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ABSTRACT 

Global Navigation Satellite Systems (GNSS) have an endless number of applications 

in industry, science, military, transportation and recreation & sports. Two systems are 

currently in operation namely GPS (the USA Global Positioning System) and 

GLONASS (the Russian GLObal NAvigation Satellite System), and a third is 

planned, the European satellite navigation system GALILEO. The potential 

performance improvements achievable through combining these systems could be 

significant and expectations are high. Computer software can be used to simulate the 

overall process of GNSS (signal transmission and reception) and produce realistic 

simulated GNSS measurements. Using such simulated measurements, current and 

future GNSS systems and possible new applications of GNSS can be investigated. 

Thus data simulation is the perfect research tool in GNSS fields. 

Oceanography, is one application of GNSS, which requires position determination 

with a high accuracy. LEO satellites are used to measure the precise height of the sea 

surface for studying the dynamics of the world's oceans. Achieving maximum benefit 

from the altimetric data collected by LEO satellites requires a radial orbit accuracy of 

10 cm, or better. It is in determining this orbit where GNSS may be utilised. GPS 

already delivers high quality position information for LEO satellite orbits such as 

Topex/Poseidon (1992- present). However LEO satellite orbits determination can still 

benefit from using GPS combined with GALILEO as there will be more visible 

satellites and a higher quality of measurements. Investigation of LEO satellite orbit 

determination using GPS or GALILEO or both systems requires GPS and GALILEO 
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measurements. Due to the lack of real GALILEO measurements, as the system is still 

in development, the simulation of GPS and GALILEO measurements is required. In 

order to generate realistic simulated GPS and GALILEO data, the errors, which 

predominate in GNSS measurements, must be accurately modelled. 

During this research, it has been shown that it is possible to generate realistic 

simulated GPS data through the more realistic simulation of the ionospheric, 

tropospheric and multipath delays. Models with a high spatial resolution have been 

implemented to simulate the real behaviour of the ionosphere and troposphere. The 

behaviour of the resulting simulated GPS data is shown to follow the behaviour of 

real GPS data with a strong agreement. It has also been possible to generate 

GALILEO simulated data through modifying the simulation software using the 

GALELEO Design technical specifications. The potential impact of using GPS and 

GALILEO on LEO satellite orbit determination could be investigated on 

Topex/Poseidon mission which real GPS data was available from the beginning of 

this study. The performance of GPS, GALILEO, combined GPS/GALILEO and 

combined GPS-modernised/GALELEO constellations have been investigated in 

relation to the reduced dynamic orbit determination of the LEO satellite 

Topex/Poseidon. It can be concluded that the GALILEO constellation will provide 

high quality real time LEO satellite orbits compared with GPS. GALELEO 

constellation will provide slightly better quality real time LEO satellite orbits over the 

combined GPS-present/GALELEO constellation. However the best quality real time 

LEO satellite orbits will result from the combined GPS-modemised/GALILEO 

constellation. 
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Chanter I Introduction 

CHAPTER I 

Introduction 

There are many applications of Global Navigation Satellite Systems (GNSS) in fields 

such as, industry (Agriculture, Mapping & Geographical Information System (GIS) 

Data Collection., Public Safety, Surveying and Telecommunications), military 

(Intelligence & Target Location, Navigation and Weapon Aiming & Guidance), 

science (Archeology, Atmospheric sciences, Environmental, Geodesy, Geology & 

Geophysics, Oceanography and Wildlife), transportation (Aviation, IVHS (Intelligent 

Vehicular Highway Systems) & Fleet Tracking, Marine and Space) and recreation & 

sports (Land, Sea and Air). 

All these applications are solely dependent on GPS (the USA Global Positioning 

System) at the present time. As these applications are developing and becoming more 

widely used, mankind is becoming increasingly reliant on GPS services. Thus the 

assured continuous availability of these services is required. The availability of these 

services can be enhanced through the use of more than one GNSS. Making the need 

for GALELEO, another GNSS interoperable with GPS, inevitable. In this thesis's text, 

the term GALILEO will refer to the European satellite navigation system and is not 

an acronym. 
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Simulation is a crucial research tool for present and future GNSS systems. Using 

computer sciences to develop software which simulates the behaviour of a present 

(GPS) or future system (GALILEO), new scenarios and applications for present 

systems can be tested at low cost and the behaviour of future systems (GALELEO) 

can be explored. Testing the behaviour of such simulation software against the 

behaviour of present systems (GPS) gives confidence in the findings for future 

systems. 

Different techniques for simulating multi-component GNSS systems are varying in 

application and complexity. Examples of such techniques are: 

I- Service Volume Simulators (SVS) used to give the overall view of the 

performance levels seen by the user such as the GALELEO Integrity 

Performance Assessment (GIPA) project (Werner et al., 2001). 

2- End-to-End simulators which simulate every aspect of the GNSS system 

(ground control, space and user segments), may work in real-time and have the 

ability of testing hardware, such as the GalileoSat System Simulation Facility 

(GSSF) (Pidgeon et al., 2000) and the NavSim simulation software (Engler et 

al., 2001). 

3- GNSS measurements Simulators, also called Raw Data Generators simulate 

only one aspect of GNSS systems which is the measurements that would be 

made by a user receiver for a particular GNSS system, such as SATNAV 

Toolbox simulator (SATNAV, 1998) developed by GPSoft LLC, University of 

Calgary simulator (Lou, 2000), Bernese GPS data simulation software 
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(Hugentobler et al., 2001) and the EESSG-DATa SIMulator (DATSIM) software 

which is the scope of study for this thesis. 

The DATa SIMulator (DATSIM) is the EESSG's in-house developed software used 

for simulating GPS data. The accuracy of the GPS simulated data depends mainly on 

the accuracy of the models used to simulate the various types of errors contained in 

the GPS measurements such as ionospheric delay, tropospheric delay and multipath. 

The more realistic the error models, the more realistic the simulated data. The 

software has already been used to successfully simulate GPS data in previous projects 

(Ashkenazi et al., 1994; 1996; 1997). 

Oceanography is one field of application of GNSS systems. Low Earth Orbit (LEO) 

satellites are used to measure the precise height of the sea's surface when studying 

the dynamics of the circulation of the world's oceans. Achieving maximum benefit 

from the altimetric data collected by LEO satellites requires a radial orbit accuracy of 

10 cm or better. It is in the determination of those orbits that GNSS systems can play 

a key role. The two significant LEO missions in this field are Topex/Poseidon (1992- 

present) and Jason- 1 (2001 -present). 

The main objectives of this research were: 

9 To improve the performance of the DATSIM software through implementation of 

more realistic models for simulating the most predominate environmental errors 

in GPS measurements, namely 

the ionospheric delay error 
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the tropospheric delay error 

the multipath delay error. 

* To generate more realistic simulated GPS data. 

To generate simulated GALILEO data through modifying the DATSIM software. 

To investigate the performance of the GPS, GALILEO, combined 

GPS/GALILEO and combined GPS-modemised/GALELEO constellations in 

respect of LEO satellite orbit determination (specifically Topex/Poseidon) using 

GPS and GALELEO simulated data. 

This research has resulted in the following software developments: 

1. The implementation of an accurate model for simulating the ionospheric delay 

within DATSIM software based on IGS-GIN4's (International GPS Service - 

Global Ionospheric Maps) which describes the ionosphere's variable behaviour to 

a high level of accuracy with a reasonable computational time when compared 

with other available models. 

2. The implementation of the EGNOS (European Geo-stationary Navigation 

Overlay Service) model for simulating the tropospheric delay within DATSIM 

software, which shows good behaviour compared with IGS -tropospheric 

estimates and other available tropospheric models. 

3. The implementation of an algorithm based on the theory of Gaussian random 

fields that allows the simulation of the small-scale regional variations within the 

ionosphere and troposphere resulting in high spatial variation models. 
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4. The implementation of a more realistic model for simulating the multipath delay 

within DATSIM software based on Gaussian colored noise. 

From use of the improved simulation software in LEO satellite reduced dynamic orbit 

determination; the following conclusions can be drawn: 

1. The GPS broadcast ephemeris error is a limiting factor in providing high quality 

real time LEO satellite orbits. 

2. The GALHEO constellation will provide high quality real time LEO satellite 

orbits compared with GPS. 

3. The GALILEO constellation will provide slightly better quality real time LEO 

satellite orbits over the combined GPS/GALILEO constellation. 

4. The Combined GPS-modemised/GALELEO constellation will provide better 

quality real time LEO satellite orbits compared with GPS or GALILEO 

individually. 

The thesis contains eight chapters, references section and eight appendices. Chapter I 

gives an introduction for the conducted research stating the objectives and outcomes 

of the research. Chapter 2 contains a brief description of the GPS system and its error 

sources. The GALILEO system design architecture and services are presented briefly 

in Chapter 3. Chapter 4 describes the method of GPS data simulation, detailing the 

structure of the DATSIM software and discussing the various implemented models 

through this research which used for simulating the most predominate errors in GPS 

measurements (ionosphere, troposphere and multipath) with some suggested 

techniques for improving the behaviour of such models. A comparison study of the 
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GPS data simulated using the new models with its counterpart using original models 

along with GALILEO simulated data and real GPS data is presented in Chapter 5 Z: 5 

with some concluding remarks. Chapter 6 gives a brief review of the basics of GNSS 

satellite orbit determination, followed by a discussion of various techniques for LEO 

satellite orbit determination. Chapter 7 presents an investigation of the reduced 

dynamic orbit determination with different GNSS constellations (GPS, GALILEO, 

combined GPS-present/GALILEO and combined GPS-modemized/GALILEO) using 

different types of simulated data and different scenarios as well as some tests 

assessing the effect of the quality of GPS ephemeris data and the accuracy of the 

initial predicted orbit on the reduced dynamic solutions. A validating study is also 

revealed in Chapter 7 assessing the quality of reduced dynamic orbits using real GPS 

data and simulated GPS data. Chapter 7 also presents an orbit overlap study as well 

as some recommendations for real-time applications ending with concluding remarks. 

Chapter 8 contains the conclusions of the thesis and recommendations for future 

work. A references section followed with eight appendices discussing in detail 

various points encountered through the thesis. Appendix H contains some 

Publications based on the author's research. 
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CHAPTER 2 

Global Positioning System Review 

2.1 General Description 

The Global Positioning System (GPS) is a satellite-based navigation system made 

up of a network of nominally 24 satellites placed into orbit by the U. S. 

Department of Defense. GPS was originally intended for military applications, but 

in the 1980s, the American government made the system available for civilian 

use. GPS works in any weather conditions, anywhere in the world, 24 hours a day. 

There are no subscription fees or setup charges to use GPS (NAVSTAR, 1996). 

The NAVSTAR Global Positioning System is a space-based radio positioning and 

time-transfer system. GPS provides accurate Position, Velocity and Time (PVT) 

information to an unlimited number of suitably equipped, sea, air and space users. 

Passive PVT fixes are available worldwide in all-weathers in a worldwide 

7 



Chapter 2 Global Positioning System Review 

common coordinate system. Unfortunately, GPS contains some features, which 

limit the full accuracy of the service to authorized users only and preventing 

spoofing of the signals. 0 

GPS consists of three major system segments; Space, Control and User. The 

current (05/07/2004) GPS constellation consists of 28 Block II/IIA/IIR satellites 

deployed in six orbital planes with an inclination of 55' 

(http: //tycho. usno. navy. mil). Each satellite broadcasts Radio Frequency (RF) 

ranging codes and a navigation data message. The Control Segment consists of a 

network of monitoring and control facilities, which are used to manage the 

satellite constellation and update the satellite navigation data message. The User 

Segment consists of a variety of radio navigation receivers specifically designed 

to receive, decode, and process the GPS satellite ranging codes and navigation 

data messages. 

The ranging codes broadcast by the satellites enable a GPS receiver to measure 

the transit time of the signals and thereby determine the range between each 

satellite and the receiver. The receiver also calculates the position of each satellite 

at the time the signals were transmitted from data in the navigation message, and 

uses this information together with the ranges to determine its own position. Each 

range measurement defines a sphere centered on a satellite and the point of 

intersection of these spheres defines the receiver position. 

For GPS positioning, a minimum of four satellites are required to be 

simultaneously in view of the receiver, providing four range measurements, in 
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order that the receiver can calculate the three unknown coordinates of its position 

and a fourth parameter representing the user clock error. 

2.2 System Overview 

2.2.1 Space Segment 

The Space Segment is designed to have a minimum of 24 satellites in semi- 

synchronous (approximately 12 hour) orbits. The satellites are arranged in six 

orbital planes with four satellites in each plane. The average orbit altitude is 

20,200 kilometers above the surface of the earth. Satellites are positioned in the 

orbital planes so that four or more satellites with a good geometry relationship for 

positioning will normally be observed at every location on earth. GPS satellites 

transmit ranging signals on two L-band frequencies: Ll at 1575.42 MHz and L2 at 

1227.60 MHz. 

The satellite signals are transmitted using spread-spectrum technique with two 

different ranging codes: A Coarse/Acquisition code (C/A- code) of 1.023 MHz on 

Ll and a 10.23 Nfflz Precision code (P-code) on both Ll and L2. Either the P- 

code or the C/A- code can be used to determine the range between the satellite and 

the user. The P-code is normally encrypted to become the Y-code and is only 

available to authorized users. A 50 Hz navigation message is superimposed on 

both the C/A-code and the P(Y)-code, it includes satellite clock-bias data, satellite 

ephemeris data for the transmitting satellite, ionospheric signal-propagation 

correction data, and the satellite almanac (coarse orbital data) for the entire 

constellation (NAVSTAR, 1996). 
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2.2.2 Control Segment 

The Control Segment consists of a Master Control Station (MCS) at Falcon Air Z) 

Force Base (AFB) in Colorado Springs, USA, plus monitor stations and ground 

antennas at various locations around the world. The main processing facility for 

the control segment is the MCS, which monitors and manages the satellite 

constellation. Its functions include control of satellite manoeuvers, reconfiguration 

of redundant satellite equipment and regularly updating the navigation messages 

transmitted by the satellites. The monitor stations track all GPS satellites in view, 

collecting ranging data from each satellite. This infon-nation is sent to the MCS 

where the satellite ephemeris and clock parameters are estimated and predicted. 

The ground antenna is used to periodically upload the ephemeris and clock data to 

each satellite for re-transmission in the navigation message (NAVSTAR, 1996). 

2.2.2.1 GPS Reference Time System 

GPS measurements are intrinsically dependent on time. The measured time 

elapsed from when the signal leaves the satellite to when it reaches the receiver is 

used to compute the pseudo-range. The GPS system uses its own particular time 

scale, GPS time. The GPS time is an atomic time scale which has the same unit 

(seconds) as UTC (Coordinated Universal Time). GPS time was coincident with 

UTC on January 6,1980. The relationship between UTC and GPS time is 

available in time bulletins of the USNO (United States Naval Observatory) and 

the BIPM (International Bureau of Weights and Measures) as well as the GPS 

satellite message (Seeber, 1993). 
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2.2-2.2 GPS Reference Frame 

GPS uses the World Geodetic System WGS-84 reference frame to provide the 

basic frame of reference for the description of the satellite motion, the modelling 

of the observations, and the representation and interpretation of results in an 

Earth-centered, Earth-fixed system (Seeber, 1993). The origin and axes of WGS- 

84 were adopted from the Conventional Terrestrial System (CTS), which was 

defined by the former Bureau International de L'Heure (BIH) until (January 1, 

1988) and is now defined by the International Earth Rotation Service (IERS). For 

more details of WGS-84 the reader is referred to NIMA (2002). 

2.2.3 User Segment 

The User Segment consists of receivers designed to receive, decode, and process 

the GPS satellite signals. These receivers can be stand-alone, integrated with or 

embedded into other systems. GPS receivers can vary significantly in design and 

function depending on their application e. g. navigation, accurate positioning, time 

transfer, surveying and attitude reference. 

2.3 GPS Services 

2.3.1 Precise Positioning Service 

The Precise Positioning Service (PPS) is an accurate positioning, velocity and 

timing service but it is only available to authorized users and was intended for 

military purposes- The PPS uses the P-code on both frequencies Ll and L2, and 

the C/A code on Ll frequency. The PPS is specified to provide 16 metres 
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Spherical Error Probable (SEP) (3-D, 50%) positioning accuracy and 100 

nanosecond Universal Coordinated Time (UTC) time transfer accuracy, this is 

approximately equal to 37 metres (3-D, 95%) and 197 nanosecond (95%) under 

typical system operating conditions (Kaplan, 1996). 

Use of the PPS is controlled by two controlling features based on cryptographic 

techniques, namely Selective Availability (SA) and Anti-Spoofing (A-S). SA was 

used to reduce the accuracy of GPS positioning, velocity, and time to 

unauthorized users by introducing pseudo-random errors into the satellite signals. 

However, SA was reduced to zero on the second of May 2000. The A-S feature is 

activated on all satellites to negate potential spoofing of the ranging signals. This 

feature encrypts the P-code into the Y-code. Encryption keys are provided to PPS 

users, which allow them to remove the effects of SA (if it is there) and A-S and 

thereby attain the maximum accuracy of GPS. 

2.3.2 Standard Positioning Service 

The SPS service is available to all GPS users but it is a less accurate positioning 

and timing service. The level of SA was controlled to provide 100 metre (95%) 

horizontal accuracy which is approximately equal to 156 metres 3D (95%). The 

SPS can also achieve approximately 337 nanosecond, (95%) UTC time transfer 

accuracy. The SPS is primarily intended for civilian purposes. Thus it uses the 

C/A code on Ll frequency only. The performance of the SPS service improved 

greatly after SA was reduced to zero, giving a global average positioning domain 

accuracy of 33 metres 95% horizontal error and 73 metres 95% vertical error with 

time transfer accuracy of 40 nanoseconds 95% (GPS-SPS, 2001). 
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2.4 GPS Observations 

There are two types of GPS observations: (i) pseudo-range, which is primarily 

used for navigation and (ii) carrier phase, used for high precision positioning 

applications. 

2.4.1 Pseudo-range Observations 

The time difference between the transmitted and received GPS signal, obtained 

via a code correlation process, multiplied by the speed of light in a vacuum gives 

the pseudo-range between the satellite and the receiver. As there are some errors 

in the synchronization of the satellite and receiver clocks with each other and 

with GPS time (§ 2.2.2.1), the resulting distance is called a "pseudo-range", not 

the true range. 

The basic pseudo-range observation equation can be given as: 

p= pt + c(dT - dt)+ dp 
ion 

+ dp 
trop 

+ A(p) (2.1 a) 

where, 

P observed pseudo-range measurement, 

true range, 

C speed of light in a vacuum, 

dt the offset of the satellite clock from GPS time, 

dT the offset of the receiver clock from GPS time, 
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dp 
ion ionospheric error, 

dptrop tropospheric error, 

A(p) pseudo-range noise and multipath. 

The true range is a function of the receiver and the satellite positions. The 

satellite positions are obtained using the satellite ephemeris and the satellite clock 

correction parameters which are given in the broadcast navigation message. 

When the ionospheric and tropospheric errors are modelled properly, the only 

unknowns left are the receiver clock bias and the coordinates of the receiver 

position, so the observed pseudo-range measurement can be expressed as: 

p= pt + c(dT - dt)+ A(p) 

with Pt ---': 
(X 

s-X ry 

where 

(x s, Ys, Zs) 

(Xri, YrgZr) : 

s-YrY + S-ZrY 
, 

the satellite coordinates. ) 

the receiver coordinates. 

(2.1 b) 

(2.2) 

As a result of equation (2.2) at least four satellites are required to provide four 

observations to solve for the four unknowns (three receiver position coordinates 

and one receiver clock bias). The un-modelled errors such as multipath and 

measurement noise are assumed to be random and are included as a residual ten-n. 

in a least squares solution. 
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2.4.2 Carrier Phase Observations 

The carrier phase observable can be obtained by removing the code from the 

incoming signal. The approximate wavelengths of the carrier frequencies are 19 

cm and 24 cm for LI and L2 respectively. The phase difference of the carriers can 

be accurately measured to better than 0.01 cycle, which with wavelength of about 

20 cm equates to millimeter precision. As a result, it is possible to obtain very 

precise positioning using the carrier phase observable. The distance between the 

satellite and the receiver is obtained by measuring the fractional part of the carrier 

phase, plus the total number of cycles between the satellite and the receiver such 

that: 

A(D =pt+ c(dT - dt)- Ad(D 
ion + Ad 

trop - AN + A((D), 

where 

carrier phase measurements, 

d(b 
ion 

ionospheric error on carrier measurements, 

dp 
trop 

tropospheric error on camer measurements, 

A carrier wavelength, 

integer ambiguity, 

A((D) carrier phase measurements noise and multipath. 

(2.3) 

The receiver is able to count the change in the number of cycles but not the 

number of cycles traveled through before the receiver starts to count the cycles, 

which is referred to as the 'integer ambiguity'. The integer ambiguity remains the 

same as long as the receiver phase lock loop is maintained. If the signal is lost, 
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resulting in a 'cycle slip', the integer ambiguity needs to be computed again. The 

cycle slip and integer ambiguity problems have been intensively studied in order 

to attempt to provide a high accuracy service, Ashkenazi et al. (1989), Walsh 

(1994) and Teunissen et al. (1995). 

2.5 Error Sources 

The GPS measurements are subject to three main types of errors; gross errors, 

systematic errors and random errors. Gross errors are those which are outliers in 

the observation model. The systematic errors must be removed from the 

observations to avoid introducing biases to the results. These errors have some 

physical or mathematical relationship with the measurements and can be 

modelled as additional terms in the observation equation, or eliminated by 

appropriate combinations of the observations. The random errors are the 

discrepancies remaining after the systematic errors and gross errors have been 

removed. The GPS systematic errors are described in the following sections 

according to their source. 

2.5.1 Satellite Dependent Errors 

* Satellite Orbital Error 

The position of the satellite is required to form the GPS observation equations 

(see equation (2.2)). The satellite orbit infon-nation is provided through the 

broadcast ephemeris in the navigation message. The positions of the satellites are 

treated as known parameters during GPS data processing to solve for the 

unknown receiver position. Therefore any error in the satellite positions 
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propagates directly into the calculated coordinates of the receiver. The accuracy 

of the satellite position given in the broadcast ephemeris is in the range of (5 - 

10) metres (Jefferson and Bar-Sever, 2000). Alternatively, more ephemeris data 

can be obtained for post-processing GPS measurements. The IGS offers different 

types of GPS ephemeris with different accuarcies. The accuracy of the IGS final 

precise ep emeris is estimated at approximately 5 cm (IGS, 2003) but is only 

available after a 13 days delay. 

9 Satellite Clock Error 

GPS satellites carry both rubidium and caesium atomic frequency standards. The 

clocks are physically left to drift off the GPS time but their drift is monitored by 

the control segment. The clock error dt is included in the broadcast navigation 

message in the form of a second order polynomial such that: 

dt =ao+ai (t -t or 
)+ a2 

(t 
-t or 

Y, 

Where., 

toc is the reference epoch (seconds), 

ao is the satellite clock time offset (seconds), 

ai is the fractional satellite clock frequency offset (sec/sec), 

(2.4) 

a2 is the fractional satellite clock frequency drift (ageing term) 

(sec/seC2). 

The size of the satellite clock bias without corrections is of the order of 7 ns, 

corresponding to 2.6 m in terms of range (IGS, 2003). 
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* Relativistic Effects 

The satellite clock is affected by both special relativity and general relativity. The 

special relativity is due to the satellite's velocity, whereas the general relativity is 

due to the drift in the gravitational potential at the satellite's position relative to 

the gravitational potential at the Earth's surface. These effects are accounted for 

by offsetting the fundamental frequency of the receiver clocks (10.23 MHz) by 

0.0045674 Hz (Baker, 1998). 

2.5.2 Receiver Dependent Errors 

* Receiver Clock Error 

Most GPS receiver clocks are based on quartz oscillators and are inferior to those 

onboard the satellite. The receiver clock error which biases measurements with 

respect to GPS time are, however, removed when observations are differenced 

with respect to two satellites. 

* Antenna Phase Center Variations 

The phase center of an antenna is the electrical point to which the GPS satellite 

signal is referred and generally is not identical to the geometric center of the 

antenna. The offset is dependent on the elevation, azimuth and intensity of the 

satellite signal and is different for the LI and the L2 observations (Hofmann- 

Wellenhof et al., 2000). 
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2.5.3 Signal Path Dependent Errors 

GPS measurements are subject to errors when the signal passes through the 

earth's atmosphere which not only bends the ray, but also slows it (Dodson et al., 

1992). The effors are due to two components: (i) the excess path length due to 

propagation delay and (ii) the excess path length due to bending, noting that the 

bending effect is usually not significant except at low elevation angles. In most 

geodetic purposes, these errors can be satisfactory modelled (Dodson, 1986). The 

propagation delay is estimated by the integral of the atmospheric refractive index 

along the signal path. The atmosphere can be considered as two distinct 

components, namely the ionosphere and the troposphere, which have different 

physical characteristics and should be modelled separately. 

* Ionospheric Errors 

The GPS signals are affected by the ionised medium when propagating through 

the ionosphere, which results in a frequency dependent non-linear dispersion of 

the signal. The relationship between the refractive index n, of the ionosphere and 

the frequency is given by (Dodson, 1986) as, 

+ higher order terms, (2.5) 
f2 

where, 

A is a constant (40.3 if using S. I. units) (m 3/S2) 

Ne is the free electron density in the ionosphere (electron/m 3 )1 

is the frequency of the signal (Hz). 
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The sign ± in equation (2.5) is determined by which observable is considered. 

The ionosphere delays the GPS code signal resulting in, the observed range being 

too long and hence the positive sign is used. However, the ionosphere advances 

the carrier phase, resulting in the observed carrier phase range being too short 

and thus the negative sign is applied. The ionospheric delay error vary from tens 

of centimeters to tens of meters depending on the Total Electron Content (TEC) 

along the signal path through the ionosphere. Since the ionospheric delay is 

dependent on the signal frequency, the delay can be estimated through the 

combination of dual frequency observations. 

* Tropospheric Error 

The troposphere is not a dispersive medium at radio frequencies, unlike the 

ionosphere, so the use of the combination of dual frequency measurements to 

estimate the tropospheric delay cannot be applied. The tropospheric delay S 1ý 

(metres) is equivalent to the integral of the refractive index along the 

tropospheric signal path, which can be given as, 

b 

Ts-6 fNds (2.6) 
r= 10 

a 

where, 

(n-1) x 10 6, is the refractivity, 

a and b define the limits of the troposphere boundary. 
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2.5.4 Cycle Slips and Multipath 

A cycle slip is caused by the loss of lock in the phase-lock loop, generating a 

discontinuity in the accumulation of the integer number of cycles. Loss of lock 

may occur for many reasons: obstruction of the satellite signal, low signal-to- 

noise ratio (SNR) due to atmospheric disruption, multipath, high receiver 

dynamics and low satellite elevation, and receiver software failure (Hein, 1990). 

The cycle slips have to be detected and repaired to avoid any bias in the 

measurements. 

The multipath effect is caused by the arrival of the signal at the receiver via more 

than one path due to the presence of reflecting surfaces near the receiver. 

Multipath can also occur due to reflections at the satellite itself during signal 

transmission. While both code and carrier measurements are affected by 

multipath, the effect on code is two orders of magnitude larger than on carrier 

phase observations (Seeber, 1993). 

As multipath effects depend on the receiver's surrounding environment, there is 

no general model to correct for these effects. However, when the same 

environmental conditions exist, repetitive patterns can be found in many cases 

from day to day static observations. Possible ways to minimize multipath effects 

are: carefully chosen receiver sites, carefully designed antennas and accessories 

such as ground planes and choke rings. 
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2.6 Atmospheric Effects on GPS Observables 

2.6.1 The Atmosphere 

The atmosphere mainly composed of two layers namely the ionosphere and the 

neutral atmosphere, every layer has its own divisions and characteristics as 

illustrated in Figure 2.1 after (Shardlow, 1994). 

2.6.1.1 The Ionosphere 

The ionosphere is the upper layer of the atmosphere that extends from about 50 

km, to approximately 1000 km. Surprisingly the ionosphere makes up less than I 

% of the mass of the atmosphere above 100 km. Even though it is only contains a 

small fraction of atmospheric material, it is very important because of its 

influence on the passage of radio waves (GPS signals). Most of the ionosphere is 

electrically neutral, but when solar radiation strikes the chen-ýical constituents of 

the atmosphere electrons are dislodged from atoms and molecule to produce the 

ionosphere plasma. This occurs on the sunlit side of the earth and only the shorter 

wavelengths of solar radiation are energetic enough to produce this ionisation. 

The presence of these charged particles makes the upper atmosphere an electrical 

conductor, which supports electric currents and affects radio waves. Various 

regions have been identified within the ionosphere each with its own 

characteristics. For more information about these regions and detailed 

characteristics of the ionosphere's regions, the reader is referred to Taylor 

(1961), Jursa (1985), Davis (1989), Kelly (1989), Hargreaves (1992) and 

Komjathy (1997). 
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Altitude I 

Nomenclature 

I 
Characteristics 

(km) 

1000 Charged Particles (ions) 

IONOSPHERE Dispersive Medium 

Spatially Non-uniform 

50 1 

STRATOSPHERE Neutral Medium 

(Non-ionised) 

16 

Tropopause 

8 75 % of total molecular or 

gaseous mass of atmosphere 

TROPOSPHERE water vapour 

content small but 

extremely variable 

...................... 

Boundary Layer 

Figure 2.1: Atmosphere Classification (Shardlow, 1994). 
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2.6.1.2 The Neutral Atmosphere 

This layer is the non-ionized layer of the atmosphere, ranging from the earth's 

surface to approximately 50 km above it. It consists of the boundary layer, the 

troposphere, the tropopause and the stratosphere. 

2.6.1.2.1 The boundary layer 

The boundary layer, is the lowest kilometer of the atmosphere and also the most 

active region since it experiences diumal changes. The interactions with the 

earth's surface provide the atmosphere with both water vapour and heat exchange. 

These interactions drive the diurnal temperature cycle. 

2.6.1.2.2 The Troposphere 

The Troposphere ranges from zero to about 10 km in altitude including the 

boundary layer. It contains approximately 75% of the total molecular or gaseous 

mass of the atmosphere and virtually all of the water vapour and aerosols. There 

are no significant variations in the composition of dry air with latitude or with 

height (Smith and Weintraub, 1953). Although the water vapour content is small, 

it is extremely variable both in latitude and in height, but reduces to zero above 10 

km (Hopfield, 1971). 

2.6.1.2.3 The Tropopause 

The tropopause is a region that is isothermal with altitude and it can be defined as 

the lowest level at which the lapse rate decreases to less than, or equal to 20 C/km 

(provided that the average lapse rate of the 2 km layer above does not exceed 2' 

Clkm (Barry and Chorley, 1986). This layer is not constant in space or time, 
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because its maximum altitude at any point appears to be correlated with sea-level 

temperature and pressure. 

2.6.1.2.4 The Stratosphere 

This is the layer above the tropopause and it is ranging from 10 to 50 km in 

altitude. It contains much of the total atmospheric ozone. The temperature tends to 

increase with altitude in the stratosphere. 

2.6.1.2.5 Terminology 

In talking about GPS, the atmosphere is often divided provisionally into the 

ionosphere and the neutral atmosphere, following this division each of the two 

layers is modelled separately because of their different characteristics. The 

propagation delay experienced in the neutral atmosphere is often termed the 

tropospheric delay because 80 % of the delay can be attributed to the troposphere 

(Hopfield, 1971). So through the rest of this thesis the ten-n tropospheric delay 

will refer to the propagation delay experienced in the lower 50 km of the 

atmosphere, i. e. the neutral atmosphere. 

2.6.2 Radio Wave Propagation 

The sun's electromagnetic radiation is a continuum that spans radio wavelengths 

through infrared, visible, ultraviolet, x-ray, and beyond. Photo ionisation process 

occurs when ultraviolet radiation interacts with upper atmospheric constituents to 

form an ionised layer called the ionosphere. 

The ionosphere affects radio signals in different aspects depending on their 

frequencies, which range from extremely low (ELF) to extremely high (EHIF) see 

25 



Chapter 2 Global Positioniniz System Review 

Figure 2.2. The ionosphere may act as an efficient reflector for frequencies below Z: ) 

about 30 MHz, allowing radio communications to distances of many thousands of 

kilometres. Whereas radio signals on frequencies above 30 MHz usually penetrate 

the ionosphere and therefore are useful for ground-to-space communications. The 

ionosphere plays an essential role for many radio-wave navigation systems 

including terrestrial based system such as Loran-C and Omega and space-based 

systems (GPS, GLONASS and GALILEO). Omega navigation requires it, Loran 

tries to work around it, and GPS is hindered by it. Unlike the low-frequency radio 

transmissions used by terrestrial systems, GPS uses radio signals that pass through 

the ionosphere (see Figure 2.3). The ionosphere is neither homogenous in 

structure nor constant over time (Davis, 1989). Solar and geomagnetic activity 

affects the character of the ionosphere and, consequently, the proper function of 

navigation systems. 

Figure 2.2: The electromagnetic spectrum includes x-rays, 
Visible light and radio waves (SEC, 2003). 
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Figure 2.3: The Frequencies of the most common navigational systems 

(SEC, 2003). 

2.6.3 Atmospheric Effects on GPS signals 

Accurate GPS observables require the microwave signals to travel through the 

atmosphere iný a geometrically straight line, but this is not the case. Due to the 

characteristics of the atmosphere, the signal faces two effects, bending and 

slowing in its way, see Figure 2.4. 

Fig. 2.4: GPS Signal Geometry (Shardlow, 1994). 
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The straight line geometrical distance, can be expressed as: 

c 

Gf dG 
a 

and the minimum electrical path length ,L (according to Fennat's principle) 

(Brunner, 1992) is given as: 

b 

n ds 

where, 

n the varying refractive index of the atmosphere. 

From the two equations (2.7) and (2.8)., the excess path length will be, 

b 
f (n -I )ds + (S - 
a 

(2.7) 

(2.8) 

(2.9) 

From equation (2.9), the atmospheric delay in the signal comes from two sources, 

the first source is due to signal bending which appears as the second term of the 

equation and the second source is from the propagation delay that appears as the 

first term of the equation. 

2.6.3.2 Signal Bending 

As shown in equation (2.9), The difference between the curved and the straight 

line signal is the excess path length due to bending, which varies from zero at the 

zenith to a few meters at the horizon for a spherically layered atmosphere 

(Hopfield, 1977). An empirical model for computing the path length due to signal 

bending given by (De Jong, 1991) is as follows, 

b(E) 
21' 

92 
(2.10) 

+ 0.6 
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where, b(E) Excess path length due to signal bending (m), 

E Elevation of the satellite in degrees. 

From this model, it was recommended using a cut-off elevation angle of [10-150] 

for two benefits: the difficulty of modelling the troposphere at low elevation 

angles and the need for taking into account the effect of signal bending vanishes 

(De Jong, 1991). 

2.6.3.2 Propagation Delay 

The propagation delay can be expressed as, 

b 
AS = 10 -6 fNdS 

a 

where, N= (n-1) x 10 6 

n the refractive index of the atmosphere. 

(2.11) 

The propagation delay is considered to be the main source for the atmospheric 

delay. The propagation delays due to the ionosphere and the troposphere will now 

be discussed separately. 

2.6.4 Ionospheric Effects on GPS 

As shown in equation (2.5), the ionospheric delay is directly proportional to the 

free electron density in the ionosphere, and inversely proportional to the square of 

the frequency of the signal. An accurate estimate for the refractive index n 

depends on accurate knowledge of the free electron density along the signal path 

which is governed by the activity of the sun. Solar activity has an average period 
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of about II years, the last maximum solar activity was during 2000 (Thompson 

and Kunches, 2002). The ionospheric delay is considered one of the main sources 

for observable bias for single frequency GPS users. During the maximum 

ionospheric activity, the ionospheric delay could be of order 300 ns, which yields 

around 100 meters error in range (Newby and Langley, 1992). 

2.6.4.1 Ionospheric Models 

A range of ionospheric models have been developed, varying in accuracy, input 

data and computational complexity, so the choice between these different models 

depends on the circumstances of the user. An overview of the most well-known 

models is given below. 

2.6.4.1.1 The Bent Model 

The Bent model (Llewellyn and Bent, 1973) is an empirical worldwide algorithm, 

capable of accurately estimating the electron density profile and the associated 

delay along with directional changes of the wave due to refraction. Designed 

originally for ground-to-satel lite communications, it can also be used for ground- 

to-ground or sate] lite-to- satellite communications. The required input data for the 

model consists of the satellite and station positions, time information, daily values 

of solar flux, and the 12-month running averages of solar flux and Zurich sunspot 

numbers. (Newby and Langely, 1992) found that Bent model could accounts for 

up to 80% of the total ionospheric delay, however this is a computationally 

demanding model requires regular updating of large amount of solar flux and 

Zurich sunspot numbers input data (not recommended for GPS Data simulation 

purposes). 
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2.6.4.1.2 The Klobuchar Model 

The Klobuchar model (Klobuchar, 1982), was designed based on the Bent model, 

and is now considered the most widely used model due to its computational 

simplicity. The model is built on a simple cosine representation of the ionospheric 

delay, with a fixed phase-zero at 14.00 hours local time and a constant night time 

offset of 5 nanoseconds. The period and amplitude of the ionospheric delay are 

represented as third degree polynomials in local time and geomagnetic latitude. 

The eight time-varying coefficients of the two polynomials are broadcast in the 

GPS navigation message, and are updated daily. These coefficients are selected 

from 370 possible sets of constants by the GPS master control station and placed 

in the satellite upload message for downlink to the user. These coefficients are 

based on two parameters, day of the year and average solar 10.7-cm flux value 

(the solar flux density at 10.7cm wavelength) for the previous five days. 

The model assumes an ideal smooth behaviour of the ionosphere, therefore any 

significant fluctuations from day to day will not be modelled properly. The 

accuracy of the model is limited to 50-60% of the total effect (Dodson, 1988). 

Under special circumstances, such as severe ionosphere activity at low elevations, 

the range error can be of order of 50 m (Newby et al., 1990). 

2.6.4.1.3 The Klobuchar Model with CODE coefficients 

CODE, the Center for Orbit Determination in Europe, acts as one of five so-called 

Ionosphere Associated Analysis Centers of the International GPS Service (IGS), 

currently generating ionospheric coefficients compatible with the Klobuchar 

model and the related algorithm as declared by the GPS ICD (Rockwell 
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International Corporation, 1993). This method takes advantage of global TEC 

map information in IONosphere map EXchange (IONEX) format (Schaer et al, 

1998c) that is derived by the CODE analysis center. Based on a 60-day 

comparison study analyzing (root mean square) rms difference, the performance 

of the Klobuchar model with CODE-coefficients is better by roughly a factor of 

1.5 than the Klobuchar model with GPS navigation message-coefficients with 

respect to the highly accurate-CODE final global TEC maps (Schaer, 2001). 

These CODE coefficients can be accessed via the internet. 

2.6.4.1.4 The IRI Model 

The International Reference Ionosphere (IRI) is an international project sponsored 

by the Committee on Space Research (COSPAR) and the International Union of 

Radio Science (URSI), which formed a working group in the late sixties to 

produce an empirical standard model for the ionosphere, based on all available 

data sources from the worldwide network of ionosondes. The IRI was developed 

by K. Rawer and others (Rawer, 1981). For given location, time and date with a 

safe range of altitude below 1000 Km, IRI describes many ionospheric variables, 

mainly the electron density and others. Several steadily improved editions of the 

model have been released, IRI-90 (Bilitza, 1990), IRI-95 (Bilitza et al., 1993) and 

IRI-2000 (Bilitza, 2001). The IRI-95 model can run via the Internet 

[http: //nssdc. gsfc. nasa. gov/space/model/models/iri. htmll. Tests have shown that 

the IRI-95 model performs better than the ERI-90 model in computing the 

ionospheric delay for the single-frequency altimeters (Urban, 1997). 
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2.6.5 Tropospheric Effects on GPS 

The most widely used formula for tropospheric refractivity N is the Smith and 

Weintraub (1953) simplified two-term formula: 

pe 
N= 77 

.6T+3.73 x 10 
T2 

where, 

the total atmospheric pressure in (mbar), 

temperature in Kelvin, 

e partial pressure of water vapour (mbar). 

(2.12) 

Two basic types of models exist that relate the parameters in equation (2.12) to 

either empirical Surface Meteorological (SM) measurements (surface 

meteorological models) or global standard atmospheres (global empirical 

models). Other considerations relate to the mapping function used to account for 

elevation angle dependent variations. Surface meteorological models, global 

empirical models and mapping functions will be discussed in the following 

sections. 

2.6.5.1 Surface Meteorological models 

These models are based on radiosonde profiles and relate the parameters of 

equation (2.12) to measurements taken at the ground surface. The most well 

known models are the Hopfield and Saastamoinen models. A description of these 

and some other models will follow. 

2.6.5.1.1 Hopfield (1971) 

This model was developed using a large number of sonde profiles recorded at a 

variety of geographical locations over a number of years. It is based on a single- 
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layer polytropic model atmosphere extending from ground level to approximately 

40 km. The model gives the following expression for the zenith hydrostatic delay 

(the first term on the right-handed side of equation (2.12)), 

-6 
PS 

(2.13) S 
zh= 

10 Ki- 
Ts 

[5 

where, 

Ki 77.61 (K/mbar),, 

surface pressure (mbar), 

T, absolute surface temperature (K), 

hh the height of the hydrostatic neutral atmosphere (km), 

h, the station height above sea level (km). 

The zenith wet delay is given by, 

SZ, = 10-6 [(K2- Ki). 273 + K3YS 
* 

h,, - hs (2.14) 
Ts 5 

where, 

K2 71.6 (K/mbar), 

Ki 77.61 (K/mbar), 

K3 3.747 x 10 5 (K2/mbar),, 

e, surface partial water vapour pressure (mbar), 

Ts absolute surface temperature 

h,, height of the wet troposphere (km), 

h, the station height above sea level (km). 
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The hydrostatic component accuracy is approximately 7 mm, but the wet 

component is only accurate to 3-5 cm (Janes et al., 1989). 

2.6.5.1.2 Saastamoinen (1973) 

This model is based on two assumptions, the first that temperature in the 

troposphere changes linearly with altitude and remains constant in the stratosphere 

and the second that the decay of water vapour pressure in the troposphere follows 

the standard exponential form. The model gives the following expressions for the 

hydrostatic and wet components of the zenith delay respectively, 

Sm=0.002276 p, , (2.15) 

S, = 0.002276 
1255 

+ 0.05 e, . (2.16) 
[ 

Ts 

1 

The hydrostatic component accuracy is in the region of 2-3 mm. Similarly to the 

Hopfield model, the wet component accuracy is 3-5 cm (Saastamoinen, 1973). 

2.6.5.1.3 The Black Model 

Black, (1978) developed a model, which is a modification of the Hopfield model. 

The model uses constants to define water vapour in the refractivity model 

depending on season and latitude whereas Hopfield uses model uses relative 

humidity measurements to derive water vapour content. The model uses the 

following formula for the total zenith delay: 

'AS 
z =AS 

zd 
+/is 

zw 
(2.17) 
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where the dry zenith delay AS, is evaluated by 

-4 A Szd 
= 2.343. Ps 

I (Ts 

TS 
. 12) 

I(h = hd, c)q 

and the wet zenith delay is evaluated by 

where 

I(h, E) = 

{1_ 

. JSzw = K,,. I(h =hwpee ) (2.19) 

COS(E) 

+ 

elevation angle (degree), 

height above the geoid (m), 

hd height of the dry troposphere above the geoid [148-98 . (T, - 4.12)] 

m above the station (hopfield, 1971), 

height of the wet troposphere above the geoid , 13000 m, 

Kw constant dependent on latitude and season (Black, 1978), 

rs distance from the centre of the earth to the station (m), 

ic 0.85. 

2.6.5.1.4 Marini Model 

Marini, (1972) tried to express more accurately the elevation angle (E ) 

dependence of the delay by introducing the following continued-fraction form of 

the mapping function 
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Mapping Function (E) =I 
sin(-c)+ 

sin(e)+ 
-ab 

sin (E) +c 
sin(E) . ........ 

(2.20) 

where (a, b, c,..... etc) are the profile dependent coefficients for which Marini 

developed theoretical expressions. The following equation is the total delay 

evaluation formulae developed by Marini based on Saastamoinen's basic zenith 

delay formulae; 

AS()- 1 A+B B 
-To-, h f, 0, h)' sin-ý-) * (A+Bý(sino+0. Oi-ý 

where, 

A 0.002277. Ps + 
1255 

+0.05 es], 
1 

TS 

j- 

B 2.644.10-6 . EXP[-0.14372. h], 

h station height above sea-level (km), 

latitude, 

h) 1- (0.0026 . cos 20)- (0.0003 1. h). 

(2.21) 

2.6.5.2 Global Empirical Models 

These models avoid the use of surface meteorological data and assume that the 

atmosphere behaves in a certain manner depending on the behaviour of the 

temperature, pressure, and humidity. 
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2.6.5.2.1 Bomford. & Bernese Models 

These models assume standard atmosphere and constant rates of change of 

meteorological data with height. For example, Bomford, (1975) uses the 

following values for the standard atmosphere at sea-level; 

- Standard Temperature = 18' c 

Standard Pressure = 1013.25 mbars 

Standard relative humidity = 50% 

The following relationships are then used to determine the meteorological values 

at the reference station height, 

dP 
= -0.119 mbars/metre, (2.22) 

dh 

dT 
= -0.0055 C/metre, (2.23) 

dh 

de 
--e. -EX 

-h mbars/metre (2.24) 
dh 2700 2700 

where eo is an average sea-level value at that time and locality. 

The Bernese software developers (Hugentobler et al., 2001) offer another set of 

values for the standard atmosphere at sea-level. Then the generated 

meteorological values are input into a surface meteorological model to evaluate 

the range correction for the GPS signal. It is obvious that the best obtained 

behaviour from surface tropospheric models will be gained through seeding the 

models with surface meteorological data such as (IGS- meteorological data) and 

not meteorological Data resulting from (Bomford & Bemese) models (§4.4.5). 
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2.6.5.2.2 Magnet Model 

Magnet model is an example for global empirical models which only accounts for 

the hydrostatic delay and generates the pressure data using the station latitude, 

station height and julian day (Curley, 1988). The model generates its own surface 

pressure p, and uses it to calculate the hydrostatic delay using the Saastamoinen 

expression equation (2.15)). p, is given by., 

ps = [1015 
-1.75COS(O)le-'x, (2.25) 

where, 

X=0.113+ 0.001h+0.017 sin (011.0+0.382cos(O. 0174(jd -30))], (2.26) 

PS surface pressure (mbar), 

station latitude, 

station height (km), 

jd julian day. 

Then the delay value is mapped down to the target elevation angle using the 

following mapping function, 

Mfdry (E) 
--": -1 

(2.27) 

sin (E) + 
0.00143. cos(, c) 

sin (E)+ 0.0445. cos(E) 

2.6.5.3 Mapping Functions 

A number of mapping functions have been developed in the last couple of decades 

such as: Lanyi (1984), Davis et al. (1985), Ifadis (1986), Santerre (1987), Herring 
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(1992) and Niell (1993). These mapping function vary in their dependent 

parameters. Some of them depend on surface meteorological measurements such 

as Davis et al. (1985), Ifadis (1986), however others depend only on station 

height, latitude and day-of-year such as Niell (1993). It was suggested that most 

of these mapping functions can provide satisfactory results when used for 

elevation angels above 150. However for high precision applications, the 

recommended mapping functions by (Mendes and Langley, 1994) are those of 

Lanyi (1984), Ifadis (1986), Herring (1992) and Niell (1993). A brief description 

will follow for Niell mapping function. For more information about different 

mapping functions, the reader is referred to (Baker, 1998). 

2.6.5.3.1 Niell Mapping Function 

Niell (1996) developed the following global mapping function, 

Mapping Function 

sin(E)+ 

where, 

E elevation angle, 

a 

sin + 
sin 

(2.28) 

a, b, c coefficients interpolated from the USSA (United States Standard 

I 
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Atmospheres) (Cole et al., 1965). Two different sets for the 

dry and wet tropospheric delay. 

The Niell mapping function vaiies with station height, station latitude and day of 

year. It was developed to map to elevation angle down to 3' assuming azimuth 

symmetry. The Niell mapping function gives good global performance without 

the need for in situ meteorological measurements (Niell, 1996). 
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CHAPTER 3 

GALILEO 

3.1 Introduction 

Satellite navigation, positioning and timing has already found widely spread 

applications in many fields (see Chapter 1). Presently these applications are all reliant 

on the American-owned GPS, a system principally designed for military use. As 

such, world-wide commercial users have no guarantee of the availability of GPS 

services and this can be a hindrance for the developments of non-military applications 

of satellite navigation technology. 

Recently Europe has begun a two-phase program to develop its own interests in 

satellite navigation. The first phase, GNSS-1, was to develop the European Geo- 

stationary Navigation Overlay Service (EGNOS), which provides the integrity and 

Wide Area Differential GPS (WADGPS) services for both the GPS and GLONASS 

systems. The geo-stationary satellites are used to broadcast the integrity and 

WADGPS corrections to the users, and to provide extra pseudo-range observations 

(Penna et al., 2001). The second phase is to develop its own GNSS system named 

GALILEO, which will provide world-wide navigation services. 
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According to (GALILEO, 2002), GALILEO, the first satellite positioning and 

navigation system designed for civilian purposes, will be more advanced, more 

efficient and more reliable than GPS which is controlled by military administration 

and currently has a monopoly. GALILEO will also help to meet the radio navigation 

needs in future years to come which it is anticipated can not be satisfied with a single 

system. 

There are at present two radio navigation satellite networks: the American GPS and 

the Russian GLONASS systems, however GLONASS is no longer fully operational. 

Both systems were designed for military purposes; however both provide low grade 

services to civilian users. 

GPS has several major shortcomings as given below: 

The military character of GPS means that there is always a risk of civilian users 

being cut off in the event of a crisis. 

Reliability not dependable; with low coverage of regions in extreme latitudes, low 

signal penetration in dense areas and town centres. 

- No integrity, as there are no warnings and no immediate information about errors 

and such signal interruptions can have disastrous consequences. 

-A Canadian research body has highlighted the case of a plane affected by an 

unannounced signal interruption of over Ih2O, aggravated by an initial 

positioning error of 200 km when re-established. The Icelandic aviation 

authorities have reported several transatlantic flights disturbed in the same way in 

their control zone. Also in the United States, civilian aircraft have suffered 20- 
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minute signal interruptions in three mid-American states (GALILEO, 2002). 

- The report of the Volpe National Transportation Center commissioned by the US 

government clearly stressed a number of such shortcomings and even the GPS 1H 

project to improve the system, would not resolve all of them (Volpe, 2001). 

- No guarantee and no responsibility, this being incompatible with the military 

objectives of the system-with all the implications that can be imagined in the 

event of an aviation accident or any other similar event. 

In the light of such shortcomings of GPS, many studies have demonstrated the 

importance of GALILEO and its useful impact on Europe and the whole world 

(Galileo, 2002). On its own, GALELEO aims to offer better and constant positioning 

accuracy, offer superior reliability since it includes an integrity message and ensure 

genuine continuity of public service. Combined use of GALILEO, GPS and 

GLONASS should, therefor, increase the overall perfon-nance, availability, continuity 

and safety of services. It will also allow for worldwide acceptability of the 

exploitation and use of satellite navigation for the benefit of all users. 

3.2 GALILEO SYSTEM ARCHITECTURE 

The following sections give a brief description of the GALILEO system design 

architecture based on the technical documents available in (GALILEO, 2002) and 

(Javier B., 2001). 

3.2.1 Global Component 

-A constellation of 30 satellites in Medium-Earth Orbits (MEO) giving an adequate 
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worldwide coverage for the provision of the system's services. Each satellite will 

contain a navigation payload and a search and rescue transponder. The design 

constellation is expected to offer more visible satellite than GPS constellation 

(see Table 7.11 and Appendix B) as well as high quality ephemeris data (65cm 

RMS) (Lucas et al., 2000), (Provenzano et al., 2000). 

-A ground segment managing the constellation of navigation satellites, controlling 

the functions of satellite orbit determination and clock synchronization and deter- 

mining and disseminating the integrity information. it will also provide interfaces 

with service centres providing value-added commercial services and with the CO- 

SPAS-SARSAT ground segment for the provision of search and rescue services. 

3.2.2 Regional Components 

- Non-European Regional components, ground segments for integrity determination 

over these regions. 

- EGNOS providing integrity and differential corrections for GPS and GLONASS 

through geo-stationary satellites. 

3.2.3 Local Components 

These local components are to provide special services such as increased accuracy, 

integrity time-tO-alarm and signal acquisition/reacquisition for some classes of user 

who have requirements beyond those available from the global system. These local 

components can also provide other services like commercial data, additional 

navigation signals, mobile communication channels and enhanced positioning data in 

areas of poor signal reception. 
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3.3 User Segment 

Consisting of different types of user receivers related to the dIfferent signals used to 

fulfil the various services offered by GALILEO. 

3.4 Service Centres 

These centres provide different functions such as information and warranty on 

performance, subscription and access key management, insurance, certification and 

commercial interfaces. 

R EG 10 NA L 
C0MP0NENTS 

r--- 

IU L 

/'� �, , -ý 
iN TE GR IT Y DE T ER MIN AT f0 N NA V JG AT0'c0NTR0L& 4, 

,DNS TE LLA TFO NMANAGEMENT &D IS SEM IN A TIO N 

EGN0S L-band 
NAV 

USER SEGMENT 

.ý0)D. - 

., LMý 

777 

L") 

Figure 3.1: GALILEO System Architecture (GALILEO, 2002). 

3.5 GALILEO CAPABILITIES 

GALILEO services result from the combination of the system capabilities of each of 

the components and segments of the system architecture (see Figure 3.1). There are 

also services resulting from using other existing GNSS systems. 
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3.6 GALILEO Signals and Data 

The GALILEO constellation will broadcast globally ten navigation signals supporting 

different services, namely open, commercial, safety-of-life and public regulated 

services. Each signal is composed of one or two ranging codes and navigation data as 

well as, integrity, commercial and search and rescue data depending on the type of 

the signal. Satellite-to-user distance measurements based on ranging codes and data 

are made in the GALILEO user's receiver. 

3.6.1 Encryption & Service Denial 

To control the access to GALILEO services, ranging codes and data can be open or 

encrypted. Encryption could be activated permanently or temporarily. GALILEO will 

also have the ability of denying access to its services to prevent misuse by 

unauthorized users. 

3.7 Signal and Frequency Plan 

The GALELEO frequency plan was discussed and agreed at the international 

Telecommunications Union (ITU) forums such as the World Radio-Communications 

Conference (WRC). The available spectrum which can be used for the development 

of Radio-Navigation Satellite Systems is shown in Figure 3.2. 

In this figure, a number of frequency bands are identified for GALELEO. Out of the 

definition studies, four frequency bands have been retained for the setting up of the 

GALILEO signals. These are described below. A tentative allocation of the ten 
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GALILEO navigation signals into frequency bands has also been made on the basis 

of the transmission of four carriers, one for each frequency band. 

- E5 and L5, covering the range 1164 MHz to 1215 MHz. Within this band, the use 

of 30 NIHz of spectrum is being considered with the final selection of the centre 

frequency depending on interoperability issues with E5/L5, co-existence with 

other services such as DME (Distance Measuring Equipment), JTIDS/MTIDS 

(Joint Tactical Information Distribution Systems/Multifunction Information 

Distribution System) and on GALILEO autonomy requirements. The studies 

recommended a centre frequency of 1192 MHz. In E5/L5, an open signal for 

supporting the Open and Safety of Life Service can be included. 

- E6,1260 to 1300 MHz. Within this band, the use of 20 MHz of spectrum is being 

considered with a centre frequency of 1278.75 Nfflz, to accommodate the signals 

for the Public Regulated Service and the Open (Commercial-encrypted, 

TCAR(Three Carrier phase Ambiguity Resolution techniques)) Service. 

- E2-LI-El covering the range 1561 to 1590 Mhz, with a centre frequency of 

1575.42 MHz. This band would accommodate a signal for the Public Regulated 

Service and the Open and Safety of Life Service. 

The GALILEO signal and frequency plan is defined to provide high perfon-nance, 

better ranging accuracies than GPS due to the chip rate relations between GPS and 

GALILEO signals (see Table 3.1). GALILEO signals will have the same center 
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frequencies as GPS signals on E5 (L5) and E2-LI-El (LI) to give GALILEO 

maximum interoperability with GPS. 

C43and 

Lr) 

RNSS* shared with other services 

Figure 3.2: RNSS Frequency Spectrum (GALILEO, 2002). 

Signal Chip rate (Mcps) 
GPS C/A-code 1.023 
GALILEO E2L IE1 2.046 
GALILEO E5AB 10.000 
GALILEO E6 5.115 

Table 3.1: Chip rate relation between GPS signals and GALILEO signals 
(GALILEO, 2002) 
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3.8 GALILEO Services 

3.8.1 Open Service 

The design open service provides positioning, navigation and timing signals that can 
be used free of charge. The target of this service is the mass-market navigation 

applications, such as vehicle-navigation and mobile telephone positioning 

applications. This service also provides a precise timing service (UTC) when used 

with receivers in fixed locations for applications such as network synchronization or 

scientific applications. The perfonnance characteristics of this service are shown in 

table 3.2. 

Open Service (positioning) 
Carriers Single Frequency FDual-Fre uency 

Type of 
Computes 
Integrity 

No 

Receiver Ionospheric 
Correction 

Based on simple 
model 

I 

Based on dual- 
frequency 

measurements 
Coverage Global 
Accuracy (95%) H: 15 m 

V: 35 m 
H: 4 in 
V: 8 in 

Alarm Limit 
Integrity Time-To-Alarm Not Applicable 

Integrity Risk 
Continuity Risk 8x 10-6/15S 
Timing Accuracy wrt UTC/TAI 30 ns 
Certification Li No I No 

Carriers Three-Frequencies 
Availability 99.8% 

Table 3.2: GALILEO Open Service performance characteristics 
(GALILEO, 2002). 
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3.8.2 Commercial Service 

This service provides more advanced characteristics to the open service. These 

characteristics are related to the design of the signal, which supports, dissemination of 

encrypted value-added data in the open GALILEO signals, very precise local 

differential applications using the open signal overlaid with the Public Regulated 

Service signal on E6 and a pilot signal for supporting integration of GALELEO 

positioning applications and wireless communications networks. The performance of 

these services is dependent on the quality of the commercial data broadcast and on 

the performance of local components. 

3.8.3 Safety of Life Service 

This service's performance is compatible with the requirements of the Approach with 

Vertical Guidance (AVP-11) as defined by International Civil Aviation Organization 

(ICAO). Also the performance needs for other modes of transport (land, rail, 

maritime) are adequately covered through those requirements. A GALILEO service 

availability of over 99.9 % would make it usable as a stand-alone service. On the 

other hand combination of this service with the current GPS, augmented by EGNOS 

corrections, or with the future improved GPS and EGNOS integrity-only would 

support CAT-I performance and gives the ability of sole means availability. Amongst 

the other applications covered will be ship docking, train control, and advanced 

vehicle control. 
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Safety-Qf- ife Service 
Carriers Three Frequencies 

Type of 
Receiver 

Computes 
Integrity Yes 

Ionospheric 
Correction 

Based on dual-frequency 
measurements 

Coverage Global 
Critical level Non-critical level 

Accuracy (95 %) H: 4m 
V: 8m H: 220 m 

Integrity Alarm Limit H: 12 
V: 20 

H: 556 m 

Time-To-Alarm 6 seconds 10 seconds 
Integrity Risk 3.5 x 10-'/ 150 s 

7 10- / hour 
Continuity Risk 10-'/15 s 10-4 / hour - 

10-8 hour 
Certification Liability Yes 
Availability of Integrity 99.5% 
Availability of accuracy 99.8% 

Table 3.3: Service Performance for safety of life Service with the Satellite 
Navigation Signals only and without any other augmentations 

(GALILEO, 2002). 

3.8.4 Public Regulated Service 

The Public Regulated Service is provided on dedicated frequencies to provide greater 

continuity of service. It will be placed under the control of EU countries and used for 

public applications (police, civil protection, law enforcement), transport, 

telecommunications applications and economical or industrial activities with strategic 

importance. This service is robust, being interference resistant and also resistant to 

jamming and other accidental aggressions. 
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Public Reg Reg lated Service 
Carriers Dual Frequencies 

Typeof 
Receiver 

Computes 
Integrity 

_ 
Yes 

Ionospheric 
Correction 

Based on dual-frequency 
measurements 

Coverage Global 
Accuracy (95%) H: 6.5 m 

V: 12 m 

Integrity Alarm Limit H: 20 
V: 35 

Time-To-Alarm los 
Integrity Risk 3.5 x 10--'/ 150 s 

Continuity Risk 10--/ 15 s 
Timing Accuracy wrt UTC/TAI 100 ns 
Availability 99.5% 

Table 3.4: Service Performance for Public Regulated Service with 
the Satellite Navigation Signals only (GALILEO, 2002). 

3.8.5 Navigation Services by Local Components 

Using differential corrections provided by local components will provide positioning 

accuracy better than I metre for single frequency users. Local components could 

report integrity with a time to alan-n. of I second, also the local service providers will 

adapt the signal format to accommodate additional data. 

The combination of the Three Carrier phase Ambiguity Resolution techniques 

(TCAR) with local components will provide users with positioning accuracy below 

10 centimeters (GALLEO, 2002). The pilot signal provided with the open signal will 

enhance the performance of wireless telecommunications networks in difficult 
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environments, also pseudolites serving, as local stations will be used to increase the 

availability of the GALH-EO service in a defined local area. 

Broadcast of Broadcast of 
Type of Local Differential Differential UMTS-assisted 
Components corrections for corrections for user position 

Single or dual Triple-frequency computation 
requency users Users (TCAR) 

Accuracy <Im < 10 cm 50 m (TBQ 
Integrity Is Is Not applicable 
Time to 
Alarm 

Availability Mgh under open Fhgh under open Increased in 
field-of-view field-of-view urban canyons 

condition condition and for indoor 
applications 

Table 3.5: Performance for Services combining Satellite and Local Component 
signals (GALILEO, 2002). 

3.8.6 Search and Rescue Service 

Search and Rescue Service will be coordinated with the current International Satellite 

System for Search and Rescue (COSPAS-SARSAT) service and compatible with 

both Global Maritime Distress and Safety System (GMDSS) and Trans European 

Transport Network guidelines. GALELEO will give the benefit of improving the time 

detection and the accuracy of location of distress beacons with respect to the current 

system performance for search and rescue. COSPAS-SARSAT will carry out the task 

of position detennination for distress beacons on the basis of the signals and data 

provided by the GALELEO Search and Rescue Service. The position determination 
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will be enhanced from 5 Krn for the current beacons, to less than 10 meters for 

advanced beacons equipped with GALILEO receivers. 

Search and Rescue Service (SAR) 

Capacity Each satellite shall relay signals from up to 300 
simultaneous active beacons 
The communications from beacons to S& R ground 

Forward System Latency stations shall allow detection and location of a 
Time distress emission in less than 10 min. The latency 

time goes from beacon first activation to distress 
location determination 

Quality of Service Bit Error Rate < 10--' for communication link: beacon 
to S&R ground station 

Acknowledgment Data 6 messages of 100 bits each, per minute 
Rate 
Coordination Messages 18 messages of 420 bits each, per minute 
Data Rate 

_ 
_Availability 

>99% 

Table 3.6: GALILEO service performance for Search and Rescue Service 
(GALILEO, 2002). 

3.8.7 Navigation/Communication Service 

This service is the combined use of GALILEO with other current wireless, terrestrial 

or satellite networks. This service is suitable for regulated applications requiring 

global and high availability and reliable position reporting which will be achieved by 

allowing the quasi -instantaneous transmission of short messages from users to a 

service centre and vice versa. 
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Navigation Related Communications Service (NRS) Characteristics 

Delivery Time Delivery to recipient <I min. after sending (TBC) 

Acknowledge Acknowledge to sender <I min. after reception (TBC) 

Error Notice Error reported to sender <5 min. after sending (TBC) 

Capacity TBD 

Availability > 99.5 % 

Table 3.7: GALILEO service performance for N/C (GALILEO, 2002). 
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CHAPTER 4 

GPS Data Simulation 

4.1 Introduction 

Simulation is a tool traditionally used in aspects of the conceptualization, design, 

development and testing of systems. More recently, there has been a move to 

systematically apply simulation throughout the life cycle of a system. Simulation, as a 

research tool was, and still is the best option for the analysis of endless scenarios at 

relatively no cost. Many scientific discoveries would not have been made without the 

use of simulation techniques, as field tests are often impractical. 

In the last ten years dependence on GPS has become unavoidable in many aspects of 

every day life. As described in Chapter 1, GPS technology has many areas of 

applications that hold great expectations for terrestrial and space-based users as well. 

Some of these terrestrial expectations are safer air travel, improvements in search and 

rescue systems, improved Earthquake monitoring, tractor-trailer tracking and 

enhanced farming techniques. 
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GPS also has promising benefits for spacecraft and space systems such as significant 

reductions in spacecraft costs, improvements in spacecraft autonomy and new 

revolutionary scientific capabilities can be accomplished through the availability of 

this technology on the spacecraft of the future (Bauer et al., 1998). Consequently, 

there is a need for research tool that allows wider ranging of analysis of GPS to be 

undertaken without incurring high costs. Field tests often have difficulties in 

providing the varying test conditions required and always have significant costs 

associated with them, therefore the use of simulation techniques is a preferable 

choice. 

Techniques for simulating multi-component GNSS systems are wide-ranging in 

complexity. Service Volume Simulators (SVS) are often used to give an overall view 

of the performance levels seen by the user such as GALILEO Integrity Performance 

Assessment (GIPA) project (Wemer et al., 2001). For a more detailed analysis of the 

system, an End-to-End simulator may be used which simulates every aspect of the 

GNSS system including ground control, space and user segments. Such simulators 

may have the ability to work in real time and have the facility to test hardware in the 

loop such as the GalileoSat System Simulation Facility (GSSF) which is one of a 

number of ESA facilities designed to support the development of the GALELEO 

space, ground and user segments. GSSF is a software simulation tool that reproduces 

the functional and performance behaviour of the GALILEO system in order to 

support the definition, integration, validation, verification and operations of 

GALILEO (Pidgeon et al., 2000). It is often the case that only one aspect of the 

overall GNSS system needs to be analysed and thus simulation tools can be 
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developed for one particular part of the system. This thesis is concerned with the 

simulation of the measurements that would be made by a user receiver for a particular 

GNSS and the remainder of this section gives details of how such a measurement data 

simulator can be developed. 

4.2 GPS Data Simulation 

4.2.1 DATa SIMulator (DATSIM) software 

The Institute of Engineering Surveying and Space Geodesy JESSG) at the University 

of Nottingham has its own GPS DATa SIMulator (DATSIM) software which was 

developed as part of the GPS Analysis Software package (GAS) (Stewart et al, 

2002). 

DATSIN4 simulates GPS observations, including pseudo-range, carrier phase and 

Doppler measurements based on the following observation equations: 

Pseudo-range: 

P =d+c(dtr-dts)+aldion+dtrop+dSA+npI 
(4.1) 

1 

P =d+c(dtr-dts)+a2dion+dtrop+dSA+np2 
(U). (4.2) 

2 

Carrier Phase: 

fI 
d+c(dtr-dts)-aidion+dtrop+dSA)+Nl+n(DI 

(4.3) ,c( 
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f 2 
(L2). (4.4) 02cd +c(d tr-d ts)-a2d ion+ dtrop +d SA)+ N2+n4D2 

where, d the distance between satellite and receiver, 

d the receiver clock error, 

d t, the satellite clock error, 

do,, the difference between LI and L2 ionospheric delays, 

the tropospheric delay, 

SA the SA dither error, 

Ni the Ll carrier phase ambiguity, 

N2 the L2 carrier phase ambiguity, 

np, the measurement noise for Ll pseudo-range, 

np2 the measurement noise for L2 pseudo-range, 

nq, i the measurement noise for Ll carrier phase, 

n(D 2 the measurement noise for L2 carrier phase, 

f, the carrier frequency for Ll observations, 

the carrier frequency for L2 observations, 

the speed of light, 

a, function of LI frequency, 

a2 function of L2 frequency. 
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Doppler measurements being modelled as the first derivatives of the pseudo-range 

measurements. 

The control flow chart of the DATSIM software is given in Figure 4.1. The input to 

the software includes the GPS satellite orbits and the receiver coordinates. For a 

mobile receiver, a file consisting of a set of coordinates representing the trajectory of 

the receiver is required. The coordinates of the receiver at any desired epoch are 

obtained by interpolation between the trajectory epochs. The software calculates the 

true range and range rate between the satellites and the receiver, generates different 

errors from various error models, and finally combines them to form the observations. 

The simulated measurements time-tagged for each satellite in view are then written 

out to a file in a standardized format for each receiver. Some modifications have 

recently been made to allow the generation of simulated data from inertial sensors, 

specifically gyroscopes and accelerometers. The user can manipulate various errors in 

the observations in order to simulate particular environments. As well as simulated 

GPS data files for each receiver, the software also outputs files containing the 

different error sources, the simulated data files for the inertial sensors if required and 

a report file. 

DATSIM contains various models for the different sources of error in GPS 

measurements (ionospheric delay, tropospheric delay, multipath, satellite clock error, 

receiver clock error, and measurement noise) and gives the user the flexibility to 

activate or deactivate the errors by switching the models on or off. Prior to the 
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Author's research, the DATSIM software has been used in a number of research 

projects at the EESSG and had already been tested to some extent against real data to 

show that realistic data can be generated with this simulator (Ashkenazi et al., 1997). 

(Ashkenazi et aL, 1997) found that similar results can be obtained using simulate and 

real GPS tracking data for LEO satellite reduced dynamic orbit detennination 

(Topex/Poseidon). The agreement was up to 0.11 m, 0.25m, 0.08 and 0.22m for radial, 

along-track, across-track and total orbital errors respectively. 

4.2.2 DATSIM: Original GPS Error Models 

The DATSIM version before the effort of this research used the following mentioned 

models for different GPS errors. The satellite and receiver clock errors are simulated 

using polynomial functions, the coefficients of which are generated by the software. 

These coefficients are generated to be comparable with the observed behaviour of 

real clocks. Alternatively the satellite clock errors can be read from the ephemeris file 

or a clock data file generated during a previous run of DATSIM. 

DATSIM simulated the ionospheric delay error, by using the Klobuchar model 

(§2.6.4.1.2) using ionospheric parameters extracted from the GPS navigation 

message. The accuracy of the Klobuchar model is limited to 50-60 % of the total 

effect (Dodson, 1988) as well as the model is incapable of showing the variable 

nature of the ionosphere with different geographical areas as it fits well for middle- 

latitude areas only. 
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DATSIM simulated the tropospheric delay error, by applying a global atmospheric 

model to generate local meteorological conditions, which are then used to calculate 

the delay on each measurement. Various tropospheric models were available in the 

software for the user to choose, including Hopfield (§2.6.5.1.1), Saastamoinen 

(§2.6.5.1.2) and magnet models (§2.6.5.2.2). Magnet model is a global empirical 

model that stands for the hydrostatic tropospheric delay only. Surface meteorlogical 

models (Hopfield and Saastamoinen) need surface meteorological data to give its best 

behaviour which is not recommended for simulation purposes. Using such models 

with atmospheric data generated using global atmospheric models limits its accuracy. 

DATSIM simulated Multipath error using a model consisting of two parts; the first is 

Gaussian white noise and the second is single replica model. The model showed no 

correlation between different multipath time series as well as no elevation-angle 

dependent behaviour. 

Measurement noise is also simulated within DATSIM and is modelled as Gaussian 

white noise with a mean of zero and a user specified standard error. Random integers 

are added to the carrier phase measurements as initial ambiguities. As an option, the 

software can also add random carrier-phase cycle slips to the data. 

While the DATSINI software has been shown to produce realistic simulated data 

(Ashkenazi et al, 1997), there are still areas where improvements to the error models 

can be made, especially the environmental delay models (ionosphere delay, 

troposphere delay and multipath). 
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The following sections show how the author has improved the performance of 

DATSIM by implementing new, more accurate models to simulate the two major 

sources of errors for GPS measurements namely the ionospheric and tropospheric 

delays. Also a more realistic model for simulating the multipath effect is proposed. 
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I Simulation default settings and actions I 

I Read control file inputs I 

Common tasks for every station: 
0 Load orbits 
0 Satellite clocks 

For every station 

I Set parameters for the station I 

Loop for each epoch 

Receiver clock compute 

Receiver position at time of reception 

Satellite position at time of transmission 

Satellite clock bias calculation 

If SA flaa 

If iono flaiz 

If tropo flag 

If multipath 

Measurements formation 

Kepoch = kepoch +I 

I SA model 
I 

I Ionosphere delay calculation 
I 

I Troposphere delay calculation 
I 

Multipath error model Mul 
I 

Figure 4.1: DATa SIMulator, (DATSIM) Control Flow Chart. 
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4.3 Simulation of Ionospheric Delay 

4.3.1 Introduction 

Now that SA, the intentional degradation of the accuracy of the single-frequency GPS 

position by the American DOD, has been turned to a zero level, the ionospheric error 

is considered to be the major source of potential range delay for single frequency 

users (Kunches and Klobuchar, 2001). 

The ionospheric range delay on GPS signals can be simulated in different ways and 

the various options will be discussed in the following sections. A description of the 

current options within the simulator (DATSIM) is given along with their advantages 

and shortcomings and finally, a new method for simulating the ionospheric delay is 

proposed. 

4.3.2 The Ionospheric Delay Simulation Techniques 

The philosophy behind selecting a model to simulate the ionospheric delay from the 

GPS-simulation point of view stands on two main points: 

- Firstly, the selected model is the model which gives the best description and 

visualization of the behaviour of the ionosphere or, in other words, the model 

which shows the variable ionospheric behaviour with different locations (latitudes 

& longitudes), with different times of the year and with different times of the day. 

- Secondly, the selected model is the model, which computes the ionospheric delay 

to a high degree of accuracy, but with reasonable computation time and easy 

implementation. Obviously, the best-selected model will be the one, which 
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gives both of the two previous criteria. 

Over the years, many models have been developed for modelling the ionospheric path 

delay, the drive behind these developments being the need for single frequency users 

to remove the delay from their measurements. These models can be used 'in reverse' 

for data simulation to add the ionospheric delay into the measurements. The models 

may be divided into two main categones: 

Firstly, state-of-the-art ionospheric models, which require updating regularly with 

hundreds of coefficients to fit the monthly average behaviour of ionospheric 

range delay to within a residual bias of approximately 10%. Typical models are 

the International Reference Ionosphere, (IRI) and the Bent model. 

Secondly, simple-computational models with an ideal description for the 

ionosphere's average behaviour but with other shortcomings such as, low 

accuracy in describing the variability of the ionospheric behaviour with different 

latitudes and times, low accuracy in computing the ionospheric delay and inability 

to model the ionosphere's significant changes from its average behaviour. A 

typical model is the well-known Klobuchar model for which coefficients are sent 

through the GPS navigation message. 

4.3.2.1 State-of-the-art Model 

One of the options for ionospheric delay simulation is to use a state-of-the-art 

ionospheric model, however the need for continuous updating of hundreds of 
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coefficients with tremendous penalty in computational complexity makes this option 

not recommended for simulation purposes. 

4.3.2.2 The Klobuchar model 
This is the most widely-known global model (reviewed in § 2.6.4.1.2), which uses the 

Ionospheric Corrections Algorithm (ICA) (Klobuchar, 1987) designed to account for 

approximately 50% (rms) of the ionospheric range delay. This is the standard 

correction used by virtually all-single frequency GPS receivers. The coefficients for 

this algorithm are transmitted as part of the satellite navigation message and are 

updated at least once every ten days by the GPS Master Control Facility, or more 

often if there are significant changes in the five-day running mean solar radio flux 

during the ten-day period. The ICA is limited to only 8 coefficients due to GPS 

navigation message length limitations. 

This model has one main advantage, which is its simplicity and the low computation 

time but, it also has many shortcomings: 

- Low accuracy for computing the ionospheric delay correction (50-60%) (Dodson, 

1988) 

- The algorithm does not properly represent the behaviour of the ionosphere in the 

near-equatonal region of the world, where the highest values of the ionospheric 

delay occur (Klobuchar, 1982). 

- The algorithm is very poor in high latitude regions where the ionospheric 

variability is high due to auroral processes. 

- The model is unable to represent the behaviour of the ionosphere when 
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the ionosphere differs by substantial amounts from its average behaviour. 

4.3.2.3 The Klobuchar model with CODE-coefricients 

The main idea of this model is to use the same Klobuchar model with new 

coefficients produced by CODE. This method takes advantage of high-quality global 

TEC map information in IONEX format that is routinely derived by this centre as 

final and rapid, as well as predicted products. A working study using this model has 

shown that these new CODE coefficients increase the accuracy of the Klobuchar 

model from 50% (with GPS -coefficients) to 75% of the total effect (Schaer, 2001). 

However the main shortcomings of the Klobuchar model remain unresolved i. e. the 

inability to represent the behaviour of the ionosphere in the near-equatorial latitudes, 

in the high latitudes and when the ionosphere exhibits major variations from its 

average behaviour. 

4.3.3 The Proposed Model for Ionospheric Delay Simulation 

After working with each of the previously mentioned models, the following new 

model was developed. The main idea was to implement a model which has the 

following attributes; high accuracy in computing the ionospheric delay, ability to 

represent the behaviour of the ionosphere in different circumstances and 

computational simplicity. 

4.3.3.1 The Model Description 

The new model is based on the assumption that the ionosphere has three main states 

of activity, quiet, medium, and active, depending on the value of the Sun Spot 

Number (SSN). SSN is a measuring tool for the activity of the solar cycle defined by 
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cool planet-sized areas on the sun where intense magnetic fieldline loops poke 

through the star's visible surface (Davis, 1989). The technique chosen to simulate the 

ionospheric delay for each activity case, is to use the high-quality global TEC map 

information in IONEX format derived by IGS-analysis centres such as the CODE 

analysis center. The data format adopted by the IGS analysis centers to provide the 

TEC information is the IONosphere map EXchange (IONEX) format (Schaer et al., 

1998c). 

CODE is one of five ionospheric associate analysis centers of the IGS, and currently 

produces global Total Electron Content (TEC) maps on a regular basis. These maps 

are derived from the double-differenced carrier phase measurements of the IGS 

tracking network. 

IGS- based Global Ionospheric Maps (GIM's) describing the Earth's vertically 

integrated TEC are produced in three types at the CODE, a final, a rapid, and a 

predicted product. It is proposed to use the final product in the simulation model, 

which is derived from the, geometry-free linear combination of phase-leveled-to-code 

measurements (Kornjathy, 1997) of about 140-150 globally distributed IGS ground 

stations and is available approximately three days after the observations. These global 

maps are represented by a spherical harmonic expansion of degree 12 and order 8 

referenced to a solar-geornagnetic frame (the global TEC distribution is relatively 

stationary in that frame). Since June, 1998 the Ionosphere maps are given in an earth- 

fixed reference frame with a resolution of 50,2.50 in longitude and latitude 

respectively. The conversion of line-of-sight TEC to vertical TEC is done using a 
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single-layer model (see Figure 4.2) (Schaer, 1999). The time resolution of the maps is 

two hours. For more information about these TEC global maps, the reader is referred 

to Feltens and Schaer (1998), Schaer (1998a) and Schaer (1998b). 

4.3.3.2 The Model Algorithm 

The Simulation of the ionospheric delay using the suggested model based on IGS- 

GIM's involves three steps: 

I- Extracting the value of TEC at the ionospheric pierce point (Fig. 4-2) at the 

required time using linear interpolation between two consecutive TEC maps. 

2- Computing the zenith ionospheric delay using the extracted TEC value. 

3- Converting the zenith ionospheric delay to the slant delay using a mapping 

function. 

4.3.3.2.1 Extracting TEC Value 

In order to compute the TEC value (E) as a function of geocentric latitude (0), 

longitude (X) and universal time (t), the following linear interpolation formula 

between two consecutive TEC maps was used; 

T(i + 1) -t 

T(i + 1) - Ti 

where, Ti ýý t< Ti+l 

E. + 
t-T E (4.5) 

1 T(i+l)-Ti i+l 
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A simple 4-point grid interpolation formula (Bivariate interpolation) (Schaer et al., 

1998c) was used to compute the value of the Ei(PA) using the nearest 4 TEC values 

which is adequate for the grid spacing used (2.5' in latitude, 5' in longitude) . 

4.3.3.2.2 The Zenith Ionospheric Delay Computation 

The Zenith ionospheric delay can be computed using the following simple equation 

(Seeber, 1993); 

d (40.3). 
TEC 

ion f2 

where, 
dion zenith ionospheric delay (m), 

TEC total electron content in TEC units ( Ix 10 16 electron), 

f Frequency of the GPS signal (Hz). 

4.3.3.2.3 The Slant Ionospheric Delay Computation 

(4.6) 

The slant ionospheric delay is evaluated by multiplying the zenith delay by the 

following mapping function (Schaer, 1999): 

Mapping Function =I,, (4.7) 
Cos Z 

where sin Z sin Z 
R+H 

I Z, Z are the geocentnc zenith distances of a satellite at the height of the 

GPS receiver and the single layer of the ionosphere, respectively, 
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H is the height of the single layer of ionosphere above the Earth mean 

surface (450 km), 

R is the mean radius of the Earth (6371 km approximately). 

Satellite 

Ive point 

Figure 4.2: Description of the single-layer ionosphere model (Schaer, 1999). 

4.3.3.3 Model Evaluation 

The new model was tested against: the Klobuchar model with GPS coefficients and 

the Klobuchar model with CODE coefficients. The test involved producing global 

ionospheric zenith delay grid maps every two hours over a 24 hours period using each 

of the three models. The results were then assessed against the criteria given in 

§4.3.2. The date chosen for testing was the I Oth of August 2001, which was an active 

ionospheric day (SSN = 99). The LI frequency was used and the global TEC maps 

were obtained from CODE. 
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Figures 4.3,4.4 and 4.5 show two-hourly snapshots of the Earth's zenithal 

ionospheric delay in meters for August 10,2001 for each of the three models. This 

study's findings were presented in Farah (2002a), (2002b), (2003b). 

4.3.3.4 Discussion 

It can be concluded from Figure 4.3 that the Klobuchar model is a simplified model, 

its accuracy limited to 50-60% of the total effect shown in Figure 4.5. The model 

does not give a detailed description of the ionosphere behaviour particularly in high 

latitudes. The model is inaccurate in computing the ionospheric delay value at the 

equatorial regions compared with the new developed model as the difference reaches 

about 5 meter of zenith delay taking in mind that this difference will get larger with 

using lower cut-off elevation angles. 

It can be seen from Figure 4.4 that the use of CODE coefficients in the Klobuchar 

model gives a better prediction of the ionospheric delay than using the same model 

with GPS broadcast coefficients. The accuracy of the Klobuchar model with CODE 

coefficients in the range of 75-85% of the total effect shown in Figure 4.5 (agree with 

(Schaer, 2001)). This yields the conclusion that the performance of the Klobuchar 

model with CODE coefficients is better than the same model with GPS coefficients 

by roughly a factor of 1.4 to 1.5 but the new CODE coefficients can't eliminate the 

main shortcoming of the Klobuchar model which is the model's inability to describe 

the ionosphere's behaviour in high and equatorial latitudes, and also when the 

ionosphere varies significantly from its average be aviour. 
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Figure 4.5 shows a more realistic description for the ionosphere behaviour that can 

be achieved using the newly developed model based on the IGS-GIM's. This is 

because: 

Firstly, it gives highly realistic behaviour in the estimation of the ionospheric 

delay comparing with the other two models as it is based on double-difference 

carrier phase measurements from IGS global tracking stations. 

Secondly, the new developed model gives a more realistic description of the 

global variation of the ionosphere's behaviour in different latitudes. 

The newly developed model satisfies the previously mentioned criteria because it 

gives; high realistic behaviour in computing the ionospheric delay, more realistic 

detailed description for the ionosphere's behaviour whatever the latitudes or the time 

and finally it is very simple in computation process. Comparing the graphs in Figures 

4.3,4.4 and 4.5, the advantages of the new model can clearly be seen and the 

expected effect of the new model on the simulated data generated with DATSIM 

inferred. Selecting the new model based on IGS-GIM's for more realistic simulation 

of the ionospheric delay, which is the major source of error for GPS signals, will 

result in more realistic simulated GPS data. 
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Figure 4.3: Two-hourly snapshots of the Earth's zenithal ionospheric delay in meters for August 
10,2001, as produced using the Klobuchar model with GPS coefficients. 
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4.4 Simulation of Tropospheric Delay 

4.4.1 Introduction 

Tropospheric delay is the second major source of error after the ionospheric delay 

for satellite navigation systems. The transmitted signal could face a delay caused 

by the troposphere of over 2m at zenith and 20m at lower satellite elevation angles 

of 10 degrees and below. Positioning errors of 10m or greater can result from the 

inaccurate mitigation of the tropospheric delay. 

Many techniques for the determination of the tropospheric delay have been 

developed, a review of the most widely used models is given in §2.6.5. The model 

proposed in this study for simulating the tropospheric delay is the EGNOS model, 

which is recommended by the EGNOS guidelines for it is a global statistical 

tropospheric model that describes the mean tropospheric delay (RMS zenith trop. 

Delay errors ranged from 4.0 to 4.7 cm) (Penna et al., 2001) with safety in 

computation time (recommended for simulation purposes). The model will be 

discussed in detail later on. 

To investigate and assess the adequacy of the EGNOS model for simulating the 

tropospheric delay, two tests were conducted: 

The first test compares the behaviour of the EGNOS model with the highly 

accurate IGS -tropospheric products from CODE. This study involves four 

IGS tracking stations for four non consecutive seasonal weeks over one year. 

The second test compares the behaviour of the EGNOS model with other 

tropospheric models. These models can be categorized in two types: surface 

meteorological models and global empirical models. The study involved 
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three IGS tracking stations for four nonconsecutive seasonal weeks over one 

year. The IGS tropospheric products were used in this study for reference. 

The findings of these two studies were presented in Farah (2003c), Farah et 

al. (2003). 

4.4.2 The EGNOS Tropospheric Model Description 

The European Geo-stationary Navigation Overlay Service (EGNOS) is the first 

phase of Europe's contribution to the Global Navigation Satellite System-1 

(GNSS-1). The system consists of a number of ground Receiver Integrity 

Monitors (RIMs) and geo-stationary satellites where the RINTs provide the wide 

area differential GPS and integrity services for both the GPS and GLONASS 

systems, the geo-stationary satellites are used to broadcast the integrity and wide 

area differential corrections to the users as well as providing extra pseudo-range 

observations. The wide area differential GPS service separates the measurement 

errors into different components; orbit, satellite clock, ionospheric delay and 

tropospheric delay. The tropospheric delay correction is not broadcast to the user 

due to the large variation in tropospheric delay with different weather conditions. 

Instead an estimate is generated locally by the user, based on a tropospheric model 

(Penna et al., 2001), which is following the International Civil Aviation 

Organisation (ICAO) Standards and Recommended Practices (SARPs) for 

Satellite Based Augmentation Systems (SBAS) (RTCA, 1999). 

The recommended EGNOS model provides an estimate of the zenith total 

tropospheric delay that is dependent on empirical estimates of five meteorological 

parameters at a receiver - namely, pressure, temperature, water vapour pressure, 
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temperature lapse rate and water vapour lapse rate. These estimates of the 

meteorological parameters are dependent on the receiver's height, latitude and 

day-of-year, and are interpolated from reference values for the yearly averages of 

the parameters and their associated seasonal variations, derived primarily from 

North American meteorological data. The same scenario is followed on other 

satellite-based augmentation systems such as: USA Wide Area Augmentation 

System (WAAS) and Japanese Multi-functional Transport Satellite, MTSAT- 

based Satellite Augmentation System (MSAS) (Penna et al., 2001). This is so that 

the EGNOS model is consistent with the tropospheric model for the WAAS 

program detailed in (Collins and Langley, 1997) and also discussed in (Collins 

and Langley, 1998). The EGNOS guidelines then recommend mapping the zenith 

total tropospheric delay estimate to the appropriate receiver-to-satellite elevation 

angle using an elevation angle-dependent mapping function. 

4.4.3 EGNOS Tropospheric Model Algorithm 

The EGNOS model is described in (Penna et al., 2001) and for reference is 

repeated here. The total tropospheric delay for a receiver-to-satellite range at 

elevation angle a is modelled using (RTCA, 1999): 

a= 
(d 

dry +d wet) - MF(a) 

where: d dry 

d wet 

MF(a) 

is the zenith dry delay., 

is the zenith wet delay, 

(4.8) 

is the mapping function to map the zenith total delay to the 

appropnate receiver-to-satellite elevation angle. 
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The estimation of the zenith total tropospheric delay is depending on five 

meteorological parameters: the total pressure, temperature and water vapour 

pressure at mean sea level, and temperature and water vapour lapse rates, used to 

scale the pressures and temperatures to the user's height above sea level. These 

meteorological parameters can be obtained from a table of values (Table 4.1) 

given at discrete latitudes, with linear interpolation applied as necessary. The 

seasonal variation of the parameters is modelled via a sinusoidal function of the 

day-of-year. So, the zenith dry and wet delays are computed using: 

9 

ddry ý_- zdry I -PH Rd 
TI 

1 
f3H 

ýA + I)g 

dwet - Zwet _I 
RdP 

where : 9.80665 m/s 
2 

1) 

H is the height of the receiver above mean sea level (m), 

is the temperature at mean sea level (K), 

0 is the temperature lapse rate (K/m), 

Rd = 287.054 J/kg/K, ) 

A is the water vapour lapse rate (dimensionless), 

Zdry is the zenith dry delay at mean sea level, 

Zwet is the zenith wet delay at mean sea level. 

The zenith dry and wet delays at mean sea level are given as follows: 

(4.9) 

(4.10) 
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10-6klRdP 
dry -' 

9111 

where: ki= 77.604 K/mbar, 

is the pressure at mean sea level (mbar),, 

2 
gm 9.784 m/s . 

and 

10-6k2Rd e 
wet : -- gj + 1)-ý Rd .T 

where : k2 = 382000 K 2/mbar,, 

e is the water vapour pressure at mean sea level (mbar). 

(4.11) 

(4.12) 

Using the average values and seasonal variations for the five meteorological 

parameters given in Table 4.1, each meteorological parameter value (ý) may then 

be computed using the following equation: 

ý (0, D) =ý o(0) -Aý( 0) 
- cos 

27r (D 
-D min) 

1 

365.25 

where: 0 is the receiver's latitude, 

D is the day-of-year (starting with I January), 

D., i. = 28 for northem latitudes, 

D., -ý. = 211 for southern latitudes. ) 

(4.13) 

and Aý are the average and seasonal variation respectively for the 

particular parameter at the receiver's latitude. 
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Avera ge 
Latitude P,, (mbar) T,, (K) e,, (mbar) Po (K/m) 110 

:!:, ý 15 1013.25 299.65 26.31 6.30e-' 2.77 
30 1017.25 294.15 21.79 6.05e -3 3.15 
45 1015.75 283.15 11.66 5.58e -3 2.57 
60 1011.75 272.15 6.78 5.39e -3 1.81 
75 1013.00 263.65 4.11 4.53e -3 1.55 

Seasonal Variation 
Latitude (0) AP,, (mbar) ATO (K) Aeo (mbar) A PO (K/m) AAO 

!ý 15 0.00 0.00 0.00 0.00e-3 0.00 
30 -3.75 7.00 8.85 0.25e -3 0.33 
45 -2.25 11.00 7.24 0.32e 3 0.46 
60 -1.75 15.00 5.36 0.81e -3 0.74 

ý! 75 -0.50 14.50 3.39 0.62e -3 0.30 

Table 4.1: Average values and seasonal variation values of the five 

meteorological parameters used by the EGNOS model. 

The mapping function MF(a) which is not valid for elevation angles of less than 

5 degrees (RTCA, 1999) is expressed as: 

MF (a) = 
1.001 

2a 

-, 
10.002001 + sin 

4.4.4 First Test Study 

(4.14) 

A comparison study was conducted between the EGNOS model and the CODE 

tropospheric product. CODE produces zenithal tropospheric delay products from 

about 114 IGS-tracking stations every two hours with a 10 degrees elevation cut- 

off angle applied and using the Niell (wet) mapping function (Niell, 1993). Four 

IGS tracking stations, varying in latitude and height, were selected for this study. 

The selection of the stations was restricted by the availability of IGS-CODE 
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tropospheric estimates. The tropospheric zenith delay data from four weeks in 

different seasons were chosen to assess the seasonal variation of the weather 

conditions. The dates of the data samples are shown in Table 4.2. The 

geographical positions of the tested IGS stations in the first test using the 4 

character IGS-codes (Borl, Gala, Mac] and MASI) and second test study (Borl, 

Hers, Bahr) are shown in Figure 4.6 and Table 4.3. 

GPS week 1097 1110 1123 1136 
14/1/01- 15/4/01- 15/7/01- 14/10/01- Date 20/1/01 21/4/01 21/7/01 20/10/01 

Table 4.2: Dates of Data Samples for the First Tropospheric Comparison 
Test. 

With the highly accurate estimation of the total tropospheric delay from the 

CODE-Tropospheric products, the differences of total zenith delay between the 

EGNOS model and the CODE-Troposphere estimation will give an indication of 

the quality of the EGNOS model and assess its adequacy for the GPS-data 

simulation. 

Figure 4.6: The geographical Positions of the tested IGS stations. 
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Station Latitude Longitude Height City Country 
IGS-ID (degree) (degree) (meter) 
BORI 52.276 N 17.073 E 124.358 Borowiec Poland 

GALA 0.742 S 89.696 W 7.441 Galapagos Ecuador 
Island 

MACI 54.499 S 158.936 E -6.763 
Macquarie Southern 

Island Ocean 
MASI 27.763 N 15.633 W 197.161 Maspalomas 
BAHR 26.209 N 50.608 E -17.03 Manama Bahrain 

BERS 50 867 N 0 336 E 76 521 Hailsham United 
. I . . I I Kingdom 

Table 4.3: The detailed geographical positions of the tested IGS tracking 
stations. 

Figures 4.7 to 4.22 show the total tropospheric zenith delay estimates from both 

the EGNOS model and the CODE-Tropospheric delay estimates for each of the 

four stations, for each of the four weeks. Table 4.4 shows the total zenith delay 

differences between the EGNOS model and the CODE-Tropospheric delay 

estimation. Note that some of the CODE estimations in Figures 4.7 to 4.22 

contains null periods due to a lack of data. It can be shown that 67% of the mean 

differences are within 7 cm, with the largest value being 12 cm. The EGNOS 

model cannot represent the tropospheric delays due to weather changes because it 

has no input of meteorological data at the receiver position. The maximum zenith 

delay difference between the model and CODE estimates over the four weeks at 

the four stations are 5 to 16 cm respectively. Thus, the EGNOS model describes 

reasonably well the mean total zenith delay. These results agree with related work 

by Dodson et al. (1999). It is shown that the BOR1 station (middle of Europe) 

gives the best results, then GALA, with the MACI and MASI island sites 

showing the greatest variations between seasons. 
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Station GPS week 
1097 

Mean (cm) 
4.4 

RMS (cm) 
4.6 

Max. (cm) 
8.3 

BOR1 1110 -3.6 3.9 -7.1 1123 4.7 5.8 10.9 
1136_ 1.8 4.2 6.7 
1097 1.4 1.9 4.9 

GALA 1110 6.2 6.3 9.1 
1123 -3.0 4.1 -8.4 1136 -9.9 10.3 -15.9 

MAC1 
1097 
1110 

-10.3 
-8.6 

11.2 
9.2 

-16.7 
-13.5 1123 -1.8 3.6 -6.9 1136_ -11.2 11.3 -14.3 

1097 -3.4 3.8 -7.7 Nusl 1110 -10.1 10.5 -12.8 
1123 -11.9 12.1 -15.2 
1136 -3.4 4.8 -7.9 

Table 4.4: Total Tropospheric Zenith Delay Difference between EGNOS 
model and CODE-tropospheric estimation. 

4.4.5 Second Test Study 

A second comparison study compared the behaviour of the EGNOS tropospheric 

model with other tropospheric models. These tropospheric models can be 

categorized in two groups: surface meteorological models such as (Saastamoinen, 

Hopfield and Marini) and global empirical models such as the Magnet model (see 

§2.6.5). The IGS -tropospheric estimations (combined tropospheric estimates from 

all IGS analysis centers) were used in the study as a reference. The surface 

meteorological models used the IGS meteorological measurements for the tested 

stations to assure high performance. The study involved three IGS-stations, details 

of which are given in Table 4.3 and Figure 4.6. Figures 4.23 to 4.34 show the total 

tropospheric zenith delays resulting from IGS-estimations and the other five 

models for four non-consecutive weeks over one year (to assess seasonal 

variations) which dates are shown in Table 4.5. 
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GPS week 1135 1149 1162 1175 

Date 07/10/01- 13/1/02- 14/4/02- - 14/7/02- 
13/10/01 19/1/02 20/4/02 20/7/02 

Table 4.5: The Tested Dates for the Second Tropospheric Comparison Test. 
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From Figures 4.23 to 4.34 it can be seen that the EGNOS model follows the IGS 

tropospheric estimates more closely than the Magnet model. The Magnet model 

was previously considered as a possible model for tropospheric delay in GPS data 

simulation process, as it is an empirical global model, which does not require 

meteorological data as input but it is only account for the hydrostatic delay part of 

the total tropospheric delay. The EGNOS model fits better for HERS and BORI 

(northern stations) but not for BAHR (southern station), for the fact that the 

EGNOS model is optimised to fit well in Central Europe region only. 

The EGNOS model behaves well comparing with other surface meteorological 

models, which show more accurate behaviour but the need for surface 

meteorological data as input data is not ideal for simulation purposes. The 

behaviour of the Saastamoinen and Marini models is identical, so only one of 

them is considered in some figures. 

4.4.6 Discussion& Conclusion 

The EGNOS tropospheric correction model has shown acceptable level of 

accuracy in describing the average tropospheric delay model as it agrees 

reasonably well with the CODE-tropospheric products based on GPS 

measurements. The mean difference in total zenith delay between the EGNOS 

model and the precise CODE-estimations of the tropospheric delay is about 7 cm 

with maximum difference of up to 16 cm. 
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The EGNOS model shows a better level of agreement with the IGS estimates than 

do other empirical tropospheric models; such as the Magnet model. The EGNOS 

model also shows a good level of agreement with surface meteorological 

tropospheric models. However, these need real-time meteorological input data to 

estimate the tropospheric delay, and so are not ideal for GPS data simulation 

The week point about the EGNOS model is its inability to model the temporal and 

small-scale recyional variations of the troposphere as the model does not have the Z) 

nil ability to model sub-seasonal variations Penna et al., (2001) and Dodson, (1999) 

as well as modelling small-scale tropospheric variations. This may be overcome 

by using other mathematical techniques to add these regional variations over the 

basic model. This subject will be investigated in the next section of this chapter. 

The EGNOS tropospheric model is adequate for GPS-data simulation as it fulfils 

many requirements; 

- Computationally simple. 

- Good behaviour in describing the mean tropospheric delay compared with 

IGS-tropospheric estimations and other established models. 

- The model may have the ability of modelling spatial and temporal 

tropospheric variations through using statistical mathematical theories (see 

§4.5). 
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0 4.5 Improving Chosen Atmospheric Models 

4.5.1 Introduction 

This section will deal with techniques for improving the two chosen models for 

simulating the atmospheric error: namely the ionospheric delay model based on IGS- 

global ionospheric maps and the EGNOS tropospheric model. As it has been shown 

in previous sections (§4.3) and (§4.4) both models are adequate for simulating errors 

in GPS- measurements,, however both models are unable to simulate the small-scale 

regional variations in the atmosphere. Improving this aspect of both models will 

result in models with a high spatial resolution for simulating the ionospheric and 

tropospheric delays. 

It is true that using both models as they are now will yield a high accuracy in 

positioning computations without adding any ability of simulating any regional 

variations to them, however from the data-simulation point of view, it will be a 

powerful tool to have the ability of simulating the real behaviour of both the 

ionosphere and troposphere and show these regional variations as they appear in the 

real world. 

Using a mathematical technique called "Gaussian Random Fields", it would be 

possible to add a controlled random surface over the base value of each model, giving 

the ability to simulate these regional variations. This nature of the used random 

surface depends on how the ionosphere and troposphere changes regionally. A brief 

review about the Gaussian random fields will be given in the next section. 
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4.5.2 Gaussian Random Fields 

Studying and analysis of spatial data is a common task for different branches of 

sciences such as geology, geography, meteorology and geodesy. Given a quantity of 

interest, z, vanes over a domain D in space according to an unknown function 

z: D (-- Rd -> R. In most cases z is observed only in a small number of locations in 

D, and inference about z is then based on a proposed mathematical model for the 

function z (. ). The stochastic approach to modelling z (. ) is to consider it as a 

realisation of a random field where the Gaussian random fields roll in this process. 

The justification of using the Gaussian model in many applications comes from 

(Kozintsev, 1999): 

Firstly, many data-sets from the natural sciences display obviously Gaussian 

characteristics. 

Secondly, Gaussian random fields are well known as well as convenient 

mathematical objects, defined completely by their mean and covariance 

functions. 

The Gaussian random field is 'stationary' if its distribution is unchanged when the 

origin of the index set D is translated. If the distribution is also unchanged when the 

index set is rotated about the origin, the field called 'isotropic). 

In cases where values of the field at several locations are available as observations 

and the interest is to predict the field only in a few locations, a multivariate Gaussian 

vector can contain both observed and unobserved values. However when the interest 
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is in the values of the field everywhere, the multivariate Gaussian vector becomes too 

long to work with because of storage and computational requirements. In such cases 

the generation of multivariate normal vectors based on Cholesky decomposition 

(Cressie, 1993) of the covariance matrix is not valid. A new technique called circular 

embedding (Kozintsev, 1999) is used instead. Many algorithms were developed for 

generating stationary Gaussian random fields using the circular embedding technique 

Dembo et al. (1989), Dietrich and Newsam (1993) and Wood and Chan (1994). 

The algorithm considered in this thesis for improving the atmospheric models is the 

stationary Gaussian random fields algorithm presented by (Chan, 1999) for its 

computational efficiency. The Fortran programs implementing the simulation 

algorithm were available through (Chan, 2003), also they are shown in Appendix-A 

for reference with the defined parameters used for the following test study (Section 

4.5.3). These Fortran programs were coded within DATSIM software to add the 

generated random surface over the base results of each atmospheric model discussed 

earlier applying scale factors to control the amount of variations expected from the 

ionosphere and troposphere. The troposphere could face a change of (5 cm to 10 cm) 

in zenith wet delay for spatial scale of (10 km to 100 km) (Bock, 2001), however the 

ionosphere's variation depends mainly on the latitude of the tested stations as well as 

the Sun 11 s geomagnetic activity. A test study revealing the effect of the implemented 

algorithm is investigated in the following section. 
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4.5.3 The Test Study 

GPS Data was simulated for two adjacent IGS stations in the United Kingdom 

(HERS, NPILD) with a baseline of about 77km. The details of these two stations are 

shown in Table 3.6. The amount of variation applied for the zenith tropospheric and 

ionospheric delays were 10cm, 0.32m respectively. 0.32m variation in zenith 

ionospheric delay corresponds to 2TECU variation, which is expected for middle 

latitude stations under quiet ionospheric activity case (Aquino, 2004). The limitation 

of the test to one baseline could be justified for the limitation in existing short 

baselines (< 100 km) with available true tropospheric zenith delay estimations as IGS 

stations offer. The short baseline is crucial for showing the small scale regional and 

temporal variation which is the scope of this study. 

IGS-Station Latitude Longitude Height city Country ID (degree) (degree) (meter) 

HERS 50.867 N 0.336 E 76.521 Hailsham United 
Kingdom 

NIVLD 51.421 N 0.338 W 72.719 Teddington United 
I I I Kingdom 

Table 4.6: The Details of the two IGS-stations for the regional variation test. 

The total zenithal tropospheric delays were plotted for both stations from the IGS- 

tropospheric estimations, the EGNOS basic model and the EGNOS modified model. 

Those plots are shown in Figures 4.35,4.36. The total tropospheric zenith delays 

difference between the two stations (HERS, NPLD) is shown in Figure 4.37. Table 

4.7 shows the RMS values for plots in Fig. 4.35,4.36 and 4.37. The zenith 

ionospheric delay for the two stations from the basic IGS-GIM's model and the 
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modified model are shown in Figures 4.38,4.39 with the difference in the zenith 

ionospheric delay plotted in Figure 4.40. 
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Figure Data Type (Tropospheric estimates) RMS (m) 
4.35 Basic EGNOS estimates-IGS estimates 0.052 
(HERS station) Modified EGNOS estimates- IGS estimates 0.030 
4.36 Basic EGNOS estimates-IGS estimates 0.057 
(NPLD station) Modified EGNOS estimates- IGS estimates 0.057 
4.37 Basic EGNOS Difference estimates- IGS 

Difference estimates 
0.018 

Modified EGNOS Difference estimates- IGS 
Difference estimates 

0.053 

Table 4.7: The RMS values for Different Tropospheric estimates from Figures 
4.35,4.36 and 4.37. 
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4.5.4 Discussion& Conclusion 

The Figures 4.35,4.36 show clearly the impact of the new Gaussian random fields 

algorithm on the behaviour of the basic EGNOS tropospheric model, it shows clearly 

that the new modified model simulates highly accurate the behaviour of the real 

troposphere. Figure 4.37 shows how is the total tropospheric zenith delays difference 

for the two stations resulting from IG S -tropospheric estimations and the modified 

EGNOS model are well agreed where the basic EGNOS model is incapable of 

delivering this behaviour. 

Table 4.7 shows how the RMS value (0.030 m) for the modified EGNOS model is 

better than the RMS value (0.052 in) for the basic model with respect to IGS trop. 
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estimates for HERS station. Similar RMS values were obtained for NPLD station 

noting that the modified model simulates the temporal variations where the basic 

model can not. This new advantage over-ruled the key disadvantage of the basic 

EGNOS model and makes the new modified model capable of simulating more 

realistic behaviour of the troposphere, which makes it a high spatial variation model. 

It can be concluded also that the new model for the troposphere delay can simulate 

amplitudes of regional & temporal variation of the troposphere, however it can not 

model the actual variations for the troposphere as no surface meteorological data are 

used. Thus the new tropospheric model is qualitatively accurate but not quantitatively 

accurate which is adequate for simulation purposes. 

The Figures 4.38,4.39 and 4.40 show the results for the same test with the same 

scenario for the ionospheric delay basic and modified models. It can be concluded 

that the modified model keeps the behaviour of the basic IGS-GIM's model, however 

it gives variations between the ionospheric zenith delays for the two adjacent stations 

(HERS & NPLD). This follows the real ionosphere behaviour which does not behave 

as smoothly as the basic model (IGS-GIM's) offer. This modified ionospheric model 

gives the ability of simulating the regional variations occurred between two adjacent 

stations or in a regional network of 100 km by 100 km. 

In summary, it has been shown that the two basic models for simulating the two 

major sources of error for GPS signals are adequate for the task (§ 4.3, § 4.4) but their 

performance can be improved by using the technique described in §4.5. The 
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technique gives both models a higher spatial resolution and temporal variation, to 

simulate the real behaviour of the ionosphere and troposphere. No doubt is left that 

using both these models for simulating the ionosphere and troposphere delays will 

result in more realistic simulated GPS data. 

4.6 Simulation of Multipath 

4.6.1 Introduction 

Multipath is one of GPS errors which causes serious problems for accurate 

positioning since it is affected by various factors which are difficult to model or 

predict. Differential positioning technique allows removing many of GPS errors 

however multipath can not be removed. 

Multipath, as the name explains is the phenomenon whereby a radio signal arrives at 

a fixed receiver via two or more possible paths (multi-path). This causes problems 

because these signals have the same time origin at the transmitter (satellite) however 

they are arriving with a relative phase offset at the receiver. These interfering signals 

may not be recognisable to the receiver (Tranquilla, 1986). 

Many studies tried to enhance the understanding of multipath propagation and its 

Cr - effects in GPS terrestrial applications such as (Hannah, 2001). The Multipath delay is 

a dominant factor in the GPS error budget (Shaw et al., 2000) as shown in the 

following table; 
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Error source 
Error Magnitude (meters, 1 s) 

SA activated SA deactivated 

Selective Availability 24.0 0.0 

Ionosphere 7.0 7.0 

Troposphere 0.2 0.2 

Clock and Ephemeris 2.3 2.3 

Receiver Noise 0.6 0.6 

Multipath 1.5 1.5 

User Equivalent Range Error (UERE) 25.0 7.5 

Typical Horizontal DOP (HDOP) 1.5 1.5 

Stand-Alone Horizontal Accuracy (95%) 75.0 22.5 

Table 4.8: GPS Error Budget with and without SA (Shaw et al., 2000). 

Multipath was and still is the focus of intensive research work, as it is a limiting 

factor for highly accurate GPS positioning. Many classifications had been defined for 

Multipath. A short description of these classifications will follow. 
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Multipath can be classified according to the source of signal reflections into two main 

types (Shardlow, 1990): 

9 Satellite Multipath: where the different propagation paths will result from 

reflection at the transmitting satellite. 

* Receiver Multipath: where the different propagation paths result from reflection 

in the surrounding environment of the receiver's antenna. 

From another point of view, Multipath can also be classified as (Baker, 1997): 

9 Specular Multipath: where the reflected signals are relatively coherent, having 

undergone both a phase shift and a decrease in signal to noise ratio. 

* Diffuse (non-coherent) Multipath: where the reflected signals having an increase 

in noise levels above the normal receiver noise threshold. 

For more details about the Multipath; classifications, models and mitigation methods 

the reader is referred to Shardlow (1990), Jack (1994), Baker (1997) and Hannah 

(2001). 

4.6.2 Multipath Simulation 

The suggested multipath simulation model is based on the Gaussian colored noise 

theory, as it is a strong tool for simulating the real behaviour of multipath (Meng, 

2002). Figure 4.41 shows a typical behaviour of Gaussian colored noise. Gaussian 

colored noise provides the correlation between different time series of multipath. The 

real behaviour of raw C/A code multipath is shown in Figure 4.42. The original 

multipath model that was used within DATSIM before this thesis' effort consists of 

two parts; the first is Gaussian white noise and the second is single replica model. 
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The original multipath model gives only single behaviour for any multipath 

environment. The behaviour of the original multipath model is shown in Figures 4.43 

and 4.44. It can be shown that the original multipath model gives unrealistic 

behaviour when compare to real behaviour of multipath shown in Figure 4.42. 

II 
t/T 

Figure 4.41: Colored Noise Signature as produced by (Bartosch, 2001). 

109 



Chapter 4 GPS-Doto Still II lati, 011 

II Li 

Lai 

f`7 1007" 7 
0 IWO 2000 J000 OW SOCIO 6*)D 70UO MOJ 

Epochs 

Cl. 

I 
ii 

, 74 

4" 46M AW SWO SMO 54M %M iM) &W 6Nk 

Epochs 

U -- ---- ------ --I...... 
-I(J 

46 .0 
60 

Elevation Angle (deg. ) 
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4.6.2.1 Multipath Simulation Model 

A new multipath simulation model was implemented based on the Gaussian colored 

noise generation algorithm discussed in (Bartosch, 2001) where the following 

formula is given to generate Gaussian colored noise, 

x+ jo 
2 

CFZ 
n n-I 

F-pn 

n 

where., 

e- 
ýtn - tn 

- 
n 

x real correlated Gaussian random numbers, 
n 

z independent Gaussian random numbers, 
n 

T correlation time. 

(4.15) 

The model simulates three cases of multipath environments; low multipath 

environment, medium multipath environment and high multipath environment based 

on the following aspects: 

The multipath delay in pseudo-range can be very large (- 40 m). 

The multipath delay in the carrier phase is limited to a quarter of the 

wavelength. 

The multipath delay is elevation angle dependent as GPS signals from lower 

elevation angle-satellites face higher multipath delay. 
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The correlation time for multipath delay is elevation angle dependent as well, 

as for lower elevation angle satellites, the multipath delay has larger 

correlation time. 

The following formula expresses the multipath delay in pseudo-range and carrier 

phase offered by the new model: 

dmp(j) = [dmp(j). R + (11 - R2 p(j)). ml. cos(elevang), (4.16) 

dmc(j) = [dmc(j). R + (11 - R2. c(j)). m]. cos(eIevang), (4.17) 

where, 

dmp(j) the multipath delay in pseudo-range observables (metres), 

dmc(j) the multipath delay in carrier phase observables (metres), 

R=e1, 

T the correlation time (seconds), 

P(j) white Gaussian random function for pseudo-range observables, 

C(j) white Gaussian random function for carrier phase observables, 

M multipath environment factor (high, medium, low), 

elevang Satellite elevation angle (radians). 

The elevation-angle dependency of the model comes from: 

For Satellite elevation angle ý! 600 : 

T=I sec., 
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p(j) = random(0.0,0.1), 

c(j) random(O. 0,0.001), 

where, 

random (0.0,0.1) white Gaussian random function of mean 0.0 and variance 0.1. 

random (0.0,0.001) : white Gaussian random function of mean 0.0 and variance 

0.001. 

For satellite elevation angle < 600: 

T= 250 sec., 

p(j) = random (0.0,1.0)7 

c(j) random (0.0,0.01), 

where, 

random (0.0,1.0) white Gaussian random function of mean 0.0 and variance 1.0. 

random (0.0,0.01) : white Gaussian random function of mean 0.0 and variance 

0.01. 

The multipath environment factor m could take different values based on the amount 

of multipath activity for different environments. The behaviour of the new- 

implemented multipath simulation model is shown in Figure 4.45 to 4.50 with C/A 

code multipath for the three cases of multipath environments (high, medium and 

low). 
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4.6.3 Discussion 

The accurate simulation of multipath error for GPS data simulation requires a model 

that gives realistic behaviour as well as different options for multipath activity 

corresponding to different multipath-environments. 

The original multipath simulation model within DATSIM does not satisfy the 

previously mentioned criteria because its behaviour is far from realistic multipath 

behaviour, this can be shown clearly by comparing Figure 4.42 with Figure 4.43 and 

Figure 4.44. The behaviour of this model did not show any change of multipath 

behaviour with changing the satellite's elevation angle, which is unrealistic, as the 

multipath delay increases as the elevation angle decreases. As well as the original 

model only gives a single behaviour of multipath whatever the environment, which is 

unrealistic too. 

The new implemented model for multipath simulation meets the previously 

mentioned criteria as it simulates the real multipath behaviour giving the necessary 

correlation between different multipath time series. The model gives the privilege of 

simulating three different cases of multipath behaviour for three cases of multipath 

environment activity. Comparing the behaviour of simulated raw C/A code multipath 

using the new implemented model shown in Figures 4.45,4.46,4.47,4.48,4.49 and 

4.50 with the real raw multipath C/A code shown in Figure 4.42 proves this findings. 

It is clearly shown that the simulated multipath behaviour changes with the change in 

the satellite's elevation angle, which is realistic. The new implemented model has the 
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advantage of offefing three cases of multipath activity and can be modified easily to r: ) 

give as many as required of multipath activity cases. 

4.6.4 Conclusion 

The new implemented model for multipath simulation based on the Gaussian colored 

noise gives more realistic behaviour over the original multipath model within 

DATSIM for the following reasons; 

9 The original multipath model was implemented based on Gaussian white noise, 

which assumes no correlation between the time series of multipath delay however 

this is unrealistic matter. 

e The new model was implemented based on the Gaussian colored noise, the 

behaviour of which is very close to the real multipath behaviour where there's 

correlation between the time series of multipath delay. 

0 The new model shows accurately the change of multipath behaviour with the 

change in the satellite's elevation angle where the original model does not. 

9 The new model offers the ability of simulating three cases of multipath activity 

where the original model offers a single behaviour. 

The new model can be modified easily to provide any multipath activity required. 
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CHAPTER 5 

GPS/GALILEO Simulated Data Tests 

5.1 GPS Simulated Data 

The generation of realistic simulated GPS data requires an accurate modelling of the 

various GPS errors. The focus of the work in the first part of this thesis was the 

development and implementation of three new models to model the three major 

sources of GPS errors, namely the ionosphere, the troposphere and multipath delays. 

The following table is a brief summary of the predominate GPS errors and the 

corresponding models used to simulate these errors within DATSIM. 

GPS Error The Simulating Model 

Ionospheric Delay 
New implemented model based on IGS- 
GIN4's with added temporal and regional 
variations (resulting from this thesis's work) 

Tropospheric Delay 
The modified EGNOS model 
(resulting from this thesis's work) 

Satellite Ephemeris & Clock IGS-final precise ephemens 
Multipath New implemented model based on colored 

noise (resulting from this thesis's work) 
Receiver Clock Polynomial function & Gaussian noise 
Measurement Noise Gaussian white noise Model 
Cycle Slip Gaussian white noise Model 

Table 5.1: The Predominate GPS-errors and the corresponding models within 
DATSIM. 
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The expected outcome of any GPS-data simulation software is the ability to simulate 

accurately any part of the GPS observation process resulting in realistic simulated 

data that can be used for any GPS applications such as precise orbit determination of 

the LEO satellites (the scope of the second part of this thesis). It has been shown that 

the three new implemented models for the ionosphere, troposphere and multipath 

delays are capable of accurately simulating these three types of errors. It should 

therefore follow that the resulting simulated observation data has a much more 

realistic behaviour. 

A comparison study has been performed investigating the positioning accuracy of 

five types of GPS data: real GPS data, original simulated GPS data (before 

implementing the three new models), improved ionosphere- simulated GPS data 

(applying the new implemented ionospheric model §4.3), improved ionosphere 

troposphere-simulated GPS data (applying the new implemented ionospheric model 

§4.3 and tropospheric model §4.4) and new generated simulated GPS data (applying 

the new implemented ionospheric model §4.3, tropospheric model §4.4 and multipath 

model §4.5). The models used in the original GPS simulation were the Klobuchar 

model, the Magnet model and the original multipath model (Gaussian white noise & 

single replica) for the ionosphere, troposphere and multipath delays respectively. The 

study focused on the determination of the height coordinate of six stations. The height 

coordinate was chosen because it contains the largest error (Shardlow, 1994) and its 

variation clearly evident in the results. The first two tested stations (EESSG, LERW) 

are stations that are part of the British Isles GPS archive Facility (BIGF) operated by 

the IIESSG and the last four tested stations (ANKR, BAHR, COCO and KOUR) are 
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IGS-tracking stations. The geographical positions of the tested stations are shown in 

Figures 5.1. The datasets consisted of 24 hours of data for GPS day 3 of week 1137, 

(24/10/2001). The different types of data were processed using the IESSG processing 

software P4 (Pseudo-range and Phase Post Processor) (Hill, 2002) which allows the 

data to be processed without the application of any models for removing the effect of 

the ionosphere, troposphere and multipath.. The processing technique was static 

standalone pseudo-range C/A code without applying any models for all types of data. 

Figure 5.1: The Geographical Positions of the Tested IGS-tracking Stations. 

122 



Q- er 5 GPSIGALILEO Simulated Data Tests 

Station ID Latitude 
(degree) 

Longitude 
(degree) 

True Height 
(meter) 

IESSG 52.940689 N 1.192285 W 98.495 
LERW 60.139139 N 1.1849398 W 131.265 
ANKR 39.8875 N 32.7586 E 974.800 
BAHR 26.2091 N 50.6081 E -17.030 KOUR 5.2522 N 52.806 W -25.745 Coco 12.1883 S 96.8339 E -35.2212 

Table 5.2: Details of the involved stations in the real & simulated data test. 

Tables 5.3 and 5.4 show the height variations for the different types of data as well as 

the height difference between these different types of simulated data and real GPS 

data shown in dashed cells. 

Data Type 
Station 

ID Real 
GPS 

Original 
sim. GPS 

Improved 
Ionosphere 

Improved 
Ionosphere 

+Troposphere 

New Sim. 
GPS 

120.746 116.764 117-156 116.552 
IESSG 116.514 

4.232 0.250 0.642 0.038 

145.725 141.948 142.282 147.063 
LERW 148.552 

-2.827 -6.604 -6.270 -1.489 

Table 5.3: The height coordinate variation (metres) for BIGF tested stations for 

one day rive types of GPS data (real, original simulated, Improved Ionosphere, 
Improved Ionosphere + Troposphere, new simulated) processed using P4 (static 

stand-alone pseudo-range C/A code). 
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Data Type 
Station 

ID Real 
GPS 

Original 
sim. GPS 

Improved 
Ionosphere 

Improved 
Ionosphere 

+Troposphere 

New Sim. 
GPS 

998.792 995.449 995.835 996.199 
ANK R 996 899 

. . 
1.893 -1.450 -1.064 -0.700 

15.846 21.557 22.310 19.572 
BAHR 12 009 . 

3.837 9.548 10.301 7.563 

-16.195 -12.231 -11.358 -4.310 
COCO 6 710 - . 

-9.485 -5.521 -4.648 2.400 

-3.316 3.913 4.864 0.715 
KOUR 2.288 

-5.604 1.625 2.576 -1.573 

Table 5A The height coordinate variation (metres) for IGS tested stations for 
one day rive types of GPS data (real, original simulated, Improved Ionosphere, 
Improved Ionosphere + Troposphere, new simulated) processed using P4 (static 

stand-alone pseudo-range C/A code). 

Table 5.5 and 5.6 show some statistical analysis of the relation between original 

simulated GPS data, new generated simulated GPS data and real GPS data where 

values of the mean difference, difference standard deviation and difference RMS are 

shown for the height coordinate of the tested stations. 

124 



chapicr 5 GPSIGA OLEO Simulated Dato Teýts 

Station Comparison Data Type 

ID Test Original Sim. New Sim. 

GPS GPS 

Mean 4.232 0.038 Difference 

IESSG Difference 248.921 3.601 Standard 
Deviation 
Difference 248.849 4.523 

RMS 
Mean 

-2.827 -1.489 Difference 
Difference 367.304 5.043 

LERW Standard 
Deviation 
Difference 367.159 5.709 

RMS 
Table 5.5: Statistical analysis parameters (metres) for the height difference 

between different types of simulated GPS data with respect to real GPS Data for 
BIGF tested stations. 
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Station Comparison Data Type 

ID Test Original Sim. New Sim. 
GPS GPS 

Mean 
Difference 1.893 -0.700 

ANKR Difference 
258 479 226 3 Standard . . 

Deviation 
Difference 258.378 3.878 

RMS 
Mean 

Difference 3.837 7.563 

BAHR Difference 
295 632 11 132 Standard . . 

Deviation 
Difference 295.508 11.142 

RMS 
Mean 

-9.485 2.400 
Difference 
Difference 241.099 3.969 

Coco Standard 
Deviation 
Difference 241.192 4.425 

RMS 
Mean 

-5.604 -1.573 Difference 
Difference 258.747 72.197 

KOUR Standard 
Deviation 
Difference 258.634 72.723 

RMS 
Table 5.6: Statistical analysis parameters (metres) for the height difference 

between different types of simulated GPS data with respect to real GPS Data for 
IGS tested stations. 

Figures 5.2 and 5.3 show time series of the height coordinate difference between 

original simulated GPS data, new simulated GPS data and real GPS data for the 

(EESSG) station as an example. 
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It can be seen that the new simulated GPS data follows the behaviour of the real GPS 

data more closely than the original simulated GPS data. This is evident from the 

agreement in the output height coordinate from processed real GPS data and the new 

simulated GPS data. 

It can be concluded that the effect of the new ionospheric model is superior to the 

effect of the new tropospheric and multipath models as shown from height difference 

values at Tables 5.3 and 5.4. The combined effect of the three improvements is 

evident from Tables 5.5 and 5.6, which show that the RMS and standard deviation 

values for the original data are much higher than those obtained for the new simulated 

data. This behaviour is further evident from figures 5.2 and 5.3 for the EESSG station. 

5.2 GALILEO Simulated Data 

As the time is getting closer for the first GALELEO satellite to be launched, which is 

scheduled for 2005, the need is inevitable for generating GALILEO simulated data to 

give indications of GALELEO's expected achievements and capabilities. Also, 

simulated GALILEO data would give researchers a strong tool for exploring the 

performance of the combined GPS/GALILEO constellation and the effects of having 

two fully operational systems on the numerous applications, which currently rely on 

only GPS. 
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The Author modified the DATSIM software to generate simulated data from the 

different services offered by GALILEO which are, briefly described in Table 5.7. 

GALILEO simulated data had been generated from DATSIM. The necessary 

modifications that were performed to generate GALILEO simulated data within 

DATSIM software can be stated as follows: 

0 GALILEO ephemeris file has been prepared based on Walker (27/3/1) 

Constellation (Walker, 1984) with specifications (GALILEO, 2002): 

The constellation consists of 27 satellites &3 spare satellites in three 

Medium Earth Orbits (MEO), 

Altitude - 23616 km. ) 

Semi Major Axis = 29993.707 km, 

Inclination = 56 0, 

Orbital period of 14 hours 4 minutes, ground track repeats about 10 

days. 

0 Modify the DATSIM software to generate GALILEO simulated data from 

different services offered by GALILEO (Table 5.7) using different ranging 

accuracies corresponding to different services. The ranging accuracies values 

for GALILEO services reflect approximately the chip rate relation between 

GPS and GALFLEO frequencies. 

A short comparison study between the new simulated GPS data (Pseudo-range C/A 

code) and simulated GALILEO data (Pseudo-range-E2LIE1 frequency) has been 
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investigated without applying any processing models to remove the effect of any 

errors. The output results are shown in Table 5.8. 

Open Service Safety Of Life Commercial - Public Frequency 
(OS) (SOL) Service Regulated 

(CS) Service (PRS) 
E2-L1-E1 

(1575.42) MHz 
E5a-E5b 

U 192) MHz 
E6 

(1278.75) MHz 

Table 5.7: The GALILEO different services & frequencies simulated within 
DATSIM. 

Station 
D t T Processing Technique 

ID True Height a a ype No models 
Sim. GPS 116.552 

IESSG 98.495 
Sim. GALILEO 112.452 

CAMB 139 567 Sim. GPS 158.570 
. Sim. GALILEO 154.507 

LERW 265 131 Sim. GPS 147.063 
. Sim. GALILEO 144.529 

SUNB 65 208 Sim. GPS 83.456 
. Sim. GAýiýEO 79.249 

974 800 
Sim. GPS 996.199 ANKR . Sim. GALILEO 993.173 

030 
Sim. GPS 19.572 

BAHR -17. Sim. GALILEO 15.537 

5 221 
Sim. GPS -4.310 Coco . -3 Sim. GALILEO -1.910 

745 25 
Sim. GPS 0.715 

KOUR - . [ Sim. GALILEO 9.684 
Table 5.8: The height coordinate variation (metres) for BIGF and IGS tested 

stations for one day, two types of data (new simulated GPS data (Pseudo-range 
C/A code) & simulated GALILEO data (Pseudo-range-EMM frequency)) 

processed using P4 (static stand-alone ). 
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Tables 5.9 and 5.10 gives some statistical analysis showing values for the mean 

difference, difference standard deviation and RMS for the height coordinate for new 

simulated GPS data and GALILEO simulated data with respect to the true height of 

the tested stations. Figures 5.4 and 5.5 show time series of the height coordinate 

difference between new simulated GPS data and GALILEO simulated data with 

respect to the true height for the (EESSG) station as an example 

Table 5.9: Statistical analysis parameters (metres) for the height difference of 
New GPS Simulated Data and GALILEO Simulated Data with respect to the 

True height for BIGF tested stations. 

Station Comparison 
Data Type 

ID Test 

New sim. GALILEO 
GPS Data Sim. Data 

Mean 15.237 13.642 
Difference 

IESSG 
_ Difference 3.759 4.562 

Standard 
Deviation 
Difference 15.693 14.384 

RMS 
Mean 14.705 12.784 

Difference 
_ Difference 3.926 4.049 

LERW Standard 
Deviation 
Difference 15.219 13.409 

RMS 
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Station Comparison 
Data Type 

ID Test 

New sim. GALILEO 
GPS Data Sim. Data 

Mean 
Difference 18.608 17.717 

ANKR Difference 
5.151 5 516 Standard . 

Deviation 
Difference 19.307 18.555 

RMS 
Mean 31.664 34 558 Difference . 

BAHR Difference 9.867 11 214 Standard . 
Deviation 
Difference 33.164 36.331 

RMS 
Mean 26.852 33.060 

Difference 
Difference 26.852 33.060 

COCO Standard 
Deviation 
Difference 27.852 33.773 

RMS 
Mean 31.009 32.544 

Difference 
Difference 9.896 11.571 

KOUR Standard 
Deviation 
Difference 32.549 34.537 

RMS 
Table 5.10: Statistical analysis parameters (metres) for the height difference of 
New GPS Simulated Data and GALILEO Simulated Data with respect to the 

True height for IGS tested stations. 
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It is understood that such a study will not allow any definitive statements to be made 

about the accuracies achievable with the two systems (GPS and GALILEO) but it 

does enable some form of comparison to be made. 

Considering the results given in Table 5.8 it can be seen that, with the exception of 

COCO and KOUR, the simulated GALILEO results are systematically offset from 

the simulated GPS results by approximately 3 to 4 m, but the simulated GALELEO 

results are closer to the true heights. This could be taken as a good sign that the 

increased number of visible satellites in GALELEO's constellation (see Appendix B) 

and the improved pseudo-range accuracy for GALILEO observations will have a 

positive impact on positioning accuracy. 

Tables 5.9 and 5.10 shows with the exception of stations BAHR, COCO and KOUR 

that GALELEO simulated data gives a better height mean difference, nearly the same 

standard deviation and better RMS values comparing with GPS simulated data with 

respect to the true height of the tested stations. 

To accurately distinguish between the two systems GPS & GALILEO requires 

comparison of the perfon-nance with respect to an area of application that requires 

high levels of accuracy. Any conclusion from such an exercise, depend to a great 

extent on the quality of the simulated data. This will be shown in the second part of 

this thesis, which covers the use of simulated GPS and GALELEO data, both 

individually and combined in the orbit determination process for the Topex/Poseidon 

satellite. 
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5.3 Concluding Remarks 

GPS, GALELEO, GLONASS and any other future satellite navigation and positioning 

system needs a data simulation tool to assess its capabilities, revealing its advantages 

and disadvantages and explore the future of the system for new applications. 

DATSIM is the IIESSG's tool for research working with GPS and exploring the future 

for GPS and GALILEO. The software has been shown to deliver realistic simulated 

GPS data and has been assessed in high accuracy real GPS-applications (Ashkenazi et 

al, 1997). The backbone of any data simulation tool is its ability to simulate the 

different types of errors that face the system to a high degree of accuracy. 

Realistic models for simulating the different GPS errors are not easily obtained. The 

continuing research in this field gives different models with different areas of 

application. As the atmospheric error (the ionosphere and troposphere) is the major 

source of error for any satellite-based positioning and navigation system (apart from 

intentional degradation of the system's accuracy), the research effort in this type of 

error is enormous compared to the other errors. Using this rich body of research 

allowed the selection of two highly accurate models for simulating the atmospheric 

error within DATSIM. The behaviour of these models was assessed and then 

improved upon giving the ability to simulate the regional variations within the 

ionosphere and troposphere. The first part of this thesis' effort has resulted in two 

high resolution spatially varying models for the ionosphere and troposphere as well as 

a more realistic model for simulating multipath. This has allowed the simulation Of 
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more realistic GPS data. DATSIM has also been modified to simulate GALILEO data 

using the same models for the environmental delays. 

The modified DATSIM software will now be used to assess the performance of GPS 

and GALELEO with respect to the application of high accuracy orbit determination. 

The second part of this thesis will handle this subject using simulated GPS data, 

simulated GALILEO data and combined GPS/GALILEO simulated data in the LEO 

satellite orbit determination for Topex/Poseidon. 
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CHAPTER 6 

LEO Satellite Orbit Determination Techniques 

6.1 Introduction 

Since the early 1980s, a new era of developments in the fields of solid Earth, 

oceanography and atmosphere science applications started with the first launches of 

Low Earth Orbiting satellites. The goals of those LEO-satellites are varied, however a 

large number of them depend on the accurate determination of the satellite's position 

to a high degree of accuracy (10 cm or better for LEO altimetric satellites (Nouel et 

al, 1994)). The best example for this is the use of LEO-satellites in measuring the 

precise height of the sea surface for studying the dynamics of the circulation of the 

world's oceans. Two significant missions in this field are Topex/Poseidon (1992- 

present) and Jason- 1 (2001 -present) (NASA, 2003). 

The orbits of LEO-satellite can be determined using different tracking systems such 

as Satellite Laser Ranging (SLR) (Hill, 1989), the Doppler Orbitography and Radio- 

positioning Integrated by Satellites (DORIS) (Willis et al., 1989), the Precise Range 

And Range Rate Equipment (PRARE) (Lechner and Wilmes, 1989) and GNSS 

(Yunck and Wu, 1986). LEO satellite missions usually use different tracking systems; 

DORIS, SLR, GNSS such as Topex/Poseidon (1992-present) and Jason-1 (2001- 
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present) missions (Haines et al., 2002), (NASA, 2003). GNSS as a LEO-tracking 

system has many advantages over the other systems (Ashkenazi et al., 1994), which 

can be summarized as follows: 

9 Low cost. 

9 Global coverage. 

GNSS is a full three-dimensional positioning system, other systems needs three 

ground stations at least. 

o GNSS can provide real-time orbit determination (other systems not). 

The GPS tracking system has demonstrated that it can provide high precision precise 

orbit determination products through the GPS flight experiment on Topex/Poseidon 

Melbourne et al. (1994), Bertiger et al. (1994). The precise orbits computed from the 

GPS tracking data are estimated to have a radial orbit accuracy comparable to or 

better than the precise orbit ephemerides computed from the combined use of SLR 

and DORIS tracking data, Yunk et al. (1994), Christensen et al. (1994), Schutz et al. 

(1994) and Tapley et al. (1994). 

For LEO satellites, there are many orbit determination techniques: dynamic 

technique, kinematic technique and reduced-dynamic technique. These techniques 

will be discussed in detail in this Chapter, however, briefly, the dynamic technique 

depends on accurate modelling of the forces acting on the satellite and then 

evaluating the acceleration of the satellite and numerically integrating it to get the 

position and velocity. The kinematic technique determines the satellite positions 

using data from the GPS receiver onboard the satellite, processed in either a stand- 
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alone or differential mode. The reduced-dynamic technique combines both the above 

techniques using an accurate force model along with the GPS data. 

This Chapter starts with providing the reader with the basics of dynamic orbit 

determination for GNSS satellites (§ 6.2,6.3 and 6.4) which are applied for LEO 

satellites as well. The various components of the force model with the numerical 

integration are discussed in sections (§ 6.3) and (§ 6.4) respectively. (§ 6.5) gives a 

detailed description for the different techniques available for LEO satellite orbit 

determination. The reduced dynamic technique for LEO satellite orbit determination 

adopted for this research is described in (§ 6.5.3) 

6.2 Coordinate Reference Frames 

The orbit determination process involves using more than one coordinate system. As 

the numerical integration must be performed in an Inertial (non-rotating) reference 

Frame (IF). Meanwhile, the coordinates of the tracking stations and other components 

of the force model are given in an Earth-Fixed (EF) frame. A brief description for the 

different coordinate reference frames and the transformations between them are given 

in this section, further details can be found in (Agrotis, 1984), (Moore, 1986). 

6.2.1 Earth Fixed Reference Frame 

The origin of the conventional terrestrial system is at the earth's centre of mass, with 

the X- axis directed towards the Bureau International de Meure (BIH) zero meridian. 

The Z-axis passes through the Conventional International Origin (CIO) pole and the 
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Y- axis completes the right-handed coordinate system. The IIERS Reference Pole and 

Reference Meridian are consistent with the corresponding directions in the BIH 

directions within +/- 0.005". The coordinates of the tracking stations are given in an 

earth fixed geocentric reference frame and the gravitational potential coefficients are 

provided in an earth fixed spherical reference frame (Whalley, 1990). The geodetic 

community uses different reference frames, however for GPS, WGS84, which based 

on the conventional terrestrial system, has been used since 1987. For more details 

-'-out WGS84, the reader is referred to (NIMA, 2002). au 

6.2.2 Inertial Reference Frame 

FK5, is the fundamental astronomical reference frame adopted by the International 

Astronomical Union (IAU) in 1976 which describes the apparent positions of over 

500 stars and extragalactic radio sources at the epoch of January 1.5, year 2000. 

The inertial reference system used in this thesis is a geocentric cartesian system based 

upon the FK5 frame. The origin is at the earth's centre with the X-axis of the system 

is directed towards the mean equinox of J2000 and the Z-axis is normal to the mean 

equatorial plane of J2000. The Y-axis is perpendicular to both the X and Z-axes so as 

to form a fight handed system. A lunar and planetary ephemeris, known as the 

Development Ephemeris Number DE200/LE200 was produced by the Jet Propulsion 

Laboratory which describes the planetary ephemeris. 

The inertial reference frame is used for the satellite's ephemeris computation, mean 

while the tracking stations coordinates and geopotential models are given in earth 
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fixed reference frame. The position of a point must be subjected to a number of 

rotations in order to be transformed from any of the two systems to the other and this 

is given by. ) 

R=PENQr 

where R inertial frame coordinates 

r earth fixed frame coordinates at UTC time 

P rotation matrix for polar motion (see § 6.2.7) 

E rotation matrix for earth rotation (see § 6.2.6) 

rotation matrix for nutation (see § 6.2.5) 

rotation matrix for precession (see § 6.2.4) 

(6.1) 

The reverse transformation is given using the transpose of the rotation matrices as 

follows, 

QT NTET pT R (6.2) 

The following sections give a short description for the used time scales and various 

rotation matrices. For more details the reader is referred to (Agrotis, 1984), (Moore, 

1986). 

6.2.3 Time Scales 

This section gives a brief description of the various time scales used during the orbit 

determination process, and the relationships between these time scales. 
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6.2.3.1 Sidereal Time Scale 

Two main types of sidereal times will be defined, that is the Greenwich Apparent 

Sidereal Time (GAST) and the Local Apparent Sidereal Time (LAST). (GAST) is the 

hour angle measured in units of time between the Greenwich Meridian and the true 

equinox of date, meanwhile, (LAST) is the hour angle between the meridian which 

includes the point of observation (the local meridian) and the true equinox of date. 

The relationship between (GAST) and (LAST) is given by (Agrotis, 1984), 

LAST = GAST +X (6.3) 

where A astronomical longitude in units of time of the local meridian 

from the Greenwich meridian (measured positive eastwards). 

Another type of sidereal time is Greenwich Mean Sidereal time (GMST) which is the 

hour angle between the Greenwich meridian and the mean equinox of date, as the true 

equinox of date differs from the mean equinox of date due to nutation effects. Also, 

the mean equinox of date is obtained from the mean equinox at the reference epoch 

Q2000) by correcting for the precession effects. 

6.2.3.2 Universal Time Scales 

The EERS produced number of time scales, which are known as Universal Time (UT) 

resulting from global observations of the transits of stars. There are four universal 

time scales referred to as, UTO, UTI, UT2 and UTC. Following is a brief description 

of each one of them and other time scales, 
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* UTO: The time from the determination of (LAST) has periodic and irregular 

vanations ue to polar motion and varying earth's rate of rotation, 

* UTI : The time scale produced after the correction of UTO for polar motion 

effects, 

* UT2 : The time scale produced after the correction of UT I for predicted 

values of the seasonal variations in the earth's rotation rate, 

* TAI : International Atomic Time, the time scale produced from the weighted 

mean of the readings of various global atomic clocks, changes in the 

rate of rotation of the earth, 

* UTC: Coordinated Universal Time, the time scale based on the International 

System (SI) second and cope with any changes in the rate of earth's 

rotation. Differs from TAI by leap seconds. 

IIERS is maintaining both the TAI and UTC. The differences from UTC, (UTI-UTC) 

and (UTI-TAI) are published monthly in the IIERS Bulletin B and yearly in the EERS 

annual report. 

6.2.3.3 GPS-Time Scale 

The GPS time is an atomic time scale which has the same unit (seconds) as the UTC. 

GPS time was coincident with UTC on January 6,1980. The relationship between 

UTC and GPS time is available in time bulletins of the USNO (United State Naval 

Observatory) and the BIPM (International Bureau of Weights and Measures) as well 

as the GPS satellite message (Seeber, 1993). 
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6.2.3.4 Barycentric Dynamical Time & Terrestrial Dynamical Time 

Barycentric Dynamical Time (TDB) is the time scale for the equations of motion 

relative to the solar system's barycentre where, Terrestrial Dynamical Time (TDT) is 

the time scale for an apparent geocentrIc ephemeris and replaces ephemeris time. 

TDB differs from TDT by periodic relativistic terms, as given by (Moore, 1986), 

TDB = TDT + 0.001658 sin(g + 0.0167 sin g) (6.4) 

Where, g: mean anomaly of the earth in its orbit 

g= (357.5280 + 35999.050T). 2n (6.5) 
360 

T: the interval in Julian centuries of TDB, between J2000 and the epoch. 

T= 
(J 

- 2451545) 
(6.6) 

36525 

J: the TDB Julian date of the epoch. 

6.2.4 Precession 

The attraction of the moon and sun on the earth equatorial bulge causes the celestial 

pole to rotate in a westerly motion around the pole of the ecliptic, with a period of 

about 25800 years and an amplitude (the obliquity of the ecliptic) of about 23.5', this 

is what so called 'luni-solar precession'. Meanwhile, the motion of the ecliptic plane 

due to the action from the varying configuration-planets is known as 'planetary 

11 
precession' and causes an eastward motion of the equinox of about 12 per century 

11 
and 47 decrease in the obliquity. The general precession is the combined effect of 

the luni-solar precession and planetary precession, which described by three angles 

called the equatorial precession parameters, ýA., ZA and OA 
- The precession rotation 

matrix Q is given by, 
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Q=R3 
(- ZJR2 (o JR3 (- ýA ) 

(6.7) 

The rotation matrices R2 and R3 are defined in Appendix C. 

6.2.5 Nutation 

Moreover the general precession, the moon causes two periodic motions; long period 

and short period nutation. The long period nutation has a period of 18.6 years, with 

amplitude of about 9 seconds. The short period nutation has a period of two weeks, 

with amplitude of less than 0.5 seconds. 

Nutation is described in terms of two angles, the nutation in longitude AT and the 

nutation in obliquity Ae . The nutation rotation matrix N is given by, 

N =R I 
(-s 

-Ae)R3 
(- AqJ) RI (s) (6.8) 

The values of A'F and Ae are given by the summation of a 106 term series. The 

rotation matrix R, is defined in Appendix C. 

6.2.6 Earth Rotation 

The non-constant irregular and seasonal varying rotation of the earth causes the 

coordinates transformation from a space fixed reference system to an earth fixed 

system must be done through the rotation of the true equinox-of-date to the 

Greenwich meridian through an angle equivalent to the Greenwich Apparent Sidereal 

Time (GAST). The transformation between the true-of-date and the instantaneous- 

terrestrial coordinates is given by, 
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R =Er (6.9) 
1 -T 

where E, the earth rotation matrix is given by, 

E=R3(GAST) (6.10) 

where r true-of-date coordinates T 

instantaneous-terrestrial coordinates 

R3 rotation matrix (Appendix 

6.2.7 Polar Motion 

The instantaneous terrestrial system's pole is not fixed with respect to the earth but in 

a state of constant motion. This polar motion is caused by a number of factors with 

the main factor is the no-parallelism of the earth's axis of rotation with that of 

maximum inertia (Chandler Wobble) and meteorological effects (Argotis, 1984). The 

movement of the true pole is governed by means of two angles, xp, yp relative to the 

mean axis known as Conventional International Origin (CIO). The values of xp and yp 

are published by the BIH in their circular D. The polar motion matrix is given by, 

P=R2(-x 
P)RI 

(- yp) (6.11) 

where RI, R2 : rotation matrices about the X and Y axis respectively (see 

Appendix 
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6.3 Force Model Components 

6.3.1 Introduction 

The dynamic orbit determination of a satellite using numerical integration requires 

accurate modelling of the forces acting on the satellite. These forces vary in its 

strength and behaviour depending on the altitude of the satellite. 

The principal forces acting on the satellite can be divided into two main categories, 

gravitational forces and surface forces. The Earth's gravitational force is the major 

component of the force model but also the attraction from the moon, sun and other 

planets are accounted for. The model of the gravitational field must be corrected for 

the tidal effect of the moon and sun on the Earth. The surface forces depend on the 

cross sectional area, mass, shape and altitude of the satellite. These forces include the 

effects of solar radiation pressure and atmospheric drag. 

6.3.2 Gravitational Attraction of the Earth 

The attraction of the gravitational field of the Earth is the principal component of the 

total force acting on an Earth satellite. The gravitational field Ue is described by a 

geopotential expansion in terms of spherical harmonics (Agrotis, 1984), 

n 
GM na 

u= I+ I pn(sinojCn,, 
ncos(mA)+ 

Sn, 
msin(MA)l (6.12) e R n=2 R 

where , 

G the universal gravitational constant, 

the mass of earth, 
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a the earth's equatorial radius, 

R, 0, A the spherical polar coordinates of the point, 

n, m the degree and order of spherical harmonic expansion, 

PM 
n the associated Legendre polynomial of degree n and order m, 

Cn, 
m ý 

Sn, 
m the spherical harmonic coefficients. 

The series of the spherical hannonic expression of the gravitational potential is 

infinite but it is truncated depending on the accuracy required for practical purposes. 

The acceleration of the satellite r is then given by the gradient of the potential field 
e 

at the satellite, 

=VU e (6.13) 

The accuracy of the models of the Earth's gravity field has shown a great 

improvement over the last 20 years. A major effort to improve the existing gravity 

models was initiated in 1983 as a joint effort between the NASA Goddard Space 

Flight Center Space Geodesy Branch (GSFC) and the University of Texas Center for 

Space Research (CSR). This effort consisted of an iterative reprocessing of historical 

tracking data from a number of satellites covering a range of orbit configurations in 

combination with new data from the Satellite Laser Ranging (SLR) and Doppler 

Orbitography and Radio positioning Integrated by Satellites (DORIS) tracking 

networks. The result of this effort led to the Goddard Earth Model (GEM)-Tn and 

University of Texas Earth gravitational model (TEG)-n series of fields detailed by 

Marsh et al. (1988,1990) and (Tapley et al., 1989). In addition a group at the Ohio 
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state university continued to expand and improve the surface gravity database (Paviis 

and Rapp, 1990). The individual gravity model efforts were combined to develop the 

pre-launch gravity model for the Topex/Poseidon mission, the Joint Gravity Model 

JGM-I (Nerem et aL, 1994), which predicted a radial orbital error of 6 cm RMS. 

Further analysis using only the SLR and DORIS data collected by Topex/Poseidon 

during a portion of the initial 6-months calibration period led to the post launch 

improved model JGM-2 (Nerem et al., 1994) giving a radial orbital error of 3 to 4 cm. 

Subsequently the JGM-3 model (Tapley et al., 1996) was developed which improved 

slightly on JGM-2. The model used in this study is the JGM-2 model. There have 

been many modem development gravity models in the last few years such as EGM- 

96, GRIN14-S4, GRIM4-C4 and TEG-4 model. A summary of modem gravity models 

is shown in Table 6.1. Using one of the modem gravity models in the study will not 

affect the orbit solutions much as the reduced dynamic technique applied absorb the 

errors in the force model. 

Model Description 
JGM3 (7000; 1994). Tuned with TOPEX/GPS Tracking data 
EGM96 (7000; 360060; 1996) New tracking data, surface data & altimetry 
GRIM5CI (120xI20) GRGS/GFZ: Pre-champ combination model 
DGME04 (7000) (-1997) DEOS: EGM96-Tuned with ERS crossovers 
EIGEN IS (115 x 115) (Dec., 200 1) CHAMP (-88 days) + other satellites 
EIGEN2 (140xI40) (2003) CHAMP-only, - six months 
EIGEN3p (1 40x 140) (Oct., 2003) CHAMP-only, - three years 
GGMO IS (I 20x 120) (July, 2003) CSR: GRACE-only, -111 days of Grace data 
GGMOIC (200x2OO) (July, 2003) GGM01S combination model 
EIGEN-GRACE01S, (140x. 140) (Fall, 2003) GFZ: -39-days of GRACE data 

_ GRACE-EIGEN02,66 days, (I 20x 120) (Dec. 2003) GFZ: - 66 days of GRACE data; (aug2002+aug2OO3) 
GRACE-EIGEN02, I 11 days, (I 50x 150) (Feb. 2004) GFZ: - III days of GRACE data ; (aug2002-aug2OO3) 
GRACE-JPL-MEAN, APR-Nov. 2003 (120x. 120) 
(Jan. 2004) 

JPL: -191 days of GRACE data: (apr 2003 - nov 
2003) 

_ PGS7772P24 (99X99) (April 2003) GSFC: CHAMP-only (-87 days) 
_ PGS7777B (11 Ox I 10) (Oct., 2003) GSFC: CHAMP + other satellites (e. g., GFO, Envisat, 

Topex, Jason) 
PGS7779E (I I Ox I 10) (Dec., 2003) GSFC: PGS7777B + Mays GRACE 

Table 6.1: Summary of Modern Gravity Models (Lemoine et al., 2004). 
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6.3.3 Moon, Sun and Planetary Attraction 

The moon, the sun and other planets ('third body') also exert gravitational attractions 

on the satellite, which results in an acceleration vector of the satellite towards the 

'third body' and is given as, 

rd ': - (6.14) '- 
VUd 

where the potentialUdat the satellite due to the third body is given as, 

Ud 
- 
GMj 

(6.15) 
Ir 

- rj I 

where, Mj the mass of the third body, 

r the satellite position vector, 

ri the position vector of the third body. 

The position and mass of the moon, the sun and the other planets must be known to 

evaluate this acceleration. The planetary and lunar ephemeris adopted in this study is 

the DE200/LE200, which gives the positions of the moon and planets in the J2000.0 

inertial frame at 0.0 hrs TDB of each day, together with the masses of the planets and 

the constants associated with the ephernefis. 

6.3.4 Solid Earth and Ocean Tides 

6.3.4.1 Solid Earth Tides 
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As the Earth is not entirely rigid, the attraction of the moon and the sun will cause the 

solid Earth and the ocean to deform. These are usually referred to as solid Earth tides 

and ocean tides respectively. These deformations will yield extra accelerations on the 

satellite. At any point P on the surface of the Earth, the potential due to either the 

moon or the sun is given as., 

U=7 GMj 

rp-ri- 

where, Mj : the mass of the sun or the moon, 

rp : the position vector of a point P on the Earth surface. 

(6.16) 

This potential causes the solid Earth to defonn as shown in Figure (6.1). For the solid 

tide, the deformation leads to an additional potential Ut due to the tidal bulge as 

given by (Ashkenazi et al., 1994), 

Ut =k2 
GMja 5 

P2 COS Z (6.17) 
33 

ri 

where 

k2 : the Love number, 

r the satellite position vector, 

a: the earth's equatorial radius, 

and Cos 
r. rj (6.18) 
rrj 
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The body tide Love number k2which gives the change of potential of the Earth due to 

the tidal potential varies slightly according to the period of various tides. However, in 

practice, k2 is treated as nominally constant with a value of 0.3. In this study, the 

. equency dependent tidal effect is also accounted for in a two-stage procedure. A 

hequency independent Love number (k2 .. : 0.3) is used during the first stage to evaluate 

the acceleration of the satellite. The effect of the frequency dependent love number is 

accounted for by computing the corrections to the normalised spherical harmonic 

coefficients during the second stage. 

Deformed earth 

Figure 6.1: The Earth Tide Caused by The "Third Body". 
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6.3.4.2 Ocean Tides 

As the surface of the ocean is an equipotential surface, this tide raising potential 

causes the level of the oceans to fluctuate with time. This also affects the potential 

field at the satellite. The effect of the ocean tides is most efficiently implemented as 

corrections to the non-nalised spherical harmonic coefficients to the geopotential 

mode. In this study, the GEM-TI ocean tide model (Marsh et al., 1988) is used to 

evaluate the ocean tide effect. 

6.3.5 Solar Radiation Pressure 

The intensity of solar radiation emitted by the sun varies inversely with distance 

away from the sun. The radiation pressure acting on the satellite orbiting the Earth is 

given as, 

I, 

where, A,, : the astronomical unit (1.4959787xlOllm), 

r the position vector of the satellite, 

ri the position vector of the sun, 

10 the intensity of solar radiation (w/m 2 

c: the speed of light (m/s) 

(6.19) 

This solar radiation pressure results in an acceleration of the satellite in a direction 

away from the sun, which is given as, 
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A r-rj 
r= CRP- 

mIr- rj 

where CR : the radiation reflectance coefficient, 

P: the solar pressure defined in equation (6.19), 

A: the cross section area of the satellite, 

M the mass of the satellite. 

(6.20) 

The precise modelling of the solar radiation pressure is a complex process. Many 

factors should be taken into account, including the reflectivity of the satellite surface, 

the geometric relationship between the satellite and the sun, the moon and the Earth, 

the solar activity, and the shape of the satellite. 

To account for the uncertainty in the model, introduced by these various effects, a 

correction to the reflectance coefficientCRis determined as an unknown in the least 

squares solution to absorb some of the model errors. 

6.3.6 Atmospheric Drag 

The Effect of atmospheric drag on the satellite depends on its altitude, thus for LEO 

satellites the acceleration due to air drag is significant and should be taken into 

account. The acceleration due to air drag can be expressed as, 

IA 
--c -0vv (6.21) 

2DM, arr 
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where, CD: the satellite drag coefficient, 

Pa the air density at satellite altitude, 

Vr : the velocity of the satellite with respect to the atmosphere. 

In this study, a correction to the drag coefficient CD is also included as an unknown 

in the least squares solution. 

6.4 Equations of Motion & Numerical Integration 

6.4.1 Equations of Motion 

The motion of the satellite is governed by the following equation; 

r=f (t, r, r), 

where, 

r acceleration vector, 

r= velocity vector, 

r= position vector., 

t= time. 

(6.22) 

The integration of the satellite equation of motion (6.22) with respect to time from an 

initial velocity vector ro will give the velocity of the satellite at a given time t, as 

shown in the following equation (6.23), 
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t 

r(t) = r. + fr dt 
t. 

(6.23) 

Following the same rule, the position of the satellite at any time t will be produced 

from the integration of the satellite velocity equation (6.23) with respect to time from 

an initial position vector ro as shown in the following equation, 

t 

r(t) = r. +fr dt 
t, 

(6.24) 

The integration process to produce both the velocity and position equations of the 

satellite should be implemented in an inertial (non-rotating) reference frame, also it 

can be applied using analytical or numerical techniques. The numerical integration 

technique is more adequate for the quantitative high precision orbit determination 

while the analytical techniques are more suitable for qualitative orbit analysis 

(Whalley, 1990). 

6.4.2 Numerical Integration 

The numerical integration basically fits a polynomial through a series of consecutive 

points, in order to create extra points through extrapolation of the polynomial. The 

coefficients of the polynomial are derived from the given points and their partial 

derivatives, based on the equation of motion. There are two methods generally used, 

namely single-step and multi-step methods. The single-step methods employ only the 

value from the last integration step to predict the following point, such as the Runge- 
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Kutta method. Conversely, the multi-step methods termed predictor-corrector 

methods, such as the Adams-Bashforth predictor-corrector method, predict the value 

at the following epoch and then correct the value in an iterative approach. The 

predicted value Xj is obtained from Xn, and then evaluated using the previous n 

values. If the differences between the predicted and corrected values exceed the 

specified criteria, the process is iterated by applying the corrected value until the 

requirements are satisfied. 

The multi-step methods produce better results than single-step methods in the same 

integration step length, but require information of the previous n values and are more 

time consuming. The choice of the integration step length depends on the 

compromise of two-effor sources, the round-off and truncation errors. Round-off 

errors are characteristic of the computer hardware or the algorithms used. The recent 

developments in computer hardware are such that round-off errors are now usually 

due to the algorithms used. These effects of round-off errors can be minimised by 

using large step lengths in the process. The truncation error, which arise due to the 

higher terms of approximation polynomial are cut off, can be reduced by using a 

rather small step length, as a contrast with the round-off errors (Chao, 1996). 

In this study the orbit integration program, applies a4 th order Runge-Kutta single-step 

integrator, to provide sufficient integration steps for a more precise 8 th order Adams- 

Bashforth multi-step predictor-corrector integrator to take over. The step length of 10 

seconds for the Runge-Kutta scheme and 60 seconds for Adams-Bashforth scheme is 

employed (Ashkenazi et al., 1996). 
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6.5 LEO Satellite Orbit Determination Techniques 

Various orbit determination techniques can be used for LEO satellites with onboard 

GPS measurements, these techniques can be separated into kinematic, dynamic and 

reduced-dynamic orbit determination. Detailed description will follow for each 

technique. 

6.5.1 Kinematic Orbit Determination 

This technique is based on a conventional GPS navigation solution using a GPS 

receiver onboard the LEO satellite. The receiver can measure four or more 

independent pseudo-ranges from a number of different GPS satellites, so the three- 

dimensional position of the satellite and the receiver clock error could be easily 

detennined. The position at each epoch is dependent only on GPS -observations at the 

specific epoch without any influence from GPS observations at the previous or next 

epochs. Stand-alone and differential solutions could be used varying the resultant 

accuracy. The orbit solution using the kinematic technique is referenced to the phase 

centre of the onboard GPS antenna instead of the satellite's centre of mass. The 

kinematic solution is sensitive to geometrical factors, such as the direction of the GPS 

satellites and the GPS orbit accuracy. 

(Yunck and Wu, 1986) proposed a geometric method that uses the continuos record 

of satellite position changes obtained from the GPS carrier phase to smooth the 

position measurements made with pseudo-range. (Byun, 1998) developed a kinematic 
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orbit determination algorithm using double and triple-difference GPS carrier phase 

measurements. 

The kinematic technique is the simplest way of determining the LEO-satellite's 

position and allows a real-time solution however it gives the least achievable 

accuracy (Ashkenazi et aL, 1994). 

6.5.2 Dynamic Orbit Determination Technique 

The Dynamic Orbit Determination technique (Tapley, 1973) is based on the fact that 

an accurate knowledge of the forces acting on a satellite and the satellite's mass gives 

the acceleration vector of the satellite which can be integrated twice from an initial 

position and velocity vectors to get the position vector of the satellite. The accuracy 

of the integrated orbit depending only on the accuracies of the force models and the 

initial conditions of the satellite (position & velocity). 

Figure 6.2 illustrates the principle steps of the dynamic orbit determination technique. 

Starting with an initial state vector at an initial epoch, the orbit integration program 

numerically integrates the total acceleration acting on the satellite once to get the 

satellite velocity and twice to get the satellite position. This process generates the 

partials of the velocity and position of the satellite with respect to the initial starting 

elements. The next step is to use a least-squares solution with all the available 

observations to produce an improved initial state vector containing the force model 

parameters. Then a more accurate integrated orbit can be obtained using the new 
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initial state vector with the improved force model parameters. This iteration process 

continues until the target accuracy is achieved. 

Starting Elements 
X0 I VO 

Numerical 
Integration 

Improved starting 
elements 

Expanded ephemeris 
and partials 

Least squares solution 

Force models & 
partial coefficients 

Stand-alone or 
differential GNSS 

measurements 

Figure 6.2: Flow Chart of Dynamic Orbit Determination Technique. 

This technique is normally used as a post-processing method, which requires all the 

measurements from a chosen observation period. The real-time implementation of the 

dynamic orbit determination method is "the sequential least square method" which 

overcomes the difficulty of waiting for all the measurements from the chosen period 

to become available by calculating an improved initial state vector of every epoch 

using all measurements up to this epoch. An improved position and velocity at the 
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current epoch can then be obtained by mapping forward the improved initial position 

and velocity using the corresponding partial derivatives (Ashkenazi et al., 1994). 

6.5.3 Reduced Dynamic Orbit Determination Technique 

The Reduced Dynamic Technique, Melbourne et al. (1986), Wu et al. (1991) for the 

LEO satellite orbit determination is made available with GPS observations. This 

technique involves satellite-state-transition information obtained from both the 

dynamic model and continuous GPS observations, which is optimally combined to 

improve the orbit determination accuracy. 

The Reduced Dynamic technique tries to benefit from the advantages of both the 

previously mentioned techniques (kinematic technique & dynamic technique) and 

avoid their disadvantages. As previously mentioned, the dynamic orbit determination 

technique produces the orbit of the satellite using numerical integration, adjusting the 

initial starting elements (position & velocity) and some force model parameters to 

obtain the best fit with the tracking measurements. Obviously, the main errors that 

will affect the orbit accuracy will be the force model errors and the accuracy of the 

starting elements. 

(Wu et al., 1991) have compared qualitatively the dynamic, kinematic and reduced- 

dynamic techniques. They showed that the dynamic solution adjusts the fewest 

parameters, preserving maximum data strength and yielding the lowest formal error 

however, it can suffer large systematic errors due to mismodelled dynamics. The 
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kinematic solution eliminates modelling errors but the orbit transition is determined 

entire y from the observations so the data strength is depleted and the formal error 

can grow large. The reduced-dynamic solution optimally combines the two 

techniques to achieve the lowest overall error (Wu et al., 1991). 

The reduced dynamic technique tries to minimise the unmodelled force errors by 

introducing a modelling noise np (Ashkenazi et al., 1994) where, t-: p 

+np =ma 

Where, F is the resultant acting force on the satellite, 

m mass of the satellite., 

a acceleration of the satellite. 

(6.25) 

The orbit solution is weighted between the dynamic model and the observation model 

through a Kalman filter process by varying the variance of the dynamic modelling 

noise. Applying a minimum value for the dynamic modelling noise will result in an 

orbit purely determined by the dynamic model however applying a maximum value 

for the dynamic modelling noise will produce an orbit purely determined by the 

observation model. Hence this technique depends on the proper selection of the force 

modelling and measurements noises. 

The main task when using the reduced dynamic technique is to select the appropriate 

modelling noise, which represents the actual accuracy of the dynamic model. It is not 
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easy to determine the accuracy of the dynamic model because the modelling errors 

are dependent on the dynamics of the satellite and may change with time. Two 

methods could deal with this problem: simulation method will be appropriate if the 

satellite dynamics are quite smooth and the noise variance can be considered 

constant. However if the satellite motion is dynamically unpredictable such as a space 

station or space shuttle then an adaptive filter method must be used to determine the 

dynamic modelling noise (Ashkenazi et al., 1994). Due to the recursive nature of the 

filtering algorithm, the satellite position is updated epoch by epoch, making it ideally 

suited for real-time orbit determination. Figure 6.3 shows flow chart of the reduced 

dynamic orbit determination technique. For more detailed information about the 

reduced dynamic orbit determination technique and the Kalman filter, the reader is 

referred to Appendix D and Appendix E respectively. 
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Read control file 

For each epoch 

Starting Elements 
Read GPS meas. 
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Orbit Integration Read LEO satellite 
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satellite position and velocity 

Nextepoch 
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Figure 6.3: Flow Chart of the Reduced Dynamic Orbit Determination 
Technique (Ashkenazi et al., 1996). 
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CHAPTER 7 

Topex/Poseidon Reduced Dynamic Orbit Determination 
Tests 

7.1 Introduction 

The reduced dynamic technique for orbit determination is the most efficient 

technique among those mentioned in the previous chapter because it combines the 

other two methods, allowing the weighing of each method to obtain the most accurate 

orbits for the desired satellite. (Ashkenazi et al., 1994) have demonstrated the quality 

of such technique by using it to determine the orbits of the Topex/Poseidon satellite 

using GPS measurements. Achieving maximum benefit from the altimetric data 

collected by the UP satellite requires a radial orbit accuracy of 10 cm or better (Nouel 

et al., 1994). 

This chapter will investigate the Topex/Poseidon orbit determination using the 

reduced dynamic technique for three different types of simulated measurements: GPS 

measurements, GALILEO measurements and combined GPS/GALELEO 

measurements. Three different types of GNSS solutions will be used for each type of 
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measurements: stand-alone solution; differential pseudo-range solution and 

differential carrier phase solution. 

The Stand-alone solution from any measurement type requires generation of 

simulated measurements from a receiver onboard the UP satellite, which requires an 

accurate satellite trajectory. The satellite trajectory was provided from the AVISO 

service (Archiving, Validation and Interpretation of Satellites Oceanographic data), 

(AVISO, 2002) using their Topex/Poseidon (POE) product which is generated using 

DORIS and SLR data and has an accuracy at the centimeter level (Nouel et al., 1994). 

The quality of all the output UP ephemeris through this research was assessed by 

comparing it with the high accuracy AVISO ephemeris. The error sources which are 

accounted for in the UP GNSS data are the receiver and satellite clocks, ephemeris 

errors and measurement noise. The atmospheric error is ignored due to the altitude of 

the satellite (about 1300 km above the earth). 

The differential solution requires generating measurements for a number of ground 

stations for the different types of constellations (GPS, GALELEO and 

GPS/GALELEO). The error sources which are accounted for in the ground station 

data are the receiver and satellite clocks, ephemeris errors, atmospheric error 

(ionosphere and troposphere) and measurement noise. The simulated ground data 

from GPS includes dual frequency measurements using LI (1575-42 MHz) and L2 

(1227.60 MHz) frequencies while the simulated ground data from GALILEO 

includes dual frequency measurements using the open service frequencies E2LIE1 

(1575.42 MHz) and E5AB (1192 MHz). 
166 



- 
Chapter 7 TopexlPoseidon Reduced Dynamic Orbit Determination Tests 

The measurement noise considered for the UP onboard GPS receiver pseudo-range 

and carrier phase measurements was 50 cm and I cm respectively (Ashkenazi et al., 

1996). The GPS Ground data from GPS had measurement noise of 20 cm and I mm 

for pseudo-range and carrier phase respectively to reflect the performance of a typical 

GPS receiver. The measurement noise for GALILEO ground data using E2LIE1 

-frequency was 13.333 cm and 0.7000 mm for pseudo-range and carrier phase 

respectively while the measurement noise for GALILEO ground data using E5AB 

-r__ fiequency was 6.667 cm and 0.3000 mm for pseudo-range and carrier phase 

respectively. These chosen values reflect approximately the chip rate relation between 

GPS and GALELEO frequencies (Hein et al., 2002), (Tiberius et al., 2002). The IGS- 

final orbits were used to generate all types of simulated GPS data due to its high 

accuracy (< 5cm/O. Ins) as well as high quality GALELEO ephemeris file for 

generating GALELEO data without any ephemeris error (Section 5.2). 

The following softwares have been used in this study: 

- "ORBIT" program, the EESSG's in-house developed program used for 

dynamic orbit determination. "ORBIT" contains the various force model 

components expressed in (§ 6.3) and follows the flow chart for dynamic 

orbit determination shown in Figure 6.2. 

- "SOLORB" LEO Satellites orbit solution program, the IIESSG's in-house 

developed program was used for the reduced dynamic orbit determination. 

SOLORB follows the flow chart of reduced dynamic orbit determination 

technique shown in Figure 6.3. 
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Section (7.2) will show some tests to assess the effect of the GPS satellite ephemeris 

errors as well as the accuracy of the initial predicted orbit on the quality of the 

reduced dynamic final orbits. 

Section (7.3) will show the validation of the simulation studies by comparing the 

behavior of the UP GPS real data with the UP GPS simulated data from GPS 

constellation only. Obviously this study couldn't be expanded to involve GALILEO 

and combined GPS/GALELEO for the lack of GALILEO real data. 

Section (7.4) will show the output results from simulated data-reduced dynamic orbit 

determination technique from three different types of constellations GPS, GALELEO, 

and combined GPS/GALELEO. This section will end with an orbit overlap study for 

stand-alone reduced dynamic solution using combined GPS/GALILEO simulated 

data. 

Finally Section (7.5) shows a comparison of Topex/Poseidon reduced dynamic orbits 

using GPS simulated data from this study with other studies using the same 

technique. For the importance of the radial orbital error in the LEO satellite orbit 

detennination for oceanography applications (this research's focus), re-plot for the 

radial orbital error of all the tests shown in this chapter is shown in Appendix G. 

7.2 Behaviour Tests 

7.2.1 Effect of GPS Satellite Ephemeris Errors 
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To assess the effect of GPS satellite ephemeris errors on the quality of the final 

reduced dynamic orbits, four different categories of tests had been investigated. Each 

one of them uses a different type of the IGS-GPS ephemeris products to process the 

measurements in the reduced dynamic process while the IGS final orbits are used to 

generate the data as mentioned before. Stand-alone solution was adopted through 

these different tests. The error sources which are accounted for in the UP GPS 

simulated data are the receiver and satellite clocks, ephemeris errors and 

measurement noise. The results shown here were presented by (Farah et al., 2004). 

The IGS offers four different types of GPS ephemeris: 

- The Final orbits 

- The Rapid orbits 

- The predicted (UltraRapid) orbits 

The Broadcast orbits (sent through GPS navigation message) 

Table 7.1 explains the features of each type of these orbits. GPS broadcast ephemeris 

accuracy statistics are presented in Appendix F compared with other IGS-GPS 

ephemeris (GPS Lab, 2004). 

IGS 
GPS Ephermeis 

Product 

Accuracy Latency Updates Sample 
Interval 

Broadcast -260 cm/-7 ns Real time ---- Daily 
Predicted (Pred. ) -10cm/-5ns 

(Ultra-Rapid) (Obs. ) -5crn/-0.2ns Real time Twice daily 15 min/15 min 
(Total) -25cm/-5ns 

Rapid 5 cm/0.2 ns 17 hours Daily 15 min/5 min 
Final <5 cm/ 0.1 ns - 13 days weekly 15 min/5 min 

Table 7.1: The features of IGS-GPS Ephemeris Products (IGS, 2003). 
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7.2.1.1 The Effect of GPS Broadcast Ephemeris 

As the broadcast GPS ephemeris offers the lowest accuracy comparing with other 

IGS-GPS Ephemeris products, then it should be expected to give lower accuracy for 

the reduced dynamic final orbits and this is assured from Table 8.2 which shows the 

RMS errors for the UP reduced dynamic orbit processed with GPS broadcast 

ephemeris. This behaviour is shown in Figures 7.1 and 7.2 that show the reduced 

dynamic orbital errors for a one-day arc and a two-day arc respectively. 

RMS Errors (m) One-day arc Two-day arc 
Radial 0.059 0.129 

Along-track 0.408 0.697 
Across-track 0.771 0.406 

Total 0.874 0.817 

Table 7.2: The LEO Satellite Reduced dynamic Orbit RMS Errors processed 

with GPS Broadcast Ephemeris. 

It can be shown that the reduced dynamic orbit has different behaviour for one-day 

and two-day arc which due to different modelling noise adopted for the dynamic 

model as the accuracy of GPS broadcast ephemeris degraded in the second day with 

approximately 1.00 m RMS with respect to IGS-final GPS orbits (Appendix F). 
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7.2.1.2 The Effect of IGS Ultra-Rapid GPS Orbit 

This test assesses the effect of using the IGS Ultra-Rapid GPS orbits on the quality of 

reduced dynamic orbits. As the accuracy of the Ultra-Rapid orbits is much better 

compared to the broadcast ephemeris, this should also affect the accuracy of the 

reduced dynamic orbits produced using the Ultra-Rapid GPS orbits. The Ultra-Rapid 

combinations are generated twice each day at 0300 and 1500 UT and contain 48 

hours worth of orbits; the first 27 hours are based on observations and the remaining 

21 hours are predicted orbits. This feature should be evident in the reduced dynamic 

solution as well. The reduced dynamic solutions using Ultra-Rapid orbits for a one- 

day arc and a two-day arc are shown in Figures 7.3 and 7.4. Table 7.3 shows the 

RMS errors for the one-day arc as well as the observed 27 hours, predicted 21 hours 

of the two-day arc. The RMS errors for the total two-day arc are also shown in Table 

7.3. 

RMS Errors 
(M) One-day arc 

Two-day arc 

Observed 
GPS orbits 

Predicted 
GPS orbits 

Total 

Radial 0.056 0.050 0.153 0.115 
Along-track 0.103 0.163 0.419 0.316 
Across-track 0.084 0.127 0.222 A _4" 0.146 

Total 1 0.145 0.213 0.499 0.3 

Table 7.3: The LEO Satellite Reduced dynamic Orbit RMS Errors using IGS 
Ultra-Rapid Orbits. 
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7.2.1.3 The Effect of IGS Rapid GPS Orbit 

The IGS Rapid GPS orbit is much more accurate than the broadcast & Ultra-Rapid 

products but has a latency of 17 hours which is not suitable for real time applications. 

However a more accurate reduced dynamic orbit solution is expected. The reduced 

dynamic orbit behaviour is shown for a one-day and a two-day arc in Figures 7.5 and 

7.6 as well as the RMS errors shown in Table 7.4. 

RMS Errors (m) One-day arc Two-day arc 
Radial 0.083 0.067 

Along-track 0.096 0.109 
Across-track 0.085 0.161 

total 0.152 0.206 

Table 7A The LEO Satellite Reduced dynamic Orbit RMS Errors using IGS 
Rapid GPS orbits. 
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7.2.1.4 The Effect of IGS Final GPS Orbit 

The IGS final GPS orbits is the most accurate product for GPS ephemeris with a 

latency of about 13 days. Using the IGS final GPS orbits in the reduced dynamic 

process means that there are no ephemeris errors because the same final orbits were 

used as the truth in generating the simulated data. Accordingly, the reduced dynamic 

orbits using the IGS final orbits will offer the maximum accuracy, which can be 

obtained. This is demonstrated by the RMS errors shown in Table 7.5 for a one-day 

and two-day arc and Figures 7.7 and 7.8. 

RMS Errors (m) One-day arc Two-day arc 
Radial 0.081 0.066 

Along-track 0.096 0.108 
Across-track 0.082 0.157 

total 0.149 0.202 

Table 7.5: The LEO Satellite Reduced dynamic Orbit RMS Errors using 
Precise ephemeris (IGS final Orbits). 
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7.2.1.5 Discussion 

From the above studies, it can be concluded that the GPS ephemeris errors have 

significant effects on the quality of the reduced dynamic final orbits. The accuracy of 

the reduced dynamic orbits improves with the improvement in the GPS ephemeris 

accuracy starting with broadcast ephemeris, Ultra-rapid, rapid and finally with the 

true orbit, in this case given by IGS final GPS ephemeris. 

The limitations for real-time reduced dynamic orbit determination is demonstrated as 

the lowest accuracy is achieved using the broadcast GPS ephemeris which is the only 

data available in real time. The UltraRapid orbits give a better performance if it can 

be used in real time. The improvement is high in the reduced dynamic orbits using the 

UltraRapid ephemeris over the broadcast ephemeris which is explained by referring 

to the accuracy of the both types of ephemeris shown in Table 7.1. 

Figure 7.4 shows that, the accuracy is better within the first 27 hours of using the 

ultra-rapid ephemeris and then degrades for the next 21. Table 7.3 shows clearly how 

is the reduced dynamic solution affected with different accuracies of ultra-rapid GPS 

ephemeris. For two-day arc, the first 27 hours of ephemeris based on observations 

(Accuracy -5cm/-0.2ns (IGS, 2003)) gives a better reduced dynamic solution rather 

than last 21 hours of ephemeris which based on predicted orbits (Accuracy 

-10cm/-5ns (IGS, 2003)). The improvement is 0.10m, 0.22m, 0.10m, 0.24m for 

radial, along-track, across-track and total orbital error. The improvement is relatively 

small between the use of the rapid orbits and the final ones, as they had similar 

accuracies. 

178 



Chapter 7 TopexlPoseidon Reduced Dynamic Orbit Determination Tests 

7.2.2 Effect of The Accuracy of The Initial Predicted Orbit 

The reduced dynamic orbit determination technique is combining two solution 

methods: a dynamic model and measurements model. The accuracy of the reduced 

dynamic orbit is therefore dependent on the accuracy of those two models and the 

degree of weighting given to each of them. In the previous section (7.2.1) the 

effect of the measurements model accuracy on the quality of the reduced dynamic 

orbit was assessed where the accuracy of the GPS satellite ephemeris represented 

the accuracy of the measurements model. This section deals with the effect of the 

dynamic model accuracy on the quality of the reduced dynamic orbit. 

The accuracy of the dynamic model determined by the accuracy of the initial 

predicted orbit (which mainly depends on the accuracy of the starting elements of 

position and velocity for the numerical integration of the force model) as well as 

the errors in various force models. Many of these force model errors can be 

estimated during the dynamic orbit determination process. Thus the main factor in 

the accuracy of the predicted orbit will be the accuracy of the starting elements. 

A study of the sensitivity of the predicted orbit to the change in the starting 

elements carried out through this research showed that any change of over 10 cm 

in the starting elements position coordinates will result in degrading the accuracy 

of the predicted orbit. Also any slight change over 0.001 m/sec in the starting 

elements velocity vector will highly degrade the accuracy of the predicted orbit. 

The effect increases as the change increases which could be justified in the view 

of the approximate velocity of Topex/Poseidon LEO satellite is 6 km/sec (AVISO, 

2003). Table 7.6 shows some of this study's results. 
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Position change 
(M) 

RMS total error 
(M) 

Velocity change 
(m/sec) 

RMS total error 
(M) 

0 3.00 0 3.00 
0.01 6.50 0.0001 44.00 
0.10 40.00 0.001 410.00 
0.50 190.00 0.01 4000.00 
1.00 380.00 1.00 400000.00 

Table 7.6: The RMS total errors for the accuracy of the predicted orbit 
resulting from changes in the starting elements (two-day arc). 

The reduced dynamic orbits shouldn't depend on the accuracy of the predicted 

orbit, so it should be expected to have similar accuarcies for different accuracies 

of the predicted orbits however this is not true generally and there are some 

limitations. These limitations came from the other factor affecting the quality of 

the reduced dynamic orbit, which is the measurements model. 

As it can be concluded that the accuracy of the measurements model is mainly 

dependent on the accuracy of the ephemeris data (in the absence of any other 

errors). The effect of The GPS ephemeris errors on the quality of the reduced 

dynamic orbits was investigated in Section 7.2.1. 

Following this study, another study was concluded to assess to what extent the 

accuracy of the reduced dynamic orbits did not depend on the accuracy of the 

initial predicted orbit using both GPS broadcast ephemeris (real time application) 
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and GPS precise ephemeris (IGS final orbits) (an indication of future better 

quality GPS orbits). 

It can be concluded that using GPS broadcast ephemeris, the reduced dynamic 

orbits was largely unaffected by the accuracy of the predicted orbit up to a 20 cm 

change in the starting elements position coordinates. Using better quality GPS 

ephemeris such as the IGS final orbits improves this behaviour with the reduced 

dynamic orbit accuracy. Mainly unaffected by changes of up to 2m in the starting 

elements position coordinates. Table 7.7 shows a part of the results of this study. 

RMS Errors (in) 
GPS Broadcast 

Ephemeris 
GPS Precise 
Ephemeris 

Position Change Position change 

0 20 cm 0 2m 
Radial 0.126 0.231 0.066 0.134 

Along-track 0.693 0.771 0.108 0.116 
Across-track 0.400 0.353 0.157 0.157 

Total 0.810 0.879 0.202 0.237 

Table 7.7: The LEO Satellite Reduced dynamic Orbit RMS Errors 
(Different GPS ephemeris) (Different initial orbits). 
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7.3 Validating The Simulation Studies 

7.3.1 Introduction 

Generally the major advantage of the simulation studies is that it makes it possible to 

test the behaviour of systems that do not exist yet such as GALILEO. 

The simulation studies must include a validation study, which involve comparing the 

behaviour of the simulation studies with available real studies for existing systems 

(GPS). The agreement between the simulation studies outputs with the real studies 

gives the trust in the simulation studies outputs for non-existing future systems 

(GALILEO). 

In our particular case, the validation study will require the comparison of the 

behaviour of the reduced dynamic technique using simulated GPS data with the 

behaviour using real GPS data. The real GPS data from the Topex/Poseidon onboard 

GPS receiver is available through JPL (Jet Propulsion Laboratory). A dataset of four 

months was under investigation (July to October 2002). Despite the low quality of the 

data (many epochs contains only 2 or 3 visible satellites, which cannot give a 

solution), the validation study had been investigated. 

The validation study involved determining the reduced dynamic solution for a stand 

alone receiver from real GPS data for different spans of time (3 hours, 5 hours, 10 

hours and 24 hours) of one day and then repeating the same scenario using simulated 

GPS data for the UP receiver. The simulated data had a measurement noise of 50 cm 
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for pseudo-range and have the same visible satellites in each epoch as the real data 

(the gaps of data is similar in both types of data). The error sources which are 

accounted for in the UP simulated GPS data are the receiver and satellite clocks, 

ephemeris errors and measurement noise. The test day for all types of data was 

21/7/2002. The following results were presented by (Farah et aL, 2004). 

7.3.2 Comparison of Simulated GPS Data and Real GPS Data 

The RMS errors for the reduced dynamic solution from simulated GPS data and real 

GPS data for different spans of time are shown in Table 7.8. The behaviour of the 

reduced dynamic solution using real GPS data and simulated GPS data for 24 hours is 

shown in Figures 7.9 and 7.10 respectively. 

RMS Errors Simulated GPS Data 
(M) 3 hours 5 hours 10 hours 15 hours One day 

Radial 0.197 0.158 0.042 0.100 0.102 

Along-track 1.987 1.695 0.471 1.230 1.007 

Across-track 0.510 0.506 0.582 0.577 0.614 

Total 2.061 1.776 0.750 1.363 1.184 

RMS Errors Real GPS Data 
(M) 3 hours 5 hours 10 hours 15 hours One day 

Radial 0.134 0.037 0.046 0.057 0.059 

Along-track 1.964 1.265 0.923 1.056 1.000 

Across-track 0.501 0.516 0.591 0.634 0.752 

Total 2.031 1.367 1.097 1.234 
1 

1.253 

Table 7.8: Comparison of The Reduced Dynamic RMS errors using Simulated 
GPS Data and Real GPS Data. 
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Figure 7.9: Reduced Dynamic Solution for stand-alone GPS receiver 
(Real Data) (one-day arc) 
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Figure 7.10: Reduced Dynamic Solution for stand-alone GPS receiver 
(Simulated Data) (one-day arc) 
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7.3.3 Discussion 

Table 7.8 shows the agreement between the reduced dynamic RMS errors from real 

GPS data and simulated GPS data for different time spans. The agreement in the 

RMS radial component was less than 10 cm except in 5 hour time span, the along 

track RMS component agrees within less than 20 cm for different time spans except 

for 5 hours and 10 hours time spans where the agreement up to 40 cm. The across 

track RMS agreement is less than 5 cm except for one day time span where it 

becomes within 14 cm. 

Focusing on the shortest Q hours) and longest time spans (one day) the agreement is 

highly obvious and it proves the ability of the simulated GPS data to give realistic 

behaviour even with a short period of simulated GPS data as well as with longer 

periods of data. The relative agreement in the behaviour of both types of GPS data is 

shown in Figures 7.9 and 7.10 and proves the ability of the simulated data to give 

realistic behaviour even when the real data behaves badly as shown in the first few 

epochs under 5 hour time. The total error appears to worsen slightly in the real data 

rather than the simulated data due to different dynamic modelling noise applied that 

end up with the least orbital errors. 

From the above analysis, it can be concluded that similar results could be obtained 

using both simulated and real GPS data for the reduced dynamic technique from GPS 

constellation and that therefore the simulation studies were realistic compared with 

the real situations. This gives confidence in the future reduced dynamic results from 

the GALILEO and combined GPS/GALELEO constellations analysis. 
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7.4 Simulated Data Reduced-Dynamic Orbit Determination 

7.4.1 Introduction 

This section will investigate the resulting reduced dynamic orbits obtained using 

simulated data from the constellations GPS, GALILEO and combined 

GPS/GALILEO. Each constellation will involve three types of solutions; 

Stand-alone solution: based on measurements from UP onboard receiver 

Differential Pseudo-range solution: based on differential measurements 

from selective ground stations using pseudo-range observations. 

Differential Carrier-phase solution: based on differential measurements 

from selective ground stations using Carrier-phase observations 

The positions for the ground stations were the same for the three constellations. 

(Bertiger et al., 1994) suggested a 13 ground stations to gain an accurate orbits from 

differential solutions. This research uses 12 ground stations for differential solutions. 

The choice of their number and positions was made to guarantee the differential 

solutions at each epoch (so a common number of satellites is visible by the UP 

onboard receiver as well as one or more of the ground stations) with a high number 

(12-22) of common satellites. This choice was crucial for getting a high quality 

solution from the measurement model in the reduced dynamic technique. The 

geographical positions for the chosen ground stations for differential solutions are 

shown in Figure 7.11. The following results were presented by (Farah et al., 2004). 
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Figure 7.11: The Geographical Positions for the Ground Stations used for 
Differential Solutions From three Constellations; GPS., GALMEO 

and Combined GPS/GALILEO. 

7.4.2 GPS Based Topex/Poseidon Ephemeris 

The simulated GPS data from PIP onboard receiver was generated using AVISO 

ephemeris as a trajectory with IGS final GPS orbits. The simulated errors for T/P 

GPS receiver were the receiver and satellite clocks, ephemeris errors and 

measurement noise. The atmospheric error is ignored due to the altitude of the 

satellite (about 1300 km above the earth). The simulated errors in the ground stations 

data are the receiver and satellite clocks, ephemeris errors, atmospheric error 

(ionosphere and troposphere) and measurement noise. The chosen parameters for the 

measurement noise are revealed in (§ 7.1). The Broadcast GPS ephemeris was used in 

the reduced dynamic processing for different types of solutions to follow real time 

applications requirements. The testing days were the 21" and 22 nd of July 2002, for 

which the real GPS data from T/P onboard receiver are giving acceptable solutions 

7.3). The reduced dynamic solutions were produced for three dIfferent types of 
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solutions for a two-day arc. The RMS errors for different types of GPS based T/P 

ephemeris are shown in Table 7.9. The reduced dynamic behaviour for stand-alone, 

differential pseudo-range and differential camer-phase solutions are shown in Figures 

7.12,7.13 and 7.14 respectively. 

RMS Errors 
(M) 

Stand-alone 
Solution 

Differential 
Pseudo-range 

Differential 
Carrier-phase 

Radial 0.12 0.14 0.10 
Along-track 0.68 0.25 0.21 
Across-track 0.40 0.14 0.15 

Total 0.80 0.32 0.28 

Table 7.9: The RMS errors for Topex/Poseidon reduced dynamic orbits from 
different types of solution for GPS constellation. 
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Figure 7.12: Reduced Dynamic Stand-alone Solution for simulated GPS receiver 
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Figure 7.13: Reduced Dynamic Differential Pseudo-range Solution 
for simulated GPS receiver 
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Figure 7.14: Reduced Dynamic Differential Carrier-phase Solution 

for simulated GPS receiver 
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It can be concluded that the stand-alone solution gives the lowest accuracy because of 

the low accuracy of GPS broadcast ephemeris which has significant effects on the 

reduced dynamic stand-alone solution as shown in Section 7.2.1. The differential 

solution in general gives a more accurate solution as it removes the GPS ephemeris 

error which affects the along track and across track components. 

The differential pseudo-range solution improves the along track and across track 

components however it degrades the radial component slightly which could be due to 

the increase in measurements noise as a result of using 12 ground stations. However, 

because of the better measurement noise in carrier phase measurements, the carrier 

phase solution improves the radial and along track components resulting in the best 

accuracy for total error. 

The different types of solutions also affects the time needed for the kalman filter to 

settle and give accurate results. The filter needs about 10 hours of data until it settles 

with the stand-alone solution, however this settling time is decreased to less than 5 

hours with the differential pseudo-range solution. The minimum settling time for the 

filter happens with the differential carrier phase solution when it becomes about 2 

hours. Reasonably. ) the shorter the settling time, the more efficient the filtering 

process and the better behaviour for real time applications. 
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7.4.2 GALILEO-Based Topex/Poseidon Ephemeris 

The simulated data for the UP onboard receiver with the GALILEO constellation was 

generated using the AVISO ephemeris as a trajectory with high quality GALILEO 

ephemeris file, without any ephemeris error. The same types of error were simulated 

as in the GPS case however better measurement noise was simulated for ground 

stations (§ 7.1). The reduced dynamic solutions were processed using a different 

GALILEO ephemeris file with RMS ephemeris error of 65 cm (Lucas et al., 2000), 

(Provenzano et al, 2000) to simulate the perspective future behaviour of the 

GALILEO constellation. The RMS errors for different types of GALILEO based UP 

orbit solution are shown in Table 7.10. The reduced dynamic behaviour for stand- 

alone, differential pseudo-range and differential carrier-phase solutions are shown in 

Figures 7.15,7.16 and 7.17 respectively. 

RMS Errors 
(M) 

Stand-alone 
Solution 

Differential I 
Pseudo-ran e] 

Differential 
Carrier-phase 

Radial 0.08 0.10 0.05 
Along-track 0.19 0.17 0.10 
Across-track 0.11 0.12 0.09 

Total 0.24 0.23 0.15 

Table 7.10: The RMS errors for Topex/Poseidon reduced dynamic orbits from 
different types of solution for GALILEO constellation. 
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Figure 7.15: Reduced Dynamic Stand-alone Solution for simulated GALILEO receiver 

10 

8 

6 

4 

E2 

uj u 

0 -2 

-4 

-6 

-10 Time (hr) 

Figure 7.16: Reduced Dynamic Differential Pseudo-range Solution 
for simulated GALILEO receiver 
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It can be concluded that GALILEO in general gives more accurate solutions for 

reduced dynamic orbit determination, this effect must be due to the better geometry 

for GALILEO over GPS, the matter that end up with more number of visible 

GALILEO satellites rather than GPS according to Table 7.11 and Appendix B. As 

well as the high quality GALILEO ephemeris over GPS broadcast ephemeris and the 

better ranging accuracy (less measurement no'se) for GALILEO compared with GPS. 

The stand-alone GALILEO solution results shows the impact of better ephemeris for 

GALILEO on the accuracy of both the along-track and across-track orbital 

components, as the improvement compared with GPS reaches up to 0.49 m and 0.29 

m for both of them respectively. 
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Figure 7.17: Reduced Dynamic Differential Carrier-phase Solution 
for simulated GALILEO receiver 
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Receiver Elevation 
masking angle 

Number of visible 
GALILEO 
satellites 

Number of visible 
GPS satellites Total 

5' 13 12 25 
100 11 10 21 
150 9 8_ 17 

Table 7.11: Maximum Number of Visible Satellites for Various Masking 
Angles (GALILEO, 2002). 

The differential Pseudo-range solution for GALILEO slightly improves the stand- 

alone solution as the effect of removing GALELEO ephemeris error with the 

differential solution is small due to high quality GALILEO ephemeris (RMS 65 cm). 

Comparing with low quality GPS broadcast ephemeris where the improvement for 

the differential solution compared with the stand-alone solution is strongly visible. 

The GALELEO differential carrier phase solution is much better than the differential 

pseudo-range solution due to the carrier phase measurements had less measurement 

noise over the pseudo-range measurements. As the measurement noise for GALELEO 

ground data using E2LlEl frequency was 13.333 cm and 0.7000 mm for pseudo- 

range and carrier-phase respectively while the measurement noise for GALELEO 

ground data using E5AB frequency was 6.667 cm and 0.3000 mm for pseudo-range 

and carrier-phase respectively. 

The settling time for kalman filter is improved as well with GALILEO solutions as it 

becomes less than 2 hours for stand-alone and differential pseudo-range solutions and 

even less than one hour for differential carrier phase solution. 
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7.4.4 GPS/GALILEO-Based Topex/Poseidon Ephemeris 

This section tries to discover the future of GPS and GALILEO working together and 

whether there will be improvement over the UP reduced dynamic orbit determination 

from each constellation individually. 

The results in this section reflect the behaviour of present GPS with the behaviour of 

just implementing GALILEO. So, basically, the specifications that were followed in 

the past two Sections 7.4.2 and 7.4.3 are followed in this section too. It should be 

expected to see the effect of having more visible satellites from combined 

constellation, the combined effect of less measurements noise from GALELEO 

satellites with higher measurements noise from GPS satellites and the combined 

effect of high quality ephemeris from GALELEO with lower quality ephemeris from 

GPS. Those three effects are shown in the RMS errors for reduce dynamic different 

solutions from combined GPS/GALILEO constellation shown in Table 7.12. The 

behaviour of each solution is shown in Figures 7.18,7.19 and 7.20. 

RMS Errors 
(M) 

Stand-alone 
Solution 

Differential 
Pseudo-range 

Differential 
Carrier 

Radial 0.12 0.12 0.07 
Along-track 0.45 0.17 0.14 
Across-track 0.30 0.07 0.07 

Total 0.56 0.22 0.17 

Table 7.12: The RMS errors for Topex/Poseidon reduced dynamic orbits from 
different types of solution for Combined GPS/GALILEO constellation. 
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Figure 7.19: Reduced Dynamic Differential Pseudo-range Solution for simulated 
Combined GPS/GAULEO receiver 
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Figure 7.18: Reduced Dynamic Stand-alone Solution for simulated Combined 
GPS/GAULEO receiver 
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As it was expected the behaviour of the reduced dynamic orbits from the combined 

constellation GPS/GALILEO is the combined behaviour of GPS and GALILEO 

individually, not as bad as GPS alone and not as good as GALILEO alone. 

The stand-alone solution from the combined constellation is better than the GPS 

stand-alone solution but not as good as the GALILEO stand-alone solution due to the 

high ephemeris error for GPS broadcast ephemeris but the overall ephemeris error is 

improved by the GALILEO ephemeris which results in the improvement in the stand- 

alone combined solution. Improvements in accuracy are also due to better ranging 

accuracy for GALILEO compared with GPS and a greater number of visible satellites 

from the combined constellation (see Table 7.11 and Appendix B). 
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Figure 7.20: Reduced Dynamic Differential Carrier phase Solution for simulated 
Combined GPS/GALILEO receiver 
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The results for the differential solution can be explained in the same way as the stand- 

alone solution however with the differential solution from the combined constellation 

similar results for the GALILEO differential solutions could be obtained due to the 

removal of the GPS ephemeris error with the differential technique. 

The kalman filter needs longer time to settle with solutions from the combined 

constellation rather than the GALILEO constellation alone. The settling time for the 

stand-alone combined solution is about 8 hours, the differential pseudo-range solution 

needs around 3 hours to settle where as the differential carrier phase solution requires 

only one hour to settle. 

It can be concluded as well that with the expected modernisation of GPS with 

improvements in the quality of GPS ephemeris data, it would be expected to have an 

improved behaviour from the combined GPS/GALELEO reduced dynamic solutions. 

This expectation is investigated in the next section. 

7.4.5 GPS-modernised/GALILEO-Based Topex/Poseidon Ephemeris 

This section looks at the far future of the reduced dynamic behaviour with the 

combined constellation of modemised-GPS/GALMEO. It is well understood that the 

plans for GPS modernisation involve improving the behaviour of the GPS 

constellation in many aspects, however for the sake of this study, only the 

improvements in the GPS broadcast ephemeris are considered. 
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A future GPS ephemeris file was prepared to have an RMS error of 5 cm to simulate 

the future GPS ephemeris quality as the GPS modernisation process for improving 

the quality of the broadcast ephemeris not expected before 2012 (Shaw et al., 2000). 

This new ephemeris file was used to process GPS measurements within the reduced 

dynamic combined solutions from combined constellations. The expectation was to 

see an improved behaviour from the reduced dynamic solutions for the combined 

constellations when compared with those discussed in Section 7.4.4. 

The RMS errors of the reduced dynamic solutions from the future combined 

GPS/GALELEO constellation are shown in Table 7.13. The behaviour of the reduced 

dynamic solutions are shown in Figures 7.21,7.22 and 7.23. 

RMS Errors 
(M) 

Stand-alone 
Solution 

Differential 
Pseudo-range 

Differential 
Carrier-phase 

Radial 0.06 0.1 0.04 
Along-track 0.13 0.15 0.10 
Across-track 0.12 0.12 0.10 

Total 0.19 0.22 0.15 

Table 7.13: The RMS errors for Topex/Poseidon reduced dynamic orbits from 
different types of solution for GPS-modernised/GALILEO constellation. 
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Figure 7.21: Reduced Dynamic Stand-alone Solution for simulated GPS- 
modem isedIGALILEO receiver 
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Figure 7.22: Reduced Dynamic Differential Pseudo-range Solution for simulated GPS- 

mode rnised/GALILEO receiver 
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Figure 7.23: Reduced Dynamic Differential Carrier phase Solution for simulated GPS- 

modern ised/GALILEO receiver 

The behaviour of the reduced dynamic solution from the future combined 

constellation satisfies the expectations as in general the results shown in this section 

give a better performance than the previous Section 7.4.4. 

The stand-alone solution from the future combined constellation is much better than 

its counterpart in Section 7.4.4 with the improvement in the radial, along-track and 

across-track components reaches 0.06m, 0.12m and 0.18m respectively. This 

behaviour can be justified due to the improvement in the accuracy of the GPS 

ephemeris as a result of the GPS modemisation process. 

The differential solutions improved slightly over its counterparts In Section 7.4.4 due 

to the fact that the differential solution removes the effect of the errors in the high 
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quality GPS ephemeris (5cm RMS), so the improvement in the GPS ephemeris will 

not affect it. 

The settling time for the kalman filter is improved as well over its counterpart in 

Section 7.4.4, as it becomes around one hour for the stand-alone combined solution 

compared with 8 hours for the stand-alone solution in Section 7.4.4 (before GPS 

modemisation). 

7.4.6 Orbit Overlap 

This section looks at the reduced dynamic orbit overlap, which is the ability of the 

reduced dynamic technique to produce similar results from different sets of 

measurements where the GPS and GALILEO constellations repeat themselves. The 

GPS constellation repeats itself on daily Oust short of 24 hours) basis (orbital period 

of 11 hours, 58 min. ) whereas the GALELEO constellation repeats approximately 

every three days (orbital period of 14 hours, 4 min. ). In this test the reduced dynamic 

stand-alone solution for the combined GPS/GALELEO constellation for a two-day arc 

was produced from overlapping three groups of two day measurements (with a one- 

day overlap), optimising the software to put more weight towards the observations to 

maximise the effect of the observations model which mainly affected with the status 

of GPS and GALELEO constellations. The test three groups of measurements were 

(21/7/2002-22/7/2002), (22/7/2002-23/7/2002) and (23/7/2002-24/7/2002). The RMS 

errors for this test's results are shown in Table 7.14. The behaviour of the reduced 

dynamic stand-alone solutions for each type of data set are shown in Figures 7.24, 

7.25 and 7.26. 
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RMS Errors 
(M) 

(21/7/2002- 
22/7/2002) 

(22/7/2002- 
23/7/2002) 

(23/7/2002- 
24/7/2002) 

Radial 0.58 0.64 0.50 
Along-track 0.69 0.74 0.80 
Across-track 0.36 0.36 0.52 

Total 0.98 1.05 1.08 

Table 7.14: The RMS errors for Topex/Poseidon reduced dynamic orbits from 
stand- alone solution for Combined GPS/GALFLEO constellation for 

three different data sets (weight towards observations). 
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Figure 7.24: Reduced Dynamic Stand-alone Solution for simulated Combined 

GPSIGAIJLEO receiver (21M2002-22N/2002) (Weight towards Observations) 
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Figure 7.25: Reduced Dynamic Stand-alone Solution for simulated Combined 
GPS/GAULEO receiver (221712002-231712002) (Weight towards Observations) 
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It can be concluded that the reduced dynamic technique is capable of providing 

similar consistent results whatever the positions of the GPS and GALILEO 

constellations. The agreement in the RMS total error for the three sets of data was 

around 10 cm taking in mind that the weight of the reduced dynamic was towards the 

observations which means that the accuracy of the agreement should improved with 

the optimal weight. 

7.5 Comparison with Other Studies 

A similar work has been investigating the ability of using the reduced dynamic orbit 

determination technique in GPS precise tracking of Topex/Poseidon satellite. This 

work was come out by the Jet Propulsion Laboratory (JPL), the Centre for Space 

Research (CSR) of the university of Texas at Austin and the Institut Geographique 

National (IGN) in Pahs (Bertiger et al., 1994). 

The reduced dynamic solutions were computed using the GIPS-OASIS 11 analysis 

software. The solution adopted was differential GPS solution using data from 13 

ground stations. Data from all receivers were brought together and processed in a 

grand solution where UP orbits, all GPS orbits, receiver and satellite clock offsets, 

carrier phase biases and a number of other parameters are estimated. 

A corresponding solution from this thesis had been investigated for the sake of 

comparison using differential carrier phase solution applying the IGS final GPS orbits 

to process the reduced dynamic orbits. For more information about their processing 
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technique, the reader is referred to (Bertiger et al., 1994). Table 7.15 shows the RMS 

errors comparison study for JPL solution and this research's solution against the 

precise SLR/DORIS orbits. 

RMS Errors 
(cm) 

JPL This study 

Radial 3.33 4.00 
Along-track 12.00 12.00 
Across-track 8.00 10.00 

Total 14.80 16.70 
Table 7.15: Comparison with Other Studies. 

The agreement is strongly achieved as it less than I cm in the radial component and 

about 2 cm in the total orbital error, which gives another evidence in the accuracy and 

reliability of this thesis's findings. 

206 



hapter 7 TopexlPoseidon Reduced Dynamic Orbit Determination Tests 

7.6 Concluding Remarks and Recommendations 

7.6.1 Concluding Remarks 

In the previous sections of this chapter, a full detailed study of the behaviour of the 

reduced dynamic technique for orbit determination was conducted. In this section, a 

concise discussion will be presented based on these findings. 

It has been shown that the reduced dynamic technique is an effective tool for 

determining LEO satellites orbits with the ability of working in real-time. By 

comparing results from simulated datasets with those using real GPS data, confidence 

in the simulated results for future systems was gained. 

The reduced dynamic orbit solutions are seen to be mainly affected by the quality of 

the ephemeris data. The ephemeris errors greatly affect the accuracy of the 

observations model which is used to reduce the dynamic model errors within the 

reduced dynamic process. The reduced dynamic orbits depend more or less on the 

accuracy of the predicted orbit based on the accuracy of the observations model 

which is govemed by the accuracy of the ephemeris data. Modemisation of GPS will 

increase the accuracy of the reduced dynamic orbits as the quality of the GPS 

ephemeris will be improved. 

The GALILEO based reduced dynamic orbit solution is much more accurate than the 

GPS based orbits, especially in the stand-alone case as the GALILEO ephemeris has 

a better accuracy (65 cm RMS error) (Lucas et al., 2000; Provenzano et al., 2000) 
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compared with the GPS ephemeris (5-10 m RMS error) (David Jefferson and Yoaz 

Bar-Sever, 2000). The GALILEO based differential solution is also more accurate 

than the corresponding GPS based solution because of the better measurements noise 

used for GALILEO compared with GPS and more visible GALILEO satellites 

compared with GPS due to GALILEO better geometry (Table 7.11 and Appendix B). 

The choice of the ground stations positions is vital for the accuracy of differential 

reduced dynamic solution to ensure differential solution available at each epoch with 

high number of common visible satellites between the LEO satellite and the ground 

stations. Therefore the best choice for the ground stations is around the equator to 

have the maximum visibility of any constellation. 

The differential solutions reduced dynamic orbits are much more accurate than the 

stand-alone due to the removal of the ephemeris error, which is vital in GPS case due 

to the low quality GPS broadcast ephemris. 

The GALILEO reduced dynamic orbits solutions show a better performance than the 

reduced dynamic orbits from the GPS and the combined GPS/GALELEO 

constellations (with the present accuracy for GPS ephemens). As the modernisation 

process for GPS goes on and the quality of the GPS ephemeris is improved, it should 

expected to have more accurate reduced dynamic solutions from both constellations 

rather than each constellation individually. 
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A comparison study was conducted between this thesis' differential carrier phase 

solution using GPS constellation and previous work (Bertiger et al., 1994) using the 

same technique for UP satellite. This study proved the strong agreement between the 

findings of this research and the results of the other group's work which is evidence 

for the reliability of this thesis's outputs for LEO satellite reduced dynamic orbit 

determination 

As it has been shown before, one of the key advantages of the reduced dynamic orbit 

determination technique for LEO satellites is the ability of working as a real-time 

application (Ashkenazi et al., 1996). Some recommendations should be followed 

during this real-time operation which will be expressed in the following section. 

7.7 Recommendations for Real-time Application 

For real time application, a test study has been conducted producing a stand-alone 

reduced dynamic solution for the combined GPS/GALELEO constellation for the 

following three consecutive sets of data: 

I- Predicted orbit produced for two day arc (21/7/2002-22/7/2002) using 

some good quality starting elements followed by reduced dynamic 

stand-alone solution produced for the same two days (21/7/2002- 

22/7/2002). 

209 



Cha Vier 7 ljýpex,, Poseidon Reduced Dynamic Orbit Determination 7ýsls 

2- Predicted orbit produced for two day arc (22/7/2002-23/7/2002) using 

starting elements from the previous produced predicted orbit (step 1) 

followed by reduced dynamic stand-alone solution produced for the same 

two days (22/7/2002-23/7/2002). 

3- Predicted orbit produced for two day arc (23/7/2002-24/7/2002) using 

starting elements from the previous produced predicted orbit (step 2) 

followed by reduced dynamic stand-alone solution produced for the same 

two days (23/7/202-24/7/2002) 

The reduced dynamic solutions for each data set are shown in Figures 7.27,. 28 and 

7.29. 
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GPSIGALJLEO receiver (2117/2002-22f7/2002) 
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Figure 7.28: Reduced Dynamic Stand-alone Solution for simulated Combined 
GPStGAULEO receiver (22U/2002-23M2002) 
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Figure 7.29: Reduced Dynamic Stand-alone Solution for simulated Combined 

GPS/GALILEO receiver (23/7/2002-24f7/2OO2) 
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It can be concluded from the resulting figures that the reduced dynamic kalman filter 

needs more than 10 hours to settle before it can deliver accurate reduced dynamic 

orbits. Following the previous scenario of extracting the starting elements from the 

predicted orbit after one day of the start of the predicted orbit as well as using the 

reduced dynamic orbits after one day of processing which means give the filter 24 

hours to settle (longer period than actually needed for more confident in the reduced 

dynamic results). So from Figure 7.27 the reduced dynamic orbits will be valid for 24 

hours during (22/7/2002). For Figure 7.28 the reduced dynamic orbits will be valid 

for 24 hours during (23/7/2002). Following the same rule, for Figure 8.29 the reduced 

dynamic orbits will be valid for 24 hours during (24/7/2002). 
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CHAPTER 8 

CONCLUSIONS & SUGGESTIONS FOR 
FUTURE WORK 

8.1 Conclusions 

The following is a summary of the main conclusions resulting from the research 

presented in this thesis. 

GPS/GALILEO Simulation 

The GNSS data simulation is a strong research tool in GNSS fields as most of the 

applications of GNSS depend on the quality of the measurements. Thus an accurate 

simulation of GNSS measurements requires an accurate simulation of the 

environmental biases, which is the main emphasis of the work shown in the first part 

of this thesis. 

The ionospheric delay modelling required more attention as it is the current major 

challenge faced when processing GNSS data. A detailed study investigated the 
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available options for modelling this type of delay, resulting in an ionospheric 

simulation model based on the IGS-GIM's which gives a high realistic behaviour in 

determining the ionospheric delay and the best description and visualisation of the 

ionosphere's behaviour with a reasonable computation time (Section 4.3). 

The modelling of the tropospheric delay was also part of the focus of this thesis. The 

tropospheric delay is the second major challenge faced by users of GNSS 

measurements. An investigation study compared the performance of a statistical 

tropospheric model (EGNOS model) with the performance of surface tropospheric 

models (Hopfield model, Saastamonien model, Marini model) along with an 

empirical model (Magnet model). This demonstrated the adequacy of the EGNOS 

model for modelling the tropospheric delay, as it provides good behaviour in 

describing the mean tropospheric delay (7cm RMS difference with IGS-estimates) 

without the need for surface meteorological data, with a reasonable computation time 

(Section 4.4). 

The need for simulating the regional and temporal variations in the ionosphere and 

troposphere which is not provided by the two chosen models meant it was important 

to develop an algorithm that gave them this ability. This was satisfied through using a 

statistical theory (Gaussian random fields) which transformed the chosen models into 

more realistic high spatial variation models, capable of simulating small-scale 

regional and temporal variations within the ionosphere and troposphere, the success 

of which was demonstrated through the study shown in Section 4.5. 
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Gaussian Colored noise is a powerful tool for more realistic modelling of the 

multipath delay, as it provides the correlation between different time series of 

multipath delay, where Gaussian white noise can not. A new model for the multipath 

delay was implemented based on Gaussian colored noise. The model has three main 

features: various multipath activity cases, correlation-time dependence and elevation- 

angle dependence. Thus more realistic modelling of the multipath is achieved and 

presented (Section 4.6). 

The behaviour of the simulated GPS data from the modified DATSIM software 

(using IGS GIM's for ionospheric delay simulation, modified EGNOS model for 

tropospheric delay simulation and a coloured noise multipath model) is highly 

realistic when compared with the behaviour of real GPS data. A test study using P4 

software showed an acceptable agreement in the determination of the height 

coordinate for eight stations between the new simulated GPS data and real GPS data. 

This was not achievable with the original simulated GPS data (Section 5.1). 

GALELEO simulated data were generated through the modification of the DATSIM 

software to allow for the different services offered by GALILEO and the 

implementation of an ephemeris data file for the GALILEO constellation based on a 

Walker (27/3/1) constellation (§ 5.2). The positioning accuracy of the new simulated 

GPS data with the GALELEO simulated data was investigated using P4 software 

(Section 5.2). It showed that the GALELEO constellation may offer better 

performance due to better ranging accuracies, better quality ephemeris data and more 

visible satellites (see Table 7.11 and Appendix B). 
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LEO-Satellite Orbit Determination 

The accuracy of the ephemeris data for any GNSS constellation has a strong effect on 

the performance of the reduced-dynamic solutions for LEO satellites, as it highly 

affects the accuracy of the observation model, which has the job of reducing the 

effect of the dynamic model on the final reduced dynamic solution. A detailed study 

revealed the effect of different types of GPS ephemeris data on the reduced dynamic 

solutions for the UP satellite (Section 7.2.1). The limitations are shown for real-time 

reduced dynamic solutions using GPS, due to the low quality of the GPS broadcast 

ephemeris data. 

A validating study was carried out which found an agreement between the reduced 

dynamic solutions for UP satellite provided by simulated GPS data and real GPS data 

(JPL) (Section 7.3). This agreement means that trust can be placed in the reduced 

dynamic solutions for GALELEO and combined GPS/GALILEO constellations. 

The stand-alone reduced dynamic solution gives the lowest accuracy for GPS 

constellation due to low quality GPS broadcast ephemeris data. Thus the differential 

solution gives better performance due to the elimination of the ephemeris errors. The 

best reduced dynamic solution from the GPS constellation is achieved using a 

differential carrier phase solution. (Section 7.4.2) 

The GALILEO constellation will offer better performance for LEO-satellite reduced 

dynamic solutions due to better quality GALELEO ephemeris data, better ranging 
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accuracies and more visible satellites (see Table 7.11 and Appendix B) compared 

with the GPS constellation (Section 7.4.3). 

The combined GPS/GALILEO constellation will give better performance for LEO 

satellites reduced dynamic solutions compared with the GPS constellation. However 

the performance of the combined constellation will still be affected by the low quality 

GPS broadcast ephemeris. The GPS modernisation process is therefore vital for 

improved reduced dynamic solutions from the combined constellation (Section 7.4.4). 

The performance of the combined GPS-modemised/GALILEO constellation is the 

best compared to the performance of the GPS constellation or the GALELEO 

constellation alone, due to the better quality of the combined ephemeris data and 

more visible satellites from both constellations (Section 7.4.5). 

Certain criteria were suggested for real-time LEO-satellites reduced dynamic 

applications to work with satisfying flexibility and accuracy (Section 7.4.6). 

8.2 Suggestions for Future Work 

The following contains some suggestions for future work: 

The modelling of the tropospheric delay within DATSIM software needs further 

work. The currently available options are surface meteorological models (not 

recommended for simulation purposes) or global models (recommended for 

simulation purposes) such as the EGNOS model, which was the scope of this study. 
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However the EGNOS model still needed a statistical theory algorithm (Gaussian 

random fields) to have the ability of simulating regional variations of the troposphere. 

The regional tropospheric maps provided by regional dense GPS network such as the 

German GASP-Project (GASP, 2003), could play a strong part in this research 

providing high accuracy tropospheric delay estimation with the ability of simulating 

regional and temporal variations of the troposphere. Clearly this scenario can not be 

expanded globally as the water vapour distribution has a high local fluctuation which 

limits the availability and usefulness of global tropospheric maps. 

The generation of more realistic GPS simulated data and GALILEO simulated data 

creates the possibility of studying the performance of the two constellations in LEO 

satellite orbit determination (this study) and also in many other applications. The 

simulation data will be useful for many other GNSS applications. 

The accuracy of the GPS broadcast ephemeris is a limiting factor in the achievable 

accuracy of the reduced dynamic technique for LEO satellites orbit determination as 

shown in this thesis (Section 7.2.1). It is highly recommended that a study should be 

carried out to investigate the possible options by which the effect of the broadcast 

errors could be minimised, either by estimating GPS orbits together with the LEO 

satellite orbits or using the IGS Ultra-Rapid GPS orbits optimised to suit real-time 

applications. 

The carrier phase solution is the most precise GNSS solution and offers the best 

accuracy in LEO satellites reduced dynamic orbit determination. The main challenge 
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faced when computing this type of solution is the resolution of the initial integer 

ambiguity. The reduced dynamic simulated studies in this thesis depended on pre- 

known initial integer ambiguities, so a future study could investigate the 

implementation of reliable methods for the resolution of these ambiguities. Also, the 

importance of correct ambiguity resolution for real-time carrier phase solutions 

should be investigated. 

The tests and results presented in this thesis are limited to a single satellite altitude 

(T/P). Since the characteristics of the LEO satellite force models vary depending on 

the altitude of the satellite, further tests are required to assess the accuracy of the 

reduced dynamic technique discussed in this thesis for different mission scenarios. 

The strength of the reduced dynamic orbit determination technique is its ability to 

absorb errors in the force model used for orbit integration of LEO satellites. The orbit 

integration software used in this thesis applied a very detailed force model, using 

accurate models for each affecting force on the LEO satellite, it is likely that this 

complex force model could be significantly simplified. Thus a study is recommended 

to assess the effect of the different force model components on LEO orbit 

determination accuracy with the reduced dynamic method. 

The differential solution gives more accurate reduced dynamic orbits than the stand- 

alone solution, which is currently the only available option for real-time applications. 

A future study is recommended from the practical point of view to study the 

necessary requirements for developing differential solution as a real-time application 
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for LEO missions. This will include studying the availability of the ground data and 

uploading it to the LEO satellite to have the orbits solutions in real-time. 
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APPENDIX A 

Gaussian Random Fields Algorithm 

The Fortran programs for two-dimensional Gaussian Random Fields are presented 
below after (Chan, 2003). The used variables for ionosphere and troposphere 

algorithms were as follows: 

NI 100 

N2 100 

EVEN ('TYES7 

GI 

G2 8 

MAXG1 10 

MAXG2 10 

A different scale factor was applied in each case to reflect the amount of variations in 

the troposphere and the ionosphere. The values of these scale factors for the test study 

in Section 3.5 were as followed: 

Ionosphere scale factor 0.25 

Troposphere scale factor 0.02 

c File name: example2. f 

c This program was last modified on Tuesday 1 June, 1999. 

C Example program to simulate 2 dimensional Gaussian process, 
C which has covariance function 
C expi -C(t_JA2 +t-2 A2)A (alpha/2)1 
C where c= 100 and alpha = 1.9 as defined in a DOUBLE PRECISION 
C FUNCTION COV2, using the two subroutines, EIGEN2 
C and SIMSGF2. 

C Set upper bound for m-1 and m-2 to be 2 A10 = 1024 
INTEGER MAXSIZE, MMAXSIZE 
PARAMETER (MAXSIZE = 1024, MMAXSIZE = MAXSIZE*MAXSIZE) 
EXTERNAL EIGEN2, SIMSGF2, COV2 
DOUBLE PRECISION COV2 
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DOUBLE PRECISION X(MMAXSIZE), LAM(MMAXSIZE), RHO, SIGMA, EIG(3) 
INTEGER N(2), M(2), G(2), MAXG(2), ICORR, IFAULT, ICOUNT 
CHARACTER EVEN, ANS 

C Timing parameters 
DOUBLE PRECISION TIMEARRAY(2), TIMEDIFF 

WRITE(*, *)'SIMULATE ONE 2-DIMENSIONAL GAUSSIAN PROCESS' 
WRITE(*, *)'PLEASE ENTER THE REQUIRED DIMENSION LENGTHS: ' 
READ(*, *) N(l), N(2) 
WRITE(*, *)'IS THE COVARIANCE FUNCTION EVEN? (Y/N)' 
READ(*, *) EVEN 
IF ((EVEN. EQ. 'Y'). OR. (EVEN. EQ. 'y')) THEN 

RHO = DLOG(2DO*DBLE(N(l) - 1))/DLOG(2DO) 
G(l) = IDINT(RHO) 
IEF (DBLE(G(l)). LT. RHO) THEN 

G(l) = G(l) +I 
ENDIF 

RHO = DLOG(2DO*DBLE(N(2) - 1))/DLOG(2DO) 
G(2) = IDINT(RHO) 
IF (DBLE(G(2)). LT. RHO) THEN 
G(2) = G(2) +I 

ENDIF 
VvrRITE(*, *)'THE DEFAULT INITIAL VALUES OF G ARE', G, '. ' 
WRITE(*, *)'DO YOU WANT TO SET HIGHER INITIAL VALUES? (Y/N)' 

READ(*, *) ANS 
IF ((ANS. EQ. 'Y'). OR. (ANS. EQ. 'y')) THEN 

V*TRITE(*, *)'PLEASE ENTER THE NEW INTEGER INITIAL VALUES: ' 
READ(*, *) G(l), G(2) 

ENDIF 
WRITE(*, *)'THE DEFAULT MAXIMUM VALUES OF GI AND G2 ARE 10. ' 
V,, rRITE(*, *)'DO YOU WANT TO SET LOWER MAXIMUM VALUES? (Y/N)' 
READ(*, *) ANS 
IF ((ANS. EQ. 'Y'). OR. (ANS. EQ. y')) THEN 
VvrRITE(*, *) 'PLEASE ENTER THE NEW INTEGER MAXIMUM VALUES: ' 
READ(*, *) MAXG(l), MAXG(2) 

ELSE 
MAXG(l) = 10 
MAXG(2) = 10 

ENDIF 
ELSE 

RHO = DLOG(2DO*DBLE(N(l) - 1))/DLOG(3DO) 
G(l) = IDINT(RHO) 
IF (DBLE(G(l)). LT. RHO) THEN 
G(l) = G(l) +I 

ENDIF 
RHO = DLOG(2DO*DBLE(N(2) - 1))/DLOG(3DO) 

G(2) = IDINT(RHO) 
IF (DBLE(G(2)). LT. RHO) THEN 
G(2) = G(2) +1 

ENDIF 
V, rRITE(*, *)'THE DEFAULT INITIAL VALUES OF G ARE, G, . 
WRITE(*, *)'DO YOU WANT TO SET HIGHER INITIAL VALUES? (Y/N)' 

READ(*, *) ANS 
IF ((ANS. EQ. 'Y'). OR. (ANS -EQ. 'y')) THEN 

WRITE(*, *)'PLEASE ENTER THE NEW INTEGER INITIAL VALUES: ' 

READ(*, *) G(l), G(2) 
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ENDIF 
WRITE(*, *)'THE DEFAULT MAXIMUM VALUES OF GI AND G2 ARE 6. ' 
WRITE(*, *)'DO YOU WANT TO SET LOWER MAXIMUM VALUES? (Y/N)' 
READ(*, *) ANS 
IF ((ANS. EQ. 'Y'). OR. (ANS. EQ. 'y')) THEN 
WRITE(*, *)'PLEASE ENTER THE NEW INTEGER MAXIMUM VALUES: ' 
READ(*, *) MAXG(I), MAXG(2) 

ELSE 
MAXG(l) =6 
MAXG(2) =6 

ENDIF 
ENDIF 
TMlEDIFF = DTIME(TIMEARRAY) 
CALL EIGEN2(LAM, COV2, N, M, G, MAXG, EVEN, ICORR, RHO, SIGMA, 

& EIG, ICOUNT, IFAULT) 
TIMEDIFF = DTIME(TIMEARRAY) 
Vv'RITE(*, 9) TIMEDIFF 
TIMEDIEFIF = DTIME(TIMEARRAY) 
CALL SIMSGF2(X, N, M, LAM, RHO) 
TIMEDIFIF = DTIME(TIMEARRAY) 
Vv'RITE(*, 9) TIMEDIFF 

c WRITE(*, 9) ((X(I+J*M(l)), I=1, N(l)), J=0, N(2) - 1) 
Vv'RITE(*, 99) G, RHO, SIGMA, EIG, ICOUNT, EFAULT 

9 FORMAT(F20.10,2X) 
99 FORMAT(2I3, lX, 5(F20.15,2X), 2I6) 

END 

Example of an even covariance function 
DOUBLE PRECISION FUNCTION COV2(T 1, T2) 
DOL113LE PRECISION C, ALPHA, T 1, T2, DUMMY 

C= ID2 
ALPHA = 1.9DO 
EF ((DABS(TI). LE. ODO). AND. (DABS(T2). LE. ODO)) THEN 
COV2 = IDO 

ELSE 
EF (DABS(TI). LE. ODO) THEN 
DUMMY = C*DEXP(ALPHA*DLOG(T2)) 

ELSEIF (DABS(T2). LE. ODO) THEN 
DUMMY =C *DEXP(ALPHA*DLOG(T 1)) 

ELSE 
DUMMY = C*(DEXP(ALPHA*DLOG(DSQRT(DEXP(2DO*DLOG(Tl)) 

&+ DEXP(2DO*DLOG(T2)))))) 
ENDIF 
IF (DUMMY. LE. 7D2) THEN 
COV2 = DEXP(-DUMMY) 

ELSE 
COV2 = ODO 

ENDIF 
ENDIF 
RETURN 
END 

File name: eigen2. f 
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c This program was last modified on Tuesday I June, 1999. 

C Find g-I and g-2 to satisfy all constraints in the preliminary 
C step and return eigenvalues and other information to simulate 
C the required Gaussian field 

C Auxiliary Algorithms 
C (i) Call EVEN2 if EVEN ='Y'or'y' 
C (ii) Call UNEVEN2 otherwise 

C Auxiliary Algorithms called by both EVEN2 and UNEVEN2 
C (i) COV2, user supplies covariance function 
C (ii) UPDATE to compute the next few possible g-I and g_2 
C (Iii) Need to link with NAG library: 
C C06FJF - Computes the two-dimensional discrete Fourier 
C transform of a two-dimensional array of complex data 
C values. 

SUBROUTINE EIGEN2(LAM, COV2, N, M, G, MAXG, EVEN, ICORR, RHO, SIGMA, 
& EIG, ICOUNT, IFAULT) 

INTEGER MAXSIZE, MMAXSIZE 
PARAMETER (MAXSIZE = 1024, MMAXSIZE = MAXSIZE*MAXSIZE) 

DOUBLE PRECISION COV2 
EXTERNAL COV2 

DOUBLE PRECISION LAM(MMAXSIZE), RHO 
INTEGER M(2), N(2), G(2), MAXG(2), EFAULT 

C Parameters used only if IFAULT =I 
DOUBLE PRECISION SIGMA, EIG(3) 
INTEGER ICORR, ]COUNT 
CHARACTER EVEN 

IF ((EVEN. EQ. 'Y) -OR. (EVEN. EQ. 'y')) THEN 
CALL EVEN2(LAM, COV2, N, M, G, MAXG, ICORR, RHO, SIGMA, 

& EIG, ICOUNT, EFAULT) 
ELSE 

CALL UNEVEN2(LAM, COV2, N, M, G, MAXG, ICORR, RHO, SIGMA, 
& EIG, ICOUNT, IFAULT) 

ENDIF 
RETURN 
END 

SUBROUTINE EVEN2(LAM, COV2, N, M, G, MAXG, ICORR, RHO, SIGMA, 

& EIG, ICOUNT, EFAULT) 
INTEGER MAXSIZE, MMAXSIZE 
PARAMETER (MAXSIZE = 1024, MMAXSIZE = MAXSIZE*MAXSIZE) 
DOUBLE PRECISION COV2 
EXTERNAL COV2, UPDATE 
DOUBLE PRECISION LAM(MMAXSIZE), RHO, SUM, Y(MMAXSIZE) 

INTEGER M(2), N(2), G(2), MAXG(2), EFAULT 
INTEGER MHALF(2), MBAR, MAXSUM 
INTEGER 1, J, K, IAGAIN, INDEX 

C Parameters needed in subroutine UPDATE 
INTEGER GINIT(2), GTEMP(20,2), GSUM, NEW 
COMMON /A/ GINIT, GTEMP, GSUM, NEW 

C Subroutine from NAG library 
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EXTERNAL C06FJF 
C Parameters used only in calling subroutine from NAG library 

DOUBLE PRECISION WORK(3*MAXSIZE) 
INTEGER LWORK, IFAIL 

C Parameters used only if IFAULT =I 
DOUBLE PRECISION SIGMA, EIG(3) 
INTEGER ICORR, ICOUNT 

C If there are no initial values for g-1 and g-2, they are set 
C to be the smallest g- I and g-2 such that 2A I g_i I >= 2(n 

-i- C 1), i=1,2. If there are no maximum values for g- I and g-2, C they are set to be 10. 

DO I I= 1,2 
]IF (G(l) EQ. 0) THEN 
RHO = DLOG(2D0*DBLE(N(I) - 1))/DLOG(2DO) 
GINIT(I) = IDINT(RHO) 
IF (DBLE(GINIT(l)). LT. RHO) THEN 

GINIT(I) = GINIT(I) +1 
ENDIF 

ELSE 
GINIT(I) = G(I) 

ENDIF 
GTEW(1, I) = GINIT(1) 
]IF (MAXG(l). EQ. 0) THEN 
MAXG(I) = 10 

ENDEF 
I CONTINUE 

C Check GINIT before starting the loop 
IF ((GMT(l) GT. MAXG(1)) OR. 

& (GINIT(2). GT. MAXG(2))) THEN 
IFAULT =2 
GOTO 9 

ENDIF 
]AGAIN =I 
]FAULT =0 
]COUNT =0 
RHO = 1DO 
DO 21=1,3 
EIG(I) = ODO 

2 CONTINUE 
MAXSUM = MAXG(1) + MAXG(2) 
GSUM = GINIT(l) + GINIT(2) 
NEW= 1 

C Start the loop with the initial g-1 and g-2 
DO 3 WHILE ((IAGAIN. EQ. 1). AND. (GSUM. LE. MAXSUM)) 
DO 4 INDEX = 1, NEW 

SUM = ODO 
DO 51=1,2 
M(I) = IDNINT(DEXIP(DBLE(GTEMP(INDEX, I))*DLOG(DBLE(2)))) 
MHALF(I) = IDINT(DBLE(M(I))/2D0) 

5 CONTINUE 
MBAR = M(I)*M(2) 
LWORK = 3*MAXO(M(l), M(2)) 

C Compute the eigenvalues of C, i. e. the discrete Fourier 
C transform of the first row of the embedding matrix 
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DO 6J=0, M(2) -I 
D071=0, M(l)- I 

K=I+1 
IF ((I. LE. MHALF(l)). AND. (J. LE. MHALF(2))) THEN 
LAM(K+J*M(l)) = COV2(DBLE(I)/DBLE(N(l)), 

& DBLE(J)/DBLE(N(2))) 
ELSEIF (J. LE. MHALF(2)) THEN 
LAM(K+J*M(l)) = LAM(M(l)-I+I+J*M(l)) 

ELSE 
LAM(K+J*M(l)) = LAM(K+(M(2)-J)*M(l)) 

ENDIF 
Y(K+J*M(l)) = ODO 

7 CONTINUE 
6 CONTINUE 
C Call subroutine C06FJF from NAG library to compute the DFT 

CALL C06FJF(2, M, MBAR, LAM, Y, WORK, LWORK, IFAIL) 
C Check if all eigenvalues are non-negative 

DO 81=1, MBAR 
SUM = SUM + LAM(l) 
IF (LAM(l) LT. ODO) THEN 

EF (GSUM. LT. MAXSUM) THEN 
IF (INDEX. LT. NEW) THEN 

GOTO 4 
ELSE 

CALL UPDATE(MAXG) 
GOTO 3 

ENDEF 
ELSE 

EF (LAM(l). LT. EIG(l)) TBEN 
EIG(l) = LAM(l) 

ENDEF 
EIG(2) = EIG(2) + DEXP(2DO*DLOG(-LAM(l))) 
EIG(3) = EIG(3) - LAM(l) 
ICOUNT = ICOUNT +I 
LAM(l) = ODO 
EFAULT =1 

ENDIF 
ELSE 
LAM(l) = DSQRT(DBLE(MBAR))*LAM(l) 

ENDIF 
8 CONTINUE 

IAGAIN =0 
G(l) = GTEMP(INDEX, l) 
G(2) = GTEMP(INDEX, 2) 
GOTO 9 

4 CONTINUE 
3 ENDDO 
C Warning messages which can be commented out. 
9 IF (EFAULT EQ. 1) THEN 
C Approximation takes place 

EIG(2) = DSQRT(EIG(2)) 
EF (ICORR. EQ. 0) THEN 
RHO = SUM/(SUM + EIG(3)) 

ELSEIF (ICORR. EQ. 1) THEN 
RHO = DSQRT(SUM/(SUM + EIG(3))) 

ENDIF 
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SIGMA = DSQRT((DEXP(2DO*DLOG(l - RHO))*SUM 
& DEXP(2DO*DLOG(RHO))*EIG(3))/DBLE(MBAR)) 

ELSEIF (IFAULT EQ. 2) THEN 
STOP 

ENDIF 
M(l) = IDNINT(DEXP(DBLE(G(l))*DLOG(DBLE(2)))) 
M(2) = IDNINT(DEXP(DBLE(G(2))*DLOG(DBLE(2)))) 

RETURN 
END 

SUBROUTINE UNF-VEN2(LAM, COV2, N, M, G, MAXG, ICORR, RHO, SIGMA, 
& EIG, ICOUNT, IFAULT) 

INTEGER MAXSIZE, MMAXSIZE 
PARAMETER (MAXSIZE = 1024, MMAXSIZE = MAXSIZE*MAXSIZE) 
DOUBLE PRECISION COV2 
EXTERNAL COV2, UPDATE 
DOUBLE PRECISION LAM(MMAXSIZE), RHO, SUM, Y(MMAXSIZE) 
INTEGER M(2), N(2), G(2), MAXG(2), IFAULT 
INTEGER MHALF(2), MBAR, MAXSUM 
INTEGER 1, J, K, IAGAIN, INDEX 

C Parameters needed in subroutine UPDATE 
INTEGER GINIT(2), GTEMP(20,2), GSUM, NEW 
COMMON /A/ GINIT, GTEMP, GSUM, NEW 

C Subroutine from NAG library 
EXTERNAL C06FJF 

C Parameters used only in calling subroutine from NAG library 
DOUBLE PRECISION WORK(3*MAXSIZE) 
INTEGER LWORK, IFAIL 

C Parameters used only if IFAULT =1 
DOUBLE PRECISION SIGMA, EIG(3) 
INTEGER ICORR, ]COUNT 

C If there are no initial values for g-1 and g-2, they are set 
C to be the smallest g-I and g-2 such that 3A I g_i I >= 2(n-i - 
C 1), i=1,2. If there are no maximum values for g-1 and g-2, C they are set to be 6. 

DO I I= 1,2 
EF (G(l). EQ. 0) THEN 

RHO = DLOG(2DO*DBLE(N(l) - 1))/DLOG(3DO) 
GINIT(I) = IDINT(RHO) 

IF (DBLE(GINIT(l)). LT. RHO) THEN 
GINIT(l) = GINIT(l) +I 

ENDIF 
ELSE 

GINIT(l) = G(l) 
ENDEF 
GTEMP(l, l) = GINIT(l) 
IF (MAXG(l). EQ. 0) THEN 
MAXG(I) =6 

ENDEF 
CONTINUE 

C Check GINIT before starting the loop 
IF ((GINIT(l) -GT. MAXG(l)) OR. 

& (GINIT(2). GT. MAXG(2))) THEN 
]FAULT =2 
GOTO 9 
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2 

C 

5 

c 
c 

ENDIF 
IAGAIN =I 
IFAULT =0 
ICOUNT =0 
RHO= IDO 
DO 21=1,3 

EIG(I) = ODO 
CONTINUE 
MAXSUM = MAXG(l) + MAXG(2) 
GSUM = GINIT(l) + GINIT(2) 
NEW= I 
Start the loop with the initial g-1 and g-2 
DO 3 WHILE ((IAGAIN. EQ. 1). AND. (GSUM. LE. MAXSUM)) 
DO 4 INDEX = 1, NEW 

SUM = ODO 
DO 51=1,2 

M(I) = IDNINT(DEXP(DBLE(GTEMP(INDEX, I))*DLOG(DBLE(3)))) 
MHALF(I) = IDINT(DBLE(M(l))/2DO) 

CONTINUE 
MBAR = M(I)*M(2) 
LWORK = 3*MAXO(M(l), M(2)) 

Compute the eigenvalues of C, i. e. the discrete Fourier 
transform of the first row of the embedding matrix 

DO 6J=0, M(2) -I 
D071=0, M(l)- I 

K=I+I 
IF (J. EQ. 0) THEN 

IF (I. LE. MHALF(l)) THEN 
LAM(K) = COV2(DBLE(I)/DBLE(N(l)), 0) 

ELSE 
LAM(K) = LAM(M(l)-I+ I) 

ENDIF 
ELSEIF (J. LE. MHALF(2)) THEN 

IF (I EQ. 0) THEN 
LAM(1+J*M(l)) = COV2(0, DBLE(J)/DBLE(N(2))) 

ELSEEF (I. LE. MHALF(l)) THEN 
LAM(K+J*M(l)) = COV2(DBLE(I)/DBLE(N(l)), 

& DBLE(J)/DBLE(N(2))) 
ELSE 

LAM(K+J*M(l)): "': COV2(DBLE(I-M(l))/DBLE(N(l)), 
& DBLE(J)/DBLE(N(2))) 

7 
6 
c 

C 

ENDEF 
ELSEIF (I. EQ. 0) THEN 

LAM(I+J*M(l)) = LAM(I+(M(2)-J)*M(l)) 
ELSE 

LAM(K+J*M(l)) = LAM(M(l)-I+I+(M(2)-J)*M(l)) 
ENDIF 

Y(K+J*M(l)) = ODO 
CONTINUE 

CONTINUE 
Call subroutine C06FJF from NAG library to compute the DFT 

CALL C06FJF(2, M, MBAR, LAM, Y, WORK, LWORK, IFAIL) 
Check if all eigenvalues are non-negative 

DO 811, MBAR 
SUM SUM + LAM(I) 
IF (LAM(I). LT. ODO) THEN 
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IF (GSUM. LT. MAXSUM) THEN 
IF (INDEX. LT. NEW) THEN 

GOTO 4 
ELSE 

CALL UPDATE(MAXG) 
GOTO 3 

ENDEF 
ELSE 

IF (LAM(l). LT. EIG(l)) THEN 
EIG(l) = LAM(1) 

ENDEF 
EIG(2) = EIG(2) + DEXP(2DO*DLOG(-LAM(l))) 
EIG(3) = EIG(3) - LAM(l) 
ICOUNT = ICOUNT +1 
LAM(l) = ODO 
IFAULT =1 

ENDIF 
ELSE 

LAM(1) = DSQRT(DBLE(MBAR))*LAM(l) 
ENDIF 

8 CONTINUE 
]AGAIN =0 

G(l) = GTEMP(INDEX, 1) 
G(2) = GTENIIP(INDEX, 2) 
GOTO 9 

4 CONTINUE 
3 ENDDO 
C Warning messages which can be commented out. 
9 EF (IFAULT. EQ. 1) THEN 
C Approximation takes place 

EIG(2) = DSQRT(EIG(2)) 
EF (ICORR. EQ. 0) THEN 
RHO = SUM/(SUM + EIG(3)) 

ELSEIIF (ICORR. EQ. 1) THEN 
RHO = DSQRT(SUM/(SUM + EIG(3))) 

ENDEF 
SIGMA = (DEXP(2D0*DLOG(1 - RHO))*SUM + 

& DEXIP(2DO*DLOG(RHO))*EIG(3))/DBLE(MBAR) 
ELSEEF (EFAULT. EQ. 2) THEN 

STOP 
ENDIF 

M(l) = IDNINT(DEXP(DBLE(G(l))*DLOG(DBLE(3)))) 
M(2) = IDNINT(DEXP(DBLE(G(2))*DLOG(DBLE(3)))) 

RETURN 
END 

SUBROUTINE UPDATE(MAXG) 
INTEGER MAXG(2), GINIT(2), GTEMP(20,2), GSUM 
INTEGER NEW, INC, DUMMY(2), I 
COMMON /A/ GINIT, GTEMP, GSUM, NEW 

NEW =0 
GSUM = GSLJM +1 
INC = GSUM - GINIT(l) - GINIT(2) 

DO I I= 0, INC 
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DUMMY(2) = GINIT(2) +1 
DUMMY(l) = GSUM - DUMMY(2) 
IF ((DUMMY(l). LE. MAXG(l)). AND. (DUMMY(2). LE. MAXG(2))) THEN 
NEW= NEW+ I 
GTEMP(NEW, 1) = DUMMY(l) 
GTEMP(NEW, 2) = DUMMY(2) 

ENDIF 
CONTINUE 

RETURN 
END 

c File name: simsgf2. f 

c This program was last modified on Tuesday I June, 1999. 

c Simulate the required 2 dimension Gaussian field. 

C Auxiliary Algorithms 
C Need to link with NAG library: 
C C06FJF - Computes the two-dimensional discrete Fourier 
C transform of a two-dimensional array of complex data values 
C G05CCF - Initialises random number generating routines to give 
C non-repeatable sequence 
C G05FDF - Generates a vector of random numbers from a Normal 
C distribution 

SUBROUTINE SIMSGF2(X, N, M, LAM, RHO) 
INTEGER MAXSIZE, MMAXSIZE 
PARAMETER (MAXSIZE = 1024, MMAXSIZE = MAXSIZE*MAXSIZE) 

DOUBLE PRECISION X(MMAXSIZE), LAM(MMAXSIZE), RHO, U(MMAXSIZE) 
DOUBLE PRECISION ARE(MMAXSIZE), AIM(MMAXSIZE), HALF(2), ADJUST 
INTEGER N(2), M(2), MHALF(2), MBAR 
INTEGER 1, J, INDEX(2), INDEXU 

C Subroutine from NAG library 
EXTERNAL G05CCF, G05FDF, C06FJF 

C Parameters used only in calling subroutine from NAG library 
DOUBLE PRECISION WORK(3*MAXSIZE) 
INTEGER LWORK, IFAIL 

EFAIL =0 
MBAR = M(I)*M(2) 
LWORK = 3*MAXO(M(l), M(2)) 
ADJUST = DEXP(-DLOG(DBLE(2*MBAR))/2DO) 
DO I I= 1,2 
HALF(I) = DBLE(M(l))/2DO 
MHALF(I) = IDINT(HALF(l)) 

CONTINUE 
INDEXU =I 
CALL G05CCF 
CALL G05FDF(ODO, IDO, MBAR, U) 
DO 2J=0, MHALF(2) 
DO 31=0, MHALF(I) 
IF ((I. GT. 0). AND. (I. LT. HALF(l)). AND. (J. GT. 0) 
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& -AND. (J. LT. HALF(2))) THEN 
INDEX(l) = M(l) -I+1+ (M(2) - J)*M(l) 
INDEX(2) =I+I+ J*M(l) 
ARE(INDEX(l)) = DSQRT(LAM(INDEX(l)))*U(INDEXU)*ADJUST 
AIM(INDEX(l)) = DSQRT(LAM(INDEX(l)))*U(INDEXU+1)*ADJUST 
ARE(INDEX(2)) = DSQRT(LAM(INDEX(2)))*U(INDEXU)*ADJUST 
AIM(INDEX(2)) = -DSQRT(LAM(INDEX(2)))*U(INDEXU+I)*ADJUST 
INDEXU = INDEXU +2 
INDEX(I) = M(l) -I+1+ J*M(l) 
INDEX(2) =I+I+ (M(2) - J)*M(l) 
ARE(INDEX(l)) = DSQRT(LAM(INDEX(l)))*U(INDEXU)*ADJUST 
AIM(INDEX(l)) = DSQRT(LAM(INDEX(l)))*U(INDEXU+1)*ADJUST 
ARE(INDEX(2)) = DSQRT(LAM(INDEX(2)))*U(INDEXU) *ADJUST 
AIM(INDEX(2)) = -DSQRT(LAM(INDEX(2)))*U(INDEXU+I)*ADJUST 
INDEXU = INDEXU +2 

ELSEIF ((I. GT. 0). AND. (I. LT. HALF(l))) THEN 
INDEX(l) = M(l) -I+I+ J*M(l) 
INDEX(2) =I+1+ J*M(l) 
ARE(INDEX(l)) = DSQRT(LAM(INDEX(l)))*U(INDEXU)*ADJUST 
AIM(INDEX(l)) = DSQRT(LAM(INDEX(l)))*U(INDEXU+ 1) *ADJUST 
ARE(INDEX(2)) = DSQRT(LAM(INDEX(2)))*U(INDEXU)*ADJUST 
AIM(INDEX(2)) = -DSQRT(LAM(INDEX(2)))*U(INDEXU+ 1) *ADJUST 
INDEXU = INDEXU +2 

ELSEIF ((J. GT. 0). AND. (J. LT. HALF(2))) THEN 
INDEX(l) =I+I+ (M(2) - J)*M(l) 
INDEX(2) =I+I+ J*M(l) 
ARE(INDEX(l)) = DSQRT(LAM(INDEX(l))) *U(INDEXU) *ADJUST 
AIM(INDEX(l)) = DSQRT(LAM(INDEX(l)))*U(INDEXU+ 1) *ADJUST 
ARE(INDEX(2)) = DSQRT(LAM(INDEX(2)))*U(INDEXU) *ADJUST 
AIM(INDEX(2)) = -DSQRT(LAM(INDEX(2)))*U(INDEXU+I)*ADJUST 
INDEXU = INDEXU +2 

ELSE 
ARE(I+I+J*M(l)) = DSQRT(LAM(I+ I +J*M(l))) *U(INDEXU) *ADJUST 
AIM(I+ 1 +J*M(l)) = ODO 
INDEXU = INDEXU +I 

ENDIF 
3 CONTINUE 
2 CONTINUE 

CALL C06FJF(2, M, MBAR, ARE, AIM, WORK, LWORK, IFAIL) 
DO 4J=0, N(2) -I 
DO 51=1, N(l) 

X(I+J*M(l)) = RHO*DSQRT(DBLE(MBAR))*ARE(I+J*M(l)) 
5 CONTINUE 
4 CONTINUE 

RETURN 
END 
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APPENDIX B 

GPS/GALILEO Satellites Availability 

The following Figures gives a comparison between the number of available satellites 

for GALILEO (E2LIEI frequency) and GPS (LI frequency) as an evidence for the 

(JALILLO EI 

assumption that GALILEO Will offer more visible satellites globally compared with 

GPS. 

Gll tz 1- i 

Il1lE I 

I ai¬ s9lhtes 

Latitude (30'min., 60'max., 5' step) 
Time (Ohr min., 24hr max., 2hr step) 
Number of available satellites (5 sat. min., 15 sat. max., I sat. step) 

Figure BA: Comparison between the number of available satellites for 
GALULEO and GPS in middle Europe at 11 th May 2001, elevation mask 5 

degrees (Engler et al., 2001). 
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GPS+ GAL: Avai 1. Satellites (Elevati on 20rj) 
+87.5 0 

+43 75 , . 
AR 

00 0 
. 

-43 75 . 

-87.50 06 '12 18 24 
UT [hours] 

NSAT 

25 

20 

15 

10 

5 

0 

Figure B. 3: The number of available satellites for GPS + GALILEO at 17'h 

November 2003, elevation mask 20 degrees (Engler, 2004). 
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APPENDIX C 

Rotation Matrices 

After (Moore, 1986), the rotation for a right handed orthogonal coordinate system 

aboutthe ith axis, through an anticlockwise angle 0 (viewed from the positive end of 

the axis towards the origin) may be expressed by a rotation matrix Ri(O) where, 

00 

Ri 0 Cos 0 sin 0 (C- 1) 

0- sin 0 Cos 0 

Cos 0- sin 0 
R2 

(0) 
=0 (C-2) 

sin 0 Cos 01 

Cos sin 00 
R3 sin 0 Cos 00 (C-3) 

001- 

The order of the execution for a number of rotations expressed as a product of the 

matrices must be strictly followed in order to the rotation matrices do not commute 

(Moore, 1986). 
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APPENDIX D 

Reduced Dynamic Orbit Determination Technique 

The reduced dynamic orbit determination technique is an orbit determination 

technique based on the Kalman filter theory. The reduced dynamic technique will be 

explicitly explained through this appendix after (Ashkenazi et al., 1996). 

The reduced dynamic technique involved two steps; firstly a predicted orbit is 

integrated using the force models and an approximate initial starting elements 

(position and velocity). Secondly, Corrections to the predicted orbit are estimated in 

real time using the measurement and the statistical properties for both the 

measurement noise and force model errors. 

When the predicted orbit is estimated using approximate initial state vector and force 

models, the predicted satellite position and velocity errors can be expressed as: 

x (t) i+ (D 
x 

(t j+l, tj)x(t) i+ (D 
P 

(t j+I, 
yp(t) i+ (D 

Y 
(t j+I, ti )y 

i (D- 1) 

where; X (t) is a vector including both satellite position and velocity errors. 

P(t) is the vector of unmodelled forces in radial, along-track and 

across track components. 

is the vector of constant parameters (air drag coefficient and 

solar radiation pressure coefficient). 
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j and j+I two different epochs. 

the corresponding transition matrices. 

The constant parameters can be simply modelled as 

Yj+1 --.,: Yj (D-2) 

and the unmodelled force errors P(t) are usually modelled as a first order Gauss- 

Markov process, 

p(t) j+l ----: mj+,, j p(t) j+ np (D-3) 

mj+,, j - exp[l - (tj+l - tj ) /, rij I (D-4) 

where; mj+,, j is the noise mapping function. 

nP is the process noise. 

T ii is the time constant of the process. 

The variance of the noise nP can be expressed as, 

(I-M 22 (D-5) 
p j+i, j)ors 

where or 
2 is the steady state variance of the process. 
S 
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The dynamic model for the kalman filter can then be constructed as : 

x(t), "o (tj+lltj 

(PP(tj+,, tj OY(ti+l I ti NO 0 
P(t) 0m0 p(t) +np (D-6) 

y j+l 
001 

\Y 
0 

ji 

The linearised observation model for the GPS measurements can be formed as 

1= AX (t) + nr (D-7) 

If the transition matrices in eqn. (D-6) are determined , the satellite position and 

velocity errors X(t), together with other parameters can be estimated using a 

standard Kalman filtering method based on Eqns (D-6) and (D-7). The Kalman filter 

theory well documented in (Cross, 1982) and the main steps were summarised in 

appendix-E of this thesis. 

In this research, a pseudo-epoch state approach (Bierman, 1977) is used in order to 

reduce the computational load. The pseudo-epoch state Xj is defined as: 

x(t)j =(Djtj, to)xj +(DY(tj, to)y (D-8) 

which maps X(t)j to aninitial epoch to, or 

xj =(Dx-'(tj, to)[X(t)j -(DY(tj, to)yl (D-9) 
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After the transformation, the corresponding dynamic and observation equations can 

be obtained as, 

x(t)" 
p(t) p(t) 

j+I \0jý, 
0 

and 

Ij = A(D, (tj, to)Xj + A(Dy (tj, to)y (D- 11) 

(D, (j) can be calculated using, 

(DP (D = l(DJtj+1 I tor, (Dp (tj+l Ito) -[(Dx(tj to)]-, op (tj 'to) (D- 12) 

where (D(tj, to) are the corresponding partials from the orbit integration program at 

epoch j. After Xj has been estimated, the satellite position and velocity error X(t) 

can be directly calculated using the mapping function eqn. (D-8). 
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APPENDIX E 

Kalman Filtering 

The kalman filtering technique is an ideal method for real time orbit determination. 

Consider a general linear dynamic system, 

X(k +1) = Qk +I, k)X(k)+W(k) (E-1) 

Y(k +1) = H(k +I)X(k +1)+V(k +1) (E-2) 

where, x is the state vector which includes the estimated parameters 

(satellite position and velocity and the force model 

coefficients). 

is the observation vector. 

C is the transition matrix which gives the relationship of the state 

vector in different epochs. 

H is the design matrix which represents the relation between the 

measurements and the state vector to be estimated. 

is the dynamic model noise to define the precision of the 

dynamic model. 

V is the observation noise which gives the precision of the 

measurements. 
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The dynamic and observations noises (W and V) are usually described by the normal 

distribution with the zero mean and the covariance matrices. 

COV(W) = 

COV(V) =R 

The kalman filtering technique is an optimal estimation method and the optimal a 

posterior state vector estimation can be computed by the steps given below. The 

derivation of the kalman filtering equations is well documented in (Cross, 1982) on 

linear optimal estimation and therefore it is not given here. 

Initial Conditions 

Kalman filtering is a recursive procedure requiring the specification of the initial state 

vector X(O) and its variance-covariance matrix P(O). At the starting epoch K, the 

state vector eqn. (E-3) and the corresponding covariance matrix (eqn. (E-4)) at epoch 

K+l can be predicted using eqn. (E-1). 

X(k +I, k) = Qk +I, k)X(k, k) (E-3) 

P(k + 1, k) = Qk + 1, k)P(k, k)C T (k +I, k) +Q (E-4) 

Filtering 

When the external measurements Y(k+l) at epoch k+l arrives, the estimation of 

X(k+l, k+l) and the covariance matrix P(k+l, k+l) can be considered as some form 

of modification of eqns. (E-3) and (E-4) using the new measurement. 
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X(k +I, k +1) = Qk +I, k)+G(k +1)[Y(k +1)-H(k +I)X(k +1, k)] (E-5) 

and 

P(k +I, k +1) =[I -G(k +1)H(k +1)]P(k +1, k) (E-6) 

where I is the unit matrix and G (k+l) the gain matrix, which can be considered as a 

projection of the new measurement to the correction of the predicted state vector. 

Given by, 

G(k + 1) = P(k + 1, k)H T (k + 1)[H (k + 1)P(k + 1, k)H T (k + 1) + R]-l (E-7) 

For orbit determination, the main task for using the Kalman filtering method is to 

form the dynamic eqn (E-1). The state vector X may include the satellite position, 

velocity, the errors related to the GPS receivers, such as the clock error, the 

tropospheric delay factors and ambiguities and the force model parameters such as 

the drag and radiation pressure coefficients. 

The satellite position x and velocity v can be expressed as: 

x(k + 1) = x(k) + v(k)dt + 0.5a(k)dt 2 (E-8) 

and 

v(k + 1) = v(k) + a(k)dt (E-9) 

where a is the acceleration of the satellite. 
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APPENDIX F 

GPS, Broadcast Ephemeris Accuracy Statistics 

Table F. 1: GPS broadcast ephemeris accuracy statistics 
(compared with IGS final orbit) 

Year 2002, Day 202 
Overall R. M. S. = 3.73 m 

PRN X [M] Y [m] Z [m] 3D [m] 
min max r,., m. s in min max r. m. s min max r. m. s min max r. m. s 

1 -5.329 5.333 2.499 9 -88.2269 6,468 4.340 -3.497 3.546 2.190 1.384 8.543 5.4 66 
2 

W.. ". 9ba- -3.143 4.065 1.828 
. 11111111- -4.321 11 --- ýý 

3.949 
. 11,11.111- 

1.962 
11 -2.437 3.960 1.654 0.202 5.382 

. .... ........... 
' 3.151 

3 -2.181 1.194 0.784 -1.048 1.607 0.739 -1.212 2.142 0.776 WKWO. WN&M 0.327 2.526 1.327 
4 -4.418 3.310 1.983 -4.972 6.918 3.285 -5.571 2.652 2.606 0.614 9.336 4.639 
5 

-. 0- -3.201 2.306 1.690 
1 -3.052 -....... ..... ... ..... ... 

2.820 
....... 

1.891 -1.555 1.609 0.860 0.909 
. ..... . ...... 

4.124 
............................................... 

I 

2.678 

_' 6 -6.918 7,973 4.686 -4.165 3.059 1.957 -6.292 -0.595 3.220 0.854 10.148 6.013 
7 -0.373 1.453 0.495 -2.845 2.386 1.456 1 -2.265 1.890 0.956 0.101 2.985 1.811 
8 1-2.181 1.055 11.11098 -2.530 0 1.880 1.041 -1.482 2.255 1.032 0.719 2.883 1.832 
9 9 -1.377 3.820 1.050 -2.788 4=. 296 1.815 -1.819 2.333 1.129 0.372 4.755 2.381 
110 0 10 -1.888 2.853 1.275 -1.989 0.795 0.952 -2.664 1.767 1.302 0.638 3.586 2.056 
11 -1.789 1.499 1.058 -1.228 1.653 0.575 -1.666 1.483 0.836 0.407 2.279 1.466 
12 --- --- --- --- --- --- --- --- --- --- . .............. --- ......... ..... .......... ......... . --- 
13 -2.632 2.756 1.359 -1.808 1.897 1.000 

......... ..... .. -2.720 . 
1.018 1.042 0.176 3.413 1.983 

14 -3.218 3.844 2.045 -3.586 3.869 2.084 -2.426 2.300 1.553 2.074 4.650 3.307 
15 -5.177 9.822 5.215 -7.758 10.727 5.163 -8.542 6.575 4.530 2.960 11.759 8.624 
16 --- --- --- --- --- --- --- . 777, --- --- --- 
17 -1.836: 1.579 1.047 -4.981 2.440 2.077 -5.125 1.721 1.909 0.887 5.984 3.009 
18 -5.117 2.694 1.761 -3.447 3.439 1.923 -2.699 3.504 1.626 1.424 5.159 1 3.073 
19 --- --- --- --- --- --- --- --- --- 
20 -2.009 2.355 1.276 -1-888 0.857 0.806 -1.350 0.665 0.532 0.327 2.651 1.600 

21 -4.464 3.068 2.755 -7-869 3.479 3.579 -T449 6.757 3.654 0.668 10.136 5.809 

22 -1.377, 2.429 1.061 -2-120 2.714 1.398 -1.650 2.003 003 1. 0.579 3.166 2.022 

23 -4.317 4.648 2.561 -3.364 2.964 1.798 -3.790 1.269 1.743 1.723 5.382 3.582 

24 -2.958: 0 9.95 0 

] 

3.371 -4.994 5.262 2.712 -9.414 2.101 3.995 0.608 12.279 5.889 

25 -5.574 4.666 2.826 -3.351 4.862 2.302 -5.955 3.325 3.150 0.654 7.247 4.817 

26 
27 -6.259 

3.219 
4.135 

1.435 
2.958 

-0.926 
--2.428 

2.259 
4.158 

0.761 
2.116 

-2.732 
-7.280 

2.078 
6.290 

1.152 
3.536 

0.196 
1.407 

3.413 
7.8 

'q 

1.991 

_5.072 
28 -1.516 1.567 0.943 -1.259 1.552 0.935 -1.902 1.690 1.043 1.440 2.013 1.689 

29 -2.015 

1 
1.974 0.939 - 1.12 0.9184 0.574 -1.736 1.329 0.789 0.350 2.271 1.354 

30 -1.642 2.955" -1.2724 I 
-1.402 

him" 2.995 10 1.102 -3.039 2.696 1.627 0.603 3.672 2.341 

31 -1.679 2.530 

P1.283 

1 -2.548 ...... ..... ... 
3.184 1.497 -2.316 1.911 1.232 0.139 4.308 2.326 

32 .......... ..... 
University of New Brunswick 

Department of Geodesy and Geomatics Engineering 

(GPS Lab, 2004) 

266 



Appendix-F GPS Broadcast Ephemeris Accuracy Statistics 

Table F. 2: GPS broadcast ephemeris accuracy statistics 
(compared with IGS final orbit) 

Year 2002, Day 203 
Overall R. M. S. = 4.70 m 

PRN X [M] Y [M] Z [MI 3D [m] 
min max T. M. S min max r. m. s min 

. ... ....... ........... .. 
max r. m. s min max r. m. s 

1 -4.444 4.526 2.203 -7.834 8.197 4.579 -3.875 3.679 2.477 1.717 8,542 5.653 
..... .... ..... 2 -3.212 3.884 1.643 -4.326 2.910 2.028 -2.755 3.418 1.578 0.712 5.336 3050 

3 - 1.817 2.191 
WMiMMO. Mb- 

1177 
1.01 -- -2326 3.945 1.755 -2.367 3.973 1.575 0.666 

"b""M 
4.795 2.636 

4 -4.944 3.397 2.452 -3.936 6.529 3.471 -4.099 2.004 1.979 0.458 8,385 4.688 
5 -5.021 1.897 2.043 -4.830 4.037 2.353 -4.661 5.619 2.785 1.345 6.094 '70 4.1, -, ------- - ....... 6 -5.530 5.712 3.235 -4.173 5.297 2.247 -6.221 1.360 3.401 1.412 6.402 5.204 
7 -1.847 1.554 0.933 -2.525 3.006 1.612 -2.151 1.352 0.817 0.356 3.538 2.033 
8 -5.297 3.510 1.974 -2.537 4.743 2.265 -1.686 4.570 1.7 7.17-5 3.7 
9 -2.840 3.112 1.326 -2.918 0.892 0.981 

...................... -2.528 3.183 1.619 0.484 4.340 2.311 
10 -2.807 3.063 1.639 -1.688 2.280 1.019 -4.184 0.814 1.677 0.776 4.470 2.557 
11 -2.720 1.582 1.337 -1.145 1.384 0.623 -1.939 1.688 0.950 0.637 2.831 1.754 
12 --- --- --- --- --- --- --- --- --- . ......... --- --- --- 
13 -2.917 1.862 1.553 -2.137 2.179 1.006 -2.322 0.590 0.894 0.638 3.737 2.055 

14 -3.114 3.496 2.047 -4.036 4.869 2.374 -2.218 2.346 1.372 2.065 4.943 3.422 

15 -18.590 10.178 8.967 
................ -19,360 9.411 6.905 -20.823 11.930;, 8.420, 

..................... .... ...... 
2.522 26.435 14.106 ,J 

16 --- --- --- --- --- --- 
17 -3.103 1.288 1.230 -3.741 3.191 1.934 -4.165, 1.502 1.717 0.682 4.966 

. 
2.864 

18 
19 

-2.033 
--- 

2.204 1.330 
. ....... .. 

--- 
-3.376 

--- 

3.328 

--- 

1.911 

--- 
-2.331 1.963 1.086 0.874 3.915 2.5 69 

20 -3.413 3.538 2.207 -2.766 2.047 1.728 -2.580 ............. . .... .. 
1.487 1.148, 

1 

1.607 4.599 3.029 

21 -4.528 2.929 2.772 -8.500 3.214 3.729 -7-514 6,433 3.417 0.657 10.504 5.768 

22 
23 

-1.258 
-5.232 

2.989 
3.932 

1.198 
2.669 

-2.276 
-4.794 

3.283 
2.694 

1.277 
2.167 

-3.252 
-3.586 

2.099 
0.975 -Lý3-49-1 7009 

1.564 1.840 
3111.7ý24 
5.860 

2.1.210 
3.777 

24 20.308 9.880 7.427 -7.693 10.236 5.180 124 -17.124 6.209 6,592 1.302, 22.356 11.201 

25 -3.748 4.518 2.61 7 -2.977 1.747 1.367 -2.588 1.730 1.512 0.654 4.893 3.317 

26 
27 

-2.446 
-3.487 

3.920 
3.348 

1.252 
1.626 

-1.757 
-1.041 

1.318 
1.941 

0.642 
0.922 

-1.850 
-1.996 

1.636 
3.1 00__ 

0.924 
1.516 

0.348 
0.844 

4.146 
4.261 

1.684 
2.407 

28 
29 

-2.725 
-3.039 

1.624 
3.025 

1.657 
1.649, 

-3.584 
-2.745 

2.263 
6.188 

1.851 
2.805 

-3.462 
-3.266 

3.060 
2.445 

1.816 
1.367 ý 

1.881 3.844 3.078 
1.244 6.771 3.529 

30 0 -, 2.760 1.954 1.405 -3.377 2.472 1.314 -2.929 3.647 2.099 1.656 3.906 2.847 

31 Z. 0 1 2.011 2.499 1.279 -2.181 2.345 1.346 2.455 2.758 1.472 0.521 3.665 2.370 

32 --- ......... 
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Appendix-F UPS Broadcast Ephemeris Accuracy Stat"st"(" 

Table F. 3: GPS broadcast ephemeris accuracy statistics 
(compared with IGS rapid orbit) 

Year 2002, Day 202 
Overall R. M. S. = 3.73 m 

PRN X [M] Y [M] Z [M] 3D [m] 
. ffiwoý min -. Nk&-, - -, - -- , max ,, - r. m. s min max r. m. s 1 11 1 min max r. m. s min 

1 

max r. m. s 
1 -5.338 5.352 2.505 -8.266 6,482 4.342 -3.496 3.546 2.190 1.397 8,541 5.471 
2 -3.143 4.047 1.825 -4.325 3.962 

.............. 
1.963 -2.427 3.961 

.......... 
1.657 0.214 5.386 

. 
3.152 

3 -2.196: 1.199 0.785 -1.077 1.617 0.744 -1.204 2.197 0.787 0.322 ............ ............ 2.579 1.337 
4 -4.433 3.313 1.982 -4.976 6.908 3.287 -5.597 2.645 2.631 0.606 9.348 4.653 

1 

5 1-3.245 2.326 1.704 -3.062 2.799 1.889 -1.567 1.653 0.876 0.893 4.172 2.691 
6 -6.916 7.961 4.685 -4.160 3.032 1.950 -6,280 -0.581 3.211 0.843 1 '14 0.1) 6.005 
7 -0.395 1.487 0.507 -2.845 2.381 ý 1.4521111 -2.251 1.901 

_0.956 
1 2.972 1.811 

8 -2.155 1.056 1.103 -2.494 1.865 1.031 -1.461 2.230 1.026 0.721 2.852 1.825 
9 1-1.384 3.825 1.053 -2.773 4.309 1.818 

i& - _-1.805 
2.328 1.127 0.385 4.771 

".., 1".. " 
2.384 

10 -1.857 2.814 1.252 -1.980 0.824 0.947 -2.626 1.769 1.286 0.648 3.516 ffowiffiwffiffý 2.029 
11 -1.784 1.545 1.059 -1.235 1.657 0.574 -1.692 1.486 0.851 0.383 2.295 1.475 
12 --- --- --- --- --- --- --- --- --- --- --- -- --------- -- .... 13 -2.650 2.763 1.364 -1.808 1.889 1.003 -2.679 1.022 1.034 0.233 MW 3.374 1.984 
14 -3.228 3.859 2.050 -3.602 3.909 2.087 -2.436 2.287 1.558 2.094 4.656 3.314 
15 

..... -5.175 . ..... .... 
9,825 5.176 -7-790 10.765 5.361 -8,574 6,611 4.538 2.952 11.741 8.725 

16 --- --- --- --- --- 
17 -1.805 1.577 

........ . .... ... 
1.045 -4.975 . ... .......... . 

2.439 2 . 08O -5.103 1.740 1.903 0.876 5.971 3.007 

18 -5.116 ........... 
2.725 1.763 -3.455 3.472 

f E 

1.933 -2.723 3.494 1.639 1.444 5.160 3.087 

19 --- --- --- --- --- --- --- 
20 -1.983 2.321 1.266 -1.877 0.857 0.798 -1.334 0.683 

. 
0.533 

. .... ..... - .......... . .......... 
0.344 2.624 1.588 

21 -4.484 3.089 2.765 -7.893 3.464, 
_ .. .... _, 

3.588 -7,492 6,764 3.669 0.644 10.173 5.830 

22 -1.378 2.395 1.054 -2.128 2.711 1.398 -1.622 2.021 1.001 0.570 3.158 3.158 2.017 

23 -4.275 4.645 2.549 -3.366 2.978 1.803 -3.757 1.274 1.733 
.... . .. .... 

1.7,27 9 5.389 3.571 

24 -3.007 9.631 3.247 -5.270 5.283 2.771 -9.089 2.075 3.905 0.789 9 11,916 5.785 

25 -5.572 4.661 2.824 -3.354 4.873 2.307 -5.961 3.323 3.154 0.661 7,254 4.821 

26 . ............ . 
-3.130 3.179 1.428 -0.922 2.273 0.765 -2.762 2.083 1.161 0.211 3.415 1.993 

27 -6.235 4.122 2.946 -2.377 4.157 2.106 -7,24.1 6,278 3.524 1.395 7.752 5.052 

28 - 1.467 1.593 0.935 -1.264 1.535 0.935 -1.876 1.677 1.034 1.415 : 
.... ... 

2.030 
. ........ 

1.678 

29 -2.006 1.955 0.936 -1.107 0.969 0.574 -1.758 1.34,4 0.795 0.365 2.248 1.356 

30 
31 

-1.621 
-1.676 

2.955 
2.546 

1.270 
1.283 

-1.426 
-2.506 

2.987 
3.203 

1.102 
1.488 

-3-009 
-2.287 

2.709 
1.903 

1.626 
1.226 

0.629 
0.164 

3.669 
4.341 

2.339 
2.315 
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Appendix-F GPS Broadcast Ephemeris Accuracy Statistics 

Table F. 4: GPS broadcast ephemeris accuracy statistics 
(compared with IGS rapid orbit) 

Year 2002, Day 203 
Overall R. M. S. = 4.69 m 

PRN 

min 

X [M] 

max r. m. s min 

Y [M] 

max r. m. s min 
Z [M] 

max r. m. s min 
3D [m] 

max r. m. s 
1 -4.462 4.545 2.208 -7,837 8.201 4.580 -3.896 3.689 2.490 1.732 8,543 5.662 
2 -3.280 3.787 1.639 -4.381 2.946 2.049 -2.694 3.404 1.563 0.722, 5.288 3.055 
3 -1.829 2.192 1.182 

, -2.336 3.915 
............ - 

1.746 -2.336 3.982 1.572 0.652 4.785 2.630 
L4 

'. 
i -4.921 3.388 2.436 -3.927 6.495 3.438 -4.109 

1 1.98"5, 1.979 0.454 8,356 4.655 
5 -5.018 1.902 2.046 -4.858 4.018 2.360 -4.697 5.588 2.783 1.361 6.103 4.184 
6 -5.538 5.698 3.238 -4.192 5.281 2.243 -6.229 1.362 3.397 1.419 6.408 5.201 
7 -1.807 

1 1.543 0.914 
- -2.477 - 11111 - .. ' .-.. 

3.001 
. 1. 

1.597 -2.122 MOW 
1 1.359 

" 
0.811 0.376 3.474 2.011 

8 -5.292 3.497 1.967 -2.498 4.729 2.258 -1.679 4.564 1.931 0.157 7,164 3.563 
91 -2.823 3.192 1.332 -2.955 07811691 

..... ..... 
0.992 ý -2.519 3.210 1.622 0.459 4.412 2.322 

10 -2.801 3.040 1.629 -1.704 ý4 2.271 1.018 -4.207 0.787 1.682 0.785 4.487 2.553 
11 -2.750 1.633 1.355 -1.216 1.439 0.666: 

WNW -1.968 1.727 0.969 
awwwwwwwwo. 

0.715 2.866 1.794 
12 --- --- --- --- --- --- --- --- 
13 -2.904 1.820 1.533 -2.105 2.179 0.998 -2.306 0.595 0.890 0.622 3.718 2.034 
14 -3.112 3.494 2.048 

''" -4.021 I" 
4.886 

" 
2.373 -2.218 2.328 

; 
1.380 

....... ...... . 
2.074 4.962 3.424 

15 : -18.577 
wwwý 10,175 8.965 -19,345 9.381 6.896 -20-813 11.92 4 8.416 2.527 26.429 

..... .... . 
14.098 

16 --- --- 

1 

--- --- 
17 -3.101 1.300 

........ 
1.231 

....... . -3.720 1,1111,311,1 
8211"I'll : 1.933 -4-150 1.495 

. 
111.17 11.12.1111, 0.684 4.953 2.860 

18 -2.042 2.201 1.327 -3.376 3.347 1.908 -2.339 1.940 1.092 0.893 3.932 2.568 

19 --- --- --- --- --- --- --- --- --- --- --- 
20 -3.417 3.512 2.211 

I'll, -2.764 2.074 1.733 -2.597 1.524 1.161 1.625 4.569 3.040 

21 
22 

-4.530 
-1.266 

2.924 
2.982 

2.777 
1.197 

-8.502 
-2.280 

3.218 
3.273 

3.732 
1.273 

-7.533 
-3.241 

6.428 
2.116 

3.425 0.676 
1.345 1.013 

10.515 
3.712 

5.777 
2.205 

23 -5.211 3.923 2.663 2.663 -4.768 2.684 2.165 -3.570 0.992 1.558 1.838 5.837 3.769 

24 14 -20.310 9.880 7.446 7.446 -7.692 10.251 5.212 -17.144 6,206 6.461 1.290 22.362 11.151 

OE 5 25 

P25 

-3.744 4.554 629 2.629 629 -2.972 1.723 1.369, -2.600 1.737 1.517 0.680 4.934, 3.330 

2 26 -2.429 3.897 1.240 1 1.240 -1.761 1.302 0.641 -1-845 1.629 0.922 0.344 4.120 1.673 

27 
28 

-3.481 
-2.707 

3.333 
1.634 

1.628 
1.659 

-1.042 
-3.558 

1.922 
2.273 

0.919 
1.859 

-1.993 
-3.461 

3.078 
3.074 

1.503 
1.820 

0.825 
1.920 

4.256 
3.8 

' 
09 

2.398 
3.085 

9 
- 30 

31 

-3.056 
F2.775 - 

-2.008 

3.030 1.647 
1.948 1.410 
2.506 1.271 

-2.738 
-3.395 
-2.152 

6.176 
2.460 
2.324 

2.804 
1.315 
1.327 

........... 

-3.255 
9 

9 

E32 

-2.439 

2.444 
3.640 
2.76,2 

1.365 
2.099 

. ... ... 1.468 .1 

1.245 
1.646 
0.502 

6.760 
3.919 
3.660 

3.527 
2.850 
2.352 
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Appendix-F UPS 
-Broadcast 

Ephemeris Accuracy Statistics 

Table F. 5: GPS broadcast ephemeris accuracy statistics 
(compared with IGS predicted (UltraRapid) orbit) 

Year 2002, Day 202 
Overall R. M. S. = 3.44 m 

PRN X [M] Y [M] Z [m] 3D [m] 
min max r. m. s min max r. m. s 

Now 
min max r. m. s min 

... 
Pax 

........ ----- ------------- ... --, 
r. m. s 

1 -5.390 5.340 2.512 - E-3 04 6.457 4.351 -3.498 3.602 2.185 1.434 &584 5.479 1 
2 -3.225 4.111 1.840 -4.269 3.933 1.990 -2.515 4.124 1 1.716 0.163 5.405 3.208 
3 

ow"ý. - -1.965 1.154 0.729 -1.027 W 
1.814 

. 
0.830 -1.118 I'll., ............ -. -- 

2.127 
. 11111.111 

0.772 
11-1-1-11 

0.393 2.491 1 1.348 
4 -3.824 2.651 1.444 -4.390 5.830 2.616 -4.904 2.241 2.321 0.979 7,955 1 3.784 
5 -3.173 2.389 1.717 -3.121 2.956 1.976 -1.573 1.574 0.862 0.974 4.152 2.756 
6 -6.859 7.872 4.612 -4.083 2.921 

................ 
1.902 -6.201 -0.604 3.166 0.884 9.915 5.909 

7 -0.474 1.702 0.573 -2.825 2.238 1.427 -2.232 1.819 0.890 0.044 2.961 1.776 
81 -2.092 0.941 1.096 -2.483 1.829 1.036 -1.430 2.147 1.021 0.680 2.782 1.822 
9 -1.437 3.734 1.109 -2.902 4.573 1.949 -1.980 2.437 1.172 0.319 5.021 2.530 
10 -2.134 2.199 1.089 -2.358 1.148 0.944 -3.051 2.216 1.414 0.495 3.129 2.019 
11 -1.778 1.622 1.075 -1.186 1.553 0.599 -1.682 1.504 0.808 0.125 2.280 1.473 
12 --- --- --- --- --- --- --- --- --- --- --- --- 
13 -2.659. 2.921 1.410 -1.920 2.000 1.043 -2.822 2 1.108 1.06911 3.546 2.054 
14 -3.216 3.779 2.023 -3.512 3.840 2.032 -2.441 1 2.312 1.533 2.066 4.429 3.252 

1 15 -4.775 9.115 4.638 -7.282 9.614 
..... ..... 

4.789 -7.434 6,201 4.057 2.879 10.346 7.804 

16 --- --- --- 
........... . 

--- --- --- --- --- --- --- --- 
17 -1.812 1.451 0.952 -4.728 2.368 1.926 -4.997 1.725 1.818 0.851 5.686 2.815 

18 -5.453 3.262 2.009 -3.902 3.988 2.216 -3.043 3.704 1.846 1.763 5.506 3.515 

19 --- --- --- --- --- --- --- --- --- --- 
20 -2.066 . 3 83 2 1.305 -2.017 1.084 0.898 -1.425 0.841 0.588 0.496 2.727 1 1.689 

21 --- 
" '. 
--- --- -77- --- --- --- --- --- --- 

22 -1.499 2.532 1.098 -2.169 2.869 1.426 -1.820 1.878 1.021 0.469 3.379 2.069 

23 -4.354 4.741 2.584 -3.158 3.062 1.764 -3.859 1.405 1.783 1.707 5.524 3.601 

24 -3.323 2. 5 76 1 . -41.115.1-9 6.298 2.685 -4.606 2.013 2.532 0.520 6.434 3.937 

25 -5.517 
1 1 . 4.762 1 2.817 -3.547 4.884 2.362 1 -5.877 , 

3.473 3.198 0.711 7.197 4.872 

26 -3.088 3.232 1.421 -0.870 2.288 0.774 -2.808 2.040 0.198 3.396 1.990 

27 

1 

-6.367 4.125 2.997 -2.401 4.236 2.132 -7.307 6,293 3.523 1.478 7.850 5.094 
............. 28 ...... . 

-1.509 1.627 0.959 -1.266 1.519 0.92 1.817 1.691 1.029 1.417 2.072 1.683 

29 -1.959 2.147 0.954 -1.206 0.922 0.589 -1.724 1.219113- 
IWO. 

782 0.41417111- 
1111-2.469 

1.367 

30 -1.650 3.082 1.325 -1.449 3.108 1.139 -3.089 2.78111- 0.656 3.861 2.434 

31 
32 

-1.732 2.584 1.299 -2.618 
--- 

3.26 

--- 

1.521 

--- 
-2.417 1.974 1.273 0.. 17-0 4.4 1-5- 2.371 
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Apnendix-F GPS Broadcast Ephemeris Accuracv Statistics 

Table F. 6: GPS broadcast ephemeris accuracy statistics 
(compared with IGS predicted (UltraRapid) orbit) 

Year 2002, Day 203 
Overall R. M. S. = 8.22 m 

PRN: X [M] Y [M] Z [M] 3D [m] 
min max r. m. s r. m s min mi mi max r. m. s min max r. m. s min 

.......... 
max r. m. s 

1 -4.500 4.674 2.2 2 6=1 , 2.261 7=8 2 -7.88- 8.337 4.618 -3.869 3.669 2.494 1.857 8.685 5.715 
2 -3.259 3.885 1.628 

ý 
.9 .9 -3.981 3.732 2.043 -2-900 3.531 1.570 

.......... 
0.306 5.410 3.048 

3 -1.783 2.255 1.161 -2.424 4.034 1.805 -2.404 4.113 1.598 0.633 4.936 2.676 
4 -4.731 2.997 2.391 -3.957 6.708 3.358 -4.726 3.091 2.302 0.872 8.741 4.721 
5 -5.135 1.952 2.080 -4.828 4.061 2.353 -4.737 5.735 2.833 1.362 117 6. ............. ............ ......... 4.230 
6 -5.499 5.733 3.228 

....................... -4.118 5.278 2.240 -6.269 1.357 3.399 1.454 6.446 5.195 
7 -1.670 1.449 0.866 -2.514 2.889 1.553 -1.982 1.242 0.753 0.429 3.408 1.931 
8 -5.115 3.458 1.902 -2.449 4.578 2.184 -1.573 4.350 1.868 0.282 6.927 3.447 
9 -2.725 2.891 1.244 -2.735 0.822 0.924 -2.428 2.920 1.530 0.404 3.991 2.178 
10 -2.785 3.008 1.610 -1.731 2.178 0.985 -4.363 0.763 1.705 0.812 4.645 2.543 
11 -2.756 1.695 1.312 -0.790 1.454 0.553 -2.090 1.866 1.002 0.549 2.866 1.741 
12 --- --- --- --- . .... ....... --- --- ......... .. 77 --- 
13 -2.716, 1.729 1.440 -1.944 2.040 0.910 -2.078 0.573 0.807 0.518 3.429 1.885 
14 -3.133 3.591 2.077 -4.048 4.955 2.392 -2.266 2.413 1.390 2.191 5.039 3.460 
15 -41.6)8 16.677 23.246 -49.801 1,320 22.264 -46.370 52.220: 22.218 3.674 65.860 39.111 
16 --- --- --- --- --- --- --- --- --- --- --- --- 
17 -3.492, 1.306 1.388 -3.417 3.322 2.044 -5.135 2.151 1.827 0.787 5.977 3.073 

[=8 
-2.078 2.306 1.384 -3.499 3.498 1.9 9 1.989 -2.377 1.981 

j 
1'. 1 13 0.871 1 4.071 

...... ..... 
2.666 

19 --- --- --- --- --- --- --- . 
20 -3.371 3.518 2.173 -2.770 2.051 1.719 -2.542 1.533 1.138 1.586 4.496 2.995 
21 -4.526 2.895 2.742 -8.510 3.196 3.724 -7.435 6,578 3.419 0.636 10.447 5.751 

22 -1.172 2.830 1.185 -2.202 3.098 1.234 -3.069 1.984 1.300 0.932 3.510 2.149 

23 -5.206 4.056 2.693 -4.745 2.705 2.131 -3.302 1.035 1.439 1.835 5.748 3.723 

24 
25 

--- 
-3.911 

--- 
4.898 

--- 
2.712 

--- 
-3-196 1.838 

--- 
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Figure (7.1): Reduced Dynamic Solution for stand alone simulated GPS receiver 
(GPS Broadcast Ephemeris) 
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Figure (7.2): Reduced Dynamic Solution for Standalone simulated GPS receiver 
(GPS Broadcast Ephemeris) (two day arc) 
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Figure (7.3): Reduced Dynamic Solution for stand alone simulated GPS receiver 
(IGS UltraRapid GPS Orbits) (one day arc) 
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Figure (7.4): Reduced Dynamic Solution for Standalone simulated GPS receiver 
(IGS UltraRapld GPS Orbits) (two days arc) 
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Figure (7.7): Reduced Dynamic Solution for stand alone simulated GPS receiver 
(IGS Rapid GPS Orbits) (One day arc) 
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Figure (7.6): Reduced Dynamic Solution for Standalone simulated GPS receiver 
(IGS Rapid GPS Orbits) (two day arc) 
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Figure (7.7): Reduced Dynamic Solution for stand alone simulated GPS receiver 
(Precise Ephemerls)(IGS Final Orbits) (one day arc) 
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Figure (7.8): Reduced Dynamic Solution for Standalone simulated GPS receiver 
(Precise Ephemeris) (IGS Final Orbits) (two day arc) 
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Figure (7.9): Reduced Dynamic Solution for stand alone GPS receiver 
(Real Data) (one day arc) 
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Figure (7.10): Reduced Dynamic Solution for stand alone GPS receiver 
(Simulated Data) (one day arc) 
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Figure (7.12): Reduced Dynamic Standalone Solution for simulated GPS receiver 
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Figure (7.13): Reduced Dynamic Differential Pseudo-range Solution 
for simulated GPS receiver 
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Figure (7.14): Reduced Dynamic Differential Carrier-phase Solution 
for simulated GPS receiver 
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Figure (7.15): Reduced Dynamic Standalone Solution for simulated GALILEO receiver 
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Figure (7.16): Reduced Dynamic Differential Pseudo-range Solution 
for simulated GALILEO receiver 
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Figure (7.17): Reduced Dynamic Ditferential Carrier-phase Solution 

for simulated GALILEO receiver 
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Figure (7.18): Reduced Dynamic Standalone Solution for simulated Combined 
GPS/GALILEO receiver 
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Figure (7.19): Reduced Dynamic Differential Pseudo-range Solution for simulated 
Combined GPS/GALILEO receiver 
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Figure (720): Reduced Dynamic Differential Carrier phase Solution for simulated 
Combined GPS/GALILEO receiver 
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Figure (7.21): Reduced Dynamic Standalone Solution for simulated GPS- 

modern lsed/GALILEO receiver 
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Figure (722): Reduced Dynamic Differential Pseudo-range Solution for simulated GPS- 
modem lsed/GALILEO receiver 
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Figure (7.23): Reduced Dynamic Differential Carrier phase Solution for simulated GPS- 

modern ised/GALILEO receiver 
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Figure (724): Reduced Dynamic Standalone Solution for simulated Combined 
GPS/GALILEO receiver (21/7/2002-22/7/2002) (Weight towards Observations) 
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Figure (7.25): Reduced Dynamic Standalone Solution for simulated Combined 

GPS/GALILEO receiver (22/7/2002-2317/2002) (Weight towards Observations) 
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- radial 
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Figure (7.26): Reduced Dynamic Standalone Solution for simulated Combined 
GPS/GALILEO receiver (23/7/2002-24f7/2002) (Weight towards Observations) 
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Figure (727): Reduced Dynamic Standalone Solution for simulated Combined 

GPS/GALILEO receiver (21/7/2002-22f7/2002) 
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- radial 
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Figure (728): Reduced Dynamic Standalone Solution for simulated Combined 
GPS/GALILEO receiver (22t7/2002-23f7/2002) 
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Figure (729): Reduced Dynamic Standalone Solution for simulated Combined 

GPS/GALILEO receiver (23/7/2002-24t7/2002) 
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