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Abstract

This thesis is concerned with the interface of cosmology andcondensed matter.

Although at either end of the scale spectrum, the two disciplines have more in common

than one might think. Condensed matter theorists and high-energy field theorists study,

usually independently, phenomena embedded in the structure of a quantum field theory.

It would appear at first glance that these phenomena are disjoint, and this has often led

to the two fields developing their own procedures and strategies, and adopting their

own nomenclature.

We will look at some concepts that have helped bridge the gap between the two sub-

jects, enabling progress in both, before incorporating condensed matter techniques to

our own cosmological model. By considering ideas from cosmological high-energy

field theory, we then critically examine other models of astrophysical condensed mat-

ter phenomena.

In Chapter 1, we introduce the current cosmological paradigm, and present a somewhat

historical overview of the interplay between cosmology andcondensed matter. Many

concepts are introduced here that later chapters will follow up on, and we give some

examples in which condensed matter physics has had a very real effect on informing

cosmology. We also reflect on the most recent incarnations ofthe condensed matter/

cosmology interplay, and the future of these developments.

Chapter 2 presents the Einstein-Klein-Gordon system of equations and their non-relat-

ivistic and nonlinear counterparts, the Schrödinger-Poisson, and nonlinear Schrödinger

(Gross Pitaevskii)-Poisson systems. We give a more technical overview of the various

applications of these systems of equations, as well as discussing the role and interpre-

tation of condensates in the field of cosmology.
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In Chapter 3 we discuss more qualitatively the fluid-mechanical methods used in a

wave-mechanical approach to structure formation, and in formulations of condensed

matter models. Taking a lead from the condensed matter side,we look at some of the

details of the Gross-Pitaevskii equation, particularly with regard to quantum vortices,

and then put this quantum-mechanical system into a cosmological environment by

coupling it to the Poisson equation, in an effort to pin down some of the parameters

that may be consistent with the existence of vortices in a cosmological Bose-Einstein

condensate.

In Chapter 4 we turn to high-energy field theory and elucidatefurther some of the re-

lationships with condensed matter physics that are present. We also critically examine

a Bose-Einstein dark matter model in light of these considerations.

Chapter 5 rounds off with a discussion and suggestions for further work based upon

models we have discussed, as well as some ideas for models that have not yet been

mentioned.

An appendix discusses techniques for moving from the relativistic Einstein-Klein-

Gordon equations to the Schrödinger-Poisson system.
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Chapter 1

Cosmology and Condensed Matter

1.1 Cosmology

1.1.1 The Birth of General Relativity

The Einstein centenary in 2005 was a chance to celebrate the significant achievements

made in cosmology in particular, and physics in general, during the hundred years

since Einstein’sannus miribilis. This Latin phrase has also been linked to Newton’s

own miracle year in 1666, three hundred and thirty nine yearspreviously, and one

might begin to wonder when another might be due.

The history of progress in cosmology is interesting in its own right. A revolution

in science is rarely as drastic or cataclysmic as the image invoked. The history of

progress, as reported, does seem to come in fits and starts, but it is by more of an

evolutionary process that the standard paradigms are formed. Often, many incorrect

suggestions or interpretations are made, with a theory becoming established within

the scientific community only by virtue of being the most resilient, rather than being

recognised as correct overnight. The theories that are replaced can rarely be thought

of as incorrect, rather, the new theory is a more general formof the old, with the old

being recovered in some limiting regime.

Here, the relationship between mathematics and physics enters, and can generate a

lot of philosophical discussion. Physical theories can be expressed in mathematical
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language, and the limiting regime described above can be formulated as a mathematical

limit process. Why the abstract concepts of mathematics canbe translated into physical

concepts is essentially still a mystery. The Hungarian physicist, Eugene P. Wigner,

expressed it thus [1]:

“The miracle of the appropriateness of the language of mathematics

for the formulation of the laws of physics is a wonderful giftwhich we

neither understand nor deserve.”

It is usually due to more and more refined experimental measurement techniques, or

through a desire for increased accuracy, that deviations from theoretical predictions are

uncovered.

Many examples from the field of cosmology present themselves. Planetary models

can be traced back at least as far as Aristotle’sDe Caeloin the third century B.C. [2].

The ancient Greeks sought a mathematical beauty and simplicity in their models of the

Universe, and so the motions of the planets and all celestialbodies were assigned to

perfect spheres orbiting around the Earth. In this system itwas difficult to accurately

explain the motion of bodies in the sky. Rather than give up onthe notions of mathe-

matical beauty and geocentricity, Eudoxus [3], Aristotle,Ptolemy [4] and Apollonius

of Perga [5] designed a system of epicycles, in which planetsmoved on smaller perfect

circles around a point that would be traced out by the standard spherical orbit. This

concept helped to explain the retrograde motions of celestial bodies, and the apparent

change of distance between the Earth and the planets. As astronomers and navigators

pressed for higher accuracy in predicting the motions of celestial bodies, it was found

that the epicycle model did not match observations. Eventually, the geocentric models

were replaced by Heliocentric ones, such as proposed by Copernicus [6]. Copernicus

was driven by what would become known as the Copernican principle, which states

that the Earth is not in a specially favoured position. Copernicus’ systems were still

not quite correct, and still required the use of epicycles, and there is some debate as to

whether Copernicus’ system was more or less complicated than the previous Ptolemic

one. See Neugebauer [7] for example, for a Ptolemaic-sided view. Copernicus would

never encounter the controversy that would envelop Galileowhen he made observa-

tions of Jupiter’s moons; the first decisive evidence that the Earth was not at the centre
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of the Universe. Galileo’s findings are documented in his famously diplomaticDe rev-

olutionibus orbium coelestium, Libri VI(On the Revolutions of the Heavenly Spheres,

Six Books) in 1543.

The need for epicycles was done away with less than a hundred years later, when the

perfect orbital circles were replaced by Kepler’s ellipses[8]. Here, we can see an

example of the old theory emerging as a mathematical limit ofthe new one, as in terms

of Fourier analysis, an elliptical path can be built up mathematically as a series of

‘epicycles’ on a circular orbit.

Kepler’s laws of planetary motion were later encapsulated in Newton’s laws of motion

and gravitation [9]. Newton’s laws were sufficiently accurate to be used right up to the

twentieth century, and indeed are still adequate for problems in celestial mechanics,

such as space flight. Later, as technology advanced to enablemore accurate astronom-

ical observations, there were a few predictions for which Newton’s law of gravitation

were inaccurate: the prediction of the advance of the perihelion of the planets, partic-

ularly Mercury, and the angle through which light is deflected by the sun.

The beauty of the interplay of mathematics and physics is that laws can be manipu-

lated according to a set of abstract mathematical rules, to produce sometimes equally

abstract concepts which, given the right interpretation, can be once again expressed as

physical entities that can be probed in experiment. The question would seem to be,

“how did these rules come about?” In theAlmagest, Ptolemy himself seems to accept

the limitations of any progress made [4], suggesting that there is no way to know which

theory is true, since any model is a mathematical construct.

One of the most notable examples of discovery as a consequence of theoretical pred-

ication is the discovery of Neptune. The eighth planet was discovered by analysing

irregularities in the orbit of Uranus, and predicting that they be caused by the dynam-

ics of another, as yet undetected body, with properties thatwould have the required

influence. On the back of the success of this prediction, another undetected planet

was posited to exert the required influence on Mercury to explain the advance of its

perihelion. This prediction, unfortunately, turned out tobe erroneous. More abstract

examples of mathematics prediction can be found in the field of particle physics. Paul

Dirac, who expressed that “the laws of nature should be expressed in beautiful equa-
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tions” [10], predicted the positron essentially as a consequence of the second root of

the Dirac equation; in some sense the negative energy quantum states turned up as

‘merely’ an artefact of the mathematics [11]. Although Dirac’s prediction was verified

by the detection of a positron by Carl Anderson in 1932, whoseachievement gained

him a Nobel prize, Dirac’s initial concept of a ‘sea’ of negative energy particles was

flawed because a vacuum state would require an infinite density of positrons, as well

as the overall negative charge of the Universe that this would imply. The idea was

eventually superseded by Quantum Field Theory. As it turns out, it seems likely that

Anderson was unaware of Dirac’s prediction at the time, his results only receiving the

correct interpretation once the theory was brought to his attention. Anderson would

later suggest that his discovery of the positron was “whollyaccidental” [12].

The General Theory of Relativity laid the foundation for people to start wondering

about the evolution and structure of the Universe, based purely on the matter and en-

ergy content that we are able to observe. This has been complemented only very re-

cently by the high precision observational experiments designed to probe this content.

It is an inherently mathematical theory, as Einstein favoured mathematical elegance in

physical theories, and as such it has had its own share of interpretational issues, and

mathematical ‘artifacts’.

Einstein combined space and time into one single, dynamicalentity, which could be

described purely in terms of derivatives of ametric, gµν. The metric is a tensor that

tells us how to calculate the distance between two events in aspacetime. The curvature

of spacetime is also related to the energy or matter content of the Universe; matter tells

spacetime how to curve, curvature tells matter how to move.

Einstein’s field equations can be written as

Rµν −
1
2

gµνR=
8πG
c4

Tµν (1.1)

The Ricci tensor,Rµν, is given by

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓρµσ + Γ

ρ

µλ
Γλνσ − Γ

ρ

νλ
Γλµσ, (1.2)

with the Christoffel symbols,

Γµνρ =
1
2

gµα(gαρ,ν + gαν,ρ − gρν,α), (1.3)
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where we use the notation

∂µ ≡
∂

∂xµ
, and gαρ,ν ≡

∂gαρ
∂xν

. (1.4)

From time to time, we may also use an overdot to represent differentiation with respect

to time, and a dash to represent differentiation with respect to a spatial coordinate.

We see that the left-hand-side of Einstein’s equations are made up of terms purely

involving curvature, or the derivative of the metric. The right-hand-side consists of the

energy-momentum tensor, the matter-energy content of the Universe. For an empty

Universe, we could simply set this to zero.

Once Einstein’s equations had been formulated in 1915, Einstein himself suggested

that he expected that they were too complex to ever be solved exactly. Karl Schwar-

zschild would prove him wrong the same year, with the discovery of the metric that

bears his name [13, 14]. The Schwarzschild metric describesthe spacetime around

any spherically symmetric, non-rotating, non-charged object, and hence is a good can-

didate for a first attempt at modelling objects such as stars or galaxies. It was noted

at the time that the mathematics described a more exotic object, aBlack Hole. Such

objects were dismissed as mathematical curiosities, untilthe singularity theorems of

Hawking and Penrose showed singularities to be a generic feature of many cosmo-

logical scenarios [15, 16]. The Schwarzschild metric was used to model the sun in a

new prediction of the angle through which light would be deflected, and in a famous

expedition in 1919, Arthur Eddington, a British scientist,found that Einstein’s theory

was in much better agreement than the Newtonian estimate. The new theory also accu-

rately predicted the perihelion advance of Mercury, and solved the problem of “action

at a distance” inherent in Newton’s theory. Mathematically, Newton’s theory of gravity

appears in Einstein’s field equations in the weak field limit,or equivalently in the limit

of small mass densities. We will come across this limit again, and it is demonstrated

in Appendix A.

Einstein was not comfortable with his own equations, which seemed to be suggesting

that the Universe should be collapsing under its own gravity, and so he added a term

that he called the “kosmologische Gleid”, which translatesas the “Cosmological term”

[17], or Cosmological Constant, to keep the Universe static, in line with the current
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scientific consensus. Einstein’s field equations with this extra term added are

Rµν −
1
2

gµνR+ gµνΛ =
8πG
c4

Tµν. (1.5)

Often, this term is absorbed into the right-hand-side of this equation, making it part of

the energy content of the Universe, as we will soon come to.

Actually, the Einstein universe is only static by construction, but is unstable. This can

even be seen in Newtonian mechanics, via Poisson’s equationfor gravity

∇2φ = 4πGρ. (1.6)

If there is a constant density of matter in the Universe,ρ = ρ0 , 0, then the gravita-

tional potential must be spatially varying, and so the homogeneous density distribution

must be globally contracting or expanding.

The next few years in the emergence of a standard Cosmological model are typically

convoluted. In 1922 [18] and 1924 [19], Friedmann, considering Einstein’s equations,

published what would become known as the Friedmann equations, and the Friedmann-

Robertson-Lemaitre-Walker (FRLW) metric. The results were largely unnoticed at the

time and, in 1927, Lemaitre independently came to the same conclusions [20]. In

considering a dynamical Universe, Lemaitre predicted thatexpansion would lead to a

linear relation between the redshift and distance of nebulae around us in the Universe.

In an expanding Universe, nebulae would appear to be moving away from us, and

the recession speed would manifest itself as a redshift in the light produced by those

nebulae.

Edwin Hubble, in 1926, had only just shown that these nebulaewere indeed other

galaxies, and not part of our own galactic system [21]. Lemaitre also conjectured that

if the Universe is expanding now, then moving into the past, it would contract, until it

reached a point of infinite density.

This theory did not receive its familiarBig Bangname until Fred Hoyle described it as

such during one of his popular radio broadcasts in 1949. It isnot quite clear whether

he coined this term to be derogatory, which would seem to be the case, as he was a

proponent of thesteady statetheory and was not known for his affable nature, or, as he

later claimed, to provide a more striking image to better elucidate the concept for his

home listeners. See, for example, Croswell [22].
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In 1929, Hubble discovered that such a redshift-distance law did exist [23], and this

caused Lemaitre’s work to be reassessed by Eddington, who had led the research on

the previous eclipse experiments. Hubble came up with a ratio of recession velocity

to distance, theHubble constant, of about 500 kms−1Mpc−1, out by a factor of ten on

today’s best calculation and, looking at the data points Hubble had to work with, it

is remarkable that he came this close, see Fig. 1.1. This evidence for an expanding

Universe caused Einstein to drop the Cosmological Constantfrom his equations and

regret that he had not originally followed where the mathematics led him; to foresee a

dynamical Universe.

Figure 1.1: Hubble’s original data [23], compared with that of more recent surveys (see Kirshner
[24] for image and data references). Note the difference in scale.

In formulating the FLRW metric, and subsequent Friedmann equations, Friedmann and

Lemaitre had employed a modern version of the Copernican Principle, the Cosmolog-

ical Principle. This assumed that the Universe on large scales is homogeneous and
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isotropic. That is, the same everywhere and with no preferred direction. Friedmann

and Lemaitre had previously assumed that their metric was the only one consistent

with the Cosmological principle, and in 1935, Robertson [25] and Walker [26] inde-

pendently proved this rigorously.

The FRLW metric can be written in dimensionless, co-moving spherical coordinates

as

ds2 = c2dt2 − a2(t)

(

dr2

1− kr2
+ r2

(

dθ2 + sin2θdφ2
)

)

. (1.7)

We use a Lorentzian metric with convention (+,−,−,−), although personal experience

suggests that this convention is becoming increasingly less common. We setc = 1

from now on, unless otherwise stated. The scale factor,a(t) describes the expansion or

contraction of the Universe, while the curvature enters ask, scaled to be+1, 0, or -1

for Universe exhibiting positive, zero, or negative constant curvature.

Generally, the energy-momentum content of the Universe is considered to take the

form of a perfect fluid. This can be written

Tµν = (ρ + p)uµuν − pgµν, (1.8)

whereρ is the energy density,p is the pressure, anduµ is the four-velocity of the fluid.

In co-moving coordinates, the four-velocity will take the form uµ = (1, 0, 0, 0). Local

conservation of energy,∇µTµ
ν = 0, with the covariant derivative

∇µTµ
ν ≡ ∂µTµ

ν + Γ
µ
αµT

α
ν − ΓανµTµ

α (1.9)

leads to an equation known as thefluid equation, or theenergy conservation equation

ρ̇ + 3
ȧ
a

(ρ + p) = 0. (1.10)

Substituting the energy-momentum tensor and the FLRW metric into the Einstein

equations gives theFriedmannequation (the i-i component)

( ȧ
a

)2

= H2 =
8πG

3
ρ − k

a2
, (1.11)

and theaccelerationor Raychaudhuriequation (0-0 component)

ä
a
= −

4πG
3

(ρ + 3p). (1.12)
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We note that the Friedmann equation and energy conservationequation imply the Ray-

chaudhuri equation, or alternatively, the Raychaudhuri equation and the energy conser-

vation equation can be combined to obtain the Friedmann equation. That is, the equa-

tions are not independent. We have also defined here theHubble parameter, H0 = ȧ/a;

the rate of expansion of the Universe that first emerged in Hubble’s law as the constant

of proportionality between the speed of a galaxies recession, and its distance from us.

From the Friedmann equation, we can define a critical densityin the Universe,ρcrit,

that would be required to make the Universe flat (k = 0),

ρcrit =
3H0

2

8πG
. (1.13)

This allows a convenient way of considering the different types of matter that appear

in the Universe. We write

Ωi =
ρi

ρcrit
, (1.14)

where the subscripti can represent matter, radiation or a term encompassing any other

type of matter-energy component that we might envisage. Fora flat Universe, where

the global geometry is Euclidean, we necessarily have
∑

i

Ωi = 1. There have recently

been indications that the simplifying assumptions of homogeneity and isotropy in the

Universe may be too specific. It has been suggested that the much discussed ‘axis of

evil’ [27, 28] may highlight a specific direction in the Universe. There has also been a

large amount of study on the Bianchi models (see, for example, Matzner and Tolman

[29]), which discuss isotropy, with the FLRW universe beinga special case of certain

types of Bianchi classification.

First Indications of Dark Matter

Once the nebulae had received their correct interpretationas galaxies in their own right,

rather than objects within our own galaxy, it wasn’t long before there appeared to be

something wrong with the observations that were being made.

Using ‘just’ Newtonian mechanics, Fritz Zwicky was the firstto notice that something

was amiss [30]. In applying the virial theorem to the Coma cluster, he noticed that

a large proportion of its mass appeared to be ‘missing’, thatis, unseen. The virial
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theorem says that

Total K.E of a stable system∼
1
2

Gravitational binding energy (1.15)

By measuring the movement of a system, one can infer its mass.Comparing the aver-

age mass of the galaxies in the Coma cluster, with the mass expected from the cluster’s

luminosity, the visible part of the system, he found that theamount of visible mass

was∼ 100 times smaller than the mass that appeared to be there. This observation was

largely dismissed at the time.

We have given an overview of how theHot Big Bangmodel came to be established;

the ‘hot’ part of the name describing the extremely high temperatures and energies

present in the earlier stages. We are of course missing one famous, and critical piece

of evidence that we now come to.

The CMB

The Hot Big Bang model has many successes. Perhaps, most notably, it predicts the de-

coupling of photons and matter afterrecombination, to produce a black-body spectrum

of radiation in the Universe, which would become known as theCosmic Microwave

Background(CMB). Theoretical suggestions that could be interpreted as early fore-

runners of CMB physics were predicted as early as 1941 by McKellar [31], and Dicke

[32]. The first serious estimate of a microwave background temperature of cosmic ori-

gin were made by Gamow, Alpher and Hermann in 1948 [33, 34, 35], but these were

not recognised widely in the community. A few authors workedon the idea, perhaps

most notably Doroshkevich and Novikov [36] who suggested that the CMB should be

detectable. Dicke, Peebles, and Wilkinson at Princeton setup an experiment to go

about detecting the background radiation.

At this point, the history of CMB experimentation takes a serendipitous turn. Penzias

and Wilson were two experimental physicists from Bell Labs,developing extremely

sensitive microwave receivers for radio astronomy. Working on the removal of residu-

als and systematics, they found a microwave signal with an approximate temperature

of 3K. This signal was found to be independent of the direction that their Horn Antenna

was pointed in, and of constant magnitude. Understandably flummoxed by this system-
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atic error that they could not get rid of, they eventually concluded that the source was

extra-galactic. Penzias then came across a preprint of a paper by Peebles, describing

the possibility of a relic radiation from the Big Bang. The two groups got in contact

and came to the conclusion that Penzias and Wilson had indeeddiscovered the relic

radiation. They arranged to publish their findings simultaneously in theAstrophysical

Journal [37]. The Dicke collaboration continued with their own experiment, which

confirmed the findings of Penzias and Wilson [38, 39].

In a somewhat controversial move, in 1978 the Nobel prize committee awarded Penzias

and Wilson the physics prize for their discovery. Questionswere raised about the award

because, although the two physicists were obviously highlyskilled in their field, they

were apparently unaware of the theoretical progress that had been made on the concept

of a relic radiation from the Big Bang, and made the discoveryessentially by accident.

Another success of the Hot Big Bang model is its accurate prediction of the light ele-

ment abundances, orprimordial nucleosynthesis[40], correctly predicting the fractions

of Hydrogen, Helium and Lithium that are observed today. These two pieces of evi-

dence are perhaps the Big Bang model’s biggest achievements.

Problems with the Hot Big Bang Model

There are, however, a number of problems associated with theBig Bang model. These

are commonly known as theflatnessproblem, the problem ofunwanted relics, and the

homogeneity and isotropyproblem, which stems from thehorizonproblem.

Theflatness problemappears as a fine tuning problem. We have seen from Einstein’s

equations how the matter and energy content of the Universe defines for us the global

curvature. It turns out that if the Universe is not flat, then it evolves away from flatness

very quickly. From observations, the Universe appears veryflat today [41], so earlier

in the history of the Universe, it must have been even closer to flatness.

It should be noted that the flatness problem is only really a problem if the Universe

does not have precisely zero curvature. Current measurements seem to be focusing

in on the exactly flat case, however, any deviation would meanthat the Universe is

not flat. If the Universe was flat to start with, then the problem becomes moot, as the
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Universe will remain flat, otherwise a topology change wouldbe required to take place

at some stage in the Universe’s history. As flatness (k = 0) is a particular case of the

of the topologies that the Universe could have chosen,k = −1, 0, 1, then the question

could be changed to “why flat?”, but it would not be a problem inherent in the Big

Bang model.

The horizon problemis a problem of causality in the early Universe. The particle

horizon at last scattering represents an angle of only aboutone degree on the sky at the

present day. That is, regions of space that subtended an angle of about one degree on

the sky have never been in causal contact. Yet the temperature that we measure in each

of these regions agrees to about one part in ten thousand. This is an unprecedented

level of agreement for regions of space that have never been in contact with each other.

This is turn leads to the problems ofhomogeneity and isotropy. Again, the CMB tells

us that the temperature fluctuations at decoupling were verysmooth. From this we can

infer that the density perturbations in the early Universe were also particularly smooth.

This level of smoothness in the early Universe requires a high level of fine tuning in the

Big Bang scenario. One could imagine that a ‘generic state’ of density perturbations

produced by the Big Bang would be far from smooth.

There are also problems withunwanted relicsin the early Universe for the Big Bang

model. It is expected that the fundamental forces that we seetoday emerged from

the breaking of symmetries representing unified forces at higher temperatures, early

in the Universe. The electroweak force, for example, can be represented by the gauge

group SU(2)× U(1). This is spontaneously broken at lower temperatures tothe U(1)

group of electromagnetism. With the Higgs mechanism, this spontaneous symmetry

breaking produces the force carryinggauge bosonsof the electromagnetic and weak

interactions:W±, Z0 andγ. We will discuss these concepts in more detail later. The

formulation of the electroweak theory by Glashow, Weinbergand Salam correctly pre-

dicted the masses of the gauge bosons, before they were subsequently discovered in

1983 at the UA1 and UA2 experiments carried out with the SuperProton Synchrotron

at CERN. Carlo Rubbia and Simon van der Meer led these experiments, and were

subsequently awarded the Nobel prize in 1984. Glashow, Weinberg and Salam were

awarded the Nobel prize for their theoretical work in 1979.
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Many theorists anticipate that the other fundamental forces will unify at higher tem-

peratures into aGrand Unified Theory(GUT). The problem with this in terms of Big

Bang cosmology is that the breaking of these higher symmetries typically produces

topological defects such as magnetic monopoles. These monopoles would be expected

to dominate the energy density of the Universe. However, notone has been observed

at this time. Other relics that are possibly more relevant with regard to the interest in

supersymmetry and string theory are the gravitino and the spin-zero particles corre-

sponding to the moduli in string theories. The effects of the gravitino on nucleosynthe-

sis have been considered [42], as well as the implications for cosmology from moduli

[43, 44].

The origin of thematter-antimatter asymmetryis also a problem for the Big Bang sce-

nario. The Big Bang scenario suggests that matter and anti-matter should be produced

in equal amounts at the time of formation, and hence one wouldexpect to observe

nothing today, as all matter and antimatter would have annihilated. This is clearly not

the case. There must be some mechanism to produce a matter-antimatter asymmetry

in the early Universe.

1.1.2 Inflation and Dark Energy

Resolving the Problems: Enter Inflation

A period of exponential expansion in the early Universe, would solve the problems

associated with the Hot Big Bang model. Just such a model was proposed indepen-

dently by Starobinsky [45, 46] and Guth [47], and later revised by Linde [48, 49] and

Albrecht and Steinhardt [50], to become the standardslow roll inflationmodel.

Inflation is a period of super-luminal expansion, and can be defined in terms of the scale

factor as occurring when ¨a > 0. We recall that the Raychaudhuri equation, eqn. (1.12)

is
ä
a
= −

4πG
3

(ρ + 3p),

and we can see that a period of inflation leads to the condition

p < −1
3
ρ. (1.16)
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We recognise this as meaning that thestrong energy conditionis violated. For a fluid

with general equation of state

p = ωρ, (1.17)

we get a period of inflation if

−1 ≤ ω ≤ −1
3
. (1.18)

This leads to the scale factor behaving as

a ∝ t
2

3(1+ω) ω , −1

eHt ω = −1. (1.19)

Hence, if−1 < ω ≤ −1
3, we have power law inflation, and ifω = −1 (the Cosmological

Constant case), then we have exponential inflation.

We can use this idea to solve the flatness problem. We have already seen that a flat

geometry requires
∑

i

Ωi = 1. Using eqns. (1.10), (1.12) and 1.12, along with the

equation of stateP = ωρ, we can write

Ω̇ = (1+ 3ω)HΩ(Ω − 1). (1.20)

If ω > −1/3, thenΩ = 1 (the flat case) can be shown to be an unstable fixed point. If,

however,ω < −1/3, thenΩ = 1 instead becomes an attractor, so at the end of inflation,

Ω→ 1, regardless of its value previously.

Inflation can also ‘flatten’ density perturbations. Eqn. (1.20) can also be considered on

a local scale. IfΩ > 1, then there is an overdensity, whileΩ < 1 corresponds to an

underdensity. Ifω > −1/3 then perturbations grow, while ifω < −1/3, perturbations

decay. In this way, inflation drives the Universe towards a smooth distribution, and

the Universe effectively loses memory of the state it was in before inflation.This goes

some way to solving the homogeneity and isotropy problems.

There is also a resolution of the horizon problem. The particle horizon can be written

as

dH(t) = a(t)
∫ t

0

dt′

a(t′)
, (1.21)

or, changing variables, as

dH(t) = a(t)
∫ a

0

da′

a′2H(a′)
. (1.22)
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We can see from eqn. (1.19) that

H ∝ a−
3
2 (ω+1), (1.23)

so

dH ∝ a
3
2 (ω+1). (1.24)

Below the critical value ofω = −1/3, we see that the horizon distance decreases with

increasing time. During a period of inflation, the co-movingHubble radius decreases,

and so the particle horizon tends to infinity. If inflation continues for long enough, the

entire observable Universe can emerge from a single causally connected region.

Inflation will also dilute the number of unwanted relics, so that the predicted number

and energy densities are not in conflict with what is observedtoday.

To obtain a period of exponential inflation, we require a formof energy that violates

the strong energy condition, and gives rise to negative pressure. A scalar field can be

imbued with the properties necessary to fulfil these conditions.

Scalar fields in Cosmology

Scalar fields have been used recently to describe the unknownforms of matter and

energy we believe to be prevalent in the Universe. Invoking as yet unseen fields imbued

with the properties we require, in order to explain observations, could be considered to

be a statement of our ignorance concerning the nature of the substances that appears to

dominate our Universe, but there are also very good reasons for suggesting that they

should play an integral role in our understanding of the matter content of the Universe.

The primary motivation comes from particle physics. In the Standard Model, the parti-

cle content is made up of quarks and leptons, spin-half particles, and the gauge bosons

which mediate the interactions between them: the photon forthe electromagnetic force,

theW± andZ0 bosons for the weak nuclear force, and the gluon for the strong force,

all of which are spin-one particles. The graviton mediates the gravitational interaction,

and is a spin-two boson, but is not part of the Standard Model as the Standard Model

has not yet been successfully extended to include gravitational interactions. The mass

of a particle also tells us something about the interaction strength associated with it.

The photon and the graviton are both massless, and hence travel at the speed of light
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and have a range of interaction that is infinite. The gluon is theoretically massless, but

its range is limited by colour confinement. TheW has a mass of 80 eV, while theZ has

a mass of 91 eV, and their range is limited. The question is, how do particles acquire

this mass? The prevailing theory at the moment is the Higgs mechanism, which gives

the mass of the particles through a phenomena known assymmetry breaking. This

idea is explained in much more detail later in this thesis. This theory completes the

Standard Model by positing a spin-zero particle known as theHiggs boson. Spin-zero

particles can be associated with scalar fields. The pion field, for example, can be as-

sociated with a scalar field, and so can the other mesons and the bosons. However, the

pion field is not a true scalar, but rather a pseudo-scalar, asit breaks parity invariance.

It is also not a fundamental scalar particle, as it can be broken down into quarks. So

far, no fundamental scalar particles have been detected; the Higgs would be the first.

Supersymmetry is an extension to the Standard Model that posits a symmetry between

bosons and fermions. It was originally introduced in order to solve the hierarchy prob-

lem. That is, why the gravitational force is so much weaker than the other forces. If

supersymmetry is correct, it would also provide a natural way of acquiring fundamen-

tal scalar fields in particle physics, and hence cosmology. Every spin-half field would

be associated with a spin-zero or spin-one field, in what is called a chiral, or gauge,

multiplet. This explanation also requires us to understandwhy the symmetry between

fermions and bosons is broken. That is, why we have not seen any of the superpart-

ners. We expect each superpartner to have an identical mass to its partner, but know

that this is not the case, as we would have already seen them. At some energy scale,

supersymmetry is broken. This could be viewed as merely shifting the hierarchy prob-

lem. We may start to see signs of the superpartners, as well asthe Higgs, at the LHC.

The lightest of these, and hence the most likely to be seen, isthe neutralino. This is

formed from mass eigenstates of the superpartners of the gauge bosons, and has also

been suggested as a promising dark matter candidate [51].

In what might be considered more speculative theories, a field known as thedilaton is

present in string theories, and mediates the string coupling between strings or branes

in higher dimensions. The dilaton has also been considered as the scalar field respon-

sible for inducing inflation [52, 53]. Kaluza-Klein [54] theories use a scalar field to
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attempt to unify the gravitational and electromagnetic interactions in a higher dimen-

sional space. Whether this higher dimensional space takes on a real physical meaning,

or is just a mathematical tool awaiting a more ‘acceptable’ interpretation, is an open

question. In Tensor-Vector-Scalar theories [55], which usually seek to explain the dis-

crepancies in the matter-energy content of the Universe as deviations from Newton’s

law or General Relativity, scalar fields are often used to model the gravitational inter-

action in a similar way to Kaluza-Klein theories.

Scalar fields also abound in condensed matter, and we will seehow the phenomena of

symmetry breaking can be interpreted as introducing a photon mass term, explaining

the cutoff in the interaction length present in superconductors, in what is known as the

Meissner effect. The scalar fields in this case are not fundamental, instead representing

some macroscopic order parameter that has an interpretation in terms of, for example,

the density of particles or charge carriers in a material. The question of interpretation is

important, and there have been suggestions that the Higgs field, or other fundamental

scalar fields, may also turn out to be similarly phenomenological [56, 57], possibly

awaiting a microscopic description in terms of quantum gravity.

We can see very easily why scalar fields are a candidate for driving a period of expo-

nential expansion. A scalar field has a kinetic and potentialterm associated with it, and

so we can write down a Lagrangian for a non-spatially varyingscalar field,φ ≡ φ(t),

L = gµν∂µφ∂νφ − V(φ), (1.25)

and vary it with respect to the metric to obtain the energy-momentum tensor

Tµν = ∂µφ∂νφ + gµν

(

−
1
2

gαβ∂αφ∂βφ + V(φ)

)

. (1.26)

With the perfect fluid form of the energy-momentum tensor, eqn. (1.8), we find that

pφ =
φ̇2

2
− V(φ), (1.27)

ρφ =
φ̇2

2
+ V(φ), (1.28)

with the Euler-Lagrange equations giving

φ̈ + 3Hφ̇ +
dV(φ)

dφ
= 0. (1.29)
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If φ̇2 ≪ V(φ), andφ̈≪ 1, then we find that the scalar field mimics a fluid with equation

of state

Pφ ≃ −ρφ, (1.30)

i.e.ω ≃ −1, just what we require for exponential inflation, with the evolution given by

theslow roll equations,

3Hφ̇ = −
dV(φ)

dφ
, (1.31)

H2 =
8πG

3
V(φ), (1.32)

from eqns. (1.13) and (1.29). This also provides a natural mechanism with which to

end inflation. The slow roll conditions are violated when thefield begins to fast roll

along its potential, eventually reaching the minimum and oscillating around it.Reheat-

ing occurs due to this oscillation, and the energy of the inflatonfield is transferred to

radiation.

Density Perturbations from Inflation

Once Guth’s idea had time to develop, it was quickly realisedthat inflation may provide

a mechanism for producing the density perturbations required to kick-start structure

formation. This was realised essentially simultaneously by a number of people partic-

ipating in the Very Early Universe Conference in Cambridge in 1982 [58]. A number

of papers that provided an explanation of the density perturbations were produced in

quick succession [59, 60, 61, 62].

The inflationary paradigm has attracted some criticism as itis not really able to explain

the origin of the inflaton field, which is added in a rather ad hoc fashion, but it has

endured precisely because it does so well in explaining the observations taken by the

various precision instruments that have been recently commissioned. A number of

potential pitfalls have also arisen in the inflationary scenario, usually in relation to

the fine tuning of initial conditions [63, 64]. One of the mostserious problems could

be considered to be that, in order for inflation to start, the Universe must already be

homogeneous on superhorizon scales [65], leading again to the fine tuning of initial

conditions present in the problem of homogeneity and isotropy. We will not dwell on
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such problems here, except to note that they exist. For progress in their resolution see,

for example, Lieu and Kibble [66].

A particular success of the inflationary paradigm comes fromthe prediction of density

fluctuations, leading to an explanation of the large scale structure that we see today.

The explanation of primordial density perturbations is perhaps one of the most suc-

cessful attempts, along with Hawking radiation, to combineGeneral Relativity and

Quantum Field Theory.

Classically, we expect the inflaton field,φ, to be homogeneous and isotropic. Quantum

mechanically however, there will be a perturbation around the vacuum,δφ. We can

decompose this fluctuation into a Fourier expansion of wave modes

δφ(x, t) =
1

(2π)3

∫

δφ̂(k, t) exp(ik · x)d3k. (1.33)

An auto-covariance function can be written as

〈δφ̂(k1, t), δφ̂(k2, t)〉 = (2π)3Pδφ(|k|, t)δ(3)(k1 − k2), (1.34)

defining for us apower spectrumof fluctuations in the inflaton field. There are then

some complicated steps to relate the fluctuations in the inflaton field to perturbations

in the matter density, which we will leave out as they are not especially illuminating

from the point of view of this introduction and the rest of thethesis, but we can explain

qualitatively.

We have already seen how the matter-energy content of the Universe, which can in-

clude scalar fields, is coupled to the spacetime metric via Einstein’s equations. Hence,

any fluctuation in the inflaton field will also be manifest as fluctuations in the metric

describing the geometry of spacetime. We can think of this asdifferent regions of the

Universe experiencing slightly less, or slightly more, inflation. Metric perturbations

will also be stretched to cosmological scales, and cause baryons and photons to cluster

together in the gravitational potential wells created. When inflation ends, increasingly

large wavelengths will gradually become shorter than the causal horizon length, set-

ting up acoustic oscillationsin the photon-baryon fluid. So, any perturbation in the

inflaton fieldδφ(x, t), will lead to perturbations in the density fieldδρm(x, t). At the

end of inflation, the inflaton field may also decay into conventional matter, producing

inherited perturbationsδρi(x, t) in the densities of each particle species,i.
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Defining the density contrast

δm(x, t) =
δρm(x, t)
ρ̄m

, (1.35)

whereρ̄m is the homogeneous mean density value, we can decompose the density per-

turbations into a Fourier series

δm(x, t) =
1

(2π)3

∫

δ̂m(k, t) exp(ik · x)d3k, (1.36)

and define a power spectrum from the correlation function,

〈δ̂m(k1, t)δ̂m(k2, t)〉 = (2π)3Pm(|k|, t)δ(3)(k1 − k2). (1.37)

It is then possible to relate the two power spectra by a transfer function, encapsulating

the physics we described above.

Pm(|k|, t) ∼ T (|k|, t)Pδφ(|k|, t). (1.38)

The density of a photon fluid is related to the temperature byρr ∼ T4, and so the

density perturbations can be related to the temperature on the sky,

δm(x, t) =
δρm(x, t)
ρ̄m

∼
δT
T
. (1.39)

It is precisely these temperature differences that satellites such as COBE and WMAP

measure, and hence calculate the correlation functions. The acoustic oscillations man-

ifest themselves as Doppler peaks in the CMB power spectrum.That these measure-

ments agree so well with the fluctuations predicted by the inflationary paradigm gives

significant credence to the model.

The power spectrum then, is the two-point correlation function of the Fourier transform

of the density contrast. If the vacuum fluctuation for each Fourier component of the

inflatonδφ̂k(t) are uncorrelated and evolve independently of each other, then they can

be represented by a Gaussian distribution function, so thatthe real-space one-point

probability distribution of matter fluctuations is given by

pm(δm) =
1

(2πσ2
m)

1
2

exp

(

−
δ2

m

2σ2
m

)

, (1.40)

where the variance,σ2
m = σ

2
m(t), is defined byσ2

m = 〈δ2
m〉, and is related to the power

spectrum via

σ2
m =

1
2π2

∫ ∞

0
Pm(k, t)k2dk. (1.41)
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For a Gaussian distribution, the two-point correlation function provides a complete

statistical coverage of the density perturbations.

Further information about particular models of inflation isbound up in thenon-Gauss-

ianity, and thespectral running. Non-Gaussianity will reveal itself in the higher order

correlation functions such as the bispectrum [67, 68, 69, 70]. It is usually assumed that

the power spectrum defined by the two-point correlation function will take the form of

a power law

Pm(|k|, t) ∼ kns−1, (1.42)

wherens is known as thespectral index, or running. For ns = 1 we have the scale

invariantHarrison-Zeldovichspectrum. Standard inflation models also assume that

the inflaton vacuum fluctuation has negligible interaction with itself and other fields,

leading to a prediction of a Gaussian adiabatic density perturbation, and a spectral

index close to 1. This is in agreement with what is observed. Experiments with higher

precision, such as the Planck satellite, will hopefully be sensitive enough to detect

deviations, and hence be able to place bounds on various inflationary models.

Experiments, and a Surprising Result

After Penzias and Wilson’s CMB detection, a number of experiments were designed

with the hope of measuring the CMB more accurately, and detecting anisotropies,

which would help to constrain models of the early Universe, such as inflation. A

Soviet satellite, RELIKT-1, was launched in 1983 and produced upper limits on the

anisotropies in the CMB [71]. TheCosmic Background Explorer(COBE) experiment

was launched in 1989, and the Far Infrared Absolute Spectrophotometer (FIRAS) in-

strument on board measured with unprecedented accuracy theblack-body form of the

CMB, providing unambiguous evidence for a Big Bang scenario[72, 73, 74]. The Dif-

ferential Microwave Radiometer (DMR) instrument found forthe first time evidence

of anisotropies in the CMB spectrum [75], although the resolution of the satellite was

not enough to extract much meaningful information about them. Results from the

RELIKT-1 satellite were also reexamined around this time, and claimed a detection

of a black-body curve and anisotropies [76]. George Smoot and John Mather of the

COBE team were awarded the Nobel prize in 2006 for the discovery.
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Three balloon-based experiments TOCO/MAT (or QMAP), the Millimetre Anisotropy

eXperiment IMaging Array (MAXIMA) and the Balloon Observations Of Millimetric

Extragalactic Radiation and Geophysics (BOOMERanG) experiment were launched

around 1998. TOCO published the first accurate detection of the CMB acoustic os-

cillation peaks in 1999 [77, 78], which were quickly confirmed by the MAXIMA [79]

and BOOMERanG experiments [80, 81]. In the year these experiments were launched,

an unexpected detection would come to make their results even more relevant. Galaxy

rotation curves, mass-to-light ratios, CMB anisotropies and light element abundances

all suggested that the majority of matter in the Universe is non-baryonic. Inflation

suggested that spatial sections of the Universe should be flat. We have seen that this

requires
∑

i Ωi = 1. In lieu of any other evidence for other matter sources, andin spite

of no direct physical evidence, most theorists were of the opinion that the Universe

should be flat, and consisted only of matter,i = m, so thatΩm = 1. Others took

the view that the evidence was pointing to thek = −1 case, and some inflationists

modified their models to allow for an open Universe [82, 83]. Regardless of the topol-

ogy, all the available evidence from observations and measurements of galaxy cluster

dynamics, galaxy clustering, large-scale galaxy motions and gravitational lensing sug-

gested a baryonic to dark matter ratio of about 30:70, see Ellis and Coles [84] for a

review. This suggested that the majority of matter in the Universe should be dark.

That is, almost inert with respect to three of the physical forces. Not responding to

the electromagnetic force, for example, would render it invisible. Its only interaction

would be gravitational, so its influence would be seen only asan effect on surrounding

baryonic matter. There were some early suggestions that adark energycomponent

might account for the∼ 70 % discrepancy between the measured mass density and the

critical energy density predicted by inflation [85, 86, 87, 88], but generally it was ex-

pected that if the discrepancy was to be made up, it would be made up by dark matter.

This picture describing the matter components of the Universe would be overhauled

by an influx of observational evidence due to advances in experimental techniques.

High precision measurements of supernova brightness and redshift by the Supernovae

Cosmology project [89, 90], and the High-z Supernova Search[91], indicated that the

Universe was not only expanding, but accelerating in that expansion. Other evidence

later emerged to suggest that the onset of this expansion wasonly fairly recent [92, 93].
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This most recent period of accelerated expansion of the Universe can be thought of

as another period of inflation, albeit a less dramatic one. For a period of accelerated

expansion, we again need a contribution to the energy-matter component of the Uni-

verse that will give rise to negative pressure. From the acceleration equations we again

needä > 0 for accelerated expansion, which requires an equation of state for the dark

energy fluid of

P = ωρ, (1.43)

with

−1 ≤ ω ≤ −
1
3
. (1.44)

Data provided by the Supernova search teams allows one to plot luminosity distance

against redshift and compare the values against theoretical curves. This is shown in

Fig. 1.2, and from Fig. 1.3, we can see that a value ofω = −1 seems to be preferred.

The luminosity distance - redshift relation can also provide information about possible

evolution ofω. Some scalar field models of dark energy consider anω parameter that

is greater than−1, or can evolve in time, sometimes tracking the radiation density to

provide a natural solution to the cosmological constant problem. These are known as

quintessence models. See Copeland, Sami and Tsujikawa [94] for a review.

So, the cosmological constant,Λ, has reappeared. Rather than keeping the Universe

static, by providing support against gravitational collapse, as originally envisaged by

Einstein, it now produces the driving force behind the accelerated expansion.

Two other survey experiments were conducted around this time, which would deter-

mine more accurately the cosmological parameters. The 2dF Galaxy Redshift Survey

(2dFGRS) produced an accurate measurement of the density parameter of matter, as

well as detecting the baryon acoustic oscillations, leading to an estimate of the ratio of

dark matter to normal matter [95, 96]. The Sloan Digital Sky Survey (SDSS) comple-

mented this by putting constraints on the parameters describing the matter and energy

contents of the Universe [97, 98].

But perhaps the most significant experiment was a satellite based one, the Wilkinson

Microwave Anisotropy Probe (WMAP). This was launched in 2001, and released its

first dataset in 2003. Combined with the datasets provided byall the previous exper-

iments, it mapped out with unprecedented accuracy the peaksof the baryon acoustic
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Figure 1.2: Comparison ofΛ CDM models. From Choudhury and Padmanabhan [99]. Obser-
vational data points are obtained from the ‘Gold’ sample of Riess et al. [100] from the High-z
Supernova Search.

oscillations, and so provided accurate measurements of thecurvature of space, the

percentage of dark matter and the cosmological constant.

Figs. 1.4 and 1.5 show the temperature anisotropies and power spectrum from the

WMAP five year data release.

It is worth briefly commenting on how this data allows a calculation of the cosmologi-

cal parameters. To calculate the curvature, we look at the size of the hot and cold spots

caused by density fluctuations in the early Universe. We can calculate the actual size

that we would expect perturbations, and hence the temperature fluctuations, to have. If

we compare this to the apparent size that we actually see, we measure a combination
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Figure 1.3: Equation of state. From the Supernova Cosmology Project [89].

of the distance to the last scattering surface, and the curvature of the path that a photon

has taken to reach us. An independent measurement of the Hubble constant tells us

the time at which the Universe became transparent to radiation, and hence the distance

to the last scattering surface, so defining the curvature uniquely. The size of the spots

manifests itself in the location of the peaks. So a negatively curved geometry will push

the peaks to the right, while a positively curved one will push them to the left.

The ratio of dark to baryonic matter manifests itself in the height of the peaks. When

the acoustic oscillations are set up, the baryonic matter responds to the gravitational

pull of the dark matter. Compressions in the primordial sound waves, which corre-

spond to the odd peaks in the power spectrum, will be enhancedby this attraction. The

even peaks are produced by the ‘rarefraction’ phase of the oscillation, so comparing

the relative heights of the even and odd peaks gives information about the ratio of dark

to baryonic matter. The presence of baryonic matter also decreases the sound speed,

leading to a lower frequency oscillation. This increases the spacing between peaks.

A cosmological constant would act to reduce gravitational potential wells produced by

large scale density perturbations, leading to enhanced power on large angular scales.

The five year data release from WMAP gives some incredibly tight bounds on the

parameters describing the Universe. Some of those relevantto our discussion so far

are listed in Table 1.1.

The latest satellite mission Planck, will map the temperature power spectrum with
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Figure 1.4: Temperature anisotropies from WMAP 5 year data [101].

Parameter Value

Age of Universe 13.69± 0.13 Gyr
ΩB 0.0441± 0.0030
ΩDM 0.214± 0.027
ΩΛ 0.742± 0.030
ΩTot 1.099+0.11

−0.085
Equation of State,ω −1.06+0.41

−0.42

Table 1.1: WMAP 5 Year Parameters.

unprecedented accuracy and resolution, providing the tightest limits yet on the param-

eters described above. It will also measure parameters describing the non-Gaussianity

and spectral running, as well as hopefully producing an unambiguous detection of the

CMB polarisation.

We now have a Universe that is well described by the FLRW metric, with a cosmolog-

ical constant. This is known as theΛCDM model and is currently our best model for

the Universe we see around us. We will not be so concerned withdark energy in this

thesis, but we will describe models of dark matter, and so we will discuss progress in

that area in a bit more detail. Before we do, we will mention some of the techniques

used in investigating structure formation.
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Figure 1.5: Power spectrum from WMAP 5 year data [102].

1.1.3 The Traditional Approach to Structure Formation

We have seen how perturbations in the inflaton field can seed the density perturbations

that lead to large scale structure formation.

In this section we give a brief overview of the the techniquesused in structure forma-

tion scenarios. We will not detail the mathematical steps, but rather state how to get

to what we will consider the ‘end result’: the coupled continuity, integrated Euler, and

Poisson equations. We will also discuss some of the limitations of these approaches,

discussing their possible resolution in terms of a wave-mechanical approach using the

Schrödinger-Poisson system in Sections 2.2 and 3.3.

Large-scale structure formation in the early Universe is driven predominantly by grav-

ity. Hydrodynamical and radiative effects can be effectively ignored when considering

the density perturbations induced by inflation. Inflationary models also motivate a

dark matter candidate. For baryonic matter, radiation pressure prevents the growth of

density perturbations until recombination is complete, and small scale density pertur-

bations are largely suppressed bySilk damping. Hence, baryonic models struggle to

produce sufficiently large density perturbations to generate galaxies and clusters. Non-

baryonic matter would not couple electromagnetically, so dark matter density pertur-

bations can start growing long before recombination ends.

At late times in structure formation scenarios, the equations of fluid dynamics, cou-
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pled to the Poisson equation are sufficient to give an accurate description. The two

predominant fluid dynamic approaches are theEulerianandLagrangianapproaches.

In the Eulerian approach, macroscopic fluid quantities suchas density and velocity are

considered. The evolution of a large number of particles is most conveniently described

in terms of aphase-space distribution function. If the flow of particles is laminar, as

opposed to turbulent, then this distribution function is constant along particle trajec-

tories in phase space;Liouville’s theorem. These conditions lead to an equation for

a collisionless fluid; theVlasov equation, or collisionless Boltzmann equation. The

Euler andcontinuityequations can be obtained directly from the Vlasov equation, by

takingvelocity momentsof the distribution function [103]. By specifying an equation

of state for the substance being studied, and coupling thesetwo equations to the Pois-

son equation, we obtain a set of equations that gives an excellent approximation for

studying large-scale structure formation in the early Universe.

To make the derivation of these equations simpler, often a laminar approach is used,

where fluid stream lines do not cross. This is equivalent to the approximation of van-

ishing velocity dispersion. To simplify things further, asthese coupled equations are

often difficult to solve in the general case, the linear regime is often studied. This

regime is valid if the density fluctuations are smaller than the mean density, on the

large scales associated with structure formation. The other condition required is that

the amplitude of each Fourier mode

δ̂m =

∫

δm(x, t) exp(−ik · x)d3x, (1.45)

should be small, i.e.|δ̂m| << 1. When these conditions are valid, the evolution of

growing and decaying modes can be readily tracked. It can be shown that in the linear

regime, each Fourier mode will evolve independently. Hence, Gaussian perturbations

will remain Gaussian in the linear regime.

In hierarchical clustering scenarios, one of the problems with the linear regime is that

significant amounts of power can survive the radiation era, and fluctuations start to

become nonlinear on small scales, or largek, with larger and larger scales becoming

nonlinear as time goes on.

We remember from eqn. (1.40) that for a Gaussian random field,the real-space one-
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point probability distribution of matter density fluctuations is given by

pm(δm) =
1

(2πσ2
m)

1
2

exp

(

−
δ2

m

2σ2
m

)

Once the variance on a given scale approaches unity, the probability distribution of

matter density fluctuations above starts to assign significant probability to the exis-

tence of spatial regions withδm < −1, i.e. negative matter densities. This is clearly

unrealistic. In reality, non-linear evolution causes Fourier modes to couple to each

other, resulting in the distribution evolving away from Gaussianity, and becoming well

approximated by a log-normal distribution [104, 105].

In theLagrangian approachthe trajectories of individual fluid elements are followed,

where the trajectory of a fluid element is written asx = x(q, t), with the Lagrangian

coordinateq. This approach is used ubiquitously in numerical simulations such as the

Millennium Run, or other simulations usingSmoothed Particle Hydrodynamics(SPH).

A set of relations exists to move between the Lagrangian and Eulerian prescriptions.

Again, we will not explicitly go through the equations, except to say that they are

again only valid in the laminar, or single stream, regime, and can be very difficult to

solve analytically. A linearised approach can again be taken, resulting in theZeldovich

approximation[106, 107]. The Zeldovich approximation is capable of handling den-

sity perturbationsδm ∼ 1, and hence can be used evolve the system beyond the linear

regime. N-body simulations can follow the nonlinear regime, or the Vlasov equation,

directly.

As the gravitational attraction moves fluid elements closer, mathematical singularities

develop where the mapping fromq to x is not unique. This corresponds to different

fluid elements with different Lagrangian coordinates arriving at the same Eulerianpo-

sition. This is known asmulti-streaming, or shell crossing, resulting in the formation

of density singularities known ascaustics.

If we continue to apply the Zeldovich approximation after multi-streaming has oc-

curred, fluid elements simply carry on on their initial trajectories, dissolving any struc-

ture that might have formed. In reality, we would expect the large gravitational inter-

actions in these multi-streaming regions to act to bind structure together. Theadhesion

model, where fluid elements ‘stick’ to each other when shell crossing occurs, goes
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some way to resolving these problems with the Zeldovich approximation, but fails as

it does not follow the nonlinear motion of fluid elements within high density regions.

We have given a brief, but fairly extensive qualitative introduction to methods of mod-

elling structure formation. We have done this partly because it is a fundamental part of

any introduction to Cosmology, and partly because it forms abackground for a novel

approach to structure formation that utilises the Schrödinger-Poisson system. We will

elaborate further on this approach in Sections 2.2 and 3.3. This wave-mechanical ap-

proachcan be seen to circumnavigate many of the problems with the traditional ap-

proaches that we have mentioned above.

1.1.4 Dark Matter

So, we have seen how the energy-matter component of the Universe appears to be

made up of∼ 5 % baryonic matter,∼ 21 % dark matter, and∼ 74 % dark energy. We

now concentrate on dark matter’s role in the evolution of theUniverse, some possible

candidates, and some of the problems that arise in trying to implement various models.

We have already mentioned that Zwicky was the first to notice that something may

be amiss in measurements of a galaxy’s mass. Later evidence came in the 1970s,

largely from observations of galaxy rotation curves [108, 109, 110, 111, 112]. These

measurements showed that the orbital velocities of galaxies appeared to be reaching a

plateau, rather than decaying away as one moved further out from the galaxy’s centre.

This implies a form for the distribution of matter in a galaxythat the visible part was

clearly not following. Evidence from these rotation curvessuggested that the visible

part of the galaxy was set in a halo of unseen matter.

Evidence from the observation of H1 rotation curves [113] and other galactic dynam-

ics, such as the kinematics of satellite galaxies (see e.g Zaritsky et al. [114]) for exam-

ple, led to the formation of theCold Dark Matter(CDM) model [115, 116, 117, 118].

This model described a Universe in which the constituents were baryonic and dark

matter only.

The rotation curves of galaxies and their associated density profiles are possibly the

most powerful tools for probing dark matter distributions.Analysing a large num-
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ber of galaxies, Persic et al. [120] developed a model of a ‘universal rotation curve’,

whose form, they claimed, could be fit to any type of galaxy. Models such as these

have been complemented by recent breakthroughs in the simulation of dark matter and

the evolution of structure formation, due partly to the increase in available computer

power. As we have seen in Table 1.1, the ratio of baryonic matter to dark matter is ap-

proximately 1:5. When simulating structure formation, it is usually assumed that the

evolution is driven by the gravitational interaction of thedark matter. This assumption

simplifies the problem somewhat, as one does not have to deal with the complicated

gas physics, which is very difficult to implement. Since the emergence of theΛCDM,

or concordance modelof Cosmology, simulations have again made tremendous strides

in modelling structure formation in the Universe. The Millennium simulation by the

VIRGO consortium was one such simulation that made considerable achievements by,

for example, explaining some of the observations of black hole candidates in quasars

made by the Sloan Digital Sky Survey (SDSS). Other progress has been made in ex-

plaining the structure of dark matter halos [134].

There are however a number of problems that arise in numerical simulations of the

concordance model that do not appear to fit observations. Thetwo main problems

are the appearance ofcuspy halo cores, and theoverabundance of substructure. To

understand these problems, we need to understand a little bit about the simulations

themselves.

One of the most important simulations was done by Navarro, Frenk and White [121].

This established an analytic form for the dark matter distribution in virialised struc-

tures. TheNFW profileprovides the best fit to simulated data, and has auniversal

form, meaning that it can be scaled to fit the characteristicsthe majority of galaxies

and galaxy clusters. The NFW profile can be written

ρ =
ρs

(r/rs)(1+ r/rs)2
, (1.46)

wherers andρs are some characteristic scale and density. This profile applies to stable,

bound systems, where the virial theorem holds. A distance scale within which this

is the case is known as thevirial radius, rvir. This is often difficult to determine, in

observations as well as simulations, and so it is often approximated as the radius within

which the average density of the dark matter is greater, by a specified factor, than the
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critical density,ρcrit, given by eqn. (1.13). A factor of 200 has generally become the

standard in simulations, if only to enable comparisons between studies. This radius is

written asr200, and also allows for the detection of subhalos within halos.See papers

by the recent Aquarius project [122] for example. Two further parameters are often

defined; thecharacteristic density, δc = ρs/ρcrit, and theconcentration parameter,

c = rvir/rs, wherervir is the virial radius. The NFW profile then, can be rewritten as

ρ(r) =
δcρcrit

(r/rs)(1+ r/rs)2
. (1.47)

It can be shown [121], that with the defined factor of 200, the characteristic density

can be related to the concentration parameter by

δc =
200
3

c3

(ln(1+ c) − c/(1+ c))
. (1.48)

In this case, for a given halo mass, eqn. (1.47) has one free parameter, which can be

expressed either as the characteristic density, or the concentration parameter. With

these free parameters, the NFW profile is currently the modelthat provides the best fit

to any simulated data for a dark matter halo. The validity of these results are still widely

debated within the community [123, 124, 125, 126, 127, 128, 129], and eqn. (1.47) also

appears to be in disagreement with observations, though this again has generated a lot

of discussion [130, 131, 132].

An in depth study of the density profile of the Milky Way was done by Battaglia et

al. [133], and suggests that the dark matter halo is consistent with an NFW profile of

mass 0.8+0.2
−0.5 × 1012 M⊙, and a concentration parameter ofc = 18. Observationally, it

can be difficult to obtain a value for the virial radius, but, as described in the Battaglia

paper, the NFW profile can be described by the concentration parameterc, and by the

virial mass,or the circular velocity at the virial radius. For this reason,they take the

mass within 120 kpc, as this is the furthest distance at whichthere was a reliable tracer.

This can be considered an effective virial radius, and is approximately the extent of the

dark matter halo. The radius of the stellar disk is of order 20kpc.

One of the problems is that the NFW profile becomes singular atsmall radii. The

N-body and hydrodynamic simulations of dark matter halos, from which the NFW

profile is derived, tend to show large spikes in the dark matter density profile when

approaching the centre of the halo [135, 136]. This problem typically starts to manifest
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itself within a radius∼ rvir/100. These singular cores are not seen in observations

[137, 138, 139], in either clusters of galaxies observed by gravitational lensing [140],

ordinary spiral galaxies [141, 142], or some low brightnesssystems [130]. Dwarf

galaxies, for example, have nearly uniform density cores, in contrast to the expected

cuspy density profile [143, 144]. Within simulations this may be a problem with the

resolution within the core regions, or it is possible that theoretical predictions of cuspy

profiles may not be as accurate as is often suggested [145, 126, 146]. TheEinasto

profile may better represent the dark matter halo of a simulated galaxy [147], but this

is in some doubt because of the limited resolution of N-body simulations. The Einasto

profile is given by

ρ(r) ∝ exp (−Arα), (1.49)

whereA andα are constants. It can be seen that the Einasto profile does notbecome

singular in the core region.

The amount of observed galactic substructure, associated with galaxy and cluster for-

mation, is not as abundant as predicted by either theory or simulation. In the process

of a hierarchical structure formation scenario, where larger objects are formed by the

merger of smaller objects over time, the merging process is not 100% efficient in de-

stroying the accreted satellites, resulting in the structures such as the Large and Small

Magellanic Clouds that orbit our own galaxy. These structures are of order 1010 M⊙.

From observations of the Milky Way and Andromeda, the current cosmological mod-

els predict that galaxies such as these should have∼ 50 dark matter satellites of mass

> 3 × 108 M⊙ within a 570 kpc radius, while present detections number only about a

dozen or so. The simulated data is worse, predicting∼ 300 satellites in a 1.5 Mpc ra-

dius, while we see only∼ 40 [148, 149]. This is the problem of the overabundance of

substructure. Interestingly, just as the models of the density profiles of dark matter are

scale free, the amount of substructures associated to a halois also scale free. In numer-

ical simulations, the properties of a galaxy and its associated satellites are the same as a

galaxy cluster, andits associated satellites [149]. Observationally, again, this is not the

case, and there are far fewer satellites observered than in simulations. This may be a

problem of detection and observation. Indeed, new satellites are still being discovered

[148], and it is possible that some of the satellites will be completely dark. It should be

possible to detect small galaxy halos from the lensing effects that they would have on
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their host galaxy. Evidence of such effects is currently inconclusive [150]. These small

galaxy halos should also make disc galaxies thicker than observed [151, 152, 153].

Again, it is possible that this problem may be resolved with higher resolution of the

simulations. Observations too may be prone to selection effects. There are also some

more speculative suggestions that the deficit of substructure may be explained if dark

matter particles are allowed to decay into other particles [154].

Simulations are also still fairly limited when it comes to describing the interactions of

baryonic matter. Some hydrodynamic simulations produce galaxy discs that are too

small and have too little angular momentum compared to observations [136], while

many high surface brightness galaxies exhibit rotating bars, which are normally only

stable if the core density is lower than predicted [155]. Thedistribution of dark matter

in the Universe is also a puzzle, and a problem for simulations. Some ellipticals appear

to be completely void of dark matter [156]. This may be the result of mergers or other

interactions, as evidenced by the so calledBullet cluster[157] andTrain Wreck[158],

but it would still be very difficult to explain the loss of all dark matter from an old, and

hence dynamically settled, elliptical galaxy. One explanation suggests that the dark

matter may be there, but its dynamics may be confusing the observational signatures

[159]. There also appears to be evidence of galaxies lackingany visible matter compo-

nent [160]. Dubbeddark galaxies, it is difficult to be sure of their existence or number

density, for obvious reasons. There also appears of be a low ratio of visible matter to

dark matter inLow Surface Brightness(LSB) galaxies. Examples such as these are

difficult to simulate without correctly addressing the interaction of baryonic matter.

Weinberg and Katz [161] stressed that the inclusion of the baryon component in N-

body simulations may be crucial, as the effects of baryons may smooth the central dark

matter cusps. Sellwood however, developed simulations that appeared to contradict

this [162].

There have also been suggestions that dark matter may not be the solution to the appar-

ent mismatch between the dynamics predicted by Newtonian mechanics, and the lack

of visible matter. Some theorists advocate versions ofModified Newtonian Dynamics

(MOND) [163], where the laws of gravitation are modified on some scale larger than

we have experimental access to. Relativistic versions of these theories such asTen-
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sor Vector Scalartheory (TeVeS) [55, 164] andScalar Tensor Vector Gravity(STVG)

[165] have also been developed. These theories are often able to do a good job of de-

scribing galactic dynamics without invoking dark matter, see MOND’s explanation of

dark matter ellipticals [166] for example, but they often invoke instead an unexplained

scalar field, or include adjustable free parameters. Some might argue that this is no

worse than the scalar fields invoked by inflation. When the Bullet cluster and the Train

Wreck were discovered, it seemed that they might kill off these types of theories [57],

as the centre of mass of the visible matter and that of the darkmatter, as observed by

gravitational lensing, did not coincide. The object VIRGOHI21, which appears to be

a dark galaxy, also does not appear to follow the dynamics predicted by MOND [168].

The recent discovery of a dark matter ring in the galaxy cluster CL0024+17 adds fur-

ther evidence to the dark matter proposition [169]. It may bepossible to test theories

of modified gravity when gravitational wave detectors such as LIGO and GEO600 are

able to conclusively detect gravitational waves. In theories of modified gravity, pho-

tons and neutrinos produced in a cataclysmic event, such as asupernova, should lag

behind the arrival of gravitational waves by an appreciableamount [170]. This would

produce an unambiguous result in favour of MOND-type theories.

A number of dark matter candidates have been proposed, and experimental searches

now seem to be on the brink of coming to fruition. Some of the early suggestions

included monopoles and massive neutrinos [171]. These are currently unlikely can-

didates as they would require a neutrino mass that is unreasonably large, or a large

number of monopoles, of which we have not seen even one. If dark matter was com-

prised of neutrinos with the mass that we currently expect∼ 0.1 eV, then it would be

relativistic.Hot Dark Matter(HDM) is generally ruled out as a dark matter candidate,

as the relativistic speeds mean that structure formation isinhibited.

The axion was first hypothesised as a solution to the strong CPproblem in QCD, and

we will discuss further the relation to field theory in Section 4.3. When the dark mat-

ter content of the Universe became apparent, the possible mass range and interaction

strength of the axion made it a good candidate for a dark matter particle. See, for exam-

ple, Turner [172]. After some promising initial experimental results, the non-detection

of dark matter axions by the Polarizzazione del Vuoto con LASer experiment (PVLAS)
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[173] and the Axion Dark Matter Experiment (ADMX) [174] seemto rule the axion

out as a candidate.

Massive Compact Halo Objects(MACHOs) have also been proposed as a solution to

the dark matter problem that removes the need to resort to new, exotic forms of matter.

MACHOs would be composed of normal baryonic matter, but would not emit light of

their own, and so be quite hard to detect other than with gravitational lensing and other

gravitational effects, such as rotation curves. Examples of MACHO’s could be planets,

or low luminosity stars such as brown dwarves, or even black holes. Searches to this

effect, by the MACHO [175] and EROS2 [176] collaboration for example, have not

detected significant amounts of mass to be tied up in such astronomical bodies, with

an upper limit of∼ 20 % of the dark matter fraction. The most promising candidates

are currently considered to beWeakly Interacting Massive Particles(WIMPs). As the

name suggests, they interact only with the weak nuclear force, and gravitationally. In

Section 1.1.2 we suggested how one such particle, theneutralino, may emerge natu-

rally from supersymmetric theories(SUSY) and may be the only stable particle left

over from the decay of heavier SUSY particles.

Like ‘dark energy’ and ‘dark matter’, the name WIMP reflects the properties we cur-

rently believe that the particle should have, rather than any experimental verification

of such a particle. However, there have recently been a number of experimental results

that may be shedding light on dark matter’s parameters.

One experimental method is direct detection. These experiments work by detecting the

recoil of nuclei after a collision with a dark matter particle. As dark matter particles are

expected to be weakly interacting, these experiments require a large collection area, a

target particle with a large interaction cross-section, orpreferably both. Examples of

these experiments are the Cryogenic Dark Matter Search (CDMS) detector and the Di-

rectional Recoil Identification From Tracks (DRIFT) experiment. The direct detection

experiments DAMA/NaI and the later DAMA/Libra aimed to detect dark matter by

exploiting the Earth’s rotation around the sun. If the galaxy is embedded in a dark

matter halo, then Earth’s orbit should produce a bi-annual modulation in the flux of

dark matter flowing through the planet, reminiscent of the Michelson-Morley ‘aether’

experiments. Both of these experiments claimed a signal detection, although these re-
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sults remain somewhat tentative as a number of other experiments reported a null result

[177].

Other experimental searches concentrate on the detection of cosmic rays. WIMPs may

annihilate with each other to produce high energy cosmic rays or electron-positron

pairs, which may themselves annihilate to produce cosmic rays. If WIMPs interact

gravitationally, then we might expect more cosmic rays to come from the centres of

large mass objects, such as galaxies, where the densities, and hence interaction rates,

will be higher.

One unexpected result to come from the WMAP data was the detection of an excess of

microwave radiation coming from the Milky Way core [178]. The Compton Gamma

Ray Observatory (CGRO) and INTErnational Gamma-Ray Astrophysics Laboratory

(INTEGRAL) experiments have also found a flux of photons at 511 keV [179], the

energy one would expect if positrons and electrons were annihilating, coming from the

same region.

It has been suggested that high energy dark matter particlesmay result from the an-

nihilation of neutralinos, a SUSY candidate for dark matter, with the ‘WMAP haze’

resulting from annihilation in the inner galaxy [180]. Neutralinos could possibly cre-

ate new light bosons [181], or dark matter particles in excited states [182], with the

WMAP signal again produced when these annihilate or decay [183, 184].

Gamma ray detectors, such as the Energetic Gamma Ray Experiment Telescope (EGR-

ET) on board the Compton Gamma Ray Observatory (CGRO), have seen more gamma

rays than expected in the energy range 1 - 10 GeV, while the High Energy Antimatter

Telescope (HEAT) and the Alpha Magnetic Spectrometer (AMS-01) mounted on the

International Space Station, both detected excess positrons in the range 10 - 100 GeV,

a result that was later confirmed by the satellite experimentPayload for Antimatter

Exploration and Light-nuclei Astrophysics (PAMELA).

An important limiting factor for the energies of cosmic raysis the Greisen-Zatsepin-

Kuzmin (GZK) cutoff [185, 186]. High energy cosmic rays from distant sources should

interact with the photons of the CMB, and so lose energy over long distances. This

puts a limit on the energies of cosmic rays that are detectable on Earth. A number of

experiments, for example the High Resolution Fly’s Eye cosmic ray detection (HiRes),
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and Akeno Giant Air Shower Array (AGASA) have detected cosmic rays that are above

the GZK limit. It is suggested that a dark matter candidate could annihilate or decay

to produce these energetic cosmic rays [187].

These detections are in their early stages, and it is hoped that the Pierre Auger Cosmic

Ray Observatory and the Fermi Gamma-ray Space Telescope (formerly GLAST) will

provide more detail on these observations.

1.2 Cosmology Meets Condensed Matter

Cosmology is in the somewhat unenviable position of being anobservational disci-

pline. We are forced to make observations of the only Universe we have, in its current

state, and infer what we can.

Condensed matter physics is generally concerned with explaining the macroscopic

properties of materials, by understanding the behaviour ofthe material at the micro-

scopic level. It seeks to describe phenomena such as phase transitions, condensates,

superconductors and semiconductors. Of course, Einstein himself made several impor-

tant and fundamental contributions to the field of condensedmatter. Extending Bose’s

idea [188] of indistinguishable photons to matter particles [189] gave rise to the predic-

tion of Bose-Einstein condensation, while the prediction of stimulated emission from

atomic transitions [190] is generally regarded as the advent of laser physics.

In order to facilitate experimental tests of theoretical predictions, physicists have often

appealed to analogue models in an attempt to better understand the physics of cos-

mological phenomena. An example of such a proposal is the liquid drop models of

gravity. While investigating the effect of self-gravitation on large bodies, Plateau [191]

developed a model where the surface tension of a liquid drop took the role of the grav-

itational force. A later example is a proposal by Bohr and Wheeler [192] that uses the

surface tension of a charged liquid drop to describe the nuclear forces in a model of

nuclear fission.

Analogue models have developed significantly in recent years, in terms of both the

experimental techniques that are available to test them, and the level of mathematical
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rigour between the two sides of the analogy.

The first Bose-Einstein gas was produced experimentally only relatively recently by

Cornell, Wieman, and Ketterle in 1995, giving an idea of the level of technological

advancement required for such experimental techniques, and earning the Nobel prize

in 2001. Analogue models have (therefore) concentrated on superconductors and su-

perfluids, which were discovered much earlier, in 1911 and 1938 respectively [193].

Experimental analogue models have been proposed to test early Universe processes

such as topological defect production and interaction, andthe production of primor-

dial magnetic fields. Analogies between the mathematical structure of the two systems

have also been proposed.

First we give a brief historical overview of the developmentof condensed matter the-

ory, particularly in relation to an idea that it inspired in high energy particle physics.

1.2.1 The ‘Higgs-Anderson’ mechanism

In 1937, Landau had the first major success in trying to formulate a general theory

for second-order phase transitions (see, for example, Landau and Lifshitz [194]). He

recognised that phase transitions could be characterised by an order parameter, such as

the density of a fluid or the magnetisation of a ferromagnet. In the case of a superfluid,

the macroscopic density of particles can be represented as the square of a wavefunc-

tion, and Landau identified this wavefunction as the relevant order parameter.

In 1950, developing Landau’s earlier work, Landau and Ginzburg [195] formulated a

macroscopic theory of superconductivity; the phase transition from normal conductiv-

ity to superconductivity also being second-order. This theory described how properties

associated with the superconductor, such as density or the flow of current, behave.

Once again, the relevant order parameter was identified as the averaged macroscopic

wavefunction of the superconducting electrons, with the density of superconducting

carriers being given by its square. The wavefunction in thiscase is a complex field,

interacting with the electromagnetic force.

The BCS theory of superconductivity, developed by Bardeen,Cooper and Schrieffer

in 1957 [196, 197], gave a microscopic description of the phenomena of superconduc-
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tivity, and for the development of this theory the trio were awarded the Nobel prize

in 1972. The gap between the microscopic and macroscopic regimes was filled by

Gorkov in 1959 [198], who showed that the Landau-Ginzburg theory could be derived

from the BCS theory.

Landau’s contribution to condensed matter was recognised by the Nobel prize commit-

tee in 1962, while Ginzburg had to wait until 2003 to share theprize with Abrikosov

and Leggett for ‘pioneering contributions to the theory of superconductors and super-

fluids’.

The Landau-Ginzburg theory contains a nice example of symmetry breaking and, in

applying it to superconductors, can explain the exclusion of magnetic field, theMeiss-

ner effect, by giving the photon an effective mass. This idea was considered by a

number of people around the same time. Notable amongst these, from our point of

view, is the condensed matter physicist P. W. Anderson, who shared the 1977 Nobel

prize with Mott and Van Vleck for their ‘fundamental theoretical investigations of the

electronic structure of magnetic and disordered systems’.Anderson discovered the

mechanism for mass generation via symmetry breaking in condensed matter systems

[199], as noted above, and suggested that it may have cosmological implications. The

other major players in suggesting this idea for the generation of mass are Englert and

Brout [200], Guralnik, Hagen and Kibble [201] and, of course, Higgs [202, 203].

The relationships between cosmology and condensed matter have been elucidated

much further in recent years, and because of technical developments in both sub-

jects, there have been a number of attempts to model early Universe processes in the

laboratory. To emphasise and encourage cross-disciplinary research in this area, the

European Science Foundation set up a five year Research Networking Programme,

COSLAB [204] (Cosmology in the Laboratory), chaired by Prof. Grigory Volovik and

Prof. Tom Kibble.
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1.2.2 Kibble-Zurek mechanism - Condensed Matter again informs

Cosmology

We have seen one example of Kibble’s work in the cosmology/ condensed matter inter-

face. We look at another example that is more immediately observable in experimental

setups.

The Kibble mechanism [205] describes the production of topological defects in the

early Universe. As the Universe cooled, it may have gone through a second-order

phase transition at some critical temperature, breaking symmetry groups as described

previously, and producing particles. The breaking of certain symmetries can produce

topological defects, where the order parameter changes discontinuously acrosssome

boundary separating two regions of degenerate vacua.

As a system moves through a second-order phase transition, the temperature drops until

it reaches a critical temperatureTcrit. It is at this temperature that degenerate minima

of the potential first appear. The field can however move between the different vacua

if the thermal fluctuations are greater than the height of thepotential barrier. This is no

longer possible once the temperature drops below theGinzburg temperature, at which

point any topological defects are ‘frozen in’.

Kibble was the first to estimate the density of topological defects formed by sponta-

neous symmetry breaking after a cosmological phase transition. His argument was

based upon considerations of causality at the Ginzburg temperature. Correlations can-

not establish themselves over distances greater than the causal horizon, so the causal

correlation length should satisfy the causality constraint

ξ < dH, (1.50)

wheredH is the distance to the causal horizon. The correlation length can also be

related to the Ginzburg temperature. One defect would take up a region∼ 1/ξd
1/3, and

Kibble identified the length scaleξd, with the correlation lengthξ. This is obviously

a sensible suggestion to make, and gives rise to a density of one defect per Hubble

volume at the time of formation.

A potential problem with this argument arises when one considers the Universe in

terms of a thermal system. The equilibrium correlation length ξeq, that is, the correla-
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tion length of the system if the system could reach thermal equilibrium, changes very

rapidly in the vicinity of a second-order phase transition.The difference between the

causal and equilibrium correlation length is essentially the time it takes a system to

react. Two regions may be in causal contact, but will not immediately be in thermal

equilibrium. At what time, or temperature, should we equateξd with ξ?

Zurek [206, 207, 208] considered the defect density within the framework of second-

order phase transitions, and the equilibrium correlation length. As the system passes

through the second-order phase transition,ξ is able to keep up with the equilibrium

correlation lengthξeq, until dξeq/dt becomes larger than the speed at which correlations

can propagate in the system, and the system falls out of equilibrium. On the other side

of the transition,ξ eventually becomes equal to the decreasingξeq, and it is at this time

we should identifyξd with ξ, so thatξ ≡ ξd ≡ ξZ. This time is often now called the

Zurek time, tZ, and gives a prediction of the defect density∼ k/ξ2
Z, wherek is a constant

of order 1 [209].

This concept is interesting because analogous scenarios occur in condensed matter

physics. When various substances, such as3He, 4He or nematic liquid crystals, are

subject to a temperature quench, taking them rapidly through a phase transition, then

topological defects such as vortices can appear within the substance. Initial numerical

simulations [210] seemed to agree with the Zurek scenario, although the constantk

mentioned above, seemed to be less than order one.

The first experiments were done in nematic liquid crystals [211, 212]. The Zurek

scenario is not strictly applicable, as the nematic phase transition is first-order. The

defect density did however, appear to agree approximately with the estimates.

A number of other experiments were then performed in3He [213, 214] and in4He

[215, 216, 217] to investigate the Kibble-Zurek scenario. Interpreting the results is

somewhat inconclusive, but this is due to the complexity of the experimental detail,

rather than incorrect physical concepts. However, the laboratory tests confirmed the

formation of defects at the end of a symmetry-breaking transition, and did not agree

with the defect density predicted by Kibble.

A number of other experiments have been performed in order toexploit the analogies

present in cosmological and condensed matter scenarios.



Cosmology and Condensed Matter 43

Recentbraneworldscenarios inspired by string theory have suggested a mechanism

for inflation caused by the interaction and annihilation of higher dimensional branes.

These models often predict that topological defects, such as cosmic strings, will be left

behind as relics of this collision, as well as the associatedparticle production [218].

Superfluid Helium-3 has two phases, A and B, and can be arranged in such a way that

the sample contains vertical regions of A phase, then B, thenA, with the boundary

between each phase being a topological defect. These simulated branes then move

together and annihilate, producing line-like topologicaldefects, and a variety of exci-

tations that one can associate with particles [219]. This type of experiment goes some

way to giving credence to brane inspired models of the Universe.

It has also been suggested that the interaction of excitations in the two phases of3He

could be analogous to baryogenesis during the electroweak transition [220, 221].

Primordial magnetic fields in the Universe may also be generated from cosmological

phase transitions, with concepts that could also potentially be tested in the laboratory

[222].

A Mathematical Analogy

Volovik, the other chair of the COSLAB programme, has workedon many ideas that

relate condensed matter to cosmology [224], and proposes a mathematical analogy

based upon the group structure of the standard model, the model of the fundamental

interactions in the Universe, and the different phases of3He. Helium-3 is proposed

as analogous to the quantum background, out of which photons, gravitons and gluons

emerge as collective excitations. The idea is largely related to the concept of symmetry

and symmetry breaking, and comparing the symmetry groups one can use to represent

the interactions.

A physical system generally has a number of symmetries associated with it; classical

symmetries such as translational and rotational invariance, and less tangible quantum

symmetries such as the isospin symmetry associated with thecharge of a particle.

According to Noether’s theorem [223], transformations that leave the structure of a

system unchanged correspond to conservation laws. A time translation, for example,
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leads to the conservation of energy. These transformationsare known as the sym-

metries of a system, and these symmetries form a group. Threeof the fundamental

interactions in particle physics can be shown to be associated with a particular type of

symmetry, known as alocal, or gaugesymmetry.

For example, the free Lagrangian of quantum electrodynamics, the highly successful

field theory of the electromagnetic force, is invariant under a global (U(1)) transfor-

mation. That is, the wavefunction of the electromagnetic field can be changed by any

factor that is independent of the position in spacetime, andthe Lagrangian, and hence

the physics, will remain the same. If, however, we try to makethis factor depend on

spacetime coordinates, alocal transformation, the Lagrangian is not invariant. In order

to induce gauge invariance, we must introduce a gauge field, the electromagnetic po-

tential, invariant under its own transformation. By doing this we find that we introduce

a term in the Lagrangian that gives rise to the photon-electron interaction. In a similar

way, the weak interaction can be associated with the group SU(2).

The theory of the electroweak interaction, which we have already mentioned, can be

represented by the group SU(2)×U(1). As the early Universe cooled, it passed through

the electroweak phase transition, at about 200 GeV. The electroweak symmetry U(1)

× SU(2) was violated, and broke down to the independent electromagnetic U(1) and

weak SU(2) forces, in the process giving a mass to theW± andZ0 gauge bosons via

the Higgs mechanism.

In a similar way, the theory of the strong force, namedquantum chromodynamics, is

encapsulated in the SU(3) group. The group corresponding tothe full Standard Model

Lagrangian is then given by

SU(3)strong× SU(2)weak× U(1)EM. (1.51)

It is expected that at some higher temperature, earlier in the history of the Universe,

the symmetries of fundamental interactions will be restored to some higher symmetry

group, as happened with the electroweak interaction. At this point the forces will

become unified into a Grand Unified Theory (GUT).

To see how this might be related to the structure of Helium-3,we can look at the

fluid’s group structure. The translational and rotational symmetries of Helium-3 can
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be represented as the product of three global symmetries

SO(3)orbrot× SO(3)spinrot× U(1)trans inv. (1.52)

We see that the unbroken sectors can be considered almost equivalent, as there is an

isomorphism between SO(3), and SU(2) modulo Z2,

SO(3)�
SU(2)

Z2
. (1.53)

This can be described qualitatively because SO(3) has a periodicity of 2π, while SU(2)

has a periodicity of 4π. The parameter space of SU(2) can be taken to correspond to

a sphere, while the space of SU(3) only requires a half sphereto completely describe.

For more details, see Jones [225].

When Helium-3 passes through its superfluid A phase transition, at some critical tem-

perature, this symmetry group is broken to U(1)× U(1), breaking again at a lower

temperature to the B phase, represented by SO(3). Volovik isfairly clear in suggesting

that the analogy is not complete, but does give two importantaspects in which the stan-

dard model group, and in particular the electroweak sector,is equivalent to the group

structure of3He. First, the symmetry groups are very similar, and secondly, the inter-

actions of the low energy fermions with the3He− A order parameter closely resembles

the interactions of the fermions with the gauge fields present in the electroweak model

[226]. We will not discuss the details of this here, but clearly there is potential for

further investigation, and more work to be done.

1.3 The Future of Multi-Disciplinary Research

Future interactions between the field of cosmology an condensed matter may come

from a direction that is somewhat unexpected, and goes some way to making the re-

lationship more mathematically formal. The holographic principle stems from an idea

first suggested independently by Crane [227], ’t Hooft [228]and Susskind [229]. It

was formalised by Maldacena in 1997 [230] as is known as theAnti-de Sitter/ Con-

formal Field Theory correspondence(AdS/CFT). This correspondence postulates that

a conformal field theory ind dimensions, is dual to a string-based gravitational theory

in d+1 dimensions. Maldacena’s idea in particular, relates typeIIB string theory in an
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AdS5 × S5 background, to a four dimensional supersymmetric conformal field theory.

For this correspondence to hold, the requirements are that the symmetries of the two

theories match, and that the operators in the CFT are in 1:1 correspondence with the

fields in the string theory. The details of this conjecture are entirely beyond the scope

of this thesis, but we can note some of the main points, and hopes for the progress of

the subject in the future.

Usually, calculations in a gravitational theory or quantumfield theory can only be

done at low energies. This would correspond to small curvatures for the string theory,

or small coupling for the field theory, where perturbative calculations can be done. By

exploiting the duality postulated by Maldacena, calculations done at low energy on one

side correspond to the high energy regime on the other, allowing insights into, so far,

unexplorable regions.

At the present time, the physics on either side of the dualitycould be considered far

from ‘realistic’ physics. Our Universe appears to be 3+ 1 dimensional, and is cer-

tainly not AdS, while the quantum theories we have to describe the standard model,

such as QED and QCD, are neither conformal nor supersymmetric. To be able to

approach a dual theory describing QCD, for example, progress towards a non-AdS/

non-conformal gauge theory duality is necessary. Some headway has already been

made. The holographic conjecture may be exploited to help understand the strongly

coupled regime of superconductivity, the physics of which is often considered to be

2+1 dimensional [231]. See Section 17.6 of Waldram [232] for some comments. This

would be dual to a 3+1 gravitational theory, making the two sides of the duality closer

to what we experience, at least dimensionally. For progresson formulating a ds/CFT

correspondence see Ness and Siopsis [233, 234], and comments in Podolski [235].

A series of papers has made some considerable progress regarding symmetry breaking

and phase transitions within this duality [236, 237, 238], as well as CFTs that embody

the mechanisms of superconductivity [239, 240, 241, 242, 243, 244]. A number of

papers regarding some of the non-trivial technicalities inrealising these ideas have

also appeared [245, 246, 247].

Of particular interest is the relation of some real-world phenomena to solutions in gen-

eral relativity. The Rayleigh-Plateau instability [191] describes the breakup of a flow of
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liquid into droplets, as is seen in a dripping tap. The relation to electromagnetic pinch

in plasma physics [248] has already been noted [249]. This phenomenon would appear

to have a counterpart in the Gregory-Laflamme instability inblack strings [250, 251].

Most recently has come the realisation that stable spinninglobed configurations of

fluid, governed by the balance of surface tension and centrifugal forces as demon-

strated experimentally by Hill and Eaves [252], should havecounterparts in new black

hole configurations [253].

There are also promising developments on the experimental side. The prediction of

Hawking radiation is a result of one of the most successful attempts to combine General

Relativity and Quantum Field Theory [254, 255]. This prediction is, however, unlikely

to be observable within the foreseeable future, but one can again turn to analogous sys-

tems that can be built in a laboratory. Crucial to the conceptof Hawking radiation is an

event horizon, a region from inside of which wave modes cannot propagate. Quantum

fluctuations in the vacuum result in the production of virtual particle-antiparticle pairs,

which usually annihilate again after a short time. If this occurs at the boundary of a

horizon, one particle can fall beyond the event horizon, leaving the other to escape as

radiation. Black holes can then be treated as thermodynamicobjects, and are subject

to analogous thermodynamic laws [256, 257].

Unruh suggested an analogue to a black hole horizon that could be probed experimen-

tally [258]. Instead of the speed of light being the causal propagator, he suggested

using the speed of sound. Fluids that change from subsonic tosupersonic flow at some

point along their path would then have a ‘sonic horizon’, across which sound waves

could travel in one direction but not the other. The production of radiation wave modes

would now come from phonons; quantised modes of sound waves in the fluid ‘vac-

uum’.

The problem with such setups is that the Hawking radiation effect would usually be

masked by a random thermal signal generated by the movement of atoms in the fluid.

This problem is significantly reduced in Bose-Einstein condensates, where the dynam-

ics of the matter is dominated by quantum mechanical effects, resulting in a much

higher radiation signal to thermal noise ratio. Recent advances in the production and

manipulation of Bose-Einstein condensates, for example the use of atom chip technol-
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ogy pioneered at the University of Nottingham, combined with theoretical [259] and

numerical [260] developments in the detection of the Hawking signal, means that such

analogue Hawking radiation experiments are now feasible.

While this would not be a direct detection of Hawking radiation, it would give strong

support that the theory behind the prediction is correct.

1.4 Discussion

In this chapter we have presented an extensive overview of modern cosmology, high-

lighting some of the problems that need to be overcome. Specifically, we discussed

problems in the modelling of dark matter and structure formation that may be over-

come by appealing to systems of equations that are typicallyused in condensed matter

systems.

We then looked at two examples of where condensed matter physics has had an impact

on cosmology, particularly with regard to symmetry breaking and phase transitions,

where the relativistic versions of the equations just mentioned are important. These

ideas will be presented in more detail later on in this thesis. We also saw that mathe-

matical, as well as physical analogies can be made.

Finally, we anticipated some areas in which cosmology and condensed matter may

further interact in the future. We saw how some of the mathematical analogies have

been made more rigorous, although perhaps not quite describing the Universe as we see

it. We also described some recent developments on the experimental side, which will

hopefully lend support to promising attempts to unite General Relativity and Quantum

Field Theory.



Chapter 2

Technical Background

In this chapter, we attempt a systematic review of literature relevant to a more techni-

cal discussion, specifically with regard to the systems of equations we will be using.

We look at uses of the the linear and nonlinear Schrödinger-Poisson system and their

relativistic extensions, the linear and nonlinear Klein-Gordon-Einstein equations, par-

ticularly within a cosmological context. Use of the nonlinear Schrödinger equation

also prompts the consideration of a cosmological Bose-Einstein condensate.

The standardΛCDM model has some problems associated with it, which we described

in Section 1.1.4, and many authors use the properties of the above systems to try and

alleviate these issues. We will try to give an overview of these different approaches.

Using the Schrödinger equation to model matter allows one to take advantage of the

quantum-mechanical nature of the particles one is describing. This leads to a particu-

larly innovative solution to the problems of cuspy halo density cores and the overpro-

duction of substructure predicted by standard CDM models.

Adding a nonlinear term likeφ3 to the Schrödinger equation is equivalent to adding

a φ4 interaction term to the corresponding Lagrangian, and, as the name suggests,

this has the effect of allowing particles to interact with each other. This technique

is used ubiquitously in quantum field theory to describe interactions. An interaction

coefficient allows the strength of the interaction to be regulated. When applied to Cold

Dark Matter, this can alter the large scale behaviour, giving a viable alternative to the

ΛCDM model.
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The nonlinear Schrödinger equation is used in condensed matter theory, where it de-

scribes Bose-Einstein condensates. In this field it is oftenknown as the Gross-Pitaev-

skii equation, and we will use the two terms interchangeably. The Gross-Pitaevskii

equation is the equation of motion obtained from varying theLandau-Ginzburg La-

grangian. Consideration of the nonlinear Schrödinger equation has led some authors to

suggest that the dark matter component of the Universe may reside in a Bose-Einstein

condensate.

Other approaches use the wavefunction of the above systems to describe dark mat-

ter in terms of a scalar field, which can again provide a phenomenological descrip-

tion of a condensate. The scalar field interpretation can also lead to some interesting

solitonic solutions, which some authors suggest may appearas exotic objects in the

Universe. These objects includeboson starsandoscillatons, and we will comment

on these briefly. The Schrödinger-Poisson system has also been used to investigate

the phenomenon ofquantum state reduction. This is a very interesting concept, and

provides some background for the implications of a dark matter model that we will

investigate in Section 3.4. The Schrödinger-Poisson equation has also been analysed

in relation to some other problems in quantum mechanics [261].

The Schrödinger equation is a wave equation, and as such, can also be used in an

entirely classical context, with~ becoming an adjustable parameter, rather than a con-

stant. This approach has also been used in with regard to structure formation and, after

some brief comments motivating a self-interacting dark matter candidate, it is here that

we will start.

2.1 Beyond Cold Dark Matter

As noted in Section 1.1.4, there may be problems with the CDM model on smaller

scales. If these are real effects, and at times the evidence seems ambiguous, then one

idea often posited is to allow dark matter particles to self-interact. Several authors have

suggested such models, which we will review in this chapter.An overview of some of

them has also been given by Ostriker [262]. We introduce the concept by describing

one such model, known asSelf-Interacting Dark Matter(SIDM).
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Motivated by the problems of cuspy density profiles in galaxies, Spergel and Stein-

hardt [263] propose that this and other problems of the CDM picture may be alleviated

if dark matter particles are allowed to self-interact with alarge scattering cross-section,

but with negligible annihilation or dissipation. They makesome qualitative arguments

based upon the mean free path of a dark matter particle in a galaxy or galaxy clus-

ter, as follows. If the mean free path of a dark matter particle is greater than 1 Mpc,

then the particle does not experience any interactions as itmoves through the halo,

and the usual triaxial halo predicted by simulations, formswith cuspy density profiles

and large amounts of substructure via gravitational collapse. On the other end of the

scale, if the particles mean free path is less than 1 kpc, thendark matter behaves as a

collisional gas and ‘shocks’, heating up the surrounding gas to produce core densities

with a shallower profile. Collision between dark matter particles also lead to isotropic

velocity distributions, leading to spherical halos, whichcan only be flattened by signif-

icant rotation. Spergel and Steinhardt cite some well accepted observational evidence,

showing that dark matter halos seem to form with little angular momentum and so,

if the dark matter is not dissipative, halos should be nearlyspherical. X-ray observa-

tions of clusters reveal that most halos are moderately ellipsoidal. For this reason, they

suggest that a dark matter particle should have a mean free path somewhere in the in-

termediate region, thus flattening density cusps, but not conflicting with observations.

As the mean free path can be related to the mass and scatteringcross-section, they put

a range on the mass of their dark matter particle as 1 MeV - 10 GeV. The SIDM model

is followed up by simulations in further papers [264, 142], whose results confirm the

qualitative arguments made previously for the mass ranges,as well as showing that

substructure is also somewhat reduced, and that SIDM produces more spherical inner

regions of halos than the standard CDM model, which is favoured by observations.

They note, however that the triaxiality of these inner regions may be masked by the

effects of baryons.
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2.2 A Wave Mechanical Approach to Structure Forma-

tion

In Section 1.1.3, we saw some of the approaches that are typically used in mod-

elling large-scale structure, and some of the problems associated with them. Awave-

mechanicalapproach, using the Schrödinger-Poisson system in a classical context, can

alleviate some of these problems. This section concentrates on the literature associated

with this approach, while Section 3.3 will describe the mathematics in more detail.

A wave-mechanical approach to simulations of structure formation, utilising the Schr-

ödinger-Poisson system was first proposed by Widrow and Kaiser [265], subsequently

developed by Coles, Spencer and Short [266, 267, 268, 269, 270], and applied recently

to systems involving more than one fluid by Johnston, Lasenbyand Hobson [271].

This allows regions of dark matter fluid that may be experiencing different dynamics

to be modelled more easily.

Widrow and Kaiser [265] motivate their approach by suggesting that a coherent scalar

field, such as the axion, could be a potential dark matter candidate; axions being ex-

tremely light (m∼ 10−5 eV), but nonrelativistic. We have already discussed the role of

scalar fields in Cosmology in Section 1.1.2, and we will come to discuss the particular

case of the axion in more detail in Section 4.3. Generally in N-body simulations, the

scales of interest are much greater than the de Broglie wavelength of the particles being

considered. For a particle with a very low mass, such as the axion, the de Broglie wave-

length would be of order 10 m - an unreasonably small scale when discussing structure

formation. Using realistic numbers of particles quickly becomes computationally ex-

pensive, with the simulation run-time typically going asN2 or N ln N [272], whereN

is the number of particles. For an effective N-body simulation, it is necessary to en-

sure a statistical coverage of the velocity and position distribution functions. Typically,

simulations use particles that are much more massive, and much less numerous than

one might expect to see in the Universe, in order to fulfil thisrequirement. Widrow and

Kaiser propose a simulation where the wavefunction of the system, rather than individ-

ual particles, is evolved instead. To evolve a gravitationally-coupled wavefunction, the

coupled Einstein-Klein-Gordon equations are used. The Klein-Gordon equation was
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originally introduced to describe a single, relativistic,quantum-mechanical boson. In

order to describe large particle numbers, the appropriate thing to do should be to in-

terpret the Klein-Gordon equation as describing the evolution of field operators, with

appropriate commutation rules. However, in the limit of large particle numbers, it is

possible to consider the Klein-Gordon equation as a classical wave equation, with the

square of the wavefunction interpreted as the particle density. We will describe this

large particle limit further in Section 3.2. In the weak fieldlimit, the Einstein-Klein-

Gordon system reduces to the Schrödinger-Poisson system,as outlined in Appendix A,

and in the limit of large numbers, the Schrödinger equationcan also be interpreted as a

classical wave equation. The particle density, and hence the evolution of the system can

then be tracked by following the evolution of the wavefunction. In this case, the ‘classi-

cal de Broglie’ wavelength (λ = ν/m, we explain further the meaning of the parameter

ν in Section 3.3) of the system is a free parameter that can be tuned to the size of the

simulation that one requires. As the de Broglie wavelength is related to the mass of the

particles making up the system, this means that simulationsset up in this manner may

sometimes be using overly large numbers of ultralight particles. This is not prohibitive

in terms of computer time, as it is the evolution of the wavefunction of the system that

is being followed, rather than individual particles. Employing a more sophisticated

approach to representations of the wavefunction, such as the coherent state formalism

of Husimi [273] means that the particle distribution function in the wave-mechanical

approach reduces to the full Vlasov (or collisionless Boltzmann) equation, so long as

the de Broglie wavelength is smaller than the scales of interest, and larger than the

grid spacing of the simulation. This setup of the system is also able to handle multi-

streaming, which we noted as one of the problems of traditional approaches to struc-

ture formation in Section 1.1.3. Widrow and Kaiser evolve the Schödinger-Poisson

system using various numerical techniques, and compare this method to a standard

N-body technique consisting of a self-gravitating, one-dimensional system, and a par-

ticle mesh technique describing a self gravitating system in a two-dimensional Einstein

de-Sitter universe, dominated by a nonrelativistic classical field. Results are shown to

be comparable, with the Schrödinger wave-mechanical approach being slightly faster,

computationally.

It has long been known that the evolution equations of fluid dynamics can be put into
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the form of a Schrödinger equation, via aMadelung transformation[274], and this is

a trick that is employed regularly in condensed matter physics. Conversely, applying

this transformation to the Schrödinger equation yields the continuity equation, and the

integrated Euler, orBernoulliequation, with an additional term. This additional term is

known as thequantum pressure, although dimensionally it is a chemical potential. The

quantum pressure term is the only term in this system of equations where~ makes an

appearance. The extra ‘pressure’ can be thought of as a manifestation of the uncertainty

principle, whereby the particle’s position becomes ‘de-localised’. In some sense, this

provides a minimum volume for each particle, and acts as a kind of interaction, or a

form of pressure support. We will describe these concepts more mathematically in

Section 3.3.

Coles [267, 269] pointed out that the Schrödinger-Poissonsystem of Widrow and

Kaiser was equally amenable to a Madelung transformation, leading to the classical

Eulerian equations of motion traditionally used to model structure formation, along

with the extra pressure term. Being a fully classical system, however,~ is replaced

by an adjustable parameter that acts as a regularising term in the Bernoulli equation,

preventing the formation of density singularities and multi-streaming regions where

shell-crossing occurs. Less abstractly, this correspondsto the suppression of cusps in

the density profiles of dark matter halos; one of the problemswith the standard CDM

models that we have mentioned previously. This classical wave-mechanical approach

to structure formation was greatly elucidated by Short and Coles [268, 266], and ex-

tended to include the effects of gas pressure, using the nonlinear Schrödinger equation,

by Coles and Spencer [270]. In particular, Coles and Spenceralso found that a descrip-

tion in terms of the nonlinear Schrödinger equation lead toa density profile described

by a polytropic fluid. Coles [269, 267] also provided an explanation of why the dis-

tribution of density fluctuations from an initial Gaussian distribution, as predicted by

inflation, should be so close to the log-normal form that is observed.
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2.3 Quantum Mechanical Dark Matter

Hu, Barkana, and Gruzinov [275] proposed a solution to the problems of the CDM

model that is both complimentary, and in contrast to the ideas of the preceding section.

The Schrödinger-Poisson is again considered, but here thequantum mechanical na-

ture of the system is kept explicit. Their dark matter model consists of non-interacting

particles, whose number densities are high enough that the dark matter behaves as a

classical field. The evolution equations for this field turn out to have the form of the

Schrödinger-Poisson system, and they note that if a particle description is considered,

then the field will be proportional to the wavefunction of each particle. A standard

Jeans analysis is performed, and the resulting Jeans length, where classically the grav-

itational forces of a gas cloud balance the thermal pressureoutwards, is reinterpreted

in the quantum framework as the de Broglie wavelength of the dark matter particles in

the halo. Stability below the Jeans wavelength is then guaranteed by the uncertainty

principle - an increase in momentum opposes any attempt to confine the particle fur-

ther. Scaling the Jeans/de Broglie length to be such that dark matter density cusps and

substructure are heavily suppressed, they show that the mass of the dark matter parti-

cle corresponding to this length is ‘ultralight’, of order 10−22 eV. We can compare the

concepts of this model with those presented in the papers of Widrow, Kaiser and Coles

mentioned above. These previous papers made use of a Schrödinger approach in a

purely classical manner, treating~ as a parameter to be adjusted to fit the length scales

required. In Widrow and Kaiser’s simulations this sometimes meant dealing with an

ultralight particle with a high number density, but this wasconsidered to be an artefact

of the numerical process. Hu et al. instead keep~, so that low scale power is suppressed

by the uncertainty principle, and adjust the Jeans length tothe scales of interest, thus

interpreting the low mass prediction as a real particle. Thefinal part of this paper is

dedicated to some exploratory one-dimensional numerical simulations, demonstrating

that a low mass particle can indeed go some way to solving the problems associated

with structure formation. Hu et al. mention in passing that these ultralight scalar dark

matter particles should reside initially in a Bose-Einstein condensate, similar to axion

dark matter models.

Bose-Einstein condensation appears in both condensed matter physics, and also in
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high-energy field theories describing particles such as axions, ghosts and the Higgs.

We will discuss the formalities of ‘standard’ Bose-Einstein condensation in Section

3.1, and its relation to symmetry breaking and field theory inSection 4.2. The models

reviewed in this chapter generally consider the condensation of nonrelativistic bosons,

and it is sufficient from the point of view of these models to consider a condensate as

formed when the thermal de Broglie wavelength is of order theinterparticle spacing.

2.3.1 Dark Matter as a Bose-Einstein Condensate

Dark matter as a quantum-mechanical phenomenon, describedby the nonlinear Schr-

ödinger equation, the mean field equation for a Bose-Einstein condensate, prompts the

question of whether dark matter itself may reside in such a condensate.

Motivated by a description of CDM, and the phenomenologicaldescriptions of dark

matter using the Schrödinger-Poisson system that we have mentioned previously, two

papers of importance to later work in this thesis suggest a description of dark matter in

terms of a Bose-Einstein condensate.

Böhmer and Harko [276] employ a mean field description of a quantum system ofN in-

teracting particles, as described in Section 3.2 and hence arrive at the Gross-Pitaevskii,

or nonlinear Schrödinger equation, as one would expect. The quantum condensate

wavefunction is replaced by the expectation value of the field operator, with its square

modulus describing the density of the condensate. The nonlinear Schrödinger equation

is coupled to an external potential that, in the context of galactic dynamics, is taken to

be the gravitational potential, defined by the Poisson equation. They demonstrate the

Madelung transformation, and drop the the kinetic term fromthe resulting equations.

This is known as theThomas-Fermiapproximation, which is again described in Section

3.2. In a system with a large number of atoms and repulsive interactions, the regime

where the ratio of kinetic to potential energy is small is a good approximation to the

full system. Its major advantage is that it makes analytic solutions more tractable. This

approximation leads to the Lane-Emden equation, which has been analysed in great

detail by Chandrasekhar [277] to describe the dynamics of stars. In this case, Böhmer

and Harko find a description in terms of a polytropic fluid of indexn = 1, as also found

by Coles and Spencer [270]. The use of the Thomas-Fermi approximation rules out
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the inclusion of phenomena such as vortices, as in this regime the wavefunction only

varies slowly on the scales of interest. Slowly rotating polytropes were also studied

in detail by Chandrasekhar, and this analysis is also presented in this paper. The ra-

dius of the dark matter halo can be related to the mass of the particle and the particle

scattering length, so by considering ‘sensible’ values forthe radius of a galaxy and

scattering length of the particle, they make an estimate of the dark matter particle mass

of 1− 10−3 eV. Once the density profile is described, it is fairly easy toobtain Newto-

nian rotation curves. They fit several curves according to their prescription, with fitting

parameters of the radius, total mass and density of the halo taken from experimentally

measured values. The model fits the rotation curve fairly well, with χ2 fits of order 1.

This model also discusses the interesting possibility of employing gravitational lens-

ing to make the distinction between a Bose-Einstein condensate dark matter halo and

other models of dark matter. To make this comparison, they take the standard Weyl

metric, and use the Tolman-Oppenheimer-Volkoff equations as the general relativistic

equations for a static dark matter distribution. To completely define these equations,

one must also give the equation of state of the dark matter fluid. They specify the

equation of state for ann = 1 polytrope, as previously described. A ratio between the

light deflection produced by this and other models can then becalculated in order to

discriminate between models.

Bose-Einstein condensates coupled to different potentials, including a gravitational

one, were considered in Jones and Bernstein [278], leading to structures very similar

to that of Böhmer and Harko.

Silverman and Mallett [279] discuss a similar paradigm. Again motivated by the pos-

sibility that dark matter with a quantum-mechanical naturemay solve some of the

problems associated with the CDM model, they use an Abelian-Higgs-like symmetry-

breaking approach to endow a real scalar field with mass, relating the particle’s Comp-

ton wavelength and the cosmological constant of the spacetime to parameters in the

underlying Lagrangian. If at some point in the cosmic history the condensation tem-

perature of these bosons is greater than the CMB, then they make the transition to a

Bose-Einstein condensate. For nonrelativistic bosons this is dependent on the parti-

cle’s mass and number density. To alleviate the problem of cuspy cores in galaxies,
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they identify a length scale associated with the equilibrium between quantum pressure

and gravitational attraction to be of the order of the size ofa galactic core. This length

scale can be expressed in terms of the particle’s Compton wavelength, so Silverman

and Mallett estimate a particle mass of order 10−23 eV.

To describe evolution of the condensate, they employ a slightly modified Gross-Pit-

aevskii equation, which they are able to solve exactly. Unfortunately, this form of

the Gross-Pitaevskii equation is not derived, and it is difficult to see where it has come

from. Newtonian mechanics again provides the rotation curves from the resulting mass

distribution, which are scaled to observations of the rotation velocity and size of vari-

ous galaxies.

The interesting speculation in this paper concerns the formation of superfluid vortices.

From considerations of Bose-Einstein condensates in condensed matter systems it is

known that above a critical rotation velocity, quantum vortices will form. If a galactic

halo consists of a Bose-Einstein condensate with the parameters described by Silver-

man and Mallet, then it would seem to be difficult to prevent quantum vortices from

forming. Observational evidence of these vortices would obviously be a heavy indi-

cator that dark matter does indeed reside in a Bose-Einsteincondensate. Silverman

and Mallett suggest that a detection of such vortices may come from frame-dragging

effects, manifested in gravitational lensing or variation in polarisation of light from dis-

tant background sources. We will return to the concepts raised in this paper in Section

3.4, and also point out some of the shortcomings of this approach in Chapter 4.

A paper by Yu and Morgan [280] follows on from that of Silverman and Mallett, by

considering the motions of a network of vortices in a galactic background as described

above. The network of vortices consists of ultra-light scalar bosons generated by a

cosmological phase transition. To describe the evolution of such a network, Mor-

gan and Yu’s procedure is to calculate the motion of one vortex due to a background

phase gradient induced by the surrounding vortices. This isdone by first considering

Nielsen-Olesen vortices, orcosmic stringsin the Abelian-Higgs model, and adding a

term motivated from physical considerations due to a background phase gradient. The

concept of vortex scattering in the Abelian-Higgs model using background phase gra-

dients was largely considered in Thatcher and Morgan [281].Yu and Morgan consider
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this to be the relativistic version of a Gross-Pitaevskii equation describing vortices

in a stirred Bose-Einstein condensate. We will discuss in more detail in Chapter 4

how the Abelian-Higgs model can be considered to be the relativistic version of the

Landau-Ginzburg, so that superconducting flux tubes becomethe analogues of these

high energy vortices. They then derive a weak field version ofthe Abelian-Higgs, and

from their previous field theory motivation, include a term based on the background

phase gradient. Using numerical techniques, a dark matter Bose-Einstein condensate

galaxy is given an initial Kelperian velocity profile. Once the galaxy exceeds some

critical speed, quantum vortices form, and interact both with the background phase

gradient produced by the rotation of the galaxy, and that of the neighbouring vortices.

The configuration is shown to evolve towards that of a flat velocity profile, similar to

what is observed.

The papers we have mentioned so far in this section broadly cover the concepts we will

be exploring in the rest of this thesis. There are, however, an number of other papers

that could be considered relevant.

2.4 Scalar Field Dark Matter

In Section 1.1.2 we discussed how scalar fields can be used to describe the matter-

energy content of the Universe. Scalar fields, endowed with different potentials, can

represent the general properties of a large variety of formsof matter. As the properties

of dark matter are largely unknown, this can make scalar fields an ideal candidate for

modelling dark matter.

A vast amount of literature is devoted to attempts to model dark matter as a scalar field.

We will not give a pedagogical discussion of all of these models, as the ideas are not

central to this thesis, but we will try to give an outline of some of the main concepts.

We will concentrate on scalar field models that suggest a resolution to the problems

associated with the Cold Dark Matter paradigm. Almost all ofthese models use the

nonlinear Einstein-Klein-Gordon equations, or its nonrelativistic and noninteracting

counterpart, to describe the structure and evolution of thescalar field(s) proposed, and

this is partly our motivation for presenting them here.
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Scalar field models of the dark matter halo can bear more than apassing resemblance

to bound solitonic solutions that are admitted by the Einstein-Klein-Gordon equations.

These solutions are known variously asgeons, boson starsor oscillatons. Many au-

thors have commented on the connection between these bound solutions and the galac-

tic halo. Solitonic solutions were largely described in theliterature before scalar field

dark matter solutions were considered, with scalar field dark matter proponents only

making the connection later. This can make a linear discussion of this topic difficult.

We will run through the scalar field dark matter models first, commenting later on the

nature of the bound solutions.

A large amount of scalar field dark matter candidates were proposed when it was first

suggested that the axion might make suitable dark matter candidate. See, for example,

reference 1 in Hwang [282].

One of the first suggestions for scalar field dark matter was given by Press, Ryden and

Spergel [283], who use the nonlinear Einstein-Klein-Gordon Lagrangian to describe

particles with an exceptionally large Compton wavelength.Density cusps in galactic

halos are then suppressed for the same reason described in Section 2.3; the Heisenberg

uncertainty principle.

Sin [284] uses the nonlinear Schrödinger equation coupledto the Poisson equation to

describe an ultralight boson (hence with large Compton wavelength) and obtains mass

profiles for a galaxy that resemble the excited states of Newtonian solitonic solutions

known as boson stars, although these bounds sates are never referenced directly. The

mass profiles are adjustable by choosing different excited states of the boson star. The

rotation curves from these mass profiles resemble those obtained observationally. This

paper is the first in this vein to mention that galactic halos could be considered to be

‘giant systems of a condensed Bose gas’. A follow-up paper varies the percentage of

baryonic mass in their simulations to see how it effects the rotation curves. Lee and

Koh [285] consider a relativistic extension of Sin’s model by suggesting that excited

boson stars described by the nonlinear Klein-Gordon equation are an adequate rela-

tivistic approximation to Sin’s solutions. The rotation curves obtained from such an

energy distribution are again approximately what is observed. The total mass of the

halo and the excited mode of the boson star are again adjustable parameters.
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Schunck [286] considers the massless Einstein-Klein-Gordon equations, as well as

pointing to previous literature suggesting that the highermode solutions of boson stars

considered previously are generally known to be unstable. As this scalar field is mass-

less, the boson star solution is ‘transparent’. However, the energy density still couples

to normal matter gravitationally, and so they take a Newtonian limit in order to obtain

rotation curves that again approximately plateau with increasing radius. Again, two

adjustable parameters allow for better fitting.

Peebles and Vilenkin [287, 288, 289] attempt to use scalar fields to incorporate inflation

and dark matter into one model. Both fields have a quartic potential and initially the

dark matter field behaves like radiation. If, however, the quartic potential is suppressed

later on, so that the potential is dominated by the quadraticterm, then the scalar field

behaves like an ideal non-relativistic gas. A similar idea was posited in Goodman

[290]. Assuming that the field is nonrelativistic at later times, these papers make some

quantitative predictions based upon the Jeans scales of theresulting fluid. The resulting

fluid equations give the required suppression of substructure and core density cusps.

Allowing the potential to be rather less than quartic (∼ y3.7), allows an even better fit

to the observed astronomical data.

Matos, Guzman and Ureña-López study the evolution of realscalar field solutions to

the Einstein-Klein-Gordon equations. In their early papers [291, 292], they are mo-

tivated by the fundamental scalar fields in cosmology that high energy models of the

early Universe would seem to predict, such as the dilaton, and suggest that scalar fields

may provide an explanation of the dark matter problem too. They study a real scalar

field with an exponential scalar potential, and using a method previously developed

by Matos in the context of Kaluza-Klein theory, called the ‘harmonic maps ansatz’

[293, 294, 295], which is beyond the scope of this thesis, theEinstein-Klein-Gordon

equations are reduced to a ‘Poisson-like structure’. The velocities of test particles

following circular trajectories around such configurations give rotation curves that ap-

proximately match those observed in dark matter halos. Two fitting parameters must

be arbitrarily chosen to scale the curves appropriately.

Further papers [296, 297] try to model the evolution of dark matter and dark energy

as two different real scalar fields, in a similar vein to the Peebles and Vilenkin pa-
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pers mentioned above. The dark matter and dark energy are given potentials that

go asV(Φ) ∼ cosh(Φ) and V(Ψ) ∼ sinhβ(Ψ) respectively, giving the scalar field

quintessence-like properties. The scalar field energy density is found to track the radi-

ation energy density in a similar way to a model of Sahni [298]. Relating the observed

values of the matter and radiation density to the coefficients of the scalar field poten-

tial, Matos et al. predict that the dark matter particle in this scenario would have to be

ultra-light,m ∼ 10−23 eV. They suggest that the Jeans length for this model is related

to the mass of the dark matter particle, and because of this, the problems of dark matter

halo cusps and the dearth of small scale structure are avoided.

Other papers by the same authors [299, 300] consider a similar paradigm. In this case,

two scalar fields are introduced; one to model the central massive galactic object, and

one to model the overall dark matter halo that extends far from the galactic centre. The

authors make the link that the galactic centre solution could be considered to be an

oscillaton solution. An oscillaton is a soliton solution tothe Einstein-Klein-Gordon

equations, which we will discuss along with other more ‘exotic’ objects in a later

section. Oscillaton solutions have been discussed, away from the considerations of

their role in a dark matter galactic environment, by one of the authors [301], and will

be mentioned later. Again, this model involves an ultralight boson, two parameters that

require fitting from observations, and rotation velocitiesthat approximately agree with

what is seen.

Another series of papers by Arbey, Lesgourgues and Salati, [302, 303, 304, 305] dis-

cusses work that is very similar to the above papers by Matos,Guzman and Ureña-

López. The main difference between these two strands of work is that Arbey, Lesgour-

gues and Salati consider a complex scalar field, while the previous group discuss a real

field.

Fuchs and Mielke [306] consider the nonlinear Klein-Gordonequation, this time with a

φ6 interaction. They find approximate fits to the central density profiles of low surface

brightness galaxies. There are again two adjustable parameters to fit.

Further papers by Matos et al. [307, 308] consider the weak field limit for a real scalar

field described by the Einstein-Klein-Gordon equations with coshφ or φ2 potentials.

They show that these models can produce density profiles for dark matter halos that
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are close to what is observed. These later papers also make the connection that the

scalar field can be considered to be a Bose-Einstein condensate.

Papers by Lee [309, 310, 311] reiterate what has gone before,as well as suggesting that

two scalar field dark matter galaxies may be able to pass through each other, like soli-

tons. They suggest that the Bullet cluster and Train Wreck remnants may be evidence

that this has happened.

Interestingly, this brings us to a connection between scalar field dark matter models

and experimental physics.

Giovanazzi, O’Dell, Kurizki and Akulin [312, 313] developed an experimental tech-

nique, whereby illuminating a cloud of trapped atoms in laser light will induce a long-

range inverse square force between every atom in the system.In this way, it is possible

to simulate gravitationally bound structures in the laboratory with Bose-Einstein con-

densates. This procedure is also summarised in a niceNaturearticle by Anglin [314].

Choi [315] follows this up by numerically evolving this system for the collision of

two ‘gravitationally’ bound solitonic objects; the analogue of a colliding boson star

system. This paper describes the solitonic nature of ‘self-gravitating’ Bose-Einstein

condensates undergoing head-on collision. This is anotherexample of numerical or ex-

perimental techniques helping to make inroads into domainsof cosmological physics

that would otherwise be observationally inaccessible.

2.4.1 Scalar Fields and Bose-Einstein Condensation

Scalar field dark matter models allow for the possibility of Bose-Einstein condensation,

because of their bosonic nature. Discussion of the condensation of a spin-zero boson

in a cosmological context has been around since at least 1978[316]. Bose-Einstein

condensation in field theory will be discussed further in Chapter 4. The relativistic

equations for evolving a scalar field reduce to the nonlinearSchödinger-Poisson sys-

tem in the weak field limit. This system is of the same form as the Gross-Pitaevskii

equation describing a Bose-Einstein condensate, with a gravitational coupling term.

If we interpret the scalar field as the order parameter of a condensate, then it is pos-

sible to interpret the model as a cosmologically relevant Bose-Einstein condensate
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[298, 308, 317, 318]. This is one way of considering the bosonstars and oscillatons

that we will discuss in the next section.

Some authors have tried to describe dark energy and dark matter using the same scalar

field [319, 320]. We briefly describe some papers where the condensed fraction of the

scalar field is identified as dark matter.

Ferrer and Grifols [321] describe an effect where scalar particles are coupled to matter

fermions via a usual Yukawa-type potential. When this coupled system is embedded

in a background made of the same scalars, they find that the range of the potential

interaction goes from finite to infinite when the scalar background undergoes Bose-

Einstein condensation. In a followup paper [322], the condensate is identified with the

dark matter component of the Universe, and they describe thepossibility of anomalies

in the peak structure of the CMB that may arise from the interaction between dark and

normal matter. Investigating the parameter space ofmφ, the mass of the scalar particle,

andgeff, the interaction strength, they find that it is possible thatthe scalar particles still

exist within a Bose-Einstein condensate, but to be consistent with the CMB peak lo-

cations, nucleosynthesis and large-scale structure formation, the interaction strengths

would have to be so weak as to go unnoticed today. They show that other parts of

themφ −geff parameter space could produce cosmologies that are obviously erroneous.

This effect is also applied to the equilibrium of degenerate stars, such as white dwarves

[323]. Scalar field dark matter permeates the galaxy, and some will become gravita-

tionally trapped by, for example, a white dwarf star. This provides the setup of the

coupled fermionic particles embedded in a scalar particle background. Ferrer and Gri-

fols conclude that the new star configurations should populate different regions of the

mass-radius plane compared to the standard white dwarves described by the pioneering

Chandrasekhar models [277], and hence provide observational consequences.

Morikawa [324], along with Morita and Nishiyama [325] introduce a model where a

boson fluid, described by a scalar field, is identified as the dark matter component of

the Universe, with an equation of state of dust,p = 0. This scalar field is identified

as the classical mean field used to describe a Bose-Einstein condensate. This, they

claim, provides an explanation for the origin of the scalar field that drives the late-

time expansion of the Universe (dark energy). As the Universe cools below some
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critical temperature, the dark matter boson fluid condenses, taking its equation of state

to the form p = −Aρα. The case ofρ = −p is identified as the simplest case, and

investigated. They also suggest that the energy density of the Bose gas is diluted

with the expansion of the Universe. The condensed phase, however, is not. Hence,

the condensate will dominate over the normal fluid componentand the expansion of

the Universe will switch from decelerated to accelerated expansion. On local scales,

once the energy density of the condensate reaches some critical value, fluctuations in

the density quickly collapse to form boson stars, which may fragment because of the

negative pressure of the fluid. So, dark matter condenses to form dark energy, which

can collapse to form localised sources of dark matter. In this way, many seeds for

structure formation are formed. This idea is restated in Fukuyama and Morikawa [326],

and reviewed in added detail in Fukuyama et al.[327]. By considering the temperature

of the boson gas when it was coupled to the radiation component of the Universe, they

set limits on the condensation temperature, and hence the boson mass. They set a limit

of mφ < 2 eV, and suggest that ultralight masses are more likely. What would appear

to be the major drawback in this model is that in order to obtain a dark energy with

the required equation of state, the authors attribute negative pressure to an attractive

interaction potential in the Gross-Pitaevskii equation. Attractive interactions generally

lead to negative values of the particle scattering length, and an imaginary sound speed

[328], making this form of matter even more exotic than usual. They extend this model

to inflation in Fukuyama and Morikawa [329].

Similar models have been discussed previously. Madsen, forexample, discussed the

possibility of a 17 keV neutrino condensing, so that galaxy formation might proceed

as a hybrid hot and cold dark matter model, with the same particle responsible for

both components. The evidence for a 17 keV neutrino unfortunately turned out to

be erroneous [330]. Dymnikova and Khlopov [331] and Bassettet al. [332] both also

consider models where dark energy emerges as the condensateof a dark matter particle

when the Universe cools past some critical temperature.
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2.5 Exotic Objects

In the previous section, we came across some solitonic solutions to the Einstein-Klein-

Gordon equations that were adopted by authors investigating scalar field dark matter

models. As we mentioned previously, such solutions were described much earlier,

outside of a dark matter context.

The first such description can be traced back to Wheeler [333]who described solu-

tions of the Einstein-Maxwell equations. He considered themass associated with an

electromagnetic disturbance, and concluded that the gravitational attraction of such a

disturbance is capable of holding the disturbance togetherfor a long time in compari-

son with the characteristic periods of the entity. This might be recognised as soliton-

like behaviour. Wheeler called such disturbancesgeons, a contraction ofgravitational

magnetic entity.

Kaup would then go on to describeKlein-Gordon Geons[334]. In seeking a counter

example to the conjecture that gravitational collapse is inevitable, he suggested eigen-

states of the coupled Einstein-Klein-Gordon equations; solitonic objects whose quan-

tum nature would hold them up against collapse to a singularity.

2.5.1 Boson Stars

Boson stars are self-gravitating solutions to the Einstein-Klein-Gordon equations for

a complex scalar field, first investigated by Feinblum and McKinley [335] and Ruffini

and Bonazzola [336, 337]. The latter authors described themas being analogous to

the Hartree-Fock description of the atom. Boson star solutions can be constructed by

seeking solutions to the equations of motion derived from the Einstein-Klein-Gordon

action, with the spherical symmetric metric

ds2 = eν(r,t)dt2 − eλ(r,t)dr2 − r2(dθ2 + sin2 θdφ2). (2.1)

Following Jetzer’s thorough review article [338], we can find equilibrium solutions by

working in the gaugeAµ = (A0, 0, 0, 0) and settingφ(r, t) = φ0eiωt. Calculating the

components of the energy momentum tensor at this point can befairly involved, but
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eventually we find a scalar wave equation

φ′′0 +

[

2/r +
1
2
(

ν′0 − λ′0
)

]

φ′0 + eλ0
[

(ω + eA0)
2 e−ν0 −m2

]

φ0 = 0. (2.2)

We see that any solution is now time independent. To obtain bound solutions, the

boundary conditionsφ0 = const,φ′0 = 0 andφ∞ = φ′∞ = 0 are imposed. The field

φ0 may also have nodes, corresponding to excited states of the system. In considering

boson stars as a description of a galactic halo, it has been found [302, 304, 305] that

higher node solutions produce rotation curves that correspond better to those observed.

These higher nodes are unfortunately unstable, and decay quickly to the 0-node solu-

tion [339, 340], possibly via the emission of particles [341]. It should be noted that

equilibrium solutions exist as there is a Noether current associated to the gauge field,

which corresponds to a conservation of particle number [338]. This is an important

comparison for the oscillaton solutions we will consider next.

Many authors then looked at adding an interaction term to theKlein-Gordon equa-

tion. Mielke and Schunck in particular [342], found that adding a repulsiveφ6 self-

interaction term allows the corresponding Klein-Gordon equation to be simplified to a

Lane-Emden equation, familiar from the astrophysics of gaseous spheres, as we have

also mentioned in the discussion of Bose-Einstein condensate dark matter papers by

Coles and Spencer [270] and Böhmer and Harko [276]. Colpi etal. [343] also looked

at boson stars with an interaction term and found that the soliton solutions formed

tended to be extended in space, as one might expect for a distribution of particles with

a repulsive interaction added.

Boson star configurations experienced a slight resurgence in popularity in the early

1990s, driven by the possibility that scalar fields may have an important role to play in

fundamental physics. Ferrer and Gleiser [344] investigated the gravitational radiation

from excited states of a boson star, while other authors started to concern themselves

with the formation of such objects in a cosmological environment, and their implica-

tions for observations [345, 346, 347, 348].

Madsen and Liddle [345] suggest that for boson stars to have aastrophysically mean-

ingful mass (solar mass∼ 2 × 1030 kg) the boson mass needs to be of order 1010 eV.

This can be altered somewhat with the addition of a self-coupling term. We will see
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later that this term can be written in the Lagrange density as

Lsc =
λ

2

(

φ†φ
)2
. (2.3)

Madsen and Liddle showed that even for very small values ofλ, this coupling may be

crucially important. They show that the self-coupling termis important for

λ > 1000
m2

m2
pl

. (2.4)

For a boson with a mass similar to that of the neutron, this only requires thatλ > 10−35.

They suggest then, that unless there is a huge suppression ofλ, then the caseλ = 0 is

unlikely to be astrophysically relevant.

Seidel and Suen [349] gave a description of a post-Newtoniansolution for the boson

star configuration, while Guzman and Ureña-López [339, 340] look at the formation

of solitonic objects in the weak field limit, using a Schrödinger-Poisson system of

equations.

Torres et al. [350] appear to be the first authors to make the connection that a scalar

soliton solution might be a good description of the core of some galaxies, while Guz-

man and Ureña-López [351] make the connection that these scalar field systems could

be considered to be gravitationally bound solutions of a Bose-Einstein condensate.

The behaviour of non-spherical collapse of scalar field darkmatter and the late time

behaviour is studied in Bernal and Guzman [352]. Rotating boson stars have also been

shown to have an effective metric that describes a torus of mass [353].

2.5.2 Oscillatons

If solitonic solutions to the Einstein-Klein-Gordon equations are sought for real, rather

than complex scalar fields, it is not possible to find time-independent solutions. For

real scalar fields, there is no longer a conserved Noether current corresponding, for in-

stance, to the conservation of particle number [338]. Instead, regular boundary condi-

tions are satisfied by time dependent solutions; collapsingor expanding configurations,

or periodic solutions. In this case, both the metricgµν, and the scalar fieldφ, oscillate

in time, similar to the ‘breather’ solution of the sine-Gordon equation. Such solutions
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were first described by Seidel and Suen [355] and are called oscillating soliton stars,

or oscillatons.

Oscillaton solutions are again not trivial to construct, but we can give a brief overview

[338]. Using the same line element as for boson stars, eqn. (2.1), the Einstein-Klein-

Gordon equations must be solved to obtain equations for the metric componentsν′, λ′

and λ̇, and the scalar fieldφ(r, t). One then constructs periodic expansions foreν, eλ

andφ(r, t).

eν(r,t) = 1+
∞
∑

j=0

N2 j(r) cos(2jω0t) (2.5)

eλ(r,t) = 1+
∞
∑

j=0

g2 j(r) cos(2jω0t) (2.6)

φ(r, t) =
∞
∑

j=1

φ2 j−1(r) cos((2j − 1)ω0t) (2.7)

Ureña-López [301] was the first to consider the weak field limit of oscillatons, with

the motivation that boson stars and oscillatons are predicted by scalar field dark matter

models. This author also considered the weak field limit of oscillatons with a self-

interactingφ4 term. Another paper [356] follows up by considering the formation of

oscillatons from the gravitational collapse of scalar fieldconfigurations.

2.6 Penrose and the Quantum State Reduction Prob-

lem

The bound state of the Schrödinger-Poisson system has beenconsidered by Penrose

and others, motivated interestingly by the problem ofstate reduction, or wavefunction

collapsein quantum mechanics. For a comprehensive discussion of these concepts see

Wheeler and Zurek [357] or Giulini et al. [358].

Confronted by the results of the double slit experiment, theEPR paradox, Bell’s in-

equalities and the Schrödinger’s cat thought experiment and its variants, we are forced

to consider the nature of the wavefunction in quantum mechanics. We can take the ex-

ample of a charge of an electron represented by a wavefunction. Does the wavefunction
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merely represent the probability distribution of a point charge, or is the charge actually

distributed in space?

The issue of mathematical interpretation returns. TheCopenhagen interpretationof

Bohr and Heisenberg suggests that the wavefunction of a system should not be con-

sidered a real entity, but rather an abstract concept which allows the calculation of

probabilities for the outcome of a measurement. The wavefunction in a sense repre-

sents the ‘maximal state of our knowledge’, with the notion of probability necessary

because a complete knowledge of the state of a system is prevented by the Heisenberg

uncertainty principle.

At the other extreme of interpretation comes themany worlds theory, suggesting that

each probability distribution is actually realised, so that all outcomes actually exist.

This interpretation poses the problem of why one particularscenario presents itself to

us.

Integral to the issue of interpretation is the problem of theobserver; whether an ob-

server is indeed necessary for wavefunction collapse, thusdefining the reality around

him, or if the collapse is a purely objective phenomena.

Weinberg [359] suggests that resolution may lie in treatingall the components of the

system consistently. The quantum system, the measuring apparatus and the observer

all require a description in terms of quantum mechanics.

Penrose has argued for an objective collapse of the wavefunction, in terms of a gravita-

tional influence. His argument suggests that for a superposition of states representing

two different mass distributions (the position of a particle confined by the Heisenberg

uncertainty principle, for example), there should be an associated superposition of

gravitational fields produced by the particle. If there is a significant mass displacement

between the two states, each of which would be stationary on their own, the energy

associated with the maintenance of dual gravitational fields may become larger than

one or other of the component states. The system is unstable,and the wavefunction

collapses, without ever invoking an external observer.

Penrose suggests that the timescaleT of the instability would be inversely proportional

to the gravitational self-energy associated to the difference between the mass distribu-
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tions of the two states,EG,

T ≃
~

EG
. (2.8)

He also suggests that this statement is not a theory of quantum state reduction, but

‘rather a statement of the level at which deviations from standard linear Schrödinger

(unitary) evolution are to be expected, owing to gravitational effects’ [360] pg. 584.

The final stationary states, for appropriate mass and velocity ranges, should then be

represented by stationary solutions of the Schrödinger equation, coupled to an appro-

priate gravitational term arising from the mass density given by the expectation value

of the mass distribution in the appropriate state. This leads to the Schrödinger-Newton

equations [361], which we have referred to as the Schrödinger-Poisson system,

i~
∂Ψ

∂t
= − ~

2

2m
∇2Ψ +mΦΨ, (2.9)

∇2Φ = 4πGm|Ψ|2. (2.10)

Bound, stationary solutions of this system have been investigated by Penrose, Moroz,

Tod and Harrison [362, 363, 364, 365]. Relation to earlier boson star work is only

mentioned in passing with a brief reference to Ruffini and Bonazzola’s paper [337].

2.7 Discussion

In this chapter we have attempted to give a thorough overviewof the role of the

Schrödinger-Poisson system in going beyond the standard Cold Dark Matter model.

We implicitly motivated the nonlinear Schrödinger equation by discussing how prob-

lems of the CDM model may be circumvented by allowing dark matter particles to

self-interact. After discussing some of the advantages of aclassical approach to the

Schödinger equation in modelling structure formation, wethen switched to a purely

quantum description by discussing a dark matter condensateconsisting of a Bose-

Einstein condensate. Scalar fields provide a useful tool formodelling, as the specific

properties of the matter can be left fairly general. The evolution equations for a gravi-

tationally coupled scalar field are the Einstein-Klein-Gordon equations, or in the weak

field limit, the Schrödinger-Poisson system. Scalar fieldsare also amenable to Bose-

Einstein condensation, as they describe particles that obey boson statistics. We also
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saw some of the bound solitonic solutions that exist for these systems, and how some

authors have tried to identify them with galactic dark matter structure. We gave a brief

overview of the construction of these ‘exotic’ objects, andfinished with a discussion of

the role of the Schrödinger-Poisson system in the quantum state reduction problem.



Chapter 3

The nonlinear Schrödinger Equation

in Condensed Matter and Cosmology

In this chapter, we apply the nonlinear Schrödinger equation to various situations in

cosmology. We start by looking at its use in condensed matterphysics, where it is

used to model the macroscopic properties of Bose-Einstein condensates. We look at

its derivation, and some of the standard techniques used to relate the Gross-Pitaevskii

equation to the fluid equations, as well as the description ofquantum vortices.

We then return to ideas mentioned in Section 2.2 concerning the use of the Schrödinger

equation in modelling structure formation, and note the role of theMadelung transfor-

mation, a concept from condensed matter theory. In a cosmological context, gravita-

tional effects are included by coupling the Schrödinger equation to the Poisson equa-

tion.

In the final section, we use the quantum-mechanical version of this coupled system

to model a novel dark matter candidate, in which the dark matter particles reside in a

Bose-Einstein condensate. In particular we discuss the possibility that a rotating dark

matter Bose-Einstein condensate halo might contain quantised vortices. Using known

solutions for the density profiles of such vortices, we consider the gravitational self-

interactions in such halos, in order to estimate some of the parameters of a dark matter

particle in such a model.



The nonlinear Schrödinger Equation in Condensed Matter and Cosmology 74

3.1 The Bose-Einstein Condensate

We first outline the concept of Bose-Einstein condensation,and the criteria necessary

for it to occur.

Integer-spin particles obey Bose-Einstein statistics andare not subject to any exclusion

principle like that of fermions. As such, an unlimited number of particles may occupy

any single-particle state. Any particles not in an excited state are accommodated in the

single-particle ground state, which can hold an unlimited number, and the system is

said to have aBose-Einstein condensate.

The condensate temperatureTc is the highest temperature at which a condensate exists.

That is, the highest temperature at which the single-particle ground state is occupied.

At temperatures higher than this, all particles are excitedinto higher states.

The number of particles in an excited state can be given by

Nex =

∫ ∞

0
dǫg(ǫ) f (ǫ), (3.1)

whereg(ǫ) is the density of states, andf (ǫ) is the Bose-Einstein distribution func-

tion, which describes the mean occupation number of the single particle statei, for a

noninteracting gas in thermodynamic equilibrium. It is given by

fBE(ǫi) = 〈ni〉 =
1

eβ(ǫi−Eυ) − 1
(3.2)

whereβ = 1/kBT, and ǫi is the energy of the single particle state for a particular

trapping potential.

The quantityEυ is known as thechemical potential, and is defined within theGrand

Canonical Ensembleas a way of parameterising a changing particle number. The

chemical potential can be thought of as the energy change of the system if one par-

ticle is added, at constant entropy and volume. It also acts as a Lagrange multiplier,

as we will see in Section 3.2. In relativistic systems, each conserved quantity, and

hence symmetry of the system, can be associated with a chemical potential. We will

discuss this further in Section 4.2. The chemical potentialis also generally a function

of particle numberN, and temperatureT.

The number of excited particlesNex is maximised forEυ = 0, and the transition tem-

perature is the temperature at which all the particles are inexcited states,N = Nex.
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Any lower, and the single-particle ground state will start to become occupied, and a

condensate will form.

The density of states can be written in a general form in termsof powers of the energy

g(ǫ) = Cαǫ
α−1, (3.3)

whereCα is a constant, andα is a parameter dependent on the properties of the system,

such as the trapping potential. By defining the dimensionless variablex = ǫ/kBTc, and

evaluating a nasty integral, the condensate temperature can be shown to be

kBTc =
N1/α

(CαΓ(α)ξ(α))1/α
, (3.4)

whereΓ(α) is the gamma function, andξ(α) is the Riemann-zeta function. Below the

condensate temperature, the number of excited particles isjust

kBT =
N1/α

ex

(CαΓ(α)ξ(α))1/α
. (3.5)

So we can define the number of particles in the condensateN0 = N − Nex as

N0 = N

(

1−
(

T
Tc

)α)

. (3.6)

For the particular examples of a gas confined to a three-dimensional box of volume

Vol, for whichα = 3/2, then

kBTc ≈ 3.31~2n2/3

m
, (3.7)

with the number densityn = N/Vol, while the condensation temperature for a gas

trapped by a three-dimensional harmonic oscillator potential is given by

kBTc ≈ 0.94~ω̄N1/3, (3.8)

whereα = 3, andω̄ is the geometric mean of the oscillator frequencies in each orthog-

onal direction. The corresponding condensate particle number can be obtained from

eqn. (3.6).

The criterion for Bose-Einstein condensation then, is thatthe occupation number for

one of the single particle levels should be macroscopic. This derivation does not in-

clude interactions between particles. Generally the depletion of the condensate due to

interactions is small enough to be neglected. See, for example, comments in Section
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6.1 of Pethick and Smith [328]. A generalisation of this condensation criterion for bulk

systems has been proposed by Penrose [366] and Landau and Lifshitz [194], and elab-

orated by Penrose and Onsager [367] and Yang [368]. The Gross-Pitaevskii equation

discussed in the next section includes the effects of interactions.

We can make a convenient approximation to the condensation temperature by simply

comparing the thermal de Broglie wavelength to the interparticle separation, as sug-

gested in Section 2.3. The thermal de Broglie wavelength canbe thought of as the

average de Broglie wavelength of particle in an ideal gas at temperatureT. When the

thermal de Broglie wavelength approaches the mean inter-particle spacing, quantum

effects will become important, and the gas must be treated as a degenerate Bose gas,

or condensate. The thermal de Broglie wavelength is given by

λT =

(

2π~2

mkBT

)
1
2

, (3.9)

for whichλT ≈ n−1/3 for a condensate, giving

kBTc ≈ 2π~2n2/3

m
, (3.10)

which we see is a good approximation to eqn. (3.7). This simple but effective esti-

mation can be useful in many scenarios including the early Universe. Particle mass,

number density and the temperature at various epochs can allbe determined, allowing

a calculation of whether or not a particular particle species forms a condensate.

We now come to the Gross-Pitaevskii equation. We will see that typically, in the limit

of large particle number the density distribution of the condensate can be described by

a macroscopic wavefunction that is considered to be a quantum field. This field is ma-

nipulated by the Gross-Pitaevskii equation, or nonlinear Schrödinger equation, rather

than working with the usual creation and annihilation operators of quantum mechanics.

The density distribution of the condensate can be represented by a macroscopic wave-

function of the same form as the ground state wavefunction ofa single particle. The

momentum distribution of the condensate is obtained by taking the Fourier transform

of this wavefunction and, in an experimental setup, the occurrence of a Bose-Einstein

condensate is confirmed by a sharp peak in the momentum space distribution of the

gas of particles. This is a good model for the condensate of Cooper pairs in a super-

conductor, or for helium atoms in a superfluid [328]. This procedure is also analogous
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to classical electrodynamics, where electric and magneticfields are used, rather than

the creation and annihilation operators for photons.

In quantum field theory, a condensate corresponds to a non-zero expectation value for

some operator in the vacuum and, in the limit of large quantumnumber, this con-

densate can be considered to be a classical field. The Higgs field, for example, has

a vacuum expectation value, and interaction with this condensate leads to the gauge

bosons acquiring mass. Similar mechanisms operate in the chiral and gluon conden-

sates in QCD. The concept has also been applied to hypothetical particles such as

axions or ghosts [369]. In this context, the axion field, for example, is coherent and

has relatively small spatial gradients. The gradient energy can be interpreted as particle

momenta, which will be the same and small for each particle, giving a sharp peak in the

momentum-space distribution as in the case of the more familiar Bose-Einstein con-

densate described previously. The condensation of axions from a ‘standard’ condensed

matter point of view has also been considered [370].

The relation to field theory will be described in more detail in Chapter 4.

3.2 The Gross-Pitaevskii Equation

The nonlinear Schrödinger equation is typically known in condensed matter parlance

as the Gross-Pitaevskii equation. This equation represents the macroscopic properties

of a many-body quantum-mechanical system, and is in some sense a semi-classical de-

scription. It seeks to describe the properties of a bulk material by including a term rep-

resenting the interaction between particles. In a many bodysystem, this gives a good

description of the properties of the bulk fluid on scales where quantum effects become

important, such as at boundaries, or in vortex cores. To movefrom a microscopic de-

scription of individual atoms to a wavefunction describingthe macroscopic properties

of the bulk material requires us to replace quantum operators with non-operator num-

bers. This is the Bogoliubov prescription, which we will describe shortly. All these

concepts are further elaborated in, for example, Pethick and Smith [328] and Pitaevskii

and Stringari [371]. To an extent, we also follow the notation and conventions set out

in Roberts and Berloff [372].
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We first deal with interactions within the Bose-Einstein condensate fluid. Rather than

try and describe interactions in terms of a potential that will depend in a complicated

way on the inter-particle distance, we instead make an approximation to the interaction

potential that is proportional to the scattering length,as. To first order in an interaction,

the wavefunction is dominated by a contribution from the scattering length. In the Born

approximation, the scattering length is given by

as(Born) =
mred

2π~2

∫

drV(r ), (3.11)

wheremred is the reduced mass, andV(r ) is the potential between atoms (see any good

standard quantum mechanics text, such as Bransden and Joachain [373]). In the case

of equal mass particles, we see that the Born approximation scattering length matches

the true scattering length if we use the effective interaction potential

∫

drVeff(r ) =
4π~2as

m
≡ V0. (3.12)

For an effective interaction potential proportional to the scattering length, we can then

write

Veff(r , r ′) = V0δ(r − r ′). (3.13)

We now look at the whole Bose-Einstein condensate. The effective Hamiltonian of this

system can be written as

H =
N

∑

i=1

[

p2
i

2m
+ Vext(r i)

]

+ V0

∑

i< j

δ(r i − r j), (3.14)

wherei labels each of theN particles, with the delta function taking care of interaction

between each one.Vext couples the system to some external potential. In a condensate,

each of theN particles is in the same single-particle stateφ(r i), and the energy func-

tional of the system can be written as the expectation value of the above Hamiltonian

E = N
∫

dr
[

~
2

2m
|∇φ(r )|2 + Vext(r )|φ(r )|2 +

(N − 1)
2

V0|φ(r )|4
]

, (3.15)

whereN(N − 1)/2 is the number of pairs of bosons. We take the particle numberto be

N ≫ 1, and define the particle density to ben = N/Vol. Introducing the wavefunction

of the condensed state

ψ(r ) = N
1
2φ(r ), (3.16)
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and noting that for a uniform system of volumeVol the wavefunction of the system is

1/Vol
1/2, we find that the particle density is defined by

n(r ) = |ψ(r )|2, (3.17)

and we can rewrite the energy functional as

E(ψ) =
∫

dr
(

~
2

2m
|∇ψ(r )|2 + Vext(r )|ψ(r )|2 + 1

2
V0|ψ(r )|4

)

. (3.18)

Using the method of Lagrange multipliers, we can minimise this energy functional

with the condition that the total number of particles in the system

N =
∫

dr |ψ(r )|2, (3.19)

remain constant. We do this by minimising the quantityE−EυN at fixedEυ, whereEυ

is the chemical potential, to obtain the time-independent Gross-Pitaevskii equation

− ~
2

2m
∇2ψ(r ) + Vext(r )ψ(r ) + V0|ψ(r )|2ψ(r ) = Eυψ(r ). (3.20)

We can generalise this to the time-dependent form by writing

i~
∂

∂t
Ψ(r , t) = −

~
2

2m
∇2Ψ(r , t) + Vext(r , t)Ψ(r ) + V0|Ψ(r , t)|2ψ(r , t), (3.21)

noting that, to be consistent with the time-independent form above, the evolution ofΨ

must go asΨ(r , t) = ψ(r , t) exp(−iEυt/~). The Gross-Pitaevskii equation we use for

analysis, then, is

i~
∂

∂t
ψ(r , t) = −

~
2

2m
∇2ψ(r , t) + Vextψ + V0|ψ(r , t)|2ψ(r , t) − Eυψ(r , t). (3.22)

We could also be slightly more rigorous in moving from the quantum description to the

macroscopic system described by a classical wavefunction.We consider the Heisen-

berg equation of motion

i~
∂

∂t
Ψ̂(r , t) = [Ψ̂(r , t), Ĥ], (3.23)

where the square brackets represent the commutator, or quantum-mechanical Poisson

bracket. The Hamiltonian for this system can be written

Ĥ =
∫ (

~
2

2m
∇Ψ̂†(r , t)∇Ψ̂(r , t)

)

dr +
1
2

∫

Ψ̂†(r , t)Ψ̂†
′
(r , t)V(r ′ − r )Ψ̂(r , t)Ψ̂′(r , t)dr ′dr ,

(3.24)
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which we substitute into the Heisenberg equation of motion to obtain,

i~
∂

∂t
Ψ̂(r , t) =

(

−
~

2

2m
∇2 +

∫

Ψ̂†(r ′, t)V(r ′ − r )Ψ̂(r ′, t)dr ′
)

Ψ̂(r , t). (3.25)

The field operators can be expressed as

Ψ̂(†)(r , t) =
∑

α

Ψα(r )a(†)
α , (3.26)

whereΨα is the single particle wavefunction, anda(†)
α are the annihilation (creation)

operators. For a uniform gas, the field operators can be written

Ψ̂(r , t) =
1
√

Vol

∑

p

âpeip·r/~. (3.27)

In the field operator, we separate out the condensate part of the wavefunction,α = 0

Ψ̂(†)(r , t) = Ψ0(r )â0 +
∑

α,0

Ψα(r )â(†)
α . (3.28)

Returning to the unperturbed system, we have

â†0 | N0〉 =
√

N0 + 1 | N0 + 1〉 and â0 | N0〉 =
√

N0 | N0 − 1〉. (3.29)

In the largeN limit, the case of a condensate with a macroscopic occupation of the

ground state for example,N0 ± 1 ≃ N0 and we can identify

â0 ≃ â†0 ≃
√

N0. (3.30)

This is the Bogoliubov prescription, where an operator has been replaced with a stan-

dard number, in the limit of large particle number. The ground-state wavefunction, or

zero-momentum mode, in eqn. (3.27) can be written as

Ψ̂(r ) =
1
√

Vol

â0 =

(

N0

Vol

)
1
2

= ψ(r , t), (3.31)

with the final identification the same as we made previously, eqn. (3.17). This is equiv-

alent to treating the condensed (macroscopically occupied) part of the field operator as

a classical wavefunction. In general, to consider quantum fluctuations about a largeN

state in which all the atoms are in a single quantum state, we could write

Ψ̂(r , t) = ψ(r , t) + δψ̂(r , t), (3.32)
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whereψ(r , t) = 〈Ψ̂(r , t)〉, as given in eqn. (3.31) above. Ignoring the quantum fluctua-

tions and substituting this into eqn. (3.25) leads again to the Gross-Pitaevskii equation

i~
∂

∂t
Ψ(r , t) = − ~

2

2m
∇2Ψ(r ) + V0|Ψ(r )|2Ψ(r ). (3.33)

We take the time evolution as beforeΨ(r , t) = ψ(r , t) exp(−iEυt/~), and we could

also couple this system to an external potential, to again obtain the Gross-Pitaevskii

equation,

i~
∂

∂t
ψ(r , t) = − ~

2

2m
∇2ψ(r , t) + Vextψ(r , t) + V0|ψ(r , t)|2ψ(r , t) − Eυψ(r , t). (3.34)

There are a few other properties of the condensate that we need to look at. We can

find an expression for the stationary equilibrium state, by considering eqn. (3.34) at a

distance far from any disturbance. We find

ψ∞ =

(

Eυ

V0

)
1
2

. (3.35)

When the condensate wavefunction reaches a boundary, such as the wall of a container,

or the core of a vortex is being considered, we can define a distance over which the

wavefunction changes from zero to its bulk value, or where quantum effects become

important. We can do this by comparing the kinetic and interaction energies over the

scales at which the wavefunction is rapidly changing. The interaction energy goes as

∼ V0|ψ|2, while if the scale over which the wavefunction is varying isgiven byξ, then

the kinetic energy term is given by∼ ~2/2mξ2. When the two energies are equal, this

defines for us a length scale

ξ = a0 =
~

(2mEυ)
1
2

, (3.36)

where we have used eqn. (3.35). This is known as thecoherence length, or healing

length, as it is the distance over which the wavefunction requires ‘healing’, in the

vicinity of a boundary, for example.

TheThomas-Fermiapproximation we mentioned in Section 2.3.1, provides a wayof

obtaining tractable solutions to the Gross-Pitaevskii equation for the case where a con-

densate is confined within a potential, but in the limit that the spatially varying part of

the wavefunction is negligible. The Gross-Pitaevskii equation in this case becomes

Vextψ + V0|ψ|2ψ − Eυψ = 0, (3.37)
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which has solution

|ψ|2 = n =
Eυ − Vext

V0
. (3.38)

This gives a condensate cloud whose radius is defined byVext = Eυ. As the Thomas-

Fermi approximation is valid for a smooth spatially varyingwavefunction, the validity

is such that the size of the cloud is much larger than the healing length. In this way,

individual vortices can be ‘patched in’ to the body of the cloud, without affecting the

overall profile. This was important in Böhmer and Harko’s dark matter model, see

Section 2.3.1, and we will apply it to our later model.

3.2.1 The Madelung Transformation

The Madelung transformation is well known among those working in the field of con-

densed matter, but we note that among cosmologists, the concept of a Madelung trans-

formation to relate the Schrödinger equation and the fluid equations has been eluci-

dated by Coles [267, 269, 270] in the context of structure formation only as recently

as 2000.

Using standard quantum mechanical techniques, we can recast eqn. (3.34) in the form

of a continuity equation,
∂|ψ|2

∂t
+ ∇.(nv) = 0, (3.39)

with velocity

v =
~

2mi
(ψ∗∇ψ − ψ∇ψ∗)

|ψ|2
. (3.40)

We have seen how the square of the wavefunction can be identified as the boson number

density, so thatρ = mn = m|ψ|2. The quantum nature of the fluid can be made more

evident with the application of aMadelung transformation

ψ = α exp(iφω) , (3.41)

so that from eqn. (3.40), we obtain an expression for the velocity of the condensate

v =
~

m
∇φω, (3.42)

whereφω is the velocity potential. Substituting the Madelung transformation into

eqn. (3.34), with the identificationφω′ = ~φω/m, yields the familiar fluid equations:
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the continuity equation
∂
(

α2
)

∂t
+ ∇.(α2∇φω′) = 0, (3.43)

and the (integrated) Euler equation

∂φω
′

∂t
=
~

2

2m2

∇2α

α
− (∇φω′)2

2
− V0

m
α2 +

Eυ

m
. (3.44)

The quantum nature of the fluid manifests itself in the first term on the right hand side

of the Euler equation. This is known as thequantum pressureterm, although dimen-

sionally it is a chemical potential. This term is relevant only on small scales, where

quantum effects become important, such as in a vortex core, or where the condensate

meets a boundary. The identification made above eqn. (3.43) rather hides the quantum

nature of the fluid with respect to the fluid velocity, which will become particularly

relevant when we start talking about vortices.

3.2.2 Vortices

We have already seen that the velocity of the condensate is given by

v =
~

m
∇φω, (3.45)

and one would then expect that the condensate would be irrotational as

∇ × (∇ f ) = 0, (3.46)

for any scalar,f . This restricts the motion of the condensate much more than aclas-

sical fluid. The circulation around any contour then, shouldalso be zero. By Stokes’

theorem

Γ =

∮

l
v.dl =

∫

A
(∇ × v) .dA = 0 (3.47)

This condition, defining the so-called Landau state, was first derived in an analysis

of superfluid He II [374], and suggests that rotation of such acondensate should be

impossible. Experiments by Osbourne [375] indicated that the condensate did indeed

experience rotation. Feynman [376], building on the independent work of Onsager

[377], suggested that rotation and hence non-zero circulation could be explained by

assuming that the condensate is threaded by a lattice of parallel vortex lines. It is pos-

sible to have circulation surrounding a region from which the condensate is excluded
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and in this case, this would be the vortex core. To see this, wenote that the condensate

wavefunction must be single valued, and so around any closedcontour, the change in

the phase of the wavefunction,∆φ, must be a multiple of 2π.

∆φω =

∮

∇φω.dl = 2πl (3.48)

wherel is an integer. We immediately see that the circulation is quantised in units of

h/m

Γ =

∮

v.dl =
~

m
2πl = l

h
m
. (3.49)

To obtain vortex solutions, we work in cylindrical coordinates (r, χ, z), and look for

a static solution of the nonlinear Schrödinger equation, eqn. (3.34). To satisfy the

requirement of single-valuedness, the condensate wavefunction must vary as exp(inχ),

with n integer. We make the vortex ansatz

ψ(r, χ) = R(r) exp(inχ). (3.50)

This procedure is very similar to that used in obtaining Nielsen-Olesen vortices [378],

or cosmic stringsolutions in the Abelian Higgs model, which was first investigated by

Abrikosov [379] in the context of superconductivity. We will return to this in Chapter

4. This analogy will be useful shortly for obtaining an expression for the vortex density

profile. We can obtain an expression for the velocity profile of a vortex by substituting

the vortex ansatz, eqn. (3.50), into eqn. (3.40)

vω =
~n
r

1
m
χ̂, (3.51)

and we note again the discrete nature of the allowed values ofvelocity. From now on

we will consider onlyn = 1 vortices. From energy considerations, vortices withn > 1

are generally expected to be unstable, and will break up intoseveraln = 1 vortices to

form a vortex lattice. We can see this by inserting the vortexansatz

ψ(r, χ) = R(r) exp(inχ) (3.52)

into the energy functional, eqn. (3.18). We find the energy per unit length of a vortex,

Ez =

∫ r ′

0
2πrdr ′













~
2

2m

(

dR(r)
dr

)2

+ n2 ~
2

2m
R(r)2

r2
+

V0

2
R(r)4













. (3.53)

The term corresponding to the energy of the orbital motion diverges, in a similar way

to the energy of a global string, which has no gauge terms to cancel it. To deal with this



The nonlinear Schrödinger Equation in Condensed Matter and Cosmology 85

divergence, a cutoff r ′ is introduced, which may correspond to the extent of the system,

or for a multi-vortex system, the distance between individual vortices. To obtain the

energy purely associated with the vortex, we subtract the energy per unit length of a

cylinder of the uniform condensate. Then, the energy per unit length associated with

the vortex can be shown to be

Ez(vor) =

∫ r ′

0
2πrdr ′













~
2

2m

(

dR(r)
dr

)2

+ n2 ~
2

2m
R(r)2

r2
+

V0

2

(

R2
∞ − R(r)2

)2












. (3.54)

This can be integrated to obtain

Ez(vor) ≈ πR∞
2n2~

2

m
ln

(

r ′

ξ

)

. (3.55)

From this expression, we can see that the energy of a single vortex with winding num-

bern > 1 would have a higher energy than the same configuration ofn vortices, each

with winding numbern = 1.

We also note that cosmic strings with winding numbersn > 1 are also unstable to

perturbations [380]. Such defects break down to severaln = 1 configurations in both a

condensed matter environment, and a high-energy field-theoretic one.

Feynman initially introduced quantised vortices as a purely theoretical tool with which

to explain the rotation of the condensate, but the experimental verification of the quan-

tisation of rotational velocities (e.g. by Packard and Sanders [381]) demonstrated that

these vortices were indeed real.

By substituting the vortex ansatz, eqn. (3.50) into eqn. (3.34), we obtain

− ~
2

2mEυ

[

d2R(r)
dr2

+
1
r

dR(r)
dr
− R(r)

r2

]

+
V0

Eυ

R(r)3 − R(r) = 0, (3.56)

which defines for us the density profile of a vortex (withρ(r) = m|R(r)|2). From

eqn. (3.35) we see that the density far from the vortex is given by

ρ∞ = mR∞ = m
Eυ

V0
. (3.57)

Analytic solutions of this equation are not known so it must be solved numerically. For

our analyses we will use the approximation

R(r) ≃
(

Eυ

V0

)1/2
[

1− exp(−r/a0)
]

, (3.58)

as discussed next.
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3.2.3 Approximations to the Density Profile

The numerical solution to the nonlinear Schrödinger equation can be cumbersome to

work with, so we provide some discussion of some approximations that can be used.

It is possible to scale the the variablesr andR(r) in eqn. (3.56) to obtain a scale-free

equation. Scalingr by the healing length,r ′ = r/a0, andR(r) by the steady state value,

R′(r ′) = R(r)/R∞ we obtain

d2R′(r ′)

dr ′2
+

1
r ′

dR′(r ′)
dr ′

− R′(r ′)

r ′2
− R′(r ′)3

+ R′(r ′) = 0. (3.59)

Our approximation method appeals to the field of high energy vortices, specifically

cosmic strings in the Abelian-Higgs model, in order to startelucidating the relation-

ships between high-energy field theory and condensed matter. In Chapter 4 we will

find that the profile of the Higgs field in a Nielsen-Olesen vortex can be written, in a

similarly scaled way, as

d2R′(r ′)
dr ′2

+
1
r ′

dR′(r ′)
dr ′

− R′(r ′)
r ′2

(A(r ′) − 1)2 − λ
2

R′(r ′)(R′(r ′)2 − 1) = 0 (3.60)

Here A(r) is a gauge term arising from the coupling to electromagnetism, andλ is

determined by the potential term of the theory. It is possible to linearise eqn. (3.60) to

obtain a modified Bessel function as the first order approximation toR′(r ′) - the zeroth

order being 1. This happens in the string case, because the gauge contributions serve to

cancel one of the terms, leaving a modified Bessel’s equation. The linearised version

of eqn. (3.59) does not quite reduce to a modified Bessel’s equation, but taking our

lead from the cosmic string example, we write

R′(r ′) ∼ 1− exp(−r ′). (3.61)

Another approximation, which might seem to be more accurate, was developed by

Berloff [382] in a condensed matter context. A Padé approximation has the same

asymptotics atr = 0 andr = ∞ as the function one is trying to approximate. The Padé

approximation in this case gives

R′(r ′) ∼

√

r ′2(0.3437+ 0.0286r ′2)

1+ 0.3333r ′2 + 0.0286r ′4
. (3.62)

This solution is plotted in Fig. 3.1 along with the numeric solution given by eqn. (3.59),

and the previous approximation, eqn. (3.61). The Padé approximation is indeed more
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Figure 3.1: Numeric solution to eqn. (3.59) (blue), the Padè approximation, eqn. (3.62) (red), and
the scaled approximation used in this analysis, eqn. (3.61)(green).

accurate in the small and large r regions. However, the Padéapproximation has the

tendency to overestimate the density in the central region,producing a density function

whose derivative is negative in this region. Later in this chapter, we will find that the

gravitational potential is proportional to the density, and so the gravitational force will

be proportional to the derivative of the density function. If we chose to use the Padé

approximation for our density profile, we could be potentially misled by its behaviour

in the central region.

We will use the approximation

R(r) =

(

Eυ

V0

)
1
2
(

1− exp[−r/a0]
)

. (3.63)
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3.3 The Wave Mechanical Approach to Structure For-

mation

It is interesting to note that the Euler and continuity equations, without the quantum

pressure term, when coupled to the Poisson equation, are thefull set of equations re-

quired to model structure formation in the early Universe. See, for example, Coles and

Lucchin [383]. With the application of a Madelung transformation, one can then use

the coupled Schrödinger-Poisson system in aclassicalcontext to describe the evolu-

tion of structure. In this case,~ is replaced by an adjustable parameter which controls

thespatial resolutionof the simulation involved. This idea is investigated more thor-

oughly in Short and Coles [268]. In the classical case, thereis no form of pressure

support as CDM is pressureless. The nonlinear Schrödingerequation has been used in

a classical context to model gas pressure [270].

In Sections 1.1.3 and 2.2 we discussed the possibility of using the Schrödinger equa-

tion to model structure formation. Now that we have introduced the Gross-Pitaevskii

equation, its application in describing the macroscopic properties of a system, and the

relation to the equations of fluid mechanics, we can elaborate further on the wave-

mechanical approach.

We consider a curl-free fluid (so thatv = ∇φ′ω, as above), evolving under gravity.

A curl-free fluid is acceptable, as there are no sources of vorticity in this system of

equations. Also, any vortical perturbation modes that may have been present in the

early Universe will decay with expansion. The equations required for investigating

structure formation are: the continuity equation,

∂ρ

∂t
+ ∇ · (ρ∇φ′ω) = 0, (3.64)

the first integral of the Euler equation (the Bernoulli equation),

∂φω

∂t
+

1
2

(∇φ′ω)2 = −Φ, (3.65)

which is coupled to the Poisson equation, in order to model the effects of gravity,

∇2Φ = 4πGρ. (3.66)
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We can again make a Madelung transformation of the form

ψ = α exp(iφω/ν), (3.67)

to rewrite eqns. (3.64) and (3.65) as

iν
∂ψ

∂t
= −

ν2

2
∇2ψ + Φψ +

ν2

2
∇α
α
. (3.68)

We again have a Schrödinger-like equation coupled to the Poisson equation. As we

mentioned in Section 2.2, this is no longer a quantum mechanical system, and the

parameterν has taken the place of~. The parameterν is now an adjustable parameter

that can be changed according to the resolution of the simulation required. For the

formalism used by Coles, Short and Spencer [269, 267, 268, 266, 270]ν = ~/m, giving

the correct dimensions for Planck’s constant, and the de Broglie relationλ = ν/v.

We note that the quantum pressure term currently appears in the above Schrödinger

equation. Generally, in the wave-mechanical approach, oneevolves the ‘standard’

Schrödinger equation in simulations. If one performs a Madelung transformation on

this equation, we find that the quantum pressure term insteadappears in the Bernoulli

equation. In this sense, adjusting the parameterν in the Schrödinger equation controls

the range over which the new pressure term in the Bernoulli equation is effective.

This approach circumnavigates two of the problems of the standard perturbation ap-

proach to structure formation that we mentioned in Section 1.1.3. Firstly, due to the

form of the Madelung transformation,ρ ∼ |ψ|2, and so the density distribution will

always be positive. Secondly, because we are not dealing with point-like particles,

shell-crossing is not as catastrophic as in the Zel’dovich approximation, and caustics

will never be formed. More complex representations of the wavefunction can allow for

mulit-streaming solutions to occur [265]. It is also possible to add the effects of gas

dynamics to this approach by considering the nonlinear Schrödinger equation [270], in

this case simulating the evolution of a polytropic fluid under gravity.
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3.4 Gravitational Stability of Vortices in Bose-Einstein

Condensate Dark Matter

In Section 1.1 we have seen the motivation for a Cold Dark Matter component to the

Universe, as well as some of the problems that the CDM model faces in reproduc-

ing observations. In Chapter 2.3 we saw that some authors proposed a resolution to

these problems by exploiting the quantum-mechanical nature of ultralight matter, so

that the de Broglie wavelength of this matter might manifestitself on astrophysical

scales, leading to naturally smoother and less centrally concentrated galaxy halos than

in the CDM case. Silverman & Mallett [279] suggested a symmetry-breaking mech-

anism for such an ultralight particle, based upon a real scalar field, and while in this

case the symmetry-breaking mechanism provides a nice example of particle produc-

tion in a universe with a cosmological constant, symmetry breaking with a real scalar

field generically produces a catastrophic domain wall problem [380] and we shall see

in Section 4.4 that this model is no exception. Silverman & Mallett [279] also con-

sidered the rotation of a galactic-scale dark matter halo. Using a phenomenological

description taken directly from condensed matter, they concluded that a galactic halo

should be threaded by a lattice of quantised vortices, as a consequence of the rota-

tion of the galaxy exceeding the critical rotation rate required for quantised vortices to

form. Indeed, from studies of rotating Bose-Einstein condensates and quantum turbu-

lence [384, 103], it would seem to be difficult to prevent such vortices from forming.

Classical vortices may also be of importance in an astrophysical environment. Their

role in planet formation, for example, has been discussed [385].

The effects of the interaction of gravity with a coherent state of matter, such as a

Bose-Einstein condensate, have certainly been consideredpreviously [386, 387], and

prompted the question of whether it is actually possible fordark matter to be in a

coherent quantum state if the only interaction with visiblematter is gravitational. In

Section 2.6 we saw how Penrose has used the Schrödinger-Poisson system during his

‘quantum state reduction’ research program.

Böhmer and Harko [276] considered a model of a galactic haloconsisting of a Bose-

Einstein condensate. In condensed matter scenarios, the Thomas-Fermi approximation
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is used to describe a Bose-Einstein condensate cloud, confined by a potential. In the

galactic case, the confining potential is supplied by the gravitational interaction, and

the dark matter density takes the form of a spherical halo that drops to zero outside

the confining potential, as expected from investigations ofdark matter halos in the

Universe [130] and Bose-Einstein condensates in the laboratory (see, for example,

Abo-Shaeer et al. [388]). Conventionally, a vortex, or an array of vortices, can then

be ‘patched’ into the Thomas-Fermi envelope, with the approximation for the cloud

remaining valid for all regions except that of the vortex cores. If dark matter does con-

sist of a Bose-Einstein condensate, Silverman’s paper [279] suggests it would seem to

be difficult to prevent vortex arrays from forming in galactic halos. Detection of these

vortices and investigation of their properties, for example, with gravitational lensing,

could give considerable insight into the nature of dark matter.

In this section we seek to determine the properties of a dark matter particle from con-

siderations of an array of quantised vortices residing in a dark matter Bose-Einstein

condensate. We investigate the properties of the individual vortices in the galactic

Thomas-Fermi envelope, in order to determine ranges for theparameters describing a

dark matter condensate particle, such as its mass. For the purposes of this investiga-

tion, we presume that the dark matter does indeed consist of aBose-Einstein conden-

sate, formed at an earlier stage of cosmological history anddescribed by the coupled

nonlinear Schrödinger-Poisson system, and that vorticesare present, and stable, in this

cosmological fluid.

To consider Bose-Einstein condensates on scales relevant to structure formation in the

Universe, we must necessarily include gravitational effects. Bose-Einstein condensates

are typically sufficiently dilute that the mass densities are not very large, and so a New-

tonian approximation is valid. Gravitational effects can be added to the Bose-Einstein

condensate by including a term in the nonlinear Schrödinger equation that couples to

the Poisson equation. We then have a pair of equations modelling a gravitationally

coupled fluid.

i~ψ̇ = − ~
2

2m
∇2ψ + V0|ψ|2ψ − Eυψ +mΦψ (3.69)

∇2Φ = 4πGρ = 4πGm|ψ|2. (3.70)

We have already seen how this system can emerge, either as theweak field limit of the
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Einstein-Klein-Gordon system (Chapter 2 and Appendix A), or in different approaches

to various phenomena, such as a wave-mechanical approach tostructure formation

(Section 3.3), or in Penrose’s work (Section 2.6).

3.4.1 Vortices in Gravitationally Coupled Bose-Einstein Conden-

sates

We can now consider how to determine the properties of a dark matter particle from

observations of a vortex in a galactic dark matter condensate. We see that, from the

above coupled equations, (3.69) and (3.70), and the relation for the healing length,

eqn. (3.36), the density,ρ = m|ψ|2, is entirely determined by the massm, the healing

lengtha0, and the interparticle potentialV0. If we could provide a measurement of

a0, possibly from gravitational lensing observations of a vortex in a dark matter Bose-

Einstein condensate halo, then it is only the (V0,m) parameter space that remains to be

constrained. It is the goal of this section to place some bounds on this parameter space

using some simple physical arguments.

As we have previously mentioned, the dark matter halo we are considering is well de-

scribed by the Thomas-Fermi approximation. Vortices reside within this envelope and,

to a good approximation, provide only a small perturbation to it. We will consider the

properties of single vortices within this halo. The size of the vortex radius compared

to the size of the dark matter halo is small, and so we can consider the vortex to be

residing in a constant density background, so that the vortex density profile obtained

by solving eqn. (3.56) and approximated by eqn. (3.58) is valid.

If we could solve the above coupled equations using the standard vortex ansatz, eqn. -

(3.50), to obtain a density profile for a gravitationally coupled vortex, then we only

need specify a sensible value ofa0 and the background density in a dark matter halo

to give us a relation betweenV0 and m. Unfortunately, it is not tractable to solve

for the density profile,R(r), by substituting the vortex ansatzψ = R(r) exp(iχ) into

eqns. (3.69) and (3.70). The vortex ansatz assumes that the density profile is static,

thus providing no force terms, from rotation for example, tocounter the gravitational

interaction. Coupling the equation for the density profile to a gravitational potential
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that is diverging, as it is for a constant density background, is then inconsistent. We

anticipate in any case that the vortex density profile will not be altered dramatically, as

the particle densities within the region of the vortex will be fairly low.

3.4.2 Vortex Stability in Gravitationally Coupled Bose-Einstein

Condensates

Instead of solving the coupled eqns. (3.69) and (3.70) for a vortex directly, we make an

argument regarding the stability of a gravitationally coupled Bose-Einstein condensate

vortex, and consequently give some bounds on the parametersthat describe it. Our

analysis is based upon the consideration of the radial velocity profile of a Bose-Einstein

condensate vortex, vω(r), and the radial velocity induced from gravitational attraction,

vG(r). In other words, vω(r) is the velocity that the vortex density distribution is moving

at, for a particularr, while vG(r) would be the velocity experienced by a test particle

orbiting that density distribution, at a distancer. To sustain a vortex, vω(r) must be

greater than vG(r), otherwise the quantum-mechanical forces that produce the vortex

are not sufficiently strong to hold the vortex up against gravitational collapse. That

is, the vortex is spinning too slowly to provide enough centripetal force to balance

the gravitational force. Particles in the condensate will then gravitate into the core,

destroying the vortex. For stability, we therefore have thebound,

vω(r) ≥ vG(r). (3.71)

We can use this bound to eliminate some regions of the (V0,m) parameter space, as we

now demonstrate.

Gravitational Field of a Cylindrically Symmetric System

We have already seen that vω(r) can be given by

vω =
~

r
1
m
χ̂. (3.72)

To obtain vG(r), we turn to Gauss’s law to determine the gravitational fieldof a cylin-

drically symmetric mass distribution, and hence obtain theradial gravitational velocity
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of a test particle moving in the field of that system. Gauss’s law is

∮

g · dA = −4πGMencl. (3.73)

The mass enclosed is the density pervading a cylinder of radiusr and lengthL:

Mencl = L
∫ r

0
2πrρ(r)dr. (3.74)

The density,ρ(r) = m|R(r)|2, is already determined in terms of the cylindricalr coor-

dinate, as it is a solution of the vortex equation. The left-hand side of Gauss’s law, in

cylindrical coordinates, is
∫

grdχdz, (3.75)

where the integral over thez coordinate is againL, the length of the vortex. Gauss’s

law, then, gives us

gr(2πL) = −4πG(2πL)
∫ r

0
ρ(r)rdr, (3.76)

giving

g = −
4πGm

r

∫ r

0
|R(r)|2rdr. (3.77)

The sign is negative, because we have chosen an outward-pointing surface normal

in our formulation of Gauss’s law, eqn. (3.73), which indicates that the gravitational

flux will always be towards the origin. This leads to the slightly counter-intuitive

conclusion that a hole (the vortex) in a constant mass density background would seem

to produce a gravitational force towards it. We instead viewit like this; the static vortex

configuration will want to act to collapse in, and close the hole. We believe that this

is related to the complications in solving for the density profile that we mentioned in

Section 3.4.1. This need not concern us further, as it is the magnitude that is required

for our argument. The magnitude of the induced centripetal force is

g =
vG

2

r
, (3.78)

and the gravitational circular velocity profile vG is given by,

vG(r)2 = 4πG
∫ r

0
ρ(r)rdr = 4πGm

∫ r

0
|R(r)|2rdr. (3.79)



The nonlinear Schrödinger Equation in Condensed Matter and Cosmology 95

3.4.3 Bounds on Parameters

We now have expressions for vG(r) and vω(r), eqns. (3.72) and (3.79), to go in the

bound given by eqn. (3.71). In Fig. 3.2 we plot, as an example,vω(r) and vG(r) and

the density profile for comparison. For this example we use anultralight boson, with

parameter values ofm = 3.56× 10−59 kg (2 × 10−23 eV), Eυ = 2.5× 10−49 J (1.56×

10−30 eV) andV0 = 4.45× 10−84 Jm3 (3.7× 10−45 eV−2). These values are obtained us-

ing considerations of vortices in galactic Bose-Einstein condensates with an ultralight

boson, as investigated in Silverman and Mallett [279]. These values are explained

in more detail in the following subsection. These particular values are used simply

to demonstrate the behaviours of the velocity profiles, and are not used again in our

analysis.
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Figure 3.2: Velocity Profiles for vG (green, dot dash) and vω (blue, dash). Density profile plotted
schematically for comparison (red, solid).

The bound on stability, vω(r) ≥ vG(r), will always be violated at some point, as out-

side the vortex core vω(r) ∼ 1/r and vG(r) ∼ r. We must specify what might be an
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acceptable value ofr for vω(r) and vG(r) to meet, such that the vortex configuration is

not destroyed. We want the vortices to exist, and so the vortex density profile should

be fully established. We interpret this to mean that the density has essentially reached

the level of the background. From the scaled density profile discussed previously, and

plotted in Fig. 3.1, we see that the density reaches its background level at a value of

about ten times the healing length. This is the minimum number of healing lengths at

which we will allow the bound to be violated, otherwise the vortex cannot be estab-

lished. Using the approximation to the density profile, eqn.(3.58), in the expression for

the gravitational circular velocity vG, eqn. (3.79), we then substitute our expressions

for vG and vω into the bound given by eqn. (3.71), to obtain

√
2π
2

(

G~2

V0a0
2

[

2r2 + 8ra0e
− r

a0 + 8a0
2e−

r
a0 − 2ra0e

− 2r
a0 − a0

2e−
2r
a0

]

)
1
2

≤ ~
mr

. (3.80)

We have also eliminatedEυ using eqn. (3.36). This allows us to plot a line indicating

an allowed region of (V0,m) parameter space. We will consider a range of physically

reasonable healing lengthsa0 from considerations of galactic scales. We considerr

to be the length scale at which the bound is violated, and so expressr in terms of an

integer number of healing lengths,r = na0, with the minimum beingn = 10 as outlined

above. Eqn. (3.80) then becomes

V0 ≥
π

2
Gm2n2

(

2n2a0
2 + 8na0

2e−n + 8a0
2e−n − 2na0

2e−2n − a0
2e−2n

)

, (3.81)

or, to leading order,

V0 ≥ πGm2a2
0n

4. (3.82)

Approximations for Parameters Defining the Bose-Einstein Condensate

We take a brief diversion to consider how we approximated thevalues necessary to

obtain the velocity profiles in the previous subsection. These values are merely to

provide an idea of the forms of the velocity profiles and are not used again in our

analysis.

To enable us to obtain velocity and density profiles, we must provide values for the

parametersm, V0, andEυ. The properties of dark matter particles are, by their very

nature, unknown, so we must make some approximations. We usethe analysis in
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Silverman and Mallet [279] to provide us with some data values. The mass of the

Bose-Einstein condensate dark matter particle in that paper is 3.56× 10−59 kg (2 ×

10−23 eV) (Silverman and Mallett unfortunately use a mix of natural and S.I. units).

Their analysis is based on the mass and angular rotation of the Andromeda galaxy.

The mean density is given as 2× 10−24 kg m−3, and they estimate that the vortex line

density in the galaxy would be about 1 vortex per 208 kpc2. This gives a vortex radius

of rω ∼ 2.5× 1020 m (∼ 8.1 kpc). This is a slightly strange result, as previous analysis

in their paper (which we will return to in Section 4.4) suggests a coherence length of

∼ 30 kpc, meaning that their vortex core is bigger than their vortex.

We continue with the suggested vortex radius ofrω ∼ 2.5× 1020 m, and turn to vortex

lattices in condensed matter systems to provide us with somefurther estimates of the

vortex properties in a Bose-Einstein condensate.

Taking the distance between two vortices to be twice the vortex radius, we note from

experimental observations of vortex lattices in a Bose-Einstein condensate that the vor-

tex density reaches the normal density at about half the vortex radius; see, for example,

Fig. 9.3 in Pethick and Smith [328], taken from Coddington etal. [389]. From Fig. 3.1,

we also see that the vortex density reaches the normal condensate density at around

five healing lengths. This gives us an estimate ofrω/2 = 5a0. We then userω ∼ 2.5×

1020 m, a0 = ~/(2mEυ)
1
2 , andρ∞ = mEυ/V0 to give estimates forEυ andV0. With these

approximations we find values ofEυ = 2.5× 10−49 J (1.56× 10−30 eV) andV0 = 4.45×

10−84 J m3 (3.7 × 10−45 eV−2). A better approximation of the inter-vortex separation

could be made by considering the forces acting on a vortex lattice within the system

we are studying. However, as we mentioned at the start of thissection, these approxi-

mations are used only in obtaining Fig. 3.2 to give an idea of the forms of the profiles

for vω(r) and vG(r).

Other Bounds

We can obtain some other bounds to cut off other bits of parameter space. The asymp-

totic vortex density is given by

ρ∞ = m

(

Eυ

V0

)

. (3.83)
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If the vortex exists as a component of a galaxy, then there is aminimum and maximum

density that the vortex can have, given by the maximum and minimum known values

of mass density within a galaxy,

ρmin ≤ ρ∞ ≤ ρmax. (3.84)

The value ofEυ in eqn. (3.83) is fixed (as we are fixing the healing length), and so the

bound on the density becomes a bound onV0.

~
2

2a0
2ρmax

≤ V0 ≤
~

2

2a0
2ρmin

. (3.85)

Eqn. (3.81) gives a lower bound onV0, so to obtain an upper bound, we use the second

half of the above relation.

V0 ≤
~

2

2a0
2ρmin

. (3.86)

Another bound is provided because the vortex velocity should never exceed the speed

of light,

vω =
~

mr
≤ c. (3.87)

It can be seen from eqn. (3.72) that the vortex velocity increases with decreasing ra-

dius. This relation breaks down within the vortex core,a0, where the vortex velocity

diverges. Finding an appropriate description is a topic of some interest in condensed

matter theory [390]. We evaluate the maximum vortex velocity at a distance ofr = 5a0

from the origin, i.e. in a regime where we are sure the relation holds. This gives a

bound on the mass.

m≥
~

5ca0
. (3.88)

Values

To see how the restriction onm and V0 varies, we can think of a range of healing

lengths that cover all possible scales in a galaxy.

1× 1010m (3.2× 10−10 kpc, ∼ 7× 10−2 AU) ≤ a0 (3.89)

a0 ≤ 1× 1022 m (324 kpc) (3.90)

This range of scales takes us from sub solar system, to that ofthe largest known galax-

ies (e.g. IC 1101 in the Abell 2029 cluster [391]). The two ends of this parameter
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range are extreme cases for cosmological vortices, but we have chosen them to include

all possible scales, to make our bounds as conservative as possible. At fixeda0 we will

also cover a large range ofn; the number of healing lengths where the velocity profiles

cross.

For the bound given in eqn. (3.86), we take the minimum density found within a galaxy

to be the cosmological density. This minimum must necessarily be close to the critical

density of the universe,

ρmin = ρc =
3H2

0

8πG
. (3.91)

With H0 = 70 km s−1 Mpc−1, this gives a value ofρmin = 9.2× 10−27 kg m−3.

3.4.4 Results

In Fig. 3.3, we show a region of the (V0,m) parameter space for the healing length

a0 = 1× 1016 m (∼ 1pc). The lines bounding the region of allowed parameter values

are given by eqns. (3.81), (3.88) and (3.86).

The lower bound onV0 is given when vω and vG cross at a value of ten times the healing

length,n = 10. A vortex could be considered more stable if vω and vG cross at a greater

value ofn. Higher values ofn will then move the bounding diagonal line upwards in

the (V0,m) parameter space. A value ofn = 106 is also plotted to demonstrate this. It

is clear then, that highern values (the more stable vortices) are more restrictive in the

values that the parametersV0 andm can take. We will now just consider vortices with

n = 10 in order to be conservative in ruling out possible parameter ranges.

Fig. 3.4 shows allowed regions for various healing lengths,all at a value ofn = 10.

We see that as we move to smaller values ofa0, the allowed bounds onm andV0 both

move up, as expected from eqns. (3.86) and (3.88). More physically, as the mass of the

particle is increased, the repulsive potentialV0 must increase to balance the stronger

gravitational force.
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Figure 3.3: Allowed region in (V0,m) parameter space, for a healing length ofa0 = 1× 1016 m (∼
1 parsec).

3.5 Discussion

In this chapter we have presented, in some detail, techniques from condensed matter

physics and discussed how they might be used in a cosmological setting. We first

looked at the phenomenon of Bose-Einstein condensation, and derived the Gross-

Pitaevskii, or nonlinear Schrödinger equation, enablingus to present the inherently

quantum-mechanical phenomenon of quantised vortices. We used the Madelung trans-

formation to relate the Schrödinger equation to the fluid equations, and also saw how

it could be used in a purely classical context to circumvent some of the problems of

standard approaches to structure formation, as mentioned in Section 2.2. We then re-

turned to the quantum case in order to describe a Bose-Einstein condensate dark matter
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Figure 3.4: Allowed regions in (V0,m) parameter space, withn = 10. Healing lengths as labelled.

candidate, where a galaxy dark matter halo is threaded by quantised vortices. The grav-

itationally coupled nonlinear Schrödinger equation is a complex system to solve. In

the case of a laboratory Bose-Einstein condensate, self-gravitational forces are not im-

portant and even here analytical progress is limited. However, using a simple physical

argument, we have shown how limits on the consistency of sucha model can be im-

posed. Considering sensible values for the size of a galactic Bose-Einstein condensate

vortex places constraints on the values that the interaction potential, mass and hence

the chemical potential can take. There remain sizeable regions of parameter space in

which a model of dark matter comprising a Bose-Einstein condensate appears to be

viable. If the parameters of a dark matter particle can be established from experiment,

or predicted from theory, the model we have presented facilitates an easy comparison

for deciding whether it is possible for a galactic scale Bose-Einstein condensate vortex

to exist. Suggestions have been made to test the hypothesis of a galactic Bose-Einstein

condensate with gravitational lensing [276], possibly, inthe case of vortices, from ro-

tationally induced frame-dragging effects [279]. It has also already been shown that

the quantum mechanical properties of such a dark matter model may eliminate the

problems of cuspy density cores and the overproduction of substructure that the CDM
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model seems to predict [275]. Our analysis shows there are regions where both light

galactic Bose-Einstein condensate particles,∼ 1 eV [322, 327], and ultralight particles,

∼ 10−23 eV [279, 275, 296, 303], are viable. From regions of our parameter space, it

can be seen that while ultralight bosonic particles are not ruled out, the allowed regions

are far more constrained for the lighter mass particles.

The relations between cosmology and condensed matter also facilitate a comparison

with cosmic strings and the bounds placed on them by the Cosmic Microwave Back-

ground. Global strings have an energy per unit length associated with them, whose

equation (in natural units) is

µT ≈ 2πη2 ln

(

r ′

δ

)

, (3.92)

whereµT is the string energy per unit length, ortension, η is the symmetry breaking

scale, which we will discuss fully in Chapter 4,δ is the string core width, or equiva-

lently, the coherence length, andr ′ is a cut-off distance that must be imposed to stop

the expression diverging. This may be the curvature of the string, or the inter-string

separation. We can see that this expression is identical to that for the energy per unit

length of a Bose-Einstein vortex, given by eqn. (3.55).

In the cosmic string literature, the string energy per unit length is typically expressed

as a dimensionless number, given by the combinationGµT. In the early universe,

strings with a high tension can typically give rise to a certain amount of anisotropy

in the CMB. It can be shown, see Section 10.2 of Vilenkin and Shellard [380] and

references therein for example, that in order to be consistent with observations of the

CMB anisotropy, then

GµT . 2× 10−6, (3.93)

or, in S.I. units,

µT . 2.4× 10−38 Jm−1. (3.94)

We can make a simple comparison with the results obtained from the allowed regions

in Fig. 3.4. We remember from eqn. (3.55) that the energy per unit length of a vortex

is given by

Ez(vor) ≈ πR∞
2n2~

2

m
ln

(

r ′

a0

)

.
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Using eqn. (3.57)

ρ∞ = mR∞ = m
Eυ

V0
,

and the expression for the healing length,

a0 =
~

(2mEυ)
1
2

,

we can rewrite the expression for the energy per unit length in terms ofm andV0, the

parameter space that we have been dealing with, anda0,

Ez(vor) ≈
π

4
~

6

m3V0
2a0

4
ln

(

r ′

a0

)

. (3.95)

We have already suggested an inter-vortex separation ofrω = r ′ = 10a0, giving

Ez(vor) ≈ 1.8
~

6

m3V0
2a0

4
. (3.96)

Using Fig. 3.4, we can simply read off approximate values ofV0 andm, for different

values of the healing length, to get an idea of the energy per unit length of each vortex.

The results are given in Table 3.1.

a0 (m) m (kg) V0 (Jm3) Ez(vor) (Jm−1) Ez(vor) (GµT)

1010 10−48 10−70 2.5× 1040 2× 10−4

1013 10−52 10−75 2.5× 1050 2× 1006

1016 10−56 10−80 2.5× 1060 2× 1014

1019 10−60 10−85 2.5× 1070 2× 1016

1022 10−64 10−90 2.5× 1080 2× 1024

Table 3.1: Vortex Energy per Unit Length.

When we compare these values with the bounds placed on CosmicStrings

GµT . 2× 10−6,

it would seem that this analysis would start to cast significant doubt on galactic Bose-

Einstein condensate vortices existing at all. We see that smaller vortices could be

consistent with CMB observations, but also note from eqn. (3.95) that any attempt

to separate the vortices further would exacerbate the problem. Timescales of galaxy

formation also complicate the picture. It may be possible that such vortices would

form afterany interaction with the CMB.
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A more detailed analysis is required to resolve the problemsdemonstrated here.

In future work, it would seem to be of fundamental importanceto investigate further

whether a dark matter candidate could reside in a coherent quantum state, if the only

interaction was gravitational. This is the topic of a wide ranging research program, as

mentioned in Section 3.4.

A less ambitious undertaking would be to find a numerical solution to the coupled

equations, in order to describe the density profile of a gravitationally coupled vortex.

This may be difficult in the case of an infinite background, progress may be able to

be made by considering a cutoff in the background density, imposed by the physical

extent of the Thomas-Fermi cloud modelling the galaxy halo.

We could develop this model further by also considering the possibility of instability

and collapse of the vortex in the axial direction. This couldprovide further constraints

on the dark matter particle parameters, and the existence ofvortices in dark matter

Bose-Einstein condensates. In both cases, the system to be solved would be subject to

a more complete numerical method than we have been able to implement so far.



Chapter 4

Relations to Field Theory

As already alluded to throughout this thesis, there are a number of strong links between

high-energy field theory, and the models used to describe phenomena in condensed

matter. We have already come across concepts such as condensates, and quantised

vortices. Chapter 3 addressed these ideas from a condensed matter standpoint, and in

this chapter we will focus on the field theory point of view, particularly with regard

to phenomena that the two areas have in common, as well as elucidating some more

mathematical concepts.

We start with a comparison of models describing features in field theory and con-

densed matter, and their analogous characteristics. We focus in particular on the role

of spontaneous symmetry breaking, looking at some related phenomena such as soliton

solutions, examples of which are present in both condensed matter and cosmology. We

also discuss the relation between spontaneous symmetry breaking and Bose-Einstein

condensation.

We also mention a hypothetical particle that embodies most of the concepts in this

chapter. The axion is an example of a particle that can be produced as a result of

spontaneous symmetry breaking, and is relevant to this thesis as it is a nonrelativistic

low mass particle (m∼ 10−5 eV), which is born as a Bose-Einstein condensate and has

been considered as a promising dark matter candidate.

We finish with an example of one of the problems associated with the production of

topological defects in the early Universe, in the context ofa Bose-Einstein condensate
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dark matter model mentioned previously in this thesis.

4.1 Comparison of Related Models

We start by looking pedagogically at some models that are highly relevant to the

ideas within this thesis: the Abelian-Higgs model, the Goldstone model, the Landau-

Ginzburg theory, and the model of Bose-Einstein condensation encapsulated by the

Gross-Pitaevskii equation. This also allows us to introduce many concepts that are

common to all, such as topological defects, symmetry breaking, and the Higgs mech-

anism.

4.1.1 The Abelian-Higgs Model

The Abelian-Higgs model is the typical pedagogical examplefor demonstrating mass

generation via spontaneous symmetry breaking. It is expected to play a major role

in the standard model, and the detection of the associated particle, theHiggs boson, is

one of the primary goals of the LHC. We have already mentionedmany of the concepts

and the historical background in Chapter 1. The model consists of a complex scalar

field, coupled to electromagnetism. In the context of the early Universe, this field

is usually considered to be primordial in origin, and fundamental, though we have

again suggested in Chapter 1 that this may not be the case. Thepotential in which the

Higgs field moves evolves with the Universe’s decreasing temperature, to a potential

that exhibits spontaneous symmetry breaking. We will describe the evolution of the

potential with temperature in Section 4.2. For now it will besufficient to consider

models with a potential that exhibit spontaneous symmetry breaking.

The Abelian-Higgs Lagrangian (density) is given by

L = (∂µ + ieAµ)φ̄(∂µ − ieAµ)φ −
1
4

FµνF
µν − V(φ). (4.1)

Here,Fµν is the electromagnetic field strength tensor,Fµν = ∂µAν−∂νAµ, with the gauge

vector fieldAµ, and the coupling constant of electromagnetisme. This Lagrangian is

invariant under the transformations

φ(x)→ φ′(x) = eiα(x)φ(x), Aµ(x) → A′µ(x) = Aµ(x) +
1
e
∂µα(x). (4.2)
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The potential takes the form

V(φ) = −µ2|φ|2 + ν
2
|φ|4. (4.3)

If the parameterµ2 in eqn. (4.3) is positive, then the fieldφ has a non-zero vacuum

expectation value. There is a circle of degenerate minima at

|φ| =
µ
√
ν
= φ0. (4.4)

We can expand around this vacuum, as such redefining some of the variables, to pro-

vide some intuition into the properties of the model. As the potential is symmetric, we

can fix the gauge so thatφ is real, rewriting the field asφ = φ0 + φ1/
√

2. Substituting

this into the Lagrangian, eqn. (4.1), gives

L =
1
2

(

∂µφ1

)2
+

1
2

M2AµA
µ − 1

2
N2φ1

2 +Lint+vac, (4.5)

with

M =
√

2eφ0 N =
√

2µ. (4.6)

Lint+vac contains terms that mixAµ andφ1, the ‘interaction’ terms, terms which are

higher than second-order inφ1, and a vacuum offsetLvac = µ
4/2ν, which arises due to

the form of the potential we are using. The potential has a quadratic form in the real

direction, and perturbations up and down this potential give rise to a massiveφ1 field.

The vector field also becomes massive. This Lagrangian, eqn.(4.5), no longer respects

the U(1) symmetry, and the symmetry is said to bespontaneously broken. We see that

spontaneous symmetry breaking has given rise to particle mass.

We can define two length scales from the Compton wavelengths of the particle masses.

d = M−1 =
1
√

2eφ0

ξ = N−1 =
1
√

2µ
(4.7)

The significance of these length scales will become apparentlater.

These results are particular to models invariant under alocal transformation, i.e. one

where the parameterα is dependent on thelocal coordinatex, α = α(x), rather than

a global one, where the parameterα independent of any such coordinate. A similar

procedure can be performed on the Goldstone model discussedlater, which is invari-

ant under the global transformationφ(x) → φ′(x) = eiαφ(x). In this case, we would
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produce a massive boson, and a massless scalar particle, aGoldstoneboson. Goldstone

bosons were first described by Nambu [392], in the context of superconductivity, and

demonstrated in field theory by Goldstone soon after [393]. When breaking a local

symmetry, massless Goldstone particles do not appear, as the corresponding degree of

freedom is absorbed by the vector field, giving rise to massive gauge bosons.

The Lagrangian, eqn. (4.1), gives rise to the equations of motion

(∂µ − ieAµ)(∂
µ − ieAµ)φ − µ2φ + ν|φ|2φ = 0, (4.8)

∂µF
µν = ie

(

φ∂νφ̄ − φ̄∂νφ
)

− 2e2Aν|φ|2 = jν, (4.9)

where jµ is the four-current. With the rescaling

φ→ φ′ =
φ

φ0
, (4.10)

xµ → x′µ = eφ0xµ, (4.11)

Aµ → A′µ =
Aµ

φ0
, (4.12)

the field equations become

(∂′µ − iA′µ)(∂
′µ − iA′µ)φ′ −

ν

e2
φ′

(

1− |φ′|2
)

= 0, (4.13)

and

∂′µF
′µν = i

(

φ′∂′
ν
φ̄′ − φ̄′∂′νφ′

)

− 2A′ν|φ′|2 (4.14)

so that the model depends only upon the parameterν/e2. This is the ratio of the square

of the Compton wavelengths of the two particles defined previously. From now on we

will drop the primes from discussions of eqns. (4.13) and (4.14).

Solitons

One of the phenomena that brings together the models we describe is the appearance

of soliton solutions. Solitons can be broadly defined as stable configurations of local

energy density, and can be split into two categories: topological and non-topological.

Generally, topological solitons occur when different degenerate vacuum configurations

exist in a model. A topological defect is required to interpolate between the two differ-

ent vacuum states. Within the interpolating region exists the energy density associated
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with ‘undoing’ the defect. We can see that the formation of topological defects is inti-

mately related to symmetry-breaking phenomena. In a model exhibiting spontaneous

symmetry breaking with a number of degenerate vacua, then topological defects will

usually be present, often with some associated particle production. The topology of

the vacuum manifold also ensures the stability of the soliton, as the topology cannot

be continuously transformed to a topologically trivial solution.

Non-topological solitons exist only in nonlinear models, as nonlinear effects are re-

quired to cancel dissipative effects that will usually destroy the configuration. We have

already seen examples of non-topological solitons; the boson stars and oscillatons that

we encountered in Chapter 2. We will not comment further on these solutions.

Vortices

In the case of the Abelian-Higgs model, the topological defects produced are line-like

stringsolutions, the Nielsen-Olesen vortex lines [378]. To look for vortex solutions in

the system, we make a vortex ansatz in cylindrical coordinates (r, χ, z), similar to that

in Section 3.2.2.

φ(r ) = einχR(r), (4.15)

A(r ) = Aχ(r) = nA(r). (4.16)

Or, in Cartesian coordinates,

A(r ) =
(

−
y
r2

nA(r),
x
r2

nA(r), 0
)

. (4.17)

Substituting this ansatz into equations (4.13) and (4.14),we obtain the equations

d2R(r)
dr2

+
dR(r)

dr
1
r
−

n2

r2
R(r) (A(r) − 1)2 −

ν

e2
R(r)(R(r)2 − 1) = 0, (4.18)

and
d2A(r)

dr2
−

1
r

dA(r)
dr
− 2R(r)2(A(r) − 1) = 0. (4.19)

As before, explicit solutions to these equations are not known, and they must be solved

numerically. The solutions can be thought of as representing a scalar and a vector flux

tube, with widths corresponding to the Compton wavelength of the scalar and vector

bosons,rA ∼ M−1 andrφ1 ∼ N−1.
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The ratio of the Compton wavelengths defines for us the parameter we had mentioned

previously,

β =

(

M−1

N−1

)

=
ν

e2
, (4.20)

and we can then split the solutions into two types.

β < 1 ⇒ N−1 > M−1 (Type I) (4.21)

β > 1 ⇒ N−1 < M−1 (Type II) (4.22)

We label them in this way to facilitate a comparison with the condensed matter solu-

tions that will be discussed later.

4.1.2 The Goldstone Model

The Goldstone model can be considered to be the Abelian-Higgs model without the

coupling to electromagnetism. The introduction we give here will be brief, but the

reason for introducing it will hopefully become evident later in the chapter.

The Goldstone model describes a real scalar field, not coupled to electromagnetism.

The Lagrangian can be written

L =
1
2

(∂µφ)(∂µφ) + µ2φ2 − ν
2
φ4. (4.23)

This model also exhibits spontaneous symmetry breaking, and if we follow a similar

procedure to that of the Abelian-Higgs model, expanding around one of the minima

of the potential, we would uncover a massless scalar (Goldstone) particle, and a bo-

son with massN =
√

2µ, as before. The equations of motion from the Goldstone

Lagrangian are

∂µ∂
µφ − 2µ2φ + 2νφ3 = 0. (4.24)

We recognise this as having the form of the nonlinear Klein-Gordon equation, with

the negative term due to the symmetry-breaking form of the potential we are using.

The Goldstone model also exhibits a topological defect. Forsimplicity, we take the

one-dimensional case, where there is a static solution to the equations of motion,

φ(z) =
µ

ν
1
2

tanh(µz). (4.25)
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This is a kink, ordomain wallsolution, as it separates two domains of the potential

with different values of the degenerate minima. We notice that this suggests a length

scale defined previously by eqn. (4.7). We can rewrite eqn. (4.25) as

φ(z) = φ0 tanh













z
√

2ξ













. (4.26)

In this caseξ has an interpretation as the width of the domain wall.

4.1.3 The Landau-Ginzburg Model

The Landau-Ginzburg model is the macroscopic equivalent toBCS theory, used to

model the behaviour of superconductors. Some of the historyof this subject was pre-

sented in Section 1.2. Landau and Ginzburg first constructeda theory of second-order

phase transitions, and then coupled this theory to electromagnetism. The Lagrangian

they obtained describes the evolution of a complex scalar and as such, is identical to the

Lagrangian of the Abelian-Higgs model, eqn. (4.1). In contrast with the field theory lit-

erature however, the theory is not usually presented in a covariant way. While the same

mathematics can be applied to the two different theories, the interpretation is of course,

very different. The wavefunction in the Abelian-Higgs model represents a fundamen-

tal scalar field in the early Universe, while the wavefunction in the Landau-Ginzburg

is a phenomenological order parameter describing how deep into the superconducting

phase the material is, or the density of Cooper pairs. Since we can apply the same

mathematical techniques, we start again from the Lagrangian eqn. (4.1) in order to

make some comments about the theory of superconductivity.

For simply connected domains the Lagrangian, and the equations of motion, are again

invariant under the local gauge transformations, eqn. (4.2). With this transformation,

the four-current, eqn. (4.9) becomes

jµ = −2e2Aν|φ|2. (4.27)

The spatial part of this equation is known in the condensed matter literature as Lon-

don’s equation [371]. This equation can be used to explain the exclusion of magnetic

flux from a superconductor. This is known as theMeissner effect. We take the curl of

the London equation

∇ × j = −2e2|φ|2∇ × A, (4.28)
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and the curl of the fourth Maxwell equation

∇ × B = j +
∂E
∂t
, (4.29)

along with the identity∇× (∇×B) = ∇(∇.B)−∇2B. Putting all this together, we obtain

∇2B = 2e2nB, (4.30)

wheren = |φ|2, the number density of charge carriers. The solution to thisequation is

B = B0e
− x

d . (4.31)

We see that a magnetic field entering a distancex into a superconductor is exponen-

tially suppressed, and dies away within a penetration region d, of depthd = 1/
√

2e2n.

We note that this is exactly the quantity given in eqn. (4.7),where we interpreted it as

the Compton wavelength of the gauge boson associated with the spontaneously broken

symmetry. This penetration depth is a direct consequence ofthe symmetry-breaking

potential, and can be considered as the acquisition of mass by a gauge boson. The

gauge boson in this case is the photon, and in going from beingmassless to massive,

the force that it mediates goes from having an infinite range to having a finite range

within the superconductor.

In terms of a superconductor then, the two quantities in eqn.(4.7) have an immediate

interpretation as the penetration depth, and the coherencelength of the wavefunction

within the superconductor. If the coherence length is smaller than the penetration

depth, then at high enough external fields, magnetic flux lines can penetrate the super-

conductor. In this case, the flux lines arrange themselves into narrow tubes, or vortices,

with a core of the non-superconducting phase carrying the magnetic flux. These mag-

netic flux tubes were first described by Abrikosov [379]. Again, we recognise this

phenomenon. It corresponds to the regimeβ > 1, as given in eqn. (4.22), and is known

as a type II superconductor. In the condensed matter case,β is known as the Landau-

Ginzburg parameter. Magnetic flux cannot penetrate type I superconductors, and so

magnetic flux tubes do not exist within them.

We saw in Section 3.2 that the representation of the superfluid velocity as the gradient

of a phase can lead to vortices with quantised circulation. This happens analogously

for superconductors.
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To see how the magnetic flux quantum arises, we can consider a type II superconductor,

which we have seen allows the presence of magnetic flux, but prevents it penetrating

beyond a distanced. We again consider the equation for the current, eqn. (4.9).We

write the wavefunction asφ = |φ| exp(inχ), and consider a contour that is far enough

away from the vortex core that no magnetic field penetrates, so the currentjµ is zero.

The spatial part of eqn. (4.9) becomes,

n
∮

L
∇χ.dl = e

∮

L
A.dl (4.32)

For the wavefunction to be single-valued, the integral around the contour must be equal

to 2π, and the right-hand side becomes an integral over a surface,via Stokes’ theorem,

giving the magnetic flux,

2πn = e
∫

S
B.dA = eΦ, (4.33)

so that the flux is quantised in multiples of 2π,

Φ =
2πn
e
. (4.34)

This expression also holds for cosmic strings in the Abelian-Higgs model.

Critical Coupling

The β = 1 case is of some special interest. As well as being the transition between

type I and type II superconductivity, it is important analytically as the often difficult-

to-solve second-order equations of motion can be reduced totwo first-order equations

[394]. Fields satisfying these equations also satisfy whatis known as theBogomolny

bound, which states that the energy of the field configuration is a minimum, and so the

soliton solution is inherently stable.

Thiscritical couplingis also of importance to supersymmetry [395], where BPS states,

solutions which saturate the Bogomolny bound, are important as supersymmetries of

the theory are automatically preserved. See, for example, Tong [396, 397].

4.1.4 The Gross-Pitaevskii Equation

We have looked at the Goldstone model, which can be considered to be the ‘uncharged’

version of the Abelian-Higgs model, that is, does not include electromagnetism. In
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the same way, in the nonrelativistic versions, the Landau-Ginzburg theory describes

condensate phenomena that is electromagnetically coupled, while the Gross-Pitaevskii

equation describes condensate phenomena that is not.

Generally, when discussing the Landau-Ginzburg theory, the equations used are not in

the covariant form that we have been using. The equations of motion depend on the

first derivative, with respect to the time coordinate, rather than the second, as is present

in the Klein-Gordon equation. All the phenomena we have described so far have been

time independent, so this has not been a concern. In AppendixA, we discuss how to

reduce the relativistic nonlinear Klein-Gordon equation to the nonlinear Schrödinger

equation, and similar techniques can be employed to move from the Abelian-Higgs to

the Landau-Ginzburg theory.

We remind ourselves of the Gross-Pitaevskii equation, eqn.(3.34),

i~
∂

∂t
ψ(r , t) = − ~

2

2m
∇2ψ(r , t) + Vextψ(r , t) + V0|ψ(r , t)|2ψ(r , t) − Eυψ(r , t).

This equation also admits soliton solutions. We have already seen the vortex solutions

in Section 3.2.2, but there is also a one-dimensional solution, analogous to the domain

wall solution in the Goldstone model. To construct a solution, we can consider the

condensate bounded by a container, so that the potential behaves as

Vext = ∞ for x < 0 (4.35)

Vext = 0 for x > 0. (4.36)

The solution to the Gross-Pitaevskii equation is then

ψ(x) = ψ∞ tanh













x
√

2ξ













. (4.37)

This solution for the case of a condensate with a boundary canalso be extended to

all space. In this case, the solution describes a static soliton. It is also possible to

find moving solitons of this type, whose profile typically depends on their velocity.

See, for example, Pethick and Smith [328]. The soliton solution above is known as a

dark soliton, as it describes an underdensity in a constant density background (recall

ρ ∝ |ψ|2). There are also soliton solutions for attractive interaction potentials,V0 < 0.

These are referred to asbright solitons, as they correspond to an overdensity. We

came across one such model in a cosmological context at the end of Section 2.4.1. As
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we noted there, attractive interactions generally lead to negative values of the particle

scattering length, and an imaginary sound speed. The dark soliton solution given above

is identical to eqn. (4.26). Againξ is interpreted as the width of the domain wall, or a

coherence length over which the wavefunction varies, givenby

ξ =
~

(2mEυ)
1
2

, (4.38)

agreeing with the previous argument for the coherence length we gave in eqn. (3.36).

4.2 The Relationship between Bose-Einstein Conden-

sation and Spontaneous Symmetry Breaking, and

the Role of Temperature

Very often in high-energy field theory literature, it is suggested that the symmetry of

the theory being described is spontaneously broken by the appearance of a condensate.

See, for example, pg. 39 of Vilenkin and Shellard [380], pg. 272 and pg. 428 of

Kolb and Turner [398], and many others [399, 400, 401, 402]. This statement is an

equivalent way of describing the process of mass generationvia spontaneous symmetry

breaking. The Higgs mechanism, for example, generates a Bose-Einstein condensate

of Higgs particles, while the particle produced as a result of the spontaneously breaking

the Peccei-Quinn symmetry, the axion, is also produced in a zero-momentum Bose-

Einstein condensate. We can pause for a moment to see why these two descriptions are

equivalent.

We have already seen the Bogoliubov prescription, which describes, in the limit of

large occupation numbers, how the creation and annihilation operators can be replaced

by a non-quantum number, in this case the root of the number ofparticles occupying

the ground state. In field theory, the field wavefunctionφ acquires a classical expec-

tation value, which can equivalently be described asφ particles sitting at the bottom

(macroscopically occupying the lowest energy state) of thepotentialV(φ). In this

way, the appearance of a non-zero vacuum expectation value in field theory also cor-

responds to the appearance of a condensate. In a thermodynamic system, the onset

of Bose-Einstein condensation, and the appearance of a non-zero vacuum expectation
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value arising from a spontaneously broken vacuum can be considered two parts of the

same process, both occurring at some critical temperature.

It is expected that the symmetry groups corresponding to thestandard model were uni-

fied at some higher temperature, earlier in the Universe’s history. As the temperature

decreased, the potential of the model moved from a symmetricone, to one exhibiting

spontaneous symmetry breaking. We can demonstrate this using the Goldstone model.

In spontaneous symmetry-breaking phenomena in the early Universe, the scalar fieldφ

is a quantum field, and hence the classical potentialV(φ) is modified byradiative cor-

rections. We can introduce aneffective potentialthat is treated in the normal way, but is

derived by including quantum corrections to the potential.The effective potential can

be built up by summing then-loop contributions, and was first described rigorously by

Coleman [403] and Weinberg [119]. Weinberg was awarded the 1979 Nobel prize for

his work with Salam and Glashow on the electroweak interaction. The development of

a effective potential allowed a large amount of progress on a low energy limit of QCD.

It is possible to show that the calculation of the quantum corrections is the same as

computing the free energy. See Vilenkin and Shellard [380],for example. The effective

potential then, can be shown to be

Veff(φ,T) = V(φ) +
1
24

M
2(φ)T2 − π

2

90
N T4, (4.39)

where

M
2 =

∑

B

m2
n +

1
2

∑

F

m2
n

N = NB +
7
8
NF (4.40)

are the mass and number of bosonic and fermionic spin states.

We remind ourselves of the form of the potential we have been using, eqn. (4.3),

V(φ) = −µ2|φ2| +
ν

2
|φ|4.

We split the complex field into two real fields,

φ =
1
√

2
(φ1 + iφ2), (4.41)
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so that|φ|2 = 1
2(φ2

1 + φ
2
2) and the masses of the associated particles are given by the

eigenvalues of the matrix

meff
2 =

∂2V(φ)
∂φi∂φ j

(4.42)

so

m2
1(φ) = −µ2 + 3ν|φ|2 (4.43)

m2
2(φ) = −µ2 + ν|φ|2. (4.44)

Note that if we are on the vacuum manifold,|φ|2 = µ2

ν
, then

m2
1 = 2µ2 (4.45)

m2
2 = 0 (4.46)

as we derived in Section 4.1.2. WithM 2 = m2
1 + m2

2, andN = 2 (two bosons),

eqn. (4.39) becomes

Veff(φ) = −µ2|φ|2 +
ν

2
|φ|4 +

1
24

(−2µ2 + 4ν|φ|2)T2 −
π2

45
T4. (4.47)

Defining 1
2meff

2 to be the coefficient of |φ2|, we find

1
2

m2
eff =

ν

6

(

T2 − 6
µ2

ν

)

. (4.48)

This defines for us a critical temperature,

T2
crit =

6µ2

ν
. (4.49)

If T > Tcrit, thenm2
eff > 0, and the effective potential takes a quadratic form with a sin-

gle minimum. This corresponds to the parameterµ2 in the potential, eqn. (4.3), being

negative. If however, the temperature drops below the critical temperature,T < Tcrit

(the parameterµ2 is positive, as we assumed in our initial demonstrations of symme-

try breaking), thenm2
eff < 0, the effective potential develops two degenerate minima,

and exhibits spontaneous symmetry breaking. We recall thatfor the potential we have

been using for our symmetry-breaking models,φ0 = µ/
√
ν (eqn. (4.4)), and see from

eqn. (4.49) that the critical temperatureTcrit is comparable to the symmetry-breaking

scaleφ0. This is generally the case.

A similar process exists in condensed matter physics. If thetemperature in a super-

fluid or superconductor is raised, then the proportion of condensed phase decreases
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until some critical temperatureTcrit where the fluid is completely in the normal phase.

Kirzhnits pointed out that symmetries in particle physics models can be restored in a

similar way [404, 405], and this is known assymmetry restoration at high temperature.

From the temperature of the symmetry-breaking scale then, one can predict the mass

of the associated particle, or vice versa. For each symmetryof the theory, there is

also a conserved charge. This is Noether’s theorem [223]. For each conserved charge,

it is also possible to associate a chemical potential. We sawin Section 3.2 the use

of the chemical potential as a Lagrange multiplier, which led to a description of a

Bose-Einstein condensate, with the associated conserved quantity being the particle

number. We can demonstrate the role of a chemical potential in spontaneous symmetry

breaking, to reinforce again the equivalence of spontaneous symmetry breaking and

Bose-Einstein condensation.

Bose-Einstein condensation as a broken symmetry phenomenon was first pointed out

by Bogoliubov [406], and later extended in seminal papers byBernard [407], Kapusta

[408] and Haber and Weldon [409]. The full derivation requires the use of a complex

functional integral calculation, integrating out the canonical momenta in the process.

This elegant calculation is fairly involved, and we can summarise their argument by

considering the effect of a chemical potential, in a similar way to our derivation of the

Gross-Pitaevskii equation, eqn. (3.20), in Section 3.2.

We consider a model similar in form to those we are familiar with. We take a real scalar

field φi, with two componentsi = 1, 2 (we could consider the two components to be

the two parts of a complex field), and a conserved charge. We write the Hamiltonian

density,

H = −1
2
πiπi −

1
2

(∇φi)(∇φi) + µ
2φiφi +

ν

2
(φiφi)

2 , (4.50)

and conserved charge

Q =
∫

d3x j0 =
∫

d3x(φ1π2 − φ2π1), (4.51)

whereπ is the momentum density conjugate toφ.

We can demonstrate the effect of this background charge by consideringH − EυQ. In

our example in Section 3.2,we consideredEυ to be a Lagrange multiplier, one of which

can be assigned to each conserved quantity, or symmetry of the system. The conserved
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charge for the Gross-Pitaevskii equation was particle number,N.

The correspondingEυ-dependent Hamiltonian density may be written as

H (Eυ) =H − Eυ j0 =H − Eυ(φ1π2 − φ2π1), (4.52)

giving

H (Eυ) = −
1
2
πiπi −

1
2

(∇φi)(∇φi) + µ
2|φ|2 + ν

2
|φ|4 − Eυ(φ1π2 − π2φ1). (4.53)

From Hamilton’s equations, we find

φ̇1 =
∂

∂π1
H (Eυ) = −π1 − Eυφ2, φ̇2 =

∂

∂π2
H (Eυ) = −π2 + Eυφ1. (4.54)

The Lagrangian can be written

L (Eυ) = πi φ̇i −H (Eυ). (4.55)

Substituting our expression forH (Eυ), eqn. (4.53), and Hamilton’s equations, eqn. -

(4.54), into the above equation, we find the Lagrangian

L (Eυ) = |∂µφ|2 − V(φ) + Eυ(φ1φ̇2 − φ2φ̇1), (4.56)

where the potential is given by

V(φ) = (µ2 − Eυ
2)|φ|2 +

ν

2
|φ|4. (4.57)

Generally, the chemical potential is temperature dependent, Eυ = Eυ(T), and we can

see that if the chemical potential evolves in such a way to move fromEυ
2 < µ2 to Eυ

2 >

µ2 at some critical temperatureTcrit, then the potential given in eqn. (4.57) evolves into

a potential exhibiting symmetry breaking, with the same form as eqn. (4.3). We see

that symmetry breaking in the presence of a background charge effectively forms a

Bose-Einstein condensate. We should not be surprised then,that a theory including a

chemical potential, eqn. (4.56), can also be written in the form of a gauge theory,

L = |Dµφ
2| − µ2|φ|2 − ν

2
|φ|4, (4.58)

where

Dµφ = ∂µφ − iAµφ, Aµ = (Eυ, 0, 0, 0). (4.59)
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These results have also been formalised for high temperature systems [410, 411], rel-

ativistic systems [412, 318], and extended to cosmologicalsystems [317, 413], and

Yang-Mills theories in QCD [414]. Quark or gluon condensates, the result of breaking

a chiral symmetry in QCD may be responsible for producing hadron masses. Chiral

condensates are an example of a fermionic condensate. Fermionic condensates are

possible as fermions combine into Cooper pairs to produce a particle that behaves, sta-

tistically, as a boson. The first fermionic condensate was produced in the laboratory

by Deborah Jin’s group in 2003 [415, 416]. Condensates are also exhibited in theories

in which ghosts are present. See, for example, Arkani-Hamedet al. [369]. As an in-

teresting link to gravitational physics, Schiff and Barnhill [417, 418] showed that the

electric field inside a conductor does not vanish when a gravitational field is present.

DeWitt [419] described a similar result for magnetic fields inside superconductors,

and showed that the vector potential associated with frame dragging can be formally

associated with the vector potential for a superconductor.

Axions can also be produced as the result of a symmetry-breaking phenomenon in

QCD, and reside in a Bose-Einstein condensate.

4.3 The Axion

The axion appears as a result of a proposed resolution to thestrong CP problemin

Quantum Chromodynamics(QCD), the theory of the strong interaction. The particle

appears as a result of symmetry-breaking phenomena producing a (pseudo) Goldstone

boson. The axion is not massless, as Goldstone bosons are, asquantum effects also

produce a small explicit broken symmetry, providing a unique vacuum.

We have already demonstrated some examples of symmetry breaking, leading to par-

ticle production and the creation of topological defects, and these concepts can be

straightforwardly applied to the symmetry-breaking potential that is used to solve the

strong CP problem.
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The Strong CP Problem, and a Dark Matter Candidate

Charge-Parity (CP) symmetry is a postulated symmetry of nature that suggests that a

particle with opposite charge and parity should be indistinguishable from the original

particle. The combination of charge and parity was originally suggested as a symmetry,

winning Lee and Yang the Nobel prize in 1957 for their theoretical work, after parity

alone was found to be violated in some weak interactions [420, 421]. In fact the CP

symmetry is still violated in weak decay [422], a discovery which won James Cronin

and Val Fitch the 1980 Nobel prize.

When QCD was first being developed, the theory apparently hadno CP violating terms.

As the details were expanded upon, ’t Hooft [423, 424] realised that the vacuum struc-

ture of QCD is more complicated than initially thought. Thisadditional structure al-

lows CP violating terms, characterised by a term in the Lagrangian known as theθ-

parameter. CP violation is not observed in experimental tests of the strong interaction,

and in addition, the CP violating terms give rise to an electric dipole moment of the

neutron. Measurements of CP violation in QCD and of the neutron electric dipole mo-

ment require theθ-parameter to be less than 10−10, with CP being preserved exactly for

a value ofθ = 0. This amounts to an unpalatable amount of fine-tuning for theorists.

This is thestrong CP problem.

To resolve this fine tuning problem, Peccei and Quinn [425, 426] postulated a new

U(2) chiral symmetry in the QCD Lagrangian. This chiral symmetry can be decom-

posed into the symmetry groups SU(2)× U(1), a chiral symmetry and a global axial

symmetry. At some energy scale, corresponding to a certain temperature in the early

Universe, as we have already mentioned, the potential of theglobal U(1) can evolve to

one that exhibits spontaneous symmetry breaking, giving a vacuum expectation value

to the associated scalar field. Theθ-parameter can then be viewed as the phase of

the complex scalar field around the bottom of the global U(1) ‘Mexican hat’ potential,

similar to the potential described in our explanation of theHiggs mechanism. We have

already seen that this form of symmetry breaking gives rise to a massless Goldstone

boson, and in this case, this is the axion. In fact, there is a small explicit breaking

of the symmetry fromQCD instantoneffects. This has the effect of ‘tipping’ the po-

tential slightly, providing a unique vacuum for the potential at θ = 0, preserving CP
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symmetry, and giving a small mass to the axion, making it apseudo-Goldstone bo-

son. As with the temperature-dependent symmetry-breakingmechanism we described

previously, the axion mass is set by the energy scale at whichthe symmetry breaking

occurs.

This energy scale is usually represented by the parameterfa, and the axion mass is

given by

ma ≃ 0.6 eV
107 GeV

fa
. (4.60)

Typically, one seeks to detect the axion through its decay totwo photons, and so the

axion-photon-photon interaction

gaγγ =
αgγ
π fa

, (4.61)

is of interest. Here,α is the fine structure constant, andgγ is a dimensionless, model-

dependent parameter, typically of order unity.

Based upon experimental evidence of other QCD and astrophysical processes, one

can place limits on the symmetry-breaking scale and axion mass. The upper limit on

the axion mass from astrophysical considerations is currently 3 × 10−3 eV. For further

detail, see Carosi [427], Turner [172], and Sikivie [428].

It is also possible that the instanton effects occur at a later time than the spontaneous

breaking of the U(1) global symmetry. This would result in anaxionicstring, a topo-

logical defect produced as the result of breaking a U(1) symmetry, as we have already

seen. It is also possible that the primary energy loss mechanism for axionic strings

may be the radiation of axions, rather than gravitational waves, and in this case, ax-

ionic string decay may be the primary source of axion production, rather than the

symmetry-breaking mechanism [429].

The axion is predicted to be electrically neutral, with a lowinteraction cross-section

for the strong and weak forces. Theoretical bounds and bounds placed by experimental

results, some of which we saw in Section 1.1.4, suggest a low particle mass,∼ 10−5 eV.

These parameters made the axion an ideal dark matter candidate, but unfortunately, no

further experimental evidence has been forthcoming.

Condensates of axions have also been considered as dark matter halos [370, 430],

and within these halos, quantised vortices have been investigated [431] and found to
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produce phenomenological rotation curves in a similar veinto those produced by scalar

field dark matter that we discussed in Chapter 2.

4.4 The Domain Wall Problem in a Model of Bose-Ein-

stein Condensate Dark Matter

In this section, we consider in more detail one of the models set out in a paper that

we mentioned in Sections 2.3.1 and 3.4. After giving an overview, we note what we

perceive to be one of the problems associated with it.

The paper “Dark Matter as a Cosmic Bose-Einstein Condensate and Possible Super-

fluid” by Silverman and Mallett [279], is adapted from an essay that received an hon-

ourable mention from the Gravity Research Foundation in 2001 [432]. The model

considers a real scalar field in the early Universe, in which particles making up the

dark matter component arise from the breaking of aZ2 symmetry. This paper provides

a nice example of particle production as a result of spontaneous symmetry breaking,

with the additional result of the emergence of a cosmological constant.

We look at one of the phenomena generic to the breaking of aZ2 symmetry; the pro-

duction of domain walls. These are the kink solutions that wesaw in the Goldstone

model. Depending on the energy scale of formation, these walls can come to dominate

the energy density of the Universe, and/or cause problems with the observed isotropy

of the Universe at decoupling.

We briefly introduce the model in Section 4.4.1 and examine the existence of domain

walls within it in Section 4.4.2. We discuss the possible Cosmological constraints on

the existence of domain walls in Section 4.4.3 and in Section4.4.4 we compare these

to the estimates of particle mass and symmetry-breaking scale made by Silverman and

Mallett. Some final remarks are made in Section 4.4.5.
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4.4.1 The Model

In the Silverman-Mallett model, a real scalar field is coupled to General Relativity.

The Lagrangian takes the form

L =
R
κ2
+

1
2

(∂µφ)(∂µφ) − V(φ), (4.62)

whereκ2 = 16πG
c4 , andR is the Ricci scalar.

The potential takes the form

V(φ) =
1
2

(

aφ2 + bφ4
)

, (4.63)

and the parameteraevolves from positive to negative as the temperature passesthrough

some critical temperature.

We have already seen in Section 4.1.2 how this type of setup can lead to domain wall

solutions. The Ricci tensor in Silverman and Mallett’s setup will give the Einstein

equations, as well as the nonlinear Klein-Gordon equationsof motion for the scalar

field that we have already seen, eqn. (4.24).

The parameters in the Silverman and Mallett model are related to the parameters that

we have been using to define the potential by

a = −2µ2, and b = ν. (4.64)

We will continue with Silverman and Mallett’s notation for this section. We also note

that Silverman and Mallett model keeps factors of~, c andG explicit, while we have

previously been using natural units.

Expanding around the vacuum, withφ = φ0 + φ̄, in a similar way to that described in

Section 4.1.1, gives a Lagrangian

L =
R
κ2
+

a2

8b
+

1
2
∂µφ̄∂

µφ̄ + aφ̄2 − 2bφ0φ̄
3 − b

2
φ̄4. (4.65)

The coefficient of the kinetic term gives an expression for the mass of the particle. The

field φ2 has units of Jm−1, so keeping factors of~ andc explicit, gives

a = −
m2

2
c2

~2
. (4.66)
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In their paper, the mass parameter is frequently related to the reduced Compton wave-

length,Żc,
mc
~
=
√
−2a =

1
Żc
, (4.67)

and the vacuum offset is identified with the Lagrangian term one would expect for a

cosmological constant (LΛ = 2Λ/κ2), obtaining

Λ =
κ2a2

16b
=

(

κφ0

4Żc

)2

. (4.68)

4.4.2 Existence of Domain Walls in the Silverman-Mallett Model

Domain walls arise generically in models that exhibit spontaneously broken discrete

symmetries [205]. We have already seen in Section 4.1.2 a particular case of domain

wall formation from the breaking of aZ2 symmetry, and we briefly remind ourselves

of the results of that section, using the notation conventions set out in Silverman and

Mallett 4.64.

The equations of motion are

∂µ∂
µφ + aφ + 2bφ3 = 0, (4.69)

remembering that the parametera is negative below the critical temperature. The one-

dimensional static solution to these equations of motion is

φ(z) =
(

− a
2b

)
1
2

tanh

(

(

−a
2

)
1
2

z

)

, (4.70)

and can be rewritten as

φ(z) = φ0 tanh

(

z
2Żc

)

. (4.71)

4.4.3 Cosmological Constraints on the Existence of Domain Walls

We now turn to some constraints provided by the CMB on the existence of domain

walls and their related symmetry-breaking scale, in anticipation of a comparison of

estimates of these parameters provided by the Silverman-Mallett model. The argument

we present here is adapted from Vilenkin and Shellard [380].
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The contribution to the energy density of the Universe from domain walls is expected

to be

ρW ∼
σR2

R3
∼ σ

R
, (4.72)

whereR is the mean radius of curvature of the wall, andσ is the surface energy density,

or mass per unit area of the wall. If we consider only one domain wall, stretched across

the Universe, so its radius of curvature is approximately equal to the Hubble length, or

in natural units, the Hubble time, then

ρW ∼
σ

t0
. (4.73)

Using the relationρr,m ∼ 1/Gt2, which holds in matter and radiation dominated uni-

verses, when we would expect the domain wall to form, it is possible to write

ρW

ρ
∼ σGt0 (4.74)

We can estimate the surface energy density from parameters that we already know. The

vacuum energy at the centre of the wall is approximately equal to the offset between

the potential at the bottom of the well, and the value of the potential atV(φ = 0). The

form of our potential defines

V(0) = 0, (4.75)

so that

V(φ0) = −
b
2
φ0

4. (4.76)

The magnitude of the energy at the centre of the wall is then

ρ ∼
b
2
φ0

4. (4.77)

The width of the wallξ, is approximately equal to the Compton wavelength of the

pseudo Nambu-Goldstone boson,

ξ ∼ Żc ∼
1
√
−a
∼

1

φ0

√
b
. (4.78)

The surface energy density then, is

σ ∼ ρδ ∼
√

bφ0
3. (4.79)
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This can be shown more precisely by integrating thet − t component of the energy-

momentum tensor

σ =

∫

T0
0dz, (4.80)

where

Tµν = ∂µφ∂νφ − gµνL , (4.81)

and the domain wall solution, eqn. (4.71), is used.

The final relation we require is

Gt0 ∼
(

1020

mpl

)3

. (4.82)

Putting all the above together, we then have an expression relating the density fluctua-

tions we observe, to the symmetry-breaking scaleφ0,

δρ

ρ
∼ Gσt0 ∼ 1060

(

φ0

mpl

)3

. (4.83)

Temperature fluctuations in the CMB are related to density perturbations by

δρ

ρ
∼
δT
T
, (4.84)

and CMB observations constrainδT/T . 10−5. This means that models predicting

topologically stable domain walls with

φ0 & 1 MeV, (4.85)

should be ruled out.

4.4.4 Mass and Symmetry-Breaking Parameters in the Silverman-

Mallett Model

Silverman and Mallett make some estimates of the mass of their dark matter candidate

using considerations from Jeans’ stability analysis, and comparing the resultant quan-

tities with parameters in their symmetry-breaking model. They suggest that the energy

of a gravitationally bound quantum particle can be given by

E(ξ) ≈ p2

2m
+mΦ(ξ) =

h2

2mξ2
− GMm

ξ
. (4.86)
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The equilibrium (dE/dξ = 0) between quantum pressure and gravitational attraction

leads to a minimum size; the coherence length,

ξc =
h2

GMm2
=

(

3h2

4πGm2ρ̄

)
1
2

, (4.87)

where the mean density has been defined as ¯ρ asM = 4πξc
3ρ̄/3.

They then compare this to the Jeans length for a fluid. The Jeans length is a critical

scale which determines whether a density fluctuation grows or decays. Simple argu-

ments can be made to determine its size. A density fluctuationwith length scaleλ,

massM, and average density ¯ρ, will grow if the attractive gravitational force per unit

mass,FG, is greater than the opposing force per unit mass from gas pressure,Fp, where

FG ≃
GM
λ
≃ Gρ̄λ3

λ2
, Fp ≃

pλ2

ρ̄λ3
≃ v2

λ
. (4.88)

The balance of the two forces leads to the tipping-point length scale, the Jeans length,

λJ =
v
√

Gρ̄
. (4.89)

This approximation can also be derived by equating the hydrodynamic time, the time

scale for the gas pressure to respond,τpres, to the time-scale for gravitational collapse,

τgrav,

τpres≃
λ

v
, τgrav =

1
√

Gρ̄
. (4.90)

In a classical fluid the speed v, is the sound speed. Silvermanand Mallett suggest that

the relevant speed in the case of a dark matter Bose-Einsteincondensate is given by

the de Broglie wavelength of the particles, v= h/mλ. They substitute this into the

expression for the Jeans length to find an expression for the ‘quantum’ Jeans length,

λQ ≃
(

h2

Gm2ρ̄

)
1
2

. (4.91)

This is equivalent, up to a numerical factor, to the coherence length of a gravitationally

bound quantum fluid, eqn. (4.87). Thus, the minimum gravitationally stable length

scale in an astrophysical system is equivalent to the quantum coherence length of the

particles making up that system. There is one point we pick upon about this deriva-

tion, which they also note themselves. In an ideal Bose-Einstein condensate, with no

interactions, the sound speed (also referred to asfirst sound[328]) is zero, and so the
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Jeans length should also be expected to be zero. They resolvethis by suggesting that

the Bose-Einstein dark matter condensate is not a true condensate due to the gravita-

tional interaction that must be taken into account. This brings us back to issues that

were mentioned in Section 3.4 about the existence of a gravitationally interacting con-

densate. This matter is unfortunately not pursued any further in this paper, and they

continue with their analysis.

Taking the ‘real-life’ example of the Andromeda galaxy, M31, they suggest that the

luminous core is approximately the largest gravitationally stable scale, and equate this

to the boson’s coherence length. The luminous core of M31 is taken to beξc ∼ 30 kpc.

From the rotation curve of M31 and the Andromeda Atlas [433],the mass density of

the Andromeda halo is estimated to be ¯ρ ∼ 2× 1024 kg/m3.

Substituting these values into eqn. (4.87) they obtain a particle mass of∼ 3× 10−59 kg,

and a boson Compton wavelength ofλc ∼ 7 lightyears (∼ 7× 1016 m). A value ofΛ =

(0.7)8πGρc/c2 ∼ 1×10−52 m−2 has also been used. From eqn. (4.68), the magnitude of

the symmetry-breaking scale is estimated to be 1.5× 1021 (eV/m)1/2. In natural units,

this isφ0 ∼ 7× 108 GeV.

Returning to the bound we set on the symmetry-breaking scale, set by observations of

temperature fluctuations in the CMB, eqn. (4.85), we see thatthe value set by Silver-

man and Mallettφ0 & 1 MeV is far beyond this range.

4.4.5 Final Remarks

We have briefly reviewed a model of Bose-Einstein condensatedark matter. This par-

ticular model draws heavily on the mechanism of symmetry breaking in order to pro-

duce a condensate of ultra-light particles. We have demonstrated the problem of do-

main wall domination in the early Universe which is present in this model, and in fact is

a generic feature of discreet symmetry-breaking models where the symmetry-breaking

scale is& 106 eV [434, 380].

There are a few mechanisms by which a model containing domainwalls may be ac-

ceptable. If the formation of domain walls is followed by a period of inflation, then the

domination of the energy density can be avoided. We described in Section 1.1.2 how
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this mechanism was originally introduced to eliminate the monopole problem, and the

solution work analogously for domain walls.

Restoration of the broken symmetry at a lower temperature would also avoid domain

wall domination. See Section 3.2.5 of Vilenkin and Shellard, [380], for example.

If the vacuum states separated by the domain wall have slightly differing vacuum lev-

els, then the domain wall network will be unstable and subsequently break up. This

may occur after inflation for real scalar fields that are sufficiently weakly coupled that

they are not in thermal equilibrium [435, 436].

If the discrete symmetry responsible for producing domain walls is embedded in a

continuous symmetry group, then the domain walls become bounded by strings. These

are known ashybrid defects. Defects in hybrid models decay before they can dominate

the energy density of the Universe [437, 438].

A vacuum phase transition in the early Universe after the decoupling of matter from the

CMB would allow the bound from the CMB observations to be substantially weakened

[439].

Some axionic models also have domain walls present within them, and many authors

have proposed solutions [440, 441, 442].

4.5 Discussion

In this chapter, we have elucidated many concepts that we previously alluded to. We

particularly wanted to establish the relationships between condensed matter and field

theory that may be applied to early Universe cosmology. To this end, we looked

at models that contain ideas central to the ideas in this thesis: the Abelian-Higgs

model, and its condensed matter counterpart, the Landau-Ginzburg theory, and their

‘uncharged’ versions, the Goldstone model and the Gross-Pitaevskii equation.

We described the phenomena of symmetry breaking in the Abelian-Higgs model, and

how the acquisition of mass by the photon produced a natural explanation of the Meiss-

ner effect in superconductors, described by Landau-Ginzburg theory. We found that the

Compton wavelengths of particles produced also had equivalent descriptions in terms
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of a penetration depth, a coherence length, or a length scalefor topological defects in

both theories.

Topological defects are often present in models whose potentials exhibit spontaneous

symmetry breaking, and we described two types of this kind ofdefect. Nielsen-Olesen

vortices describe cosmic strings in the early Universe scenario, or magnetic flux tubes

in Type II superconductors in the condensed matter scenario. Vortices in superfluids

were modelled by the Gross-Pitaevskii equation. This particular example is familiar

to us from our work in Chapter 3, but we are now aware of their analogue in high-

energy field theory; the global cosmic string. Domain walls were also shown to exist

in cosmological and condensed matter scenarios. We mentioned the possibility of

experimental tests of cosmological branes with topological defects from condensed

matter in Section 1.2.

We then looked at how potentials exhibiting spontaneous symmetry breaking might be

implemented in the early Universe, and saw that potentials evolving with temperature

provide a natural way to do this. The restoration of symmetryat high temperature is

an important concept for particle cosmology and was, as we have now often seen, first

applied in condensed matter scenarios. We also described the equivalence of sponta-

neous symmetry breaking and Bose-Einstein condensation, or equivalently, how Bose-

Einstein condensation could be formulated as a gauge theoryexhibiting spontaneous

symmetry breaking.

For an example of a model that brought all these concepts together, as well as ideas

about dark matter that we investigated previously, we described the axion. The axion

is a light dark matter candidate that can be produced as a Bose-Einstein condensate,

as a result of a symmetry-breaking phenomenon. There are also topological defects

associated with the symmetry breaking, such as domain wallsand axionic strings.

We then looked in more detail at a model that similarly embodies all these concepts,

and described one of the problems associated with it. Silverman and Mallett’s Bose-

Einstein condensate dark matter model describes a particleformed as the result of

a discreet symmetry-breaking potential. Generically, models such as these contain

domain wall solutions in order to interpolate between the different degenerate vacua,

and this is no exception. In cosmological scenarios, such solutions are generally fatal,
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at best destroying the homogeneity of the CMB, and at worst overclosing the Universe

as a result of their huge energy distributions. This model nicely embodies the concepts

we have described however, and we finished by describing somepossible ways to

overcome the cosmological domain wall problem.



Chapter 5

Conclusions and Further Work

In this thesis, we have looked at some of the examples where phenomena in condensed

matter and cosmology overlap, and seen that the novel application of techniques from

one field may help in understanding aspects of the other.

We first looked at the standard cosmology, detailing some of the historical narrative to

provide a sense of how the subject came to be where it is today.We gave some thought

to the relationship between mathematics and physics, the necessity of experimental

data to drive forward theoretical understanding, and the process of scientific ‘revolu-

tion’, in which old theories are not usually replaced by new,but are rather recovered

in some limit. We concentrated to some extent on modern cosmology, borne to large

extent as a result of technological advancements allowing ever more accurate measure-

ment. We detailed the emergence and success of the concordance model of cosmology,

and introduced traditional approaches to structure formation, as well as describing the

potential roles of scalar fields and the part that particle physics plays. We also looked

in more detail at the modelling of dark matter, and the statusof experimental searches,

which, at this point, can be considered to be in their early stages. We then introduced

the interface between cosmology and condensed matter, and gave some early examples

of where one has informed the other. Both disciplines are in aposition where cutting-

edge technological advancement is required to make experimental progress, and this

is demonstrated by the only relatively recent production ofa Bose-Einstein gas, and

the onset of the era of ‘precision cosmology’. The relationships then, are often in-

grained more deeply in the theoretical overlap. As examplesof this we introduced
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the ‘Higgs-Anderson’ and the ‘Kibble-Zurek’ mechanisms, and a more speculative

analogy proposed by Volovik, involving the group structureof theories describing the

Universe, and liquid Helium. In the final part of the introduction, we discussed the fu-

ture of multi-disciplinary research, with exciting theoretical progress being made in the

form of the mathematically rigorous, but as yet unphysical,AdS/CFT correspondence.

Progress is also being made experimentally, where Hawking radiation, the results of

the first attempts to combine General Relativity and QuantumField Theory, may well

be demonstrated in the laboratory, rather than in an astrophysical environment as one

might expect.

Chapter 2 was a somewhat more technical overview of the role of the linear and non-

linear Schrödinger-Poisson systems and their relativistic counterparts, the linear and

nonlinear Klein-Gordon-Einstein equations, in describing cosmological phenomena.

In addition to reasons detailed in Chapter 1, we motivated further the need to go be-

yond the Cold Dark Matter model, possibly by introducing an interacting dark matter

candidate. We suggested that the nonlinear Schrödinger equation can be thought of as

describing an interacting particle system, aφ4 theory in Quantum Field Theory, and

that this is equivalent to the Gross-Pitaevskii equation incondensed matter physics.

We looked at some of the uses, both quantum and classical, of these systems, moti-

vated primarily by models seeking to resolve some of the problems with the Cold Dark

Matter model, such as cuspy density profiles and the overabundance of substructure.

As the Gross-Pitaevskii and nonlinear Schrödinger equations are equivalent, it is al-

most natural to start thinking of dark matter models in whichthe dark matter candidate

resides in a Bose-Einstein condensate.

In Chapter 3, we explicitly introduced the concept of a Bose-Einstein condensate, and

derived the Gross-Pitaevskii equation. We also introducedconcepts that we would

return to often, such as the Madelung transformation and quantised vortices. We then

demonstrated a classical use for these equations in a novel approach to modelling struc-

ture formation, which we introduced in Chapters 1 and 2. The rest of this chapter was

dedicated to a model of a galactic dark matter halo, comprised of a Bose-Einstein con-

densate in which quantised vortices exist. By considering the gravitational stability

of the dark matter vortices, we were able to place limits on parameters describing the
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dark matter particle, hence placing ranges of validity on the possibility for quantised

vortices to exist within a Bose-Einstein condensate dark matter model.

In the penultimate chapter, we considered some of the relations between condensed

matter physics and the high-energy field theory used to describe particle interactions

in the early Universe. We elucidated the relationships between the Abelian-Higgs,

Landau-Ginzburg, Goldstone and Gross-Pitaevskii equations, particularly with regard

to symmetry breaking, topological defect, and particle production phenomena. We

also described condensates and vacuum expectation values,and looked at two models

where all these concepts play a role: the axion, particularly as it has also been consid-

ered as a dark matter candidate, and a Bose-Einstein condensate dark matter model that

we came across in Chapter 2 and 3, in which the dark matter candidate is produced as a

result of a symmetry-breaking event. We saw how, in this case, the symmetry-breaking

mechanism is accompanied by an unacceptable amount of topological defect produc-

tion, leading to experimental predictions that would be in contradiction to observations

of the Cosmic Microwave Background.

There are several ways in which this work could be continued or extended. As a

general point, the historical perspectives presented in this thesis demonstrate the im-

portance of clear communication between different disciplines in physics, in order for

effective progress to be made. This will be of particular importance if highly technical

concepts such as the AdS/CFT correspondence are to be applied and demonstrated in

experimental condensed matter setups.

The wave-mechanical approach to structure formation can beextended to include a par-

ticle interaction, or pressure term, with the use of a (classical) nonlinear Schrödinger

equation. Some promising preliminary analysis has alreadybeen done in this regard

[270], and there is a lot of potential for this work to be extended, particularly to the

level of rigour presented in earlier work dealing with the linear Schrödinger equation

[266, 268]. The addition of a pressure term may enable modelsof galaxy formation to

progress much further into the nonlinear regime, where hydrodynamical effects such

as shocks and other gas physics come into play. It may be possible to study a pure

dark matter model in this way, extending the properties of the dark matter candidate to

become interacting in a similar way to models we mentioned atthe start of Chapter 2,
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such as those developed by Spergel and Steinhardt [263]. It may even be possible to

study models that involve some combination of baryonic matter and interacting dark

matter, as more recent analysis has demonstrated that the wave-mechanical formalism

can be used to model multi-fluid systems [271].

The dark matter vortex model we described in Chapter 3 can also be extended. Firstly,

it would be interesting to find a description of the density profile of a gravitationally

coupled vortex. This may be able to be found by considering a cutoff in the back-

ground density that would prevent the gravitational potential from diverging. Such a

cutoff may arise naturally in the Thomas-Fermi approximation where it would have a

physical interpretation as the extent of a galaxy halo. A full solution for the density

profile would also allow a more detailed exploration of the parameter space of quantum

dark matter vortices. Knowing the sizes of the vortex core, and the density profile, it

should be possible to analyse any observational effects such as those from gravitational

lensing. A fuller analysis of the vortex could also investigate possible instability and

collapse of the vortex in the axial direction.

A more ambitious project would be to try and establish whether it is possible for a

Bose-Einstein condensate to exist when there is a gravitational interaction present. We

have briefly hinted at this idea throughout this thesis, and further work is hinted at in

Chapter 1 of Callender and Huggett [443].

Following on from models of dark matter and dark energy that were mentioned in

Chapter 2, in which the two unknown constituents of the Universe are modelled as the

condensed and normal components of one fluid, and the models of structure formation

that we have mentioned, it may be of interest to investigate astructure formation model

in which the dark and normal matter components are modelled as the two phases of a

superfluid. The relative amounts of each component could be atemperature-dependent

quantity, as it is in a standard superfluid, with the possibility of linking the relative

amounts of dark and normal matter to the temperature of the Universe throughout

various epochs. The possibility for the Schrödinger approach to handle multiple fluids

has already been mentioned, and interactions in the two-fluid system may lead to the

appearance of excitations such asrotons, which produce a very distinct dispersion

relation, and a phenomena analogous tomutual friction [444]. It is difficult to see
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what these excitations may correspond to in the wave-mechanical picture, while if

we suggest that we are modelling a quantum superfluid, the measurement of such a

dispersion relation in the galactic dark matter halo would provide convincing evidence

of superfluid or condensate behaviour. In fact, the Gross-Pitaevskii equation struggles

to describe the roton minimum in the dispersion relation of asuperfluid, which is

thought to be responsible for many of a superfluid’s properties. In order to modify

the Gross-Pitaevskii equation to produce an accurate dispersion relation, Berloff and

Roberts [445, 446, 447] have included an interaction term based on Skyrme’s model

of nuclei interactions [448].

There is an interesting, but fairly tenuous link to note thatSkyrme’s more famous

work is a model of topological solitons [449], in which the topological charge that we

discussed in Chapter 4 is identified as baryon number. See Schechter and Weigel [450]

and Wong [451] for further details of the model. The Skyrme model is also an effective

model of QCD, and it is possible for Skyrmions to exist in a condensate [452].

Some fairly speculative work has also been done suggesting that the metric of a cosmic

string spinning about its symmetry axis can describe the gravitational field of a vortex

[453], in a model that postulates spacetime as a superfluid [454, 455].

Finally, in an alliance between two subject areas that has already given understand-

ings as fundamental as the Higgs mechanism, it will be intriguing to what the next

inter-disciplinary development will be. In the foreseeable future, it would seem that

analogue experiments of gravity and, in particular, Hawking radiation, might be about

to make their mark, while on the theoretical side, the AdS/CFT correspondence may

be able to provide realistic descriptions of superconductor physics.



Appendix A

From Einstein-Klein-Gordon to

Schrödinger-Poisson

We suggest many times in this thesis that the Landau-Ginzburg theory, which uses a

scalar field to describe the order parameter for the transition to superconductivity, can

be thought of as the non-relativistic limit of the Abelian-Higgs model, which describes

a fundamental scalar field that may undergo a phase transition to generate mass.

We have also noted that the Gross-Pitaevskii, or non-linearSchrödinger equation,

coupled to the Poisson equation can be though of as the non-relativistic limit of the

Einstein-Klein-Gordon system.

The limiting procedure is actually fairly non-trivial, andhas been investigated in a

number of papers [456, 457, 458, 459], some of which are highly mathematical. We

will not go into all the detail here, but we can outline some approximation methods for

getting from one system to the other.

In our method, drawn from Widrow and Kaiser [265], and Zinn-Justin [460], we start

at the level of the Lagrangian of the system.

We consider the Lagrangian

LKG =
1
2

gµν
(

∇µφ
) (

∇µφ
)

− 1
2

a2φ2 − bφ4. (A.1)
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We neglect gravitational coupling for now, and consider a flat metric,

gµν = diag(1,−1,−1,−1) . (A.2)

In this limit, ∇µ → ∂µ.

To obtain the equations of motion a Lagrangian, we can eitherminimise the action

S =
∫

L d4x, (A.3)

with respect to the fieldφ, or we can use the Euler-Lagrange equations,

∂µ

(

∂L

∂(∂µφ)

)

−
∂L

∂φ
= 0. (A.4)

Inserting the Lagrangian, eqn. (A.1) into the Euler-Lagrange equations, eqn. (A.4), we

find

∂µ∂
µφ + a2φ2 + 4bφ4. (A.5)

We see that this is the nonlinear Klein-Gordon equation, andwith the variablesa and

b defined asa =
√

2µ andb = ν/2, this is the form of eqn. (4.24) given in Chapter 4,

with a standard quadratic potential, rather than one exhibiting symmetry breaking.

To consider the non-relativistic limit, we return to the Lagrangian, eqn. (A.1). We write

the fieldφ in terms of two complex fields.

φ(t, x) =
1
√

2a

(

Ψe−iat + Ψ⋆eiat
)

. (A.6)

To take the non-relativistic limit, we assume that the spacevariation is small compared

to the time variation,∇2Ψ ≪ ∂tΨ, and the fieldsΨ, Ψ⋆ have slow time variation

compared to the factorseiat, so we can neglect terms that go like∂2
tΨ.

We substitute eqn. (A.6) into the Lagrangian, eqn. (A.1). Inthe ensuing manipulation,

we note that terms of the formΨ⋆rΨs are multiplied by a factoreia(r−s), and for factors

wherer , s, the corresponding time integrals give small contributions due to the fast

time oscillations. At leading order then, the only terms that survive are those with

equal factors ofΨ andΨ⋆. After some manipulation, the Lagrangian now takes the

form

LNLS =
i
2

(

Ψ⋆∂tΨ −Ψ∂tΨ
⋆) −

1
2a
∇Ψ∇Ψ⋆ −

3b
2a2
ΨΨΨ⋆Ψ⋆. (A.7)
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Inserting this Lagrangian into the Euler-Lagrange equations

∂t

(

∂L

∂(∂tΨ
⋆)

)

+ ∇ ·
(

∂L

∂(∇Ψ⋆)

)

− ∂L

∂Ψ⋆
= 0, (A.8)

yields

i
∂Ψ

∂t
= −

1
2a
∇2Ψ +

3
a2

b|Ψ|2Ψ. (A.9)

We recognise this as the nonlinear Schrödinger equation, and identifying the constants

a, b as a = m and b = m2V0/3 we note that this is precisely the Gross-Pitaevskii

equation, eqn. (3.33) in Chapter 3.

To consider the coupling to the Poisson equation, we consider the Einstein-Hilbert

Lagrangian,

LEH =
√
−g

R
2κ
, (A.10)

whereg is the determinant of the spacetime metric,R is the Ricci scalar, as introduced

in Section 1.1, andκ = 8πG.

To obtain the nonlinear Einstein-Klein-Gordon equation, we could construct a total

Lagrangian density, by adding together the Einstein-Hilbert Lagrangian density to the

Klein-Gordon Lagrangian density, eqn. (A.1), multiplied by a suitable constant, see

Wald [461], pg. 455,

LEKG = LEH + cLKG. (A.11)

Varying the action

S =
∫

LEKGd4x, (A.12)

we would recover the coupled nonlinear Einstein-Klein-Gordon equations for a scalar

field, with energy momentum tensor,

Tµν = ∂µφ∂νφ −
1
4

gµν
(

∂κφ∂
κφ − a2φ2 − 4bφ4

)

. (A.13)

Instead, we consider the weak field limit of the Einstein-Hilbert Lagrangian. In the

weak field limit, the metric,gµν, takes the form,

gµν = diag(1+ 2Φ,−1,−1,−1) , (A.14)

and the Ricci tensor,Rµν, can be shown to be,

Rµν = Rtt = ∇2Φ. (A.15)
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This result can be found in any standard General Relativity textbook. See, for exam-

ple, Misner, Thorne and Wheeler [462], Chapter 17. The weak field Einstein-Hilbert

Lagrangian then, can be shown to be

LEHw =
√
−g

R
2κ
=

√−g

2κ
gµνRµν

=
1
2κ

(1+ 2Φ)
1
2 (1+ 2Φ)−1∇2Φ

=
1
2κ

(1− Φ)∇2Φ. (A.16)

As total derivatives will vanish in the action, an equivalent form of the Lagrangian is

LEHw =
∇Φ∇Φ

2κ
. (A.17)

For the weak field limit of the Klein-Gordon equation, we use our previous Lagrangian,

eqn. (A.1), with∇µ → ∂µ, and metric as given in eqn. (A.14). Following a similar

procedure to before, and neglecting terms that go asΦ∂tΨ, we find the Lagrangian,

LNLSw =
i
2

(

Ψ⋆∂tΨ −Ψ∂tΨ
⋆) − aΨΨ⋆Φ − 1

2a
∇Ψ∇Ψ⋆ − 3b

2a2
ΨΨΨ⋆Ψ⋆ (A.18)

To consider the full system, we add the weak field Einstein-Hilbert Lagrangian, eqn. (A.17),

to the weak field nonlinear Schrödinger equation, eqn. (A.18).

LNLSP = LEHw + cLNLSw. (A.19)

We note that any choice of constant is acceptable, as any Lagrangian,L , that satis-

fies the Euler-Lagrange equations will also be satisfied bycL . For numerical fac-

tors to work out, the appropriate constant is chosen to bec = −1/2. The nonlinear-

Schrödinger-Poisson Lagrangian is then,

LNLSP =
∇Φ∇Φ

2κ
− i

4
(

Ψ⋆∂tΨ −Ψ∂tΨ
⋆) + aΨΨ⋆Φ +

1
4a
∇Ψ∇Ψ⋆ − 3b

4a2
ΨΨΨ⋆Ψ⋆.

(A.20)

Substituting this into the Euler-Lagrange equations, withrespect toΦ andΨ⋆, we find,

i
∂Ψ

∂t
= −

1
2a
∇2Ψ +

3
a2

b|Ψ|2Ψ + aΦΨ⋆, (A.21)

∇2Φ = 4πGm|Ψ|2; (A.22)

the coupled nonlinear-Schrödinger-Poisson system.
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