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Abstract

This thesis is concerned with the interface of cosmologyamdiensed matter.

Although at either end of the scale spectrum, the two dis@glhave more in common
than one might think. Condensed matter theorists and higingg field theorists study,
usually independently, phenomena embedded in the steustarquantum field theory.
It would appear at first glance that these phenomena arertisjod this has often led
to the two fields developing their own procedures and stiese@nd adopting their

own nomenclature.

We will look at some concepts that have helped bridge the gapden the two sub-
jects, enabling progress in both, before incorporatingleased matter techniques to
our own cosmological model. By considering ideas from cdsgioal high-energy
field theory, we then critically examine other models of @gslysical condensed mat-

ter phenomena.

In Chapter 1, we introduce the current cosmological paragdand present a somewhat
historical overview of the interplay between cosmology anddensed matter. Many
concepts are introduced here that later chapters willviolip on, and we give some
examples in which condensed matter physics has had a vérgfieet on informing
cosmology. We also reflect on the most recent incarnatiotiseofondensed matter

cosmology interplay, and the future of these developments.

Chapter 2 presents the Einstein-Klein-Gordon system cditgopus and their non-relat-
ivistic and nonlinear counterparts, the Schrodingesgan, and nonlinear Schrodinger
(Gross Pitaevskii)-Poisson systems. We give a more teahoverview of the various
applications of these systems of equations, as well assisaythe role and interpre-

tation of condensates in the field of cosmology.
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In Chapter 3 we discuss more qualitatively the fluid-mectaninethods used in a
wave-mechanical approach to structure formation, and imdiéations of condensed
matter models. Taking a lead from the condensed matterwrlégok at some of the
details of the Gross-Pitaevskii equation, particularlyhwegard to quantum vortices,
and then put this quantum-mechanical system into a cosnealognvironment by
coupling it to the Poisson equation, in afiicet to pin down some of the parameters
that may be consistent with the existence of vortices in axcbsgical Bose-Einstein

condensate.

In Chapter 4 we turn to high-energy field theory and elucidiaténer some of the re-
lationships with condensed matter physics that are pre¥émalso critically examine

a Bose-Einstein dark matter model in light of these consitlens.

Chapter 5 roundsfbwith a discussion and suggestions for further work basech upo
models we have discussed, as well as some ideas for modelsatr&not yet been

mentioned.

An appendix discusses techniques for moving from the xe$dit Einstein-Klein-

Gordon equations to the Schrodinger-Poisson system.
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Chapter 1

Cosmology and Condensed Matter

1.1 Cosmology

1.1.1 The Birth of General Relativity

The Einstein centenary in 2005 was a chance to celebratégthi@écant achievements
made in cosmology in particular, and physics in generalinguthe hundred years
since Einstein’annus miribilis This Latin phrase has also been linked to Newton’s
own miracle year in 1666, three hundred and thirty nine y@aesiously, and one

might begin to wonder when another might be due.

The history of progress in cosmology is interesting in itsnouwght. A revolution
in science is rarely as drastic or cataclysmic as the imageked. The history of
progress, as reported, does seem to come in fits and starts,i$iy more of an
evolutionary process that the standard paradigms are tbri@éten, many incorrect
suggestions or interpretations are made, with a theoryrbepestablished within
the scientific community only by virtue of being the most liesit, rather than being
recognised as correct overnight. The theories that arageglcan rarely be thought
of as incorrect, rather, the new theory is a more general fufrthe old, with the old

being recovered in some limiting regime.

Here, the relationship between mathematics and physiessgrdand can generate a

lot of philosophical discussion. Physical theories can X@essed in mathematical
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language, and the limiting regime described above can bauiated as a mathematical
limit process. Why the abstract concepts of mathematicbedranslated into physical
concepts is essentially still a mystery. The Hungarian fgists Eugene P. Wigner,

expressed it thus [1]:

“The miracle of the appropriateness of the language of maudigcs
for the formulation of the laws of physics is a wonderful giftich we

neither understand nor deserve’”

It is usually due to more and more refined experimental measent techniques, or
through a desire for increased accuracy, that deviatioms theoretical predictions are

uncovered.

Many examples from the field of cosmology present themsel®&anetary models
can be traced back at least as far as AristolEsCaeloin the third century B.C. [2].
The ancient Greeks sought a mathematical beauty and sitypticheir models of the
Universe, and so the motions of the planets and all celdsbidies were assigned to
perfect spheres orbiting around the Earth. In this systema# dificult to accurately
explain the motion of bodies in the sky. Rather than give uph@mnotions of mathe-
matical beauty and geocentricity, Eudoxus [3], AristoB&lemy [4] and Apollonius
of Perga [5] designed a system of epicycles, in which plametged on smaller perfect
circles around a point that would be traced out by the stahgpherical orbit. This
concept helped to explain the retrograde motions of celdstidies, and the apparent
change of distance between the Earth and the planets. Asasiers and navigators
pressed for higher accuracy in predicting the motions @il bodies, it was found
that the epicycle model did not match observations. Evéligiilae geocentric models
were replaced by Heliocentric ones, such as proposed byr@liops [6]. Copernicus
was driven by what would become known as the Copernican ipteyovhich states
that the Earth is not in a specially favoured position. Comers’ systems were still
not quite correct, and still required the use of epicycles, there is some debate as to
whether Copernicus’ system was more or less complicatedtheprevious Ptolemic
one. See Neugebauer [7] for example, for a Ptolemaic-sigd \Copernicus would
never encounter the controversy that would envelop Galilken he made observa-

tions of Jupiter’'s moons; the first decisive evidence thatihrth was not at the centre
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of the Universe. Galileo’s findings are documented in hisdasty diplomatidDe rev-
olutionibus orbium coelestium, Libri (Dn the Revolutions of the Heavenly Spheres,
Six Books) in 1543.

The need for epicycles was done away with less than a hunea@d Jater, when the
perfect orbital circles were replaced by Kepler’s ellip§&ls Here, we can see an
example of the old theory emerging as a mathematical linthe@hew one, as in terms
of Fourier analysis, an elliptical path can be built up mathgcally as a series of

‘epicycles’ on a circular orbit.

Kepler's laws of planetary motion were later encapsulateddewton’s laws of motion
and gravitation [9]. Newton’s laws weref&igiently accurate to be used right up to the
twentieth century, and indeed are still adequate for prablen celestial mechanics,
such as space flight. Later, as technology advanced to emaipkeaccurate astronom-
ical observations, there were a few predictions for whickvida’s law of gravitation
were inaccurate: the prediction of the advance of the ploinef the planets, partic-

ularly Mercury, and the angle through which light is defleldby the sun.

The beauty of the interplay of mathematics and physics isléves can be manipu-
lated according to a set of abstract mathematical rules;agyzce sometimes equally
abstract concepts which, given the right interpretatian, lbe once again expressed as
physical entities that can be probed in experiment. Thetouesould seem to be,
“how did these rules come about?” In tAémagestPtolemy himself seems to accept
the limitations of any progress made [4], suggesting theretis no way to know which

theory is true, since any model is a mathematical construct.

One of the most notable examples of discovery as a consegjuéniceoretical pred-
ication is the discovery of Neptune. The eighth planet wasaliered by analysing
irregularities in the orbit of Uranus, and predicting tHagyt be caused by the dynam-
ics of another, as yet undetected body, with propertiesvioaid have the required
influence. On the back of the success of this prediction,emaindetected planet
was posited to exert the required influence on Mercury toarpghe advance of its
perihelion. This prediction, unfortunately, turned outo® erroneous. More abstract
examples of mathematics prediction can be found in the figpcdicle physics. Paul

Dirac, who expressed that “the laws of nature should be sspckin beautiful equa-
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tions” [10], predicted the positron essentially as a consege of the second root of
the Dirac equation; in some sense the negative energy quastites turned up as
‘merely’ an artefact of the mathematics [11]. Although Risgprediction was verified
by the detection of a positron by Carl Anderson in 1932, whaxd@evement gained
him a Nobel prize, Dirac’s initial concept of a ‘sea’ of nagatenergy particles was
flawed because a vacuum state would require an infinite geofsgositrons, as well
as the overall negative charge of the Universe that this dvouply. The idea was
eventually superseded by Quantum Field Theory. As it tuutsibseems likely that
Anderson was unaware of Dirac’s prediction at the time, éssilts only receiving the
correct interpretation once the theory was brought to hen&bn. Anderson would

later suggest that his discovery of the positron was “whadlgidental” [12].

The General Theory of Relativity laid the foundation for pkoto start wondering
about the evolution and structure of the Universe, baseelypon the matter and en-
ergy content that we are able to observe. This has been corapted only very re-
cently by the high precision observational experimentsyhesl to probe this content.
It is an inherently mathematical theory, as Einstein faedunathematical elegance in
physical theories, and as such it has had its own share apretational issues, and

mathematical ‘artifacts’.

Einstein combined space and time into one single, dynareiaty, which could be

described purely in terms of derivatives ofreetric g,,. The metric is a tensor that
tells us how to calculate the distance between two eventspaeetime. The curvature
of spacetime is also related to the energy or matter confeéhédJniverse; matter tells

spacetime how to curve, curvature tells matter how to move.

Einstein’s field equations can be written as

1 8nG
va - Eg/th = ?Tyv (11)
The Ricci tensorR,,, is given by
R, =005, —d,I%, + rzﬂrj(, -, (1.2)

with the Christdfel symbols,

1
Fﬁp = Eg#a(gap,v + gav,p - gpv,a), (13)
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where we use the notation

0,=—, and Q,,=—. (1.4)

From time to time, we may also use an overdot to represéierentiation with respect

to time, and a dash to represenfféientiation with respect to a spatial coordinate.

We see that the left-hand-side of Einstein’s equations aademup of terms purely
involving curvature, or the derivative of the metric. Thghi-hand-side consists of the
energy-momentum tensor, the matter-energy content of thieetse. For an empty

Universe, we could simply set this to zero.

Once Einstein’s equations had been formulated in 1915 t&m&imself suggested
that he expected that they were too complex to ever be sokasttlg. Karl Schwar-
zschild would prove him wrong the same year, with the disgpeé the metric that
bears his name [13, 14]. The Schwarzschild metric descthespacetime around
any spherically symmetric, non-rotating, non-charge@ojand hence is a good can-
didate for a first attempt at modelling objects such as stagalaxies. It was noted
at the time that the mathematics described a more exoticplgdlack Hole Such
objects were dismissed as mathematical curiosities, th@ikingularity theorems of
Hawking and Penrose showed singularities to be a generiaréeaf many cosmo-
logical scenarios [15, 16]. The Schwarzschild metric wasdus model the sun in a
new prediction of the angle through which light would be de#e, and in a famous
expedition in 1919, Arthur Eddington, a British scientfstynd that Einstein’s theory
was in much better agreement than the Newtonian estimagend theory also accu-
rately predicted the perihelion advance of Mercury, angesbthe problem of “action
at a distance” inherent in Newton’s theory. Mathemati¢cdigwton’s theory of gravity
appears in Einstein’s field equations in the weak field ligritequivalently in the limit
of small mass densities. We will come across this limit againd it is demonstrated

in Appendix A.

Einstein was not comfortable with his own equations, whiebnsed to be suggesting
that the Universe should be collapsing under its own gragityl so he added a term
that he called the “kosmologische Gleid”, which translaghe “Cosmological term”

[17], or Cosmological Constanto keep the Universe static, in line with the current
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scientific consensus. Einstein’s field equations with thisaeterm added are

8nG

1
Rﬂv - EgﬂvR-i- g;sz = ?Tyv- (15)

Often, this term is absorbed into the right-hand-side of &gjuation, making it part of

the energy content of the Universe, as we will soon come to.

Actually, the Einstein universe is only static by constioct but is unstable. This can

even be seen in Newtonian mechanics, via Poisson’s equatignavity
V2 = 4nGp. (1.6)

If there is a constant density of matter in the Univegse; po # 0, then the gravita-
tional potential must be spatially varying, and so the hoemaegpus density distribution

must be globally contracting or expanding.

The next few years in the emergence of a standard Cosmolaogaxdel are typically
convoluted. In 1922 [18] and 1924 [19], Friedmann, consideEinstein’s equations,
published what would become known as the Friedmann eqsa@onl the Friedmann-
Robertson-Lemaitre-Walker (FRLW) metric. The resultseMargely unnoticed at the
time and, in 1927, Lemaitre independently came to the samelesions [20]. In
considering a dynamical Universe, Lemaitre predicted éxpansion would lead to a
linear relation between the redshift and distance of nebaitaund us in the Universe.
In an expanding Universe, nebulae would appear to be moway dérom us, and
the recession speed would manifest itself as a redshiftarigit produced by those

nebulae.

Edwin Hubble, in 1926, had only just shown that these nebulees indeed other
galaxies, and not part of our own galactic system [21]. L&rmaailso conjectured that
if the Universe is expanding now, then moving into the pastould contract, until it

reached a point of infinite density.

This theory did not receive its famili@ig Bangname until Fred Hoyle described it as
such during one of his popular radio broadcasts in 1949. Hotgyuite clear whether
he coined this term to be derogatory, which would seem to beéise, as he was a
proponent of theteady statéheory and was not known for histable nature, or, as he
later claimed, to provide a more striking image to bettecielate the concept for his

home listeners. See, for example, Croswell [22].
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In 1929, Hubble discovered that such a redshift-distaneedia exist [23], and this

caused Lemaitre’s work to be reassessed by Eddington, wihéeldahe research on
the previous eclipse experiments. Hubble came up with a cdtrecession velocity
to distance, thélubble constantof about 500 kms-Mpc™t, out by a factor of ten on
today’s best calculation and, looking at the data pointshirithad to work with, it

is remarkable that he came this close, see Fig. 1.1. Thigeeafor an expanding
Universe caused Einstein to drop the Cosmological Congtamt his equations and
regret that he had not originally followed where the mathtrsded him; to foresee a

dynamical Universe.

4x104
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Figure 1.1: Hubble's original data [23], compared with that of more r&cgurveys (see Kirshner
[24] for image and data references). Note thigedlence in scale.

In formulating the FLRW metric, and subsequent Friedmamaggns, Friedmann and
Lemaitre had employed a modern version of the Copernicarcipte, the Cosmolog-

ical Principle. This assumed that the Universe on largeescal homogeneous and
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isotropic. That is, the same everywhere and with no prafediesction. Friedmann
and Lemaitre had previously assumed that their metric watily one consistent
with the Cosmological principle, and in 1935, Robertson [@3d Walker [26] inde-

pendently proved this rigorously.

The FRLW metric can be written in dimensionless, co-moviplgesical coordinates

as
dr?
1-—kr2

We use a Lorentzian metric with convention ¢, —, —), although personal experience

d§:&&—¥m( H%%%ﬁﬁ%ﬁ» (1.7)

suggests that this convention is becoming increasingly éesnmon. We set = 1
from now on, unless otherwise stated. The scale faafrdescribes the expansion or
contraction of the Universe, while the curvature enterk,axaled to ber1, 0, or -1

for Universe exhibiting positive, zero, or negative constaurvature.

Generally, the energy-momentum content of the Universeisidered to take the

form of a perfect fluid. This can be written

Tyv = (p + p)u/tuv = P, (18)

wherep is the energy density is the pressure, ang), is the four-velocity of the fluid.
In co-moving coordinates, the four-velocity will take therh u, = (1,0,0,0). Local

conservation of energy, T/ = 0, with the covariant derivative

V,TH=0,TH+ 1% TO - T, TH (1.9)

au v VU@
leads to an equation known as tih@d equation or theenergy conservation equation
. a
p+3a(p+ p) = 0. (1.10)
Substituting the energy-momentum tensor and the FLRW meitd the Einstein

equations gives theriedmannequation (the i-i component)

a\? 8rG k
G =Tz (L)

and theaccelerationor Raychaudhurequation (0-0 component)

a 47G
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We note that the Friedmann equation and energy conseneadiaation imply the Ray-
chaudhuri equation, or alternatively, the Raychaudhuragign and the energy conser-
vation equation can be combined to obtain the Friedmanntequd hat is, the equa-
tions are not independent. We have also defined herdubbéle parameterHy = a/3;
the rate of expansion of the Universe that first emerged inbt&dblaw as the constant
of proportionality between the speed of a galaxies recassiud its distance from us.
From the Friedmann equation, we can define a critical demsitige Universe pgi,
that would be required to make the Universe fla&(0),

3Ho

Perit = 8G (1.13)

This allows a convenient way of considering th&elient types of matter that appear

in the Universe. We write

Q = d ,
Perit

where the subscriptcan represent matter, radiation or a term encompassingtaay o

(1.14)

type of matter-energy component that we might envisage.afat Universe, where

the global geometry is Euclidean, we necessarily @@i = 1. There have recently

been indications that the simplifying assumptions olf hoemagty and isotropy in the
Universe may be too specific. It has been suggested that thk discussed ‘axis of
evil’ [27, 28] may highlight a specific direction in the Unige. There has also been a
large amount of study on the Bianchi models (see, for exanMdgzner and Tolman
[29]), which discuss isotropy, with the FLRW universe be@ngpecial case of certain

types of Bianchi classification.

First Indications of Dark Matter

Once the nebulae had received their correct interpretas@alaxies in their own right,
rather than objects within our own galaxy, it wasn't longdyefthere appeared to be

something wrong with the observations that were being made.

Using ‘just’ Newtonian mechanics, Fritz Zwicky was the fitginotice that something
was amiss [30]. In applying the virial theorem to the Comastdy he noticed that

a large proportion of its mass appeared to be ‘missing’, ihatinseen. The virial
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theorem says that
1 _— -
Total K.E of a stable system > Gravitational binding energy (1.15)

By measuring the movement of a system, one can infer its nGasaparing the aver-
age mass of the galaxies in the Coma cluster, with the mass®gfrom the cluster’s
luminosity, the visible part of the system, he found that &h@ount of visible mass
was~ 100 times smaller than the mass that appeared to be theeob$ervation was

largely dismissed at the time.

We have given an overview of how tlitot Big Bangmodel came to be established;
the ‘hot’ part of the name describing the extremely high terafures and energies
present in the earlier stages. We are of course missing omeufs, and critical piece

of evidence that we now come to.

The CMB

The Hot Big Bang model has many successes. Perhaps, mdsiyndgaredicts the de-
coupling of photons and matter afrecombinationto produce a black-body spectrum
of radiation in the Universe, which would become known as@aesmic Microwave
Background(CMB). Theoretical suggestions that could be interpreteealy fore-
runners of CMB physics were predicted as early as 1941 by Mak@&1], and Dicke
[32]. The first serious estimate of a microwave backgrountprature of cosmic ori-
gin were made by Gamow, Alpher and Hermann in 1948 [33, 34,88]these were
not recognised widely in the community. A few authors workedthe idea, perhaps
most notably Doroshkevich and Novikov [36] who suggested the CMB should be
detectable. Dicke, Peebles, and Wilkinson at Princetorugedn experiment to go

about detecting the background radiation.

At this point, the history of CMB experimentation takes aeselipitous turn. Penzias
and Wilson were two experimental physicists from Bell Latbsyeloping extremely
sensitive microwave receivers for radio astronomy. Waglan the removal of residu-
als and systematics, they found a microwave signal with @nomate temperature
of 3K. This signal was found to be independent of the direxcti@t their Horn Antenna

was pointed in, and of constant magnitude. Understandalstyfloxed by this system-
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atic error that they could not get rid of, they eventually doded that the source was
extra-galactic. Penzias then came across a preprint of er ppgpPeebles, describing
the possibility of a relic radiation from the Big Bang. Theotgroups got in contact
and came to the conclusion that Penzias and Wilson had intieedvered the relic
radiation. They arranged to publish their findings simwdtausly in theAstrophysical
Journal [37]. The Dicke collaboration continued with their own exipgent, which

confirmed the findings of Penzias and Wilson [38, 39].

In a somewhat controversial move, in 1978 the Nobel prizerndtee awarded Penzias
and Wilson the physics prize for their discovery. Questiwaee raised about the award
because, although the two physicists were obviously higkiyed in their field, they

were apparently unaware of the theoretical progress tliebéan made on the concept

of a relic radiation from the Big Bang, and made the discoesgentially by accident.

Another success of the Hot Big Bang model is its accurateigiied of the light ele-
ment abundances, primordial nucleosynthesig0], correctly predicting the fractions
of Hydrogen, Helium and Lithium that are observed today. SEh&vo pieces of evi-

dence are perhaps the Big Bang model’s biggest achievements

Problems with the Hot Big Bang Model

There are, however, a number of problems associated witBighBang model. These
are commonly known as tHatnesgproblem, the problem ainwanted relicsand the

homogeneity and isotrogyroblem, which stems from tHerizonproblem.

Theflatness problenappears as a fine tuning problem. We have seen from Einstein’s
equations how the matter and energy content of the Univesfsees for us the global
curvature. It turns out that if the Universe is not flat, thieemolves away from flatness
very quickly. From observations, the Universe appears flatyoday [41], so earlier

in the history of the Universe, it must have been even clas#atness.

It should be noted that the flatness problem is only reallyablem if the Universe
does not have precisely zero curvature. Current measutsrseam to be focusing
in on the exactly flat case, however, any deviation would nteanthe Universe is

not flat. If the Universe was flat to start with, then the probleecomes moot, as the
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Universe will remain flat, otherwise a topology change wdddequired to take place
at some stage in the Universe’s history. As flatnéss Q) is a particular case of the
of the topologies that the Universe could have choken,—1,0, 1, then the question
could be changed to “why flat?”, but it would not be a probleinerent in the Big

Bang model.

The horizon problemis a problem of causality in the early Universe. The particle
horizon at last scattering represents an angle of only atiweitiegree on the sky at the
present day. That is, regions of space that subtended ae ahgbout one degree on
the sky have never been in causal contact. Yet the temperthiairwe measure in each
of these regions agrees to about one part in ten thousand.isThn unprecedented
level of agreement for regions of space that have never lbemnitact with each other.
This is turn leads to the problemslebmogeneity and isotropyAgain, the CMB tells
us that the temperature fluctuations at decoupling weresragoth. From this we can
infer that the density perturbations in the early Universeanalso particularly smooth.
This level of smoothness in the early Universe requires a keigel of fine tuning in the
Big Bang scenario. One could imagine that a ‘generic stdtdeasity perturbations

produced by the Big Bang would be far from smooth.

There are also problems witinwanted relicsn the early Universe for the Big Bang
model. It is expected that the fundamental forces that wetedmy emerged from
the breaking of symmetries representing unified forces gtidritemperatures, early
in the Universe. The electroweak force, for example, carepeassented by the gauge
group SU(2)x U(1). This is spontaneously broken at lower temperatureésddJ(1)
group of electromagnetism. With the Higgs mechanism, thataneous symmetry
breaking produces the force carryigguge bosonsf the electromagnetic and weak
interactions:W*, Z° andy. We will discuss these concepts in more detail later. The
formulation of the electroweak theory by Glashow, Weinkarg Salam correctly pre-
dicted the masses of the gauge bosons, before they weregsglnsly discovered in
1983 at the UA1 and UA2 experiments carried out with the S&peton Synchrotron
at CERN. Carlo Rubbia and Simon van der Meer led these expatsnand were
subsequently awarded the Nobel prize in 1984. Glashow, béegnand Salam were

awarded the Nobel prize for their theoretical work in 1979.
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Many theorists anticipate that the other fundamental ®orgdl unify at higher tem-
peratures into &rand Unified TheorfGUT). The problem with this in terms of Big
Bang cosmology is that the breaking of these higher symatetyipically produces
topological defects such as magnetic monopoles. Thesemoteswould be expected
to dominate the energy density of the Universe. Howeverpnethas been observed
at this time. Other relics that are possibly more relevari wegard to the interest in
supersymmetry and string theory are the gravitino and tihe-zgro particles corre-
sponding to the moduli in string theories. THeeets of the gravitino on nucleosynthe-
sis have been considered [42], as well as the implicationsdemology from moduli
[43, 44].

The origin of thematter-antimatter asymmetry also a problem for the Big Bang sce-
nario. The Big Bang scenario suggests that matter and attenshould be produced
in equal amounts at the time of formation, and hence one wexgect to observe
nothing today, as all matter and antimatter would have alatéd. This is clearly not
the case. There must be some mechanism to produce a mdtteaiser asymmetry

in the early Universe.

1.1.2 Inflation and Dark Energy
Resolving the Problems: Enter Inflation

A period of exponential expansion in the early Universe, M@olve the problems
associated with the Hot Big Bang model. Just such a model wgsoped indepen-
dently by Starobinsky [45, 46] and Guth [47], and later rediby Linde [48, 49] and
Albrecht and Steinhardt [50], to become the standdwmd roll inflationmodel.

Inflation is a period of super-luminal expansion, and canddmdd in terms of the scale
factor as occurring whea > 0. We recall that the Raychaudhuri equation, egn. (1.12)
is

a 4AnG

5= "3 ©»+3p),

and we can see that a period of inflation leads to the condition

1
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We recognise this as meaning that gteng energy conditiors violated. For a fluid
with general equation of state
p = wp, (1.17)

we get a period of inflation if

“l<w< —%. (1.18)

This leads to the scale factor behaving as

2
aoc 130 w#*-1

eHt w=-1. (1.19)

Hence, if-1 < w < -1, we have power law inflation, anddf = —1 (the Cosmological

Constant case), then we have exponential inflation.

We can use this idea to solve the flatness problem. We havadglseen that a flat

geometry requiresz Q; = 1. Using egns. (1.10), (1.12) and 1.12, along with the

|
equation of stat® = wp, we can write
Q = (1+3w)HQ(Q - 1). (1.20)

If > —-1/3, thenQ = 1 (the flat case) can be shown to be an unstable fixed point. If,
howeverw < —1/3, thenQ = 1 instead becomes an attractor, so at the end of inflation,

Q — 1, regardless of its value previously.

Inflation can also ‘flatten’ density perturbations. Eqn2().can also be considered on
a local scale. 12 > 1, then there is an overdensity, while < 1 corresponds to an
underdensity. ltw > —1/3 then perturbations grow, whiled < —1/3, perturbations
decay. In this way, inflation drives the Universe towards @@t distribution, and
the Universe fectively loses memory of the state it was in before inflatibinis goes

some way to solving the homogeneity and isotropy problems.

There is also a resolution of the horizon problem. The partiorizon can be written

as

du(t) = a(t) fo % (1.21)

or, changing variables, as

du(t) = at) fo #a(a) (1.22)
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We can see from eqn. (1.19) that
H o g 2@+ (1.23)

SO
dy oc a3@D), (1.24)

Below the critical value ofv = —1/3, we see that the horizon distance decreases with
increasing time. During a period of inflation, the co-movhigbble radius decreases,
and so the particle horizon tends to infinity. If inflation tones for long enough, the

entire observable Universe can emerge from a single cgusaihected region.

Inflation will also dilute the number of unwanted relics, kattthe predicted number

and energy densities are not in conflict with what is obsetuddly.

To obtain a period of exponential inflation, we require a fahenergy that violates
the strong energy condition, and gives rise to negativespres A scalar field can be

imbued with the properties necessary to fulfil these cooialgti

Scalar fields in Cosmology

Scalar fields have been used recently to describe the unkfaowris of matter and
energy we believe to be prevalentin the Universe. Invokswe unseen fields imbued
with the properties we require, in order to explain obseovest, could be considered to
be a statement of our ignorance concerning the nature otittetances that appears to
dominate our Universe, but there are also very good reaswrsifgesting that they

should play an integral role in our understanding of the ematbntent of the Universe.

The primary motivation comes from particle physics. In then@ard Model, the parti-
cle content is made up of quarks and leptons, spin-halfgastiand the gauge bosons
which mediate the interactions between them: the photaiméoelectromagnetic force,
the W* andZ° bosons for the weak nuclear force, and the gluon for the gtforce,
all of which are spin-one particles. The graviton medidbtesgravitational interaction,
and is a spin-two boson, but is not part of the Standard Mosléhe Standard Model
has not yet been successfully extended to include gramit@ltinteractions. The mass
of a particle also tells us something about the interacttoength associated with it.

The photon and the graviton are both massless, and henet @tathe speed of light
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and have a range of interaction that is infinite. The gluohéstetically massless, but
its range is limited by colour confinement. TWehas a mass of 80 eV, while tizehas
a mass of 91 eV, and their range is limited. The question i®, ¢ho particles acquire
this mass? The prevailing theory at the moment is the Higgshar@sm, which gives
the mass of the particles through a phenomena knowsyasnetry breaking This
idea is explained in much more detail later in this thesisis Theory completes the
Standard Model by positing a spin-zero particle known adHiggs boson. Spin-zero
particles can be associated with scalar fields. The pion, fietcexample, can be as-
sociated with a scalar field, and so can the other mesons arimb#ons. However, the
pion field is not a true scalar, but rather a pseudo-scaldrbasaks parity invariance.
It is also not a fundamental scalar particle, as it can bedsra@own into quarks. So

far, no fundamental scalar particles have been detectedyitigs would be the first.

Supersymmetry is an extension to the Standard Model th#ts@osymmetry between
bosons and fermions. It was originally introduced in ordesdlve the hierarchy prob-
lem. That is, why the gravitational force is so much weakentthe other forces. If
supersymmetry is correct, it would also provide a naturat efeacquiring fundamen-
tal scalar fields in particle physics, and hence cosmologgryEspin-half field would
be associated with a spin-zero or spin-one field, in whatlieada chiral, or gauge,
multiplet. This explanation also requires us to understang the symmetry between
fermions and bosons is broken. That is, why we have not segofahe superpart-
ners. We expect each superpartner to have an identical masspartner, but know
that this is not the case, as we would have already seen thésorde energy scale,
supersymmetry is broken. This could be viewed as merelyisgithe hierarchy prob-
lem. We may start to see signs of the superpartners, as wibleéadsiggs, at the LHC.
The lightest of these, and hence the most likely to be sedgheiseutralino. This is
formed from mass eigenstates of the superpartners of thgedansons, and has also

been suggested as a promising dark matter candidate [51].

In what might be considered more speculative theories, @ Kkiebwn as thelilatonis
present in string theories, and mediates the string cogibl@tiween strings or branes
in higher dimensions. The dilaton has also been consider#ukascalar field respon-

sible for inducing inflation [52, 53]. Kaluza-Klein [54] tbdes use a scalar field to
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attempt to unify the gravitational and electromagnetieinattions in a higher dimen-
sional space. Whether this higher dimensional space takas@al physical meaning,
or is just a mathematical tool awaiting a more ‘acceptalii&rpretation, is an open
guestion. In Tensor-Vector-Scalar theories [55], whichally seek to explain the dis-
crepancies in the matter-energy content of the Universeeaistibns from Newton’s
law or General Relativity, scalar fields are often used to ehtite gravitational inter-

action in a similar way to Kaluza-Klein theories.

Scalar fields also abound in condensed matter, and we wih@edg¢he phenomena of
symmetry breaking can be interpreted as introducing a photass term, explaining
the cutdf in the interaction length present in superconductors, iatwshknown as the
Meissner gect The scalar fields in this case are not fundamental, insega@senting

some macroscopic order parameter that has an interpretatierms of, for example,
the density of particles or charge carriers in a materiak qirestion of interpretation is
important, and there have been suggestions that the Hiddsdireother fundamental
scalar fields, may also turn out to be similarly phenomenold56, 57], possibly

awaiting a microscopic description in terms of quantum gyav

We can see very easily why scalar fields are a candidate fandra period of expo-
nential expansion. A scalar field has a kinetic and potetaral associated with it, and

SO we can write down a Lagrangian for a non-spatially vargcagar fieldg = ¢(t),
L =g"0,40,¢ - V(4), (1.25)
and vary it with respect to the metric to obtain the energyvraotum tensor
Ty = 0,000+ G [~5070,60,0 4 V(0) . (1.26

With the perfect fluid form of the energy-momentum tenson,. €.8), we find that

12

Po = 5 - V(4), (1.27)
42
Py = % +V(¢), (1.28)

with the Euler-Lagrange equations giving

av(s) _

¢+ 3Ho + ds

0. (1.29)
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If $2 < V(¢), andé < 1, then we find that the scalar field mimics a fluid with equation

of state

i.e. w =~ —1, just what we require for exponential inflation, with th@ktion given by

theslow roll equations,

- dv(¢)
3H¢ g (1.31)
H? = ?V(@, (1.32)

from eqgns. (1.13) and (1.29). This also provides a naturahaism with which to
end inflation. The slow roll conditions are violated when tieéd begins to fast roll
along its potential, eventually reaching the minimum ardllzging around it.Reheat-
ing occurs due to this oscillation, and the energy of the infldield is transferred to

radiation.

Density Perturbations from Inflation

Once Guth’sidea had time to develop, it was quickly realtbadlinflation may provide
a mechanism for producing the density perturbations requio kick-start structure
formation. This was realised essentially simultaneouglg bumber of people partic-
ipating in the Very Early Universe Conference in Cambridg&982 [58]. A number
of papers that provided an explanation of the density pestions were produced in

quick succession [59, 60, 61, 62].

The inflationary paradigm has attracted some criticismiasiot really able to explain
the origin of the inflaton field, which is added in a rather ad Feshion, but it has
endured precisely because it does so well in explaining liserwations taken by the
various precision instruments that have been recently desiomed. A number of
potential pitfalls have also arisen in the inflationary soém usually in relation to
the fine tuning of initial conditions [63, 64]. One of the mastious problems could
be considered to be that, in order for inflation to start, timverse must already be
homogeneous on superhorizon scales [65], leading agalretéirte tuning of initial

conditions present in the problem of homogeneity and ipytriVe will not dwell on
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such problems here, except to note that they exist. For @ssgn their resolution see,

for example, Lieu and Kibble [66].

A particular success of the inflationary paradigm comes fiteeprediction of density

fluctuations, leading to an explanation of the large scalectire that we see today.

The explanation of primordial density perturbations ishagis one of the most suc-
cessful attempts, along with Hawking radiation, to comb@eneral Relativity and

Quantum Field Theory.

Classically, we expect the inflaton fielgl,to be homogeneous and isotropic. Quantum
mechanically however, there will be a perturbation arodr@acuumgg. We can

decompose this fluctuation into a Fourier expansion of wavdesn

Sp(x, 1) = f 5o(k, t) exp(k - X)ak. (1.33)

(27)3

An auto-covariance function can be written as
(0(K1, 1), 6(Ka, 1)) = (27)°Psy(KI, )6 (k1 — k), (1.34)

defining for us gpower spectrunof fluctuations in the inflaton field. There are then
some complicated steps to relate the fluctuations in thetanfield to perturbations
in the matter density, which we will leave out as they are speeially illuminating
from the point of view of this introduction and the rest of thesis, but we can explain

qualitatively.

We have already seen how the matter-energy content of theeksei, which can in-
clude scalar fields, is coupled to the spacetime metric \nat€in’s equations. Hence,
any fluctuation in the inflaton field will also be manifest ascfiiations in the metric
describing the geometry of spacetime. We can think of thdifisrent regions of the
Universe experiencing slightly less, or slightly more, atihtn. Metric perturbations
will also be stretched to cosmological scales, and caug@bam@nd photons to cluster
together in the gravitational potential wells created. Whndlation ends, increasingly
large wavelengths will gradually become shorter than thesabhorizon length, set-
ting up acoustic oscillationsn the photon-baryon fluid. So, any perturbation in the
inflaton field 6¢(x, t), will lead to perturbations in the density fiedin(x,t). At the
end of inflation, the inflaton field may also decay into coniardl matter, producing

inherited perturbationgp;(x, t) in the densities of each particle species,
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Defining the density contrast

5pm(X, t)

Pm

Sm(X, 1) = (1.35)

wherepy, is the homogeneous mean density value, we can decomposertsigycer-

turbations into a Fourier series
1 2 3
Om(X, 1) = @ fdm(k,t) exp(k - x)d’k, (1.36)
and define a power spectrum from the correlation function,
(6m(K1, D)om(K2, 1)) = (21)*Pr(IK1, )6 (ky — k). (1.37)

It is then possible to relate the two power spectra by a tearighction, encapsulating

the physics we described above.
Pm(lkl, ) ~ 7 (KI, )Pss(IKI, 1). (1.38)

The density of a photon fluid is related to the temperature,by T4, and so the
density perturbations can be related to the temperaturieeoskly,

0 6T
six. 1) = Pn D oT (1.39)
Pm T

It is precisely these temperaturdfdrences that satellites such as COBE and WMAP
measure, and hence calculate the correlation functiorsagbustic oscillations man-
ifest themselves as Doppler peaks in the CMB power spectitmat these measure-
ments agree so well with the fluctuations predicted by thatiethary paradigm gives

significant credence to the model.

The power spectrum then, is the two-point correlation fiomodf the Fourier transform
of the density contrast. If the vacuum fluctuation for eachriey component of the
inflaton 6¢, (t) are uncorrelated and evolve independently of each othen, they can
be represented by a Gaussian distribution function, sotki®ateal-space one-point
probability distribution of matter fluctuations is given by

S

exp(——) , (1.40)

2
202

pm(5m) = (271'0'%)%

where the variancer?, = o2 (t), is defined byr?, = (§2), and is related to the power

spectrum via
2 l

Tn = 5

f ) Pm(k, )k?dk. (1.41)
0
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For a Gaussian distribution, the two-point correlationclion provides a complete

statistical coverage of the density perturbations.

Further information about particular models of inflatioto@und up in theon-Gauss-
ianity, and thespectral running Non-Gaussianity will reveal itself in the higher order
correlation functions such as the bispectrum [67, 68, 6P,I7& usually assumed that
the power spectrum defined by the two-point correlation fionowill take the form of

a power law

Pu(lk|, t) ~ k™™, (1.42)

whereng is known as thespectral indexor running Forng = 1 we have the scale
invariant Harrison-Zeldovichspectrum. Standard inflation models also assume that
the inflaton vacuum fluctuation has negligible interactiathvitself and other fields,
leading to a prediction of a Gaussian adiabatic densityugeation, and a spectral
index close to 1. This is in agreement with what is observegbeEments with higher
precision, such as the Planck satellite, will hopefully basstive enough to detect

deviations, and hence be able to place bounds on variousonfiay models.

Experiments, and a Surprising Result

After Penzias and Wilson’s CMB detection, a number of expents were designed
with the hope of measuring the CMB more accurately, and tlate@nisotropies,
which would help to constrain models of the early Univeraghsas inflation. A
Soviet satellite, RELIKT-1, was launched in 1983 and pr@tlapper limits on the
anisotropies in the CMB [71]. Th€osmic Background Explord COBE) experiment
was launched in 1989, and the Far Infrared Absolute Spduttometer (FIRAS) in-
strument on board measured with unprecedented accuratyaitiebody form of the
CMB, providing unambiguous evidence for a Big Bang scen@2973, 74]. The Dif-
ferential Microwave Radiometer (DMR) instrument found fbe first time evidence
of anisotropies in the CMB spectrum [75], although the reSoh of the satellite was
not enough to extract much meaningful information abouttheResults from the
RELIKT-1 satellite were also reexamined around this tinteg alaimed a detection
of a black-body curve and anisotropies [76]. George SmodtJamn Mather of the
COBE team were awarded the Nobel prize in 2006 for the disgove
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Three balloon-based experiments TQ®AT (or QMAP), the Millimetre Anisotropy
eXperiment IMaging Array (MAXIMA) and the Balloon Obseriais Of Millimetric
Extragalactic Radiation and Geophysics (BOOMERanG) ewpart were launched
around 1998. TOCO published the first accurate detectioheofdMB acoustic os-
cillation peaks in 1999 [77, 78], which were quickly confirdngy the MAXIMA [79]
and BOOMERanG experiments [80, 81]. In the year these exgatis were launched,
an unexpected detection would come to make their resultsreege relevant. Galaxy
rotation curves, mass-to-light ratios, CMB anisotropied bBght element abundances
all suggested that the majority of matter in the Universeas-haryonic. Inflation
suggested that spatial sections of the Universe should bhe/fla have seen that this
requiresy’; Q; = 1. In lieu of any other evidence for other matter sources,iarspite
of no direct physical evidence, most theorists were of thaiop that the Universe
should be flat, and consisted only of mattes m, so thatQ, = 1. Others took
the view that the evidence was pointing to the= —1 case, and some inflationists
modified their models to allow for an open Universe [82, 83gRrdless of the topol-
ogy, all the available evidence from observations and nreasents of galaxy cluster
dynamics, galaxy clustering, large-scale galaxy motionsgravitational lensing sug-
gested a baryonic to dark matter ratio of about 30:70, sae &tid Coles [84] for a
review. This suggested that the majority of matter in thevidrse should be dark.
That is, almost inert with respect to three of the physicatdés. Not responding to
the electromagnetic force, for example, would render itsitoke. Its only interaction
would be gravitational, so its influence would be seen onlgradtect on surrounding
baryonic matter. There were some early suggestions tkat'la energycomponent
might account for the- 70 % discrepancy between the measured mass density and the
critical energy density predicted by inflation [85, 86, 88],&ut generally it was ex-
pected that if the discrepancy was to be made up, it would lkerap by dark matter.
This picture describing the matter components of the Uswavould be overhauled
by an influx of observational evidence due to advances inrexeatal techniques.
High precision measurements of supernova brightness alstiifeby the Supernovae
Cosmology project [89, 90], and the High-z Supernova Sef@th indicated that the
Universe was not only expanding, but accelerating in thpaagion. Other evidence

later emerged to suggest that the onset of this expansiooniasairly recent [92, 93].
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This most recent period of accelerated expansion of theddsévcan be thought of
as another period of inflation, albeit a less dramatic one.aRoeriod of accelerated
expansion, we again need a contribution to the energy-maitaponent of the Uni-
verse that will give rise to negative pressure. From thelacaton equations we again
needa > O for accelerated expansion, which requires an equatiotatd fr the dark
energy fluid of

P = wp, (1.43)

with

1
“l<w< -3 (1.44)

Data provided by the Supernova search teams allows one ttiduphnosity distance
against redshift and compare the values against thedreticzes. This is shown in
Fig. 1.2, and from Fig. 1.3, we can see that a value ¢f —1 seems to be preferred.
The luminosity distance - redshift relation can also previtformation about possible
evolution ofw. Some scalar field models of dark energy considap gr@arameter that
is greater thar-1, or can evolve in time, sometimes tracking the radiatiomstdg to
provide a natural solution to the cosmological constanbl@m. These are known as

quintessence modelSee Copeland, Sami and Tsujikawa [94] for a review.

So, the cosmological constamt, has reappeared. Rather than keeping the Universe
static, by providing support against gravitational cofl@pas originally envisaged by

Einstein, it now produces the driving force behind the ameded expansion.

Two other survey experiments were conducted around this, twmich would deter-
mine more accurately the cosmological parameters. The 2d&x¢ Redshift Survey
(2dFGRS) produced an accurate measurement of the densimeter of matter, as
well as detecting the baryon acoustic oscillations, leguttiran estimate of the ratio of
dark matter to normal matter [95, 96]. The Sloan Digital Skyw@&y (SDSS) comple-
mented this by putting constraints on the parameters désgrine matter and energy

contents of the Universe [97, 98].

But perhaps the most significant experiment was a satebised one, the Wilkinson
Microwave Anisotropy Probe (WMAP). This was launched in 208nd released its
first dataset in 2003. Combined with the datasets providealllihre previous exper-

iments, it mapped out with unprecedented accuracy the peake baryon acoustic



Cosmology and Condensed Matter 24

~ I

Flat Models

log, o[ Hyd, (2) /c]

o A | | |

0 0.5 1 1.5 2

Z

Figure 1.2: Comparison ofA CDM models. From Choudhury and Padmanabhan [99]. Obser-
vational data points are obtained from the ‘Gold’ sample @sR et al.[100] from the High-z
Supernova Search.

oscillations, and so provided accurate measurements ofuhature of space, the

percentage of dark matter and the cosmological constant.

Figs. 1.4 and 1.5 show the temperature anisotropies andrpgpeetrum from the

WMAP five year data release.

It is worth briefly commenting on how this data allows a cadtign of the cosmologi-
cal parameters. To calculate the curvature, we look at #eeddithe hot and cold spots
caused by density fluctuations in the early Universe. We edcutate the actual size
that we would expect perturbations, and hence the temperfiictuations, to have. If

we compare this to the apparent size that we actually see,e@sume a combination
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Figure 1.3: Equation of state. From the Supernova Cosmology Proje¢t [89

of the distance to the last scattering surface, and the twuevaf the path that a photon
has taken to reach us. An independent measurement of thddHodstant tells us
the time at which the Universe became transparent to radisaind hence the distance
to the last scattering surface, so defining the curvaturguaty. The size of the spots
manifests itself in the location of the peaks. So a negatimgived geometry will push

the peaks to the right, while a positively curved one will fptisem to the left.

The ratio of dark to baryonic matter manifests itself in tlegght of the peaks. When
the acoustic oscillations are set up, the baryonic mattgrards to the gravitational
pull of the dark matter. Compressions in the primordial sbumaves, which corre-
spond to the odd peaks in the power spectrum, will be enhdngctds attraction. The
even peaks are produced by the ‘rarefraction’ phase of tbidai®n, so comparing
the relative heights of the even and odd peaks gives infeomabout the ratio of dark
to baryonic matter. The presence of baryonic matter alscedses the sound speed,

leading to a lower frequency oscillation. This increasesgbacing between peaks.

A cosmological constant would act to reduce gravitatiomaéptial wells produced by

large scale density perturbations, leading to enhance@pomwlarge angular scales.

The five year data release from WMAP gives some incredibligttigpunds on the
parameters describing the Universe. Some of those relévanir discussion so far

are listed in Table 1.1.

The latest satellite mission Planck, will map the tempempower spectrum with
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Figure 1.4: Temperature anisotropies from WMAP 5 year data [101].

Parameter Value
Age of Universe  13.69 0.13 Gyr
Qg 0.0441+ 0.0030
Qpm 0.214+ 0.027
Qa 0.742+ 0.030
Qe 1099934,
Equation of Statep —-1.06042

Table 1.1: WMAP 5 Year Parameters.

unprecedented accuracy and resolution, providing theesgtimits yet on the param-
eters described above. It will also measure parametersibiegcthe non-Gaussianity
and spectral running, as well as hopefully producing an ungnous detection of the

CMB polarisation

We now have a Universe that is well described by the FLRW metrith a cosmolog-
ical constant. This is known as teCDM model and is currently our best model for
the Universe we see around us. We will not be so concerneddaithenergy in this
thesis, but we will describe models of dark matter, and so vlelscuss progress in
that area in a bit more detail. Before we do, we will mentiomeaf the techniques

used in investigating structure formation.
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Figure 1.5: Power spectrum from WMAP 5 year data [102].

1.1.3 The Traditional Approach to Structure Formation

We have seen how perturbations in the inflaton field can seedéahsity perturbations

that lead to large scale structure formation.

In this section we give a brief overview of the the techniquesd in structure forma-
tion scenarios. We will not detail the mathematical steps,rather state how to get
to what we will consider the ‘end result’: the coupled coutty, integrated Euler, and
Poisson equations. We will also discuss some of the linoiatiof these approaches,
discussing their possible resolution in terms of a wavehaaical approach using the

Schrodinger-Poisson system in Sections 2.2 and 3.3.

Large-scale structure formation in the early Universe ixgsiir predominantly by grav-
ity. Hydrodynamical and radiativetects can beféectively ignored when considering
the density perturbations induced by inflation. Inflatignarodels also motivate a
dark matter candidate. For baryonic matter, radiationguesprevents the growth of
density perturbations until recombination is completel amall scale density pertur-
bations are largely suppressed ®§k damping Hence, baryonic models struggle to
produce sfliciently large density perturbations to generate galaxaesctusters. Non-
baryonic matter would not couple electromagnetically, ackdnatter density pertur-

bations can start growing long before recombination ends.

At late times in structure formation scenarios, the equatiof fluid dynamics, cou-
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pled to the Poisson equation areistient to give an accurate description. The two

predominant fluid dynamic approaches areEuerianandLagrangianapproaches.

In the Eulerian approach, macroscopic fluid quantities sisothensity and velocity are
considered. The evolution of a large number of particlesastroonveniently described
in terms of aphase-space distribution functioiff the flow of particles is laminar, as
opposed to turbulent, then this distribution function isstant along particle trajec-
tories in phase spacéjouville’s theorem These conditions lead to an equation for
a collisionless fluid; the/lasov equationor collisionless Boltzmann equatiornThe
Euler andcontinuityequations can be obtained directly from the Vlasov equabgn
takingvelocity momentsf the distribution function [103]. By specifying an equati

of state for the substance being studied, and coupling tiesequations to the Pois-
son equation, we obtain a set of equations that gives anlertelpproximation for

studying large-scale structure formation in the early @rse.

To make the derivation of these equations simpler, oftenmaniar approach is used,
where fluid stream lines do not cross. This is equivalent éoajbproximation of van-
ishing velocity dispersion. To simplify things further, #®se coupled equations are
often dfficult to solve in the general case, the linear regime is oftadisd. This
regime is valid if the density fluctuations are smaller thia@ mmean density, on the
large scales associated with structure formation. Ther atvedition required is that

the amplitude of each Fourier mode

6m = f Sm(X, t) expik - x)dx, (1.45)

should be small, i.eJ5,] << 1. When these conditions are valid, the evolution of
growing and decaying modes can be readily tracked. It camdersthat in the linear
regime, each Fourier mode will evolve independently. He@aussian perturbations

will remain Gaussian in the linear regime.

In hierarchical clustering scenarios, one of the probleritis the linear regime is that
significant amounts of power can survive the radiation end, ffuctuations start to
become nonlinear on small scales, or lakg&vith larger and larger scales becoming

nonlinear as time goes on.

We remember from eqn. (1.40) that for a Gaussian random fieédreal-space one-
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point probability distribution of matter density fluctuatis is given by

2
pm(ém) = (27_[0_[2“)% exp(_m)

Once the variance on a given scale approaches unity, thelpitidp distribution of
matter density fluctuations above starts to assign signifipeobability to the exis-
tence of spatial regions withy,, < —1, i.e. negative matter densities. This is clearly
unrealistic. In reality, non-linear evolution causes kF@umodes to couple to each
other, resulting in the distribution evolving away from Gaianity, and becoming well

approximated by a log-normal distribution [104, 105].

In the Lagrangian approachhe trajectories of individual fluid elements are followed,
where the trajectory of a fluid element is writtenxas- x(q, t), with the Lagrangian
coordinateg. This approach is used ubiquitously in numerical simufeisuch as the
Millennium Run or other simulations usingmoothed Particle Hydrodynami(SPH).

A set of relations exists to move between the Lagrangian amerian prescriptions.

Again, we will not explicitly go through the equations, epteo say that they are
again only valid in the laminar, or single stream, regimej eaan be very dficult to

solve analytically. A linearised approach can again bertatesulting in theZeldovich
approximation[106, 107]. The Zeldovich approximation is capable of hargiten-

sity perturbationg,, ~ 1, and hence can be used evolve the system beyond the linear
regime. N-body simulations can follow the nonlinear regimethe Vlasov equation,

directly.

As the gravitational attraction moves fluid elements close&thematical singularities
develop where the mapping froqto x is not unique. This corresponds tafdrent

fluid elements with dterent Lagrangian coordinates arriving at the same Eul@aan
sition. This is known asulti-streaming or shell crossingresulting in the formation

of density singularities known asustics

If we continue to apply the Zeldovich approximation afterlimstreaming has oc-
curred, fluid elements simply carry on on their initial tict@ries, dissolving any struc-
ture that might have formed. In reality, we would expect @ngé gravitational inter-
actions in these multi-streaming regions to act to bindcstme together. Thadhesion

mode] where fluid elements ‘stick’ to each other when shell croggiccurs, goes
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some way to resolving these problems with the Zeldovich @gpration, but fails as

it does not follow the nonlinear motion of fluid elements withigh density regions.

We have given a brief, but fairly extensive qualitative aaluction to methods of mod-
elling structure formation. We have done this partly beeats a fundamental part of
any introduction to Cosmology, and partly because it forbaekground for a novel
approach to structure formation that utilises the Schngeli-Poisson system. We will
elaborate further on this approach in Sections 2.2 and :i& Wave-mechanical ap-
proachcan be seen to circumnavigate many of the problems with #ubtiwnal ap-

proaches that we have mentioned above.

1.1.4 Dark Matter

So, we have seen how the energy-matter component of the idaiappears to be
made up of~ 5% baryonic matter;- 21 % dark matter, and 74 % dark energy. We
now concentrate on dark matter’s role in the evolution ofllnéverse, some possible

candidates, and some of the problems that arise in tryingpbeiment various models.

We have already mentioned that Zwicky was the first to notheg something may
be amiss in measurements of a galaxy’s mass. Later evideme o the 1970s,
largely from observations of galaxy rotation curves [1089,1110, 111, 112]. These
measurements showed that the orbital velocities of gadaipeared to be reaching a
plateau, rather than decaying away as one moved furtheramutthe galaxy’s centre.
This implies a form for the distribution of matter in a galatat the visible part was
clearly not following. Evidence from these rotation curgegygested that the visible

part of the galaxy was set in a halo of unseen matter.

Evidence from the observation of H1 rotation curves [113] ather galactic dynam-
ics, such as the kinematics of satellite galaxies (see eitskpet al. [114]) for exam-
ple, led to the formation of th€old Dark Matter(CDM) model [115, 116, 117, 118].
This model described a Universe in which the constituentevearyonic and dark

matter only.

The rotation curves of galaxies and their associated depsiffiles are possibly the

most powerful tools for probing dark matter distribution&nalysing a large num-
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ber of galaxies, Persic et al.[120] developed a model of av&real rotation curve’,
whose form, they claimed, could be fit to any type of galaxy.dels such as these
have been complemented by recent breakthroughs in theaiobf dark matter and
the evolution of structure formation, due partly to the ease in available computer
power. As we have seen in Table 1.1, the ratio of baryonicenadtdark matter is ap-
proximately 1:5. When simulating structure formation sitisually assumed that the
evolution is driven by the gravitational interaction of &k matter. This assumption
simplifies the problem somewhat, as one does not have to déative complicated
gas physics, which is very fliicult to implement. Since the emergence of &€DM,

or concordance modelf Cosmology, simulations have again made tremendousstrid
in modelling structure formation in the Universe. The Milleum simulation by the
VIRGO consortium was one such simulation that made coraideachievements by,
for example, explaining some of the observations of bladk kandidates in quasars
made by the Sloan Digital Sky Survey (SDSS). Other prograsdeen made in ex-

plaining the structure of dark matter halos [134].

There are however a number of problems that arise in nunesiicaulations of the
concordance model that do not appear to fit observations. tWwbenain problems
are the appearance obispy halo coresand theoverabundance of substructurdo

understand these problems, we need to understand a littebbut the simulations

themselves.

One of the most important simulations was done by NavarrenlkEand White [121].
This established an analytic form for the dark matter dstion in virialised struc-
tures. TheNFW profileprovides the best fit to simulated data, and hasaersal
form, meaning that it can be scaled to fit the characteristiesmajority of galaxies

and galaxy clusters. The NFW profile can be written

_ Ps
S (r/r@+r/r)?

wherers andps are some characteristic scale and density. This profileexpia stable,

0 (1.46)

bound systems, where the virial theorem holds. A distana& seithin which this
is the case is known as tharial radius, ry;. This is often dfficult to determine, in
observations as well as simulations, and so it is often aqymated as the radius within

which the average density of the dark matter is greater, Ipeaified factor, than the
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critical density,oqit, given by egn. (1.13). A factor of 200 has generally beconee th
standard in simulations, if only to enable comparisons betwstudies. This radius is
written asr,q, and also allows for the detection of subhalos within hatse papers
by the recent Aquarius project [122] for example. Two furtharameters are often
defined; thecharacteristic densitys. = ps/pqit, @nd theconcentration parameter

C = Iyt /Ts, Wherer; is the virial radius. The NFW profile then, can be rewritten as

OcPcrit
(r/r(L+r/re?

It can be shown [121], that with the defined factor of 200, tharacteristic density

p(r) = (1.47)

can be related to the concentration parameter by

200 3
%= 3 A+ —c/a1+0) (1.48)

In this case, for a given halo mass, eqn. (1.47) has one freengder, which can be
expressed either as the characteristic density, or theeotration parameter. With
these free parameters, the NFW profile is currently the mibdelprovides the best fit
to any simulated data for a dark matter halo. The validithebe results are still widely
debated within the community [123, 124, 125, 126, 127, 128],Jand eqn. (1.47) also
appears to be in disagreement with observations, thouglagfain has generated a lot
of discussion [130, 131, 132].

An in depth study of the density profile of the Milky Way was éooy Battaglia et
al. [133], and suggests that the dark matter halo is comsigtith an NFW profile of
mass B*)Z x 10'“M,, and a concentration parametercof 18. Observationally, it
can be dificult to obtain a value for the virial radius, but, as desdilvethe Battaglia
paper, the NFW profile can be described by the concentratcampeterc, and by the
virial mass,or the circular velocity at the virial radius. For this reastirey take the
mass within 120 kpc, as this is the furthest distance at wiiete was a reliable tracer.
This can be considered affective virial radius, and is approximately the extent of the

dark matter halo. The radius of the stellar disk is of ordek@€

One of the problems is that the NFW profile becomes singulamnstll radii. The
N-body and hydrodynamic simulations of dark matter halogmfwhich the NFW
profile is derived, tend to show large spikes in the dark matémsity profile when

approaching the centre of the halo [135, 136]. This problgrcally starts to manifest
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itself within a radius~ r,;;/100. These singular cores are not seen in observations
[137, 138, 139], in either clusters of galaxies observeddayitational lensing [140],
ordinary spiral galaxies [141, 142], or some low brightnegstems [130]. Dwarf
galaxies, for example, have nearly uniform density coregointrast to the expected
cuspy density profile [143, 144]. Within simulations thisyree a problem with the
resolution within the core regions, or it is possible thatttetical predictions of cuspy
profiles may not be as accurate as is often suggested [1451486 TheEinasto
profile may better represent the dark matter halo of a simulatecyg§l4 7], but this

is in some doubt because of the limited resolution of N-bahuations. The Einasto
profile is given by

po(r) o« exp Ar?), (1.49)

whereA anda are constants. It can be seen that the Einasto profile dodsenote

singular in the core region.

The amount of observed galactic substructure, associdatedyalaxy and cluster for-
mation, is not as abundant as predicted by either theorynaulation. In the process
of a hierarchical structure formation scenario, wheredampjects are formed by the
merger of smaller objects over time, the merging processtd00% dficient in de-
stroying the accreted satellites, resulting in the stmgstsuch as the Large and Small
Magellanic Clouds that orbit our own galaxy. These strigguare of order M.,
From observations of the Milky Way and Andromeda, the curcesmological mod-
els predict that galaxies such as these should k&@ dark matter satellites of mass
> 3 x 10° M,, within a 570 kpc radius, while present detections numbey ahbut a
dozen or so. The simulated data is worse, predicti3@0 satellites in a 1.5 Mpc ra-
dius, while we see only 40 [148, 149]. This is the problem of the overabundance of
substructure. Interestingly, just as the models of theitlepsofiles of dark matter are
scale free, the amount of substructures associated to &sledfm scale free. In numer-
ical simulations, the properties of a galaxy and its assedisatellites are the same as a
galaxy cluster, ands associated satellites [149]. Observationally, agais,iginot the
case, and there are far fewer satellites observered thamuiagions. This may be a
problem of detection and observation. Indeed, new sasléte still being discovered
[148], and it is possible that some of the satellites will benpletely dark. It should be

possible to detect small galaxy halos from the lensifigots that they would have on
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their host galaxy. Evidence of sucfiects is currently inconclusive [150]. These small
galaxy halos should also make disc galaxies thicker thaergbd [151, 152, 153].
Again, it is possible that this problem may be resolved witfhkr resolution of the
simulations. Observations too may be prone to selectifats. There are also some
more speculative suggestions that the deficit of substreichay be explained if dark

matter particles are allowed to decay into other particlesgl].

Simulations are also still fairly limited when it comes tasdgbing the interactions of
baryonic matter. Some hydrodynamic simulations produdaxgadiscs that are too
small and have too little angular momentum compared to whens [136], while
many high surface brightness galaxies exhibit rotating,bahich are normally only
stable if the core density is lower than predicted [155]. distribution of dark matter

in the Universe is also a puzzle, and a problem for simulati@ome ellipticals appear
to be completely void of dark matter [156]. This may be theiltesf mergers or other
interactions, as evidenced by the so caBedlet cluste{157] andTrain Wreck[158],

but it would still be very dificult to explain the loss of all dark matter from an old, and
hence dynamically settled, elliptical galaxy. One exptammasuggests that the dark
matter may be there, but its dynamics may be confusing therehisonal signatures
[159]. There also appears to be evidence of galaxies lackigyisible matter compo-
nent [160]. Dubbedlark galaxiesit is difficult to be sure of their existence or number
density, for obvious reasons. There also appears of be aalibwvaf visible matter to
dark matter inLow Surface Brightnesd . SB) galaxies. Examples such as these are
difficult to simulate without correctly addressing the inta@ctof baryonic matter.
Weinberg and Katz [161] stressed that the inclusion of thgdrmacomponent in N-
body simulations may be crucial, as theeets of baryons may smooth the central dark
matter cusps. Sellwood however, developed simulationsajppeared to contradict
this [162].

There have also been suggestions that dark matter may rfoe Belution to the appar-
ent mismatch between the dynamics predicted by Newtoniarmamecs, and the lack
of visible matter. Some theorists advocate versionglodlified Newtonian Dynamics
(MOND) [163], where the laws of gravitation are modified ommsoscale larger than

we have experimental access to. Relativistic versions edettheories such d&n-
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sor Vector Scalatheory (TeVeS) [55, 164] anficalar Tensor Vector Gravi{sTVG)
[165] have also been developed. These theories are ofterialb a good job of de-
scribing galactic dynamics without invoking dark mattee $MOND'’s explanation of
dark matter ellipticals [166] for example, but they oftemake instead an unexplained
scalar field, or include adjustable free parameters. Song@trargue that this is no
worse than the scalar fields invoked by inflation. When thédBaluster and the Train
Wreck were discovered, it seemed that they might Kiltbese types of theories [57],
as the centre of mass of the visible matter and that of the miatker, as observed by
gravitational lensing, did not coincide. The object VIRGIRQH which appears to be
a dark galaxy, also does not appear to follow the dynamiadigiexi by MOND [168].
The recent discovery of a dark matter ring in the galaxy elu€.0024+17 adds fur-
ther evidence to the dark matter proposition [169]. It maybssible to test theories
of modified gravity when gravitational wave detectors sushl&O and GEO600 are
able to conclusively detect gravitational waves. In the®of modified gravity, pho-
tons and neutrinos produced in a cataclysmic event, suchsapernova, should lag
behind the arrival of gravitational waves by an appreciaoh®unt [170]. This would

produce an unambiguous result in favour of MOND-type theori

A number of dark matter candidates have been proposed, gatieental searches
now seem to be on the brink of coming to fruition. Some of thdyesuggestions
included monopoles and massive neutrinos [171]. Theseuwarertly unlikely can-
didates as they would require a neutrino mass that is unmaagolarge, or a large
number of monopoles, of which we have not seen even one. kfrdatter was com-
prised of neutrinos with the mass that we currently expe@tl eV, then it would be
relativistic. Hot Dark Matter(HDM) is generally ruled out as a dark matter candidate,

as the relativistic speeds mean that structure formatiorhibited.

The axion was first hypothesised as a solution to the strongr@lem in QCD, and

we will discuss further the relation to field theory in Senté3. When the dark mat-
ter content of the Universe became apparent, the possitds raage and interaction
strength of the axion made it a good candidate for a dark madi#icle. See, for exam-
ple, Turner [172]. After some promising initial experimalresults, the non-detection

of dark matter axions by the Polarizzazione del Vuoto con &A&kperiment (PVLAS)
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[173] and the Axion Dark Matter Experiment (ADMX) [174] seamrule the axion

out as a candidate.

Massive Compact Halo ObjecfsIACHOSs) have also been proposed as a solution to
the dark matter problem that removes the need to resort tpex@tic forms of matter.
MACHOs would be composed of normal baryonic matter, but wawdt emit light of
their own, and so be quite hard to detect other than with ga@nal lensing and other
gravitational &ects, such as rotation curves. Examples of MACHQO's couldéegts,

or low luminosity stars such as brown dwarves, or even blatksh Searches to this
effect, by the MACHO [175] and EROS2 [176] collaboration for exde, have not
detected significant amounts of mass to be tied up in sucbrestrical bodies, with
an upper limit of~ 20 % of the dark matter fraction. The most promising candislat
are currently considered to hgeakly Interacting Massive Particlég/IMPs). As the
name suggests, they interact only with the weak nucleaefa@md gravitationally. In
Section 1.1.2 we suggested how one such particlen¢graling may emerge natu-
rally from supersymmetric theorigSUSY) and may be the only stable particle left

over from the decay of heavier SUSY particles.

Like ‘dark energy’ and ‘dark matter’, the name WIMP refledis properties we cur-
rently believe that the particle should have, rather thanexperimental verification
of such a particle. However, there have recently been a nuaflexperimental results

that may be shedding light on dark matter's parameters.

One experimental method is direct detection. These exgatiswork by detecting the
recoil of nuclei after a collision with a dark matter particiAs dark matter particles are
expected to be weakly interacting, these experimentsre@uiarge collection area, a
target particle with a large interaction cross-sectiorpreferably both. Examples of
these experiments are the Cryogenic Dark Matter Search (&Mtector and the Di-

rectional Recolil Identification From Tracks (DRIFT) expeent. The direct detection
experiments DAMANal and the later DAMALibra aimed to detect dark matter by
exploiting the Earth’s rotation around the sun. If the gglesxembedded in a dark
matter halo, then Earth’s orbit should produce a bi-annuadiutfation in the flux of

dark matter flowing through the planet, reminiscent of theiison-Morley ‘aether’

experiments. Both of these experiments claimed a signatten, although these re-
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sults remain somewhat tentative as a number of other expatgmeported a null result
[177].

Other experimental searches concentrate on the deted¢tmsmic rays. WIMPs may
annihilate with each other to produce high energy cosmis @yelectron-positron
pairs, which may themselves annihilate to produce cosnyis. réf WIMPs interact

gravitationally, then we might expect more cosmic rays tmedrom the centres of
large mass objects, such as galaxies, where the densit@$ieace interaction rates,

will be higher.

One unexpected result to come from the WMAP data was thett@texf an excess of
microwave radiation coming from the Milky Way core [178]. & €ompton Gamma
Ray Observatory (CGRO) and INTErnational Gamma-Ray Astysjzs Laboratory
(INTEGRAL) experiments have also found a flux of photons at kdV [179], the

energy one would expect if positrons and electrons werehdating, coming from the

same region.

It has been suggested that high energy dark matter particdgsresult from the an-
nihilation of neutralinos, a SUSY candidate for dark matvath the “‘WMAP haze’
resulting from annihilation in the inner galaxy [180]. Nealinos could possibly cre-
ate new light bosons [181], or dark matter particles in extitates [182], with the
WMAP signal again produced when these annihilate or dec@y, [184].

Gamma ray detectors, such as the Energetic Gamma Ray Exgmtielescope (EGR-
ET) on board the Compton Gamma Ray Observatory (CGRO), lesreraore gamma
rays than expected in the energy range 1-10 GeV, while tha Bigergy Antimatter
Telescope (HEAT) and the Alpha Magnetic Spectrometer (ADAymounted on the
International Space Station, both detected excess posiinathe range 10- 100 GeV,
a result that was later confirmed by the satellite experinkayload for Antimatter

Exploration and Light-nuclei Astrophysics (PAMELA).

An important limiting factor for the energies of cosmic ragghe Greisen-Zatsepin-
Kuzmin (GZK) cutdt [185, 186]. High energy cosmic rays from distant sourcesisho
interact with the photons of the CMB, and so lose energy oweg ldistances. This
puts a limit on the energies of cosmic rays that are detext@ablEarth. A number of

experiments, for example the High Resolution Fly’s Eye dosay detection (HiRes),
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and Akeno Giant Air Shower Array (AGASA) have detected casrays that are above
the GZK limit. It is suggested that a dark matter candidatdccannihilate or decay

to produce these energetic cosmic rays [187].

These detections are in their early stages, and it is hoedhé Pierre Auger Cosmic
Ray Observatory and the Fermi Gamma-ray Space Telescapeefly GLAST) will

provide more detail on these observations.

1.2 Cosmology Meets Condensed Matter

Cosmology is in the somewhat unenviable position of beinglaservational disci-
pline. We are forced to make observations of the only Un&&rs have, in its current

state, and infer what we can.

Condensed matter physics is generally concerned with iexpéathe macroscopic
properties of materials, by understanding the behaviouh®imaterial at the micro-
scopic level. It seeks to describe phenomena such as plaas#ions, condensates,
superconductors and semiconductors. Of course, Einstaself made several impor-
tant and fundamental contributions to the field of condemsatler. Extending Bose’s
idea [188] of indistinguishable photons to matter pari¢lE89] gave rise to the predic-
tion of Bose-Einstein condensation, while the predictibstonulated emission from

atomic transitions [190] is generally regarded as the adviElaser physics.

In order to facilitate experimental tests of theoretic&dctions, physicists have often
appealed to analogue models in an attempt to better unddrgta physics of cos-
mological phenomena. An example of such a proposal is thedliqrop models of
gravity. While investigating thefect of self-gravitation on large bodies, Plateau [191]
developed a model where the surface tension of a liquid drolpthe role of the grav-
itational force. A later example is a proposal by Bohr and @le[192] that uses the
surface tension of a charged liquid drop to describe theeaudbrces in a model of

nuclear fission.

Analogue models have developed significantly in recentsyaarterms of both the

experimental techniques that are available to test thethttalevel of mathematical
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rigour between the two sides of the analogy.

The first Bose-Einstein gas was produced experimentally aatively recently by
Cornell, Wieman, and Ketterle in 1995, giving an idea of téeel of technological
advancement required for such experimental techniquelseaming the Nobel prize
in 2001. Analogue models have (therefore) concentrateduparsonductors and su-
perfluids, which were discovered much earlier, in 1911 ar@BIr@spectively [193].
Experimental analogue models have been proposed to tdgtlsaverse processes
such as topological defect production and interaction, taedoroduction of primor-
dial magnetic fields. Analogies between the mathematioattre of the two systems

have also been proposed.

First we give a brief historical overview of the developmehtondensed matter the-

ory, particularly in relation to an idea that it inspired iigh energy particle physics.

1.2.1 The ‘Higgs-Anderson’ mechanism

In 1937, Landau had the first major success in trying to foateuh general theory
for second-order phase transitions (see, for example,diaadd Lifshitz [194]). He
recognised that phase transitions could be charactensad brder parameter, such as
the density of a fluid or the magnetisation of a ferromagmethé& case of a superfluid,
the macroscopic density of particles can be representdueasguare of a wavefunc-

tion, and Landau identified this wavefunction as the relevater parameter.

In 1950, developing Landau’s earlier work, Landau and Gingtp195] formulated a
macroscopic theory of superconductivity; the phase ttimsirom normal conductiv-
ity to superconductivity also being second-order. Thisthielescribed how properties
associated with the superconductor, such as density ordiedi current, behave.
Once again, the relevant order parameter was identifiedeaavitraged macroscopic
wavefunction of the superconducting electrons, with thesdg of superconducting
carriers being given by its square. The wavefunction in tlaise is a complex field,

interacting with the electromagnetic force.

The BCS theory of superconductivity, developed by Bard€&mgper and Schriger
in 1957 [196, 197], gave a microscopic description of thenpimeena of superconduc-
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tivity, and for the development of this theory the trio weraaded the Nobel prize
in 1972. The gap between the microscopic and macroscopimesgwas filled by
Gorkov in 1959 [198], who showed that the Landau-Ginzbueptit could be derived
from the BCS theory.

Landau’s contribution to condensed matter was recognigdaddNobel prize commit-
tee in 1962, while Ginzburg had to wait until 2003 to shareptiee with Abrikosov
and Leggett for ‘pioneering contributions to the theory @berconductors and super-
fluids’.

The Landau-Ginzburg theory contains a nice example of symynbeeaking and, in
applying it to superconductors, can explain the exclusfanagnetic field, théVeiss-
ner gfect by giving the photon anfiective mass. This idea was considered by a
number of people around the same time. Notable amongst, these our point of
view, is the condensed matter physicist P. W. Anderson, vilaoes the 1977 Nobel
prize with Mott and Van Vleck for their ‘fundamental theaoat investigations of the
electronic structure of magnetic and disordered systemAsderson discovered the
mechanism for mass generation via symmetry breaking inexwsetl matter systems
[199], as noted above, and suggested that it may have cogicalanplications. The
other major players in suggesting this idea for the germraif mass are Englert and
Brout [200], Guralnik, Hagen and Kibble [201] and, of coyndeggs [202, 203].

The relationships between cosmology and condensed maiter lbeen elucidated
much further in recent years, and because of technical oleveints in both sub-
jects, there have been a number of attempts to model earlyetsa processes in the
laboratory. To emphasise and encourage cross-disciplnegearch in this area, the
European Science Foundation set up a five year Research ietg/drogramme,
COSLAB [204] (Cosmology in the Laboratory), chaired by Pi@figory Volovik and
Prof. Tom Kibble.
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1.2.2 Kibble-Zurek mechanism - Condensed Matter again infans

Cosmology

We have seen one example of Kibble’s work in the cosmol@gyndensed matter inter-
face. We look at another example that is more immediatelgable in experimental

setups.

The Kibble mechanism [205] describes the production of lmgioal defects in the
early Universe. As the Universe cooled, it may have goneutnoa second-order
phase transition at some critical temperature, breakingmtry groups as described
previously, and producing particles. The breaking of éersgmmetries can produce
topological defectswhere the order parameter changes discontinuously asooss

boundary separating two regions of degenerate vacua.

As a system moves through a second-order phase transitetgrhperature drops until

it reaches a critical temperatufg;. It is at this temperature that degenerate minima
of the potential first appear. The field can however move betvike diterent vacua

if the thermal fluctuations are greater than the height optitential barrier. This is no
longer possible once the temperature drops belovGineburg temperatureat which

point any topological defects are ‘frozen in’.

Kibble was the first to estimate the density of topologicdkdts formed by sponta-
neous symmetry breaking after a cosmological phase transiHis argument was
based upon considerations of causality at the Ginzburgeesiyre. Correlations can-
not establish themselves over distances greater than tisaldaorizon, so the causal

correlation length should satisfy the causality constrain
é_“ < dH’ (150)

wheredy is the distance to the causal horizon. The correlation kecgh also be

13 and

related to the Ginzburg temperature. One defect would tpkenegion~ 1/&4
Kibble identified the length scalg;, with the correlation lengtly. This is obviously
a sensible suggestion to make, and gives rise to a densitpeofiefect per Hubble

volume at the time of formation.

A potential problem with this argument arises when one awmrsi the Universe in

terms of a thermal system. The equilibrium correlation thrdg,, that is, the correla-
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tion length of the system if the system could reach thermallidgium, changes very
rapidly in the vicinity of a second-order phase transitidhe diference between the
causal and equilibrium correlation length is essentidily time it takes a system to
react. Two regions may be in causal contact, but will not irdiaikely be in thermal

equilibrium. At what time, or temperature, should we eqyéateith £?

Zurek [206, 207, 208] considered the defect density withanframework of second-
order phase transitions, and the equilibrium correlatemgth. As the system passes
through the second-order phase transitivims able to keep up with the equilibrium
correlation lengtlyeq, until déeo/dtbecomes larger than the speed at which correlations
can propagate in the system, and the system falls out ofiequih. On the other side

of the transition¢ eventually becomes equal to the decreagiggand it is at this time

we should identify¢y with &, so thaté = & = &. This time is often now called the
Zurek time, £, and gives a prediction of the defect densityt/£2, wherek is a constant

of order 1 [209].

This concept is interesting because analogous scenaras ot condensed matter
physics. When various substances, suchHss “He or nematic liquid crystals, are
subject to a temperature quench, taking them rapidly thr@ughase transition, then
topological defects such as vortices can appear withindhstance. Initial numerical
simulations [210] seemed to agree with the Zurek scenaltibpigh the constark

mentioned above, seemed to be less than order one.

The first experiments were done in nematic liquid crystalkl[2212]. The Zurek
scenario is not strictly applicable, as the nematic phasesition is first-order. The

defect density did however, appear to agree approximatgytie estimates.

A number of other experiments were then performedHe [213, 214] and irfHe

[215, 216, 217] to investigate the Kibble-Zurek scenarinteipreting the results is
somewhat inconclusive, but this is due to the complexityhef ¢xperimental detalil,
rather than incorrect physical concepts. However, therltboy tests confirmed the
formation of defects at the end of a symmetry-breaking tteoms and did not agree

with the defect density predicted by Kibble.

A number of other experiments have been performed in ordexpit the analogies

present in cosmological and condensed matter scenarios.
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Recentbraneworldscenarios inspired by string theory have suggested a mischan
for inflation caused by the interaction and annihilation gfher dimensional branes.
These models often predict that topological defects, ssdoamic strings, will be left
behind as relics of this collision, as well as the associgtaticle production [218].
Superfluid Helium-3 has two phases, A and B, and can be amangrich a way that
the sample contains vertical regions of A phase, then B, thenith the boundary
between each phase being a topological defect. These seduleanes then move
together and annihilate, producing line-like topologidefects, and a variety of exci-
tations that one can associate with particles [219]. Ttps yf experiment goes some

way to giving credence to brane inspired models of the Useer

It has also been suggested that the interaction of exditatiothe two phases dHe

could be analogous to baryogenesis during the electrowaagition [220, 221].

Primordial magnetic fields in the Universe may also be geadricom cosmological
phase transitions, with concepts that could also poténtial tested in the laboratory
[222].

A Mathematical Analogy

Volovik, the other chair of the COSLAB programme, has work&dmany ideas that
relate condensed matter to cosmology [224], and proposeatlkematical analogy
based upon the group structure of the standard model, thelrobthe fundamental
interactions in the Universe, and thefdrent phases ofHe. Helium-3 is proposed
as analogous to the quantum background, out of which phogpagitons and gluons
emerge as collective excitations. The idea is largelyeeléd the concept of symmetry
and symmetry breaking, and comparing the symmetry group£an use to represent

the interactions.

A physical system generally has a number of symmetries edsdawith it; classical
symmetries such as translational and rotational invagéaand less tangible quantum

symmetries such as the isospin symmetry associated witthérge of a particle.

According to Noether’s theorem [223], transformations tleave the structure of a

system unchanged correspond to conservation laws. A tanslation, for example,
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leads to the conservation of energy. These transformaaomknown as the sym-
metries of a system, and these symmetries form a group. Tirge fundamental
interactions in particle physics can be shown to be assatiaith a particular type of

symmetry, known as cal, or gaugesymmetry.

For example, the free Lagrangian of quantum electrodynsntie highly successful
field theory of the electromagnetic force, is invariant unaglobal (U(1)) transfor-
mation That is, the wavefunction of the electromagnetic field carclbanged by any
factor that is independent of the position in spacetime,thed_agrangian, and hence
the physics, will remain the same. If, however, we try to méie factor depend on
spacetime coordinates|acal transformationthe Lagrangian is not invariant. In order
to induce gauge invariance, we must introduce a gauge fledelectromagnetic po-
tential, invariant under its own transformation. By doihgstwe find that we introduce
a term in the Lagrangian that gives rise to the photon-eadtrteraction. In a similar

way, the weak interaction can be associated with the groyg)SuU

The theory of the electroweak interaction, which we haveatly mentioned, can be
represented by the group SURWV(1). As the early Universe cooled, it passed through
the electroweak phase transition, at about 200 GeV. Théreleeak symmetry U(1)

x SU(2) was violated, and broke down to the independent electgnetic U(1) and
weak SU(2) forces, in the process giving a mass towheandZ° gauge bosons via

the Higgs mechanism.

In a similar way, the theory of the strong force, nanggntum chromodynamicis
encapsulated in the SU(3) group. The group corresponditigettull Standard Model

Lagrangian is then given by

SU(3)s,trong>< SU(Z)Neak>< U(l)EM' (1-51)

It is expected that at some higher temperature, earlieraristory of the Universe,
the symmetries of fundamental interactions will be restdcesome higher symmetry
group, as happened with the electroweak interaction. At ploint the forces will

become unified into a Grand Unified Theory (GUT).

To see how this might be related to the structure of Heliunw8,can look at the

fluid’s group structure. The translational and rotationahmetries of Helium-3 can
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be represented as the product of three global symmetries
S0(3))rbr0t X SO(?’)spinrot>< U(l)trans inv (1-52)

We see that the unbroken sectors can be considered almagaleqt; as there is an
isomorphism between SO(3), and SU(2) modujp Z

SU(2)

S0@)= =

(1.53)

This can be described qualitatively because SO(3) has adiaty of 2r, while SU(2)
has a periodicity of #. The parameter space of SU(2) can be taken to correspond to
a sphere, while the space of SU(3) only requires a half sghezempletely describe.

For more details, see Jones [225].

When Helium-3 passes through its superfluid A phase transiét some critical tem-
perature, this symmetry group is broken to UKL)J(1), breaking again at a lower
temperature to the B phase, represented by SO(3). Volofekrlg clear in suggesting
that the analogy is not complete, but does give two impogsapécts in which the stan-
dard model group, and in particular the electroweak sedt@guivalent to the group
structure ofHe. First, the symmetry groups are very similar, and segotiag inter-
actions of the low energy fermions with tfide — A order parameter closely resembles
the interactions of the fermions with the gauge fields preisethe electroweak model
[226]. We will not discuss the details of this here, but digdinere is potential for

further investigation, and more work to be done.

1.3 The Future of Multi-Disciplinary Research

Future interactions between the field of cosmology an coselmatter may come
from a direction that is somewhat unexpected, and goes saydonvmaking the re-
lationship more mathematically formal. The holographiogple stems from an idea
first suggested independently by Crane [227], 't Hooft [2@8} Susskind [229]. It
was formalised by Maldacena in 1997 [230] as is known asfilte-de Sitter/ Con-
formal Field Theory corresponden€8dS/CFT). This correspondence postulates that
a conformal field theory il dimensions, is dual to a string-based gravitational theory

in d+ 1 dimensions. Maldacena’s idea in particular, relates typstring theory in an
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AdSs x Sg background, to a four dimensional supersymmetric confofiela theory.

For this correspondence to hold, the requirements are ibagytmmetries of the two
theories match, and that the operators in the CFT are in Irégmondence with the
fields in the string theory. The details of this conjecture @ntirely beyond the scope
of this thesis, but we can note some of the main points, anéfg the progress of

the subject in the future.

Usually, calculations in a gravitational theory or quanttiedd theory can only be
done at low energies. This would correspond to small cureattor the string theory,
or small coupling for the field theory, where perturbativieeakations can be done. By
exploiting the duality postulated by Maldacena, calcolagidone at low energy on one
side correspond to the high energy regime on the other, @itpimsights into, so far,

unexplorable regions.

At the present time, the physics on either side of the duabiyld be considered far
from ‘realistic’ physics. Our Universe appears to be 3 dimensional, and is cer-
tainly not AdS, while the quantum theories we have to descitile standard model,
such as QED and QCD, are neither conformal nor supersynuneio be able to
approach a dual theory describing QCD, for example, pregi@sards a non-Ady
non-conformal gauge theory duality is necessary. Somewssatias already been
made. The holographic conjecture may be exploited to hetferstand the strongly
coupled regime of superconductivity, the physics of whigloften considered to be
2+ 1 dimensional [231]. See Section 17.6 of Waldram [232] feons@omments. This
would be dual to a 3 1 gravitational theory, making the two sides of the dualibser
to what we experience, at least dimensionally. For progsesermulating a dJ&CFT

correspondence see Ness and Siopsis [233, 234], and comm&adolski [235].

A series of papers has made some considerable progresdireggymmetry breaking
and phase transitions within this duality [236, 237, 238]we&ll as CFTs that embody
the mechanisms of superconductivity [239, 240, 241, 243, 244]. A number of
papers regarding some of the non-trivial technicalitieseialising these ideas have
also appeared [245, 246, 247].

Of particular interest is the relation of some real-worl@pbmena to solutions in gen-

eral relativity. The Rayleigh-Plateau instability [19Hstribes the breakup of a flow of
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liquid into droplets, as is seen in a dripping tap. The relato electromagnetic pinch
in plasma physics [248] has already been noted [249]. Treapmenon would appear
to have a counterpart in the Gregory-Laflamme instabilitiplack strings [250, 251].
Most recently has come the realisation that stable spinlubgd configurations of
fluid, governed by the balance of surface tension and cegsifforces as demon-
strated experimentally by Hill and Eaves [252], should hamenterparts in new black

hole configurations [253].

There are also promising developments on the experimedial he prediction of
Hawking radiation is a result of one of the most successtahgbts to combine General
Relativity and Quantum Field Theory [254, 255]. This préidic is, however, unlikely
to be observable within the foreseeable future, but one gaimaurn to analogous sys-
tems that can be built in a laboratory. Crucial to the conoéptawking radiation is an
event horizon, a region from inside of which wave modes caprapagate. Quantum
fluctuations in the vacuum result in the production of viHparticle-antiparticle pairs,
which usually annihilate again after a short time. If thi€ws at the boundary of a
horizon, one particle can fall beyond the event horizonviteathe other to escape as
radiation. Black holes can then be treated as thermodynalbjgcts, and are subject

to analogous thermodynamic laws [256, 257].

Unruh suggested an analogue to a black hole horizon thad b@ubrobed experimen-
tally [258]. Instead of the speed of light being the causalppgator, he suggested
using the speed of sound. Fluids that change from subsosigxersonic flow at some
point along their path would then have a ‘sonic horizon’ ogsrwhich sound waves
could travel in one direction but not the other. The productf radiation wave modes
would now come from phonons; quantised modes of sound wavteifluid ‘vac-

uum’.

The problem with such setups is that the Hawking radiatidece would usually be
masked by a random thermal signal generated by the moverhatdros in the fluid.
This problem is significantly reduced in Bose-Einstein camshtes, where the dynam-
ics of the matter is dominated by quantum mechanié&ces, resulting in a much
higher radiation signal to thermal noise ratio. Recent adea in the production and

manipulation of Bose-Einstein condensates, for examgeisle of atom chip technol-
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ogy pioneered at the University of Nottingham, combinechwiteoretical [259] and
numerical [260] developments in the detection of the Haglsignal, means that such

analogue Hawking radiation experiments are now feasible.

While this would not be a direct detection of Hawking radiatiit would give strong

support that the theory behind the prediction is correct.

1.4 Discussion

In this chapter we have presented an extensive overview demacosmology, high-
lighting some of the problems that need to be overcome. Sgaty, we discussed
problems in the modelling of dark matter and structure fdromathat may be over-
come by appealing to systems of equations that are typiaga#ig in condensed matter

systems.

We then looked at two examples of where condensed mattergshyas had an impact
on cosmology, particularly with regard to symmetry bregkand phase transitions,
where the relativistic versions of the equations just nogr@d are important. These
ideas will be presented in more detail later on in this thedie also saw that mathe-

matical, as well as physical analogies can be made.

Finally, we anticipated some areas in which cosmology antlensed matter may
further interact in the future. We saw how some of the mattimaaanalogies have
been made more rigorous, although perhaps not quite desgtite Universe as we see
it. We also described some recent developments on the expatal side, which will
hopefully lend support to promising attempts to unite GahRelativity and Quantum

Field Theory.



Chapter 2

Technical Background

In this chapter, we attempt a systematic review of litetetevant to a more techni-
cal discussion, specifically with regard to the systems of&gns we will be using.

We look at uses of the the linear and nonlinear Schrodifgesson system and their
relativistic extensions, the linear and nonlinear Kleior@n-Einstein equations, par-
ticularly within a cosmological context. Use of the nonkBneSchrodinger equation

also prompts the consideration of a cosmological Boset&msondensate.

The standardaCDM model has some problems associated with it, which werthest
in Section 1.1.4, and many authors use the properties oftitreeasystems to try and

alleviate these issues. We will try to give an overview oftndiferent approaches.

Using the Schrodinger equation to model matter allows ont@ke advantage of the
guantum-mechanical nature of the particles one is desgibiihis leads to a particu-
larly innovative solution to the problems of cuspy halo dgnsores and the overpro-

duction of substructure predicted by standard CDM models.

Adding a nonlinear term likg® to the Schrodinger equation is equivalent to adding
a ¢* interaction term to the corresponding Lagrangian, and hasname suggests,
this has the fect of allowing particles to interact with each other. Thashnique

is used ubiquitously in quantum field theory to describeraxtBons. An interaction
codficient allows the strength of the interaction to be regulat®¥ten applied to Cold
Dark Matter, this can alter the large scale behaviour, giarviable alternative to the

ACDM model.
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The nonlinear Schrodinger equation is used in condensetkntaeory, where it de-
scribes Bose-Einstein condensates. In this field it is dfteown as the Gross-Pitaev-
skii equation, and we will use the two terms interchangealilye Gross-Pitaevskii
equation is the equation of motion obtained from varying lthedau-Ginzburg La-
grangian. Consideration of the nonlinear Schrodingeagqo has led some authors to
suggest that the dark matter component of the Universe nsigerén a Bose-Einstein

condensate.

Other approaches use the wavefunction of the above systensstribe dark mat-
ter in terms of a scalar field, which can again provide a pheraiogical descrip-
tion of a condensate. The scalar field interpretation camlaksd to some interesting
solitonic solutions, which some authors suggest may apgea&xotic objects in the
Universe. These objects includ®son starsand oscillatons and we will comment
on these briefly. The Schrodinger-Poisson system has also bsed to investigate
the phenomenon ajuantum state reductionThis is a very interesting concept, and
provides some background for the implications of a dark enattodel that we will
investigate in Section 3.4. The Schrodinger-Poissontemuaas also been analysed

in relation to some other problems in quantum mechanics|[261

The Schrodinger equation is a wave equation, and as sunhalsa be used in an
entirely classical context, with becoming an adjustable parameter, rather than a con-
stant. This approach has also been used in with regard twtelformation and, after
some brief comments motivating a self-interacting darkteratandidate, it is here that

we will start.

2.1 Beyond Cold Dark Matter

As noted in Section 1.1.4, there may be problems with the CDdlehon smaller
scales. If these are redfects, and at times the evidence seems ambiguous, then one
idea often posited is to allow dark matter particles to s#kract. Several authors have
suggested such models, which we will review in this chagtaroverview of some of
them has also been given by Ostriker [262]. We introduce tmeept by describing

one such model, known &elf-Interacting Dark Matte(SIDM).
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Motivated by the problems of cuspy density profiles in gadaxiSpergel and Stein-
hardt [263] propose that this and other problems of the CDitUpé may be alleviated
if dark matter particles are allowed to self-interact withi@e scattering cross-section,
but with negligible annihilation or dissipation. They ma@ne qualitative arguments
based upon the mean free path of a dark matter particle inaxyak galaxy clus-
ter, as follows. If the mean free path of a dark matter patislgreater than 1 Mpc,
then the particle does not experience any interactions @®ves through the halo,
and the usual triaxial halo predicted by simulations, fomits cuspy density profiles
and large amounts of substructure via gravitational cetafOn the other end of the
scale, if the particles mean free path is less than 1 kpc, daeknmatter behaves as a
collisional gas and ‘shocks’, heating up the surroundirgtggproduce core densities
with a shallower profile. Collision between dark matter jgées also lead to isotropic
velocity distributions, leading to spherical halos, whoam only be flattened by signif-
icant rotation. Spergel and Steinhardt cite some well geckpbservational evidence,
showing that dark matter halos seem to form with little aaguwhomentum and so,
if the dark matter is not dissipative, halos should be nesplyerical. X-ray observa-
tions of clusters reveal that most halos are moderatelysalidal. For this reason, they
suggest that a dark matter particle should have a mean fteespanewhere in the in-
termediate region, thus flattening density cusps, but naflicing with observations.
As the mean free path can be related to the mass and scattevgggsection, they put
a range on the mass of their dark matter particle as 1 MeV - 30 Gee SIDM model
is followed up by simulations in further papers [264, 142hose results confirm the
gualitative arguments made previously for the mass rarggesyvell as showing that
substructure is also somewhat reduced, and that SIDM pesduore spherical inner
regions of halos than the standard CDM model, which is fadury observations.
They note, however that the triaxiality of these inner regionay be masked by the

effects of baryons.
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2.2 A Wave Mechanical Approach to Structure Forma-

tion

In Section 1.1.3, we saw some of the approaches that areatlypiesed in mod-
elling large-scale structure, and some of the problemscestsad with them. Avave-
mechanicabpproach, using the Schrodinger-Poisson system in dadssntext, can
alleviate some of these problems. This section concestoat¢he literature associated

with this approach, while Section 3.3 will describe the neatlatics in more detail.

A wave-mechanical approach to simulations of structursédion, utilising the Schr-
odinger-Poisson system was first proposed by Widrow andef§265], subsequently
developed by Coles, Spencer and Short [266, 267, 268, 269,&7d applied recently
to systems involving more than one fluid by Johnston, Laseray Hobson [271].
This allows regions of dark matter fluid that may be expetiggdifferent dynamics

to be modelled more easily.

Widrow and Kaiser [265] motivate their approach by suggestihat a coherent scalar
field, such as the axion, could be a potential dark matteridatej axions being ex-
tremely light (m~ 107°eV), but nonrelativistic. We have already discussed the o6l
scalar fields in Cosmology in Section 1.1.2, and we will comédiscuss the particular
case of the axion in more detail in Section 4.3. Generally-baddy simulations, the
scales of interest are much greater than the de Broglie eagt of the particles being
considered. For a particle with a very low mass, such as tio&gthe de Broglie wave-
length would be of order 10 m - an unreasonably small scalewliseussing structure
formation. Using realistic numbers of particles quicklycbmes computationally ex-
pensive, with the simulation run-time typically going$or N In N [272], whereN

is the number of particles. For affective N-body simulation, it is necessary to en-
sure a statistical coverage of the velocity and positiofrifistion functions. Typically,
simulations use particles that are much more massive, armth tess numerous than
one might expect to see in the Universe, in order to fulfil teguirement. Widrow and
Kaiser propose a simulation where the wavefunction of tiséesy, rather than individ-
ual particles, is evolved instead. To evolve a gravitafigneoupled wavefunction, the

coupled Einstein-Klein-Gordon equations are used. ThéenKBordon equation was
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originally introduced to describe a single, relativisgcantum-mechanical boson. In
order to describe large particle numbers, the approprmitg to do should be to in-
terpret the Klein-Gordon equation as describing the elautf field operators, with
appropriate commutation rules. However, in the limit ofaparticle numbers, it is
possible to consider the Klein-Gordon equation as a claksiave equation, with the
square of the wavefunction interpreted as the particleiend/e will describe this
large particle limit further in Section 3.2. In the weak fidilahit, the Einstein-Klein-
Gordon system reduces to the Schrodinger-Poisson syasaouitlined in Appendix A,
and in the limit of large numbers, the Schrodinger equatemmalso be interpreted as a
classical wave equation. The particle density, and herecemblution of the system can
then be tracked by following the evolution of the wavefuatiin this case, the ‘classi-
cal de Broglie’ wavelengthi(= v/m, we explain further the meaning of the parameter
v in Section 3.3) of the system is a free parameter that canreltto the size of the
simulation that one requires. As the de Broglie wavelengtklated to the mass of the
particles making up the system, this means that simulasehap in this manner may
sometimes be using overly large numbers of ultralight plagi This is not prohibitive
in terms of computer time, as it is the evolution of the wawnetion of the system that
is being followed, rather than individual particles. Empitay a more sophisticated
approach to representations of the wavefunction, sucheasatherent state formalism
of Husimi [273] means that the particle distribution fuoctiin the wave-mechanical
approach reduces to the full Vlasov (or collisionless Boknn) equation, so long as
the de Broglie wavelength is smaller than the scales ofesteiand larger than the
grid spacing of the simulation. This setup of the systemss able to handle multi-
streaming, which we noted as one of the problems of traditiapproaches to struc-
ture formation in Section 1.1.3. Widrow and Kaiser evolve 8chodinger-Poisson
system using various numerical techniques, and compasartathod to a standard
N-body technique consisting of a self-gravitating, oneweinsional system, and a par-
ticle mesh technique describing a self gravitating systeatwo-dimensional Einstein
de-Sitter universe, dominated by a nonrelativistic clzsdield. Results are shown to
be comparable, with the Schrodinger wave-mechanicalogabrbeing slightly faster,

computationally.

It has long been known that the evolution equations of fluidashgics can be put into
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the form of a Schrodinger equation, vidvieadelung transformatiof274], and this is

a trick that is employed regularly in condensed matter gsysConversely, applying
this transformation to the Schrodinger equation yield@sdabntinuity equation, and the
integrated Euleror Bernoulliequation, with an additional term. This additional term is
known as theuantum pressuralthough dimensionally it is a chemical potential. The
guantum pressure term is the only term in this system of epstvheres makes an
appearance. The extra ‘pressure’ can be thought of as aestatibn of the uncertainty
principle, whereby the particle’s position becomes ‘dealsed’. In some sense, this
provides a minimum volume for each particle, and acts as @ @frinteraction, or a
form of pressure support. We will describe these conceptie mathematically in

Section 3.3.

Coles [267, 269] pointed out that the Schrodinger-Poissgstem of Widrow and
Kaiser was equally amenable to a Madelung transformateadihg to the classical
Eulerian equations of motion traditionally used to modelcure formation, along
with the extra pressure term. Being a fully classical systeowever,z is replaced
by an adjustable parameter that acts as a regularising retheiBernoulli equation,
preventing the formation of density singularities and firstiteaming regions where
shell-crossing occurs. Less abstractly, this corresptmtise suppression of cusps in
the density profiles of dark matter halos; one of the problesitis the standard CDM
models that we have mentioned previously. This classicakwaechanical approach
to structure formation was greatly elucidated by Short ante€£[268, 266], and ex-
tended to include thefiects of gas pressure, using the nonlinear Schrodingetiequa
by Coles and Spencer [270]. In particular, Coles and Speaserfound that a descrip-
tion in terms of the nonlinear Schrodinger equation leaa ttensity profile described
by a polytropic fluid. Coles [269, 267] also provided an erplidgon of why the dis-
tribution of density fluctuations from an initial Gaussiastdbution, as predicted by

inflation, should be so close to the log-normal form that isestsed.
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2.3 Quantum Mechanical Dark Matter

Hu, Barkana, and Gruzinov [275] proposed a solution to tleblems of the CDM
model that is both complimentary, and in contrast to thesaddhe preceding section.
The Schrodinger-Poisson is again considered, but herguaetum mechanical na-
ture of the system is kept explicit. Their dark matter modgisists of non-interacting
particles, whose number densities are high enough thataterdatter behaves as a
classical field. The evolution equations for this field tut to have the form of the
Schrodinger-Poisson system, and they note that if a pad&scription is considered,
then the field will be proportional to the wavefunction of egrarticle. A standard
Jeans analysis is performed, and the resulting Jeans |ewigéne classically the grav-
itational forces of a gas cloud balance the thermal pressuirgards, is reinterpreted
in the quantum framework as the de Broglie wavelength of Hrk thatter particles in
the halo. Stability below the Jeans wavelength is then gueea by the uncertainty
principle - an increase in momentum opposes any attemptrtiineothe particle fur-
ther. Scaling the Jeafuke Broglie length to be such that dark matter density cus@s an
substructure are heavily suppressed, they show that the ohéise dark matter parti-
cle corresponding to this length is ‘ultralight’, of orded#2eV. We can compare the
concepts of this model with those presented in the papersariow, Kaiser and Coles
mentioned above. These previous papers made use of a Bgebddpproach in a
purely classical manner, treatifigas a parameter to be adjusted to fit the length scales
required. In Widrow and Kaiser’s simulations this somesmeeant dealing with an
ultralight particle with a high number density, but this veasmisidered to be an artefact
of the numerical process. Hu et al. instead kiegp that low scale power is suppressed
by the uncertainty principle, and adjust the Jeans lengtheacales of interest, thus
interpreting the low mass prediction as a real particle. fiied part of this paper is
dedicated to some exploratory one-dimensional numerigallations, demonstrating
that a low mass particle can indeed go some way to solving rthiglgms associated
with structure formation. Hu et al. mention in passing tiatse ultralight scalar dark
matter particles should reside initially in a Bose-Einsteondensate, similar to axion

dark matter models.

Bose-Einstein condensation appears in both condenseeérnpdiysics, and also in
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high-energy field theories describing particles such asrexighosts and the Higgs.
We will discuss the formalities of ‘standard’ Bose-Einstebndensation in Section
3.1, and its relation to symmetry breaking and field theor$eation 4.2. The models
reviewed in this chapter generally consider the condemsati nonrelativistic bosons,
and it is sdficient from the point of view of these models to consider a emsdte as

formed when the thermal de Broglie wavelength is of ordeiirtkerparticle spacing.

2.3.1 Dark Matter as a Bose-Einstein Condensate

Dark matter as a quantum-mechanical phenomenon, desdnbie nonlinear Schr-
odinger equation, the mean field equation for a Bose-Bmstndensate, prompts the

guestion of whether dark matter itself may reside in suchralensate.

Motivated by a description of CDM, and the phenomenologitescriptions of dark
matter using the Schrodinger-Poisson system that we hantioned previously, two
papers of importance to later work in this thesis suggestarg#ion of dark matter in

terms of a Bose-Einstein condensate.

Bohmer and Harko [276] employ a mean field description ofantum system af in-
teracting particles, as described in Section 3.2 and hanige at the Gross-Pitaevskii,
or nonlinear Schrodinger equation, as one would expece duantum condensate
wavefunction is replaced by the expectation value of thd figlerator, with its square
modulus describing the density of the condensate. ThemeaniSchrodinger equation
is coupled to an external potential that, in the context ¢dgtac dynamics, is taken to
be the gravitational potential, defined by the Poisson éguaf hey demonstrate the
Madelung transformation, and drop the the kinetic term ftbmresulting equations.
This is known as th&homas-Fermapproximation, which is again described in Section
3.2. In a system with a large number of atoms and repulsiezantions, the regime
where the ratio of kinetic to potential energy is small is @dj@approximation to the
full system. Its major advantage is that it makes analytictgms more tractable. This
approximation leads to the Lane-Emden equation, which kas lanalysed in great
detail by Chandrasekhar [277] to describe the dynamicsan$ stn this case, Bohmer
and Harko find a description in terms of a polytropic fluid aléxn = 1, as also found

by Coles and Spencer [270]. The use of the Thomas-Fermi gjppation rules out
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the inclusion of phenomena such as vortices, as in this eeg@ wavefunction only
varies slowly on the scales of interest. Slowly rotatingypraipes were also studied
in detail by Chandrasekhar, and this analysis is also pteden this paper. The ra-
dius of the dark matter halo can be related to the mass of tiielpaand the particle
scattering length, so by considering ‘sensible’ valuestlier radius of a galaxy and
scattering length of the particle, they make an estimateefiark matter particle mass
of 1-103eV. Once the density profile is described, it is fairly easgltain Newto-
nian rotation curves. They fit several curves accordingeo fhrescription, with fitting
parameters of the radius, total mass and density of the alémtfrom experimentally

measured values. The model fits the rotation curve fairly,wédh y? fits of order 1.

This model also discusses the interesting possibility gblegnng gravitational lens-
ing to make the distinction between a Bose-Einstein coraterdark matter halo and
other models of dark matter. To make this comparison, thiey the standard Weyl
metric, and use the Tolman-Oppenheimer-Véillaguations as the general relativistic
equations for a static dark matter distribution. To comglietiefine these equations,
one must also give the equation of state of the dark mattet. fliihey specify the
equation of state for an = 1 polytrope, as previously described. A ratio between the
light deflection produced by this and other models can thecabmilated in order to

discriminate between models.

Bose-Einstein condensates coupled tfietlent potentials, including a gravitational
one, were considered in Jones and Bernstein [278], leadisguctures very similar

to that of Bohmer and Harko.

Silverman and Mallett [279] discuss a similar paradigm. iAgaotivated by the pos-
sibility that dark matter with a quantum-mechanical natov@y solve some of the
problems associated with the CDM model, they use an Abéligigs-like symmetry-
breaking approach to endow a real scalar field with masdingltne particle’s Comp-
ton wavelength and the cosmological constant of the spaeet parameters in the
underlying Lagrangian. If at some point in the cosmic higtithe condensation tem-
perature of these bosons is greater than the CMB, then thkg tha transition to a
Bose-Einstein condensate. For nonrelativistic bosorssishdependent on the parti-

cle’s mass and number density. To alleviate the problem spygwores in galaxies,
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they identify a length scale associated with the equililorhetween quantum pressure
and gravitational attraction to be of the order of the siza gélactic core. This length
scale can be expressed in terms of the particle’s Comptoelemgth, so Silverman

and Mallett estimate a particle mass of order’¢@V.

To describe evolution of the condensate, they employ atbfighodified Gross-Pit-
aevskii equation, which they are able to solve exactly. Unofmately, this form of
the Gross-Pitaevskii equation is not derived, and it fBadilt to see where it has come
from. Newtonian mechanics again provides the rotationesifiom the resulting mass
distribution, which are scaled to observations of the rotavelocity and size of vari-

ous galaxies.

The interesting speculation in this paper concerns thedtion of superfluid vortices.
From considerations of Bose-Einstein condensates in cmedematter systems it is
known that above a critical rotation velocity, quantum iaa$ will form. If a galactic
halo consists of a Bose-Einstein condensate with the paeasngescribed by Silver-
man and Mallet, then it would seem to befdiult to prevent quantum vortices from
forming. Observational evidence of these vortices wouldalsly be a heavy indi-
cator that dark matter does indeed reside in a Bose-Einstgidensate. Silverman
and Mallett suggest that a detection of such vortices mayecmom frame-dragging
effects, manifested in gravitational lensing or variationatgpisation of light from dis-
tant background sources. We will return to the conceptgdais this paper in Section

3.4, and also point out some of the shortcomings of this aggtran Chapter 4.

A paper by Yu and Morgan [280] follows on from that of Silvenmand Mallett, by
considering the motions of a network of vortices in a gatalstickground as described
above. The network of vortices consists of ultra-light acddosons generated by a
cosmological phase transition. To describe the evolutiosueh a network, Mor-
gan and Yu’s procedure is to calculate the motion of one xaites to a background
phase gradient induced by the surrounding vortices. Trdsme by first considering
Nielsen-Olesen vortices, @osmic stringsn the Abelian-Higgs model, and adding a
term motivated from physical considerations due to a bamkyl phase gradient. The
concept of vortex scattering in the Abelian-Higgs modehgdackground phase gra-

dients was largely considered in Thatcher and Morgan [281hnd Morgan consider
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this to be the relativistic version of a Gross-Pitaevskii&ipn describing vortices
in a stirred Bose-Einstein condensate. We will discuss iment®tail in Chapter 4
how the Abelian-Higgs model can be considered to be theivisat version of the
Landau-Ginzburg, so that superconducting flux tubes bedbmanalogues of these
high energy vortices. They then derive a weak field versiamefAbelian-Higgs, and
from their previous field theory motivation, include a terasbd on the background
phase gradient. Using numerical techniques, a dark matiee-Einstein condensate
galaxy is given an initial Kelperian velocity profile. Ondeetgalaxy exceeds some
critical speed, quantum vortices form, and interact botthhe background phase
gradient produced by the rotation of the galaxy, and thahefreighbouring vortices.
The configuration is shown to evolve towards that of a flat @i&yqorofile, similar to

what is observed.

The papers we have mentioned so far in this section broashrtbe concepts we will
be exploring in the rest of this thesis. There are, howevenuwanber of other papers

that could be considered relevant.

2.4 Scalar Field Dark Matter

In Section 1.1.2 we discussed how scalar fields can be useéstyide the matter-
energy content of the Universe. Scalar fields, endowed witkrént potentials, can
represent the general properties of a large variety of fmbhnsatter. As the properties
of dark matter are largely unknown, this can make scalardiafdideal candidate for

modelling dark matter.

A vast amount of literature is devoted to attempts to moded deatter as a scalar field.
We will not give a pedagogical discussion of all of these ngdas the ideas are not
central to this thesis, but we will try to give an outline ofhs® of the main concepts.
We will concentrate on scalar field models that suggest dutso to the problems

associated with the Cold Dark Matter paradigm. Almost althefse models use the
nonlinear Einstein-Klein-Gordon equations, or its noatiglstic and noninteracting

counterpart, to describe the structure and evolution otadar field(s) proposed, and

this is partly our motivation for presenting them here.
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Scalar field models of the dark matter halo can bear more tipassing resemblance
to bound solitonic solutions that are admitted by the Einsidein-Gordon equations.
These solutions are known variously gsons boson staror oscillatons Many au-
thors have commented on the connection between these bolutidiss and the galac-
tic halo. Solitonic solutions were largely described in likerature before scalar field
dark matter solutions were considered, with scalar field daatter proponents only
making the connection later. This can make a linear disonssi this topic dificult.
We will run through the scalar field dark matter models firsthenenting later on the

nature of the bound solutions.

A large amount of scalar field dark matter candidates werpgeed when it was first
suggested that the axion might make suitable dark mattelidaie. See, for example,

reference 1 in Hwang [282].

One of the first suggestions for scalar field dark matter wasgby Press, Ryden and
Spergel [283], who use the nonlinear Einstein-Klein-Gordagrangian to describe
particles with an exceptionally large Compton wavelendlensity cusps in galactic
halos are then suppressed for the same reason describeddionS:3; the Heisenberg

uncertainty principle.

Sin [284] uses the nonlinear Schrodinger equation couplékde Poisson equation to
describe an ultralight boson (hence with large Compton lesngth) and obtains mass
profiles for a galaxy that resemble the excited states of biean solitonic solutions
known as boson stars, although these bounds sates are efrenced directly. The
mass profiles are adjustable by choosintedent excited states of the boson star. The
rotation curves from these mass profiles resemble thosaeltabservationally. This
paper is the first in this vein to mention that galactic halosld be considered to be
‘giant systems of a condensed Bose gas’. A follow-up papeesdhe percentage of
baryonic mass in their simulations to see howfieets the rotation curves. Lee and
Koh [285] consider a relativistic extension of Sin’s modglduggesting that excited
boson stars described by the nonlinear Klein-Gordon eguate an adequate rela-
tivistic approximation to Sin’s solutions. The rotationreeis obtained from such an
energy distribution are again approximately what is observlhe total mass of the

halo and the excited mode of the boson star are again adieg@atameters.
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Schunck [286] considers the massless Einstein-Klein-@oreuations, as well as
pointing to previous literature suggesting that the highede solutions of boson stars
considered previously are generally known to be unstabdghis scalar field is mass-
less, the boson star solution is ‘transparent’. Howevergtiergy density still couples
to normal matter gravitationally, and so they take a Nevaodimit in order to obtain
rotation curves that again approximately plateau witheasing radius. Again, two

adjustable parameters allow for better fitting.

Peebles and Vilenkin [287, 288, 289] attempt to use scaldsfte incorporate inflation
and dark matter into one model. Both fields have a quarticrpieieand initially the
dark matter field behaves like radiation. If, however, thartja potential is suppressed
later on, so that the potential is dominated by the quadtetia, then the scalar field
behaves like an ideal non-relativistic gas. A similar ideasvposited in Goodman
[290]. Assuming that the field is nonrelativistic at latenés, these papers make some
guantitative predictions based upon the Jeans scales ghking fluid. The resulting
fluid equations give the required suppression of substrecnd core density cusps.
Allowing the potential to be rather less than quarticy¢’), allows an even better fit

to the observed astronomical data.

Matos, Guzman and Urefia-Lopez study the evolution ofsealar field solutions to
the Einstein-Klein-Gordon equations. In their early papg@91, 292], they are mo-
tivated by the fundamental scalar fields in cosmology thgh l@nergy models of the
early Universe would seem to predict, such as the dilatathsaggest that scalar fields
may provide an explanation of the dark matter problem toceyTdtudy a real scalar
field with an exponential scalar potential, and using a nmeth@viously developed
by Matos in the context of Kaluza-Klein theory, called tharimonic maps ansatz’
[293, 294, 295], which is beyond the scope of this thesis Himstein-Klein-Gordon
equations are reduced to a ‘Poisson-like structure’. THeciutees of test particles
following circular trajectories around such configura@ive rotation curves that ap-
proximately match those observed in dark matter halos. Titindiparameters must

be arbitrarily chosen to scale the curves appropriately.

Further papers [296, 297] try to model the evolution of datter and dark energy

as two diferent real scalar fields, in a similar vein to the Peebles atahkin pa-
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pers mentioned above. The dark matter and dark energy ae@ giotentials that
go asV(®) ~ cosh(p) and V(¥) ~ sini(¥) respectively, giving the scalar field
quintessence-like properties. The scalar field energyityesgound to track the radi-
ation energy density in a similar way to a model of Sahni [288]lating the observed
values of the matter and radiation density to theflicdents of the scalar field poten-
tial, Matos et al. predict that the dark matter particle i3 gtenario would have to be
ultra-light, m ~ 10-22eV. They suggest that the Jeans length for this model iseblat
to the mass of the dark matter particle, and because of tieigroblems of dark matter

halo cusps and the dearth of small scale structure are aloide

Other papers by the same authors [299, 300] consider a sipaitadigm. In this case,
two scalar fields are introduced; one to model the centrakivagalactic object, and
one to model the overall dark matter halo that extends fan tite galactic centre. The
authors make the link that the galactic centre solutionadn@ considered to be an
oscillaton solution. An oscillaton is a soliton solutionttee Einstein-Klein-Gordon
equations, which we will discuss along with other more ‘@Xobbjects in a later
section. Oscillaton solutions have been discussed, aveay the considerations of
their role in a dark matter galactic environment, by one efahthors [301], and will
be mentioned later. Again, this model involves an ultraligbson, two parameters that
require fitting from observations, and rotation velocitiest approximately agree with

what is seen.

Another series of papers by Arbey, Lesgourgues and Sa3éi2, [303, 304, 305] dis-
cusses work that is very similar to the above papers by M&ogman and Ureia-
Lopez. The main dference between these two strands of work is that Arbey, lLesgo
gues and Salati consider a complex scalar field, while thaqure group discuss a real
field.

Fuchs and Mielke [306] consider the nonlinear Klein-Gordguoation, this time with a
#° interaction. They find approximate fits to the central dgnibtfiles of low surface

brightness galaxies. There are again two adjustable paeesrte fit.

Further papers by Matos et al. [307, 308] consider the we#klfrait for a real scalar
field described by the Einstein-Klein-Gordon equationsveibshy or ¢ potentials.

They show that these models can produce density profilesaidr matter halos that
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are close to what is observed. These later papers also maletimection that the

scalar field can be considered to be a Bose-Einstein contdensa

Papers by Lee [309, 310, 311] reiterate what has gone bef®well as suggesting that
two scalar field dark matter galaxies may be able to passdhreach other, like soli-
tons. They suggest that the Bullet cluster and Train Wreglnants may be evidence

that this has happened.

Interestingly, this brings us to a connection between sdahl dark matter models

and experimental physics.

Giovanazzi, O'Dell, Kurizki and Akulin [312, 313] develogp@n experimental tech-
nique, whereby illuminating a cloud of trapped atoms inddiggt will induce a long-

range inverse square force between every atom in the sybtehms way, it is possible
to simulate gravitationally bound structures in the labamawith Bose-Einstein con-
densates. This procedure is also summarised in aNaterearticle by Anglin [314].

Choi [315] follows this up by numerically evolving this sgst for the collision of

two ‘gravitationally’ bound solitonic objects; the analayof a colliding boson star
system. This paper describes the solitonic nature of galfitating’ Bose-Einstein
condensates undergoing head-on collision. This is anetteanple of numerical or ex-
perimental techniques helping to make inroads into domafim®smological physics

that would otherwise be observationally inaccessible.

2.4.1 Scalar Fields and Bose-Einstein Condensation

Scalar field dark matter models allow for the possibility oS8-Einstein condensation,
because of their bosonic nature. Discussion of the contlensaf a spin-zero boson
in a cosmological context has been around since at least [BAB3. Bose-Einstein
condensation in field theory will be discussed further in @@ea4. The relativistic
equations for evolving a scalar field reduce to the nonlir@sdrodinger-Poisson sys-
tem in the weak field limit. This system is of the same form as@noss-PitaevskKii
equation describing a Bose-Einstein condensate, with atgti@anal coupling term.
If we interpret the scalar field as the order parameter of aleonsate, then it is pos-

sible to interpret the model as a cosmologically relevanseBRinstein condensate
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[298, 308, 317, 318]. This is one way of considering the bagtans and oscillatons

that we will discuss in the next section.

Some authors have tried to describe dark energy and darkmoaihg the same scalar
field [319, 320]. We briefly describe some papers where thdeased fraction of the

scalar field is identified as dark matter.

Ferrer and Grifols [321] describe affect where scalar particles are coupled to matter
fermions via a usual Yukawa-type potential. When this ced@ystem is embedded
in a background made of the same scalars, they find that tlge rainthe potential
interaction goes from finite to infinite when the scalar baokgd undergoes Bose-
Einstein condensation. In a followup paper [322], the coisdée is identified with the
dark matter component of the Universe, and they describpdbsibility of anomalies
in the peak structure of the CMB that may arise from the imttttsa between dark and
normal matter. Investigating the parameter spasethe mass of the scalar particle,
andges, the interaction strength, they find that it is possible thatscalar particles still
exist within a Bose-Einstein condensate, but to be congistgh the CMB peak lo-
cations, nucleosynthesis and large-scale structure taymahe interaction strengths
would have to be so weak as to go unnoticed today. They shawothar parts of
them, — ger parameter space could produce cosmologies that are obyveusneous.
This dfect is also applied to the equilibrium of degenerate stars) as white dwarves
[323]. Scalar field dark matter permeates the galaxy, andeseithbecome gravita-
tionally trapped by, for example, a white dwarf star. Thisydes the setup of the
coupled fermionic particles embedded in a scalar partiatkground. Ferrer and Gri-
fols conclude that the new star configurations should papuliferent regions of the
mass-radius plane compared to the standard white dwarseshsd by the pioneering

Chandrasekhar models [277], and hence provide obserahttonsequences.

Morikawa [324], along with Morita and Nishiyama [325] inthace a model where a
boson fluid, described by a scalar field, is identified as thik detter component of
the Universe, with an equation of state of dystz 0. This scalar field is identified
as the classical mean field used to describe a Bose-Einsietiensate. This, they
claim, provides an explanation for the origin of the scalaldfithat drives the late-

time expansion of the Universe (dark energy). As the Unwemsols below some
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critical temperature, the dark matter boson fluid condenagsg its equation of state
to the formp = —Ap®. The case op = —p is identified as the simplest case, and
investigated. They also suggest that the energy densitheoBbse gas is diluted
with the expansion of the Universe. The condensed phasesJaonis not. Hence,
the condensate will dominate over the normal fluid compoaedtthe expansion of
the Universe will switch from decelerated to acceleratepbesion. On local scales,
once the energy density of the condensate reaches sontalordlue, fluctuations in
the density quickly collapse to form boson stars, which nragrhent because of the
negative pressure of the fluid. So, dark matter condensesnodark energy, which
can collapse to form localised sources of dark matter. Is Way, many seeds for
structure formation are formed. This idea is restated inuyakna and Morikawa [326],
and reviewed in added detail in Fukuyama et al.[327]. By mergg the temperature
of the boson gas when it was coupled to the radiation compai¢ie Universe, they
set limits on the condensation temperature, and hence Smboass. They set a limit
of m, < 2eV, and suggest that ultralight masses are more likely. tWbald appear
to be the major drawback in this model is that in order to obtadark energy with
the required equation of state, the authors attribute hegptessure to an attractive
interaction potential in the Gross-Pitaevskii equatiottractive interactions generally
lead to negative values of the particle scattering lengtti,aam imaginary sound speed
[328], making this form of matter even more exotic than ustiaky extend this model

to inflation in Fukuyama and Morikawa [329].

Similar models have been discussed previously. Madserex@ample, discussed the
possibility of a 17 keV neutrino condensing, so that galaxyrfation might proceed
as a hybrid hot and cold dark matter model, with the samegbantesponsible for
both components. The evidence for a 17 keV neutrino unfatelip turned out to
be erroneous [330]. Dymnikova and Khlopov [331] and Basstedtl. [332] both also
consider models where dark energy emerges as the condehaatark matter particle

when the Universe cools past some critical temperature.
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2.5 Exotic Objects

In the previous section, we came across some solitonicignduto the Einstein-Klein-
Gordon equations that were adopted by authors investgyatalar field dark matter
models. As we mentioned previously, such solutions wererdessd much earlier,

outside of a dark matter context.

The first such description can be traced back to Wheeler [88®] described solu-

tions of the Einstein-Maxwell equations. He consideredntass associated with an
electromagnetic disturbance, and concluded that thetgtenal attraction of such a
disturbance is capable of holding the disturbance togdtinex long time in compari-

son with the characteristic periods of the entity. This nhiggr recognised as soliton-
like behaviour. Wheeler called such disturbangesns a contraction ofravitational

magnetic entity

Kaup would then go on to descrildein-Gordon Geon$334]. In seeking a counter
example to the conjecture that gravitational collapseeasiiable, he suggested eigen-
states of the coupled Einstein-Klein-Gordon equationktiosoc objects whose quan-

tum nature would hold them up against collapse to a singylari

2.5.1 Boson Stars

Boson stars are self-gravitating solutions to the Einskdain-Gordon equations for
a complex scalar field, first investigated by Feinblum and M& [335] and Rfini
and Bonazzola [336, 337]. The latter authors described thetmeing analogous to
the Hartree-Fock description of the atom. Boson star swigtcan be constructed by
seeking solutions to the equations of motion derived froenEmstein-Klein-Gordon

action, with the spherical symmetric metric
ds? = @ dt? — e'™Ddr? — r2(de? + sir? 6d¢?). (2.1)

Following Jetzer’s thorough review article [338], we cardfequilibrium solutions by
working in the gauged, = (Ao, 0,0,0) and settings(r,t) = ¢o€*!. Calculating the

components of the energy momentum tensor at this point cdaithe involved, but
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eventually we find a scalar wave equation

1
2/r +5 (o= do) | #o + €°|(w + eA)* e — | go = 0. (2.2)

8 +

We see that any solution is now time independent. To obtaim#dsolutions, the
boundary conditiong, = const,¢; = 0 and¢., = ¢, = 0 are imposed. The field
¢o may also have nodes, corresponding to excited states oystens. In considering
boson stars as a description of a galactic halo, it has beerdf{802, 304, 305] that
higher node solutions produce rotation curves that coordpetter to those observed.
These higher nodes are unfortunately unstable, and dedellygto the 0-node solu-
tion [339, 340], possibly via the emission of particles [B4lt should be noted that
equilibrium solutions exist as there is a Noether curresbeaisited to the gauge field,
which corresponds to a conservation of particle number][338is is an important

comparison for the oscillaton solutions we will considexme

Many authors then looked at adding an interaction term tokileen-Gordon equa-
tion. Mielke and Schunck in particular [342], found that ampa repulsivep® self-
interaction term allows the corresponding Klein-Gordooan to be simplified to a
Lane-Emden equation, familiar from the astrophysics otgas spheres, as we have
also mentioned in the discussion of Bose-Einstein conderdak matter papers by
Coles and Spencer [270] and Bohmer and Harko [276]. Colal.§843] also looked
at boson stars with an interaction term and found that thigosotolutions formed
tended to be extended in space, as one might expect for dodigin of particles with

a repulsive interaction added.

Boson star configurations experienced a slight resurgengepularity in the early
1990s, driven by the possibility that scalar fields may hawvergortant role to play in
fundamental physics. Ferrer and Gleiser [344] investij#ite gravitational radiation
from excited states of a boson star, while other authorsestao concern themselves
with the formation of such objects in a cosmological envin@mt, and their implica-

tions for observations [345, 346, 347, 348].

Madsen and Liddle [345] suggest that for boson stars to hastraphysically mean-
ingful mass (solar mass 2 x 10°°kg) the boson mass needs to be of ordef &V.

This can be altered somewhat with the addition of a self-toggerm. We will see
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later that this term can be written in the Lagrange density as

L= g(¢*¢)2. (2.3)

Madsen and Liddle showed that even for very small valueg tiis coupling may be

crucially important. They show that the self-coupling tasnmportant for

1> 1000%. (2.4)

pl
For a boson with a mass similar to that of the neutron, thig meduires thafl > 10-3°,
They suggest then, that unless there is a huge suppressiothein the casg = 0 is

unlikely to be astrophysically relevant.

Seidel and Suen [349] gave a description of a post-Newtasoéution for the boson
star configuration, while Guzman and Urefia-Lopez [33®)] 3dok at the formation
of solitonic objects in the weak field limit, using a Schnigker-Poisson system of

equations.

Torres et al.[350] appear to be the first authors to make theexdion that a scalar
soliton solution might be a good description of the core shemalaxies, while Guz-
man and Urefna-Lopez [351] make the connection that thesardield systems could
be considered to be gravitationally bound solutions of aeBBemstein condensate.
The behaviour of non-spherical collapse of scalar field dasgkter and the late time
behaviour is studied in Bernal and Guzman [352]. Rotatirgpbcstars have also been

shown to have anfiective metric that describes a torus of mass [353].

2.5.2 Oscillatons

If solitonic solutions to the Einstein-Klein-Gordon egoats are sought for real, rather
than complex scalar fields, it is not possible to find timeejpehdent solutions. For
real scalar fields, there is no longer a conserved NoethegrLzorresponding, for in-

stance, to the conservation of particle number [338]. adsteegular boundary condi-
tions are satisfied by time dependent solutions; collapsimypanding configurations,
or periodic solutions. In this case, both the megyjc and the scalar field, oscillate

in time, similar to the ‘breather’ solution of the sine-Gordequation. Such solutions
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were first described by Seidel and Suen [355] and are call@tatsg soliton stars,

or oscillatons.

Oscillaton solutions are again not trivial to construct, lwe can give a brief overview
[338]. Using the same line element as for boson stars, edh), e Einstein-Klein-
Gordon equations must be solved to obtain equations for #teaxcomponents’, A’

and, and the scalar field(r,t). One then constructs periodic expansionsegre!

anda(r, t).
e =14+ i Ny;(r) cos(Zwot) (2.5)
=0
et =1+ i 02i(r) cos(Zwot) (2.6)
=0
o(r.1) = i $2j-1(r) cos((J — L)wot) (2.7)

=1

Urefla-Lopez [301] was the first to consider the weak figtuitliof oscillatons, with
the motivation that boson stars and oscillatons are predliey scalar field dark matter
models. This author also considered the weak field limit @fl@gons with a self-
interactings® term. Another paper [356] follows up by considering the fation of

oscillatons from the gravitational collapse of scalar figbthfigurations.

2.6 Penrose and the Quantum State Reduction Prob-

lem

The bound state of the Schrodinger-Poisson system hasdoesidered by Penrose
and others, motivated interestingly by the problenstate reductionor wavefunction
collapsein quantum mechanics. For a comprehensive discussion ¢ tencepts see

Wheeler and Zurek [357] or Giulini et al. [358].

Confronted by the results of the double slit experiment,BER&KR paradox, Bell’s in-
equalities and the Schrodinger’s cat thought experimedits variants, we are forced
to consider the nature of the wavefunction in quantum mechkakVe can take the ex-

ample of a charge of an electron represented by a wavefin®ioes the wavefunction



Technical Background 70

merely represent the probability distribution of a poinduige, or is the charge actually

distributed in space?

The issue of mathematical interpretation returns. To@enhagen interpretatioof

Bohr and Heisenberg suggests that the wavefunction of arsyshould not be con-
sidered a real entity, but rather an abstract concept wHiolvsthe calculation of
probabilities for the outcome of a measurement. The wawgiom in a sense repre-
sents the ‘maximal state of our knowledge’, with the notidmpbability necessary
because a complete knowledge of the state of a system isyeeMey the Heisenberg

uncertainty principle.

At the other extreme of interpretation comes thany worlds theorysuggesting that
each probability distribution is actually realised, sottakh outcomes actually exist.
This interpretation poses the problem of why one particed@nario presents itself to

us.

Integral to the issue of interpretation is the problem of ahserver; whether an ob-
server is indeed necessary for wavefunction collapse,dbtising the reality around

him, or if the collapse is a purely objective phenomena.

Weinberg [359] suggests that resolution may lie in treatihighe components of the
system consistently. The quantum system, the measurireyapig and the observer

all require a description in terms of quantum mechanics.

Penrose has argued for an objective collapse of the waviedanm terms of a gravita-
tional influence. His argument suggests that for a supdipnf states representing
two different mass distributions (the position of a particle coufing the Heisenberg
uncertainty principle, for example), there should be aroesased superposition of
gravitational fields produced by the patrticle. If there isgmgicant mass displacement
between the two states, each of which would be stationaryein dwn, the energy
associated with the maintenance of dual gravitationaldiehdy become larger than
one or other of the component states. The system is unstaidethe wavefunction

collapses, without ever invoking an external observer.

Penrose suggests that the timesdat the instability would be inversely proportional

to the gravitational self-energy associated to thEedence between the mass distribu-
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tions of the two state€g,

h
T>~—. 2.
= 28)

He also suggests that this statement is not a theory of guastate reduction, but
‘rather a statement of the level at which deviations frormdgad linear Schrodinger

(unitary) evolution are to be expected, owing to gravitagiostects’ [360] pg. 584.

The final stationary states, for appropriate mass and \glognges, should then be
represented by stationary solutions of the Schrodingeaton, coupled to an appro-
priate gravitational term arising from the mass densitegiby the expectation value
of the mass distribution in the appropriate state. Thisd¢adhe Schrodinger-Newton

equations [361], which we have referred to as the Schr@&iiRgisson system,

oY 12
ih— = ——V?¥ + mOVY 2.
& ot 2m " ’ (2.9)
V20 = 4nGmWY|2. (2.10)

Bound, stationary solutions of this system have been iigestd by Penrose, Moroz,
Tod and Harrison [362, 363, 364, 365]. Relation to earliesdvostar work is only

mentioned in passing with a brief reference tdiRu and Bonazzola’s paper [337].

2.7 Discussion

In this chapter we have attempted to give a thorough ovenatwhe role of the
Schrodinger-Poisson system in going beyond the standaldl @ark Matter model.
We implicitly motivated the nonlinear Schrodinger eqaatby discussing how prob-
lems of the CDM model may be circumvented by allowing darktergparticles to
self-interact. After discussing some of the advantages@éssical approach to the
Schodinger equation in modelling structure formation, then switched to a purely
guantum description by discussing a dark matter condertsatsisting of a Bose-
Einstein condensate. Scalar fields provide a useful toafodelling, as the specific
properties of the matter can be left fairly general. The et#oh equations for a gravi-
tationally coupled scalar field are the Einstein-Klein-@mr equations, or in the weak
field limit, the Schrodinger-Poisson system. Scalar fi@ldsalso amenable to Bose-

Einstein condensation, as they describe particles that bbgson statistics. We also
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saw some of the bound solitonic solutions that exist foreétmstems, and how some
authors have tried to identify them with galactic dark nragteucture. We gave a brief
overview of the construction of these ‘exotic’ objects, eindshed with a discussion of

the role of the Schrodinger-Poisson system in the quantate s2duction problem.



Chapter 3

The nonlinear Schrodinger Equation

In Condensed Matter and Cosmology

In this chapter, we apply the nonlinear Schrodinger equatid various situations in
cosmology. We start by looking at its use in condensed matigsics, where it is

used to model the macroscopic properties of Bose-Einstaidensates. We look at
its derivation, and some of the standard techniques useaddterthe Gross-Pitaevskii

equation to the fluid equations, as well as the descriptiaquahtum vortices.

We then return to ideas mentioned in Section 2.2 concerhimgse of the Schrodinger
equation in modelling structure formation, and note the afltheMadelung transfor-
mation a concept from condensed matter theory. In a cosmologordakgt, gravita-
tional dfects are included by coupling the Schrodinger equationeédPisson equa-

tion.

In the final section, we use the quantum-mechanical versighi® coupled system
to model a novel dark matter candidate, in which the darkenaidrticles reside in a
Bose-Einstein condensate. In particular we discuss th&ilmbty that a rotating dark
matter Bose-Einstein condensate halo might contain geehtiortices. Using known
solutions for the density profiles of such vortices, we cdesthe gravitational self-
interactions in such halos, in order to estimate some of éin@rpeters of a dark matter

particle in such a model.
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3.1 The Bose-Einstein Condensate

We first outline the concept of Bose-Einstein condensatod, the criteria necessary

for it to occuir.

Integer-spin particles obey Bose-Einstein statisticsaardot subject to any exclusion
principle like that of fermions. As such, an unlimited numbgparticles may occupy

any single-particle state. Any particles not in an excitiatiesare accommodated in the
single-particle ground state, which can hold an unlimitadhber, and the system is

said to have 8ose-Einstein condensate

The condensate temperatdigs the highest temperature at which a condensate exists.
That is, the highest temperature at which the single-pargymund state is occupied.

At temperatures higher than this, all particles are exditenlhigher states.

The number of particles in an excited state can be given by

Noe = fo " deg(e) (©) (3.1)

whereg(e) is the density of states, anie) is the Bose-Einstein distribution func-
tion, which describes the mean occupation number of thdespayticle state, for a

noninteracting gas in thermodynamic equilibrium. It isegivby

1
eB(fi -E) — 1

whereg = 1/kgT, andg is the energy of the single particle state for a particular

fee(g) = () = (3.2)

trapping potential.

The quantityE, is known as thehemical potentialand is defined within th&rand
Canonical Ensemblas a way of parameterising a changing particle number. The
chemical potential can be thought of as the energy changeeafytstem if one par-
ticle is added, at constant entropy and volume. It also &t leagrange multiplier,

as we will see in Section 3.2. In relativistic systems, eamhserved quantity, and
hence symmetry of the system, can be associated with a calgpoitential. We will
discuss this further in Section 4.2. The chemical potergialso generally a function

of particle numbeN, and temperaturé.

The number of excited particlég., is maximised forE, = 0, and the transition tem-

perature is the temperature at which all the particles aexaited statesN = Ney.
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Any lower, and the single-particle ground state will starbecome occupied, and a

condensate will form.

The density of states can be written in a general form in texhp®wers of the energy
g(e) = Coe™™, (3.3)

whereC, is a constant, and is a parameter dependent on the properties of the system,

such as the trapping potential. By defining the dimensienlasiablex = ¢/kg T, and

evaluating a nasty integral, the condensate temperatarbecahown to be
Nl/a

(CT(@)é(@)™

wherel'(@) is the gamma function, ang«) is the Riemann-zeta function. Below the

kBTc =

(3.4)

condensate temperature, the number of excited particjestis
N

(Cal(@)é(@)™™
So we can define the number of particles in the condemgateN — N, as

vt (2)). 6

keT (3.5)

For the particular examples of a gas confined to a three-diroeal box of volume
Vo, for whicha = 3/2, then

2/3
,n?

kT, ~ 3.317 (3.7)

m’
with the number densitp = N/V,;, while the condensation temperature for a gas

trapped by a three-dimensional harmonic oscillator paeéistgiven by
ke Tc ~ 0.947wNY3, (3.8)

wherea = 3, andw is the geometric mean of the oscillator frequencies in eaittog-
onal direction. The corresponding condensate particlebauroan be obtained from
eqgn. (3.6).

The criterion for Bose-Einstein condensation then, is thatoccupation number for
one of the single particle levels should be macroscopics @erivation does not in-
clude interactions between particles. Generally the diepl®f the condensate due to

interactions is small enough to be neglected. See, for ebl@ropmments in Section
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6.1 of Pethick and Smith [328]. A generalisation of this cemshtion criterion for bulk
systems has been proposed by Penrose [366] and Landau ahdZ4[194], and elab-
orated by Penrose and Onsager [367] and Yang [368]. The Pitesvskii equation

discussed in the next section includes thHeds of interactions.

We can make a convenient approximation to the condensaopdrature by simply
comparing the thermal de Broglie wavelength to the intdigarseparation, as sug-
gested in Section 2.3. The thermal de Broglie wavelengthbeathought of as the
average de Broglie wavelength of particle in an ideal gasraperaturd . When the
thermal de Broglie wavelength approaches the mean intéicigaspacing, quantum
effects will become important, and the gas must be treated ageméemate Bose gas,
or condensate. The thermal de Broglie wavelength is given by

27.[7,—12 %
/lT = (m'@T) N (39)

for which A1 ~ n~'/3 for a condensate, giving

2/3
ke Te ~ 27h*—, (3.10)
m
which we see is a good approximation to egn. (3.7). This sniplt dfective esti-
mation can be useful in many scenarios including the earlyadyse. Particle mass,
number density and the temperature at various epochs che détermined, allowing

a calculation of whether or not a particular particle speéiems a condensate.

We now come to the Gross-Pitaevskii equation. We will seettimcally, in the limit
of large particle number the density distribution of the demsate can be described by
a macroscopic wavefunction that is considered to be a qoafield. This field is ma-
nipulated by the Gross-Pitaevskii equation, or nonlinedmr&dinger equation, rather
than working with the usual creation and annihilation opmsaof quantum mechanics.
The density distribution of the condensate can be repreddayt a macroscopic wave-
function of the same form as the ground state wavefuncticam sihgle particle. The
momentum distribution of the condensate is obtained byntatie Fourier transform
of this wavefunction and, in an experimental setup, the oetie of a Bose-Einstein
condensate is confirmed by a sharp peak in the momentum spsidbution of the
gas of particles. This is a good model for the condensate op@opairs in a super-

conductor, or for helium atoms in a superfluid [328]. Thisqadure is also analogous
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to classical electrodynamics, where electric and magfietats are used, rather than

the creation and annihilation operators for photons.

In quantum field theory, a condensate corresponds to a morexpectation value for
some operator in the vacuum and, in the limit of large quantwmber, this con-
densate can be considered to be a classical field. The Hiddsftie example, has
a vacuum expectation value, and interaction with this cosdte leads to the gauge
bosons acquiring mass. Similar mechanisms operate in ihed eind gluon conden-
sates in QCD. The concept has also been applied to hypahe#cticles such as
axions or ghosts [369]. In this context, the axion field, feample, is coherent and
has relatively small spatial gradients. The gradient gneag be interpreted as particle
momenta, which will be the same and small for each particknga sharp peak in the
momentum-space distribution as in the case of the more iEanBBbse-Einstein con-
densate described previously. The condensation of axionsd ‘standard’ condensed

matter point of view has also been considered [370].

The relation to field theory will be described in more detaiChapter 4.

3.2 The Gross-Pitaevskii Equation

The nonlinear Schrodinger equation is typically known amdensed matter parlance
as the Gross-Pitaevskii equation. This equation repregbatmacroscopic properties
of a many-body quantum-mechanical system, and is in sonse sesemi-classical de-
scription. It seeks to describe the properties of a bulk madtiey including a term rep-
resenting the interaction between particles. In a many lsgdiem, this gives a good
description of the properties of the bulk fluid on scales wlgrantum ffects become
important, such as at boundaries, or in vortex cores. To rfrome a microscopic de-
scription of individual atoms to a wavefunction describthg macroscopic properties
of the bulk material requires us to replace quantum opesatih non-operator num-
bers. This is the Bogoliubov prescription, which we will dese shortly. All these
concepts are further elaborated in, for example, Pethidksmith [328] and Pitaevskii
and Stringari [371]. To an extent, we also follow the notatamd conventions set out
in Roberts and Berl® [372].
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We first deal with interactions within the Bose-Einstein densate fluid. Rather than
try and describe interactions in terms of a potential théitdepend in a complicated
way on the inter-particle distance, we instead make an appation to the interaction

potential that is proportional to the scattering length,To first order in an interaction,
the wavefunction is dominated by a contribution from thetecang length. In the Born

approximation, the scattering length is given by

m
agBom) = Zﬂ—; f drv(r), (3.11)

wheremygq is the reduced mass, aidr) is the potential between atoms (see any good
standard quantum mechanics text, such as Bransden andhilofgF3]). In the case
of equal mass particles, we see that the Born approximat@attesing length matches

the true scattering length if we use thtéegtive interaction potential

2
f drVee(r) = 4”fnas = V. (3.12)

For an dfective interaction potential proportional to the scattgiiength, we can then
write

Ver(r,r") = Voo(r —r’). (3.13)

We now look at the whole Bose-Einstein condensate. Teetve Hamiltonian of this

system can be written as

i=1

p_l + Vext(r )

+ voz(s(r, — 1)), (3.14)

i<]
wherei labels each of thal particles, with the delta function taking care of interanti
between each on&/,; couples the system to some external potential. In a contiensa
each of theN patrticles is in the same single-particle stafge), and the energy func-
tional of the system can be written as the expectation vdltieecabove Hamiltonian

(N-1)

S=Ve( | (3.15)

2
E-N f or [f—mww)ﬁ § VeuD)IB()2 +

whereN(N — 1)/2 is the number of pairs of bosons. We take the particle nunodes
N > 1, and define the particle density to e N/V,,. Introducing the wavefunction

of the condensed state
w(r) = N2g(r), (3.16)
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and noting that for a uniform system of volurklg the wavefunction of the system is

1/Va Y2, we find that the particle density is defined by

n(r) = ly(r)P, (3.17)

and we can rewrite the energy functional as

2
E) = [ o (TR + ViR + Va0 ). @18

Using the method of Lagrange multipliers, we can minimise #nergy functional

with the condition that the total number of particles in tlgstem

N = f drjy (r)?, (3.19)

remain constant. We do this by minimising the quanity E,N at fixedE,, whereE,

is the chemical potential, to obtain the time-independaons& Pitaevskii equation

2
=) + Ve W) + Vol (OPUT) = B ). (320)

We can generalise this to the time-dependent form by writing
2

ih%‘l’(r, t) = —z—rnvz\}f(r, t) + Vexe(r, )P(r) + Vo[E(r, t)|2u(r, t), (3.21)

noting that, to be consistent with the time-independemhfabove, the evolution of
must go as¥(r,t) = y(r,t)expEiE,t/n). The Gross-Pitaevskii equation we use for

analysis, then, is
0 " _, 5
= (1, 1) = ==V, ) + Veud + Voly(r, O (r. 1) - By (r. 1). (3.22)

We could also be slightly more rigorous in moving from themjuan description to the
macroscopic system described by a classical wavefunctdaconsider the Heisen-
berg equation of motion

ih%‘i’(r,t) = [¥(r, 1), H], (3.23)

where the square brackets represent the commutator, otuspramechanical Poisson

bracket. The Hamiltonian for this system can be written

2
H = f(s—mV‘PT(r,t)V‘P(r,t)) dr + % fqﬁ(r,t)\PT'(r,t)V(r’ = )¥(r, )W’ (r, t)dr’dr,
(3.24)
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which we substitute into the Heisenberg equation of motooktain,

2

ih%\i’(r,t) = (_%VZ + f i, OV - r)‘i’(r’,t)dr’)‘i’(r,t). (3.25)

The field operators can be expressed as
PO = wamal, (3.26)

where¥, is the single particle wavefunction, aal’ are the annihilation (creation)

operators. For a uniform gas, the field operators can beenritt

Wl

In the field operator, we separate out the condensate pdre avdvefunctiong = 0

B(rt) = — 3 aer (3.27)
p

PO(r, 1) = Wo(r)ao + Z ¥, (r)alh. (3.28)

a#0

Returning to the unperturbed system, we have
81Ny = VNo+1INo+1) and ol Noy= /No|No— 1. (3.29)

In the largeN limit, the case of a condensate with a macroscopic occupatidhe

ground state for exampl®p + 1 ~ Ny and we can identify

80~ &)~ \No. (3:30)

This is the Bogoliubov prescription, where an operator renlreplaced with a stan-
dard number, in the limit of large particle number. The grstate wavefunction, or

zero-momentum mode, in eqgn. (3.27) can be written as

. 1 . (No\?
Y(r) = Mao:(V_m) =y(r,t), (3.31)

with the final identification the same as we made previously, €3.17). This is equiv-

alent to treating the condensed (macroscopically occpied of the field operator as
a classical wavefunction. In general, to consider quantuniifhtions about a largé

state in which all the atoms are in a single quantum state pwklavrite

P(r,t) = w(r,t) + sy(r, t), (3.32)
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wherey(r,t) = (¥(r, 1)), as given in eqn. (3.31) above. Ignoring the quantum fluctua-

tions and substituting this into eqn. (3.25) leads agaihéd@ross-Pitaevskii equation
ihg‘}’(r t) = —h—zvzl{f(r) + Vol P(r)P¥(r) (3.33)
at 7 2m 0 ' '

We take the time evolution as befo¥gr,t) = y(r,t)expiE,t/#), and we could
also couple this system to an external potential, to agaiaiobhe Gross-Pitaevskii

equation,
0 ", )
mawm0=—55Vwm0+VmMn0+%WUﬁhﬂnU—aMLU (3.34)

There are a few other properties of the condensate that wetndeok at. We can
find an expression for the stationary equilibrium state, taystdering eqgn. (3.34) at a
distance far from any disturbance. We find
E,\?

Yoo = (Vo) . (3.35)
When the condensate wavefunction reaches a boundary, stivéaall of a container,
or the core of a vortex is being considered, we can define ardistover which the
wavefunction changes from zero to its bulk value, or wherandqum défects become
important. We can do this by comparing the kinetic and irttiéoa energies over the
scales at which the wavefunction is rapidly changing. Theraction energy goes as
~ Voly2, while if the scale over which the wavefunction is varyingjigen byé&, then
the kinetic energy term is given by #%/2m¢?. When the two energies are equal, this

defines for us a length scale

h
=& = T 3.36
3 (2mE)} (3.36)

where we have used eqn. (3.35). This is known asctiteerence lengthor healing

length as it is the distance over which the wavefunction requiresaling’, in the

vicinity of a boundary, for example.

The Thomas-Fermapproximation we mentioned in Section 2.3.1, provides a @fay
obtaining tractable solutions to the Gross-Pitaevskiegign for the case where a con-
densate is confined within a potential, but in the limit threg $patially varying part of

the wavefunction is negligible. The Gross-Pitaevskii egumin this case becomes

Vet + Volyl?y — E,y = 0, (3.37)
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which has solution
_ Ev - Vext
Vo

This gives a condensate cloud whose radius is defined.by E,. As the Thomas-

WP =n (3.38)

Fermi approximation is valid for a smooth spatially varyimgvefunction, the validity
is such that the size of the cloud is much larger than the mgédingth. In this way,
individual vortices can be ‘patched in’ to the body of theudpwithout dfecting the

overall profile. This was important in Bohmer and Harko’skdmatter model, see

Section 2.3.1, and we will apply it to our later model.

3.2.1 The Madelung Transformation

The Madelung transformation is well known among those wagkn the field of con-
densed matter, but we note that among cosmologists, thepbata Madelung trans-
formation to relate the Schrodinger equation and the flgidagons has been eluci-
dated by Coles [267, 269, 270] in the context of structurenfiion only as recently
as 2000.

Using standard quantum mechanical techniques, we can emas(3.34) in the form

of a continuity equation,

oyl B
ot V(W) =0, (3.39)

with velocity
_ VY - YY)
2mi |2 ’
We have seen how the square of the wavefunction can be iéerdsithe boson number

(3.40)

density, so thap = mn = my|?>. The quantum nature of the fluid can be made more

evident with the application of Bladelung transformation

v = aexp(ig,) , (3.41)

so that from eqn. (3.40), we obtain an expression for thecitylof the condensate

h
=—V 42
V==V, (3.42)

where ¢, is the velocity potential. Substituting the Madelung tfansation into

eqgn. (3.34), with the identification,” = %¢,,/m, yields the familiar fluid equations:
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the continuity equation

0 (0/2)
ot
and the (integrated) Euler equation

+V.(a?Vg¢,) =0, (3.43)

a¢w, hz Vza (V(Pw,)z VO 2 Eu
= — - —a + —

o 2m « 2 m m’ (3.44)

The quantum nature of the fluid manifests itself in the firahten the right hand side
of the Euler equation. This is known as theantum pressurgerm, although dimen-
sionally it is a chemical potential. This term is relevantyoon small scales, where
guantum éects become important, such as in a vortex core, or whereothgensate
meets a boundary. The identification made above eqn. (d4¥rhides the quantum
nature of the fluid with respect to the fluid velocity, whichliviecome particularly

relevant when we start talking about vortices.

3.2.2 \ortices

We have already seen that the velocity of the condensateas gy

7
=_v 4
V=V, (3.45)

and one would then expect that the condensate would betionghas
Vx(Vf) =0, (3.46)

for any scalar,f. This restricts the motion of the condensate much more thdasa
sical fluid. The circulation around any contour then, shalsb be zero. By Stokes’

theorem
= 9§v.dl = f(V xV).dA=0 (3.47)
| A

This condition, defining the so-called Landau state, was diesived in an analysis
of superfluid He 1l [374], and suggests that rotation of sudoadensate should be
impossible. Experiments by Osbourne [375] indicated thatdondensate did indeed
experience rotation. Feynman [376], building on the indeleat work of Onsager
[377], suggested that rotation and hence non-zero ciionlabuld be explained by
assuming that the condensate is threaded by a lattice dfgda@tex lines. It is pos-

sible to have circulation surrounding a region from whicl dondensate is excluded
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and in this case, this would be the vortex core. To see thisiodethat the condensate
wavefunction must be single valued, and so around any closetbur, the change in

the phase of the wavefunctiofng, must be a multiple of 2

Ad., = 95 Vo,.dl = 2zl (3.48)

wherel is an integer. We immediately see that the circulation istjgad in units of
h/m

r= 9§v.dl = %2}1" = I%. (3.49)
To obtain vortex solutions, we work in cylindrical coordies ¢, v, z), and look for
a static solution of the nonlinear Schrodinger equatiam. €3.34). To satisfy the
requirement of single-valuedness, the condensate wastsfarmust vary as expiy),

with n integer. We make the vortex ansatz

(r. x) = R(r) exp(ny). (3.50)

This procedure is very similar to that used in obtaining BkelOlesen vortices [378],
or cosmic stringsolutions in the Abelian Higgs model, which was first invgated by
Abrikosov [379] in the context of superconductivity. We Wweturn to this in Chapter
4. This analogy will be useful shortly for obtaining an exgs®n for the vortex density
profile. We can obtain an expression for the velocity profila wortex by substituting
the vortex ansatz, eqn. (3.50), into eqgn. (3.40)

ainl
= ——X, 3.51
v r n'(Y ( )

and we note again the discrete nature of the allowed valueslo€ity. From now on
we will consider onlyn = 1 vortices. From energy considerations, vortices with 1
are generally expected to be unstable, and will break upsienerain = 1 vortices to

form a vortex lattice. We can see this by inserting the voaiesatz

U (r,x) = R(r) expiny) (3.52)

into the energy functional, eqn. (3.18). We find the energyupé length of a vortex,

r’ 2
E, = f %rdr’lh—z(&) s RO Vopyal (3.53)
0 2

2m\ dr 2m r?2
The term corresponding to the energy of the orbital motimejes, in a similar way

to the energy of a global string, which has no gauge termsrtoatét. To deal with this
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divergence, a cutdr’ is introduced, which may correspond to the extent of thessyst
or for a multi-vortex system, the distance between indigidwortices. To obtain the
energy purely associated with the vortex, we subtract tieeggnper unit length of a
cylinder of the uniform condensate. Then, the energy pdrlength associated with
the vortex can be shown to be

dr 7% R(r)?
Ez(vor) :f(; 2nrdr’ lzm( df‘r)) + n2 (r) (Rgo R(r) ) l (354)

2m r2

EZ(VO) ~ ;ZI r€><> II ||I f . 3'55

From this expression, we can see that the energy of a singlexweith winding num-
bern > 1 would have a higher energy than the same configuratiorvoftices, each

with winding numbemn = 1.

We also note that cosmic strings with winding humbers 1 are also unstable to
perturbations [380]. Such defects break down to sevetal configurations in both a

condensed matter environment, and a high-energy field¢tie@ne.

Feynman initially introduced quantised vortices as a putetoretical tool with which
to explain the rotation of the condensate, but the expetiahgarification of the quan-
tisation of rotational velocities (e.g. by Packard and ®@asdi381]) demonstrated that

these vortices were indeed real.

By substituting the vortex ansatz, eqn. (3.50) into eqr84B.we obtain

P [PRE)  1dR() R(r)

_ . _
2ME, | arz "t ar 12 ERM R(r) =0, (3.56)

which defines for us the density profile of a vortex (wjtfr) = mR(r)|?). From

egn. (3.35) we see that the density far from the vortex isrgbse

E,
P = MR, = mvo (3.57)

Analytic solutions of this equation are not known so it mwssblved numerically. For

our analyses we will use the approximation

1/2
R() = (5) [1- explr/ao)]. (3.58)

as discussed next.
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3.2.3 Approximations to the Density Profile

The numerical solution to the nonlinear Schrodinger eaquatan be cumbersome to
work with, so we provide some discussion of some approxwnatihat can be used.
It is possible to scale the the variableandR(r) in egn. (3.56) to obtain a scale-free
equation. Scaling by the healing lengthr) = r/ay, andR(r) by the steady state value,
R(r’) = R(r)/R. we obtain

dzjg )y r—l,dF;(,r') - R/rg') R +R() = 0. (3.59)
Our approximation method appeals to the field of high enemyices, specifically
cosmic strings in the Abelian-Higgs model, in order to seducidating the relation-
ships between high-energy field theory and condensed matteZhapter 4 we will
find that the profile of the Higgs field in a Nielsen-Olesen errtan be written, in a
similarly scaled way, as

PR(r)  1dR(r) R(r)

dr? r’ dr’ r2

(A(r') — 1 - %R(r’)(R’(r’)z ~1)=0  (3.60)

Here A(r) is a gauge term arising from the coupling to electromagngtianda is
determined by the potential term of the theory. It is possibllinearise eqn. (3.60) to
obtain a modified Bessel function as the first order approttondao R (r’) - the zeroth
order being 1. This happens in the string case, becauseulge gantributions serve to
cancel one of the terms, leaving a modified Bessel's equalibe linearised version
of eqgn. (3.59) does not quite reduce to a modified Bessel'ateay but taking our

lead from the cosmic string example, we write
R(r') ~ 1-expr’). (3.61)

Another approximation, which might seem to be more accunates developed by
Berloff [382] in a condensed matter context. A Padé approximatas the same
asymptotics at = 0 andr = oo as the function one is trying to approximate. The Padé

approximation in this case gives

(3.62)

R(F) r'2(0.3437+ 0.02862)
1+ 0.33332 + 0.02867*

This solution is plotted in Fig. 3.1 along with the numeritutimn given by eqgn. (3.59),

and the previous approximation, eqn. (3.61). The Padéoappation is indeed more
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Figure 3.1: Numeric solution to eqgn. (3.59) (blue), the Pade approtionaeqn. (3.62) (red), and
the scaled approximation used in this analysis, eqn. (gggn).

accurate in the small and large r regions. However, the Bpgéoximation has the
tendency to overestimate the density in the central regitucing a density function
whose derivative is negative in this region. Later in thigmter, we will find that the
gravitational potential is proportional to the densityda&o the gravitational force will
be proportional to the derivative of the density functiohwe chose to use the Padé
approximation for our density profile, we could be potehfiatisled by its behaviour

in the central region.

We will use the approximation

R() = (5) (1 - explr /ad]) (3.63)

0
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3.3 The Wave Mechanical Approach to Structure For-

mation

It is interesting to note that the Euler and continuity ecuret, without the quantum
pressure term, when coupled to the Poisson equation, afaltiset of equations re-
quired to model structure formation in the early Universee Sor example, Coles and
Lucchin [383]. With the application of a Madelung transf@ation, one can then use
the coupled Schrodinger-Poisson system tlassicalcontext to describe the evolu-
tion of structure. In this casé,is replaced by an adjustable parameter which controls
the spatial resolutiorof the simulation involved. This idea is investigated mdrert
oughly in Short and Coles [268]. In the classical case, ther® form of pressure
support as CDM is pressureless. The nonlinear Schrodegeation has been used in

a classical context to model gas pressure [270].

In Sections 1.1.3 and 2.2 we discussed the possibility afgufie Schrodinger equa-
tion to model structure formation. Now that we have intraetlithe Gross-Pitaevskii
equation, its application in describing the macroscopapprties of a system, and the
relation to the equations of fluid mechanics, we can elabdiather on the wave-

mechanical approach.

We consider a curl-free fluid (so that= V¢!, as above), evolving under gravity.
A curl-free fluid is acceptable, as there are no sources dfcigrin this system of
equations. Also, any vortical perturbation modes that mayehoeen present in the
early Universe will decay with expansion. The equationsuiegl for investigating

structure formation are: the continuity equation,

% +V-(pVe.) =0, (3.64)

the first integral of the Euler equation (the Bernoulli equia,

00 Loy _
- 5V, = 0, (3.65)

which is coupled to the Poisson equation, in order to mode#iiects of gravity,

V20 = 47Gp. (3.66)
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We can again make a Madelung transformation of the form

Y = aexpid/v), (3.67)

to rewrite egns. (3.64) and (3.65) as

v2Va

2
v = Vv p oy 222 (3.68)
2 2 «

We again have a Schrodinger-like equation coupled to thesBo equation. As we
mentioned in Section 2.2, this is no longer a quantum mechasystem, and the
parameter has taken the place éf The parameter is now an adjustable parameter
that can be changed according to the resolution of the stroolaequired. For the
formalism used by Coles, Short and Spencer [269, 267, 268 2®]v = i/m, giving
the correct dimensions for Planck’s constant, and the dglRroelationa = v/v.
We note that the quantum pressure term currently appealseiatiove Schrodinger
equation. Generally, in the wave-mechanical approach,emoéres the ‘standard’
Schrodinger equation in simulations. If one performs a 8ladg transformation on
this equation, we find that the quantum pressure term instppéars in the Bernoulli
equation. In this sense, adjusting the parameterthe Schrodinger equation controls

the range over which the new pressure term in the Bernoulliggn is éfective.

This approach circumnavigates two of the problems of thedstad perturbation ap-
proach to structure formation that we mentioned in Sectidn3l Firstly, due to the
form of the Madelung transformatiop, ~ |¢|?, and so the density distribution will
always be positive. Secondly, because we are not dealirg puint-like particles,
shell-crossing is not as catastrophic as in the Zel'dovigbr@ximation, and caustics
will never be formed. More complex representations of theafianction can allow for
mulit-streaming solutions to occur [265]. It is also possito add the ffects of gas
dynamics to this approach by considering the nonlinear@&thger equation [270], in

this case simulating the evolution of a polytropic fluid ungevity.
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3.4 Gravitational Stability of Vortices in Bose-Einstein

Condensate Dark Matter

In Section 1.1 we have seen the motivation for a Cold Dark datdmponent to the
Universe, as well as some of the problems that the CDM modelsfan reproduc-
ing observations. In Chapter 2.3 we saw that some authopopea a resolution to
these problems by exploiting the quantum-mechanical eattiultralight matter, so
that the de Broglie wavelength of this matter might manifestlf on astrophysical
scales, leading to naturally smoother and less centratigeatrated galaxy halos than
in the CDM case. Silverman & Mallett [279] suggested a synmyabteaking mech-
anism for such an ultralight particle, based upon a reabsdedld, and while in this
case the symmetry-breaking mechanism provides a nice dgashparticle produc-
tion in a universe with a cosmological constant, symmetgaking with a real scalar
field generically produces a catastrophic domain wall pob]380] and we shall see
in Section 4.4 that this model is no exception. Silverman &lI&ta[279] also con-
sidered the rotation of a galactic-scale dark matter halsingya phenomenological
description taken directly from condensed matter, theyckated that a galactic halo
should be threaded by a lattice of quantised vortices, ansecpence of the rota-
tion of the galaxy exceeding the critical rotation rate iegglfor quantised vortices to
form. Indeed, from studies of rotating Bose-Einstein corsd¢es and quantum turbu-
lence [384, 103], it would seem to beffiltult to prevent such vortices from forming.
Classical vortices may also be of importance in an astrapalysnvironment. Their

role in planet formation, for example, has been discuss@d][3

The dfects of the interaction of gravity with a coherent state otterasuch as a
Bose-Einstein condensate, have certainly been consigeesusly [386, 387], and
prompted the question of whether it is actually possibledark matter to be in a
coherent quantum state if the only interaction with visitmatter is gravitational. In
Section 2.6 we saw how Penrose has used the SchrodingeselRaystem during his

‘quantum state reduction’ research program.

Bohmer and Harko [276] considered a model of a galactic bafwisting of a Bose-

Einstein condensate. In condensed matter scenarios, tmeddFermi approximation
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is used to describe a Bose-Einstein condensate cloud, edrfiyna potential. In the
galactic case, the confining potential is supplied by theitatonal interaction, and
the dark matter density takes the form of a spherical halbdh@ps to zero outside
the confining potential, as expected from investigationslark matter halos in the
Universe [130] and Bose-Einstein condensates in the laimgrésee, for example,
Abo-Shaeer et al.[388]). Conventionally, a vortex, or amaiof vortices, can then
be ‘patched’ into the Thomas-Fermi envelope, with the agppmation for the cloud

remaining valid for all regions except that of the vortexesorlf dark matter does con-
sist of a Bose-Einstein condensate, Silverman’s paper @¥ests it would seem to
be dfficult to prevent vortex arrays from forming in galactic halb®tection of these
vortices and investigation of their properties, for exampvith gravitational lensing,

could give considerable insight into the nature of dark eratt

In this section we seek to determine the properties of a datkemparticle from con-
siderations of an array of quantised vortices residing ik anatter Bose-Einstein
condensate. We investigate the properties of the indiVidosdices in the galactic
Thomas-Fermi envelope, in order to determine ranges fopdinemeters describing a
dark matter condensate particle, such as its mass. For tpegas of this investiga-
tion, we presume that the dark matter does indeed consisBose-Einstein conden-
sate, formed at an earlier stage of cosmological historydasdribed by the coupled
nonlinear Schrodinger-Poisson system, and that voréicepresent, and stable, in this

cosmological fluid.

To consider Bose-Einstein condensates on scales rel@vamtitture formation in the
Universe, we must necessarily include gravitatiofii@es. Bose-Einstein condensates
are typically stficiently dilute that the mass densities are not very large sama New-
tonian approximation is valid. Gravitationafects can be added to the Bose-Einstein
condensate by including a term in the nonlinear Schrodiegeation that couples to

the Poisson equation. We then have a pair of equations ngl@llgravitationally

coupled fluid.
2
if = —;‘—mvzw + Vol |2y — E . + mDy (3.69)
V2D = 47Gp = 4Gyl (3.70)

We have already seen how this system can emerge, eitherasdaidield limit of the
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Einstein-Klein-Gordon system (Chapter 2 and Appendix A)nalifferent approaches
to various phenomena, such as a wave-mechanical approathutbure formation

(Section 3.3), or in Penrose’s work (Section 2.6).

3.4.1 \Vortices in Gravitationally Coupled Bose-Einstein @nden-

sates

We can now consider how to determine the properties of a datkemparticle from
observations of a vortex in a galactic dark matter condenséte see that, from the
above coupled equations, (3.69) and (3.70), and the relétiothe healing length,
eqgn. (3.36), the density, = miy/|?, is entirely determined by the mass the healing
lengthay, and the interparticle potential. If we could provide a measurement of
ay, possibly from gravitational lensing observations of at@wiin a dark matter Bose-
Einstein condensate halo, then it is only thg, fn) parameter space that remains to be
constrained. It is the goal of this section to place some tswm this parameter space

using some simple physical arguments.

As we have previously mentioned, the dark matter halo we @msidering is well de-
scribed by the Thomas-Fermi approximation. Vortices regidhin this envelope and,
to a good approximation, provide only a small perturbatmit.t\We will consider the
properties of single vortices within this halo. The sizelw# vortex radius compared
to the size of the dark matter halo is small, and so we can denshe vortex to be
residing in a constant density background, so that the xakmsity profile obtained

by solving eqgn. (3.56) and approximated by eqn. (3.58) islval

If we could solve the above coupled equations using the atanertex ansatz, eqgn. -
(3.50), to obtain a density profile for a gravitationally pted vortex, then we only
need specify a sensible value@f and the background density in a dark matter halo
to give us a relation betweevy, and m. Unfortunately, it is not tractable to solve
for the density profileR(r), by substituting the vortex ansatz = R(r) exp(y) into
egns. (3.69) and (3.70). The vortex ansatz assumes thaettgityl profile is static,
thus providing no force terms, from rotation for examplecoainter the gravitational

interaction. Coupling the equation for the density profdeatgravitational potential
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that is diverging, as it is for a constant density backgrousdhen inconsistent. We
anticipate in any case that the vortex density profile witllb@altered dramatically, as

the particle densities within the region of the vortex wil fairly low.

3.4.2 \ortex Stability in Gravitationally Coupled Bose-Einstein

Condensates

Instead of solving the coupled eqgns. (3.69) and (3.70) fartex directly, we make an
argument regarding the stability of a gravitationally cleaiBose-Einstein condensate
vortex, and consequently give some bounds on the parantbtrdescribe it. Our
analysis is based upon the consideration of the radial iglpfile of a Bose-Einstein
condensate vortex{r), and the radial velocity induced from gravitational attran,
vg(r). In other words, y(r) is the velocity that the vortex density distribution is nray
at, for a particular, while vg(r) would be the velocity experienced by a test particle
orbiting that density distribution, at a distanceTo sustain a vortex, )r) must be
greater than y(r), otherwise the quantum-mechanical forces that produeedhtex
are not sticiently strong to hold the vortex up against gravitationallapse. That
is, the vortex is spinning too slowly to provide enough cigetial force to balance
the gravitational force. Particles in the condensate Wwiint gravitate into the core,

destroying the vortex. For stability, we therefore havelitbend,
V,(r) = ve(r). (3.71)
We can use this bound to eliminate some regions of\gaf) parameter space, as we

now demonstrate.

Gravitational Field of a Cylindrically Symmetric System
We have already seen thaj(v) can be given by
hl
_t2s 72
Vo = ok (3.72)

To obtain (r), we turn to Gauss’s law to determine the gravitational fadld cylin-

drically symmetric mass distribution, and hence obtairr#tokal gravitational velocity
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of a test particle moving in the field of that system. Gaussisik

%g -dA = —47G Meng;. (3.73)

The mass enclosed is the density pervading a cylinder afisadind lengthL_:

Mena = Lf 2rrp(r)dr. (3.74)
0

The densityp(r) = mR(r)?, is already determined in terms of the cylindricaloor-
dinate, as it is a solution of the vortex equation. The leftdhside of Gauss’s law, in

cylindrical coordinates, is
f grdydz, (3.75)

where the integral over thecoordinate is agaih, the length of the vortex. Gauss’s

law, then, gives us

gr(2nL) = —4nG(2xL) fr o(r)rdr, (3.76)
0

giving

r
g= _4”?”1 f IR(r)[?rdr. (3.77)
0

The sign is negative, because we have chosen an outwartingogurface normal
in our formulation of Gauss’s law, egn. (3.73), which indesathat the gravitational
flux will always be towards the origin. This leads to the stiglcounter-intuitive

conclusion that a hole (the vortex) in a constant mass debatkground would seem
to produce a gravitational force towards it. We instead vtéike this; the static vortex
configuration will want to act to collapse in, and close théeh&Ve believe that this
is related to the complications in solving for the densitgfpe that we mentioned in
Section 3.4.1. This need not concern us further, as it is thgnmude that is required

for our argument. The magnitude of the induced centripetakfis
g=—, (3.78)
and the gravitational circular velocity profile ¥s given by,

ve(r)? = 4nG fr p(Nrdr = 47erfr IR(r)|?rdr. (3.79)
0 0
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3.4.3 Bounds on Parameters

We now have expressions fogfr) and v,(r), egns. (3.72) and (3.79), to go in the
bound given by eqgn. (3.71). In Fig. 3.2 we plot, as an examplé,) and \s(r) and
the density profile for comparison. For this example we usel@alight boson, with
parameter values af = 3.56x 10°%kg (2 x 102%eV), E, = 2.5x 10%°J (1.56x
103%eV) andV, = 4.45x 10°%4Jn? (3.7 x 10*°eV2). These values are obtained us-
ing considerations of vortices in galactic Bose-Einst@ndensates with an ultralight
boson, as investigated in Silverman and Mallett [279]. Eheslues are explained
in more detail in the following subsection. These particMalues are used simply
to demonstrate the behaviours of the velocity profiles, aedhat used again in our

analysis.

x 10
v, v, (1) 5 T
(ms™) \
45 [ \ N
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Figure 3.2: Velocity Profiles for ¢ (green, dot dash) and,\blue, dash). Density profile plotted
schematically for comparison (red, solid).

The bound on stability, \(r) > vg(r), will always be violated at some point, as out-

side the vortex core)r) ~ 1/r and \&(r) ~ r. We must specify what might be an
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acceptable value affor v, (r) and \&(r) to meet, such that the vortex configuration is
not destroyed. We want the vortices to exist, and so the xakeasity profile should
be fully established. We interpret this to mean that the illghas essentially reached
the level of the background. From the scaled density profdeussed previously, and
plotted in Fig. 3.1, we see that the density reaches its vadkgl level at a value of
about ten times the healing length. This is the minimum nurob&ealing lengths at
which we will allow the bound to be violated, otherwise theteg cannot be estab-
lished. Using the approximation to the density profile, €8rb8), in the expression for
the gravitational circular velocityas egn. (3.79), we then substitute our expressions
for vg and v, into the bound given by eqn. (3.71), to obtain

h
mr’

‘/Z( G’ (3.80)

2 V()a()2

[Zr2 + 8rage % + 8ag2e % — 2rape % — aoze‘%])2 <
We have also eliminatel, using eqn. (3.36). This allows us to plot a line indicating
an allowed region of\{(y, m) parameter space. We will consider a range of physically
reasonable healing lengtlag from considerations of galactic scales. We consider
to be the length scale at which the bound is violated, and poessr in terms of an
integer number of healing lengthsz nay, with the minimum being = 10 as outlined

above. Eqn. (3.80) then becomes
Vo > gG nn? (2n2a02 + 8nag’e ™" + 8ay’e " — 2nag’e " — aoze‘zn), (3.81)

or, to leading order,

Vo = nGnragn®. (3.82)

Approximations for Parameters Defining the Bose-Einstein ©ndensate

We take a brief diversion to consider how we approximatedviiiees necessary to
obtain the velocity profiles in the previous subsection. Sehealues are merely to
provide an idea of the forms of the velocity profiles and are used again in our

analysis.

To enable us to obtain velocity and density profiles, we muostige values for the
parametersn, Vo, andE,. The properties of dark matter particles are, by their very

nature, unknown, so we must make some approximations. Wehesanalysis in
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Silverman and Mallet [279] to provide us with some data velu&he mass of the
Bose-Einstein condensate dark matter particle in thatmpigp&56 x 10°%kg (2 x
10-22eV) (Silverman and Mallett unfortunately use a mix of nat@ad S.I. units).
Their analysis is based on the mass and angular rotationeoAtiiromeda galaxy.
The mean density is given asx2102*kg m 3, and they estimate that the vortex line
density in the galaxy would be about 1 vortex per 208kftis gives a vortex radius
ofr, ~2.5x 10°°m (~ 8.1kpc). This is a slightly strange result, as previoussial
in their paper (which we will return to in Section 4.4) sugges coherence length of

~ 30 kpc, meaning that their vortex core is bigger than theitexo

We continue with the suggested vortex radius of 2.5x 10?°°m, and turn to vortex
lattices in condensed matter systems to provide us with dartteer estimates of the

vortex properties in a Bose-Einstein condensate.

Taking the distance between two vortices to be twice theexaiddius, we note from
experimental observations of vortex lattices in a Bosestein condensate that the vor-
tex density reaches the normal density at about half thexoadius; see, for example,
Fig. 9.3 in Pethick and Smith [328], taken from Coddingtoalef389]. From Fig. 3.1,
we also see that the vortex density reaches the normal ceatdedensity at around
five healing lengths. This gives us an estimate g = 5a,. We then use,, ~ 2.5x%
10?°m, ag = 7/(2mE,)z, andp., = ME,/V, to give estimates foE, andV,. With these
approximations we find values &, = 2.5x 104°J (1.56x 103°eV) andV, = 4.45x
10°84Jn? (3.7 x 10%°eV2). A better approximation of the inter-vortex separation
could be made by considering the forces acting on a vortéiedatithin the system
we are studying. However, as we mentioned at the start ok#uson, these approxi-
mations are used only in obtaining Fig. 3.2 to give an idedefforms of the profiles

for v, (r) and \&(r).

Other Bounds

We can obtain some other bounds to cfiitather bits of parameter space. The asymp-

totic vortex density is given by
E,
Poo = m(—). (3.83)
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If the vortex exists as a component of a galaxy, then therensmanum and maximum
density that the vortex can have, given by the maximum andhmuim known values

of mass density within a galaxy,

Pmin < Poo < Pmaxe (3.84)

The value ofg, in eqn. (3.83) is fixed (as we are fixing the healing lengthyl, smthe
bound on the density becomes a bound/en
72 72
<V < :
2802Pmax ° 2aOzpmin

(3.85)

Eqgn. (3.81) gives a lower bound &f3, so to obtain an upper bound, we use the second

half of the above relation.

h2
Vo < 22 (3.86)
Another bound is provided because the vortex velocity shaaler exceed the speed
of light,
V, = mzr <CcC. (3.87)

It can be seen from eqgn. (3.72) that the vortex velocity iases with decreasing ra-
dius. This relation breaks down within the vortex caag, where the vortex velocity
diverges. Finding an appropriate description is a topicoofa interest in condensed
matter theory [390]. We evaluate the maximum vortex vejogita distance af = 5a
from the origin, i.e.in a regime where we are sure the ratakiolds. This gives a
bound on the mass.

ms> ——. (3.88)

Values

To see how the restriction om andV, varies, we can think of a range of healing

lengths that cover all possible scales in a galaxy.
1x10°%m (32x10%kpc, ~ 7x102AU) < ag (3.89)

a < 1x10Pm (324 kpc) (3.90)

This range of scales takes us from sub solar system, to ttia¢ ¢drgest known galax-

ies (e.g. IC 1101 in the Abell 2029 cluster [391]). The two £ this parameter
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range are extreme cases for cosmological vortices, but weedtesen them to include
all possible scales, to make our bounds as conservativesagpm At fixeday we will
also cover a large range nfthe number of healing lengths where the velocity profiles

Cross.

For the bound given in eqgn. (3.86), we take the minimum degif@itnd within a galaxy
to be the cosmological density. This minimum must necelgdagiclose to the critical

density of the universe,

3H3

8nG

With Hy = 70 km s Mpc4, this gives a value gfmin = 9.2 x 10727 kg m™3,

Pmin = Pc = (3.91)

3.4.4 Results

In Fig. 3.3, we show a region of th&/{, m) parameter space for the healing length
ay = 1x 10 m (~ 1pc). The lines bounding the region of allowed parameteresl
are given by egns. (3.81), (3.88) and (3.86).

The lower bound ol is given when y, and \g cross at a value of ten times the healing
length,n = 10. A vortex could be considered more stable jfand \¢ cross at a greater
value ofn. Higher values o will then move the bounding diagonal line upwards in
the (Vo, m) parameter space. A value of= 10° is also plotted to demonstrate this. It
is clear then, that highervalues (the more stable vortices) are more restrictiveen th
values that the parametevs andm can take. We will now just consider vortices with

n = 10 in order to be conservative in ruling out possible parameinges.

Fig. 3.4 shows allowed regions for various healing lengdtisat a value oin = 10.
We see that as we move to smaller valueagpthe allowed bounds om andV, both
move up, as expected from eqgns. (3.86) and (3.88). More gdijsgias the mass of the
particle is increased, the repulsive potentfgimust increase to balance the stronger

gravitational force.
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Vo
@3 (eva)) Gm)

8.2e-22 6.2e-90 1e-60 - n=1e6
8.2e-27 6.2e-95 1e-65 -
8.2e-32 6.2e-100 1e-70 -
n=1el

8.2e-37 6.2e-105 1e-75 -

8.2e-42 6.2e-110 1e-80 -+

8.2e-47 6.2e-115 1e-85 -

8.2e-52 6.2e-120 1e-90 -~

8.2e-57 6.2e-125 1e-95 -

8.2e-62 6.2e-130 1e-100 -+

8.2e-67 6.2e-135 1e-105 -

T T T T T T L] m
1e-62 1e-60 1e-58 1e-56 1e-54 1e-52 1e-50 1e-48 (kg)
5.6e-27 5.6e-25 5.6e-23 5.6e-21 5.6e-19 5.6e-17 5.6e-15 5.6e-13 (eV)

Figure 3.3: Allowed region in {/o, m) parameter space, for a healing lengttagft 1 x 10 m (~
1 parsec).

3.5 Discussion

In this chapter we have presented, in some detail, techaifjoey condensed matter
physics and discussed how they might be used in a cosmolagttang. We first

looked at the phenomenon of Bose-Einstein condensatiah,danved the Gross-
Pitaevskii, or nonlinear Schrodinger equation, enablisgo present the inherently
guantum-mechanical phenomenon of quantised vortices.sé& the Madelung trans-
formation to relate the Schrodinger equation to the fluidagipns, and also saw how
it could be used in a purely classical context to circumveme of the problems of
standard approaches to structure formation, as mention8ddtion 2.2. We then re-

turned to the quantum case in order to describe a Bose-kimtstedensate dark matter
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\Y
(ev2) gm3)
8.2e-27 1e-65 |
8.2e-32 1e-70
8.2e-37 1e-75
8.2e-42 1e-80
8.2¢-47 1e-85 ]
3= 1lelOm
g,= lel3 m
8.2e-52 1e-90
G- 1e16 m
PG= 1e19m
8.2e-57 1e-95
BNG,= 1e22 m
8.2e-621e-100 m

1e-65 1e-63 1e-61 1e-59 1e-57 1e-55 1e-53 1e-51 1e-49 1e-47 1e-45 1e-43 1e-41 1e-391e-37  (kg)
5.6e-30 5.6e-26 5.6e-22 5.6e-18 5.6e-14 5.6e-10 5.6e-6 5.6e-2 (eV)

Figure 3.4: Allowed regions in Yo, m) parameter space, with= 10. Healing lengths as labelled.

candidate, where a galaxy dark matter halo is threaded hytiged vortices. The grav-
itationally coupled nonlinear Schrodinger equation ioanplex system to solve. In
the case of a laboratory Bose-Einstein condensate, salftgtional forces are not im-
portant and even here analytical progress is limited. Hewesing a simple physical
argument, we have shown how limits on the consistency of autiodel can be im-
posed. Considering sensible values for the size of a galBose-Einstein condensate
vortex places constraints on the values that the intemagtadential, mass and hence
the chemical potential can take. There remain sizeablemsgf parameter space in
which a model of dark matter comprising a Bose-Einstein eosdte appears to be
viable. If the parameters of a dark matter particle can bebéished from experiment,
or predicted from theory, the model we have presented faigb an easy comparison
for deciding whether it is possible for a galactic scale BBgestein condensate vortex
to exist. Suggestions have been made to test the hypotHiesgatactic Bose-Einstein
condensate with gravitational lensing [276], possiblythe case of vortices, from ro-
tationally induced frame-draggindfects [279]. It has also already been shown that
the quantum mechanical properties of such a dark matter Inmoag eliminate the

problems of cuspy density cores and the overproductionludtsucture that the CDM
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model seems to predict [275]. Our analysis shows there grerre where both light
galactic Bose-Einstein condensate particle$,eV [322, 327], and ultralight particles,
~ 10%eV [279, 275, 296, 303], are viable. From regions of our pat@mspace, it
can be seen that while ultralight bosonic particles areuletrout, the allowed regions

are far more constrained for the lighter mass particles.

The relations between cosmology and condensed matteradgivate a comparison
with cosmic strings and the bounds placed on them by the @oSharowave Back-
ground. Global strings have an energy per unit length agsatiwith them, whose
equation (in natural units) is

it ~ 2m72|n(%), (3.92)

whereur is the string energy per unit length, @nsion n is the symmetry breaking
scale, which we will discuss fully in Chapter éljs the string core width, or equiva-
lently, the coherence length, andis a cut-df distance that must be imposed to stop
the expression diverging. This may be the curvature of thegstor the inter-string
separation. We can see that this expression is identichbtdar the energy per unit

length of a Bose-Einstein vortex, given by eqgn. (3.55).

In the cosmic string literature, the string energy per warigith is typically expressed
as a dimensionless number, given by the combinaBprn. In the early universe,
strings with a high tension can typically give rise to a dar@mount of anisotropy
in the CMB. It can be shown, see Section 10.2 of Vilenkin andli@hd [380] and
references therein for example, that in order to be congisigh observations of the
CMB anisotropy, then

Gur <2x10°, (3.93)

or, in S.I. units,

ur < 2.4x10%8Jmt (3.94)

We can make a simple comparison with the results obtained fhe allowed regions
in Fig. 3.4. We remember from eqn. (3.55) that the energy parnength of a vortex
is given by

o
Ez(vor) ~ ﬂRooznZE In (%)
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Using eqn. (3.57)

and the expression for the healing length,

2 = /]
(2mE,)%’

we can rewrite the expression for the energy per unit lengterims ofm andV,, the

parameter space that we have been dealing withagnd
n ko r’
EZ(VOI') =~ Zm |n (g) . (395)
We have already suggested an inter-vortex separationsfr’ = 10ay, giving

h6

Ez(vor) ~ 18m

(3.96)

Using Fig. 3.4, we can simply readf@pproximate values ofy, andm, for different
values of the healing length, to get an idea of the energy metangth of each vortex.

The results are given in Table 3.1.

2l (m) m (kg) VO (‘J n.F,) Ez(vor) (Jn‘rl) Ez(vor) (G,UT)
101 | 108 10770 2.5x 10% 2x 104
102 | 1072 107 2.5x 10° 2 x 10
10 | 1076 1078 2.5x 100 2x 104
10Y° | 10°%° 1078 2.5x 107 2 x 10
102 | 10°% 10°%° 2.5x 10°° 2x 1074

Table 3.1: Vortex Energy per Unit Length.

When we compare these values with the bounds placed on C&ririgs
Gur <2x10°,

it would seem that this analysis would start to cast signiticeoubt on galactic Bose-
Einstein condensate vortices existing at all. We see thailsmvortices could be
consistent with CMB observations, but also note from eqr@5Bthat any attempt
to separate the vortices further would exacerbate the @mablTimescales of galaxy
formation also complicate the picture. It may be possibk guch vortices would

form after any interaction with the CMB.
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A more detailed analysis is required to resolve the probléemsonstrated here.

In future work, it would seem to be of fundamental importat@évestigate further
whether a dark matter candidate could reside in a coheremitagm state, if the only
interaction was gravitational. This is the topic of a widegeng research program, as

mentioned in Section 3.4.

A less ambitious undertaking would be to find a numerical tsmtuto the coupled
equations, in order to describe the density profile of a ¢atienally coupled vortex.
This may be dticult in the case of an infinite background, progress may be tabl
be made by considering a ctiton the background density, imposed by the physical

extent of the Thomas-Fermi cloud modelling the galaxy halo.

We could develop this model further by also considering thesbility of instability

and collapse of the vortex in the axial direction. This coquidvide further constraints
on the dark matter particle parameters, and the existengerti€es in dark matter
Bose-Einstein condensates. In both cases, the system tdvieel svould be subject to

a more complete numerical method than we have been able termept so far.



Chapter 4

Relations to Field Theory

As already alluded to throughout this thesis, there are dyeuf strong links between
high-energy field theory, and the models used to describagrhena in condensed
matter. We have already come across concepts such as cateferend quantised
vortices. Chapter 3 addressed these ideas from a conderdtt standpoint, and in
this chapter we will focus on the field theory point of viewsgpaularly with regard

to phenomena that the two areas have in common, as well agdaing some more

mathematical concepts.

We start with a comparison of models describing featureseid fiheory and con-
densed matter, and their analogous characteristics. Ws fagarticular on the role
of spontaneous symmetry breaking, looking at some reldtedgmena such as soliton
solutions, examples of which are present in both condensggénand cosmology. We
also discuss the relation between spontaneous symmetikibgeand Bose-Einstein

condensation.

We also mention a hypothetical particle that embodies mb#te concepts in this
chapter. The axion is an example of a particle that can beugextlas a result of
spontaneous symmetry breaking, and is relevant to thissthgst is a nonrelativistic
low mass particle (m 10°° eV), which is born as a Bose-Einstein condensate and has

been considered as a promising dark matter candidate.

We finish with an example of one of the problems associatel thi¢ production of

topological defects in the early Universe, in the contexd 8ose-Einstein condensate
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dark matter model mentioned previously in this thesis.

4.1 Comparison of Related Models

We start by looking pedagogically at some models that ar@lfigelevant to the

ideas within this thesis: the Abelian-Higgs model, the Gtdde model, the Landau-
Ginzburg theory, and the model of Bose-Einstein condemsancapsulated by the
Gross-Pitaevskii equation. This also allows us to intredowany concepts that are
common to all, such as topological defects, symmetry breglkand the Higgs mech-

anism.

4.1.1 The Abelian-Higgs Model

The Abelian-Higgs model is the typical pedagogical exaniplelemonstrating mass
generation via spontaneous symmetry breaking. It is erpeict play a major role
in the standard model, and the detection of the associatéidlpatheHiggs bosonis
one of the primary goals of the LHC. We have already mentionady of the concepts
and the historical background in Chapter 1. The model ctneisa complex scalar
field, coupled to electromagnetism. In the context of thdyeldniverse, this field
is usually considered to be primordial in origin, and funeaal, though we have
again suggested in Chapter 1 that this may not be the caseotéetial in which the
Higgs field moves evolves with the Universe’s decreasingoature, to a potential
that exhibits spontaneous symmetry breaking. We will desdhe evolution of the
potential with temperature in Section 4.2. For now it will aficient to consider

models with a potential that exhibit spontaneous symmetgking.
The Abelian-Higgs Lagrangian (density) is given by
. — . 1 )
L = (0, +ieA)p(0" —ieN)p - ZFWF“ — V(o). (4.1)

Here,F,, is the electromagnetic field strength tensey, = 0, A,—0,A,, with the gauge
vector fieldA,, and the coupling constant of electromagnetesnThis Lagrangian is

invariant under the transformations

¢(x) = ¢'() =€ Wp(x),  AL) = A) = A (x) + éﬁpa(x)- (4.2)
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The potential takes the form

V(@) = —1Pig + Sl (4.3)

If the parametep? in eqn. (4.3) is positive, then the fieltlhas a non-zero vacuum
expectation value. There is a circle of degenerate minima at

m=%=% (4.4)
We can expand around this vacuum, as such redefining some wéttables, to pro-
vide some intuition into the properties of the model. As tbeeptial is symmetric, we
can fix the gauge so thatis real, rewriting the field ag = ¢o + ¢1/ V2. Substituting

this into the Lagrangian, eqn. (4.1), gives

1 2 1 1
Z = é (au¢l) + E MZApAﬂ - §N2¢12 + Lintvacs (45)
with
M= V2ey N=V2u (4.6)

ZLintvac CONtains terms that mik, and¢,, the ‘interaction’ terms, terms which are
higher than second-order i, and a vacuumftset.%,,. = u*/2v, which arises due to
the form of the potential we are using. The potential has @i form in the real
direction, and perturbations up and down this potentia¢ gise to a massive; field.
The vector field also becomes massive. This Lagrangian(édy), no longer respects
the U(1) symmetry, and the symmetry is said taspentaneously brokeie see that

spontaneous symmetry breaking has given rise to particksma

We can define two length scales from the Compton wavelendthe particle masses.

1 1
= = N_l = — 4.7
V2epy ¢ V2u @)

The significance of these length scales will become appéatant

d=M"1

These results are particular to models invariant undecal transformation, i.e. one
where the parameter is dependent on thiecal coordinatex, @ = a(X), rather than

a global one, where the parameterindependent of any such coordinate. A similar
procedure can be performed on the Goldstone model discietgedwhich is invari-

ant under the global transformatigiix) — ¢’(x) = €2¢(x). In this case, we would
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produce a massive boson, and a massless scalar partBiéjstonéboson. Goldstone
bosons were first described by Nambu [392], in the contextipésconductivity, and
demonstrated in field theory by Goldstone soon after [393heWbreaking a local
symmetry, massless Goldstone particles do not appeare astresponding degree of

freedom is absorbed by the vector field, giving rise to masgauge bosons.

The Lagrangian, eqgn. (4.1), gives rise to the equations diomo

(0, — ieA)(& ~ ieA')p — 1’ +VIgl*¢ = O, (4.8)
0.F" =ie(90'¢ — ¢3'¢) — 2N |9l = |, (4.9)
wherej* is the four-current. With the rescaling

¢

¢ — ¢ ==, (4.10)
$o
X — X = epoX, (4.11)
AH
A — A = —, (4.12)
$o
the field equations become
(@~ IA,)@" ~ A"~ S0 (1-1¢T7) = 0. (4.13)
and
a/ﬂF/yv — i (¢/a/v¢? _ (Z/a/v(ﬂ) _ 2A/v|¢/|2 (414)

so that the model depends only upon the paramegr This is the ratio of the square
of the Compton wavelengths of the two particles defined presty. From now on we

will drop the primes from discussions of eqns. (4.13) anti4%.

Solitons

One of the phenomena that brings together the models weildessithe appearance
of soliton solutions. Solitons can be broadly defined aslstatnfigurations of local
energy density, and can be split into two categories: taposb and non-topological.
Generally, topological solitons occur wheiftdrent degenerate vacuum configurations
exist in a model. A topological defect is required to intdgbe between the two fier-

ent vacuum states. Within the interpolating region existsanergy density associated
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with ‘undoing’ the defect. We can see that the formation pological defects is inti-
mately related to symmetry-breaking phenomena. In a modebiting spontaneous
symmetry breaking with a number of degenerate vacua, thmsidgical defects will
usually be present, often with some associated particldyataon. The topology of
the vacuum manifold also ensures the stability of the swolits the topology cannot

be continuously transformed to a topologically trivialgabn.

Non-topological solitons exist only in nonlinear models,r@nlinear &ects are re-
quired to cancel dissipativdfects that will usually destroy the configuration. We have
already seen examples of non-topological solitons; themstars and oscillatons that

we encountered in Chapter 2. We will not comment further @sé¢hsolutions.

\ortices

In the case of the Abelian-Higgs model, the topological disf@roduced are line-like
string solutions, the Nielsen-Olesen vortex lines [378]. To lookvortex solutions in
the system, we make a vortex ansatz in cylindrical coordméiy, z), similar to that

in Section 3.2.2.

#(r) = €™R(r), (4.15)
A(r) = A (r) = nA(r). (4.16)

Or, in Cartesian coordinates,
Ar) = (—rXZnA(r), r—);nA(r), o). 4.17)

Substituting this ansatz into equations (4.13) and (4\ié)pbtain the equations

R(r)  dR(N1
dr2 ar r r2

R(r) (A(r) — 1)* - éR(r)(R(r)2 -1)=0, (4.18)

and
d?A(r) ~ }dA(r)
dr2 r dr

As before, explicit solutions to these equations are notn@and they must be solved

- 2R(N)*(A(r) - 1) = 0. (4.19)

numerically. The solutions can be thought of as represgatiscalar and a vector flux
tube, with widths corresponding to the Compton wavelendttme scalar and vector

bosonsya ~ M~ andr,, ~ N1,
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The ratio of the Compton wavelengths defines for us the paeame had mentioned

previously,
M2 v
B = (F) =2 (4.20)
and we can then split the solutions into two types.
B<l = NI>M?1 (Typel (4.21)
B>1 = N1<M?1 (Typell) (4.22)

We label them in this way to facilitate a comparison with te@adensed matter solu-

tions that will be discussed later.

4.1.2 The Goldstone Model

The Goldstone model can be considered to be the Abelians-Higadel without the
coupling to electromagnetism. The introduction we giveeheill be brief, but the

reason for introducing it will hopefully become evideniain the chapter.

The Goldstone model describes a real scalar field, not cduplelectromagnetism.

The Lagrangian can be written

1
L = SO0)F9) + 18 - 56" (4.23)

This model also exhibits spontaneous symmetry breaking) jfame follow a similar
procedure to that of the Abelian-Higgs model, expandingiadoone of the minima

of the potential, we would uncover a massless scalar (Gmié$tparticle, and a bo-
son with masN = V2u, as before. The equations of motion from the Goldstone
Lagrangian are

8,0"p — 1P + 2v¢> = 0. (4.24)

We recognise this as having the form of the nonlinear Klearddn equation, with
the negative term due to the symmetry-breaking form of themgal we are using.
The Goldstone model also exhibits a topological defect. drmplicity, we take the

one-dimensional case, where there is a static solutioretedations of motion,

|=

#(2) = = tanh(2). (4.25)

Nl

v
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This is a kink, ordomain wallsolution, as it separates two domains of the potential
with different values of the degenerate minima. We notice that tigigesis a length

scale defined previously by egn. (4.7). We can rewrite eq@5j4s

#(2) = do tanh(%g) . (4.26)

In this case& has an interpretation as the width of the domain wall.

4.1.3 The Landau-Ginzburg Model

The Landau-Ginzburg model is the macroscopic equivaleG& theory, used to
model the behaviour of superconductors. Some of the histioityis subject was pre-
sented in Section 1.2. Landau and Ginzburg first construectédory of second-order
phase transitions, and then coupled this theory to electgmetism. The Lagrangian
they obtained describes the evolution of a complex scathaasuch, is identical to the
Lagrangian of the Abelian-Higgs model, eqn. (4.1). In casitwith the field theory lit-
erature however, the theory is not usually presented in ar@v way. While the same
mathematics can be applied to the twfiglient theories, the interpretation is of course,
very different. The wavefunction in the Abelian-Higgs model repnesa fundamen-
tal scalar field in the early Universe, while the wavefunctio the Landau-Ginzburg
is a phenomenological order parameter describing how deefhe superconducting
phase the material is, or the density of Cooper pairs. Sireean apply the same
mathematical techniques, we start again from the Lagranggm. (4.1) in order to

make some comments about the theory of superconductivity.

For simply connected domains the Lagrangian, and the exsadf motion, are again
invariant under the local gauge transformations, eqn).(AMth this transformation,

the four-current, eqn. (4.9) becomes
j“ = —26A|pl%. (4.27)

The spatial part of this equation is known in the condenselembterature as Lon-
don’s equation [371]. This equation can be used to explaretlusion of magnetic
flux from a superconductor. This is known as tMeissner gect We take the curl of
the London equation

Vx| =-26%¢°V x A, (4.28)
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and the curl of the fourth Maxwell equation

. OE
VxB_J+E, (4.29)

along with the identity x (VxB) = V(V.B) - V2B. Putting all this together, we obtain
V2B = 2¢’nB, (4.30)
wheren = |¢|?, the number density of charge carriers. The solution todbigation is
B = Boe 4. (4.31)

We see that a magnetic field entering a distaxa&o a superconductor is exponen-
tially suppressed, and dies away within a penetration redjof depthd = 1/ V2e2n.
We note that this is exactly the quantity given in eqn. (dwHere we interpreted it as
the Compton wavelength of the gauge boson associated weiipitntaneously broken
symmetry. This penetration depth is a direct consequenteeasymmetry-breaking
potential, and can be considered as the acquisition of massdauge boson. The
gauge boson in this case is the photon, and in going from baegsless to massive,
the force that it mediates goes from having an infinite ramgeatving a finite range

within the superconductor.

In terms of a superconductor then, the two quantities in égi) have an immediate
interpretation as the penetration depth, and the cohellengéh of the wavefunction
within the superconductor. If the coherence length is ssndlian the penetration
depth, then at high enough external fields, magnetic fluxsloz penetrate the super-
conductor. In this case, the flux lines arrange themseltesiarrow tubes, or vortices,
with a core of the non-superconducting phase carrying thgneti flux. These mag-
netic flux tubes were first described by Abrikosov [379]. Agawve recognise this
phenomenon. It corresponds to the regpne 1, as given in egn. (4.22), and is known
as a type Il superconductor. In the condensed matter gasénown as the Landau-
Ginzburg parameter. Magnetic flux cannot penetrate typg@émonductors, and so

magnetic flux tubes do not exist within them.

We saw in Section 3.2 that the representation of the supeérfelocity as the gradient
of a phase can lead to vortices with quantised circulatidms happens analogously

for superconductors.
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To see how the magnetic flux quantum arises, we can consigee d superconductor,
which we have seen allows the presence of magnetic flux, lewepts it penetrating
beyond a distancd. We again consider the equation for the current, eqn. (A\®.
write the wavefunction ag = |¢|exp(iny), and consider a contour that is far enough
away from the vortex core that no magnetic field penetratethe currentj” is zero.

The spatial part of egn. (4.9) becomes,

n 56 Vyd =e 9§ Ad (4.32)
L L

For the wavefunction to be single-valued, the integral adaine contour must be equal
to 2r, and the right-hand side becomes an integral over a sudac8tokes’ theorem,
giving the magnetic flux,

2nn = efs B.dA = ed, (4.33)

so that the flux is quantised in multiples of,2

® = ? (4.34)

This expression also holds for cosmic strings in the Abehaggs model.

Critical Coupling

Thep = 1 case is of some special interest. As well as being the trandietween
type | and type Il superconductivity, it is important anagtly as the often dficult-
to-solve second-order equations of motion can be reducedotéirst-order equations
[394]. Fields satisfying these equations also satisfy idiahown as thédogomolny
bound which states that the energy of the field configuration is@mmim, and so the

soliton solution is inherently stable.

Thiscritical couplingis also of importance to supersymmetry [395], where BP®stat
solutions which saturate the Bogomolny bound, are impodarsupersymmetries of

the theory are automatically preserved. See, for exampleg J396, 397].

4.1.4 The Gross-Pitaevskii Equation

We have looked at the Goldstone model, which can be considet® the ‘uncharged’

version of the Abelian-Higgs model, that is, does not inel@ectromagnetism. In
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the same way, in the nonrelativistic versions, the Landa#éurg theory describes
condensate phenomena that is electromagnetically couplele the Gross-PitaevskKii

equation describes condensate phenomena that is not.

Generally, when discussing the Landau-Ginzburg theoeyetiuations used are not in
the covariant form that we have been using. The equationsotibmdepend on the
first derivative, with respect to the time coordinate, rathan the second, as is present
in the Klein-Gordon equation. All the phenomena we have iesd so far have been
time independent, so this has not been a concern. In Appéndue discuss how to
reduce the relativistic nonlinear Klein-Gordon equatioriite nonlinear Schrodinger
equation, and similar techniques can be employed to mowe fine Abelian-Higgs to

the Landau-Ginzburg theory.

We remind ourselves of the Gross-Pitaevskii equation, €384),

0 h?
(1, 0) = =2 V(1) + Ve (1, 1) + Vol (r, OFFw(r. ) — B (1, 1),

This equation also admits soliton solutions. We have alrsagn the vortex solutions
in Section 3.2.2, but there is also a one-dimensional soiuéinalogous to the domain
wall solution in the Goldstone model. To construct a solutiwe can consider the

condensate bounded by a container, so that the potentiatéglas

Vext = 00 forx<0 (4.35)
Vet = 0 forx > 0. (4.36)

The solution to the Gross-Pitaevskii equation is then

W(X) = Y tanh(%g). (4.37)

This solution for the case of a condensate with a boundaryatsmbe extended to
all space. In this case, the solution describes a statitosolilt is also possible to
find moving solitons of this type, whose profile typically @éegls on their velocity.
See, for example, Pethick and Smith [328]. The soliton smiuabove is known as a
dark soliton, as it describes an underdensity in a constant gyelnackground (recall

p « [¢?). There are also soliton solutions for attractive inteémacpotentialsV, < O.
These are referred to dsight solitons, as they correspond to an overdensity. We

came across one such model in a cosmological context at thefedection 2.4.1. As
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we noted there, attractive interactions generally leacegative values of the particle
scattering length, and an imaginary sound speed. The ditdssolution given above
is identical to eqn. (4.26). Agaifiis interpreted as the width of the domain wall, or a
coherence length over which the wavefunction varies, giyen

£ = h
(2mE,)?’
agreeing with the previous argument for the coherence lhengtgave in egn. (3.36).

(4.38)

4.2 The Relationship between Bose-Einstein Conden-
sation and Spontaneous Symmetry Breaking, and

the Role of Temperature

Very often in high-energy field theory literature, it is segted that the symmetry of
the theory being described is spontaneously broken by thesspnce of a condensate.
See, for example, pg. 39 of Vilenkin and Shellard [380], pg2 and pg. 428 of
Kolb and Turner [398], and many others [399, 400, 401, 403jis Btatement is an
equivalent way of describing the process of mass generaa@pontaneous symmetry
breaking. The Higgs mechanism, for example, generates e-Bwstein condensate
of Higgs particles, while the particle produced as a reduti@spontaneously breaking
the Peccei-Quinn symmetry, the axion, is also produced iera-momentum Bose-
Einstein condensate. We can pause for a moment to see wigtth@sgescriptions are

equivalent.

We have already seen the Bogoliubov prescription, whicleriass, in the limit of
large occupation numbers, how the creation and annihil&tp@rators can be replaced
by a non-quantum number, in this case the root of the numbpaicles occupying
the ground state. In field theory, the field wavefunctgpoacquires a classical expec-
tation value, which can equivalently be describedasarticles sitting at the bottom
(macroscopically occupying the lowest energy state) ofpgbtntial V(¢). In this
way, the appearance of a non-zero vacuum expectation valirdd theory also cor-
responds to the appearance of a condensate. In a thermodysystem, the onset

of Bose-Einstein condensation, and the appearance of aeronvacuum expectation
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value arising from a spontaneously broken vacuum can bad=resl two parts of the

same process, both occurring at some critical temperature.

It is expected that the symmetry groups corresponding tetdredard model were uni-
fied at some higher temperature, earlier in the Universs®hji. As the temperature
decreased, the potential of the model moved from a symmmtg¢to one exhibiting
spontaneous symmetry breaking. We can demonstrate thig the Goldstone model.
In spontaneous symmetry-breaking phenomena in the eanxetse, the scalar field

is a quantum field, and hence the classical poteXia) is modified byradiative cor-
rections We can introduce agfective potentiathat is treated in the normal way, but is
derived by including quantum corrections to the potenfidle dfective potential can
be built up by summing the-loop contributions, and was first described rigorously by
Coleman [403] and Weinberg [119]. Weinberg was awarded #7® Nobel prize for
his work with Salam and Glashow on the electroweak intesacflhe development of

a dfective potential allowed a large amount of progress on a lwsvgy limit of QCD.

It is possible to show that the calculation of the quantunrestiions is the same as
computing the free energy. See Vilenkin and Shellard [380xample. Thefective

potential then, can be shown to be

7'('2

Veir(¢, T) = V(9) + 2—14,///2(¢)T2 - %,/VT“, (4.39)
where
Y (4.40)

are the mass and number of bosonic and fermionic spin states.

We remind ourselves of the form of the potential we have beemueqn. (4.3),
20,20, V)4
V(g) = —u°lp| + §|¢| :

We split the complex field into two real fields,

¢?%mﬂw, (4.41)
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so thatlg|> = 2(¢2 + ¢3) and the masses of the associated particles are given by the

eigenvalues of the matrix

0V (¢)
2= 4.42
0Pi0¢; (4.42)
SO
mi(g) = —1*+3vigP (4.43)
mi(g) = —1*+vigl. (4.44)
Note that if we are on the vacuum manifolgl? = “72 then
m = 2u° (4.45)
m = 0 (4.46)

as we derived in Section 4.1.2. Witw? = mé + mg, and.#" = 2 (two bosons),
egn. (4.39) becomes

1 2
Ver(9) = ~80 + SI1* + 5o (-2 + ABAT? = 2T (4.47)

Defining me? to be the cofficient of|¢?, we find

%mgfr - é(Tz - 6”72). (4.48)

This defines for us a critical temperature,

2
T2 9 (4.49)
\4

crit —

If T > Terit, thenmzeﬁ > 0, and the fective potential takes a quadratic form with a sin-
gle minimum. This corresponds to the paramefein the potential, eqn. (4.3), being
negative. If however, the temperature drops below thecatitemperature] < T
(the parameten? is positive, as we assumed in our initial demonstrations/ofrae-

try breaking), themmZ. < 0, the dfective potential develops two degenerate minima,
and exhibits spontaneous symmetry breaking. We recalfdhaibe potential we have
been using for our symmetry-breaking modéls= 1/ /v (egn. (4.4)), and see from
egn. (4.49) that the critical temperatufg;; is comparable to the symmetry-breaking

scalegy. This is generally the case.

A similar process exists in condensed matter physics. Iteéhgerature in a super-

fluid or superconductor is raised, then the proportion ofdemsed phase decreases
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until some critical temperaturg.; where the fluid is completely in the normal phase.
Kirzhnits pointed out that symmetries in particle physiasdels can be restored in a

similar way [404, 405], and this is known agmmetry restoration at high temperature

From the temperature of the symmetry-breaking scale thescan predict the mass
of the associated patrticle, or vice versa. For each symnoéttige theory, there is
also a conserved charge. This is Noether’s theorem [223]e&ch conserved charge,
it is also possible to associate a chemical potential. Weirsa8ection 3.2 the use
of the chemical potential as a Lagrange multiplier, whicth {e a description of a
Bose-Einstein condensate, with the associated consenattity being the particle
number. We can demonstrate the role of a chemical potentsglantaneous symmetry
breaking, to reinforce again the equivalence of spontasiegmmetry breaking and

Bose-Einstein condensation.

Bose-Einstein condensation as a broken symmetry phenanvea®first pointed out

by Bogoliubov [406], and later extended in seminal paperBéwyard [407], Kapusta

[408] and Haber and Weldon [409]. The full derivation regsithe use of a complex
functional integral calculation, integrating out the caival momenta in the process.
This elegant calculation is fairly involved, and we can suamise their argument by
considering the féect of a chemical potential, in a similar way to our derivatad the

Gross-Pitaevskii equation, egn. (3.20), in Section 3.2.

We consider a model similar in form to those we are familighwiVe take a real scalar
field ¢;, with two components = 1,2 (we could consider the two components to be
the two parts of a complex field), and a conserved charge. We thie Hamiltonian
density,

1

1
H = =i = 5 (Vi) (V) + (i + g (¢i)?, (4.50)

and conserved charge

Q- f 60 = f Px(da — o), (4.51)

wherer is the momentum density conjugatefo

We can demonstrate th&ect of this background charge by considerithg- E, Q. In
our example in Section 3.2,we consideEedo be a Lagrange multiplier, one of which

can be assigned to each conserved quantity, or symmetrg sf/gtem. The conserved
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charge for the Gross-Pitaevskii equation was particle rerhb

The corresponding,-dependent Hamiltonian density may be written as
%(Ev) = — Evjo = — Ev(¢l7r2 - ¢27Tl)’ (452)

giving

1 1
H(E,) = 5t = E(V¢i)(V¢i) + (gl + g|<l5|4 — Ey (1712 — mah). (4.53)

From Hamilton’s equations, we find

= O

. 0
¢1= JC(Ey) = —m1 — B¢, ¢ = —H(E,) = —m2 + E 1. (4.54)

ony O

The Lagrangian can be written
g(Eu) = ﬂi(.pi - %(Eu) (455)

Substituting our expression fo’(E,), eqn. (4.53), and Hamilton’s equations, eqgn. -

(4.54), into the above equation, we find the Lagrangian

L(E,) = 10,81 = V(¢) + E,(¢162 — d2b1), (4.56)

where the potential is given by

V(9) = (2 - EIoP + Sol" (4.57)

Generally, the chemical potential is temperature depanéen= E,(T), and we can
see that if the chemical potential evolves in such a way toafiemE,? < x° to E,? >

(2 at some critical temperatufie,;, then the potential given in eqn. (4.57) evolves into
a potential exhibiting symmetry breaking, with the samerf@s eqgn. (4.3). We see
that symmetry breaking in the presence of a background ehgifgctively forms a
Bose-Einstein condensate. We should not be surprised tiiira theory including a

chemical potential, eqn. (4.56), can also be written in trenfof a gauge theory,

2 = D47 - 1P = Sl (4.58)

where

D6 = 8,6 —iA¢, A, =(E,0,0,0). (4.59)
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These results have also been formalised for high temperayistems [410, 411], rel-
ativistic systems [412, 318], and extended to cosmologigatems [317, 413], and
Yang-Mills theories in QCD [414]. Quark or gluon condensatie result of breaking
a chiral symmetry in QCD may be responsible for producing hadron esas€hiral
condensates are an example of a fermionic condensate. drecntondensates are
possible as fermions combine into Cooper pairs to producetec|e that behaves, sta-
tistically, as a boson. The first fermionic condensate waslygeed in the laboratory
by Deborah Jin’s group in 2003 [415, 416]. Condensates areeadhibited in theories
in which ghosts are present. See, for example, Arkani-Ha@tedl [369]. As an in-
teresting link to gravitational physics, Séhand Barnhill [417, 418] showed that the
electric field inside a conductor does not vanish when a tatenal field is present.
DeWitt [419] described a similar result for magnetic fieldside superconductors,
and showed that the vector potential associated with framggihg can be formally

associated with the vector potential for a superconductor.

Axions can also be produced as the result of a symmetry-lmgadhenomenon in

QCD, and reside in a Bose-Einstein condensate.

4.3 The Axion

The axion appears as a result of a proposed resolution tettbieg CP problenin
Quantum Chromodynami¢QCD), the theory of the strong interaction. The particle
appears as a result of symmetry-breaking phenomena pragagpseudo) Goldstone
boson. The axion is not massless, as Goldstone bosons aygaakim &ects also

produce a small explicit broken symmetry, providing a ueigacuum.

We have already demonstrated some examples of symmetikitgedeading to par-
ticle production and the creation of topological defectsg éhese concepts can be
straightforwardly applied to the symmetry-breaking ptitdrhat is used to solve the
strong CP problem.
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The Strong CP Problem, and a Dark Matter Candidate

Charge-Parity (CP) symmetry is a postulated symmetry afreahat suggests that a
particle with opposite charge and parity should be indggtishable from the original
particle. The combination of charge and parity was origyralggested as a symmetry,
winning Lee and Yang the Nobel prize in 1957 for their theioedtwork, after parity
alone was found to be violated in some weak interactions,[42@]. In fact the CP
symmetry is still violated in weak decay [422], a discoveltyieir won James Cronin

and Val Fitch the 1980 Nobel prize.

When QCD was first being developed, the theory apparentinb&P violating terms.
As the details were expanded upon, 't Hooft [423, 424] redlithat the vacuum struc-
ture of QCD is more complicated than initially thought. Thditional structure al-
lows CP violating terms, characterised by a term in the Liagjean known as thé-
parameter CP violation is not observed in experimental tests of thangfinteraction,
and in addition, the CP violating terms give rise to an eleaipole moment of the
neutron. Measurements of CP violation in QCD and of the meutectric dipole mo-
ment require thé-parameter to be less than 1€ with CP being preserved exactly for
a value of¢ = 0. This amounts to an unpalatable amount of fine-tuning feotists.

This is thestrong CP problem

To resolve this fine tuning problem, Peccei and Quinn [42%)] 4®stulated a new
U(2) chiral symmetry in the QCD Lagrangian. This chiral syetirg can be decom-
posed into the symmetry groups SU{2)J(1), a chiral symmetry and a global axial
symmetry. At some energy scale, corresponding to a ceeaiperature in the early
Universe, as we have already mentioned, the potential ajltieal U(1) can evolve to
one that exhibits spontaneous symmetry breaking, givingcawm expectation value
to the associated scalar field. Thgarameter can then be viewed as the phase of
the complex scalar field around the bottom of the global U¢lgxican hat’ potential,
similar to the potential described in our explanation oftiggs mechanism. We have
already seen that this form of symmetry breaking gives ns& massless Goldstone
boson, and in this case, this is the axion. In fact, there ismallsexplicit breaking
of the symmetry fronQCD instantoreffects. This has theflect of ‘tipping’ the po-
tential slightly, providing a unique vacuum for the potahaté = 0, preserving CP
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symmetry, and giving a small mass to the axion, makingpsaudeGoldstone bo-
son. As with the temperature-dependent symmetry-breakeghanism we described
previously, the axion mass is set by the energy scale at wheesymmetry breaking

OCcCurs.

This energy scale is usually represented by the paranigtand the axion mass is

given by
10’ GeV
fa

Typically, one seeks to detect the axion through its decaywtophotons, and so the

m, ~ 0.6 eV- ) (4.60)

axion-photon-photon interaction

ag
Qayy = ﬂ_f:’

(4.61)

is of interest. Hereg is the fine structure constant, aggis a dimensionless, model-

dependent parameter, typically of order unity.

Based upon experimental evidence of other QCD and astragathyzrocesses, one
can place limits on the symmetry-breaking scale and axiossma@he upper limit on
the axion mass from astrophysical considerations is ctiyr8nx 10-2eV. For further

detail, see Carosi [427], Turner [172], and Sikivie [428].

It is also possible that the instantofiexts occur at a later time than the spontaneous
breaking of the U(1) global symmetry. This would result inaamonic string, a topo-
logical defect produced as the result of breaking a U(1) sgirynas we have already
seen. It is also possible that the primary energy loss méstmafor axionic strings
may be the radiation of axions, rather than gravitationalesaand in this case, ax-
ionic string decay may be the primary source of axion pradagtrather than the

symmetry-breaking mechanism [429].

The axion is predicted to be electrically neutral, with a lioderaction cross-section
for the strong and weak forces. Theoretical bounds and mpiladed by experimental
results, some of which we saw in Section 1.1.4, suggest adoticke mass; 10°eV.

These parameters made the axion an ideal dark matter céadidéunfortunately, no

further experimental evidence has been forthcoming.

Condensates of axions have also been considered as dask maltbs [370, 430],

and within these halos, quantised vortices have been iga¢stl [431] and found to
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produce phenomenological rotation curves in a similar tethose produced by scalar

field dark matter that we discussed in Chapter 2.

4.4 The Domain Wall Problem in a Model of Bose-Ein-

stein Condensate Dark Matter

In this section, we consider in more detail one of the modelsst in a paper that
we mentioned in Sections 2.3.1 and 3.4. After giving an aegrywe note what we

perceive to be one of the problems associated with it.

The paper Dark Matter as a Cosmic Bose-Einstein Condensate and ResSiiper-
fluid” by Silverman and Mallett [279], is adapted from an essay teeeived an hon-
ourable mention from the Gravity Research Foundation in12@32]. The model
considers a real scalar field in the early Universe, in whiattigles making up the
dark matter component arise from the breaking 8§ aymmetry. This paper provides
a nice example of particle production as a result of spomasnsymmetry breaking,

with the additional result of the emergence of a cosmoldgicastant.

We look at one of the phenomena generic to the breakingefsymmetry; the pro-
duction of domain walls. These are the kink solutions thatsas in the Goldstone
model. Depending on the energy scale of formation, thesks wah come to dominate
the energy density of the Universe, @amdcause problems with the observed isotropy

of the Universe at decoupling.

We briefly introduce the model in Section 4.4.1 and examieesttistence of domain
walls within it in Section 4.4.2. We discuss the possibler@ological constraints on
the existence of domain walls in Section 4.4.3 and in Sectidid we compare these
to the estimates of particle mass and symmetry-breakirlg stade by Silverman and

Mallett. Some final remarks are made in Section 4.4.5.
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4.4.1 The Model

In the Silverman-Mallett model, a real scalar field is codpie General Relativity.
The Lagrangian takes the form
R 1
L = 5+ 50,0)0°) - V(9). (4.62)

wherex? = %€ andRis the Ricci scalar.

The potential takes the form

V(g) = %(aaﬁz + bg*). (4.63)

and the parametarevolves from positive to negative as the temperature passaggh

some critical temperature.

We have already seen in Section 4.1.2 how this type of setupeea to domain wall
solutions. The Ricci tensor in Silverman and Mallett's gewill give the Einstein
equations, as well as the nonlinear Klein-Gordon equatodmaotion for the scalar

field that we have already seen, eqgn. (4.24).
The parameters in the Silverman and Mallett model are rkkat¢he parameters that

we have been using to define the potential by

a=-2u°, and b (4.64)

Il
=

We will continue with Silverman and Mallett's notation fdri$ section. We also note
that Silverman and Mallett model keeps factorgipt andG explicit, while we have

previously been using natural units.

Expanding around the vacuum, with= ¢, + ¢, in a similar way to that described in

Section 4.1.1, gives a Lagrangian

R & 1, - o . b,
$—F+%+§6#¢8“¢+a¢ —2b¢0¢ —5(15 . (465)

The codficient of the kinetic term gives an expression for the mask@particle. The

field ¢? has units of JM', so keeping factors df andc explicit, gives

e ¢?
a= —?% (466)
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In their paper, the mass parameter is frequently relateldetodduced Compton wave-
length, 1.,
mc 1

—=+-2a= =, 4.67
- zc (4.67)

and the vacuumféset is identified with the Lagrangian term one would expectafo
cosmological constantf, = 2A/«?), obtaining

K2a% (ko)

4.4.2 Existence of Domain Walls in the Silverman-Mallett Malel

Domain walls arise generically in models that exhibit spoebusly broken discrete
symmetries [205]. We have already seen in Section 4.1.2tacplar case of domain
wall formation from the breaking of &, symmetry, and we briefly remind ourselves
of the results of that section, using the notation convestget out in Silverman and

Mallett 4.64.

The equations of motion are
8,0"¢ + ag + 2bg> = 0, (4.69)

remembering that the parametgeis negative below the critical temperature. The one-

dimensional static solution to these equations of motion is

a\z a\z
#(2) = (—Z—b) tanh((—z) z), (4.70)
and can be rewritten as
#(2) = do tanh(zizc). 4.71)

4.4.3 Cosmological Constraints on the Existence of Domain &lls

We now turn to some constraints provided by the CMB on thetemce of domain
walls and their related symmetry-breaking scale, in goditton of a comparison of
estimates of these parameters provided by the Silvermdletfttaodel. The argument

we present here is adapted from Vilenkin and Shellard [380].
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The contribution to the energy density of the Universe framdin walls is expected

to be
O'R2 g

R TR

whereRis the mean radius of curvature of the wall, ant the surface energy density,

(4.72)

or mass per unit area of the wall. If we consider only one domaaill, stretched across
the Universe, so its radius of curvature is approximatelyaétp the Hubble length, or

in natural units, the Hubble time, then

o

-2 4.73)
to

Pw

Using the relationp, , ~ 1/Gt?, which holds in matter and radiation dominated uni-

verses, when we would expect the domain wall to form, it issgae to write

2 5Gt (4.74)
P

We can estimate the surface energy density from paramatraé already know. The
vacuum energy at the centre of the wall is approximately keguine dfset between
the potential at the bottom of the well, and the value of thiepial atV(¢ = 0). The
form of our potential defines

V(0) =0, (4.75)
so that
b
V(¢o) = —§¢o4- (4.76)

The magnitude of the energy at the centre of the wall is then
b
P~ 500" (4.77)

The width of the wall¢, is approximately equal to the Compton wavelength of the

pseudo Nambu-Goldstone boson,

foa . L2
©vma govb

(4.78)
The surface energy density then, is

o ~ ps ~ VoS, (4.79)
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This can be shown more precisely by integrating tthet component of the energy-

momentum tensor
o= f TJdz (4.80)
where
T = 0,00,¢ — 92, (4.81)
and the domain wall solution, eqn. (4.71), is used.

The final relation we require is
10%0\°
E) |

Putting all the above together, we then have an expresdatmiggthe density fluctua-

Gty ~ ( (4.82)

tions we observe, to the symmetry-breaking sé¢gle

3
% Gty ~ 1oeo(ﬁ) . (4.83)
Y My

Temperature fluctuations in the CMB are related to densitiupeations by

op oT
A (4.84)
0 T

and CMB observations constraéT /T < 107°. This means that models predicting

topologically stable domain walls with
do 2 1 MeV, (4.85)

should be ruled out.

4.4.4 Mass and Symmetry-Breaking Parameters in the Silveran-

Mallett Model

Silverman and Mallett make some estimates of the mass ofdhgi matter candidate
using considerations from Jeans’ stability analysis, andmaring the resultant quan-
tities with parameters in their symmetry-breaking modéley suggest that the energy

of a gravitationally bound quantum particle can be given by

2 R GM
E() ~ %n MO = 5 - Tm (4.86)
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The equilibrium E/d¢ = 0) between quantum pressure and gravitational attraction

leads to a minimum size; the coherence length,

h? 32 \?
b= GMn? (47er?ﬁ) ’ (4.87)

where the mean density has been defingd asM = 4r1¢.30/3.

They then compare this to the Jeans length for a fluid. ThesJeagth is a critical
scale which determines whether a density fluctuation grawteoays. Simple argu-
ments can be made to determine its size. A density fluctuatitmlength scalet,
massM, and average densipy will grow if the attractive gravitational force per unit

massFg, is greater than the opposing force per unit mass from gasprefF,, where

GM GpA® 222
. SM G pr .V (4.88)

F , =
S 22 PT OB 2

The balance of the two forces leads to the tipping-pointtieisgale, the Jeans length,

\Y

This approximation can also be derived by equating the ldydramic time, the time
scale for the gas pressure to respangs to the time-scale for gravitational collapse,

Tgraw
A 1

Tpres = V, Tgrav = fp—
In a classical fluid the speed v, is the sound speed. SilveandmMallett suggest that

(4.90)

the relevant speed in the case of a dark matter Bose-Einstetiensate is given by
the de Broglie wavelength of the particles,=vh/m1. They substitute this into the

expression for the Jeans length to find an expression fogtentum’ Jeans length,

h2 2
=[] o)
This is equivalent, up to a numerical factor, to the cohezdength of a gravitationally
bound quantum fluid, eqn. (4.87). Thus, the minimum graoitetily stable length
scale in an astrophysical system is equivalent to the quaotherence length of the
particles making up that system. There is one point we pickmupbout this deriva-
tion, which they also note themselves. In an ideal Boset&imgondensate, with no

interactions, the sound speed (also referred tirsissound328]) is zero, and so the
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Jeans length should also be expected to be zero. They réb@gy suggesting that
the Bose-Einstein dark matter condensate is not a true ocsatiedue to the gravita-
tional interaction that must be taken into account. Thiadsius back to issues that
were mentioned in Section 3.4 about the existence of a gtawitally interacting con-

densate. This matter is unfortunately not pursued any duiiththis paper, and they

continue with their analysis.

Taking the ‘real-life’ example of the Andromeda galaxy, M3iey suggest that the
luminous core is approximately the largest gravitationsiaible scale, and equate this
to the boson’s coherence length. The luminous core of M3kt to be . ~ 30 kpc.
From the rotation curve of M31 and the Andromeda Atlas [4883, mass density of

the Andromeda halo is estimated tode 2 x 10?*kg/m?°.

Substituting these values into eqn. (4.87) they obtain igeamass of~ 3 x 10-°%kg,

and a boson Compton wavelengthigf~ 7 lightyears ¢ 7 x 10'®m). A value ofA =
(0.7)87Gp./c? ~ 1x107°°m~2 has also been used. From egn. (4.68), the magnitude of
the symmetry-breaking scale is estimated to Be110? (eV/m)Y2. In natural units,

this isgo ~ 7 x 10° GeV.

Returning to the bound we set on the symmetry-breaking ssetdy observations of
temperature fluctuations in the CMB, eqn. (4.85), we seetltgavalue set by Silver-

man and Malletp, > 1 MeV is far beyond this range.

4.4.5 Final Remarks

We have briefly reviewed a model of Bose-Einstein condergate matter. This par-
ticular model draws heavily on the mechanism of symmetrakirey in order to pro-
duce a condensate of ultra-light particles. We have dematestthe problem of do-
main wall domination in the early Universe which is preserihis model, and in fact is
a generic feature of discreet symmetry-breaking modelsevine symmetry-breaking
scale is> 1P eV [434, 380].

There are a few mechanisms by which a model containing dowmalils may be ac-
ceptable. If the formation of domain walls is followed by aipd of inflation, then the

domination of the energy density can be avoided. We destiib&ection 1.1.2 how
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this mechanism was originally introduced to eliminate thenopole problem, and the

solution work analogously for domain walls.

Restoration of the broken symmetry at a lower temperaturddvalso avoid domain

wall domination. See Section 3.2.5 of Vilenkin and Shell§880], for example.

If the vacuum states separated by the domain wall have Bligtltering vacuum lev-
els, then the domain wall network will be unstable and subbeetly break up. This
may occur after inflation for real scalar fields that aréisiently weakly coupled that

they are not in thermal equilibrium [435, 436].

If the discrete symmetry responsible for producing domaatisvis embedded in a
continuous symmetry group, then the domain walls becomadediby strings. These
are known asybrid defectsDefects in hybrid models decay before they can dominate

the energy density of the Universe [437, 438].

A vacuum phase transition in the early Universe after thedpling of matter from the
CMB would allow the bound from the CMB observations to be saibigally weakened
[439].

Some axionic models also have domain walls present witl@mttand many authors

have proposed solutions [440, 441, 442].

4.5 Discussion

In this chapter, we have elucidated many concepts that wequdy alluded to. We
particularly wanted to establish the relationships betwamndensed matter and field
theory that may be applied to early Universe cosmology. T ¢md, we looked
at models that contain ideas central to the ideas in thisgheéke Abelian-Higgs
model, and its condensed matter counterpart, the LandarbGig theory, and their

‘uncharged’ versions, the Goldstone model and the Grase¥kii equation.

We described the phenomena of symmetry breaking in the &bé¢liggs model, and
how the acquisition of mass by the photon produced a natgpteation of the Meiss-
ner d@fect in superconductors, described by Landau-Ginzburgyh®¢e found that the

Compton wavelengths of particles produced also had eaunvadescriptions in terms
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of a penetration depth, a coherence length, or a length gwalepological defects in

both theories.

Topological defects are often present in models whose patemxhibit spontaneous
symmetry breaking, and we described two types of this kindedéct. Nielsen-Olesen
vortices describe cosmic strings in the early Universe agenor magnetic flux tubes
in Type Il superconductors in the condensed matter scen¥addices in superfluids
were modelled by the Gross-Pitaevskii equation. This paldr example is familiar
to us from our work in Chapter 3, but we are now aware of theal@yue in high-

energy field theory; the global cosmic string. Domain walkyevalso shown to exist
in cosmological and condensed matter scenarios. We medtitre possibility of

experimental tests of cosmological branes with topoldgiedects from condensed

matter in Section 1.2.

We then looked at how potentials exhibiting spontaneoussgtry breaking might be
implemented in the early Universe, and saw that potentiadb/ing with temperature
provide a natural way to do this. The restoration of symmatrigigh temperature is
an important concept for particle cosmology and was, as we haw often seen, first
applied in condensed matter scenarios. We also descrilkeghnvalence of sponta-
neous symmetry breaking and Bose-Einstein condensati@guivalently, how Bose-
Einstein condensation could be formulated as a gauge tledipiting spontaneous

symmetry breaking.

For an example of a model that brought all these conceptshtegeas well as ideas
about dark matter that we investigated previously, we desdrthe axion. The axion
is a light dark matter candidate that can be produced as aBiostein condensate,
as a result of a symmetry-breaking phenomenon. There avdaislogical defects

associated with the symmetry breaking, such as domain aatlsaxionic strings.

We then looked in more detail at a model that similarly embsdill these concepts,
and described one of the problems associated with it. Siaarand Mallett's Bose-
Einstein condensate dark matter model describes a paftioieed as the result of
a discreet symmetry-breaking potential. Generically, el®@duch as these contain
domain wall solutions in order to interpolate between thEedent degenerate vacua,

and this is no exception. In cosmological scenarios, sukhisns are generally fatal,
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at best destroying the homogeneity of the CMB, and at worstaesing the Universe
as a result of their huge energy distributions. This modslgiembodies the concepts
we have described however, and we finished by describing smssble ways to

overcome the cosmological domain wall problem.



Chapter 5

Conclusions and Further Work

In this thesis, we have looked at some of the examples whemgohena in condensed
matter and cosmology overlap, and seen that the novel apiplicof techniques from

one field may help in understanding aspects of the other.

We first looked at the standard cosmology, detailing sombehistorical narrative to
provide a sense of how the subject came to be where it is tddagave some thought
to the relationship between mathematics and physics, tbessiy of experimental
data to drive forward theoretical understanding, and tloegss of scientific ‘revolu-
tion’, in which old theories are not usually replaced by nbut are rather recovered
in some limit. We concentrated to some extent on modern clmgyadoorne to large
extent as a result of technological advancements allowiagraore accurate measure-
ment. We detailed the emergence and success of the concendexael of cosmology,
and introduced traditional approaches to structure faonaas well as describing the
potential roles of scalar fields and the part that partickespts plays. We also looked
in more detail at the modelling of dark matter, and the stafexperimental searches,
which, at this point, can be considered to be in their eadges. We then introduced
the interface between cosmology and condensed matteraaedsgme early examples
of where one has informed the other. Both disciplines arepasation where cutting-
edge technological advancement is required to make expetahprogress, and this
is demonstrated by the only relatively recent productioma &ose-Einstein gas, and
the onset of the era of ‘precision cosmology’. The relatiops then, are often in-

grained more deeply in the theoretical overlap. As exampteabis we introduced
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the ‘Higgs-Anderson’ and the ‘Kibble-Zurek’ mechanismagdaa more speculative
analogy proposed by Volovik, involving the group structafeheories describing the
Universe, and liquid Helium. In the final part of the introtioa, we discussed the fu-
ture of multi-disciplinary research, with exciting theteal progress being made in the
form of the mathematically rigorous, but as yet unphysigds/CFT correspondence.
Progress is also being made experimentally, where Hawladgtion, the results of

the first attempts to combine General Relativity and Quarfietd Theory, may well

be demonstrated in the laboratory, rather than in an assgdl environment as one

might expect.

Chapter 2 was a somewhat more technical overview of the fdleedinear and non-

linear Schrodinger-Poisson systems and their relativesiunterparts, the linear and
nonlinear Klein-Gordon-Einstein equations, in descigoaosmological phenomena.
In addition to reasons detailed in Chapter 1, we motivatethéu the need to go be-
yond the Cold Dark Matter model, possibly by introducing mreracting dark matter
candidate. We suggested that the nonlinear Schrodingetieg can be thought of as
describing an interacting particle systemg“atheory in Quantum Field Theory, and
that this is equivalent to the Gross-Pitaevskii equatiosandensed matter physics.
We looked at some of the uses, both quantum and classicdiesé tsystems, moti-
vated primarily by models seeking to resolve some of thelprob with the Cold Dark

Matter model, such as cuspy density profiles and the ovedsmae of substructure.
As the Gross-Pitaevskii and nonlinear Schrodinger eqoatare equivalent, it is al-
most natural to start thinking of dark matter models in whitalhdark matter candidate

resides in a Bose-Einstein condensate.

In Chapter 3, we explicitly introduced the concept of a B&sestein condensate, and
derived the Gross-Pitaevskii equation. We also introdusmattepts that we would
return to often, such as the Madelung transformation andteeal vortices. We then
demonstrated a classical use for these equations in a rmuelach to modelling struc-
ture formation, which we introduced in Chapters 1 and 2. Hs¢ of this chapter was
dedicated to a model of a galactic dark matter halo, comgho$a Bose-Einstein con-
densate in which quantised vortices exist. By consideriveggravitational stability

of the dark matter vortices, we were able to place limits ompeeters describing the
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dark matter particle, hence placing ranges of validity anhbssibility for quantised

vortices to exist within a Bose-Einstein condensate dartenenodel.

In the penultimate chapter, we considered some of the oeltoetween condensed
matter physics and the high-energy field theory used to desparticle interactions
in the early Universe. We elucidated the relationships betwthe Abelian-Higgs,
Landau-Ginzburg, Goldstone and Gross-Pitaevskii egastiparticularly with regard
to symmetry breaking, topological defect, and particledpiciion phenomena. We
also described condensates and vacuum expectation vaheekoked at two models
where all these concepts play a role: the axion, particukslit has also been consid-
ered as a dark matter candidate, and a Bose-Einstein catdetask matter model that
we came across in Chapter 2 and 3, in which the dark matterdateds produced as a
result of a symmetry-breaking event. We saw how, in this,dasesymmetry-breaking
mechanism is accompanied by an unacceptable amount obtgipal defect produc-
tion, leading to experimental predictions that would beantecadiction to observations

of the Cosmic Microwave Background.

There are several ways in which this work could be continuedxtended. As a
general point, the historical perspectives presentedigntiiesis demonstrate the im-
portance of clear communication betweeffatient disciplines in physics, in order for
effective progress to be made. This will be of particular imaice if highly technical
concepts such as the AT correspondence are to be applied and demonstrated in

experimental condensed matter setups.

The wave-mechanical approach to structure formation caxtemded to include a par-
ticle interaction, or pressure term, with the use of a (et@snonlinear Schrodinger
equation. Some promising preliminary analysis has alrdssin done in this regard
[270], and there is a lot of potential for this work to be exted, particularly to the
level of rigour presented in earlier work dealing with theelar Schrodinger equation
[266, 268]. The addition of a pressure term may enable madejalaxy formation to
progress much further into the nonlinear regime, where dyintamical &ects such
as shocks and other gas physics come into play. It may bebpedsistudy a pure
dark matter model in this way, extending the properties efdrk matter candidate to

become interacting in a similar way to models we mentiond¢teastart of Chapter 2,
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such as those developed by Spergel and Steinhardt [263Jayitaven be possible to
study models that involve some combination of baryonic emand interacting dark
matter, as more recent analysis has demonstrated that tieemechanical formalism

can be used to model multi-fluid systems [271].

The dark matter vortex model we described in Chapter 3 canba®xtended. Firstly,
it would be interesting to find a description of the densitgfipe of a gravitationally
coupled vortex. This may be able to be found by consideringteficin the back-
ground density that would prevent the gravitational po&rfitom diverging. Such a
cutof may arise naturally in the Thomas-Fermi approximation whewould have a
physical interpretation as the extent of a galaxy halo. Adalution for the density
profile would also allow a more detailed exploration of thegpaeter space of quantum
dark matter vortices. Knowing the sizes of the vortex conel the density profile, it
should be possible to analyse any observatiofiatts such as those from gravitational
lensing. A fuller analysis of the vortex could also inveat®possible instability and

collapse of the vortex in the axial direction.

A more ambitious project would be to try and establish whethes possible for a
Bose-Einstein condensate to exist when there is a grantatinteraction present. We
have briefly hinted at this idea throughout this thesis, amthér work is hinted at in
Chapter 1 of Callender and Huggett [443].

Following on from models of dark matter and dark energy thateMmentioned in
Chapter 2, in which the two unknown constituents of the Ursgeare modelled as the
condensed and normal components of one fluid, and the maid&isioture formation
that we have mentioned, it may be of interest to investigateugture formation model
in which the dark and normal matter components are modefi¢bdeatwo phases of a
superfluid. The relative amounts of each component could®&mperature-dependent
guantity, as it is in a standard superfluid, with the posi$ybdf linking the relative
amounts of dark and normal matter to the temperature of theetse throughout
various epochs. The possibility for the Schrodinger appinao handle multiple fluids
has already been mentioned, and interactions in the two-$lystem may lead to the
appearance of excitations such rasons which produce a very distinct dispersion

relation, and a phenomena analogousriatual friction [444]. It is difficult to see
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what these excitations may correspond to in the wave-mecdigpicture, while if
we suggest that we are modelling a quantum superfluid, thsune@ent of such a
dispersion relation in the galactic dark matter halo woultle convincing evidence
of superfluid or condensate behaviour. In fact, the GrossefPskii equation struggles
to describe the roton minimum in the dispersion relation afuaerfluid, which is
thought to be responsible for many of a superfluid’s propsertiln order to modify
the Gross-Pitaevskii equation to produce an accurate igperelation, Berl& and
Roberts [445, 446, 447] have included an interaction tersetdan Skyrme’s model

of nuclei interactions [448].

There is an interesting, but fairly tenuous link to note tB&yrme’s more famous
work is a model of topological solitons [449], in which thetdogical charge that we
discussed in Chapter 4 is identified as baryon number. SesxBigr and Weigel [450]
and Wong [451] for further details of the model. The Skyrmealeias also an fective
model of QCD, and it is possible for Skyrmions to exist in ademsate [452].

Some fairly speculative work has also been done suggestagfte metric of a cosmic
string spinning about its symmetry axis can describe theitgitéonal field of a vortex

[453], in a model that postulates spacetime as a superfl6i] gb5].

Finally, in an alliance between two subject areas that haady given understand-
ings as fundamental as the Higgs mechanism, it will be ininig to what the next

inter-disciplinary development will be. In the foreseeahlture, it would seem that
analogue experiments of gravity and, in particular, Hawkediation, might be about
to make their mark, while on the theoretical side, the &SI correspondence may

be able to provide realistic descriptions of supercondyatgsics.



Appendix A

From Einstein-Klein-Gordon to

Schrodinger-Poisson

We suggest many times in this thesis that the Landau-Gigziaory, which uses a
scalar field to describe the order parameter for the tramsit superconductivity, can
be thought of as the non-relativistic limit of the Abelianggs model, which describes

a fundamental scalar field that may undergo a phase tramgitigenerate mass.

We have also noted that the Gross-Pitaevskii, or non-litgsdarodinger equation,
coupled to the Poisson equation can be though of as the fathasic limit of the

Einstein-Klein-Gordon system.

The limiting procedure is actually fairly non-trivial, arfths been investigated in a
number of papers [456, 457, 458, 459], some of which are higtdthematical. We
will not go into all the detail here, but we can outline sompragimation methods for

getting from one system to the other.

In our method, drawn from Widrow and Kaiser [265], and Zinustih [460], we start

at the level of the Lagrangian of the system.

We consider the Lagrangian

Fs = 50" (V) (u0) - 52°0° ~ b (A1)
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We neglect gravitational coupling for now, and consider trfiatric,
0. = diag(1,-1,-1,-1). (A.2)

In this limit, V,, — d,,.

To obtain the equations of motion a Lagrangian, we can eithieimise the action

S= f Ld*x, (A.3)

with respect to the fielé, or we can use the Euler-Lagrange equations,

0L 0L
——|-—=0 A4
g (6(6ﬂ¢)) ¢ (A4
Inserting the Lagrangian, eqn. (A.1) into the Euler-Lageequations, eqn. (A.4), we
find

8,0"¢ + &¢* + 4bg*. (A.5)

We see that this is the nonlinear Klein-Gordon equation,vaitial the variables and
b defined asa = V2u andb = v/2, this is the form of eqn. (4.24) given in Chapter 4,

with a standard quadratic potential, rather than one etthgosymmetry breaking.
To consider the non-relativistic limit, we return to the kaggian, eqn. (A.1). We write
the fieldg in terms of two complex fields.

1 —iat * ~jat
o(t, X) = E(‘Pe +pre). (A.6)

To take the non-relativistic limit, we assume that the spaction is small compared
to the time variationV?¥ < 0¥, and the fieldsP, ¥* have slow time variation

compared to the factoes, so we can neglect terms that go li&p.

We substitute eqn. (A.6) into the Lagrangian, egn. (A.1xhmensuing manipulation,
we note that terms of the forf*"¥s are multiplied by a facto€®~9, and for factors
wherer # s, the corresponding time integrals give small contribugidoe to the fast
time oscillations. At leading order then, the only termst tharvive are those with
equal factors of¥ and¥*. After some manipulation, the Lagrangian now takes the
form

3b

[ 1
D%NLS = E (‘P*Bt‘P - ‘Pﬁt‘I’*) - 2—aVlPVlP* - Z—aZ\I’I\I”\I”*lP* (A7)
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Inserting this Lagrangian into the Euler-Lagrange equtio

0L R4 A
— |+V. - =0 A.8
‘9t(a(atly*))+ (a(w*)) v (A-8)
yields
0¥ 1 3
|5F:75Ww+§u%%n (A.9)

We recognise this as the nonlinear Schrodinger equati@hidentifying the constants
a, basa = mandb = n?Vy/3 we note that this is precisely the Gross-Pitaevskii

equation, eqn. (3.33) in Chapter 3.

To consider the coupling to the Poisson equation, we consigeEinstein-Hilbert
Lagrangian,

Few = Vop, (A.10)
whereg is the determinant of the spacetime metRgs the Ricci scalar, as introduced

in Section 1.1, and = 8xG.

To obtain the nonlinear Einstein-Klein-Gordon equatio® @ould construct a total
Lagrangian density, by adding together the Einstein-Hilbagrangian density to the
Klein-Gordon Lagrangian density, eqn. (A.1), multiplied & suitable constant, see
Wald [461], pg. 455,

ke = LEH + . (A.11)

Varying the action
S= ngKGd‘lX, (A12)

we would recover the coupled nonlinear Einstein-Klein-¢&or equations for a scalar

field, with energy momentum tensor,

1
Ti = 0,008 — 7 (9,000 — a¢” — 4bg”). (A.13)

Instead, we consider the weak field limit of the Einsteinbidit Lagrangian. In the

weak field limit, the metricg,,, takes the form,
0. = diag(1+20,-1,-1,-1), (A.14)
and the Ricci tensoR,,, can be shown to be,

R, = R¢ = V2. (A.15)
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This result can be found in any standard General Relatieit{bbok. See, for exam-
ple, Misner, Thorne and Wheeler [462], Chapter 17. The we=l &instein-Hilbert

Lagrangian then, can be shown to be

_ R_ V=0 .
Lenw = —QZK— 2 (o g S

1
= 5 1+ 20)7 (1 + 20) 1 V20
K

= 2_1K (1 - @) V>0, (A.16)

As total derivatives will vanish in the action, an equivdlBarm of the Lagrangian is

VOovVo

Lo = —5— (A.17)

For the weak field limit of the Klein-Gordon equation, we usejarevious Lagrangian,
eqn. (A.1), withV, — d,, and metric as given in eqn. (A.14). Following a similar

procedure to before, and neglecting terms that gb&¥, we find the Lagrangian,

[ 1 3b
ALsw = > (P*oY — ¥YO,9*) — aPVP* @ - EV‘PV‘P* - E‘I"I"I’*‘P* (A.18)

To consider the full system, we add the weak field Einsteilbétt Lagrangian, egn. (A.17),

to the weak field nonlinear Schrodinger equation, eqn.§A.1
LNLsp = Lenw + CLLsw- (A.19)

We note that any choice of constant is acceptable, as anyahggn,.#, that satis-
fies the Euler-Lagrange equations will also be satisfiea¢ 8% For numerical fac-
tors to work out, the appropriate constant is chosen to be-1/2. The nonlinear-

Schrodinger-Poisson Lagrangian is then,

VOVO i 1 3b
> 7 (P*o Y — Yo, 9*) + aPP* @ + 4—aV‘PV‘P* - =YYy,

4a2
(A.20)

Substituting this into the Euler-Lagrange equations, wegpect tab and¥*, we find,

ZNLSP =

oY 1, 3 N
i i _ZaV ¥+ 612b|‘I’| ¥ + adV*, (A.21)
V20 = 4nGmVY|?; (A.22)

the coupled nonlinear-Schrodinger-Poisson system.
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