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SU121"Am. 

The complex nature of solving microwave circuit 

problems with their many varied boundary conditions, precludes 

direct analysis utilising the basic 1&ws involved. This thesis 

describes methods that have been developed to determine the 

defining parameters of such problems. The methods are based on 

nxmerical techniques, usirW, a digital computer to perform the 

calculations. 

The finite difference and element techniques are 

reviewed briefly and extensions made into the analysis of three 

dimensional configurations. The difficulties of such methods 

are also discassed. The evolution of the steady state transmission 

line element method from the finite difference/element techniques 

is shown to possess many distinct advantages over the more 

conventional techniques, notably that of the ease in which it is 

fonmlated. 

Examples of rectangular, circular arul elliptical-wave 

guide analysis are shown, and comparisons formed with finite 

difference/element analysis where necessary. Proposals are also 

introduced whereby the method may be utilised to provide a wide range 

of microwave characteristics, with little or no alterations to 

existing procedures. The adaptation to other fields of interest, 

such as those associated with structural or fluid dynamics was also 

briefly noted. 



ACIMT05=00ITS. 

The author wishes to extend his thanks to 

Mr. P. B. Johns for his continual advice, encouraZement and 

interest throughout this project. 

Professor J. E. I)arton for extending to him the facilities 

of the Electrical and Electronic ý, nSineerine Department. 

The Science Research Council for providing_ financial assistance. 

Marilyn Slater, the author's Nvife,, for her patience an(i 

uncle r.. -, t andinZ. 



rarts of this thosis hava bcen submitted for publication as 

(i) Slater, G. F. , and Johns, P. B. : 

Solution of waveguidc, problems by steady state analysis 

of a tran=ission-line matrix. 

Submitted to Proc. 

(ii) Johns, P. B. , and Slater, G. F. : 

Transient analysis of waveZuides with curved boundaries. 

Submitted to Electronic Letters. 



TABLE OF CONTENTS. 

Page 

MAIVER I 1WRODUCTION . .................................. I 

allAPIZR 2. , FIVITE J)IFFLPMCEIFINIT. Ul EI04N2 nMUJIATION 
OF THE EMMLTZ SiýUATION . ..................... 

2.1. Finite difference formulation using. a Taylor 
, Series expansion ................... 11 

2.2. Finite Blement Foxmulation *** ............ * ..... *.. 15 

2.30. Method. - of solution of the derived matrix 
eigenvalue. problems *I .............. 0 ...... 0 ...... 0 23 

2.3-1. Indirect methods *.. *# .... **.. I* .......... 24 

2.3.2. Direct methods .... 0.04*. 0*9*a0... *..... 30 

2.4. Three dimensional finite elements .0.... ... 32 

2.4.1. Solution of Homogeneous cavities 33 

2.4.2. Solution of-Continuous microstrip 
in three dimensions 39 

2.4-3. Solution of inhomogemous cavities 44 
2.5. Discussion and Conclusions ..... 51 

V 

ChAPIER 3. COLMARISON 01' LINEAR INTERNODAL, FUNCTIONS 
AND CIRCULAR INaRNODAL FUNCTIONS ............ -57 

3. 1. Upper and lower bounds of the finite element and 
finite difference formulations .. * ........ 58 

3. 2. Application of the operator A ....... 
61 

3. 3. Two dimensional applications 70 

3. 4. 11a=ell' s field equations and the basic 
transmission line equations 000000000** ... 83 

3o 5o Discussion and Conclusions 4,0*000 ... 0000000*00000#4 87 



Page 

CH"TER 4.11M APPLICANION OF FINITE TRANSIAISSION LINE 
MAMMUS TO WAVEGUIDES OF A GEY&RAMSM 
CROSS-SIXTION ............................... 92 

4.1- Inhomogeneously loaded waveguide 93 
4.1.1. ISE mods structures 0 '93 
4.1.2. MI mode structures 0 96 
4.1-3. LSE mode within a rectangular cavity, 98 

4-1-4- Inhomogencous waveguides - conclusions 100 

4.2. Irregular mesh of transnission lines 0. aa0. a0 104 
4.3. Circular, and elliptical waveguides ..... 0.00-00.. log 

4.3-1. Cylindrical coordinate representation 
of circular waveguide 112 

4.3.2. Circular and elliptical waveguides 
conclusions 117 

CHAPTER 5. TBE ANALYSIS OF NON-IUCTANGULAR GEOUETRIES 
USING THE TRANSIENT APPROACH OF THE 
TRANSNISSION LINE ELEMT NETHOD ............ 121 

5.1. The mechanics of the transient approach . ..... 00.4.0 122 

5.2. Transient analysis applied to inhomogencous 
waveguides ....................... 0 .... 127 

5.3- Transient analysis of vaveguides with curved boundaries ........... 129 

5.4. Conciusions ....... 00.60*0 136 

cHAPxER 6. CONCLUSIONS ........ ......... 0.00 141 

1EFERENCES ................................................ 146 

PRINCIPAL BMVMOLS ................................... ! .... 151 

09 -. 00 00.00.9.. 0 Ott*. 0 00 0 152 



-I- 

CHAPITR I. 

INTRODUCTION. 

The-area of microwave circuits is a branch of electromagnetic 

field theory and must therefore involve the physical lavIst described 

by Maxwells equations, forsuch a theory. Since these equations axe 

essentially partial differential equations., their solution must depend 

heavily on initial and boundary conditions. The large variety of 

such possible conditions eliminates any hope of obtaining simple 

analytical solutions for soma parameter or field descriptions for the 

structure involved. Consequently the engineer developing such 

circuitry largely resorts to-computer orientated numerical techniques 

enabling the circuit's performance and characteristics to be examined. 

The propagation of electromagnetic waves'are - governedby the 

now classical Maxwells equations 

VA K= 6D +J 
bt 

Vt 

0 

together with the relationships that concern the medium in which 

propagation occurs 

D=6, er E 

BH (1.2) 

j 

where describe the permittivityj permeability and 

conductivity of the medium, which is assumed to be homogeneous) 

isotropic and source free. 
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For propagation in a perfect dielectric, containing no 

charges and conduction cur-mnts, it can be shown that 

212 
6 Er 

V 2ýH 
606r 

t 

(1.3) 

Equations 0 
-3) are the vector wave equations ana by 

considering the field components of either the electric or magnetic 

field vectors, the vector wave equation reduces to that of the scalar 

wave equation 

7z Cý = I.. (1-4) 

where 4) represents any field component; ýL ý6 pr and G=C. F-r- 

If it is assumed that the electric or magnetic fields possess 

periodic variations in time such that they may be analysed in tems of 

the complex exponential function e 
jWt 

and also if a field dýependence 

-1Z in one direction is also assumed to be of the form e where W is a 

constant which typifies propagation and z is the direction where 

knowledge of the propagation is assumed, then the scalar wave equation 

(1.4) becomes 

mhere 

1 
Equation (1 

-5) is an elliptic partial differential equation 

and is known as the two dimensional Helmholtz equation. it is this 

equation which is widely used to detexmine the propagating characteristics 

and field desoriptions-of electromagnetic waves for a vast range of - 

microwave circuits and configurations. 
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Most of the present methods of solving equation (1 
-5) is 

to consider a region R bounded by a closed boundary S., over which 

equation (1 -5) is assumed to holdi, and is applicable to most of the 

present day microwave circuitry applications. Anumber of techniques 

are available to solve the two dimensional Helmholtz equation. Apart 

from the analytical methods which become restrictive due to the many 

boundary conditions that may be imposed on S, the development of high 

speed digital computers have enabled recourse to numerical procedures 

for evaluation of the particular parameters which are defined by the 

structure under analysis. 

The finite difference technique was applied to electromagnetic 

2 
waveguides and cavities as early as 1946 by Motz and entails dividing 

the region under investigation into a not of small but finite mash size. 

At each intersection of the net or node., the potential existing at1that 

node is expressed as a function of the potentials existing at the 

immediate neighbouring nodezs. In this manner a difference equation 

is formed at each node in the region considered,, resulting in the 

rqplacement of the scalar Helmholtz equation by_a large number of 

simultaneous linear algebraic equations. Subsequent investigations 
34 

closely followed, Collins and Daly, Davies and Muilwyk and mom 
6 

recently SinnA and Corr applied themselves to the devalopment of the 

method to include various arbitrary waveguide structures. 

A similar approach to the finite difference technique, the 

finite element technique,, was developed by ZienkiewiW for use in 

structural mechanics, but was also applied to vibrating membrane 

problems, which is a boundary value problem and for which Helmholtz's 

equation can be used to describe the particular modes of vibrations and 

displacements. Silvesteý, Arlett 
0, 

and Dal 
11 

applied this form of y 
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solution to the wave equation to similar regions as those 

investigated by finite difference techniques. The finite element 

method relies on a variational approacho which is based on the 

concept that the integral of some function typical of a system has 

a smaller value for the actual performance than it would have for 

any other assumed perfoxmance. The method approximates the region 

under consideration by polygonal sub domains or eler, -ants randomly 

orientated. within such sub domains the f ields are approximated by 

piecewise plane functions uniquely defined over eacl-i element. Use of 

these elements give rise to Vertices across the region at each 

of which the appropriate finite element equation is derivý-., d. As in 

the finite difference approximation a largc ntunber of simultaneous limar 

equations arise. 

The two methods briefly described above are by no means the'only 

ones available for solving the scalar Helmholtz equation, but are those 

most comnonly employed. There has, howevers been a flourish of now 

techniques and adaptive procedures to provide solutions to the wave 
12 

equation and have been reviewed briefly by Davies who proposes in 

answr to the question 'Which is the best method of solving our wave 

guide problemV that it is dependent on the requirements of the user; 

viz., as to what region is being analysed,, the suitability of the 

particular method to various waveguide geometries, the possibility of 

requiring dominant and higher modes, or field valuesjand also the main 

influential factor, computer running time and available store . This 

reasoning is essentially valid, but one factor not considered by manys 

a the dagree of ease výdth w hich any particular method is fo=ulated 

for computbAi0hal use. 
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It is proposed here to develop- a nethod v&ich incorporates. 

most if not all the points Davies raises, and which is basically 

simple in conception and use, a method to whiah an engineer can 

readily adapt himselfp since it contains no detailed mathematical 

procedures inherent in, such techniques described beforep other than 

that of basic transmission line theory. 

The first part of the investigations concerned reviewing the 

salient points of the finite difference/elewnt techniques, the 

difficulties encountered and the accuracy of solutions for, several 

spatial discretizations of the, regions analysed in two dimensions. 

The feasibility of analysing three dimensional structures by 

the finite element technique utilising a simple cubic element, derived 

in the text, was studied and initially applied to a homogeneous 

rectangular cavity producing results to a good degree of accuracy. 

The three dimensional analysis ahd element was also applied to a 

homogeneous rectangular cavity containing an axially continuous stripline. 

By minimizing. the stored electrostatic energy between the two 

conductors the characteristic impedance of the structure ýcould be 

calculated. The continuous microstrip structure also examined 

necessitated the inclusion of a dielectric slab. Because of the 

inhomogeneity of the, cavity and lacking a formal variational expression 

for such a configuration, a quasi-static approach -was assumed and again 

the characteristic impedance of the system calculated. _Both 

configurations gave reasonable solutions. The final part of this 

section, investigated the possibility of adapting the-variational 

propagation expression utilised in two dimensional analysis-to describe 

in a three di-mensional in homogeneous rectangular cavity. The derived 

expression, although an incomplete one., yielded surprisingly accurate 
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solutions for the structure, but the limitations produced by the 

derivation of the variational expression did not warrant further 

analysis for the general purpose of this investigation. 

Subsequent chapters producEdan entirely new numerical technique 

of solving microwave problems evolved from the methods Of finite 

differences/elements and consisted of modelling the crOss-seotion of 

various waveguide structuresýby a mesh of intersecting transmission 

lines. Identities were formed between the voltages and currents on the 

mesh of transmission lines with the field components that exist within 

a waveguiding system governed by Max%rells field equations. Essentially 

the method (the steady state transmission line element method) replaced 

the linear potential function between mesh intersections in the finite 

difference/element methods by a circular funotion-and could thus 

describe the field variations in waveguides of a rectanEular geometry 

exactly and provide a much improved solution, (than those of the finite 

difference/element techniques) to those geometries which are non- 

rectangular. 

The method possesses the advantages of providing solutionsp 

characterizing the cut-off of the dominant and higher ordered modes, 

to a good degree of accuracy for any shape of waveguide, together with 

the field descriptions throughout the structure. The method is easily 

fo=ulated since only basic transmission line theory is utilised and the 

solution to a large system of simultaneous linear algebraic equations 

is avoided. The computational store is minimal, all calculations being 

performed on a machine of immediate access store 12 kbyte and no backing 

store. No, attempt was made to form a generalised program to deal with 
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configurations of arbitrary shape,, due to the store limitations 

imposed by the computer used; most of the store being used to 

accommodate the description of the structure under investigation. 

Naturally, however, no difficulty is foreseen if a generalised 

program is to be written. The disadvantage of this method is the 

relatively long ma china run time that is required to obtain the 

solutions, because of the numerous trigonometrical calculations that 

have to be performed, and as yet no procedure has been produced to 

minimize the run time necessary. 

however, it must be appreciated that the steady state 

transmission line element method as it stands is still in a very 

early stage of development and is capable of affording a vast quantity 

of further interesting,, absorbing and worthwhile research. 
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CHAPTER 2. 

PINITS DIFFERENCE/FINISS ELEIMET FOMMUTION OF THE MUM= EQUATION. 
- 

Previous discussion implied that the most commonly used 

techniques to solve the two dimensional Helmholtz equation were those 

of finite difference and finite element approximations. It is accepted 

that the Helmholtz equation is that which governs the propagation of 

electromagnetic waves and since a dependence of P--4R was assumed for 

propagation in the z, co-ordinate direction, it is only necessary to 

restrict subsequent investigations to those concerning the cross-section 

of the particular structure to be analysed i. e. two dimensional regions R 

bounded by closed contours S. Two methods of investigation are considered; 

finite difference aPproximation of the Helmholtz equation using a Taylor 

series expansion., and an ahalysis using finite elements. Both methods are 

applied to a general multiply connected two dimensional region R, consisting 

of two subregions R, RR 2; 1 being bounded by C and C. and R2 by C as shown 13 
in fig. (2.1. ). Regions R, and P2 consist of unifomp seotiomUy constantp 

isotropic, source free dielectric media of relative permittivities rzr, , 
Crz 

respectively. The analysis for both methods is performed over the 

rectangular cartesian system of co-ordinates. 

The mode of propagation in such a structuna is governed by Maxwell's 

field equationax which in terms of their field components become 

; ýBz + as 

- W= -S EY, -j olk. HS 
bx 

ap-. ý - ; ýLEv. - Hz 

bx as 

ýRx +jw Ey, 
b3 

69-L -IHj0 E-o C-r; F-4 

ax 
21ý2 - MAX 
BY, aj 



cl 

C2 

Crt 

I C, I 

, it 

\22 

12 

I. 

Fig. (2.1. ) General =ultiply connected two dimensional region. 
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The transverse field components can however be expressed in terms 

of the axially directed field components., by suitaole manipulation of 

equation (2.1. ) yielding 

Eý =-1ý ýý5X e22 

j QýLo 

H Y. -j U3 E. erL Cýý 

(2.2) 

ýýEz 

with tRýL C_q + cut-off wave number 

and further manipulation yields the pair of Helmholtz equations 

AZ' i4Z (2.3a) 

2. 
Vs Ez -4- 1; ýt tz -0 (2.3b) 

thus E and H must satisfy equation (2-3) tog6ther with the necessary zz 
boundary conditions. 

ýHz 

an, 
ýIEZ =a on CI (electric walls) 
25Cýj 

- (2-4) 

CbEx = C:: ) j Hz an 0 ýHz =o on C2 (magrietic walls) 
-an., acm 

where a= spatial derivative tangential to the contour Ci and b spatial 
br-L SýVL 

derivative in the direction of the outward noxmal to C1. 
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On the contour C3i. e. the interface between the two media; 

(1) EH must be continuous 

(2) Tangential components of E, H must be continuous 

Wozmal components of D., B must be continuous 

Continuity of the tangential components of E across the interface C 

requims 

, r-, ý4 ýý - ( iýHL )ý 
= 

a 
- -cz 4 2ýýa - (2-5) 

n, 

Whilst cOntinuitY of the nozmal components of D across the interface C 

requires 

'Cl ri + ( Lz L I )I Cr- + ýEz (2.6) ar-, Lzýio n R, .3 U3 11. bnz R2. 

where x, a loss free system 

and týL 
02. 

Thus for an irliomogeneous re'gion R, the" axially directed field co=ponents 

must in, addition to satisfying equations (2.3) and (2-4),, satisfy equations 

(2-5) and (2.6) and the propagating mode is said to be hybrid due to the 

coexistence of. E 
z and Hz field co=ponents. 

For the case of a homogeneous region i. e. er. . Er in fig. (2.1) 

interfacial. boundary conditions do not exist and the problem reduces to that 

of seeking a solution to either equation (2-3a) (=, modes) or (2-3b) (TM modes) 

subject to the conditions of equation (2.4) 



- 11 - 

2.1. Finite difference fomulation using a Ta or Series e? Spansion. 

This method is already well documented 
3,13 

but will be reviewed 

brieflyv such that the salient points may emerge. The structure to be 

examined is shown in fig. (2.2. ). A regular cartesian mesh is imprinted 

on the region, such that the boundaries of the structure lie on the mesh 

lines. The mesh intersections or nodes are numbered in some ordered 

sequence and with each node i, there is an associated scalar magnetic 

potential H-I! ZL) and a scalar electric potential Yj (ý Ez such 
13 

that + and LP are dimensionally compatibleg Fig. (2-3-) shows a typical 

interior node with its four i=ediate neighbours.. each a distance hp the 

mesh Pitch, away from the centrally located mcle. In this manner the 

actual cOntinuous field is represented by the discretized field at each 

node on the cross sectional region R. 

Using Taylors series to expand the derivatives in equations (2.3a),, 

(2-3b) and assuming that (ý(xq) and q/(Y, )ý) and their derivatives are 

single valued., finite., and piecewise continuous functions at each nodep then 

-cl 72 Cýz 

1: 2 r=, 
tz. (2-7a) 

2- ("Cr: 
-, + T-26---L) Yo - -L 

(1: 
16, + 2-6; Lý4-1+ q-,: i) - r-161 Ytý- - -CZr=.,. q/2 

J; Zý (C-1 + C:;:,. ) Lýo (2.7b) 

represent the finite difference form of the potentials (ý. ) 
+,, at a 

typical interior interfacial node on the boundary CF, fig. (2.2). In their 

derivation the concept of #image, mdes is utilised such that the boundary 

conditions at the interface may be written into the formulation, yielding 

the coupling terms 

I(T 
4-: 3) 



.4 
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P 
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D 

Figy. (2.2. ) Structure to be analysed usiqg finito difference/alement 

tecliniquo-'s. 
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Fig- (2-3. ) Typical interior rod2., ,.,; ith ir=adjate mighbouring'nodos. 
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- 

- pig. (2.4. ) Right triangular element., 

z. 
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The finite difference fonn of the potentials ý. and4, at a node 

situated wholely in one of the homogeneous regions, can be obtained 

fmm equation (2-7) directly, by allowing 

T-, r=: L 
C-1 

for node in region 1. 

T-2. E% e2- for node in region 2. 

and equation (2-7) reduces to the familiar 5 point finite diffei: ence 

formulation of Helmholtz's equation., with the coupling terms automatically 

vanishing. 

Nodes on the boundariess however need special treatments yielding 

slight modifications to the generalised interior situated nodal equations. 

For a node on an electric wall C, (ABCDLI - fig. 2.2) 2 k, ý= 0 and an 

equation is unnecessary to describe the variation of the electric potential, 

further ý30, 
- a on the contour AB, and this condition is written into 

2)JI 
equation (2.7a) by stipulating 

In a similar manner nodes situated on the contours BD, M, give rise to 

wdified versions of the generalised equation. 

The magnetic wall conditions on C2 (Apz - fig. 2.2) require 
t4-= d? =0 2)x 

and the identical dual procedure to that for electric walls is performed.. 
Discussion, so far., has been restricted to the analysis of the 

propagation of hybrid modes such that the system of equations represented 

by equation (2.7) taken over all the nodes in the structure with the necessary 

boundary modifications must be solved simultamously. If the case where 

variation of the axially directed magnetic field in the x direction is 

zero is considered$, 2Ptý 
, 0) then a I'M mode can exist within such a 

ax 

structure satisfying the boundary conditions on the interface, viz. 

-C I(t, -), = -C'2(t! 
ý ) 

aj 
I 

a, 9 ; Z2 

izi fig. 
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The problem is then reduced to replacing the one dimensional 

Helmholtz operator by the appropriate finite difference operator at 

nodes along any one mesh line in the y direction,, the Seneralised 

equation for the finite difference form of the magnetic potential 

at the interface node being 

(2.8) 

with the modif ications' described previously being performed'fbr nodes 

situated on electricý or magnetic walls. 

Most structural problems to beanalysed do not usually possess 

boundaries which lie ori mesh lines-parallel to the co-ordinate, 

directions,, for examplep a circular boundary. Two main alternatives 

are then open to the user (a) to approximate the true boundary by 

mash lines, with a much finer mesh pitch, thus allowing the boundary 

to become deformed or (b) to allow the mash arm lengths - fig. (2-3)' - 

to be corrected so that nodes lie on the boundary, but the mash is'no 

14. longer regular everywhe! 4. 

I The mpeated application of equations (2-7) at each node in the 

region, with due consideration for-nodes at the boundaries, results in - 

approximating the Helmholtz equations (2.3a, 2.3b) by a series of 

algebraic equations in ý and Lý vhich must be solved similtancously. 

This may be 'written as a matrix eigenvalue problem of the form 

(9- XB) g=a (2.9) 

Where A has as its components, the coefficients of the ýIz and ' LVS 

defined by the left hand side of equation (2-7)p whilst B is similarly 

defined for the right hand side of equations (2-7), X is representative 

of the'structures wave number k2 and dependaht on the wsh pitch. 7- 
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is a square, sparse banded matrix and Ba diagonal matrix, both 

of order 2m, where m is the number of nodes defining the structure. 

Providing a regular mesh is used everywhere over the region, A will'be 

symmetric for electric walls completely surrounding the region, but this 

condition does not hold for the presence of a magnetic wall due to the 

presence of image points in this type of boundary. 6 is a column 

matrix of order 2m, whose elements consist of the potentials(ý, + at-each 

node in the structure. 

Since'Cl* is frequency dependgmt., the eigenvalue equation is >11 

solved for discrete values -of T-1 corresponding to investigations 

perfonned over a selected frequency band yielding a dispersion curve. The 

properties of A are further influenced by the choice of T-1 for in the 

range -Ci >0# (corresponding to the velocity of the propagating wave 

exceeding that, of light in free space), 4 is at least positive semidefinite, 

thus assuringL possesses real, nonnegative eigenvalues. For T-ý -<0 

(corresponding to the velocity of the propagating wave being less than 

that of light in free space). pthe eigenvalues associated with A can either 

be positive and negative or all negative 0 since A may no longer be positive 

definite and the eigenvalue corresponding to the dominant mode is 

mmally taken as the least negative one 
6. 

Ihe homogeneous system (C-r,. C-r ) requizes the solution to either 

(2.3a) or (2-3b) together with the boundary conditions at an electric or 

magnetic wall, since the absence of interface conditions in effect 

decouples the equations represented in equation (2-3)- Thus Tj 

eq= C-r. - C-r- , in either equation (2.7a) or (2-7b) yields the 

generalised finite difference form of the potential 4), or +. at a 

typical interior node, and application of this operator again forms a 

matrix eigenvalue equation similar to that of (2.9), with the properties 

of A., B as described above. 
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6 represents the scalar magnetic (TS modes) or scalar electric (TM modes) 

potentials and X becomes proportional to the cut off wave n=ber of 

the structure. However since -C-, is no longer frequency dependant, 

the eigenvalue equation has only to be solved once to obtain, ihe 

desired infomation regarding the fields and cut-off wave =mbers of 

the propagating modes. 

Although discussion has been restricted to the 5 point finite 

difference operator, improved accuracy can be obtained under certain 

conditions, by approximating the Laplacian operator by a9 point or 

even higher ordered difference oPeratorsIO. 

2.2. FINITE EL&IISRX FOBNAMAXION. 

Unlike finite differences,, which depends on constructing a set 

of difference equations involving field values at mesh points, to 

replace the differential operator, the theory of finite elements allows 

the two dimensional region to be divided into a finite number of 

polygons or elements over each of -which the field is expressed as a 

function of the fields at the vertices of the elcments. A variational 

expression is constructed for some parameter of the problem and 

minimization of the variational expression with respect to the field 

values existing at each vertex is performed. 

The principle behind variational methods is based on the concept 

that the integral of some function, typical of a system has a smiler 

value for the actual performance of the system than it wjuld have for 

any other assumed performance. , 6. variational expression which is 

stationary in k2P the wave number of the system, for the structure of 

fig. (2.1. ) is given by 
15 
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12 AR 

d PI 

where 

and thus T-i 

the variational expression J (t), Lý) can be shown to have as its Euler 

equations 
16 

-C, 7'ýý 4) + 1ý'Cý -0 
and 12ý'7-L E-rý 7)(S Ue + f9ý*GrL 

over each region Rýp which are satisfied because of the two dimensional 

Helmholtz equations,,, equation (2-3). 

By taking a branch cut as shown in fig. (2.1) such that 

(2. o) 

(2. lla) 

(2.11 b) 

region RI is simply connected, it, can be shown that the natural 

boundary conditions automatically satisfied by -T(4), vdien stationary are 

-p g-L a 4- _C2 (2.12a) 
on 

and- 

-. 2 T- I -rj 
(LLý) 

+ r= ýý 
=ý 

'- 

- CZ r. (2.12b) 
zyq zr_ 

at the interface of the two media, which are the boundary conditions for 

the continuity of the tangential electric and magnetic fields across 

the interface, providing that the fields 0 and Y satisfy 
q 

on a magnetic wall 

on an electric wall 
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If 4, (Kjý) are the trial solut 
I 
ions of the scalar 

magnetic and electric potentials over the region represented itself 

by a finite number of elementso the values of q(xsy) and Lý (xxy), 

which yields the smallest possible J will be the correct values 

satisfying equation (2.3). 

Over a triangular element fig. (2-4)., (ý (x,, y) and Lý (x, y) 

are represented by 

,, ýe(x, y) Ne ýX,, Y) i 
k=p, q, r, 

e (Xvy) y0 (Xpy) =Z Ni k 
k=p., q, r. 

(2.1 3a) 

(2-1 3b) 

Where ý,, 
, Lýk are the values of the fields ý, Lý at the k th vertex, 

and Ni(xvy) is a function of the spatial co-ordinates, uniquely 

defined and differentiable over each element and reducing to zero 

outside it. The substitution of equation (2.13) into the functional 

form of J then reduces J(4ý I Lý-) to a function of the variables 

and thus the optimum 4) and Lkk. The optimum sets Of 40 

fields (ý, Lý- are then obtained I by minimising J ((ý, Lý ) with respect 

to each of the parameters ck, viz. 

c -)j (4), Ur) Lý-) =0k : -- p j, qpr, 
a ep 6 UM 

The minimisation of J(0,4- ) over R is equivalent to the minimisation 

of j((ý, Lý ) over each element providing the fields are continuous 
8 

across the elemnt interface, which is assured since at least two nodes 

must bpr common to adjacent elementsp and if each vertex k of the 

elemnt , e, is conunon to P clementso then 
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-CL 4ýNL d 

aNQ, 
- C) dv, dS 

dy. (1 I+eL) 

1ý Q N' ZZ SJ-P2'EjGrý 4, ý 

0- Ic I 

ýe j)Nz dA fat 

NA 

P C-rj Ne' d,, 

represents the minimization of J((P, 9-) with respect to (ý andur at 

the k th vertex,, 

N0 
p 

and ar e 

0- e. [ýp (ý, ý 

vvhere G is the -row matrix,, 

Na No 
qr 

column matrices 
_r "a CL 4ýr I [+p Y9 4-ýr 

with reference to the triangular element fig. (2-4). 

Over one such elewntp the functional dependance of S5 and W 

can be written as in equation (2.13) where 

Ne = (a +bx+c y) / 26 
ppp p 

ap xqyr-xryq 

bp Yq Yr 

0 p X-X rq 

IL = area of the triangle 

(2 -14b) 
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with the other parameters beinZ obtained by cyclic rotation of 

the sufficos ps q, r, and this minimization of J over 

the element may be written compactly as 

bsgt(qý, Y) T 62 4? 411 P2T Cý IL ) 2. a -L 0- 

lbe 
b7e- (0. ) =( P2- T: i Eq ýý ±ý -riC ep"- )- ; a? - ze týc 

where e s 
pp pq pr 

cc 
Rp pq pr 

s 
qp 

s 
qq 

s 
qr 

c 
qp 

c 
qq qr 

sss 
rp rq rr 

c 
rp rq rr 

J 

pp 
F 
pq 

F 
pr 

qp qq 
F 

qr 

rp 
F 

rq rr 
L 

and S dy, (b pq + 

c NP ZNI - ýtA Nq 
pq 

el. 49 ZS N 

Fpq NNq, dlý di 
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Evaluation of these integrals over the right triangular element in 

fig. (2.4) results in the final form for Se, e, Fe as 

2 -1 -1 0 +1 -1 21 1 

0 ce -1 0 +1 12 1. 

L 
01 10 

j 
12 11 

L 
2 

Thus the finite element representation of the potentials 0, and at 

a typical interior interfacial node on the boundary G? - fie. (2.2) 

common to six right triangular elements, as in f ig. (2-5) becomes 

(2.15a) 

+ T2. ea) Lý. - L(-c, el 
z 

tý (c- je e> 

4- Guýý 4-1 + 4-sý (4-++ + 43,4 YIJ (2,15b) 

after the condition for stationarity i. e. 
az((M-) 

=Q has been bE _dv ý112 1 43ý4 - 
performed. In a similar manner to that of : Finite- differences, the 

finite element formulation for nodes situated entirely in one of the 

homogeneous regions can be obtained directly from equation (2-15) by 

allowing the parameters T-1 
I 

Ej to possess the same values for that 

region Ri. and nOtinP, that the coupling tems vanish. 



II 

If 

31OXI 

(iv) 

(V) 

6 

Interior. inter-facial node.. coz=n to six right to 
triangular elements. 

I. 

A. 
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For nodes on an electric wall ý=-D and a mdal. fomulation 

of the potential is unnecessary. On the same vall, for example AB 

in fig. (2.2), i* =0 but it can be seen that for a typical node 
DY 

OfK 
on this wall there at most, three right triangular elements 

IX 

associated with this node, and by suming the contributions to 

over the triangless the finite element representation of the 

potential q) existing at this node can. be derived, automatically 

satisfying the required boundary condition. Identical arguments 

are valid for the dual case of magnetic walls. z 

The propagating mode, that. can be solvvd, using one spatial 

dimension can be found in a similar mannor, by utilising a line 

element17 joining two nodeso each node thereforc being co=Don to at 

roost two such elements and tile finite element formulation of' the 
ý 

potential 4),, existing at the boundary between the tvo media yields# 

-Cz 

with modifications being made where the node under consideration is 

situated entirely within either of the homogeneous 
_mediap 

or placed 

on, an electric or magnetic wall. This can be sean to be identical to 

equation (2.8) if the weighting on the right hand side is thrown entirely 

ortothe central node. 

Az pplication of equation (2.15) over eacli node in the region, 

-with due regard for the modifications at the boundaries, again results 

in approximating the simultaneous equations (2-3) together with their 

boundary conditions., by a set of linear algebraic equations in 4), Lý. 

the set forming the matrix eigenvalue pzvblem 

51) g= 
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with. ý being the matrix of the coefficients of the 4ý% and 4)s 

defined by the left hand side of equation (2.15),, whilst B is 
"I 

defined by the right hand side of equation (2-15). X is, tile eigenvaluo 

proportional to the wave =, iber k2 and the mesh pitch* arid B 
1ý1 

are now both symmetric, oven under magnetic walloonditions, due to 

the symmetry of the matrices Se. Fe and Ce', further they are sparse 

and banded and B is positive definite. is positive or negative =1 

semi definite according as to the values of"Cl discussed previously. 

a is the column matrix representing the values of the fields (ý, + 

at each node or element vertex. Other than these exceptionso tho 

examination of the dispersive properties of the structure together 

with the effeot of varyingr-lon the matrix A and the investigation of I 

the fields within a totally homogeneous structure, follow those discussed 

previously for the finite difference analysis of the same structure. 

Although it has been briefly shown here, the development of the 

finite element formulation for triangular elements., the approach can 

be applied to other elemental shapes which serve to increase the 

accuracy of the approximation. This increase in accuracy can be 

brought aoout in two ways. 

(a) using a higher order polygonal element e. g. a rectangular 

element, these however produce additional difficulties when 

approximating a structure whose boundaries do not lie parallel to one 

of the oo-ordinate directionsp such as the perimeter of-the circlep 

and thus use of the simplest two di=nsional region - the triangle is 

advisable. 
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(b) using a higher. order polynomial approximation 
18,19 

of the function describing the variation of the fields across an 

element. This approach is the favoured one, even though it does 

give rise to more complicated elemental subregions such as 6 point, 

10 point triangles etc. The advantages are such that one higher 

ordered polynomial element can replace a few lower ordered polynomial 

elements in defining the region, but it must be appreciated that 

a large number of the simpler elements is clearly advantageous when 

modelling a complicated boundary shape. 

2.3. NEIIHODS OF SOLUTION OF TBS DERMD MATRIX EIGENVALUE PROBLUM. 

The methods of solution of the generalised zaatrix eigen value 

problem 

fall into two 'well defined categories viz; (i) by relaxation of the 

fields at each node within the system - indirect methods and (ii) by 

direct matrix manipulation. Each method possesses its characteristic 

advantages and disadvantages., according to the size of the matrices, 

solutions for all eigenvalues and the properties of the individual 

matrices. It is to be observed that the methods involved in the 

solution of the particular equations are many for both the above 

categories and discussion of the relevant techniques is beyond the scope 

of this thesis. 

6ince, the system of linear equations from which the matrix 

eigenvalue problem is derived are usually largeo they must be solved 

using rAmerical techniques with high speed digital computers. 
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2. ý. I. Indirect Methods. 

Indirect or relaxation methods base their mde of operations 

on the principle of rupeated application of a simple algorithm. 

The advantage of this method is that the non-zero elements of the 

rows of the matricesA, R need only be generated výhen required, and 

thus storage of the complete matriceswhich are sparse , is obviated. 

Further since there are only a few different types of node structures 

within the region of Fig. (2.2) and hence few different types of rows 

of the matrices, "only a small number of sub-algorithms need to be 

written for the complete algorithm, The algorithm that has received 

most attention over previous years is that of successive point over- 

relaxation' (SOR) and it is proposed to use this powerful teduUque 

herc for the solution of derived matrix eigen value problem. 

Consider the implementation of SOR on equation (2.18). An 

approximation is made to the requimd eigenvector, q and eieenvalue)ý , 

then for each element of the residual R4- at that element is 
3. 

found by 

Rj = (ýý -X Bz) @' 
'whe re Ai denotes the i 

th row of matrix A. 

Ideally the residual should be zero at each element for a 

solution and thus the i 
th component of d should be over relaxed, 

by a factor vR i 
i. e. 

ez -. * eL + ýq P'-' 

where w is known as the accelerating factor and affects the rate of 

convergence to the correct solution. 'The eigenvector is scaruwd 

systematicallY several times in this manner. 
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The eigenvalue estimate, however will not usually be the correct one, 

and in this case for an estimated eigenvalue greater (or smaller) than 

the correct eigenvalue the eigenvector grows (or diminishes) and 

cannot converge as the determinant of (A-XS) is non zero. However 

the elements ofP tend to assume their correct shape, and after 

several iterations, the incorrect although 'shaped' eigenvector is 

substituted into the Rayleigh quotient, 
14 

Xnew 

which gives an improved eigenvalue estimate ýnew and is also 

stationary for the true solution. Using this now estimates the SOR 

pwcess is reverted to 'with the most recent eigenvector and an improvedO 

found. Alternate usage of the SOR process and the Rayleigh quotient 

causes convergence to the correct eigenvalue and eigenvector within the 

accuracy required. 

I The disadvantage. of the SOR method is that it cannot be used 

with convergence guaranteed on an arbitmry matrix. The convergence 

theorem. states that convergence is guaranteed only on symmetrical and 

positive semidefinite matrices, with diagonal terms greater than zerot 

and off diagonal terms less than or equal to zeroo and for 0 2.. 

For example this means that the SOR process can only calculate the 

dominant eigenvalue. 

The finite element formulation of Helmholtz's two, dimensional 

equations yields A and B as symmetrical and positive definite matrices 

for'ci')- 0 and thus convergence occurs. For Mi <0 the matrix A is 

indefinite whilst still retaining its symmetry and thus convergence to 

the col-rect eigenvector is in no way guaranteed,, and recourse has to be 
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20 
made to other techniques notably that of Peters and Wilkinson 

which is a semi-iterative technique and although pexmitting A to be 

indefinite has the added advantages of utilising the band structures 

of A and B and calculating higher ordered eigenvalues. 

The finite difference fonnulation of the same problem does 

not necessarily produce a symetric matrix A and only when the 

structure is devoid of magnetic walls will A be symmetric. For the 

general case A will only be slightly non-symetrics but is sufficient 

to waive the convergence criterion for coarse meshes when the non 

symetry is most pronounced, but for finer meshes A will tend to a 

more symmetrical nature and convergence can be optimistically thought 

of. Again the definiteness ýf indefiniteness of A is of importance 

and the discussion held in the previous paragraph is equally applicable 

here. 

The matrix eigenvalue equation derived for the totally 

homogeneous structuresp have both A arid B symmetrical or 'near' 

sy=netrical,, and positive definite and thus a guarantee of cenvergence. 

It is worthy to note that for TE modes in a structure being bounded 

solely by electric walls that the trivial solution 0= constant to 

equation (2.18) exiats,, this can be eliminated by using magnetic walls 

of symmetry such that the fundamental mods also satisfies these 

boundary conditions. 

The method of successive overrelaxation applied to equation 

(2.18) yields the dominant eigenvalue, since an attempt to seek the 

next ordered eigenvalue would result in A beooming negative definite 

and hence the loss of convergence. 
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21 22 
Silvester and Beaubien and Wexler have developed biharmonic 

operators to make the relevant matrices positive definite so as to 

compute higher order eigenvalues and to use SOR for the inhomogeneous 

problem. The di sadvantage, is that - the value of the next lowe st 

eigenvalue has to be known for the computation of any eigenvalue to 

be successful. This is suitable for empty waveguides as Beaubien 

and Wexler have noted, but for the inhomogeneous system,, since the 
6 

dominant mode can correspond to a negative eigehvalue the choice of 

the 'next lowest' eigenvalue is a difficult one to estimate. The 

introduction of the biharmonic operator also gives rise to a 13 point 

or 25 point operator and this must give aciditional complexity in 

formulating the necessary boundary conditions. 

Succussive over-relaxation was applied to the matrix formulation 

of fig. (2.2) using 5 point., 9 point finite difference operators and 

right triangular and squaxe finite element operators to describe the 

field variations. The totally homogeneous case being considered 

initially, with electric walls an AB, BCD, 10, and a magnetic wall on 

AFE thus seeking the cut-off wave numbers of the'llf II mode. These 

results are shown in Table (2.1) with b= 2%. 

Table (2.1) indicates that analysis using square elements is as 1 

accurate as for the five point finite difference formulation., mhich 

further are an improvement on the accuracies obtained by the triangular 

element subdivision of the mesh and using a nine point finite difference 

operator. The greater errors incurred in the triangular element 

formulation is due to the non symmetry 
19 

of the description of the 

potential at a typical node - fig. (2-5) where the images of points 5 

and 6 in the planes defined by 103 and 204 are absent; uhilst the nine 
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point finite difference's errors are caused by the introduction 

of more nodal potentials to describe the potential at the central 

node and thus at the magnetic wall,, where modifications have to be 

made to the relevant difference equation, a less symmetrical matrix 

than that for the set of five point difference equations is 

produced. 

The one dimensionalTE 10 was also investigated, by using one 

mesh line of fig. (2.2), BD with a magnetic wall at D and an electric 

wall at B. Table (2.2) records the results of the cut off wave 

number for several values of the discretisation of the line, using 

the finite difference and finite element fomulations, equations 

(2.8) and (2.16) respectively, with-Cj=-C2- I for the completely 

homogeneous system. Examination of Table (2.2) indicates that there 

is little difference in accuracy,, but, as in Table (2.1), the finite 

element formulation yields an upper bound to the correct solution 

whilst the finite difference formulation yi&14s a lower bound. 

Table (2-3) represents the wave lengths of the propagating wave 

for the inhomogeneous structure of fig. (2.2) for the dominant 

longitudinal section magnetic (LSM) mode 
23 

at cut-off. Square finite 

element and five point finite difference formulations were used., as 

these were the most accurate of all the formulations discussed for the 

homogeneous region. The dispersive properties although readily 

obtained by the SOR process for the range -ci > (D are not recorded as 

these are well documented elsewhere. 
6,915 

Region I possesses a relative 

permittivity of unity and region 2 has relative permittivities of 2.45j, 

9.0,50.0, and 100.0. 



TABLE 

Cut-off wave number ( kb) 2 for'the TE 10 mocle,, in a waveguicle 

of width 2b. 

IVb 

Finite 

(kb) 2 
elements 

e rro r 

Finite Difference 

(kb) 2e 
rror 

1/4 2.4992 1.29-, 2*4359- 1.29 

1/8 2-4753 0.32 2.4595 0-32 

1/16 2.4691+ 0108 2.4655 0.08 

(kb 2')2=2.4674 ) anal =( Z- 
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ABCDS - fig. (2.2) again represents an electric wall whilst AFL 

represents a magnetic wall of symnetry, the discretization employed 

h/b with the dielectric interface situated at y= b/2. 
2j+ The analytical results are obtained from Marcuvitz Again there is 

little or no difference in the accuracies between the two methods. 

The dominant longitudinal section electric (LSE) mode 
23 

was 

investigated, utilising its one dimensional representation or model. 

ýable (2.4) shows the cut-off wavelengths of this dominant modo,, for 

the same values of relative permittivities as those in the I&I 

investigations. The mesh line BCD was utilised for the modo-is together 

with an electric wall at B and a magnetic wall at D,, the disoretization 

h/b = 1A is utilised so as to provide compatibility with the 

dimensions of the structure analysed for ISM mode-type propagation. 

The accuracy of the finite element formulation is now far better than 

that of the finite difference fomulations comparing the results with 

tz 24. the analytical ones obtained from Marouvi This must be due to 

the fomulation of the matrix B in the eigenvalue-equations where for 

the finite element representation of matrix B the potential existing 

at any one node is replaced by a linear function of the potential at 

that node and also of the potentials existing at the neighbouring nodes, 

whilst the finite difference representation of, the same matrix weights 

the potentials existing at the surrounding nodas and 'throws' them on to 

the central node, and is clearly disadvantageous when a relatively 

large variation in the field exists such as that at a dielectric boundary. 



TABLE-(2.3) 

Cut-off wavelengths Wý, ) of the dominant IMi mode in a waveguide 

of square cross-section of side b. 

Gr 
Finite element 
b/, \c error 

Finite difference 
b/, \, error galytio (see text)* 

2.45 0.3875 o. 66 0.3831 0.49 0.3850 

9.0 0.2278 o. 66 0.2251 0.51 0.2263 

50.0 0.09992 o. 62 0.09864 0.66 0.09930 

100.0 0-07088 0.59 0.07001 o. 65 0-07047 

TABLE (2.4) 

Cut-off wavelengths (t/>)) of the dominant IM mode in a waveguide of 

width 2b. 

Finite element 
b/)\L erivr 97a 

Finite 

b/, \, 

Difference 

error (S., te, týnalytio 

2.45 0.3385 0.38 0.33Y+ 0.98 0.3372 

9.0 0,1812 0.25 0.1785 1.19 0-1807 

50.0 0.07748 0.20 0.07631 1.30 0-07732 

100.0 0.05483 0.20 0.05400 1.31 0-05472 



- 30 - 

2.3.2. Direct Yethods. 

For direct matrix manipulation of the eigenvalue 

problem most computing centres possess large matrix routine PUCICages 

and it is on these that the user nomally relies. The algorithms 
25 

employed in most cases, are those noted by Wilkinson an(I Reinsch, 

who recomiiend certain algorithms for the numerical solution of 

equation (2.18) where matrices Ap2 can be symmetric or nonsyirmetric, 

sparse or dense, real or complex and B can take the value ofj, the 

identity matrix. Further the authors record (and have tested 

rigorously) the algorithms in a fully readable programmable form to 

enable the user to incorporate the required solution technique into 

the relevant program. - 

For the generalised sy=netric eigenvalue problem represented 

in equation (2.18) where A is a real symmetric or I near' symmetric 

matrix and B is a real symmetric positive definite matrix, 
.2 

can be 

factorised. by Cholesky' s methodpp = JL T 
where L is a lower triangular 

matrix. Hence equation (2.18) can be vrritten 

F, (L: I)T t Ll eI 

so that symmetry is still guaranteed for tý' R (L: fl but the banded 

structure is destroyed, and the transformed matrix is now dense. In 

the finite difference formulation B is or can be arranged to be the 

identity matrix and the Cholesky decomposition is not required, 

therefore the eigenvalues are sought of the real symmetric.. sparse banded 

matrix A. 
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Wilkinson recommends the methods of Jacobi or Householder 

(ref. 25 pp 202-270) to solve the matrix eigenvalue problem for realp 

symmetric matrices,, but these methods suffer from, the fact the whole 

of A and B or at least one of their symmetrical halves must be stored 

and no advantage of their respective sparseness is taken. The 

sparseness must be of paramount importance especially when 

manipulating and storing large order matrices and Peters and 
20 

Wilkinson indicate the manner in which the property of sparseness 

may be utilised in deriving solutions to equation (2.18) vaiilst 

Schwarz (ref. 25, p 273) reports the method of solution for the 

generalised matrix eigenvalue problem where B is the identity matrix 

and. again full advantage is taken of the sparseness of A. 

The alternative approach of premultiplying equation (2.18) 

by the inverse of B, B -i is to be avoided$ for although both A, E are 

symmetric and sparse the product_ A is not necensarily symmetric 

and is dense, thus reducing the methods of solution for which the 

complete nonsymmetrical matrix is stored and these methods Wilkinson 25 

has noted tend to be rxunerically unstable. 

The direct approach was applied to the homogeneous 

configuration of fig. (2.2), (C-r 
I= 

F-r, 7 1) , with electric walls at AB, 

BCDj, DE and a magnetic wall at AFE9 and thus seeking the cut-off wave 

numbers of the T11 modes that satisfy these boundary conditions. These 

are recorded in Table (2.5) withb=2a and using the finite element 

formulation over square elements, and solving the resultant matrix 

eigenvalue equation by the method of householder. 'Two disoretisations, 

h/b, are employed with modes whose computed cut-off wave numbers differ 

from the analytic ones by at least 10/1ý being rejected. 



TABM 
-(2.! 

a 

2 
Cut-off wavenumbers (kb) of 'I'M 

nm 
modes in a waveguide of square 

cross-section of side b. 

h 

b 

Mode (kb) 2 
comp. (kb) 2 

anal. Erxvr'p" 

1/6 TM 11 19.9942 19-7392 1.29 

TM12 51-5437 49-34-80 4.45 

1/10 'I'll 19*9020 19-7392 0.82 

TMI 2 50-7450 49-34bb, 2.83 

fill 31 105-5300 93.6960 6.92 

=13 105-5300 98.696o 6,92 - 

TM32 136-3700 128.3049 6.28 

Tu 33 
189-5000 177.6529 6.67 



TABLE-(2.6) 

Cut-off waven=ber (kb) 2 
of TE 

no 
modes in a waveguide of width 2b. 

h 
b 

3110& 
2 (kb) COMP 

2 (kb) anal. Error 

'A TH 10 -2.4992 2.4674 

1/8 =1 10 
2-4753 2.4674 0.32 

U30 22-8557 22.2o66 2.92 

= 50 
66-7776 61.6850 8.26 

1/16 = 10 2.4691+ 2-4674 

TE 30 22*3675 22.2066 0-72 

T1,50 62.9325 61.6850 2.02 

TS 70 125-7318 120.9027 3.99 

ITS 90 213-1686 199-8595 6.66 
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The ermrs in Table (2-5) are the same for the 

corresponding entries in Table (2.1), but it can be seen that a 

slight decrease in discretisation3 not only produces an improved 

accuracy but also introduces far more results concerning the higher. 

order modes below the imposed IQ% error level. Note, also, that 

ermrs incurred in the computation of the T11 13' and 'IM 31 out-off 

wave numbers are larger than that'of the next two higher modes, this 

is due to the degeneracy of the two modes, thus allowing, the matrix 

eigenvalue problem to possess at least one set of multiple eigenvalues 

but with differing eigenvectors between which the Householder routim 

is incapable of distinguishing. 

The one dimensional model of TEýo mode propagation was also 

investigated for various values of discretization and the results 

recorded in Table (2.6) for the saw range of erzvr,, Again it can 

be seen that the results in Table (2.6) are identical to the 

corresponding entries in Table (2.2). 

2.4. 
-UMI-T-3 

DIMMIONAL FINITE EMEMENTS. 

Previous discussion has been restricted to those two 

dimensional problems vuhere the field dapendance in tho diroction of 

propagation, z, has been assumed to be of the form where ý is 

the constant of pzvpagation. This situation is ideal for structures 

possessing an axi&Ll continuity, as has been shown. However modern 

microwave communication applications require, for example, the use of 

sophisticated microstrip circuitry where the strip is seldom axially 

continuous (change in strip width, terminations etc., ) and where 

variations in field components exist in each spatial directioný 

necessitating the utilisation of three dimensional analysis. 
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To date there has been no formal proposal of such analysis and 

it is at this point that the feasibility of such studies is considered. 

Although, as has been shown, there is little difference 

between the finite element and finite difference fomulations for the 

same configuration, it is felt that the assertion of a symmetrical 

matrix operator and the weighting process of nodal potentials 

exhibited in the derivation of matrix B, makes the finite element 

technique slightly more favourablet and thus the finite element approach 

is considered throughout all further analysis. 

Solution of Homopeneous Cavities. 

Considering the configuration of fig. (2.6),, a rectangular 

prismatic cavity V consisting of two subregions VI., V2. Regions V 
10 

V2 

consist of uniform, sectionally oonstanti, isotropics source free 

dielectric media of relative permittivities r=r, ) 6e2. * respectively and 

unity pameabilitie s. 

In a similar manner to that of the two dimensional structure# 

a set of equations to be satisfied by the field components over a 

homogeneous subsection of fig. (2.6) are 

V2 Hz + tzý, Hz =a 
V2 Ez + Pýi Ez , 

whe re 02- ý-* ri 

subject to the boundary conditions 

E2., = LEz 

as 

bH, 

ý-"z 
= C) on an electric wall 

2)n 

IýEz on a magnetic wall 

9a) 

(2.1 9b) 



\I ,- 

ýcl 

Fig. (2.6. ) RactangUar pritnatic cavity. 

6 
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vAiere ý. is as beforep and ý is the spatial derivative tangential 
Z)r) Z3. % 

to the surface S, together with continuity of the tangential 

components of E and 11, ancl normal components of D and B asserted 

across the interfacc. 

For a completely homogeneous cavity (6r, % 6r2. - Er) 9 either 

of equations (2.19) defines a spectrum of possilale propagating modes 

as in the two dimensional configuration. Those likewise are 

classified as M 
mnp 

type if a scalar field ý is found such that it 

satisfies equation (2.19a) and the boundary conditions 

! ýp =a on an electrio wall 

on a mgnetic wall 

and 1111 type if a scalar field Lýis found such that it now satisfies mInp 

equation (2.19b) with the dual boundary conditions 

on a magnatic wall Zj 
b 

4- on an electric wall 

A variational expression which is stationary'in k2 (k 2= 

for the homogeneous rootangular prismatic cavity described above can 

be shown to be 

dV (2.20) 

v r=r 
16 

which has as its Buler equations 

1 ivl ý) te (ý = 
er 
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and is satisfied by the three dimensional scalar Helmholtz 

equationp equation (2.19a). U"(Cý) is stationary providingv alsop that 

the fields ý satisfy the boundary conditions. Similarly, a 

variational functional of the form of equation (2.20) can be derived 

for the electric field scalar, which has its Buler equation the 

form of equation (2.19b) and is stationary providing the field scalar 

satisfies the necessary boundary conditions. 

The region V is subdivided into a finite number of elerwnts 

and the value of O(X, y, z) which yields the smallest possible J (q) 

will be the correct solution to the three dimensional scalar Helmholtz 

equation, subject to the boundary conditions. The element chosen for 

analysis being the cubic prism fig. (2-7). 

over such a typical prisra which possesses 8 vertices the 

f ield ý (XP Y., Z) can thus be repre se nte d by 

P 
eIQ. a 

IS I (V r 
ý cy,, 314 =L mr ýx 

t 7-) 

r= i d, tt.... 

-where the shape function N' is 19 
r 

a+bx+ cry +dz+e xz +f ryz + grxy +hz 
rrrrrr? 

Cy 

which is uniquely defined and differentiable over each element.. and 

where the coefficients ar ýb r ..... h 
r- 

are defined in Table (2.7) with 

reference to fig. (2-7-)- 

ýe is the value of the scalar magnetic field at the rt-h r 

vertex of the element. 



lt. 

Jr 

I 

i 

Fis. (2-7. ) Cubic alemant. 

26 1.8 23 

17 

25 

19 

II. 

Fig. (2.8. ) Interior node w=zon to eight cubic alements. 

21 12 20 
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The substitution of the expression defining the field 

over each element into the variational functional, yields J (cý )as a 

function of the field potentials (b,, existing at each vertex of every 

element describing the structure, and minimization of this function 

with rVSpect to each Cýr will give the correct field configuration 

and cut-off wave number. Again minimization of J (<ý)over the 

entire volume is equivalent to minimisingJ ( ý) over each element 

providing the field is continuous across the element interfaces, 
8 

which is assured,, and thus if each vertex r of the element, a, is 

common to P elements, ( <, 8) 

', 
] dV 

adpr rmr X %x ý3 )i az : bz 

-kJ ]cNciV] 
a. I 

where [ Gr] = 
[NeF N; j 

ei ko-. 
... 

IT 

Over one such elenLant,, the minimization of J(ý )may be written more 

compactly as 

67(op) =I 
§ý (t - ýý ffr- 

a4p 6r 
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where 

s ii Sii 00000 sip 2 11 F ij '**** F ip 

s ji 
s 

ii 0"*** s jp F Ji 
FN 00000 p jp 

ýpi s 
pj , .... s 

pp 1 ypi F 
Pi *$#*0 F 

pp 
1 

and 

dx d3 uz 
by, by, 'ÖZ 

= (tzibi + cicj + didi) + -t eiej +J, ii) +tý. thj 
,64. -3 

Rj fNi Nje- dK dý ckz 
v 

04 cký +I CA Cý ýc. ( 

-L k4A- 

by suitable integration over the volume and noting that S, jp F ij 

remain invariant to a change of origin. 

The components of Se and Fe have been evaluated,, for the 

element discussed and are shown in Table (2.8) where because of 

symmetry only the upper triangular half of Se and the lower 

triangular half of F0 are quoted, the leading diagonal terms being 

identical. 

For a typical interior vertex, o. fig. (2.8) within the 

volume V. minimization of J ((ý ) with respect to the potential existing 

at that vertex implies, with the aid of Table (2.8) 



TABLB 
-(2.1. 

)- 

Coefficients of shape functions Ni,, Njq --- Np overa cubic element 

P 1 

All coefficients have a oo=on divisor of B. 

TABLE (2.8.1 

Conr ee ponants of the matrices SjF for a cubic element, fig. (2-7. ) 

ijkIm. n0p 

4'*ý, 
ý 

0 -1 00 -1 -1 -1 1 

240 -1 -1 0 -1 -1 j 

se0 -1 -1 0 -1 k 

a21240 -1 1 -1 10 
1 

I "ý le 21z14 
***ý 

0 -1 0M 

1211 2240 -1 n 

12112400 

12212 

e Common divisor of 32 

Common divisor of Fe 108 
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is 2.1. 

Z 
L Ic I 

Er (P + 
1011 ?-ý tr- 1 Lxl in19 

and a similar treatment to that for the two dimensional 

formulation, is required for nodes situated on magnetic and 

electric walls. 

The repeated application of equation (2.21) or a 

similarly derived equation to eqch vertex in the systemo results 

in approximating equation (2.19a) together with the relevant 

boundary conditions by a system of linear algebraic equations in(p 

the system forming the familar eigenvalue equation 

=Q 

with As B being real,, sy=etric, banded, sparse,, positive 

definite matrices. 

The method of solution raust now be restricted to those 

involving iterative procedures, due to the large number of vertices 

or nodes generated within the volume. Successive over-relaxation 

was used to calculate the resonant frequencies of various sizes 

of cavities, for both TE and TM type modes and are tabulated in 

Table (2.9ýUsing most of the lines of symmetry available only a 

quarter of the rectamgularý- cavity was analysed with the appropriate 

magnetic and electric walls surrounding the volume. 

Table (2.9) indicates that the errors incurred in three 

dimensional analysis are identical to those for two dimonsio=Ll 

(2.21) 

analysis by comparison with Table (2.1. ). 



TAME 
-(?.. 2 - 

Resonant frequencies (k 2= Op. G ) of rectangular cavities represented 

using the unit cubic element. by fig. (2.6. ) with er, r- 

Mode ap bo a (ka) comp. (ka) anal. E, rrvr. 

100 51 10 7.7907 7.6953 1.24 

12,12,12 5.4570 5.4414 0,29 

TE111) 

TIý111) 16,16p 16 5.4510 5.4414 0.16 

TE 111) 

TE 101 
IOP 5p 10 1ý. 4618 Ij-. Ij)+29 0.43 

=1101 12p 12., 12 4.556 4-10+29 0.29 

TElOl 16 4.4503 4.4)+29 0-17 
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The TE 101 mode is a mode which can be analysed in two 

dimensions., but the inclusion was necessary so as to provide the 

relevant comparison. 

2. L. 2. 
- 

Solution of Continuous MicrostKIR_in three dimensions. 

Microstrip is a thin metal strip mounted on a dielectric 
26 

substrate whiah has a metallised. ground plane , and is now becoming 

essential for achieving future con=nication objectives. 

Fig. (2.9. ) shows a typical micmstrip configurationo where 

the strip is continuous in the z direction and situated on a dielectric 

substrate of relative permittivity C-r the system being bounded by a 

perfectly conducting enclosure, with magnetic walls placed at either 

end of the cavity, and a magnetic wall of symmetry adjacent to the 

longitudinal edge of the strip. This is necessary since the methods 

discussed are only applicable to the solution of boundary value 

problems. 

If the structure is totally homogeneous such that Gr =I 

then a pure transverse electromagnetic (T MI) wavo, can be supported by 

the multiconductor system. Within such a system, the variation of 

the electric potential is governed by the solution of Laplaces 

equation 

(2.22) 

over the volumes subject to the boundary conditions 

0 on the enclosure wall 

V, on the strip 

0 on magnetic walls 
2)n 



Llagnat 

of, syz 

Nýx 

NN 

/Tb 

Fig. (2.9. ) Typical microstrip structum. 

_______ a 



-40- 

By considering the stored electrostatic energy in the field 

between the two conductorap a variational expression in Co the 

capacitance of the system (ref. 23P P-148); is given by 

civ 

which will be stationary for a field(ý satisfying, equation (2.22) 

together with the associated boundary conditions. 

The domain of fig. (2.9) is subdivided into unit cubic 

elements and thus minimization of the functional 0 over one sucli 

element yields, 

\/ý" -6c 
60 64; 

(2.23) 

(2,24) 

where 3e, eare defined as in section (2-4-1), thus 

veý 
a01cLý sei. ýM-r ýR-f ýNi 

68 67- b2. 

IT I 5ý 

and if there are R elements describing the vol=e V 

VIRT 
o, 4e 

60 CLc I 

Hance a set of linear equations in $-, the potentials at each 

node within the regionx are constructed by the application of 

equation (2.24) at each of the nodes, and is of the form 
A 4) -0 

which is solved yielding the potentials cý; which in turn aro then 

substituted into equation (2.25) to procluc: a the capacitance of the 

(2.25) ý 

(2.26) ý 

stracture. 
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The configuration of fig. (2.9) was analyzed using 

this procedure with the following parameters. 

(i) a/d =4; a/b = 1.6 ;b= 10 units. 

(ii) a/d =5; a/b = 2,5 ;b=8 units. 

with the inner conductor situated at h=b/2p and of negligible 

thickness. 

Successive over relaxation was employed to solve equation 

(2,26) arul the capacitance calculated from equation (2.25). The 

impedance, Z, of such a structure is related to the capacitance by 

FU = 

zo cl 71 
where CI., L' are the capacitance and inductance per unit length 

respectively and these are listed in Table (2.10), together with 

the analytically derived impedances obtained from Collin (ref. 23, P-132)p 

also noting the observations made by Hayt 
27 

p wunaly that for a fixed 

separation of the ground planes, if 

1.25 aI>0.25 
b 

then the exact impedance and the appzoximato value obtained by 

assuming infinite width ground planes agree to within 0.29X. 

The results in Table (2.10) for both cases possess tolerable 

errors, and of the same order despite increasing the ratios noted 

by hayto enabling the modes to possess a better approximation to 

infinite width ground planes. The errors incurred are dul3to the 

relatively large variations in the field about the strip edzep 
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and. as no attempt was made to refine the mash about this 

singularity and hence an improved field descriptions the variations 

could not be adequately described. This inadequacy may however be 

overcome by using the mash refinement method or alternativelys, 

in the method of finite differences.. using mesh refinement and/Or 

allowing the placement of '-special' nodes in a specified-aralytic 

region surrounding the singularity such that during the relaxation 

process the potentials at these nodes are detennined by a truncated 

series of circular harmonics. 
28#29. 

If the configuration- of fig,, (2.9) is inhomogemous (C-r *, l) 

a= wave cannot be supported by Me system, unless under D. O. 

conditionst and thus the dispersion characteristics and propagation 

of higher ordered modes of microstrip transmission lines can never 

be properly investigated utilising'the previously discussed = 

Yam techniques. To date with few exceptl6hlos', 
31 j the analysis has 

&33# 34p 35j, been confined to*a quasi-static approach to the pro MV -i. e. 

the fundamen a mode of propagation resembles a TEW mode WIfficiently 

well to allow the approximation that the wde is TM-Toproviding the 

frequency of operation is not too high, and that the characteristics 

of such propagation can be obtained from the solution of Lopluces 

equation throughout the structure, 

The finite element formulation of'-this inhomogeneous 

structure requires that the matrix Qe in equations (2.24)p (2.25) be 

replaced by zS 
e --I, C- r, §ý 

where C-r; is the relative permittivity in either of the tvj6 

homogeneous xegions completing the stiucture. 
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Cubic elements were again used to describe the configuration 

of fig. (2.9. ), successive over relaxation applied to calculate the 

nodal potentials,, and substitution of the potentials into the 

permittivity modified quadratic fozm of equation (2.25)o yielded 

the total capacitance of the volume. 

The impedance is mw related to the capacitance by 

ZGr =III zo =II 

cQ Ce: 
r 0 

where ZC-r 
) 

Clr=, represent the impedance and capacitance per unit 

length of the microstrip stmature partially filled with dielectrio, 

and Z 
0ý 

CIO the impedance and capacitance of the same structure 

entirely filled with air. 

The impedanoe for two ratios of h/d, for differing lengths 

of the cavity are presented in Table (2.11) 
. The analytical results 

for impedance are those obtained from Bryant and Weisi' 
., vdie re the 

graphical presentation of the parameters necessitated the inclusion 

of the relevant I reading' erxvrs. 

The analytical and calculated impedances agree to within 

approximately 10/'0. This large ez-xor must then be atti-ibuted to the 

lack of mesh refinement about the strip edp_e, to the use of a 

perfectly conducting enclosure to approximate the open microstrip 

configuration on which Bryant and Weiss's results are based, and to 

the intro duction of the air-dielectriclinterface. Resultslobtained 

by contracting the enclosure in the xy plane gave progressively vorso 

solutions for the configuratioxib impedance as was expected, the 

results quoted in Table (2. il) being the optimum set after a trado-off 
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between completeness and machine store available had been considered. 

The air-dielectric interface although causing the field to 

concentrate mostly in the dielectric and hence a larger variation in 

the field throughout the dielectric to be modelled by the finite 

element forzulation, can have little effect on the solution since 

the errors incurred in the homogeneous cases (Gr- I Table (2.11) ) are 

of the saim order as those considered with the relative permittivity 

possessing other specified values. 

2. L. 2. 
-- 

Solution of --inhomogeneous cavities-. 

The previous section indicated the manner in which 

parameters of enclosed microstrip structures may be calculated by 

utilising a static assumption, but as was noted the lack of dispersion 

chaxacteristica and information regarding the propagation of higher 

ordered riodesp placed severe restrictions on the use of such an 

assumption. 

To tr7 and reduce these problems, three dizwnsional finite 

element analysis was applied to the structure defimd in fig. (2.6), 

regions VI., V2 oonsisting of uniformp sectionally oonatants isotropic$ 

source free dielectric mer. Ua of relative permittivities C-r,, C-r.. 

respectively. 

An attempt to express the transverse field (3omponents 

E-, E, H, H. in terms of the axially directed cornpononts E and H 
XyXyzz Uri 

in equation (2.2) fails due to the presence of second orxbr partial 

derivatives., and thus the derivation of a variational expression in QL 

manner similar to that used by Ahmed 
37 

could not be found. Howe vo rQ 

set of equations to be satisfied by the scalar magnetic potentialfand tho 

scalar electric potential+ over a homogencous subsection of f ig- (2.6) aro 
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V2 tziz (ý = C) 

V2. Lý + e., Lý = 

where 1Z't2' 

subject to the usual boundary conditions on magnetic and. 

electric walls. 

If a, planep, in the xy plano, -is considered infi&(2.6), 

then it is shown equation (2.10) is a variational functional ink 2 

which when stationary yields the propagation characteristics of 

this two dimensional plane, satisfying the boundary conditions at 

the outer walls of the cross-seotion and also the interfacial 

boundary conditions., 

It is now the contention that if all similar planos are 

considered so as to form the configuration of fig. (2.6. ) then by 

allowingTi to beconxo, l to booomel V to -bocome 
r-r, 

fS 

in equation (2.10) 

+ VI) 12* -4- IV+ I 
Gri 

(2,27a) 

(2,27b) 

av (2.20) 

where I: e- = LSLps Ea .1t-", z + '- 

represents a variational expression in k2 

Note that since the cavity is continuous in tile z directions tho 
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field deper4ance of Cý13r- in this direction is retairiod and thus 

the propagating constant remains aa a factor in tho variational 

expression. The Buler equations of cquation (2,28) over each 

homogeneous subsection of fig. (2.6) are 

+ er; c =o 

* 

which are satisfied because of the three dimensional scalar Halmholtz 

equationst equation (2.27) - 

Equation (2.28) will be stationary in k2, if any first 

order change in the fields 0m 4- from their true valuen, will produce 

only second order changes in k21.0. 

9-+64. 
_-4 

-(k-) 
then 6 (k 2)=0 

neglecting all second order variations. By actual 

substitution and manipulation, tho variation 6 (2) in zero providad 

0 on an electrio wall* SA) on a maenatio wall ana 

-Z pa 
f- (b b3=eý-( 4'-V*) 

-ý Leý (2.29a) 

(2.2 9b) 

on the interfacial boundary considering one of the planes za constant,, 

vdiiah imply continuity of Gx I- and Vky-Q- -ýk' ) arul are no t tho 'I 

natural boundary conditions to be satit3fied. 



-47 - 

Howevers vbilst realising that equation (2*28) did not 

represent a true and. complete variational expression in for the 

configuration of fig. (2.6); the three dimensional fbr=lation 

of the structure was accomplished via the variational functional of 

equation (2.28),, applying the finite element techniques described 

in the previous sections. 

11inimization of J( Ck4)over a cubic element.. describing a 

section of fig. (2.6), with respect to the potential (ý, q- existing 

at each vertex of the ele=nt yields. 

ý: re«p14 
=, 

c (e 4 ýL , CLEý- 
- 

epe-4ý- 

ae irj -- er! 
Lct) .--r 

e 
whe re 

V, q-ý are , column ma t ri oe sasbe fo ro who so e leme nt a are the 

values of the scalar magnetic and electric potentials at the vertricas 

of the elements and Se0 EG are the element submatrices defined in 

Table (2.8). The element submatrix Ce is that derived from the 

I coupling' to= in oquation (2.28) and wlx)se elements are defined in 

Table (2.12) v and for a typical interior node or vortex situated on 

the dielectric interface# surrounded by eight elements# then 

minimization of J (4), +)as in equation (2.30) implies the equationsp 

with reference to fig. (2.8). 

(2.30a) 

(2.30b) 
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-(2.12) 

Components of Ilatrix Ce for a cubic el=ents fig. (2-7-) 

C= 

j. j k 3. m n o p 

o -2 O 2 0 -1 0 1 i 

2 0 -2 0 1 0 -1 0 j 

o 2 0 -2 0 1 0 -1 k 

-2 0 2 0 -I 0 1 0 1 

0 -1 0 1 0 -2 0 2 m 

1 0 -1 0 2 0 -2 0 n 

0 1 c -1 0 2 0 -2 0 

-I 0 1 0 -2 0 2 0 p 

Common divisor of 12. 
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+ (PC, 

+ ýq 21C-r, Io + 21C-r2 

/C-ri (dPICI + q. U t 
4>2,3 

-+ ý' (I lsr-ý -I /C-ri ) ('ý (4-a- 41) - +1 - Lbs + 4-13 -"- 4-11 ) 

: ýb 
z 

and 
it . 16 

EBZ 2-, Z 4-i 
i U-1 

sf- io(Er, 4 erý, )4-o + 4(6q-. ý C-r4+, 4 Lt'3 + t4-, s+ 4.,. ) + Srr, + 
l ra I a 

4-(erl -4- Gra +kt-* L; lz, -+ 41s-4- tb., ) + 2ar, (4-1 + H-i 4iu, -i- ýýM) 

+ r2( Lýj; 4- 4-1 + 4-m + 4v. ) 4- 112-c-r, ( 411 + 4= + 4-a 4 L66 

1/2-C-ra (q, ýLo + tt-W + 
Ap lication of these over each vertox within the cavity, with due .. Vp 

regard'for a vertex being situated wholly in one ro'gions and also for 

similarly derived equations according as to whether the vertex lies 

on a magnetic or electric wall yields the familiar eieenvalue equation 

Where again A is a sy=etrio, positive 'dofinito matrix 01ý 1) I- - 

and B is positive definite. Both matrices being, sparse and bandad. L) 

is the column matrix corresponding to the potentiale existing at each 

node within the cavity. 
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Initially a cavity of widths height and length of 

units was analysed.. with a magnetic wall situated at x=a/2 and 

z. = c/2, fig. (2.6. ), with electric walls elsewhere# so that only a 

quarter of the total configuration need be modelled. A dielectric slab 

of relative permittivity 1.5 and of height b/2 was situated as shown, 

with the relative permittivity of region V tning unity. I 

Unlike the two dimermional equivalents the present 

-2 
configuration cloes not have to be solved for sevoral. values of P 

since the phase constant is uniquely determined by the length of tho 

cavity, Thus the finite element fonriulatizn introduces two unknowns 
2 

namely k and 132 which are interdepondant by 

:M P; 4 7r'/ length of cavity 

Successive over-relaxation was applied to the resulting 

eigerrvalue equation,, the initial estimates of Ic2 and R2- were used in 

the first cycle of relaxations and applying the Rayleigh quotient to 

2 
the field shape# an improved estimate of k: obtained, from which an 

updated value Of ýL could be sought. This however causcdk? to 

fluctuate rapidly and convergence failed. The alternative of fixing 

-Z- and calculating k2 gave convergence with the results of Table (2.1 

row (a) . The analytic rosults wero obtainad from dispersion curvos 

by Mareuvitz 
33 

. since the product 

Le (width of cavity) 
Width of cavi 

xs xe LerZth of cavity 

is known. 
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-L 2 
For the range of P considered the value of k did not vary 

appreciably; a minimum being expected around the analytical value 
7- 

of 
ig 

4, Further cavity sizas with differing relative permittivition 

of the dielectric slab, were also investigated, the rosults again 

shown in Table (2.13) rows bp cl d. Examination of Table (2.13) 

indicates that k2j the parameter representing the frequency of 

propagation, does not vary greatly with I& and the method of analysin 

give sk2 to reasonable degree of accuracy even for a value of 
2 

Having thus calculated kp the corresponding value of can quickly 

be found. 
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2. ý. DISCUSSION 11M OONCLUSIONS. 

The analysis of wavegUide stxuotures in two spatial 

dimensions has been briefly described using two oorimion, techniques# 

namely the represuntation, of the derivativen in the scalar Helmholtz 

equation,, by the method of finite differences; and by utilisinZ the 

stationary condition of a variational functional whore the fields 

within the waveguide configuration are described by an algebraic 

polynomial of the co-ordinate directions over a small subregion or 

element of that configuration. Tho natural extension und feasibility 

of analysing a three dimensional cavity employing a OxTle cubic 

element was also investigated. 

There is little differonco in accuracy of solution betwen 

the methods of finite differences using a5 roint, finito difforanca 

operator and finite elements using a square elemant (9 point operator) 

to describe the field variations over a rectanVmlar ragion and likowisa 

for the resPeotive 3 point operators employed for those structuros 

possessing only one spatial variation of the field. however tho 

finite element method is ruoognicod to be tho wre powerilul mainly duo 

to the , 3miwtry of the matrix operators and thus many criteria am 

satisfied uhich pennits the uac of algoritIns spocifteally dosipwd for 

the solution of such matrix eigenvalue problems; aml tho waighting 

process of nodal potentials in the construction of matrix 
_B. 

The subdivinion of a reE; ion into a regular much has so far 

bcen discussed., but there are certain distinct advantagon to bn Sainod 

from the use of a graded or irregular merhp to model avillmurd boundArY 
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shapes or notably when considering a part of the rogion possessing 

a large field variation and thus a fine mash is advisable to 

describe this variation whilst a relatively coarser mash may be used 

elsewhere. The fact that 'elemental may possess any orientation 

to the co-ordinate axes and hence application of a graded mash schema 

or the modelling of complicated boundaries presents little difficultyp 

whereas the less favourable approach to the problem using a finite 

difference formulation would incorporate intarpolation or other 

techniques (ref. 1, p. 365) thus intensifying the already-, presant 

lack of symmetry. 

Variational methods have been used in conjunotion with 

finite difference approximations (refs: 5; 1pp. 329; 38) and the 

derivation of the relevant operator is then assured to be symaotricrAl. 

Howevert these operators aro derived from exactly the saw assumptions 

as those used in the finite element technique, and the tvn methods 

are then identical. 

The eigenvalues and eigenvectors of the matrix eigenvaluo 

problems were calculated using indixoct and, direot metlIOLIS for the 

conditions of symmetric and at least positive samidefinita matrices, 

and in both casas were shown to provide the same accuracy. The 

direct method whilst solving for higher ordered eigenvalues than the 

fundamental suffered from the restriction that the whole or at leaot 

half of both matrices bad to be storodt or if the band structure of the 

matrices utilised the number of elements raquired to be stored dapanded 

on the order and band width of the matrices# , 
both of which depend. on 

the number of nodes describing the region of interest. Consequently 

mesh grading or refirament, schemes not OnLy increase the order of the 
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matrix but also the band width and the course of refining or 

grading must be curtailed before the matrices become prohibitively 

large. The indirect method of successive over relaxation generate 

the elements of the matrices when required, but this iterative 

procedure places far more constraints on the properties of the 

matrices for a guaranteed converger= to the correct solution. 

Convergence was apparent in all configurations examined except for 

the solution of = and LSIA type modes in a slab loaded waveguickp 

when the phase velocity of the propagating wave was allowed to bo 

less than that of light (r--, and the matrix A boooman indo: Vinite. 

The criterion of the matrix off-diagonal elements being loss than or 

equal to zero 'which was violated by the contribution of the coupling 

terms at the dielectric interface of the inhomogeneous structures 

did not cause the method to fails and thus in the finite elerjant method 

the choice of an elen-ent neea not be restricted to those giving rise 

e to an elemental submatrix S whose off-diagonal terms are non positive# 

as is the position with a triangular element possessing an interior 

0 
angle greater than 90 

most texts describing the techniques of successive over- 

relaxations suggest that the techniques prove most beneficial when tbe 

matrix A, possesses Young' a property (A) (ref. 1 242) which 

indicates the process by which an accelerated convergence can be 

achieved. All the matrix operators, exoept that resulting from tho 

5 point difference operatort on the pagewise ordoring of the node ncIiomup 

lacked this piDperty,, but the accelerating factor.. W. suggested by 

Carre 
39 

was used througbout. 



This value of w being contirzaally updAted after several iterative 

cycleso pzvvided a vast increase in the rute, of convergence# even 

though it was not the OptimUM VAluce Forsythe arul WasOw (rof-lp P-376) 

recommend an initial accelerating factor of I so that the residuals 

R existing at each node are 
Ikept 

to a minimum and tIms allowing the 

Rayleigh quotient to become settled with a 'shaped' field,, the 

accelerating factor also causes an erratic behaviour of the residuals 

so tiat a final sweep of the complete field with w=1 is suggestod, 

to clean up the eigenvector., these procedures were adopted. 

The application of the finite element method to three 

dimensional structures was accomplished via a simple cubic element, 

Although the trivial case of describing the fields and calculating 

the cut-off wave rumber of a rectangular prismatic cavity was 

successfully consideredp the method can be roadily adapted to mora 

complicated struoturest using cubic elements, or perhaps the simplest 

three dimensional element, the tetrehadron. 

A continuous strip line situated in a totally homogenooUD 

region was examinedby minimising the stored eleatrostatic energy 

between two conductOrst and calculating the capacitance per unit length 

and characteristic impedance of the structure such that the equivalent 

circuit may be easily derived. The propagating modes of the continuous 

microstrip structure are of a hybrid natuzv and laoking a formal throe 

dimensional variational expression for the solution of hybrid modes# 

the system could only be solved by assuming a quasi-static approaclis 

which is valid for the strip width and substrate thickness dimensions 

being a small fraction of the wavelength in the diolootrio, and whilat 
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being a relatively good approximation for low frequency operation 

and low relative pexmdttiviess the use of such aasumptions must 

remain suspect for high permittivity substrates and operation at 

higher frequencies. - The large errors incurred for the analysis of 

the two culti conductor systems just described were assumed to 

originate from the failure to describe the large field variations 

in the vicinity of the strip, where mash grading would have been 

advisable but not used, and'also to the modalling-of an open 

microstrip structure by an enclosed structuiv, which however tends 

to be the more applicable in modern microwuve circuit applications. 

Again the trivial case of a continuous strip was analysed., but ti-le 

method can easily be extended to accomodate discontinuities of one 

or more such conductors,, such as abrupt terminations, change in line 

width., gaps., etc., providing the quasi-static assumption still 

prevails. 

The attempted solution for propagation parameters of tho 

symmetrical dielectric loaded cavitys using an incomplete 

variational expressions produced surprisingly accurate results, The 

variational functional adoptedo satisfied the three dimensional scalar 

Helmholtz equationst but the boundary conditions satisfied at the 

interfaces equations (2.29)p required the continuity of 

E*ý (I- -ii%=r ) 
and 14y, (I - pz/6 

r 
). 

which are not the natural interface continuity conditions of the system. 
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It must be stressed that although the method yielded reasonable 

solutions the lack of a foxmally derived variational expression 

placed sevezerestrictions on the use of this method and it was 

concluded that this was sufficient to arrest the pursuit of 

further analysis. 

The above methods were based on the choice of the simplest 

finite differenoo fo=ulations and also one of the simplest 

elemental shapes for the finite element formulation, i-e- 5,7P 9 

point operators. higher ordered operators may be used for both 

3 1809 the above techniqu6s , to obtain more accurate solutionst but 

the disadvantage of an increased complexity in formulating the 

methods especially in the vicinity of the boundaries duscribing the 

structure must be inherent. 
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. 
aiARIER 3 .. 

COITARISON OF IMTEAR INTE RNODAL FUNCTIONS AM CIIMAR INTERNODAL FMICTIONS. 

The previous chapter indicated the manner in which wave 

guide configurations could be analysed by the methods of finite 

differences and finite elements. The main difficulties that araso 

were confined to the complexity of the respective for=lationst arA 

the inability to correctly describe the field variation between two 

adjacent nodes or vertices within the region. The former difficultyp 

can only be resolved by the user who is- well aware of the many 

detailed mathematical procedures necessary to provida the formulation 

and indeed to solve the resulting eigenvalue equation,, and tends to be 

quite tediou'so The absence of a complete internodal potential 

function is perhaps fundamentally' trivial, but as more accurate 

propagation characteristics are required, tile discretisation of the 

region has to be decreased to enable the potential function betwoen 

neighbourd. ng nodes to describe a progressively smaller fraction of the 

total field variationo and thus requiring the number of nodes within 

the region and hence machine store to be increased. The purpose of 

this section is to examino the possibility of using circular internodal 

potential functionsp which will possess the advantaga of an improved 

field description error and thus less nodes required within the region 

of interest, with a formulation that requiren only a. knowledgo of basic 

transmission line theory. 
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UPPER MM LOWER BOUNDS OF THE FMTET' IMI SNT AM 

MITE DIFFEMINCE FOPIXILMONS. 

Fig. (3.1) shows the one dimensional model use& in the 

previous chapter for the analysis of a TE 
mo 

type raoda in a homogeneous 

medium. Let a magnetic wall exist at x=0 and an electric wall at 

z=a such that the scalar magnetic potential satisfies., 

0 at x=00 at Xa 

If an operator A is defined such that 

A=2 co s m7ir h2 oos. m 7T 
2a 2n 

and 

then these S; mple recursive relationships are natisfiad by the true 

field variation of 

4W= sin M Ir x in = is3s5 . ...... 
2a 

since sin mT (i-I)h 
2a 

and from equation (3-1) 

2 cos m7T h sin rn7r (i-2)h - sin m-N (i-3)h 
2a, a2a 

sin m7r (i-I)h 
2a 

(3.1) 

with cýz = sin m'K h 
2& 



nh 

(i-i)h -m 
tn 
-H 

14 

0 

2h 

0-% 

I, 
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The finite difference and finite element formulation of the one 

dimensional TE 
no 

mode, relies on the repeated application of., 

1-2 -Cýi 
22 kýh (P J-1 

or 

'241-1 -01 01-2 22 
kýh (44j 

1 +ý 4. ) (3,2b) j _ 1-2 

at each node of the model. 

Comparing the finite difference relationship, equation 

(3.2a),. with that of equation (3-1. ), 
22 k. Lh =2-A=2 -2 co s m7T h 

2a 

and 
22 

lim. 1ý MInt Ep) 
2 

I -h . 
(mr)2 + O(hý 

T2 (-Za-) 
h0 

whi lat the finite element fo=ulation yields 
22 

k'h 6 ý2 -A 
(m-ff h 6 (1 - 008 

++ 'k) A) k2 + Cos ý ýwl I 

with 

lim k2= (M---9-) 2 (I+ h2 (m7l)2 + O(h 4) 

.& (2a h -4- 0 
T2 

where ý, and lcý represent the respective out-of f froquoncies 

of the finite difference and finite element methods. Thus the cut-off 

wavenumbers derived from the finite difference and finite element 

formulations form lower and upper bounds re. spectivelyt and f urther 
22 0< kýh 44 (finite differences) (3-4a) 
.U 

kýh2 < 12 (finite elements) (3-4b) 

which imply that the number of modes that can be solved using either 

formulation is limited to the number of nodes defining Via structure. 
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As a numerical examplIev consider the case n= 49 h zz I 

in fig. (3-1).. whereupon 

2 

2 Q 
(2 + A) 

20- cos mJ*m 

cm a 
6ý1 - oos( 

- ý2 
+ oosEM-117it 

m 1,, 5,7. 

lv3p5p7- 

These are tabulated in Table (3.1) 
s, together with the analytically 

222 
exact result; ka= (m Ti /2) The cut-off -wavemuabers corresponding 

to the dominant mode are those reported in Tables (2,2) and (2,5) &rvI 

examination of the corresponding entries in the respective arror 

columns indicate that these are 

.t(., )ý 0.1w. 
ý2a ) T2 

as fomeasted by equations (3-3) 
- The higher ordered modeal however 

do not follow the predictecl error, but on addition of the erivr tam 
4 in h, i. e. 

N MIR It 
2a 

such that the negligible residual will bo of the order h6. the erivra 

can again by accurately predicted. One imediate advantage is that 

providing a reasonable choice of spatial discretization in made then the 

exact solutions can be obtained via equations (3.3) %hich are quadratic 

in the true cut-off wavenumber. This obviates the use of Aitkens 6ý 

process (ref. 13; page 287) which relies on the ratios of successive 

error terms being ultimately constant., and consequently a More exact 

extrapolated solution can be sought. 



%.. o 

0 

2 

0 
1 

4- 
Cd 

r-4 

4J 

Cd 

4) 

C4.4 

-H 

0 

2 
21 

a, ý 

a, % N CIL) a,, r- rý- 
N -f co kD 

Cý C', 44 co r- 

' 
cli LCI% ýR CC) 

IýD %, D 
U1, C\j 

C, J, 4rA C; LA C; 

r- co 
c! Ci C! 

co 
C\j 

CYN 
U1, A 
Nl% -1 4 r- C Lr% 

C&P Cý Cý 4 
%. 0 

cli 
C\l co 

cli ol P S . 0 C\j 

C\j 
C\j ý 8 co R g j 

0 ®r CM C\j 

U'll 



- 61 - 

This is usually applied to thme solutions k2vk29k2, obtained 123 

by succes5ive mesh halving and extrapolating by 

k2', -2k (2 )2 
extrap. L- 32 

222 
kI-2 W2 +k3 

which is identical to that obtained from the application of equationj3 
11 A recent publication has the same results as discussed 

above with extensions into two and"t1wee dimensions for the finite 

element formulation,, and also for higher ordered polynomial elements. 

The errors possessed by both the finite element and 

difference methods., thus cannot vanish but only minimised by a decrease 

in mesh discretization. The operator A is essentially a circular 

function, which simply adds a constant phase onto the phase of tho 

previous nodal potential, and since it, is an exact, reprosentation of 

the true TEM. field structure, application of equations (3-1) to the 

model of fig. (3-1-) will provide the advantage of a complete absenoo 

of discratization errors and restrictions, of the m=ber of nodes that 

can be generated. 

_3_. 
2. APFLICATION OF THE OPERATOR A. 

Allowing fig. (3-1. ) to represent the complete cross sectional 

model for TE 
mo 

type mode propagation.. such that an electric wall or 

perfect conductor now exists at x=0 and x=a. then let 

2 co s kh -t =I I IC 
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where k is the angular shift (radians) per unit length across the 

guide. 9 thus 

co s kh. 

A 102 10+1 

A+ 

A I 
+n 

I n- I 

= Cos 2kh 

= cos (i-1) kh 

= co an kh 

where is the magnetic potential existing at the i node in the th 
1st series of operations with A, or iterations in the direction of 

(3-5) 

increasing x. 

Now the system of equations (3-5) represent an elootromagmtic 

plana wave travelling towards and incident upon a perfect conductor at 

X=a. The occurrence of incidence implies the introduction of a 

reflected wave., such that the electric field strength is reversed in 

phase on reflection, in order to produce a zero resultant field at the 

conductors and thus for a reversal of direction of energy propagation 

the magnetic field strengthý , is reflected without a phase reversal, 

,. this reflection at the conducting bourulary is accomplishod by 

JL (F = co s (n+l ) kh. Iýn 1 n+l -4n 

1 
41+1 - 41+2 = oos (2n-i+i) kh. 

1ý1 1ý2 - 113 = oo s2 nkh 

-where is similar to + but obtained from the first iteration Iýi 
4, 

in the direction of decreasing x. 
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If them are in all P such series of iterations, then 

the field, shape acxvss the one dimensional modal can be obtained from 

V'i p 
i) 

p 

where Cos (2 (p-I n+i-1) kh. 

Cos (2pn-i+l) kh. 
Pýi 

i=I p2,93 ....... n+1 - 
(3.6) 

Except for discrete values of the angular shift per unit length, - kv the 

field across the one dimensional model of the waveguids will be zero. 

This can readily be observed from equation (3-6) 
s, where in the limit of 

P tencling to infinity, the forward and backward directed wavest interfere 

destructively with each other, producing a null field, except in the 

cases when they become coherent and add constructively. In this 

situation, the field and the value of kv satisfy the one dimensional 

lialmholtz equation 

CY(t) 
c bxý 

together with the boundary conditions, at cut-off. 

Thuss to obtain a cut-off solution, a suitable node within 

the model has to be chosen and the su'A Of sucr-essivelY refloated magnotio 

potentials at that node calculated for a range of ko until a maxLm= 
I 

t , r, potential is achieved,. thus'ensuring the pa týicular value of k is 

causing coherent addition. The choice of node is of importance ani in 

this present representation since the field is known to be a, maximm at 

either x=0 or x=a, it is reasonable to take the corresponding node 

as a solution point. 
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Fig. (3.2) indicates the manner in which the output represents 

itself due to the multiple reflected wave for an arbitary value 

of k, and consists of a sequence of unit magdtuda dalta f unotions 

of period multiplied by the waveform Cos (knph) 
j, thus 

P 
(nph) cos (knph) (nph - 3A 

Summation of the areas of these delta functions as in 

equation (3.6) produces the amplitude of the field at the diosen noda 

for the particular value of k. Ideally this will either produoe a 

zero or infinite magnitude of potential, but practically the nwnber 

of iterations will be limited to P, and the maenitude of the fieldl 

will lie someAere between these two extremess thus the response of 

the model to variations in k. for a fixed number of iterations IV 

is given by 
p 

k) cos (knph) d(nph) (I" 

and this is representative of the real part of a Pourier trunsform 

integral. 

J)ef ining 
" 

Cý (r, 62 (k) = -I 
f 

ph) -Jknph d(nph) 
ZIT 

- 00 

with the inverse transform 

4) (nph) =I"ý (k) eJ 
knph 

dk 

-06 



0) 

oe 
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such that ý (k) is measured as Amplitude/(radianq/unit longth), 

the n 

(k) E6(nph-rX) 
F(nph)o-6knph d(rTb) 

rn -A 

where F (nph) =10 nph 

=00> nph 

The k-spectrum of equation (3.7) can then be obtained via 

the Fourier transform pair, by convolving the tmnsfom of the 

delta functions with that of the unit rectangular function, i. e. 

11 (k) TI(k) -A ý2. (k) =f 4ý1(kl) §2. (k-kl) dk' 

-04 
whero co Z6(k 

ru 
and 

(k) P)ý sin 2? ) 
--(kPXL 21T (kP, \ 12) 

thus 

P sin (k-k$)P, \_/2 dkl 
21t (k-kl)Pý, /ý 

00 
(3 
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Thus the k- spectrum of Cý (nph) is of a (sin x)/x nature centrod 

about values of kcorresponding to k= 21Tr/X ;r =-ooe. Op 00 

As P tends to infinity, 4 (k) assumes its correct form of a delta 

function situated at each of the previously specified values of k. 

Since the choice of node was taken at either of the 

extremities of the waveguides cross section, X= 2a, hanco 

Tm 0#1 j2p 
a 

ignoring the negative values of ro which serve only to place k in its 

(3-9) 

negative plane., and thus equation (3-9) represent all the cut-off 

wavenumbers of the propagating modes within the waveguide. Should 

the solution point be taken at the oentre of the waveguide then the 

period A=a, and thus (sin x)/x type, envelopes Llavelop, about ka2 IT plap 

corresponding to the cut-off wavenumbers of the even ordered modes. 

This is to be expected since the field is identically zero at this 

point for all odd ordered modes. 

The approximation of the ideal k- spectrum oonsinting of a 

sequence of delta functionss by the sequence of (sin x)/x type runotionsp 

will however cause some inaccuracy due to the interferenco of tho side 

lobes of -the relevant function on neighbouring solutionsp an-I thus 

tends to displace the true solutions as in fig. (3-3) 
, vdiero the true 

solutions of a particular structure are denoted by k, p k2# but side loba 

interference from neighbouring (sin x)/x type solutions cause the 

t 
solutions to deviate to k, ) 1ý- The influence of the side lobes 

however can be minimized, by taking the n=ber of . 
iterations sufficiently 

large, such that the width of tho curve becomes small, and the magnituda 

of the side lobes negligibly small. 



AM-3. 

k k' 
1-1 11 VI-2 

Fiz- (3-3). Diaplace=ant of true solutions k, p k2 by 

in'terfennee from side lobes of naialibouring solutions. 
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Choosing a solution point., i, other than the tvio 

previously mentionedp would yield two sets of unit impulsost both 

of periodicity X and modulated by the wave form coo Ochph), but each 

set possessing a phase differencep defimd by equation (3.6), of 

(2n - 21 + 2)kh, This has the advantage of suppressing the 

influence of modes possessing a zero field at that particular point, 

as was demonstrated by choosing the solution point as the centro of 

the guide,, due to the reasons discussed innediately above. 

If the technique of suming potentialo at a solution Ivint, 

due to a multiply reflected waves is performed with the operator A in 

equations (3-5) and (3.6) being replaced by the appmpriate finito 

difference and finite element operators# then since tAiese linear 

functions approximate the true sinusoidally varying field, the foxm of 

the solution will be similar to that of equation (3-8) 
- The solutions 

obtained from the application of the two linear operators will differ 

from the correct solution by amounts predicted by aquation3 (3-3) 
, being 

upper and lower bounds to the required solution, and also rontrictod to 

r, olving the propagating modes whose cut-off wavenumbers are limited by 

equation (3-4). 

The three techniques were applied to fig. (3-1)) with a 

. netic wall at x=0 and an electric wall at x=a, the solution ma87 

point being taken at the node on the electric 'wall. The magnetic wall 

requires no special treatment except for a reversal of phasoi, however 

the periodicity of the sequence of pulses fomed at the solution point 

now becomes 
2nh(k + -rr 

2nh 
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which implies kI --* k' + (-K /2nh) in equation (3.8) 
v and thus the 

solutions according to equation (3-8) will again bo of a (sin x)/x 

nature centred about values of ko corresponding to 

k= 27 m- i- ý (2m -1)7qm= 09 esesbo 
2nh 2nh 2a 

thich. are the cut-off wavenumbers of the odd ordered modes 

propagating within the waveguide. The semivddth of the waveguida is 

a=4 corzesponding to n= I+ and h=I. and the value of v- equation 

(3-1) - was set to unity, an arbitary choice., for the finite difference/ 

clement descriptions. The form of the solution about the true cut-off 

waverumber of the dominant mode is displayed in fig. (3-4) , for P -a 100 

iterationsp and the results tabulated in Table (3.2) for various values 

of P. Table (3.2) indicates that P does not have to be made relativoly 

large for the correct solutions to emerge using the method of a circular 

internodal function, but P must be increased for the linear intemodal 

function methods to yield their solutions,, and must therefore be morn 

susceptible to interference from their respective neighbouring solutions. 

The latter two methods., when settledp i. e. P is taken sufficiently large, 

possess the cut-off wavenumbers as predicted in Table (3-1)- IUw 

attempt to exceed the limitations expressed in equations (3-4) causes the 

respective methods to fail) when the field being constructed at a 

w1ution point tends to diverge. The use of the circular internodal 

f-Unction possessed no such disadvantages and yielded exaot solutions 

of the system for any mode, an example being the calculation of the 
2 

cut-off wavenumber, of the TE mode which yieldod the exact 25.. 0 
2 

result of 96.3829 (rad. /unit length) 
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The passage of the multiplyý-reflected waves represented 

by equations (3-5) and (3.6) across the waveguide can easily be 

seen to be equivalent to the passage of VIZI wave down R sirw, 10 

coax-Ul transmission line with the appropriate short circuited or 

open circuited terminations. The modal of fig. (3-1) then reprononts 

such a transmission line subdivided into finite elemental sectionsp 

each of vhir-h becomes a distributed constants network, possessing a 

series impedance Z=R+ JWL per unit length and a shunt admittanco 

Y=G+ JwC per unit length. For the case under discussion iso. 

propazation in a lossless mediums R=G= Op and the elemental 

transmission line sections are thus illustratod by fig. (3-5), vAiGro 

L is the inductance per unit length and C the capacitance per unit 

length of such a section. 

Over such a section, basic tran=ission line thoory states 

- bV =Lb (1ý - I-) ;-A (1* - I-) =0 bv Fx- Tt bx wt- 
yielding 62V LC b2ý 

'6 x2 bt 2 

whilst Maxwells field equations for a 153. modo, at cut-off booumo 

- allz a2 bs -- 
-Y -Y btt 

which yield 
2Hz hz 

ýx2 t2l 

comparing equations (3-10) and (3-11). thO identities 

Hz=v; By (I +L 
-v C. C is 

are fomed together with 

(3.10) 

i) 
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v= velocity of propagation =wI IL: 
LC 

VrF 

Z= characteristic impedance 
0/ ELL 

on the tx-ansmission line. 

The boundary conditions are then represented by a short 

circuit or open circuit terminations on the transmission lino 

I replacing' magnetic or electric walls in the waveguido structuro . 

respectively. 

Further, if the characteriatio ixTedance of the tmnm-Assion 

line is normalised, the electric field component By may be obtaiwd 

at a solution point,, i. by the operation, 

BY + 
zp i) 
P=I 

using the same notation as that of equation 

00 TVO DlIMSIONAL APPLICATIONS. 

The ooncept of two dimensional propagation may bo envisaged 

by considering the transmission line of the Previous discussion to be 

loaded at the nodess with open circuited stubs of physical length W2 

(i is an arbitary constant) arul of identical characteristic 

impedance to that of the transmission line, as in fig. (3.6). This in 

equivalent to the arbitary placing of electric walls across the 

direction -where the field variations of the TTI 
mo 

modes are zero, and 

consequently has no ef feet on the required solution. The atubso howavor 

introduce point discontinuities in the elemental sections of the 

transmission line, with reflection and transmission coefficionts R and T 

respectivelyp in both directions, for the propagating voltaGe or 

current waveform. 
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To examine the mechanism of propagation, consider the stub loaded 

transmission line of fig. (3-6) with a short circuited termination 

at nodal , and suppose that the line is excited at node 3 by a 

sinusoidAl-voltage of amplitude Vp and that the frequency chosen 

makes the electrical length of the elemental sections between noacup 

equal to 9 khj i=1,, 2 .... n+l. The method of obtaining the 

multiple-reflected wave then reduces to one of accounting for all the 

reflections and transmissions that occur at each of-the nodal - 

discontinuities in the order in which -they are performed in spac", 

and summing such forward and backward propagating waves at each node. 

Thus for excitation at node 3. the first ordor reflections 

occur at nodes 2 and 4 and denoting V+ 
pi 

Lb as the amplitude and, phase 

of the wave proceeding in tile positive direction f rom noao i for, tho pth 

order reflaotions, then 

Am = fly +AA Zeý Ivi Lp RV 102 

IV 
/a 

I VZ ýp = RV Z93 + 
Ivv Ze 

The second order reflections are then given by, 

-RIV, 92ý'ý6' 21 T'ýý+ 

V+ -T V- 2211 A+29 -T2V, &+ 29, 

v Rv ++TV 
2 3' - 

Zo =121 46+9 

= IFV /2 ex + TRV /2.9j 
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++ 

2V3 
ZG TI Vý, + RIV 4 

Z2 + 

TRV +R 
zv L2 

v Rlv+- lav Abt e 2 

Le T, + /G+e- T2V Z24L+ e 5 
Vý 

- -4 

and so on for the higher order reflections and transmissions. 

Sumation of these forward arA backwardly-propagating waves 

at each node of an elemental section after each ordar of rarloction 

has been considereds tends to form the complete stoady-stato foxvard 

and backwardly propagating Ivav'08 and henoe the dascription of the 

propagating wave that would be achieved in practice. 

To examine the effect of the stubs on an otherwise =o0th 

transmission line,, the stubs are allowed to be placed periodically 

along the transmission line. This does not necessarily muan that the 

method has lost some of its generality,, since the provious chapter and 

discussions, indicate that analysis is easier if performod over #A 

regular mesh, with slight deviations in mesh arm length to acconnodate 

awkwardly shaped boundariese In a similar manner, this, system in 

included in the present model such that the transmission line of fig-0.6) 

now possesses periodically loadod open circuited stubs, separated by 

a distance h, (electrical lengthe = kh)ý 

For the periodic structure of fig. 
-(3.6), 

an equivalent 

network of an elemental section is a shunt normalized suaceptanoo D 

with a lengthl4/2 of txunsmission line on either side. The rxilationahips 

between the amplitudes of the forward- and backward-Tropa gating wavon 

of a typical section of transmission line, ý fig. (3.6), in the steady states 
40 

are related by 
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+ '2 + JB B- jo +. I 0 
A '0 2 J' 2 a' 20ai 1-1 

- -jo 
_BB0 0-je 0 P ý + 

C 
. 

ezt J13) 22 (2 + i-I ij 

whe re c+ represents the amplitude of the forward propagating wave, j-1 

in the steady state,, at a point midway between the ( i-1) th anti ith 

nodes., fig. (3.6). 

, 
If the waves on the periodic structure on the notwork 

possesses a propagation constant gn = Oý *jP ý i 

0+0+e- 
Ph 

Ca-a -Inh 
i 

(3-13) 

and the solutions of equations (3-12) and (3-13) yield 

cosh ýnh = cos (D B sin 9 (3-14) 

when 
cosG - (B/2) sin 91 6n J Pn and equation (3.14) boooma 

cos h= cos e-B sin E) 
n 2. 

and when 

0013 - (B/2) sine >I; 
n= C4 

n 
00 sB- (B/2) sine < -1 ;h= j7r + v, h 

n 

Tj, ms there will be discrete frequency bands for which unattonuatod 

propagation can occur (pass bands) separated by bands of frequency 

where the wave is attenuated (stop bands). 

If discussion is restricted to the low frequency pass band, 

and replacing the shunt normalized susceptance B by its truo form 

B=2 tan 1kh 2 tan le 
2 

then equation (3-15) becomes 

Pn= W 
FL40 (1 +1) W 

FC Z 
l-) 

in the limiting value Of low frequency, w, 
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Therefore at low values of frequency, the periodically loadea line 

behaves as an electrically smooth line with a total shunt capacitanoo 

of (C+Cl) per unit length. 'The low frequency phase velocity of 

propagation, vn. thus becomes 

Vn w /LC 

71 +1 ý n. 

, Each elemental section of the trunsmission line may then be 

represented by a lumped capacitor/inductor network as in fig., (3-7) - 

As the frequency increases the fact that tho stub represents a 

distributed capacitance/Inductance and not lumpod becomes important 

and the phase velocity decreases according to equation (3-15). Tho 

phase velocity-frequency characteristics are presented graphically in 

fig. (3-8) for various values of stub length, and indicate that an 

the stub length is increaseds i. e. more capacitance is added to tho 

system, the usable frequency range of the periodic struoturo beooman 

severely limited. The upper limit of the lowest frequency range of 

propagating waves on the periodic structure is aotorminad by the odga 

of the passbands., or al te rnati%miýybyco nside ring the group vulocityp v90 

of the wavep i. e. the velooity at whicli enorgy in tiunsportod along the 

transmission line. The group velocity can be expressed as, 

V= dw =a CIE) 0 sin, 
-h T S002ýT- 9d fý sin E) + oos a tan le 

and thus shows that the group velocity becomes zero, i. e. the natwork 

itself becomes cut-off,, whenever ýnh = iT and corresponds to 

C) V 

, Ikhir-h can be readily appreciated in figs (3-8) - 



V. 

, ýz- . a-. - 
l 

1. 

0 

C) 

j 0 
-H 4J 
U 
4) 
41 

E-4 

ol 

41 

ý--o 

tý V. 



II 

dl 

0 ul 

CM 

0 ei 
0 

-ri +ih 

r-i %-, 0 

Co 

0000 

-4 

Io 



- 75 - 

The method of summing multiple reflected forward and 

backward propagating waves on the periodically open circuited stub 

loaded transmission line# so as to simulate TS type mode analysis 
mo 

within a rectangular waveguides where the voltago distribution on 

the network analogy represents the scalar magnetic field in the 

direction of propagation (equations (3-10. ), (3-11) ), can now be 

readily explained by consideration of fig. (3-9). Fig. (3-9) 

represents a typical nodal junction of the transmission lines fomed 

by the intersection of the actual transmission lino along which 

propagation occurs with the transmission lines forming, the stubs, and 

if the characteristic impedance of the lines arc noxnalisod, a wave of 

amplitude V incident upon such a nodal junction along lirm i will be 

presented with an effective terminal impedance of 113 ohms. Thus " 

wave of amplitude V/2 will appear in lines 2,3,4, whilst a reflected 

wave of amplitude -V/2 will be reflected into line 1, Further, if the 

model represented by fig. (3.6) is placed on a two dimensional (x,, y) 

grid such that the transmission line lies parallel to the x direction, 

with the stubs parallel to the y direction, shoym in fig. (3-10), thon 

if V (xoY)119 'Ind Vý (xpy) LG denote the amplitudo and phuse or the 
ppI 

Pth order vave incident on and reflected along lin, 3 1 at the noda 

coriesponding to the position (x,, y) 

vr Le =1vi ILO vi LO 
p+l n2 

ZP 
mpn 

-m=l 

I 

for each nodej, and 

v' (xsy ) Le = Vr- (. -h., y) Le+ ei 
p+I 11 P+l 3 

(3-17) 

V3' (X-hg 
P+1 3 



pig,, Typical r. Oda-1 junction of stub loadad 

tran=nisaion line. 
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Vi (x»yl) ,br 
(x, yý + i'lh + 

P+, 
v. 

p+I 2 

r (,, 4. j1h + 4, lkh 
P+IV4 71 

vi (xty ) Z-E) = p+I 
Vr (X + hg Y, )/8 9-s- 

p+I 31 

= P+l 
v1 (x Ze 

i Vý (x", y- jlh) Z E) 
-+ 

Eb 
p+IV4 (xgy 

1) 
/8 

-w p+I 21 

' (x"y + 41kh 
p+IV2 

For the nodes situated on the extremities of the transmission lina 

corresponding to the boundaries of the modalled waveguidol raflection 

coefficients have to be introduced sucli that if a short circuit 

termination is presented to a wave travelling in tYY3 nagktivo x 

direction from the node corresponairW, to tho point (jh# Y, ) thon 

(3.18) 

iIr+ kh.. tT- V (jhO yj) A V; (Oy, ) 6+eL ýV P+i 1 p+l 31 

and if an open circuit termimtion is presented to a wavo travelling 

in the positive x direction from the nodo corxesponding to the point 

(2n - 5) jh,, yl) 

V', ( (2n - 5) Ihs. Yj) LIO r. ( (2n - If. ) -Alho y 
P+i 3 P+i i 

Vr ( 1hp. 
_+ 

kh (2n, 5) tj v LG 
p3 (3.1 Ob) 

6, and similarly the open circuited stubs will al,, -o possonz a voltato 

reflection ooefficient of 1. such that 
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rr v (Xvy, + Yj 
P+i 4 Arlkh p 

(xpyl)'ZO + Ikh 
2 

(3080) 
r (X 

0y -lh), 
/ e 41 kh = vr (X, yZe P+Ivi P4 2 

It is also to be noted that the boundaries or terminations 

at either extmmity of the tranzmission line are a dintanoo jh 

from their imaediate neighbouring stub, This in to provida 

consistency with the analysis performed for a periodic structuiv 

possessing sectional line elements as in'fig. (3-7-)- 

Thus at each node the above- oper'utions arO coalplotoci, ujil 

the steady state field distribution obtained by summation or tho 

potentials existing at each noda (X, y) v af ter each oraor of 

xvflections has been considamd. 

Vr (X, Y)a v (Xpy) 
pm 

P=l rn=i 

Again truncation of the order of reflectional ps cuunan tho 

spreading out of the ideal frequency rejaponse of the system or, a 

sequence of delta functions, situated at discrete froquoncion 

corresponding to transverse resonant conditions, into (Din x)/x 

natured curves centred about the saw discrete frequencies. 

The method was applied to the trurwmission lino of fig. (3.10) 

The length of line analysed was 4hp corresponding to n ix 6o with a 

short circuit termination (magnotio. wall) at node I ard an opon 

circuit termination (electric wall) at node 
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The line was excited at a source point corresponding to node 5 

such that waves of unit amplitude and zero phase are launched 

into all four transmission lines intersecting at that node,, and 

the amplitude of the resulting wave after P= 300 orders of 

reflections had been considered obtained by summation of the four 

incidxxitwaves after each order of reflection, also observed at 

no de 5. This is the point where the field distribution of the 

T' .& mo 
modes will be near its maximum. The length of stubs for 

v&ich the analysis, was performed were 1=1 . 2.3 and the results for 

the cut-off wave mmnbers k. obtained are tabulated in Table (3.3) 

for h=1. Since the low frequency phase velocity of propagation 

along the stub loaded transmission line was shown to be c /V/1- -+I 

equation (3-16), then this is representative of allowing the wave 

guide of which the tran=ission line is the model, to be homogeneouisly 

filled with a dielectric medium of relative permittivity (1 + 1), 

The computed results of k have thus had to be corrected by a faotor 

of 
ý1 

+I to permit the fact that propagation did indeed occur within 

an air-f illed waveguide. The value of P was taken sufficiently large 

to minimize any truncation errort and the remaining arror due to the 

velocity characteristics exhibited in fig, (3.8),, when the frequency 

of excitation causes departure of the velocity of propagation from 

its low frequency limiting value, has been calculated and also 

tabulated in table (3-3). The velocity error can then be used to 

stipulate the error ( for P large) that the computed value of k 

possess, vhich can be seen to be the case, by examination of the 

respective error columns in the table of results. 



TABLE-0-3) 

Cut-off wavelengthp k., of IlTmo modes in a rectang-alar waveguido, 

modelled by the transmission line of fig. (3-10). 

Stub 
length 1. 

Mo de., m 
TI,;. 

k exact 
(M--1T-) 

(8 

k cala. k calo Error (, 'Laj 
A -T, 

Velocity 
1-; rror 

1 0.3927 0.2768 0.3915 0.32 o. 32 

3 1.1781 0.8077 1.1423 3.05 3.06 

5 1.96Y+ 1.2573 1.7781 9.45 9.46 

7 2.7489 1.5356 2.1716 21.00 21 . 43 

2 1 0.3927 0.2247 0.3892 0.8B o. 86 

3 1.1781 0.6282 1.0881 7.61f. 7.67 

5 1.9631+ 0.9056 1 -56B5 20*14 20.2J+ 

7 2*7489 1.0374 1-7968 31+. 65 36-35 

3 1 0,3027 0.1936 0.3872 1.41 1.42 

3 1.1781 0.5179 1.0358 12.08 12. il 

5 1.9634. 0.7040 1.4080 28.28 28.27 

7 2.7489 0-7790 1-5580 10-32 44-18 



- 79 - 

Only four modal cut-off frequencies are solvable for each of the 

values of 1, and are due to the reasons discussed before.. viz. that 

the stub loaded transmission line itself becomes aut-off, and the 

results indicate that this method of describing the fields by a 

circular internodal function yields an improved description of the 

problems than those associated with the finite difference/element 

techniques of table (3.2) for the same space discretization. 

If a series of stub loaded transmission lines can be imagined 

to be placed adjacent to each other$ with the appropriate stubs 

electrically connected as in fig. (3-11). so as to form a network 

of intersecting transmission lines, then if this network in excited 

sinusoidally at all the nodes corresponding to x= constantl with 

waves of unit amplitude into all four lines terminating at each of 

these nodesp then as the successive orders of reflection are takent 

it can readily be seen that waves incident on a node, i, will reflect 

waves along the transmission lines in the positive and negative x 

directions towards nodes J and k, -which are identical to those 

reflected from nodes J and k towards node i. following identical 

reactions at nodes J and k. Thus, this mechanism can be seen to 

represent the propagation of TE 
mo modes within a rectangular wavoguidet 

-where variation of the field component Hz is zero in the y dizvotion, 

and a plane wave traverses the network in the x direotionp corresponding 

to the passage of TIM waves down each individual transmission line 

also in the x direction. 
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The modelling of the waveguide by a network of intorsecting 

transmission lines, has been shown to be capable of solving the 

cut-off frequencies of the Mmo modes. However the use Of such 

a network, since it is in effect a slow wave structure# gives the 

appearance that the actual wave is propagating in a medium Of 

relative permittivity (1 + i)- To be consistent if the length of 

the stubs isfixed. at 4/2, i. e. 1=1, then the network of fig. (3-11) 

is regular everywhere and the optimum usable frequency range of tho 

system is utilised, fig. (3-8. ). The velocity of the waves 

traversing the network parallel to either of the coordinate directions 

., with due regaxtI to the velocity erxors incurred for is then cIV-2 

hiF, h frequency operationp vdiicho however, are known. 

Fig, (3-12) shows a regular mtvmrk of intersecting tranmisajon 

lines used to simulate a square cross-sectioned waveguide. Ift nows 

the network is sinusoidally excited at nodes lying along the main 

t diazonals' of the netwdrII, two waves can be considered to be travelling 

across the netw6xk in the direction of the diaronals i. e. 45 0 to tho 

direction of one of the coordinate axes. In the steady state, this can 

be represented by fig. (3-13), which shows the interaction betmen two 

sinusoidal waves of equal amplitude, propagating in directions 

perpendicular to each other. Two sets of open circuited terminations 

a, a2v b1b 2; aIbIIa2b2 may then be placed as shown without affecting 

the wave Pattermp and the resultant wave due to the superijrpoýsitibn 

of the two diagonal waves may be seen to be that cormsponding to a 

TE 
11 mode propagation. Similarly the placing of magnetic walls I 

aia 3' 01 c3; aIc,, a 303 yields T022 mode propagation. 
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--ec u 61 to sirmilate a waveguid-z of square cross section. 
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Since the waves are travelling: across the notwork in the, 

direction of the diagonalop then the individual v6uves on the 

natwo! rIc travelling from node, to node, when approachinZ any nodo 

will be presented with a matched impedance, Le., there will be 

no reflection along the line of incidence., and-can, bo seen by 

considering, first order reflections of the system under discussion. 

Under steady state conditionsp the diagonal propagation of 

the wave over the notworkmay be represented by equation (3.15) 
0 

with B equal to zero, since there is an impedance mtch, thus,, 

cos ( f3 
n 

F2-h) 
= , cose oos 2h) 

since the wave although theoretically travelling ix distanco ý/2 h T 

along tile diagonal of a typical nodal mesh., has its component parts 

on the network traversing a distance 2h around the perimeter of tho 

nodal raesh. Hence equation (3-19) implien that 

vn 

for all frequencies i. e. the"ii6two'rk is never cut-off, but the 

velocity of propagation 'still remains atVlj2= that of free spacep 

for TE 
nn 

type mode s. In general, however, = 
mn 

(m f n) mo de s do 

not possess this property, but as the two extremes have boon 

considered viz. propagation parallel and at 45 0 to the ooordinato 

axes of the transmission line network, it may be recogniZed that if 

the worse possible case may arise, that of propagation parallel to 

one of the coordinate axes, then the velocity errors inherent in any 

calculation of cut-off frequency will be less than those given by 

equation (3-15),, which becomes 

(3-19) 

v=-; ý a 2 (3,20) 
sin- ( V-2 sin- e 
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for the regular mash, and the trial frequencies of the natuork 

limited to those', ahich restrict' the internodal, electrical length. 0 

to be always less than 17T 

The method of summing the multiple reflected waves according, 

to equations (3-17), (3-18) was applied to aregular network, 

simulating a waveguide Of square croSs-8ection 7hp source ana 

observation points were chosen so as to excite and observe the mode 

under analysis and the boundaries of the network being terminated 

in open circuits, so as to identify the electric walls of the wave 

guide. The results are tabulated in Table (3-4) for ha1. The 

modes corresponding to diagonal propagation can be seen to 

experience neither velocity errors nor cut-off characteristics 

experienced on the networkt and in a similar manner the modes that 

approach diagonal propagation experience progressively less velocity 

errors, comparing the results for the TE 31 and TS 
23 wdes. Thus 

for propagation in a direction between that of the diagonal anil the 

direction of either of the coordinate axesj, the out-off frequency 

of the network lies between the two extremes# as do the velocity 

characteristics. -The field patterns corresponding to modes may 

easily be found by summing the feflected waves at each noda of the 

network after each order of reflection for the frequency under 

consideration. Fig. (3-14) shows the normalised field shape for the 

TEII mode,, the absence of the field description at the-open 

circuited, ends of the transmission line being due to equations (2.18AP 

b,, c),, which indicate that these nodes aim in fact not consWerad 

during the summation of the reflected waves. 



TOLE 

Cut-off wavelength., k$ of TE 
mn modes in a square =oss seotional 

waveguide of side 7 units- 

mrode (m, n) 
111B 

mn 

k calo. Y- exact Error Maximum volocity 
Error J`,, 

ISO o. 4468 0. "88 0. " 0-4 

1PI 0.6342 0,6,. V+ 7 0.08 0,67 1 

200 0.8816 0-8976 1-71+ 

2,, l 0.9958 1.0035 0-77 2.26 

2,, 2 1.2692 1.2694 0101 3.92 

30 1.3789 1.4192 2.84 4-78 

20 i. 6o3o 1.6182 0.9ý 7.04 

30 1.9020 1-9041 0.1 11.68 

2p4 1-9353 2.0071 3-58 12.51 

4P4 2.54o6 2-5388 0-07 - 

5,5 3.1746 3.1735 0.03 

6,6 3.8085 3.8082 0101 

(P = 500) 
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3.4. MAM='S FIM EýUATIONS AND THS BASIC TW43MISMON 

LINS EQUATIONS. 

The previous section indicated the manner by which the 

analysis of TE 
mn 

modes may be accomplished by sinulating the 

waveguide by a network of intersecting transmission. lines, and 

observing certain idbmtities between the voltages and currents 

on the network with the electric and magnetic field compononts 

existing within a rectangular iaveguide,, equations--(3-10) and (3-11). 

Consideration of fig. (3-15), showing'a typical intersection of 

transmission line elements of fig. (3-12), yields the following 

approximate relationships. 
av -L C) (I 

+ 

TY at y 

0--V -L _I 
(I+ - 

6x bt 11 X 

6 --)+ XX 
& (1+ - l- )= -20 bV 

y ax ay y at thus 

62v + C)2, V 2IC b. 2. 
V 

C6 XZ by2 -S-t2 
whilst Yaxwells f iel . d equations 

curl H =C C) curl E 

become 
b t 

Hz E 
by 

x 

- bH E 
z C- Y TX ST 

(bE , -bE Yx : 
611 

z - bx 5-Y 57 

(3.21) 

(3,22) 

22 
Hz 

+ 
H7 

2.. 
= ýa e 

b% 

x V? 
-Tt 2 
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Fig. (3-15) Typical nodal interoactioli of t%vo 

transmission lines. 
Ia 
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and bEz 6H 
bt 

'Hi 

bt 

bH 

xby 
Ft 

222 
ioe* b I.; z+b Ez *6 Ez 

TX2 -TV2 -pt 

within a rectangular source free waveguide at cut-off, Thuri 

Maxwell's curl equations divide into two independAnt sets 

corresponding to the propagation of Mwdes, equation (3s22) an(l 

SU modesp equation (3.23) 
0 subject to the boundary conditiom that 

exist within the waveguidee 

Comparison of equations (3.21) and (3-22) then yield the 

identities 

HE 
zx 

(11 - I-) 

LEG 20 

and the velocity of propagation 11 
r2LC 

Thus if each of the wave components travol over tho natwork 

internodal distances at - the, speed of light co they combine to fom 

a wave travelling over- the network as a -whole rAt a velocity c/, 
/T, 

(3 . 2' 3) 

and is hence confirmation of a result obtained previously. Tho 

netwrk then represents a medium of relative permittivity twico that 

of free space. Further the electric walls in the waveguide must 

be represented by open circuits on the notvvork,, whilst the magnetic 

walls of symmetry must be represented by short circuits on the 

network. 
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Equations (3.21) and (3.23) yield the -following identities 

between the voltages and currents on the network and the fields 

for TM mode propagation ati cut-off 

V=RHH (I+ 
zxxx 

L, a p, ; 2C 

and again the velocity of propagation v=II= --I 
V P-46 v/2-LO 

Again the network represents a modi=-of relative'permittivity 

twice that of free space, but now the electrio walle of the wave 

guide are represented by short circuits on the network and magnatia 

walls by opeýi circuits. 

Ihe analysis of t1le pravious sectiont doalt with the caloulation 

of the Tiýmn type raode cat-off frequencies for a wavaguide of square 

cross section uang the relationship that the voltage distribution 

on the network is representative of the scalar magnetic field, H 
zo 

in the direction of Propagation. , It can now be seen from the 

identities derived for TE =des,, that the summation of backward and 

forward propagating vaves can be used to calculate the otiler field 

components., in particular at a nods (x, y), 

1, (XIy) + I- (XPy) 
yy 

Pi 

V, (X, Y) Le + pyý 
(x0y) Z-0 

P=I P=I 

and B (X., Y) I+ (XOY) - I- (Xvy) 
yxx 

= 't ývi (X,. V) ze- -f vi (X"Y) 
P3 P=I 

to 

(3-24-) 

(3.25) 



- 86 - 

using the notations of equations (3-17) x Proviaina, the 

characteristic impedance of the line is normalised. For TS 
MO 

mode types, such that the waveguide is resonated trunsversoly in 

the x direction,, it was stipulated that for the necessary initial 

excitation along a transmission line x= constant, whatever 

magnitude and phase of a wave reflected from any noda was identical 

to that reflected from the immediate neighbouring node in the y 

dimction, and hence from equation (3,24), Ex (x, y) is zero# thus 

indicating that there is no field variation in the y direction. 

Similarly for IM 
mn 

type mode cut-off frequencies, the field 

components Ez, Hx, Hy, may be found by summing the reflected waven 

at disomte observation points on the notwdrk and parfonaing, the 

suitably adapted operations of equations (3-24) and (3.25). The 

method was applied to the saw network as was utilised for the 

examination of the TE 
mn modes, but short circuits replacing the 

open circuitso and the results tabulated in Table (3-5) for h=I 

together with the velocity errors 'which Inust still be inherent in 

these mode studiesp- due to the orientation of the waves over the 

nettork matrix. The cut-off wavelengths) k# roported, in the table 

of results are identical to those in Table (3-4),, as would be expected. 

Tile field configuration of the "',, was also obtained and displayed 

in fig. (3-16), for the component Zzo 



TA= (3-5) 

Cut-off wavelength,, k, of 211 
= 

modes in a squaro cross soctional 

wavegaide of sicle 7 units. 

Llo do (m, n) 
Is' 

mn 

k calo. k exaot Lirror ;4 tsaýý volooity 
x= r ýS 

0.6344 o. 6347 0.05 0-87 

2., l 0.9953 1.0035 0,82 2.26 

2j. 2 1.2683 1.2691, ý 0.08 3.92 

3pl 1.3779 1.4192 2.91 4.78 

2)3 1.6032 1.6182 0-93 7-oi+ 1 
1 

3.. 3 1.9023 1-9041 0.09 11-77 

2; 4 1.9351 2.0071 3-59 12.50 

4,4 2,5409 2.5388 0.08 - 

5o5 3.1736 3.1735 0.00 

6,6 3.8052 3.8082 0*08 

-1. ill 

(P = 500) 
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Fig. (3-16) Field configuration of the III,, mode on tho matrix 

of fig. (3-12). k=o. 6344. 
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ý. 5. 
--DISCUSSIONAND 

CONCLUSIONSi 

This chapter has clescribed a new method to solve 

rectangular wave guide problems,, utilising the knowledre that Uio 

fields throughout any cross-sectiona3. plane of the wave-guide vary 

sinusoidally in space - The finite difference/elem-nt techniques 

of chapter 2 base their mode of operation on describing the cross- 

section by a regular mah of intersecting lines fozzdre modos. In 

their simplest form these describe the field variations botwoon nodon 

as a linear function of the spatial co-ordinates and potentiala 

existing at thow nodes,, and serve to approximate tho known sinuzoidal 

variation. Even extensions of the mothods, peimittinZ the usa of 

parabolic or cubic internodal field description functions, although 

an improved approximation, does not complete the true field variation. 

The method developed here, uses an almost idantical mosh, for 

analysiss but the lines fonning the not possess a physical interpmtationp 

namely a set of intersecting, transmission lines, which is simsoidAlly 

excited at a node or series of nodes as would occur in practice, for 

a particular mode structure. The fiold on the matrix of transmiasion 

lines is then constructed as it would occur naturally, by considaring 

the successive orders of multiple r0flections and transmissions of 

waves that appear at each nodal junction of the matrix, and auxming 

these propagating waves to obtain the shg. Pe Of the field acoso tIlt, not 

of transmission lines, that is, the steady sttte field is built up by 

transient means. 
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The-network is effeotively, a slow wave structure,, and 

if regular represents propagation in a. mcdium twice that of froo 

ppace,, with due regard for the direction of the waves at; a whole 

traversing the matrixo and operations being restricted to those 

involving the low frequency passband characteristics, of t1la 

structure. This passband. serves onlSr to starularcliso . 
the raothod 

in some way, and operation of the, matrix within higher froquoncy 

passbands is certainly not prohibitedo providing the necansax-y 

correction factors incurred by the slow wave structure are observod. 

Tho departure of the velocity characteristics on the network from 

the low frequency limit of c//-2 was shown to dapena on t1j* direction 

of the waves over the matrix.. being Covernod by equation (3.20) for 

waves prvpagating parallel to one of the transmission lina directions 

and remaining at clvr-2 , with the matrix never becoming itself cut-orfp 

for diagonal propagation. Pmpaeation in any other clirection must 

clearly possess velocity characteristics between theso two, extremes 

and. is bormout by the results of tables, (3-4-) 
P 

(3-5. ) 
-, It is 

,, ý, 

worthwhile also, to note that, the TE21 " TM 
21 mode waves, will POSSOOD 0. 

velocity of c//-2 and never experience cut-off in a rectangular wava 

guide of sides 2: I,, since these waves also traverso the mptrix at 45 0 

and can be appreciated by considering the waveguide formed, by extending 

the open circuit wall- bb of fis, (3-13) to include b- this result 12 3' 
can obviously be extended to TE.... %W modes within a rectangular wAve 

mn 

guide of sides m :In. 
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possessing the known intermodal 'field variation,, the -, 

method, thus must yield absolutely corroot resultso provicling, the, 

errors presented-by such d discretization of space'is known. This 

is apparent from an examination of tables (3-3), (3-4) and (3.5) 

which shows that the results for the summation of the multiple 

refle ated 'wave a constructing the TE 
no P T. S, 

nn 
TM 

nn 
modes are 

identical -to the correct solutions. 

The frequency response of the network, varies according as 

to the observation node chosenp but, in basically the samp consisting 

of (sin x )/x type 'curves centred, about the frequency at QUch the 

network resonates, and caused by the truncated periodic Sampling of a 

sinusoidal. waveform. Ilie width of the main lobe and henco the side 

lobes depends largely on P, the b=ber of reflections considerod, and 

greatly influences ths calculated rosonant frequenciesp duo to mutual 

interference. The errors associated with this truncation-of order of 

reflections is referrod to as '-truncation error' and' is, reported also 

wherý! The value of P chosen for most of the calculations,, obviated 

the use of determining the truncation error for each result, but table 

(3-3) implies that some truncation error must havu been pronant, owing 

to the 'crowding' of the modes, at the upper end of the frequency rangel 

and thus a relatively large amount of mutual interferenou will occur. 

It is to be noted that the* spreading out of the idealised froquenoy 

response of the networkýconsisting of delta functions into (sin X)/x 

type curves is most advantageous, since it is theso which aid the ýusar 

in detecting the peak of the curves and hence the resonant fraquoncy. 
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The attraction of this method- is mainly the ease With v&dch 

it may. be formulatedp since only basic transmission line theory is 

associated with, the develo; mentp and detailed procedures sucli as the 

construction of a large number of algebraic simultaneous equations 

and the methods utilised to solve the sot are not, required. Since 

the technique relies on using a circular internodal function, to 

si=late the field variation across a waveguido, then the accuracy 

achieved using such a function must be. an improvement on the solutions 

obtained via the finite difference/element teolýniquost and can be soon 

to be true by examination of, tables (2.5) with tables (3.1+),, (3.5) 

for almost similar space discretizations. 

. 
The amount of computer store required for the mothod in 

minimal and all calculations were perfomod on a computer of size 12kbyte. 

The actual store required for the analysis of the aquaro oross-sootion 

waveguida of fig. (3-12) was that of eight (9 x 9) matrices plus four 

(1 x 9) working space matrices, i. e. approximately 700 rumbor locations* 

This is extremely small compared with that roquirad in solving tho not 

of linear equations associated with the finite differonce/olement mathodst 

which for the solutions of table (2-5) 
o 

Wa = 1/8 P require the storage 

of three (28 x 28) matrices with three (1 x 28) matrices as working 

space, i. e. approx-imately 2500 number locations, and was used to 

describe only half the waveguide. The vaveguids of fig. (3.12) would 

thus require 7000 m=ber locations to solve for the cut-off frequenoio3 

using these methods producing progressively less accurate solutional Q3 

the frequency increasedv than those of the proposed improved method. 
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The use of a relaxation process to solve the set of equations 

would require the storage of 81 mmbers but only the dominant made 

is then solrable. 

The disadvantage of the method of utilising finite 

transmission line elements is the computer run time roquirod, a 

typical example being I hour solving for each of the modas in 

Tables (3-4)., (3-5) and is due to the repetitive vectorial adclition 

necessary for the addition of the four waves incident at any noda in 

the mash, and at present no technique has become apparant by which the 

method may be accelerated. The transmission line elerwnt method 

must then appeal mainly to the user possessing a relatively small 

computer with a large amount of run time. 
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CHAPTER 

THE APPLICATION OF FINITE TRAN. %. aSSIOll LIME KIM= TO WAVEMIDE3 

OF A GENERALISED CROSS--*UCTION. 

Previous investigation indicated the feasibility of 

utilising a circular internodal function over a merh or network of 

transmission lines simulating a rectangular wavoguido, 

The steady state response of the network at a particular 

frequency was obtained by considering a large number of reflections 

that occurred due to the impedance discontinuities prosented to a 

wave travelling along each individual transmission line at each m. Wi 

intersection., and summing the magnitude and phase of theso waves at 

each junction so as to obtain the field description across the vlave 

guide. This process has to be repeated for each frequency examinedo 

and may thus be referred to as the steady state finite transmission 

line element method. 

Such an investigation would be sevemly limited if the 

method of transmission-line elements were to be restricted only to 

these examples. This section is devoted to the extension of the 

present method vhereby the propagating modes of an inhomoganaously 

loaded waveguide and waveguides possessing non-rectangular geometries 

can be found, and thus the solutions to many classes of waveguide 

configurations used in modern microwave applications are available. 

The first section of this chapter shows the manner in which tho = 

and I&I modes that propagate in the dielectric slab loaded, wavaguide 

of fig. (4.1).. may be solved for, whilst subsequent sections indicates 

how the transmission-line elements are employed in describing the 

propagating modes Of circular and elliptical cross-seotional waveguides. 



OL 

* 

Cropz-zection of a dielectric olab loaded 

mavaguid'a 
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)*. 1. 
-- 

InhomoMneously loaded wavepýuide. 

Fig. (4.1) shows the cross-'seotion of a dielectric slab 

loaded waveguide,, the waveguide is assumd to be infinitely long in 

the z direction, with a field deperulence of a-JAZ in this diractionp 

together with the time dependence of ejwt ur4arstood. 

The fields wi'Ulin such a structure may be classified as 

either of those possessing no component of electric field nounal to 

the air/dielectric interfacet (E 
x 

=0), and axa reforrad to an WS inodeso 

or those mt possessing a component of mgnotic field normal to tho 

air/dielectric interface, (H 
x= 

0), and are rufarmd to an MI modon. 

4.1. 
_l. _ 

IM mode structures. 

The LSE mode field configurations may be obtained'via a' 

mgnetic Hertzian potential 
23 

-j Pz LTh = am +h (Xj) e 

such that the fields are ropresent(tcl by 

E= -jWP. VA 'ffh Qj.. 2) 

H= 'LTh (4-3) 

and V. 2 
4ý -- 

[ 0ý-sce 
ri - 

-1 
115 

where Erj =10<, x e. d 

'2 Er d4 x<, a 

and tkt, =A sin hx cos 312 0, < x< a 

B sin l(a-x) oos plU drx4 a 
b 

with x 
=0p.. E. -H- (M-W 

b) ý-b 
) 

in = 



CIL , -r 

-which satisfy all boundax7 conditions on the Waveguide's 

surivundin, r, ooncluctors,, and also for matching at the interface, 

h tan l(a-d) 1 tan hd 

For the dominant mode of propagation (ra = 0), equations 

(4.2)., (4.3) imply that the only field oomponents oxistinLy are IIXP 

.EyqHz, and vrithin each homogeneous section of the wuvesuide uro 

identical to those corresponding to TS" 
no 

modo propagationp the 

dominant I. SL-' mode is thus a quasi-TE no 
type moaos with oomporiante 

HZ "Ey at the structures cut-off frequency. 

This mode., as beforep mV be solved at cut-off in OW 

dimension, utilising a single periodically stub loaded tmnsmisaion line 

with the identities, 

(1+ - I- ) 
ps L 2C 

xx 

with Ehort circuits on the network representing magmtic walls in 

the wavaguide and open circuits repre senting the electric walls. 

In an inhomogeneous medium,, howaver, the elactromagnatio 

(4-4) 

raves travel more slowly in the meditun of higher dieloctrio oonstantp 

and hence the electrical length between the nodes of the model must 

be greater. Also because of the discontimity in intrinsic impedanco 

experienced by the waves at the dielectric boundaryp reflection and 

transmission coefficients have to be formed. 

On the tmnsmission line the intrinsic JmpedAnco is givon by 

Zo 
C 0ý ) Teri 

from the identities (4.4)0 hence, if t 
nm and r an 

are the tran=insion 

and reflection coefficients for a wave traVelling fmm m0diUm Of 

permittivity % to a medium of permittivity 6, P then for voltages on 

the matrixj 
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2, TE 
m rn nm 

"/& + 

and if On is the electrical lermth between nodes in the medi= of 

permittivity E: n , 

em = ()n m 
I Fnr, 

Table (4-1) shows the results for the dominant mode 

at cut. -off for the stracture defined by fig, (4.2)., the modal of 

fig- (4-1) with an open circuit termination of node I aefining an 

electric wall and a short circuit termination at node 10 defining a 

magnetic wallp thus simulating half the waveguidet with Zd =a= Oh 

Calculations were made for various orders of reflections in the 

, netwoA., and to i&olate the mode under considerationo tho electric 

field component parallel to the air/dielectrio interface was excited 

and observed at node 9, with the equivalences of equation (4-4) being 

used. lbrmittivities of the dielectric slab examined were er = 2-45P 

9.00 50.0,100.0, and the maximum velocity error was O. ljcý,, corrosponding 

to the internodAl electrical length in the dielectric region for the 

relative permittivity of 100. Comparison between the out-off wave 

lengths obtained by finite dif fe rence/e lame nt analysis, table (2-4) 

with those obtained in table (4-1). indicates that the mothoLl of 

tran=ission line elements is inoxe accurate for low values of 1.018Ltive 

pexmittivity but not as accurate for higher permittivities. The 

relatively large errors inherent in the solutions for high permittivition 

are due to the progressive crowding of modal cut-off wavelengths an the 

permittivity increases. This can be seen in Table (4-1) where the 

solutions tend to oscillate about the true solutions and for Era 100 

are always greater but converging to the corroot solutionp implying 
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that the bigher ordered modes are influencing the dominant moda as 

described in the previous chapter,, and can only be overcomo by, 

increasing the order of reflections, and isolating the mode untler 

consideration by suitable excitation and observation points. Theso 

are discussed to a greater extent in the general discussion of 

section(4.1-4. ) 

4.1.2. IMI mode structures. 

The LMI mode field configurations may ba derived fzvm an 

electric Hertzian potentia, 
23 

-TTQ- ý Q--A 4-ý. (y, j) e -j FIZ 

and the fields E) represented byj, 

B= L-. ýC-*Grl VA TTIZ 

E=t, V t\ '& 
,, 

and Vj (ý, 2 +( d- p,. E. e r,. 4v- 

where 1 0, ý: x4 d 

Er d -% x -c a 

A oo a hx sin MMZ ,0f, x4d 
b 

B cos l(a-x) sin §32 d4 x C. a 

with Off 

ra 

which satisfy all boundary conditions on the perfect conductors of 

the waveguldes boundaries,, and also for t1le diolectria intorface 

(4-7) 

Qý. 8) 

(4-9) 

Er h tan hd = -1 tan l(a-d) 

with reference to fig. (4-1). 
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At the structures cut-off frequencyp the IZ14 modas possess 

the field components Hz, Ex0Byp and thus the equivalences between 

equations (3.21) and (3.22) may be used again. These aro 

1-3 -(1+ -1 

E. Eri; G= ýlo 

Since the voltage on the netwoelc represents tho fiold 

component Hz, as was the case with the LSB modo analysisp tlie 

transmission and reflection coefficients, equation (1+. 5) p ran, ain 

unchanged, as does the relationship betwoon the electrical lom', ths 

in the two media, equation 

Table (4.2) shows the results obtained for the cut-off 

wavelengths for the structure defined by fig. (4-3)p the modol of 

fig. (4.1) with a wall of symmetry placed parallel to the x diroationp 

simulating half the square cross-section waveguide of sido a= 6h 

To iW-late this mode the electric field component parpenLUoular totho 

dielectric interface Ex is used for excitation at nodes adjacant to 

Qjý. 10) 

the short circuit wall and a similarly situated node in Oie dielectric 

chosen as the solution point for the same field component. Again four 

permittivities were considered er = 2.45,, 9.09 50-OP 100, and tho 

maxJm= velocity error was of the order 1.2ýo. ComparIng the finite 

difference/element results in table (2.3) with those of table (4*2) 

indicates that the latter is more accurate for a similar space 

discretization. Furthero these solutions are not as vulnerable to 

oscillations as was the case with the = modes, and must be duo to 

the increased frequency separation betueen the dominant and higher 

ordered modes,, hence reducing the interfering effoot thaso modes have 

on each other. 
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4.1 - ý- ME mode vdthin a-rectansmlar cavit . 

The dominant LSE mode is essentially a propagating modo 

possessing two spatial field variations and if the cut-off solution 

is required, the mode may then be solved in one dimn3ion as in the 

foregoing analysis. Eoweverp the two dimensional configuration of 

fig. (4.1) may be utilised so as to calculate the resonant frequency 

of a dielectric loaded cavity supporting the M' mode, since equations 

(4.2) and (4-3) implv that the field variation in the direction of the 

air/dielectric interface is zero. Fig. (4.4) shows tho two 

dimensional representation where the field variation in the y diroction 

is zero. 

The transmission line equations for a network of such linan 

superimposed on fig. (4-4) mw become 

3v = -L Y 
TX 71t 
bv = -L ýI 

z 
Tt 

bi + bI -2C ýV 
, TX TZ Tt 

whilst Maxwell's field equations for the structure boooma 

'Ey =- P- L'z 

ax bt 

bE = )H 
i-Y 

z 

'oH 
x- 

bH 
z -- Eo cc. 

-aE 
y "rz "rx -9 

such that the identities between the fields within the wavoguide arul 

the voltages and currents on the network are 

Bym, HzEI; H M-1 ;LB f4; 20 2 EoE-C,. 

(4-11) 

(i,., i) 



I. 

Er= 
NL 

Fils. (4-4) T= cU=. onsional reprasantiation or o ractanzular 

dielectric loado-a cavity capabl,., - of 

th-- domixtant IZI mod3. 
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with short circuits on the network simulating the electric walls of 

the waveguide and open circuits simulating magnetic walls of syUjInotry, 

The intrinsic impedance of a transmission line on this network 

is given by 

L 
00 

Z IT 

VrE-r, 
arul thus the transmission and reflection Coefficients t now MM 
become 

t 
Fen 

+ 

and GM E) m again. nFZn 

An identical mash of intersecting transmission lines to that 

of fig. (4-3) was used to describe the structure of fig. (4.4),, with 

short circuits at x=0, z=0 and open circuits at z= Lp x= at 

thus simulating a quarter of the rectangular cavity possessing a 

centrally located dielectric slab. 

Table (4-3) shows the results for the resonant frequency of 

this structure for several orders of reflectiont the dimensions of 

the structure being a= 2d = 6ho L= 3hp simulating a cavity of yridth 

12h and length 6h., with an arbitrary depth. The field component BY 

was excited at the node co rre spo riding to z=L- h/2j Xaa- b/2 

and the frequency response observed at this same node where the fiold 

will be a maximum at the correct solution. The results again indicate 

the reliability of the method, with the oscillations in the calculated 

solutions not being as pronounced as those for the strictly one 

dimensional LSE configurations due to relatively wide frequency 

separations between the modes. 
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. 
4-1-4. Inhomogeneous-waveguides - conclusionn. 

This section describing the application of the steady state' 

transmission line element method to waveguides of an inhomogenaous 

Ja fu nature, shows the accuracy with which a circular internoc 1 notion 

can describe the propagating charucteristics of a particular sot of 

mode s. The main disadvantage hovnver is the lack of 'completeness,, 

whereby the dispersive characteristics of the waveguide are not 

fully known, except for severai'LSE modo types. Only the out-off 

wavelengths of the various structures analysed have been calculated duo 

to the identities exhibited at cut-off between tho voltages and currunts 

on the network of transmission lines and Maxwell' s field equations, 

which become separable into two independent sets. The Mannar in 

which the dispersive properties of such structures may be examined is 

not fully apparent, but the finite difference/element techniques may 

afford several guidelines along which this method can Proceed, nwwly 

the introduction of a coupling matrix,, where two meshes are analysed 

simultaneously, one possessing the field components Ii 
z#EX#Byp equation 

(3.22) and the other possessing Ez# HX0Hy# equation (3-23). 0ortain 

transfers or coupling may then occur between the two transmission-lino 

meshes, according to the necessary boundary conditions and liax%vollj3 

field equations, where the operator j necessary for such 

transfers and which conveniently does not appear in the finite 

difference/element techniques, may be replaced by the operator 7r in 

this present method. Alternatively, by developing a t1ireo dimensional 

mesh of transmission lines,, the dispersive characteribtics of 

inhomogeneous waveguides may be obtained by varying the length of the 

cavity, and would also prove an invaluable asset in itself to tho method 

as it staruls. Clearly these developments afford further interesting research. 



- 101 - 

The errors inherent in the method applied to these 

inhomogeneous waveguides are of ý major interest notably the oscillations 

of the computed solutions about the true solutions for varying orders 

of reflections and every technique was adopted so as to minimize them. 

The errors may be divided into the three classos; method of excitation 

and observation of the particular fieldsp truncation orivr and velocity 

error. T 

The excitation and observation techniques proved to ba, crucial 

in solving for the individual structures,, sinoe at out-off , the wave 

lengths of the dominant LSE and MI, modes are in close proximity. 

Should the same field component be excited arul observed (e, g, ii ) in 

either case then both the LSE and ILM modes could be present and the 

separation between the cut-off wavelengths too fine to isolate OQCII 

for a relatively low n=ber of iterations. Consequently the Sy field 

component was excited and observed as described in section(4.1-I-)in 

the one dimensional model for, the one dim nsionally -varying LW- modasp 

v, hilst the Ex field component was excited and observed as described in 

section(4.1.2. )for the two dimensional model necessary to exAmiry') tho 

two dimensionally varying LSIA mode. However, searching for the 2 

field component in the IM. mode configuration has the eff(*Ot of 

suppressing the LSE rnodeB.. but the predicament, prosonted by tho 

excitation of the Ey field component in the ME' cases which does not 

necessarily imply the suppression of the I&I type niodes that may 

propagate within such a structure,, still arises. The I down the wavo 

guide' problem involving the two dimensionally varying dominant LsL- 

mode, indicates how the disperaive characteristics may be obtained for 

this mode. Again the EY field component was solved for, but here tho 
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L%T modes are suppressed due to a -solution being souZht in two 

dimensions down the waveguide., whereas the MI case V-ould require 

a three dimensional treatment for similýr analysis. - 

The oscillations in the computed solutions for the LSS modes 

can be seen to be moro pronounced than those for the LSM modes and 

may be attributed to the truncation of the number of reflections. This 

truncation error is further influenced by four factors. 

(i) The modal out-off wavelength separation caueed. by the 

confiZurations dimensions, i. e. an increase in the nmber of =)dos 

modalling the wavepuid^- causes the frequency separation botvveen mo&ýS 

to decrease and thus an increase in the number of r0flections in 

required so as to define the mode being sought. 

(ii) Coupled with (i) is the crowding of the modul out-off 

wavelengths as the relative Pexmittivity increases. This is to be 

observed particularly in the LSE modes where for high penaittivities 

the cut-off wavelengths experience a progressive crowding ana thus the 

higher ordered modes will tend to influence the dominant wdoo and ench 

otherp to an increasing, extent due to the lobe interferenoo of the (sin Xlx) 

type curves noted in Chapter 3. 

(iii) The possibility that the modal frequency soparation of 

the modes that may propagate within the structure examined in greater 

in the LS1 configurations than in the LSU configurations analysed and 

this is greatly influenced by the field components used for excitQtion 

and observation discussed above. 

(iv) If the higher ordered reflections were taken in the 

order they occur in time 41 
, then termination of the process wuld cause 
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an abrupt truncation in time. However, this process deals With tho 

. Vhis IMlieso, that althouah the reflections as they occur in space. -, 

phase of reflections is always correoto the series of reflections to a 

given point in time may not be complete and tho distortion of tho 

frequency response curve caused by neglecting hiq ,; her order rufleotions 

is not so easily predicted. 

In Chapter 3., it was shown that the velocity for waves 

propagating parallel to ona of the coordinate directions is defined by 

vn ie 

II sin J-2 sin ,. 20) 

whereE) is the internodal electrical lenpth and. c' roprownts tho 

velocity of a wave in a dielectric meditun. 

1.1 Equation (4-1-5) shows that the network acts an a slow wavo 

structure and that as the frequency rises the velocity of the wLLwe 

departs from a'//2- , and hence the percentage error caused by tho slow 

wave structure as frequency rises is independant of the diolectric 

(4-15) 

constants thus again allowing the maximum velocity error to be stipulated 

in the relevant tablesp and occurs for the electrical length betymion nodon 

situated in the dielectric medium. 

It must therefore be emphasised, once more, to obtain reasonable 

results., the mode under consideration must be isolated and is achieve(l 

by using bounds of synmetry v&ere possible, a relatively large nimber of 

iterations to reduce the truncation error and choosing field components 

for excitation and observation that are particular to the mode under 

consideration. 

The one dinensionally varying LSB mode oould naturally be solvud 

utilising a stub-less tmnsmission line as wan used in section (3.2) with 

several point discontinuities along its length SO as to (10tarlaina the 
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length of line and to describe the position of the dielectric 

interface. 'The wave propagating along such a stlucture ymuld yx> 

longer appear as if travelling in a medium of permittivity twice that 

of free space and thus would not possess any velocity erxDr due to 

pxvpagation on a slow wave structure. Tranmi. -sion and reflection 

coefficients would again have to be introducad and the response to 

various orders of reflections computed. This model would suffer from 

the same defects as noted previously regarding excitation ara 

observation components and txuncation errors. Ilia manufaoturo of tho 

steady state response by considering the finite differance/elamont 

methods of summing multiple reflected waves (chapter 3) would not 

pmduce such an accurate solution since these techniques only considar 

a linear internodal function and will also suffer the same errors an 

those inherent in the method of tranamission line elements. 111-10 

results shown in tables (4.1. ) and (1ý. 2. ) are in clozo agreement with 

those of the finite differonce/element methodso tables (2.3) and (2-4) 

but tend to be more accurate for a similar spatial discrotization, 

despite the fact that the finite difference/element solutions axv t1jose 

for a truly steady state solution and interference from I'Lighor ordorad 

modes is eliminated by their particular processes of determining these 

solutions. 

4.2. IRRMULAR MESH OF TRANWISSION LINM. 

The description of a waveguide cross-sootion whone boundarios 

do not lie on a cartesian mesh,, present certain difficulties to the 

method of finite difference s/elements. These are mainly overcome by 

permitting the mesh to be regular everywherev except where mill 

perturbations in mesh arm length at boundary adjacent nodes is necosnary 

to complete the description of the structure. In much the samo manner, 

0 
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the method of steady state finite transmission line elements,, will 

adopt this procedure to simulate circular and elliptical VjUveguides 

on such a cartesian meah. 

The concept of utilising a varying mesh may be envisaged by 

fig- (4-5) which describes an 'odd-length' of transmission-line, ah, 

attached to a regularperiodic transmission-line structure, terminated 

at B. with an admittance YB. Since the variable mesh arm lengtha are 

those describing the conducting boundary of the structuro then YB will 

either represent a short circuit or open circuit. 

For short c1rcuits thO admittance at A for a wavo travf3llirlg A 

to B is given by 

YA 13 tan ; G-- - cot a G-) 
1- 2 tan 

2 JIB - tan ý() oot a 

where 0= wh the internodal electrical length, 
c 

whereas the admittance at A should be, 

yk= 
-i 

r2 tan Fe + b) 

which represents the admittance at A for a wave travulling from A to B 

through a medium of relative permittivity 2 with a valooity C/ r 

Equations (4.16) ancl (4-17) thua implys that for a l0nath bh or 

transmission line teminated in a short circuit, the effoctive phXsioal 

length is given by 

a=I tan7l ( 
-F2 

tan tan + b) 
ý2 

V-2 tan 21 FJ 3 tan tan /2 + b) - 
f2) 

which in the low frequency limit becomes 
(4-18) 

a =b 
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The variation of the effective length a. with electrical 

length b,, is recorded in fig. (4.6a), for several values of b. v&ich 

indicates that a follows b with little error for 0< 0*6# but for 0 *0 0.6 

the error deteriorates. 

For open circuit terminations the admittance at A for a wave 

travelling from A to B is given by 

j (3 
-tan 

; F) + tan 
-a A Q# 9) 

1-(2 tan 2 jo + tan tan a 

whereas the admittance should be 

Y- J tanF2 E) + b) 

hence 72,74 

2 
-3 tan 1. tar; -' ( 1-2 tan F2 E)(4, b) -2 

12- tarj-2 e (, ttb)_ tan 
61+ 

vr-2 tan F2 0 (-J+b) tan j0 
, 0) 

-vaich in the low frequency limit becomes 

2b - -12' 

The variation of the effective length a,, with electrical length 0, in 

shown in fig. (4.6b) for several values of bl, and it can bo scen that b, 

has to be cormcted such that a true value of a is seen. Tho accuracy 

deteriorates far more rapidly in this case and can only bo accurato for 

0 r, 0,2 without serious deviations in correct solutions. 

. Vhis technique of correcting the meah am lengtho or odd length 

of transmission line,, was applied to the calculation of tile dominant TI; 10 

mode in a rectangular ivaveguida,, modelled by the transmission line of 

fig- (4-7)., with a short circuit at B, (magnetic wall) and an open oircuit 

at B2 (electric wall).. the length of the transmission line being 

(6 + b, + b2)h,, thus representing a waveguide of width 2(6 + b, +b 2) 
h. 
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Calculation of cut-off wavelengthp k. , for varying mash a=-IcrWths 

of fiz. (4-7) p =',, mode. 

Length#Ls Adapted lengths k0 k0 
b1 b2 2(6+b 

1 +b 2) 1 2 Cale. exact 
L 

0.5 0,5 1410 0.5 0-5 0,221+2 0.221#4 

0.1 0.5 13.2 0.1 0.5 0.2377 0.2380 

0.7 0.5 14.4 0-7 0.5 0.2179 0.2182 

1.0 0.5 15.0 1.0 0.5 0,2093 0,2094 

0.5 0-1 13,2 0-5 -0-3 0.2378 0.2380 

0.5 0.1 14.4 0.5 0.9 0.21 79 0.2182 

0.5 1.0 15.0 0.5 1.5 0.2092 0.2091+ 

(ii = 1) 
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Initially b2 is held at the value of 0-5 ancl bI allowed to vary as 

the low frequency limit of equation (4-18).. so as to examine the 

characteristics of a short circuit. The characteristics of the 

open circuit at B2, may then be investigated by letting b, = 0-5 and 

b2 vary as the low frequency limit of equation (4.20). Equations 

(4.18) and (4.20) thus indicate that for the simulation of a langth bh 

of transmission line with the corresponding termination., the method. of 

transmission line elements requires the substitution of longths ah, in 

the actual procedure. The results for various values of b,,, b2 am 

recorded in table (4-4) and are seen to correspona to the f3XQot solutions, 

but for the velocity error# which for those frequencies is approximately 

0.1%. 

Increasing the length of the open circuitod stubs of fip 
,. 

(4.7) 
caused a decrease in the velocity of the wave across thO mtrix as was 

shown in chapter 3. Thus if a rectangular waveguido is aintilated on a 

cartesian mesh of transmission lines as in fig. (4-8).. such that tho 

boundaries B, ,B2, B 3" B.. have associated am lengths b,,, b2v b 3' b 

then for the dominant TEIO mode of the meshl vvhich repronents the cross 

section of the vaveguide of width 2(6 +bI+b2 )h and height (4 +b+b )hO 
34 

BI is a magnetic wall and B2pB3vB4 are electric walls. If tho longatho 

b, pb2 vary' then the previous amlYsis of this sOOtiOn anaUes the lerZiU, s 

a, ,a2 to be substituted into the pzvceduiv so 05 to yield the truo langtha 

b, 
j, 

b2* The variation of lengths b 3' b4p however cause the velocity of 

wave propagation to decrease from its nominal value of c//-2 and, t1jus 

the calculated value of the cut-off wavenumber will lie between tho two 

extremes of cIVI". 2- and(? ýE-, TK7+ the position depending on the r=týer 34 
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TiMS (4.5)- 

Cut-off wavelengthso k0s for the various structures that may be 

represented by fig. (4.8). 

b b b b Length Width k k orwr 
I 2 3 ,+ 0 

- 10 Mode 1+ LY t4+b +b 
34 calo. exaot 

0.5 0.5 0.5 0.5 14. 5 0.2242 0.22" 0609 
1.0 0-75 0-5 0-5 15-5 5 0.2024 0,2027 0.15 

0.5 0.5 0.75 0.75 14. 5-5 0.2135 Oo 221#4 4.86 
1.0 0-75 0.75 0.75 15.5' 5.5 0.1936 0.2027 4-49 

TE 11 mode 6+b 
I +b 2 

4+b 
3 +b 4 

0.5 0-5 0-5 0-5 7 5 0-7712 0.7721 0,12- 
0.75 0-75 0-5 0-5 7-5 5 0-7149 0-7551 5-33 
0.5 0-5 0-75 0-75 7 5-5 o. 6992 0-7264 3-75 

0-75 0-75 0-75 0-75 7-5 5.5 0.6575 0-7083 7.18 

'I'll mode 6+b I +b 2 4+b 3 +b 4 

0-5 0-5 0-5 0.5 7 5 0-7706 0-7721 0.19 
1.0 Vio- 0-5 0.5 8 5 0-7388 o-74og 0.28 
0-5 0-5 1-0 1-0 7 6 o. 68ag o. 6a96 0110 
1.0 1.0 1.0 1.0 8 6 0.6583 0.6545 0.58 

TE 11 modes 2 (6+b +b 12 2 (4+b +b 
-3-4 

0-5 0-5 0-5 0-5 14 10 0-3854 o. 3a61 0.18 
0-75 1-0 0-5 0-5 15.5 10 0-3639 0-3739 2.67 
0.5 0.5 1.0 0.75 14 11.5 0.31+78 0-3535 1.63 

0-75 1-0 1-0 0-75 15-5 11-5 0.3280 0.31f02 3-59 

0-5 1-0 1-0 0-5 15 11 0.3538 0-3542 0.09 

0-75 0-5 0-5 0-75 ' 14.5 10-5 0-3551 0-3694 3-87 

(h=1) 
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of I regular' nodes, i. e. those surrounded by equal am lengths, 

compared with that of the irregular nodes. Analysis was perfom-ai 

over the mesh of fig. (4.8) for the TZ 10 mode and the results 

tabulated in Table (4-5), solving for the cut-off wavem=ber, k 

of the structure. It can be seen that for the corrections in the 

odd length of transmission line in the direction that the wave travele 

over the networko the corrections are again validp but for corrections 

to the odd lengths perpendicular to the direction of the relevant 

wave, the effect is to reduce the velocity of the wave from its 

nominal value of c/, /-2 , and thus the medium which the network 

simulates is no longer isotropic. 

The TE, j and TH 11 modes are also solved for by allowing 13, p B2# 

B3pB4 to become open circuits in the fozmer case and short circuits in 

the latterp such that the waveguides dimensions were (6 +bI+b2 )h 

wide and (4 +b+b )h deep, thus examining the effect of the short 34 

and open circuit terminations of the odd length of line on the 

characteristics of a diagonally or near diagonally propagating wave on 

the network. The results are noted again in Table Q+. 5) and inditAte 

that the corrections afforded by the short circuit terminations (IM 
11 

modes) present reliable and accurate solutions, whilst those for the 

open circuit terminations (ZE 
11 modes) yield solutions which in all 

cases possess a greater error than the corresponding short circuit 

terminations. 

Finally the IYE 
11 and I'M 

11 modes were solved on the network of 

fig. (4.8) with Blo and B4 open circuited and B2 and B 
.3 

short cirouitedo 

simulating a waveguide of width 2(6 +bI+b2 )h and diýpth 2Q+ +b3+b4 )h 

and the solutions once again recorded in Table (4-5). 



- log - 

. Vhis particular analysis was performed such th t the frequency at Ia 

which the network was operated caused the effective odd lengths to 

possess an imploved approximation to the low frequency limits of 

equations (4.18) and (4.20). The solutions although presenting 

less erroro indicate the trends discussed previously. 

The relatively large enors inherent in the structures 

involving open circuit terminations must therefore h* attributed 

to the rwre rapid variation YrIth frequency of the apparent aleotrical 

length of the odd length of transmission line at the boundary, which 

is greater for open circuit terminations than the short circuit 

terminationsp fig. (4.6)which was noticeable even for low frequenciao. 

4.3. CIPOULAR AND ELLIPTICAL VIAVEGUIDES. 

Since most of the modes that proparate in a circular or 

elliptical waveguide are necessarily sytmetrical about soma line drayn 

through the cross-section, only a quadrant of each structure was 

analysed as in figs. (4-9) and (4.10)s which show the relevant 

quadrants imprinted on a cartesian mesh. The odd langth3 or 

transmission line formed by the intersection of the perimotor of the 

stracture with the square mash,, are accounted for by altering the 

relevant electrical lengths between a boundary adjacent node and the 

actual perimeter according to the low frequency limit of equations 

(4-18) and (4.20). Considering the noda i, in fig. (4-9)p thophysical 

length between the node and the perimeter is 0-0707h measured along 

either mesh direction,, thus for T11 type modes where Ahe boundary in 

simulated by short circuits the electrical length of thiS odd length 

of transmission line is 0-07076- For TE mode t5, pos the boundary in 

simulated by open circuits and thus the low frequency Olootrical longth 

of the odd length of ttansmission line becomes -0.35860 from equation (4,20). 
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Cut-off wavelengths (a/,, \O) of circular waveguide defined by 

figs. (4-9) arld (4-11) Of radius 5h' 

Mode a/X c 
anal: 

a/)ý 0 
(Uncorr: 

ends) 

Error 
,jf j; ) 

a/ ýc 
(Corr: 

ends) 

Error 
a# 

I%Xim= 
volocity 

orror 

"'Ol 0.3828 0-3815 0-31+ 0.3811 0-44 0-49 

Tilli o. 6ogg o. 6072 0-44 0.6048 0-83 1.28 

1111ý1 0.8174 0.8164 0.12 0.8117 0.69 2.41 

TM02 '0*8785- 0.8667 1.34 0.8699 0.98 2.84 

'n', 2 1.1166 1.0978 1.68 1.0946 1-97 4-97 

TL122 1.3396 1.3203 1.44 1.3193 1-52 8.06 

TEll 0.2930 0.2827 3.52 0.2884 1.56 0.26 

TE21 p. 4861 0.4637 4.61 0.4765 1.97 0.8 

T1,01 0.6099 0.5977 - 2.00 0.6012 - 1.42 1.28 

TE12 0.8485 0.8130 4.18 o. 84o6 0-93' 2.63 

TE22 1.0673 1.0313 3.37 1.0524 1.40 4.47 

TE02 1.1166 i. o6io 4.98 I-OE45 2-87 4.97 

(h=1) 
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The method was ap'Plied to the quadrant of the circle in 

fig. (4.9) of radius 5h, with and without the corrections for the 

odd lengths. The model used for analysis without the odd laMth 

corrections is depicted in fig. (4.11), Where the circular perimotor 

is approximated by a strictly periodic network. Table (4.6) shows 

the results for the out-off wavelengths for several T13 and IJIT modas 

after a maximum of 100 orders of reflections had been conaidored. 

Waveguides of elliptical cross section ware first 

investigated by ChU42 in 1938. ' Several investirgations followed thin, 

notably by Kretzschmar43. The main difficulty of such analysis Ivas 

the difficulty of numerically computing the YAtthieu functions 

describing the electromagnetic fields within the elliptical structure, 

due to the slow convergence of the series representing the fUnctiona, 

Y, retzschmar used a Bessel function product series approxbration to 

find the 19 lowest order modes for a hollow conductir4r, elliptical 

waveguide and together with Davies44 analysed the problem using 

polygon approximations to the cross section v6hich did not n. ad rf,, ý, nc,, 

to Matthieu functions. 

The method of steady state transmission line elements was 

applied to a quadrant of an elliptical waveguide such as that of fig. 

(4-10) using to full advantage the lines of symnetry that exist within 

the cross section for the particular modo. An identical approach to 

that for the circular problem was adoptedp where the odd lengths of 

transmission lines formed by the intersection of the perimeter of the 

ellipse with the rectangular mesh of transmission linos were easily 

calculated and directly substituted into the method for the TIT modo canan, 

and corrected in the case for IIIE mode cases. The cut-off wavelengthn 

for several modes are recorded in Table (4-7) for an ellipso of comi- 
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major, and semi-minor axes 7h# 5h respectively.. i. e. of eccentricity 

0,6999. Comparison was again made between the corrected and 

uncorrected configurations of figs. (4-10) and (4-12). The munber 

of reflections considered was 100 and the analytical answers supplied 
43 

by Kretzschmar . 

'Xhe results again indicate the general reliability of the 

method of solving waveguides of an arbitrary cross section,. The 

comparison between the corrected and uncorrected odd length solutions 

for both the circular and elliptical problems show that ronorally the 

corrected length solutions are approximately twice as accurate as tho 

uncorrected length solutions, with the TE modes possessing relativoly 

larger ex-rors than the TM modes, and again must be attributed to tho 

relatively large frequency variation of the odd lengths of line to. tho 

conducting boundary of the structure. The finite differenco/elowent 

solutions of the same circular configuraýjge2 indicate that the mothod 

employed in this section is more accurate for a similar spatial 

discretization, and the difference in accuracies botvveen the t%, o 

techniques become moze pronounced as the higher ordered mode solutions 

#uida4 are sought. The finite difference results for the elliptical wavog 

again confirm the accuracy of utilising the approximations of the 

finite transmission line elements. 



TABLE (4-7) 

Cut-off wavelengths (a/, \ c) of elliptical waveguide modes definad 

by figs. (4.10) and (4-12) of semi major axis at eccentricity 0.6999. 

Mode a/ X0 
anal: 

8AC 
(Uncorr: 

ends) 

Error 

. 
017. 

aP\0 
(Corr: 

ends) 

Error rAxXIMM 

velocity 
e rro r 5-; 

(even) 0.4650 0.4588 1.33 0-4646 0.08 0-37 

(even) 0.6776 0.6745 0.45 0.6792 -0-24 0.00 

TU 11 
(odd) 0.7986 0-7790 2-46 0-7919 0-84 1.12 

TBI 1 
(even) 01,2962 0*2861 3.41 092914 1.61 0.15 

TE 11 
(odd) 0.4039 0.3877 4.00 0.3966 1.81 0.27' 

TE,, (even) 0.7798 0.71+92 3.92 0-7629 2-17 1.06 

(h = 1) 
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Cylincirical coordinate Mres, ýntation of circular waveMido. 
_ 

The fact that the TM 
on ý' 

TE 
on 

circular mode field components 

possess a zero angular dependence, directly implies that these modom 

may be solved in one dimension at cut-off. however, application of 

the previous modols used to simulate one dimensional propagation, 

would be insufficient since it is known that these only represent the 

U 
no 

modes in a rectangular guide at cut-off. Thus the riodol has 

to be adapted so as to account for the differing propaCating' 

characteristics. The cross section of a circular waveguido superiiVosed 

on a cylindrical coordinate system is shown in fig. (4-13). Following 

the conventional steady state finite transmission line element theory, 

a two dimensional mesh of open two wire transmission lines are 

considered in polar coordinates., as in fig. (4-13) 
. and each md. 0 in 

the mesh cox-xvsponds to a junction between a pair of tranMnission linos, 

The elementary section of each line between two nodes is represented by 

Jumped capacitances and inductances. If L and C are the inductance 

and capacitance per unit length respectively, as before,, then the 

junction between a pair of lines at a mesh node can be represented by 

fig. (4.14). The following basic transmission line equations then apply 

bIr+6 lot -C by 
- Tr TV, 5t 

bv -L bi 
r (4 .21 7r T 

bv -L b ICK 

TV, Tt 

whil st Yaxwells field equations in cylindrical ooordinates at cut-off 

resolve into two independent groups, viz. 
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Tho se fo r IU mo de a 

1ä (rii� )-i bil m bE 
A .ý_ -r eb -Z br r bt 

- ýEZ )% 
i-r it- 

IbEz ýý'r 
r _TM bt 

and those for TE modes 

z 
r Tr- t 

ý Hz C, iýý 
04 (4-23) 

Tr at 

1 C) H LIr 
-; Ttý ýt 

Thus for III modes the identities between equations (4*21) and, (1+., ',; 12) 

EZ zV; I! Ha z -I r 
Xjj 

r 
033 rc.; Lae$ 

r 

specifies the cut-off frequencies of the circular wavepuido. Tho 

speed at which the wave travels along each elonantal nootion of 

transmission line is still I /V/EC op but the intrinsic imjvdunco, Z 
Of 

of the transsmission must var-y as 

ZO 0( 1 (4 . '24) 
ý_kc 

r 

Similarly for the TE modes, the identities between equations (4-2-1) 

and (1+. 23) yield 

HV; rB wI rE a-= -3ý ;Cn rp. Lis So 
zxrrr 

Again the wave travels along each clemental auction at velocity a 

and the intrinsic impedance is also given by equation (4-24). 
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The model for one dinensional propagation may Uius be 

approximated by fig. (4-15) which shows a single transmission lixo 

periodically loaded with open circuited stubs. Note that tho stubs 

lie in the direction of the angular variation arxI can be of arbitrary 

length since the field variation in this dirootion in zoro, but wore 

taken as IV2 so as to allow the wave to travel over the matrix at a 

velocity c//-2. The transmission line however in non-unifom and 

consists of a series of tramaission lines electrically comooted 

(shown by the broken lines) whose intrinsic JzVedancas Z0P Wry 

inversely with the distance r of the defining node, flom th" OyId A 

representing the centre of the guicie. Sinoe the tranvaicsion lina 

is non-unifozm reflection and transmission coefficients Ilave to bd 

introduced at each section of uniform transmission linu, At a rw do i 

in fig. (4-15) 
p the distance from end A of the transmisaion lino 

corresponding to the radial length in the waveguide, in (21 - 3)hl2 

and this section of line of which node i is Part possesses an intrinnic 

impedance of Z 
Ol i= 2/ (21 - 3)h. For voltages on tho nativork, Ujo 

transmission coefficient t i-I i for a wave travelling from noao i-I 

to noda i is given by 

2Z0,1 21 - (4-25) 
Z 
0,9 1- 1+Z ofi 21 - 

whilst the reflection ooef ficient i, i_l 
for a wave tnivulling fmm 

node i to node i-1 is 

ri 
. i-1, - zo, i-l- -z0A1 (4. -; ý6) 

z 21 - 
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=2 (2n-4ý)h 
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Similarly for waves at the junction of the trana-mission linazi 

corresponding to nodes i and i+I 

t 21 -I 'i i+l -1 
21 -2 21-2 

Thus,, to, analyse the configuration by the steady state 

transmission line element method., the passag ,Q of multiplo roflactod 

waves along'the non-unifOrm transmission lind muzt account for Q40 

discontinuity in intrinsic Impedance betyieen each node according to 

the tranwaission and reflection coefficients darivod above. 

The cut-off wave lengths for the threa lowast oraorod 124 

modes that piopagate on this structure wore solved forp by t1lin 

method after 300 orders of reflection had boon oonsidomd. Thu 

structure analysed, as in fig. (4-15) was defined by n= 20 gh=1,, 

Q* - 

and A represented an open circuit and Ba short circuit. Vio makilta 

are tabulated in Table (4.8). JUso solved, woro tho cut-off yýjkvojorg 

of the three lowest Mi mocias on the saw modol, but A ixnd B now both 

becoming open circuits, these results sav also racordnd In Tablo (141.. B)o 

Since the TE 
on , 

s1f 
on circular modes aro essantially moaas 

possessing field variations in only two dimensions viz. radiQlly an,, j 

axially,, the analysis described above may be extended to (10scribo tho 

fields and propagation parameters of these nýodes in a cavity of 

circular cross-section. The transmission lil*os may then forn a roctangulur 

cartesian mesh (r., z) and the basic transmission lina equations bacomo 

ýI 
z -0 ýv 

7z Tt 
bV -L b'r 

7r Tt 
(4-90) 

-6 V= -L bI 
S-Z "ýit- 



TAM 

Cut-off wavelengths (a/X c)p for the circular TO 
on 0 ', U 

on 
modoo, 

modeUed by the network of fig. 

IvIld de a/ ý, c 
anal. - 

a/ Ac 
rnuwrical 

Error maxim= volocity 
error ;, 4 

z 
""'Ol 0-3828 0.3817 0#28 0-03 

T"02 0-8785 0.8741 0-50 0118 

21103 1-3773 1.3655 o. 86 0-43 

V CK H 
z 

TE 01 0.6099 '0.6068 0-49 0109 

'1102 1.1166 1-1076 0.80 0.29 

. 1203 1.6192 i. 6oii 1.11 0.61 

V CK E 

TEOi 0.6099 0.6068 0-49 0.69 

TE02 1.1166 1-1087 0-71 0.29 

11B03 1.6192 i. 6ooi 1.18 Mi 

n=20, h=1 i. e. a=lg 
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vLilst'lla=ells field equations for TE modes with zero angular 

variation., 'ý 10 of field beoome ýD( 

ýH 
r- 

bH 
z 

TZ Tr Tt- 

-) Ev% )H 
r TZ Tt 

Iý (rE Pz 
,; Tr bt 

and the identities between the voltages ani ourzvnts On t1w ýmtAvrk 

and the field components within the cavity become 

v rjý'. ;IzH; I' -H *; La r rzzr*C 
r' Cz. 

r 

The wave vy--locity of each elemental seotion remains at c,, but the 

intrinsic impedance of the section must vary as 

r 
z 

0 C 
If a similar network to that of fig. (4-15) 

# i. e. a noD-unirorm tstub 

(4 - 29) 

loaded transmission line, is used here with certain molifications, than 

the out-off wave lengths of the TE 
on circular modes may apain bo 

calculated. In this case however the voltage on the network booomoz 

proportional to the electric field in the anLmlar direction, and tjyj 

intrinsic impedance of the elemental sections become pxvportioral to 

the radial distance from the centre of the cavity. At a noda ij 

therefore the intrinsic impedance Z01 equals (21 - 3) 4/2 anLi -Ujo 

transmission and reflection coefficients in the radial direction booomd 

t= 2i -3 -1 i-I pi 21 -4 21-4 

t i+l i= 
21 -31 
2i -2 21-2 
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The cut-off wave lengths of the three lowest TE 
on 

circular 

Modes were again calculatedp but here both ends of the transmission 

line are terminated in short circuitso since this is where the 

electric field component (represonted by the mtwork' a voltage) is 

zero* These results, are again tabulated in Table (4-8) for the 

same physically sized structure as previously examined. 

Although the analysis was, again performed for the one 

dimensional TE 
on modes., the method can obviously solve the '111 

on 
114 ao a 

and can be extended, as, already noted, into two dimensions by oonsidaring 

a two dimensional rectangular, mesh of transmission lines so an to 

calculate the parametersý for such modes within a cavity. 

IL-L-2. Circular and Elliptical ýYaveguid6s - Conclunions. 

This section has shown, the mamler in which the odd-lengtils of 

transmission line joining a short circuit or open circuit termination 

to a periodic or regular network of such linesi, have their olectrical 

lengths corrected, especially for the case of open circuita, It Wun 

concluded that the'short circuit terminations of odd lengths could be 

used successfully,, bu ,t that open'-circuit terminations produood alight 

incoxisistencies. This was attributed to the mom rapi(I variation with 

freqlzency of the appaxent electrical length of the odd lengUl of 

trarlamission. line at the boundary which is greater for open circuit 

te=Imtions. 

The results for the circular and elliptical waveguiala vmra 

acclkl, ate and well within the maximum velo'city errors for TM mode 

cor'21gurations -when the odd length corTee'tion procaduro was utilisad, 

Tabl,, 
. (4.6), (4-7)- The'TE mode confidur'aiions possess xvlativoly 
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large errors, as'expected, due to the -open circuit terminations of 

the transmission lines describing the perimeter of the waveguido, 

and, also the fact that although it was arTanged,, for the derivativon 

of the field components H in the coordinate directions 
6 

z ox, oj 

to be zero at the boundary it did not, imply that the Aerivative of 

Hz normal to, the boundary was also zero. 

A slight inaccuracy that must have been present in that of 

using a circular internodal function to describe a Bessal function 

distribution (in'the radial direction) -in the circular waveguida arri 

a Matthieu function distribution in the elliptical waveguide, anol 

thus the result for- these geometries, and any other non-rootarl8ulur 

geometry depends solely on mesh ooarseness axii increasing - tho ntrnbar 

of nodes increases the accuracy. However the finite differanoo/ 

element methods suffer in an-Identical manner, but to a worse, dogroo 

since in their elementary form only utilise a. linear 'Into rnodal funotiont 

and hence must increase 'the n=ber of nodes defining tho cozjriL7UMtiOn 

to produce the accuracy shown by this method. - 

The one dimensional model of the circular Waveguido utilisod 

to analyse the TE 
on " 

'I'M 
on 

modes, was shown to be reprosonted by a 

transmission line consisting of sections or, uniform transtaisaion lirogi, 

each of which possessed a characteristic impedance depending on its 

radial distance from the end of the line representing the-contro of tho 

guide. Such a disoretization provided inaccuracies for a low nombor 

of nodes defining the radius, and, is caused by'-the relatively cruda 

approximation of a Bessel function by a sinusoiaand that the number or 

impedance 'shells' is not sufficient to adequately describe the variation 
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of characteristic impedance. The msults of Table (4-8) allow, 

hovever., that for 21 nodes defining the one dimensional model of 

fig. (4-15),, the description of the problem is accurate. Comparison 

between the two error columns in Table (4-8) also show that an tho 

mode order is, increased.. the erivr produced by the method tends to 

that of the maximum - velocity error. This is due to the number of 

radial variations of the field, when the Bessel function booomos 

increasingly similar to a sinusoid. 

The full cylindrical oo-ordinate representation of the cross 

section of the circular guide, fig. (4-13Y, could be utilisud to 

solve for the various, circular modeso but the one dimensional analyaiz 

has shown that the number of nodes has to be increased vastly to 

obtain a reasonable accuracy because of the necessary description of 

impedance variation. Further the transmission lima in the angular 

direction increase with radius, producing a shunt capacitance, 

increasing with radial distance of each elemental section of trun=iaulon 

lines fig. (4-14). This has the effect of reducing the velocity or 

the wave as it spreads out from the centre of the guide. To oliminato 

this effect.. the electrical length between adjacent nodes in tho radial 

direction can be arxanged to decrease with radius and thus maintain t1lo 

velocity of the propagating wave on the netwrk at a nominal valuo. 

Care must also be taken at the centre of the networks whem more than 

four transmission lims intersect and reflection and transmission 

coefficients have to be introduced, differing from the accustomed 

used throughout the steady state transmission line element method, Tho 

development of the cylindrical co-ordinate representation of the 
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transmission line net=rk has not pursued, partially because of t1,10 

difficulties envisaged above, the results using a cartesian mach 

were acceptable,, and the representation could only be used for wave 

guides of circular cxvss-section, i. e. it beoomes a one-off prooodur'*. 

However, noting the previous commentsp this could vvell become an 

interesting, worthwhile toPic of research. 

The comments made on velocity and truncation errors in 

section (4-1-4) also apply to the examples of this section. Tho 

truncation error is likely to resemble the transient casV more in 

these examples however, 'because the electrical length between nodoo 

is the same. It is only the lengths between nodes and tho bounclaries 

of the circular oil elliptical waveguides that give rise to deviations 

from the transient approach. It is however the purpose of nual 

analysis in this section to compute the cut-off wavelorýgths of tho 

various modes such that an increase in reflections does not (Musa any 

deviation in computed results and thus eliminating truncation error. 
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CHAPTER 5. 
THE ANALYSIS OF NON-R3CTANGULAR GEONtCTPJ-ES USING 'LIE TRANSM ', T 

AFPFDACH OF THE TRANSIAISSION LINE ELMOU MITIhOD. 

The development of the steady state finite 

transmission line element from the finite difference/olemcnt mothodz 

has been shown to be extremely capable of solving several classoo of 

waveguide problems) by considering the backward and foxivard ruflectod 

waves that occur on a rectangular mash of intersectin3 transizit-cion 

lines. Account is taken of these reflections by considoring the 

electrical length between such intersections and assuming that the 

field is in effect sinasoidal in space. Vectorial addition of txmo 

individual vraves at each intersection thus tends to provido tho 

voltage or current distribution across the nativork simulatinr,. tIri 

fields within a waveguide. 

Transient analysis of waveguid-- structures using 

transmission line network have been recently reýto'ALý' and altl-, ouej 

subtly different, possesses certain advantages and disadvantaZon over 

the steady state mothod. Basically the tran3iont approach Utilious 

the same network and elemental sections as in the previous djaptern, 

but instead of being sinusoidally excited with a signal of fixed 

frequency, the mesh is excited at a mesh intersection or a series of 

intersections by a delta function impulse., and the outl)ut at an 

observation point observed solely in the time domain. 
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2. 
-1. 

TIE MECBANICS OF 'ITE TRAITSIETT APFMACH. 

An identioal regular cartesian mash of =, 4 

transmission lines to that used before for the simulation of a 

rectangular v6sveguide., fig. (3-12) together with the correspon'. 1ing 

identities between the current and voltages on the network with 

field components within the waveguide still exists. The mesh. in 

excited by delta function irqpulses at a source point in the moohl 

and the progress of the impulses followed as they pxopagato 

thxvughout the network., The field distribution is now reprosontod 

at each node by four numbers describing the magnitude of the 

incident voltages along the four coordinate directions. Thus ir the 

voltage impulses incident on a node at a time k are represontad by 

3. VV 
kk2k3k4 

with reference to fig. (3-9), then at time k+1 they become reflectad 

pulses 

vr V-r ,vr0vr k+l 1" k+l 2 k+l 3 k+l 4 

where 

v V, 

V2 V2 
-f i 

v3v3 

v LL LV4 
k+1 k 

and also since pulses reflected from ono junction become incidont on 

wighbouring junctions. 



- 123 - 

Vi (xjy) (X + 1, k+l 1 k+l 3 

1 vr (x, y- 1) k+I vý (X, y) k+l 4 

r 
k+l vi (x$ y) k+l v1 Y) 

r 
vi (x, y) 

v (x, y+ k+l 4 k+I 2 

(5.2) 

Thus the successive application of equations (5-1) and 

(5.2) calculates the amplitude of the individual impulses at each nodo in 

the mesh at successive intervals of time b/c, where h is the WEE vitch 

and c the velocity of light in free space. Note now the similarity 

between equations (5-1), (5.2) and (3-17) (3-18) but the elasticity or 

having a variable mesh pitch across the network is lost ara tho 

structure must be strictly periodic or regular so as to permit tile 

impulse internodal transit time to remain at h/c. 

A solution point is chosen within tile mosho Qs before,, 

and the voltage at this nodo and the net current entering tile node 

calculated as a straightforward summation i. e. 
4 

XýY) =Vr (XY) V > 
k 

jot 
(X, Y) V X"Y) VI- (X$y) 

kxkk (5-3) 

(x 
" Y) 

1 (X, Y) V :Li (xSY) 
ky kV2 k 

with reference to fig. (3-9)j and also providing nomalised intrinsic 

impedances are used. 

As time elapses the network becomes filled with impulmos 

as they spread outwards from the source and are reflected from tho 

boundaries, and the solution point 'sees' a stream of impulses. 
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These are stored as an output impulse function and consist of a 

sequence of delta function magpitudes placed in the time &main and 

separated by the time interval h/o. i. e. the impulse resy , ponsa of tjjO 

network has been obtained. The output waveform corresponding to any 

input excitation may mw be formed simply by convolving the impulso 

response with the shape of the input excitation. 

Thus the output waveform due to a sinusoidal excitation 

may be obtained by convolving the output impulse function witIl 

sinusoid, and the response F(f) to such excitation ma3ý be formd aimply 

by taking the Fourier transform of the output impulse function, 

ba 
S(t - nh )e -Jwt 

. dt. fool 
7 

nh ) a-jwt 

since F(f) is a series of delta functions. 

parts of the frequency spectrum then become 

Re(F(f) V cos (nb) 
2n 

nsirl 

Im (F (f) )=- 
JLV 

sin (n lb ) 
na 1 

where V is the amplitude of the output n 
impulse response at tjW t, rýVo 

and N4/c is the total time for which the calculations are mada and is 

(5-4) 

analogous to the maximum number of reflections considered in the atcadX 

state method. The limits of siz=ation in equation (5-4) arise becauw 

excitation is assumed to commence at time t=0 and although the impulse 

function should ideally be taken to t= 00 , practically has to be 

truncated. e is the internodal electrical length equal to w4/c. 

The real and imaginary 
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Thus once the output impulse function has been 

obtained the response of the network to a sinusoidal excitation of 

. any frequency may be obtained by the simple weightir+-, and addition 

of these impulses by the simsoidal wavefoxm giving the spectral 

amplitude at that frequency. 

For the configurations analy3od in chapter 3, the 

theoretical riesponse should consist of a series of delta function 

magnitudes in the frequendy domain representing the modal cut-of f 

frequencies of the various structures under analysis, and correspondille 

to the transverse resonance conditions of the one or two dimenrjoraxl 

transmission line models utilised. However in a similar marmar to that 

c)f chapter 3, truncation of the output impulse function causes these 

discrete modal cut-off frequencies to spread out into (sin x)/x typo 

curves on the modeil Chapter 3 also indicated that the natmrk of 

transmission lines was in effect a slow-vrave structure exhibiting pass 

and stop bands. This analysis remains valid and for' a regular notvnrko 

which it must be in this case, to allow the internodal transit linos of 

the impulses to remain constant., the velocity characteristio for a 

wave travelling in a direction parallel to one of the transmission 

line directions is given by 

vn 

c J2 sin Z'G) 2 

where 2h internodal electrical length. 
c 

Thus the wave appears as if propagating in a medium of 

relative permittivity twice that of free space apart from an error 

(5-5) 

defined by equation (5-5) which increases with frequenoyo the notlyork 
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itself becoming cut-off mhen B= W12. The remarks made previously 

regarding the propagation of waves in a diagonal direction across 

the matrix i. e. the velocity remains constant at q/ 2- and tho Vr 

network does not exhibit pass/stop band characteristicsj al3o still 

hold. 

For the configurations examined that may be molallod 

by a strictly periodic network of transmission linoso where the 

internodal electrical length remains constant throughout tho wtwoegv 

the steady state finite transmission line element mathod and the 

transient approach (known in the literature as the transmission Jim 

matrix method) are basically the same. However should the intorno"l 

electrical lengths differ throuZhout the network, thon the dalta 

function impulses will not arrive simultaneously at all of the nodes 

throughout the network and the method is defeated. This restricted 

the application of the transmission line matrix method to problems 

involving homogeneous waveguides and waveguides -whose goomatrion havo 

been made convenient for fitting on a square mash. To describe more 

intricate boundary shapes two procedures wero available to tho unor 

(1) to create more nodes and thus a better space discrotizatiotio but thin 

is extremely, wasteful regarding the already low computational atolo 

required., and (2) to provide a delay for pulses, i. e. to hold u pule* 

at a boundary for several time intervals before releasing it into the 

matrix again. However, this only provides, for a shift of boundAry of 

an integral number of transmission line lengths IV2, ani agAin roquiron 

more store to provide the necessary impulse delays. 
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5.2. TRANSIENT ANALYSIS AIT-LISD TO MOMOGMSOUS IVAVXLr. =, . 

InhomoZ, encous waveguide structures, hovower,, have 

recently been analysed47 utilizinZ the transient approacli,, simply by 

introducing an additional open circuited stub to each node us shourn 

in fig. (5-1) which is the model for a dielectrically slab loadod 

Waveguide of fig. (4.1). The stubs are of length h/2 (thus prowrviMr 

the impulse transit time) and of variable characteristic a(knittanc-i Y0 

relative to the normalised characteristic admittanco or the main 

network of transmission lines. There are now five pulses incident on 

each node where the additional stub has been imerted arul a rovisod 

version of equation (5-1) becomes 
r 

VI (Y 
02 

2 2 2Y V 
0 

V2 2- (YO+2) 2 2 2Y V2 
0 

1 V 22 - (Y 
0 

+2) 2 2Y 
0 V3 

y +4 
0 V 4 22 2 - (Y +2) 0 2y 

0 
V 4 

ý. 
5 i- 22 2 2 (Y 

0-4j 
V 

k+1 k 

li 

(5-6) 

where V1, V2., V3.. V. represent the. impulses in the oripinal fo't-t=lUtion 

and V5 the impulse on the stub. 

At jcýw frequencies the effect of the stub is to add to 

each node an additional lumped shunt capacitance of OY, 4/2 whara 0 ic 

the total shunt capacitance per unit length of lina for tho main xiatwvrk 

of lines, which are of unity characteristic impodancee TIv3 total a)-ant 

capacitance at each node is therofore 2Ch(l. *YA) and hisnou ti-o low 
0 

frequency velocity of waves, Vn . on the part of Via notwork uupVortir,, fi' 

the stubs becomes 
22 

2(l +Y /4) 
0 (5,7) 



I I ar. 

Simulation of di, -*lectric alab loadid 

rectanEv, ular viaveýýaide by t? v., 4, Lutioll 

of' open circuited stt. %ba. 
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and thus the velocity of the waves on the matrix is adjusted by 

altering the characteristic admittance of the stubs, Y09 

Equation (5-7) however only determines the low 

frequency limit of the wave velocity. Johns 
47 

corrPlates the velocity 

frequency characteristics for waves propagating parallel to OnO of thO 

transmission line directions where 

15/2 

sin 2 (1 +L) sin 
Fý 

4 

and for waves travelling in a diagonal diroction acruss the notwork 

vn 0/2 

c sin7' I +y 0 sin 

Equations (5.8) and (5-9) show that as tho low ftvj(luonoy 

velocity is reduced by the action Of the stubs so as to Birnul4tO VIO 

required dielectric permittivityl the useable frequency ranggo alco 

reduce s. A result expected from fig. (3-8) which rhowad tho docroano 

(5.13) 

(5-9) 

in frequency range clue to an increase of capaoitanoo in tho systom. it 

is imperative to note that although the low frequency velocity of 

propagation in a diagonal direction isF2 times that in the dizvotion 

parallel to one transmission line direction, to travel a certain 

distance on the, network in a disZonal diractiont tho 'Wuven on the 

individual transmission lims would have to travell-2 timloo t1i"t 

distance and hence the effective velocition in the two diixictions are 

the same. 

The transient approach of taia trunminnion litic olcumit 

method in solving inhomogeneous waveguide problons thun boooman hI&ly 

restrictive when high dielectric pemittivition AM ellaountarod duo to 
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the small workable frequency range availablas tho limitations 

are howover solely restricted to the amount of computational stora 

that is available to the user. 

Tha- steady state transmission line clement Metho(I 40ce 

not possess this severe limitation since the geomtr-j of the problem 

is unaltered, and as has been seen can utilize any value of 

Permittivity. 

At -the dielectric boundaries, tranvnission and 

reflection coofficierlts'havc to be introducod in much thO JULMO 

manner as in the steady state approachj, but modified accordina to 

ref: 47- Apain since identities botwcen the voltaecs and ourrontn 

on the transmission line and Maxwells field equations within the ' 

structurc examined exist only for Wo dimenrAonally varying fioldn, 

the method is limited to the calculation of cut-off chaructoristion 

or in some configurations the dispersir. - properties of tho atruottuxi 

may be investigated. 

5.1 TaINSIETTI! ANIALYSI3 OF `, VAVh3LrWZS )jLlLi_CU46ýý 

, to The trar=isnion line Ynatrix approaei ILAa boon ntiaj- 

solve waveguide problems where the transmission line noty, %)rk has 

described rectangular geometries and pmvidin(y that it is a "triotlx 

periodic structure. The steady state finite tranrmisaion lirw 

element method however could remove t1ie periodic r", striation by aitv'rly 

coxwectinZ for the odd lenath of tran=ission liw attacilad to t1w 

perimeter of the structure.. and from chapter 4, cAn bo noon to ylall 

accurate solutions for the confipurations undor oxaminations iw)o1a, 

those representing waveguides of circular and 011.1ptiW%I alvivi njotion, 



I- 130 - 

In the transient approach, should the nodes dof irdrig 

the boundary lie outside the periodic nature of the rietWork, ioe, 

the distance from tile boundary to the boundary adjacent nodo is no 

longer 4/2, the time taken for a delta function pulse to leave tho 

boundary adjacent node.. be reflected from the boundary and rot-urn to 

the node will differ from h/c. This presents difficultios ainoo tho 

impulses on the network do not possess identical intornodal trannit 

times and the output impulse function is no longor reprooontativo 

of the true network response. The difficulty is partially ovarcome 

by stipulating that the odd length of transmission line joining, Ujo 

network to the boundary be of length h/29 but that its cliaractorintio 

admittance be altered to account for the difference botmen itn tiub 

length and 4/2. As in chapter 4s two Cason neod to bo conaidorad, tho 

first where the boundary requires a diort circuit toxinination or tho 

oda length of line and se-oondly who= tl-w boundAry raquirvju tll* lino to 

be terminated in an open circuit. 

Considering a transmission line AB of longth IV2 and of 

unity characteristic admittance as in fig. (5-2) Lxrul if B ropivoonto A 

short circuit termination, then the admittance at A, y ivon by 

YA 

where vvh 7 

1 
tan Cd b( /21) 

the olootrical longth or AD 

Let A' BI be another line of length 4/2 with cIlAriALItoriatio 

admittance y on which výuves propagate at tho nano volooity an on ADO 

fig. (5-2). If BI is also short circuitedp thon the churaotoriutia 

admittance, yi, at A# is 

tan (9 12) 
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j1hyo=1 

4 
il". Yo vy 

A 

.? ULý, - (5.2) ýý: juintlenco of transmission lin-j. - a chanz-a in 

,aa! = nZo in, b--iný; cor7ner-satal for b., 
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Thus for YA = y! 

tan(6 /2) 

tan(Ots/2) 

at low frequencies. 

Similarly if B and BI represent open circuit 

terminations 

j tan(()rx /2) 

yl 
'i 

= jy tan(O /2) 

and y tan ((3 m /2) 

tan( 0 /2) 

for y=I at low frequencies. yi 

, These corrections although validp provido only u, partial 

correction to the odd lengths of transmission line and only allow tj)o 

internodal transit times over the network to be idantical. TIU3 

reason for this incomplete . correction may ýbe approciatoa by conaidoring 

a wave propagating along a single poriodically stub loadod lity3j, witti 

an odd length of line at one extremity being tomirAtud in a a1wrt or 

open circuit. if this network was strictly perioaic thon an a alow 

wave structure, it would simulate a medium or polmittivity tWioO t1j"t 

of free space. Bowever by breaking the periodicity, by allowina t1jo 

network to possess an odd lenpth of lino at the OXtxvmity then tho 

change in characteristic admittance of this odd lorWth onablirk: t1rv 

structure to become strictly perioLlia (internodal trannit tim. n of Ura 

pulses are then identical), directly implies that theru in a 

correP. Pond. ing change in perinittivity and tfuts thd struotura in w 

lonaer homogemous. 
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The st I eady state approach to the saw Single stub 

loaded line does not suffer from this ix. Lhomogenoity since the 

simulated odd length of transmission line was assumod to contain 

the condition that-th6 network as a mholo simulated a medium of 

relative permittivitys. 2,, equation (4-17). Thus, ideally to 

provide a complýte correctionp the correotions noted in section (1*. 2) 

could have been applied so as to define an apparent length and t1ion 

the corrections of this section applied to obtain a consistent impulno 

internodal transit time. However, inspection of fig. (4.6b) indicAten 

that the apparent length may well be neeative, Nvbioh may ba aboorbod 

in the phase of the wave along such a line for tho stoady stute rotilod, 

but equation (5-11) directly implies the odd lenzth of line pouttabac2a 

a negative characteristic admittance for the transiont arpt"itch and tin 

correction is thus meaningless for the pulse analy2in of the network 

of this section. 

For waves travelling in an arbitrary direction acrona t1ja 

network,, the break in periodicity presented by tile odd I*rV,, thn or lino 

on the network causes the space beine, simulated by the slow wAVO 

structure to deviate from the nominal relativa permittivity of 2 Qnd in 

fact is no longer isotropic. This deviation mielit Vmll be greator in 

the transient case than the steady state approach. 

In the transient method of operatino the tmn=daaion lim 

matrixo if Vi is the magnitude of an incident delta funotion Iýulzo on 4 n 
node in the nt ;, coordinate direction,, tho node xvprosonting the intor- 

section of four transmission lines of loneth 4/2s but ponnonning 

characteristic admittances of yj pi=1,20.4. t1jon tho pulw Vr 

reflected into the n th coordinate direction is givon by 
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4 

.rZ, T V' - V' (5,12 
Mal 

where Tm2 ym 

ra 

vvhere Ym is the mrmalised admittance of the lim in the m th 

coordinate direction. 

Should the four intersecting transmiosion linos ponwas 
I 

unity characteristic admittance then equation, (5-13) implias T 
la 

= it 

and equation (5-12) reduces to the familiar basis iterativo achow 

represented in equation (5-1). 

Aývain recognizing that reflected pulson fxvln c)no riod, 3 

become incident u1ses on a wiFhbouring node acconling p, to equation 

a complete iterative process may be marwfaotured frVIn uquationn (5*12) 

and (5.2). 

Utilising this technique, rvaulta hava boon obtainad ror 

both circular and elliptical waveguideap dancribed on a cartomian morAt 

of intersecting transmission lines. The configurations used "ro tfon* 

described by figs. (4-9) and (4-10) in the previous Chapter. Tho oAd 

lengths of transmission line Joining the main network of tran=it4j%jon 

lines to the boundary of the otructure being analywd are accountod for 
"I 

by a change in characteristic admittance of the odd lonpth o; r lino aild 

stipulating that its length be 4/2, according to equutions (5.10) or (5ol). 

Considering the node i in figs ()+. 9)f the plVaical longth or thin ot, 41 

length of line is 0-0707h measured in eithor ooordinato diractiolle Thun 

to allow this odd length to become h/20 it =at jessants u diuxaotoristio 
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admittance of 0.1414 for short circuit terminations and 7.0721 for 

open circuit terminationsp both admittances relative to the unity 

characteristic admittance of the transmission lines forming the main 

network. These admittances are then substituted into equation (5-13) 

so as to provide the relevant transmission coefficients in t1o 

iterative procedure. 

Table (5.1) mcords the solutions for tho cut-off 

wavelength of the quadrant of the circular wavesuiaot simulutud by figs 

(4.9), together with the solutions obtained by approximating the 

circular waveguide by a strictly periodic natuork fig. (4-11). Tho 

number of internodal transit timesi, or iterations wus taken to ba 

500, and the radius was a= 5h. The number of nodes defining t1lin 

structure was increased so as to provido an impivvod sputial 

discretization with a= 11h, and the solutions with and without tjo 

corrections of odd length also noted in Table (5-1), the ruubor or 

iterationsbeing 1000 in this configuration to account for tho incz-oaw 

in nodes, and thus reducin, - truncation error. 

The elliptical waveguide of fign. (4-10) and (4-12) wora 

also analysed,, solving for the cut-off wavelength of the atructure. 

Again an improved spatial discretization was adopted by doublinZ tbo 

length of the major and minor axes to as to provide the sari,, o accontricItY 

and results quoted for the configurations with anLI without line 

corrections. - The solutions are no tea in T ublo (5*2) 
# 

Figs. (4-11) and (4.12) both show that on tho ralutivuly 

coarse mash used, the uncorrected boundaries diffor oonaidorubly f'IVM 

the smooth curves of fig. (4.9) and (4-10)- However the unaurrootad 

boundary results in Tables (50) and (5.2) urv xvuoonubly accuXitta, und 
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for TM mode types are of the same order, but note that in a fow 

cases the uncorrected result has been very close to the analytical 

answer and in some cases the corrected msult hats not yield0d [An 

improved solution. The results for TE modes indioato that tjj* 

corrections to the odd lengths are indeed worthwhile, the solutions 

for the corrected confieurations gararally being twice a, 13 accurrAto 

as those for, the uncorrected configurations. 'thus U30 of tho 

correction procedure for the tiunsmission lim sactiono at the 

boundaries does pmduce consistent rasults. 

The truncation error inherent in such proooeflits j, * 

virtually eliminated in all these calculations due to tho lurL! o 

number of iterations of the network taken. howevor the volocity 

errors exhibited by the not%ork must still be prosent, This Orl-OX., 

increasing with frequency# can be utilised so us to pzuviW un uppar 

bound to the correct solution. For the circular modos oxtunizoti ill 

Xable (5.1) for a= 5h, the maximum velocity ortur is us hijI IAO IOV; 

for the ""f22 mo do and 5ýL for the TS' 
02 moda. no uno or &A finor moa), 

not only allows for a better duscription of tho boundarion uni rJolaft 

within the structure as can be seen from the vastly imploved a0curaciqg 

presented by Tables (5.1) and (5.2),, but also reducon tho volocity arl'ur. 

The velocity error for the = 
22 modo in tho cirmlar wuvaguido & 

being 1.2VI,, v&dlst the TE 
02 modo possesnas a volocity arror or 

Similar discussion also holds for the olliptical problcm3 oolvt*d* 

The final point to be noted from Tublen (5.1) und (ý. Z) in 

that the solutions for TE modes are not as uccurato for 11111 twdon. 

Basically, the reason for this is tho break in porlodicity or tho wtwozic 

that the odd lengths of Jim cause. %Ilis was noted 'At tho WeiimbiZ, 
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of the section and reiterating briefly has the effect of air. ulatiriz 

an anisotropic medium, vhere the velocity of the waves on t14 netz-ork 

do riot possess their nominal value of c//-2. The steady stuto 

analysis of chapter 4 homver indicated that the effect of t1hO broak 

in periodicity is much less serious for I'M raoda types than it iz 

for TS mode types. 

5-4. CONCLUSIONS. 

The transient approach to tho tranwAsaion lino oltx; ont 

method can be seen to provide solutions to a witic varioty of vaivo 

guide problems, simply by impulsing, a rztviork of intoraoatizvr 

transmission lines and fonainZ the Jinpulsiw output roupotuia %h1r, 11 it, 

examined for periodicities oorresponainZ to ruoomrit conditjot)n. it 

has been diown that it is similar to the steaj, ý, state uppmucit darivod 

and examined in chapters 3 and 4, but tha flexibility of jvriwosiný, 

a variable internodal length on the =sh in dostwyoa in tho trt%ný, jirjnt 

approach., since the internodal transit timos of tho in-lividual, ixijýujjuaa 

on thz mtviork must at all times be o(, -Iual. This lack uf ; rloxibijitýy 

manifests itself in many vAys, particularly in tLow atruotux-ji, -all. loll 

possess inhomogeneities and o&I longths of trun=innion lino to aagarlbo 

waveZuides vvith arbitrary boundary shapes. 

The restrictions in colving, (lielectric loal-il rnvrjgujjOO 

stemmed from the introduction of an open circuited ntub at each rod3 

simulating the dielectric, the action of which ner"a to raluod t1ja 

velocity of the wave traversing that part of tho network 

the dielectric. The prosence of tlie stub howavar rnlacý,, I tho unjAbla 

frequency ranZ.,, e of the system and thus for any arbitrary 

system, the transiont tranamission line matrix matlu)d in ru*triatad to 
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low values of permittivity such that the frequency ranZo doos not 

become overly limited. The steady state mothod, hoviovor does not 

possess such a stringent restriction sinco the peo=try of tbo problem 

remains unaltered, and account is made for the ponUttivity by 

adjusting the internodal electrical lengtho implying that any volue 

of permittivity may be investigated. 

Both the steady stato and transi, ýnt approachn, lwivovor 

suffer from the inability to provide the dispersiva cluaructoriatIcr% 

of inhomo3en6ously loacL-d wavepuides. Wharcan an idca wan 

, td,,. JIV of overcoming this deficienoy, in tho steady state WtIoa, by 

that two tranmission line meshes might be analyntd sU=jtaLjjoounj,. yO 

one solving for the field components 11 -Ext B and th, -i otfxir rjolvi, 11Z, 

for Ez, Hxý, Hy, with transfers occurrinZ botwoon the two doscri'bod by 

lfaxmlls equations. These transfers were envisaVa to bo miaýtj nAmjjy 

by replacing the operator J(= irl Mammlls afrmtionn, by oparatiný,, 

on the phase of the relevant wave by 'K/2. This rropoaul hawovar, In 

invalid in the transient approachp and rooourso would havo to bo midc to 

the suggestion of developing a threa dimannional mosh, mich t), at 

dispersive pxvperties may be invostigated. 

The method is currently being, adapted to provid, nolutionn 

Uiding systems possessing wall losses 
JýS. 

This in ac(- of waveg twn,,,, ljrj)qd 

by allowing the line terminations at the nodes tjifininp 4Y t) , 
tjjO bouna rr 

the waveZuide to possess reflection coafticienta oUior thwi thow or 

I or -1 assumed for the perfectly coMuctine bourklarion of tho nyatomu 

analysed here. The reflection coeffiaient in thin cttw roannana! % WO, 

a real and imaginary part and for mall lossca tho iw. n,,; inAry Iart may b* ýO 
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neglected. A strictly periodic network, is utilized and the 

transient approadh to the transmission line olonant nu3thod in 

applied with solutions obtained to a good deexee of accuracy. 

however, should the losses become larre.. such that t1o i=Zirlary 

part of the reflection coefficient can no longer be rjoelectuds tLan 

recourse to the steady state method will, hava to ba madoo such that 

the corresponding phase change in the wave rofloctod from t1w 

boundaries may be correctly accounted for. FurtIiar ruaoarc)i boinZ 

perfoxmed also permits U-ie introduction of loony dialoatricap ulna 

analyzed by the transient, approach, simply by alloviing t1w Vuloo 

travelling between nodes in the dielectric to suffor an uppro'eriat" 

,q 
in decrease in magnitude, but again no account is talcon tor a dIIAIT 

phase, again for which the steady state oppivach could ounily M4M'LýO. 

Iýote that in these calculations, oince the ruflection c*orriciorito Ul'a 

generally frequency dependent, Uio notviork has to be solvcd for dach 

frequency. 

It was seen that the transient uppivaull auula cttor ., )r 

odd lengths of line necessary to describe arlAtrurily : ýwpua vawoguida 

cross sections. The correction applied# stipuluted tbAt t1w 1011ZOi 

of line was such that the periodic naturu of Ux) natmrk r=41no(I intstot, 

but that its characteristic. admittance bo altorucl tio urA to wg-Vf3, jbut, * 

for the alteration of length. This hovovur prod-. 100(i 41, jolt 

difficulties since the change in adaittance produooLl u diucuntil-iuity 

in peimittivity on the parts of the wtwork whoru the odd Ivrq-, Ui ulau 

situated. The discussion in section (5.2) ralating to iWioweow-oun 

waveguides, indicated that for a rise in permittivity tho usublo 
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frequency range of the network became severely limitedp and 

therefore the possibility ariseso that in corracting for tho oda 

lengths of line where the change in characteristic admittance 

simulates a change in mediums that the network may be operated at a 

frequency, such that the part of the corrected wtv-ork is undar ctit- 

of f conditions. The steady state approach may also suffer i1i tho 

same manner for wave propagation in an arbitrary dizvotion over th* 

network., since both models reprownt an anisotropio modium; but 

comparison of results for the circular and elliptical wavoguidda 

examined indicate that the steady state nothod in Eanarally ti, ic rý. ojv 

reliable, and that the corrections applied provida a moxv connintant 

and improved set of solutions than if the configuzution Waxv to bo 

approximated by a strictly periodic network. 

lbe transient appivach possesses ona 'AdvantuLlo over tho 

steady state method, in that tho mty4ork only bas to W colvotl onco to 

obtain an output impulse function and thin is examir-w(I for poriodioition 

corresponding to resonant conditions. The atoady state riatj*d 

requires the response of the'network to be solvod for ancli iný, UvialIski 

frequency consideredi. and because of the number of trigonowtrioal 

calculations required to account for tho vectorial addition or U10 rour 

incident waves at each node of the network, in OxtXVM, "lY tiny) oonnuraing. 

The amount of computational store required by tho t%* mot1wan J# kitko 

of importance; the steady state mathod requirinL; twico an much an U10 

transient method in order to store tho phasus us woll an tho m2gmitutto 

of the waves on each individual tranzmisnion lilv3. 



- 11+0 - 

It may thus be concluded that the steady atato MOU10,1 

of the tran=ission line element technique is the more poworful 

despite the much longer machine run time and increaso in stoxv 

required, since this method is capable of perfoming all tho 

analysis demonstrated by the transient approach and an it in not 

as restrictive, may be utilised to provide solutions to aL far 

wider range of configurations# 
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CHAPTER 

CONCLUSIONS. 

The use of networks to solve electromagnetic field 

problems is not a radically new idea, but vas devoloped in Vio 19401 
50s5l. -52 notably by Kroý9 and, others. liovIover thoir ui3o vias conrima 

to an actual network analyser studyp where a nutwork of discroto 

components was used to simulate various waveruido confiZurationa. 

Analysis was performed on this notwork in much the oame marmar An VAD 

done here, namely by exciting the network by a sinunoidal. Conarator 

and examining the frequency respomse by amapintr tluvueh tho i*m1ponny 

range,, and obtaining the fields by measummcnt of tho voltueon arvi 

currents on the network. 

The advent of digital computers ca-uaed a viano in aucil Am,. lyaiqs 

since the network analyzers tended to be cumbornomo in cizal ana 

relatively awkward to build to manage thO Ylido Varicty or bounClary 

problems possible. Engineers thus turned to tho com4putorn to solvo 

the field equations necessary for tho solution o; r wavoLýuidlr4; nyaten1n, 

and developed many fine techniquesp appeciAlly thAt of fittito 

This thesis,, howeverp has shoym tho foasibility o: r utilizilig 

the ideas introduced by those concormd in ruit-hork unalyzer otu(lj"tj, 

with a computer simulated technique. Tho stottdy ntoLtO tj-tt1, *. "jjrjnjOjj lino 

element method however evolved from finite difforonoo/ol=ont tacaad,, p,, n 

whemby the linear spatial variation of rotentirjIn over a r. orjl dnacrjbjjjý: 

the structure was replaced by a circular Nnation variation anl thiAt 

the meah was then in fact a momh of intervocting tratumninnion lima, 
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The basic alteration of the function dozoribing tho fiold 

variations, subsequently produced numerous advantages of this Mothod, 

over more well established techniques, notably theso associated With 

the case of formulation and solution ofý the various otruoturos,, the 

relatively coarse mesh and-hence low oompLtationals tore required and 

the solution of higher-ordered propagating rodeo r. ith no extra 

requirements made on the user. All tllezo arc of vital importance 

to the errineer seeking solutions to a particular micaowavo pzvblom. 

The first section of this vork briefly, raviamd tho rirdta 

difference and finite element toohniques and stroosod thO larga Atwunt 

Ud t'n of expertise meded to formulate the problem wid also that r'O,, jXjjy, 

solve the resulting system of, si=ltanoous oquationa, A UUV 0 

dimensional cavity, was solved for but the formulation used provad to 

be too restrictive for a general approach to be attemptod. Tho atonk, 

state tranmission lino element mothod howevor tuo shoym to, bo 

fonnulated through basic transmission lina thcory and provod, to bo 

simple in conception and manipulation and -the mannor In vilki0i 'Uda wun 

evolved could provide a means by w1dah, tho finite dIfferanw/olwoont 

methods could be utilised so an to reduco tho a torutp of nýjrjj WtIjudn 

and possess much the same advantapou Lin tho rrvoont vvithot'j. 

The comparicon of storaCe roqui=monta bot-tvan tho ty,. o m 

was quoted in Chapter 3P the tranwiission line oloment moUjod roq%jjrjjq!, 

less- than 1/20 of that required by finito difforencon/olortwits; Cor 4 

similar spatial discrotization of tho struotuiv, and yid1du solUtIonn 

to a far better accuracy., Por oiroular or alliptical roomotrienj tho 

structure was described in a cartesian mordv aml tho mIA11to tiCaih nbow 

an improvement on finite differoncep/olomolits, ovan 'whan oonaidurablo 
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tiouble has been taken to approximate the boundarien by varyine 
9 

the shapes a2-d sizes of the elements or a=s of the finito diffeivne, * 

meAý The calculation of any field component within the utructuro, 

is also an attractive feature of the method and usually rolien on 

the addition of four numbers or the oubtraction of two numbors 

depending on the component. The finite differenco/olemant toduiiquan 

however, since they rely solely on finding the comploto stoU4 Atato 

field description must involve some numerical intoCrationpiooodura 

to obtain one field component from the ono bein,,, nolvod for. 

It was shown that the mothod c*'Ould be adaptod L)o an to 

compute various losses present within a waveguida, uzvl rofarono, * Q#5) 

utilises the transient approach so as to oomputo ij-podanco o. 1jAr4OtOj-j#tiCn 

of various waveZuido configurations including biftuoationa, 110001110 aft 

interesting, point to raise.. and one worthY or furthor wor1k, in that or 

utilising an irregular mash of trannndasion linon, irmt. UlAr in tho 

manner that it is periodic of a cortain mosh pitch In ona, ooonunnta 

direction and periodic but of a different manh ritch, in tho otilor 

coordinate direction, this has the effect of alloNvii-4; vavon pxvjA%VatijW, 

over the network to possess differvnt velocities in eithor dizvotiotj 

thus simulating an anisotropic medium. 

The steady state (and the transiont) approaeh to tho 

transmission line alemant mothod hovmver did Ioosour. savaini 

disadvantages as was noted in the solution of noma inhowgoliooua 

structuresp Nberc onlY the cut-off charaoteristion apuld 60 nolvod Vorp 

but use could perhaps, be made of Coandon arxi Silwatar'n IWItAl 

Approximation Technique so as to computo, the tioldz abovo cQt-orr 

conditionsp a technique not utilisod hare. 
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'The'manafacture of the steady state condition3 within tho 

structures were obtained by considering multiple refleotod %avon 

traversing the network of transmission lines, simulating the wavo- 

guide. The discretization of the medium into such it moch effected 

a slow -wave structure representing a modiura or relative romittivity 2, 

thus causing the wave traversing the natvýoork to ponwsj a velocity C, 

apart from an inherent velocity error which was dopomlont on the 

frequency of operation and providad an upper bound to th*'nolutiona 

obtained. Truncation of the order of reflections, caused the 

spreading out of the ideal response of such a airimlatea synteri into 

(sin x)/x type curves situated about the rosonant frequencies or t1jo 

structure. Thus the requirements for a low velocity orivr to be u4t 

implies an improved spatial discretid-oation aucIj that t1jo ft-equancy or 

solution is lowered# which in turn yield Melt truncation orrorm and oan 

only be reduced by increasing tho runbor of 2vfloctions oorwidarad, In 

all the investigations perfonaed here, the ntuabor of xvflootiona 

considered were chosen such that the truncation ainor waz mil&gd, 

Comparison of the steady state Aril traiiniont Approaclots 

to the transmission line element mothod indicated tjgxt the I-omar wan 

more versatile) since it could perfont idonticra cillculationu to t1low 

of the transient mothodp and also possessod the faoility to cope WItI, 

more structural configumtions oontainirqy hivjt poxiaittivitiotst hir')l 

losses, arbitrarily shaped boundaries anI a moann of zolving tho 

dispersive characteristics of dielectric loadod guidan without racourw 

to three dimensional analysis. The disadvantago or ttio atanay nttAtd 

approach, however,, is the relatively lore MUchina run tit" roqýlirad, 

since the network must be solved for cach frvquonoy examinod, 
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It is proposed that if some proced=, e can be found such that tl)o 

compu 
I 
tations are performed at a vastly improved rate, the steady 

state transmission line'element method must appeal to the d4sign 

engineer for accurate solutions of a wide variety of vuvoguido 

characteristics of 'any arbitrary shaped confiL7uration. 

Finally, -although the method has been applied onoontially 

to electromagnetic field problemso it may be adapted to form an 
55 

analysis of thermal or machanical problema, or even pxvvida oolutiona 
56 

of Schr6dinger's wave equati6n. Arain it must be ompluAnizad that 

the method, eveii though in its infancy# has boan shoym to -j-*tjw4u a 

remarkable degree of versatility and afforas not only tho ur; or with u 

powerful numerical techniqueo but also the potontial rossearchar to 

develop the method'and ideas raised throughout tjjjq rrojoot, 
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rRINCIPAL SYYBOLS. 

e, e, e, unit base vectors of a thxvo di=n3ionul 
-x -7 z 

recItanFular coordinato system. 

e unit base vectors of a throo dimonsional 

cylindrical coordinate system. 

electric field. vootor. 

B magnetic flux density vzotor. 

D electric displacement vector. 

magnetic field strarCth vector. 

current density wetor. 

charge density. 

G., Gr absolute and relativo permittivition. 

absolute and relative permcabilitioa, 

w arZ-ular frequency. 

attenuation constant, 

phase constant. 

COM Plex. Propasution COXWt"n't. 

Laplacian oporator. 
711 TWO diman" sional Laplacian 0I)cratort inx una 

c Velocity of light in rive -, ruco. 
ýO Free space wavalenZth. 

X3 Wavelen, -th of OUdad uuvv. 
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APPENDIX. 

Sample prop-ram for, steaL state finite transmission ling elemant nothod. 

To provicl. 6 completeness, and also aid the user of tLo 

steady state;, transmission line element method, tho following proCrum 

is repro duced.,,,.,,,,, 
- 

This program calculates tho response of a porio(lic 

in network simulatinZ the rectangular waveLuidd of f1 (4- It 

reproduced in its simplest form for the purpose of olarity, Noto t1jut 

the storav_'ýýmatriccs VIM., 'Mo" etý., P'M', a. V, 'bu"oIimiMtcd and roplaced by 

Jos appropriate', ý'ow dimensional matrices toeothur with a little wtv jor 

thus r educinZ tho store requiredp and that ilia variable o(ji jOnZtjjj, of 

tranýýis-sion, lin'e', of chaLpt, ý., r 4, may be written in, by ToAnipulfAtion, of 

the pýasý`s, when "the boundary conditions ara boirp, initializad for cuc)i 

or&-r, of- reflection considered. 

C SOLUTION OFý MXTANGULAII WAVXUJM, ' PIMBW; 4 
c 

gHX, lHr):, -, slýs or miTiolac 
IX.. IY)., (FX#FY): 110SITION OF EXCITATION IM Ol=jJVATjOjJ 

C NODE FjME CTIVMY 

C NJ: M=-=l NO, OF RZM'CrION3 O0N31DZRW 
c %-7 : 1=11ITUDS OF IMT WAVB 
C TBETA: FREQUENCY OF OP2,1LITION 
C VR(XgY) tl'R(X,, Y) F-TCb *0 MATRICES 3101MU 111411ITUDIý 
C &PHASE OF NODE INCIDENT YlAVM ON 4 OOORDnt&T, & DIRl,; CrIO= 
C VRX(X,. Y) qPRX(XqY) ETC. -* AS ABOVE BUT MOW= 
c FOR WAVES UNTIL EACH OID2"R OF P=, XCTION IDS MW 
C CONSIDERM, THROUGHOUT =ZWORC 
C BRBLBUpBD: REFLECTIONS, COEFFS. AT BXTM'2-'"TIlZ OF 
C STZJCIURS TO ACCOUNT MR ILE"Ce/kAGe 'WALlZ 
C 

DIIIENSION VR(9,7) jVL(9,7) pVD(9,7) VU(9#7) 1, x PR(9s, 7) vIL(9.. 7) M(9.7) JV(9., 7ý# - x VRX(9 7) vLx(g. 7): VDX 9#7ý: VIL(j9p7 p x PRX(9., -7),, PLX(9j-7) 
Z9.0 

WX 9 7ý 
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I=ER 
C 
C DATA Acaanmu 
C 

cAu BF=(iBx,, iHy,, ix, iy, Fx,. ry,, 14I, V, BL, BRBUBD) 
5 TMITZ" (I p 200) '' 

200 FOFMT(30H TBETAI Tlrkj'2A2- 
REM(l., 100) TlMTAl.. THETA2#TBINT 

100 FOMIATOF10-4) 
TB=--TMTAI' 

0 

'o NULLIFY UATRICES 
c 

6 CALL iMZL(VR.. VLsVD., VU#PRpPLVIIDIU,, 
X VRX., VLX.. VDXpVU. XpPRX., FLX., =PlVxo MXV Illy) 

TV=00'0ý 
TP=0.0, - 
IBM =IBX-l 
IH11 =IHY-1 

C INITI. ALIZ34, EXCITATION 
C 7. 

ID ly =Vl-l X, 
VL ixly -i 
VD IX., IY . =V' 
vuiixpiyl=v 
DO 4 IC=ljNI 

c 
C INITIAME BOULMARY REt-UMION 0012,73. 
c 

DO I X=2., IHXI, 
w x"I X.. 2 
VU Xp Iý 

x"Do 
2ý xM 

FD XpIliY)=PU XtIIIYI 
1, VDJX, 113Yý =VUKnlylýKX 

DO 2 Y=2, *IHYI 
EL IBXY)=PR(nIXIY) 
vL IHK 9Y) =VR(IBXI OY) %BR 
PR I: Yý =FLý2: Y 

2 VRI IY =VL 2 Yý KM 
c 
c SM =, TION OF INCID20T WAVES AT SOLUTION NOD!; FOR 
C EAaH ORDER OF Ri: 2=a. VION 
c 

CALL PVX(VR(FX,, FY),, VU(FX, rY), VL(rl. 4, lrf), Vl)(FA 1-7) 

c 
C AMPLITUDS OF VIAV. & AT SOLUTION NOD. -. 'YOR Ml MZ-LXXIOW 

P=0.0 
CAIT. PVX(rivv rvo Pops TPV FPO Poppma M) 
17=VXY 
TIP=PX'Y 

c 
c Fow 4aaarus a PE= or MMXCZM WAVES AT BACH 
C NODE OVER NEIVORK 
c 
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W3Y --2gIllil 
DO 3 X-9.. IM1 
Pl=PD(X9Y+1)+TM"U 
l'2 =W (X 

i, Y- 1) +THZTA 
P3 =ZEL (X+ 1, Y) +THETA 
1: 4=1'R (X- 11, Y) +TII STA 
V4=-VR(X-1 »Y) Cl= M(VD(X.. Y+1)�VU(X#Y-1) 

X Pl. 91>2�P3; -P4�VXY, 
PXY) 

VLX(X, y) --0- 5-, VXY 
IM(Z., PY) =nff 
,' "p' +THETA 
P2=FD , Yll +Ta, 'TA 
P3=FU X�y-1 +TEMA 
! P4=PLIX+1�YI+TaTA 
V4=-'VL(X+1., Y) 
C. UL FVX(VR(X-1, Y)., VD(X., Y+l) 

X Pl pP2pP3, P4, VXY911Xi) 
VRXýX, Yý =0.5xvxr 
PRX(X�Y)=PXY 
Pl =PR X-1 iY +III2TA 
P2=W XpY-1 +IIL-ITA 
! ->3=1-L X+I�y +IRCA 
P4=PD 

IX, 

Y+I 

1 

+THSIM 
V4=>- (X y+1) 

.I 
ýVR(X-1., 

y).. VU(Xty-l) 
1 P1 91->29P3., P4jVXiPXý) 

vux(xtyý=0.5ävxy 
FUX(Xpy) =PXY 
Pl y 
: E>2=PL(X+1, Y +Tii, -iTA 
113=PD(X#Y+l 
l'4 =FU (X 9 y- 11+ Tli, ' ENA 
v4--VU (X.. Y-l) 

IVL(X+Ity)tv4p 

"VU (Xty-l) PV4,.. * 

IVL(X+l SY) OV42 

x 
CALL PVX(VR(Ä-l PY) : 'VL(Z-+I ty) »VD(Xiy+l) #v49 
VDX (x$ yý 0.5xvxy 
r-DX (X., Y) =eXi 

3 001T2INU 

C TRANSFIM AIT-LITUDE & PIMM OF WAVES INTO 
C "NORKIM IUTRIaS 

DO 4 1=1,, IHX 
DO 4 J=1., IHY 
VR(Iti)= VRX(Ivi) 
VL lsi)=VLX(I.,, T) 
VU 1, J) = vux (I, J) 

VD Is J) = VDX (I,, J) 


