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Abstract

Micro-Electro-Mechanical Systems (MEMS) inertial sensors that are based on a

resonating structure are used in a wide range of applications including inertial

guidance and automotive safety systems. Damping has a significant and negative

effect on sensor performance and there is an increasing need to accurately predict

and control damping levels, particularly for high performance guidance and naviga-

tion applications. Support loss, which governs the losses from the resonator to its

foundation through the supporting structure, is an important source of damping in

MEMS resonators. This thesis focuses on improving the understanding of this par-

ticular damping mechanism and on developing efficient models to predict support

loss at the design stage.

The coupling between resonator and support is of primary interest when evaluating

the interaction and energy transmission between them. To quantify the stresses

acting on the support, a model that predicts vibration transmission through com-

mon MEMS structures is first developed. A general wave propagation approach for

the vibration analysis of networks consisting of slender, straight and curved beam

elements, and a complete ring is presented. The analysis is based on a ray tracing

method and a procedure to predict the natural frequencies and mode shapes of

complex ring/beam structures is demonstrated, for both in-plane and out-of-plane

vibration. Furthermore, a simplification of the analysis for cyclically symmetric

structure is presented. An analytical method is then used to model the support,

approximated as a semi-infinite domain, and to quantify support losses, again for

both in-plane and out-of-plane vibration.
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Abstract

To illustrate the effectiveness of the models, several numerical examples are pre-

sented, ranging from simple beam-like structures to ring/beam structures of increas-

ing complexity. A parametric study on the design of particular ring-based reso-

nators, and general strategies for improving the quality factor of common MEMS

sensors by reducing support losses, are also considered.
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X Amplitude of vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m)
x Displacement along the x-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m)
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in-plane vibration, and between axial and torsional waves for out-of-
plane vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (-)

Y Point mobility matrix
Y Amplitude of vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m)
y Displacement along the y-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m)
z Coordinate along the beam centreline (z-axis) . . . . . . . . . . . . . . . . . . . . (m)

Greek Symbols

α Angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(rad)
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λ Lamé constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (-)
λT Transverse elastic waves wavelength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m)
µ Lamé constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (-)
ν Poisson’s ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (-)
Ω Angular motion of the cross-section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (rad)
Ω Circular frequency of vibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(rad/s)
ω Circular frequency of vibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(rad/s)
Π(i)→(j) [3× 3] transmission matrix from (i) to (j)
Π Power transmitted to the support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (W)
ψ Rotational motion of the cross-section . . . . . . . . . . . . . . . . . . . . . . . . . . (rad)
ρ Mass density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (kg/m3)
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Chapter 1

Introduction and literature review

1.1 General introduction and energy damping

The research reported in this thesis relates to the understanding, modelling and

quantification of a specific damping mechanism, called support loss, encountered

notably in Micro-Electro-Mechanical Systems (MEMS) sensors. The research is fo-

cused on applications in the area of miniaturised vibrating resonators that are manu-

factured using recently developed MEMS technology processes and, in particular,

resonators in the form of rings used for angular rate measurements (gyroscopes).

1.1.1 Gyroscopes

Gyroscopes are inertial devices used to measure angular velocity, and are often

referred to as rate sensors. The Foucault pendulum which was first used in about

1850 to demonstrate the Earth’s rotation may be thought of as the earliest man-

made vibrating gyroscope. It was observed that the plane of the swing of the

pendulum appeared to rotate at the same rate as the local vertical component of

the Earth’s rate, as the angular momentum vector of the pendulum was fixed in

inertial space. The gyroscopic effect was there first experimentally proved. This

effect has then be used to manufacture rate sensor devices.
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The basic design for conventional mechanical gyroscopes consists of one gimbal

supported on a frame that is usually constrained by some elastic restraints, see

Figure 1.1. The coupling gyroscopic effects of the high speed rotor would provide

means of measuring the rate. However the need for acute precision bearings to

support a very high speed rotor (typically between 20 000 and 30 000 rev/min) and

their general complexity have kept their size quite large. The cost of production of

such devices remains very high. These factors have limited the range of applications

for such gyroscopes to the naval, aerospace and military industries.

Recent technological advances have made possible the emergence of new generations

of rate sensors that do not rely on a spinning rotor to measure the rate. The first

category, namely “optical gyroscopes”, relies on the properties of light. The second

group includes all devices that rely on the mechanical resonance of two or more

modes of vibrations of a resonating structure. These sensors are known as vibrating

structure rate sensors. They consist of a mass supported in the sensor, a means

to excite the mass along a primary mode, and a means to measure the resulting

response along the coupled secondary mode. They make use of Coriolis forces to

determine the rate at which it is rotating about one or more axes. Their main

advantage is that they have no rotating parts that require bearings, and hence they

can be easily miniaturised and batch-fabricated using micro-machining techniques.

The latest generation of vibrating gyroscopes are micro-engineered from silicon

and have dimensions and feature sizes ranging from a few millimetres to a few

micrometres. They are manufactured using the MEMS technology. By taking

advantage of the wafer processing technology developed for the electronics industry

where many devices can be created per wafer (see for instance Figure 1.2(a)), a

high volume, low cost and robust manufacturing process can be designed. This

yields very small devices that take full advantage of the excellent mechanical and

electrical properties of crystalline silicon.

This new generation of gyroscopes has widened the range of applications for rate

sensors. In addition to the classic field of applications already stated – mainly

military, rate sensors are now used in automotive safety and navigation, robotics,
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biomechanics and prosthetic aids. An example of practical application is to measure

how quickly a car turns by mounting a set of gyroscopes inside the vehicle. If the

gyroscopes sense that the car is spinning out of control, differential braking engages

to bring it back into control. This application is known as the Electronic Stability

Control or Program (ESC or ESP) and is now mounted in most high standard cars.

The angular rate can also be integrated over time to determine angular position

– particularly useful for maintaining continuity of GPS-based navigation when the

satellite signal is lost for short periods of time. Other possible applications can be

found in the aerospace or military domain with platform stabilisation of avionics.

The potential of gyroscope sensors is quickly expanding with the constant improve-

ment in miniaturisation and performance. The thesis focuses on the MEMS vibrat-

ing ring-based rate sensor developed by Atlantic Inertial Systems (AIS), (previously

BAE Systems). Figure 1.2 shows photographs and a schematic representation of

the sensor. It consists of a silicon ring structure supported on eight thin, nominally

identical external legs [1]. Ring/beam structures of this form will be used as the

main focus of the thesis.

The sensitivity of the sensor depends on the natural frequencies of the primary

and secondary modes of vibration. For a perfect ring the natural frequencies are

identical and the sensitivity is maximised. However, the presence of manufacturing

variations introduces frequency splits that can significantly degrade performance.

The sensitivity of the sensor is also degraded by the presence of damping. This

project aims to gain improved understanding of the damping caused by support

losses, so that sensors with increased sensitivity can be designed. The following

section provides an overview of damping in MEMS resonators.

1.1.2 Damping in MEMS resonators

Energy is dissipated from MEMS resonators through a number of different damp-

ing mechanisms. Systems contained in a fluid medium (gas or liquid) lose energy

through viscous forces in the fluid, and by radiating sound into the fluid. For ex-
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ample in the Foucault pendulum mentioned in Section 1.1.1, air resistance damps

the oscillation of the mass, so Foucault pendulums in museums often incorporate

an electromagnetic or other drive to keep the mass swinging; others are restarted

and re-launched regularly. By removing the fluid that surrounds the resonator, the

effects of fluid damping can be made negligible.

Energy can also be dissipated by intrinsic damping mechanisms. These are damping

mechanisms that originate within the material itself. One of them is thermoelastic

damping which is caused by the interaction between mechanical strain and thermal

effects in the resonator. Thermoelastic damping in ring resonators has been inves-

tigated in previous research work [2]. Brief reviews of gas damping, thermoelastic

damping and other intrinsic damping mechanisms are presented in Section 1.3.

Energy can also be lost by transmission of vibrations from the resonator to its

foundation through the supporting structure; this loss mechanism is known as sup-

port loss, see Section 1.4. This form of damping is less well known than the other

damping mechanisms, and relatively little work has been performed in this area.

This topic forms the main focus of the research project.

The optimum level of damping depends of course on applications. In some cases,

such as mechanical machinery and civil engineering structures, a lack of damping

may lead to excessive vibrations, especially at resonance, leading to fatigue and frac-

ture. In these cases, there is a need to design the structure such that the damping

is over some minimum level to give safe operation. In vibro-acoustic applications,

the goal is usually to reduce the sound transmitted to another environment and a

sufficient amount of damping is consciously introduced (with the use of visco-elastic

materials for example). On the other hand, there are applications in sensors and

instrumentation where it is necessary to minimise the damping, or to control it at

some relatively low level, in order to obtain good performance. The consideration

of damping is therefore important in the design of mechanical systems that contain

vibrating structures. An application where minimising energy losses by damping

becomes very important is when micro-mechanical resonators are used as filtering

elements in electronics using their vibrational transfer function. When a vibrating

beam is under-damped, its vibration will have a bigger amplitude at its natural
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frequency than at any other frequency, giving rise to a resonant peak. Maximum

efficiency will be obtained when this peak is as high as possible.

The work presented in this thesis is motivated by the general need to gain an

improved understanding of the energy dissipation mechanisms in vibrating micro-

structures used in vibrating gyroscopes, and to develop models to quantify and

predict damping levels at the design stage. Within the main damping mechanisms

occurring in such devices, support loss is one of the most complex and least well

understood.

To set the scene for the rest of Chapter 1, a brief theory of the principles of op-

eration of gyroscopes will be presented in Section 1.2. A detailed review of the

various sources of damping mechanisms that exist in MEMS structures will follow,

in Section 1.3. The ring-based resonator on which the research is focused is sup-

ported on complexly-shaped, folded beam legs, and one may easily understand that

the vibration and energy propagation from the ring to the support are of particular

interest. A review of wave transmission and propagation will therefore be presented

in Section 1.5. Subsequently, the aims and objectives of the research will be stated

in Section 1.7.

1.2 Theory of vibrating gyroscopes

1.2.1 Gyroscope operating principles

All vibrating rate sensors are based upon the phenomenon of Coriolis accelera-

tion [3]. This acceleration is experienced by a particle undergoing linear motion in

a frame of reference which is rotating about an axis perpendicular to that of the

linear motion. The resulting acceleration, which is directly proportional to the rate

of turn, occurs in the third axis which is perpendicular to the plane containing the

other two axes. Thus, in a rate sensor, vibrating motion is coupled from a pri-

mary vibrating mode into a secondary mode, when the sensor experiences angular
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rate. The Coriolis acceleration couples two fundamental modes of vibration of the

resonator structure. In most micro-mechanical vibrating gyroscopes, the sensitive

element can be represented as an inertia element and elastic suspensions with two

prevalent degrees of freedom. A generic example is presented in Figure 1.3.

The sensitive element is driven to oscillate at one of its modes with prescribed am-

plitude. This mode is usually called primary mode. When the sensitive element

rotates about a particular fixed-body axis, which is called sensitive axis, the re-

sulting Coriolis force causes the proof mass to move in a different mode. Excited

oscillations are referred to as primary oscillations and drive mode, whereas oscil-

lations caused by angular rate are referred to as secondary oscillations, secondary

mode or companion mode.

In effect, the operation of Coriolis-based vibrating rate sensors can be summarised

as follows. One mode of vibration of a resonator possessing two orthogonal modes is

excited at a frequency matching its natural frequency in order to minimise the drive

force required to achieve a given amplitude of vibration. Due to the Coriolis accel-

eration, energy is transferred from this excited drive mode to a companion mode

that in turn experiences linear motion. The steady state motion of the companion

mode is a direct measure of the rotational rate that the resonator is experiencing

(see theory in Section 1.2.2). If both modes have the same frequency of vibration,

the coupling is maximised and the sensitivity reached is maximum.

In general, it is possible to design gyroscopes with different types of primary and

secondary oscillations. For example, a combination of translation as primary os-

cillations and rotation as secondary oscillations was implemented in a so-called

tuning-fork gyroscope [4]. It is worth mentioning that the nature of the primary

motion does not necessarily have to be translatory but could be rotary as well.

Such gyroscopes are called rotary vibrating gyroscopes. However, it is typically

more convenient for the vibrating gyroscopes to be implemented with the same

type and nature of primary and secondary oscillations.

Nowadays, there are many practical designs which can be used as a gyroscope. With

respect to the number of inertia elements used, the nature of primary and secondary
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motions of the sensitive element, it is convenient to subdivide these into three groups

as follows: simple oscillators (mass on a string, beam), balanced oscillators (tuning

fork), shell resonators (wine glass, cylinder, ring); see [5] for details and principle

of operation for each of these groups.

One of the most well known examples of oscillatory gyroscope with continuous

vibrating media is the Hemispherical Resonating Gyroscope (HRG). Its sensitive

element design is based on the resonating shell that has a hemispheric or so-called

“wine-glass” shape. Primary oscillations are provided by exciting vibrations in the

rim of the shell. In case of no external angular rate, the nodes of vibration do not

move. If the sensitive element rotates around its sensitive axis, which is orthogonal

to the plane of vibration, the secondary oscillations can be detected at the nodes.

Despite the HRG itself has never been referred to as a micro-mechanical gyroscope,

its operation principle has been widely used in numbers of micro-mechanical designs.

The hemispherical shape of the shell has in particular been replaced with a thin

cylinder or a ring.

By correct design of a shell resonator it is possible to overcome problems associated

with resonator mount sensitivity experienced by simple oscillators and thus improve

bias performance, and greatly reduce sensitivity to shock and vibration [1].

1.2.2 Motion equations

To illustrate the principle of a vibrating gyroscope, consider a point mass M at-

tached to a rigid frame by four springs of stiffnessK and four dampers with damping

coefficient C as shown in Figure 1.4. The mass is constrained to move in the (x, y)

plane. In operation, the mass is forced to vibrate at the frequency ω in the x-

direction by some external mechanism which maintains a constant amplitude X0 of

oscillation such that x = X0 e
iωt. Assuming that there are no linear accelerations

experienced by the device along the x- and y-axes, but that the frame is rotated

about the z-axis at an angular velocity Ω, the response y of the mass along the
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y-axis is governed by [5]:

Mÿ + 2Cẏ + 2Ky = −2iMωX0Ω eiωt. (1.1)

The angular velocity Ω is assumed to be constant in the following discussion. Pro-

vided that the vibration along the x-axis is maintained, it can be deduced from

Equation (1.1) that vibrations along the y-axis exist only when the angular velocity

Ω is non zero. In other terms, when a constant angular rate of turn is applied, the

Coriolis force causes the mass to vibrate in the perpendicular direction. For steady

state response, y = Y0 e
iωt is substituted into Equation (1.1) and the motion of the

mass becomes [5]:

y = −
(

2iMωX0Ω
−Mω2 + 2iCω + 2K

)
eiωt. (1.2)

Equation (1.2) shows that the steady state amplitude of the response in the y-

direction is directly proportional to the applied angular velocity Ω. Thus the am-

plitude of the response in the y-direction provides a measure of the applied angular

velocity Ω.

1.2.3 Special case of the ring-based rate sensor

Operating principle

For the purposes of discussing the basic operation of a ring-based vibrating gy-

roscope, it is convenient to neglect the supporting legs and consider the ring in

isolation. For a perfectly circular ring with an uniform rectangular cross-section, it

is well known [5] that the in-plane flexural modes of vibration occur in degenerate

pairs with equal natural frequencies. Figure 1.5 shows the mode shapes for the

so-called 2θ and 3θ pairs of modes. The modes in a degenerate pair of flexural

modes have identical natural frequencies, are asymmetric, have the same deformed

shape and are separated from each other by an angle π

2n , n being the flexural mode

number (n = 2 for the 2θ mode and n = 3 for the 3θ mode).

To operate as a sensor, one of the 2θ modes, which is normally referred to as the
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primary mode, is driven at constant amplitude at its natural frequency via induc-

tive, capacitive or piezoelectric actuation. Figure 1.2(c) illustrates an inductive

excitation where a magnet is present within the ring. When there is no angular

velocity applied to the ring (i.e. the ring is stationary), the motion of the ring is

described by the primary mode only (see Figure 1.5). However, when the ring is

rotated about its polar axis, Coriolis acceleration occurs and the complementary

secondary mode of vibration is excited (see Figure 1.5). By placing transducers

at the nodal points of the primary mode, the radial component of vibration of the

secondary mode can be measured. Given that the amplitude of this vibration is

proportional to the rate of turn, the angular velocity of the sensor about the polar

axis can be determined.

In the new generation of ring gyroscopes, out-of-plane modes are excited and mea-

sured [6]. Even though this design is more complex and difficulties occur in match-

ing each vibrating mode with a particular resonant frequency [7], the operating

principles are the same as for in-plane vibrations.

Existing model

The inductive sensor that vibrates in-plane is shown in Figure 1.2. Electrical current

travels around segments of the ring. It provides inductive drive forces on the sensor

that excite its primary mode of vibration. Similar inductive means are used to

monitor the vibration of its secondary mode [1]. This sensor is composed of a thin

ring supported on eight external, nominally identical legs attached to a surrounding

structure. The supporting legs consist of three straight beams with curved sections

between them, each beam having a rectangular cross-section area. The geometry of

the supporting legs and the point at which they are attached to the ring critically

affect the performance of the sensor. The chosen design ensures that the displaced

shape of the resonator is not significantly different from that of a free ring when

the sensor is in operation. This ensures that the ring is the dominant resonant

structure, and prevents frequency splitting [8].

The tangential wn(θ, t) and radial un(θ, t) modal displacements for the in-plane
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flexural vibrations of a thin ring vibrating at the frequency ω are given by [9]:

wn(θ, t) = W0 sin(nθ) eiωt and un(θ, t) = U0 cos(nθ) eiωt, (1.3)

where θ is the circumferential location relative to a pre-defined datum. In practical

applications, the ring is never perfect and small imperfections are always present.

Imperfections due to manufacturing variations and material non-uniformity fix the

positions of the modes relative to the ring and yield small frequency splits [10].

In order to model the complete sensor (ring and legs) it is necessary to combine the

above ring model with an appropriate leg model. In previous work [11], the leg was

modelled as point masses with three discrete springs (two translational and one

rotational). This lumped parameter model was used to determine the governing

equation of motion and natural frequencies for the complete sensor. The princi-

pal stiffness values were obtained by using an analytical approach to deduce the

compliance matrix. The effective masses were then obtained by using a frequency

response method in conjunction with finite elements. In this model, the leg de-

formation was assumed to be determined by the ring displacement at the point of

attachment of the leg to the ring. It was also assumed that the mode shapes of the

ring were identical to those of a free ring. This model was then re-used to calculate

the quantity of energy lost by thermoelastic damping in the legs [2]. But again, the

vibrations of the legs were assumed not to have any influence on the ring and were

not modelled in detail.

In order to study the support losses, it is necessary to fully understand the displace-

ments of the leg at the end attached to the supporting structure, referred to as the

anchor end (see Section 1.4). To achieve this, an improved model of the supporting

leg is required that properly takes account of the vibrations in the different leg

sections. Techniques capable of achieving this are discussed in Section 1.5.
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1.3 MEMS damping mechanisms

Characterisation and quantification of the different damping mechanisms are im-

portant steps in the design of MEMS resonators. A variety of damping mechanisms

can lower the quality in resonant MEMS, including gas damping, material losses,

thermoelastic damping, and support losses. Which loss mechanism matters most to

a particular design depends on the device geometry, the material used, the environ-

ment, and the operating frequency range. All of these damping mechanisms have

been studied experimentally for different types of cantilever beam resonators [12–

14]. The work reported in [15] gives a more general review. Each of the different

energy loss mechanisms is discussed in this section. Before doing this the quantity

used to define energy loss, namely the quality factor, is defined.

1.3.1 The quality factor

Damping cannot be measured directly but instead is deduced from the response

characteristics of selected vibrating systems. The steady state response of a single

degree of freedom system, excited by a harmonic force of constant amplitude, can

be used to determine damping through the observation of several characteristics,

including the bandwidth of the frequency response, the amplitude of the response

at resonance, Nyquist plots, hysteresis loops, and dynamic stiffness [16].

For sufficiently small values of damping, the quality factor Q (or Q-factor) can be

experimentally measured from the amplitude-frequency curve and defined as:

Q = ω0

ω2 − ω1
, (1.4)

where ω0 is the natural resonant frequency; ω1 and ω2 are situated around the

resonant frequency such that the amplitude of response X1 at frequency ω1 and X2

at frequency ω2 are equal to 1√
2

times the peak amplitude X0 (amplitude at ω0):

X1 = X2 = X0√
2
. (1.5)

11



Chapter 1. Introduction and literature review

It can be shown [17] that the energies dissipated at the frequencies ω1 and ω2 are

then equal to one-half of the energy dissipated at resonance. For this reason, the

above bandwidth (ω2 − ω1) is often called the half-power bandwidth. Noting that:

20 log10
X1,2

X0
= 20 log10

1√
2
,

' −3 (1.6)

justifies the frequently practical used technique of determining the half-power band-

width by locating the frequencies on either side of resonance peak for which the

response has decreased by three decibels, see Figure 1.6.

The Q-factor is a measure of the sharpness of the resonance peak of the system

response curve. Systems with high Q-factor have a sharp, large magnitude and

well-defined resonance, and equivalently low levels of energy loss.

The Q-factor can also be introduced with the simple viscous damping model that

is usually presented in vibration textbooks. Consider the free vibration of a linear

mass-spring-damper system whose equation of motion can be written as:

Mẍ+ Cẋ+Kx = 0, (1.7)

withM the mass, C the damping coefficient, K the stiffness and x the displacement.

The form of the solution to Equation (1.7) depends on the amount of damping. If

the damping is small enough, the system will still vibrate, but eventually, over time,

will stop vibrating. This case is called under-damping – this is of most interest in

vibration analysis. If the damping is increased just to the point where the system

no longer oscillates, the point of critical damping is reached. After this point, the

system is over-damped. The value that the damping coefficient needs to reach for

critical damping in the mass-spring-damper model is: Cc = 2
√
KM . When ζ, the

viscous damping ratio defined as ζ = C/Cc, is small, i.e. ζ < 0.1, the Q-factor can

be approximated as [17]:

Q ' 1
2ζ . (1.8)

The damping ratio ζ characterises the amount of damping in the system. The
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form of the solution of the differential equation (1.7) depends on the value of the

parameter ζ.

This mechanical quality factor Q is a key performance factor in MEMS resonators.

Just like the damping ratio ζ, the Q-factor is a non-dimensional parameter that

quantifies the level of damping in the system. Whilst the damping ratio is widely

used in the vibration literature to quantify damping, the Q-factor is widely used

in the MEMS literature, and will also be used in this thesis. Q can also be seen

as a measure of the ratio of the total energy stored in the system W to the energy

dissipated per cycle of vibration ∆W (energy lost per cycle). It is defined as [18]:

Q = 2π Wtotal

∆Wloss
. (1.9)

The presence of damping causes a reduction in vibration amplitude and can seri-

ously affect sensor performance. Generally damping forces can depend on many

quantities and in practical systems, such as MEMS resonators, different energy loss

mechanisms occur. There are three main ways for the energy of vibrating systems

to be dissipated. First of all, the interaction of vibrating structure with its ambient

fluid causes energy dissipation either via local viscous effect or radiation away into

the fluid. This is called air (or gas) damping. Secondly, energy can be dissipated

throughout the entire bulk material used to manufacture the structure. This is often

referred to as intrinsic material damping which includes thermoelastic damping and

energy losses as a result of dislocation and grain boundaries relaxation in the ma-

terial, called material losses. Lastly, vibrational energy can be dissipated through

transmission of elastic waves away from the resonator during vibration. These vi-

brations usually propagate and dissipate in the support structure. This mechanism

is known as support loss. It can be shown that the overall Q-factor, Qtotal, due to

a set of n distinct independent loss mechanisms with individual Q-factors Q1, Q2,

. . ., Qn can be calculated as [19]:

1
Qtotal

= 1
Q1

+ 1
Q2

+ . . .+ 1
Qn

. (1.10)

This relationship indicates that it is the lowest Q-factor of the different mecha-
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nisms which limits the total Q. The several known sources of damping in MEMS

resonators will be discussed in the following section.

1.3.2 Air damping

Air damping can occur in a number of different ways. A body that travels through

a fluid collides with the molecules of that fluid and transmits some of its energy

to those molecules. This process causes viscous damping by displacing some of the

fluid around the body, commonly referred to as viscous drag, and acoustic radiation

by exciting the fluid in a direction parallel to the motion. The source of damping is

the resulting shear force and drag force acting on the resonator as it cuts through

the gas during motion. Analysis of this problem is not trivial because of the large

volume of gas interacting with the resonator.

One common situation of air damping in MEMS applications is a body moving

near a stationary body or surface. If the vibrating structure oscillates parallel

to the base structure separated by a thin gap, the gas in the gap and ambient

to the microstructure is sheared which in turn, imposes viscous damping on the

system. This phenomenon is often modelled as Couette flow. In the case where

the vibrating structure has a perpendicular motion towards the stationary surface,

squeezed gas damping is present as the surfaces move towards each other. This is

particularly the case for devices relying on capacitive sensing and actuation, such as

the one described in [6]. Generally, smaller gap thickness will increase the level of

electrostatic excitation but gas film forces also increase rapidly as the gap thickness

reduces. Consequently, the viscous forces in the gas can cause a significant amount

of damping to the motion.

Modelling the flow of real gas mathematically is never simple. The gas flow can

be represented either as a continuum or as a collection of molecules. Its modelling

depends on the flow regime. A dimensionless parameter that is commonly used to

determine the flow regime in a particular case is the Knudsen number [20], which is

the ratio of the mean free-path length of molecules within the gas to a characteristic
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dimension of geometry.

When the Knudsen number is small, gas behaviour is described by differential equa-

tions in terms of spatial and temporal variations of density, velocity, pressure, tem-

perature and other macroscopic quantities [20]. The well-known continuum model

is the Navier-Stokes equations. This is the most commonly applicable mathematical

model. When the continuum model is valid, local gas properties such as density

or velocity can be defined as averages over a volume that is large compared to the

microscopic structure of the gas [20]. However, continuum models based on the in-

compressible Navier-Stokes equations do not cover the cases where MEMS devices

operate in a low pressure environment or when the devices are designed with gaps

in the order of a micron.

When the Knudsen number is not small, sub-continuum deviations from the Navier-

Stokes model begin to play a role. For Knudsen numbers greater that 0.01, slip

flow along walls starts to become important; for Knudsen numbers between 0.1

and 10 the flow is in the transitional regime, where the bulk of the fluid no longer

conforms to the incompressible constant-viscosity assumptions of the Navier-Stokes

equation; and for Knudsen numbers greater than 10, one enters the regime of free

molecular flow, where interactions between gas molecules are much less frequent

than interactions between a gas molecule and the solid boundary [20].

When the Knudsen number is not small, the flow is modelled using the second

approach: as a collection of molecules. In this approach, the gas is regarded as

a very large number of discrete particles. The model is derived from statistical

mechanics in which a distribution of gas molecule velocities is used to compute the

momentum transferred from the vibrating device into the gas [20, 21]. In other

words, the flow is in this case studied using deterministic or probabilistic methods.

For structures with simple geometry, the continuum model is often tractable.

Gas damping was recognised early as a major energy loss mechanisms for micro-

resonators, as it is for macroscopic resonator. Consequently the role of gas damping

in micro-resonators has been widely studied using both theoretical models and

experiments. A recent review on the subject can be found in [22]. With the advances
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in MEMS packaging technology, resonators are now often designed to be contained

in a vacuum encapsulation. Assuming that the gas pressure is sufficiently low,

gas damping of the vibration of the resonator is eliminated, but other damping

mechanisms are still present and limit the Q-factor. One of these is thermoelastic

damping, which is discussed in the next section.

1.3.3 Thermoelastic damping

Thermoelasticity describes the coupling between the elastic field in the structure

caused by deformation and the temperature field. When a beam bends, it produces

a stress gradient in the direction of the bending, which is accompanied by a strain

gradient. One side of the beam will be in compression and the other in tension.

Volume changes will exist that are opposite on each side of the beam. The strain

field causes a change in the internal energy such that the compressed region becomes

hotter and the extended region becomes cooler. This volume change creates a

temperature gradient. When this temperature gradient is created, the body tends

to move back to thermal equilibrium, and dissipative heat flow will ensue. Energy

is dissipated within this irreversible heat flow.

The earliest study of thermoelastic damping can be found in Zener’s classical work

starting in 1937 [23–25]. In these papers, Zener described the mechanism of ther-

moelastic damping, derived approximate formulae of the damping effects in beams

and other simple geometries, and compared his predictions to experimental mea-

surements. The formula he derived for evaluation of thermoelastic damping for

beam structures in bending has been widely accepted due to its closed form, sim-

plicity, and applicability. It has been verified to be accurate, but is only applicable

to beams or thin structures vibrating in low order flexural modes. Many of the

following works on thermoelastic damping are extensions of Zener’s studies.

Lifshitz and Roukes [26] presented a refined mathematical analysis of the same

thermoelastic problem in which the governing equations were solved in a more ex-

act manner. Instead of using a sine series to approximate the temperature profile
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(method used by Zener), the differential equation for temperature was solved ana-

lytically. The results from [24] and [26] analyses agreed well. Unfortunately, their

model was still restricted to beams.

Wong [2] performed a detailed study on thermoelastic damping in MEMS resonator.

He took two existing analyses for simple beam structures [24, 26] and extended them

to deal with the in-plane and out-of-plane flexural vibrations of thin perfect rings,

developing analytical formulae for their Q-factors. This work also extended Zener’s

theory [24] to a multi-component structure composed of a ring supported on eight

beam-like legs. During his research, analytical models for thermoelastic damping

were developed which provided improved understanding of how resonator geometry,

dimensions and material properties affect thermoelastic damping in ring resonators.

Further work extended the models to consider bi-layer beams and slotted rings.

As designers explore different geometries which are no longer simple beam-like struc-

tures, more general methods based on numerical simulations have been developed.

Some recent studies have used finite element simulations to numerically solve the

coupled equations of elasticity [27–29]. The finite element approaches are based

on the discretisation of the coupled equations of thermoelasticity. They have been

shown to be valid and verified against experimental data for beam-type geometries.

However, they have an important drawback which is that solving coupled equations

increases the degrees of freedom of the problem and increases the computational

cost. Koyama [30] presented a finite element based numerical method to efficiently

evaluate the transfer function for the coupled equations of thermoelasticity. From

this transfer function, theQ-factors of MEMS resonators including the effect of ther-

moelastic damping were computed. Finite element analysis allows Q-evaluation of

devices irrespective of fabrication material or geometry, liberating designers from

the contemporary beam-like structures. To enable a fast transfer function evalu-

ation, Koyama used the projection of the large finite element discretised system

of equations onto a smaller subspace of solutions. This method based on transfer

function evaluation of a reduced-order model was proved to be up to 60 times faster

than a full finite element discretisation, and as accurate [30].
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In a recent work [31], a finite element analysis was used to validate predictions

obtained with a modal approach. In this modal approach, the key was to repre-

sent mechanical vibration using pure structural modes and temperature distribution

using a summation of pure thermal modes. The approach concentrated on under-

standing the interactions between the mechanical strain and the thermal gradients.

It was applied to simple beams and to more complicated slotted structures and

showed good agreement with the finite element method.

It is important to note that thermoelastic damping is one of the most dominant

damping mechanisms in structures with sizes in the range of a few microns to a few

hundred microns. Sub-micron-sized structures have natural frequencies that are

comparable to that of the lattice vibration of the material, and it is not possible to

consider the system as an elastic continuum. Moreover, it is not possible to define

the temperature locally and the definition of the thermal expansion coefficient is not

valid [26]. For this range of sub-micron resonators, a transition from thermoelastic

damping loss to surface-related loss (or material loss) is suggested [14].

1.3.4 Material losses

An ever-present source of energy loss in MEMS resonators is internal friction [14,

32]. This source is the most difficult to quantify, because it is dependent on the

imperfections in the structure of the materials used and it is also highly dependent

on fabrication methods.

Internal friction is the dissipation in the form of heat occurring when chemical bonds

are made and broken. In a single-crystal beam, point defects and dislocations are

the cause of internal friction. The quantity of point defects and dislocations in the

beam can be estimated using probabilities. The energy loss due to a single defect

or dislocation can be modelled and the overall internal friction derived using the

total number of defects and dislocations estimated. In a polycrystalline material,

the dominant cause of internal friction is grain boundaries. In an amorphous ma-

terial, the friction is a bulk property, and is greater than the other two cases. The
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irreversible energy lost in the relaxation phenomena when defects and chemical im-

purities in the material try to relax back to equilibrium, is the basis of the so-called

material losses.

In addition, the surface state of a material can cause energy loss due to the fact

that bonds are dangling at the edge of a crystal. Composite materials also have

energy lost at the boundary between two layers.

Surface-related loss is an important damping mechanism for structures with high

surface to volume ratio [33]. The surface to volume ratio increases as the thickness

reduces. It is common for micro-structures to have a thin layer with different

material properties on their surfaces due to the different fabrication processes and

surface contamination. This layer of material with properties different from those of

the bulk material can affect the achievable Q-factor significantly. There is no clear

explanation on how surface treatments processes modify the surface property but

it is expected to change the crystallographic orientation of the bulk material [34].

A thorough review of support loss, which is the mechanism of main interest in the

thesis, is given in the next section.

1.4 Support loss

An essential energy loss mechanism is support loss – also referred to as anchor

loss. Every resonator is attached to the surrounding structure, and this attachment

creates a path for the radiation of vibrational energy away from the resonator.

Elastic waves are created when the anchor moves, sending internal pressure waves

out into the bulk material. These waves can be longitudinal or transverse, depending

on the vibrational mode of the resonator and anchor attachment.

Innovative designs potentially allow the coupling between the resonator and its an-

chor to be removed [35], reducing energy loss by reducing anchor motion. Such

systems may involve a mounting mechanism which isolates shear and moment reac-

tions from the support. Support loss can also be reduced by properly designing the
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resonator so that the vibrating structure is symmetric and vibrations do not result in

motion of the centre of mass [19]. If resonators were unbalanced, energy loss would

occur at the mounts. It is recommended that resonators should have a fixed centre

of mass and zero total moments resulting from vibration. Stemme [19] reported ex-

amples of balanced structures including a dual-diaphragm resonant pressure sensor

where the vibrating structure was suspended at the two nodal lines.

Another efficient design in the support loss point of view can be exemplified by

the keys of a xylophone. When the free bar flexes in the fundamental mode, there

are two places that have no translational motion – otherwise known as the nodal

points. The vibrating elements are suspended not at the ends, but at these nodal

points. By simply supporting the bar at those points, the coupling is minimised,

resulting in reduced energy radiation through the support. In addition, it is worth

noting that the higher modes tend to have nodal points at different places, mean-

ing that the support will damp these modes quickly. This allows the xylophone

to have a sustained, pure tonal sound. A similar design can minimise energy loss

due to energy radiation through the anchor in MEMS resonators, although creating

a simple support for a micro-mechanical beam is difficult. A perfect simple sup-

port has infinitesimally small width and exact position at the nodes. With very

narrow resonators, it is difficult to make the support beams sufficiently small, and

manufacturing errors ensure that the position of the support will not be exact.

Energy propagation into the supporting structure has received only limited atten-

tion. A variety of different computational approaches have been proposed by Park

and Park [36, 37] and Bindel et al. [38, 39] but the most relevant analytic treat-

ments appear to be those by Jimbo and Itao [40], Cross and Lifshitz [41], Hao et

al. [42, 43] and Photiadis et al. [44, 45]. These approaches are reviewed below.

1.4.1 Computational approach

In 2004, Park and Park [36, 37] proposed a computational model for predicting the

propagation of waves from a vibrating beam to the substrate. They developed a

20



Chapter 1. Introduction and literature review

multi-physics model consisting of a resonating beam model, a spatially distributed

electrostatic model and a substrate model. They assumed that the wave propagation

in the substrate was caused by external forces at the anchors. The substrate motion

was then treated as a classical wave propagation problem into an elastic half-space

foundation. This assumption is analogous to the one made in references [41, 42], in

which, sinusoidal excitations were applied at the anchor area of the resonator beam

to obtain the mechanical force-displacement relation at the anchor. The resulting

coupled model was then used to evaluate the resonator performance, in particular,

the Q-factor degradation due to the anchor loss.

The assumption that the substrate can be modelled as a semi-infinite elastic half-

space has often been used. By considering the resonator to be much smaller than

the substrate, very little energy leaving the resonator is reflected back and there-

fore the substrate can be seen as being semi-infinite from the perspective of the

resonator. To simulate the response of a semi-infinite domain, boundary dampers,

infinite elements, boundary integrals or exact Dirichlet-to-Neumann boundary con-

ditions can be used (see e.g. [46–49]). Each of these methods in some way truncates

the simulation domain with an artificial boundary and attempts to absorb outgoing

wave energy without reflection. However, all of these techniques have some fail-

ings that are mainly a “non-total” dissipation of energy when waves are impinging

the exterior boundaries, and a high computational cost when using finite element

methods.

In 2005, Bindel et al. [38, 39] developed an approach to implement a Perfectly

Matched Layer (PML) applied on a radially driven centre-supported disk resonator.

This approach was based on the fundamental work done by Bérenger [50]. Bindel

et al. described how anchor losses can be computed accurately using an absorbing

boundary based on a PML which reduces incoming waves over a wide frequency

range. A PML is a finite domain that is attached to the outer boundary of a (finite

element) model which incorporates the system of interest – the resonator, its anchors

and part of the substrate. The extension of the PML technique fits naturally within

the standard finite element code architecture. The PML is a continuum domain

devised in such way that the mechanical impedance between the PML and the

21



Chapter 1. Introduction and literature review

model is perfectly matched. This essentially eliminates spurious reflections from

the artificial interface. The PML is finite in extent and thus has an outer boundary.

The presence of this outer boundary requires the PML to damp the out-going waves

before they reflect and “pollute” the computation. The out-going waves go through

the interface with the PML without being reflected; they are massively damped in

the PML region; few of them are reflected on the outer boundary of the PML; the

resulting in-coming waves are damped again in such a way that almost no in-coming

waves come back into the model.

1.4.2 Analytical approach

In 1968, Jimbo and Itao [40] derived an expression for the energy loss from a can-

tilever vibrator of infinite out-of-plane thickness attached to a semi-infinite medium.

They compared the vibration energy of the cantilever with the energy associated

with strain induced in the elastic medium by the shear force and bending moment

at the root of the cantilever. They suggested that the Q-factor (Qsupport) given by

the developed model was:

Qsupport ' 2.17
(
L

b

)3 Esup.

E
, (1.11)

where b and L are the in-plane width and length of the cantilever, respectively, E

is the Young’s modulus of the cantilever, and Esup. is the Young’s modulus of the

supporting medium.

In 2003, Hao et al. [42] derived a closed-form expression for support loss in beam res-

onator. The beam resonator was vibrating in-plane and had the same out-of-plane

thickness as its support. They modelled support losses in beams with clamped-free

and clamped-clamped boundaries. The flexural vibrations of the beam were de-

scribed using beam theory. Elastic waves excited by the shear stress of the beam

resonator and propagating into the support structure were described using two-

dimensional elastic wave theory. Proposed expressions for the Q-factor of in-plane

bending vibrations are functions of the cube of length to in-plane width ratio (L/b)3
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and are mode shape dependent. The model suggested lower quality factor for higher

order resonant modes compared to the fundamental mode of a beam resonator. Hao

et al. calculated the Q-factor for the fundamental mode of in-plane vibration of can-

tilever beam to be:

Qsupport ' 2.081
(
L

b

)3
. (1.12)

Later, the work was extended to a centre-supported disk resonator [43]. The same

method was used: separation and coupling between the three components (disk,

support beam, and support structure). The disk was modelled by a free-edged cir-

cular thin-plate as the support beam was much smaller in size and had negligible

effect on the mode considered. Hence, explicit expressions for its resonant frequen-

cies, mode shapes and vibration energy were derived. The displacement at the disk

end of the support beam was found from the mode shapes of the disk. Through

the support beam, this displacement is further transferred to the stress on the sup-

port structure (substrate). The support structure was modelled as a semi-infinite

medium, through which part of the vibration energy propagates to infinity (in the

form of elastic waves) and cannot return to the resonator, leading to energy loss.

The behaviour of the support structure was described by the elastic wave theory,

giving rise to the displacement under varying stress. From these displacements and

stresses, the quality factor could be evaluated.

The analytical closed form expressions obtained in [42, 43] are particularly attractive

to designers due to their simplicity, but the drawback is that they are only valid

under the assumptions that are made and available for restricted geometries. Thus

if the geometry is special such that the mechanism of damping is not known, this

method is inapplicable.

More recently, Cross and Lifshitz [41] considered elastic wave transmission across

the junction between two plates of differing widths (having the same out-of-plane

thickness), and calculated the associated energy loss. With both systems assumed

to be small compared to a wavelength, they determined that Q was linearly pro-

portional to L/b for the fundamental compression mode, the torsion mode and the

out-of-plane flexural mode, and that Q was proportional to (L/b)3 for the in-plane
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bending mode. They suggested that thin-plate elasticity theory provides a useful

and tractable approximation to the three-dimensional geometry. The results showed

that when the resonator-support coupling is large, it is important to consider the

dissipation properties of the support structures as well as the resonator.

The main difference between all these analytical studies is the way that they treat

the support structure. The support is either considered to be of infinite out-of-plane

thickness [40] or as a plate equal in thickness to the resonator [41, 42].

Photiadis et al. [44, 45] analysed these two different cases. They provided analyti-

cal expressions for the energy loss from vibrating mechanical resonators into their

support structures for two limiting cases: supports that can be treated as plates

with a thickness that needs not to be the same as that of the resonator itself, and

supports that act as semi-infinite elastic media, with effectively infinite thickness.

The support loss resulting from out-of-plane vibration of a cantilevered beam and

radiation into a supporting medium, modelled as a semi-infinite plate, was found

to be:

Qsupport ' 1.053 L
b

(
hsup.

h

)2

, (1.13)

where b is the in-plane width of the cantilever beam, and h and hsup. are respectively

the out-of-plane thickness of the cantilever beam and the support structure. The

in-plane width of the support is supposed to be infinite as the support is modelled

as a semi-infinite plate. One can see here the same proportionality in L/b expressed

by Cross and Lifshitz [41]. As the in-plane stiffness of the plate is much greater

than its out-of-plane stiffness, Photiadis et al. did not consider in-plane vibrations

of the beam and assumed that the attachment loss due to in-plane displacement is

negligible compared to loss due to out-of-plane displacements. When the support

structure was sufficiently thick relative to the wavelength of the propagating waves,

the base was approximated as a semi-infinite elastic medium (a half-space) and the

Q-factor for out-of-plane vibration was found to be:

Qsupport ' 3.226 L
b

(
L

h

)4
. (1.14)
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All these different studies use the displacements of the resonator at its anchor end to

evaluate the support loss. In the case of a rate sensor consisting of a ring supported

on legs, the derivation of these displacements is not straightforward. The vibration

of the ring resonator is firstly transmitted to its anchor legs, then it travels along

the first beam section of the leg to be partially transmitted to the second beam

section. The same process occurs between the second and third beams constituting

the leg. The resulting vibration in the third and last beam section impinges on

the anchor end and gives the required displacements. From this description it is

clear that the transmission and propagation of vibrations through the structure is

of principal interest in this work. The following section discusses this topic.

1.5 Vibration transmission and propagation

This section reviews the current literature relating the prediction of vibration trans-

mission and propagation through a structure. From this study it was concluded

that the ray tracing method is well suited to analysing the vibration transmis-

sion through the rate sensor at a particular frequency. A brief description of this

method is introduced later in this section, and a more detailed examination of the

method is provided in Chapter 2. Before this, a brief description of other available

techniques is provided, with the strengths and weaknesses of each approach high-

lighted. The approaches considered are the Finite Element Analysis (FEA), the

Statistical Energy Analysis and (SEA) the Energy Flow Analysis (EFA) based on

wave propagation.

1.5.1 Finite element analysis

Finite element analysis (FEA) is widely used in industry to model complex struc-

tures subjected to various loads and stresses. The technique can also be applied to

vibration problems. This is usually done in two stages. The mesh of the structures

is analysed to calculate the mode shapes and natural frequencies of the structure.
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Using this data the response of the structure is evaluated using a modal superposi-

tion technique.

Gavric and Pavic [51] developed a superposition technique approach to model the

vibrational energy response in a structure using FEA. The results presented showed

that the response at low frequencies is affected by higher order modes. If these

higher order modes are ignored then the predicted results can become misleading.

Therefore a more dense mesh is required which is capable of including these higher

modes, so an accurate prediction of the response of the structure is obtained for

the lower frequency range, which also limits this approach to low frequencies. This

is a common problem encountered in FEA. As the frequency increases, so does the

number of modes in the structure, requiring more elements and hence increasing

computing time. The mesh has to contain a large number of elements and makes

even relatively simple cases, at low modes, very expensive and time-consuming to

run. This factor limits the application of FEA. Even the most powerful computer

has an upper limit to the problem size it can handle economically.

To study, understand and quantify support losses in MEMS resonators, it is im-

portant to know which parameters have strong influence on energy losses. From

a single FEA, it is not possible to derive the significant parameters and to get a

precise description of the behaviour at the anchor end.

1.5.2 Statistical energy analysis

In the early 1960’s the existing FEA approach was found to be of limited practical

use for modelling light weight aerospace structures, due to the restrictions imposed

to the size and frequency range of the model and the computational cost, which

are still limiting factors today. Statistical Energy Analysis (SEA), developed by

Lyon [52], considers a greatly simplified structure compared to FEA. Instead of

considering the variation of the response as a spatially dependent factor, the struc-

ture is split into subsystems and the average energy density of each subsystem is

evaluated over a frequency band. Each subsystem is assumed to contain a uniform
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energy density. Due to this, SEA produces a single statistically averaged prediction

of the response in each subsystem, per frequency band, which is not sensitive to

slight variations in the structure.

Criteria have been set which the structure should meet to provide some confidence

in the predicted response. The main restrictions are that there should be more than

five to seven resonant modes in a frequency band, in each subsystem [53]; and that

there should be a weak coupling between subsystems. These criteria are likely to

be satisfied at higher frequencies, which can be far above the reliable frequency of

FEA, leaving a gap in mid-frequency range.

Confusion is often formed by the term “low”, “mid” and “high” frequency. The

predictive approaches, such as SEA and FEA, are concerned with the number of

modes present in the structures. The exact number of modes is dependent upon

the structure itself. If the frequency considered is low, there tends to be a low

number of modes excited in the structure (which favours the FEA approach), as

the frequency increases the number of modes increases (which favours the SEA

approach). The term “mid” frequency represents the frequency range where there

are too many modes to apply FEA with confidence and too few modes to satisfy

the SEA assumptions. In some structures this band between FEA and SEA may

not be present. However, in many structures the SEA approach is not appropriate

(i.e. strongly coupled subsystems) and there is a void in the analysis for the “mid”

and “high” frequencies.

There is therefore a possible gap between the applicability of the FEA and SEA

approaches in the mid-frequency range and for structures where SEA cannot be

reliably applied. Due to this, a different approach has been required which can

be applied to structures which are strongly coupled in the mid- to high-frequency

range. This approach is the energy flow analysis based on wave propagation, see

Section 1.5.3. It is simple to apply to structures and can be implemented using

existing FEA software, which reduces the development costs.

Moreover, SEA approach is not applicable to gyroscopes as they operate at partic-

ular frequencies and only these frequencies are of interest – not a frequency band
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containing several modes. Furthermore, SEA is usually used for systems that are

not precisely known and defined. It gives an approximate description of the energy

contained in these systems. For the case of support losses in MEMS gyroscopes, a

precise and detailed evaluation of the energy transmitted to the support is needed.

1.5.3 Wave approach

The vibrations of elastic structures, such as strings, beams, and rings, can be de-

scribed in terms of waves that propagate and decay in waveguides. Such waves are

reflected and transmitted when incident upon discontinuities [54, 55]. For the rate

sensor under investigation, the different components (ring and legs) effectively form

a waveguide and a wave approach seems to be a suitable approach.

Ray tracing

Mace [56, 57] was one of the first to use a wave approach to determine the power

flow between two coupled Euler-Bernoulli beams and the distribution of energy

within the system. In his model, each subsystem was essentially one-dimensional,

supporting just one wave type. Mace showed that when the coupling between the

two beams is weak, peaks in coupling power occur near the natural frequencies of the

uncoupled subsystems. Expanding the work of Mace, Langley [58] developed a ray

tracing method to evaluate the response of one-dimensional structures subjected to

harmonic excitation. The application of this approach to the ring-based rate sensor

is presented in Chapter 2.

Simple rod structures were first studied by Langley [58]. Ashby [59] incorporated

near-field effects and validated the method for a simply supported beam. A similar

approach was used recently [60] to describe wave propagation, transmission and

reflection in Timoshenko beams under various conditions. In Timoshenko beams,

the effect of transverse shear deformation and rotary inertia are no longer neglected.

Propagation, reflection and transmission matrices were given for different discon-
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tinuities such as general point supports, boundaries and change in section in Ti-

moshenko beam. When Timoshenko beam theory is used, the vibration analysis

becomes more complex and further difficulties arise from the increasing complex-

ity of structures. However from these matrices, the vibration analysis becomes

systematic and concise.

The application of the ray tracing method relies on having knowledge of the detailed

propagation, reflection, and transmission characteristics of waves in different parts

of the system. In particular, the precise detail of the waves at discontinuities is

needed to predict their reflection and transmission. For the ring-based resonator

considered here, the discontinuities occur between the ring and supporting legs, and

between connected beams in the supporting legs.

As this approach is “exact”, the precise detail of the structure, joint, material

properties and frequency is required. A slight change in one of these terms can

significantly alter the predicted response.

Energy flow analysis

The basic premise of Energy Flow Analysis (EFA) is that the state of vibration

can be essentially represented by stored, dissipated, and transferred far-field energy

densities. This method translates into differential terms the basic hypotheses of

SEA, based on the thermal propagation principle. SEA considers a power balance

among macro-structures or finite subsystems, while in EFA the same laws are writ-

ten for element volumes. The energy flow analysis or power flow method is found

to provide a reasonable space, time and frequency-averaged prediction.

In 1987, Nefske and Sung [61] presented the “power flow finite element method” and

made the link between the modelling of heat conductivity and vibrational energy

flow. Successively, Palmer [62] made a detailed study of the application of EFA

to predict the flow of flexural vibration in one-dimensional structures. Bernhard

et al. [63, 64] gave the partial differential equations that govern the propagation

of energy-related quantities in simple structural elements such as rods, beams and
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plates. They also derived the coupling relationships in terms of energy-related

quantities that describe the transfer of energy for various joint. To couple sim-

ple structural elements together, they used the power transmission and reflections

coefficients – that can be found in the literature, e.g. in [55].

Ashby [59] developed an EFA that can incorporate the near-field and phase coher-

ence effects into the predicted response; and an alternative approach to apply EFA

to structures containing more that one type of vibration.

1.6 Summary of the literature review

From the review of various damping mechanisms presented in Sections 1.3 and 1.4,

it can be summarised that thermoelastic damping has already been thoroughly

investigated and gas damping can be eliminated by packaging the resonators in

sufficiently low pressure environment. Internal losses and surface-related losses are

intrinsic damping mechanisms that occur at the microscopic level of the materials

or when the surface to volume ratio is large, and are difficult to model and quantify.

Also, they are not yet really relevant to devices which are not particularly “thin”.

Support loss, an ever present mechanism as the resonator will always be attached

to a support, has not been widely investigated and its research mainly consisted of

analytical models which derived parametric description of energy losses in simple

cantilever beam structures. Regarding the complex design of the MEMS vibrating

ring-based resonator, it has been seen that a vibration transmission and propagation

model is needed.

The EFA – as the SEA, gives frequency-averaged predictions. Broadband excitation

is always considered, which is not appropriate for studying the case of a vibrating

resonator. For a resonator, the frequencies of interest are its resonant frequencies

and the resonator does not operate over a frequency range. An “exact” model

for a particular frequency is needed. Furthermore, the approach used by the FEA

solution is a modal technique, which assumes that the total response of the structure

is given by the sum of the responses of individual modes. An exact approach to
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model the vibrations of structure at a particular frequency is to use waves to form

the resulting response; this is the foundation of the ray tracing method. From this

literature review, the ray tracing analysis seems the most appropriated method as it

relies on an “exact” wave approach that gives the behaviour of complex structures

at particular frequencies.

1.7 Aims and objectives of the thesis

The research presented in this thesis is motivated by the need to gain an improved

understanding of the energy dissipation mechanisms in vibrating MEMS structures

used in vibrating rate sensors, and to develop models to predict and quantify damp-

ing levels arising from support losses. It is anticipated that this work will provide

improved understanding of the dynamical behaviour of MEMS sensors, so as to im-

prove design and prediction capabilities, and hence aid the development of sensors

with better mechanical performance characteristics.

The work will focus on a fundamental study of support loss in vibrating ring-based

resonators in which energy flows from the ring through the supporting legs into the

surrounding structure. The main themes of work to be considered include the two

following steps:

1. Developing models to predict the vibrational energy flow through structures

composed of ring/beam components is the first step to quantify the energy

that impinges into the surrounding structure. The different methods pre-

sented in Section 1.5 have shown that a wave approach, and especially the

ray tracing method is well suited to study the vibrations of complex struc-

tures at a particular frequency. The ring-based resonator, and the energy flow

occurring from the ring to the supporting legs will be of principal interest.

2. Developing models to predict the vibration transmitted from a resonator to

its surrounding structure represents the second important step in the support

loss modelling. The existing analytical approach [42] is only applicable to
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flexural vibrations of beam resonators. It is therefore necessary to consider

an extension of this approach that can deal with more complex structures. A

model that considers vibrations of complex resonators must be developed and

must efficiently deal with various MEMS design.

Initially, the work will consider in-plane vibrations of the resonator, representing

existing single-axis rate sensors. However, the presence of out-of-plane vibrations

of the resonator and the associated support losses will be considered later in the

thesis to investigate damping in novel multi-axis rate sensors [8].

It is also of high interest to understand and quantify the influence of different pa-

rameters on the support loss and on the particular vibrational motion of the sensor.

The possibility of another ring-based rate sensor design with better performance

with regard to support loss damping needs to be investigated.

The next section gives an overview of the organisation of the thesis.

1.8 Outline of the thesis

The content of the remaining chapters in the thesis is summarised below.

Chapter 2 presents the fundamental vibration analysis of ring/beam structures by

the ray tracing method. A wave approach is used to model the free and forced

vibrations of complex networks. It is intended to find the natural frequencies and

mode shapes of the ring-based resonator by this method. A validation process of the

method is carried out using known analytical solutions of simple beam systems. The

approach relies on the knowledge of transmission coefficients and they are derived

for the different discontinuities encountered in the ring-based rate sensor.

Chapter 3 shows simplification methods to analyse structures that exhibit symme-

try properties. This is applied, in particular, to the ring-based resonator which is

cyclically symmetric. The extension of a method firstly developed for finite element
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analysis is presented. It allows a great reduction of the number of unknowns in the

model. The model complexity and the computing time that is used to solve the

equations of wave propagation and transmission are reduced. With this simplifi-

cation, natural frequencies and mode shapes of different cyclic symmetric systems

are derived and the vibrations of the ring-based rate sensor are modelled by what

is proved to be a fast and efficient method.

Chapter 4 links the vibration analysis of the ring-based resonator with the overall

research aim, which is to quantify support losses. In-plane vibrations are considered

and a model for support loss is presented based on an analytical study that sees the

support as a semi-infinite thin plate. This model is validated using two different

finite element approaches that model in a different way the infinite length of the

support. Simple test cases are studied and the results for the support losses obtained

are compared with the different methods.

The previous model developed in Chapter 4 is a rapid and efficient technique to

model support losses. By combining this model with the ray tracing method pre-

sented in Chapter 2, the support losses of the ring-based rate sensor can be cal-

culated. Results for support losses for different ring-based rate sensors designs are

presented in Chapter 5. A few parameters, such as material properties or leg di-

mensions are modified and their influence on the Q-factor is analysed. Chapter 5

also studies the possibility to add blocking masses in the sensor in order to reduce

support loss.

Novel multi-axis rate sensors are designed to vibrate both in- and out-of-plane. The

ray tracing method presented in Chapter 2 is extended to out-of-plane vibrations in

Chapter 6 in order to study the vibrations of such sensors. A model for support loss

when the resonator vibrates out-of-plane is presented. It is based on the particular

out-of-plane bending characteristics of the support modelled as a semi-infinite thin

plate. Numerical results and a detailed discussion of the proposed models are given.

Chapter 7 is the final chapter that summarises the key findings of all the work

presented in this thesis and proposes suitable future work in this area of research.
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Figures

Figure 1.1: Traditional spinning rotor gyroscope.
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(a)

(b) (c)

(d)

Figure 1.2: Photographs of the ring-based rate sensor: (a) on its silicon wafer,
(b) details of the leg structure, and (c) mounted on its chip.
(d) Schematic representation of the device.
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Figure 1.3: Schematic diagram of a simple mass-springs gyroscope.

Figure 1.4: Schematic diagram of a vibrating gyroscope.
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2θ

3θ

Primary mode Secondary mode

Figure 1.5: In-plane flexural modes of vibration of rings.

Figure 1.6: Various parameters shown on an amplitude-frequency response
curve, used to calculate the Q-factor of a resonator.
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Chapter 2

In-plane vibration analysis using a

wave approach

2.1 Introduction

Engineering structures often consist of a number of components that can be mod-

elled as straight and curved beams, and rings. Figure 2.1 shows a schematic repre-

sentation of a MEMS ring-based rate sensor that is the main focus of interest in this

thesis. The basic sensor structure is a resonator consisting of a slender circular ring,

supported on slender legs as shown. Each leg consists of three straight beams. The

design and optimisation of structures like these are aided greatly by the availabil-

ity of efficient techniques to rapidly determine the effects of variations in geometry

and dimensions on vibration characteristics, such as natural frequencies and mode

shapes. The performance of MEMS sensors, like the one shown in Figure 2.1, is

often highly dependent on the level of damping, see Chapter 1. One important

damping mechanism is support loss or attachment loss [42, 44], which accounts for

the transmission of vibration from the resonator into the supporting structure. The

work reported in this chapter deals with the development of an efficient approach

to analyse the vibrations of ring/beam structures that has the potential to be used

to predict support losses. Chapters 4 and 5 will focus on predicting support losses
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in ring-resonators.

The vibrational response of simple structures such as uncoupled beams or rings can

be determined without difficulty [65] using the Rayleigh-Ritz or modal approaches.

However, the analysis of complex systems containing several elements is more chal-

lenging. A possible method is the dynamic stiffness method [66, 67] that has been

developed to analyse in-plane and out-of-plane vibrations of networks. Each compo-

nent is modelled using an exact solution and matrices, coupling displacements and

forces of each element with its neighbours, are considered. The Wittrick-Williams

algorithm [68] is customarily applied to determine the natural frequencies of the

system. An alternative method is the use of Finite Element (FE) packages that

are employed widely to model complex structures, and can be used to calculate

natural frequencies and mode shapes, and the vibration response. However, it is

often computationally expensive if many different FE meshes need to be gener-

ated, when performing optimisation studies. In contrast, the wave-based approach

considered in this chapter not only allows natural frequencies and mode shapes to

be determined efficiently, but its formulation also allows the geometry and size of

the structure to be varied easily and efficiently. The dynamic stiffness method,

which is also based on an exact analysis, could have been applied at this point

but wave approaches have proved to be powerful for analysing the energy trans-

mission through structural networks [69], and their characteristics will be used in

subsequent chapters to calculate support losses in MEMS structures.

As seen in Chapter 1, the vibrations of elastic structures, such as beams and rings,

can be described in terms of waves that propagate and decay in waveguides. Such

waves are reflected and transmitted when incident upon discontinuities [54, 55]. Ex-

panding the work of Mace [56, 57], Langley [58] developed a ray tracing method to

evaluate the response of one-dimensional structures subjected to harmonic excita-

tion. This method was further exploited by Ashby [59] who incorporated near-field

effects and validated the method for a simply supported beam. One of the earliest

investigations of wave motion in curved beams was by Graff [54], who developed

equations for a ring, accounting for extension, shear and rotary inertia. Dispersion

curves were presented showing the effects of curvature, shear, and inertia on the
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wave propagation. Kang et al. [70] extended the ray tracing method to planar cir-

cular curved beam structures including the effects of attenuating wave components.

So far, the technique has not been used on complex structures, such as the one

presented in Figure 2.1.

The principle behind the present approach is called phase closure [71] (also called

wave-train closure [55]). This principle states that if the phase difference between

incident and reflected waves is an integer multiple of 2π, then the waves propagate at

a natural frequency and their motions constitute a vibration mode. The compact

and systematic methodology of this approach allows complex structures, such as

multi-span beams, trusses and aircraft panels with periodic supports to be analysed.

The application of the ray tracing method relies on having knowledge of the detailed

propagation, reflection, and transmission characteristics of waves in different parts

of the structure and particularly of their behaviour at discontinuities. The reflection

and transmission of waves in Euler-Bernoulli beams at various discontinuities have

been determined by Mace [72].

In the present chapter, the method has been extended to analyse the natural fre-

quencies of a structure, such as that shown in Figure 2.1, which contains more

complex discontinuities, like those arising between a ring and a straight beam. The

method has also been extended to model the forced response of simple structures.

This chapter is organised as follows. Sections 2.2 and 2.3 provide a review of the ba-

sics of wave propagation in straight and curved beams, and show the development

of the ray tracing method. Section 2.4 presents a derivation of the transmission

coefficients for different discontinuities relevant to the structure of interest. Sec-

tion 2.5 presents results for simple structures to validate the proposed ray tracing

method for free and forced vibration analyses. Section 2.6 gives a summary and a

statement of conclusions.
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2.2 Wave propagation in beams

This section introduces the fundamental governing equations of motion of curved

beams with constant radius, neglecting shear deformation and rotary inertia. A har-

monic wave solution is used and the derivation of the corresponding wavenumbers

is presented. By letting the radius of curvature tend to infinity, the equations and

solutions are simplified to the case of straight beams. The equations obtained are

well known [54] and are used extensively in later sections.

2.2.1 Curved beams

Consider a curved beam of constant radius of curvature as shown in Figure 2.2(a).

The curved beam is characterised by the radius of curvature R, the cross-sectional

area A, the second moment of area of the cross-section Iy, the Young’s modulus

E, and the mass density ρ. In Figure 2.2(a), S, T and M1 are the resultant shear

force, tensile force and bending moment, respectively, while u and w are the corre-

sponding radial and tangential displacements. The circumferential coordinate along

the centreline is denoted by s. For curved beams, the equations of motion can be

expressed as [54]:

−EIy
∂3

∂s3

w
R

+ ∂u

∂s

+ EA

R

∂w
∂s
− u

R

 = ρA
∂2u

∂t2
, (2.1)

EIy
R

∂2

∂s2

w
R

+ ∂u

∂s

+ EA
∂

∂s

∂w
∂s
− u

R

 = ρA
∂2w

∂t2
. (2.2)

In these coupled equations for u and w, the effect of rotary inertia and shear defor-

mation are neglected. The equations of motion including these effects for circular

rings and curved beams can be found in [65].

The axial force T , shear force S and bending moment M1 are related to the dis-
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placements by the relations:

T = EA

∂w
∂s
− u

R

, (2.3)

M1 = EIy
∂

∂s

∂u
∂s

+ w

R

, (2.4)

S = −EIy
∂2

∂s2

∂u
∂s

+ w

R

. (2.5)

The radial and tangential displacements satisfying Equations (2.1) and (2.2) are

assumed to be time harmonic waves travelling in the positive s direction [55] and

are expressed as:

u = û e−i(ks−ωt), (2.6a)

w = ŵ e−i(ks−ωt), (2.6b)

where û and ŵ are the amplitudes of the radial and tangential waves respectively,

k is the associated wavenumber and ω is the circular frequency. Substituting Equa-

tions (2.6) into the equations of motion (2.1) and (2.2) gives:

−EIyR2k4 + ρR2Aω2 − EA −iERk
(
A+ Iyk

2
)

iERk
(
A+ Iyk

2
)

−Ek2
(
AR2 + Iy

)
+ ρR2Aω2


 û
ŵ

 =

0
0

 . (2.7)

Non-trivial solutions to Equation (2.7) give the characteristic (dispersion) equation

for the wavenumber:

(
E2IyR

4
)
k6 − EIyR2

(
R2ρω2 + 2E

)
k4 − E

(
ρR2ω2

(
AR2 + Iy

)
− EIy

)
k2

+AρR2ω2
(
ρR2ω2 − E

)
= 0.

(2.8)

Equation (2.8) is a cubic equation in k2 and has six complex roots ±ki (i = 1, 2, 3)

at any given frequency. If the wavenumber ki is real and positive, then the displace-

ment is given by:

u = û e−ikis. (2.9)

This represents a wave travelling in the positive s direction. If the wavenumber is
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complex, such that ki = Re(ki) + i Im(ki), then:

u = û
(
e Im(ki)s e−i Re(ki)s

)
. (2.10)

To make this wave decay and propagate in the positive s direction, the basic

rule applied to choose the appropriate wavenumbers among the six complex roots

of (2.8) is: Im(ki) ≤ 0 (that gives a wave decaying in the positive s direction) and

Re(ki) > 0 (which makes the wave propagate in the positive s direction). A more

detailed physical description of the complex wavenumbers in curved beams and the

dispersion curves can be found in [73].

At a given frequency and as R → ∞, the curved beam has an infinite radius

and represents a straight beam. Alternatively, for a given radius, as ω → ∞,

the curvature effect disappears and the wave travels as if the beam was straight.

This ensures that straight and curved beams have a common limit as R→∞ and

ω →∞. This common limit provides a convenient way to characterise the resulting

wavenumber, i.e.

• The root which tends to kL (kL being the wavenumber of longitudinal (“tan-

gential”) waves in a straight beam, see Section 2.2.2) when R→∞ or ω →∞,

is related to predominantly longitudinal waves and is denoted here by k1.

• The roots which tend to kFy and −ikFy (kFy being the wavenumber of flexural

(“radial”) waves in a straight beam, see Section 2.2.2) when R→∞ or ω →∞

are related to predominantly propagating far-field flexural waves and decaying

near-field waves respectively. These roots will be denoted here by k2 and k3

respectively.

In any curved beam section, the radial and tangential displacements can be ex-

pressed as a sum of waves travelling in the right and left directions, i.e.:

u =
3∑
i=1

(
û+
i e
−ikis + û−i e

iki(s−L)
)
eiωt, (2.11a)
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w =
3∑
i=1

(
ŵ+
i e
−ikis + ŵ−i e

iki(s−L)
)
eiωt. (2.11b)

In these expressions, û+
i and ŵ+

i are the complex amplitudes of the radial and

tangential waves travelling in the positive s direction; while û−i and ŵ−i are the

complex amplitudes of the radial and tangential waves travelling in the negative s

direction. The waves travelling in the positive s direction (û+
i , ŵ+

i ) originate from

the location s = 0, whilst the waves travelling in the negative s direction (û−i , ŵ−i )

originate from the location s = L. In applications it is convenient to choose s = 0

and s = L to be located at either end of the curved beam section.

From the analysis presented above it is clear that the radial and tangential displace-

ments for a single curved section are defined by twelve unknown wave amplitudes.

In general the amplitudes of these waves will depend on the waves propagating in

other sections of the structure. However, for curved beams it can be shown that

some of the radial and tangential wave amplitudes in a particular curved beam

section are related to each other.

Substituting Equations (2.6) with appropriate wavenumbers into equation of mo-

tion (2.1), the following ratio Xi can be obtained:

Xi = û+
i

ŵ+
i

= − û
−
i

ŵ−i
=

iERki
(
Iyk

2
i + A

)
ρR2Aω2 −

(
EIyR2k4

i + EA
) . (2.12)

The ratio Xi relates to the ratio of the radial to tangential wave amplitudes of waves

travelling in the same direction that have the same wavenumber. Graphs of this

coupling ratio as a function of the frequency can be found in [73]. Non-zero values

of this ratio indicate that a radial wave of magnitude û+
i is accompanied by a tan-

gential wave of magnitude Xiŵ
+
i and a radial wave of magnitude û−i is accompanied

by a tangential wave of magnitude −Xiŵ
−
i . Thus for the wave amplitude pair (û±i ,

ŵ±i ) it is only necessary to determine one of the amplitudes, as the other is known

implicitly from knowledge of the ratio Xi. As the amplitudes with subscript i = 1

are related to waves which are predominantly extensional, and those with subscript

i = 2 and 3 to waves which are predominantly flexural (propagating and decaying
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respectively), the six wave amplitudes
[
ŵ+

1 , û
+
2 , û

+
3 , ŵ

−
1 , û

−
2 , û

−
3

]
are taken as pri-

mary unknowns. This coupling between the radial and tangential wave amplitudes

indicates that six unknown wave amplitudes are needed to determine the radial

and tangential displacements of each curved beam section – three travelling in the

positive s direction, and three travelling in the negative s direction.

2.2.2 Simplification to straight beams

The equations derived for curved beams can be reduced to those for straight beams.

The same notations are used and these are illustrated in Figure 2.2(b). By letting

R → ∞, the circumferential coordinate s is changed to a linear coordinate z, and

Equations (2.1)-(2.5) give:

−EI ∂
4u

∂z4 = ρA
∂2u

∂t2
, (2.13)

E
∂2w

∂z2 = ρ
∂2w

∂t2
, (2.14)

T = EA
∂w

∂z
, (2.15)

M1 = EIy
∂2u

∂z2 , (2.16)

S = −EIy
∂3u

∂z3 . (2.17)

In these equations, u is the radial displacement, which is referred to as the flexural

displacement for the straight beam case, and w is the tangential displacement,

which is referred to as the longitudinal displacement for the straight beam case.

It is important to note that for the straight beam case the equations governing

the longitudinal and flexural displacements are uncoupled – this is in contrast to

curved beams for which the tangential and radial equations are coupled. Following

the same procedure to that followed for curved beams, the longitudinal and flexural

displacements of straight beams are assumed to be time harmonic waves travelling

in the positive z-direction, and are expressed in an identical form to Equations (2.6).

The dispersion equation for the straight beam case can be obtained easily by letting
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R→∞ in Equation (2.8). This gives:

E2Iyk
6 − EIyρω2k4 − AEρω2k2 + Aρ2ω4 = 0. (2.18)

Since the longitudinal and flexural displacements are not coupled, Equation (2.18)

can be factorised, such that:

k4 −
(
ω

√
ρA

EI

)2
k2 −

(
ω

√
ρ

E

)2
 = 0. (2.19)

This equation has six roots ±ki (i = 1, 2, 3), which are either purely real or purely

imaginary, such that:

k1 = kL = ω

√
ρ

E
, (2.20a)

k2 = kFy =

√√√√
ω

√
ρA

EI
, (2.20b)

k3 = −ikFy = −i

√√√√
ω

√
ρA

EI
. (2.20c)

Noting that the flexural and longitudinal displacements are not coupled, and that

the ratios expressed in Equation (2.12) become X1 = 0 and X2 = X3 = ∞ in a

straight beam section, the flexural and longitudinal displacements can be described

as the sum of waves travelling in the positive and negative z-directions, such that:

u =
(
û+

2 e
−ikFyz + û+

3 e
−kFyz + û−2 e

ikFy(z−L) + û−3 e
kFy(z−L)

)
eiωt, (2.21a)

w =
(
ŵ+

1 e
−ikLz + ŵ−1 e

ikL(z−L)
)
eiωt. (2.21b)

In these expressions, ŵ+
1 and ŵ−1 are the complex amplitudes of the longitudinal

waves propagating in the positive and negative z-directions respectively; û+
2 and û−2

are the complex amplitudes of the flexural purely propagating waves in the positive

and negative z-directions respectively; and û+
3 and û−3 are the complex amplitudes

of the flexural purely decaying (near field) waves in the positive and negative z-

directions respectively. The waves travelling in the positive z-direction (ŵ+
1 , û+

2 ,

û+
3 ) originate from the location z = 0, whilst the wave travelling in the negative
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z-direction (ŵ−1 , û−2 , û−3 ) originate from the location z = L. In applications it is

convenient to choose z = 0 and z = L to be located at either end of the straight

beam section.

The above equations indicate that six unknown wave amplitudes are needed to de-

termine the longitudinal and flexural displacements – three travelling in the positive

z-direction, and three travelling in the negative z-direction.

2.3 The ray tracing method

This section presents the development of the ray tracing method, which is an exten-

sion of the work carried out in [58]. It is based on a wave approach that is suitable

for systems whose elements form waveguides. The technique, which is similar to the

phase or wave-train closure principle [55] has been used previously for free vibration

analysis of Timoshenko beams [60] or curved beams [70], but has not been used for

complex networks such as the one presented in Figure 2.1. It provides a systematic

approach to the free vibration analysis of complex waveguide structures, and is used

here to analyse coupled curved/straight beam structures. An extension of the wave

approach that deals with forced response of simple structures is also presented.

2.3.1 Simplified development for a two-beam example

To simplify the development and presentation, the case of a network composed of

two straight beam components, coupled together at a discontinuity, and subjected

to a harmonic vibration at frequency ω is considered, see Figure 2.3. The analysis

is performed for this simple case and can be extended easily to more complex cases

(see Section 2.3.2).

The longitudinal w and flexural u displacements in any component of the structure

are defined as a sum of waves, see Section 2.2. The displacements at a location

47



Chapter 2. In-plane vibration analysis using a wave approach

having coordinate z in component (I) are expressed as:

w(z, t) =
(
ŵ

(I)+
1 e−ikLz + ŵ

(I)−
1 eikL(z−L(I))

)
eiωt, (2.22)

u(z, t) =
(
û

(I)+
2 e−ikFyz + û

(I)+
3 e−kFyz + û

(I)−
2 eikFy(z−L

(I)) + û
(I)−
3 ekFy(z−L

(I))
)
eiωt,

(2.23)

where L(I) is the length of the component (I), ŵ(I)±
1 , û(I)±

2 and û
(I)±
3 are the am-

plitudes of the longitudinal, flexural propagating and decaying waves, respectively

in component (I). The amplitudes of waves travelling in the positive z-direction

(with a superscript +) are defined at z = 0, while the ones corresponding to waves

travelling in the negative z-direction (superscript −) are defined at z = L(I).

The ray tracing method considers an initial wave amplitude vector a0 which contains

the initial waves amplitude sources in the “positive” and “negative” z-direction

for each beam, see Figure 2.3. These waves start at any discontinuity and their

amplitudes are maximum at the initial point. There are only non-zero terms in the

excited beams. For the two-beam case considered, the initial wave amplitude vector

has the form:

a0[12×1] =
[
u(I)+
initial u(I)−

initial u(II)+
initial u(II)−

initial

]T
. (2.24)

Each u(j)±
initial represents the initial wave amplitude vector in component j (j = I, II).

u(j)±
initial is a vector containing wave amplitudes corresponding to longitudinal, flexural

and decaying waves and is defined as:

u(j)±
initial =

[
ŵ

(j)±
1initial û

(j)±
2initial û

(j)±
3initial

]
. (2.25)

While the waves travel from one end of the component to the other end, the pro-

pagating waves change phase and the decaying waves change amplitude. These

effects depend on the wavenumber ki (ki = kL, kFy or −ikFy) and the length L(j)

of the component. The complex amplitude of the waves changes from û
(j)±
i to

û
(j)±
i e−ikiL(j) . This phenomenon can be expressed using a diagonal matrix D called

the dispersion matrix (or transfer matrix in [60]) whose diagonal elements have the

form Dii = e−ikiL(j) , where ki is the wavenumber associated with wave i and L(j) is
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the corresponding beam length.

When a wave hits a discontinuity (boundary at the end of a component or dis-

continuity between two different elements), it can be either reflected back in the

opposite direction or transmitted to another waveguide component. An incident

wave of one type can induce reflected and transmitted waves of other types. For

example, an incident flexural wave might induce reflected and transmitted flexural

and longitudinal waves in all the components attached to the discontinuity. By con-

sidering the complex wave amplitude transmission and reflection coefficients, the

amplitude of the waves leaving the discontinuity can be evaluated. This scattering

at a discontinuity can be expressed in terms of a transmission matrix T of complex

wave amplitude transmission/reflection coefficients, where v̂i = Tij v̂j and Tij is the

transmission coefficient from a wave of amplitude v̂j to a wave of amplitude v̂i.

The dispersion matrix has the form:

D[12×12] =



∆L(I) 0 0 0

0 ∆L(I) 0 0

0 0 ∆L(II) 0

0 0 0 ∆L(II)


, (2.26)

where ∆L(j) [3×3] =


e−ikLL(j) 0 0

0 e−ikFyL(j) 0

0 0 e−kFyL
(j)

, j = I, II. The transmission

matrix has the form:

T[12×12] =



0 R(I) 0 0

B(I)+ 0 0 Π(II)→(I)

Π(I)→(II) 0 0 B(II)−

0 0 R(II) 0


, (2.27)

where R(I)
[3×3] and R(II)

[3×3] contain the reflection coefficients at the boundaries in beams

(I) and (II) respectively; B(I)+
[3×3] and B(II)−

[3×3] contain the reflection coefficients at the

discontinuity situated on the positive end of component (I) and the negative end

49



Chapter 2. In-plane vibration analysis using a wave approach

of component (II) respectively; Π(i)→(j)
[3×3] contains the transmission coefficients from

waves incident in beam (i) to beam (j).

After the waves have traversed along the length of the beam and one transmission

has taken place, the new wave amplitude vector a1 can be written as:

a1 = TDa0. (2.28)

This vector contains the wave amplitudes after one ray trace. This approach can

be repeated to give the wave amplitudes after the next ray trace: a2 = TDa1 =(
TD

)2
a0. The cycle of decay, propagation and transmission can be continued

indefinitely. After an infinite number of ray traces, the total set of wave amplitudes

a present in the structure is expressed as the sum of all the previous waves.

a = a0 + a1 + a2 + . . .+ a∞ =
∞∑
i=0

(
TD

)i
a0. (2.29)

Equation (2.29) is a geometric series with common ratio TD and first term a0.

As |TD| < 1, meaning that the amplitudes of the waves are attenuated from one

trace to the next, it can be derived from Equation (2.29) that the final set of wave

amplitudes a is governed by:

(
I−TD

)
a = a0, (2.30)

where I is the identity matrix. In Equation (2.30), the term a represents the final

set of wave amplitudes and defines the motion at any point in the system.

For the free vibration case, the initial wave amplitude vector is zero, and Equa-

tion (2.30) becomes: (
I−TD

)
a = 0. (2.31)

Non-trivial solutions to this equation occur when:

∣∣∣I−TD
∣∣∣ = 0. (2.32)

This is the characteristic equation from which the natural frequencies of the system
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can be found. This equation can be solved analytically for systems such as a simple

beam with clamped, free or pinned boundary conditions or for a perfect ring (see

Section 2.5.1). For more complex structures, a numerical solution is required.

The corresponding mode shape can be determined by back-substituting the fre-

quency solutions ωn in the T and D matrices, which are both frequency dependent,

and calculating the corresponding wave amplitude vector a that is the solution to

Equation (2.31). These wave amplitudes can be used in Equations (2.22) and (2.23)

to determine the displacement mode shape.

2.3.2 Procedure development for a more complex example

The ray tracing method was presented above for a simple two-beam system, but

can be extended easily to a more complex structure. Here it is applied to the

ring-based rate sensor shown in Figure 2.1. In this example, the supporting legs

consist of straight beams connected at different angles modelled as abrupt changes

in direction, in contrast to real “radiused” angles as illustrated in Figure 1.2.

For simplification, the ray tracing method is applied here to only a single ring por-

tion containing a single supporting leg. The set of initial wave amplitudes considered

are presented in Figure 2.4. The system is divided into five different components:

two ring portions (one on either side of the discontinuity ring/leg) and three straight

beams. The initial wave amplitude vector is defined as:

a0[30×1] =
[
u(I)+
initial u(I)−

initial u(II)+
initial u(II)−

initial . . . . . . u(V)+
initial u(V)−

initial

]T
, (2.33)

where u(j)±
initial =

[
ŵ

(j)±
1initial û

(j)±
2initial û

(j)±
3initial

]
. Waves start at all discontinuities and

in each direction. Their amplitude is taken to be maximum at their initial point.

Equation (2.11) would imply the u(j)±
initial to be of order six for the curved members;

however, only three of these amplitudes are independent due to using the Xi ratio

of Equation (2.12). In this example, u(I)+
initial and u(II)−

initial are evaluated at the joint

with the neighbouring legs. The wavenumbers k1, k2 and k3 (see Section 2.2) are

associated with the amplitudes ŵ(j)±
1 , û(j)±

2 and û(j)±
3 , respectively.
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The transmission and dispersion matrices corresponding to Figure 2.4, with wave

amplitude vector a, defined in Equation (2.33), are as follows:

T[30×30] =



0 R(I) 0 0 0 0

B(I)+ 0 0 Π(II)→(I) 0 Π(III)→(I)

Π(I)→(II) 0 0 B(II)− 0 Π(III)→(II)

0 0 R(II) 0 0 0

Π(I)→(III) 0 0 Π(II)→(III) 0 B(III)−

0 0 0 0 B(III)+ 0

0 0 0 0 Π(III)→(IV) 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

. . .

. . .

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 Π(IV)→(III) 0 0

0 B(IV)− 0 0

B(IV)+ 0 0 Π(V)→(IV)

Π(IV)→(V) 0 0 B(V)−

0 0 R(V) 0



,

(2.34)

D[30×30] =



∆L(I) 0 0 0 . . . 0 0

0 ∆L(I) 0 0 . . . 0 0

0 0 ∆L(II) 0 . . . 0 0

0 0 0 ∆L(II) . . . 0 0
... ... ... ... . . . 0 0

0 0 0 0 0 ∆L(V) 0

0 0 0 0 0 0 ∆L(V)



. (2.35)

All matrix entities present in T and D are [3 × 3] matrices. The matrices R(j)
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(j = I, II, V) contain the reflection coefficients at the boundaries. The boundaries

in component (I) and (II) are not “real” boundaries in the ring-based rate sensor.

They have been introduced here to demonstrate how the T matrix is formed. The

wave amplitudes u(I)+ and u(II)− are functions of the waves incident from the neigh-

bouring legs and ring portions. The matrices B(j)+ and B(j)− contain the reflection

coefficients at the discontinuity situated at the positive or negative end of com-

ponent (j). The matrices Π(i)→(j) contain the transmission coefficient from waves

incident from component (i) to component (j). The ∆L(j) matrices are defined as:

∆L(j) =


e−ik1L(j) 0 0

0 e−ik2L(j) 0

0 0 e−ik3L(j)

 . (2.36)

For the straight beam sections (III), (IV) and (V), k1 = kL, k2 = kFy and k3 =

−ikFy. The analysis performed is similar to the simple case considered in Sec-

tion 2.3.1. However the matrices involved are much larger.

The transmission coefficients for discontinuities such as the ones encountered in the

ring-based rate sensor are derived in Section 2.4. In a complex structure where the

same discontinuity is encountered several times, the transmission coefficients only

need to be calculated once. These coefficients will then be placed in the overall T

matrix containing all transmission coefficients of the system. For example, for the

entire ring-based rate sensor studied in Chapter 3, the overall matrices involved in

the ray tracing method (T and D) have a size of [192×192]. But there are no more

transmission coefficients needed than the ones presented in Equation (2.34). By

solving Equation (2.32), the natural frequencies of the system can be calculated.

2.3.3 Forced response

The application of a force acts as a discontinuity in the structure. Applied harmonic

point forces and moments have the effect of injecting waves on both sides of the

disturbance. To simplify the analysis, the case of a straight beam is presented here

but the same approach can be used to model the forced response of curved beams.

53



Chapter 2. In-plane vibration analysis using a wave approach

Consider a straight beam that is split in two components by the application of

an external tensile force Text, a shear force Sext and a bending moment Mext, see

Figure 2.5. The variables u(I)+, u(I)−, u(II)+ and u(II)− model the waves impinging

and leaving the discontinuity created by the applied forces. Each of them represents

a set of wave amplitudes consisting of an extensional wave, a flexural propagating

wave and a decaying wave:

u(j)± =
[
ŵ

(j)±
1 û

(j)±
2 û

(j)±
3

]
. (2.37)

The sets of wave amplitudes u±F introduced by the external forces are defined as:

u+
F = u(II)+ − u(I)+, (2.38)

u−F = u(I)− − u(II)−. (2.39)

By suppressing the temporal terms in the wave solutions (2.21), the longitudinal

w(j) and flexural u(j) displacements in the component (j) (j = I, II) can be expressed

in terms of wave amplitudes:

w(j) = ŵ
(j)+
1 e−ikLz + ŵ

(j)−
1 eikLz, (2.40)

u(j) = û
(j)+
2 e−ikFyz + û

(j)+
3 e−kFyz + û

(j)−
2 eikFyz + û

(j)−
3 ekFyz. (2.41)

Forces and moment equilibrium evaluated at the point of applied forces (z = 0)

give:

Text = T (I) − T (II), (2.42)

Sext = S(I) − S(II), (2.43)

Mext = M
(I)
1 −M

(II)
1 , (2.44)

where T (j), S(j) and M
(j)
1 are the internal tensile force, shear force and bending

moment of the component (j) (j = I, II), and are defined in Equations (2.15)-

(2.17). Using the displacement and slope continuity (at z = 0) between the two
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components and Equations (2.37)-(2.44), one can derive that:

u+
F =

[
−i 0 0

]
Text

2EAkL
+
[
0 −i −1

]
Sext

4EIyk3
Fy

+
[
0 1 −1

]
Mext

4EIyk2
Fy

, (2.45)

u−F =
[
−i 0 0

]
Text

2EAkL
+
[
0 −i −1

]
Sext

4EIyk3
Fy

−
[
0 1 −1

]
Mext

4EIyk2
Fy

. (2.46)

These are the amplitudes of the waves created by the applied forces, waves leaving

the point of application of these forces.

For a forced response analysis, the ray tracing method presented in Section 2.3.1

takes into account the force terms u+
F and u−F in the a0 term of Equation (2.30).

Equation (2.30) can then be solved. It gives the set of wave amplitudes a, which

govern the displacement at any point of the structure. Application of this method

on different beam systems is presented in Section 2.5.2.

As seen in Section 2.3, the ray tracing method requires several transmission coeffi-

cients matrices, and these are considered next.

2.4 Transmission coefficients

Transmission coefficients are used to quantify the reflection and transmission of

waves when incident upon discontinuities [54, 55]. They are calculated by con-

sidering the continuity and force equilibrium equations at discontinuities taken in

isolation from the rest of the structure. This section presents a derivation of the

principal transmission coefficients encountered in common MEMS structures, such

as the one presented in Figure 2.1. This includes reflection at beam boundaries,

transmission through connected beams at abrupt junction, and transmission be-

tween a ring and an attached beam.
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2.4.1 Ring/beam transmission

The general case for the transmission between a ring and an attached beam is

investigated first. The configuration considered is shown in Figure 2.6. The beam

forms an angle α with the ring. The discontinuity is modelled as a rigid joint

(cylindrical mass) connecting two ring portions and a beam. This joint has been

introduced to study the influence on the transmission coefficients of an added mass

or inertia at the discontinuity. This analysis is an extension of the work carried out

in [59] that studied the energy transmission between straight beams.

In Figure 2.6, the subscripts r and b relate to the ring and the beam respectively,

the superscript (j) (j = I, II, III) corresponds to the component considered (two

ring parts and one beam part), the superscript k (k = +, −) corresponds to the

direction of propagation of the waves (positive and negative direction respectively).

Each of the variables u(I)+
r , u(I)−

r , u(II)+
r , u(II)−

r , u(III)+
b and u(III)−

b represents a set

of wave amplitudes consisting of a principal extensional wave, a principal flexural

propagating wave, and a principal decaying wave:

u(j)±
r, b =

[
ŵ

(j)±
1 û

(j)±
2 û

(j)±
3

]
. (2.47)

In addition, the waves represented by a plain arrow in Figure 2.6 relate to waves

incident on the discontinuity, while the dashed arrows are transmitted or reflected

waves.

To obtain a general method, the wave incident on the joint along the first portion,

which can be a straight beam or a circular bar, is assumed to be either predomi-

nantly flexural, longitudinal or decaying in nature. The presence of the joint ensures

that part of this wave is reflected back along the same portion and the remainder

is transmitted into the other portions. This partial reflection is also accompanied

by mode conversion, so that the incident wave can generate flexural, longitudinal

and decaying wave components in each of the three portions.

Assembly of the equilibrium and continuity expressions at the joint yields a system

of simultaneous equations that can be solved to provide values for the required
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transmission coefficients for each wave type. The transmission matrix Tring/beam

contains the transmission coefficients from any wave type, in any portion to any

resulting wave after transmission or reflection. For example, in the case presented

in Figure 2.6, the equilibrium and continuity equations can be derived as follows.

By suppressing the temporal terms in the wave solutions (2.11) and (2.21), the

transverse displacements u(I)
r , u(II)

r and u(III)
b ; the tangential displacements w(I)

r , w(II)
r

and w(III)
b ; and the rotations of cross-section ψ(I)

r , ψ(II)
r and ψ(III)

b at the ring portion

(I) (left), the ring portion (II) (right) and the beam portion (III), respectively, can

be expressed in terms of wave amplitudes.

By considering input waves coming from the ring portion (I) only, the displacements

and slopes involved are:

Ring portion (I):

u(I)
r (s) = X1ŵ

(I)+
1 e−ik1s + û

(I)+
2 e−ik2s + û

(I)+
3 e−ik3s

−X1ŵ
(I)−
1 eik1s + û

(I)−
2 eik2s + û

(I)−
3 eik3s,

(2.48)

w(I)
r (s) = ŵ

(I)+
1 e−ik1s + 1

X2
û

(I)+
2 e−ik2s + 1

X3
û

(I)+
3 e−ik3s

+ ŵ
(I)−
1 eik1s − 1

X2
û

(I)−
2 eik2s − 1

X3
û

(I)−
3 eik3s,

(2.49)

ψ(I)
r (s) = ∂u(I)

r (s)
∂s

+ w(I)
r (s)
R

. (2.50)

Ring portion (II):

u(II)
r (s) = X1ŵ

(II)+
1 e−ik1s + û

(II)+
2 e−ik2s + û

(II)+
3 e−ik3s, (2.51)

w(II)
r (s) = ŵ

(II)+
1 e−ik1s + 1

X2
û

(II)+
2 e−ik2s + 1

X3
û

(II)+
3 e−ik3s, (2.52)

ψ(II)
r (s) = ∂u(II)

r (s)
∂s

+ w(II)
r (s)
R

. (2.53)

Beam portion (III):

u
(III)
b (z) = û

(III)+
2 e−ikFyz + û

(III)+
3 e−kFyz, (2.54)

w
(III)
b (z) = ŵ

(III)+
1 e−ikLz, (2.55)

ψ
(III)
b (z) = ∂u

(III)
b (z)
∂z

. (2.56)
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Incident waves coming from the ring portion (II) and the beam portion (III) need

also to be considered.

Assuming that the joint is located at s = 0 (or z = 0), displacement and slope

continuity ensures that:

u(I)
r + dj

2 ψ
(I)
r = u(II)

r −
dj
2 ψ

(II)
r , (2.57)

w(I)
r = w(II)

r , (2.58)

ψ(I)
r = ψ(II)

r , (2.59)

u(I)
r + dj

2 ψ
(I)
r = −w(III)

b sinα +
(
u

(III)
b − dj

2 ψ
(III)
b

)
cosα, (2.60)

w(I)
r = w

(III)
b cosα +

(
u

(III)
b − dj

2 ψ
(III)
b

)
sinα, (2.61)

ψ(I)
r = ψ

(III)
b , (2.62)

where dj is the diameter of the cylindrical rigid joint. The tensile forces T (I)
r , T (II)

r

and T (III)
b ; shear forces S(I)

r , S(II)
r and S(III)

b ; bending moments M (I)
r , M (II)

r and M (III)
b

of the ring portion (I) (left), the ring portion (II) (right) and the beam portion (III),

respectively, evaluated at the joint at s = 0 (or z = 0) are related by the equations:

−S(I)
r + S(II)

r − T (III)
b sinα + S

(III)
b cosα = mj

∂2

∂t2

(
u(I)
r + dj

2 ψ
(I)
r

)
, (2.63)

−T (I)
r + T (II)

r + T
(III)
b cosα + S

(III)
b sinα = mj

∂2

∂t2
w(I)
r , (2.64)

−M (I)
r +M (II)

r +M
(III)
b + dj

2

(
S(I)
r + S(II)

r + S
(III)
b

)
= Iyj

∂2

∂t2
ψ(I)
r , (2.65)

where mj is the mass of the joint, and Iyj is its moment of inertia along the y-axis

(perpendicular to the plane of the ring). The transmission coefficients ûj/ûi from

an incident wave ûi to a reflected or transmitted wave ûj (ŵ(I)−
1 /ŵ

(I)+
1 , û(I)−

2 /ŵ
(I)+
1 ,

û
(I)−
3 /ŵ

(I)+
1 , etc . . . ) can be obtained by solving the above equations. Considering

incident waves from all three portions and solving the resulting [9 × 9] system

of equations gives a [9 × 9] matrix Tring/beam that contains all the transmission

coefficients such that:

atransmitted = Tring/beam aincident, (2.66)
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with:

Tring/beam[9×9]
=


Π(I)→(II) B(II)− Π(III)→(II)

B(I)+ Π(II)→(I) Π(III)→(I)

Π(I)→(III) Π(II)→(III) B(III)−

 , (2.67)

atransmitted[9×1] =
[
u(II)+
r u(I)−

r u(III)+
b

]T
and aincident[9×1] =

[
u(I)+
r u(II)−

r u(III)−
b

]T
.

Each u(j)±
r,b is defined as in Equation (2.47) and the matrices contained in Tring/beam

are presented in Section 2.3.2.

When α = 90◦, certain aspects of the matrix Tring/beam display symmetric charac-

teristics. For example, the transmission coefficient from an extensional wave in the

left ring portion to an extensional wave in the right ring portion is the same as in re-

verse (i.e. ŵ(II)+
1 /ŵ

(I)+
1 = ŵ

(I)−
1 /ŵ

(II)−
1 ). More generally, when α = 90◦, the following

symmetric relationship can be seen between the magnitudes of the transmission co-

efficients:
∣∣∣Π(I)→(II)

∣∣∣ = ∣∣∣Π(II)→(I)
∣∣∣, ∣∣∣Π(III)→(I)

∣∣∣ = ∣∣∣Π(III)→(II)
∣∣∣, ∣∣∣Π(I)→(III)

∣∣∣ = ∣∣∣Π(II)→(III)
∣∣∣

and
∣∣∣B(I)+

∣∣∣ = ∣∣∣B(II)−
∣∣∣. All notations are defined in Section 2.3.2. The absolute val-

ues are needed so that the direction of propagation (positive or negative s direction)

is not taken into account.

2.4.2 Transmission at an abrupt change in direction

To obtain the transmission coefficients for two beams joined at an angle without us-

ing a rigid joint mass element (see Figure 2.7), Equations (2.57)-(2.65) can be used.

Note that the angles α in Figures 2.6 and 2.7) are defined in the opposite direction.

The terms referring to ring portion (II) and the terms involving the coefficients Xi,

which represent the coupling between radial and tangential displacements in a ring,

are suppressed. A [6 × 6] system of equations that models force and displacement

continuity at the junction is obtained:

u
(I)
b = w

(II)
b sinα + u

(II)
b cosα, (2.68)

w
(I)
b = w

(II)
b cosα− u(II)

b sinα, (2.69)

∂u
(I)
b

∂x
= ∂u

(II)
b

∂x
, (2.70)
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S
(I)
b = T

(II)
b sinα + S

(II)
b cosα, (2.71)

T
(I)
b = T

(II)
b cosα− S(II)

b sinα, (2.72)

M
(I)
b = M

(II)
b . (2.73)

By considering an incident set of waves aincident[6×1] =
[
u(I)+
b u(II)−

b

]T
containing an

extensional wave, a propagating wave and a decaying wave travelling in the positive

z-direction of (I) and negative z-direction of (II), and a transmitted/reflected set of

waves acreated[6×1] =
[
u(II)+
b u(I)−

b

]T
, the equations that give the transmission coef-

ficients matrix Tabrupt angle such that acreated = Tabrupt angle aincident can be expressed

as:


cosα − sinα − sinα −1 0 0

sinα cosα cosα 0 −1 −1

0 i 1 0 i 1

i cosα −i
√

Ω sinα
√

Ω sinα i 0 0

i sinα i
√

Ω cosα −
√

Ω cosα 0 i
√

Ω −
√

Ω

0 −1 1 0 1 −1


·Tabrupt angle

=



1 0 0 − cosα sinα sinα

0 1 1 − sinα − cosα − cosα

0 i 1 0 i 1

i 0 0 i cosα −i
√

Ω sinα
√

Ω sinα

0 i
√

Ω −
√

Ω i sinα i
√

Ω cosα −
√

Ω cosα

0 −1 1 0 1 −1


,

(2.74)

with Ω = ω

√
Iρ

EA
and Tabrupt angle =

Π(I)→(II) B(II)−

B(I)+ Π(II)→(I)

 (see also the correspond-

ing notation in Section 2.3.2).

Again, from the symmetry of the system, one can get the relationship:
∣∣∣Π(I)→(II)

∣∣∣ =∣∣∣Π(II)→(I)
∣∣∣ and

∣∣∣B(I)+
∣∣∣ = ∣∣∣B(II)−

∣∣∣.
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2.4.3 Wave reflection at common boundaries

The well-known reflection coefficients of waves in a beam at common boundaries

such as clamped, free or pinned ends are derived in [54, 55]. Using the same notation

as before, if an incident set of wave with amplitudes aincident, defined as

aincident =
[
u+
b

]T
=
[
ŵ+

1 û+
2 û+

3

]T
, (2.75)

impinges on a boundary, it produces a set of reflected waves areflected, defined as

areflected =
[
u−b
]T

=
[
ŵ−1 û−2 û−3

]T
, (2.76)

such that areflected = Tboundary aincident. The transmission coefficient matrix is found

using equations governing the boundary condition. For common boundary condi-

tions (clamped, pinned and free), the transmission coefficient matrices are given

by:

Tclamped =


−1 0 0

0 −i −1− i

0 −1 + i i

 , (2.77)

Tpinned =


−1 0 0

0 −1 0

0 0 −1

 , (2.78)

Tfree =


1 0 0

0 −i 1 + i

0 1− i i

 . (2.79)

2.5 Validation of the ray tracing method for sim-

ple structures

This section presents the application of the ray tracing method to the free and

forced response of simple structures. A perfect ring and a beam under various
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boundary conditions are studied. The objective is to validate the method for simple

structures and illustrate its implementation. In Chapter 3, the ray tracing method

will be applied to the complete ring-based rate sensor presented in Figure 2.1.

2.5.1 Free response of a perfect ring

It is straightforward to obtain an analytical expression for the natural frequencies

of a perfect ring using the ray tracing approach. In Equation (2.32), six wave am-

plitudes are considered (three travelling in each direction), the transmission matrix

T is set equal to the identity matrix as there are no joints to interrupt the waves

travelling around the ring, and the diagonal dispersion matrix D contains the terms

e−i2πRki (i = 1, 2, 3). Solving Equation (2.32) analytically gives wavenumber solu-

tions of the form kn = n

R
(n = 0, 1, 2, . . .). By substituting the kn values into the

dispersion relation (2.8) and solving, it can be shown that the natural frequencies

are given by:

ω±n =

√√√√√√ E

2ρR2 Φ(n)
1±

√√√√√1− Ψ(n)(
Φ(n)

)2

, (2.80)

with n = 0, 1, 2, . . ., Φ(n) =
(

I

AR2n
2 +1

)(
n2 +1

)
and Ψ(n) = 4I

AR2n
2
(
n2− 1

)2
.

For each value of n, two frequencies are obtained, one representing mainly ex-

tensional vibration and one representing mainly flexural vibration. These natural

frequencies are identical to those given in [74], which are derived from the natural

frequencies of cylindrical shells. With the assumption that the thickness of the ring

is much smaller than the radius of the centreline, and for small n, Equation (2.80)

can be simplified to the standard expressions for extensional and flexural natural

frequencies in rings given in [9].

2.5.2 Forced response of a beam structure

In order to validate the developed ray tracing method for studying the forced res-

ponses of structures (see Section 2.3.3), some simple systems are investigated. A
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simultaneous combination of the applied forces and torques Text, Sext and Mext can

also be performed easily with the ray tracing method, but is not presented here as

the main objective is to demonstrate the validity of the ray tracing method and to

illustrate its application to simple structures.

Longitudinal force at the free end of a clamped-free beam

The system studied is shown in Figure 2.8(a). The beam has length L and is under

clamped-free boundary conditions. The ray tracing method considers waves leaving

all discontinuities. One of them is defined by the applied point force and it splits

the beam into two components (I) and (II). The length of component (I) is equal

to L (total length of the beam) and the length of component (II) is 0 as the force

is applied at the end of the beam. In this study, only longitudinal vibrations are

considered. The amplitudes corresponding to flexural vibrations are not taken into

account in the wave amplitude vector a, and this vector is defined here as:

a =
[
ŵ

(I)+
1 ŵ

(I)−
1 ŵ

(II)+
1 ŵ

(II)−
1

]T
. (2.81)

The initial wave amplitude vector contains terms that consider the applied force

(derived in Section 2.3.3), and is defined as:

a0 = Text

2EAkL

[
0 −i −i 0

]T
. (2.82)

The transmission and propagation matrices (T and D) are defined as:

T =



0 Tclamped 0 0

0 0 0 1

1 0 0 0

0 0 Tfree 0


, (2.83)
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D =



e−ikLL 0 0 0

0 e−ikLL 0 0

0 0 1 0

0 0 0 1


, (2.84)

where Tclamped and Tfree are defined in Section 2.4.3 and are respectively equal to

−1 and 1 for longitudinal vibration. To respect the displacement continuity, a

transmission coefficient equal to unity is used at the point force.

Solving Equation (2.30) with the particular values of a, a0, T and D defined in

Equations (2.81)-(2.84) gives the wave amplitudes û(I)+
1 and û(I)−

1 that can be sub-

stituted into Equation (2.21a) to give the longitudinal displacement in the beam.

The subscript (I) is omitted as there is, in reality, only a single component in the sys-

tem and the temporal term is also suppressed for simplification. This displacement

models the steady-state motion of the beam and simplifies to:

u(z) = Text sin(kLz)
EAkL cos(kLL) . (2.85)

This standard result can also be obtained by considering the steady-state displace-

ment in the beam to have the form [17]:

u(z) = β1 sin(kLz) + β2 cos(kLz), (2.86)

where β1 and β2 are constants that can be derived from the application of the

boundary conditions. The conditions u(0) = 0 and T (L) = EAkLβ1 cos(kLL) = Text

give β1 = Text/EAkL cos(kLL) and β2 = 0. Substituting these values of β1 and β2

in Equation (2.86) gives exactly the same expression as Equation (2.85).

From this very simple example, the ray tracing method has been validated, but it

is difficult to see its advantage as it appears relatively complicated to model the

forced vibrations of the beam whereas a simple expression such as Equation (2.86)

can easily give the required displacement. However the power of the method can

be better understood when flexural vibrations are studied, and these are analysed

next.
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Lateral force at the mid-point of a pinned-pinned beam

Consider a pinned-pinned beam under the action of a transverse point force applied

at its mid-point, as illustrated in Figure 2.8(b). For this system, the wave amplitude

vector a, the initial wave amplitude vector a0, the transmission matrix T and the

dispersion matrix D are defined as:

a =
[
û

(I)+
2 û

(I)+
3 û

(I)−
2 û

(I)−
3 û

(II)+
2 û

(II)+
3 û

(II)−
2 û

(II)−
3

]T
, (2.87)

a0 = Sext

4EIk3
Fy

[
0 0 −i −1 −i −1 0 0

]T
, (2.88)

T[8×8] =



0 Tpinned 0 0

0 0 0 I

I 0 0 0

0 0 Tpinned 0


, (2.89)

D[8×8] =



∆L(I) 0 0 0

0 ∆L(I) 0 0

0 0 ∆L(II) 0

0 0 0 ∆L(II)


, (2.90)

where Tpinned =

−1 0

0 −1

 for flexural vibrations (defined in Section 2.4.3), and

∆L(I) = ∆L(II) =

 e−ikFy L2 0

0 e−kFy
L
2

.
By solving Equation (2.30) with appropriate values of a, a0, T and D, and by using

the displacement definition (2.21b) for each of the components, one can derive the

flexural displacement w(z) to be:

when 0 ≤ z ≤ L

2 w(z) =
(

sin(kFyz)
cos(kFy L2 )

− sinh(kFyz)
cosh(kFy L2 )

)
Sext

4EIk3
Fy

, (2.91a)

when L

2 ≤ z ≤ L w(z) =
(

sin(kFy(L− z))
cos(kFy L2 )

− sinh(kFy(L− z))
cosh(kFy L2 )

)
Sext

4EIk3
Fy

.

(2.91b)
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Using a modal approach, it can be shown (e.g. [75]) that the displacement w(z) of

a pinned-pinned beam under harmonic excitation applied at its middle point can

be expressed as:

w(z) = 2SextL
3

EIπ4

∞∑
n=1, 3, 5, ···

(−1)n−1
2

sin
(
nπz
L

)
n4 − β4 , (2.92)

where

β = ωL2

π2

√
ρA

EI
. (2.93)

Figure 2.9 shows results obtained using the ray tracing method (Equations (2.91))

and by the modal approach (Equation (2.92)) for a pinned-pinned beam under

harmonic excitation. It shows the flexural displacement as a function of the position

z on the beam at a particular excitation frequency. When n is suitably large, the

modal approach and ray tracing method are in excellent agreement.

Lateral force at the free end of a clamped-free beam

Consider a clamped-free beam under the action of a lateral force at its free end as

illustrated in Figure 2.8(c). The ray tracing method allows the possibility of finding

an exact analytical expression for the displacement. Its derivation is a combination

of the two previous cases studied. a and a0 are defined as in Equations (2.87)

and (2.88); T and D are such that:

T[8×8] =



0 Tclamped 0 0

0 0 0 I

I 0 0 0

0 0 Tfree 0


, (2.94)

D[8×8] =



∆L 0 0 0

0 ∆L 0 0

0 0 I 0

0 0 0 I


, (2.95)
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where Tclamped =

 −i −1− i

−1 + i i

 and Tfree =

 −i 1 + i

1− i i

 for flexural vibra-

tions (defined in Section 2.4.3), and ∆L =

 e−ikFyL 0

0 e−kFyL

.
Solving Equation (2.30) with appropriate values of a, a0, T and D, one can derive

an exact analytical solution for the displacement in the beam:

w(z) = Sext

2EIk3
Fy

Φ eikFyz −Θ e−ikFyz + Γ ekFyz −Ψ e−kFyz

∆ , (2.96)

where:

Φ = A
(
1 + i + 2iAB + (i− 1)B2

)
,

Θ = (i− 1)A+ (i + 1)AB2 + 2iB,

Γ = B
(
1 + i− (i− 1)A2 + 2AB

)
,

Ψ = (1− i)B + (1 + i)A2B + 2A,

∆ = 1 + A2 + 4AB + A2B2 +B2,

A = e−ikFyL,

B = e−kFyL.

It can be seen from Equation (2.96) that natural frequencies of the beam (flexural

modes only) occur when ∆ = 0, i.e.:

1 + e−2ikFyL + 4 e−ikFyL e−kFyL + e−2ikFyL e−2kFyL + e−2kFyL = 0. (2.97)

This is the usual expression from which the natural frequencies of a clamped-free

beam can be obtained [17, 65, 75].

Figure 2.10 shows the frequency response function of the beam at a particular

position (z0) obtained using the ray tracing method, Equation (2.96), and the FE

method. The displacement is taken at the position z0 = 3.2
8 L so that all the modes

have a distinct contribution. Both methods agree very well for the low order modes

and a slight difference appears for higher modes, which can be expected as shear
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deformation is neglected in the wave approach.

2.6 Conclusion

In this chapter, a systematic approach based on wave propagation has been pre-

sented to study the free and forced vibration of ring/beam structures. The approach

relies on defining the displacement in each component composing the entire struc-

ture as a sum of waves propagating and decaying in each direction. The coupling

between radial and tangential vibration in a curved beam has been investigated and

taken into account in the ray tracing process. The ray tracing method has been

found to yield accurate predictions for the natural frequencies and forced response

of waveguide structures such as rings and beams. The method will be applied in

Chapter 3 to a ring-based rate sensor structure. A distinctive feature of this kind

of structure is its cyclic symmetry. An efficient use of this property within the ray

tracing method will be presented in Chapter 3.

In the wave approach presented here, the motions at the discontinuities are de-

scribed by the transmission coefficient matrices, which include the effects of de-

caying wave components. The transmission matrices are derived from displacement

continuity and force equilibrium conditions at the discontinuity. The proposed wave

approach is exact, and with the availability of propagation and transmission ma-

trices, the vibration analysis is systematic and concise. Furthermore, it will be

shown in Chapter 3 that the analysis of structures, composed of several waveguide

components, can be simplified by using a substructuring method that models the

substructure as particular transmission coefficients between inputs and outputs.

By comparing the results obtained using the ray tracing method and conventional

modal or FEA approaches, free and forced vibration analyses using the wave ap-

proach were validated for some simple structures such as perfect rings and beams

under different boundary conditions and excitation types. The ray tracing approach

is expected to be very efficient compared to the FE methods that are computation-

ally expensive, if different meshes need to be generated. The method presented here
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was illustrated for simple examples, and it was shown that exact analytical expres-

sion for the steady state displacement of straight beams under various boundary

conditions and loads can be obtained.

In Chapter 4, the interaction of the resonator with its support will be assessed.

The wave approach presented here is an efficient way to model the vibrational

energy flow from the resonator towards its support. Using the ray tracing method,

the stress sources that are responsible for support losses, the energy stored in the

resonator, and the associated quality factor can be calculated easily.

The approach presented in this chapter focuses on in-plane vibration but can be

adapted easily to out-of-plane motions. The three-dimensional motion of ring/beam

structures can be defined by a longitudinal (along the centreline) displacement,

two flexural displacements (perpendicular to the centreline in mutually orthogonal

directions) and a torsional component representing twisting of the cross-section.

The extension of the ray tracing method to out-of-plane vibrations is the focus of

Chapter 6.
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Figures

Figure 2.1: Schematic representation of a ring-based rate sensor composed of a
ring and eight folded legs.
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(a)

(b)

Figure 2.2: (a) curved and (b) straight beams: notation and signs conventions.

Figure 2.3: Initial wave amplitudes considered for the ray tracing method in a
two beams component system.

Figure 2.4: Initial wave amplitudes considered for the ray tracing method in
one portion of the ring-based resonator.
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Figure 2.5: Wave amplitudes impinging and leaving the discontinuity created
by the application of a point force.

Figure 2.6: Transmission between a ring and an attached beam.

Figure 2.7: Transmission through an abrupt change in direction in beams.
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(a)

(b)

(c)

Figure 2.8: Different cases studied for the validation of the ray tracing method
for modelling forced response of beams; (a) longitudinal force at
the free end of a clamped-free beam, (b) flexural force at the mid-
point of a pinned-pinned beam, (c) flexural force at the free end of
a clamped-free beam.
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Figure 2.9: Flexural displacement of a pinned-pinned beam under force exci-
tation at its mid-point. With ρ = 1950 kg.m−3, E = 2 · 1011 Pa,
L = 8m, in-plane beam width = 0.1 m, out-of-plane beam thickness
= 0.5 m, excitation frequency ω = 320Hz and excitation amplitude
Sext = 10 kN. Ten modes are considered in the modal approach.
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Figure 2.10: Frequency response function of a clamped-free beam under force
excitation at its free end. Material properties and beam di-
mensions are given in Figure 2.9. The displacement is taken at
z0 = 3.2

8 L. The excitation force has an amplitude Sext = 10 kN.
The FE model contains 120× 2 quadratic elements.
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Chapter 3

Model simplifications for

symmetric structures

3.1 Introduction

Chapter 2 has presented a wave approach, called the ray tracing method, to model

the free and forced vibrations of structures composed of several waveguide compo-

nents. This approach is based on the propagation and transmission of waves and

on the detailed knowledge of transmission/reflection coefficient matrices at discon-

tinuities. It is theoretically possible to model any kind of network with the ray

tracing approach. However, practical structures are usually more complex than the

simple cases studied in Chapter 2, and it can become difficult to use an entire, non-

simplified, model to analyse the structure. Some simplifications from symmetry or

periodicity properties may exist that would allow the analysis to be greatly reduced.

If a structure possesses the same discontinuity several times, the associated trans-

mission coefficients need only to be calculated once. If a structure presents one or

more axes of symmetry, one can simplify the model by considering only one part of

the structure. For this case, the axis of symmetry can be modelled using appropriate

boundary conditions (sliding conditions, for example) which lead to transmission
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coefficients at the axes of symmetry, and the ray tracing method can be applied in

the same way as described in Chapter 2.

Many engineering structures are designed to be composed of identically constructed

cell units that are connected end to end to form a spatially periodic array. Such

structures are known as periodic structures and they consist of identical substruc-

tures, or sectors. Due to their periodic nature, these structures exhibit unique

dynamic characteristics that make them act as mechanical filters for wave propa-

gation. As a result, waves can propagate along the periodic structure only within

specific frequency bands and wave propagation can be completely blocked within

other frequency bands. The spectral width and location of these bands are fixed for

periodic structures. It seems that the theory of periodic structures was originally

developed for solid state applications [76]. The atomic lattices of pure crystals con-

stitute perfect periodic structures, but these are lumped parameter systems with

discrete masses (the atoms) interconnected by the inter-atomic elastic forces. In

engineering applications, the mass and elasticity of structural members are con-

tinuous, and constitute periodic structures when arranged in regular chains. The

theory of periodic structures was extended, in the early 1970’s, to the design of

mechanical structures [55, 77, 78]. It has been the subject of many investigations

since then (e.g. [79–84]) and extensively applied to a wide variety of structures,

such as spring-mass systems, periodic beams, stiffened plates, ribbed shells, and

space structures. Free wave propagation in infinite long periodic structures is usu-

ally discussed in terms of the complex propagation constant µ. The corresponding

vibration frequencies are found by imposing constraints on the finite element equa-

tions of motion of a single sector. The constraints impose that the displacement

vectors on the right- and left-hand boundaries of a sector have a ratio of eµ. A

thorough review of wave propagation in continuous periodic structures to analyse

free and forced vibration can be found in [85]. In infinite periodic structures, the

evanescent terms corresponding to the presence of boundaries are not an issue in

the analysis and a direct relationship can be found between the displacement of

one sector and one of its neighbours. However, in a real application the presence

of boundaries complicates the analysis. In Section 3.2, a different point of view is

presented. A finite chain of identical sectors is modelled using a recursive form as
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a function of the characteristics of a single sector. The external boundaries can

then be added to the system by using the classic ray tracing method presented in

Chapter 2.

Many engineering structures have cylindrical form. In some cases, such as certain

pipes, chimneys, or pressure vessels, the structures are axisymmetric, and there is a

considerable range of techniques available for analysing these, taking full advantage

of the axisymmetric nature. Another type of symmetry is cyclic symmetry which

occurs when a rotational structure is made of repetitive sectors. Thomas [86] mod-

elled cyclically periodic structures consisting of N finite identical sectors forming

a closed ring. A structure is said to have cyclic symmetry if the geometry at any

radial and axial position, defined at some angle θ, is identical at angle (θ + 2π/κ),

where κ is an integer smaller than N . It follows that once the geometry has been

defined over a sector from θ to θ+2π/κ, the remainder of the structure can be gen-

erated by repeatedly applying the geometry over 2π/N . The property of periodicity

can be exploited so that the analysis of one sector gives the same information as

the analysis of the entire structure [86]. However in this case, in contrast to the

mirror-symmetric case, there are no direct boundary coefficients that can be asso-

ciated with the cyclic symmetry. But simplifications can still be made and these

are described in Section 3.3. An example of a structure, showing cyclic symmetry

properties, is the ring-based rate sensor that was presented in Chapter 2. Vibrations

of structures with symmetry are studied in more details here.

3.2 Structures showing periodic properties

This section presents the application of the ray tracing method to structures com-

posed of periodic repetitive sectors. Section 3.2.1 explains a substructuring method

which simplifies any system composed of several components to particular reflec-

tion and transmission coefficients matrices. Each sector is then modelled using

these particular matrices. Section 3.2.2 introduces the next step for the modelling

of structures that shows periodicity and presents a method to model a finite chain

of identical sectors as a function of the properties of one single sector.
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3.2.1 Substructuring method

A substructuring method can often be applied to simplify a system composed of

several components. When an entire structure is analysed, its complexity can be re-

duced by using substructuring. A group of components can be modelled as a “black

box”, where only the input and output are of interest. The ray tracing method of-

fers the possibility to use substructuring to model complex structural networks with

simplicity. For instance, consider three straight beam components, coupled together

with discontinuities, see Figure 3.1(a). The objective of substructuring is to reduce

the system presented in Figure 3.1(a) to the one illustrated in Figure 3.1(b), where

component (II) is not considered directly.

The idea is to find the transmission coefficients Π(I)→(III) and Π(III)→(I) that link

incident waves from component (I) to transmitted waves in component (III) and

waves from (III) to (I), respectively. The “reflection” coefficients B(I−III)− and

B(III−I)+ associated with incident waves u(I)+ and u(III)− creating waves u(I)− and

u(III)+, respectively, also need to be considered.

First, consider an incident set of waves u(I)+ only. The total set of wave amplitudes

a present in the system (incident set of waves and all the induced created set of

waves) can be written as:

a[15×1] =
[
u(I)+ u(I)− u(II)+ u(II)− u(III)+

]T
. (3.1)

Assume that each component of the incident set of waves has an amplitude equal

to unity and that the waves in component (II) propagate and decay along a length

L. Applying Equation (2.30) (see Chapter 2) to this system gives:



I 0 0 0 0

−B(I)+ I 0 −Π(II)→(I)∆L 0

−Π(I)→(II) 0 I −B(II)−∆L 0

0 0 −B(II)+∆L I 0

0 0 −Π(II)→(III)∆L 0 I





I

B(I−III)−

Φintern

Ψintern

Π(I)→(III)


=



I

0

0

0

0


, (3.2)
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where B(j)±, Π(i)→(j) contain respectively the reflection coefficients at the positive

or negative end of component (j), and the transmission coefficients from component

(i) to component (j). ∆L models the propagation and decay of waves along the

length L. These matrices are defined in Equations (2.26) and (2.27) (see Chapter 2).

Φintern and Ψintern are internal matrices of the substructure and are not relevant for

the current explanation.

Using Equation (3.2), it can be shown that:

B(I−III)− = B(I)++

[
0 −Π(II)→(I)∆L 0

] 
I −B(II)−∆L 0

−B(II)+∆L I 0

−Π(II)→(III)∆L 0 I


−1 
−Π(I)→(II)

0

0

 ,

B(I−III)− = B(I)+ + Π(II)→(I)∆LB(II)+∆L

(
I−B(II)−∆LB(II)+∆L

)−1
Π(I)→(II),

(3.3)

and

Π(I)→(III) =

−
[
0 −Π(II)→(III)∆L 0

] 
I 0 −Π(II)→(I)∆L

0 I −B(II)−∆L

0 −B(II)+∆L I


−1 

B(I)+

Π(I)→(II)

0

 ,

Π(I)→(III) = Π(II)→(III)∆L

(
I−B(II)−∆LB(II)+∆L

)−1
Π(I)→(II). (3.4)

These are the required transmission/reflection coefficients from an incident wave

u(I)+ to a reflected set of waves u(I)− in component (I) and to a transmitted set of

waves u(III)+ in component (III).

Similarly, by considering an incident wave from component (III) only, one can get
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by symmetry:

B(III−I)+ = B(III)− + Π(II)→(III)∆LB(II)−∆L

(
I−B(II)+∆LB(II)−∆L

)−1
Π(III)→(II),

(3.5)

Π(III)→(I) = Π(II)→(I)∆L

(
I−B(II)+∆LB(II)−∆L

)−1
Π(III)→(II). (3.6)

Using the transmission/reflection coefficients given in Equations (3.3)-(3.6), the

entire system can be simplified to the one presented in Figure 3.1(b). A direct

relationship between the input on one side of the structure to the output on the

other side has been found. It simplifies greatly the analysis as the internal set of

waves present in component (II) do not need to be calculated any more. The effect

of the substructure component (II) can be expressed using a matrix Tsub such that:

aoutput = Tsub ainput, (3.7)

or u(III)+

u(I)−

 =

Π(I)→(III) B(III−I)+

B(I−III)− Π(III)→(I)


 u(I)+

u(III)−

 . (3.8)

When an entire structure is composed of repetitive sectors, the substructuring

method can be used to model each sector with particular transmission/reflection

coefficient characteristics. Modelling the coupling of all of these sectors together

in particular transmission/reflection coefficient matrices is the subject of the next

section.

3.2.2 Simplifications for periodic structures

Consider a structure defined as a finite chain of N identical sectors Λ put side

by side, with N > 1. Each sector Λ is modelled by its individual reflection coef-

ficient matrices Bl
1 and Br

1 for the reflection of waves at its left- and right-hand

sides, respectively, and by its individual transmission coefficient matrices Πl→r
1 and
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Πr→l
1 for the transmission of waves from left to right and from right to left, re-

spectively. These matrices may be the result of a previous substructuring process,

where each sector Λ may actually be composed of several components. Using sim-

ilar notation, a chain of n sectors (n = 1, . . . , N) is represented by the overall

transmission/reflection coefficient matrices Bl
n, Br

n, Πl→r
n and Πr→l

n . The subscript

n is the number of sectors composing the chain.

A method similar to the substructuring method explained in Section 3.2.1 can be

used to model the entire chain. If a single sector is added to a chain of pre-existing

(N − 1) sectors (see Figure 3.2), and by considering incident waves from the left

hand side only, Equation (2.30) (see Chapter 2) applied to the system becomes:



I 0 0 0 0

−Bl
N−1 I 0 −Πr→l

N−1 0

−Πl→r
N−1 0 I −Br

N−1 0

0 0 −Bl
1 I 0

0 0 −Πl→r
1 0 I





I

Bl
N

Φintern

Ψintern

Πl→r
N


=



I

0

0

0

0


, (3.9)

Using Equation (3.9), the transmission/reflection coefficient matrices of the entire

chain can be derived:

Bl
N = Bl

N−1 + Πr→l
N−1Bl

1

(
I−Br

N−1Bl
1

)−1
Πl→r
N−1, (3.10a)

Πl→r
N = Πl→r

1

(
I−Br

N−1Bl
1

)−1
Πl→r
N−1 (3.10b)

for incident waves from the left-hand side, and by symmetry:

Br
N = Br

1 + Πl→r
1 Br

N−1

(
I−Bl

1Br
N−1

)−1
Πr→l

1 , (3.11a)

Πr→l
N = Πr→l

N−1

(
I−Bl

1Br
N−1

)−1
Πr→l

1 (3.11b)

for incident waves from the right-hand side.

The effect of the entire chain of N sectors can now be expressed using a matrix TN
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such that:

acreated = TN aincident, (3.12)

or u(II)+

u(I)−

 =

Πl→r
N Br

N

Bl
N Πr→l

N


u(I)+

u(II)−

 , (3.13)

where the components (I) and (II) are on the left- and right-hand sides of the chain,

see Figure 3.2. The transmission and reflection properties of the entire chain of N

sectors are then expressed in a recursive form as a function of the characteristics

of a chain of (N − 1) sectors. By calculating the relevant matrices for chains of

n = 2, 3, . . . , (N − 1) sectors, one can get the matrices for a chain of N sectors

using Equations (3.10) and (3.11).

Specifically, for computer implementation, the use of periodicity simplifications re-

duces the inversion of a [6N×6N ] matrix to 2N inversions of a [3×3] matrix. This

clearly reduces the computation time and analysis complexity.

In contrast to the usual work on infinite periodic structures (such as [77]), this sec-

tion presented a method to study “finite” chains of sectors. The boundary conditions

are added to the model in a subsequent step using the ray tracing approach. The

Application of substructuring and simplifications by periodic structures methods is

shown in Section 3.4.1, where the case of a finite cantilever beam with identical,

uniformly-spaced point masses is studied.

3.3 Structures showing cyclic symmetry proper-

ties

The method that simplifies the analysis of cyclically symmetric (also called rota-

tionally periodic) structures was first developed for Finite Element (FE) uses by

Thomas [86, 87]. This section introduces the basis of his work and applies it to the

ray tracing method. Thomas’ work is an extension of the study carried out in [78]
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where the structures considered were infinitely long chains of identical substruc-

tures.

3.3.1 Cyclic symmetry theory

Let us consider a rotationally periodic structure consisting of N identical sectors,

each of which contains J wave amplitudes. When applying the ray tracing method,

the total number of wave amplitudes in the entire structure is NJ . These wave

amplitudes are ordered so that J wave amplitudes of the first sector are followed

by J wave amplitudes of the second sector, and so on. The overall wave amplitude

vector a can be written as:

a =



a(1)

a(2)

a(3)

· · ·

a(N)


, (3.14)

where a(j) is a vector of length J containing the wave amplitudes associated with

the jth sector. Note that the sector numbers are increasing in the positive direction

of rotation.

With axisymmetric structures, it is well known that most modes of vibration occur

in degenerate orthogonal pairs (see, for example, the case of a perfect ring [88]).

The reason is that, if a mode has a maximum deflection at some point on the struc-

ture, it is clearly possible, because of the axisymmetric nature of the structure,

to rotate the mode shape through any angle and not change the frequency of vi-

bration. Thomas [86] showed that a similar effect occurs for rotationally periodic

structures. In the ray tracing method, the mode shape is defined using the wave

amplitude vector a. Comparing the mode shape (real displacements) between two

sectors is equivalent to comparing the associated wave amplitudes. For rotationally

periodic structures, the possible modes shapes, and thus the associated wave am-

plitudes a fall into three classes, depending on the relationship between the shapes

for individual sectors, see e.g. in Figure 3.3. These are:
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1. Each sector has the same mode shape, or same wave amplitudes, as its neigh-

bours. This means:

a(j) = a(j+1) for all j. (3.15)

2. Each sector has the same mode shape as its neighbours, but is vibrating in

antiphase with them, i.e.:

a(j) = −a(j+1) for all j. (3.16)

This class only exists if N is even (see later).

3. All other possible mode shapes.

It can be proved that classes 1. and 2. do not exhibit degeneracy [86]; only class

3. does and two possible orthogonal mode shapes for each natural frequency will

occur in this case.

The mode shapes for class 3. require a(j) 6= a(j+1) and a(j) 6= −a(j+1). Since all the

sectors are identical, the deflected shape a′ can be obtained by rotating a through

an angle commensurate with the location of the different sectors. With a complex

set of wave amplitude solution a, the vector a′ can be expressed as:

a′ = e−iψa. (3.17)

This new vector a′ corresponds to rotating a through an angle ψ. As a and a′ are

complex, they have a phase difference ψ. Since the application of Equation (3.17)

N times leaves a unchanged, ψ must have the form:

ψ = 2π
N
κ, (3.18)

where κ is an integer. The cyclic symmetry mode number κ indicates the number

of waves around the circumference in a basic response. The deflections on any one

sector can be written in terms of the deflections on any other, i.e.:

a(j) = e−iψa(j+1), a(j+1) = eiψa(j), (3.19)
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The values of the cyclic mode number κ used to define ψ in Equation (3.18) is

considered next. For classes 1. and 2. of mode shapes considered earlier, ψ = 0 and

ψ = π respectively, and the corresponding values of κ are 0 and N/2. Clearly N/2

is only an integer if N is even, so class 2. modes cannot exist if N is odd. If ψ

represents the angle of rotation for one sector, its possible dependent values are:

ψ = −2π
N

(
N

2 − 1
)
, . . . , −2π

N
, 0, 2π

N
, . . . ,

2π
N

(
N

2 − 1
)
, π (3.20)

for N even, and

ψ = −2π
N

(
N − 1

2

)
, . . . , −2π

N
, 0, 2π

N
, . . . ,

2π
N

(
N − 1

2

)
(3.21)

for N odd. The negative values of ψ correspond to anticlockwise rotations and

the positive values correspond to clockwise rotations. Since all the anticlockwise

mode shapes are the orthogonal pairs of clockwise ones, they can be generated by

simply taking the complex conjugates of a for the clockwise vectors. Furthermore,

they form an orthogonal pair of mode shapes and have the same natural frequency.

Therefore, two orthogonal modes exist for κ = 1, 2, . . . , N/2 − 1 (N even) or

κ = 1, 2, . . . , (N − 1)/2 (N odd), whereas the modes κ = 0, N/2 (N even) or

κ = 0 (N odd) are unique. To obtain all the possible modes of vibration of the

structures [86], it is necessary to find the modes corresponding to the N/2+1 values

of ψ, i.e.

ψ = 0, 2π
N
, . . . ,

2π
N

(
N

2 − 1
)
, π or κ = 0, 1, . . . , N2 − 1, N2 (3.22)

for N even, and the (N + 1)/2 values of ψ, i.e.

ψ = 0, 2π
N
, . . . ,

2π
N

(
N − 1

2

)
or κ = 0, 1, . . . , N − 1

2 (3.23)

for N odd.

Figure 3.3 illustrates the three different possible classes of mode shape for a thin

square vibrating structure. For this structure, the basic sector is one side and

N = 4. The corresponding value of κ and ψ are also presented.
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This section has shown how the displacement of any sector of a rotationally periodic

structure can be related to the displacement of one particular sector by a phase angle

ψ. For these structures, any complex mode shape of the entire structure can be

expressed in terms of the deflected shape of just one sector, by using an appropriate

value of ψ. There are N possible values of ψ, but only N/2 + 1 (N even) or

(N + 1)/2 (N odd) represent different mode shapes. Each κ value corresponds to a

κ-fold symmetric mode and needs to be examined in turn. In the following section,

the rotationally periodic properties are applied in the ray tracing method.

3.3.2 Simplifications for cyclically symmetric structures

First simplification

An entire structure is analysed by considering a single “principal” sector, as il-

lustrated in Figure 3.4(a). Artificial boundaries are introduced to model the cyclic

symmetry condition. This is achieved by introducing wave amplitudes at boundaries

A and B. In addition, wave amplitudes within the substructure Λ are considered.

The ray tracing method presented in Chapter 2 uses transmission coefficients to link

the waves in different parts of the system together. If only one sector is modelled,

there is no physical or geometrical link between boundaries A and B as they are not

in direct contact. The only property that can be used is the phase change between

one end and the other (see Section 3.3.1). This change of phase can be considered

as a “transmission coefficient” from one end to the other, so a wave incident at one

end will be “linked” to the other end by a phase change coefficient.

If the complex-valued displacement at A is uA, then, from the rotationally periodic

structure properties explained in Section 3.3.1, the displacement at B will be uB

such that uB = uA e
i 2π
N
κ (or uA = uB e

−i 2π
N
κ). As the displacements are defined

entirely using wave amplitudes, it follows that the waves incident on B and created

at A will have an amplitude ratio of e−i 2π
N
κ; while the waves incident on A and

created at B will have an amplitude ratio of ei 2π
N
κ. The difference in sign is due
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to the different direction of propagation (negative s-direction – incident in A, or

positive s-direction – incident in B).

To apply the ray tracing method, consider an initial set of wave amplitudes a0,

illustrated in Figure 3.4(a), such that:

a0[12×1] =
[
u(l)+
initial u(l)−

initial u(r)+
initial u(r)−

initial

]T
. (3.24)

Each wave travels along its corresponding waveguide. The waves starting on the

left-hand side of the substructure or on the left boundary A will travel along L(l)

and the ones on the right-hand side will travel along L(r). In this situation the

dispersion matrix D is given by:

D[12×12] =



∆L(l) 0 0 0

0 ∆L(l) 0 0

0 0 ∆L(r) 0

0 0 0 ∆L(r)


(3.25)

where ∆L(j) =


e−ik1L(j) 0 0

0 e−ik2L(j) 0

0 0 e−ik3L(j)

, j = l, r.

The link between the left and right boundaries are given by the transmission coef-

ficient matrix T:

T[12×12] =



0 0 Υ− 0

B(l) 0 0 Π(r)→(l)

Π(l)→(r) 0 0 B(r)

0 Υ+ 0 0


, (3.26)

where B(l)
[3×3] and B(r)

[3×3] contain the reflection coefficients at the discontinuity Λ on

its left and right hand sides respectively; Π(l)→(r)
[3×3] and Π(r)→(l)

[3×3] contain the trans-

mission coefficients from waves incident from the left side to the right side (or from

the right side to the left side, respectively). The matrices Υ+ and Υ− represent

the change of phase phenomenon between the cyclic symmetry boundaries in the
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positive s direction and negative s direction, respectively. These are given by:

Υ+ =


ei

2π
N
κ 0 0

0 ei
2π
N
κ 0

0 0 ei
2π
N
κ

 , (3.27a)

Υ− =


e−i 2π

N
κ 0 0

0 e−i 2π
N
κ 0

0 0 e−i 2π
N
κ

 . (3.27b)

Solving the fundamental equation of the ray tracing method: |I−TD| = 0, see

Chapter 2 with the T and D matrices defined by Equations (3.25) and (3.26) for

all κ values (see Section 3.3.1); all of the natural frequencies of the entire structure

can be obtained by modelling only one of its sectors.

The advantage of modelling only one sector is that the total number of unknowns

is reduced. If the substructure Λ itself contains n unknowns, then the total number

of unknowns in the simplified system is n+12. By comparing this number with the

total number of unknowns in the non-simplified system (n + 6)N , it is clear that

taking into account cyclic symmetry greatly simplifies the analysis and reduces the

computation time.

Further simplification

The previous section introduced artificial boundaries A and B to take account of the

cyclic symmetry. The change of phase from one end of a sector to the other end is

expressed in the transmission matrix, where waves incident on symmetry boundaries

are not reflected but “linked” to the other end of the sector. A further simplification

can be made to the analysis, and this is presented here. For free-vibration analysis,

the ray tracing method gives the relationship

a = TDa, (3.28)
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see Chapter 2, Equation (2.31). With the same structure and notation as in the

previous paragraph, this gives:

a =



0 0 Υ− 0

B(l) 0 0 Π(r)→(l)

Π(l)→(r) 0 0 B(r)

0 Υ+ 0 0





∆L(l) 0 0 0

0 ∆L(l) 0 0

0 0 ∆L(r) 0

0 0 0 ∆L(r)


a, (3.29)

where

a =
[
u(l)+ u(l)− u(r)+ u(r)−

]T
. (3.30)

Expanding the second and third equations of (3.29) and re-arranging in matrix

form, it can be shown that:

[
u(l)− u(r)+

]T
=Π(r)→(l) B(l)

B(r) Π(l)→(r)


∆L(r)Υ+∆L(l) 0

0 ∆L(l)Υ−∆L(r)

 [u(l)− u(r)+
]T
.

(3.31)

Comparing this equation with Equation (3.28), it can be deduced that the ray

tracing method can be used to model the entire structure with:

a =
[
u(l)− u(r)+

]T
, (3.32)

T =

Π(r)→(l) B(l)

B(r) Π(l)→(r)

 , (3.33)

D =

∆L(r)Υ+∆L(l) 0

0 ∆L(l)Υ−∆L(r)

 . (3.34)

The matrix D can be simplified to

D =

∆L(l)+L(r)Υ+ 0

0 ∆L(l)+L(r)Υ−

 , (3.35)
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where

∆L(l)+L(r)Υ± =


e
i
(
± 2π
N
κ−k1L0

)
0 0

0 e
i
(
± 2π
N
κ−k2L0

)
0

0 0 e
i
(
± 2π
N
κ−k3L0

)

 , (3.36)

with L0 = L(l) + L(r), which represents the distance travelled along the waveguide

from one substructure to its neighbour. For example, if the substructure Λ has a

length L(Λ) and is placed on a ring-based system, as in Figure 3.4(a), then L0 =

2πR/N − L(Λ).

From the previous derivations, the system illustrated in Figure 3.4(a) can be sim-

plified to the one presented in Figure 3.4(b). The influence of the cyclic boundaries

appears in the dispersion matrix (Equation (3.35)). The transmission coefficient

matrix now contains terms on its diagonal: each wave is a function of itself (after

some propagation, decay and change of phase). This simplification further reduces

the number of unknown wave amplitudes: the total number of unknowns is now

n+ 6, where n is the number of unknowns present in the substructure itself.

To obtain all of the natural frequencies of the entire structure, the simplification

presented above reduces the analysis of a system with N(n+6) unknowns to N/2+1

analyses of a system with n+6 unknowns, when N is even; or to (N+1)/2 analyses

of a system with n+6 unknowns, when N is odd. These correspond to the number

of independent values of κ, see Section 3.3.1.

3.3.3 Obtaining the mode shape of the entire structure

Once the natural frequencies ωn have been derived using Equation (3.28), the wave

amplitudes of the modelled sector (with index 1) are obtained by solving
[
I −

T(ωn)D(ωn)
]
a(1)
n = 0, see Chapter 2. Here a(1)

n contains the wave amplitudes

defining the mode shape in the single “principal” sector. To obtain the mode shapes

for the complete structure, the results obtained for the single sector are extended
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using Equations (3.18) and (3.19). Equation (3.19) is an iterative expression that

gives the mode shape of sector (j+1) as a function of the mode shape of the previous

sector (j). The wave amplitudes of the jth sector (j = 1, 2, · · · , N) can also be

expressed using those of the 1st sector only with the following equation derived from

Equation (3.19):

a(j)
n = ei

2π
N
κ(j−1)a(1)

n . (3.37)

From Equation (3.37), the wave amplitudes in any sector of the structure can be

calculated. The displacements corresponding to the mode shape can then by cal-

culated using the standard equations defining the displacements as a sum of waves,

see Chapter 2.

3.4 Applications

This section presents the application of the ray tracing method to analyse the free

vibration of structures with periodicity and/or cyclic symmetry properties. The

objective is to validate the models presented in Section 3.2 and 3.3 on simple cases

first and then on the more complex case of the ring-based rate sensor.

3.4.1 Beam with identical uniformly-spaced point masses

Consider a finite cantilever beam with N identical uniformly-spaced point masses.

The ray tracing approach using the periodicity simplification requires the transmis-

sion coefficient corresponding to a single sector. A sector is defined here as a beam

portion of length 2L with a point mass in its mid-point. N identical sectors are put

side by side to create a chain of N point masses uniformly separated with a distance

2L, see Figure 3.5. The lengths L(I) and L(II) are the distance between the clamped

boundary and the left side of the chain, and between the right side of the chain and

the free boundary, respectively. Lbeam is the length of the entire beam. For given

lengths Lbeam, L(I) and L(II), L is such that L =
(
Lbeam − (L(I) + L(II))

)
/2N .
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Using the substructuring method presented in Section 3.2.1, each sector can be

modelled by its own reflection/transmission coefficient matrices. These are:

Πl→r
1 = ∆LΠl→r

pt. mass∆L, (3.38a)

Πr→l
1 = ∆LΠr→l

pt. mass∆L, (3.38b)

Bl
1 = ∆LBl

pt. mass∆L, (3.38c)

Br
1 = ∆LBr

pt. mass∆L. (3.38d)

The notation is the same than the one used in Section 3.2.2. ∆L is the dispersion

matrix for a straight beam of length L and is defined in Equation (2.26), see Chap-

ter 2. Πl→r
pt. mass and Πr→l

pt. mass define the transmission coefficients from left to right

and from right to left, respectively, through a point mass discontinuity. Bl
pt. mass

and Br
pt. mass contain the reflection coefficients on the left and right hand side, re-

spectively, when waves impinge on a point mass. These four [3 × 3] matrices can

be obtained using the equations presented in Chapter 2, Section 2.4.1, with the

following simplifications: the rigid joint is considered to be a point mass, the third

component in the transmission is neglected and curved beams models are extended

to straight beams models by letting R→∞.

Equations (3.38) could also be obtained simply by intuition. These matrices con-

tain the transmission/reflection coefficients of waves impinging and leaving a single

sector composed of a beam portion of length L, a point mass and another beam

portion of length L. When coming into the sector, the waves travel and decay along

the length L before impinging on the point mass. They are then transmitted or re-

flected by the point mass by respecting the point mass own transmission/reflection

characteristics. Then finally, they travel again along a length L to leave the sector.

This explains the form of Equations (3.38).

Using Equations (3.10) and (3.11) with the individual sector transmission/reflection

coefficients matrices defined in Equations (3.38), the transmission/reflection coef-

ficients matrices of the overall chain of N sectors can be obtained. The entire
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cantilever beam structure is then modelled by using:

T =



0 Tclamped 0 0

Bl
N 0 0 Πr→l

N

Πl→r
N 0 0 Br

N

0 0 Tfree 0


, (3.39)

D =



∆L(I) 0 0 0

0 ∆L(I) 0 0

0 0 ∆L(II) 0

0 0 0 ∆L(II)


. (3.40)

Natural frequencies for particular values of N obtained with the ray tracing method

using the above simplification are presented in Table 3.1. They are compared with

results from a FE analysis using Euler/Bernoulli beam elements. The natural fre-

quencies found using the two methods are in perfect agreement up to five significant

figures.

3.4.2 Ring with identical uniformly-spaced point masses

Consider a ring with N identical uniformly-spaced point masses. Here, the ray

tracing approach using the cyclic symmetry simplification requires the transmission

coefficient corresponding to a single point mass. Calculation of the transmission

coefficients for a ring with an attached mass can be obtained using the equations

presented in Chapter 2, Section 2.4.1, by considering the rigid joint to have non-zero

mass, zero length and zero moment of inertia. All of the matrices needed for the

natural frequency analysis are [6×6] square matrices, and the wave amplitudes relate

to extensional, flexural and decaying waves in both directions. For a particular

cyclic mode number κ, the dispersion matrix will contain terms e−i 2π
N

(
Rki±κ

)
(with

i = 1, 2, 3 and κ = 0, 1, . . . , N/2 for N even or κ = 0, 1, . . . , (N−1)/2 for N odd).

To obtain the natural frequencies of the system for any cyclic mode number, N/2+1

(N even) or (N + 1)/2 (N odd) different analyses are required, see Section 3.3.1,

which correspond to the number of possible κ values.
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The effect of additional masses on the natural frequencies of a ring has been in-

vestigated previously in [88]. In this work, a Rayleigh-Ritz approach was used to

determine analytical expressions for the natural frequencies and natural frequency

splits in terms of the orientations and magnitudes of the added masses. The as-

sumption that the mode shapes of the imperfect ring are identical to those of a

perfect ring, adopted in [88], has been shown to be reasonable provided that the de-

gree of imperfection is sufficiently small [89]. Extending the work carried out in [88]

and [89], McWilliam et al. [10] investigated the case of identical masses distributed

uniformly around the circumference of a perfect ring. They obtained simplified an-

alytical expressions using the Rayleigh-Ritz method for the natural frequencies and

also derived frequency splitting rules, which indicate that the natural frequencies

will split only when 2n/N is an integer, n being the mode number. n can take any

integer value and is different from κ.

It is found that the natural frequencies obtained by the ray tracing method are in

accordance with the natural frequency splitting rules of [10]. The frequencies of

the flexural modes are illustrated in Table 3.2 for different combinations of mode

number n (= 2, 3, . . . , 6) and number of point masses N (= 0, 1, . . . , 4). For the

N = 0, 1, 2 and N = 4 cases (not N = 3), the angular position of the masses does

not change as uniformly spaced masses are added. For any n, the corresponding

natural frequencies decrease. However, changing the angular position of masses

on the ring changes the mass distribution and can either increase or decrease the

natural frequency, e.g. see N = 2, 3. Both analyses show very good agreement

for the frequency split. However, the frequencies calculated with the two methods

differ slightly due to the consideration of the Poisson’s ratio in the Flügge’s strain-

displacement relations used to calculate the natural frequency of the original perfect

ring (withN = 0) in [10]. The Poisson’s ratio is not taken into account in the present

ray tracing approach as shear deformation is neglected.
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3.4.3 Regular polygons

The ray tracing method using the cyclic symmetry simplification can be applied

to calculate the natural frequencies and mode shapes for the in-plane vibration of

regular polygons having N sides, with each corner at a distance R from the centre.

For such polygon, the external angle α between two sides is α = 2π/N and the

length L0 of one side is L0 = 2R sin α2 , see Figure 3.6.

In order to apply the ray tracing method, the transmission coefficients of one corner

are calculated using the analysis presented in Chapter 2, Section 2.4.2. The use

of the cyclic symmetry simplification greatly reduces the number of unknowns,

especially for large N . For any N , only six waves are required (extensional, flexural

and decaying). Natural frequencies calculated for different numbers of sides N

and cyclic mode numbers κ are compared with results from a FE analysis using

Euler/Bernoulli beam elements in Table 3.3. The natural frequencies found using

the two methods are in perfect agreement up to five significant figures.

These analyses were performed for a fixed distance R between the centre and one

corner, and only the number of sides was varied. When the number of sides tends

to infinity, it is expected that the natural frequencies of the polygon should tend

to those of a perfect ring with radius R. This behaviour is illustrated in Figure 3.7

where the natural frequencies for κ = 2 and κ = 3 tend to the corresponding perfect

ring natural frequencies ω2 and ω3 for flexural modes, which can be calculated

using Equation (2.80) (see Chapter 2) and are given in Table 3.2 (with N = 0 and

n = 2, 3).

3.4.4 Ring-based rate sensor

The ring-based rate sensor presented in Figure 3.8 is modelled using the cyclic sym-

metry simplification. The dimensions used are given in Figure 3.8(b). Only a single

leg (three beam portions) is modelled. The ring is taken into account using the

analysis presented in Section 3.3.2, i.e. waves impinging and leaving the disconti-
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nuity ring/leg are still considered. Eight identical sectors are required to complete

the entire structure (N = 8). It is assumed that the leg and ring are connected

at a single point (only the centreline is modelled). The transmission coefficients

for the different joints are calculated using the analysis presented in Chapter 2,

Section 2.4 (e.g. with α = 90◦ for the ring/leg transmission). The legs are assumed

to be formed with straight beams connected at abrupt changes in direction. The

presence of rounded or “radiused” angles would be a more realistic model, see Fig-

ure 1.2, and it would also minimise the stress concentrations at corners. However,

if one wants to model with the ray tracing method, the curved beam portion that

connects the two straight beams in a rounded angle, it is not possible to use the

governing equations specific for thin structures detailed in Chapter 2, Section 2.2.

The radius of curvature of the curved beam is too small compared to its width to

neglect shear deformation and rotary inertia. For simplification purpose, abrupt

changes in direction are assumed and the direct transmission between two straight

beam components is considered.

Using the ray tracing method with the cyclic symmetry simplification, the wave

amplitude vector contains 24 unknowns (six waves per beam section and six waves

leaving the discontinuity ring/leg along the ring), in contrast to 192 unknowns

without the simplification. To obtain all of the natural frequencies of the ring-

based rate sensors, five different analyses (κ = 0, 1, 2, 3, 4, see Section 3.3.1) are

performed. The calculated frequencies are compared with FE predictions using

Euler/Bernoulli and Timoshenko two-dimensional beam elements in Table 3.4. As

in the case of regular polygons (Section 3.4.3), the converged FE solution gives

natural frequencies that agree to five significant figures with the ray tracing model

when Euler/Bernoulli elements are used, see Table 3.4. With Timoshenko elements,

the percentage differences are less than 0.5%. This difference is due to the shear

deformation being neglected in the ray tracing method, and it can be seen that the

difference generally increases as the mode number increases, as expected.

From the cyclic symmetry of the system, it can be shown [86] that two orthogonal

modes exist for every κ = 1, 2, 3, while the κ = 0, 4 modes are unique. Figure 3.9

presents the first mode (and its orthogonal complement) for κ = 0, 1, 2, 3, 4. The
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displayed mode shapes were obtained using the ray tracing method and are similar

to those given by the FE analysis. For interpretation, the first mode shape with

κ = 0 corresponds to rigid body mode of a free ring rotating about its centre, while

the first mode shape with κ = 1 corresponds to rigid body translation of a free ring.

The main conclusion of this study is that, subject to the assumptions that shear

deformation and rotary inertia are neglected and by modelling the centreline of the

ring only (two-dimensional Euler/Bernoulli beam elements), the results obtained

using the ray tracing method are in excellent agreement with those obtained using

the FE method but with greatly reduced computational effort.

3.5 Conclusion

In this chapter, the ray tracing method has been extended to cope efficiently with

structures that are periodic. The periodicity can be modelled using a recursive

form in which a chain of N sectors is characterised by the transmission and re-

flection characteristics of a chain of (N − 1) sectors. Each sector can itself be the

result of a substructuring method in such a way that a sector may represent several

components coupled together. The chain of identical sectors, with the use of its

transmission and reflection coefficients calculated with the periodicity analysis, can

be inserted into an overall bigger structure that may contain either external bound-

aries or other waveguide components. A cyclic symmetry simplification, based on

the fact that the displacement in one sector is related to the displacement in a neigh-

bouring sector, was also presented and proved to greatly reduce the complexity of

the analysis.

Results for natural frequencies and mode shapes for periodic and cyclically symmet-

ric structures were compared with FE analyses and showed very good agreements.

The ray tracing method and its possible simplifications are then shown to be ex-

act, rapid and efficient methods to model free vibrations of structures composed by

straight and curved beam components.
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Section 3.4.4 presented the free vibration analysis of a ring-based rate sensor by

the ray tracing method. The objective of the thesis is to understand support losses

for structures of this kind. Support loss modelling will be inspected for simple

structures in Chapter 4. The ring-based rate sensor support losses and the influence

of its leg design on the Q-factor will be the subject of Chapter 5. The cyclic

symmetry simplification method presented here will be used thoroughly in Chapter 5

and its assets to simplifying the analysis when studying parameter changes will be

shown.

While the simplest structures transmit vibrational energy by just one type of wave

motion (for example flexural waves), others transmit energy in simultaneous and

particular combinations of longitudinal, torsional and bi-directional flexural waves.

When these different wave types encounter a discontinuity in the structure, they

interact and are converted from one type into another type. This is an important

notion in the wave propagation process of complex structures. In-plane vibrations

consisting of flexural and longitudinal waves have been studied so far and an exten-

sion of the ray tracing method that considers bi-directional flexural and torsional

waves will be the subject of Chapter 6. It will be seen that the simplifications pre-

sented within Chapter 3 for in-plane vibrations can also be applied to out-of-plane

vibrations.
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Figures and tables

(a)

(b)

Figure 3.1: Substructuring method showing the different set of wave amplitudes
considered. The system in (a) can be simplified to the system in (b).

Figure 3.2: System showing periodic symmetry properties. A single sector is
added to a chain of (N − 1) similar sectors.
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Figure 3.3: Two lowest frequency mode shapes for each class of a thin square
(N = 4) showing the corresponding values of the different parame-
ters.
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(a)

(b)

Figure 3.4: Cyclic symmetry simplifications. (a) involves four sets of wave am-
plitudes, whereas only two sets of wave amplitudes are considered
in (b).

Figure 3.5: Cantilever beam with N identical, uniformly-spaced point masses.

102



Chapter 3. Model simplifications for symmetric structures

Figure 3.6: Notation used for the study of regular polygons with N sides. Note
that it is not necessarily a hexagon.
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(a)

(b)

Figure 3.7: Lowest natural frequency calculated with the ray tracing method
of a regular polygon with κ = 2 (a) or κ = 3 (b), function of
its number of sides N . The dimensions and material properties
of beams composing the polygons are the same as those used in
Table 3.2. ω2 and ω3 are the n = 2 and n = 3 natural frequencies for
flexural modes in a perfect ring, see Equation (2.80) in Chapter 2.
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(a) (b)

Figure 3.8: (a) Ring-based rate sensor with cyclic symmetry and its 45◦ prin-
cipal sector. (b) Actual modelled structure and its dimensions in
mm (with axial thickness = 0.1 mm).

Figure 3.9: Mode shapes of the ring-based resonator for the two lowest natural
frequencies of each value of κ.
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Table 3.4: Natural frequencies (Hz) for the ring-based resonator calculated
with the ray tracing method and a FE model (two-dimensional
Euler/Bernoulli beams elements and Timoshenko (noted “T’nko”)
beams elements, with 0.85 as shear correction factor, of approximate
length 0.01 mm). The ring dimensions are presented in Figure 3.8(b).
The material properties used are ρ = 2329 kg/m3, E = 170·109 N/m2

and the Poisson ratio is taken = 0.28.

Ray Tracing FE analysis Difference %
Ray Tr./T’nko beamsEuler beams T’nko beams

κ = 0
18 330 18 330 18 277 0.29
40 787 40 787 40 725 0.15
67 320 67 320 67 028 0.43

κ = 1
11 853 11 853 11 820 0.28
38 479 38 479 38 416 0.16
65 971 65 971 65 697 0.42

κ = 2
14 233 14 233 14 217 0.12
37 850 37 850 37 784 0.17
65 520 65 520 65 253 0.41

κ = 3
32 133 32 133 32 076 0.17
41 100 41 100 41 001 0.24
66 135 66 135 65 871 0.40

κ = 4
35 646 35 646 35 591 0.15
55 202 55 202 54 978 0.41
73 110 73 110 72 830 0.38
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Chapter 4

Modelling the support loss for

in-plane vibrations

4.1 Introduction

The coupled resonator-substrate system is modelled to understand the interaction

and energy transmission between them. Owing to the large relative size and shape

complexity of the substrate, it is not possible to model the substrate in its entirety

and some simplifications are made. For example, if finite elements are used, the

domain of analysis needs to be truncated to a manageable size, and the effect of

wave propagation into the remaining substrate is approximated as a propagation

into an infinite domain. Various methods have been used to approximate infinite

domains in previous works. A brief summary of these follows.

4.1.1 Analytical model

The analytical model is an extension of the work carried out by Hao et al. [42],

which is itself based on the fundamental work of Miller and Pursey [90]. Hao et

al. developed a theoretical approach to model the substrate and determined the
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Chapter 4. Modelling the support loss for in-plane vibrations

support losses in cantilevered beams and disc shaped resonators. The response

of the resonant structure for in-plane vibrations was determined either from a fi-

nite element analysis or from analytical mode shape expressions. Fixed boundary

conditions were assumed at the anchors of the structure. The resulting stresses

at the anchors drive the substrate, which was considered to be an infinite elastic

thin plate for the case of cantilever beam resonators. The displacement field in

the substrate was obtained analytically by modelling its behaviour with the classic

two-dimensional dynamic equations for a thin plate, subjected to the above bound-

ary condition as stress sources. The work done by the resonator was calculated by

integrating the product of shear stress at the anchor with the induced displacement

in the substrate, over one cycle of vibration. This gave the loss from the system to

the substrate per cycle. The ratio of total energy of the resonator, i.e. the energy

calculated using the analytical mode shape expression for cantilever beams or using

finite elements analyses for more complex resonators, to the energy lost per cycle,

gave the Q-factor for the device.

This approach has its limitations. It assumes the wavelength of propagating waves

to be much larger than the thickness of the vibrating structure for the two-dimen-

sional theory to be valid. It is also unable to capture the effects of wave reflections

at discontinuities in the substrate, since the substrate is modelled as a perfect semi-

infinite thin plate. However, thanks to the analytical expressions of the anchor

displacement found for different types of stress sources (see Section 4.2.5), calcula-

ting Q-factors for different resonators is quite straightforward. It is a very effective

method in which the substrate model does not change for different resonator designs.

A change of parameter in the resonator would only induce a change of the resonator

model. The substrate model reduces to a simple analytical expression, and its

implementation to calculate Q is numerically very efficient, which is not the case

for the methods presented in subsequent sections.

An extension of this analytical model that considers different stress source condi-

tions is presented in Section 4.2. Other methods that can model infinite domains

are presented in Sections 4.3 and 4.4. The ultimate aim is to validate the use of

the analytical model to calculate Q-factors by comparing results obtained from the
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different methods. Once the analytical model has been validated, it will be used

for the parametric study on the leg design in the entire ring-based rate sensor (see

Chapter 5).

4.1.2 High-fidelity multiphysics simulations

In the approach by Park and Park [36, 37], the resonator system was partitioned

into three modular subsystems consisting of the substrate, the resonator and its

electrostatic actuators. Each of these was modelled independently and then inte-

grated by matching the interface conditions. Similar to [42], this approach assumes

the substrate to be a semi-infinite elastic medium. However, it is not a thin-plate in

this case. The motion of the substrate was expressed as a superposition of various

modes of wave propagation. The contribution of these various modes to a parti-

cular motion was obtained using a numerical scheme. The resonator response was

calculated from a finite element analysis and a response receptance matrix, relating

the forces and displacements at the anchor and excitation nodes, was constructed.

An electro-mechanical model between the actuator nodes on the substrate and the

corresponding excitation nodes on the resonant structure gave another matrix that

couples two other subsystems. A response matrix relating forces and displacements

corresponding to points on the substrate was constructed. The model assumed

the substrate to be an infinite half-space and the displacements corresponding to

a given load were obtained by adding up contributions from different wave modes.

Combining the three response matrices, the matrix of the entire structure was con-

structed which was used to derive the stiffness and the damping matrices of the

overall system and hence calculate Q.

This approach has the disadvantage that a separate response matrix needs to be

calculated for the substrate every time the geometry of the resonator anchor is

changed. Also the calculation of the response matrix for the substrate is computa-

tionally intensive.
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4.1.3 Truncated domain FEA approaches

These finite element based methods truncate the substrate at finite dimensions and

apply various boundary conditions at the edge so as to approximate the effect of

infinite domains and simulate infinite boundaries. The resonator and a “finite” part

of the substrate are modelled with classic finite elements, whereas special boundary

elements are applied to the substrate edge.

The simplest method of infinite domain approximation is the use of damping ele-

ments. It involves placing viscous elements at the edge of the truncated domain.

These elements have higher damping coefficient values than the material of the

truncated domain. The propagating waves are attenuated in these elements due to

higher damping characteristics. However the main drawback with this approach is

that a sudden change in the material impedance induces spurious reflections at the

boundary. Another disadvantage is that they are effective only for the case when

the incoming wave is almost normal to the boundary. Also reflections from the

outer edge are still possible if the domain containing the damping elements is not

sufficiently large.

Two other methods, namely the use of a perfectly matched layer and infinite ele-

ments are possible and are studied in depth in Sections 4.3 and 4.4.

4.2 Analytical model

4.2.1 Physical modelling and main assumptions

A MEMS resonator must be attached to a foundation (or substrate). This attach-

ment can take different forms but typically the resonator and substrate are etched

in the same plane, from the same silicon wafer. The joint interface between the

resonator and substrate, which is often modelled as a clamped attachment, is sub-

jected to time-harmonic stresses that excite elastic waves in the substrate. These
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waves propagate into the substrate and carry energy away from the resonator. In

this way the support structure absorbs some of the vibration energy from the reso-

nator.

For a simple cantilever beam resonator [42], the support interface is subjected to

time-harmonic stresses due to shear stress only. However, in more complex reso-

nators such as the ring-based rate sensor, the supporting legs produce both shear

and normal stresses simultaneously, see Figure 4.1. In Figure 4.1, the motion of

the resonator occurs in-plane only (within the plane (x, z)). Out-of-plane motion,

along the y-axis direction, will be studied in Chapter 6.

It has been shown [41] that a MEMS resonator and its substrate can reasonably

be analysed separately. Based on the significant dimensional difference between a

typical resonator and its substrate, it can be assumed that all the energy entering the

support propagates away to large distances and no energy returns to the resonator;

which signifies that the elastic waves in the support will not have a significant effect

on the modes of the resonator. The support is modelled as being semi-infinite, and

ensures that the calculated support loss is an upper bound of the actual support

loss. For the ring-based rate sensor, it is also assumed that the resonator and its

substrate lie in the same plane, and have equal out-of-plane thickness h, such that

all the vibrations occur in plane. Assuming that the thickness of the resonator is

much smaller than the wavelength of the transverse elastic waves propagating in

the support (λT ), such that:
λT
h
>> 1, (4.1)

the substrate is modelled as a two-dimensional thin plate undergoing plane stress.

A theoretical derivation of the vibrational displacement of the substrate is possible

if the stress source is uniformly distributed across the clamped interface region [90].

The main steps to analyse the support using the analytical model inspired by [42, 90]

and to calculate theQ-factor of any resonator are presented in the following sections.

They are summarised as follows.

• The elastic wave equations that model the behaviour of a thin-plate are ex-
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pressed. They describe the displacements (in two different directions) as a

function of the time and the spatial position in the plate.

• Some new operators, function of the spatial positions x and z, are introduced

in the previous equations. This simplifies the equations and makes them easier

to solve.

• The difficulty is now that the governing equations are still expressed as a

function of x and z. A Fourier transform that removes the x dependency

bypasses this issue. The equations are then solved in the wavenumber domain.

• As they are differential equations, some integration constants appear when

they are solved. These constants are derived by applying appropriate bound-

ary conditions at the anchor point on the edge of the thin-plate. These con-

ditions express the influence of the resonator on its support.

• An inverse Fourier transform is performed to come back in the real domain.

The displacement at any point of the thin-plate, induced by the applied

boundary conditions, can now be found.

• The mean displacement along the x-axis and over the clamped interface region

is derived in order to calculate the amount of energy lost.

• From this mean displacement and using the applied forces at the anchor point,

the energy lost per cycle of vibration is expressed.

• The Q-factor that considers the quantity of energy lost through the support

is finally calculated.

4.2.2 Model of the support structure

This section presents the main steps and main equations of the development of the

analytical support model. A more detailed description can be found in Appendix A.

The vibration of the resonator causes elastic waves to propagate into the support.

This support, as explained in Section 4.2.1, is considered as a thin-plate with equal
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thickness to that of the resonator, and is modelled using a two-dimensional elastic

wave theory. Starting from the three-dimensional elasticity of an isotropic solid and

assuming than one dimension is much smaller than the other ones (see Appendix A),

the equations governing the in-plane displacements of a thin plate can be expressed

as [54]:

∂2u

∂t2
= c2L

∂2u

∂x2 + c2T
∂2u

∂z2 +
(
c2L − c2T

) ∂2w

∂x∂z
, (4.2)

∂2w

∂t2
= c2L

∂2w

∂z2 + c2T
∂2w

∂x2 +
(
c2L − c2T

) ∂2u

∂x∂z
, (4.3)

where u and w are the displacements in the support along the x- and z-axes, respec-

tively, and cL and cT are the propagation velocities for longitudinal and transverse

waves, respectively, given by:

c2L = E

ρ(1− ν2) , (4.4)

c2T = E

2ρ(1 + ν) . (4.5)

In these equations, E is the Young’s modulus, ρ is the mass density and ν is the

Poisson’s ratio of the support material.

It is assumed that these displacements are time-dependent at frequency ω (excita-

tion frequency) and have the form u = û e−iωt and w = ŵ e−iωt. In order to simplify

Equations (4.2) and (4.3), new operators in terms of the cross-derivatives of û and

ŵ with respect to x and z are introduced:

Θ = ∂û

∂x
+ ∂ŵ

∂z
, (4.6)

Ω = ∂ŵ

∂x
− ∂û

∂z
. (4.7)

Equations (4.2) and (4.3) can be rewritten in terms of these new operators as follows:

−ω2û = c2L
∂Θ
∂x
− c2T

∂Ω
∂z

, (4.8)

−ω2ŵ = c2L
∂Θ
∂z

+ c2T
∂Ω
∂x

. (4.9)
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The main advantage of using Equations (4.8) and (4.9) compared to Equations (4.2)

and (4.3) is that no second derivatives appear. The objective now is to solve the

coupled Equations (4.2) and (4.3) in terms of Θ and Ω. To do this, they are further

re-organised as:

c2L

(
∂2Θ
∂x2 + ∂2Θ

∂z2

)
+ ω2Θ = 0, (4.10)

c2T

(
∂2Ω
∂x2 + ∂2Ω

∂z2

)
+ ω2Ω = 0. (4.11)

Equations (4.10) and (4.11) are independent of each others and are easier to solve.

To remove the double dependency in x and z, a Fourier transform, from the real

domain to the wavenumber domain, is applied to this set of equations.

In the following equations, the subscript F denotes the Fourier transform and ξ is

the variable of this transform, i.e. the Fourier transform is defined as:

g(ξ) =
∫ +∞

−∞
f(x) e−iξx dx, (4.12)

f(x) = 1
2π

∫ +∞

−∞
g(ξ) eiξx dξ. (4.13)

Applying Fourier transforms to Equations (4.10) and (4.11) gives:

d2ΘF

dz2 −
(
ξ2 − ω2

c2L

)
ΘF = 0, (4.14)

d2ΩF

dz2 −
(
ξ2 − ω2

c2T

)
ΩF = 0. (4.15)

These equations are linear second order differential equations in z and can be solved

easily. The solutions to Equations (4.14) and (4.15), which remain finite when z is

large, are:

ΘF = Ae−
√

Lz, (4.16)

ΩF = B e−
√

Tz, (4.17)

with
√

L =
√
ξ2 − ω2

c2
L

and
√

T =
√
ξ2 − ω2

c2
T
. A and B are constants related to

the amplitude of the elastic wave and are considered next by applying boundary
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conditions – related to the appropriate excitation stress sources.

4.2.3 Introducing the boundary conditions

The vibration of the support expressed in Equations (4.2) and (4.3) is generated

by external stresses (shear stress τ acting parallel to the x-axis and normal stress

σ acting parallel to the z-axis) given by the stress-strain relationships for a thin

plate [54]:

τ = ρc2T

∂ŵ
∂x

+ ∂û

∂z

, (4.18)

σ = ρc2L
∂ŵ

∂z
+ ρ

(
c2L − 2c2T

)∂û
∂x
. (4.19)

Using the operators Θ and Ω defined in Equations (4.6) and (4.7) within these stress

expressions, Equations (4.18) and (4.19) can be rewritten as:

ω2

ρc4T
τ = ∂2Ω

∂z2 −
∂2Ω
∂x2 − 2r2 ∂

2Θ
∂x∂z

, (4.20)

ω2

ρc4T
σ = −2 ∂

2Ω
∂x∂z

− r4∂
2Θ
∂z2 + (2r2 − r4)∂

2Θ
∂x2 . (4.21)

where r is the ratio of wave velocities: r = cL/cT .

The solutions for Ω and Θ derived earlier (Equations (4.16) and (4.17)) are in the

wavenumber domain. To make use of these solutions when considering the boundary

conditions, it is necessary to convert Equations (4.20) and (4.21) to the wavenumber

domain. Applying the Fourier transformation to Equations (4.20) and (4.21) gives:

ω2

ρc4T
τF = dΩF

dz2 + ξ2ΩF − 2iξr2 dΘF

dz , (4.22)

ω2

ρc4T
σF = −2iξ dΩF

dz − r
4 d2ΘF

dz2 − ξ
2(2r2 − r4)ΘF . (4.23)

In order to derive the constants A and B in Equations (4.16) and (4.17), boundary

conditions are applied. These boundary conditions correspond to the stress (shear
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and normal) sources on the edge of the thin plate (at z = 0), see Figure 4.1,

induced by the vibrations of the resonator. For
∣∣∣x∣∣∣ > b/2, there is no stress source

so σ = τ = 0. Over the source region
∣∣∣x∣∣∣ < b/2, where b is the width of the clamped

resonator, the boundary conditions all depend on the vibration source from the

resonator. In what follows, flexural vibration and longitudinal vibration sources are

considered in turn.

• Flexural vibration source

The shear stress is constant and the normal stress is linearly dependent of the x

value (due to the bending moment). However, as explained in [41] or shown in

Appendix A, the contribution of the normal stress to the power radiated is small

and can be neglected. Hence the boundary conditions at z = 0 are:

τ = τ̂ for |x| < b

2 and τ = 0 for |x| > b

2; (4.24a)

σ = 0 for all x. (4.24b)

τ̂ is the constant shear stress at the anchor point induced by flexural vibrations of

the sensor.

In the wavenumber domain, Equations (4.24) give:

τF = 2τ̂
ξ

sin
(
ξ
b

2

)
, (4.25a)

σF = 0. (4.25b)

• Longitudinal vibration source

The shear stress is zero and the normal stress is constant over the source region.

Hence at z = 0:

τ = 0 for all x; (4.26a)

σ = σ̂ for |x| < b

2 and σ = 0 for |x| > b

2 . (4.26b)

σ̂ is the constant normal stress at the anchor point induced by longitudinal vibra-
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tions of the sensor.

In the wavenumber domain, Equations (4.26) give:

τF = 0, (4.27a)

σF = 2σ̂
ξ

sin
(
ξ
b

2

)
. (4.27b)

In the next subsection, Equations (4.25) and (4.27) are used to derive the constants

A and B expressed in Equations (4.16) and (4.17).

4.2.4 Solution procedure

A system of two equations and two unknowns can be obtained by substituting the

corresponding boundary condition (4.25) or (4.27) in Equations (4.22) and (4.23),

with the solution values of ΩF and ΘF (given in Equations (4.16) and (4.17)), and

setting z = 0 (at the thin plate edge). These equations are solved to calculate

the constants A and B. These constants, which depend on the type of incident

vibration, are used in Equations (4.16) and (4.17) to give the required longitudinal

and flexural displacements in the support. For example, in the case of longitudinal

vibrations of the resonator, the longitudinal displacement in the support (and in

the wavenumber domain) can be expressed as:

ŵF =
2σ̂
√

L sin
(
ξ b2

)
ρc2T ξN(ξ)

(ω2

c2T
− 2ξ2

)
e−
√

Lz + 2ξ2 e−
√

Tz

, (4.28)

where

N(ξ) =
(
ω2

c2T
− 2ξ2

)2

− 4ξ2
√

L
√

T. (4.29)

Similar expressions are found for flexural displacement in the support and for flex-

ural incident vibrations.

The flexural and longitudinal displacements have been found in the wavenumber

domain for two types of incident vibration (normal or shear stresses). The inverse
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Fourier transform is applied to get the solutions in the real domain. Only the case

of longitudinal displacement induced by longitudinal vibrations of the resonator is

presented here. Similar reasoning can be done for the other cases and they can be

found in Appendix A.

Applying the inverse Fourier transform to Equation (4.28) gives:

ŵ = σ̂

πρc2T

∫ ∞
−∞

√
L sin

(
ξ b2

)
ξN(ξ)

(ω2

c2T
− 2ξ2

)
e−
√

Lz + 2ξ2 e−
√

Tz

 eiξx dξ. (4.30)

For all of the different cases, the integrand will either be an odd or even function of

ξ. This simplifies the integration greatly and the term in eiξx becomes either cos(ξx)

or sin(ξx). In order to further simplify expression (4.30), the following change of

variable is used:

γ = ξ
cL
ω
. (4.31)

Using Equation (4.31) in Equation (4.30) gives:

ŵ = 2σ̂
πρc2T

∫ ∞
0

√
γ2 − 1 sin (Aγ)

ω
cL
γN0(γ)

(r2 − 2γ2
)
e
− ω
cL
z
√
γ2−1

+2γ2 e
− ω
cL
z
√
γ2−r2

 cos
(
ω

cL
γx
)

dγ,

(4.32)

where A = bω

2cL
and

N0(γ) =
(
2γ2 − r2

)2
− 4γ2

√
γ2 − 1

√
γ2 − r2. (4.33)

The displacements at any point (x, z) in the support, induced by stresses at its free

edge, can be found using Equation (4.32) (or similar).
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4.2.5 Derivation of the Q-factor

The ultimate aim of the analysis is to determine the Q-factor of a resonator using

the standard equation:

Q = 2π W

∆W , (4.34)

where W is the total energy stored by the resonator and ∆W is the energy loss per

cycle. The quantity W is independent of the support as it represents the strain (or

kinetic) energy of the resonator when the system is vibrating at a natural frequency.

When using the analytical support model to calculate the support losses, the total

energy stored will be derived in a independent study using the ray tracing method

applied to the resonator (see Chapter 2). In this chapter, we are interested in

modelling the energy loss (∆W ).

The amount of energy lost per cycle from the support can be calculated explicitly

as:

∆W = 2π
ω

Π, (4.35)

where Π is the average power transmitted from the resonator to the support. This

average power is usually defined as:

Π = 1
2 Re (Force · Velocity∗) , (4.36)

where Re is the real part and ∗ denotes the complex conjugate. The Force term

represents the internal forces that occur at the anchor point. These forces are found

by assuming that the resonator is clamped and by using the ray tracing method

on the resonator itself (see Chapter 2). The Velocity term represents the mean

velocity induced by the corresponding Force term over the source region (width

of the resonator). This mean velocity is defined as the derivative of the mean

displacement with respect to time.

From Equation (4.32) (or similar), the flexural or longitudinal displacement can be

derived at any point in the support. The mean displacement w̄z=0 over the source
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region is calculated by setting z = 0 and integrating over the resonator width, i.e.:

w̄z=0 = 1
b

∫ b/2

−b/2
ŵz=0 dx. (4.37)

Substituting Equation (4.32) into Equation (4.37) and considering the parity in x

of the integrand gives:

w̄z=0 = br2σ̂

πρc2T

∫ ∞
0

√
γ2 − 1
N0(γ)

sin (Aγ)
Aγ

2

dγ. (4.38)

The imaginary part of the integrand, which will contribute to support loss (see

Appendix A), is non zero only for 0 < γ < r. For typical resonator dimensions and

corresponding natural frequencies, the termAγ = bω

2cL
γ is relatively small compared

to unity for this range of γ-value. This allows Equation (4.38) to be simplified to:

w̄z=0 = br2σ̂

πρc2T
Ψw, (4.39)

where

Ψw =
∫ ∞
0

√
γ2 − 1

(2γ2 − r2)2 − 4γ2
√
γ2 − 1

√
γ2 − r2

dγ. (4.40)

A similar expression can be found for the mean flexural displacement induced by

shear stresses:

ūz=0 = br2τ̂

πρc2T
Ψu, (4.41)

where

Ψu =
∫ ∞
0

√
γ2 − r2

(2γ2 − r2)2 − 4γ2
√
γ2 − 1

√
γ2 − r2

dγ. (4.42)

Using Equations (4.35), (4.36) and (4.39) (or (4.41)), the energy loss due to longi-

tudinal vibrations ∆Ww is determined to be:

∆Ww = 4(1 + ν)
Eh(1− ν)

∣∣∣T ∣∣∣2 Im(Ψw); (4.43)

and the energy loss due to flexural vibrations ∆Wu is:

∆Wu = 4(1 + ν)
Eh(1− ν)

∣∣∣S∣∣∣2 Im(Ψu), (4.44)
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where T is the normal force producing the normal stress σ̂ and S is the shear force

producing the shear stress τ̂ . Assuming ν = 0.28, Im(Ψw) and Im(Ψu) can be

calculated numerically to be:

Im(Ψw) = 0.22153 and Im(Ψu) = 0.33503. (4.45)

The process to calculate the Q-factor of resonators can be summarised as follows:

• Assume that the resonator is clamped and use the ray tracing approach (see

Chapter 2) to calculate its natural frequencies and associated mode shapes.

• From the mode shape, calculate the total energy stored W and the forces T

and S at the clamped end. For example, on a simple cantilever beam resonator

of length L, width b, height h and mass density ρ:

W = ρbh

2

∫ L

0

(
∂u

∂t

)2

+
(
∂w

∂t

)2

dz, (4.46)

S = Eb3h

12
∂3w

∂z3 z=zboundary
, (4.47)

T = Ebh
∂w

∂z z=zboundary
. (4.48)

• Use Equations (4.43) and (4.44) to get the energy loss due to the forces T and

S, and then sum the losses arising from flexural and longitudinal vibrations.

• Use Equation (4.34) to calculate the Q-factor.

4.3 Perfectly matched layer

4.3.1 Indroduction

Another approach to modelling the vibration of the resonator is to use finite element

methods. The infinite boundary is modelled by adding a non-physical “sponge
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layer” to dissipate waves before they reach the artificial boundary. Waves passing

through the sponge layer are damped on the way to the artificial boundary, and

are further damped when they are reflected back, so that most of the vibration and

energy entering the layer are absorbed. To be effective, the layer must be designed

so that there is no impedance mismatch to reflect waves back from the interface

between the layer and the rest of the domain. A Perfectly Matched Layer (PML) is

the refinement of a sponge layer. Bérenger [50] invented the perfectly matched layer

for problems in electromagnetic wave propagation, and it was later re-interpreted as

a complex-valued change of coordinates which could be applied to any linear wave

equation. Not only do these layers rapidly attenuate waves, they also “perfectly

match” the rest of the domain. As a consequence, there are no spurious reflections

at the interface due to perfect impedance matching.

Bindel [38] extended this approach and implemented it in a finite element code

called HiQLab [91]. HiQLab is an open-source finite element program capable

of studying damping in micro-resonators. Though the program is designed with

resonant MEMS in mind, the architecture is general, and can handle other types

of problems. HiQLab has two user interfaces: one working with Matlab and

another one standalone. The Matlab interface offers access to the full range of

Matlab’s numerical solvers and graphics routines. The main way to represent

devices in HiQLab is to write a mesh input using the Lua programming language.

The program supports elements of different kinds: linear, quadratic, cubic and brick

elements for elastic problems and coupled thermoelastic problems in plane strain,

plane stress, axisymmetry or three dimensions. The code also supports particular

perfectly matched layer absorbing boundaries to mimic the effect of infinite domains.

Modal analysis of simple structures with anchor loss and thermoelastic damping are

implemented and allow energy losses to be calculated.

When a PML is used to model infinite boundaries in a finite element code, complex

stiffness and mass matrices are obtained. Complex eigenvalues ω are obtained for

the system of equations and the Q-factor is calculated using [38]:

Q = |ω|
2 Im(ω) (4.49)
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where ω is the natural frequency and Im its imaginary part.

4.3.2 Definition of the PML for a one-dimensional case

The elements in a PML use complex stretching of the coordinate axes to intro-

duce artificial damping to the wave. This is illustrated in the following case for a

one-dimensional wave propagation. Consider a longitudinal wave propagating in a

homogeneous, semi-infinite rod with axial coordinate z. If the wave travels with

speed c, the one-dimensional wave equation that describes this system is [54]:

∂2w

∂z2 −
1
c2
∂2w

∂t2
= 0, (4.50)

where w(z, t) is the displacement. Assuming a solution of the form w(z, t) =

ŵ(z) eiωt, the following equation is obtained:

d2ŵ

dz2 + k2ŵ = 0, (4.51)

where k = ω/c is the wavenumber. This equation has a solution of the form:

ŵ(z) = aout e
−ikz + ain e

ikz, (4.52)

where aout is the magnitude of the outgoing wave travelling from the origin towards

infinity, and ain is the magnitude of the incoming wave travelling from infinity

towards the origin.

In the PML region, the coordinate axes are stretched and the new coordinate z̃,

z̃ =
∫ z

0
λ(s) ds, (4.53)

is used.

By definition, z and z̃ are differentially related:

dz̃
dz = λ(z) and d

dz̃ = 1
λ(z)

d
dz . (4.54)
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Now suppose that the stretched coordinate z̃ is used as the independent variable in

Equation (4.51), then Equation (4.51) becomes

d2ŵ

dz̃2 + k2ŵ = 0, (4.55)

or in terms of z:
1
λ

d
dz

(
1
λ

dŵ
dz

)
+ k2ŵ = 0. (4.56)

If λ is defined as λ = 1 − iσ(s)/k, where the choice of the PML function σ(s) is

discussed later, the new coordinate becomes:

z̃ = z − i
k

∫ z

0
σ(s) ds. (4.57)

The solution to Equation (4.55) is therefore:

ŵ = aout e
−ik(z− i

k

∫ z
0 σ(s) ds) + ain e

ik(z− i
k

∫ z
0 σ(s) ds),

ŵ = aout e
−
∫ z

0 σ(s) ds e−ikz + ain e
∫ z

0 σ(s) ds eikz. (4.58)

Consider the case when σ is defined to be zero on [0, L] and σ(s) = β(s − L) on

[L,Lp], with Lp the length of the PML domain. σ corresponds here to a linear

attenuation function with end magnitude β(Lp − L); see Figure 4.2. Then for

z > L, the outgoing wave amplitude is aout e−β(z−L)2/2 (that decreases when z

increases), and the incoming wave amplitude is ain eβ(z−L)2/2 (that decreases when

z decreases). When σ is chosen such that it is zero at the boundary with the finite

medium, the solution is the same for both media and hence the wave enters the

PML without any reflection at the boundary. When σ > 0, the wave decays in

the direction of travel. Since the outgoing wave and the incoming wave travel in

opposite directions, the outgoing wave amplitude decays with increasing z, while

the incoming wave amplitude decays with decreasing z.

Because waves decay so rapidly as they travel through the PML region, a good

approximation to the infinite domain is obtained even if the condition ŵ(Lp) = 0 is

forced for a finite length Lp > L. For example, with a general absorbing function
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σ(s) such that σ(s) = 0 on [0, L] and σ(s) > 0 on [L,Lp], suppose the displacement

to satisfy ŵ(0) = 1 and ŵ(Lp) = 0. Then the boundary conditions become:

 ŵ(0)

ŵ(Lp)

 =

 1 1

e−(η+ikLp) eη+ikLp


aout
ain

 =

1
0

 (4.59)

with

η =
∫ Lp

L
σ(s) ds. (4.60)

In the particular case of the linear function shown in Figure 4.2, η = β (Lp − L)2 /2.

Solving Equation (4.59), the amplitudes become

aout = 1
1− e−2(η+ikLp)

and ain = −e−2(η+ikLp)

1− e−2(η+ikLp)
(4.61)

To mimic the infinite domain boundary condition, one desires ain = 0, such that

there is no incoming wave. The ratio

rend =
∣∣∣∣ ainaout

∣∣∣∣ = e−2η (4.62)

is a measure of the quality of the boundary condition. This quantity rend called

the end termination coefficient [30] is the reflection that arises from a finite end

termination of the PML and should be as small as possible.

From Equation (4.61), it can be seen that the end reflection coefficient is a function

of the end parameter β, the wavenumber k and the length (Lp − L) of the PML

region. Even for small end coefficient β, the bounded-domain is a good approxima-

tion to the infinite domain solution. Increasing β decreases the reflection coefficient

in the continuous case. However, in the discrete equation used in the finite element

method, β must be chosen carefully. If β is too large, the wave entering the PML

will decay rapidly, effectively creating a boundary layer, but if the discretisation is

too coarse to resolve this decay, the numerical solution will be polluted by spurious

reflections. This illustrates the complexity of finding the proper choice of PML

parameters.
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4.3.3 Difficulties with the convergence

To apply the method of PML for numerical approximation of the infinite boundary

conditions, one must select parameters for the PML such as its length and absorbing

function σ. Unless these parameters are selected properly, the performance of the

PML can degrade, and the desired accuracy cannot be obtained. The main difficulty

in the proper selection of PML parameters arises from the numerical discretisation

of the problem. When one applies the PML method to a continuous problem defined

on a finitely truncated domain, the selection of PML parameters is not too difficult,

since one only has to treat the wave reflections arising from the finite termination

of the PML. This is the case presented in Section 4.3.2. From Equation (4.62), it

can be seen that a large η value would reduce at zero the end reflection. This η

value is directly proportional to the parameter β that is set when defining the PML.

However, when the PML is discretised, additional wave reflection can occur at the

PML interface, leading to less accurate results. The accuracy of the method will

also depend of the PML discretisation refinement.

The main objective of the PML is to minimise the incoming waves on the infinite

boundary. It should theoretically completely absorb these waves and no reflection

should occur. Due to the particular discretisation of the problem, some energy is

reflected back. A precise analysis of the reflection was presented by Bindel [38]

and Koyama [30], where the total reflection due to the PML is separated into:

the end termination reflection, introduced by a finite termination of the PML; the

interface reflection, introduced by the discretised PML at the PML interface; and

the computed reflection, due to round-off errors in computing calculations.

Figure 4.3 presents the different domains and the mesh used when a simple beam

resonator is studied. The absorbing function σ in the PML region is shown with

gradually changed colour. The outside boundary of the PML region is clamped.

The different parameters that will have an effect on theQ-factor and can be modified

are:

• Geometrical parameters:
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– the dimension of the PML region: LPML and hPML, see Figure 4.3;

– the dimension of the “finite” support region meshed with usual finite

elements: (Lsupport − LPML) and (hsupport − 2hPML), see Figure 4.3;

• Meshing parameters:

– the number of elements in the PML region;

– the interpolation order of the elements in the PML (linear, quadratic,

cubic);

• PML function properties:

– the end value parameter β of the PML absorbing function σ;

– the polynomial order of the PML absorbing function σ.

The works in [38] and [30] enable one to select PML parameters in a rational

way. These results were used to start simulations in a sensible range of potentially

good parameters. Several simulations that use different parameters values presented

above are performed to check the convergence. The difficulty associated with finding

the converged result makes the process quite time-consuming to obtain a single

“correct” Q-value. All the results presented in Section 4.5 are obtained after the

convergence study has been completed.

It is shown here that the PML method is time-consuming and the obtained results

are not “exact” Q-values. Too many hypotheses and parameters have to be taken

into account when calculating the Q. To complete the validation of the support

model, another finite element method that uses infinite elements has been investi-

gated, and is discussed next.
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4.4 Infinite elements

4.4.1 Introduction

Infinite boundaries can be modelled using the finite element method using specific

“infinite elements”. First- and second-order infinite elements based on the work

of Zienkiewicz et al. [92] for static response and of Lysmer and Kuhlemeyer [93]

for dynamic response are implemented in AbaqusTM to model infinite boundaries.

These infinite elements are defined over semi-infinite domains with particular decay

functions that eliminate artificial wave reflections from the truncated domain of

the model. These elements are used in conjunction with standard finite elements,

which model the area around the resonator, with the infinite elements modelling

the far-field region. Since they are semi-infinite, propagating energy is lost in these

particular elements.

In this method, a steady state response is computed over a range of frequencies

near the resonance. The Q-factor is then calculated from the resulting amplitude-

frequency curve and defined as:

Q = ω0

∆ω , (4.63)

where ω0 is the natural frequency of interest and ∆ω is the half-power bandwidth at

−3 dB of the maximum amplitude, see Section 1.3.1 in Chapter 1. ∆ω can also be

interpreted as the frequency width at the points where half the maximum energy

is stored in the resonator. This is the common method used in experiments to

calculate Q-factors.

4.4.2 Infinite element characteristics

The infinite elements provide a theoretically non reflective boundary to the model

by using special shape functions. Regular shape functions are used to model the

displacement variables u while growing shape functions are used for position vari-

ables r [94].
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A one-dimensional case is illustrated in Figure 4.4. The infinite element contains

three nodes. The first node (node 1) is at the interface between the finite and

infinite domains. Its nodal parameter is s = −1, and it is at a distance r1 = a

from the “pole” that represents the source of propagating waves. The second node

(node 2) is at a distance r2 = 2a from the pole and has a nodal parameter s = 0.

The third node has a nodal parameter s = 1 and its position approaches infinity.

The shape function is chosen such that:

r = −2s
1− sr1 + 1 + s

1− sr2. (4.64)

This particular function gives

r = r1 at s = −1,

r = r2 at s = 0,

r →∞ as s→ 1.

Hence the position coordinate approaches infinity at the outer edge of the infinite

element.

The behaviour of infinite elements is based on modelling the displacement u with

respect to the spatial distance r measured from the pole, such that u → 0 when

r → ∞, and u → ∞ when r → 0. With standard quadratic interpolation of u

with respect to s, written in terms of its values u1 at node 1 and u2 at node 2, the

displacement is expressed as:

u = 1
2s(s− 1)u1 + (1− s2)u2. (4.65)

This particular displacement gives the required:

u = u1 at s = −1,

u = u2 at s = 0,

u→ 0 as s→ 1 (when r →∞).

Hence the displacement of the propagating wave decreases to zero as it approaches
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the outer edge of the infinite element.

These elements are provided in AbaqusTM for two-dimensional, three-dimensional

and axisymmetric analyses. They are shown to work well for static and dynamic

analyses. In any case, it is assumed that the response adjacent to the boundary of

the infinite elements is of sufficiently small amplitude that the medium responds in

a linear elastic manner. The infinite elements have to be placed sufficiently “far”

from the pole. They also have to be arranged so that the dominant direction of

wave propagation is orthogonal to the boundary.

4.4.3 Convergence analysis

A simple cantilever beam vibrating in-plane has been studied. Figure 4.5 shows

the particular mesh applied in AbaqusTM. The beam is meshed using classical

two-dimensional quadratic plane stress elements. The support is divided in two

different sections: a bounded domain meshed with standard finite elements, and an

infinite domain meshed using the infinite elements described in Section 4.4.2.

The infinite elements have to be numbered in a particular order in the AbaqusTM

input file. These elements can not be defined using the user interface and it makes

the process time-consuming if ones wants to modify the mesh refinement or ge-

ometrical parameters. If one decides to mesh the model automatically using the

AbaqusTM user interface, then the input file has to be edited and the infinite el-

ements node numbering changed before being inputted back into AbaqusTM. It

is much simpler to directly create the mesh using a Matlab program that defines

node coordinates and node numbering in the different elements, using appropriate

numbering for the particular infinite elements.

The drawback of creating a mesh manually is that it is very difficult to obtain the

node coordinates of a perfectly “circular” mesh that performs better when using

infinite elements. Instead, a more “rectangular” mesh is used here, see Figure 4.5.

The beam width is meshed using four elements, and the element size in the support

gradually increases to fill the entire bounded domain. The outer ends of the infinite
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elements are placed at an approximate distance 2R from the pole (origin of the

propagating waves – that is the beam attachment point). In order to better satisfy

the fact that the propagating waves should impinge normally to the infinite ele-

ments boundary, the external edge of the support has been forced to be not totally

rectangular. A polynomial interpolation is applied when defining the coordinate of

the external nodes. This allows the infinite elements to have boundaries that are

closer to those of a perfect circle. A perfect circle could not have been used as all

the infinite elements would have shown too large distortion in size and angle. This

particular polynomial approximation provides the best compromise between a circle

with normally impinging waves and a model that do not contain significant mesh

distortion.

The support is supposed to be infinite and a variation in the bounded domain length

R (see Figure 4.5) should theoretically not influence the results for the natural

frequency and Q-factor of the resonator. However, it has been found that the

calculated Q-factor is actually dependent of R. It is expected that this dependency

is also a function of the transverse wavelength λ of the propagating shear waves in

the support. λ is defined as:

λ = 1
ω

√
E

2ρ(1 + ν) , (4.66)

where ω is the frequency in rad/s, E the Young’s modulus, ρ the mass density and

ν the Poisson ratio.

For different values of R, a steady state analysis is performed in the vicinity of

the expected first natural frequency. The Q-factor is then calculated using the

amplitude-frequency response curve and the half-power bandwidth method pre-

sented in Section 4.4.1.

Figure 4.6 shows the calculated Q-factor for different mesh refinements and different

values of R. With a very coarse mesh, the Q-value quickly diverges as R becomes

large. This is probably due to the difference in size between the bounded domain and

the resonator itself. It is important to notice that, for example, when R/λ = 10,

the bounded domain is approximately 3000 times bigger than the beam width.
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It is understandable that a coarse mesh struggles to correctly model the energy

propagation and dissipation arising from a relatively small resonator. With a fine

mesh, the Q-value first shows a maximum around R/λ ≈ 1.75, then seems to

stabilise between 3 < R/λ < 5, and finally oscillates for R/λ > 6. This simple

convergence test shows the complexity of calculating Q. Q is found to be highly

dependent on the mesh density and on the support dimensions. However this study

shows that a range of approximate Q-values can still be obtained using the infinite

elements in AbaqusTM. It seems sensible to use as a maximum Q-value, the value

obtained when R/λ ≈ 1.75 and as an appropriate minimum Q-value, the value

obtained when R/λ ≈ 4. These two particular values of R/λ have been used in a

parametric study presented Section 4.5.1.

4.5 Results for some simple test cases

Due to the complexity of creating meshes in the HiQLab program and directly from

Matlab for the use of infinite elements, the difficulty to obtain a rapid converged

result, and the computing cost of simulation with finite elements methods, the

methods presented in Sections 4.3 and 4.4 have not been applied to the entire ring-

based resonator. However, they have been applied to simple test cases in order to

validate the analytical model presented in Section 4.2.

4.5.1 Cantilever beam

A simple cantilever beam (Figures 4.3 and 4.5) vibrating in its fundamental mode

was studied first. For a fixed beam width, the calculated Q-factor is plotted as

a function of the length/width ratio of the beam in Figure 4.7. This graph com-

pares the results obtained using the PML method in HiQLab, infinite elements in

AbaqusTM, and the analytical model.

When applying the infinite element method, the entire mesh and its node coordi-

nates are created using Matlab, for each beam length. At this point, an arbitrary
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value of R is used. Then, a simple frequency analysis with AbaqusTM is performed

to get the first natural frequency of the system. With this frequency, appropriate

R values are calculated such that R/λ ≈ 1.75 or R/λ ≈ 4. Using these R values,

the Matlab program is re-run and a new model created. A steady state analysis

is then performed in AbaqusTM for both models (R/λ ≈ 1.75 and R/λ ≈ 4). This

provides a sensible range of calculated Q-factors. The results obtained from these

simulations are shown in Figure 4.7.

All of the curves show the same trend. It can be shown that the results display

a cubic character (explained by Hao et al. in [42]) when the beam is made longer

and/or thinner. Even though the infinite element method gives a “range” of poten-

tially correct Q-values, it is shown that they are all in agreement. The calculated

natural frequency is also presented for the analytical and PML methods in Fig-

ure 4.8. When the beam is long and thin (high length/width ratio), both methods

agree perfectly for the natural frequency. This can be explained by the fact that the

ray tracing method is based on thin beam theory meaning it will always be a better

model for thin beams. Also, when the beam is longer, the effects that occur at the

boundary beam/support become negligible compared to the beam overall vibration

and a rigid-attachment is a good boundary approximation. For short beams, it is

difficult to understand exactly the coupling at the beam/support boundary and the

presence of high stress also degrades the finite element approximation.

In conclusion, the three methods show good agreement for Q-factor and natural

frequency for a simple cantilever beam resonator. Bearing in mind that the objective

is to use the analytical model to calculate the Q of the entire ring-based rate sensor,

it is important to notice that the leg attached to the support will undergo flexural

and longitudinal vibrations simultaneously when the ring is vibrating in its 2θ mode.

This coupling between flexural and longitudinal vibrations provides a complication

as the analytical model of the support uses two different expressions for shear and

normal stress sources. In order to validate the model when flexural and longitudinal

vibrations occur simultaneously, another test case has been studied. Again, due to

the complexity of meshing and computing cost for the finite element methods, a

simple model is evaluated that demonstrates coupled shear/normal stresses at its
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boundary. This is considered in the next section.

4.5.2 Two-beam system

The two-beam system considered is shown in Figure 4.9. It consists of two beams

at right angles to each other. Beam ‘1’ is attached to the infinite support; beam ‘2’

is free. The Q-factor corresponding to the first mode of vibration is studied.

For a fixed beams width, the length L2 of beam ‘2’ is changed. The ray tracing

method is used to calculate the natural frequency of the first mode, its corresponding

mode shape and shear/normal force ratio at the clamped boundary. This calculated

ratio is plotted as a function of the length/width ratio of free beam ‘2’ in Figure 4.10.

This graph shows that when beam ‘2’ is short (small length/width ratio), the shear

forces are predominant at the clamped boundary. This phenomenon can easily be

explained by the fact that when beam ‘2’ is almost negligible (really short compared

to the length L1 of the attached beam ‘1’), the first mode of vibration of the system is

similar to the fundamental mode of a cantilever beam that induces flexural vibration

and shear stresses only, see Figure 4.11(a). In other words, at the shortest limit

of L2, the system behaves like a simple cantilever beam of length L1 and only

shear stresses are present in the first vibrational mode. On the other hand, when

beam ‘2’ is very long (high length/width ratio), the vibrations of the system are

mainly due to beam ‘2’ vibrating in flexure, see Figure 4.11(b). As beam ‘2’ has

most influence on the overall vibration, it will induce beam ‘1’ to have longitudinal

motion. Consequently, normal forces due to the longitudinal vibration of beam ‘1’

become predominant at the attached end and the shear/normal force ratio tends to

zero.

For the modes of interest for the entire gyroscope, it will be shown (in Chapter 5)

that the shear/normal force ratio that occurs at the clamped boundary is approxi-

mately 1.5.

The lowest natural frequency calculated with the analytical model and the PML

method in HiQLab is presented in Figure 4.12. As in the previous case, when the
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length/width ratio is high (thin beam), the ray tracing and PML method agree very

well for the calculated natural frequency. This is mainly due to the same reason

explained before: the ray tracing method is based on thin beam theory and only

models the centreline of the beams.

The associated Q-factor calculated is presented in Figure 4.13. For the infinite

element method, the maximum Q-value, obtained when R/λ ≈ 1.75, has been

used. Again, all the curves show a similar trend. However, it appears in this

case, which is not true for the simple cantilever beam study, that the relative Q

difference increases when the length/width ratio of beam ‘2’ is higher. In the high

length/width range, normal forces are predominant at the attachment point. Thus,

a possible explanation is that the analytical model does not properly quantify the

loss occurring when normal stresses are predominant. An alternative explanation

could be that the ray tracing method struggles to correctly model the beam joint

when it is under high stresses. The thin beam theory used in the ray tracing does

not consider high stress concentrations at the corner of the beam joint, as only

its centreline is modelled. The complexity of a real joint could be not properly

modelled with the thin beam theory.

However, a simple study has ruled out this hypothesis. The same system has

been modelled in AbaqusTM using quadratic elements, similar to the ones used

in HiQLab. A modal analysis in AbaqusTM gives the modal strain energy of the

entire system and forces at the clamped boundary for the first mode of vibration.

These clamped forces and strain energy are inputted into the analytical model

of the support presented in Section 4.2, and the Q-factor is calculated. These

results are illustrated in Figure 4.13. This study represents a combination between

the analytical model of the support and a finite element analysis of the vibrating

structure. The excellent agreement achieved indicates that the ray tracing method

correctly models the vibrations, and that the difference between analytical and PML

methods is only due to the support model.

In conclusion, Figure 4.13 indicates that the three different support models give the

same range of Q-values and same trend when the length/width (or shear/normal
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forces at the boundary) ratio is changed.

4.6 Conclusion

The objective of this chapter was to find an appropriate model for the analysis of

support loss. It was intended that this model should produce accurate results in

a fast and effective way such that resonator parameters can be modified without

major difficulties in the support modelling.

One of the main analyses performed during the research project was to develop

a ray tracing method that models vibrations of complex-shaped resonators (see

Chapter 2). The support model should thus easily be adapted and coupled with this

ray tracing method in order to calculate support losses. As the ray tracing method

was implemented and programmed into Matlab, a support model that fits easily

into Matlab was developed. This corresponds to the “analytical support model”

presented in this chapter. The ultimate aim of this chapter was thus to validate this

analytical model by using other possible methods. The other investigated methods

that approximate infinite domains were the PML method and the use of infinite

elements in AbaqusTM.

It has been found that the three different methods (namely the analytical model,

the PML method and the use of infinite elements) give Q-values in the same range

of magnitude and exhibit similar trends when a parameter is varied. This has been

shown for simple (Section 4.5.1) and for more complex (Section 4.5.2) resonator

vibrations.

However, the results obtained for the Q-factor, Figures 4.7 and 4.13, show that the

analytical model tends to overestimate Q, or underestimate the quantity of energy

lost; even though the support is considered as semi-infinite. The most plausible

reason for this is in the way the resonator itself is modelled. The presence of a

clamped boundary in the ray tracing method ensures that the vibrational energy

stays within the resonator and is maximised. In contrast, the PML and the infinite
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element methods model the resonator and its attachment. The support is therefore

taken into account properly when analysing the resonator vibration. The energy

that stays within the resonator and is stored is expected to be smaller. The main

reason why the Q-factor is overestimated with the analytical method is therefore

thought to be because the quantity of stored energy is over-evaluated. It is also very

difficult to predict and model the real effect of the attachment on the resonator.

Even a finite element analysis makes an important approximation in this region of

high stress concentration.

It is useful to notice that finding an “exact” Q-value is not really important, but

parameter trends are much more interesting. Indeed, the Q-factor is so sensitive to

many factors that exact values are difficult to find. The main factors that can affect

Q for support loss include: the vibration of the resonator itself, the attachment on

the support, and the way the energy is supposed to leave the support. The Q-factor

for typical MEMS resonator is very high, and the values obtained from experimental

studies are even more approximated. External factors can affect significantly the

obtained Q-factor as the quantity of energy lost through the support is very small

and difficult to measure. As result, an exact value is not so relevant. On the other

hand, a trend that shows the influence of some parameters on the Q-factor can

be used to design more efficient resonators. It would be interesting to prove that

changing a particular parameter can greatly affect the Q-factor.

From the different analyses performed in this chapter, it has been concluded that the

three models all exhibit similar trends. The analytical model can thus be validated.

Furthermore, it is interesting to note with this model that it is quicker to run; there

are no convergence issues on its results; and, it is easy to modify some parameters

in the resonator design, as the resonator and support are modelled independently.

This will be the model used to calculate Q-factors of the ring-based rate sensor (see

Chapter 5).
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Figures

(a)

(b)

Figure 4.1: Support modelled as a semi-infinite thin plate. Excitation sources:
(a) Shear stress, (b) Normal stress.
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Figure 4.2: Linear attenuation function used in the PML method for a one-
dimensional wave.
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(a)

(b)

Figure 4.3: Cantilever beam system consisting of resonator, bounded support
and the region; (a) Different domains; (b) Actual mesh in HiQLab
and boundary conditions.
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Figure 4.4: Nodal variable position for a one-dimensional infinite element in
AbaqusTM.

Figure 4.5: Cantilever beam system with infinite elements to model the sup-
port.
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Figure 4.6: Convergence analysis. Q-factor function of R/λ calculated with
different mesh densities.

Figure 4.7: Cantilever beam case. Q-factor calculated using the three different
methods as a function of the length/width ratio.
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Figure 4.8: Cantilever beam case. First natural frequency calculated using dif-
ferent methods.

Figure 4.9: Geometry of the two-beam case.
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Figure 4.10: Two-beam case. Shear/normal force ratio at the attachment point
between the resonator and its support.

(a)

(b)

Figure 4.11: Two-beam case. Lowest frequency mode shape for the shortest (a)
and longest (b) beam ‘2’ studied.
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Figure 4.12: Two-beam case. First natural frequency calculated with different
methods.

Figure 4.13: Two-beam case. Q-factor calculated using the three different
methods as a function of the length/width ratio of beam ‘2’.
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Chapter 5

Influence of leg design on the

Q-factor

5.1 Introduction

Chapter 4 presented different methods for calculating the support losses in a re-

sonator. Simple systems were investigated as it was found to be impractical to study

complex-shaped resonators and their support using finite element methods. It was

shown that the proposed analytical model provided a fast and efficient method to

calculate support losses. Better understanding of support losses in a MEMS ring-

based rate sensor is the principal aim of the thesis. Calculations of these support

losses for different designs are presented in this chapter.

The main component of the ring-based resonator is a vibrating ring. It is supported

on eight identical, uniformly spaced legs, see Figure 5.1. Devices like these are

based on the vibration of axi-symmetric structures and are more complex than the

simpler cantilever beam resonators considered previously. Their symmetric form

makes them relatively immune to external vibrations. Indeed, knowing that the

lowest order mode of the ring-based rate sensor, which is a translational whole

ring motion with respect to the support (illustrated in Figure 3.9 in Chapter 3),

occurs at a frequency superior to 5 kHz, the resonator is insensitive to environmental
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vibration inputs normally experienced in aerospace and automotive applications,

which usually only contain components up to about 2 kHz. Another advantage of a

ring resonator is that it is possible to make use of the nodal structure of the vibration

pattern to support the ring in such a way that it does not interact strongly with the

support on which it is mounted. These are the main reasons why the resonator was

designed with cyclic symmetry properties. The legs are designed to be as flexible as

possible within the available space between the ring and its support. Engineering

intuition suggests that legs composed of longer sections and smaller angles between

them will be more flexible. Section 5.2 presents the calculation of support losses for

the resonator with its original design and dimensions, whereas a numerical study

on the leg design is presented in Section 5.3.

Another possible solution to reduce the energy lost through the support is the

addition of blocking masses. Cremer et al. [55] gave the theoretical description of

a single blocking mass for bending waves. Weisbord [95] suggested the addition

of a blocking mass in a beam resonator, which compensates the moment and the

force at the clamping end in a flexural mode. In a recent work, Haueis et al. [96]

extended Weisbord’s idea and described the behaviour of a beam clamped between

two blocking masses. The full dynamic interaction with the clamped end was taken

into consideration. Their model of a resonant beam with blocking masses was

developed analytically and solved numerically using the finite element method. It

was shown that the two masses reduce the vibration transmitted to the boundaries

for a specific mode. In Section 5.4, blocking masses are added to a ring-based

resonator. The objective is to investigate their influence on the clamping forces

and the associated Q-factor variations. It is important to notice that in [96], the Q-

factors are not actually calculated. The effect of the blocking masses is analysed only

in terms of the clamping forces and transmission coefficients through the masses.

The addition of masses also changes the energy stored in the system and this can

influence the Q-factors. As a more complete study, forces, energy distributions and

Q-factor variations are considered in Section 5.4.

For the ring-based resonator, the fundamental modes of interest are the 2θ modes,

occurring at an angle of 45◦ to each other. If the resonator is perfectly cyclically
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symmetric, both modes have identical frequencies. This is impossible to achieve

in practice because dimensional variations and material non-uniformity may be

present, and frequency splitting occurs. For improved sensor performance, it is

necessary to minimise the split. The crystal symmetry of silicon helps here as this

particular material does not contribute to frequency splitting. The greatest issue

whilst manufacturing a product with almost no imperfections is from manufacturing

tolerances, but these are minimised by the micro-machining technology used [1].

Any additional trimming requirement is satisfied by using a laser ablation to remove

mass from the ring at a particular location. The subtraction from the resonator

of a small mass alters both the position of the nodal points in the ring vibration

and the natural frequencies. By changing the location at which the mass is re-

moved, it is possible to adjust the position of the vibration pattern relative to the

excitation force and pick-off positions so that one or other of the modes can be

excited independently. It is often necessary to reduce the frequency split to the

order of 0.01% to maintain strong resonant coupling between a pair of given modes.

By introducing the concept of the “equivalent imperfection mass”, Fox [88] showed

that it is possible to consider the inverse trimming problem. His work consisted

in determining the size and location of the single mass that needs to be added (or

removed) from an initially imperfect ring to make the frequencies of a particular

pair of modes the same. This work was later extended by Rourke et al. [89] who

considered the problem of simultaneously trimming a number of pairs of modes of

an imperfect ring. The influence of different types of random mass imperfection

on the statistical distribution of the natural frequency splits was also investigated

in [10].

Section 5.5 analyses support losses for imperfect ring-based resonators. Some pa-

rameters in the design of a single leg are varied so that the cyclic symmetry prop-

erties are lost. Splits in natural frequencies and associated Q-factors are presented.
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5.2 Original study

5.2.1 Main steps for calculating Q

The method used throughout this chapter to calculate Q refers to the “analytical

model” presented in Chapter 4. The main steps are summarised below.

• The vibrations of the system are analysed using the ray tracing method pre-

sented in Chapter 2. It is assumed that the resonator is clamped at the leg

ends, and the modelling takes into account the cyclic symmetry properties of

the structure (see Figure 5.1 and Chapter 3). As a consequence, only one leg

(three beam portions) and one ring/beam joint transmission are modelled. To

obtain the natural frequencies of the resonator, five different analyses (cyclic

mode number κ = 0, 1, 2, 3, 4, see Chapter 3) are performed. For each κ, the

following fundamental equation:

|I−TD| = 0, (5.1)

derived from the ray tracing method (see Section 2.3.1 in Chapter 2), is solved

to calculate the natural frequencies of the resonator.

• The mode shapes of the principal sector are calculated using the ray tracing

method with cyclic symmetry simplification. As explained in Chapter 3, the

mode shapes for all sectors can be obtained from the principal sector. The

mode shapes of the complete resonator are then constructed. The calculated

mode shapes are used to calculate the total energy stored W and the ten-

sile forces T and shear forces S at the clamped ends of the resonator. These

quantities are then used to calculate the Q-factor, see Chapter 4. To calculate

the mode shape, Matlab actually solves an eigenvector problem and scales

the calculated eigenvectors by default such that their norm is equal to ‘1’. In

order to objectively compare results obtained for different leg configurations

(see Section 5.3), it is important to find a logical way to scale the mode shape
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so that all analyses use the same process. To have a better graphic visualisa-

tion, it was chosen that the maximum flexural displacement in the ring should

be set equal to 0.2 mm, that corresponds to approximately a 1/10th of the ring

radius. It is important to note that the values in the eigenvector solution are

“wave amplitudes” and not displacements. From the default Matlab solu-

tion, the actual displacements (longitudinal and flexural) at any point in the

resonator are first calculated. The value of maximum displacement is used.

By dividing the solution vector by this value and re-constructing the actual

displacements, the maximum displacement now becomes equal to 1 m. Then

this mode shape is divided by 5000 (1/5000 = 0.2·10−3 m) and one can get the

maximum displacement equal to 0.2 mm. The same scaling procedure is un-

dergone for each mode shape presented later in this chapter so that objective

results can be compared.

• The energy lost per cycle of vibration ∆W is defined as the sum of ∆Wu and

∆Wv, the energy losses from induced normal and shear stresses respectively at

the clamped ends, see Chapter 4. From the axial and shear forces T and S at

the clamped ends, the energy loss quantities ∆Wu and ∆Wv due respectively

to longitudinal vibration (normal stress) and flexural vibration (shear stress)

are derived (see Chapter 4 for a full explanation) for each particular mode.

Some useful parameters are recorded during the solution analysis such as the

clamped forces and the energy in each portion of the resonator in order to

have a better understanding of eventual Q-variations.

• The Q-factor arising from support losses is calculated using:

Q = 2π W

∆W . (5.2)

In order to have a maximum confidence in the Matlab program, a few tests are

run once the mode shape and energies are calculated. One example is that at a

natural frequency, the total kinetic energy must be equal to the total strain energy.

The symmetry properties of the transmission coefficients are also controlled.
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5.2.2 Results from the original analysis

The actual dimensions of the ring-based rate sensor are presented in Table 5.1, the

notation used is defined in Figure 5.2. The mode shape of the lowest modes for

κ = 0, 1, 2, 3, 4 are illustrated in Chapter 3, Figure 3.9. The natural frequencies

and associated Q-factor of the ten lowest modes are calculated using the method

summarised above and are given in Table 5.2.

It can be seen that the Q-factor of the lowest 2θ mode (lowest mode with κ = 2) is

significantly (5-10 times) higher than the other modes. For convenient comparison

with results that will be presented in later sections, the deformations of the resonator

for the 2θ mode are shown in Figure 5.3. The Q-factor is a measure of the energy

efficiency of the resonator for particular modes. Amongst the modes considered

in Table 5.2, it appears that the 2θ mode is relatively more efficient with respect

to support loss; more of the energy stays within the resonator and less propagates

away to the support.

To better understand this phenomenon, it is interesting to look at the strain energy

contained in the different portions of the resonator for different modes. For example,

in the κ = 2 mode, approximately 25% of the strain energy is contained in the legs

(and 75% in the ring); whereas for the lowest κ = 1 mode, approximately 98% of

the strain energy is contained in the legs, and for the lowest κ = 0 mode 99% of

the energy is in the legs. It might be argued that modes for which the legs contain

more of the energy will lose more energy through support loss because the legs are

attached directly to the support. The main reason for these different energy ratio

characteristics is whereas the κ = 2 mode is mainly a “ring mode” where the ring is

the dominant deformation; the κ = 0 and κ = 1 modes are respectively a rotation

of the ring about its centre and a rigid body translation of the ring, see Figure 3.9.

The deformation of the ring is relatively small in these two latter mode shapes and

consequently the Q-factor due to support loss is relatively small. Although this

ratio of strain energy in the legs over strain energy in the ring can explain the Q-

factor differences, it is also important to consider the quantity of energy loss, which

is a function of the stresses at the clamped end.
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The Q-factors for the 2θ and 3θ modes calculated with the developed models are

approximately 1.5 ·105 and 8.1 ·104, respectively, see Table 5.2. These results can be

compared with Wong’s experiments and predictions [2] for thermoelastic damping in

similar resonators, see Table 5.3. In his work, he measured experimentally Q-factors

of approximately 9.5 ·103 and 1.2 ·104, and predicted Q-factors due to thermoelastic

damping of 1.2 · 104 and 1.8 · 104, for the 2θ and 3θ modes, respectively. The

measured overall Q-factor considers all damping mechanisms and is defined as in

Equation (1.10). It is interesting to notice that the energy lost predicted (inverse of

the Q-factor) for support loss is smaller than the difference between the energy lost

by thermoelastic damping predicted by Wong and the total energy lost measured.

There is therefore no inconsistency between the support loss predictions and Wong’s

predictions and measurements, which gives confidence in the models developed and

used here.

In applications, the excited and sensed modes are usually the 2θ mode and its or-

thogonal companion. For clarity, only results relating to the 2θ mode are presented

in the following sections as it is of primary interest.

5.3 Influence of leg dimension

In order to see the influence of different leg dimensions on the Q-factor, various

parameters are varied with respect to the supporting legs. In this section, the leg

dimensions are modified for all the legs so that the cyclic symmetry is maintained.

The resonator is composed of eight identical sectors, each of which contains a leg

(three beam portions) and a 45◦ ring portion. Using the cyclic symmetry simplifi-

cation, only one sector is modelled in the ray tracing method.

5.3.1 Change of the leg geometry

In this section, the geometry of the leg is modified. The leg width is maintained at

the original width but the beam lengths and angles between the beams that compose
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the leg are changed. The beams are numbered as follows: beam ‘1’ (length L1) is

attached to the ring, beam ‘2’ (length L2) connects beams ‘1’ and ‘3’, and beam

‘3’ (length L3) is clamped to the support. The angles between the beams are α

between beams ‘1’ and ‘2’, and φ between beams ‘2’ and ‘3’. The notation used is

summarised in Figure 5.2. The original dimensions used in the previous analysis

(Section 5.2.2) are shown in Table 5.1.

There are five variable parameters that define the leg geometry: L1, L2, L3, α and

φ. The geometry is constrained in the following way:

• Beam ‘1’ and beam ‘3’ are oriented radially (i.e. their centrelines pass through

the centre of the ring).

• The total angle subtended by the leg, angle between beam ‘1’ and beam ‘3’ is

equal to 40◦. This ensures that the ring contains eight legs with a 5◦ angular

separation between each.

• The point of attachment to the support is a fixed point. This means that the

distance between the clamped end and the centre of the ring is constant. The

reason for this is that the modifications on the legs designs are not intended to

change the dimension of the silicon wafer on which the resonators are etched

nor their position on the wafer.

These above constraints couple the five variable parameters together. It was decided

to vary the lengths L1 and L3 of beams ‘1’ and ‘3’. When one of these lengths varies,

the other parameters (e.g. angles between them), vary accordingly. Appendix B

shows how the geometric parameters have been derived from the known original

dimensions. The coupling between the parameters due to the imposed constraints

is also described in Appendix B.

In the models presented later, L1 and L3 are varied between four extreme cases,

shown in Figure 5.4. For each of these extremes, and for a few values between

them, the other geometric parameters needed for the ray tracing application are
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calculated, see Appendix B, and the natural frequency and Q-factor are calculated

following the procedure explained in Section 5.2.1.

Results for the natural frequencies for different values of L1 are presented in Fig-

ure 5.5. They are shown as a function of L3. The associated Q-factors are presented

in Figure 5.6. Note that on these figures, the five coloured rectangles represent the

four extreme cases (whose geometries are illustrated in Figure 5.4) and the origi-

nal case (see Figure 5.2). The colour of each rectangle corresponds to the design

illustrated with the same colour.

From Figure 5.6, it can be seen that leg designs with a longer beam ‘1’ generally

have a larger Q-factor resulting in improved performance. If at the same time, beam

‘3’ is shortened, then the largest Q-factor is obtained. From this particular design

(blue rectangle in Figures 5.5 and 5.6, and blue design in Figure 5.4), the Q-factor

is approximately three times larger than for the original design. The associated

mode shape is presented in Figure 5.7. The main reason for the improved Q-

factor is that the leg is more flexible when beam ‘1’ is long, i.e. the clamped end

has less influence on the ring vibration. It can clearly be seen from the mode

shape that the ring contributes in an important way to the overall energy of the

resonator. It is important to recall that the Q-factor is a function of the total

energy stored and the amount of energy loss. Hence a larger Q-value is obtained

for designs in which the total energy stored is larger. At the same time, the natural

frequencies do not change much for the variations considered. It can be seen that

there is a difference of approximately 350 Hz, which is small compared to the original

frequency of operation (≈ 14000 Hz). It is important to control the associated

change in frequency because a large variation will modify the thermoelastic loss [2].

The design with a short beam ‘1’ and a short beam ‘3’ (whose extreme is represented

by a green rectangle in Figures 5.5 and 5.6, and green design in Figure 5.4) is inef-

ficient compared to the original design. The Q-factor in this case is approximately

100 times smaller than the original one. Furthermore, the frequency is greatly in-

creased with this kind of design. The mode shape of this extreme case is shown in

Figure 5.8. It can be seen that for this design, the influence of the legs on the ring
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vibration is significant. The ring vibration has changed significantly compared to

the original case. This extreme case corresponds to the design where the legs are as

straight as possible with the applied constraints. Their flexibility is greatly reduced

and their participation in the overall resonator deformation is increased. From the

mode shape, it is clear that the ring deformation is less important compared to the

legs in the beam portion ‘2’. This indicates that most of the energy is contained

within the legs, increasing the support losses and reducing the Q-factor.

5.3.2 Change of leg width

In this section, the geometry of the leg is maintained at the original design (see

Figure 5.2 and Table 5.1). However, the in-plane width of the leg is modified.

The original leg and ring widths are equal to 0.061 mm and 0.121 mm respectively.

The leg width takes values between 0.03 mm and 0.105 mm. The ring width is not

changed as it is intended to have a frequency of operation very close to the original

2θ frequency; and of course, changes in the ring width (the ring being the principal

vibrating structure in the 2θ mode under investigation) will greatly influence the

2θ natural frequency.

Results for natural frequencies and associated Q-factors as a function of leg width

are shown in Figure 5.9. From this graph, it can be seen that the 2θ frequency

increases when the leg width increases, whilst the Q-factor decreases when the leg

width increases. This is mainly because thin legs are more flexible in bending and

constrain the ring less. This ensures that the vibration of the ring is closer to that

of a ring without support, maximising the energy stored. In contrast, wide legs

have a strong influence on the ring vibration and restrain its amplitude. When the

width of the leg is half the original value, the Q-factor is almost 20 times larger

than the original Q-factor.

To better understand the effect of these modifications, it is interesting to consider

the energy distribution within the resonator as a function of the leg width. Fig-

ure 5.10 shows the percentage of energies (strain and kinetic) contained in the

158



Chapter 5. Influence of leg design on the Q-factor

different parts of the structure. The legs are divided into three beam portions,

numbered from the ring to the support, as shown in Section 5.3.1. The energy

corresponding to a specific portion of a leg is combined with the energies for the

same portion of all other legs. This means, for instance, that the energy of beam

‘1’ corresponds in fact to the sum of the energy of the beam portions numbered ‘1’

for each leg. All of these energies are then divided by the total energy stored and

shown as a percentage.

From Figure 5.10(a), which depicts the kinetic energy percentage for the different

portions, it is clear that the ring moves less when the leg is wider. One can see that

the vibrations, that are mainly present within the ring for very thin legs (approx-

imately 75% of the kinetic energy is contained in the ring) are shifted to the legs

themselves when the leg width is increased: the energy within the ring decreases

by approximately 55% for the widest leg modelled. The kinetic energy percentage

of beam ‘3’ remains close to zero, as expected because beam ‘3’ is “clamped” at

its end. The fact that the percentage of kinetic energy contained within the ring

decreases when the leg width increases shows that the total energy stored decreases.

It can be seen in Figure 5.10(b), which shows the strain energy percentage of the

different portions, that the strain energy of the ring decreases when the leg width

increases. The ring does not deform as much as for the case when the leg width is

very thin. The strain energies in the leg portions increase, which can be explained

because they have a larger width and also show a greater deformation. It is inter-

esting to look at the energy of the third beam portion. As this one increases (up to

25%), it is expected that the forces at the clamped end will also increase, meaning

an increase in the amount of energy lost. These explain the Q-factor decrease shown

in Figure 5.9.

In the above study, the widths of all the beam portions that form the leg were

modified together such that the entire leg had the same width. However, it may

be interesting to investigate the consequence of independently changing the width

of each beam portion. This changes the transmission coefficients at the corner of

each joint. Within a beam corner, the incident and created waves do not travel in
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beams of equal cross-section any more. By changing the width of the three beam

portions independently, the same main conclusions discussed above are found. Legs

consisting of thinner beams are more flexible, restrain the ring less and result in

a higher Q-factor. On the other hand, wider beams in the legs constrain the ring

vibration, contain a larger relative amount of energy (kinetic and strain) and are

responsible for more energy being lost and a lower Q-factor.

In the next section, masses are added along the length of the legs, and their influence

on blocking the energy flow out from the resonator studied.

5.4 Addition of blocking masses

In this whole section, masses are added to the eight legs simultaneously such that

the cyclic symmetry of the ring-based resonator is maintained. Analyses of natural

frequencies and mode shapes are performed using the ray tracing method, making

use of cyclic symmetry simplification. From the mode shapes, the Q-factors are

then calculated. The objective here is to study the influence of added masses on

the natural frequencies and Q-factors of the 2θ mode. The masses are added either

within a beam portion or at a corner. These two studies are discussed in the next

two subsections.

5.4.1 Mass added to a beam portion within the leg

The aim of adding masses is to reduce the energy flow towards the support. It

is expected that reducing the vibration amplitude within the legs may reduce this

energy flow and its induced energy loss. Masses are first added within each of

the three beam portions of the legs, as previously described. For simplicity it is

supposed that the added masses are “point masses” added to the mid-point of each

beam portion and for all legs simultaneously.

For each case (point mass in either beams ‘1’, ‘2’ or ‘3’), the natural frequencies
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and associated Q-factors are calculated. The results are illustrated in Figure 5.11(a)

for the natural frequencies and Figure 5.11(b) for the Q-factors. In each of these

graphs, the three lines correspond to masses being added to the different beam

portions. Natural frequencies and Q-factors are plotted as a function of the amount

of mass added. This quantity is expressed as a percentage of the total mass of the

resonator, Mresonator, defined as:

Mresonator = Moriginal +Madded. (5.3)

where Moriginal and Madded are the original mass of the resonator (without added

masses) and the total amount of added masses. Moriginal is defined as:

Moriginal = h ρ
(
2πR bring + 8 (L1 + L2 + L3) bleg

)
. (5.4)

In Equation (5.4), h is the axial length of the ring and legs, ρ is the mass density, R

is the ring radius, Li (i = 1, 2, 3) is the length of the beam portion i, bring and bleg
are the width of the ring and leg respectively. The notation is defined in Figure 5.2.

The total amount of added mass Madded is simply defined as:

Madded = 8m, (5.5)

where m is the value of one point mass added.

The highest mass value considered corresponds to added masses equivalent to ap-

proximately 50% of the total mass of the resonator. This is an unrealistically large

value, which was only included to get a better idea of the natural frequency and

Q-factor trends, and is unlikely to be implemented practically.

From Figure 5.11(a), it can be seen that in each case, adding mass reduces the nat-

ural frequency, as expected (the resonator has now a bigger mass but the stiffness is

unchanged). Furthermore, if the masses are added closer to the clamped boundary,

then the reduction in natural frequency is less than if the masses are added closer

to the ring. Thus adding point masses to beam ‘1’ will have a more significant effect

than adding masses to beam ‘3’. Adding a point mass in beams ‘3’ will not change
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the natural frequency so much because beams ‘3’ are clamped at one end and the

magnitude of motion is significantly less than that of the ring in the vibration mode

of interest.

Figure 5.11(b) shows Q-factors as a function of the added mass for different added

mass positions. From this figure, it can be seen that adding a point mass to beams

‘1’ increases the Q-factor whereas Q-factor decreases if masses are added to beams

‘2’ or ‘3’. When point masses are added to the middle of beams ‘3’, the Q-factor

decreases by approximately 30%. This can be understood on the basis that adding

point masses closer to the clamped boundary will induce further vibrations in this

part of the resonator. Hence, the energy within the resonator is shifted towards the

clamped boundary and more energy will tend to leave through the support.

This can be further illustrated by investigating the forces at the clamped end.

Firstly, it is important to note that, with the given resonator dimensions, the energy

dissipated per leg at the clamped boundary by shear stresses is approximately 10

times larger than the energy dissipated by normal stresses. Therefore, the shear

force has a much more dominant influence than the normal force on the Q-factor.

Figure 5.12 shows the shear force at the clamped end as a function of the added

mass for different added mass positions. All three analyses were scaled in the same

way, such that the maximum flexural displacement of the ring is equal to 0.2 mm.

It is then possible to compare “objective” values of shear forces. From Figure 5.12,

it can be seen that when masses are added to beams ‘2’ or ‘3’, the shear force at

the clamped end increases. On the other hand, when masses are added to beams

‘1’, it reduces the shear force. This can be directly related to Figure 5.11(b). An

increase in the shear force tends to reduce the Q-factor whereas a decrease in the

force increases Q.

Thus it can be concluded that adding a point mass to beams ‘1’ increases the Q-

factor. However, an increase in Q of approximately 8% results in an approximate

25% decrease in the natural frequency. A large variation in natural frequency is not

desirable as it induces thermoelastic loss issues [2].
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5.4.2 Mass added to a corner of the leg

Another possible location where masses can be added is at the leg corners. Each

leg has three “corners”. The first one, referred to as the ring joint, corresponds to

the attachment between the ring and the leg. The second corner, referred to as the

α joint, is between beam ‘1’ and beam ‘2’. The third and last corner is the φ joint

between beam ‘2’ and beam ‘3’.

As in the previous section, masses are added to all legs simultaneously and the

ray tracing method using the cyclic symmetry simplification is used to calculate

the natural frequencies and mode shapes. The mode shapes are used subsequently

to calculate the associated Q-factors. In contrast to the model in Section 5.4.1,

adding masses at corners does not change the number of unknowns in the ray

tracing analysis. The same wave amplitude unknowns are used as in the original

analysis (Section 5.2.2). The only modifications in the model are the transmission

coefficients calculated at the corners.

Derivation of the transmission coefficients for a ring/beam transmission and an

abrupt change in direction in beams were described in Chapter 2. They were demon-

strated by using a “rigid” joint at the discontinuity. For simplification purposes,

it is first assumed that the rigid joint is actually a point mass, providing the same

simplifications as those used in Section 5.4.1. In the second part of this section of

the thesis, the addition of real masses will be modelled.

Adding point masses

Point masses were added at the three different corners and their influence on the

natural frequencies and Q-factor were studied.

Figure 5.13(a) illustrates the obtained natural frequencies of the 2θ mode and Fig-

ure 5.13(b) presents the associated Q-factors. Results are shown as a function of

the added masses, which take the same values as discussed in Section 5.4.1 and are
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expressed as a percentage of the resonator total mass. Both of these figures show

results for the different positions of added masses.

It can be seen on Figure 5.13(a) that the natural frequencies decrease when point

masses are added. The closer to the ring these masses are added, the greater the

reduction in natural frequencies is. This is the same result that was obtained in

Section 5.4.1. Adding masses further from the ring and closer to the clamped

boundary has a weaker influence on the resonator frequencies than if the masses

are added to the ring.

From Figure 5.13(b), it can be seen that the Q-factors increase when masses are

added to the α joints but decrease when the masses are added to the φ joints. Using

the same argument presented in Section 5.4.1, it can be understood that if a mass is

added closer to the clamped boundary, it will induce higher forces at the interface

with the support and therefore reduce the Q-factor. On the other hand, if masses

are added closer to the ring (at the α joints here), the energy will be confined to the

vibrating ring and little energy will propagate along the leg. This creates an increase

in Q-factor. However, it is difficult to understand at this point why adding masses

at the ring joints (junctions ring/leg) does not affect the Q-factor greatly, or why

Q does not increase significantly. An investigation to understand this phenomenon

is to consider the distribution of energy along the leg. This is considered later.

Figure 5.14 shows the strain energy in the different portions of the leg as a function

of the added masses. Figure 5.14(a) illustrates the strain energy in beam portion

‘1’, Figure 5.14(b) in beam ‘2’, and Figure 5.14(c) in beam ‘3’. Results are given

for the different possible positions (either ring, α or φ joint) of added masses. As in

Section 5.4.1 the numerical values are such that the maximum flexural displacement

of the ring is equal to 0.2 mm. Firstly, it can be noticed that for the original design

(no added masses), the strain energy contained in beam ‘3’ is much higher than

in beam ‘1’ or ‘2’ (almost double their value). Secondly, concerning the trends for

each added masses positions, it is interesting to see that adding masses at the α or

φ joints has the opposite effect. The energy increases in beam ‘1’ and decreases in

beams ‘2’ and ‘3’ with masses added at the α joints, whereas the energy decreases
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in beam ‘1’ and increases in beams ‘2’ and ‘3’ with masses added at the φ joints.

From this analysis, it can be concluded that with masses added at the α joints,

the strain energy is kept within the ring and beam ‘1’, and the amount of strain

energy in beams ‘2’ and ‘3’ and thus its impact on the clamped boundary is reduced.

On the other hand, masses added at the φ joints increase the energy towards the

clamped end (in beams ‘2’ and ‘3’). This can be related to variations in the Q-

factors, illustrated in Figure 5.13(b). Increased strain energy close to the clamped

boundary results in increased energy loss from the resonator and a lower Q-factor.

However, adding masses at the ring joints does not influence much the energy

distribution. In this case, the strain energy for beams ‘1’, ‘2’ and ‘3’ are insensitive

to the added masses. This indicates that the vibration characteristics of the ring

does not change significantly, which furthermore explains the insensitivity of Q

when masses are added in the ring joints shown in Figure 5.13(b).

Adding real rigid masses

In all of the previous studies in Section 5.4, the masses considered were point masses.

These are theoretical masses that are not physically realisable. In the following

study, “real” rigid masses are added instead of point masses. These real masses

have non-zero rotational inertia and non-zero size and are modelled as cylindrical

rigid joints of mass mj such that:

mj =
πφ2

j

4 hρ, (5.6)

where φj is the diameter of the masses, h the out-of-plane depth and ρ the mass

density.

Small masses are added to the different corners of the legs. Table 5.4 shows the nat-

ural frequencies and associated Q-factors calculated for the different added masses.

In Table 5.4, the diameter of the joint modelling the mass is represented as an abso-

lute value (in mm) and as a percentage of the leg width bleg (defined in Table 5.1).
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The corresponding mass is also presented as an absolute value (in mg) and as a

percentage of the total mass of the resonator (see Equation (5.3)).

The most noteworthy result compared to the previous section is that when real

masses are added to the ring joints, the natural frequencies are increased. This can

be explained by the fact that the added masses are rigid and that the length of the

ring which is actually vibrating is reduced. The flexing part of the ring gets smaller

but the ring radius is maintained. This has the effect of increasing the natural

frequency. For information, the mode shape obtained with the largest added mass

modelled (φj = 0.121 mm) in the ring joint is presented in Figure 5.15. Figure 5.15

shows the deformed shape (with a blue dashed line) of the resonator and a closer

view around one ring/leg transmission. The real masses are shown with a black line

for the un-deformed shape and with a red line for the deformed shape. One can

see from Figure 5.15 that the displacement continuity, imposed in the transmission

coefficients calculations, is respected around the rigid joint.

Another interesting result is that in this study, the Q-factor corresponding to masses

added at the α joints decreases rapidly. It is difficult to explain this phenomenon

but it is probably due to the fact that the addition of real masses changes the

energy distribution from one part of the leg to the other part. Seeing the influence

on the Q-factor, it is thought that more energy is transmitted through this corner,

increasing the energy that propagates away from the ring. This idea can be justified

by investigating the energies within the ring and beam ‘1’, which are found to

decrease. In the same way, the forces (tensile and shear) at the clamped end are

found to increase with the addition of masses at the α joints.

In the previous subsections, the modifications in leg design, achieved by changing

their dimensions or by adding masses, were performed for all legs simultaneously.

An understanding of these effects would allow design modifications to be introduced

at an early stage. It is also interesting to investigate the frequency and associated

Q-factor splits induced by manufacturing imperfections because these splits can

have significant effect on sensor performance [97]. This topic is considered in the

next subsection.
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5.5 Sensitivity study by modifying one leg only

The presence of an imperfection in the resonator destroys its cyclic symmetry and

this is known to create a frequency and Q-factor splits [5]. In this section, design

parameters are varied in a single leg only in order to model this asymmetry and

study the induced splits. To model a resonator that is not perfectly symmetric using

the ray tracing method, the entire structure (without symmetry simplification) must

be modelled.

In this study, one parameter was changed at a time in the range of ±5% of the

original value. For each of the analyses, the natural frequencies of the 2θ mode are

calculated (two frequencies each time there is a split). The Q-factors corresponding

to each frequency are also calculated. Table 5.5 shows the results when the width

of one leg is varied; Table 5.6 shows the results when the length of beam ‘1’ in

one leg is changed; and Table 5.7 shows results when the mass density of one leg

is changed. When L1 (length of beam ‘1’) varies, it has been chosen to keep L3

fixed and to modify the angles α, φ and the length L2 according to the constraints

applied in Section 5.3.1 (see also Appendix B).

From Table 5.5, it can be seen that if one leg is wider, both 2θ natural frequencies

increase. This was also the case when all the legs were made wider at the same

time, see Section 5.3.2 and Figure 5.9. In the same way as in Section 5.3.2, the

associated Q-factors decrease when the leg is wider. It is also very interesting to

note that a small frequency split (approximately 8 Hz for example) induces a split

of approximately 104 in the Q-factor.

From Table 5.6, it appears that when the leg geometry is modified such that L1

is longer, the calculated natural frequencies decrease. This was also the case when

all leg geometries were changed simultaneously, see Section 5.3.1 and Figure 5.5.

In Figure 5.5, it is clear that for a fixed value of L3 (here imposed equal to the

original dimension), the frequencies increase when L1 increases. Concerning the

Q-factor variation, while Q increases with L1 in Section 5.3.1, here, when only one

leg geometry is changed, Q either increases or decreases. As explained earlier, there
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is a split in the 2θ mode frequency when the resonator is not cyclically symmetric.

For each frequency, an associated Q-factor is calculated. It appears that the Q

associated with one frequency (named 1st in Table 5.6) decreases whereas the Q

associated with the other frequency (named 2nd) increases. Table 5.6 shows a larger

split in the natural frequencies than Table 5.5, but a smaller split in the Q-factors.

In Table 5.7, the results illustrate the influence of a small variation in the mass

density. When the mass density increases, the natural frequencies decrease, as

expected. Concerning the associated Q-factors, their split is quite small (split of

less than 200 in Q for a frequency split of approximately 25 Hz) and the obtained

Q-factors do not vary greatly from their original value.

Increasing one leg width by 5% or one beam portion length within one leg has

much more effect on the Q-factor than increasing the mass density by 5%. It shows

that the geometry of the leg has more influence on Q than the material from which

it is made. On the other hand, the material has more influence on the natural

frequencies than the geometry.

5.6 Conclusion

The aim of this chapter was to quantify the support losses for the original ring-

based resonator and for different leg designs. The results given in this chapter

focused on the operating mode of the device – the 2θ mode, which shows the

highest Q-factor due to support losses. Different possible designs were studied

and their influence on the calculated Q-factors of the 2θ mode was analysed. It has

been shown that changing the leg design can dramatically affect the associated Q-

factors. Legs composed of a longer beam ‘1’ and a shorter beam ‘3’ show a Q-factor

approximately three times higher than the original design, for a natural frequency

difference that is relatively small. Thinner legs can also improve the Q-factor but

in this case the change to the natural frequency is more important. The addition

of masses to the ring joints, the middle of beams ‘1’ or at the α joints increases

the Q-factor, whereas Q decreases when masses are added to the middle of beam
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‘2’ or ‘3’ and at the φ joints. This clearly shows that it is better to add masses

closer to the ring. This can be explained by the fact that adding masses around

the ring increases the stored energy. On the other hand, adding masses closer to

the clamped boundary has the opposite effect and the energy distribution is shifted

towards the support.

It is well known that the presence of an imperfection in the resonator induces fre-

quency splits. The frequency splits and associated splits in Q-factors cause practical

problems in manufactured sensors. A few parameters were varied in one leg only to

simulate a possible imperfection. It was seen that, in general, geometric parameter

asymmetry induces greater splits than material property asymmetry. From the es-

tablished support loss model, it was also shown that it is straightforward to study

any possible modification in the design or the addition of imperfections at random

places in the resonator.

For each analysis, different methods were used to understand the Q-variations.

These included investigating the forces at the clamped end, the kinetic or strain

energy distribution in the system, and the mode shape. It was sometimes impossible

to explain all of the obtained results but as a general comment, it was shown that

the Q-factors are a function of the clamped forces (mainly the shear force at the

clamped ends for the original design) but also of the energy distribution in the

resonator. It is therefore not sufficient to just minimise the clamped forces. Instead,

it is necessary to consider simultaneously both clamped forces and energy contained

in the resonator. The energy contained in the ring, or in the first beam portion of

the leg, must be maximised, whilst the energy that propagates in the second and

third beam portions of the leg must be minimised as they proved to have a strong

influence on the clamped forces.

The Q-factor of the 2θ mode calculated for the original design is approximately

1.5 · 105. This should be compared with Q-factors arising from other energy loss

mechanisms. It is well known for the current MEMS design that the main source of

energy loss is thermoelastic damping. Thermoelastic damping in ring-based reso-

nators has been analysed by Wong [2]. He predicted and experimentally measured
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Q-factors of approximately 104 for a similar ring-based resonator to the one pre-

sented as the original design in this chapter. The predicted Q-factor for support

loss is more than ten times higher than the Q-factor due to thermoelastic damp-

ing. This clearly shows that for the current design, support loss can be neglected.

However, in possible future designs or by using other materials, it may be possi-

ble to minimise the energy lost by thermoelastic damping so that it becomes less

significant than support loss.
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Figures and tables

Figure 5.1: Ring-based rate sensor with cyclic symmetry and its 45◦ principal
sector. Only this sector is actually modelled in the ray tracing
analysis when the cyclic symmetry simplification is used.
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Figure 5.2: Original leg design showing the different geometric parameters that
can be changed (except the radius R).

Figure 5.3: Deformed shape of the 2θ mode for the original leg design. The
associated natural frequency and Q-factor are shown with a black
rectangle in Figures 5.5 and 5.6.
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L3 short L3 long

L1 short

L1 long

Figure 5.4: Extreme cases modelled of possible leg design. L1 and L3 varies
between these four different cases in the analysis.

Figure 5.5: Natural frequencies (Hz) of the 2θ mode for different values of L1
and L3 (length of beam ‘1’ and beam ‘3’).
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Figure 5.6: Q-factors of the 2θ mode for different values of L1 and L3 (length
of beam ‘1’ and beam ‘3’).

Figure 5.7: Deformed shape of the 2θ mode for a long beam ‘1’ and a short
beam ‘3’. This design corresponds to the ‘blue’ one on Figure 5.4.
The associated natural frequency and Q-factor are shown with a
blue rectangle in Figures 5.5 and 5.6.
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Figure 5.8: Deformed shape of the 2θ mode for a short beam ‘1’ and a short
beam ‘3’. This design corresponds to the ‘green’ one on Figure 5.4.
The associated natural frequency and Q-factor are shown with a
green rectangle in Figures 5.5 and 5.6.

Figure 5.9: 2θ frequencies (Hz) and the associated Q-factors function of the leg
width.
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(a)

(b)

Figure 5.10: Kinetic energy (a) and strain energy (b) percentages in the dif-
ferent portions of the ring-based resonator, for the 2θ mode, as a
function of the leg width.
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(a)

(b)

Figure 5.11: Natural frequencies (a) and the associated Q-factors (b) of the 2θ
mode, as a function of the added masses. Masses are added in
either beams ‘1’, ‘2’ or ‘3’.
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Figure 5.12: Absolute value of the shear force at a clamped end for the 2θ
mode, as a function of the added masses. Masses are added in
either beams ‘1’, ‘2’ or ‘3’.
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(a)

(b)

Figure 5.13: Natural frequencies (a) and the associated Q-factors (b) of the
2θ mode, as a function of the added masses. Masses are added
either in the joints between the ring and the attached legs (“Ring
joints”), at the first corner within the legs (“α joints”), or at the
second corner within the legs (“φ joints”).
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(a)

(b)

(c)

Figure 5.14: Strain energy for the 2θ mode in the beam sections ‘1’ (a), ‘2’ (b)
and ‘3’ (c), as a function of the added masses. The masses are
added in the corners of the leg (either Ring, α or φ joint).
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Figure 5.15: Deformed shape of the 2θ mode and zoom around one ring/leg
transmission, with a rigid mass of diameter φj = 0.121 mm added
in the ring joints.
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Table 5.1: Original dimensions of the ring-based rate sensor in mm (with axial
thickness = 0.1 mm). bring and bleg are the ring and leg widths; see
Figure 5.2 for the other notations. The original material properties
used are ρ = 2329 kg/m3, E = 170 · 109 N/m2 and ν = 0.28.

L1 1.064
L2 2.582
L3 1.060
α 54.5◦
φ 94.5◦
R 2.94
bring 0.121
bleg 0.061

Table 5.2: Natural frequencies (Hz) and the associated Q-factors for the ring-
based rate sensor calculated using the ray tracing method and the
analytical support model. The sensor dimensions and material prop-
erties are presented in Table 5.1.

Frequency (Hz) κ Q-factor
11 853 1 2.282 · 104

2θ mode ⇒ 14 233 2 1.476 · 105

18 330 0 1.740 · 104

3θ mode ⇒ 32 133 3 8.066 · 104

35 646 4 4.528 · 104

37 850 2 4.681 · 104

38 479 1 5.655 · 104

40 787 0 9.612 · 104

41 100 3 7.744 · 104

55 202 4 4.340 · 104

182



Chapter 5. Influence of leg design on the Q-factor

Table 5.3: Q-factors for the 2θ and 3θ modes. Comparison between support
loss predictions, thermoelastic damping predictions [2] and measure-
ments [2].

Damping predictions
Support loss Thermoelastic [2] Measurements [2]

2θ mode 147 600 11 731 9 455
3θ mode 80 660 17 783 12 434
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Table 5.5: Natural frequencies (Hz) and the associated Q-factors of the 2θ
mode, as a function of the change in leg width.

Leg width bleg (mm) Frequency (Hz) Q-factor
% change real value 1st 2nd Split 1st 2nd Split

-5 0.058 14 212 14 217 5 154 343 147 571 6 772
-4 0.0586 14 216 14 220 4 153 309 147 569 5 740
-3 0.0592 14 220 14 223 3 152 117 147 569 4 547
-2 0.0598 14 224 14 226 2 150 765 147 571 3 194
-1 0.0604 14 228 14 229 1 149 251 147 573 1 678
0 0.061 14 233 0 147 575 0
1 0.0616 14 237 14 236 1 145 736 147 575 1 839
2 0.0622 14 242 14 239 3 143 738 147 574 3 836
3 0.0628 14 247 14 243 4 141 583 147 570 5 986
4 0.0634 14 253 14 247 6 139 277 147 563 8 286
5 0.0641 14 258 14 250 8 136 827 147 554 10 727

Table 5.6: Natural frequencies (Hz) and the associated Q-factors of the 2θ
mode, as a function of the change in beam ‘1’ length.

Length beam ‘1’ L1 (mm) Frequency (Hz) Q-factor
% change real value 1st 2nd Split 1st 2nd Split

-5 1.011 14 240 14 257 17 148 313 142 737 5 576
-4 1.022 14 238 14 252 14 148 170 143 795 4 375
-3 1.032 14 237 14 247 10 148 025 144 807 3 218
-2 1.043 14 235 14 242 7 147 877 145 773 2 105
-1 1.054 14 234 14 237 3 147 727 146 695 1 032
0 1.064 14 233 0 147 575 0
1 1.075 14 231 14 227 3 147 420 148 413 993
2 1.086 14 230 14 223 7 147 264 149 212 1 949
3 1.096 14 228 14 218 10 147 106 149 974 2 868
4 1.107 14 227 14 214 13 146 946 150 698 3 752
5 1.118 14 226 14 209 16 146 785 151 387 4 602
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Table 5.7: Natural frequencies (Hz) and the associated Q-factors of the 2θ
mode, as a function of the change in mass density.

Mass density ρ (kg/m3) Frequency (Hz) Q-factor
% change real value 1st 2nd Split 1st 2nd Split

-5 2 213 14 234 14 259 25 147 640 147 718 78
-4 2 236 14 233 14 254 20 147 627 147 698 71
-3 2 259 14 233 14 248 15 147 614 147 674 59
-2 2 282 14 233 14 243 10 147 601 147 645 44
-1 2 306 14 233 14 238 5 147 588 147 612 24
0 2 329 14 233 0 147 575 0
1 2 352 14 232 14 227 5 147 561 147 533 28
2 2 376 14 232 14 222 10 147 547 147 486 61
3 2 399 14 232 14 217 15 147 534 147 436 98
4 2 422 14 232 14 212 20 147 520 147 381 139
5 2 445 14 231 14 206 25 147 506 147 321 184
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Support loss prediction for

out-of-plane vibrations

6.1 Introduction

In Chapter 2, a wave approach was developed to study in-plane vibrations of planar

structures composed of straight and curved beams. Some possible simplifications,

when the structure presents symmetric aspects, were derived in Chapter 3. An ana-

lytical support model was developed in Chapter 4 and used to calculate the Q-factor

for different types of resonators. The models allow support losses to be analysed

efficiently for different resonator designs, see Chapter 5. All studies presented so far

in this thesis considered in-plane vibrations only. This chapter will apply similar

approaches for considering out-of-plane vibrations.

The single-axis rate sensors, analysed in the previous chapter, are often used in

clusters of two or three to provide a multi-axis capability that many applications

demand. Recent work has considered multi-axis sensors inducing in-plane and out-

of-plane vibrations of the ring resonator to measure rate along two or three orthogo-

nal axes [6, 98]. The flexural out-of-plane vibration modes of a perfect circular ring

with uniform cross-section occur in degenerate pairs, with equal natural frequen-

cies and arbitrary location [99]. Dimensional imperfections or material anisotropy
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may result in a loss of degeneracy due to disturbance of the symmetry [100]. For

successful operation as a rate gyroscope, the associated frequency splits must be

reduced to acceptable levels using an advance form of frequency trimming [88, 89].

The single-axis sensor studied so far in this thesis relies on coupling between two

in-plane modes. To achieve three-axis measurements, the coupling of in-plane vi-

bration modes and out-of-plane vibrations mode is used [8]. This coupling arises

as a direct consequence of Coriolis forces created by an external applied rate. In

a freely vibrating perfect ring, with uniform cross-section and material properties

distribution, the in-plane and out-of-plane motions decouple [101]. In order to

study vibration analysis of multi-axis rate sensors, both in-plane and out-of-plane

vibrations need to be considered. The ring-based resonator studied in this thesis is

supposed to be perfectly symmetric, such that in-plane and out-of-plane modes do

not interact and can be analysed separately.

The ray tracing method, based on a wave approach, presented in Chapter 2 ap-

plies exact solutions to model in-plane vibrations of structural networks. When

an exact solution for a structural element is used, then the solution is valid for all

frequencies and no model refinements are required as those required in the finite

element method. To model vibrations in complex three-dimensional frames, each

beam (straight or curved) is modelled as a single “element” and a general method

for combining the individual elements is needed. Several approaches have been

developed which use exact solutions; these includes the dynamic stiffness method

(whose basics can be found in [67] or [66]) and the wave approach. Langley [102]

has used the dynamic stiffness method to analyse power flow in general frames.

Expressions for axial, torsional and flexural stiffnesses, and the associated power

flow are given. Banerjee and Williams [103] have reviewed various dynamic stiffness

methods. Dynamic analysis of three-dimensional frames using a wave approach has

been studied by several authors. Cai and Lin [104], Young and Lin [105], and Beale

and Accorsi [69] have presented a wave scattering procedure for dynamic analysis

of frames and truss-type structures. Beale and Accorsi [69] developed a matrix

method which includes multiple wave modes (axial, torsional and flexural) in order

to calculate power flow in frame structures. The ray tracing method presented in

Chapter 2 is a similar approach as it also considers the scattering and propagation
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of waves. However, the ray tracing method seems more concise and easier to ap-

ply. An extension of the ray tracing method (presented in Chapter 2) to cope with

out-of-plane vibration will therefore be presented in Section 6.2.

Several studies have been developed to investigate support losses of resonators,

where various configurations of resonator with respect to its substrate may exist.

The first one, whose modelling has been studied in depth in Chapter 4, is when the

resonator is located within a substrate (usually thin) and the resonator vibrates in-

plane, creating stress sources within the substrate depth, see [42]. A second possible

configuration is when the resonator sits on top of a substrate, the resonator vibrates

out-of-plane and stress sources act on the surface of the substrate, see [36, 39, 43].

These two configurations have been considered in a recent study [106]. A third

possible configuration is when the resonator and substrate are etched from the

same silicon wafer (as in the first case) but the resonator is designed to vibrate

out-of-plane. Support losses for this kind of structure have previously been the

subject of very little investigation. An extension of the work done by Judge et

al. [45] who investigated the support losses of resonators for thin support structures

is presented in Section 6.3. This represents a possible method to model the support

losses occurring from out-of-plane motion of resonators such as the ring-based rate

sensor.

By applying the method developed in Sections 6.2 and 6.3, results for the natural

frequencies, mode shapes, and the associated Q-factors of the ring-based resonator

vibrating out-of-plane are presented in Section 6.4.
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6.2 The ray tracing method applied to out-of-

plane vibrations

6.2.1 Wave propagation in straight and curved beams

This section introduces the fundamental governing equations of out-of-plane motion

of curved beams with constant radius, neglecting shear deformation and rotary

inertia. Torsion and out-of-plane (axial) flexure are considered. As in the case of

in-plane vibrations (Chapter 2, Section 2.2), harmonic wave solution is assumed and

the derivation of the corresponding wavenumbers is presented. The same approach

is applied here: the governing equations of curved beams are first presented, from

which one can derive the wavenumbers, and they are then simplified to the governing

equations of out-of-plane vibrations of straight beams. The equations obtained are

well known [65] and are used extensively in the ray tracing method presented later.

Consider a curved beam in the plane (x, z) of constant radius of curvature as shown

in Figure 6.1. The curved beam is vibrating out-of-plane, in the axial y-direction.

The curved beam is characterised by the radius of curvature R; the cross-sectional

area A; the flexural rigidity EIx in a normal plane; the torsional rigidity GJ (where

G is the shear modulus and J is often called the torsion constant [9, 107]); and the

polar moment of inertia Izz. Izz and J are identical for circular cross-section, but

for other shapes, J must be determined by other means [65, 107]. In Figure 6.1,

P is the out-of-plane shear force (along the y-axis), M2 is the out-of-plane bending

moment (rotation around x), and MT is the twisting moment (rotation around

z). v is the displacement along the y-axis, and Ω is the angular rotation of the

cross-section of the beam due to torsion. The circumferential coordinate along the

centreline is denoted by s.

The internal force and bending moments governing out-of-plane motion of a curved
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beam are related to the displacements by the relations [65]:

M2 = EIx

Ω
R
− ∂2v

∂s2

, (6.1)

MT = GJ
∂

∂s

Ω + v

R

, (6.2)

P = ∂M2

∂s
+ MT

R
. (6.3)

For curved beams, the out-of-plane equations of motion can be expressed as [65]:

GJ

R

∂2

∂s2

Ω + v

R

+ EIx
∂2

∂s2

Ω
R
− ∂2v

∂s2

 = ρA
∂2v

∂t2
, (6.4)

GJ
∂2

∂s2

Ω + v

R

− EIx
R

Ω
R
− ∂2v

∂s2

 = ρIzz
∂2Ω
∂t2

. (6.5)

Equations (6.1)-(6.5) that express out-of-plane vibrations of curved beams can be

simplified to vibrations of straight beams by letting R → ∞. The circumferential

coordinate s is changed to z for a straight linear coordinate along the beam. Thus,

for a straight beam, Equations (6.1)-(6.5) become:

M2 = −EIx
∂2v

∂z2 , (6.6)

MT = GJ
∂Ω
∂z

, (6.7)

P = ∂M2

∂z
, (6.8)

−EIx
∂4v

∂z4 = ρA
∂2v

∂t2
, (6.9)

GJ
∂2Ω
∂z2 = ρIzz

∂2Ω
∂t2

. (6.10)

In these equations, the out-of-plane flexural and angular displacements are uncou-

pled – in contrast to curved beam vibration.

The axial and angular displacements in straight and curved beams, satisfying Equa-

tions (6.4), (6.5), (6.9) and (6.10) are assumed to be time-harmonic waves. Using

the same approach as presented in Chapter 2 concerning radial and tangential dis-
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placements, it can be found that the characteristic equation for the wavenumber

for out-of-plane vibrations in a curved beam is:

(
EIxR

4GJ
)
k6

o − EIxR2
(
R2ρω2Izz + 2GJ

)
k4

o

−GJ
(
ρR2ω2

(
AR2 + Izz

)
− EIx

)
k2

o + AρR2ω2
(
ρR2ω2Izz − EIx

)
= 0.

(6.11)

In contrast, the dispersion relation for the straight beam case can be factorised and

written as: k4
o −

(
ω

√
ρA

EIx

)2
k2

o −
(
ω

√
ρIzz
GJ

)2
 = 0. (6.12)

The subscript “o” relates to out-of-plane vibrations. Similar to the characteris-

tic equation (Equation (2.8)) for the wavenumber for in-plane vibration, Equa-

tion (6.11) has six complex roots ±koi (i = 1, 2, 3) at any given frequency. Similar

rules are applied to choose the appropriate wavenumbers among the six complex

roots of Equation (6.11): Im(koi) ≤ 0 and Re(koi) > 0. Straight and curved

beams have a common limit for the wavenumbers as R → ∞ or ω → ∞. Similar

to in-plane vibrations, this provides a convenient way to characterise the resulting

wavenumbers, i.e.

• The root which tends to kT when R → ∞ or ω → ∞, is related to predomi-

nantly torsional waves and is denoted here by ko1. kT is the wavenumber of

torsional waves in a straight beam and is defined from Equation (6.12) as:

kT = ω

√
ρIzz
GJ

. (6.13)

• The roots which tend to kFx and −ikFx when R→∞ or ω →∞ are related to

predominantly out-of-plane propagating far-field flexural waves and decaying

near-field waves respectively. These roots will be denoted here by ko2 and

ko3 respectively. kFx is the wavenumber of out-of-plane flexural waves in a
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straight beam and is defined from Equation (6.12) as:

kFx =

√√√√ω
√
ρA

EIx
(6.14)

In any curved beam section, the axial and angular displacements can be expressed

as a sum of waves propagating and decaying in the right and left directions, i.e.:

v =
3∑
i=1

(
v̂+

oi e
−ikois + v̂−oi e

ikoi(s−L)
)
eiωt, (6.15a)

Ω =
3∑
i=1

(
ô+
oi e
−ikois + ô−oi e

ikoi(s−L)
)
eiωt, (6.15b)

In these expressions, v̂+
oi and ô+

oi are the complex amplitudes of the out-of-plane

flexural and torsional waves travelling in the positive s direction; while v̂−oi and

ô−oi are the complex amplitudes of the out-of-plane flexural and torsional waves

travelling in the negative s direction. As in Chapter 2, the waves travelling in the

positive s direction (v̂+
oi, ô

+
oi) originate from the location s = 0, whilst the waves

travelling in the negative s direction (v̂−oi, ô−oi) originate from the location s = L. In

applications, it is convenient to choose s = 0 and s = L to be located at either end

of the curved beam section.

The coupling between radial and tangential displacements for in-plane vibration was

expressed with the characteristic ratio Xi in Chapter 2, Equation (2.12). For out-of-

plane vibration, a similar coupling exists between axial and torsional displacement,

and it is expressed by the ratio Xoi such that:

Xoi = v̂+
oi
ô+
oi

= v̂−oi
ô−oi

=
koiR

2
(
GJ + EIx)

ρR2Aω2 −
(
EIxR2k4

oi +GJk2
oi

) . (6.16)

The ratio Xoi relates to the ratio of the out-of-plane flexural to torsional wave am-

plitudes of waves travelling in the same direction that have the same wavenumber.

In the same way as for in-plane vibration, non-zero values of Xoi indicate that an

out-of-plane flexural wave of magnitude v̂+
oi (v̂−oi respectively) is accompanied by a

torsional wave of magnitude Xoiô
+
oi (Xoiô

−
oi respectively). Thus for the wave ampli-
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tude pair (v̂±oi, ô±oi) it is only necessary to determine one of the amplitudes, as the

other is known implicitly from knowledge of the ratio Xoi. From the twelve wave

amplitudes [v̂±oi, ô±oi] modelling out-of-plane motion in Equations (6.15), only six are

independent. As the amplitudes with subscript i = 1 are related to waves which are

predominantly torsional, and those with subscript i = 2 and i = 3 to waves which

are predominantly out-of-plane flexural (propagating and decaying respectively),

the six wave amplitudes taken as primary unknowns for out-of-plane vibration are[
ô+
1 , v̂

+
2 , v̂

+
3 , ô

−
1 , v̂

−
2 , v̂

−
3

]
.

In any straight beam section, the equations governing the angular Ω and out-

of-plane flexural v displacements are uncoupled. The ratios expressed in Equa-

tion (6.16) become Xo1 = 0 and Xo2 = Xo3 = ∞. The displacements can be

described as a sum of waves travelling in the positive and negative z directions,

such that [54]:

v =
(
v̂+

o2 e
−ikFxz + v̂+

o3 e
−kFxz + v̂−o2 e

ikFx(z−L) + v̂−o3 e
kFx(z−L)

)
eiωt, (6.17a)

Ω =
(
ô+
o1 e
−ikT z + ô−o1 e

ikT (z−L)
)
eiωt. (6.17b)

In these expressions, v̂+
o2 and v̂−o2 are the complex amplitudes of the out-of-plane

flexural purely propagating waves in the positive and negative z directions respec-

tively; v̂+
o3 and v̂−o3 are the complex amplitudes of the out-of-plane flexural purely

decaying (near field) waves in the positive and negative z directions, respectively;

and, ô+
o1 and ô−o1 are the complex amplitudes of the torsional waves propagating in

the positive and negative z directions, respectively.

Similar to in-plane vibrations, in curved or straight beams, the axial and angular

displacements are defined with six unknown wave amplitudes: three travelling in

the positive direction and three in the negative direction.
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6.2.2 Development of the ray tracing method for out-of-

plane vibrations

The fundamentals of the ray tracing method are identical to those presented in

Chapter 2. They can be summarised and extended to out-of-plane vibrations as

follows.

The displacements in each component of the structure are defined as a sum of

waves, see Section 6.2.1. As the waves travel from one end of a component (j)

to the other, the propagating waves change phase and the decaying waves change

amplitude. These effects are governed by the wavenumbers of each wave and are

expressed in a diagonal matrix D called the dispersion matrix whose ith diagonal

element is defined as Dii = e−ikiL(j) , where ki is the wavenumber associated with

wave i and L(j) is the corresponding (curved or straight) beam length. The scatter-

ing of waves at discontinuities is expressed with the matrix T that contains complex

wave amplitude transmission/reflection coefficients, such that Tij is the transmis-

sion/reflection coefficient from a wave of amplitude j to a wave of amplitude i.

With six waves considered per element (torsional, out-of-plane propagating flexural

and out-of-plane decaying near field waves, in each direction), the dimension of the

matrices T and D is [6n× 6n], where n is the total number of elements.

If the structure is vibrating freely in an undamped mode, the ray tracing method [58]

(or wave train closure principle [55]) stipulates that the wave amplitudes defining the

displacement of the complete structure are the same as the wave amplitudes after

the waves have performed one ray trace (i.e. propagated across each component

and transmitted across a joint to a neighbouring element), i.e.:

a = TDa, (6.18)

where a is a wave amplitude vector of size 6n that contains all the wave amplitudes

considered in the system. The natural frequencies of the system can be calculated

by solving:

|I−TD| = 0, (6.19)
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where I is the [6n× 6n] identity matrix.

The only modification when considering out-of-plane vibrations is that the overall

wave amplitude vector a contains here amplitudes corresponding to torsional, out-

of-plane flexural and out-of-plane decaying waves. It is now defined as:

a =
[
u(I)+ u(I)− u(II)+ u(II)− . . . u(n)+ u(n)−

]T
, (6.20)

with

u(j)± =
[
ô
(j)±
1 v̂

(j)±
2 v̂

(j)±
3

]
. (6.21)

Both in-plane and out-of-plane vibrations can be analysed simultaneously if the

wave amplitudes defining in-plane and out-of-plane vibrations are both present in

the vector a. Consequently, the matrices T and D must also take account of the

in-plane and out-of-plane propagation and scattering of waves. In this case, the

dimension of the matrices becomes [12n×12n]. Solving Equation (6.19) with those

particular matrices gives the natural frequencies of the system for both in-plane

and out-of-plane vibrations.

6.2.3 Transmission coefficients

As seen in Section 6.2.2 or in Chapter 2, the ray tracing method requires knowledge

of the transmission coefficients. They are expressed in the matrix T in Equa-

tions (6.18) and (6.19). In general, these transmission coefficients are calculated

by considering the continuity and force equilibrium equations at each joint, with

the joint being taken in isolation from the rest of the structure. It is necessary to

calculate the transmission coefficients arising from each wave type impinging on a

junction to all wave types in all neighbouring components. For a joint having n

attached components, the force and moment equilibrium as well as displacement

and slope continuity equations provide a total of 3n equations in terms of 3n un-

known transmission coefficients. Solving these equations yields the transmission

coefficients, which are then placed in the overall transmission matrix T.
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For common MEMS structures, such as the ring-based resonator presented exten-

sively in the previous chapters, it is necessary to consider several discontinuities

such as the transmission between a ring and an attached beam, the transmission at

an abrupt change in direction (or “abrupt angle”) and the reflection at boundaries.

Those are studied next.

Ring/beam transmission

As the most general case, the transmission of out-of-plane vibrations between a ring

and a straight beam contained in the same plane is investigated. The configuration

considered is shown in Figure 6.2. As in the case of in-plane vibrations, the discon-

tinuity is modelled as a rigid cylindrical mass. This analysis is an extension of the

in-plane analysis performed in Chapter 2, Section 2.4.1.

Each set of wave amplitudes, incident or created, consists of a principal torsional

wave, a principal out-of-plane flexural propagating wave, and a principal out-of-

plane decaying wave:

u(j)±
r, b =

[
ô
(j)±
1 v̂

(j)±
2 v̂

(j)±
3

]
. (6.22)

The following phenomenon appears when a wave impinges on the discontinuity.

The presence of the joint ensures that part of the wave is reflected back along the

same portion and the remainder is transmitted into the other portions. This partial

reflection/transmission is also accompanied by mode conversion, so that the incident

wave can generate out-of-plane flexural propagating, decaying and torsional wave

components in each of the three portions.

The number of components considered is such that n = 3 (two ring portions and one

beam portion). The assembly of equilibrium and continuity expressions at the joint

yields a system of nine equations that can be solved simultaneously to provide the

nine required transmission/reflection coefficients for each wave type. By suppressing

the temporal terms in Equations (6.15) and (6.17), the axial displacements v(I)
r ,

v(II)
r and v

(III)
b ; the angular displacements Ω(I)

r , Ω(II)
r and Ω(III)

b at the ring portion

(I) (left), the ring portion (II) (right) and the beam portion (III), respectively, can
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be expressed in terms of wave amplitudes. The ratio ûj/ûi of any wave amplitude

over any other wave amplitude corresponds to the required transmission coefficient

from an incident wave ûi to a reflected or transmitted wave ûj. These ratios can be

obtained by solving the following Equations (6.23)-(6.31).

Assuming that the joint is located at s = 0 (or z = 0), displacement and slope

continuity for out-of-plane vibrations ensures that:

v(I)
r + dj

2
∂v(I)

r

∂s
= v(II)

r − dj
2
∂v(II)

r

∂s
, (6.23)

∂v(I)
r

∂s
= ∂v(II)

r

∂s
, (6.24)

Ω(I)
r = Ω(II)

r , (6.25)

v(I)
r + dj

2
∂v(I)

r

∂s
= v

(III)
b − dj

2
∂v

(III)
b

∂z
, (6.26)

∂v(I)
r

∂s
= ∂v

(III)
b

∂z
cosα + Ω(III)

b sinα, (6.27)

Ω(I)
r = Ω(III)

b cosα− ∂v
(III)
b

∂z
sinα, (6.28)

where dj is the diameter of the cylindrical rigid joint. The shear forces P (I)
r , P (II)

r

and P (III)
b , the bending moments M (I)

2r , M (II)
2r and M (III)

2b , and the twisting moments

M
(I)
Tr , M (II)

Tr and M (III)
Tb

of the ring portion (I) (left), the ring portion (II) (right) and

the beam portion (III), respectively, evaluated at the joint at s = 0 (or x = 0) are

related by the equations:

−P (I)
r + P (II)

r + P
(III)
b = mj

∂2

∂t2

v(I)
r + dj

2
∂v(I)

r

∂s

, (6.29)

−M (I)
2r +M

(II)
2r +M

(III)
2b cosα−M (III)

Tb
sinα

− dj
2

(
P (I)
r + P (II)

r + P
(III)
b

)
= −Ixj

∂2

∂t2
∂v(I)

r

∂s
,

(6.30)

−M (I)
Tr +M

(II)
Tr +M

(III)
Tb

cosα +M
(III)
2b sinα = Izj

∂2Ω(I)
r

∂t2
, (6.31)

where mj is the mass of the rigid joint, and Ixj and Izj are the moments of inertia

of the rigid joint along the radial (x-) and tangential (z-) axes respectively. In

Figure 6.2, the forces and moments presented are those acting on the joint.
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Similar to the case of in-plane vibrations, solving Equations (6.23)-(6.31) for all

of the possible types of incident waves gives a [9 × 9] matrix that contains all of

the required transmission coefficients for out-of-plane vibrations. This particular

matrix models the scattering of waves for the ring/beam discontinuity and will be

used in the assembly process of the ray tracing method.

Simplification for transmission at an abrupt change in direction

To obtain the transmission coefficients for two beams joined at an angle α without

using a rigid joint mass element (see Figure 6.3), a simplification of Equations (6.23)-

(6.31) can be used. Note that the angles α in Figures 6.2 and 6.3 are defined

in the opposite direction. The number of components coupled together by this

discontinuity is such that n = 2. Therefore, six equations modelling force and

displacement continuity can be solved simultaneously to derive the transmission

coefficients from any incident wave type to any reflected/transmitted wave type.

These six equations are as follows:

v
(I)
b = v

(II)
b , (6.32)

∂v
(I)
b

∂z
= ∂v

(II)
b

∂z
cosα− Ω(II)

b sinα, (6.33)

Ω(I)
b = Ω(II)

b cosα + ∂v
(II)
b

∂z
sinα, (6.34)

P
(I)
b = P

(II)
b , (6.35)

M
(I)
2b = M

(II)
2b cosα +M

(II)
Tb

sinα, (6.36)

M
(I)
Tb

= M
(II)
Tb

cosα−M (II)
2b sinα, (6.37)

By considering an incident set of waves aincident[6×1] =
[
u(I)+
b u(II)−

b

]T
containing

a torsional wave, an out-of-plane propagating flexural wave and an out-of-plane

decaying wave travelling in the positive z direction of (I) and negative z direc-

tion of (II), and a transmitted/reflected set of waves acreated[6×1] =
[
u(II)+
b u(I)−

b

]T
,

the equations that give the transmission coefficients matrix Tabrupt angle such that
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acreated = Tabrupt angle aincident for out-of-plane vibrations can be expressed as:



0 −1 −1 0 1 1

sinα/kFx i cosα cosα 0 i 1

− cosα/kFx i sinα sinα 1/kFx 0 0

0 i −1 0 i −1

δ sinα − cosα cosα 0 1 −1

δ cosα sinα − sinα δ 0 0


·Tabrupt angle

=



0 −1 −1 0 1 1

0 i 1 − sinα/kFx i cosα cosα

−1/kFx 0 0 cosα/kFx i sinα sinα

0 i −1 0 i −1

0 −1 1 δ sinα cosα − cosα

δ 0 0 δ cosα − sinα sinα


,

(6.38)

with δ = i
√
GJIzz
AEIx

. From the above Equation (6.38), the matrix Tabrupt angle, which

contains the transmission coefficients of an abrupt angle α in straight beams for

out-of-plane vibrations, can be calculated.

Wave reflection at common boundaries

For external boundaries, the number of components considered is simply n = 1 and

the reflection coefficients are obtained by solving three equations. These equations

usually model an imposed displacement, slope, or external force or torque at the

boundary. For out-of-plane vibrations, if an incident set of waves with amplitudes

aincident =
[
ô+
1 v̂+

2 v̂+
3

]T
impinges on a boundary, it produces a set of reflected

waves areflected =
[
ô−1 v̂−2 v̂−3

]T
such that areflected = Tboundary aincident. The ma-

trices for common boundary conditions: Tclamped (for clamped boundary), Tpinned

(for pinned boundary) and Tfree (for free boundary) are found to be identical to

those presented for in-plane vibrations (see Chapter 2, Section 2.4.3). One of the

reasons for this is that these matrices are not functions of the wavenumbers or geo-

metrical dimensions. Therefore, in-plane and out-of-plane flexural vibrations have
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identical reflection coefficients. Concerning torsional vibration, its governing equa-

tions ((6.10) and (6.17b)) are similar to those of longitudinal vibrations and the

constraint conditions at common boundary are identical, giving the same reflection

coefficients for torsional and longitudinal waves.

6.2.4 Possible simplifications

It was shown in Chapter 3 that in-plane vibrations of a periodic structure could be

modelled easily with the ray tracing method. The development presented in Sec-

tion 3.2 is a general development that explains how to calculate the transmission

and reflection coefficients of a chain of N sectors as a function of the transmis-

sion and reflection coefficients of one sector only. Therefore, if the coefficients of

one sector account for out-of-plane vibrations, then the same method and equa-

tions (see Equations (3.10) and (3.11)) can be applied to calculate the out-of-plane

transmission and reflection coefficients of the entire chain.

Thomas [86] developed a simplification for cyclically (or rotationally) symmetric

structures, 360◦ structures that consist of N repetitive sectors, and his approach can

be applied to the ray tracing method. In Chapter 3, Section 3.3, the development

is explained for in-plane vibrations but similar reasoning can be applied for out-of-

plane vibrations. The basic idea is that the displacements for any sector can be

related to the displacements of just one particular sector by a phase angle ψ. The

sectors are numbered sequentially (j) (with j = 1, . . . , N), with j increasing in the

positive direction of propagation.

In the context of the wave approach, the wave amplitudes a(j) for the jth sector and

the wave amplitudes a(j+1) for the (j + 1)th sector are related as follows:

a(j+1) = eiψa(j), (6.39)

where ψ = 2πκ/N and κ is the cyclic mode number, see Chapter 3. This equation

presents a phase change of ψ (or −ψ) between one end of a sector and its other

end. κ can take the following values [86]: κ = 0, 1, . . . , N/2 (N even) or κ =
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0, 1, . . . , (N − 1)/2 (N odd). Each value corresponds to a κ-fold symmetric mode

and each mode must be examined independently. For out-of-plane vibrations, the

wave amplitude vector a contains a torsional wave, an out-of-plane flexural wave

and an out-of-plane decaying wave.

In the ray tracing method, only a principal sector is modelled. The phase change ψ

is represented as a particular “transmission coefficient” from one end of the sector to

the other, see Section 3.3.2 in Chapter 3. If the complex displacement at the left end

of a sector is v, then the displacement at its right end will be v eiψ. Correspondingly,

if its displacement is v at its right end, then it will be v e−iψ at its left end. Thus,

the waves incident on one end and the waves transmitted to the other end will have

an amplitude ratio of e−iψ (or eiψ). As explained in Chapter 3, this phenomenon

can be expressed directly by the D matrix; such that with a set of wave amplitude

a =
[
u(l)− u(r)+

]T
, D becomes:

D =

∆L0Υ+ 0

0 ∆L0Υ−

 , (6.40)

where

∆L0Υ± =


e
i
(
± 2π
N
κ−ko1L0

)
0 0

0 e
i
(
± 2π
N
κ−ko2L0

)
0

0 0 e
i
(
± 2π
N
κ−ko3L0

)

 , (6.41)

and L0 represents the distance travelled along the waveguide from one sector to

its neighbour. For instance, if the cyclic symmetry simplification is applied to the

ring-based rate sensor, L0 is the distance along the ring between two attached legs

(L0 = πR/4).

To obtain the natural frequencies of the entire structure, Equation (6.19) must be

solved. For periodic or cyclically symmetric structures, the modelling and knowl-

edge of transmission/reflection coefficients of a single sector are most important.

In summary, out-of-plane vibration analysis using the wave approach is similar to
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that used for in-plane vibration. Once the governing equations, the appropriate

wavenumbers and the coupling between angular and axial displacements have been

defined, the approach presented in Chapter 2 can be applied to out-of-plane vibra-

tions. The transmission coefficients rely on different equations but their derivation

depends on similar principles. The simplification for periodic or cyclically symmet-

ric structures, developed in a general way in Chapter 3, can also be extended to

analyse out-of-plane vibrations. However, a direct extension of the in-plane support

model presented in Chapter 4 to cope with out-of-plane vibration is not possible

as the fundamental equations governing the support assumed in-plane motion and

plane stresses only.

6.3 Modelling the support losses for out-of-plane

vibrations

6.3.1 Introduction

The different approaches presented in Chapter 4, namely the analytical model, and

the use of perfectly matched layers (PML) or infinite elements within FE analyses,

were applied to in-plane vibration only and assumed the problem to be in a plane

stress configuration. In all previous studies, it was assumed that the support can

be modelled as a thin plate with thickness equal to the (axial) thickness of the

resonator. Knowing that the stiffness of the support in its plane is much greater

than along an axis normal to its plane, it can be understood that during in-plane

motion the plate constrains more the vibration of the resonator than for out-of-

plane motion. It is therefore expected that the out-of-plane vibrations may induce

greater support losses, and modelling these is of great interest for the design of more

accurate and efficient multi-axis resonators.

When calculating support losses, knowledge of power flow from the resonator to the

support is fundamental. This power flow is a direct function of the displacement

of the attachment point induced by the vibrational motion of the resonator, see
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Chapter 4. The admittance that links velocity and applied forces for out-of-plane

vibrations, at the edge of a semi-infinite plate was first formulated by Eichler [108].

The harmonic response of the plate was analysed using Fourier transforms, which

lead to explicit expressions for the plate response in integral forms. Kauffmann [109]

extended Eichler’s work and derived closed form integral expressions for the input

power delivered by arbitrary force and moment distributions along the edge. He

made a number of conjectures that were checked later by Su and Moorhouse [110].

Su and Moorhouse also solved the integrals given in [109] and offered closed form

expressions that can be easily evaluated numerically with a quadrature integration

method. This approach was recently used in [44, 45] to model attachment losses

of a resonator in a support of finite thickness. The same method will be applied

to calculate the support losses of a ring-based resonator. The main assumptions of

the support model are that it must be semi-infinite in length and that the support

thickness is supposed to be much smaller than the wavelength of the propagative

transverse waves. It is worth mentioning at this stage that the semi-infinite thin

plate model may not be realistic of actual hardware. Nevertheless, it is the best

available starting point to illustrate the procedure of support loss modelling. This

will be discussed in more details later. The basics of this approach are explained in

Sections 6.3.2 and 6.3.3, and calculated results for the support losses for an example

structure are presented in Section 6.4.2.

6.3.2 Admittance of the support

Consider a thin elastic plate of constant thickness hp, illustrated in Figure 6.4(a),

vibrating freely at an circular frequency ω. The transverse (out-of-plane) motion v

satisfies the following differential equation [74]:

D

(
∂4v

∂x4 + 2 ∂4v

∂x2∂z2 + ∂4v

∂z4

)
− ρhpω2v = 0, (6.42)

where ρ is the mass density of the plate and D is its bending stiffness such that:

D =
Eh3

p

12(1− ν2) , (6.43)
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with ν the material Poisson’s ratio. If the plate is excited along its z = constant edge

by an externally applied bending moment per unit length m(x) and an externally

applied force per unit length f(x), the boundary conditions can be expressed as [74,

108]:

−D
(
∂2v

∂z2 + ν
∂2v

∂x2

)
= m(x), (6.44a)

−D ∂

∂z

[
∂2v

∂z2 + (2− ν)∂
2v

∂x2

]
= f(x). (6.44b)

Let us consider that the plate is excited by a transverse force P , a twisting moment

MT normal to its edge and a bending moment M2 tangential to its edge, induced

from the vibrations of the resonator, see Figure 6.4(a). It is assumed that the

coupling between resonator and support takes place at a single point only, i.e. the

point of application of these forces and moments. Also, the support is considered to

be semi-infinite with excitation forces on a single point of its edge only. There are no

boundaries that can reflect vibrations back to the support edge. The point mobilities

from the plate at x = 0 and z = 0 (point of attachment between the resonator and

support) are of interest and can be obtained by setting f(x) = Pδ(x) −MT δ
′(x)

and m(x) = M2δ(x), where δ is the Dirac function. Equations (6.44) can be solved

at x = 0 and z = 0, and the following expression that links the normal angular

velocity Ω̇n, the tangential angular velocity Ω̇T and the transverse linear velocity

V̇y of the attachment point to the applied loads, can be found [110]:


Ω̇n

Ω̇t

V̇y

 = iω


Ω

−∂v/∂z

v

 = Y


MT

M2

P

 . (6.45)

Y is the point mobility matrix and is expressed as:

Y = 1√
ρhpD


y11k

2 0 0

0 y22k
2 y23k

0 y32k y33

 , (6.46)
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where k is the wavenumber of transverse motion in a plate defined as:

k =

√√√√
ω

√
ρhp
D
. (6.47)

The elements of the matrix Y are given as closed-form integrals in [110]. For the

derivation of support losses, or power radiated into the plate, only the imaginary

part of the displacements are needed (similar to the case of support loss for in-plane

vibration studied in Chapter 4, Section 4.2 or in Appendix A). Therefore, only the

real parts of the velocities are required and only the real parts of the components

of Y need to be calculated. Using the expressions given in [110] and for ν = 0.28,

one can find the coefficients:

Re(y11) = Re(y22) = 0.22172 (6.48)

Re(y23) = Re(y32) = −0.28546, (6.49)

Re(y33) = 0.45735. (6.50)

Note that Judge et al. [45] used the corresponding numerical values of these coeffi-

cients for ν = 0.3, which were calculated in [110].

Equation (6.45) will be used to calculated the power flow into the support. This is

considered in Section 6.3.3.

6.3.3 Power flow and support loss

Similar to the case of support loss for in-plane vibrations studied in Chapter 4,

Section 4.2, the Q-factor can be defined as:

Q = 2π W

∆W , (6.51)

where W is the total energy stored by the resonator and ∆W is the energy lost per

cycle. ∆W is linked to the power radiated in the support by:

∆W = 2π
ω

Π, (6.52)
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where Π is the average power transmitted to the support. It is assumed that the

support is large enough compared to the resonator dimensions such that all the

energy entering the support is lost and does not come back into the resonator. The

power flow is a function of the forces linking the resonator with its support and is

defined as (see Chapter 4, Equation (4.36)):

Π = 1
2 Re (Force · Velocity∗) , (6.53)

where Re is the real part and ∗ denotes the complex conjugate. In Equation (6.53)

the forces are multiplied by linear velocities, while the moments are multiplied by

angular velocities, giving consistent units for power. Re-arranging Equations (6.51)

and (6.52) gives:

Q = ωW

Π . (6.54)

From Equation (6.54), the support losses can be calculated once the total energy

stored and the power flow are known. The derivation of those is considered next.

The resonator is modelled using a wave approach assuming that its attachment to

its support is clamped. The ray tracing method, applied to out-of-plane vibrations,

see Section 6.2, is used to calculate the natural frequencies, mode shapes, and forces

and moments at the clamped end. From the mode shapes, the total energy stored

W can be derived. W is the sum of the kinetic energies of each element composing

the entire structure. For instance, in a straight beam of length L, illustrated in

Figure 6.4(b), the kinetic energy created by out-of-plane flexure and torsion is

defined as:

Wbeam = ρ

2

Izz ∫ L

0

(
∂Ω
∂t

)2

dz + bh
∫ L

0

(
∂v

∂t

)2

dz
 . (6.55)

The power radiated into the plate can be found using Equations (6.45) and (6.53).

The powers radiated ΠP due to the shear force P , ΠMT
due to the twisting moment

MT , and ΠM2 due to the bending moment M2, when each load is taken in isolation,
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are found to be:

ΠP =
√

3 (1− ν2)y33
P 2

h2
p

√
Eρ

, (6.56)

ΠMT
= 6

(
1− ν2

)
y11

ωM2
T

h3
pE

, (6.57)

ΠM2 = 6
(
1− ν2

)
y22

ωM2
2

h3
pE

. (6.58)

When both bending moment M2 and shear force P are present, the off-diagonal

terms of Y result in an additional contribution such that the total power ΠP+M2

from flexural vibration is:

ΠP+M2 = ΠP + ΠM2 +
(
12
(
1− ν2

))3/4
y23

√
ωM2P

ρ1/4h
5/2
p E3/4

(6.59)

For in-plane vibrations, it was shown that the contribution of the bending moment

to the support loss is negligible compared to the influence of the shear force, see

Appendix A. However, for out-of-plane vibrations, the cross terms can not be ne-

glected as for a sufficiently thin plate, the contribution to power flow from all three

terms in Equation (6.59) are of similar order [45].

Substituting the values calculated by Equations (6.55) (or similar for curved beam

elements) and (6.56)-(6.59) into Equation (6.54), the Q-factor can be derived for

any resonator geometry. The predictions of support losses found, using this method

for a cantilever beam and for a ring-based resonator, are presented in Section 6.4.2.

6.4 Applications

The ray tracing method presented in Section 6.2 is applied to different structures

to obtain natural frequencies and mode shapes in the following Section 6.4.1. From

this wave approach and the analysis developed in Section 6.3, support losses for

out-of-plane vibrations can be calculated. The cases of a cantilever beam and a

ring-based resonator are studied in Section 6.4.2.
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6.4.1 Natural frequencies and mode shapes

Free response of a perfect ring

As for in-plane vibrations, it is straightforward to obtain an analytical expression for

the out-of-plane natural frequencies of a perfect ring using the ray tracing method.

In Equation (6.19), six wave amplitudes are considered (predominantly torsional

wave, predominantly flexural wave and predominantly decaying wave, travelling in

each direction). The transmission matrix T is set equal to the identity matrix as

waves are free to travel around the ring without interruption, and the diagonal

dispersion matrix D contains terms e−i2πRkoi (i = 1, 2, 3). Solving Equation (6.19)

analytically gives wavenumber solutions of the form kon = n

R
, with n = 0, 1, . . ..

By substituting the kon values into the dispersion relation (6.11) and solving it, it

can be shown that the natural frequencies for out-of-plane vibration are given by;

ω±n =

√√√√√√√√√
Φ(n)

2ρIzzAR4

1±
√√√√√√1− Ψ(n)(

Φ(n)
)2

, (6.60)

with:

Φ(n) = EIxIzzn
4 +GJ

(
Izz + AR2

)
n2 + EIxAR

2, (6.61)

Ψ(n) = 4EIxIzzGJAR2n2
(
n2 − 1

)2
. (6.62)

For each value of n, there are two natural frequencies. At ω+
n frequencies, the ring

is essentially vibrating in torsion, analogous to the pure torsional vibration of a

straight beam. At the ω−n frequencies, axial deflections dominate, analogous to

the out-of-plane bending vibration in a straight beam. With the assumption that

the radial and axial thicknesses of the ring are much smaller than the radius of

the centreline, Equation (6.60) can be simplified to the standard expressions for
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torsional and out-of-plane flexural natural frequencies in a ring:

ω+
n = ωtorsional

n =
√
EIx +GJn2

IzzρR2 , (6.63)

ω−n = ωflexural
n =

√√√√√√ EIxn2 (n2 − 1)2

ρAR4
(
EIx
GJ

+ n2
) . (6.64)

For a circular cross-section, these expressions can be further simplified using J =

Izz = 2Ix to obtain the standard expressions for torsional and flexural natural

frequencies in rings with a circular cross-section [9, 75, 99].

Ring-based resonator

This section presents results for the out-of-plane natural frequencies and mode

shapes of a ring-based resonator consisting of a ring supported on eight legs, as

studied in the previous chapters. The approach used here is the same as that used

in Chapter 3, except that out-of-plane vibrations are considered instead.

The ring-based resonator is modelled using the cyclic symmetry simplification. Only

a single leg (three beam portions) is modelled. The ring is taken into account

using the analysis presented in Section 6.2.4, i.e. waves impinging and leaving

the discontinuity ring/leg are considered. It is assumed that the leg and ring are

connected at a single point (only the centreline is modelled). The transmission

coefficients for the ring/leg joint are calculated using the analyses presented in

Section 6.2.3. The cross-sections of the ring and legs are supposed to be uniform,

and the material also shows uniform distribution properties. These imply that in-

plane and out-of-plane modes of the resonator are uncoupled and can be analysed

separately. There is no interaction between the modes and the ray tracing method

is here used to study out-of-plane motion only.

The out-of-plane motion of the resonator implies a rotation of the cross-section.

Structures with non-circular cross-section will generally warp under torsion. To de-

scribe the relationship between twisting moment and rotation of the cross-section
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(which is rectangular), the torsional constant J is required. This constant is calcu-

lated using the expression [65, 111]:

J = b3h

3

1− 192
π5

b

h

∞∑
i=1, 3, 5, ...

1
i5

tanh
(
iπ
h

b

), (6.65)

where b and h (h ≥ b) are the dimensions of the cross-section. The rotation of

the cross-section predicted using the torsional constant is more accurate when the

dimensions of the cross-section are close to being circular or square [101].

The ring-based resonator with original dimensions (see Figure 3.8(b)) is first anal-

ysed. Different methods are considered: the ray tracing approach, and FE models

using two-dimensional Euler/Bernoulli beam elements or two-dimensional Timo-

shenko beam elements. The calculated frequencies are presented in Table 6.1. The

mode shapes obtained with the ray tracing method for the lowest natural frequency

with κ = 0, 1, 2, 3 and 4 are shown in Figures 6.5, 6.6(a) and 6.7(a). As for in-

plane vibrations, the FE model meshed with Euler/Bernoulli beam elements gives

excellent agreement for the natural frequencies (up to five significant figures) with

the ray tracing method. With Timoshenko elements, the percentage differences,

mainly due to the shear deformation being neglected in the ray tracing approach,

are less than 0.4%. As the torsion of a rectangular cross-section is more difficult to

predict than circular cross-section, another model has been developed. In this sec-

ond model, the ring and legs have circular cross-sections. The other dimensions and

material properties do not change. Again, the natural frequencies are calculated

using the ray tracing method, a FE model with two-dimensional Euler/Bernoulli

beam elements and another FE model with two-dimensional Timoshenko beam el-

ements. Results are presented in Table 6.2. The percentage differences on the

natural frequencies between the FE model using Timoshenko elements and the ray

tracing model are slightly smaller than the ones obtained in the first analysis, with

a maximum difference less than 0.25%. The most plausible reason is certainly that

the analytical model for torsion of beam/ring structures with circular cross-section

is more exact than the one for rectangular cross-section where warping occurs. In

any case, the mode shapes obtained using the ray tracing method were similar to

those given by the FE analyses.
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In a practical situation, the angles that connect the straight beam elements in the

legs are rounded, see Figure 1.2 in Chapter 1. So far in this thesis, it was assumed for

simplicity that the beams were connected at an abrupt change in direction within

the legs. A more realistic analysis is therefore performed using a more detailed

finite element model. In the new FE model, a more accurate representation is

used. There are curved segments connecting each straight beam component in the

legs, and each attachment between the legs and the ring is also filleted to avoid

stress concentrations. Also, instead of two-dimensional beam elements with two

or three nodes, the structure is now meshed with twenty-noded three-dimensional

brick elements. Results for the in-plane and out-of-plane natural frequencies for

the 2θ and 3θ modes are shown in Table 6.3. The 2θ mode, 3θ mode respectively,

corresponds to the lowest mode with κ = 2, κ = 3 respectively. They are the

modes used in practical applications and are of particular interest. The out-of-

plane mode shape of the 2θ and 3θ modes obtained using this FE model and the

ray tracing method are presented in Figures 6.6 and 6.7. It can be seen that mode

shapes obtained using the two methods are in good agreement concerning the ring

vibrations. Small differences occur for the deformation of the legs. In-plane mode

shapes of the ring-based resonator were illustrated in Chapter 3, Figure 3.9.

The results for the natural frequencies, comparing the ray tracing method and the

realistic FE model, show good agreement with differences less than 4%. Wong [2]

realised the same kind of study and presented the differences obtained between his

model and a comparable FE analysis. These differences are also shown in Table 6.3.

The resonator studied in [2] did not have exactly the same dimensions and material

properties, but they were similar. It is especially clear that for out-of-plane vibra-

tions, the ray tracing method is a significantly more accurate analytical/numerical

model than the one developed by Wong. He used Rayleigh’s quotients and an energy

approach to derive an analytical model for out-of-plane vibrations of a ring-based

resonator. It was an extension of the work carried out in [11] where in-plane vibra-

tions were studied. The leg model used to estimate the out-of-plane strain energy

and kinetic energy is based on the assumption that the displacement of each leg

at the point of attachment to the ring is identical to that of a free ring. He also

assumed that the presence of the legs does not significantly affect the mode shape
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of the ring. The strain energy is calculated based on the static bending moment in

the legs due to the displacement of the ring while the kinetic energy of the leg is

calculated based on the static displacement shape of the leg. As can be seen in Ta-

ble 6.3, his model was able to predict in-plane natural frequencies with good levels

of agreement when compared against FE results. However, the agreement between

out-of-plane natural frequencies predicted by FE models and those calculated ana-

lytically with its energy approach is not as good. Furthermore his assumptions are

better for low modes of vibration (2θ modes) for which the legs of the resonator do

not flex severely. In contrast, the ray tracing method is an exact solution, based

only on the assumption that ring and leg can be modelled as a one-dimensional

waveguide, and shows much better agreement with the FE model.

However, small differences still occur because the wave approach presented here ne-

glects shear deformation and rotary inertia effects. Also, in the ray tracing method,

it is assumed that the beams are connected at abrupt angle within the legs and that

each leg is connected at a single point with the ring. This is expected to have only

a little influence on the natural frequencies, but it may have a stronger influence on

the mode shapes, and especially on the leg deformation.

6.4.2 Support loss

The method presented in Section 6.3 is applied to predict support losses for different

systems. A cantilever beam resonator is studied first and then results for the support

losses induced by out-of-plane vibration of a ring-based resonator are presented.

Cantilever beam

Consider a cantilever beam of length L, cross-section area bh = A and flexural

rigidity EIx, that vibrates in an out-of-plane flexural motion, see Figure 6.4(b).

The beam is clamped at z = 0 and free at z = L. The nth mode shape can be
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expressed as [65]:

v(z) = (cos knz − cosh knz)− βn (sin knz − sinh knz) , (6.66)

where kn is determined from cosh knL cos knL = −1 and

βn = cos knL+ cosh knL
sin knL+ sinh knL

. (6.67)

Values of kn are well known and can be found in any vibration textbook, such as [17,

65, 75]. For indication, knL = (1.8751, 4.6941, . . .) and kn is related to the resonator

frequency by ωn = k2
n

√
EIx/ρA. Substituting the mode shape definition (6.66) into

Equations (6.6) and (6.8), and for z = 0, one gets the bending moment and shear

force at the clamped end:

M2n = 2EIxk2
n, (6.68)

Pn = 2EIxβnk3
n. (6.69)

Substituting Equation (6.66) into Equation (6.55) gives the kinetic energy Wn cre-

ated by flexural vibration of the beam in its nth mode such that:

Wn = 1
2ρALω

2
n. (6.70)

The power radiated into the support by flexural vibration of a cantilever beam is

calculated by substituting Equations (6.68) and (6.69) into Equation (6.59). The

Q-factor is then derived using Equation (6.70) in Equation (6.54). The quality

factor Qn for the nth mode is found to be such that:

1
Qn

= b

L

αP
(
h

hp

)2

+ αP+M2

(
h

hp

)5/2

+ αM2

(
h

hp

)3
, (6.71)
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where αP , αP+M2 and αM2 are functions of ν and are defined as:

αP = 4
√

1− ν2β2
n y33, (6.72)

αP+M2 = 8
(
1− ν2

)3/4
βn y23, (6.73)

αM2 = 4
(
1− ν2

)
y22. (6.74)

The values of y22, y23 and y33 were given in Section 6.3.2 for ν = 0.28; these

can be re-calculated for any ν-value using the expressions derived in [110]. In

Equation (6.71), the first term is due only to the shear force P at the cantilever

attachment, the third term is due only to the bending moment M2, and the second

term arises from the off-diagonal elements of the Y matrix. These coefficients can

be calculated for any value of ν and mode number n. For the fundamental flexural

mode of a cantilever beam (n = 1), and for ν = 0.28, Equations (6.72)-(6.74) give:

αp = 0.946, αP+M2 = −1.577 and αM2 = 0.817.

The coefficients αp, αP+M2 and αM2 named respectively A1, A2 and A3 in [45] were

given for ν = 0.3, such that: A1 = 0.95, A2 = −0.65 and A3 = 0.24. However, there

seems to be a mistake in the numerical values of A2 and A3 calculated in [45] as

they do not correspond to Equations (6.73) and (6.74) which give αP+M2 = −1.59

and αM2 = 0.79 for ν = 0.3. No explanation has been found on how the coefficients

from [45] are different, even though they were derived from equations similar to

Equations (6.66)-(6.71).

Q-factors for the fundamental out-of-plane flexural mode of vibration of a can-

tilever beam are calculated for beams with varying dimensions. The results can

be obtained either using the analytical expression (6.71), or with a more numeri-

cal method that involves the ray tracing approach to model beam vibrations and

Equations (6.54), (6.55) and (6.59) to calculate Q. As expected, and illustrated

in Table 6.4, both methods agree very well as the wave approach is based on ex-

act functions. The ratio length/width (L/b) of the beam and the ratio support

thickness over resonator thickness (hp/h) are varied. Results for Q are illustrated

for ν = 0.28 in Figure 6.8 as a function of L/b. One can see that the Q-factor is

linearly proportional to the ratio L/b, as predicted in [41]. Also, it is important to
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remark that Q is highly dependent of the support thickness. If the support becomes

thicker, the Q factor increases rapidly as the support is less flexible with regards

to the out-of-plane vibrations. When the flexibility of the support increases, more

energy is lost by propagation of vibration, and the Q-factor decreases.

In-plane vibrations of the same cantilever beam structure were studied in Chapter 4.

For in-plane vibration, the support was modelled as a thin plate with equal thickness

to the resonator thickness and it was found, see Figure 4.7, that the Q-factors vary

in a cubic form (as predicted in [41, 42]) approximately between 600 and 30 000

for the same L/b range (6.7 < L/b < 26.7). Here, when out-of-plane vibrations

are considered and with hp/h = 1, Q-factors vary linearly between approximately

35 and 150. One can see that the losses by propagation of in-plane vibrations

into a thin plate are much smaller than the losses by propagation of out-of-plane

vibrations.

Ring-based resonator

The free out-of-plane vibration analysis of a ring-based resonator was performed

in Section 6.4.1. From this analysis, natural frequencies and mode shapes were

obtained. To calculate the support losses using the procedure explained in Sec-

tion 6.3.3, the kinetic energy, and the forces and moments at the clamped ends are

required.

As cyclic symmetry simplifications are used (method explained in Section 6.2.4),

the mode shapes are obtained for one single sector only. The mode shapes of all

sectors are related by a change of phase, which is a function of the cyclic mode

number. The corresponding displacements in each sector are complex and their

absolute value is the same for all sectors. Therefore, the kinetic energy is also equal

in all sectors. To calculate the clamped forces and moments, it is also possible to use

the absolute value of the clamped beam displacements such that these forces and

moments are equal in all sectors. The total energy lost is therefore eight (number

of sectors) times the energy lost through one clamped end, and the total energy

stored is also eight times the energy stored in one sector only (45◦ ring portion and
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one entire leg). Finally, one can note that the mode shape of only one sector is

actually needed to calculate support losses in a cyclic symmetric structure such as

a ring-based resonator. This was also the case for in-plane vibrations.

Results for the Q-factors for the tenth lowest natural frequencies of out-of-plane

vibrations are presented in Table 6.5. They were calculated with the assumption

that the support and the resonator have the same axial thickness (hp/h = 1), for

consistency with the in-plane analysis performed in Chapter 4. It is interesting to

note that these Q-factors are much smaller than those found for in-plane vibrations,

see Chapter 5. This could perhaps have been expected for reasons that will be

discussed in the following paragraphs. The lowest Q-factor is found for the mode

with lowest natural frequency with κ = 0. This mode corresponds to translational

motion of the ring along its axial direction and is illustrated in Figure 6.5(a). Most

of the deformation occurs in the legs and very little deformation occurs in the ring

in this mode. The energy stored is therefore relatively small, while the reactions at

the boundary, which drive the substrate response, are still significant. This may at

least partly explain the small Q predicted. The next smallest predicted Q-factor

occurs for the lowest frequency with κ = 1. In this mode, presented in Figure 6.5(b),

the ring rotates about an axis contained in the plane of the resonator. Again, little

deformation occurs in the ring as it effectively undergoes rigid body rotation only.

The above line of argument suggests that in order to obtain larger Q-factors, the

deformation of the ring relative to that of the legs, and therefore the proportion of

energy stored in the ring, should be maximised. This situation occurs for the “ring”

2θ and 3θ modes where the resonator deforms as shown in Figures 6.6 and 6.7, and it

is clear from Table 6.5 that the predicted Q-factors for these modes are significantly

higher.

Wong [2] made experimental measurements of Q-factors for out-of-plane vibrations

of resonators with similar dimensions and material properties. He found that Q ≈

11 · 103 for the 2θ mode, and Q ≈ 13 · 103 for the 3θ mode. These values are

experimental and take account of all possible energy losses, including thermoelastic

damping which was known to be the principal loss mechanism in the experimental

structures. Therefore, theQ-factors due to support loss alone should be even greater
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than the measured Q-factors. However, as seen in Table 6.5, the results found using

the method presented in Section 6.3 are far from the measured values. A number of

factors may contribute to the explanation of these discrepancies, as discussed next.

Possibly the most important factors relate to the basic assumption in the theoreti-

cal development that the actual physical support can be realistically modelled as a

semi-infinite thin plate with thickness equal to that of the resonator. To examine

the validity of this assumption, first see Figure 1.2 which shows a photograph and

SEM photograph of a resonator structure that is essentially the same as that tested

by Wong [2]. The dimensions of the silicon plate to which the resonator is directly

attached are actually of the same order as the dimensions of the resonator itself

(in the millimetre range). Furthermore, the plate is bonded rigidly to a pedestal

glass, which is itself attached to a metal base. Hence, the support structure is

finite with external boundaries that would in practice reflect some energy back

into the resonator, reducing the possibility for energy to propagate away from the

resonator. The assumption of semi-infinite support stipulates that the wavelength

of the bending waves should be much greater than the actual size of the support.

At the frequencies of the 2θ and 3θ modes, these wavelengths, in a support with

thickness equal to that of the resonator, are approximately 12 mm and 8 mm, re-

spectively. Therefore the chip is smaller than these bending wavelengths, which

implies that the approximation of a semi-infinite support plate is inappropriate for

the structures tested by Wong. This is clearly an issue that shows that further work

is needed in the future to better model the boundary conditions.

Moreover, the out-of-plane stiffness of the real support is much greater than that

of a semi-infinite plate. Indeed, as the support is of finite size, its actual end

boundaries may have an important effect on the motion of the resonator/support

attachment point. This effect is expected to be different for the case of out-of-plane

vibration than for in-plane vibration. Because the in-plane stiffness of the plate

is relatively very high, the assumption of a semi-infinite support is relatively less

significant. This is because the waves attenuate “quickly” in the support and, even

if the support is “short”, reflections that significantly influence the attachment point

motion are less likely. However, for out-of-plane vibrations, for the case where there
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is relatively less stiffness in the support that constrains the vibrations, the actual

dimensions of the support and the fact that it is not semi-infinite are likely to be

more relevant.

Support for the general validity of the discussion given in the previous paragraph

is provided by the cantilever example presented in the first part of Section 6.4.2.

Reference to Figure 6.8 highlights that the predicted Q-factor depends strongly

on the thickness of the support relative to that of the beam. In the cantilever

example, the predicted Q-factor increases by a factor of 35, see Table 6.4, when the

support/cantilever thickness ratio is increased from 1 to 10. It seems reasonable

to assume that a similar trend would apply in the case of the ring resonator. The

precise numerical values would of course be different, but it is interesting to note

that the measured [2] and predicted (Table 6.5) Q-factors are Q ≈ 11 · 103 and

320 respectively for the 2θ. The ratio of these values is approximately 34, which

is commensurate with the ratio of Q-factors for the cantilever when the support

thickness was increased by a factor of ten.

In the ring resonator device shown in Figure 1.2, the axial thickness of the resonator

silicon is of the order of 0.1 mm compared to thicknesses of approximately 2.5 mm

for the supporting glass and approximately 1.5 mm for the metal base. Thus, the

ratio of the thickness of the support compared to resonator is significantly greater

than ten. It is therefore not unreasonable to suggest that the predicted Q-factors

would be significantly higher if the support were modelled in a way that more

accurately accounted for its out-of-plane stiffness characteristics. This is confirmed

in Figure 6.9, which shows the Q-factors for the 2θ and 3θ modes of the ring-

based resonators as a function of the support/resonator thickness. Results for the

range of support thickness between 0.1 mm and 2 mm are presented. As expected,

larger Q-factors are obtained if the support is considered thicker, and the values

of Q-calculated here correspond to a more plausible range. However, the thicker

the support is, the less the assumption of thin structure is valid. This assumption

stipulates that the transverse wavelength must be much greater than the support

thickness. For a frequency corresponding to the 2θ frequency, this wavelength is

approximately 0.5 mm. Another support model that considers the propagation of
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energy into a half-space (infinitely thick support) was presented in [45], based on

the work from Miller and Pursey [90]. Given sufficient time, it would be interesting

to investigate if this second model is more appropriate that the one used in this

chapter. This is clearly an issue deserving further work in the future.

Another issue in the model is the rigid-attachment assumption between the res-

onator and its support. In the resonator vibration analysis, clamped ends are as-

sumed with boundary conditions such that v = 0, ∂v/∂z = 0 and Ω = 0. However,

as mentioned earlier, the relatively smaller stiffness of the (thin) support with regard

to out-of-plane motion does not constrain the resonator as a clamped end would do.

Therefore the conditions of zero displacement and rotation at the boundary should

be replaced by a relationship between v, ∂v/∂z, ∂2v/∂z2, and ∂3v/∂z3 determined

by considering the second and third row of Equation (6.45). For torsional vibra-

tions, the condition of zero rotation of the cross-section should be replaced by a

relationship between Ω and ∂Ω/∂z obtained with the first row of Equation (6.45).

In Equation (6.45), the displacements of the attachment point are coupled to the

excitation forces. For instance, instead of imposing Ω = 0 as a boundary condition,

one could use:

Ω = 1
iω
√
ρhpD

y11k
2MT , (6.75)

which links Ω with ∂Ω/∂z. This was performed for flexural vibration of a cantilever

beam by Judge et al. [45]. They predicted that when the beam and support have

the same thickness, an error of approximately a factor two is introduced with the

rigid-attachment assumptions. This error decreases when the support thickness

increases. The thicker is the support, the more it constrains the vibrations, and

the closer the attachment is to being completely rigid. When the plate thickness is

twice that of the cantilever beam, the error is less than 10% [45].

If one wants to apply these more realistic boundary conditions to the ring-based

resonator, the reflection coefficients of waves at the boundary used in the ray trac-

ing method need to be redefined using the new conditions obtained from Equa-

tion (6.45). Instead of imposing a rigid-attachment, a more flexible attachment

could be used, which would be expected to change the Q-factor. Indeed, for a
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support modelled as a thin-plate (thickness equal to the resonator thickness for

instance), if the support becomes more flexible, the forces and moments at the at-

tachment point will decrease significantly. The mode shapes of a simple cantilever

beam resonator will also change significantly as they are directly linked with the

boundary conditions. The energy contained in the beam is expected to decrease as

this one will now deform less. The fact that energy and clamped forces decrease

simultaneously explains why the Q-factor is expected to change “only” by a factor

of two for the cantilever beam case. However, for the ring-based resonator case,

the energy stored in the resonator in the 2θ and 3θ modes is mainly contained in

the ring. Changing the boundary conditions will not affect the ring deformation so

much and it is expected that the stored energy will not change too much either.

But, on the other hand, the clamped forces and moments will still decrease due

to the introduction of flexibility to the support. A decrease in the clamped forces

will decrease the power flow into the support and therefore increase the Q-factor.

The error in Q introduced by the rigid-attachment conditions for the ring-based

resonator is difficult to predict. Only a numerical solution of the problem can give

an approximate value of this error, but it is expected that the rigid-attachment

condition tends to underestimate the Q-factors of ring-based resonators.

6.5 Conclusion

In this chapter, an extension of the ray tracing method has been developed to

deal with out-of-plane vibrations, using the wave approach adopted for in-plane

vibrations (see Chapters 2 and 3). The extension relies on the knowledge of out-

of-plane governing equations of motion, which were derived here for curved and

straight beams. Transmission coefficients, also needed in the ray tracing process,

were presented for discontinuities commonly encountered in MEMS resonators. Fur-

thermore, the previously developed simplifications for symmetrical structures were

used.

Results for natural frequencies and mode shapes were presented that show very good

agreement with FE models. A three-dimensional FE analysis with more realistically
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modelled radiused joints between straight leg sections has also been developed for

comparison. This showed that the assumptions made in the ray tracing method

correctly predict the 2θ and 3θ out-of-plane modes of the resonator. Small dis-

crepancies appear in the model of leg vibrations for these modes, mainly due to

the assumption of modelling only the beam centreline in the ray tracing method.

Shear deformation, rotary inertia, and stress concentration at several junctions in

the resonator are neglected with the wave approach.

A possible model of support loss for out-of-plane vibrations was also presented,

established on the assumption that the support can be represented as a semi-infinite

thin plate with thickness equal to that of the resonator. Based on this model, the

predicted Q-factors for ring-based resonators were found to be significantly smaller

than experimental measurements. A number of factors that could contribute to

this discrepancy were identified and discussed. These include the assumptions that

the support is semi-infinite and thin. In the practical situation, the resonator and

support are mounted on a chip whose dimensions, compared to the wavelengths of

propagating waves, are not sufficiently large to be considered as infinite. Despite

the fact that this assumption was found to be inappropriate, the method presented

here offers a fundamental approach that can be easily re-formulated and refined for

real applications. It is concluded that the semi-infinite thin plate assumption for the

support does not realistically represent the actual tested hardware. Trends noted in

the example of a ring-based resonator mounted on supports of increasing thickness

could provide useful insight into the problem. An improved approach, with more

realistic admittance relationship linking displacements and forces at the attachment

point is required; this may be derived from theoretical analysis or experimental

measurement. The investigation of approaches to model realistic support structures

for the case of out-of-plane vibration is clearly a topic for further research.
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Figures and tables

Figure 6.1: Out-of-plane vibration of a curved beam: notation and sign con-
ventions.
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Figure 6.2: Transmission of out-of-plane vibrations between a ring and an at-
tached beam.

Figure 6.3: Transmission of out-of-plane vibrations through an abrupt change
in direction in beams.
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(a)

(b)

Figure 6.4: Support modelled as a semi-infinite thin plate for out-of-plane vi-
brations. (a) shows its excitation shear force P , bending moment
M2, twisting moment MT , and also the axes orientation and origin.
(b) presents the notation used for the cantilever beam study.
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(a)

(b)

(c)

Figure 6.5: Mode shapes for out-of-plane vibrations of the ring-based resonator
obtained with the ray tracing method. (a) corresponds to the lowest
natural frequency with κ = 0, (b) with κ = 1, and (c) with κ = 4.
The modes relate, respectively, to the natural frequencies 4 803Hz,
5 413Hz and 29 982Hz given in Table 6.1.
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(a)

(b)

Figure 6.6: 2θ mode shape for out-of-plane vibrations of the ring-based res-
onator obtained with the ray tracing method (a); and, a FE
model (b).
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(a)

(b)

Figure 6.7: 3θ mode shape for out-of-plane vibrations of the ring-based res-
onator obtained with the ray tracing method (a); and, a FE
model (b).
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Figure 6.8: Q-factor of the fundamental out-of-plane mode of a cantilever beam,
shown as a function of the length/width ratio for different support
thicknesses.
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Figure 6.9: Q-factor of the 2θ and 3θ out-of-plane modes of a ring-based res-
onator, shown as a function of the support/resonator thickness ra-
tio (hp/h).
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Table 6.1: Natural frequencies (Hz) for the out-of-plane vibrations of the ring-
based rate sensor calculated with the ray tracing method and a FE
model (two-dimensional Euler/Bernoulli beams elements and Tim-
oshenko (“T’nko”) beams elements, with 0.85 as shear correction
factor, of approximate length 0.01 mm). The resonator dimensions
are presented in Figure 3.8(b). The material properties used are
ρ = 2329 kg/m3, E = 170 · 109 Pa and G = E/(2(1 + ν)) Pa, with
Poisson ratio ν = 0.28.

Ray Tracing FE analysis Difference %
Ray Tr./T’nko beamsEuler beams T’nko beams

κ = 0 4 803 4 803 4 800 0.05
30 105 30 105 30 060 0.15

κ = 1 5 413 5 413 5 411 0.05
37 266 37 266 37 193 0.20

κ = 2 10 818 10 818 10 813 0.04
46 279 46 279 46 155 0.27

κ = 3 22 899 22 899 22 873 0.11
52 334 52 334 52 177 0.30

κ = 4 29 982 29 982 29 928 0.18
58 271 58 271 58 077 0.33
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Table 6.2: Natural frequencies (Hz) for the out-of-plane vibrations of the ring-
based rate sensor calculated with the ray tracing method and a FE
model (two-dimensional Euler/Bernoulli beams elements and Timo-
shenko beams elements, with 0.85 as shear correction factor, of ap-
proximate length 0.01 mm). The resonator dimensions are presented
in Figure 3.8(b), except that the legs and ring have now circular
cross-sections with radius rleg = 4 · 10−5 m and rring = 7 · 10−5 m.
The material properties used are those given in Table 6.1.

Ray Tracing FE analysis Difference %
Ray Tr./T’nko beamsEuler beams T’nko beams

κ = 0 3 720 3 720 3 718 0.04
33 327 33 327 33 273 0.16

κ = 1 4 407 4 407 4 405 0.04
37 120 37 120 37 046 0.20

κ = 2 12 595 12 595 12 589 0.05
39 519 39 519 39 436 0.21

κ = 3 27 822 27 822 27 780 0.15
42 739 42 739 42 658 0.19

κ = 4 32 826 32 826 32 759 0.20
45 962 45 962 45 878 0.18

Table 6.3: Natural frequencies (kHz) for the 2θ and 3θ modes of vibration of the
ring-based rate sensor calculated with the ray tracing method and a
FE model (three-dimensional brick elements of approximate length
0.04 mm). The resonator dimensions are presented in Figure 3.8(b).
The material properties used are those given in Table 6.1.

Frequency (kHz) Ray tracing FE model Diff. % Diff. % in [2]

In-plane 2θ mode 14.2 14.5 2.1 0.7
3θ mode 32.1 32.7 1.7 6.6

Out-of-plane 2θ mode 10.8 11.2 3.4 13.7
3θ mode 22.9 23.6 3.1 27.8

Table 6.4: Q-factor of the fundamental out-of-plane mode of a cantilever beam,
calculated as a function of the length/width ratio (L/b) and for two
different support thicknesses (hp/h = 1 and hp/h = 10). Numerical
values are calculated either using Equation (6.71) or with a more
numerical approach that involves the ray tracing method (“Ray Tr.”).

L/b
hp/h = 1 hp/h = 10

from Eq. (6.71) from Ray Tr. from Eq. (6.71) from Ray Tr.
8 42.80 42.80 1511 1511
12 64.20 64.20 2266 2266
16 85.61 85.61 3022 3022
20 107.0 107.0 3777 3777
24 128.4 128.4 4533 4533
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Table 6.5: Natural frequencies (Hz) and associated Q-factors for the out-of-
plane vibrations of the ring-based rate sensor. The resonator dimen-
sions are presented in Figure 3.8(b) and material properties used are
those given in Table 6.1.

Frequency (Hz) κ Q-factor
4 803 0 65
5 413 1 74

2θ mode ⇒ 10 818 2 320
3θ mode ⇒ 22 899 3 691

29 982 4 537
30 105 0 725
37 266 1 629
46 279 2 332
52 334 3 214
58 271 4 139
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Chapter 7

Conclusions and future work

7.1 Introduction

High accuracy sensors based on MEMS resonators are being used increasingly in

different sectors, such as in the military, aerospace and automotive industries. The

performance of such devices can be significantly degraded by energy losses from the

resonator. Support loss is an increasingly important source of damping in MEMS

resonators that has previously been the subject of relatively little research. The

research reported in this thesis contributes to the understanding, modelling and

quantification of this particular damping mechanism. The work presented here is

thought to represent a significant improvement in predictive capability, although

further work is still required. The thesis presents the development of an efficient

approach to model both the transmission of vibration within a structure and quan-

tify the energy lost to its surroundings. This chapter summarises the key models

and findings of the research, and discusses possible relevant future work in this area.
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7.2 Chapter reviews and conclusions

A summary of the research work performed and the detailed conclusions were pre-

sented at the end of each chapter. The main conclusions of each chapter are sum-

marised here as follows:

1. Chapter 1 gave a general overview of the main damping mechanisms relevant

to MEMS resonators, namely air damping, thermoelastic damping, intrinsic

material losses and support losses. Special focus was given to support losses

and support loss models available in the literature. It was shown that most of

the published work uses analytical models for studying the interaction between

the resonator and the support. These models used the displacement of the

resonator at its anchor end to evaluate the support losses, and none of the

models had been developed for complex shaped resonators. In order to create

a model for a generic resonator design, from a simple cantilever beam to a

more elaborate ring-based rate sensor, it was necessary to extend one of the

existing methods. To achieve this, an accurate vibration analysis tool was

required to predict the anchor point vibrations, and the ray tracing method

was identified for this purpose. A typical characteristic of MEMS resonators

is that they are designed to vibrate at specific frequencies. The ray tracing

approach was deemed to be the most appropriate as it relies on exact solutions

and can predict the behaviour of complex waveguide structures at particular

frequencies easily. The chapter concluded with a statement of the aims and

objectives of the research.

2. From the work presented in Chapter 1, it was decided to study and extend

the so-called ray tracing method. Chapter 2 presented the basic method and

showed how it could be applied to analyse the free and forced in-plane vibra-

tions of structures composed of several waveguide components. This method

utilises the properties of wave propagation and transmission between different

components, and the phase closure principle provides a means of calculating

the natural frequencies and mode shapes. Calculation of the transmission
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coefficients at different discontinuities generally encountered in MEMS struc-

tures was also presented. Results for natural frequencies and mode shapes

obtained using ray tracing were compared to conventional FE analyses, and

were found to give perfect agreement when Euler-Bernoulli beam elements

were used. The study showed that the ray tracing method is an accurate and

efficient approach to model the vibrations of complex waveguide structures.

It was also noted that if different structures were to be constructed for a para-

metric study, the ray tracing method would be much more efficient than a FE

analysis which is computationally expensive when different meshes need to be

generated.

3. In Chapter 3, the ray tracing approach was employed to model structures

that exhibit symmetry properties. A method based on the ray tracing con-

cept was developed that simplified the modelling when the structure being

studied possessed periodic or cyclic symmetries. This was achieved by model-

ling the relationship between identical sectors and their neighbours. Natural

frequencies and mode shapes of different symmetric structures, such as regular

polygons and ring-based rate sensors, were presented. They showed very good

agreement with FE analyses and/or analytical results found in the literature.

The simplification methods used were shown to be very efficient for reducing

the total number of unknowns in the model, reducing the complexity of the

analysis and the associated computation time. From the techniques deve-

loped in Chapters 2 and 3, a tool for predicting the vibrations of ring-based

resonators was developed, and this was used in subsequent chapters as a basis

for calculating the associated support losses.

4. Chapter 4 focused on modelling support loss for in-plane vibrations of a reson-

ator. The coupling between the resonator and substrate was modelled to

understand and evaluate the interaction and energy transmission between

them. Owing to the large relative size and complex shape of the substrate, it

was not possible to model the substrate in its entirety and some simplifications

were made. Different techniques for approximating the support as an infinite

domain were presented. The methodology for the support loss calculation

for each of these techniques was also introduced. A fully analytical method
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was developed that considered separately the resonator and its support. The

support was modelled using classical wave theory in a two-dimensional thin

plate; whereas the resonator was modelled using the ray tracing method, or

standard modal analysis. This model was then compared to two different finite

elements approaches that both modelled the entire system (resonator and

support). In the FE approaches, the infinite size of the support was tackled

using either a Perfectly Match Layer (PML) method or infinite elements.

Convergence issues were discussed for these approaches. Numerical results

for each method were obtained and comparisons made for support losses of

simple structures. It was shown that the results were all in the same order of

magnitude and presented similar trends, validating the analytical model.

5. The analytical model for support loss developed in Chapter 4 and the vibration

analysis method presented in Chapters 2 and 3 were applied to commercial

MEMS ring-based resonator designs in Chapter 5. The original design was

studied first and numerical values for Q-factors were obtained. In comparison

to thermoelastic damping, support loss was found to be negligible. However,

it was noted that future designs may significantly reduce the thermoelastic

damping such that support loss may become critical. A parametric study

was performed to gain a better understanding of the factors that influence

support loss. Geometric parameters and material properties were varied and

the associated Q-factors calculated. A design with thin, flexible legs was

proposed and the analysis suggested a significant increase in Q-factors for the

operating modes. The introduction of blocking masses to reduce the energy

propagation away from the resonator, proved to be useful when the masses are

placed in the vicinity of the ring. From the complete study, it was shown that

to minimise the support loss, it is necessary to consider simultaneously both

clamping forces and energy contained in the resonator. The former must be

minimised, whilst the latter must generally be maximised. It was also found

that for a ring-based resonator the energy distribution within the structure is

important. Most of the energy must be contained in the sensor part (the ring)

and not in the supporting legs which are directly attached to the substrate.

This chapter provided useful recommendations for future designs with regard
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to the Q-factors.

6. All of the previous models and analyses focused on in-plane vibrations, ap-

propriate to single-axis MEMS rate sensors. However, there are many ap-

plications when it is necessary to sense rate simultaneously in two or three

directions. At present, multi-axis rate sensing is achieved by using multiple

single-axis rate sensors mounted orthogonally to each other. A new generation

of multi-axis rate sensors is under development based on the in- and out-of-

plane vibrations of rings. Chapter 6 extended the ray tracing method to study

out-of-plane vibrations. A support model was introduced and developed to

analyse the flexural vibrations of a semi-infinite supporting plate. The cou-

pling between the resonator and support was achieved based on admittance

characteristics. Results for the Q-factors of out-of-plane modes of ring reso-

nators were obtained. These were found to be much smaller than expected

compared to experimental measurements, indicating that the model predicted

excessive levels of energy dissipation. The main reason for these discrepancies

was explained, and it was concluded that the proposed model was inappro-

priate for practical situations. Despite this, the model presented in Chapter 6

could easily form the basis for improved modelling in real applications.

In summary, the above findings fulfilled the original aims of the research program,

and the work has strengthened and improved the understanding of support loss

in vibrating MEMS structures. For the first time in the study of ring rate sen-

sors, numerical results for Q-factors that consider support loss were calculated and

analysed to demonstrate its relative importance. Future designs may significantly

improve the quality and performance of resonators by reducing the energy flow.

The vibration transmission and support loss models developed were presented in

a general way so that they can be applied to different designs of resonators. The

research reported in this thesis provides significant insight into support loss mecha-

nisms and it is believed that the development of future generation of MEMS sensors

will benefit from these findings.
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7.3 Suggestions for future work

The findings of this research could be extended in a number of areas. The follow-

ing indicates possible topics for future work in the area of vibration transmission

analysis and support loss models.

7.3.1 Vibration transmission analysis

The ray tracing method developed in this thesis is based on Euler/Bernoulli beams,

and is valid for long, thin beam structures. The effect of rotary inertia and trans-

verse shear deformation could be incorporated in the model. Mei and Mace [60]

presented the basis of wave reflection and transmission in Timoshenko beams. This

work could be extended to curved beams and rings, using the governing equations

of motion given in [65] for instance. The inclusion of rotary inertia and shear defor-

mation in the ray tracing method is expected to change the size and complexity of

the matrices involved but the fundamentals concerning wave transmission and prop-

agation will be similar. The resulting method would be better suited to structures

composed of thicker straight and curved beams.

In the ring-based resonator model, the legs were modelled as three straight beams

linked together at “sharp” cornered intersecting junctions. In practice, “radiused”

corners connect the different beams. A further investigation is needed to incorpo-

rate these “radiused” corners in the analysis, as they may change the vibrational

behaviour of the joint. Also, a cylindrical rigid joint was considered in the trans-

mission coefficient calculations between a ring and an attached beam. It would

be interesting to study the vibration transmission through another type of joint

geometry. Ashby [59] considered other possible models for the joint between two

beams.

In the out-of-plane transmission coefficients calculations, the objective was to derive

the transmission coefficients at discontinuities encountered in common MEMS de-

vices. The ring/beam transmission represented a general case that could be simpli-
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fied easily to others discontinuities. However, it would be interesting to investigate

the transmission between three (or more) non-planar components, the attachment

between three beams in different planes for instance. The ray tracing method could

then be applied to other type of structures, e.g. non-planar structures, and could

then become an easy and efficient way to model transmission of vibration in any

three-dimensional frame structures, commonly found in civil, naval or aerospace en-

gineering structures. The wave transmission through connected structures in three

dimensions has been analysed using the dynamic stiffness method [112], and ap-

plication of the ray tracing method to this type of problem would be interesting.

Generally, the development of the ray tracing method for non-planar structures

needs further investigation. However, all of the fundamental work is presented in

this thesis.

In several papers published in the literature, such as [64, 73, 113, 114], one can

see that the transmission of vibration along a structure is generally linked with the

transmitted energy, and the main focus of research actually concerns this energy.

In the work reported in this thesis, no reference was made to the energy and power

transmitted through the different joints. The reason is that the main interest was

centered around the energy transmitted from the resonator, through the support

attachment. As the ray tracing method is based on a travelling wave approach, the

reflected/transmitted power for any discontinuity would be calculated easily. The

energy transmission within the resonator has not been quantified for each particular

joint and could be the focus of future investigations. By looking at each joint in

isolation, it may be possible to design a geometry that is well suited to maximise

the energy in the resonator.

In Chapter 3, periodic structures are modelled using a recursive formalism as a

function of the characteristics of a single sector. Finite structures are considered,

and the external boundaries conditions are applied in the ray tracing analysis. How-

ever, infinite periodic structures have been the subject of many investigations, see

e.g. the review in [85]. A further investigation could use the complex propagation

constant µ [85] in the ray tracing method to model infinite structures, in a similar

way to that developed for cyclic symmetric structures.
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7.3.2 Support loss model

In the analytical support loss model for in-plane vibrations, the resonator vibrations

are first predicted using the assumption that the structure is clamped at its support.

This assumption is not always fully consistent with the following step of the analysis

in which the support is modelled as being excited by the applied “clamped” forces.

A possible way to tackle this inconsistency is to incorporate the support model di-

rectly in the ray tracing analysis. When studying the resonator vibration, instead

of being clamped at its support, the resonator could have boundary conditions that

constrain the displacement and introduce energy loss directly. Basically, the stan-

dard clamped boundary could be changed to take into account the complex stiffness

created by the support. The real part would restrain the displacement; whilst the

imaginary part defines the damping. Using this idea, and for longitudinal motion

only, one ends up trying to solve for the real and imaginary parts of Equation (4.38),

presented in Chapter 4. A similar equation can be derived for flexural motion. The

imaginary part of this equation was provided later in Chapter 4, but the real part

is more difficult to solve, as the integrand is non-continuous. A solution procedure

of this kind of integral has been performed in [90]. Once the complex stiffness

boundary has been defined, the Q-factor for support loss could be found using a

ray tracing analysis in combination with the half-power bandwidth approach. Fur-

ther investigations are needed to analyse non-clamped and/or practical boundary

conditions.

The same idea of non-rigid attachment boundary conditions was introduced for the

analysis of out-of-plane vibration. In Chapter 6, the resonator was assumed to be

clamped at the support, but for thin supports this assumption is not completely

valid. More sophisticated boundary conditions could be developed and used in the

support model to take account of the flexibility of the support.

In practical situations, the assumed thin-plate theory for the analysis of out-of-plane

vibration transmission in the support is not valid. Indeed, the silicon substrate is

attached to a pedestal glass, which is itself mounted on a metal base. Judge et

al. [45] explained how a thick support could be modelled as a semi-infinite half-
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space. It would be interesting to apply this model to the ring-based resonator. But

of course, in practical designs, the support is neither a thin-plate or an infinitely

thick support. Further work is needed to more accurately account for the out-of-

plane stiffness characteristic of the support. Other models, both for in-plane and

out-of-plane vibrations, that could account more precisely for the actual external

boundaries of the support will be needed to make accurate predictions.

Finally, one of the most important areas for future work is to validate the present

models experimentally. It is anticipated that several difficulties would be encoun-

tered. The main one being that it is impossible to measure support loss directly.

Instead it is necessary to measure the overall damping using the half-power band-

width method, taking account of all loss mechanisms [39, 42, 43, 45]. After calcula-

ting all losses, the overall loss can be compared with the experimental measurement.

Several issues can be noted in the application of this method to validate the support

loss model. Firstly, it assumes implicitly that the other damping predictions are

correct, but it may be difficult to be sure that the predictions obtained are accu-

rate and relevant to the specific type of resonator studied. Thermoelastic damping

predictions have been investigated widely for cantilever beam resonators but the

techniques may be not accurate for more complex shaped resonators. Thermo-

elastic damping in ring-based resonators was studied in [2] and this work provides

results that can be applied with confidence.

A second problem with using experimental measurements to predict support loss is

that support loss is generally not the dominant damping mechanism for the designs

currently in manufacture. For instance, for the in-plane 2θ mode of the ring-based

resonator, the Q-factor predicted for thermoelastic damping [2] is approximately

ten times smaller than that predicted for support loss. This means that in an

experimental analysis of damping performances, the contribution of support loss is

small and cannot be identified precisely. In other words, it becomes very difficult to

validate the support loss model using experimental results when this loss is not the

dominant source of energy lost. It is suggested for future experimental work to use

a structure where support loss is known to be significant, such as nano-structures

or bulk resonators. To conclude, it is evident that experimental work needs to be
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conducted to test the accuracy of the support loss predictions, but one must first

make sure that the support loss contribution is relatively large compared to the

other damping mechanisms.
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Appendix A

Analytical support model

This annexe explains the detailed derivation of the analytical model presented

in Chapter 4, Section 4.2. The main equations can also be found in Chapter 4,

Section 4.2, while the complete derivation is presented here, starting from three-

dimensional elasticity theory. This derivation is mainly based on the work of Miller

and Pursey [A.1], and Hao et al. [A.2]. Note that it is implicitly assumed in the

following procedure that resonator and support have the same out-of-plane thick-

ness (h).

A.1 Three dimensional model of the support

The three-dimensional elasticity of an isotropic solid is summarised by the relation-

ship between the shear stress tensor T and the strain tensor Σ [A.3]:

Tij = λΘδij + 2µΣij. (A.1)

Here Θ is the dilatation and Σ the strain such that:

Θ = ∂ux
∂x

+ ∂uy
∂y

+ ∂uz
∂z

, (A.2)
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Σij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
− 1

3Θδij, (A.3)

where u(x) is the displacement vector and λ and µ are the Lamé constants.

A.2 In-plane reduction

A.2.1 Reduction

For a thin plate of thickness h in the (x, z) plane, linear elasticity theory can be

separated into equations for the normal displacement uy(y) = v(x, z) of the plate

and for the in-plane displacements averaged over the depth u(x, z) = (u,w) with

u = 〈ux(x, y, z)〉y, and w = 〈uz(x, y, z)〉y, all function of just two spatial variables.

This is achieved by assuming that the stresses in the direction normal to the plane,

which must be zero at the nearby stress-free top and bottom surfaces, are zero

everywhere.

For example, setting Tyy = 0 in Equation (A.1) gives:

Tyy = λΘ + 2µ
(
∂v

∂y
− 1

3Θ
)

= 0,
(
λ− 2

3µ
)(

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
+ 2µ∂v

∂y
= 0,(

λ+ 4
3µ
)
∂v

∂y
+
(
λ− 2

3µ
)(

∂u

∂x
+ ∂w

∂z

)
= 0,

∂v

∂y
= −

λ− 2
3µ

λ+ 4
3µ

(
∂u

∂x
+ ∂w

∂z

)
. (A.4)

In order to find the new two-dimensional relationship between stress and strain,

Equation (A.1) is simplified using Equation (A.4). From (A.1),

Tzz = λΘ + 2µ
(
∂w

∂z
− 1

3Θ
)
,

Tzz =
(
λ− 2

3µ
)(

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
+ 2µ∂w

∂z
. (A.5)
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Substituting Equation (A.4) into (A.5) gives:

Tzz =
(
λ− 2

3µ
)1−

λ− 2
3µ

λ+ 4
3µ

(∂u
∂x

+ ∂w

∂z

)
+ 2µ∂w

∂z
,

Tzz =
(

2µλ− 4
3µ

2

λ+ 4
3µ

)(
∂u

∂x
+ ∂w

∂z

)
+ 2µ∂w

∂z
,

Tzz =
−µ+

µ
(
λ+ 4

3µ
)

+ 2µλ− 4
3µ

2

λ+ 4
3µ

(∂u
∂x

+ ∂w

∂z

)
+ 2µ∂w

∂z
,

Tzz = 3λµ
λ+ 4

3µ

(
∂u

∂x
+ ∂w

∂z

)
+ 2µ

(
∂w

∂z
− 1

2

(
∂u

∂x
+ ∂w

∂z

))
. (A.6)

The same analysis can be performed for Txx. From Equation (A.6), the stress-strain

relationship in two dimensions becomes:

T
(2)
ij = λ̄Θ(2)δij + 2µ̄Σ(2)

ij , (A.7)

where the indices i and j now only run over x and z. Θ(2) and Σ(2) are now the

two-dimensional dilatation and shear strain tensor, defined as:

Θ(2) = ∂ux
∂x

+ ∂uz
∂z

, (A.8)

Σ(2)
ij = 1

2

(
∂ui
∂xj

+ ∂uj
∂xi

)
− 1

2Θ(2)δij, (A.9)

and the effective two-dimensional elastic constants are:

λ̄ = 3λµ
λ+ 4

3µ
and µ̄ = µ. (A.10)

A.2.2 Wave propagation velocities

The propagation velocity for longitudinal cL and transverse cT waves are given

by [A.3]:

c2L = λ̄+ µ̄

ρ
and c2T = µ̄

ρ
, (A.11)
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with ρ the mass density. Alternatively, introducing Young’s modulus E and Pois-

son’s ratio ν (with −1 ≤ ν ≤ 0.5) we have:

µ = E

2(1 + ν) , (A.12)

λ = E

3(1− 2ν) , (A.13)

and the propagation velocity for longitudinal waves becomes:

c2L = 1
ρ

(
3µλ
λ+ 4

3µ
+ µ

)
,

c2L = µ

ρ

(
4λ+ 4

3µ

λ+ 4
3µ

)
,

c2L = E

2ρ(1 + ν)

 4E
3(1−2ν) + 2E

3(1+ν)
E

3(1−2ν) + 2E
3(1+ν)

 ,
c2L = E

2ρ(1 + ν)

( 6
3− 3ν

)
,

c2L = E

ρ(1− ν2) . (A.14)

Similarly, the propagation velocity for transverse waves can be obtained and is given

by:

c2T = E

2ρ(1 + ν) . (A.15)

The longitudinal propagation velocity is larger than the transverse velocity, since

ν is always less than 0.5. Therefore, the longitudinal wavelength is larger than

the transverse wavelength, and hence the condition for the validity of the two-

dimensional thin-plate analysis for the support region can be expressed mathemat-

ically as:
λT
h
>> 1, (A.16)

where λT is the transverse wavelength.
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A.2.3 Elastic wave equation

The elastic waves are governed by the equation of motion [A.3]:

ρ
∂2u
∂t2

= ∇T. (A.17)

For direction z, Equation (A.17) gives:

ρ
∂2w

∂t2
= ∂Tzz

∂z
+ ∂Txz

∂x
,

ρ
∂2w

∂t2
= ∂

∂z

[
λ̄

(
∂u

∂x
+ ∂w

∂z

)
+ µ̄

(
2∂w
∂z
−
(
∂u

∂x
+ ∂w

∂z

))]
+ ∂

∂x

[
µ̄

(
∂w

∂x
+ ∂u

∂z

)]
,

ρ
∂2w

∂t2
= ∂

∂z

[(
λ̄+ µ̄

) ∂w
∂z

+
(
λ̄− µ̄

) ∂u
∂x

]
+ ∂

∂x

[
µ̄

(
∂w

∂x
+ ∂u

∂z

)]
,

ρ
∂2w

∂t2
=
(
λ̄+ µ̄

) ∂2w

∂z2 + µ̄
∂2w

∂x2 + λ̄
∂2u

∂x∂z
. (A.18)

Similarly, for direction x, Equation (A.17) gives:

ρ
∂2u

∂t2
=
(
λ̄+ µ̄

) ∂2u

∂x2 + µ̄
∂2u

∂z2 + λ̄
∂2w

∂x∂z
. (A.19)

Substituting the set of Equation (A.11) into (A.18) and (A.19), the elastic wave

equations governing the in-plane displacements are given by [A.3]:

∂2u

∂t2
= c2L

∂2u

∂x2 + c2T
∂2u

∂z2 +
(
c2L − c2T

) ∂2w

∂x∂z
, (A.20)

∂2w

∂t2
= c2L

∂2w

∂z2 + c2T
∂2w

∂x2 +
(
c2L − c2T

) ∂2u

∂x∂z
. (A.21)

A.3 Simplification and Fourier transform

A.3.1 Simplification with the introduction of new operators

By assuming that the displacements are time-dependent at frequency ω (excitation

frequency) and have the form u = û e−iωt and w = ŵ e−iωt, and using the following
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definition:

Θ = Θ(2) = ∂û

∂x
+ ∂ŵ

∂z
, (A.22)

Ω = ∂ŵ

∂x
− ∂û

∂z
, (A.23)

the main equations obtained earlier can be re-written and simplified. Those are

considered in turn next. Equation (A.20) becomes:

−ω2û = c2L

(
∂2u

∂x2 + ∂2w

∂x∂z

)
+ c2T

(
∂2u

∂z2 −
∂2w

∂x∂z

)
,

−ω2û = c2L
∂Θ
∂x
− c2T

∂Ω
∂z

. (A.24)

Equation (A.21) becomes:

−ω2ŵ = c2L

(
∂2w

∂z2 + ∂2u

∂x∂z

)
+ c2T

(
∂2w

∂x2 −
∂2u

∂x∂z

)
,

−ω2ŵ = c2L
∂Θ
∂z

+ c2T
∂Ω
∂x

. (A.25)

From Equation (A.25):

c2L =
(
−ω2ŵ − c2T

∂Ω
∂x

)
∂z

∂Θ , (A.26)

c2T =
(
−ω2ŵ − c2L

∂Θ
∂z

)
∂x

∂Ω . (A.27)

Substituting Equation (A.27) into (A.24) gives:

− ω2û = c2L
∂Θ
∂x
−
(
−ω2ŵ − c2L

∂Θ
∂z

)
∂x

∂Ω
∂Ω
∂z

,

− ω2∂û

∂x
= c2L

∂2Θ
∂x2 + ω2∂ŵ

∂z
+ c2L

∂2Θ
∂z2 ,

c2L

(
∂2Θ
∂x2 + ∂2Θ

∂z2

)
+ ω2Θ = 0. (A.28)
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Substituting Equation (A.26) into (A.24) gives:

− ω2û =
(
−ω2ŵ − c2T

∂Ω
∂x

)
∂z

∂Θ
∂Θ
∂x
− c2T

∂Ω
∂z

,

− ω2∂û

∂z
= −ω2∂ŵ

∂x
− c2T

∂2Ω
∂x2 − c

2
T

∂2Ω
∂z2 ,

c2T

(
∂2Ω
∂x2 + ∂2Ω

∂z2

)
+ ω2Ω = 0. (A.29)

A.3.2 Introduction of the shear and normal stresses

From the stress-strain relationship (A.7), the shear stress is expressed as:

τ = 2µ̄
[
1
2

(
∂ŵ

∂x
+ ∂û

∂z

)]
,

τ = ρc2T

(
∂ŵ

∂x
+ ∂û

∂z

)
; (A.30)

and the normal stress is:

σ = λ̄

(
∂û

∂x
+ ∂ŵ

∂z

)
+ µ̄

(
2∂ŵ
∂z
−
(
∂û

∂x
+ ∂ŵ

∂z

))
,

σ =
(
λ̄+ µ̄

) ∂ŵ
∂z

+
(
λ̄− µ̄

) ∂û
∂x
.

Knowing that:

λ̄+ µ̄ = ρc2L (A.31)

and

λ̄− µ̄ = ρc2L − 2ρc2T , (A.32)

the normal stress becomes:

σ = ρc2L
∂ŵ

∂z
+ ρ

(
c2L − 2c2T

)∂û
∂x
. (A.33)

In order to link the operators Θ and Ω with the stresses, the particular values

of û and ŵ found from Equations (A.24) and (A.25) are incorporated into Equa-
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tions (A.30) and (A.33). Equations (A.24) and (A.25) can be re-written as:

û = − 1
ω2

(
c2L
∂Θ
∂x
− c2T

∂Ω
∂z

)
, (A.34)

ŵ = − 1
ω2

(
c2L
∂Θ
∂z

+ c2T
∂Ω
∂x

)
. (A.35)

(A.36)

Substituting the û and ŵ values from Equations (A.34) and (A.35) into Equa-

tion (A.30) gives:

τ = −ρc
2
T

ω2

(
c2L

∂2Θ
∂x∂z

+ c2T
∂2Ω
∂x2 + c2L

∂2Θ
∂x∂z

− c2T
∂2Ω
∂z2

)
,

ω2

ρc4T
τ = ∂2Ω

∂z2 −
∂2Ω
∂x2 − 2r2 ∂

2Θ
∂x∂z

. (A.37)

where r is the ratio of wave speeds:

r = cL
cT
. (A.38)

Substituting the û and ŵ values from Equations (A.34) and (A.35) into Equa-

tion (A.33) gives:

σ = −ρc
2
L

ω2

(
c2L
∂2Θ
∂z2 + c2T

∂2Ω
∂x∂z

)
−
(
ρc2L
ω2 − 2ρc

2
T

ω2

)(
c2L
∂2Θ
∂x2 − c

2
T

∂2Ω
∂x∂z

)
,

ω2

ρc4T
σ = −r4∂

2Θ
∂z2 − r

2 ∂
2Ω

∂x∂z
−
(
r4∂

2Θ
∂x2 − r

2 ∂
2Ω

∂x∂z
− 2r2∂

2Θ
∂x2 + 2 ∂

2Ω
∂x∂z

)
,

ω2

ρc4T
σ = −2 ∂

2Ω
∂x∂z

− r4∂
2Θ
∂z2 + (2r2 − r4)∂

2Θ
∂x2 . (A.39)

A.3.3 Fourier Transform of the main equations

Support loss is related to the displacement in the support along the direction of

the stresses. The displacements u and w are governed by two-dimensional in-plane

elastic wave theory (Equations (A.20) and (A.21)). In order to remove the x vari-

able and obtain an explicit expression from this theory, one may apply the Fourier
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transform to Equations (A.24), (A.25), (A.28), (A.29), (A.37) and (A.39).

In the following equations, the subscript F denotes the Fourier transform and ξ is

the variable of this transform. The Fourier transform, from the real domain to the

wavenumber domain, used is defined as:

g(ξ) =
∫ +∞

−∞
f(x) e−iξx dx, (A.40)

f(x) = 1
2π

∫ +∞

−∞
g(ξ) eiξx dξ. (A.41)

The following propriety of the Fourier transform will be used:

∂f(x)
∂x

→ iξfF . (A.42)

Equations (A.24), (A.25), (A.28), (A.29), (A.37) and (A.39) become:

−ω2ûF = iξc2LΘF − c2T
dΩF

dz , (A.43)

−ω2ŵF = c2L
dΘF

dz + iξc2TΩF , (A.44)

d2ΘF

dz2 −
(
ξ2 − ω2

c2L

)
ΘF = 0, (A.45)

d2ΩF

dz2 −
(
ξ2 − ω2

c2T

)
ΩF = 0, (A.46)

ω2

ρc4T
τF = d2ΩF

dz2 + ξ2ΩF − 2iξr2 dΘF

dz , (A.47)

ω2

ρc4T
σF = −2iξ dΩF

dz − r
4 d2ΘF

dz2 − ξ
2(2r2 − r4)ΘF . (A.48)

A.4 Solution procedure

A.4.1 Differential equation solution

Equations (A.45) and (A.46) are linear second order differential Equations in z and

can be solved easily. The solutions for Equations (A.45) and (A.46) which remain
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finite when z is large are:

ΘF = Ae
−
√
ξ2−ω2

c2
L

z
, (A.49)

ΩF = B e
−
√
ξ2−ω2

c2
T

z
, (A.50)

A and B are constants related to the amplitude of the elastic wave and will be

determined later by applying boundary conditions at the appropriate excitation

stress sources. In order to simplify the notation, Equations (A.49) and (A.50) are

expressed as:

ΘF = Ae−
√

Lz with L = ξ2 − ω2

c2L
, (A.51)

ΩF = B e−
√

Tz with T = ξ2 − ω2

c2T
. (A.52)

Differentiating Equations (A.51) and (A.52) with respect to z, one gets:

dΘF

dz = −A
√

L e−
√

Lz, (A.53)

d2ΘF

dz2 = AL e−
√

Lz = A

(
ξ2 − ω2

c2L

)
e−
√

Lz, (A.54)

dΩF

dz = −B
√

T e−
√

Tz, (A.55)

d2ΩF

dz2 = BT e−
√

Tz = B

(
ξ2 − ω2

c2T

)
e−
√

Tz, (A.56)

A.4.2 Derivation of constants

The shear stress τ acting parallel to the x-axis and the normal stress σ acting parallel

to the z-axis are generated by the vibration of the sensor. They are illustrated in

Chapter 4, Figure 4.1. When the supposed clamped leg undergoes flexural vibration,

it is firstly assumed that the support loss due to the vibrating moment is negligible

compared to that incurred by the vibrating shear force. A detailed proof of this

assumption is presented in Section A.8. Therefore, for flexural vibrations, only

shear stresses are considered; and for longitudinal vibration, only normal stresses

are considered.
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To consider the most general case, let σF and τF be the value of the normal and

shear stresses in the wavenumber domain at z = 0. Their particular value will be

determined later.

Substituting Equations (A.53) and (A.56) into (A.47), and setting z = 0, gives:

ω2

ρc4T
τF = B

(
ξ2 − ω2

c2T

)
+ ξ2B + 2iξr2A

√
L,

B = 1
2ξ2 − ω2

c2
T

(
ω2

ρc4T
τF − 2iξr2A

√
L
)
. (A.57)

Substituting Equations (A.54) and (A.55) into (A.48), and setting z = 0, gives:

ω2

ρc4T
σF = 2iξB

√
T− A

r4
(
ξ2 − ω2

c2L

)
+ ξ2

(
2r2 − r4

),
A =

ω2

ρc4
T
σF

r2
(
ω2

c2
T
− 2ξ2

) − 2iξB
√

T

r2
(
ω2

c2
T
− 2ξ2

) . (A.58)

Substituting Equation (A.57) into (A.58) gives:

A =
ω2

ρc4
T
σF

r2
(
ω2

c2
T
− 2ξ2

) − 2iξ
√

T
(
ω2

ρc4
T
τF − 2iξr2A

√
L
)

r2
(
ω2

c2
T
− 2ξ2

)(
2ξ2 − ω2

c2
T

) ,

Ar2
(
ω2

c2T
− 2ξ2

)2

= ω2

ρc4T

(
ω2

c2T
− 2ξ2

)
σF + 2iξ ω

2

ρc4T
τF
√

T + 4ξ2r2A
√

L
√

T,

A =
ω2

ρc2
T c

2
L

(
ω2

c2
T
− 2ξ2

)
σF + 2iξ ω2

ρc2
T c

2
L
τF
√

T(
ω2

c2
T
− 2ξ2

)2
− 4ξ2

√
L
√

T
. (A.59)

Using the notation:

N(ξ) =
(
ω2

c2T
− 2ξ2

)2

− 4ξ2
√

L
√

T, (A.60)

Equation (A.59) becomes:

A =
ω2
(
ω2

c2
T
− 2ξ2

)
ρc2T c

2
LN(ξ) σF + 2iξω2

√
T

ρc2T c
2
LN(ξ)τF . (A.61)
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Substituting Equation (A.61) into (A.57) gives:

B = 1
2ξ2 − ω2

c2
T

 ω2

ρc4T
τF +

−2iξr2ω2
√

L
(
ω2

c2
T
− 2ξ2

)
σF + 4ξ2ω2r2

√
L
√

TτF
ρc2T c

2
LN(ξ)

 ,

B = 1
2ξ2 − ω2

c2
T

ω2

ρc4T


((

1 + 4ξ2
√

L
√

T
N(ξ)

)
τF

)
−

2iξ
(
ω2

c2
T
− 2ξ2

)√
L

N(ξ) σF

 ,

B = 2iξω2
√

L
ρc4TN(ξ)σF +

ω2
(
2ξ2 − ω2

c2
T

)
ρc4TN(ξ) τF . (A.62)

A.4.3 Displacements arising from stress sources

• Longitudinal displacement

By substituting the values of A and B (Equations (A.61) and (A.62)) into Equa-

tion (A.44), the longitudinal displacement under the stress sources can be found:

ω2ŵF = c2LA
√

L e−
√

Lz − iξc2TB e−
√

Tz,

ω2ŵF =
ω2
(
ω2

c2
T
− 2ξ2

)√
L

ρc2TN(ξ) e−
√

LxσF + 2iξω2
√

L
√

T
ρc2TN(ξ) e−

√
LzτF

+ 2ξ2ω2
√

L
ρc2TN(ξ) e

−
√

TzσF −
iξω2

(
2ξ2 − ω2

c2
T

)
ρc2TN(ξ) e−

√
TzτF ,

ŵF =
√

L
ρc2TN(ξ)

(ω2

c2T
− 2ξ2

)
e−
√

Lz + 2ξ2 e−
√

Tz

σF
+ iξ
ρc2TN(ξ)

2
√

L
√

T e−
√

Lz +
(
ω2

c2T
− 2ξ2

)
e−
√

Tz

τF .
(A.63)

• Flexural displacement

By substituting the values of A and B (Equations (A.61) and (A.62)) into Equa-
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tion (A.43), the flexural displacement under the stress sources can be found:

ω2ûF = −iξc2LAe−
√

Lz − c2TB
√

T e−
√

Tz,

ω2ûF =
−iξω2

(
ω2

c2
T
− 2ξ2

)
ρc2TN(ξ) e−

√
LzσF + 2ξ2ω2

√
T

ρc2TN(ξ) e
−
√

LzτF

− 2iξω2
√

L
√

T
ρc2TN(ξ) e−

√
TzσF −

ω2
√

T
(
2ξ2 − ω2

c2
T

)
ρc2TN(ξ) e−

√
TzτF ,

ûF = −iξ
ρc2TN(ξ)

(ω2

c2T
− 2ξ2

)
e−
√

Lz + 2
√

L
√

T e−
√

Tz

σF
+

√
T

ρc2TN(ξ)

2ξ2 e−
√

Lz +
(
ω2

c2T
− 2ξ2

)
e−
√

Tz

τF .
(A.64)

Both displacements ŵF and ûF are found to be a function of the shear and nor-

mal stresses. However, as will be shown in Section A.7, the so called “indirect”

stress does not have an influence on the mean displacement. The “indirect” stress

corresponds to shear stress for a longitudinal displacement and normal stress for a

flexural displacement.

A.5 Inverse Fourier transform

A.5.1 Inverse Fourier transform of the displacements

The values of the shear τF and normal stresses σF are defined by assuming that

the stresses are constant over the source region (width of the beam) and created

by flexural and longitudinal vibrations of the sensor respectively. The effect of

the bending moment occurring during flexural vibrations is neglected here. This

hypothesis will be validated in Section A.8. Let us define:

τ = τ̂ for |x| <
b

2 and τ = 0 for |x| > b

2; (A.65)

σ = σ̂ for |x| <
b

2 and σ = 0 for |x| > b

2 . (A.66)
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Therefore, the Fourier transform of τ and σ are:

τF =
2τ̂ sin

(
ξ b2

)
ξ

, (A.67)

σF =
2σ̂ sin

(
ξ b2

)
ξ

. (A.68)

For the flexural displacement, only shear stresses are considered (the “indirect”

stress source has no effect, see Section A.7). Introducing the particular value of τF
(Equation (A.67)) into the displacement definition (A.64) and applying the inverse

Fourier transform gives:

û = τ̂

πρc2T

∫ ∞
−∞

√
T sin

(
ξ b2

)
ξN(ξ)

(ω2

c2T
− 2ξ2

)
e−
√

Tz + 2ξ2 e−
√

Lz

 eiξx dξ (A.69)

For the longitudinal displacement, only normal stresses are considered (the “indi-

rect” stress source has no effect, see Section A.7). Introducing the particular value

of σF (Equation (A.68)) into the displacement definition (A.63) and applying the

inverse Fourier transform gives:

ŵ = σ̂

πρc2T

∫ ∞
−∞

√
L sin

(
ξ b2

)
ξN(ξ)

(ω2

c2T
− 2ξ2

)
e−
√

Lz + 2ξ2 e−
√

Tz

 eiξx dξ (A.70)

To simplify the integrals, a change of variable is introduced. By defining:

γ = ξ
cL
ω
, ξ = γ

ω

cL
and dξ = ω

cL
dγ, (A.71)

one can get:

√
T =

√
ξ2 − ω2

c2T
= ω

cL

√
γ2 − r2, (A.72)

√
L =

√
ξ2 − ω2

c2L
= ω

cL

√
γ2 − 1, (A.73)
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where r is defined in Equation (A.38). Therefore, from Equation (A.60):

N(ξ) =
(
ω2

c2T
− r2

)2

− 4ξ2
√

L
√

T = ω4

c4L
N0(γ), (A.74)

N0(γ) =
(
2γ2 − r2

)2
− 4γ2

√
γ2 − 1

√
γ2 − r2. (A.75)

Using Equations (A.71) to (A.75), the flexural displacement (Equation (A.69)) can

be simplified to:

û = τ̂

πρc2T

∫ ∞
−∞

√
γ2 − r2 sin

(
γ bω

2cL

)
ω
cL
γN0(γ)

(r2 − 2γ2
)
e
− ω
cL
z
√
γ2−r2

+ 2γ2 e
− ω
cL
z
√
γ2−1

 ei ωcL γx dγ.
(A.76)

To simplify the notation, the quantity bω

2cL
will be denoted as:

A = bω

2cL
. (A.77)

The flexural displacement, at z = 0, becomes:

ûz=0 = br2τ̂

2πρc2T

∫ ∞
−∞

√
γ2 − r2 sin (Aγ)
AγN0(γ)

e
i ω
cL
γx dγ. (A.78)

Considering the parity of the integrand, it can be shown that it simplifies to:

ûz=0 = br2τ̂

πρc2T

∫ ∞
0

√
γ2 − r2 sin (Aγ)
AγN0(γ)

cos
(
ω

cL
γx
)

dγ. (A.79)

Using the same approach in the longitudinal displacement (Equation (A.70)), one

can get at z = 0:

ŵz=0 = br2σ̂

πρc2T

∫ ∞
0

√
γ2 − 1 sin (Aγ)
AγN0(γ)

cos
(
ω

cL
γx
)

dγ. (A.80)
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A.5.2 Derivation of the mean displacement over the source

region

In order to calculate the energy loss and the power transmitted to the support, the

mean displacement over the exciting source region (width of the sensor) is required.

An integral representation for the mean flexural displacement is:

ūz=0 = 1
b

∫ b/2

−b/2
ûz=0 dx, (A.81)

ūz=0 = r2τ̂

πρc2T

∫ b/2

−b/2

 ∫ ∞
0

√
γ2 − r2 sin (Aγ)
AγN0(γ)

cos
(
ω

cL
γx
)

dγ
 dx. (A.82)

Considering the parity in x of the integrand (quantity inside the brackets), this

equation can be re-organised as:

ūz=0 = 2r2τ̂

πρc2T

∫ ∞
0

√
γ2 − r2 sin (Aγ)
AγN0(γ)

 ∫ b/2

0
cos

(
ω

cL
γx
)

dx
 dγ,

ūz=0 = 2r2τ̂

πρc2T

∫ ∞
0

√
γ2 − r2 sin (Aγ)
AγN0(γ)

sin (Aγ)
Aγ

 dγ,

ūz=0 = br2τ̂

πρc2T

∫ ∞
0

√
γ2 − r2

N0(γ)

sin (Aγ)
Aγ

2

dγ. (A.83)

The imaginary part of the integrand of Equation (A.83), which will contribute to

support loss (see Section A.6), is non zero for 0 < γ < r. With usual resonator

dimensions and corresponding natural frequencies, the term Aγ = bω

2cL
γ is relatively

small compared to 1 for this range of γ-value, which allows Equation (A.83) to be

simplified to:

ūz=0 = br2τ̂

πρc2T
Ψu, (A.84)

with

Ψu =
∫ ∞
0

√
γ2 − r2

(2γ2 − r2)2 − 4γ2
√
γ2 − 1

√
γ2 − r2

dγ. (A.85)

Equation (A.84) is the average displacement along the x-axis and over the source

region induced by the stress τ . The same approach can be used to get the average

longitudinal displacement along the z-axis and over the source region induced by
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the stress σ:

w̄z=0 = br2σ̂

πρc2T
Ψw, (A.86)

with

Ψw =
∫ ∞
0

√
γ2 − 1

(2γ2 − r2)2 − 4γ2
√
γ2 − 1

√
γ2 − r2

dγ. (A.87)

A.6 Energy loss calculation

The quality factor is defined as:

Q = 2π W

∆W , (A.88)

where ∆W denotes the energy dissipated per cycle of vibration and W denotes the

maximum vibration energy stored per cycle.

Once the displacement induced by the stresses over the source region has been

determined (using Equation (A.84) or (A.86)), the amount of energy loss per cycle

from the support can be calculated explicitly as:

∆W = 2π
ω

Π (A.89)

where Π is the average power transmitted to the support, and is defined as:

Π = 1
2 Re (Force · Velocity∗) , (A.90)

where Re is the real part and ∗ denotes the complex conjugate. Considering a shear

force source S creating a shear stress τ and its induced flexural displacement ūz=0;

and assuming that the force and displacement are time-dependent at frequency ω,
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Equation (A.90) becomes:

Πu = 1
2 Re

(
S e−iωt ·

(
−iωūz=0 e

−iωt
)∗)

,

Πu = 1
2 Re (S · iωū∗z=0) ,

Πu = ω

2

(
Re(S) Im(ūz=0)− Im(S) Re(ūz=0)

)
. (A.91)

The displacement ūz=0 was defined previously (in Equation (A.84)). Its real and

imaginary parts are:

Re(ūz=0) = r2

hπρc2T

(
Re(S) Re(Ψu)− Im(S) Im(Ψu)

)
, (A.92)

Im(ūz=0) = r2

hπρc2T

(
Re(S) Im(Ψu) + Im(S) Re(Ψu)

)
, (A.93)

where τ̂ = S/bh has been used, h being the resonator and support thicknesses.

Therefore, the energy loss can be defined as (from Equation (A.89)):

∆Wu = π

Re(S)
(

r2

hπρc2T

(
Re(S) Im(Ψu) + Im(S) Re(Ψu)

))

− Im(S)
(

r2

hπρc2T

(
Re(S) Re(Ψu)− Im(S) Im(Ψu)

)),
∆Wu = r2

hρc2T

((
Re(S)

)2
+
(

Im(S)
)2
)

Im(Ψu),

∆Wu = r2

hρc2T

∣∣∣S∣∣∣2 Im(Ψu). (A.94)

Using the material properties, Equation (A.94) can be re-written as:

∆Wu = 4(1 + ν)
Eh(1− ν)

∣∣∣S∣∣∣2 Im(Ψu). (A.95)

using the same approach for the normal force T (such that σ̂ = T/bh) and the longi-

tudinal displacement, the energy loss from a normal stress source can be expressed

as:

∆Ww = 4(1 + ν)
Eh(1− ν)

∣∣∣T ∣∣∣2 Im(Ψw). (A.96)
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Equations (A.95) and (A.96) show that only the imaginary part of the integrals Ψu

and Ψw are needed to calculate the amount of energy loss.

A.7 Proof 1: The indirect stress has no contribu-

tion to the mean displacement

From Equation (A.64), the flexural displacement in the wavenumber domain pro-

duced by shear and normal stresses at the boundary is expressed as:

ûF = −iξ
ρc2TN(ξ)

(ω2

c2T
− 2ξ2

)
e−
√

Lz + 2
√

L
√

T e−
√

Tz

σF
+

√
T

ρc2TN(ξ)

2ξ2 e−
√

Lz +
(
ω2

c2T
− 2ξ2

)
e−
√

Tz

τF .
(A.97)

The first term (function of σF ) of this equation and the second term (function of

τF ) in Equation (A.63) will be called indirect term. The following derivation is

performed for the indirect term of the flexural displacement but the same approach

can be used for the indirect term of the longitudinal displacement.

Let ûF–in be the indirect term of the flexural displacement, such that:

ûF–in = −iξ
ρc2TN(ξ)

(ω2

c2T
− 2ξ2

)
e−
√

Lz + 2
√

L
√

T e−
√

Tz

σF . (A.98)

Considering that the normal stress σ is constant over the source region, such that

σ = σ̂ for |x| < b/2 and σ = 0 elsewhere (see Section 4.2.3 with the effect of the

bending moment taken as negligible, see Section A.8 ), its Fourier transform σF will

be defined as:

σF =
2σ̂ sin

(
ξ b2

)
ξ

. (A.99)

Substituting this particular value of σF into Equation (A.98) and applying the
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inverse Fourier transform gives:

ûin = − σ̂

πρc2T

∫ ∞
−∞

i sin
(
ξ b2

)
N(ξ)

(ω2

c2T
− 2ξ2

)
e−
√

Lz + 2
√

L
√

T e−
√

Tz

 eiξx dξ.

(A.100)

Using the change of variable defined in Equation (A.71) and the definition of N0(γ)

from Equation (A.75), Equation (A.100) becomes:

ûin = − σ̂

πρc2T

∫ ∞
−∞

i sin (Aγ)
ω
cL
N0(γ)

(r2 − 2γ2
)
e
− ω
cL
z
√
γ2−1

+ 2
√
γ2 − 1

√
γ2 − r2 e

− ω
cL
z
√
γ2−r2

 ei ωcL γx dγ.
(A.101)

This displacement at z = 0 is:

ûz=0–in = − σ̂

πρc2T

∫ ∞
−∞

i sin (Aγ)
ω
cL
N0(γ)

r2−2γ2+2
√
γ2 − 1

√
γ2 − r2

 ei ωcL γx dγ. (A.102)

Considering the parity of the integrand, Equation (A.102) becomes:

ûz=0–in = 2σ̂
πρc2T

∫ ∞
0

sin (Aγ)
ω
cL
N0(γ)

r2 − 2γ2 + 2
√
γ2 − 1

√
γ2 − r2

 sin
(
ω

cL
γx
)

dγ.

(A.103)

To calculate the energy loss, the mean displacement over the source region is re-

quired, and this is defined in Equation (A.81). Here, the mean flexural displacement

due to the indirect normal stress is:

ūz=0–in = 2σ̂
bπρc2T

∫ b/2

−b/2

 ∫ ∞
0

sin (Aγ)
ω
cL
N0(γ)

r2 − 2γ2

+ 2
√
γ2 − 1

√
γ2 − r2

 sin
(
ω

cL
γx
)

dγ
 dx.

(A.104)

The integrand quantity (inside the brackets) is an odd function in x and therefore

the mean displacement evaluates is zero:

ûz=0–in = 0. (A.105)
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The same approach can be used for the longitudinal displacement created by shear

stress and one gets:

ŵz=0–in = 0. (A.106)

A.8 Proof 2: The bending moment effect is neg-

ligible

Cross and Lifshitz [A.4] explained that when a resonator is vibrating tangentially to

its support, the contribution of the normal stress due to the oscillating moment to

the power radiated can be neglected compared to the contribution of the shear stress.

This section presents analytical/numerical proofs of their prediction. Stresses due

to the bending moment at the clamped end are added into the model. Flexural

vibrations of the resonator will produce a bending moment in addition to the usual

shear force. This moment induces a normal stress linearly dependent on the x-value

over the width of the resonator. It gives a new boundary condition for the support

model, such that for |x| < b/2:

σ = −M
I
x, (A.107)

where M is the bending moment at the anchor point induced by flexural vibrations

of the resonator and I is the second moment of inertia of the resonator. The Fourier

transform of this normal stress σ is:

σF = −2i M
Iξ2

ξ b2 cos
(
ξ
b

2

)
− sin

(
ξ
b

2

). (A.108)

This additional external source will have three different effects:

• it is expected to change the displacement w in the support along the z-axis

as Equation (A.63) is function of σF , see Section A.8.1;

• it is also expected to change the displacement u in the support along the

x-axis as Equation (A.64) is also a function of σF , see Section A.8.2;
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• it is expected to induce another source of energy loss, see Section A.8.3. As

presented earlier, the energy loss is defined as the product of the “force” by

the corresponding “displacement”. The energy loss ∆Ws, created directly by

a bending moment is (similar to Equation (A.89)):

∆Ws = 2π
ω

Πs (A.109)

with Πs = 1
2 Re(M · iω dū

dz
∗
z=0). Rearranging gives:

∆Ws = πRe(M · i dū
dz

∗

z=0
) (A.110)

The following three sections will present each case individually and the effect of the

bending moment will be derived in each case.

A.8.1 Change of w due to a bending moment

Substituting the particular value of σF (Equation (A.108)) into Equation (A.64)),

setting z = 0 and applying the inverse Fourier transform gives:

ŵz=0 = −iMω2

Iπρc4T

∫ ∞
−∞

√
L

ξ2N(ξ)

ξ b2 cos
(
ξ
b

2

)
− sin

(
ξ
b

2

) eiξx dξ. (A.111)

Using the parity of the integrand gives:

ŵz=0 = 2Mω2

Iπρc4T

∫ ∞
0

√
L

ξ2N(ξ)

ξ b2 cos
(
ξ
b

2

)
− sin

(
ξ
b

2

) sin (ξx) dξ (A.112)

To calculate the energy loss, the mean displacement over the source region is used.

This mean displacement, defined in Equation (A.81), is zero when applied to the

displacement in the above Equation (A.112) because the integrand is an odd func-

tion of x. This means that the introduction of a bending moment does not change

the mean longitudinal displacement w̄z=0.
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A.8.2 Change of u due to a bending moment

Substituting the particular value of σF (Equation (A.108)) into Equation (A.64)

and applying the inverse Fourier transform gives:

û = M

Iπρc2T

∫ ∞
−∞

sin
(
ξ b2

)
− ξ b2 cos

(
ξ b2

)
ξN(ξ)

(ω2

c2T
− 2ξ2

)
e−
√

Lz

+ 2
√

L
√

T e−
√

Tz

 eiξx dξ.
(A.113)

Using the parity of the integrand gives:

û = 2M
Iπρc2T

∫ ∞
0

sin
(
ξ b2

)
− ξ b2 cos

(
ξ b2

)
ξN(ξ)

(ω2

c2T
− 2ξ2

)
e−
√

Lz

+ 2
√

L
√

T e−
√

Tz

 cos (ξx) dξ.
(A.114)

The change of variable defined in Equation (A.71) is re-used here and the displace-

ment becomes:

û = 2r2M

Iπρω2

∫ ∞
0

sin (Aγ)−Aγ cos (Aγ)
γN0(γ)

(r2 − 2γ2
)
e
− ω
cL
z
√
γ2−1

+ 2
√
γ2 − 1

√
γ2 − r2 e

− ω
cL
z
√
γ2−r2

 cos
(
γ
ω

cL
x
)

dγ.

(A.115)

With the definition of the mean displacement as in Equation (A.81), it is useful to

notice that:
1
b

∫ b
2

− b2
cos

(
γ
ω

cL
x
)

dx = sin (Aγ)
Aγ

(A.116)
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where A = bω

2cL
. The mean flexural displacement becomes (from Equation (A.115)):

ū = 2r2M

Iπρω2

∫ ∞
0

(sin (Aγ)−Aγ cos (Aγ)) sin (Aγ)
Aγ2N0(γ)

(r2 − 2γ2
)
e
− ω
cL
z
√
γ2−1

+ 2
√
γ2 − 1

√
γ2 − r2 e

− ω
cL
z
√
γ2−r2

 dγ.

(A.117)

For z = 0, Equation (A.117) becomes:

ūz=0 = 2r2M

Iπρω2

∫ ∞
0

(sin (Aγ)−Aγ cos (Aγ)) sin (Aγ)
Aγ2N0(γ)

(
r2 − 2γ2

+ 2
√
γ2 − 1

√
γ2 − r2

)
dγ.

(A.118)

The imaginary part of this displacement is very small (approximately 100 times

smaller) compared to the one created by the shear force during flexural vibration.

The change of displacement and therefore energy loss due to the bending moment

in this case can thus be neglected.

A.8.3 Energy loss due to a bending moment

From Equation (A.117), it is possible to calculate the slope of the mean displacement

at z = 0.

dū
dz z=0

= 2r2M

Iπρω2

∫ ∞
0

(sin (Aγ)−Aγ cos (Aγ)) sin (Aγ)
Aγ2N0(γ)− ω

cL

√
γ2 − 1

(
r2 − 2γ2

)
− 2 ω

cL

√
γ2 − r2

√
γ2 − 1

√
γ2 − r2

 dγ,

dū
dz z=0

= 2r2M

Iπρω2

∫ ∞
0

(sin (Aγ)−Aγ cos (Aγ)) sin (Aγ)
Aγ2N0(γ)− ω

cL

√
γ2 − 1

(
r2 − 2γ2 + 2

(
γ2 − r2

)) dγ,
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dū
dz z=0

= 2r4M

IπρωcL

∫ ∞
0

(sin (Aγ)−Aγ cos (Aγ)) sin (Aγ)
Aγ2N0(γ)

√
γ2 − 1 dγ. (A.119)

The imaginary part of the integrand of Equation (A.119), which will contribute to

support loss (see Section A.6), is non zero for 0 < γ < r. For typical resonator

dimensions and corresponding natural frequencies, the term Aγ = bω

2cL
γ is rela-

tively small compared to 1 for this range of γ-value, which allows the following

simplification to be made:

(sin (Aγ)−Aγ cos (Aγ)) sin (Aγ)
Aγ

≈
(Aγ)3

3 . (A.120)

using Equation (A.120) to simplify Equation (A.119) gives the following value for

the slope:
dū
dz z=0

= ω2M

πρc4Th
Ψs. (A.121)

Where

Ψs =
∫ ∞
0

γ2√γ2 − 1
(2γ2 − r2)2 − 4γ2

√
γ2 − 1

√
γ2 − r2

dγ. (A.122)

Using Equation (A.110) and the imaginary part of Ψs, it can be concluded that

for typical resonator dimensions, the energy loss due to the bending moment is of

the order of 1000 times smaller than due to shear stress. On this basis, it can be

neglected.
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Appendix B

Geometry constraints

The ring-based rate sensor is manufactured in silicon, bonded on a pedestal glass

and then installed on an electronic card. During the design stage, its dimensions

needed for manufacturing have been defined. These dimensions are presented in

Table B.1, whose notations can be seen in Figure B.1.

On this figure, two simplifications have been done. First, the width of the material

in the leg or in the ring is not present. In reality, these widths are given as:

leg width = 0.061 mm and ring width = 0.121 mm. The angles of each corner

have also been simplified and are considered as “pointed” angles (or abrupt change

in direction). In reality they are rounded angles that come from manufacturing

process. The ray tracing method that has been applied all along this thesis to

model the sensor vibrations neglects these rounded angles and considers an abrupt

change in direction between the beam centreline. It is actually only the beam and

ring centrelines that are illustrated in Figure B.1.

The leg contains three beam portions. Each of them is numbered: beam ‘1’ is the

beam portion attached to the ring, beam ‘3’ is the portion supposed clamped at

the support, and beam ‘2’ is the portion between beam ‘1’ and ‘3’.
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B.1 Original dimensions

From the original dimensions given in Table B.1, all the geometric parameters that

are needed to apply the ray tracing method can be derived. These parameters are

the lengths of each beam portion (L1, L2 and L3) and the angle between them (α

and φ).

First, it is quite straightforward to observe, from Figure B.1, that the angle α

between beam ‘1’ and beam ‘2’ is:

α = 90◦ − (γ + θ) , (B.1)

= 54.5◦.

The angle φ, between beam ‘2’ and beam ‘3’ is:

φ = β + α, (B.2)

= 94.5◦.

With these two angles and from geometry analysis, the lengths of each beam portion

can be derived:

L1 =
 Rbeam2

sin(π − φ) cos β +
(

Rbeam2

sin(π − φ) sin β
)

tan(θ + γ)
−R

= Rbeam2

sinφ

(
cos β + sin β tan(θ + γ)

)
−R (B.3)

≈ 1.064 mm;

L2 =

Rbeam 2

sin(π − φ) sin β

cos(θ + γ) ,

= Rbeam2
sin β

sinφ cos(θ + γ) , (B.4)

≈ 2.582 mm;
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L3 = Ranchor

cos(β − θ) −
Rbeam2

sin(π − φ) ,

= Ranchor

cos(β − θ) −
Rbeam 2

sinφ , (B.5)

≈ 1.060 mm.

These dimensions are the actual dimensions of the ring-based rate sensor.

B.2 Coupling between parameters

In Chapter 5, it has been decided to change the leg shape in order to see its influence

on the Q-factor. From the analysis in Section B.1, it is clear that the parameters

are coupled together. Changing for example the length L1 of the beam ‘1’, it will

automatically induce some changes in L2, α and φ.

In order to find equations that express this coupling, it was necessary to consider

that some parameters have to remain unchanged. These parameters that are con-

strained are the ring radius R; the total dimension of the sensor (dimension between

the centre of the ring and the clamped end: Ranchor); the overall angle β of the leg

(between beam ‘1’ and beam ‘3’) and the fact that beam ‘1’ and beam ‘3’ are radi-

ally directed. The value of θ that was defined for design purpose is also unchanged.

Therefore the values of Ranchor, R, β and θ are seen as given data.

From the five Equations (B.1)-(B.5), if two unknowns are fixed within the seven

parameters (Rbeam 2, L1, L2, L3, α, φ, γ), the other five parameters can be de-

termined. In Chapter 5, it has been chosen to change the values of L1 and L3.

Therefore these two parameters are now seen as chosen and Equations (B.1)-(B.5)

have to be re-arranged to find the other five parameters.

By introducing Equation (B.1) in Equation (B.2), one can easily get:

φ = β + 90◦ − (γ + θ). (B.6)
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This new value of φ is introduced in Equation (B.5), and this equation is solved in

respect to Rbeam2. It becomes:

Rbeam 2 =
(

Ranchor

cos(β − θ) − L3

)
sin

(
β + 90◦ − (γ + θ)

)
. (B.7)

Equation (B.7) and Equation (B.6) are substituted in Equation (B.3). It gives:

L1 =
(

Ranchor

cos(β − θ) − L3

)(
cos β + sin β tan(θ + γ)

)
−R,

L1 +R
Ranchor
cos(β−θ) − L3

− cos β = sin β tan(θ + γ),

γ = arctan


L1 +R

Ranchor
cos(β−θ) − L3

− cos β

sin β

− θ. (B.8)

Substituting this particular value of γ (Equation (B.8)) in Equation (B.7), a nu-

merical value of Rbeam 2 can be found. φ and α can also then be determined using

respectively Equation (B.6) and Equation (B.1). L2 is then derived from Equa-

tion (B.4).

Therefore, by choosing L1 and L3 and with the appropriate constraints, L2, α and φ

can be derived. These parameters are needed in the ray tracing method application

to find natural frequencies and mode shapes.
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Figures and Tables

Figure B.1: Notations used on the ring-based resonator to define the different
geometric parameters.
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Table B.1: Actual dimensions the ring-based rate sensor given in the design pro-
cess. bleg and bring are the leg and ring widths. The other notations
are presented in Figure B.1.

Ranchor 4.0005 mm
Rbeam2 3.26 mm
R 2.94 mm
β 40◦
θ 17.5◦
γ 18◦
bleg 0.061 mm
bring 0.121 mm
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