simulations for 2 cells of system (3.1)-(3.14) for the Rs dependent ATP release

model ((Hi, Hc) = (Rsc, Rsi)). Parameter values as for Table 4.2 except for

γ = 1.2, Vdeg = 2 µMs−1 and a′d2 = 0.33. Initial conditions were such

that cell 1, the driving cell sat on the branch of stable limit cycle solutions,

while the cell 2, the initially quiescent cell sat on the branch of stable fixed

point solutions in Figure 4.5. The results were obtained using ode23 within

Matlab and they show that even under a parameter regime where the initially

quiescent cell lies outside the area of bistability of the single cell system, our

two cell system is capable of sustaining high amplitude oscillations in both

cells.
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ATP release exhibits phase-locked solutions for a far wider range of values of γ and a′d2.

This suggests that it could be far more adept at recruiting a quiescent cell on the cell cycle

and then for the two cell to phase lock, as it would theoretically be able to recruit quiescent

cells in a phase locked manner that could not be recruited by the Rs dependent ATP release

model.

4.3 Duration of Near Synchronous Entrainment

From our analysis, it appears that we can not always expect a quiescent cell to become

induced onto the cell cycle. Even if this is the case the existence of torus solutions means

that we can not always expect two cells to phase lock in a synchronous manner or oth-

erwise. However, there remains the possibility that although we will not see synchronous

behaviour in the long term, the shorter term transient behaviour of the system before it

settles down to a stable solution may exhibit near synchronous behaviour. As the period in

which neurogenesis takes place is relatively short, there remains the possibility that the two

cells will be in near synchrony for a sufficiently long period of time, even if a synchronous

or near synchronous solution is unstable or non existent. Neurogenesis in the rat embryo

lasts 6 days while it has been estimated that in the human embryo it is far longer, of the

order of 10 weeks [2, 12, 16]. It has been calculated that a proliferating cell cycles a total

of 11 times during the period of neurogenesis in mice [12]. This number is likely to be far

larger during embryonic neurogenesis in humans. We therefore decided to investigate the

ability of a driving cell to induce a quiescent cell onto the cell cycle in a near synchronous

manner.

4.3.1 Cyclin D Dependent ATP Release

We first consider the Cyclin D dependent ATP release model. In this section we study

systems of two cells with the driving cell’s initial conditions such that it sits on the branch

of stable limit cycle solutions seen in Figure 4.1. We then consider a quiescent cell for

different values of its Cyclin D synthesis rate in the absence of calcium (a′d2) under different

parameter regimes. The initial conditions of the quiescent cell are such that it sits on the

branch of stable fixed point solutions or the branch of low amplitude limit cycle solutions
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that bifurcate from it. Both of these states can be seen in the lower part of the bifurcation

diagram in Figure 4.1. Note that the bifurcation diagram in Figure 4.1 was produced for one

cell. When considering a two cell system it may seem misleading to refer to it. However, if

we start the system for two cells from a point where ATP has not yet been released (before

the Cyclin D concentration reaches the critical threshold Dc), our two cell system will be

effectively uncoupled and for this short period of time the bifurcation diagram for a single

cell will be valid for both of the cells individually.

We regard an initially quiescent cell to have embarked upon the cell cycle when its

Cyclin D levels reach a threshold. The value for this we chose to be 0.4. At Cyclin D

concentrations below this the cell is still considered to be quiescent. By the same argument,

this is why a cell on the branch of stable limit cycle solutions with very small amplitudes

seen in the bottom part of Figure 4.1 is considered to be quiescent. These definitions are

consistent with those used in the formulation of this particular mathematical model for the

cell cycle [66].

As we discovered in the previous section, for some parameter values our two cell system

exhibits stable torus solutions. On these solutions the intrinsic frequencies of the two cells

are so disparate that they do not phase lock. Therefore we can not, as we previously have

in chapters 2 and 3, measure the phase difference between the cells when the system has

settled down to a phase locked state. The synchrony measure used in the previous chapter

requires a stable solution of some kind (not necessarily a phase locked solution) before the

synchrony measure can be calculated [69]. However, it may take some time for transients

to vanish and for our system to evolve to a stable solution. This time may be far longer

than the period of neurogenesis. The synchrony measure used in the previous chapter will

therefore miss the transient behaviour of our system which could prove to be very impor-

tant. It is therefore inappropriate to use this synchrony measure here. Instead we will use

the times at which the two cells’ Cyclin D concentrations pass through 0.4 and consider the

differences in these times. Two cells are considered to be entrained in a near synchronous

manner when this time is less than 5 hours. 5 hours may seem somewhat arbitrary, yet it

gives us an idea of the degree to which cells are entrained to cycle together.

We begin by examining the ability of a driving cell to recruit a quiescent cell onto the

162



4.3 Duration of Near Synchronous Entrainment Chapter 4: Recruitment by Driving Cells

cell cycle in a near synchronous manner by ranging through different values of γ and a′d2.

In order to achieve this we numerically integrated the system for a total of 1400 hours

under every parameter regime considered from a set of initial conditions whereby cell 1,

the driving cell was initially on the branch of limit cycle solutions and cell 2, the initially

dormant cell, was initially on the branch of stable fixed point solutions or branch of low

amplitude limit cycle solutions. We then detected the time at which the Cyclin D levels of

cell 2 first passed through 0.4, indicating that it had begun to oscillate. This gave us the

‘time of entrainment’ of the initially quiescent cell. We then calculated the time difference

between the first instance cell 2’s Cyclin D levels passed through 0.4 and the temporally

closest instance in which the Cyclin D levels of cell 1 pass through 0.4. If this difference

was greater than 5 hours, then the ‘duration of near synchronous entrainment’ under this

parameter regime is zero. If, however, this difference was less than 5 hours then we consid-

ered the next instance that both of the cell’s Cyclin D levels pass through 0.4 from below

and calculated the difference in time between these events and then the instance after this

and so on, until (if at all) the time difference between each cell’s Cyclin D levels passing

through 0.4 exceeded 5 hours. At this point we took the period of time for which the time

differences between each cell’s Cyclin D levels passing through 0.4 were less than 5 hours

to give us the ‘duration of near synchronous entrainment’. Once near synchronicity is lost,

or if it is not initially present, we do not study whether it is regained later in the simulation.

Figure 4.10 shows that, generally speaking, the Cyclin D model seems very poor at re-

cruiting a quiescent cell onto the cell cycle in a near synchronous manner, for the parameter

values considered here at least. Indeed, it is only for values of a′d2 of between 0.41 and 0.42

that the system displays near synchronous behaviour and this behaviour only persists for a

very short time. The large white area in the bottom left part of the first plot in Figure 4.10

indicates that the driving cell failed to recruit the quiescent cell onto the cell cycle at all

within the period of integration for these parameter values. In order to illustrate the Cyclin

D dependent model’s general inability to recruit a cell onto the cell cycle in a synchronous

manner we consider a couple of specific examples.

It is clear from Figure 4.11 that when the quiescent cell is recruited onto the cell cycle,

its Cyclin D concentration passes through 0.4 long after (9.965 hours) the driving cell’s

concentration passes through 0.4 and therefore can not be considered entrained in a syn-

chronous manner. In Figure 4.12 an example where the initially quiescent cell is recruited
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Figure 4.10: Time to and duration of near synchronous entrainment of an initially qui-

escent cell by a cycling cell for the Cyclin D dependent ATP release model

((Hi, Hc) = (Di, Dc)). The first row of plots indicates the time at which the

initially quiescent cell embarks on the cell cycle (when its Cyclin D value

reaches 0.4) for a range of values for a′d2 and γ. The data is displayed in a

colour plot in the first column and in a surface plot in the second column.

The second row of plots indicate the period of time for which the cells cycle

in a near synchronous manner. The results show that the quiescent cell can

be driven to cycle, but there is little evidence of prolonged near synchronous

behaviour. Lines FP1D hand FP2D in the top left and plot correspond to

the boundary of the area of multistability for a single cell (c.f. Figure 4.1).

The driving cell’s initial conditions were such that it sat on the branch of

stable limit cycle solutions seen in the top of Figure 4.1. The entrained cell’s

initial conditions were such that it sat on the branch of fixed point solutions

and small amplitude stable limit cycle solutions below this. Parameter val-

ues as for Table 4.2, except for γ and a′d2 as given and Vdeg = 2 µMs−1.

Solutions obtained using ode23s within Matlab.
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Figure 4.11: An example of cell cycle entrainment in which the initially quiescent cell is

entrained in a far from synchronous manner. The quiescent cell is entrained

at t ≈ 463 hours (marked by a red dot). Results obtained by numerically

integrating system (3.1) - (3.14) for two cells for the Cyclin D dependent

ATP release model ((Hi, Hc) = (Di, Dc)) for a period of 1400 hours. The

driving cell’s initial conditions were such that it sat on the branch of stable

limit cycle solutions seen in the top of Figure 4.1. The entrained cell’s initial

conditions were such that it sat on the branch of fixed point solutions below

this. Parameter values as for Table 4.2, except for γ = 1, a′d2 = 0.37 and

Vdeg = 2 µMs−1. Solutions obtained using ode23s within Matlab.
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Figure 4.12: An example of cell cycle entrainment where the initially dormant cell is

entrained in a synchronous manner for a short period of time. The red dot

corresponds to the point at which the quiescent cell is entrained and the

black dot to the point at which near synchronous behaviour is lost. Results

obtained by numerically integrating system (3.1) - (3.14) for two cells for the

Cyclin D dependent ATP release model ((Hi, Hc) = (Di, Dc)) for a period

of 1400 hours. The driving cell’s initial conditions were such that it sat on

the branch of stable limit cycle solutions seen in the top of Figure 4.1. The

entrained cell’s initial conditions were such that it sat on the branch of fixed

point solutions below this. Parameter values as for Table 4.2, except for

γ = 1, a′d2 = 0.42 and Vdeg = 2 µMs−1.
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very quickly onto the cell cycle is shown. Furthermore, in this example cell 2 is entrained

in a near synchronous manner, although for a short period of time (≈ 250 hours). These

results therefore can be considered as broadly representative of the results displayed in Fig-

ure 4.10. The parameter values used in Figures 4.11 and Figure 4.12 are marked with white

crosses in Figure 4.10.

We next investigated the Cyclin D model’s ability to recruit a quiescent cell onto the cell

cycle but this time we used Vdeg as the control parameter. The results of this investigation

are shown in Figure 4.13.
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Figure 4.13: Time to and duration of near synchronous entrainment of an initially qui-

escent cell by a cycling cell for the Cyclin D dependent ATP release model

((Hi, Hc) = (Di, Dc)). The results are similar to those displayed in Figure

4.10 and show that although quiescent cells can be entrained by a driving

cell, this is not achieved in a near synchronous manner. Parameter values

as for Table 4.2, except for Vdeg and a′d2 as given and γ = 1.
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As was the case when γ was the control parameter, Figure 4.13 suggests that the Cyclin

D dependent model is very poor at recruiting a quiescent cell onto the cell cycle in a near

synchronous manner except for low values of Vdeg. This echoes the results in the previous

chapter, where we showed that for low values of Vdeg, the Cyclin D model exhibited stable

synchronous solutions, the stability of which was lost as Vdeg was increased. Nevertheless,

the results of Figures 4.10 and 4.13 strongly suggest that although the increase in radial

glia proliferation can be accounted for by a driving cell’s ability to recruit a quiescent cell

onto the cell cycle when ATP is modelled as predominantly occurring during mid G1 phase,

the model is unable to account for the synchronisation of the cell cycles of clusters of radial

glial cells. As before, in order to illustrate the results shown in Figure 4.13 we consider in

Figure 4.14 one specific example.

In Figure 4.14, although the driving cell is able to recruit the initially quiescent cell onto

the cell cycle, the two cells are not cycling in a near synchronous manner. This is indicative

of the general behaviour of the Cyclin D dependent model for all parameter regimes that

we have so far considered.

Finally, we investigated whether the parameter governing the rate of extracellular ATP

diffusion DATP influenced our results. Figure 4.15 suggests that the ability of a driving cell

to induce a quiescent cell onto the cell cycle in a synchronous manner is unaffected by the

rate of extracellular diffusion, under the parameter regime considered here at least, and for

values of DATP of between 10 and 350 µm2s−1.

4.3.2 Rs Dependent ATP Release

We next turned our attention to the Rs dependent ATP release model. The definition we

use for when an initially quiescent cell can be considered to be cycling and consequently the

definition for synchrony we use here are slightly different than those used for the Cyclin D

dependent model for reasons we shall explain below.

As noted when studying the Cyclin D dependent model our bifurcation diagram for a

single cell is only valid for two cells for a short period of time when the cells are uncoupled,

which corresponds to ATP not being present in the extra-cellular space. With regard to the
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Figure 4.14: Example of an initially quiescent cell becoming entrained by a driving cell

but not in a near synchronous fashion. The red dot indicates the point at

which the initially quiescent cell is entrained. Results obtained by numeri-

cally integrating system (3.1) - (3.14) for two cells for the Cyclin D dependent

ATP release model ((Hi, Hc) = (Di, Dc)) for a period of 1400 hours. The

driving cell’s initial conditions were such that it sat on the branch of stable

limit cycle solutions seen in the top of Figure 4.1. The entrained cell’s initial

conditions were such that it sat on the branch of fixed point solutions below

this. Parameter values as for Table 4.2, except for γ = 1, a′d2 = 0.38 and

Vdeg = 0.5 µMs−1.
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Figure 4.15: For the Cyclin D dependent ATP release model ((Hi, Hc) = (Di, Dc)), near

synchronous entrainment, although poor for a wide range of values of DATP ,

appears to be independent of changes in DATP . Parameter values as for

Table 4.2, except for DATP and a′d2 as given, γ = 1 and Vdeg = 2 µMs−1.
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Cyclin D case, the simulations were started when the driving cell’s Cyclin D concentration

was at its minimum, as this corresponded to ATP not being released. However, as the

timing of ATP release is different for the Rs dependent model, low Cyclin D concentrations

correspond to ATP being released in the Rs dependent model. Therefore we start the sim-

ulations from a point where the Cyclin D concentration for the driving cell is at a peak, as

this corresponds to a time when ATP is not released in the Rs dependent model. In this

case when a simulation is started, a driving cell’s Cyclin D concentration will pass through

0.4 from above initially, rather than from below as for the Cyclin D dependent model. We

therefore use the point at which a cell’s Cyclin D concentration passes through 0.4 from

above as our reference point to measure the ‘phase difference’ between the two cells in the

system in this section. Consequently, the entrained cell will not be regarded as being on

the cell cycle until its Cyclin D concentration passes through 0.4 from above. As before two

cells are considered to be entrained in a near synchronous manner if the difference between

the times that each passes through 0.4 is less than 5 hours. With these new definitions, we

investigated the time it takes for the initially quiescent cell to embark on the cell cycle and

for how long, if at all, it remains entrained in a near synchronous manner to the driving cell.

As for the Cyclin D dependent ATP release model, we begin our investigations by sim-

ulating the system for different values of the quiescent cell’s basic Cyclin D synthesis rate

a′d2 and calcium coupling strength γ. The top row of plots in Figure 4.16 indicate that

the Rs dependent model enjoys similar success to its Cyclin D dependent counterpart (cf.

Figure 4.10) in recruiting the initially quiescent cell onto the cell cycle. This is evidenced

by the large dark area in the top left hand plot of the figure. Dark areas in this and similar

plots correspond to the success of a driving cell in entraining a quiescent cell quickly. It is

clear from the bottom row of plots that the Rs dependent model enjoys far more success in

maintaining near synchrony for a significant period, at least under the parameter regimes

considered in Figure 4.16. Indeed, large parts of the bottom left plot in Figure 4.16 are

lightly coloured (light colours correspond to long periods of synchronous entrainment in this

and similar plots), indicating that the two cells remained entrained in a near synchronous

manner for large periods of the total time of integration. In Figure 4.17 we take an isolated

example in order to illustrate the general story shown in Figure 4.16. Once the initially qui-

escent cell first embarks upon the cell cycle, it begins to cycle in a near synchronous fashion

with the driving cell. However, it is also clear that the two trajectories diverge towards the

end of the period of integration, indicating that near synchrony, although maintained for
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a long period of time, does not last for ever. If we compare Figure 4.17 to Figures 4.11

and 4.12, which show the results for the Cyclin D dependent ATP release model, it is clear

that near synchrony is maintained for a far longer period of time in the example of the Rs
dependent ATP release model (Figure 4.17).

As for the Cyclin D dependent ATP release model, we also consider a different control

parameter Vdeg (see Figure 4.18). As was the case when γ was the control parameter, the

top row of plots in Figure 4.18, which show the time of recruitment onto the cell cycle, are

not too dissimilar to their Cyclin D dependent counterpart (cf. Figure 4.13). In both cases

the initially quiescent cell is recruited quickly onto the cell cycle, with the exception of the

lower values for ad2′ in the Cyclin D dependent case. Again, however it is clear that, by

comparing the bottom row of plots in Figures 4.18 and 4.13, the Rs dependent model is far

more successful at maintaining near synchrony, although its dependence on Vdeg is weak. A

specific example of this behaviour is illustrated in Figure 4.19, in which the initially dormant

cell embarks on the cell cycle and rapidly begins to cycle synchronously with the driving

cell. This behaviour appears to be indicative of the behaviour that we have observed for

the Rs dependent model under the majority of parameter regimes so far considered. In

this particular example, the two cell trajectories begin to drift apart towards the end of the

period of integration and at t ≈ 1097 hours the delay between Cyclin D peaks is greater

than 5 hours and near synchrony, according to this chapter’s definition is lost.

As for the Cyclin D dependent model, we investigated whether the rate of extracellu-

lar ATP diffusion has an effect on the behaviour discovered for the Rs dependent model.

Figure 4.20 shows that, as was the case for the Cyclin D dependent model, the ability of a

driving cell to induce a quiescent cell onto the cell cycle in a near synchronous manner is

not strongly affected by the rate of extracellular diffusion. It therefore seems unlikely that

the ATP diffusion rate DATP has a significant effect on the general behaviour of the system

in this section, for values of DATP above 10 µm2s−1 at least.

Although we would expect the results from this Section to be quantitatively different if

we changed the criteria for near synchrony, we would expect the qualitative results to re-

main the same. This is what our numerical investigations into the matter suggested (results

not shown).
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Figure 4.16: Time to and duration of near synchronous entrainment of an initially qui-

escent cell by a cycling cell for the Rs dependent ATP release model

((Hi, Hc) = (Rsc, Rsi), system (3.1) - (3.14)). These results indicate that

this model enjoys a great deal of success in maintaining near synchronous

entrainment under the parameter values considered here. The first row of

plots indicates the time at which the initially quiescent cell embarks on the

cell cycle (when its Cyclin D value falls below 0.4) for a range of values for

a′d2 and γ. The second row of plots indicate the period of time for which

the cells cycle in a near synchronous manner. The line marked FP1Rs corre-

sponds to the boundary of the area of bistability in the single cell bifurcation

diagram (Figure 4.5). The driving cell’s initial conditions were such that it

sat on the branch of stable limit cycle solutions seen in the top of Figure 4.5.

The entrained cell’s initial conditions were such that it sat on the branch of

fixed point solutions and small amplitude stable limit cycle solutions below

this. Parameter values as for Table 4.2, except for γ and a′d2 as given and

Vdeg = 2 µMs−1.
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Figure 4.17: An example of rapid cell cycle entrainment of a quiescent cell where near

synchronous behaviour is maintained for a long period of time for the Rs

dependent ATP release model ((Hi, Hc) = (Rsc, Rsi), system (3.1) - (3.14)).

The red dot indicates the point at which the quiescent cell is entrained

and the black dot the point at which near synchrony is lost. The driving

cell’s initial conditions were such that it sat on the branch of stable limit

cycle solutions seen in the top of Figure 4.5. The entrained cell’s initial

conditions were such that it sat on the branch of fixed point solutions below

this. Parameter values as for Table 4.2, except for γ = 1, a′d2 = 0.4 and

Vdeg = 2 µMs−1. Solutions obtained using ode23s within Matlab.
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Figure 4.18: Time to and duration of near synchronous entrainment for the Rs dependent

ATP release model ((Hi, Hc) = (Rsc, Rsi), system (3.1) - (3.14)). The results

provide more evidence that the Rs dependent ATP release model is more

successful at maintaining near synchronous entrainment than the Cyclin D

dependent ATP release model. They also suggest that dependence of near

synchronous entrainment on Vdeg is weak. Parameter values as for Table

4.2, except for Vdeg and a′d2 as given and γ = 1.
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Figure 4.19: Another example of rapid cell cycle entrainment where near synchrony

is maintained for a long period of time via Rs dependent ATP release

((Hi, Hc) = (Rsc, Rsi), system (3.1) - (3.14)). The red dot indicates the

point at which the quiescent cell is entrained and the black dot the point

at which near synchrony is lost. The driving cell’s initial conditions were

such that it sat on the branch of stable limit cycle solutions seen in the top

of Figure 4.5. The entrained cell’s initial conditions were such that it sat

on the branch of fixed point solutions below this. Parameter values as for

Figure 4.17 except for Vdeg = 1 µMs−1 and a′d2 = 0.39.
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Figure 4.20: Results indicating that time to and duration of entrainment of a quiescent

cell remain largely unaffected by a change in rate of extracellular ATP diffu-

sion in the Rs dependent ATP release model ((Hi, Hc) = (Rsc, Rsi), system

(3.1) - (3.14)). Parameter values as for Table 4.2, except for DATP and a′d2

as given, γ = 1 and Vdeg = 2 µMs−1.
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4.4 Pacemaker Recruitment in Systems of Several Cells

The results in the previous section appear promising in accounting for the increase in radial

glia proliferation that is brought about by the calcium coupling. Weissman et al ’s results

suggest that ATP mediated calcium waves are responsible for maintaining higher numbers

of cells in S-phase (as indicated by BrdU incorporation). The blocking of ATP release for

an hour on day 16 of development in the rat resulted in a decrease in the density of pro-

liferating radial glial cells to 54.7 % of control [93]. This could be accounted for in our

model by initiating the system from a state where around half the cells are quiescent and

the other half cycling. If ATP release in the system was turned off (achieved by setting

the rate of extracellular ATP release VATP to 0, analogous to the in vitro blocking of ATP

release), then all of the driving cells will continue to oscillate, while the quiescent cells will

remain dormant. If however, ATP release is switched on in this system, the quiescent cells

could be recruited onto the cell cycle, resulting in an approximate doubling in the density

of proliferating cells.

In order to investigate whether this is indeed the case, we will need to consider systems

of several cells in one spatial dimension under several different parameter regimes for both

the driving and quiescent cells. This would be a very computationally expensive task and

time constraints imposed upon the production of this thesis mean that this is not practical.

Consequently in this section we, as a ‘proof of concept’, consider only one example for each

model.

4.4.1 Cyclin D Dependent ATP Release

We first of all consider a system of 10 cells for the Cyclin D dependent model, where even

numbered cells are initially quiescent, with a value for a′d of 0.38, and all other cells are

initially cycling, with a value for a′d of 0.41. Simulating this system with the coupling turned

on and off leads to the results illustrated in Figures 4.21 and 4.22.

In Figure 4.21, where ATP release is turned on the cumulative total of cell cycle os-
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Figure 4.21: An example of ATP mediated calcium signalling bringing about an increase

in the density of proliferating cells in a 10 cell system for the Cyclin D

dependent ATP release model ((Hi, Hc) = (Di, Dc), system (3.1) - (3.14)).

The driving cells’ initial conditions were such that they sat on the branch

of stable limit cycle solutions seen in the top of Figure 4.1. The entrained

cells’ initial conditions were such that they sat on the branch of fixed point

solutions and small amplitude stable limit cycle solutions below this. In

the right hand plot, the green curve is the trajectory of all of the cells

which are initially cycling whereas the red curve is the trajectory of the

initially quiescent cells. To note, the trajectories of all of the driving cells

are identical and likewise the trajectories of all of the initially quiescent cells

are identical. Parameter values as for Table 4.2, except for a′di = 0.38 (for

even i), a′di = 0.41 (for odd i), γ = 1 and Vdeg = 0.5 µMs−1.
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Figure 4.22: An example showing how the blocking of ATP release can lead to a signifi-

cant decrease in the number of proliferating cells. The driving cells’ initial

conditions were such that they sat on the branch of stable limit cycle solu-

tions seen in the top of Figure 4.1. The entrained cells’ initial conditions

were such that they sat on the branch of fixed point solutions and small

amplitude stable limit cycle solutions below this. As for Figure 4.21, in the

right hand plot, the green curve is the trajectory of all of the cells which

are initially cycling whereas the red curve is the trajectory of the initially

quiescent cells. Parameter values as for Table 4.2, except for a′di = 0.38 (for

even i), a′di = 0.41 (for odd i) γ = 1, VATP = 0 s−1 and Vdeg = 0.5 µMs−1.

cillations over the period of integration is 465, while it is 240 in Figure 4.22, where the

system was simulated without ATP release. Therefore, in this example the absence of ATP

mediated calcium signalling brings about a decrease in the density of proliferating cells to

51.6% of the control, which is very close to the 54.7 % that has been observed experimen-

tally. Strictly speaking, we are not quite comparing like with like. Weissman et al measured

the proportion of radial glial cells in S-phase during one hour under different experimental

conditions (i.e. with and without ATP receptor blocking) in a large population of cells.

However, we have measured the total number of cells in a small population over a large

period of time under different conditions (i.e. with and without ATP receptor blocking).

Weissman et al would expect their results to be representative for the whole developing

neocortex across the time of neurogenesis and likewise we would expect our results to be

representative for the whole developing neocortex across the time of neurogenesis. It is in

this sense that our quantitative findings can be directly compared to Weissman et al ’s. The

result from our simulations strongly suggests that the ability of a driving cell to recruit

a quiescent cell onto the the cell cycle via an ATP mediated calcium signal could be the

mechanism responsible for the increase in radial glia proliferation.
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Interestingly, the time v Cyclin D plot in Figure 4.21 takes an identical form to the time

v Cyclin D plot in Figure 4.14, where only two cells are considered but under an identical

parameter regime. Indeed in both cases the initially quiescent cell(s) are recruited onto the

cell cycle at exactly the same point, at t ≈ 380 hours and the formerly quiescent and driving

cells Cyclin D trajectories take exactly the same form. In both cases the formerly quiescent

cells are not entrained in a near synchronous manner, which adds further weight to the

argument that ATP release during mid G1 phase is unlikely to lead to the synchronisation

of the cell cycles of clusters of radial glial cells. It is perhaps not surprising that the 10 cell

system studied in Figure 4.21 should mimic the results of the two cell system exactly, when

one considers that in both cases the signal received by the quiescent cells will be identical.

It is then interesting to test whether the two cell system results can be extended to

larger systems where the cells within the spatial domain are not distributed on an alternate

quiescent cell/driving cell basis. The driving cell/quiescent cell distribution in Figure 4.23

was determined using Matlab’s pseudo-random uniform distribution number generator rand

with the condition that the ratio of quiescent cells to driving cells must be 1:1. It is clear

that the 50 cells in the distribution do not alternate between driving cells and quiescent

cells. Despite this, by comparing the Cyclin D profiles of the driving and initially quiescent

cells in Figure 4.23 to Figures 4.21 and 4.14 it is clear that they are all identical. Fur-

thermore, in the 50 cell system, the absence of ATP coupling brings about a decrease in

the density of proliferating cells to 51.6% of control (1,200 oscillations (results not shown),

compared to 2,325 (Figure 4.23)); the same proportion as for the 10 cell system (Figure

4.21). This suggests that the results from the two cell system can indeed be extended to

larger systems where the distribution of quiescent cell to driving cell has been randomised.

By inspecting the profile of external ATP across the spatial domain (results not shown), it

can be seen that [ATPE ] is very similar throughout the domain due to the high ATP diffu-

sion coefficient DATP . We believe that this is the reason why the two cell results appear to

scale up to larger systems even when the distribution of quiescent driving cells is randomised.
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Figure 4.23: An example showing that even with a randomised distribution of driving

cells and quiescent cells, the Cyclin D profiles of the driving cells and ini-

tially quiescent cells remain the same in a 50 cell system for the Cyclin D

dependent ATP release model ((Hi, Hc) = (Di, Dc), system (3.1) - (3.14)).

The driving cells’ initial conditions were such that they sat on the branch

of stable limit cycle solutions seen in the top of Figure 4.1. The entrained

cells’ initial conditions were such that they sat on the branch of fixed point

solutions and small amplitude stable limit cycle solutions below this. In the

right hand plot, the blue curve is the trajectory of all of the cells which are

initially cycling and the pink curve, the trajectories of the initially quiescent

cells. Parameter values as for Table 4.2, except for a′di = 0.38 (for quiescent

cells), a′di = 0.41 (for driving cells) γ = 1, and Vdeg = 0.5 µMs−1.
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4.4.2 Rs Dependent ATP Release

Following on from our work for the Cyclin D dependent model, we considered a system of

10 cells for the Rs dependent model and simulated it with the coupling switched on and off.

As before, the initial conditions were such that odd numbered cells were initially oscillating

with a value for a′d of 0.41, while all other cells were initially quiescent with a value for a′d
of 0.39. The results of our simulations are displayed in Figures 4.24 and 4.25.
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Figure 4.24: An example of a 10 cell system where ATP mediated calcium signals bring

about a large increase in the proportion of proliferating cells in the Rs de-

pendent ATP release model ((Hi, Hc) = (Rsc, Rsi), system (3.1) - (3.14)).

The driving cells’ initial conditions were such that they sat on the branch

of stable limit cycle solutions seen in the top of Figure 4.5. The entrained

cells’ initial conditions were such that they sat on the branch of fixed point

solutions and small amplitude stable limit cycle solutions below this. Pa-

rameter values as for Table 4.2, except for a′di = 0.39 (for even i), a′di = 0.41

(for odd i), γ = 1 and Vdeg = 1 µMs−1.

In Figure 4.24 the cumulative total of cell cycle oscillations was 495, while it was 240

in Figure 4.25 where ATP release was blocked. Therefore, over the period of integration

blocking ATP coupling brings about a decrease in the density of proliferating cells to 48.5%

of control, very close to the 54.7 % that has been observed experimentally. This provides

further evidence to suggest that the increase in the density of proliferating cells is mainly

down to the ability of radial glial cells to recruit otherwise quiescent cells onto the cell cycle.

If we compare Figures 4.24 and 4.19, we can see that, as was the case for the Cyclin D
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Figure 4.25: An example of how switching off ATP release leads to a decrease in the

proportion of proliferating cells in the Rs dependent ATP release model

((Hi, Hc) = (Rsc, Rsi), system (3.1) - (3.14)). The driving cells’ initial con-

ditions were such that they sat on the branch of stable limit cycle solutions

seen in the top of Figure 4.5. The entrained cells’ initial conditions were

such that they sat on the branch of fixed point solutions and small amplitude

stable limit cycle solutions below this. Parameter values as for Table 4.2,

except for a′di = 0.39 (for even i), a′di = 0.41 (for odd i), VATP = 0s−1, γ = 1

and Vdeg = 1 µMs−1.

dependent model, under the same parameter regime the 10 cell system exactly mimics the

2 cell system for the Rs dependent model. Furthermore in Figure 4.26 we initialised the

system for a randomised distribution of driving cells and quiescent cells. Despite this the

Cyclin D profiles of the driving cells and quiescent cells remained identical to the two cell

case and 10 cell case under the same parameter regime. In all cases, the entrained cell(s) are

recruited at t ≈ 164 and near synchronous entrainment is lost at t ≈ 1097 hours. If systems

of several cells mimic the results of the two cell systems under every parameter regime, as

we suspect and as these results suggest, then the Rs dependent’s model superior ability to

recruit quiescent cells onto the cell cycle in a synchronous manner reinforces the argument

that the release of ATP as predominantly occurring during the G1/S phase transition is the

likely mechanism by which clusters of radial glial cells’ cell cycles synchronise.

4.5 Conclusions and Further Work

The results from this chapter suggest that a possible mechanism for the increase in radial

glia proliferation due to ATP mediated calcium signalling is the ability of a driving cell to
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Figure 4.26: An example of a 50 cell system for the Rs dependent ATP release model

((Hi, Hc) = (Rsc, Rsi), system (3.1) - (3.14)) showing that despite a ran-

domised distribution of driving cells to quiescent cells, ATP mediated cal-

cium signalling brings about an increase in the proportion of proliferating

cells. The driving cells’ initial conditions were such that they sat on the

branch of stable limit cycle solutions seen in the top of Figure 4.5. The

entrained cells’ initial conditions were such that they sat on the branch of

fixed point solutions and small amplitude stable limit cycle solutions below

this. Parameter values as for Table 4.2, except for a′di = 0.39 (for even i),

a′di = 0.41 (for odd i), γ = 1 and Vdeg = 1 µMs−1. Solutions obtained using

ode23s within Matlab.
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induce a quiescent cell onto the cell cycle. A driving cell achieves this by releasing ATP,

which in turn leads to the release of calcium in the quiescent cell, resulting in an increase in

Cyclin D activity in that cell, which lifts the cell from quiescence. Our results also reinforce

the notion that, in order for clusters of radial glial cells to synchronise, the timing of ATP

release from a cell is crucial. In particular, results in this chapter support those of chapter

3 in suggesting that ATP release occurring during late G1 phase (the Rs dependent model)

is more likely to lead to synchronous behaviour than in the case where it is released during

mid G1 phase (the Cyclin D dependent model). These results are summarised in Table 4.1.

As our results suggest that the timing of ATP release plays a crucial role in neural devel-

opmental, it leaves the possibility that some neural development disorders which may stem

from errors during neurogenesis such as infantile epilepsies, mental retardation, dyslexia,

Huntington’s and Alzheimer’s disease [4, 70] may be down to a malfunction in the timing of

the release of ATP into the extracellular space, although we are not aware of any evidence

in the literature which supports this hypothesis.

As mentioned above, neurogenesis in the rat embryo lasts 6 days while it has been es-

timated that in the human embryo it is far longer, of the order of 10 weeks [2, 12, 16]. In

mice, a proliferating cell cycles a total of 11 times during the period of neurogenesis [12].

However, this number is likely to be far larger during embryonic neurogenesis in humans. In

the systems we have studied, stable oscillatory solutions do not always exist or the system

will take a long time until it settles down to a stable oscillatory solution (far longer than the

period of neurogenesis). Therefore, the ‘torus’ solutions or transients before the system set-

tles down to a stable oscillatory solution become more important with regard to accounting

for the synchronous behaviour of cells than the stability of the solutions themselves. Our

results for two cells, which we believe can be extended to systems of several cells, suggest

that cells remain entrained in a near synchronous manner for a far longer period of time

when ATP is modelled as being predominantly released during the G1/S phase transition.

As we are dealing with a complex system, it is difficult to determine exactly why this is

the case. However, it appears that the superior ability of the Rs dependent model to pro-

mote synchronous behaviour, which we saw in the previous chapter, is intrinsic to the Rs
dependent model and helps to explain the results in this chapter. In this model, when γ

was the control parameter (Figure 4.16) the cells remained entrained in a near synchronous

manner for a maximum of 1385.389 hours ≈ 58 days, with a mean period (averaged over a

range of γ and a′d2) of synchronous behaviour of 415.54 hours ≈ 17 days. When Vdeg was
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the control parameter (Figure 4.18), the maximum period of synchronous behaviour was

1260.636 hours ≈ 53 days and the mean (averaged over a range of Vdeg and a′d2) was 497.927

hours ≈ 21 days. These results suggest that synchronous behaviour can be maintained for

a long enough period of time under most parameter regimes to account for the synchrony of

radial glial cells during neurogenesis in the rat. However, as neurogenesis in humans occurs

over a far longer timescale, only under certain parameter regimes will the cells in simula-

tions of our Rs dependent model yield synchronous behaviour for a sufficiently long period

of time. This suggests that either neurogenesis in humans is highly parameter sensitive,

with anomalies in the rate constants potentially leading to malfunctions in neurogenesis, or

that perhaps there is secondary mechanism involved in the process. Perhaps newly created

cells or other signalling pathways play a ‘synchrony checking’ role, helping to regulate syn-

chronous behaviour by acting in concert with the ATP signalling mechanism to prevent the

system from drifting from a synchronous state.

Although the results of this chapter are promising, we still have no way of accounting

for the beginning of neurogenesis as all systems considered thus far have some or all cells

initially cycling. Our results also rely upon clusters of radial glial cells consisting of two sets

of identical cells with identical initial protein concentrations for each set. In order to arrive

at the results in this chapter, the distribution of parameter values was finely tuned with

each cell modelled by one of two sets of parameters. As most cells exhibit some physical

differences, this is an unlikely scenario. These are some of the issues we intend to address

in the next chapter.

Table 4.1: Summary of results

mid G1 ATP release G1/S ATP release

Cyclin D dependent Rs dependent

ATP release model ATP release model

Entrainment Generally yes Generally yes

Figures 4.10-4.15, 4.21-4.23 Figures 4.16-4.20, 4.24-4.26

Near synchronous Generally no Generally yes

entrainment Figures 4.10-4.15, 4.21-4.23 Figures 4.16-4.20, 4.24-4.26
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Table 4.2: Parameter values

Parameter Value Parameter Value

r∗h 0.6 µMs−1 a′d1 0.41

aE 0.16 aX 0.08

k 0.054 qD 0.6

qE 0.6 qX 0.8

f 0.2 g 0.528

ps 0.6 pD 0.48

pE 0.096 pX 0.48

dD 0.4 dE 0.2

dX 1.04 af 0.9

RT 2.5 � 1.5

GF 6.3 ts 3600

Vdeg 0.01 µMs−1 [ATPI ]max 500 µM

VATP 50 s−1 [IP3]min 0.013 µM

Dc 0.5 [IP3]c 0.012 µM

% 0.01 µM−1 γ 0.4

DATP 350 µm2s−1 ∆x 10 µm

p1 0.0159835 µM p2 0.514987

p3 1.31319 p4 0.332195

p5 0.787902 m 24.1946

n 9.79183 α 0.083 s−1

Kdeg 50 µM [Ca2+]b 0.0159835 µM

kdeg 0.0625 s−1 Rsc 1
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Chapter5
A Role for Noise?

5.1 Introduction

I
n this chapter we consider the model for coupled calcium and cell cycle dynamics with

an additive noise term. Molecular fluctuations are intrinsic to biological reactions, but

they are often ‘averaged out’ by the relatively large scale of biological systems. How-

ever, this is not always the case, especially when biological mechanisms rely upon molecular

thresholds to be met, such as in ion channel gating [26]. In these cases, noise can radically

change the dynamics of the system. For example, White et al considered a stochastic neural

model, where the behaviour of ion channels was randomised, reflecting the fluctuations in

molecules involved with ion channel gating [94]. Their results suggest that noise may act to

regulate the dynamics in the entorhinal cortex (part of the temporal lobe). Schneidman et

al studied a stochastic Hodgkin-Huxley model of spiking neurons which incorporated ran-

dom ion channel behaviour [78]. Their results led them to the counter-intuitive conclusion

that noise increases the reliability and precision of spike timing.

As a preliminary investigation into the potential role noise may play in our system, we

investigated modelling the calcium concentration stochastically (achieved by adding a noise

term to the right hand side of equation (3.7), which expresses calcium as a function of IP3).

However, we discovered that the larger scale cell cycle dynamics ‘average out’ the calcium

fluctuations, whose effect on the dynamics of the system was negligible (results not shown).

The model (3.1) - (3.14) studied in the previous chapters incorporates a threshold switch

to model the opening of hemichannels and the release of ATP. Preliminary investigations

revealed that fluctuations in the threshold had a significant effect on the dynamics of our
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system. This is therefore an example where fluctuations in the number of molecules may

not be ‘averaged out’, but may in fact have significant influence over the system behaviour.

There are several examples in the literature of stochasticity leading to unusual and

sometimes counter-intuitive behaviour. For example, noise can amplify the effect of pe-

riodic forcing of an oscillator, a process known as stochastic resonance (see [29, 38] for

a discussion); advance saddle node bifurcation points [42] and advance Hopf bifurcation

points [37]. In the previous chapter we investigated the ability of a driving cell to recruit a

quiescent cell onto the cell cycle, which depended upon the existence of an area of multista-

bility in the system. There is the possibility that, upon the introduction of noise into our

system, we may see a similar change in behaviour to that observed in the examples above.

Noise could shift bifurcation points in the system and in doing so increase or decrease the

area of multistability in the system. This in turn could help enhance, or indeed hinder,

a driving cell’s ability to recruit a quiescent cell, which could have ramifications for our

models’ abilities to account for ATP induced calcium signals increasing the proportion of

proliferating radial glia. Furthermore, we mentioned in the previous chapter that we have

no way of accounting for the initialisation of neurogenesis, i.e. we have not modelled the

process of going from several inert cells at steady state to several oscillating cells. Noise may

be able to account for this too. Fluctuations at steady state may facilitate the spontaneous

release of ATP from open hemichannels which in turn could drive a cell into the oscillatory

regime signalling the start of neurogenesis.

We begin our investigation into the role of noise by firstly presenting our stochastic

model and then conducting a numerical exploration of the dynamics of one and two cells.

These results are then compared with the results of our deterministic model to ascertain the

degree to which noise changes the dynamics of our system and the nature of this change.

With this achieved, we as a ‘proof of concept’, consider larger stochastic systems in one

spatial dimension in order to see if noise has the potential to increase neural production.

5.2 The Stochastic Model

In our model we add noise to the threshold governing the release of ATP (Dc in the Cy-

clin D dependent ATP release model, Rsc in the Rs dependent ATP release model), thus
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modelling the opening of a cell’s hemichannels, which governs the release of ATP, stochas-

tically. We choose to add noise to our model in this manner, as in this case its effects are

not ‘averaged out’ by the dynamics of the deterministic system. This will not always be

the case. For example, when we added noise to the right hand side of equation 3.1, we

discovered that its effect upon the system was ‘averaged out’ by the governing dynamics of

the deterministic system (results not shown). Our model is as before, but with Hi = Di and

Hc = Dc + ξ(t, µ, σ2) from equation (3.14) in the Cyclin D dependent ATP release model,

and Hi = Rsc + ξ(t, µ, σ2) and Hc = Rsi in the Rs dependent model. Here ξ(t, µ, σ2) is

Gaussian white noise of zero mean value µ = 0 and variance σ2.

5.3 Numerical Techniques and Considerations

5.3.1 Method of Integration

In simulating system (3.1)-(3.14), we elected to take a similar approach to [15]. In [15]

Coombes et al use a fixed step numerical solver in order that the randomness can be pre-

scribed at regular intervals. With this in mind, we chose to use the forward Euler method

of integration to numerically solve the system because, although slow, it is a fixed step

method and is relatively straightforward to program.

In using the Euler method however, there is a danger that we may violate the Courant-

Friedrichs-Lewy (CFL) condition which ensures the stability of the solution when the Euler

method is used to solve PDEs discretised via the method of lines. If we were to violate

this condition, then the Euler method may not converge. In our system, the CFL condition

is satisfied if ∆t < ∆x2

2tsDATP
(where ∆t is the time step for our method of integration). If

we were to use the parameter values for DATP (350 µm2s−1) and ∆x (10 µm) that we

have used previously then our time step would have to be of the order of 10−5 hrs for the

CFL condition to be satisfied. With such a small time step it would take an exceptionally

long period of time to numerically solve our system for all but the shortest periods of time.

This problem would be exacerbated when considering a stochastic system as it would be

necessary to simulate our system several times in order to obtain its ‘average’ behaviour.

Consequently, as a matter of necessity we sought to reduce DATP , or equivalently (where

the CFL condition is concerned), increase ∆x. In Section 4.3 of the previous chapter we
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showed that for a large area of parameter space the dynamics of our system were unaffected

by a reduction in DATP to values as low as 10µm2s−1. We therefore decided to reduce

DATP to 10 µm2s−1, which meant that we required a ∆t of order 10−3 hrs in order to

satisfy the CFL condition. Such a reduction in the diffusion co-efficient is not as much

at odds with the biological reality as one may initially think. Indeed studies suggest that

molecules in the brain may diffuse up to five times more slowly than they do in free solution

due to factors such as the presence of macromolecular obstacles in extra-cellular space and

the viscous drag of cell walls [62, 76]. As a value of DATP of 350 µm2s−1 was calculated

by studying ATP diffusion in free solution and it appears that a reduction in the value of

DATP does not significantly affect the dynamics of our system, in subsequent simulations

we use a value of DATP of 10 µm2s−1. This allows us to use a time step ∆t of 0.001 hours.

Numerical exploration revealed that reducing ∆t did not qualitatively change the dynamics

of the system. However it did significantly increase the real time needed to solve the system

which is why we decided not to reduce it. Increasing ∆t resulted in the violation of the

CFL condition and the failure of the Euler method to converge to the solution. We used

Matlab’s pseudo-random number generator drawn from the normal distribution randn to

sample ξ(t, µ, σ2).

5.3.2 Bifurcation Analysis

In analysing stochastic systems we can not use tools such as AUTO (software for numer-

ical continuation of deterministic systems, which is incompatible for use with stochastic

systems). A different approach is needed and we use a similar technique to Hutt [42] to

produce stochastic equivalents of bifurcation diagrams which we will refer to henceforce as

‘stochastic bifurcation diagrams’. Hutt considers a system of two non-linear ODEs which

displays hysteresis and then adds noise to the system. In order to study the behaviour of the

stochastic model, an ensemble of initial conditions is considered and the system numerically

solved for each set of initial conditions for different values of the control parameter. The

solutions for each value of the control parameter are then plotted and compared with the

bifurcation diagram of the deterministic system in order to ascertain whether additive noise

affects the stability of the system in any way. Hutt discovered that noise acted to shift the

bifurcation point of the deterministic system. Furthermore, by conducting analysis on the

stochastic model, Hutt was able to calculate the degree to which this was the case. The red
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line in Figure 5.1 is derived from Hutt’s analysis. The black line corresponds to the original

deterministic system. The more complex nature of our model means that it is not feasible

for us to apply Hutt’s analytical technique. Furthermore, we are not aware of an analytical

technique which can be used universally, on all systems to determine a priori how noise

will effect bifurcation points. However, we can still use Hutt’s numerical technique.

Figure 5.1: Diagram illustrating the effect an additive noise term has on a deterministic

system studied by Hutt. The black line corresponds to the bifurcation dia-

gram of the deterministic system and the red to the behaviour of the system

which incorporates an additive noise term. Dashed lines correspond to un-

stable solutions and solid lines to stable solutions. The results indicate that

the noise acts to shift the saddle node bifurcation points of the deterministic

system to the left (relative to the control parameter). Reproduced from [42]

with permission from EPL.

As our system is of a larger dimension, if we considered an ensemble of initial conditions

where every variable’s initial condition was varied, our initial condition ensemble could

become very large indeed. When we also take into account that we will need to simulate

our stochastic system several times for each value of the control parameter, it becomes clear

that the process of producing stochastic bifurcation diagrams will be very computationally

expensive. For this reason, we decided to only vary the initial conditions of Cyclin D in our

ensemble, with all other initial conditions taking their steady state values. Our numerical

investigations revealed that by varying Di(0) between 0 and 2 and keeping all other initial

conditions at the stable steady state, our deterministic system displayed all of the behaviour

it was capable of. Solution trajectories tended towards the steady state solution for small

values of Di(0) and for larger values of Di(0) tended towards limit cycle or torus solutions,

where both solution types existed. Therefore, in our ensemble we set a lower limit of
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Di(0) = 0 and an upper limit of 2, utilising Matlab’s uniformly distributed pseudorandom

number generator function rand to generate an initial condition for Di(0) between these

values. Not varying the initial conditions of all other variables allowed us to keep down

the size of the ensemble, allowing us to solve our stochastic system a sufficient number

of times to obtain a meaningful ‘average’ without the process being too computationally

expensive. In producing our stochastic bifurcation diagrams, we numerically integrated our

system from each set of initial conditions for a total of 600 hrs. In order to ensure system

transients did not affect our results, we disregarded the first 300 hrs of the solution, only

taking into account the final 300 hrs when producing bifurcation diagrams. We calculate

the average Cyclin D concentration over the last 300 hours and by this measure we are able

to distinguish between ‘steady state’ and ‘oscillatory’ behaviour.

5.4 Single Cell Bifurcation Analysis

In this section we use the numerical technique outlined in Section 5.3.2 in order to produce

bifurcation diagrams of our stochastic system for a single cell.

5.4.1 Cyclin D Dependent ATP Release

We begin our analysis by considering the model where ATP release is modelled as pre-

dominantly occurring during mid G1 phase (equations (3.1)-(3.14), where (Hi, Hc) =

(Di, Dc+ξ(t, µ, σ2))). Bifurcation diagrams of our stochastic system for two different values

of the variance σ2, together with the bifurcation diagram for the deterministic system, are

shown in Figure 5.2. The first column of plots in the figure shows the average Cyclin D

across the ensemble. While the second column of plots show the frequency of average Cyclin

D in certain bins, so that the spread of ensemble behaviour becomes apparent. The mini-

mum value of the control parameter a′d1 at which oscillatory type solutions were detected

for the stochastic system is marked SFPD (stochastic fold point). We detected oscillatory

type solutions by confirming that the state variables were oscillating in a limit cycle type

fashion during the last 300 hours of the period of integration. As before, the saddle node

bifurcation point corresponding to the value of a′d1 where limit cycle solutions in the deter-

ministic system arise is marked as FP1D.

From the figure it appears that the stochasticity in our system has the effect of moving
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the bifurcation point that leads to oscillatory behaviour to the left, relative to the deter-

ministic case. Not only this, but for a value of σ2 = 0.0005, SFPD corresponds to a value

of a′d1 of 0.386, while for σ2 = 0.01, SFPD occurs at a′d1 = 0.368, indicating that increasing

the variance shifts SFPD further away from FP1D, which occurs at a′d1 = 0.386. It would

seem therefore that the noise introduced into our system is filtered in a non-linear manner,

leading to a change in the point at which oscillations arise. Furthermore, by studying the

first column of plots in Figure 5.2 one can see that the noise increases the average con-

centration of Cyclin D in the oscillatory type solutions. An increase in the variance σ2 of

the noise brings about a further increase in the average Cyclin D concentration. The noise

also appears to shift FP3D to the left, although not to the same degree to which FP1D is

moved. The second column of plots are colour plots which indicate the number of realisa-

tions that had the indicated average Cyclin D at each value of a′d1. In this particular plot

the realisations fall into one of two distinct groupings; an upper grouping which correspond

to oscillatory type solutions and a lower group which correspond to stable steady state type

solutions.

These results are augmented by the diagrams seen in Figure 5.3. The left hand plot is

a two parameter stochastic bifurcation diagram, where σ2 and a′d1 are the control param-

eters and it shows that as the variance of the noise is increased, SFPD moves further and

further away from FP1D. Additionally, as is evidenced in the right hand plot, increasing

the variance of the noise has the effect of increasing the average Cyclin D concentration of

oscillatory type solutions.

In shifting the left hand boundary of the area of mulitstability (FP1D) to the left more

significantly than the right hand boundary (FP3D), the noise increases the area of mul-

tistability of our system. With a larger area of multistability, quiescent cells that sit on

the branch of stable steady state solutions shown in Figure 5.2, that lie outside the area

of multistability of the deterministic system, may not lie outside the area of multistability

of the stochastic system. Consequently a stochastic system may allow for the possibility of

the recruitment of initially quiescent cells that are beyond the reach of the deterministic

system and/or accelerate the speed at which formerly quiescent cells are recruited onto the

cell cycle. This process could in turn lead to an increase in overall proliferation. Further

work on systems of several cells would need to be carried out to confirm this hypothesis

however. We investigate if this is the case in Section 5.6.
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Figure 5.2: Bifurcation diagrams of system (3.1)-(3.14) for σ2 = 0 (the deterministic sys-

tem) and for two different values of the variance σ2 (the stochastic system) for

the Cyclin D dependent ATP release model ((Hi, Hc) = (Di, Dc+ξ(t, µ, σ2))).

The diagrams illustrate the effect the noise has on shifting the point at which

oscillatory behaviour arises, as well as its effect upon the concentration of Cy-

clin D. SFPD corresponds to the point at which oscillatory behaviour arises

in the stochastic system, while FP1D corresponds to the point at which oscil-

latory behaviour arises in the deterministic system, and FP3D to the saddle

node bifurcation point we first encountered in Figure 2.10. The average Cy-

clin D concentration over the last 300 hours of the period of integration for

each stochastic realisation is plotted with a square in the first column of plots.

X’s, O’s and straight lines correspond to the deterministic system. The sec-

ond column of plots are colour plots with average Cyclin D within each of

a set of bins (ranging from -0.025 - 0.575 at intervals of 0.05) for each value

of a′d1 (ranging from 0.36-0.41 at intervals of 0.0003). The deterministic bi-

furcation diagram was produced using AUTO, and the stochastic bifurcation

diagrams were produced as outlined in Section 5.3.2 with an ensemble of 100

initial conditions for each value of a′d1 considered. Parameter values as in

Table 5.1 unless otherwise indicated.
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Figure 5.3: Bifurcation diagrams for the stochastic system given by equations (3.1)-

(3.14) for the Cyclin D dependent ATP release model ((Hi, Hc) = (Di, Dc +

ξ(t, µ, σ2))). The left plot (a two parameter bifurcation diagram) shows that

increasing the variance of the noise σ2 moves the point at which oscillatory

type behaviour arises (SFPD) further away from FP1D, the point at which

oscillatory solutions arise in the deterministic system. The right plot reveals

the extent to which the average concentration of Cyclin D is increased as σ2

is increased. In the plot of the average Cyclin D concentration, the average

of all oscillatory type solutions for the stochastic system at a′d1 = 0.392 was

taken. Parameter values as in Table 5.1 unless otherwise indicated.

5.4.2 Rs Dependent ATP Release

Our results for the Cyclin D dependent model are parallelled here, where we consider

the Rs dependent ATP release model (given by system (3.1)-(3.14), with (Hi, Hc) =

(Rsc + ξ(t, µ, σ2), Rsi)). By referring to Figure 5.4, where stochastic bifurcation diagrams

for the Rs dependent model are shown, it is clear that noise has the effect of moving the

point at which oscillations arise away from FP1Rs. The right hand boundary of the area of

bistability (FP2Rs) is shifted to the left but far less severely than the left hand boundary

(FP1Rs). Therefore noise acts increase the area of bistability in the Rs dependent ATP

release system in a similar way to which it acts in the Cyclin D dependent ATP release

model. As for the Cyclin D dependent model, increasing the variance of the noise leads

to an increase in the average Cyclin D concentration of the solutions displaying oscillatory

type behaviour, as is illustrated in Figure 5.5 (right hand plot). It therefore appears that

for the Rs dependent model, additive noise acts to increase the area of bistability. This in

turn raises the possibility that noise may enhance a driving cell’s ability to recruit quiescent

cells in the Rs dependent model as well as the Cyclin D dependent model.
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Figure 5.4: Bifurcation diagrams of system (3.1)-(3.14) for σ2 = 0 (the deterministic sys-

tem) and for two different values of the variance σ2 (the stochastic system) for

the Rs dependent ATP release model ((Hi, Hc) = (Rsc+ξ(t, µ, σ2), Rsi)). The

bifurcation diagrams illustrate that the noise moves the point at which oscil-

latory type behaviour arises and increases the average concentration of Cyclin

D. SFPRs corresponds to the point at which oscillatory behaviour arises in the

stochastic system, while FP1Rs corresponds to the point at which oscillatory

behaviour arises in the deterministic system. The deterministic bifurcation

diagram was produced using AUTO, and the stochastic bifurcation diagrams

were produced as outlined in Section 5.3.2 with an ensemble of 100 initial

conditions for each value of a′d1 considered. Parameter values as in Table 5.1

unless otherwise indicated.

198



5.5 Two Cell Bifurcation Analysis Chapter 5: A Role for Noise?

0 0.02 0.04 0.06 0.08 0.1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

σ2

a
′ d
1

SFP Rs

FP1 Rs

0 0.02 0.04 0.06 0.08 0.1

0.35

0.4

0.45

0.5

0.55

σ2

A
ve

ra
ge

C
yc

lin
D

1

Figure 5.5: Bifurcation diagrams for the stochastic system given by equations (3.1)-(3.14)

for the Rs dependent ATP release model ((Hi, Hc) = (Rsc + ξ(t, µ, σ2), Rsi)).

The left plot (a two parameter bifurcation diagram) shows that increasing

the variance of the noise σ2 moves the point at which oscillatory type be-

haviour arises (SFPRs) further away from FP1Rs, the point at which oscil-

latory solutions arise in the deterministic system. The right plot reveals the

extent to which the average concentration of Cyclin D increases as σ2 is in-

creased (the average of all oscillatory type solutions for the stochastic system

at a′d1 = 0.392 was taken). Parameter values as in Table 5.1 unless otherwise

indicated.

Next, we investigate the hypothesis that the stochastic system has an enhanced ability

to recruit quiescent cells onto the cell cycle, by considering systems of two cells for both

models.

5.5 Two Cell Bifurcation Analysis

In previous chapters we have considered scenarios where all or a large number of simulated

cells are identical. This is unlikely to be the case in reality, where cells often oscillate with

different frequencies. With this in mind we consider two cell systems for three different

values of a′d1 (0.35, 0.38 and 0.41), but where a′d2 is varied over a large range for each value

of a′d1 considered. As the Cyclin D synthesis rate ad influences the existence and the period

of the limit cycle solutions of simulated cells, studying systems where ad is varied in both

cells will give us a better feel of the dynamics of systems of non-identical cells, oscillating

at different frequencies.

In previous chapters, in producing bifurcation diagrams for our two cell deterministic
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system, we discovered that, under some parameter regimes, torus and limit cycle solutions

co-exist. Although we were able to detect the point at which these torus solutions were

created, we were unable to continue the solution branch itself using AUTO. Our numerical

results indicate that torus like solutions appear to exist for our two cell stochastic system

also, which helps to explain the ‘scatter gun’ effect of the bifurcation diagrams of the two

cell stochastic systems that we shall come to.

5.5.1 Cyclin D Dependent ATP Release

Stochastic bifurcation diagrams together with their deterministic counterparts, where a′d2

is the control parameter for a two cell system where σ2 = 0.0005, are shown in Figure 5.6.

This figure shows that the stochastic solutions (marked with squares) exhibit a ‘scatter gun’

effect throughout parameter space. This effect results from both torus like and limit cycle

type solutions co-existing. This makes it very difficult to ascertain the point at which limit

cycle type solutions arise, which in turn makes it very difficult to ascertain how noise affects

the point at which limit cycle type solutions arise (marked FP1Da in Figure 5.6). However, it

remains an easier task to ascertain at which point oscillatory type solutions arise (we include

torus type solutions within this) and this point is marked as SOPD (Stochastic oscillation

point) in Figure 5.6. SOPD corresponds to the point at which oscillations arise in cell 2.

It is clear from Figure 5.6 that SOPD occurs before oscillations arise in the deterministic

system (marked TB), indicating that noise moves to the left the point in parameter space

at which oscillations arise.

From Figure 5.6 it can be seen that the maximum average Cyclin D concentration in

both cells for the stochastic system far exceeds that of the deterministic system. Although

there are many other ‘rogue’ stochastic solutions (many of which are torus like solutions)

where the average Cyclin D concentration does not exceed that of the deterministic model,

it appears that by and large noise increases the average Cyclin D concentration in both

cells, in a similar fashion to the single cell case.

Shown in Figure 5.7 are bifurcation diagrams where the variance of the additive noise

is 0.005, ten times more than that of the results displayed in Figure 5.6. The increased

variance results in the point at which oscillations in the second cell arise (SOPD in Figure

5.7) being shifted even more dramatically. Indeed SOPD occurs at a′d2 = 0.2750 when
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Figure 5.6: Bifurcation diagrams of system (3.1)-(3.14) for σ2 = 0 (the deterministic sys-

tem) and and for σ2 = 0.0005 (the stochastic system) for two cells in the

Cyclin D dependent ATP release model ((Hi, Hc) = (Di, Dc + ξ(t, µ, σ2))).

The diagrams show that noise moves the point at which oscillatory type so-

lutions arise to the left and suggest that the average Cyclin D concentration

of the oscillations in cells 1 and 2 increases with noise. TB corresponds to

a torus bifurcation point, SOPD corresponds to the point at which oscilla-

tions arise in cell 2 in the stochastic system, while FP1D
a corresponds to the

point at which limit cycle solutions arise in the deterministic system. Each

stochastic realisation is indicated by a square in the first six plots. The X’s,

O’s and straight lines in these plots correspond to the deterministic system.

The dotted boxes in the first row of plots correspond to the areas that we

have zoomed in on in subsequent plots. The bottom row of plots are colour

plots with average Cyclin D within each of a set of bins (ranging from -0.025

- 0.625 at intervals of 0.05) for each value of a′d2 (ranging from 0.24-0.41 at in-

tervals of 0.0003). The deterministic bifurcation diagram was produced using

AUTO, and the stochastic bifurcation diagrams were produced as outlined in

Section 5.3.2 with an ensemble of 100 initial conditions for each value of a′d2

considered. Parameter values as in Table 5.1 unless otherwise indicated.

σ2 = 0.0005, while it occurs at a′d2 = 0.2480 when σ2 = 0.005.

In Figure 5.8 are shown bifurcation diagrams for our two cell stochastic system, but this

time for a different value of a′d1 (the Cyclin D synthesis rate of cell 1). Up until this point we

have considered values for a′d1 of 0.41. However in Figure 5.8 we set a′d1 to 0.38. The reason

we did this was because we wanted to explore variation in a′d2 for different characteristic

situations in cell 1. Interestingly, it appears that in this case additive noise fails to move

to the left the point at which oscillatory type solutions arise. In fact it appears that the

noise shifts it to the right. We suspect, however, that the shifting of the point leading to

oscillatory type solutions in this manner is an artifact of having too small an ensemble of

initial conditions. For such a small value of the variance (0.0005), the system’s dynamics

are unlikely to be as severely affected as they would be for a larger value of the variance

and it would therefore be more difficult to pick up any change in these dynamics. This

argument is supported by the results in Figure 5.8, where it can clearly be seen that for a

larger value of the variance (0.005), noise does shift the onset of oscillatory solutions to the

left.
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Figure 5.7: Bifurcation diagrams of system (3.1)-(3.14) for σ2 = 0 (the deterministic

system) and σ2 = 0.005 (the stochastic system) for two cells in Cyclin D de-

pendent ATP release model ((Hi, Hc) = (Di, Dc +ξ(t, µ, σ2))). By comparing

the diagrams to the results displayed in Figure 5.6, it can be seen that in-

creasing the variance of the noise further shifts to the left the point at which

oscillations arise in cell 2. The diagrams also suggest that the average Cyclin

D concentration of the the oscillations in cell 1 and cell 2 increases further

still when the variance of the noise is increased. Parameter values as in Table

5.1 unless otherwise indicated.

Figure 5.10 shows 2 cell bifurcation diagrams which confirm the general theme of this

section, i.e. the greater the variance of the additive noise, the greater the shift in the point

at which oscillations arise in our system and the greater the average Cyclin D concentration

of the oscillatory type solutions. In the first column of this figure we plot two parameter

bifurcation diagrams where σ2 and the Cyclin D synthesis rate of cell 2, a′d2 are the control

parameters for three different values of the Cyclin D synthesis rate of cell 1 a′d1 (0.41, 0.38

and 0.35). In all cases, noise of a sufficient variance shifts the point at which oscillatory

type solutions arise such that they arise for lower values of a′d2 than in the deterministic

case. Increasing the variance shifts the point at which stochastic oscillations arise further

away from where they arise deterministically. Furthermore, in the second column of plots

are shown bifurcation diagrams for three different values of the Cyclin D synthesis rate of

cell 1 a′d1 (0.41, 0.38 and 0.35), which indicate that noise acts to increase the average Cyclin

D concentration of the system.

These results support the notion that noise in ATP mediated coupling may increase

the collective rate of radial glial proliferation. As for the single cell case, in the two cell

case the noise is filtered in a non-linear manner and acts to advance the onset of oscillatory

type solutions. This keeps the possibility very much alive that a system with noise may

be able to recruit quiescent cells more quickly and/or recruit cells beyond the reach of a

deterministic system.
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Figure 5.8: Bifurcation diagrams of system (3.1)-(3.14) for σ2 = 0 (the deterministic

system) and for σ2 = 0.0005 (the stochastic system) for two cells in the

Cyclin D dependent ATP release model ((Hi, Hc) = (Di, Dc + ξ(t, µ, σ2))).

The diagrams show that for a value of a′d1 of 0.38, noise shifts to the right the

point at which oscillations arise, although it appears to increases the average

Cyclin D concentrations of the oscillatory type solutions. Parameter values

as in Table 5.1 except for a′d1 = 0.38.
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Figure 5.9: Bifurcation diagrams of system (3.1)-(3.14) for σ2 = 0 (the deterministic

system) and for σ2 = 0.005 (the stochastic system) for two cells in the Cyclin

D dependent ATP release model ((Hi, Hc) = (Di, Dc + ξ(t, µ, σ2))). The

diagrams show that even for a value of a′d1 of 0.38, noise of a high enough

intensity shifts to the left the point at which oscillations arise. It can also be

seen that it increases the average Cyclin D concentrations of the oscillatory

type solutions. Parameter values as in Table 5.1 except for a′d1 = 0.38.
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Figure 5.10: The first column shows two parameter bifurcation diagrams which indicate

that increasing the variance of the noise further shifts the point at which

oscillations occur away from FP1D
a for the 3 values of a′d1 considered. The

plots in the second column show that, at a′d2 = 0.392, increasing the variance

of the noise increases the average Cyclin D concentrations of the oscillatory

type solutions. Note that limit cycle solutions do not exist for the deter-

ministic model when a′d1 = 0.35, which explains the absence of FP1D
a in the

bottom left hand corner plot.
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5.5.2 Rs Dependent ATP Release

We next focused upon our Rs dependent model (system (3.1)-(3.14), with (Hi, Hc) =

(Rsc + ξ(t, µ, σ2), Rsi)). The qualitative results of our two cell bifurcation analysis here

are much the same as for the Cyclin D dependent model. Figure 5.11 shows the results for

a variance of 0.0005, where it can be seen from the locations of TB and SOPRs that noise

acts to shift the point at which oscillations arise to the left. Interestingly, the behaviour

of our stochastic system appears more regular in the left hand area of parameter space in

Figure 5.11 than in the right hand area. Between a′d2 ≈ 0.22 and ≈ 0.28 oscillatory type

solution trajectories of the stochastic system are very closely grouped around one of two

curves (marked group 1 and group 2). In the bifurcation diagram of Cyclin D in cell 2 (the

top right hand plot) there is a third curve beneath group 2, these are steady state type

solutions. The curves in groups 1 and 2 are very regular and reminiscent of the branches of

limit cycle solutions we encountered in deterministic two cell bifurcation diagrams in Section

4.2 of chapter 4. Towards the right hand area of the parameter space shown in Figure 5.11

this regularity is lost, with the data points almost having a ‘scatter gun’ effect, with many

of the solutions being torus type solutions that we first discovered in Section 4.2 of chapter

4. Interestingly, the scatter gun effect only appears at a′d2 ≈ 0.28, just before the torus

bifurcation point of the deterministic system (marked TB). The regular behaviour seen in

group 1 occurs well before the point at which limit cycle solutions arise in the deterministic

system (marked FPRss ), however. This suggests that the noise has a far greater effect upon

moving the saddle node bifurcation point (FPRss ) than it does the torus bifurcation point

(TB). In effect it moves FPRss past TB, so that limit cycle type solutions arise before torus

type solutions in the stochastic system, the converse to the deterministic system. In this

instance therefore, noise in the Rs dependent ATP release model appears to ‘regulate’ the

behaviour of the system by seemingly allowing the limit cycle type solutions to dominate

the torus type solutions. This is a phenomenon that could have biological implications and

is something that we did not encounter when studying the Cyclin D dependent ATP release

model. It also appears that, generally speaking and especially where cell 2 is concerned,

noise has the effect of increasing the average Cyclin D concentration of the oscillatory type

solutions of our system.

As we have seen before, the effect of noise on the system is intensified when the variance

is increased. For a value of σ2 of 0.0005, SOPRs occurs at a′d2 = 0.238, while for σ2 = 0.005
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Figure 5.11: Bifurcation diagrams of system (3.1)-(3.14) for σ2 = 0 (the deterministic

system) and σ2 = 0.0005 (the stochastic system) for two cells in the Rs

dependent ATP release model ((Hi, Hc) = (Rsc + ξ(t, µ, σ2), Rsi)). The dia-

grams show that noise acts to shift to the left the point at which oscillatory

type solutions arise and suggest that the average Cyclin D concentration of

the oscillations in cells 1 and 2 increases with noise. TB corresponds to a

torus bifurcation point, SOPRs corresponds to the point at which oscilla-

tions arise in cell 2 in the stochastic system, while FP1Rs
s corresponds to the

point at which limit cycle solutions arise in the deterministic system. Each

stochastic realisation is indicated by a square in the two plots. The X’s, O’s

and straight lines in these plots correspond to the deterministic system. The

dashed boxes in the first row of plots correspond to the groupings referred

to in the text. The bottom row of plots are colour plots with average Cyclin

D within each of a set of bins (ranging from -0.025 - 0.575 at intervals of

0.05) for each value of a′d2 (ranging from 0.15-0.41 at intervals of 0.0003).

The deterministic bifurcation diagram was produced using AUTO, and the

stochastic bifurcation diagrams were produced as outlined in Section 5.3.2

with an ensemble of 100 initial conditions for each value of a′d2 considered.

Parameter values as in Table 5.1 unless otherwise indicated.
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(Figure 5.12), SOPRs occurs at a′d2 = 0.161. Figure 5.12 shows that, as for the results

displayed in Figure 5.11, there is an area in parameter space where limit cycle type solu-

tions fall into one of two groups (between a′d2 ≈ 0.161 and ≈ 0.25, marked groups 1 and 2).

Furthermore, torus type solutions, which give the scatter gun effect seen in the right hand

side of Figure 5.12, do not seem to appear until a′d2 ≈ 0.25, just before the torus bifurcation

point of the deterministic system (TB). It therefore appears that, in this example as well,

noise acts to move the point at which limit cycle solutions arise in the deterministic system

(FP1Rss ) to a far greater degree than it moves the point at which torus type solutions arise

(TB). This reinforces the notion that noise in the Rs dependent ATP release model effects

the torus bifurcation point and fold point FP1Rsa in a quantitatively different manner (al-

though in both cases noise appears to move the bifurcation points to the left relative to the

deterministic case). This effect is even more pronounced in the results in Figure 5.12 than

it is in those shown in Figure 5.11, due to the increased variance of the noise in Figure 5.12.

When the system of two cells is considered, but for a value of a′d1 = 0.38, the story

is much the same. It can be seen from Figure 5.13 that oscillatory type behaviour in the

second cell arises for lower values of the control parameter a′d2 than is the case in the deter-

ministic system, for a value of the variance of 0.0005. Interestingly, in this case as well the

noise appears to regulate the behaviour of the system in the left hand area of parameter

space, with torus type solutions not arising until just before the torus bifurcation point of

the deterministic system, as was the case for the results displayed in Figures 5.11 and 5.12.

This behaviour can also be seen for the larger variance of σ2 = 0.005 (Figure 5.14). These

results also support the notion that increasing the variance of the noise further shifts the

point at which oscillatory type solutions arise, as for σ2 = 0.0005 (Figure 5.13), SOPRs

occurs at ≈ 0.194, while for σ2 = 0.005 (Figure 5.14), SOPRs occurs at ≈ 0.167.

The 2 parameter stochastic bifurcation diagrams shown in the left hand column of Fig-

ure 5.15 augment the results we have seen so far in this section. The diagrams reveal that as

the variance of the noise is increased the point at which the oscillatory type solutions arise

(SOPRs) moves away from the point they arise in the deterministic system (TB). Further-

more, by and large, as the variance of the noise is increased, so is the average concentration

of Cyclin D of the oscillatory type solutions.
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Figure 5.12: Bifurcation diagrams of system (3.1)-(3.14) for σ2 = 0 (the deterministic

system) and for σ2 = 0.005 (the stochastic system) for two cells in the Rs

dependent ATP release model ((Hi, Hc) = (Rsc + ξ(t, µ, σ2), Rsi)). The

diagrams suggest that increasing the variance of the noise further moves

to the left the point at which oscillatory type solutions arise. They also

support the notion that noise shifts the point at which limit cycle solutions

arise (FP1Rs
a ) far more severely than the point at which torus solutions

arise (TB). It can also be seen that noise acts to increase the average Cyclin

D concentrations of the oscillatory type solutions. Parameter values as in

Table 5.1.
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Figure 5.13: Bifurcation diagrams of system (3.1)-(3.14) for σ2 = 0 (the deterministic

system) and σ2 = 0.0005 (the stochastic system) for two cells in the Rs de-

pendent ATP release model ((Hi, Hc) = (Rsc +ξ(t, µ, σ2), Rsi)). The dotted

boxes indicate the areas that have been zoomed in on in subsequent plots.

The diagrams show that even when a′d1=0.38, noise acts to move the bifur-

cation point leading to oscillatory type solutions and appears to regulate the

behaviour of the stochastic system in the left hand area of parameter space

(top row of plots) in a similar fashion to the results displayed in Figures

5.11 and 5.12 . Furthermore, it acts to increase the average Cyclin D con-

centration of the oscillatory type solutions in both cells. Parameter values

as in Table 5.1 except for a′d1 = 0.38.

Cell 1 Cell 2

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

ad2′

σ2 = 0.005

 

 

Stable limit cycle

Unstable limit cycle

Anti-phase branch
(high amplitude)

TB

FP1 Rs
a

SOP Rs

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

ad2′

σ2 = 0.005

 

 

Stable limit cycle

Unstable limit cycle

TB

SOP Rs

Anti-phase branch
(high amplitude)

FP1 Rs
a

a′
d2

A
ve

ra
ge

C
yc

lin
D

1

 

 

0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100
Number of realisations σ2 = 0.005

TB

FP1 Rs
a

SOP Rs

a′
d2

A
ve

ra
ge

C
yc

lin
D

2

 

 

0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100

Number of realisations σ2 = 0.005

SOP Rs

TB FP1 Rs
a

Figure 5.14: Bifurcation diagrams of system (3.1)-(3.14) for σ2 = 0 (the deterministic

system) and σ2 = 0.005 (the stochastic system) for two cells in the Rs de-

pendent ATP release model ((Hi, Hc) = (Rsc +ξ(t, µ, σ2), Rsi)). Comparing

these results to those displayed in Figure 5.13 suggests that increasing the

variance of the noise further shifts the point at which oscillatory type solu-

tions arise even for a value of a′d1 = 0.38. Parameter values as in Table 5.1

except for a′d1 = 0.38.
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Figure 5.15: In the first column are shown two parameter bifurcation diagrams for three

different values of a′d1 which indicate that increasing the variance of the

noise further advances the point at which oscillatory type solutions arise.

The plots in the second column show that at, a′d2 = 0.392, increasing the

variance of the noise appears to increase the average Cyclin D concentrations

of the oscillatory type solutions. Note that limit cycle solutions do not exist

for the deterministic model when a′d1 = 0.35, which explains the absence of

FP1Rs in the bottom left hand corner plot.
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It appears therefore that, as in the Cyclin D dependent model, noise in the Rs depen-

dent ATP release model moves the point at which oscillatory type solutions arise, and hence

may allow for the enhancement of a driving cell’s ability to recruit quiescent cells, in turn

leading to an increase in overall proliferation.

5.6 Simulations of Larger Systems

In this section we consider, as a ‘proof of concept’, a small number of simulations to inves-

tigate if noise enhances a driving cell’s ability to recruit quiescent cells onto the cell cycle

in 10 cell systems. In order to model the non-identical nature of the radial glial cells, we

sampled a′di from a normal distribution of mean 0.381 and variance 0.035, using Matlab’s

pseudo-random number generator drawn from the normal distribution randn. We chose

these values for the mean and variance so that we were very unlikely to get very low or

negative values for a′di, whilst ensuring that our values for a′di were sufficiently disparate

that the intrinsic frequency of oscillation of all cells differed.

The system was initialised with each cell such that it sat on the branch of stable steady

state type solutions which model the quiescent G0 state, except for the cell which had the

largest value of ad. This cell’s initial conditions were such that the cell initially exhibited

oscillatory type behaviour. We believe that in a noisy system, over a sufficiently long period

of time, the noise should act to enable initially dormant cells to exit this state and begin

to oscillate. We also believe that in a system of quiescent cells, the cell likely to exit the

steady state type solution first is the cell with the largest values for a′d. This assumption

is in keeping with some preliminary work (not shown), which suggested that noise can lift

initially dormant cells out of quiescence and that cells with a larger value for a′d are more

likely to exit this state, and would begin to oscillate more quickly, than cells with a lower

value for a′d. This is why we chose the cell with the largest value for a′d to be the cell that

initially exhibits oscillatory type solutions. In effect, when simulating our system in this

manner, we are modelling a state whereby the first quiescent cell has just exited the steady

state like solution.

We simulated our stochastic system 10 times and obtained an average number of cell
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cycles over the period of integration in order to measure the rate of proliferation.

5.6.1 Cyclin D Dependent ATP Release

In Figure 5.16 we simulate the deterministic system. The results of one realisation of our

stochastic Cyclin D dependent ATP release model from the same initial conditions and un-

der the same parameter regime are shown in Figure 5.17. Figure 5.17 reveals that initially

quiescent cells are recruited onto the cell cycle relatively quickly, although it is not clear if

the cells are entrained in a synchronous manner. Over 10 realisations, the average number

of cell cycles during the period of integration (1600 hours) for the stochastic system was 266.

In the deterministic case all cells are recruited by t ≈ 1430 hours, while for the stochastic

case all cells have been recruited far earlier than this at t ≈ 1100 hours. Not surprisingly

therefore the total number of cell cycles that occur during the period of integration in the

deterministic case (165) is lower than that of the stochastic model (266). This corresponds

to an increase in proliferation brought about by the noise of 61.2 %. If we take cell 2 from

Figures 5.17 and 5.16 and compare the trajectories of the Cyclin D concentrations of each,

a driving cell’s enhanced ability to recruit quiescent cells in noisy systems becomes even

clearer. By referring to Figure 5.18 it can be seen that cell 2 is recruited at t ≈ 890 hours in

the stochastic model, while it is not until t ≈ 1085 that it is recruited in the deterministic

model. These preliminary results suggest that noisy hemichannels may be responsible for

increased radial glia proliferation during neurogenesis.

5.6.2 Rs Dependent ATP Release

In Figure 5.19 we plot the results of a simulation of the deterministic Rs dependent ATP

release model. By comparing the results shown in Figure 5.19 to Figure 5.20, which con-

tains one realisation for the stochastic system, it becomes clear that in the noisy system

quiescent cells are recruited far more quickly, with all cells recruited by t ≈ 130 hours. Only

cell 2 is recruited onto the cell cycle within the period of integration in the deterministic

case, with cells 3-10 remaining quiescent. If the period of integration is increased in the

deterministic example, eventually all of the cells will be recruited (results not shown). In

the deterministic case the total number of cell cycles is 62, while in the stochastic case the

average number of cell cycles was 587. This corresponds to an increase brought about by
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Figure 5.16: Simulation of system (3.1)-(3.14) for σ2 = 0 (the deterministic system)

for the Cyclin D dependent ATP release model ((Hi, Hc) = (Di, Dc +

ξ(t, µ, σ2))) with zero flux boundary conditions. The results give us some

indication as to the the ability of a driving cell to recruit quiescent cells onto

the cell cycle in the deterministic system. The upper panel shows the Cy-

clin D concentrations in all cells. The lower panel shows the distribution of

Cyclin D throughout the spatial mesh. Parameter values as in Table 5.1 ex-

cept for a′d1,2,...10=[0.3991 0.3677 0.3856 0.3852 0.3983 0.3205 0.3551 0.3760

0.3448 0.3471] which were sampled from a normal distribution as outlined

in this section. Parameter values as for Figure 5.17. Initial conditions were

such that all cells sat on the branch of steady state solutions, except for cell

1, which initially sat on the branch of limit cycle solutions.
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Figure 5.17: Simulation of system (3.1)-(3.14) for the stochastic Cyclin D dependent ATP

release model ((Hi, Hc) = (Di, Dc + ξ(t, µ, σ2))) with zero flux boundary

conditions. The results give us some indication as to the enhanced ability of

a driving cell to recruit quiescent cells onto the cell cycle in a noisy system.

Parameter values as in Figure 5.16 except for σ2 = 0.01. Initial conditions

were such that all cells sat on the branch of steady state solutions of the

deterministic system, except for cell 1, whose initial conditions were such

that it exhibited oscillatory type solutions.
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Figure 5.18: Plot of cell 2 from the stochastic system (Figure 5.17) and the deterministic

system (Figure 5.16) which illustrate the enhanced ability of a driving cell

to recruit quiescent cells in a noisy system.

the noise of 946.77 %, reflecting the enhanced ability of a driving cell to recruit quiescent

cells in the stochastic system. This enhancement becomes clearer still if one refers to Figure

5.21, where plots of cell 2 from the stochastic model (Figure 5.20) and deterministic model

(Figure 5.19) are shown. Cell 2 is recruited at t ≈ 100 hours, while it is not until t ≈ 1475

hours that it is recruited in the deterministic model.

5.7 Conclusions and Further Work

The results in this chapter suggest that noise may have an important role to play with regard

to radial glia proliferation during neurogenesis. Our one and two cell bifurcation analysis

revealed that additive Gaussian noise in the switch, which models the opening of hemichan-

nels and subsequent release of ATP, is filtered by both models in such a way that the

bifurcation point which gives rise to oscillatory solutions is shifted, resulting in oscillatory

type solutions arising for lower values of a′d than for the deterministic case. Furthermore,

this effect is augmented as the variance of the noise is increased. We also discovered, in

Section 5.5.2, that in the stochastic Rs dependent ATP release model the noise appeared

to act to regulate the dynamics of the system. It seemed that the noise shifted the point

at which limit cycle solutions arose in the deterministic system far more than it moved the
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Figure 5.19: Simulation of system (3.1)-(3.14) for σ2 = 0 (the deterministic system) for

the Rs dependent ATP release model ((Hi, Hc) = (Rsc + ξ(t, µ, σ2), Rsi))

with zero flux boundary conditions. It can be seen that only cell 2 is re-

cruited for the deterministic system. Parameter values as in Table 5.1 ex-

cept for a′d1,2,...10=[0.3991 0.3677 0.3856 0.3852 0.3983 0.3205 0.3551 0.3760

0.3448 0.3471]. Initial conditions were such that all cells sat on the branch

of steady state solutions, except for cell 1, which initially sat on the branch

of limit cycle solutions.
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Figure 5.20: Simulation of system (3.1)-(3.14) for the stochastic Rs dependent ATP re-

lease model ((Hi, Hc) = (Rsc + ξ(t, µ, σ2), Rsi)) with zero flux boundary

conditions. The results give us some indication as to the enhanced ability of

a driving cell to recruit quiescent cells onto the cell cycle for a noisy system.

It is clear that all cells are recruited by t ≈ 150 hours (c.f Figure 5.19, the

deterministic case where only cell 2 is recruited). Parameter values as in

Figure 5.19 except for σ2 = 0.01. Initial conditions were such that all cells

sat on the branch of steady state solutions of the deterministic model, ex-

cept for cell 1, whose initial conditions were such that it exhibited oscillatory

type solutions.
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Figure 5.21: Plot of cell 2 from the stochastic system (Figure 5.20) and the deterministic

system (Figure 5.19) which illustrate the enhanced ability of driving cells in

the the noisy system to recruit quiescent cells onto the cell cycle.

point at which torus solutions arose, to such an extent that limit cycle type solutions arose

well before torus type solutions in the stochastic system (this was the other way around

in the deterministic system) and began to dominate large areas of parameter space. This

result could have important implications with regard to phase locked solutions, with noise

possibly acting to promote phase locked solutions in the Rs dependent ATP release model.

This would need to be investigated further through running many more simulations for

different numbers of cells and for different parameter sets.

As mentioned in Section 5.3.2, where we outlined our numerical method for producing

stochastic bifurcation diagrams, the size of our initial condition ensemble was 100. Using

a far larger ensemble, where the initial condition of every variable is varied, rather than

Cyclin D, would provide us with a fuller picture as to the dynamics of our stochastic system.

This would prove to be a hugely computationally expensive task however and would most

likely require the use of High Performance Computing (HPC) facilities.

We then showed, for a small number of examples, that noise, in shifting the point at

which oscillatory type solutions arise, allows a driving cell to recruit quiescent cells onto
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the cell cycle far more quickly than is the case for the deterministic system. The increase

in proliferation this brings about in both models can be large, especially so for the Rs de-

pendent model for the parameter values considered. This suggests that noisy hemichannel

opening may contribute to the increase in the proliferation of radial glia during neurogene-

sis. To build upon these results it would be interesting to study larger systems in one and

two spatial dimensions under several different parameter regimes, in order to ascertain the

degree to which noisy hemichannel opening can lead to increased radial glia proliferation.

Furthermore, it would be interesting to investigate how noise affects cell cycle synchronisa-

tion. This may require the development of a synchrony measure which could be applied to

stochastic system, if a suitable existing measure can not be found.

In Section 5.6 we mentioned that we believe that noise may also play a role in initiating

the process of neurogenesis. We envisaged a scenario where all cells would lay dormant

but subject to stochastic fluctuations. Eventually these fluctuations would allow one cell

to exit quiescence and begin cycling, at which point it would begin to recruit the other

quiescent cells onto the cell cycle. This would lift the constraint we have so far placed

on the initial conditions of the system when investigating entrainment, where we have

ensured that at least one cell is initially oscillating. In doing so it could provide us with a

possible mechanism for the onset of neurogenesis in the developing mammalian neocortex.

However, it is important to note that neurogenesis starts at a fairly well defined time

during embryonic development and any of the results would have to agree with this timing.

Single cell and multiple cell systems would need to be considered and the ability of noise of

different magnitudes to lift quiescent cells on the cell cycle would need to be studied. We

did study this to an extent during the course of this project, but only for single cell systems

by calculating the ‘exit times’ (the times at which initially quiescent cells exited this state

and began to oscillate) of cells for different values of a′d1. Our results demonstrated that

noise can indeed provide a mechanism for the spontaneous lifting of cells from quiescence,

signalling the onset of neurogenesis (results not shown).
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Table 5.1: Parameter values

Parameter Value Parameter Value

r∗h 0.6 µMs−1 a′d1 0.41

aE 0.16 aX 0.08

k 0.054 qD 0.6

qE 0.6 qX 0.8

f 0.2 g 0.528

ps 0.6 pD 0.48

pE 0.096 pX 0.48

dD 0.4 dE 0.2

dX 1.04 af 0.9

RT 2.5 � 1.5

GF 6.3 ts 3600

Vdeg 2 µMs−1 [ATPI ]max 500 µM

VATP 0.8 s−1 [IP3]min 0.013 µM

Dc 0.5 [IP3]c 0.012 µM

% 0.01 µM−1 γ 1

DATP 10 µm2s−1 ∆x 10 µm

p1 0.0159835 µM p2 0.514987

p3 1.31319 p4 0.332195

p5 0.787902 m 24.1946

n 9.79183 α 0.083 s−1

Kdeg 50 µM [Ca2+]b 0.0159835 µM

kdeg 0.0625 s−1 Rsc 1
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Discussion

A
TP mediated calcium waves are thought to be the primary means by which radial

glial cells communicate in the developing neocortex [93]. Calcium waves increase

radial glia proliferation, in turn leading to an increase in neural production. It

has also been speculated that they are responsible for the synchronisation of the cell cycles

of clusters of radial glia. This synchronisation may be involved in the shedding of cells in

uniform sheets, and could therefore play an important role in the development of the brain

architecture. We have investigated whether a calcium signalling mechanism can increase

radial glia proliferation and enable cell cycle synchronisation.

The precise timing of the release of ATP by radial glial cells has not been discovered,

although it occurs sometime between the G1 and S phases of the cell cycle. In chapter

2 we presented two models for the coupling between the cell cycle dynamics and calcium

dynamics in radial glial cells. In the first model, we modelled ATP release as predomi-

nantly occurring during mid G1 phase and in the second occurring predominantly during

the G1/S phase transition. Through bifurcation analysis, weakly coupled oscillator theory

and direct numerical simulation we showed that two cell systems of both models displayed

a rich variety of behaviour. For both models, under certain parameter regimes, stable syn-

chronous solutions existed. Under the Cyclin D dependent ATP release model, where ATP

release was modelled as occurring in the middle of G1 phase, stable anti-phase phase locked

solutions were also detected. The Rs dependent model, which modelled ATP release as

occurring during the G1/S transition, displayed stable asynchronous solutions for two cells

in addition to the stable synchronous solutions.
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In chapter 3 we built upon this work and, via weakly coupled oscillator theory and direct

numerical simulation, investigated cell cycle synchronisation in systems of several cells in

one and two spatial dimensions for both models. The pitfalls of the theory of weakly coupled

oscillators, which we first encountered in chapter 2, re-appeared in chapter 3. The theory

relies on the strength of the coupling between oscillators to be weak, such that the coupling

does not lead to amplitude effects in the resulting limit cycle solutions. In our system the

coupling was so strong that the analytic results from the theory of weakly coupled oscillators

became unreliable. This meant that, in order to gain an insight into the behaviour of the

two models for systems of several cells, it was necessary to run many numerical simulations.

However, there is the possibility that we can obtain an analytical insight into the behaviour

of the models by another method. One possibility is to study a simplified system where

the high dimensional cell cycle model is replaced with a linear oscillator which is period-

ically forced by a linear piecewise function, which models ATP mediated calcium release.

We could then consider systems of many such oscillators which are coupled via this linear

piecewise function which we could solve to obtain analytic results. One approach to obtain-

ing a simplified model, would be to calculate the phase response curve of the full model in

order to ascertain by how much perturbations advance or retard the phase of oscillation.

A piecewise linear oscillator model could then be formed which captures this behaviour (or

at least an approximation to it). With this achieved, one could then study populations of

coupled oscillators, where the coupling acts to perturb the phase of oscillation of neighbour-

ing oscillators (mimicking the ATP coupling of the full model). Rhouma and Frigui take

a similar approach in order to investigate synchronisation in systems of coupled oscillators

[75]. They consider systems of integrate and fire oscillators which are globally coupled to

all other oscillators via a linear function. This then allows them to derive analytical results

regarding the conditions under which networks of integrate and fire oscillators synchronise.

It may be possible for us to use a similar technique to this.

Despite this, through the numerical simulations conducted in chapter 3, a rich variety of

behaviour was discovered for both models for systems of several cells with often more than

one stable solution existing under the same parameter regime. However, the Rs dependent

ATP release model proved more successful at generating synchronous or near synchronous

behaviour under the parameter regimes considered. This formed the first major result of our

work, i.e that ATP release occurring predominantly during the G1/S transition was more

likely to lead to cell cycle synchronisation than during mid G1 phase. Furthermore, showing
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that the timing of ATP release is crucial for cell cycle synchronisation in our models raised

the possibility that some neural malfunctions during neurogenesis may be the result of a

malfunction in the timing of ATP release. There is the possibility that this result may be an

artifact of the parameter regimes chosen, rather than purely due to the intrinsic difference

in the timing of ATP release. It is possible that we sampled the parameter space unfairly,

and that, by considering even more diverse parameter regimes, our conclusion may need

to be revised. In order to investigate if this is the case, we would need to run many more

simulations under different parameter regimes. Nevertheless, we would be very interested

in experimentally testing whether the timing of ATP release affects neural development

in this manner, as we are not aware of any experiments which have focussed upon this.

Conducting such experiments may prove problematic however, as although it is relatively

straightforward to block ATP release by blocking hemichannel opening throughout the du-

ration of the cell cycle, it would be more difficult to block hemichannel opening only at

certain points during the cell cycle.

Our models incorporated Obeyesekere et al ’s cell cycle model [66]. As mentioned in

chapter 1, several other cell cycle models exist, some of which include a term for Cyclin D

[85, 90], the cell cycle protein affected by calcium. It would be interesting to study the effect

on our system if one of these models was used to model the cell cycle instead of Obeye-

sekere et al ’s model. If it was discovered that with these alternative models, modelling

ATP release as occurring predominantly during the G1/S transition was still more likely to

lead to synchronous or near synchronous behaviour than release occurring predominantly

during mid G1 phase, then this would add more weight to the conclusions drawn from the

results of chapters 2 and 3. If, however it was shown that the dynamics with a different cell

cycle model behaved radically differently to the dynamics of our current system then our

conclusions may have to be revised. The various shortcomings mentioned in chapter 1 in

the cell cycle models which include a term for Cyclin D would have to be overcome for this

to be achieved, however. For example Swat et al only model G1 phase of the cell cycle [85],

and their model, although including a term for Cyclin D, is not continuous and does not

exhibit limit cycle solutions. It would need to be modified so that it models the whole of

the cell cycle and displays limit cycle behaviour for it to be incorporated into our models.

Tyson and Novak’s high dimensional model [90] is so complex that large scale simulations

will become very computationally expensive if it were to be used. It would need to be

simplified significantly, perhaps by assuming quasi-steady state approximations for some
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state variables, for it to become a viable option. However, this approach is only likely to

be valid if the time scales of the state variables differ by a significant degree.

Towards the end of our project, Seward et al identified the signal transduction pathway

by which calcium promotes Cyclin D activity [79]. They discovered that in NIH/3T3 fibrob-

lasts (an embryonic mouse cell line) calcium activated CaMK-II acts to promote Cyclin D

activity. They found that when calcium transients subside, CaMK-II becomes less active at

which point a protein called Flightless-I begins to disassociate from CaMK-II. Flightless-I

then migrates into the nucleus of the cell where it acts to suppress the transcription of

Cyclin D. Consequently, calcium activated CaMK-II which sequesters Flightless-I and pre-

vents its migration into the nucleus of the cell acts to enable the transcription of Cyclin

D. Modelling this signal transduction pathway and incorporating it into our model would

certainly result in a more detailed model. If, when studying this more detailed model we are

able to confirm the main results contained within this thesis, then this would re-enforce the

conclusions drawn from these results. Alternatively, if the results from the more detailed

model conflict with the results contained within this thesis, then we may have to revise the

main conclusions contained within this thesis.

Until chapter 4, the increase in proliferation of the cells in our models was relatively

modest. This formed our motivation for investigating the ability of a driving cell to recruit

a quiescent cell onto the cell cycle in chapter 4. We exploited the area of multistability in

our system to model scenarios where one cell was initially quiescent and one initially oscil-

lating. After showing that under a number of parameter regimes the quiescent cell could

be recruited we turned our attention to the matter of synchronous entrainment. Under all

of the parameter regimes considered, the Rs dependent ATP release model proved to be

superior to the Cyclin D dependent model at entraining a quiescent cell synchronously. As

a ‘proof of concept’, we considered larger systems and showed that our results from two cell

systems scaled up to these larger systems. The increase in the proliferation brought about

by calcium signalling in these larger systems was very similar to the increase indicated in

the experimental literature. This suggests that the increase in proliferation brought about

by calcium signalling may be as a result of a driving cell’s ability, through ATP medi-

ated calcium waves, to recruit quiescent cells. The superiority of the Rs dependent ATP

release model in facilitating synchronous entrainment added weight to the argument that

ATP release occurring during the G1/S transition is more likely to lead to synchronous
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behaviour than release at other times. More simulations of larger systems in one and two

spatial dimensions, with each cell under a different parameter regime, would prove useful

in extending these results.

In chapter 5, we investigated the effect noisy hemichannel opening had on the dynamics

of our system. By conducting a numerical exploration of one and two cell systems, using

a similar method to Hutt [42], we discovered that additive Gaussian noise was filtered in a

non-linear manner. This resulted in the shifting of the bifurcation point that lead to oscilla-

tory type solutions, increasing the area within parameter space that gives rise to oscillatory

type solutions. Furthermore, we showed that the movement of the bifurcation point became

more dramatic as the intensity of the noise was increased. This result augments the other

examples in the literature where additive noise has acted to move bifurcation points. For

example, Hutt discovered that additive noise could move saddle node bifurcation points

in a system that displayed hysteresis behaviour [42]. Gudowska-Nowak demonstrated that

noise can advance the onset of limit cycle type solutions by moving Hopf bifurcation points

[37]. We then showed, via numerical simulation, that the shifting of bifurcation points in

this manner allowed driving cells to recruit quiescent cells more quickly and/or recruit cells

that the deterministic system could not. This raised the possibility that noise may play

an important role in the increased radial glia proliferation seen during neurogenesis. More

numerically intensive work would need to be carried out on larger systems in one and two

spatial dimensions under different parameter regimes and for different variances of the noise

to confirm this. It would also be intersting to investigate if and by how much noise effects

cell cycle synchronisation. To achieve this, a synchrony measure which can be effectively

applied to stochastic systems would have to be utilised. If a suitable measure can not be

found, it may be necessary to develop one. Comparing these results with the results of our

deterministic system would allow us to judge whether noise influences cell cycle synchroni-

sation. Additionally it may be possible to apply some of the analytical techniques that Hutt

employs [42] to our stochastic models in order to derive some more general results. These

techniques may even help to explain the behaviour we saw in Section 5.5.2 of chapter 5, in

the two cell stochastic system for the Rs dependent ATP release model. In this section, our

numerical explorations suggested that, although noise acted to shift the bifurcation points

of the system, the degree to which different bifurcation points moved differed. In the left

hand area of parameter space the dynamics of the system were very regular, reminiscent

of the limit cycle solutions we encountered when studying the deterministic model. In the
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adjacent right hand area of parameter space, torus solutions appeared to dominate. We

noticed that torus type solutions arose just before they did in the deterministic system.

This led us to speculate that noise acted to move the bifurcation point that led to limit

cycle solutions (FP1Rss ) far more than the point that lead to torus type solutions (TB), to

the extent that limit cycle solutions began to dominate.

In chapter 5 we mentioned that we believed that noise was capable of lifting initially

dormant cells into the oscillatory domain. If this proved to be the case, it would lift the

constraints we placed on the initial conditions in our simulation in chapters 4 and 5 and in

doing so provide us with a possible mechanism by which neurogenesis is initiated, a very

interesting result indeed. To investigate the feasibility of this however, many computation-

ally expensive simulations would need to carried out on one and multiple cell systems under

different parameter regimes in order to see if noise is sufficient to lift quiescent cells on

to the cell cycle and the resultant effect (if any) this would have on the dynamics of the

system. We would also need to check that the initiation was regular and occurred at the

right time during embryonic development.

In this thesis, we have laid the foundations for the mathematical investigation into the

mechanisms by which radial glia cells communicate. Our work has yielded a number of

interesting results, many of which merit further investigation. We hope this body of work

will prove useful to mathematical biologists and experimental biologists with an interest in

embryonic neurogenesis.
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