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Abstract 
Inverse modelling methods are receiving significant interest, due to their 

simplicity and ease of use in the design of modern microwave components. 

This study investigates and further develops the technique of numerical 

time-reversal, in the context of automated component design, for modelling 

metal waveguide devices. 

 

The thesis demonstrates that time-reversal methods suffer from temporal 

truncation, evanescent wave decay and significant computational resource 

requirements and will investigate different methods to solve these problems. 

In order to reduce the runtime, the use of Prony’s method for temporal 

extrapolation of a discrete waveform is proposed. Lossy materials are 

investigated, with particular attention given to the loss of modal content 

from the reverse model due to material loss present in the forward phase of 

the time-reversal process.  

 

The memory and time requirements of a successful time-reversal design 

simulation are significant. Temporal, spatial and modal filtering are used to 

minimise the computational demands of time-reversal. Further, in order to 

accelerate convergence of the time-reversal design process, a number of 

linear acceleration methods are developed, notably successive over 

relaxation, conjugate gradients and generalised minimal residual. A 

convergence acceleration factor of two is achieved.  

 

It is shown that local evanescent content around optimised scattering 

elements is not always captured by the time-reversal process, and is 

dependant upon the component order, numerical sampling and machine 

precision. Internal mirrors are developed which capture the fast decaying 

fields around the metal features of a designed component and further 

increase the accuracy and speed of the time-reversal convergence. Their use 

for higher order component design is shown to be paramount in achieving 

convergence. Further, combined with the linear acceleration methods, the 
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capture of local evanescent content is shown to greatly improve the viability 

of the time-reversal technique to practical microwave component design. 

 

The time-reversal methodology is implemented using the numerical 

transmission-line modelling (TLM) method for transverse magnetic 

polarisation in two-dimensions. A brief examination of the three-

dimensional time-reversal using the symmetrical condensed TLM node is 

also given.  
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List of Symbols and Terms 
The symbols and variables used throughout the thesis are as now defined, 

unless otherwise stated during use. 

 

DE,  Electric field intensity and flux density 

BH ,  Magnetic field intensity and flux density 

,J  Electric current density and charge density 

zyx ,,  Rectangular coordinate system 

ZYX ,,  Nodal mesh size 

k  Temporal iteration number 

0k  Wave number 

N  Total temporal iterations 

l  Spatial sampling 

t  Temporal sampling 

  Iteration of time-reversal procedure 

TRN  Total number of time-reversal iterations 

v  Velocity of propagation 

  Damping factor 

T  Threshold 

0Z  Intrinsic impedance 

gZ  Waveguide impedance 

r ,0  Vacuum and relative permittivity 

r ,0  Vacuum and relative permeability 

  Material loss, or half width of Gaussian pulse 
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  Propagation constant (  j ) 
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1. Introduction 

 

 

 

 

 

 

1.1 Introduction and Objective of the Thesis 

The design of complex electromagnetic devices is an expensive and time 

consuming process and over the years predictive computer simulations have 

proved themselves a cost effective and essential tool for the designer. Of the 

many design methods available, broadly speaking, all are categorised into 

frequency or time domain and forward or inverse domain. Of the four 

categories each can then be further subdivided into analytical or numerical 

methods.  

 

Forward domain implementations of analytical or numerical schemes such 

as integral equation or finite element [1.1], often require considerable 

knowledge of the component being designed to be used successfully. In 

comparison inverse implementations determine a component given a desired 

output, and hence require minimal input from the engineer. For this reason, 

with the addition of a numerical scheme, they can often lead to non-intuitive 

device configurations. Unfortunately, due to the need to use a numerical 

scheme to maintain generality; the inverse method often becomes intractable 

with even the simplest of components to design [1.2]. 

 

Inverse simulation, or time-reversal, forms the subject of this thesis. In [1.3] 

the problem of time-reversal around a spherical scatterer in an 

electromagnetic field was investigated using an analytical derivation. 
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Similarly to forward domain methods, inverse methods using a numerical 

scheme are more general in application. In [1.4] a similar problem was 

investigated using the finite differences numerical scheme, which shows the 

simplicity and generality associated with the numerical implementation. In 

this thesis numerical time-reversal is of primary focus. 

 

Time-reversal, due to its perturbative nature [1.2], is particularly suited to 

electromagnetic component optimisation over a wide frequency bandwidth, 

for which forward-time methods such as genetic algorithms are often slow 

to converge [1.5].  

 

The objective of the thesis is to implement and further develop the method 

of time-reversal for microwave component design. 

1.1.1 Inverse Time-Domain Methods 

Inverse time domain methods, or time-reversal methods, are developed from 

reversal of the temporal wave equation [1.6]. The majority of research using 

time-reversal is in the field of image reconstruction and component design. 

Historically, more successful work has been reported using time-reversal for 

imaging, for example source location in cluttered environments [1.7] [1.8] 

[1.9], than has in the field of microwave component design [1.2]. This is 

most likely attributed to the problems of intensive memory and limited 

spatial resolution when time-reversal is applied iteratively, factors that are 

not as prevalent when only a single time-reversal iteration is used. 

1.1.1.1 Imaging 

The research of Fink et al.  [1.10] [1.11] [1.12] demonstrates time-reversal 

for acoustic frequencies. Namely, the derivation of time-reversal for 

acoustics, the derivation of a time-reversal-cavity, and the associated 

experimental setup and results are given. This is commonly attributed as the 



 1. Introduction 

- 3 - 

first in depth investigation into time-reversal techniques, and is the 

underpinning theory of much work using time-reversal. 

 

The time-reversal-cavity [1.10] is a surface of receivers enclosing the 

modelling space where time-reversal is performed. During the forward stage 

of the process, the receivers measure and store the incident field in time. In 

the reverse stage of the simulation, the receivers become sources, exciting 

the cavity with the forward field in reverse time order. 

 

Time-reversal has been used for image reconstruction of cancerous tumours 

within healthy biological tissue in [1.8] [1.13] [1.14]. The data for the time-

reversal algorithm was provided through the use of magnetic-resonance-

imaging measurements. The finite difference time domain method [1.1] was 

used, from which it was shown that loss in the forward stage of a time-

reversal simulation is modelled as gain in the reverse stage. The choice of 

numerical method limits the use of gain, since instability is created. In 

reported practical scenarios, time-reversal with loss is usually successful 

without the need to include gain, providing the loss is small within the 

frequency band of interest [1.15]. 

 

Time-reversal for image reconstruction is also ideally suited to non-

destructive testing [1.16] [1.17], since the transmitting and receiving 

antenna array are non-intrusive for the material under test. To date, limited 

research has been performed in this area, probably due to the already 

established and successful ultrasonic methods [1.18]. 

 

The time-reversal method has also been used to locate a source, while an 

environment, composed of a number of dielectric rods, continually changed 

representing a cluttered medium [1.9] [1.19]. A similar scenario has been 

investigated in [1.7] for an urban environment. A further example of 



 1. Introduction 

- 4 - 

imaging is found in [1.15], where novel configurations of the experimental 

setup are compared to improve the focusing upon the source location. 

 

Imaging in anisotropic materials has also been investigated in [1.20] and 

[1.21]. Again, focusing was the primary concern. Theoretical analysis was 

completed into the properties of time-reversal, with a view to improving the 

focusing in the reverse stage. This is still an early area of research for time-

reversal. The work of [1.22] and [1.23] develops the theory for time-reversal 

in random media. 

 

The focusing of the time-reversal-cavity was reported in [1.24]. In the paper, 

the effect of limited sampling at the time-reversal-mirrors, was 

demonstrated to impact the directivity of the source. In this thesis, an 

investigation into focusing of the time-reversal-cavity at microwave 

frequencies is performed. Attention is given to the spreading of the 

recovered source in comparison to the input, a topic not covered by [1.24]. 

1.1.1.2 Component Design 

The design of an electromagnetic component, whether through inverse or 

forward domain methods, usually requires multiple design iterations in 

order to optimise the components response. Generally, iterative design 

approaches perturb the object geometry from an initial estimate until the 

difference between its predicted and the specified response is minimised. 

For inverse design, the known desired response is used to determine the 

physical dimensions of the structure. This form often leads to non-intuitive 

designs. Inverse simulation techniques are complementary to evolutionary 

approaches [1.5] and are particularly suited to perturbative design. 

 

The use of time-reversal as a component design technique, which is a 

primary area of this thesis, exploits much of the framework of the image 

reconstruction method. In the early work of Sorrentino et al. [1.25] [1.26] 
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time-reversal for microwave frequencies is proposed. Time-reversal iterates 

the design geometry by first extracting the part of the scattered field on the 

problem’s bounding surface that is supported by sources on the surface of 

the object. If this field were applied as an excitation on the problem 

boundary then, given that Maxwell’s equations are time reversible, the 

surface of the object can be identified from the resulting field distributions 

[1.25] [1.26]. However, if this extracted field is perturbed toward the desired 

distribution, then the corresponding perturbations in the object geometry 

will be identifiable in the time-reversal stage of the simulation. Clearly, an 

arbitrary change to the scattered field may be inconsistent with any real 

object geometry and this process must proceed perturbatively. Component 

design using time-reversal of electromagnetic waves has been numerically 

demonstrated using both the finite difference and transmission-line 

modelling (TLM) methods [1.13] [1.27]. 

 

In [1.27] it was shown the time-reversal method for component design 

requires significant memory and runtime, and at the time more complicated 

structures could not be designed due to this limitation. This thesis addresses 

issues regarding reduction of computer memory and runtime, using a variety 

of novel techniques, namely filtering at the time-reversal-mirrors to remove 

redundant information, and convergence acceleration through the use of 

stationary and non-stationary linear acceleration methods. 

1.2 Outline of the Thesis 

Chapter two begins by introducing the basic theory of electromagnetics used 

throughout the thesis. The wave equation for time-harmonic fields is derived 

from Maxwell’s equations, Lorentz reciprocity is introduced in the concept 

of time-reversal and the inverse wave equation is derived. The definition of 

the Poynting vector is given and Green’s functions are covered. The chapter 

concludes with the analytical derivation of the time-reversal process and 

demonstrates the reversal of a single source in a cavity. 
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Chapter three covers the numerical transmission-line modelling (TLM) 

method. The two-dimensional (2D) and three-dimensional (3D) TLM nodes 

for transverse magnetic propagation are derived, and the travelling wave 

form for numerical simulation is shown. The time-reversal-cavity for use 

with the TLM method is derived. 

 

Chapter four begins the original research of this thesis by investigating the 

properties of the time-reversal-cavity with the TLM method for 

reconstruction of a point source. Prony’s method to temporally extrapolate 

the inverse stage of the time-reversal algorithm is investigated. Lossy 

materials are covered, and Argand diagrams [1.28] are demonstrated as a 

novel method to predict the performance of the time-reversal algorithm in 

the presence of conductive material loss. 

 

In Chapter five the general time-reversal procedure is shown for the design 

of microwave components. Time-reversal is applied to the design of band 

pass microwave filters, a waveguide bend and coupler. The convergence of 

the algorithm is controlled through the use of damping. Optimum threshold 

selection for parameter measurement is also shown.  

 

Time-reversal using the conventional numerical algorithm of Chapter five 

requires excessive computational resources. Chapter six investigates the 

problem of memory limitations of time-reversal. Temporal and spatial 

filtering methods are proposed as a solution. The concept of a modal time-

reversal-mirror for use with a time-reversal-cavity is introduced, and the 

application of modal filtering is shown. The algorithm of Chapter five is 

used to demonstrate memory reduction in the design of the microwave 

filters, waveguide bend and coupler examples. 
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In Chapter seven, stationary and non-stationary linear solvers, are 

introduced to optimise the convergence of the time-reversal design process. 

Gram-Schmidt conjugation, successive over relaxation, conjugate gradients 

and generalised minimal residual are applied to time-reversal. Convergence 

acceleration of the time-reversal design algorithm is demonstrated for the 

design case studies. 

 

Loss of spatial resolution due to evanescent mode decay in the presence of 

finite machine precision restricts the scope for optimising large complex 

devices. In Chapter eight internal-time-reversal-mirrors are developed to 

capture evanescent electromagnetic fields around the internal scattering 

elements of a device, which enables the design of a higher order microwave 

filter. 

 

In Chapter nine the 2D time-reversal method is extended to 3D. A simple 

waveguide filter is designed and optimised using the 3D time-reversal 

method. This chapter implements the thin wire formulation for the 

symmetrical condensed TLM node [1.29], and demonstrates the design of a 

dipole antenna using time-reversal, an example of component design within 

an open cavity structure.  

 

Chapter ten concludes the research of the thesis and lists suggestions for 

further work.  

 

Throughout the thesis the C++ language [1.30] [1.31] [1.32] was used to 

implement the time-reversal algorithm and the Matlab [1.33] [1.34] 

environment is used to display graphical results. 
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2. Analytical Time-Reversal 

 

 

 

 

 

 

 

This chapter presents the basic principals of Maxwell’s equations, as related 

to the forward and inverse wave equation in homogenous and 

inhomogeneous linear media. The Lorentz reciprocity theorem and 

Poynting’s vector for the measurement of power density are covered. The 

concept of the Greens function is introduced and the example of a point 

source reconstruction in a time-reversal-cavity is demonstrated. 

2.1 Basic Electromagnetics 

The properties of waves and fields whether bounded or in free space are 

governed by a group of laws collectively known as Maxwell’s equations 

[2.1]. The derivation of these laws by James Clerk Maxwell is commonly 

assumed to have been based upon the empirical data provided by scientists 

such as Hans Christian Ørsted, Carl Friedrich Gauss, André-Marie Ampère 

and Michael Faraday. The modern form of Maxwell’s equations were 

rewritten by Oliver Heaviside after the development of vector mathematics, 

and demonstrated physically by the work of Heinrich Hertz and Guglielmo 

Marconi [2.2] [2.3]. The differential form of Maxwell’s equations which are 

used throughout this work are: 

 

t

B
E




  (2.1a) 
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t

D
JH




  (2.1b) 

 D  (2.1c) 

0 B  (2.1d) 

 

where  

 

E  is the electric field intensity in V/m,  

B  is the magnetic flux density in Wb/m2,  

H  is the magnetic field intensity in A/m,  

J  is the electric current density in A/m2,  

D  is the electric flux density in C/m2 and  

  is the electric charge density in C/m3. 

 

If an isotropic linear medium is assumed, the field intensities are related to 

the flux densities through the constitutive relations [2.1] 

 

ED   (2.2a) 

HB   (2.2b) 

 

where r 0  is the permittivity of the medium in F/m, and r 0  and 

is the permeability in H/m. 

2.1.1 Wave Equation 

The wave equation is a second order partial differential equation that 

describes the propagation of electromagnetic fields in free space. The wave 

equation for the electric field is derived by taking the curl of Eqn.2.1a, and 

substituting in Eqn.2.2b to yield 
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t

H

t

B
E








  . (2.3) 

 

Substituting Eqn.2.1b in Eqn.2.3 and making use of Eqn.2.2a gives 

 

2

2

t

E

t

J

t

t

D
J

E



























  . (2.4) 

 

Using the identity [2.4] 

 

  EEE  2   (2.5) 

 

and the fact that   0 E  which follows from Eqn.2.1c and the relation 

in Eqn.2.2a, Eqn.2.4 can be expressed as  

 

t

J

t

E
E








 

2

2
2 . (2.6) 

 

The corresponding magnetic form is now derived by taking the curl of 

Eqn.2.1b and making use of Eqn.2.2a to give 

 

t

E
J

t

D
JH








  . (2.7) 

 

Substitution of Eqn.2.1a in Eqn.2.7 and use of Eqn.2.2b yields 

 

2

2

t

H
JH




  . (2.8) 

 

Rearranging and making use of the corresponding form of Eqn.2.5 gives 
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J
t

H
H 






2

2
2  . (2.9) 

 

The source free wave equation for the electric field is a special case of the 

general wave equation, and is found by setting the electric current density 

and electric charge density to zero in Eqns.2.1 giving 

 

0
1

2

2

2
2 






t

E

v
E  (2.10) 

 

and 

 

0
1

2

2

2
2 






t

H

v
H  (2.11) 

 

where /1v  is the velocity of the wave [2.5]. 

2.1.2 Vector Potential 

The wave equation can also be derived using the concept of vector 

potentials [2.5]. Since the divergence of the magnetic flux is zero, B  can be 

expressed as the curl of another vector, say A , since   0 A , the 

vector A  is known as the magnetic potential. Substitution of A  in the 

place of B  in Eqn.2.1a gives 

 

t

A
E




  (2.12) 

 

and rearranging Eqn.2.12, gives 
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0














t

A
E . (2.13) 

 

It is seen that the term inside the brackets is curl free, and can be expressed 

as the gradient of a scalar [2.4] [2.5], as 

 

t

A
E




 , (2.14) 

 

from which it is seen that 

 






t

A
E . (2.15) 

 

Using Eqn.2.15 and the substitution AB   in Eqns.2.1 it is possible to 

derive the wave equation for the vector magnetic potential A  and scalar 

electric potential  .  

2.1.3 Time-Harmonic Wave Equation 

A time-harmonic field is a field with sinusoidal time dependence [2.5]. In 

typical form this is expressed as 

 

)exp(),,(),,,( tjzyxEtzyxE  . (2.16) 

 

It is seen from Eqn.2.16 that  

 

)exp(),,(
),,(

tjzyxEj
t

zyxE 



. (2.17) 
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In general the partial derivative t /  is replaced with j  in Maxwell’s 

equations for forward time. In a similar manner as was done in the previous 

section the electric field wave equation is 

 

),,(),,(),,( 2
0

2 zyxJjzyxEkzyxE   (2.18) 

 

where 0k  is known as the wave number [2.5]. 

 

In reverse time the electric field in Eqn.2.16 has a temporal dependence 

represented by )exp( tj , Eqn.2.17 then becomes 

 

)exp(),,(
),,(

tjzyxEj
t

zyxE  



, (2.19) 

 

from which it is seen the partial derivative with respect to time in Maxwell’s 

equations can now be replaced with the factor j  giving 

 

),,(),,(),,( 2
0

2 zyxJjzyxEkzyxE  . (2.20) 

 

The left hand side of Eqn.2.20 defining the field propagation is unchanged 

while the electric current density, ),,( zyxJ  (or source), is negated in 

reverse time. In general this observation holds, since the source free wave 

equations for the electric and magnetic fields in Eqns.2.10-2.11 only contain 

even order partial derivatives with respect to time [2.6], and hence the 

homogenous wave equations for reverse time are identical to their forward 

time counterparts. 
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2.1.4 Power Flow and the Poynting Vector  

The Poynting vector is defined as [2.5]  

 

HEP  ,       (W/m2) (2.21) 

 

and measures the power density of an electromagnetic field. In time-

reversal, the Poynting vector is useful to measure the higher power density 

spaces within a volume. In general, the fields diverging from a source, J   

during forward time, will converge back to the source location during 

reversal [2.7], and as they converge upon J  the density of the Poynting 

vector will increase. This property is important for the recovery of scattering 

elements, which will be covered in Chapter five when time-reversal is used 

for component design. 

2.1.5 Source and Receiver Reciprocity 

The Lorentz reciprocity theorem is an important result in electromagnetic 

theory [2.8], that states the relationship between a source and receiver is 

unchanged, if the source and receiver positions are interchanged. 

Reciprocity can be used to illustrate the time-reversal process, however, due 

to factors in time-reversal implementations, for example loss of evanescent 

waves (investigated in Chapter four), reciprocity may be valid in situations 

where time-reversal is not [2.9], and as such the following should not be 

taken as a proof of time-reversal validity, but a simple explanation of the 

time-reversal process. 

 

Figure  2-1 shows two sources 1J  and 2J , with respective electric and 

magnetic fields, in the general free-space volume V , bounded by the 

surface S , with unit normal n . The integral form of the Lorentz reciprocity 

theorem is 
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    
VS

dVEJEJdSnHEHE 12211221 . (2.22) 

 

 

In time-reversal, 2J  will represent the reverse source generating field 2E  

and 2H  while the forward time source, 1J  gives fields 1E  and 1H . 

 

Using Eqn.2.22 the process behind the time-reversal procedure can be 

explained. The forward time source, 1J  with time dependence, t , is 

)exp()( 11 tjJtJ  . The reverse source is expressed in terms of the 

forward source as 

 

)2exp()()()( 112 tjtJtJtJ  , (2.23) 

 

from which it is seen that the reverse source is propagating with t  as 

defined. Making use of Eqn.2.23 the Lorentz theorem in Eqn.2.22 becomes 

 

V S

n1J
11 HE

22 HE

2J

xz

y

 

Figure  2-1 - Lorentz reciprocity, relationship between 1J  with respective 

fields 1E  and 1H  is unchanged if source and measurement points are 

interchanged with those of 2J , 2E  and 2H  respectively.   
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 
  .)()2exp()()()(

)()()()(

1121

1221








V

S

dVtEtjtJtEtJ

dSntHtEtHtE


 (2.24) 

 

The left hand side of Eqn.2.24 tends to zero as the radius of the surface 

tends to  , hence 

 

    
VV

dVtEtjtJdVtEtJ )()2exp()()()( 1121  , (2.25) 

 

from which it can be seen by comparing like terms 

 

)()2exp()()( 112 tEtjtEtE   . (2.26) 

 

Eqn.2.26 illustrates the field 2E  from the time-reversed source 2J  can be 

thought of as a time-reversed form of the field 1E  from the forward time 

source 1J . A similar case can be shown for the magnetic field by using 

Maxwell’s equations with a fictitious magnetic current density [2.8] to 

derive the Lorentz theorem. 

 

This illustrative use of the reciprocity theorem has served to demonstrate the 

fundamental process of time-reversal. A more rigorous analysis forms the 

remainder of this chapter. 

2.2 Green’s Functions 

In brief, a Green’s function is an integral kernel solution to a homogenous 

partial differential equation, which is used to construct the particular 

solution of the corresponding inhomogeneous partial differential equation 

[2.10]. For example, if G  is the field at an observer, caused by a point 

source, then the field caused by a source distribution, p , is the integral of  
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G  over the range occupied by the source p  [2.11], and is termed the kernel 

solution. The method of Green’s function is typically used where traditional 

methods such as separation of variables [2.5], or the characteristic equation 

approach [2.12] are cumbersome. 

 

In the theoretical analysis that follows, a Green’s function of the form 

)',( rrG  is used, where r  is the coordinate of the observation point, and 'r  

is the source coordinate. The properties of the Green’s function are first 

covered. 

2.2.1 Application of Green’s Function for Solution of the 

Wave Equation 

The wave equation for the forward electric field, was shown to be 

 

)()()( 2
0

2 rJjrEkrE  . (2.27) 

 

This form of the wave equation can be expressed in the form of a linear 

operation, L , upon the electric field 

 

)()( rprEL   (2.28) 

 

where L  is the linear differential operator 

 

 2
0

2 kL   (2.29) 

 

and 

 

)()( rJjrp  . (2.30) 
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The Green’s function is a solution of the wave equation for the point charge 

represented by the delta function, and hence the associated Green’s function 

for Eqn.2.28 satisfies 

 

)'()',( rrrrLG    (2.31) 

 

where the delta function is given as 

 









'.,0

,',1
)'(

rr

rr
rr   (2.32) 

 

The electric field can be expressed in the form [2.10] 

 

dVrprrGrrE
V
 )'()',()()(  (2.33) 

 

where )(r  is a solution to the homogenous form of Eqn.2.27, and the 

volume integral is termed the kernel solution, the derivation of which is 

beyond the scope of this work.  

 

This completes the application of the Green’s function for the wave 

equation. This illustration is sufficient for our purpose, although it should be 

noted the formation and application of Green’s functions is a significant 

area of electromagnetics research of which further details can be found in 

[2.10] and [2.12].  

 

In the remainder of this chapter, the dyadic Green’s function will be used, 

and termed )',( rrG . In 3D Cartesian coordinates the dyadic can be 

expressed as three vector Green’s functions in x , y  and z  

 

zGyGxGG 321   (2.34) 
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where, for example, xG1  is the direct product  Txgxgxg 131211 . The 

dyadic form of Green’s function is useful to express the Green’s function 

wave equation in vector form, similarly to the electric field wave equation. 

2.3 Time-Reversal-Cavity 

The time-reversal-cavity technique for simulated time-reversal is used 

throughout the thesis to perform the numerical time-reversal simulations. 

This section builds upon the work of [2.13], theoretically investigating the 

properties of the cavity approach to time-reversal, using a frequency domain 

formulation at electromagnetic frequencies. The frequency domain form 

simplifies the analysis, as the temporal inversion in the time domain can be 

replaced with conjugation in the frequency domain.  

 

The section will begin with an analysis of the forward electric field within 

the time-reversal-cavity. This is then compared with the reverse field, using 

only boundary reversal, and the ideal case, where reversal of the source and 

boundary conditions of the wave equation is possible.  

 

V

n

J

E

xz

y

S

 

Figure  2-2 - Illustration of time-reversal-cavity for simulated time-reversal, 

source J  generates field E , which is stored around closed surface S. 
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2.3.1 Forward Stage 

The time-harmonic form of the wave equation for an electric field derived in 

section  2.1.1 can be expressed as 

 

JjrEkrE  )()( 2
0  (2.35) 

 

where  22
0 k . 

 

The corresponding dyadic Green’s function for )(rE  in Eqn.2.35 must 

satisfy the equation 

 

IrrrrGkrrG )'()',()',( 2
0   . (2.36) 

 

where I  is the unit dyadic. 

 

Green’s second theorem [2.10] can be used to relate the integral of the 

electric field, E  over a volume V  bounded by the surface S , to the surface 

integral of E  around the closed surface S , see Figure  2-2. Defining two 

arbitrary electric fields,  1E  and 2E , this is expressed as [2.14] 

 

        
SV

dSnEEEEdVEEEE .21121221 . (2.37) 

 

Through application of Green’s second theorem in Eqn.2.37 with the 

substitution of )(1 rEE   and CrrGE )',(2   where C  is an arbitrary 

vector along which the Green’s function is defined, the electric field is 

expressed as 

 



 2. Analytical Time-Reversal 

- 25 - 

   
    ..)',()()()',(

)()',()',()(









S

V

dSnCrrGrErECrrG

dVrECrrGCrrGrE

 (2.38) 

 

To investigate the behaviour of the electric field in the time-reversal-cavity, 

it is necessary to determine )(rE  from Eqn.2.38. The wave equation of 

Eqn.2.35 is multiplied throughout by CrrG )',( , giving 

 

CrrGJjCrrGrEkrECrrG )',()',()()()',( 2
0   . (2.39) 

 

Similarly, from Eqn.2.36, and CrE )( , 

 

CrEIrrCrErrGkrrGCrE )()'()()',()',()( 2
0   . (2.40) 

 

Subtracting Eqn.2.39 from Eqn.2.40 and since 

CrrGrEkCrErrGk )',()()()',( 2
0

2
0    for all real vectors C , we have 

 

.)',()()'(

)()',()',()(

CrrGJjCrEIrr

rECrrGrrGCrE






 (2.41) 

 

Substitution of Eqn.2.41 into the second Green’s theorem in Eqn.2.38 gives 

 

 
    ..)',()()()',(

)',()()'(









S

V

dSnCrrGrErECrrG

dVCrrGJjCrEIrr 

 (2.42) 

 

Since CrEdrCrEIrr
r

)'()()'(  , Eqn.2.42 is simplified to read 
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    ..)',()()()',(

)',()'(



















S

V

dSnCrrGrErECrrG

dVCrrGJjCrE 

 (2.43) 

 

Eqn.2.43 expresses the forward time electric field at the source )'(rE  along 

the vector C  in terms of the volume and surface integrals of the cavity. C  

is arbitrary, so Eqn.2.43 can be used to express the electric field along any 

direction, x , y , z  for example in Cartesian coordinates, hence Eqn.2.43 

completely defines the electric field of the cavity. It is informative to 

compare this case with respect to the use of the time-reversal-cavity, when 

only the boundary field is stored, and the ideal case, when both the source 

and boundary are reversed. 

2.3.2 Reverse Stage 

2.3.2.1 Time-Reversal-Cavity (Boundary Reversal) 

For the inverse case of the time-reversal-cavity, the wave equation in 

Eqn.2.35 becomes a source-free wave equation since the input source 

excitation of the cavity is removed, 

 

0)(*)(* 2
0  rEkrE  (2.44) 

 

where )(* rE  is the conjugate of )(rE , since conjugation in the frequency 

domain is time-reversal in the time domain [2.13]. 

 

The same Green’s function used in Eqn.2.36, and the same procedure used 

to derive )'(rE  is repeated to give 
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    


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




 

S

dSnCrrGrErECrrGCrE .)',()(*)(*)',()'(* . (2.45) 

 

Eqn.2.45 relates the conjugate electric field to the closed surface integral, 

since this is the form of the inverse field when a time-reversal-cavity is used 

for time-reversal, the recovered source field, )'(* rE , is now termed )'(rE R  

and Eqn.2.45 reads 

 

    









 

S

R dSnCrrGrErECrrGCrE .)',()(*)(*)',()'( . (2.46) 

2.3.2.2 Time-Reversal of Source and Boundary 

It is seen in Eqn.2.46, the volume integral relating J  to the electric field has 

vanished, since the source has been removed in the inverse stage of the 

simulation. Assuming for now reversed placement of the source is possible, 

and replacing )(rE  and J  with )(* rE  and *J  respectively in Eqns.2.35-

2.43 gives the corresponding form of Eqn.2.46 when both the source and 

boundary are reversed [2.13] as 

 

    ..)',()(*)(*)',(

)',(*)'(*



















S

V

dSnCrrGrErECrrG

dVCrrGJjCrE 

 (2.47) 

 

Eqn.2.47 contains an additional term that is not present when the time-

reversal-cavity approach to time-reversal is used. Subtraction of Eqn.2.47, 

from the case when only the boundary field is reversed using the time-

reversal-cavity, Eqn.2.46, gives the remaining field as 

 

.)',(**)'()'( dVCrrGJjCrECrE
V

R     (2.48) 
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Referring back to Eqn.2.43, the Green’s function and electric field are both 

forward functions; hence the closed surface integral tends to zero, and 

Eqn.2.43 is simplified further to read 

 

.)',()'( dVCrrGJjCrE
V
    (2.49) 

 

Conjugation of Eqn.2.49 and substitution into Eqn.2.48 gives 
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dVCrrGJjdVCrrGJjCrE

V

VV
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

)',()',(**

)',(*)',(**)'(





 (2.50) 

 

where )',(* rrG  is the conjugated Green’s function. Simplification of 

Eqn.2.50 results in  

 

  dVCrrGimJCrE
V

R   )',(*2)'(  . (2.51) 

 

The arbitrary vector C  used for the general derivation is now cancelled and 

Eqn.2.51 reads [2.13] 

 

 dVrrGimJrE
V

R   )',(*2)'(  , (2.52) 

 

from which it is seen that the electric field at the source location after time-

reversal is complete, is not the original source, but the imaginary component 

of the corresponding Green’s function. 
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2.3.3 Point Source in Time-Reversal-Cavity 

An impulse function point source is a popular method of excitation in 

electromagnetics. As an example, if a point source excitation is used to 

excite the time-reversal-cavity,  

 

J)'( rrJ     (2.53) 

 

where J


 is the source. The corresponding Green’s function is [2.10] 
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Substitution of Eqns.2.53-2.54 into Eqn.2.52 shows 
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 (2.55) 

 

Eqn.2.55 states that the recovered point source after time-reversal is a sinc 

function. The width of the sinc function is related to the wave number 0k , 

and hence as the frequency increases the recovered sinc function will 

become narrower.  

2.4 Conclusions 

The chapter introduced Maxwell’s equations and derived the 

electromagnetic wave equation. Lorentz reciprocity, the Poynting vector and 

Green’s function were covered. The properties of the time-reversal-cavity 

for simulated time-reversal were investigated, and it was shown that the 



 2. Analytical Time-Reversal 

- 30 - 

cavity only reverses the field measured from the boundary, and does not 

reverse the initial source conditions. An example of a point source 

reconstruction was used to demonstrate the recovered point source is a sinc 

function, with width dependant on frequency. 

 

The next chapter will introduce the transmission-line modelling (TLM) 

method for numerical simulation of electromagnetic propagation, and the 

time-reversal-cavity for use with TLM. 

2.5 References 

[2.1] R. E. Collin, Foundations for Microwave Engineering. John Wiley 

& Sons Inc, New York, NY, 2nd ed., 2001. 

[2.2] Online: 

http://www.ieeeghn.org/wiki/index.php/Heinrich_Hertz_(1857-

1894), Retrieved: 18/05/2009. 

[2.3] Online: 

http://www.ieeeghn.org/wiki/index.php/Guglielmo_Marconi, 

Retrieved: 18/05/2009. 

[2.4] P. C. Matthews, Vector Calculus. Springer, New York, NY, 2006. 

[2.5] D. K. Cheng, Field and Wave Electromagnetics. Prentice-Hall, 

Reading, MA, 2nd ed., 1989. 

[2.6] G. Lerosey, J. de Rosny, A. Tourin, A. Derode, G. Montaldo, and 

M. Fink, “Time Reversal of Electromagnetic Waves,” Physical 

Review Letters, vol. 92, pp. 193904–(1–3), May 2004. 

[2.7] P. Kosmas and C. M. Rappaport, “Time Reversal With the FDTD 

Method for Microwave Breast Cancer Detection,” IEEE 

Transactions on Microwave Theory and Techniques, vol. 53, 

pp. 2317–2323, July 2005. 

[2.8] D. M. Pozar, Microwave Engineering. John Wiley & Sons Inc, 

New York, NY, 3rd ed., 2007. 



 2. Analytical Time-Reversal 

- 31 - 

[2.9] R. Carminati and M. Nieto-Vesperinas, “Reciprocity of Evanescent 

Electromagnetic Waves,” Journal of the Optical Society of 

America, vol. 15, pp. 706–712, March 1998. 

[2.10] P. Russer, Electromagnetics, Microwave Circuit, and Antenna 

Design for Communications Engineering. Artech House, Norwood, 

MA, 2nd ed., 2006. 

[2.11] P. M. Morse and H. Feshbach, Methods of Theoretical Physics: 

Part 1. McGraw Hill, New York, NY, 1953. 

[2.12] E. Kreyszig, Advanced Engineering Mathematics. John Wiley & 

Sons Inc, New York, NY, 8th ed., 1998. 

[2.13] R. Carminati, R. Pierrat, J. de Rosny, and M. Fink, “Theory of the 

Time-Reversal Cavity for Electromagnetic Fields,” Optics Letters, 

vol. 32, pp. 3107–3109, November 2007. 

[2.14] R. E. Collin, Field Theory of Guided Waves. John Wiley & Sons 

Inc, New York, NY, 2nd ed., 1990. 

 



- 32 - 

3. The Transmission-Line Modelling 

Method and Numerical Time-Reversal 

 

 

 

 

 

 

 

The chapter begins by introducing the transmission-line modelling (TLM) 

method for numerical simulation followed by a derivation of the 2D shunt 

node for transverse magnetic polarisation. The symmetrical condensed node 

for 3D electromagnetic propagation is also shown. Finally the TLM time-

reversal-cavity for numerical time-reversal simulation is described. 

3.1 2D Transmission-Line Modelling Method 

Maxwell’s equations are often difficult to solve in analytical form for 

complex geometries. The approximation of Maxwell’s equations through 

the use of numerical schemes has hence proved popular, and a number of 

numerical methods have emerged. Finite element and finite difference [3.1] 

are among the most popular and widespread methods.  

 

In this thesis, TLM is used extensively due to its inherent stability, ease of 

implementation, and widespread use in the Department. The method was 

originally developed at the University of Nottingham in the early 1970’s 

[3.2]. TLM is a time-domain numerical method based upon the analogy 

between the evolution of electromagnetic fields to voltage impulses 

travelling on an interconnected 3D mesh of commensurate transmission-

lines and is related to the differential form of Maxwell’s equations [3.3]. 
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The resulting algorithm is unconditionally stable, since the underlying 

formulation is based upon circuit theory and electromagnetics principles 

[3.4] [3.5] [3.6]. TLM also allows sampling of the electric and magnetic 

field at the same sample point, and the algorithm can be parallelised to allow 

efficient computation [3.7]. 

3.1.1 Transverse Magnetic Polarisation 

This section will derive Maxwell’s equations for transverse magnetic 

polarisation, where the electric field is polarised out of the page. Expansion 

of Maxwell’s equations in Cartesian coordinates, and using the constitutive 

relations of Chapter two, Eqn.2.2, produce the following six equations, 

where the coordinate axis are as shown in Figure  3-1. 
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For a 2D problem, the field is transverse magnetic polarised if the electric 

field is orthogonal to the reference plane, while the magnetic fields are 

parallel to the reference plane. In this respect, the field is defined by the zE , 

xH , and yH  field components, where xE , yE , and zH  are zero, and it is 

seen Eqns.3.1 simplify [3.3] 
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Taking the partial derivative of Eqns.3.2b,c with respect to x  and y  

respectively, gives 
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The addition of Eqn.3.3a and Eqn.3.3b gives 
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Substitution of Eqn.3.2d in Eqn.3.4 gives  
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Eqn.3.5 is the 2D Cartesian form of the wave equation for the field 

component zE , in a source free region. The velocity is expressed as 
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/1v . (3.6) 

 

For free space, where 626.10  e H/m and 1285.80  e F/m, 

the velocity is  

 

8998.2/1 00 ev   m/s. (3.7) 

 

The TLM paradigm is to model the continuous field quantities, E  and H  

using voltage and current equivalences measured at discrete intervals, l . 

The 2D TLM node for modelling transverse magnetic polarisation will be 

shown next, and its equivalence to the transverse magnetic field quantities is 

given. 

3.1.2 2D TLM Node 

The TLM method models current and voltage, synonymous to magnetic and 

electric fields. To use the TLM method to model Eqn.3.5, it is necessary to 

define the transmission-line circuit as shown in Figure  3-1a [3.3]. The 

structure is referred to as a 2D shunt TLM node, since the intersecting 

transmission-lines are connected in a parallel configuration, and models a 

space of area 2l .  

 

In Figure  3-1b the equivalent passive element form is shown. The 

distributed shunt capacitance of each transmission-line of length 2/l  and 

impedance 0Z , is given at the node centre as C . 
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Figure  3-2 shows the condensed form of the 2D shunt node, which is 

commonly used to derive the field equivalences.  
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Figure  3-1 - a) 2D TLM shunt node element covering an area of Δl2, Z0 is the 

intrinsic impedance of the transmission-line sections, b) equivalent circuit 

representation. Distributed capacitance of each line of length Δl/2 has been 

combined at the node centre.  
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Kirchoff’s current law states the current entering a node must equal the 

current leaving the node, hence using Kirchoff’s current law [3.3] on Figure 

 3-2, for the x -direction only gives  
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simplifying, rearranging and replacing the current across the capacitor, Ci  

with 
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

 gives 
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Taking the partial derivative of Eqn.3.9 with respect to t  and rearranging 

gives 
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Figure  3-2 - Kirchoffs current law in x arm of TLM node and Kirchoffs 

voltage law in y arm. 
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Similarly from Kirchoff’s voltage law circulating in x  [3.3] and 

t

i
LV x

L 


 , it is seen 
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and again taking the partial derivative with respect to x  gives 
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Subtracting Eqn.3.12 from Eqn. 3.10 gives 
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In Figure  3-2 Kirchoff’s current law for x  and voltage law for y  was 

illustrated. Using Kirchoff’s voltage and current laws in y , yields the two 

equations 
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and 
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Taking the partial derivative of Eqn.3.14 with respect to t  and Eqn.3.15 

with respect to y  and rearranging gives 
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Subtracting Eqn.3.16b from Eqn.3.16a gives 
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Addition of Eqn.3.13 and Eqn.3.17 gives a wave equation for the voltage zV  

at the node 
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Since the inductance of a general inductor is related to the magnetic flux 

through the current i  [3.4], it is seen that 
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To determine the capacitance, the general formula for a capacitor of surface 

area A  and plate separation d  is used [3.4], where  
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Substitution of Eqns.3.19,3.20 in Eqn.3.18 yields 
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Eqn.3.21 shows that the shunt TLM node models a material with 

constitutive parameters 00 ,2  .  

 

The impedance of a lossless section of transmission-line is known to be 

CLZ /000    [3.4]. Observing the values of 00 ,  in Eqn.3.21 

it is seen the impedance is 00 2 , hence to model a material with 

parameters 00 ,  it is necessary to set  
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and hence to model free-space 0Z  equates to )73.376(2 Ω. The velocity of 

the material is LClv /0   for the section of length l . It can be seen 

here, the velocity will be 0021  , and hence to model a material of 

00 ,  correctly it is necessary to set the velocity to 
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The temporal sampling of the model, t  is defined as 
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The spatial sampling is defined by the choice of nodal points in the model, 

for example YDy Y / , where YD  is the size of the problem in the y  

direction, and Y  is the number of nodes in y . Throughout this thesis, unless 

otherwise specified, it is assumed lzyx  ,  in this manner the 

length in the x  direction is determined as lX . Providing 10/l  it is 

known the TLM model is of acceptable accuracy [3.8], where   is the 

wavelength of the frequency of interest.  

 

The field components are related to the circuit voltage and current as 
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and 
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3.1.3 Modelling Material Properties 

In general, capacitance can be added to the transmission-line sections to 

model a dielectric material, but the temporal discretisation t  will not 

remain constant at the interface between different materials due to the 

varying propagation velocity between materials [3.3], making the simulation 
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more difficult. An example of this is shown in Figure  3-3, where two 

materials of relative permittivity 
1r

  and 
2r

  are modelled.  

 

 

For material 1, the velocity of propagation is from Eqn.3.6, 

101 /1 rv  , while for material 2, Eqn.3.6 becomes 202 /1 rv  , 

ignoring the 2  factor of TLM. Hence it is seen, the temporal sampling 

becomes from Eqn.3.24 

 

1
1 v

l
t


 , (3.28a) 

 

while for material 2 

 

2
2 v

l
t


 . (3.28b) 

 

It is seen, the simulation of material 1 is out of step with material 2. 

Assuming material 1 is of higher dielectric permittivity, the time step for 

material 1 is larger than that of material 2, and hence at the interface 

between the two materials, the computation of material 1 will have to be 

delayed until field values are ready from material 2. 

 

μ0, ε1 μ0, ε2

 

Figure  3-3 - Connection between two materials of varying dielectric 

permittivity. 
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Alternatively if the time-step is fixed, and the spatial sampling between the 

two materials is varied, instability and loss of power is caused, as the spatial 

coordinates will not align between neighbouring nodes.  

 

In light of this, the modelling of dielectric and/or lossy materials is achieved 

through the use of stubs, which maintains the same velocity throughout the 

TLM mesh. 

 

Addition of a capacitive stub (open circuit transmission-line) at the node, of 

length 2/l  and hence round trip time, t , increases the value of   (see 

Eqn.3.20), and allows the simulation of dielectric materials while 

maintaining temporal and spatial synchronicity at the connection between 

materials. In a similar manner, the simulation of lossy materials is achieved 

by inclusion of conductance in the stub.  

 

For a dielectric conductive material Maxwell’s equations, are similarly 

expanded as in Eqns.3.1, with the substitution EJ  , Eqn.3.2 now 

becomes 
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

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 (3.29) 

 

where   is the conductivity of the material in S/m. 

3.1.4 Modelling Lossy Dielectric Materials 

In Figure  3-2 the x  directed arm of the free-space shunt node was shown, in 

Figure  3-4 the x  arm of the stub loaded shunt node is given, with the 

addition of the conductance and capacitance of the stub, where Kirchoff’s 

current law is illustrated.  
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Using Kirchoff’s current law 
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where effC  is the effective capacitance of the stub and node. In a similar 

manner for the y  directed current,  
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Addition of Eqns.3.30-3.31 results in  
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Ceff

L
ix

ic

l
x

i
i x

x 





x

z

y

Geff

iG

nodal point

 

Figure  3-4 - Kirchhoff’s current law on stub loaded shunt TLM node, Geff is 

the effective conductance (stub), and Ceff is the effective capacitance (stub + 

line), the inductance remains unchanged. The dotted grey line is the ground 

plane. 
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For a single transmission-line section of length l , it was shown 

CLZ 0 , LClv /  and hence LCt  . Using these it can be 

shown CZL 2
0  and 

Cv

l
L

2

2
 , equating and simplifying gives 

 

0Z

t
C


 . (3.33) 

 

Similarly, the inductance is related to the time-step as tZL  0  and for the 

stub 
st

st Z

t
C

4


  since the line is of length 2/l . In this manner the 

effective capacitance, inductance and conductance of the stub loaded node 

in Figure  3-4 is 
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  (3.34a) 

tZL  0  (3.34b) 

2

G
Geff  . (3.34c) 

 

Substitution of Eqns.3.34 in Eqn.3.32 yields 

 






















 
















t

V

Z

t

Z

t
GV

lx

i

y

i
z

st
z

xy

2

21

0

. (3.35) 

 

Substitution of Eqns.3.25,3.26,3.27 in Eqn.3.35 results in  
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, (3.36) 

 

from which it is seen by comparison with Eqn.3.29 



 3. The Transmission-Line Modelling Method and Numerical Time-Reversal 

- 46 - 

 

l

G


  (3.37a) 

lZ

t

lZ

t

st







2

2

0

  (3.37b) 

 

and ltZ  00  as before. 

 

Rearranging and simplifying Eqn.3.37b, taking account of the 2  factor of 

propagation and substitution of Eqns.3.22-3.23 
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From Eqn.3.38 it is seen  
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r Z

Z

4
1 0  (3.39) 

 

and hence the stub admittance is 
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3.1.5 Travelling Wave Form 

In the previous section the derivation of the TLM node from Maxwell’s 

equations was shown. To simulate propagation of an electromagnetic field 

using the node, it is necessary to introduce the travelling wave format. 

 

Figure  3-1a shows the free-space shunt TLM node with four ports labelled 

from 1 to 4 and corresponding voltage potentials. The node models a cell of 
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size 2l . The Thevenin [3.3] equivalent circuit is formed as in Figure  3-5, 

and the nodal voltage zV  can be defined in terms of the incident voltage 

waves on each branch, as 
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 (3.41) 

 

A similar Thevenin circuit is formed for the x  and y  currents by selecting 

the nodal ports 1, 3 and 2, 4 respectively. In Figure  3-5 the current flowing 

in y  is shown in the clockwise direction [3.3] 
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Figure  3-5 - Thevenin equivalent of the 2D shunt TLM node. 
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The TLM method propagates the voltage waves throughout the mesh by 

means of a method known as scatter/connection. 

 

The incident voltage upon port 1 of the node, will ‘see’ a load impedance, 

LZ , of three parallel connected lines of impedance 0Z , and hence a 

reflection at port 1 will be generated. From transmission-line theory,  
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while the transmission coefficient is 2/1 . The reflected voltages can be 

expressed in matrix form from the incident voltages as 
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 (3.45) 

 

where S  is the nodal scattering matrix of reflection coefficients, of 

dimensions 44 . 

 

In general the total voltage at any port is a sum of reflected and incident 

voltages, and hence the reflected voltage at port n  is  

 

i
nz

r
n VVV  . (3.46) 

 

Expanding Eqn.3.46 for 4...1n , and placing the resulting four equations 

in the matrix form of Eqn.3.45, it can be shown the nodal scattering matrix 

for the shunt TLM node is [3.3] 
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The connection process states that reflected voltages on ports become 

incident on neighbouring ports at the next time step as shown in Figure  3-6. 

In general, the procedure is described by the following four equations 
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where the subscript k  denotes the temporal iteration. 
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Figure  3-6 - Connection process in 2D TLM, origin is in bottom left.  



 3. The Transmission-Line Modelling Method and Numerical Time-Reversal 

- 50 - 

 

In a similar manner the travelling wave form for the stub loaded TLM node 

shown in Figure  3-7 is derived, resulting in [3.3] 
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It is customary to define sts GZG 0  and 0//1 ZZYZ stss  , where SY  is 

the normalised admittance of the stub, stY . The reflected voltages are 

determined from  
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Figure  3-7 - 2D TLM shunt node element with stub, for the modelling of 

dielectric/lossy materials.  
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 (3.50) 

 

where S  is the nodal scattering matrix of dimensions 55 , 
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where ssad GYY  4 . 

 

The stub connects with itself, as 
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From Eqn.3.52 it is seen the stub acts as an energy store. To model magnetic 

materials inductive stubs are used [3.3].  

3.1.6 Boundary Conditions 

In electromagnetic simulations of physical problems it is often necessary to 

define boundary conditions, for example a waveguide has metal walls which 

define boundary conditions for the electric and magnetic fields. The 

connection stage of the TLM process for the boundary nodal ports is 
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where   is a reflection coefficient. For a perfect short circuit boundary 

condition or electric boundary at a distance of 2/l  from nodal port n , the 

reflection coefficient is 
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Similarly, for an open circuit termination, or magnetic boundary, 1 .  

 

Repetition of Eqns.3.45,3.48 for time 1...0  Nk  in the mesh formed by 

the connection of nodes, constitutes the 2D TLM method for 

electromagnetic simulation of transverse magnetic fields. A similar 

derivation is possible for transverse electric fields, which results in the 

series TLM node [3.3]. It can be shown in this case the scattering matrix S  

would become 

 



























1111

1111

1111

1111

2

1
S . (3.55) 

3.2 3D TLM Symmetrical Condensed Node 

In the previous section an in depth derivation of 2D shunt TLM was shown. 

In this section a node for 3D simulation is derived. The modern form of the 

3D TLM node is known as the symmetrical condensed node (SCN).  The 

SCN is considerably more complex, and hence due to space limitations only 

a working example is given here. Further details can be found in [3.3] [3.8] 

and [3.9].  

 

The SCN is shown schematically in Figure  3-8, and is visualised as a 

combination of shunt and series nodes in each direction of propagation. The 
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scattering matrix for the node is determined through the use of the laws of 

conservation of power [3.9]. Observation of the expanded Maxwell’s 

equations, Eqns.3.1, relate the electric fields to the magnetic fields, from 

which the coupling of fields within the node can be determined [3.3]. 

Eqn.3.56 is derived for the nodal reflected voltages 
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where S  is the 1212  nodal scattering matrix given as [3.3] 
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Figure  3-8 - 3D TLM Symmetrical Condensed Node (SCN) equal spatial 

sampling in x, y and z, the node models a volume of size Δl3. 
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The connection process is identical to that for the 2D node, where for 

example 
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etc. 

 

The electric and magnetic fields are determined from the x , y  and z  

directed voltages and currents respectively, for example 
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Similarly open/short circuit boundaries are modelled using Eqn.3.53, with 

the exception it is now necessary to take both ports at the node connection 

into account, for example, a short circuit boundary through z  would be 

enforced at ports 7 and 12 of the node below and ports 1 and 5 of the node 

above the boundary. 

 

The 2  factor of the series and shunt nodes combined into the SCN 

effectively cancel each other [3.3], and the velocity within the 3D SCN 

simulation is tlv  2 . Modelling of dielectric, magnetic and lossy 

materials are possible through the use of stubs. Modelling of dielectric, 

magnetic and lossy materials in 3D is not covered here as all time-reversal 

modelling in 3D is done in the presence of metal. 

3.3 Numerical Time-Reversal 

This section will describe the time-reversal process using the numerical 

TLM method. The TLM time-reversal is performed through the use of the 

time-reversal-cavity [3.10] [3.11] [3.12]. For a 2D rectangular time-reversal-

cavity shown in Figure  3-9, the simulation space is bounded on four sides 

by absorbing boundaries, known as time-reversal-mirrors [3.11]. The time-

reversal-mirrors are placed a distance of 2/l  from the neighbouring TLM 

node, where l  is the spatial sampling of the model.  

 

The TLM time-reversal process has two stages: forward simulation, during 

which all time history is recorded at the time-reversal-mirrors, and the 

reverse stage, at which the recorded information is re-injected into the time-

reversal-cavity. In the case of device optimisation, multiple time-reversal 

simulations are needed in order to converge to a desired performance [3.13]. 

 

To capture the forward-time electric field within the cavity, the time-

reversal-mirrors sample the reflected voltages scattered from the 

neighbouring TLM nodes, 
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The time-reversal-mirrors act as matched boundaries during the forward 

simulation. TRMV3,1  are of dimensions NX   and TRMV4,2  are of dimensions 

NY  , where X , Y  and N  are the longitudinal nodes, transverse nodes 

and temporal iterations respectively. To reach steady state in a numerical 

simulation, N  is much larger than X  and Y , requiring significant memory. 

 

 

In the reverse stage of the time-reversal process, the time-reversal-mirrors 

act as line sources, re-injecting the time sampled reflected voltages from the 

forward simulation as incident voltages upon the neighbouring TLM nodes 

in reverse time order 
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Figure  3-9 - General 2D time-reversal-cavity, electric and magnetic fields are 

incident upon the bounding surfaces, termed time-reversal-mirrors (TRM). 
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The reverse process continues for iterations 0,...2,1  NNk , at which 

time the reverse simulation stops. 

 

To implement time-reversal within TLM, it is only necessary to reverse the 

scattering process, i.e. find the incident waves from the known reflected 

waves. The nodal scattering matrix 1 SS  for all TLM nodes, and hence 

the inverse TLM algorithm is identical to the forward TLM. In general this 

result holds, providing the material is linear and isotropic.  

 

Inversion of the scattering matrix alone does not guarantee time-reversal 

will be valid. Intuitively, loss in the forward stage, results in gain in reverse.  

For this reason, lossy materials are more difficult for use with time-reversal, 

since gain in a numerical procedure, such as TLM, will often result in 

instability. Investigation of time-reversal in lossy materials is the subject of 

the following chapter. 

3.4 Conclusion 

This chapter introduced the 2D and 3D TLM methods. The 2D and 3D 

nodes were given, and the relation between the wave equation, and the 

discrete travelling wave form was shown. The chapter concluded by 

introducing the TLM time-reversal-cavity for numerical simulation of time-

reversal. It was shown the scattering matrix for forward propagation in TLM 

is equal to its inverse, giving the same core algorithm for reverse simulation.  

 

The next chapter begins the original research of this thesis, with an 

investigation into the spatial filtering of the time-reversal-cavity, and the 
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effect temporal truncation and evanescent fields have in a time-reversal 

simulation. 
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4. Temporal Truncation and Evanescent 

Fields 

 

 

 

 

 

 

 

The previous chapter has shown that numerical time-reversal requires 

significant computational resources. Both the practical need to truncate the 

simulation time and finite machine precision limit the fidelity of the reverse 

process and a quantitative study of these effects is undertaken in this 

chapter. The use of Prony extrapolation to compensate the effects of 

truncated simulations and in order to significantly reduce the memory 

requirements is explored. Moreover, the derogatory consequences of finite 

computational precision are important when evanescent fields are present 

and theoretical predictions are compared with practical results. The chapter 

uses the example of single and multiple source reconstruction under time-

reversal to demonstrate the above problems. The impact of lossy materials is 

also briefly discussed. 

4.1 Temporal Truncation and Prony’s Method 

This section will investigate the effect of temporal truncation of the 

simulation and then proceed with the implementation of Prony’s series to 

predict future behaviour of a wave form. 

 

A forward numerical simulation of a physical structure reaches the steady 

state after N  temporal iterations, at time tN , where t  is the temporal 
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discretisation. In the case of numerical time-reversal, the situation is 

complicated by the need to store the full time-history of the forward 

simulation. Theoretically the original source will be perfectly reconstructed 

in both time and space by an ideal time-reversal process. However, when the 

forward simulation is truncated, even for large N , there are waves in the 

cavity that do not reach the time-reversal-mirrors. It can hence be assumed 

that source power remains in the cavity; this power is lost when the cavity is 

reset for the reverse stage.  

 

In order to ameliorate the need for long run times, the temporal Prony series 

can be used to predict the future behaviour of a discrete temporal waveform, 

based on a given set of known samples. Its use has been successfully 

demonstrated in the finite difference time domain [4.1] and transmission-

line modelling (TLM) [4.2] methods, to extrapolate the temporal history of a 

simulation for accurate computation of scattering parameters. However, 

perhaps because of the complexity of the Prony method, due to the need to 

solve a least squares optimisation problem in the formulation of the series, it 

has received limited attention. It is emphasised here that the solution to the 

least squares problem is of minimal computational impact in comparison to 

the numerical simulation. 

 

The Prony series is effectively used to predict the effect of field transients 

still within the structure when the forward simulation is truncated. Using the 

Prony series, a time sampled waveform is approximated as 

 

 





1

0

)(exp)()(
U

u
P tkuuBkF  (4.1) 

 

where U  is the number of poles in the series and B , the weightings of each 

basis function. 
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The objective is to obtain the closest match possible between the Prony 

generated waveform, )(kFP , and the true waveform stored in the time-

reversal-mirrors, termed )(kF  in this discussion, using the minimum 

number of poles, U .  

 

The term )(u  represents a pole on an Argand diagram [4.3]. The process 

of determining the values of   and B  can be done using a least squares 

approach [4.1] [4.4] [4.5], and is now described. The process has two stages; 

firstly the matrix equation relating the values for F  to a polynomial P , 

termed the Prony polynomial [4.6], is formed as 
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The values for P  are found using least squares [4.2], where N  is the 

number of temporal samples in a single row of the time-reversal-mirror. A 

separate Prony series is required for each spatial row within each time-

reversal-mirror. The values )(uP  form the polynomial, 




1

0

)(
U

u

uuP  . 

Equating the polynomial to zero, and solving for  , gives the roots, which 

can be shown to equate to the values ))(exp( u  [4.5], therefore  , the 

complex poles of Eqn.4.1, can be found from 

 

  )(expln)( uu  . (4.3) 

 

Secondly, from the values of ))(exp( u  found in Eqn.4.3, a matrix equation 

relating F  to the values B  is formed as [4.5] 
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Solving Eqn.4.4 for B  is performed by re-expressing Eqn.4.4 in the form 

 

BEF   (4.5) 

 

where E  is of dimensions UN  , B  is a vector of dimension U , and F  is 

of dimension N . Multiplication of Eqn.4.5 by TE , gives 

 

BEEFE TT  , (4.6) 

 

rearranging Eqn.4.6 allows B  to be evaluated as 

 

   FEEEB TT 1
 . (4.7) 

 

Prony’s method in this form can be used to temporally extrapolate the 

reverse stage of the time-reversal process without the need to compute the 

forward phase for the full number of temporal iterations. This reduces the 

time-reversal-mirrors size, and the simulation runtime. 

4.1.1 Results 

This section shows the impact of temporal truncation on the accuracy of a 

source reconstruction. In this case a moderate number of time steps are 

employed for the forward simulation and the time-reversal-mirror values 

that have been lost by truncating are predicted based upon the available 

values for each sample point. The reverse simulation runtime will then 
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exceed that of the forward simulation by the number of predicted time steps, 

where the prediction simply evaluates the Prony series for Nk  . A 2D 

parallel plate waveguide laterally bounded by magnetic walls is shown in 

Figure  4-1, with two time-reversal-mirrors located at the input and output 

ports respectively.  

 

),0(),( 44 yVkyV r
kTRM   (4.8a) 

),1(),( 22 yXVkyV r
kTRM   (4.8b) 

 

 

The waveguide is defined and modelled using 151Y , giving 

15.0l mm, 1357.3  et s, 151 YX , 2/WL   and 

86.22W mm. The number of temporal iterations are 500N , 1000N , 

10000N  and 100000N . An impulsive source excites the cavity at the 

source location. The reconstructed source field zE  on the surface of the 

cavity, for the cases 500  and 10000  temporal iterations, is as shown in 

Figure  4-2a,b respectively, where a contour display with 5 levels is shown. 

Clearly simulation for fewer time steps results in increased spatial spreading 

of the reconstructed source and thus makes a notable contribution to 

inaccuracy. 
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Figure  4-1 - 2D air-filled time-reversal-cavity, Δl is the spatial sampling, X and 

Y are the nodes in the longitudinal and transverse directions respectively. 
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Figure  4-2 - Time-reversed electric field with a) N = 500, and b) N = 10000.  Δl 

= 0.15mm, Δt = 3.57e-13s, X = 151, Y = 151, L = W/2 and W = 22.86mm, a 

total of 5 contours are shown. 
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The electric field across the transverse direction at the source, 0x  and 

0k  is shown in Figure  4-3, and compared to the original input source. It 

is seen, that for the shorter runtime significant accuracy has been lost, and 

that better source reconstruction is achieved for the longer runtimes. 

 

 

In many cases, long runtimes are not possible and a way of reducing this 

computational requirement is needed.  

 

In practice, when using the Prony method for time-reversal it is not 

necessary to match a Prony series for the full number of temporal samples 

initially stored in the time-reversal-mirrors. The Prony series is required to 

extrapolate the transient field, and so should only be matched towards the 

end of the time-reversal-mirror data of the forward stage.  

 

In order to measure the applicability of Prony’s method for time-reversal, 

the example of Figure  4-1 is repeated in Figure  4-4a, where a Prony series 
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Figure  4-3 - Time-reversed electric field across width of waveguide at x = 0, 

for N = 500, N = 1000, N = 10000 and N = 100000. Δl = 0.15mm, Δt = 3.57e-13s, 

X = 151, Y = 151, L = W/2 and W = 22.86mm.  
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for each transverse sample point in the time-reversal-mirrors with 18U  

poles, was matched to the last 150  samples from forward simulations of 

500N , 5000N  and 7500N  and used to generate the remaining 

samples to reverse for 10000N . The figure shows how the fidelity of the 

source reconstruction using the Prony series compares with the simply 

truncated cases. Clearly the Prony series offers a valuable improvement in 

accuracy and has reduced time-reversal-mirrors storage by 95 %, 50 % and 

25 % respectively. Unfortunately the number of poles required for the Prony 

series is largely problem dependant. Too few and a poor extrapolation is 

seen, too many and the least squares procedure becomes ill-conditioned 

[4.5]. For this particular example 18  poles was verified to be optimum. In 

Figure  4-4b the samples stored at 2/Wy   in the time-reversal-mirror at 

time-steps 400350   for 500N  are shown for comparison with the 

Prony extrapolated waveform using 18U  poles, which shows the close 

match between the time-reversal-mirrors and the Prony extrapolated form 

for the known samples. 

 

a) 

10.5 11 11.5 12 12.5
10

-3

10
-2

10
-1

10
0

 

 
 

  

  

  

E
le

ct
ri

c 
fi

el
d,

 |E
z(

0,
y)

|

Width, W (mm)

500Δt

10000Δt

Prony (U=18, 500Δt)

Prony (U=18, 5000Δt)

Prony (U=18, 7500Δt)

 

 



 4. Temporal Truncation and Evanescent Fields 

- 68 - 

4.1.1.1 Multiple Sources 

Time-reversal recovery of two sources in relative proximity to one another 

further illustrates the loss of spatial resolution caused by truncation of the 

forward runtime. Two impulse sources at 0x , are placed in the time-

reversal-cavity of Figure  4-1, separated initially by a distance of S  in y . 

 

The separation distance after time-reversal is measured as the distance 

between the second moment of each source [4.3]. For the source in the 

lower half of the cavity, the second moment reads 
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Figure  4-4 - a) Time-reversed electric field across width of waveguide at x = 0. 

N = 500, N = 5000 and N = 7500 original samples, extrapolated to 10000 using 

Prony’s method with 18 poles matched over last 150 samples, compared with 

the two original simulations of N = 500 and N = 10000. b) Prony series 

matched to data in time-reversal-mirror at y = W/2 at output port, samples 

350-400. 
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where   is the mean amplitude across the transverse region 1y  to 2y  (see 

Figure  4-6a overlay). This approach is used to reduce spurious 

measurements, resulting from poor resolution in the recovered field, as was 

seen in Figure  4-2 for a single source. 

 

The initial source separation is 65.165  lS mm, 0253.0l mm, 

1498.5  et s, 901X  and 901Y , where L  and W  are as previously 

defined. The increased spatial sampling is necessary to accurately measure 

the source separation. Figure  4-5 shows the change in the measured source 

separation with increasing simulation runtime, N . It is seen, with increasing 

runtime N , the time-reversal simulation is more accurate, and the measured 

source separation approaches the known separation.  

 

A Prony extrapolation with 45  poles matched to the last 100  temporal 

samples in the time-reversal-mirrors and used to generate a further 1000  

temporal iterations during the time-reversal is also shown for comparison in 

Figure  4-5. The Prony results are seen to reach the known separation for 

smaller N . 

 

The merging of the two sources is shown in Figure  4-6a, which shows zE  

for 750N  time steps. In comparison, Figure  4-6b shows the electric field 

for 4000N , illustrating the improved resolution. It is seen that, the 

application of time-reversal techniques using multiple sources is more 

sensitive to inaccuracies of time-reversal and requires finer spatial 

discretisation and longer runtimes. 
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Figure  4-5 - Distance measured between two sources after time-reversal with 

respect to increasing temporal iterations in the model, Δl = 0.0253mm, Δt = 

5.98e-14s, X = 901, Y = 901, L = W/2 and W = 22.86mm. 
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Figure  4-6 - Reconstructed sources after time-reversal, a) N=750, b) N = 4000, 

5 contour levels are shown. Δl = 0.0253mm, Δt = 5.98e-14s, X = 901, Y = 901, L 

= W/2 and W = 22.86mm. 
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Returning briefly to the example of the time-reversed impulse source of 

Figure  4-3, the measured half width of the source with respect to increasing 

temporal steps is shown in Figure  4-7. It is seen that even for considerably 

large runtimes, the measured half width does not converge to the known 

width of 45.03 l mm. The remaining error can be attributed to the finite 

machine precision and evanescent field components. The next section 

assesses the impact of finite machine precision on time-reversal techniques 

both analytically and numerically.  

 

4.2 Evanescent Fields in Analytical and Numerical 

Time-Reversal 

Evanescent fields occur in many component structures, including filters, 

impedance matching networks, antennas etc. A source excites a broad 

spectrum of both propagating and evanescent modes. On the other hand a 

numerical simulation has a limited machine precision available [4.7].  If the 

amplitude of the evanescent modes is below machine precision on arrival at 
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Figure  4-7 - Measured half width of recovered source after time-reversal with 

respect to increasing TLM simulation time. Δl = 0.15mm, Δt = 3.57e-13s, X = 

151, Y = 151, L = W/2 and W = 22.86mm.  
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the time-reversal-mirrors then they will be lost for the purposes of time-

reversal and subsequently cause loss of resolution in the reverse simulation.  

 

For the waveguide example of Figure  4-1, the longitudinal distance at which 

the n th mode is lost can be calculated using Eqn.4.10. 

 

 nm
nL /10ln , (4.10) 

 

which is found by equating the modal propagation term )exp( nn L , to the 

significant digit range of the simulation, m10 , where m  is the number of 

significant digits stored, which can be single precision (7 digits) or double 

precision (14 digits). If the time-reversal-mirrors are placed such that 

nLL  , the n th mode will be lost during the forward simulation, and is 

hence unrecoverable during the reverse stage. 

 

This section analyses evanescent mode loss due to finite machine precision 

using analytical and numerical time-reversal. 

4.2.1 Analytical Analysis of Evanescent Mode Loss 

A theoretical investigation predicting the effect of evanescent modal loss on 

source reconstruction in time-reversal is examined first. 

 

Generally, an impulse source excites a number of modes. The modal 

distribution of the n th mode propagating in a 2D waveguide in the x  

direction, with propagation constant, n , can be expressed as 
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where the propagation constant is given as 

 



 4. Temporal Truncation and Evanescent Fields 

- 73 - 

 2
2









W

n
n . (4.12)  

 

The propagation constant, is either imaginary or real, describing 

propagating, or, evanescent modes respectively. Substitution of Eqn.4.12 

into Eqn.4.10 gives the distance at which the mode n  is lost for time-

reversal. 

 

Using Eqn.4.11 it is possible to express the total field excited by an impulse 

in the cavity of Figure  4-1 as the summation of modes 
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where nA  are the input amplitudes of the modes n . Only even order modes 

are considered since the source is symmetric within the cavity, and open 

circuit boundary conditions are simulated. In this example the cavity 

medium is free-space, hence the propagation constant of Eqn.4.12 becomes 
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where   will take the value for the dominant mode.  

 

For small width sources, the amplitudes of the lower order modes are all of 

the same order of magnitude on the source plane. However the relative 

amplitude of the evanescent modes in respect to the dominant mode will 

rapidly decay, reaching machine precision at a distance nL  from the source 

plane. Therefore in practice the value of 0nA  and if this occurs before 

reaching the time-reversal-mirrors this mode is lost for the purpose of 

source reconstruction by reverse simulation.  
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Analytically the effect is demonstrated by truncating Eqn.4.13 to m  

significant figures at the distance L , i.e. 
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and the evanescent modes with amplitudes below the machine precision will 

not be captured by the time-reversal-mirrors and are therefore lost.  

 

For symmetric even order modes, direct application of the Cosine transform 

[4.8] will recover the modal amplitudes, 'nA , of the field in the time-

reversal-mirrors at L  
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 (4.16) 

 

The value for 'nA  is substituted into Eqn.4.13, with 0x  and 2/Yy   

giving 'zE , the field at the source after the modes have been truncated at L . 

 

The consequences of the effect are demonstrated in Figure  4-8 for the 

absolute normalised difference between zE , the initial field amplitude, and 

'zE , the amplitude after the forced truncation is performed, using single (7 

digit) and double (14 digit) precision. The transverse nodes were chosen as 

15Y , giving a total of 8  symmetric modes, and a spatial sampling in the 

transverse direction, 52.1y mm. The longitudinal sampling is 

5.0x mm and the width 86.22W mm.  
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The vertical lines show the distance a mode is predicted to be lost as 

calculated using Eqn.4.10 for single (grey solid) and double (diamonds) 

precision. It is seen a step in the measure occurs relatively close to where 

the evanescent mode is predicted to be lost. It initially appears that this is a 

very significant effect and that placing the time-reversal-mirrors too far 

from the source will completely undermine the approach.  

 

 

This problem is also present for non-guided structures. The same approach 

can be adapted to investigate the effect of modal loss in a general structure 

of an impulse source in free space. In Eqn.4.13, the transverse spatial 

dependence is replaced with the corresponding angular counterpart, and the 

longitudinal dependence by the corresponding Hankel function, giving 

 

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

 
 

 
 

 

Single Precision

Double Precision

*

A
m

pl
it

ud
e 

di
ff

er
en

ce
 o

f r
ec

ov
er

ed
 s

ou
rc

e

Length, L (mm)  

Figure  4-8 - Theoretical mode loss in 2D time-reversal-cavity for single and 

double precision, vertical lines show expected lengths at which a mode will be 

lost for single (grey solid) and double (diamonds) precision. Δy = 1.52mm, Δx 

= 0.5mm, Y = 15 and W = 22.86mm. 
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where r  is the radial distance from the source and 0k  is the wave number. 

The field is now measured and artificially truncated cylindrically about the 

source, at increasing radius r . Figure  4-9 shows the normalised absolute 

difference between zE , the initial field amplitude, and 'zE , the amplitude 

after the forced truncation is performed, for varying radius, r . A total of 11 

modes are shown up to a maximum radius of 95 m. Again, step like 

behaviour is seen as the radius increases and is explained by the fact that a 

particular mode is lost.  
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Figure  4-9 - Theoretical cylindrical mode loss example, Δl = 0.5mm, 11 modes 

are modelled up to a maximum radius of 95m. 
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4.2.2 Comparison of Analytical and Numerical Time-

Reversal of Evanescent Fields 

The preceding discussion demonstrated analytically the impact of modal 

loss. The impulse source employed was a worse case scenario and in 

practice the importance of the evanescent modes may be less profound. To 

quantify this argument, a finite width source field distributed as a Gaussian 

function is now used. 

 

A spatial Gaussian excitation across the transverse dimension of the cavity 

in Figure  4-1, similarly to the impulse source, will excite a number of 

propagating and evanescent modes [4.9] 

 

 
















2

22/)2/(
exp

2

1

inin

Wlly


. (4.18) 

 

The number of physically significant evanescent modes is dependant upon 

the Gaussian spatial half-width, in . In general, a spatial Gaussian 

distribution with a wider half-width has a narrower profile in the modal 

domain, and hence fewer evanescent modes are exited. Through this 

reasoning, a distribution that has lost some higher order modal information 

due to the machine precision will now have a greater half-width after time-

reversal, out . The smaller in , the greater number of evanescent modes are 

excited which are consequently not captured by the time-reversal-mirrors, 

and the more substantial the spreading in the output distribution. 

 

The analytical model is repeated using a spatial Gaussian distribution to 

excite a waveguide of fixed length 20L mm. The modes lost from the 

Gaussian at L , are then artificially removed from the input Gaussian as 

done for the impulse source example, and measurement of the distribution 

half-width is made. In Figure  4-10 the result of out  with respect to in , for 
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both single and double precision, where 15.0l mm and 86.22W mm 

is given. As expected, wide sources are reconstructed correctly, while 

narrow sources become broadened. 

 

 

The TLM simulations have been performed with 4000N , 15.0l mm, 

1357.3  et s, 132X , 151Y , 86.22W mm and 20L mm. The 

Gaussian input is defined identically to the analytical model in Eqn.4.18. 

The field stored in the time-reversal-mirrors is then time-reversed and re-

injected for 4000  iterations, after which the half-width of the reconstructed 

Gaussian is measured and stored as out . It can be seen that both analytical 

and numerical simulated wide sources are reconstructed more accurately 

than narrower sources. Very good agreement between the numerical TLM 

and analytical predicted results is seen. 
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Figure  4-10 - Mode loss of Gaussian distribution predicted (analytical), and 

measured through time-reversal (TLM), σout with respect to σin for varying σin. 

Δl = 0.15mm, Δt = 3.57e-13s, X = 132, Y = 151, W = 22.86mm and L = 20mm. 
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4.3 Discussion of Lossy Materials 

Although, time-reversal approaches are not strictly valid with lossy media as 

the time-invariance of the wave equation is broken, it is still possible to 

obtain useful results if the losses are small over the frequency range of 

interest. In [4.10] this was demonstrated for the example of a dielectric 

material with small losses using the finite-differences numerical procedure. 

The effect of losses in the forward simulation is compensated by introducing 

gain to reverse simulations. However, numerical time-reversal using lossy 

materials is hindered since the gain will often result in instability.  

 

The effect of lossy materials in time-reversal is investigated using the 

Argand diagram [4.3]. The propagation constant for the 2D waveguide, 

Eqn.4.12, is analysed for the case when the waveguide of Figure  4-1 is filled 

with material with dielectric constant  
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where   is the loss in S/m. Eqn.4.10 is rearranged to give 

 

 Lm
m

/10ln , (4.20) 

 

which allows a propagation constant to be determined, for a fixed cavity 

length and machine precision. This constant is the real component of the 

highest order mode recoverable during time-reversal with the given machine 

precision and cavity length. 

 

The modal propagation constant of a mode in a lossy material is determined 

using Eqn.4.19 in Eqn.4.12. The cavity of Figure  4-1 is excited at 1GHz, the 

results of Figure  4-11 show the propagation constants for an example cavity 

of 150L mm and 86.22W mm, for varying   in the complex plane. 
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Higher indices correspond to higher order modes. The light dotted line 

shows the cut-off level assuming single precision and using Eqn.4.20, while 

the dark line shows the case for double precision. A mode to the left of the 

line is lost for the purposes of time-reversal. As the material loss increases, 

the propagation constants become complex quantities, with increasing decay 

rates, and more of the evanescent modes are lost as expected. 

 

 

The approach can also be used to analyse a wide variety of materials in 

time-reversal, for example frequency dependant materials. The case of 

human grey matter is of particular importance for biomedical applications 

[4.11]. As an example, Figure  4-12 shows the Argand diagram formed for 

human grey matter at 600 MHz ( 72.54r , 819.0 S/m), and 2.1 GHz 

( 57.51r , 08.1 S/m) in a cavity of length 150L mm and width 

86.22W mm. The cut-off levels for single and double precision are also 
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Figure  4-11 - Argand diagram showing propagation constants in cavity of 

length 150mm and width 22.86mm for varying loss, σ,  in S/m. First 7 modes 

are shown (lowest to highest order). 
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shown. It is seen that the increased frequency has the opposite effect of 

increasing the loss, and results in more modes being retained. 

 

4.4 Conclusion 

The objective of this chapter was twofold. First, the problem of temporal 

truncation in the time-reversal-cavity was analysed where it was shown the 

spatial spreading of the time-reversed source is a consequence of finite 

simulation time, and the Prony series was introduced to relax the 

computational and memory requirements by predicting the future behaviour 

of the discrete temporal waveform. The demonstration of the Prony method 

for the time-reversal of one and two sources was used as an example and 

time savings have been demonstrated. 
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Figure  4-12 - Argand diagram of modal propagation constants for frequency 

dependant material of human grey matter, higher frequencies are better 

suited to time-reversal,  L = 150mm and W = 22.86mm. First 7 modes are 

shown (lowest to highest order). 
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Secondly, the modal content of the cavity was investigated. The effect of 

evanescent wave decay in a 2D parallel plate waveguide was used to 

examine the error in source reconstruction for the case of single and double 

machine precision, both analytically and numerically. Close agreement 

between analytical and numerical simulations is obtained. Finally, the effect 

of lossy materials was investigated, using an Argand diagram to predict the 

number of recoverable modes in time-reversal. It was shown that increasing 

the operating frequency has the opposite effect to increasing loss, thus 

minimising errors due to the presence of loss in the material. 
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5. Microwave Component Design using 

Time-Reversal 

 

 

 

 

 

 

 

Automated optimisation techniques are often sought for the design of 

electromagnetic devices due to the increasing complexity and demanding 

performance requirements of modern systems. Time-reversal simulations 

are a physically based approach to this problem, alternating between 

forward-time simulations of trial designs and reverse-time simulations 

which re-inject a more desirable response of the system as an excitation in 

order to identify the component geometry that would produce it. This 

chapter introduces the method of time-reversal for microwave component 

design. The effect of damping of the iterative optimisation process is 

investigated. The concept of thresholds for accurate measurement of time-

reversed recovered scatterer dimensions is introduced and the method is 

applied for the design examples of a microwave band pass filter, waveguide 

bend, and coupler. 

5.1 Scatterer Reconstruction 

In this section, the recovery of a metal scatterer within a time-reversal-

cavity is investigated. The Lorentz reciprocity theorem, states “The 

relationship between source and resulting field is unchanged if source 

generation and measurement point are interchanged” [5.1]. As shown 

previously, the field measured at a boundary can be time-reversed to recover 
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the source location used to generate the field. In the case of component 

design, the time-reversal process is to recover the dimensions of scattering 

elements. The time-reversal process can be modified to perform this action 

as shown in [5.2]. Referring to the example of Figure  5-1, the source is 

termed iJ , and a metal scatterer is placed as in the volume with induced 

source sJ  on its boundary.  

 

 

The field measured at the time-reversal-mirror is si EE  , the summation of 

the field generated by the input source, and the field from the scatterer. For 

component design, the field generated by the input source is not required. 

To remove this from the measured field, a second forward time simulation is 

performed, as in Figure  5-1, but with the scatterer removed, which is 

effectively the homogenous form of the problem space. The new situation is 

shown in Figure  5-2. 2J  and 2E  are the reverse source and field 

respectively. 

 

In the time-reversal stage the scatterer is removed from the problem. Based 

on results of section 2.1.5, the time harmonic form of the induced source is 

 

V

S = TRM
n

iJ
si EE 

sJ

xz

y

 

Figure  5-1 - Illustration of time-reversal-cavity with metal scatterer in volume. 

sJ  is the induced source on the boundary of the scatterer. 
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)exp()( tjJtJ ss    (5.1) 

 

and its reverse source is 
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Substitution of Eqn.5.2 in the Lorentz reciprocity theorem, Eqn.2.22, gives 
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As before, the closed surface integral of the left hand side of Eqn.5.3 tends 

to zero as the radius of the surface tends to  , hence 
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from which it can be seen by comparing like terms, that the reverse field can 

be represented as 

V
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Figure  5-2 - Illustration of time-reversal-cavity with metal scatterer in volume, 

when homogenous form has been removed. 
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)()2exp()()(2 tEtjtEtE ss   , (5.5) 

 

and hence )(2 tE  is the time reversed form of the field generated by the 

scattered field from the induced source on the boundary of the scatterer.  

5.1.1 Poynting Vector for Time-Reversal 

As a result of the reverse simulation, new dimensions of a scatterer are 

determined. In the case of a metal scatterer, the field over the full simulation 

space is measured during time-reversal to determine the areas of minimal 

current density, which indicate the new locations of the scatterer boundaries. 

To perform this measurement the Poynting vector is used.  

 

The absolute value of the Poynting vector is measured for each TLM node 

in the time-reversal-cavity during the reverse simulation, and the maximum 

value at each node over the full reverse time is then stored [5.3]. Since the 

Poynting vector will remain a minimum at nodes at metal boundaries, the 

resulting field map will contain minima for each boundary of the scatterer. 

5.2 Time-Reversal for Component Design 

This section will develop the method of time-reversal for component 

synthesis. The objective for time-reversal synthesis is to determine the 

dimensions of scattering elements to give a desired response. This process is 

demonstrated, building upon the early work of Forest and Hoefer [5.2] [5.3] 

and Sorrentino et al. [5.4] using the transmission-line modelling (TLM) 

method. 

 

There are three distinct stages to the time-reversal design process. Firstly, a 

forward simulation of the complete structure, with known initial dimensions 

of the scattering element. This stage will be termed the inhomogeneous, or 
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particular solution. Figure  5-3 shows a general time-reversal-cavity with an 

arbitrary scatterer, the voltages stored in the mirror are 
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where F
PTRMiV  is used to denote the forward particular solution time-

reversal-mirror at port i  of the TLM node next to the time-reversal-mirror. 

The particular solution holds the source excitation plus the field scattered 

from the scatterer.  

 

 

In the next stage, the field in the time-reversal-mirrors is perturbed to better 

match a desired component response. In general, a complex difference 
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Figure  5-3 - Example time-reversal-cavity for time-reversal component design. 

An arbitrary scatter is shown. 
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vector, Ĝ , is formed as the difference between the measured response, g , 

and that desired, dg , as 
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 (5.7) 

 

For microwave components, it is typical to analyse scattering parameters or 

S parameters in the frequency domain, and hence g  in that sense will 

denote S parameters. Similarly g  could denote coupling or directivity for a 

coupler. 

 

Eqn.5.7 relates the desired response to that achieved with the current 

scatterer configuration. Application of the inverse Fourier transform to 

Eqn.5.7 recovers the complex difference in the time-domain, )(kG . As an 

arbitrary scattered field distribution may not be physically realistic, it is 

necessary that the changes to the time-reversal-mirror equivalent sources are 

perturbational. The time-reversal-mirrors of the forward particular solution 

are then perturbed as 
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where   is a damping factor used to control the convergence of the process, 

a through analysis of which is given in the next section, and   is the modal 

distribution of the dominant mode. For the example of a 2D parallel plate 
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metal waveguide with transverse cross section in y  the modal distribution 

for the dominant mode is [5.5] 
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W
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where l  is the spatial sampling, and the TLM nodes are placed with an 

offset of 2/l  from the boundary. 

 

In the next stage the contribution of the source is removed from the time-

reversal-mirrors. This is done by performing a forward simulation without 

the scatterer, giving the homogenous solution, termed F
HTRMiV . The reverse 

mirrors are obtained as 

 

),()',(),( 3,13,13,1 kxVkxVkxV F
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In the final stage the resulting time-reversal-mirrors are re-injected into the 

problem space for time 0,...2,1  NNk . 

 

The particular, homogenous and reverse simulations are applied iteratively, 

until convergence to the desired component response is achieved, and hence 

the correct scatterer dimensions are found. 

 

The method described in section  5.1 for recovery of the boundary of the 

scatterers is then implemented during the reverse simulation. The Poynting 

vector is simplified if the shunt TLM node for transverse magnetic 

polarisation is used  
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where xH , yH  and zE  are as defined in Chapter three.  

 

In order to measure the scatterer dimensions from the absolute of Eqn.5.11 

it is necessary to apply a threshold to the Poynting vector to distinguish 

metal from the background medium of the time-reversal-cavity, this is the 

discussion of the next section.  

5.3 Threshold and Damping Selection 

As discussed above and in [5.2] the boundary of the perturbed septum is 

defined by the locus of nulls in the maximum Poynting vector observed 

during the reverse simulation. However, as true nulls are never actually 

generated a threshold value must be used. This section investigates the use 

of applied thresholds, to measure the scatterer dimensions from the 

recovered Poynting vector, and the application of damping through the term 

  in Eqn.5.8, of the difference vector, )(kG , to the accuracy of the 

convergence of the design process.  

 

The choice of threshold and damping values is largely dependant upon a 

given component. This section will demonstrate two simple examples, 

which are suitable to investigate the threshold and damping selection, while 

maintaining an acceptable simulation runtime.  

 

The general time-reversal-cavity of Figure  5-3 is simplified by the inclusion 

of short circuit boundary conditions in the place of time-reversal-mirrors 1 

and 3, see Figure  5-4. The structure is a 2D parallel plate waveguide. The 

scatterer is placed as a metal septum, creating a high pass filter [5.3].  
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The optimisation of the single scatterer of Figure  5-4 will be investigated 

with a view to developing a general method of selecting threshold and 

damping values for structures with more degrees of freedom. 

 

For simplicity the desired response is measured from a TLM simulation of 

Figure  5-4 with the septum width fixed at known width d
SW 1 . In a practical 

application, the desired response would be given as a pre-specification. The 

desired 11S  and 21S  are measured from the TLM model using the discrete 

Sine transform [5.6] 
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The complex difference vector for the time-reversal-mirrors at the input and 

output ports respectively, is 
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Figure  5-4 - X-band microwave high pass filter formed from inductive 

scatterer in electric waveguide. 
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After a single time-reversal step, the value of the maximum of the absolute 

magnitude of the Poynting vector, measured using Eqn.5.11 during reversal, 

is extracted at the septa location. This vector is then scaled so that all values 

are between 0 and 1, and stored in a column vector of size Y . 

 

The time-reversal optimisation of the septum width starts with the initial 

widths of the septum as 33.10611  lWS mm, the width of the waveguide 

is 86.22W mm, with transverse nodes 135Y . Spatial and temporal 

steps are 169.0l mm and 1399.3  et s respectively. The waveguide 

length of 25.5L mm is modelled with 31X  nodes. A total of 8192N  

temporal samples are used. The optimisation bandwidth is 147  GHz.  

 

The filter is excited at the input port with a spatial sinusoid of period W2   
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For maximum damping 1 , the Poynting vector is as shown in Figure 

 5-5a and the transverse field distribution across the septa is as shown in 

Figure  5-5b. The recovered field contains the minima in the place of the 

septum as expected, but also large oscillations either side.  
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Figure  5-5 - a) Resulting field plot found by storing maximum of Poynting 

vector during time-reversal for single septum in waveguide, 91 contour levels 

are shown, b) transverse cross section at septum scaled to unity, PT shown as 

example, Δl = 0.169mm, Δt = 3.99e-13s, X = 31, Y = 135, L = 5.25mm, W = 

22.86mm and N = 8129. 
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With maximum damping, no perturbation is applied, and the measured 

width from Figure  5-5b should match the input width. It is seen, only when 

the threshold, 1TP , is the correct width measured. In more complex 

components noise in the recovered Poynting vector is often created, due to 

resonance between scatterers [5.2]. This noise inhibits the measurement of 

the scatterer dimensions. In the work performed during this thesis, the 

thresholds are not fixed at 1. In Figure  5-5b the example 7.0TP  is shown, 

whereby the width is measured between the inner two crossings of the 

threshold with the Poynting vector. 

 

To solve the problem of inaccurate convergence when 1TP , a 

measurement of the width, from a time-reversal simulation with maximum 

damping, is measured first, termed the control width. A percentage increase 

or decrease of the septum width from the perturbed model in comparison to 

the control, is then used to adjust the known input width before the next 

iteration of the design procedure. Using   to symbolise the time-reversal 

design iteration 
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The initial S parameters, with 33.10611  lWS mm, against those desired 

from a septa width of 57.4271  lW d
S mm are shown in Figure  5-6.  

The desired width was chosen arbitrarily to represent an example of a high 

pass filter characteristic.  
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The time-reversal design starting from lWS  611 mm, performed for each 

value of TP  and  , where a total of 20 steps between 0 and 1 is used for 

each, results in the contour plot of Figure  5-7. The number of time-reversal 

iterations, TRN , until convergence to the desired S parameters is shown by 

the height of the contour. 

 

In the case of 5.0TP  and 3.0 , no convergence was found. The lighter 

areas are those with optimal convergence of 2TRN  time-reversal 

iterations. It can be seen that optimum convergence is found when 

9.05.0  TP  and 6.03.0   . Outside this area, convergence may take 

longer, as in the case of 6.0 .  The contour plot requires the computation 

of 400 time-reversal simulations (20 values of TP  by 20 values of  ), 

which takes approximately 3.5 days on an AMD Athlon 2 GHz processor 

with 128 KB L1 cache, 1 MB L2 cache, 200 MHz Bus and 2 GB of RAM. 
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Figure  5-6 - S parameters for dominant mode of X-band high pass filter 

formed from inductive element in WR90 waveguide, Δl = 0.169mm, Δt = 3.99e-

13s, X = 31, Y = 135, L = 5.25mm, W = 22.86mm and N = 8192. 
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In general, a high pass filter can be formed using a wide variety of metal 

obstacles in the transverse dimension of the waveguide, for example, 

screws, posts or irises [5.7]. In Figure  5-8, a high pass filter is formed using 

a metal iris. Again, a known achievable solution, with 

25.12671  lW d
S mm was arbitrarily chosen as the desired solution, while 

94.4271  lWS mm was used as the initial starting iris width. For this 

model the sampling was 183.0l mm, 1331.4  et s, 51X , 

125Y , 33.9L mm, 86.22W mm and 16384N . The optimisation 

bandwidth remains the same. 
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Figure  5-7 - Contour plot displaying PT with respect to α , for time-reversal 

optimisation of single septum. Contour levels show iterations until 

convergence, with white being optimal. For PT < 0.5 and α  < 0.3 no 

convergence is found. Δl = 0.169mm, Δt = 3.99e-13s, X = 31, Y = 135, L = 

5.25mm, W = 22.86mm and N = 8129. There are 20×20 points in the plot, with 

71 contour levels. 
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In Figure  5-9, a contour plot is shown illustrating the iterations until 

convergence for each selection of the damping and threshold values. For 

5.0  and 65.0TP  no convergence was found. It is seen that the 

optimum convergence is when 75.07.0  TP  and 75.065.0   . 

 

It is impractical to perform a full analysis of the threshold and damping of 

more complex components due to the runtimes involved. The two examples 

above have shown the contour plot is reasonably well behaved and optimal 

convergence is confined to a single area.  

 

For the examples of this thesis a simple trial and error approach, starting 

from 0  and increasing incrementally, varying the threshold values at 

each increment of   until stable accurate convergence is found is sufficient. 

In the majority of examples, there is more than one free variable, and hence 

the thresholds are termed 1T , 2T , 3T , etc. 
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Figure  5-8 - X-band microwave high pass filter formed from inductive 

scatterer (iris) in metal waveguide. 
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5.4 Spatial Resolution 

For any simulation of a physical component the accuracy of the result is 

dependant upon the accuracy of the model. Ideally the spatial sampling 

should be large enough to give an acceptable runtime, but small enough for 

accurate results. In numerical models, the simulation is usually defined by 

the choice of both l  and t . In a TLM model, t  is dependant upon l  

and hence the investigation of the effect of the spatial resolution on the 

convergence of the time-reversal design process is necessary. 
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Figure  5-9 - Contour plot displaying PT with respect to α , for time-reversal 

optimisation of single iris. Contour levels show iterations until convergence, 

with white being optimal. For PT < 0.65 and α  < 0.5 no convergence is found. 

Δl = 0.183mm, Δt = 4.31e-13s, X = 51, Y = 125, L = 9.33mm, W = 22.86mm and 

N = 16384. There are 20×20 points in the plot, with 71 contour levels. 
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The high pass microwave filter defined by Figure  5-4, was initially designed 

using 135  spatial nodes across the transverse width. This gave a spatial 

sampling of approximately one node every 169.0 mm. In order to 

investigate the effect of the numerical spatial sampling upon the 

convergence of the time-reversal design, the example of Figure  5-4 is 

repeated in Figure  5-10, with the spatial resolution reduced by a factor of 2. 

In this case 67Y , 34.0l mm, 1305.8  et s, 15X , and the initial 

value for lWS  311 mm, with desired of lW d
S  131 mm. The reduced 

spatial sampling is necessary, since increasing the spatial resolution will 

make the repeated time-reversal simulations intractable. 
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Figure  5-10 - Contour plot displaying T1 with respect to α , for time-reversal 

optimisation of single septum. Δl = 0.34mm, Δt = 8.05e-13s, X = 15, Y = 67, L = 

5.12mm, W = 22.86mm and N = 8129. There are 20×20 points in the plot, with 

71 contour levels. 
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Comparing results from Figure  5-10 and Figure  5-7, it is seen that reducing 

the spatial resolution of the numerical model also reduces the area of 

optimal convergence for the time-reversal, yet the optimal iterations until 

convergence are unchanged. 

 

The high pass filter formed by the metal iris in Figure  5-8, is similarly 

repeated, with the spatial sampling reduced by a factor of 2 giving 63Y  

and 36.0l . The corresponding values are 1356.8  et s, 25X , 

07.9L mm, 86.22W mm and 16384N . lWS  131 mm initially and 

lW d
S  331 mm. The effect of varying the threshold and damping at the 

coarser resolution is given in Figure  5-11, again showing reduced area of 

optimal time-reversal convergence compared with Figure  5-9.  
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Figure  5-11 - Contour plot displaying T1 with respect to α , for time-reversal 

optimisation of single iris, at reduced spatial sampling of Δl = 0.36mm, Δt = 

8.56e-13s, X = 25, Y = 63, L = 9.07mm, W = 22.86mm and N = 16384. There 

are 20×20 points in the plot, with 71 contour levels. 
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The reduced area of optimal convergence in both examples can be explained 

by the fact that larger l  will sample fewer transverse modes of the 

waveguide, and thus result in errors in the time-reversal. In Figure  5-11 the 

optimum threshold value has increased, indicating there is less noise in the 

Poynting vector, which is expected if fewer modes are present. In both 

figures it is seen the optimum convergence rate, 2TRN  and 4TRN  

respectively, is unchanged by the level of spatial sampling. 

5.5 Case Studies 

Previous sections introduced the concept of component design using the 

time-reversal method, and performed an analysis of the effect of thresholds 

and damping with the time-reversal procedure on simple devices. This 

section will introduce four case study examples, two microwave filters, a 

waveguide bend, and a coupler.  

5.5.1 2nd Order Septa Filter 

This section optimises a band pass microwave filter using the time-reversal 

method, in order to demonstrate the ability of time-reversal to converge to a 

desired response. The circuit equivalence of the filter is used to produce a 

desired set of S parameters, which are then used as input parameters to time-

reversal to determine physical dimensions of optimised scatterers. 

 

In Figure  5-12 a 2D band pass filter formed from two metal septa spaced a 

quarter of a wavelength in the longitudinal direction of a metal parallel plate 

waveguide is shown. A practical filter would require five or more septa to 

achieve a narrow pass band, typically of around 1GHz, and return loss of 

around 5040  dB. However, the second order example is used to minimise 

the runtime and memory of the simulation. 
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The S parameters are optimised within the single mode of operation of the 

WR90 waveguide. Operating within the single mode region means the 

corresponding Maxwell’s equations are comparable to the Telegraphers 

equations [5.8] and the single mode transmission-line circuit equivalence of 

Figure  5-13 can be used to generate a set of desired S parameters. This 

equivalence holds, providing the septa are infinitely thin in the longitudinal 

direction, x . The waveguide has a cut-off frequency of  

 

W

v
fc 2

  (5.16) 

 

where v  is the speed of light in free space. For the WR90 waveguide of 

Figure  5-12, 86.22W mm and the cut-off occurs at 56.6 GHz. 

 

This example is synonymous with a 3D parallel plate waveguide, with 

uniform field in z . Only transverse magnetic (TM) modes are modelled. 

The width of each septum in the transverse direction determines its 

inductance [5.7].  
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Figure  5-12 - 2nd order X-band microwave band pass filter formed from two 

inductive septa in WR90 X-band waveguide, W = 22.86mm. rV̂ and iV̂  are 

the Fourier transform of the reflected and incident temporal voltage vectors 

onto the time-reversal-mirrors.  
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From Figure  5-13 the transmission-line equivalence is used to generate the 

desired dS11  and dS21, where septa are modelled using shunt inductances. 

The desired S parameters of the band pass filter are obtained analytically 

using the ABCD matrix formulation. The resulting ABCD matrix of the 

filter is found as a cascade of individual ABCD matrices for transmission-

lines and shunt inductances, i.e. 
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where 2/)4/( gLl  , 22
0 /1/ ffZZ cg  , 000 /Z , 

f /2 , were 22 /1/ ff cf    and 22 /1/ rcg ff  . rf  is 

the centre frequency of the filter. 
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Figure  5-13 - Transmission-line circuit equivalence of the microwave filter in 

Figure  5-12, L1 = 2.7nH, L2 = 2.85nH. 
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The desired dS11  and dS21 parameters are found from the ABCD matrix as 

[5.9] 

 

DCZZBA

DCZZBA
S

gg

ggd






/

/
11 , (5.18a) 

DCZZBA
S

gg

d




/

2
21 . (5.18b) 

 

The S parameters from the forward TLM simulation are obtained using 

Eqns.5.12a,b, i.e., 
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Desired S parameters are obtained for 7.21 L nH and 85.22 L nH. These 

values were chosen since they are known to be comparable with the 

inductance possible from the elements within a WR90 waveguide [5.7]. The 

symmetric spatial sinusoidal excitation with period two times the waveguide 

width is applied at the input port of the microwave filter, as in Eqn.5.14. 

Initial septa widths are set to 89.03 l mm each. The TLM simulation 

parameters are 297.0l mm, 137  et s, 67X , 77Y , 

89.19L mm, 86.22W mm, 16384N , 15.01 T , 6.02 T  and the 

damping, 93.0 . The centre frequency of the filter is 5.12rf GHz. 
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Figure  5-14 shows the S parameters converging to the desired S parameters 

at four separate iterations of the time-reversal procedure. The initial septa 

widths of 89.0321  lWW SS mm produce a poor approximation to the 

target performance, which is then optimised. It is seen the first few time-

reversal optimisation steps produce the most improvement in performance 

which is practically valuable for large problems that may preclude more 

than a few iterations. 

 

An exact match to the desired parameters is not expected since the 

inductance of each septum is not a fixed value but changes with frequency 

[5.7], a factor that is not accounted for in the analytical model of Figure 

 5-13.  
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To determine when optimal convergence is reached the scalar figure of 

merit of Eqn.5.20 is introduced as 

 

BW

BWN
dd

N

SSSS

FoM
2

21211111 

  (5.20) 

 

where BWN  is the number of sample points in the bandwidth the filter is 

optimised within.  
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Figure  5-14 - S parameters of 2nd order microwave band pass septa filter 

optimised using time-reversal, a) initial configuration, b) iteration 3, c) 

iteration 7, d) configuration at iteration 8. Δl = 0.297mm, Δt = 7e-13s, X = 67, 

Y = 77, L = 19.89mm, W = 22.86, N = 16384, optimised septa widths from 

Eqn.5.15 are WS1 = 1.96mm and WS2 = 2.55mm, snapped to TLM nodes WS1 = 

7Δl = 2.08mm and WS2 = 9Δl = 2.67mm 
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Application of Eqn.5.20 to the filter example is given in Figure  5-15, which 

shows the convergence of the FoM  with respect to the number of time-

reversal iterations and a monotonic improvement is observed for the first 8 

iterations after which no further improvement is seen. The flat sections in 

the graph are explained by the use of Eqn.5.15, since the updated septum 

widths are snapped to the nearest node when simulated in the TLM. Optimal 

septa widths using Eqn.5.15 are found to be 96.11 SW mm and 

55.22 SW mm, resulting in l7  and l9  respectively, when snapped to 

odd TLM nodes to keep the structure symmetric. 

5.5.2 2nd Order Iris Filter 

The design of a microwave band pass filter was demonstrated in the 

previous section where metal septa were placed to create shunt inductance. 

2 4 6 8 10 12 14
0.1

0.15

0.2

0.25

0.3

0.35

0.4

  

Fi
gu

re
 o

f 
M

er
it

,F
oM

TR Iterations, κ

XΔl = L
YΔ

l= W

λg/4

WS1 WS2

 

Figure  5-15 - Convergence of time-reversal design process of 2nd order band 

pass septa filter, Δl = 0.297mm, Δt = 7e-13s, X = 67, Y = 77, L = 19.89mm, W = 

22.86mm, N = 16384, optimised septa widths from Eqn.5.15 are WS1 = 1.96mm 

and WS2 = 2.55mm, snapped to TLM nodes WS1 = 7Δl = 2.08mm and WS2 = 

9Δl = 2.67mm from initial configuration of WS1 = WS2 = 0.89mm. 
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In general, any metal obstacle perpendicular to the direction of propagation 

will act as a shunt inductance [5.7]. In this example a band pass filter is 

designed using time-reversal, where the shunt inductance is created through 

the use of two irises as shown by Figure  5-16.  

 

 

The need to keep the irises infinitely thin in the longitudinal plane ( x -

direction) arises again, so as to compare the measured response from the 

microwave filter with the equivalent passive circuit of Figure  5-13. In this 

case the principle design methodology of the septa filter is followed, with 

the exception the desired values for 1L  and 2L  are now 75.2 nH and 

45.2 nH respectively. These values were chosen so as to demonstrate the 

time-reversal procedure optimising to smaller measured parameters. 

 

The source excitation is the spatial sinusoid of period W2 . The TLM 

simulation parameters are 199.0l mm, 1369.4  et s, 100X , 

115Y , 9.19L mm, 86.22W mm and 16384N . The threshold and 

damping values are 85.01 T , 83.02 T  and 96.0 . The initial widths 

between the segments of each iris are 13.126121  lWW SS mm. The 

11S  and 21S  output of the filter is measured using Eqn.5.19 and shown in 

Figure  5-17 against the desired response computed using Eqn.5.18.  
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Figure  5-16 - 2nd order X-band microwave band pass filter formed from two 

inductive irises spaced a quarter of a wavelength in the longitudinal direction. 
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The filter is optimised within the frequency band 1410  GHz, for the single 

mode of operation. The waveguide dimensions were WR90, where 

86.22W mm, the cut-off frequency of 56.6 GHz remains unchanged.  

 

The time-reversal design of the problem proceeds in Figure  5-18 showing 

the optimised S parameters at iterations 4, 5 and 9 of the time-reversal 

design.  
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Figure  5-17 - S parameters of 2nd order microwave band pass iris filter at start 

of time-reversal procedure. Δl = 0.199mm, Δt = 4.69e-13s, X = 100, Y = 115, L 

= 19.9mm, W = 22.86mm, N = 16384, iris spaces were WS1 = WS2 = 12.13mm. 
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Figure  5-19 shows the figure of merit, FoM , with respect to time-reversal 

iterations,  . The optimised dimensions of the irises using Eqn.5.15 were 

2.91 SW mm and 61.92 SW mm, snapped to TLM nodes 

34.9471  lWS mm and 74.9492  lWS mm. 

 

While time intensive, for this example it is simple to verify the time-reversal 

process has found the optimum solution by measuring FoM  for each 

combination of 1SW  and 2SW , in steps of the spatial sampling, l , for 

separate forward TLM simulations. In Figure  5-20 a contour plot is 

displayed, which shows the minimum is at 34.9471  lWS mm and 

74.9492  lWS mm, as found by the time-reversal. 
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Figure  5-18 - S parameters of 2nd order band pass iris filter optimised using 

time-reversal, a) iteration 4, b) iteration 5, c) optimised at iteration 9. Δl = 

0.199mm, Δt = 4.69e-13s, X = 100, Y = 115, L = 19.9mm, W = 22.86mm, N = 

16384, optimised irises from Eqn.5.15 are WS1 = 9.2mm and WS2 = 9.61mm, 

snapped to TLM nodes WS1 = 47Δl = 9.34mm and WS2 = 49Δl = 9.74mm.  
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Figure  5-19 - Convergence of time-reversal design process of 2nd order band 

pass iris filter, Δl = 0.199mm, Δt = 4.69e-13s, X = 100, Y = 115, L = 19.9mm, W 

= 22.86mm, N = 16384, optimised iris spaces from Eqn.5.15 are WS1 = 9.2mm 

and WS2 = 9.61mm, snapped to TLM nodes WS1 = 47Δl = 9.34mm and WS2 = 

49Δl = 9.74mm, from initial configuration of WS1 = WS2 = 12.13mm. 
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Figure  5-20 - Contour plot of FoM for WS1 with respect to WS2 for iris band 

pass filter, minimum is at WS1 = 47Δl = 9.34mm and WS2 = 49Δl = 9.74mm. Δl 

= 0.199mm, Δt = 4.69e-13s, X = 100, Y = 115, L = 19.9mm, W = 22.86mm, N = 

16384. A total of 45 contours are shown. 
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5.5.3 90° Waveguide Bend 

Waveguide systems, when deployed in large scale projects, often require the 

need to connect at angles due to obstructing external obstacles. One 

common waveguide interface occurs when two guides of matching 

dimensions are connected at right angles to one another [5.10] [5.11]. 

 

To minimise the return loss and maximise the throughput, the addition of a 

tuning post is often used [5.12] [5.13]. A tuning post placed within the bend 

of Figure  5-21 will excite a number of evanescent modes [5.7] which create 

a store of magnetic energy, and hence the post acts as an inductive obstacle. 

The required placement/size/shape of this post to minimise the return loss 

and maximise the throughput is often achieved through experience, 

analytical methods, or trial and error [5.13] [5.14].  
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Figure  5-21 - 90° WR90 waveguide bend, tuning post moves along DP to 

minimise return loss at the input port. 
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For simplicity, in the model designed here, the post position is of primary 

concern, and so the post is made rectangular and of fixed width and length, 

PP LW  . An analysis of the cost of fixing the size is performed after the 

time-reversal design is completed. The post is constrained to move along the 

main diagonal, shown by the dotted line in Figure  5-21. 

 

The design objective of the time-reversal is to determine the optimum 

displacement PD  at which the post should be placed to minimise the return 

loss at the input port, given only a ‘best-guess’ initial position. The output 

time-reversal-mirror captures the TLM voltages reflected from port 1 of the 

neighbouring TLM node, and is of the same size as the input time-reversal-

mirror at port 4.  

 

The design criteria are specified for the bend in the bandwidth of 

8.88.6  GHz and with a centre frequency of 8.7 GHz. 
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Although the microwave model cannot reach these values, it is informative 

to design for the best possible case. The figure of merit is the return loss 

 

 dfSFoM 1110log20  (5.22) 

 

where df  is the desired centre of the frequency band the bend is designed 

within. The source excitation is a spatial sinusoid at the input port of period 

W2 . The simulation variables are 18.0l mm, 1331.4  et s, 

220X , 125Y , 23.40L mm, 86.22W mm and 16384N . The 

initial position of the post is 26.15PD mm. The post width and length are 
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fixed to 5.530  lLW PP mm, The threshold and damping values are, 

89.01 T  and 9.0 . In Figure  5-22 four stages of the return loss are 

shown. 
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Figure  5-22 -  Return loss of 90° waveguide bend design optimised using time-

reversal, a) initial, b) iteration 7, c) iteration 11, d) optimised at iteration 13. Δl 

= 0.18mm, Δt = 4.31e-13s, X = 220, Y = 125, L = 40.23mm, W = 22.86mm and 

N = 16384. Optimised displacement DP = 20.43mm from initial DP = 15.26mm. 
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Figure  5-23 shows the return loss at the centre frequency ( 8.7 GHz) with 

respect to time-reversal iterations, the time-reversal algorithm was stopped 

when the return loss remained a minimum, and the final optimised diagonal 

displacement calculated from the final position of the post in TLM nodes 

was 43.20PD mm. The optimised return loss is seen to improve from 

12.1 dB to 07.28 dB, resulting in a throughput increase of 12% to over 

96 % of the input signal transmitted through the bend. A complex bend 

using multiple tuning posts typically achieves a return loss of around 

3530  dB, and hence the single post example is quite good. Tapered bends 

[5.11], using varying angles of taper, can reduce the return loss to around 

50 dB, but they are not discussed further here. 

 

 

For the time-reversal design the post width and length were fixed at 5.5 mm. 

This is often the case when waveguide components are manufactured, since 

varying the post size increases the complexity of the manufacturing process. 

It is informative to investigate the effect changing the post size has on the 
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Figure  5-23 - Convergence of time-reversal design of 90° waveguide bend. Δl = 

0.18mm, Δt = 4.31e-13s, X = 220, Y = 125, L = 40.23mm, W = 22.86mm and N 

= 16384. Optimised displacement DP = 20.43mm from initial DP = 15.26mm. 
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return loss. Eqn.5.23 compares the return loss for a post of size PP LW   to 

a post of size )()( lLlW PP  , and is used to compute the sensitivity 

in the return loss of the bend for varying post dimensions, where PP LW    

 

20

)()( 11),(11),(

101)(

ddBlPLlPWddBPLPW
fSfS

PWSens




  (5.23) 

 

df  is fixed at the desired centre frequency of 8.7 GHz. 

 

In Figure  5-24 an analysis of the sensitivity of the return loss to the post size 

is made, when the top left of the post was fixed at 81.16PD mm and the 

post area varied. The throughput varies by less than 5.1 % at 5.1 mm from 

the post size chosen for the time-reversal design. It is seen the post location 

is of more importance than its size. 

 

Further, since only a single variable (the post displacement) is optimised, it 

is possible to analyse the effect the initial post displacement has upon the 

convergence of the time-reversal design process. In Figure  5-25 the total 

time-reversal iterations are shown against the initial post displacement. It is 

seen that the further the post is from its optimal position, the greater the 

number of time-reversal iterations are required for convergence. 
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Figure  5-24 - Sensitivity analysis of varying tuning post size in 90° waveguide 

bend. Δl = 0.061mm, Δt = 1.44e-13s, X = 470, Y = 375, DP = 16.81mm, other 

parameters are the same as Figure  5-23. 
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Figure  5-25 - Time-reversal design iterations with respect to initial post 

displacement for the 90° waveguide bend matching section. Δl = 0.18mm, Δt = 

4.31e-13s, X = 220, Y = 125, L = 40.23mm, W = 22.86mm and N = 16384. 
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5.5.4 Directional Coupler 

5.5.4.1 Theory 

A directional coupler is a four port waveguide device used to couple an 

input signal from one waveguide into another [5.1]. In Figure  5-26 a two 

hole directional coupler for the WR90 waveguide is shown. The device 

ports are characterised by their operation. Port C is the coupled port, since a 

field incident at port A will couple to it. Port B is known as the through port, 

while port D is the isolated port. In an ideal directional coupler the isolated 

port will receive zero power. 

 

 

The coupling of any waveguide coupler is achieved due to cancellation and 

superposition of field components. The coupler structure is engineered so 

the field components through hole 1 and 2 travelling forward will add in 

phase, while those through hole 1 and 2 travelling to port D will cancel, 

isolating port D, while splitting the input signal between ports B and C 

ATRM BTRM

s/c

s/c

XΔl = L

YΔ
l=

W
=

 22.86m
m

z

y

x

WH1 WH2

YΔ
l=

 WDTRM CTRM

d

CD

A
exp(-jβd)

C2C1

B

μ0, ε0

μ0, ε0

 

Figure  5-26 - Standard microwave two-hole directional coupler for WR90 

wave guiding system. 
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[5.7]. In Figure  5-26 the reference plane is taken as the centre of hole 1, and 

it is seen the field at hole 2 has travelled a distance of d , the bold arrows 

are used to denote coupling coefficients through holes 1 and 2. Hence the 

forward field, at port C is 

 

   
  .exp

expexp

21

21

CCdj

djCdjCE C







 (5.24) 

 

The backward field through hole 2 travels a total distance of 2 d  to return to 

hole 1. d  forward in the lower waveguide and d  backward (out of phase) 

in the upper waveguide, hence the field D is  

 

    
  .2exp

2exp0exp

21

21

djCC

djCjCE D







 (5.25) 

 

Assuming 21 HH WW  , then 21 CC   and Eqns.5.24-5.25 simplify to read 

 

 djCE C  exp2 1 , (5.26a) 

  djCE D 2exp11  . (5.26b) 

 

If  nd 2 , where n  is an odd integer, 0DE , and hence port D of the 

coupler is isolated. Rearranging and substituting g /2  into the above 

requirement, gives for the hole separation 

 

  4// gnnd   . (5.27) 

 

The minimum separation between the holes, d ,  is for 1n , a quarter of a 

guide wavelength.  
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The coupling and directivity of a directional coupler in decibels for the 

coupler in Figure  5-26 is defined as [5.7] 

 






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
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log10 10 fP
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where AP  denotes power at the input port, CP  denotes power at the coupled 

port and DP  denotes the power at the isolated port. 

 

In the TLM simulation, the coupling and directivity are computed efficiently 

using 
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where the ^ operator denotes the Fourier transform of the time domain 

voltages and 10 Z  using normalised TLM nodes. 

5.5.4.2 Time-Reversal Design Process 

The time-reversal design objective is to determine the hole widths 1HW  and 

2HW  subject to an optimal coupling, the hole separation is fixed at 4/g , 

where g  is the wavelength of the desired frequency in the waveguide. It is 

seen in Figure  5-26 a total of four mirrors are required. The time-reversal-

mirror at port A is formed as 

 



 5. Microwave Component Design using Time-Reversal 

- 125 - 

),(,

,4
,

, kyVV RF

HPTRM
RF

HPTRMA  , (5.30a) 

 

where 1...0  Yy . Similarly,  

 

),(,

,4
,

, kyVV RF

HPTRM
RF

HPTRMD  , (5.30b) 

 

where YYy 2... . For the case of the time-reversal-mirrors at ports B and 

C, it is seen 

 

),(,

,2
,

, kyVV RF

HPTRM
RF

HPTRMB  ,   where 1...0  Yy ,  (5.30c) 

),(,

,2
,

, kyVV RF

HPTRM
RF

HPTRMC  ,   where YYy 2... .  (5.30d) 

 

The same design process as section  5.2 is followed, but with a few 

alterations that will now be described. Until now the time-reversal process 

has been demonstrated on purely two port systems, where both time-

reversal-mirrors are perturbed. In this model, only the coupling and 

directivity are perturbed. 

 

As an example, the desired coupling is fixed at 20 dB or 10%. This is a 

typical application when the coupler is used to split a high powered signal 

for measurement via a low powered device [5.1]. The difference equation in 

the bandwidth 108  GHz now reads 

 

otherwise,
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Port D is desired isolated and in the simulation 40 dB was used, or 1%, 

which is practically acceptable [5.15]. In this model, the hole widths are 

optimised. Better directivity, of around 5040  dB over a wider bandwidth, 

typically 43 GHz, can be achieved by using a higher order design; 

however, the second order design is demonstrated to allow the same model 

to be used in further development of the time-reversal in subsequent 

chapters.  

 

The time-reversal design process begins with initial hole widths of 

6.031  lWH mm and 99.052  lWH mm. It is known [5.1], for the 

backward and forward field components to cancel, 1HW  should equate to 

2HW . This restraint is not forced upon the time-reversal design process, as it 

is more interesting to illustrate whether the time-reversal determines this. 

TLM simulation parameters are 199.0l mm, 1369.4  et s, 115Y , 

86.22W mm and 16384N . The threshold and damping values were, 

05.01 T , 42.02 T  and 91.0 . The input excitation of the spatial 

sinusoid of period W2  is applied at port A. In Figure  5-27 three variations 

of the coupling and directivity are shown for the time-reversal design 

iterations, 4, 7 and 11 respectively. When optimised, 1HW  and 2HW  were 

found to be 73.5 mm each using Eqn.5.15, giving a TLM simulation with 

76.52921  lWW HH mm. The desired directivity of 40 dB is not 

achieved, as is expected since only two holes are used, yet it is informative 

to design for the best possible case. 
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In Figure  5-28 the measured hole widths at each design iteration are shown, 

from which it is seen the time-reversal design has found the optimum 

solution at iteration 11.  

 

To complete the analysis, Figure  5-29 shows the coupling and directivity 

against time-reversal iteration number,   at the centre of the bandwidth 

9 GHz.  

 

From Figure  5-28 and Figure  5-29 it is seen that the time-reversal design 

process continues to attempt optimisation due to the high design 

specification and the results oscillate around the optimum solution. This 

behaviour is a problem specific phenomenon that was not seen for the two 

filters or the bend design.  

c) 

8 8.5 9 9.5 10 10.5
0

5

10

15

20

25

30

35

40

 
 

8 8.5 9 9.5 10 10.5
0

5

10

15

20

25

30

35

40

 
 

 Frequency, f (GHz)

C
ou

pl
in

g,
 |C

|(
dB

)

D
ir

ec
ti

vi
ty

, |
D

| (
dB

)

|C|

|D|

 

Figure  5-27 - Coupling and directivity of directional coupler, time-reversal 

iteration a) κ = 4, b) κ = 7 and c) optimised, κ = 11. Δl = 0.199mm, Δt = 4.69e-

13s, Y = 115, W = 22.86mm and N = 16384. Initially WH1 = 0.6mm and WH2 = 

0.99mm. Optimised WH1,2 = 5.73mm using Eqn.5.15, snapped to TLM nodes 

the optimised holes are WH1,2 = 29Δl = 5.76mm. 
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To further investigate the oscillation, Figure  5-30 shows the coupling and 

directivity when the spatial discretisation is achieved using a finer mesh 

with 09.0l mm. The finer sampling removes the oscillation, at the 

expense of more than doubling the runtime. The optimal solution is found to 

be 45.521  HH WW mm. 
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Figure  5-28 - Measured hole widths of two-hole coupler during time-reversal 

design, optimum is found at κ = 11, and again at κ = 14, 17, 20. Δl = 0.199mm, 

Δt = 4.69e-13s, Y = 115, W = 22.86mm and N = 16384. 
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Figure  5-29 - Convergence of time-reversal design procedure of directional 

coupler design, a) coupling, b) directivity. Δl = 0.199mm, Δt = 4.69e-13s, Y = 

115, W = 22.86mm and N = 16384. Initially WH1 = 0.6mm and WH2 = 0.99mm. 

Optimised WH1,2 = 5.73mm using Eqn.5.15, snapped to TLM nodes the 

optimised holes are WH1,2 = 29Δl = 5.76mm. 
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Figure  5-30 - Convergence of time-reversal design procedure of directional 

coupler design using finer level of spatial sampling, a) coupling, b) directivity. 

Δl = 0.09mm, Δt = 2.15e-13s, Y = 251, W = 22.86mm and N = 16384. 



 5. Microwave Component Design using Time-Reversal 

- 132 - 

5.6 Conclusion 

The chapter began by reviewing the method of time-reversal design at 

microwave frequencies. This was then extended to the case of multiple 

design iterates, and the choice of threshold and damping values for use 

within the procedure was investigated. Four example case studies were 

introduced, two filters, a waveguide bend, and a directional coupler. The 

chapter has demonstrated the use of time-reversal for wide band system 

design, and shown how the method is derived for waveguide component 

optimisation. 

 

The need for four time-reversal-mirrors for the coupler design is seen to 

double the memory required by the time-reversal design algorithm. The next 

chapter investigates techniques for reducing the memory required for time-

reversal component design optimisation.  
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6. Interpolation and Modal Filtering 

 

 

 

 

 

 

 

Time-reversal simulation using the conventional numerical algorithm 

provides the basis for a simple component optimisation procedure. 

However, the computational requirements of the approach can become 

excessive, requiring the recording of complete field time histories on a 

surface surrounding the problem space. It was seen, for the final case study 

of the directional coupler of the previous chapter, the memory requirements 

of the time-reversal process doubled, due to the need for four time-reversal-

mirrors. In general, the memory requirements depend on the number of 

ports and the number of time steps in the simulation and can easily become 

intractable. 

 

In this chapter the Prony method presented in Chapter four is used for the 

design optimisation and as a way of reducing the number of temporal 

iterations required by the transmission-line modelling (TLM) method. 

 

Temporal, spatial and modal filtering methods are employed to reduce the 

computational resources demanded by the time-reversal process. The 

example case studies of the band pass filter, waveguide bend and coupler 

are used to quantify the balance between computational efficiency gains and 

final design quality.  
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6.1 Prony’s Method 

In this section Prony’s method introduced in Chapter four is applied to the 

design process to temporally extrapolate the time-reversal-mirror samples, 

reducing the memory requirements of the full time-reversal design method. 

 

The particular and homogenous solutions are both computed for the reduced 

time PNN  , after which the perturbation is performed. The reverse stage 

is computed for the full time N , using a Prony series with U  poles to 

extrapolate the additional PN  time steps.  

6.1.1 Results 

In order to measure the application of Prony’s method to time-reversal 

design, the second order septum filter first designed in Chapter five is 

repeated, with the exception, the initial forward particular and homogenous 

models are performed for the reduced time 8192N . The TLM parameters 

are the same as chapter five, where 297.0l mm, 137  et s, 67X , 

77Y , 85.19L mm, 86.22W mm, and 89.021  SS WW mm initially. 

A Prony series with 100U  poles matched over the last 2000  samples, is 

then used to extrapolate a further 8192PN  reverse time samples, giving 

the combined total of 16384 .  In Figure  6-1a the convergence of the time-

reversal design process using the scalar figure of merit is shown for the 

bandwidth 1410  GHz. The TLM time-reversal algorithm with Prony 

converges to the same solution of septa widths as in the classical time-

reversal optimisation in Chapter five, however the figure of merit is 

different to Chapter five, due to the reduced runtime of the forward 

particular solution, and hence the reduced number of sample points in the 

measure. Figure  6-1b shows the optimised S parameters. 
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Figure  6-1 - a) Convergence of time-reversal design process of 2nd order band 

pass septa filter, using Prony’s method to extrapolate half of the reverse 

temporal iterations, b) optimised S parameters. Δl = 0.297mm, Δt = 7e-13s, X 

= 67, Y = 77, L = 19.89mm, W = 22.86mm.  
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While successful in reducing the memory and runtime requirements of the 

time-reversal procedure, the number of poles in the Prony series is 

dependant upon the source, time-reversal-cavity and component designed. 

An alternative approach to the one presented is to perform the Prony 

extrapolation on the forward data before the perturbation is applied; this 

however had no noticeable differences. A general method for memory 

reduction that is applicable for a wider range of components is now 

demonstrated. 

6.2 Temporal and Spatial Linear Interpolation 

As discussed in Chapter five, the perturbation of the reverse scattered field 

before the reverse simulation, causes a loss of resolution of the scattering 

object. The key issue is whether the quantity of recorded data can be 

reduced in order to save memory without causing significant loss of 

resolution. In this section, the methods of temporal and spatial linear 

interpolation applied to the time-reversal-mirrors are investigated. 

 

Linear interpolation is used to estimate unknown samples of a discrete 

ordered data set. For the purpose of time-reversal, the time-reversal-mirrors 

will only save a proportion of the forward time data, interpolating the 

unknown samples as the weighted average of the neighbouring stored 

values. In temporal interpolation every k th temporal sample is stored. For 

example, if 50 % of the time-reversal-mirrors are stored then 1 in every 2 

temporal samples are stored, see Figure  6-2a. If 80 % of the time-reversal-

mirrors are stored then 4 in 5 samples are stored etc. In this manner, to 

ensure that the interpolation is equally spaced in the time-reversal-mirrors, 

storing more than 50 % of the time-reversal-mirrors means storing 1N  in 

every N  samples, while below 50 % requires storage of 1 in every N  

samples, interpolating those samples not stored. 
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Spatial linear interpolation is similarly applied, with the exception the 

interpolation is applied to the spatial index of the time-reversal-mirror. 

 

The method of spatial or temporal linear interpolation is seen to reduce the 

memory requirements of the time-reversal-mirrors, from NX   to 

TRMNNX /  or NY   to TRMNNY / , where TRMN  is the level of 

interpolation. Both spatial and temporal interpolations are problem 

independent, in that they are applied to the time-reversal-mirrors, with no 

knowledge of the component structure. 

6.3 Modal Decomposition 

In many cases, a more appropriate representation of the scattered fields for 

the purposes of complexity reduction is a local modal decomposition. With 

modal filtering only a simple time varying scalar amplitude for each 

physically significant mode present in the far field need be stored rather than 

a full time varying vector of spatial samples across the waveguide. 

 

As an example, for a 2D parallel metal plate waveguide with Y  transverse 

nodes, there are 1 YNM  possible modes. If a symmetric spatial sinusoid 

excites the waveguide as in the previous examples of Chapter five, only a 
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Figure  6-2 - Illustration of linear temporal interpolation. Grey boxes are 

samples stored, while white are interpolated as the weighted average of the 

nearest stored neighbour. 
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limited number of these modes will actually exist [6.1]. The symmetric 

source is known to excite only odd symmetric order modes, and hence 

2/)1(  YNM , where Y  is odd 
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Assuming the symmetric excitation of Eqn.6.1, the transverse modal 

distribution within the waveguide using TLM shunt nodes is expressed as 
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where nA  is the amplitude of the mode 12 n , and n  ranges from 0  to 

1MN . Multiplication of Eqn.6.2 by the spatial sinusoid over one half 

period W , and summation over the spatial domain, y  and the modal 

domain, n , gives 
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As 0l , the summation of the squared spatial sinusoid will tend to 2/Y  

for all n , since a symmetric excitation is assumed. Eqn.6.3 becomes 
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Rearranging, it is seen the modal amplitudes of Eqn.6.2 are 
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Hence for a single mode, Eqn.6.5 is written as 
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where n  in the range 0  to 1MN  denotes the modes 2,...5,3,1 Y  (odd 

symmetric). The time-reversal design procedure remains unchanged, with 

the exception that the reverse time-reversal-mirror update equation, is now, 

in modal form 

 

),()',(),( knVknVknV F
HTRM

F
PTRM

R
TRM  . (6.7) 

 

The modal decomposition method is possible, providing the modal content 

of a device is known. 

6.4 Case Studies 

In this section, the case studies introduced and designed using time-reversal 

in Chapter five, are analysed for the temporal and spatial linear 

interpolation, and modal decomposition memory reduction methods. The 

TLM parameters are the same as those given in Chapter five. 

6.4.1 2nd Order Septa Filter 

The microwave band pass filter formed from the network of two metal septa 

in a WR90 waveguide of width 86.22W mm, was designed using time-

reversal in the previous chapter. 
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6.4.1.1 Temporal and Spatial Linear Interpolation 

For each interpolation level, a time-reversal design simulation is performed, 

beginning with the initial septa widths, and optimising to the desired 

response. In Figure  6-3a a comparison of the figure of merit of the final 

solution, and the number of time-reversal iterations until convergence is 

shown, using temporal linear interpolation. The left vertical axis shows the 

number of time-reversal iterations until convergence is reached; the right 

shows the figure of merit of the final solution found. The extent of filtering 

is expressed as the percentage of the full data set recorded and is shown as 

the horizontal axis. 

 

Comparison of Figure  6-3a to Figure 5-15 shows the optimal solution is 

found when 100 % of the time-reversal-mirrors are stored as expected. 

Interpolation to approximately 88 % is seen to be possible without changing 

the final solution, at the expense of requiring further time-reversal iterations. 

If less than 88 % of the time-reversal-mirrors are stored, the interpolation 

causes erratic suboptimal convergence.  

 

In Figure  6-4a the septa widths with respect to the level of temporal 

interpolation are shown. As an example of a poor design, the widths of the 

septum when 33 % (1 in 3 samples) of the time-reversal-mirrors were stored 

are seen to be 48.11 SW mm and 89.02 SW mm, compared to the optimal 

solution in TLM nodes of 08.271  lWS mm and 67.292  lWS mm, 

these are largely inaccurate. 
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Figure  6-3 - a) Temporal interpolation applied at time-reversal-mirrors for 

septa microwave band pass filter, b) spatial interpolation. TLM parameters 

are as in Chapter five. 
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Figure  6-4 - Septa widths for: a) temporal interpolation applied at time-

reversal-mirrors for septa microwave band pass filter, b) spatial interpolation.  

TLM parameters are as in Chapter five. 
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In Figure  6-3b the interpolation of spatial data is shown, where the figure of 

merit has converged to an approximate minimum to 33 % of the time-

reversal-mirrors stored. In Figure  6-4b the septa widths are shown, where it 

is seen the second septum is affected the most by the spatial interpolation. 

The result of using less memory is an increase in time-reversal iterations, 

which increase to 15  at 33 %. The multiple simulations take many days to 

complete, which was the reason for choosing a second order filter, practical 

filters require many septa and achieve return losses of around 5040  dB in 

the pass band, yet are computationally expensive to simulate. 

 

For comparison with Chapter five, the time-reversal design convergence 

when 80 % of the spatial time-reversal-mirrors are stored is shown in Figure 

 6-5.  
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Figure  6-5 - Convergence of time-reversal design process of 2nd order band 

pass septa filter, storing 80% of spatial time-reversal-mirrors. TLM 

parameters are as in Chapter five. 
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From Figure  6-5 it is seen the interpolation has caused the time-reversal to 

take longer to converge in the initial first few design steps, after these, the 

interpolation achieves the same result as found when storing the full time-

reversal-mirrors. 

6.4.1.2 Modal Decomposition 

The method of modal decomposition from Eqn.6.6, is expressed in the form 

for the input and output ports respectively of the filter as 
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where the matrix 2,4M  is an MN  by N  store of the modal amplitudes. The 

time-reversal design is repeated, for increasing modes stored. The numerical 

parameters are the same as before.  

 

In Figure  6-6 the number of design iterations required for convergence and 

the FoM  of the optimized solution for the band pass filter example is 

shown, ranging from 6.2 % (only the dominant lowest order mode is stored) 

to 100 % (all higher order evanescent modes stored).  

 

It is seen the number of time-reversal iterations until convergence is reached 

changes with the number of stored modes, and stabilized when more than 

80 % of the modes were stored. For this small test example, this is a sizeable 

memory saving of 1946 KB. 
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6.4.2 2nd Order Iris Filter 

The band pass filter created through the use of inductive irises was designed 

using time-reversal in Chapter five. In this section, the results for the three 

memory reduction methods applied to this example are demonstrated. 

6.4.2.1 Temporal and Spatial Linear Interpolation 

The temporal interpolation is applied identically to the septa filter. A 

separate time-reversal simulation is computed for each level of 

interpolation, and the results are given in Figure  6-7a. In Figure  6-8a the iris 

widths are shown. For this example it is seen the temporal interpolation is 

ineffective. 
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Figure  6-6 - Modal decomposition applied at time-reversal-mirrors for septa 

microwave band pass filter. Iterations until convergence and FoM of 

optimised solution with respect to percentage of odd modal amplitudes stored. 

TLM parameters are as in Chapter five. 
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Figure  6-7 - a) Temporal interpolation applied at time-reversal-mirrors in 

example of microwave iris band pass filter, b) spatial interpolation. TLM 

parameters are as in Chapter five. 
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Figure  6-8 - Iris widths for: a) temporal interpolation applied at time-reversal-

mirrors in example of microwave iris band pass filter, b) spatial interpolation. 

TLM parameters are as in Chapter five. 
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In Figure  6-7b and Figure  6-8b the result of spatial interpolation of the iris 

filter is shown. Similarly to the septa filter, the spatial interpolation 

outperforms the temporal, and results in a memory reduction of 

approximately 10 %, further reductions result in suboptimal solutions. 

6.4.2.2 Modal Decomposition 

In this section the modal decomposition method is applied. Similarly, since 

the design uses the symmetric excitation of Eqn.6.1, only odd modes are 

stored. A separate time-reversal design is performed for increasing number 

of odd modes stored, and the results of Figure  6-9 are found. The optimum 

percentage of stored modes is approximately 85 %, a memory reduction of 

2189 KB. 
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Figure  6-9 - Modal decomposition applied at time-reversal-mirrors in example 

of microwave iris band pass filter. Iterations until convergence and FoM of 

optimised solution with respect to percentage of odd modal amplitudes stored. 

TLM parameters are as in Chapter five. 
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It is seen in Figure  6-9, the convergence was erratic until approximately 

50 % of the odd modes were stored, at which point the simulation becomes 

stable and then after approximately 65%, begins to converge, reaching the 

optimum solution when 85 % or more odd modes were stored.  

 

To investigate this effect further, the optimised S parameters when time-

reversal design is performed with 40  and 56  ( 1MN ) odd modes stored, 

is shown in Figure  6-10a,b respectively. These correspond to 70 % and 

100% of the odd modes. When 40  modes were stored the optimised iris 

widths in TLM nodes were 34.91 SW mm, and 73.112 SW mm, in 

comparison, the optimal widths are 34.91 SW mm and 74.92 SW mm, 

which shows the reduced modes stored has impacted the convergence of the 

second iris, resulting in the suboptimal S parameters of  Figure  6-10a. 
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6.4.3 90° Waveguide Bend 

The waveguide bend example of the optimisation of the tuning post is now 

investigated with the application of the memory reduction methods. 

6.4.3.1 Temporal and Spatial Linear Interpolation 

The temporal interpolation applied for the time-reversal design of the bend 

results in Figure  6-11a and Figure  6-12a for the return loss and post 

displacement respectively. It is seen, as more temporal samples are 

interpolated (as the percentage reduces), the return loss of the design 

increases. A direct correlation between increased iterations and optimised 

solution is seen. In general, the iterations increase as more of the time-

reversal-mirror is stored, and a better design is found. As discussed earlier, 

complex bends using multiple posts can achieve return losses of around 

3530  dB. With this in mind, the single tuning post model for interpolation 

of 9590  % is acceptable since only a single post has been used. 
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Figure  6-10 - Initial, optimised and desired S parameters for iris filter when a) 

40 modes were stored and b) 56, TLM parameters are as in Chapter five. 
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Figure  6-11 - a) Temporal interpolation applied at time-reversal-mirrors in 

example of 90º waveguide bend, b) spatial interpolation. TLM parameters are 

as in Chapter five. 
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Figure  6-12 - Post displacement for: a) temporal interpolation applied at time-

reversal-mirrors in example of 90º waveguide bend, b) spatial interpolation. 

TLM parameters are as in Chapter five. 
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In Figure  6-11b the application of the spatial interpolation to the bend 

design is shown. In this case it is seen the return loss varies between 

approximately 15  to 28 dB, and only when around 75% or 100 % of the 

time-reversal-mirrors are stored, is the optimum design found. In Figure 

 6-12b the post displacement with respect to the level of spatial interpolation 

is shown, where it is seen again, small changes in the displacement have a 

large impact on the return loss. 

6.4.3.2 Modal Decomposition 

In this section, the application of the modal decomposition to the bend is 

demonstrated. The modal decomposition for the filter models, shown in 

Eqn.6.8 now reads 
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where )( YX   is the spatial offset in x  for the time-reversal-mirror at the 

output port.  

 

The results of the modal decomposition, applied at the time-reversal-

mirrors, using Eqns.6.9 for increasing percentage of odd modes stored, is 

shown in Figure  6-13. As before, a separate time-reversal design simulation 

is performed for each level of modal amplitudes stored. In Figure  6-13 it is 

seen, the convergence remains steady when approximately 70 % of the odd 

modes were stored, a memory reduction of 4762 KB. 
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6.4.4 Directional Coupler 

The directional coupler example requires four time-reversal-mirrors. This 

doubles the memory required in comparison to the previous devices shown. 

Due to the need to repeat the simulation at varying levels of interpolation, 

the coarser model, with 199.0l mm from Chapter five is used. 

6.4.4.1 Temporal and Spatial Linear Interpolation 

The time-reversal-mirrors of the coupler are treated individually for 

application of the interpolation. For temporal interpolation, the coupling is 

as shown in Figure  6-14a, while Figure  6-14b shows the directivity. The 

coupling is seen to be largely unaffected by interpolation above 20 %; 

however the directivity, which defines the isolation of port D, only remains 

optimal when 90 % or more of the time-reversal-mirrors are stored.  
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Figure  6-13 - Modal decomposition applied at time-reversal-mirrors in 

example of 90º waveguide bend. Iterations until convergence and return loss 

of optimised solution with respect to percentage of odd modal amplitudes 

stored. TLM parameters are as in Chapter five. 
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Figure  6-14 - Temporal interpolation applied at time-reversal-mirrors in 

example of directional coupler, a) coupling, b) directivity. TLM parameters 

are as in the coarser model of Chapter five. 
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In Figure  6-15a the hole widths of the coupler with respect to the temporal 

interpolation is shown. It is seen the hole widths reach the optimal solution 

of 76.52921  lWW HH mm when 90 % or more of the time-reversal-

mirrors are stored.  

 

Similarly, spatial interpolation applied at the time-reversal-mirrors of ports 

A through D, is shown for the hole widths in Figure  6-15b and the coupling 

and directivity in Figure  6-16a,b, respectively. Again, the coupling appears 

largely unaffected by the use of interpolation; however the directivity is 

hindered considerably.  

 

A directivity of 20 dB at 90 % interpolation, shows more power is lost to 

the isolated port, than is coupled. A practical coupler would need a 

directivity of at least 30 dB, and hence the spatial interpolation is ineffective 

for this example. 
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Figure  6-15 - Hole widths for: a) temporal interpolation applied at time-

reversal-mirrors in example of directional coupler, b) spatial interpolation. 

TLM parameters are as in the coarser model of Chapter five. 



 6. Interpolation and Modal Filtering 

 

- 159 - 

a) 

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

 
 

 

10 20 30 40 50 60 70 80 90 100
20

30

40

50

60

70

80

90

 
 

  

 

It
er

at
io

ns
 u

nt
il

 c
on

ve
rg

en
ce

, N
T

R

C
ou

pl
in

g,
|C

| (
dB

)

Iterations, NTR |C|

% Spatial TRM stored  

b) 

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

 
 

 

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

 
 

  

 

It
er

at
io

ns
 u

nt
il

 c
on

ve
rg

en
ce

, N
T

R

D
ir

ec
ti

vi
ty

, |
D

| (
dB

)

Iterations, NTR |D|

% Spatial TRM stored  

Figure  6-16 - Spatial interpolation applied at time-reversal-mirrors in 

example of directional coupler, a) coupling, b) directivity. TLM parameters 

are as in the coarser model of Chapter five. 
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6.4.4.2 Modal Decomposition 

The modal decomposition of Eqns.6.8 now read 
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Using Eqns.6.10, the modal decomposition method is applied upon the four 

ports of the coupler, and results in Figure  6-17. The time-reversal design 

iterations until convergence and the coupling with respect to the percentage 

of odd modes stored is shown in Figure  6-17a. In comparison, the directivity 

is given in Figure  6-17b. It is seen that providing approximately 60 % or 

more of the odd modes are stored, the time-reversal iterations to 

convergence are 11TRN  or 12TRN  and the optimal solution is found. It 

is likely the fluctuation of the iterations can be removed by increasing the 

spatial sampling of the model, as was seen in Chapter five, yet this would 

greatly increase the computational demand of the repeated simulations. 

 

This problem requires approximately 29184 KB to store the four time-

reversal-mirrors using standard modal time-reversal. Hence, a 40 % 

reduction (11674 KB) is a considerable memory saving.  
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Figure  6-17 - Modal decomposition applied at time-reversal-mirrors of 

directional coupler. a) Iterations until convergence, and coupling of optimised 

solution with respect to percentage of odd modal amplitudes stored, b) 

directivity. TLM parameters are as in the coarser model of Chapter five. 
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6.5 Conclusion 

Time-reversal as a technique for microwave component design has notable 

computational requirements. In this chapter a number of approaches have 

been introduced to ameliorate this problem without compromising the 

performance of the iterative optimisation process. 

 

The two microwave band pass filters, waveguide bend, and directional 

coupler examples designed using the standard time-reversal procedure of the 

previous chapter, were redesigned with the application of the memory 

reduction methods. 

 

Linear interpolation, both in the spatial and temporal domains has been used 

to reduce the memory required. The performance with the majority of 

design models is acceptable above 90 % of the stored time-reversal-mirrors; 

however the degree to which they are applied is largely problem specific, 

erratic, and typically results in degradation of the final design. A direct 

correlation between optimised solution and design iterations is seen, where 

in general, fewer design steps results in a poor solution. 

 

The modal decomposition method converged to the optimum solution in all 

test designs, with at least a reduction of 15 % of the odd modes stored, 

although it is seen for the bend and coupler models 3730  % reductions 

were possible.  
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7. Convergence Acceleration 

 

 

 

 

 

 

 

The most obvious disadvantage of the time-reversal design method is the 

need for multiple time domain simulations which are inherently 

computationally intensive and therefore it is critically important to 

maximize the convergence rate of the iterations. In this chapter the 

physically based time-reversal iterations are accelerated using both 

stationary and non-stationary linear acceleration methods. Krylov subspace 

methods which provide a valuable improvement in computational efficiency 

are considered, and the design examples of the filters, waveguide bend and 

coupler are demonstrated using the acceleration methods. 

 

A number of symbols used previously in the thesis, are used here in the 

context of the derivation of the acceleration methods and do not represent 

the same quantities.  

7.1 Time-Reversal and Iterative Acceleration 

The need for solutions of large systems of linear equations has become 

common place in modern engineering applications. Before the popularity of 

iterative methods, direct solvers were common place. These were typically 

designed for a single structure, and although fast, had limited application. 

The use of numerical iterative solvers became more popular with the ease of 

access to computing resources, and have been gaining popularity in many 

areas of scientific computing [7.1].  
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The idea examined here stems from the fact that each time-reversal 

optimisation iteration is analogous to a steepest descent minimization step: 

only the most recent state of the design is explicitly used to determine the 

next search direction. Therefore, it is proposed that acceleration methods 

classically employed to significantly improve the convergence rates of 

algebraic minimisation problems will provide the same advantages if 

adapted to time-reversal optimisation. 

 

A typical application of an iterative linear solver will act upon the equation 

 

bxA   (7.1) 

 

where A  is a NN   matrix, b  is a 1N  vector of desired values and x  is 

the 1N  vector to be found.  

 

In Figure  7-1 a block illustration of the iterative time-reversal design 

process using acceleration is shown. The simulation begins with the input of 

the constant primary excitation, a forward simulation is performed, and the 

S parameters measured, the solution is subtracted from the desired solution, 

to give the difference vector, Ĝ . The subscript   denotes the time-reversal 

iteration. The reverse simulation proceeds and the scatterer dimensions are 

measured as before. The distinction of the accelerated time-reversal is in 

how the excitation for the reverse simulation is updated. The matrix operator 

A  is introduced, and can be thought of as the process of (a) performing the 

reverse time simulation, (b) the extraction of the scatterer geometry, (c) 

performing a forward simulation with this geometry excited by the primary 

source and (d) measurement of the scattering parameters. 
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It is clear that A  is actually non-linear, however it is proposed that it can be 

treated as sufficiently linear with respect to the small perturbations to x  to 

permit application of the established acceleration methods. 

 

The perturbation applied to the time-reversal-mirror when S parameters are 

optimised, can be expressed as a difference vector in the form Ĝ .  In terms 

of iterative solver mathematics, the vector at the input (TLM port 4) and the 

output (TLM port 2) 
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is usually referred to as the residual, and is a measure of error. The residual 

of Eqn.7.1 is expressed as 

 

Desired S 
parameters

Forward time 
simulation

Constant 
primary 

excitation

+
-

Ĝ

Reverse 
simulation

Scatterer 
extraction

xAS 

bS d 
Apply to 

reverse 
mirrors

V Homogenous 
simulation

Apply 
acceleration 
method and 
check for 

convergence

V

 

Figure  7-1 - Schematic illustration of time-reversal design process using linear 

acceleration. 
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xAbr  . (7.3) 

 

The S parameters are calculated from the Fourier transform of the temporal 

voltages incident and reflected upon the time-reversal-mirrors at the input 

and the output, as defined in Chapter five 

 

)(ˆ

)(ˆ
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1)2,1(
fV

fV
fS

i

r
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With this in mind it is straightforward to represent the time-reversal process 

in the matrix form as  

 

xAbG ˆ , (7.5) 

 

where b  is a 1N  vector representing the desired S parameters, x  is a  

1N  vector of reflected voltages on the time-reversal-mirrors and A  is the 

diagonal NN   matrix representing iV4
ˆ/1 , the incident voltages at the 

input. 

 

The matrix A  is easily invertible. However, inversion of A  directly to find 

x  is not useful for time-reversal, since x  may not necessarily correspond to 

a physical component structure when found in this manner. Instead x  is 

optimised iteratively, constraining to a given device. 

 

It is widely known that the solution of large systems of linear equations can 

be accelerated using either stationary point methods, such as successive over 

relaxation (SOR) [7.1], or non-stationary or Krylov subspace methods [7.2] 

such as conjugate gradients (CG) and generalized minimal residual 

(GMRES). 
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7.2 Successive Over Relaxation 

The method of SOR is among the most commonly used stationary point 

methods, and is assumed to originate from the early work of Southwell 

[7.3]. In general, iterative methods that can be expressed in the form 

 

cxMx   1  (7.6) 

 

where M  and c  are independent of the time-reversal iteration  , and are 

broadly classed as stationary point, since they optimise the vector x  using 

the same parameters at each time-reversal iteration,  . SOR accelerates 

convergence by introducing the stationary point  . The update equation for 

the SOR method is [7.1] 

 

 cxMx 1  (7.7) 

 

where   in this context is used to denote the SOR point variable in the 

range 20   . M  and c  are defined as 

 

 UDLDM    )1()( 1  (7.8) 

bLDc 1)(    (7.9) 

 

where D , U , L  are the diagonal, upper triangular and lower triangular 

matrices of A  respectively. 

 

In the context of time-reversal, it can be seen from Eqns.7.8-7.9 that M  

and c  are independent of the time-reversal iteration   as desired. Since A  

is a diagonal matrix 0 LU , this simplifies Eqns.7.8-7.9  
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  )1()1(1    DDM , (7.10) 

bDc 1  . (7.11) 

 

Substitution of Eqns.7.10-7.11 into Eqn.7.7 gives 

 

bDxx 1
1 )1( 
    . (7.12) 

 

Substitution of Eqn.7.12 into Eqn.7.2 with the use of Eqn.7.4 gives 
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Eqn.7.13 is expanded and simplified to give 
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Eqn.7.14 is the final form of the SOR as applied to microwave time-

reversal, and it can be seen that the method results in the use of one extra 

variable,  , applied to the difference vector, Ĝ  during the perturbation 

phase of the time-reversal process. The resulting time-reversal-mirror 

perturbation at time-reversal iteration   is  
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where SORG  is the inverse Fourier transform of SORĜ  from Eqn.7.14. 

 

The choice for   is selected within the range 20    [7.1], however due 

to the application of SOR in Eqn.7.15, 1  is redundant. In general terms, 

the optimum choice for   is problem specific. The application of   will 

also result in a different field plot formed from the maximum of the 

Poynting vector during reversal, and hence the optimum damping and 

threshold values for a simulation will not necessarily match those used for 

the classical time-reversal. In the examples of this thesis, the SOR variable, 

 , was varied incrementally at each choice of time-reversal damping,  , 

similarly to how the optimum thresholds are determined. 

7.3 Conjugate Gradients 

Stationary point methods can progress towards the optimum solution in 

directions already explored by previous iterations and this behaviour creates 

redundancy in the technique [7.4]. 

 

An alternative to the SOR approach is to ensure that the residual vectors r  

from successive iterations are orthogonal to one another. This is non-

stationary acceleration and is the basis of Krylov subspace linear solvers 

such as the conjugate gradient (CG) method [7.2] [7.5]. Using the 

orthogonal residual vectors to construct search directions, ensures the 

iterative procedure does not take a step in the same direction as a previous 

iteration. The CG method is used to orthogonalise the vector x  for the 

reverse time simulation.  
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Krylov subspace methods in general, of which CG is an example, project 

the solution, x , onto the set of vectors ,...},,{ 2 bAbAb , where b  is the 

solution being sought, and A  is the matrix operation, in a manner so as to 

minimize xAb  .  

 

A vector, d  termed the search direction, is taken from the subspace [7.5] 

 

 ....,,, 0
3

0
2

00 rArArArD   (7.16) 

 

The subspace shown in Eqn.7.16 is known as a Krylov subspace, and is 

formed from the repeated application of the matrix A  to the residual. This is 

the foundation of the CG Krylov subspace method. Eqn.7.16 requires only 

the previous search vector to determine the new search direction, and hence 

storage of the full subspace D  is not required. 

 

The full derivation of CG is voluminous, and not necessary for this work, 

details can be found in [7.1], [7.5] and [7.6]. The CG algorithm summarises 

as 
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and 
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At 0 , r0  and d0  are set to  

 

xAbrd 000   (7.17f) 

 

for initial estimate x0 . 

 

For the purposes of time-reversal, the CG method of Eqns.7.17 is applied to 

the vector x , for the input and output ports at time-reversal iteration,  , 

from the forward particular solution. The resulting vector x1  is used for 

computation of the inverse simulation, through the difference vector Ĝ .  

 

It can be seen the time-reversal process of forward and reverse simulations, 

can be thought of as computations at times,   and 1 , respectively, 

where the next forward and reverse simulations are iterations 1  and 

2 . Hence the first forward particular simulation (with scattering 

elements in place) is computing x0  for use in Eqns.7.17 to orthogonalise 

for the reverse simulation. 

7.4 Generalised Minimal Residual 

In section  7.3, the solution to the matrix equation bxA  , was accelerated 

using CG to determine orthogonal search directions, which is a form of 

Gram-Schmidt conjugation [7.4]. An alternative approach is to minimise the 

norm of the residual, r  in the Krylov subspace [7.4]. This is the 

methodology for the generalised minimal residual (GMRES) technique.  
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In GMRES, a modification of the Gram-Schmidt process, termed the 

Arnoldi Gram-Schmidt method [7.1] is used to derive the orthogonal basis 

vectors for the search directions. The Arnoldi method forces Gram-Schmidt 

orthgonalisation upon the search directions, by removing all components 

that are not orthogonal to previous search directions, the vectors d  then 

form a Krylov subspace. This can be thought of as an explicit algorithm, in 

comparison to CG which is implicit. 

 

In GMRES acceleration all previous search directions are needed to perform 

the orthogonalisation. It is necessary to introduce further notation. The 

subspace formed from the union of vectors d , will be termed D , where 

the subscript is now used to denote the number of vectors stored in the 

subspace D , of dimensions N . 

 

Before GMRES is introduced, it is first necessary to define the upper 

Hessenberg matrix H  [7.7] [7.8], as an TRTR NN 1   matrix with zeros 

below the first sub diagonal. By use of the Arnoldi Gram-Schmidt 

procedure the GMRES algorithm is given as [7.4] 

 

2000 / rrd   (7.18a) 

0),( baH  for 10  TRNa , TRNb 0  (7.18b) 

for 1,...1,0  TRN  

      dAw    (7.18c) 

      for ...2,1,0a     

            dwaH a
T

 ),(  (7.18d) 

            daHww a),(   (7.18e) 

      end for 
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      yDxx   0  (7.18n) 

end for 

 

where  0,....0,0,10 T  and is of dimension 1 . 

 

Eqns.7.18c-h are the Arnoldi Gram-Schmidt procedure. It is seen w  is a 

temporary vector, formed from the Arnoldi vector at   multiplied by A , 

orthogonalised to all previous Arnoldi vectors, and hence becomes d1 . 

The Arnoldi method forces Gram-Schmidt orthgonalisation upon the unit 

vectors d , by removing from w  all components that are not orthogonal 

to previous d , hence 
2

/ ww   is orthogonal to all previous d , and 

the vectors d , form a Krylov subspace. 

 

The algorithm breaks down at Eqn.7.18g if 
2

w becomes zero, this will 

only happen if the residual is zero, and hence is sometimes termed a lucky 

breakdown [7.1]. 

 

In the case of time-reversal, y  from Eqn.7.18m is required to update x   

in Eqn.7.18n to perform the reverse simulation. The Hessenberg matrix has 

zeros below the first sub diagonal; it is this property that allows efficient 

computation of y . A method known as QR decomposition [7.9] is first 

performed to express the Hessenberg matrix as RQH  , where Q  is 
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orthogonal of dimensions  1 , and R  is upper triangular and of 

dimensions   . 

 

The matrix Q  is formed from the orthognalised column-wise vectors of H ,  
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where the hi  are column vectors of dimension 1 , calculated as 
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,.)(iH  are the column vectors from H  and ,  is the inner product defined 

for two general vectors as   1221 *, hhhh T . Since IQQT   [7.9], the 

matrix R  is calculated as  

 

2

,.),(),(
h

h
aHHQbaR

b

bT   (7.21) 

 

where ...0a  and ...0b . 

 

The matrix R  is upper triangular since the inner product is 0  for ba   

[7.9]. The problem of finding y  such that Eqn.7.18m is a minimum can 
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now be re-expressed using the RQ  decomposition of H , hence Eqn.7.18m 

becomes 
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Assigning, a new vector 020  rQT  the problem is reduced to finding 

the solution to Eqn.7.23. 

 

yR  . (7.23) 

  

Reverse Gaussian elimination is then used to solve for y .  
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It is important to note, the GMRES method requires storage of the full 

Krylov subspace, D , a problem that is not encountered when using CG. In 

practice this memory is negligible in comparison to the size of the time-

reversal-mirrors. If memory is a problem, a restarted version of GMRES can 

be used, where the procedure is stopped at  , and restarted with step   

becoming step zero [7.4]. For the purposes of time-reversal, restarted 

GMRES will not be needed since the optimum solution is generally found 

before the dimensions of D  become a problem. Further details of GMRES 

can be found in [7.1]. 
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7.5 Case Studies 

The case studies of the previous chapters are now demonstrated, with the 

application of the three linear acceleration methods. The TLM parameters 

and initial and desired optimisation criteria are the same as those used in 

Chapter five. 

7.5.1 2nd Order Septa Filter 

The microwave filter created by the cascaded network of two metal septa in 

the WR90 waveguide was designed using the classical time-reversal design 

process in Chapter five. In this section, the acceleration methods of SOR, 

CG and GMRES are applied to the filter and compared with the classical 

solution. 

7.5.1.1 Stationary Point Acceleration 

In section  7.2, the SOR method applied to the optimisation of S parameters 

results in Eqn.7.15. In Figure  7-2 the figure of merit, FoM , against iteration 

number for different values of    is shown. Three selected values of   are 

given, where it is seen, optimal convergence is found for 58.054.0   , 

(within this range the results do not change). The SOR has converged to the 

optimum solution with a reduction of 2 time-reversal design steps. This is 

the maximum possible acceleration using SOR, as other values for   

produce slower convergence. It is intuitive the value of   is dependant 

upon the damping,  , and hence the threshold and damping values were, 

15.01 T , 6.02 T  and 82.0 . These were found by incrementally 

increasing the value of  , and varying 1T , 2T  and   until optimal 

convergence was found, as described in Chapter five for the un-accelerated 

case. In this case the optimal widths using Eqn.5.15 were found to be 

99.11 SW mm and 65.22 SW mm. 
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7.5.1.2 Non-Stationary Acceleration  

Application of the CG and GMRES process for design of the septa filter 

produces the convergence rate shown in Figure  7-3, in comparison to the 

SOR and classical solutions. The simulation is stopped when FoM  remains 

a minimum. A maximum acceleration of 50 % is observed for CG. The 

optimum threshold and damping values were found to be 71.01 T , 

61.02 T  and 77.0 . The threshold and damping values for GMRES 

were found to be 65.01 T , 63.02 T  and 8.0 .  In this example, a 

saving of 50 % is approximately an hour on the AMD Athlon 2 GHz single 

threaded processor. 
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Figure  7-2 - Convergence of the classical time-reversal design process of 2nd 

order band pass septa filter in comparison to SOR, Δl = 0.297mm, Δt = 7e-13s, 

X = 67, Y = 77, L = 19.9mm, W = 22.86mm and N = 16384, optimised septa 

widths for SOR were WS1 = 1.99mm and WS2 = 2.65mm from initial 

configuration of WS1 = WS2 = 0.89mm.  
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The CG method when implemented upon a linear problem is known to 

reach the optimum solution in exactly m  steps [7.1], where m  is the 

dimensionality of the problem, and ignoring floating point rounding errors. 

However, the time-reversal optimisation of the septa widths is non-linear, so 

a true orthogonal path will not be seen. In Figure  7-4 the contour levels 

indicate the figure of merit of the solution using the corresponding septa 

widths. The path taken by CG, GMRES and SOR in comparison to the 

classical time-reversal procedure is shown, were it is seen, CG reaches the 

optimum septum dimensions in fewer steps. Optimised septa widths for CG 

were 97.11 SW mm and 5.22 SW mm, and GMRES were 14.21 SW mm 

and 43.22 SW mm. In comparison, the classical solution finds 

96.11 SW mm and 55.22 SW mm, and SOR optimises to 99.11 SW mm 

and 65.22 SW mm. These solutions are not in multiples of the TLM nodes, 

since the initial septa width is iteratively optimised, based upon the 

percentage difference in the perturbed time-reversal, to the control time-

reversal, as stated in Chapter five, Eqn.5.15. These widths are snapped to 

the nearest TLM node in the simulation, of 08.271  lWS mm and 

67.292  lWS mm. 
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Figure  7-3 - Convergence of classical time-reversal design process of 2nd order 

band pass septa filter in comparison to SOR, CG and GMRES, Δl = 0.297mm, 

Δt = 7e-13s, X = 67, Y = 77, L = 19.9mm, W = 22.86mm and N = 16384. 
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Figure  7-4 - Path to solution of GMRES and CG in comparison to the classical 

time-reversal design process and SOR with ω = 0.54 of 2nd order band pass 

septa filter, Δl = 0.297mm, Δt = 7e-13s, X = 67, Y = 77, L = 19.9mm, W = 

22.86mm and N = 16384, plot contains 101 contours.  
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7.5.2 2nd Order Iris Filter 

This section will compare the acceleration methods on the example of the 

microwave band pass filter formed from two irises. Figure  7-5 shows the 

convergence of all three methods and also shows the result obtained using 

the classical time-reversal. 

 

 

In classical time-reversal, convergence to the optimal solution of  

2.91 SW mm and 61.92 SW mm was found in 9 iterations as shown in 

Chapter five. The threshold and damping values for SOR are 84.01 T , 

87.02 T  and 89.0 . Optimal convergence is found when the SOR 

parameter is in the range 3.024.0   . The parameters for CG are 
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Figure  7-5 - Convergence of the classical time-reversal design process of 2nd 

order band pass iris filter in comparison to SOR, CG and GMRES, Δl = 

0.199mm, Δt = 4.69e-13s, X = 100, Y = 115, L = 19.9mm, W = 22.86mm and N 

= 16384. Optimised iris widths for SOR were WS1 = 9.61mm and WS2 = 

9.9mm, for CG were WS1 = 9.26mm and WS2 = 9.72mm and for GMRES were 

WS1 = 8.45mm and WS2 = 9.72mm. 



 7. Convergence Acceleration 

- 181 - 

71.01 T , 26.02 T , 77.0  and GMRES parameters are 69.01 T , 

26.02 T  and 75.0 . Optimised iris widths for SOR were 

61.91 SW mm and 9.92 SW mm, for CG were 26.91 SW mm and 

72.92 SW mm and for GMRES were 45.81 SW mm and 72.92 SW mm. 

In this case, when snapped to the nearest TLM nodes, both the classical and 

CG result in 34.9471  lWS mm and 74.9492  lWS mm. SOR results 

in 74.9491  lWS mm and 74.9492  lWS mm, while GMRES 

results in 55.8431  lWS mm and 74.9492  lWS mm. 

 

Figure  7-5 shows that the CG method is optimal, and converges within 6 

iterations, a runtime reduction of 30 % or approximately 1.5 hours, using the 

2 GHz processor. 

 

GMRES converges in fewer iterations, but is sub-optimal. The optimised S 

parameters of SOR, CG and GMRES are shown in Figure  7-6. Both SOR 

and GMRES are non-optimal in comparison to those found by CG, which 

are the same as those found by the classical time-reversal design of Chapter 

five. The reason for this is due to the presence of higher order modes 

between the waveguide wall and irises, creating noise in the recovered 

Poynting vector of this design. The problem of noise in the Poynting vector 

was also noted in [7.10]. 
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7.5.3 90° Waveguide Bend 

The waveguide bend designed in Chapter five, was shown to reduce the 

return loss in a 90º bend by suitable placement of a tuning post. The three 

acceleration methods of SOR, CG and GMRES are now demonstrated. 

 

The threshold and damping values for SOR are 95.01 T  and 85.0 . For 

CG and GMRES the threshold and damping values are 95.01 T , 91.0 , 

95.01 T  and 9.0 , respectively. Figure  7-7 shows the convergence of 

the accelerated schemes, using the optimal range for the   parameter of 

66.065.0   . All techniques reduce the number of iterations to converge 

to the optimal solution in comparison to the classical time-reversal. The 

three acceleration methods find identical optimal post displacement to the 

classical time-reversal of Chapter five resulting in a diagonal displacement 

calculated as 43.20PD mm. 
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Figure  7-6 - S parameters of 2nd order microwave band pass iris filter 

optimised using a) SOR, b) CG and c) GMRES. Δl = 0.199mm, Δt = 4.69e-13s, 

X = 100, Y = 115, L = 19.9mm, W = 22.86mm and N = 16384.  
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The computational resources required, both in terms of run time and 

memory, for most practical problems will be heavily dominated by the time 

domain simulations. SOR introduces virtually no additional overhead 

compared with the basic time-reversal and reduces the overall run time by 

approximately 25 %. GMRES and CG provide a further reduction in run 

times of up to 40 %, corresponding to up to 3 hours on the single threaded 

2 GHz processor.  

 

In Chapter five, it was seen the initial post displacement affects the 

convergence of the time-reversal design process. The analysis is repeated in 

Figure  7-8, with the inclusion of the linear acceleration methods. It is seen, 

the acceleration is of more value when the initial post displacement is 

further from the optimal solution. 
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Figure  7-7 - Convergence of the classical time-reversal design process of 90° 

waveguide bend matching section in comparison to SOR,  CG and GMRES, Δl 

= 0.18mm, Δt = 4.31e-13s, X = 220, Y = 125, L = 40.23mm, W = 22.86mm and 

N = 16384. 
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7.5.4 Directional Coupler 

The design of the directional coupler using linear acceleration methods is 

more involved. It was shown in Chapter five that  
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It is seen from Eqn.7.25b, that the directivity is not directly in the form 

bxA  , since both CV̂  and DV̂  depend upon  , the time-reversal iteration, 

and hence direct application of the linear solvers is not possible. 
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Figure  7-8 - Time-reversal design iterations with respect to initial post 

displacement for the 90° waveguide bend matching section, comparison of 

SOR, CG and GMRES acceleration methods. Δl = 0.18mm, Δt = 4.31e-13s, X = 

220, Y = 125, L = 40.23mm, W = 22.86mm and N = 16384. 
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For a directional coupler, it is possible to express a further quantity, the 

isolation, as the leakage of current from the input port (port A) to the 

isolated port (port D) [7.11], in this manner  
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It is seen from Eqn.7.25a and Eqn.7.26 that  
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and hence perturbation to the desired isolation at port D, will result in 

convergence to the desired directivity of the coupler. Rearranging Eqn.7.25a 

it is seen 
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where A  is the diagonal matrix formed from the elements of AV̂ . Similarly 

for Eqn.7.26  
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From Eqns.7.28-7.29, the directional coupler parameters are now expressed 

in the correct form. In this manner, the difference vector G  used for the 

time-reversal design process is expressed using the isolation as 
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where  

 

ddd CDI  , (7.31) 

 

and the desired coupling/isolation are as per the right hand side of 

Eqns.7.28-7.29.  

 

The threshold and damping values for SOR are 05.01 T , 4.02 T  and 

93.0 . The optimal convergence was found when 98.08.0   . For 

CG, 04.01 T , 42.02 T , 98.0  and for GMRES, 01.01 T , 47.02 T  

and 96.0 . The convergence rate of all three methods, in comparison to 

the classical time-reversal design process is shown in Figure  7-9a,b,c for the 

coupling, directivity and isolation respectively. The isolation for the initial 

design is good, since the holes are small. This gradually becomes worse as 

the hole sizes increase and more power reaches ports C and D, until the 

optimum solution is found, at which point the field superposition travelling 

backwards cancels and the isolation improves. 

 

The optimum solution depends on the method used, SOR finds 

37.521  HH WW mm, snapped to TLM nodes this is l27 , in comparison 

the classical solution finds l29 . CG finds 56.521  HH WW mm, in TLM 
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nodes this is l27 , while GMRES finds 16.621  HH WW mm, or l31 . 

The graphs have been truncated after the optimum solution is found for ease 

of illustration. CG results in the best convergence, with a runtime reduction 

of 27 %, or 4 hours on the 2 GHz processor.  
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7.6 Conclusion 

The chapter has demonstrated the derivation and application of stationary 

and non-stationary large matrix linear solvers to the time-reversal design 

algorithm. The method of SOR was seen to reduce the iterative design steps 

required to reach optimal convergence with virtually zero additional 

overhead or complexity in the time-reversal process. Unfortunately the 

optimum choice for the SOR point   is problem dependant, and hence in 

return for accelerated time-reversal convergence, the setup stage of the time-

reversal process increases in complexity. For the majority of the case studies 

there was a single region within which the SOR variable optimised the 

convergence. 
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Figure  7-9 - Convergence of the classical time-reversal design of directional 

coupler, in comparison to SOR, CG and GMRES, a) coupling, b) directivity 

and c) isolation. Δl = 0.199mm, Δt = 4.69e-13s, Y = 115, W = 22.86mm and N = 

16384. 
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The Krylov subspace methods of CG and GMRES were then demonstrated, 

and although slightly more complex, were seen to further accelerate the 

convergence of the algorithm, in some examples reaching convergence 

50 % faster than the original time-reversal design algorithm. The results 

from CG and GMRES are sufficiently close to not suggest a preference. 

 

It was seen, reduction in overall runtime is primarily obtained from a more 

rapid initial convergence, which is advantageous as in larger scale problems 

available computing restrictions may only permit a few iterations to be 

undertaken to fine tune a design. The next chapter looks at the problems of 

time-reversal design when used for larger components. 
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8. Internal Time-Reversal-Mirrors 

 

 

 

 

 

 

 

The loss of modal content for source reconstruction was seen to impact the 

spatial resolution of the reconstructed source in Chapter four. Loss of spatial 

resolution due to evanescent mode decay in the presence of finite machine 

precision restricts the scope for optimising large complex devices. In terms 

of scatterer reconstruction, the loss in spatial resolution will hinder the 

measurement of the device parameters, and hence introduce errors or 

prevent the time-reversal process from converging to the optimum design. 

This problem will worsen as the time-reversal-mirrors are placed further 

from the scatterer(s) to be optimised, which will become necessary as more 

complicated structures are designed. 

 

If the full modal content of the structure is known, it is possible to capture 

the higher order evanescent modes before they have decayed at the 

bounding time-reversal-mirrors. The next section covers the basic theory 

needed to express the field within a simple waveguide in terms of its modal 

content; the following section will then develop a novel method to capture 

the higher order modal content for time-reversal, which will be 

demonstrated on two additional band pass filter sample designs.  

8.1 Evanescent Fields and Time-Reversal 

A single odd symmetric mode of an electric field propagating in a 2D metal 

waveguide in x , see Figure  8-1, can be expressed through the Sine form as  
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where 1,...1,0 1  MNn , M  is a vector of dimension 1MN  of the modal 

amplitudes, and 1MN  is the total number of modes in the waveguide, 

2/)1( Y  assuming a symmetric excitation.  

 

 

From Eqn.8.1, the total field at longitudinal length lx  in the waveguide of 

Figure  8-1 can be expressed as a summation of modes in the form 
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)(nM  at the time-reversal-mirrors is calculated from the voltage reflected 

from the ports of the transmission-line model (TLM) nodes neighbouring 

the time-reversal-mirrors, as  
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Figure  8-1 - 2nd order X-band microwave band pass filter formed from two 

inductive septa in WR90 waveguide. 



 8. Internal Time-Reversal-Mirrors 

- 194 - 

 

 

2/

)12(
2/sin

)(

1

0

Y

V
W

n
lly

nM

Y

y

r









 







. (8.3) 

 

The bounding time-reversal-mirrors in Figure  8-1 store 1MN  modes. 

However, the evanescent modes are known to be lost. The primary effect of 

such modal loss is a reduction in the spatial resolution of the model which 

leads to non-optimal designs and slow rates of convergence. Increasing the 

number of significant digits in the simulation is not a practically viable 

option.  

 

Eqn.8.3 is also valid within the waveguide structure. To ensure that the 

evanescent modes are captured before they have decayed below machine 

precision, it is proposed that additional pairs of time-reversal-mirrors are 

placed within the problem space, located in close proximity to each of the 

scattering elements, these mirrors are termed internal-time-reversal-mirrors. 

The development of internal-time-reversal-mirrors will now be shown.  

8.1.1 Internal Time-Reversal-Mirrors 

At the internal-time-reversal-mirrors, the amplitudes of the majority of the 

evanescent modes are evaluated and stored. Moreover, these modes are then 

removed from the field radiating into the remainder of the simulation space 

which is necessary to ensure that they will not be recorded again by any of 

the other time-reversal-mirrors. At the original outer time-reversal-mirrors 

only the fundamental and remaining 12 MN  lower order mode amplitudes 

now need to be evaluated and stored. The rest are evanescent and are 

captured at the internal-time-reversal-mirrors. This is analogous to the 

distinction between local and accessible modes made in classical mode 

matching analysis of waveguide problems [8.1]. This process is shown 

visually in Figure  8-2. A 3D sketch is used to clarify the argument, but a 2D 

model is used in the example results.  
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Using Eqn.8.3 to measure the modal amplitude at port 2 of a node with an 

internal-time-reversal-mirror capturing a field propagating in x , the TLM 

connection process [8.2] becomes 
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where the modes 12 2 MN , … 1)1(2 1 MN , have been removed from the 

field reflected from node ),( yx  connecting to the neighbouring node, 

),1( yx  . 

 

Eqn.8.4 is similarly derived for a field propagating in x , by substituting 

),1(2 yxV i   for ),1(4 yxV i  , ),(4 yxV r  for ),(2 yxV r  and )(4 nM  for 

)(2 nM .  

 

Ez

I-TRM Scattering 
element (e.g. 

septum or iris)

n < NM2 n < NM2n < NM1

ViVr

 

Figure  8-2 - Schematic presentation illustrating evanescent modes incident 

upon internal-time-reversal-mirrors (I-TRM). The mirrors remove evanescent 

modes stored. 
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The internal-time-reversal-mirrors allow storage of the higher order field 

components [8.3], which would have been lost before reaching the bounding 

time-reversal-mirrors. It is intuitive the removal of evanescent modes when 

stored within the internal-time-reversal-mirrors during the forward stage of 

the design process has no effect on the measured S parameters, since by 

definition the evanescent modes are outside the bandwidth the device is to 

be designed within. This also means the internal-time-reversal-mirrors do 

not require perturbation, and hence the reverse time-reversal-mirror for an 

internal-time-reversal-mirror is simply 

 

),(),(),( knVknVknV F

HITRM
F

PITRM
R

ITRM  , (8.5) 

 

where the index 1,... 12  MM NNn . The bounding time-reversal-mirrors 

are hence  

 

),()',(),( knVknVknV F

HTRM
F

PTRM
R

TRM  , (8.6) 

 

where the index 1,...1,0 2  MNn , and the '  symbolises the perturbation 

has been performed for these modes. In practice, with the case studies of 

this thesis it is only necessary to perturb the dominant mode. 

 

2MN  is chosen such that all evanescent modes that will have significantly 

decayed at the bounding time-reversal-mirrors are now stored at the 

internal-time-reversal-mirrors. The demonstration problem of Figure  8-1 is 

shown in Figure  8-3 with two internal-time-reversal-mirrors surrounding 

each septum. The distance at which each internal-time-reversal-mirror is 

placed from its corresponding septum is determined by Eqn.8.7, for the 

highest order mode excited using the odd symmetric excitation 

21)1(2 1  YN M  
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1MN  is the modal propagation constant defined as 
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where 11  MNn . 

 

 

Since, 
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using Eqn.8.8 and Eqn.8.9 
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Figure  8-3 - 2nd order X-band microwave band pass filter with internal-time-

reversal-mirrors (I-TRM) used to capture higher order evanescent modes 

decaying from each septa. 
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Substitution of Eqn.8.10 into Eqn.8.7, with the values, 11  MNn  (where 

2/)1(1  YNM ) giving the highest order mode supported by the 

waveguide, 56.6cf GHz, 5.12rf GHz, 86.22W mm, 7m  and 

noting the 2  factor for 2D TLM, gives 5.11 ML mm, which is short 

enough to retain the highest order mode with 7  significant digits of 

accuracy (single precision). The bounding time-reversal-mirrors hold the 12  

lower order modes (6  as only odd modes are excited and stored), known to 

propagate the distance 2/L  with 7  significant digits of accuracy, while the 

internal-time-reversal-mirrors store the remaining higher order modes.  

 

In order to investigate the improved accuracy using internal-time-reversal-

mirrors, the maximum of the Poynting vector during time-reversal for a 

single iterate of the time-reversal design process of the second order septa 

filter is measured using classical time-reversal, and then with the internal-

time-reversal-mirrors in Figure  8-4a,b. The TLM parameters were the same 

as Chapter five.  

 

It is noticeable, the septa in Figure  8-4b with the internal-time-reversal-

mirrors have a much greater resolution than those in Figure  8-4a using only 

the classical time-reversal-mirrors.  
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Figure  8-4 - Maximum of Poynting vector during time-reversal of a) Figure 

 8-1 (without internal-mirrors) and b) Figure  8-3 (with internal-mirrors). Δl = 

0.297mm, Δt = 7e-13s, X = 67, Y = 77, L = 19.89mm, W = 22.86mm, N = 16384 

and WS1 = WS2 = 0.89mm. A total of 91 contours are shown. 
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8.2 Case Studies 

This section will analyse how the increased spatial resolution achieved 

using internal-time-reversal-mirrors, affects the convergence rate of the 

design process, and then introduce two further examples. The first, a higher 

order filter, and the second, an example of a band pass filter, with an 

optimum solution that is known to be able to be matched perfectly in the 

TLM model. Both examples are then designed using the acceleration 

methods of Chapter seven [8.4] and internal-time-reversal-mirrors, to 

determine the acceleration when the full set of evanescent modes are 

retained. 

8.2.1 2nd Order Filter 

In Figure  8-4 it is seen the time-reversal recovery of a scatter surrounded by 

two internal mirrors retains a significantly higher proportion of the 

evanescent modes for reversal, and hence is able to reconstruct the scatterers 

with a higher degree of spatial resolution than is possible using only the 

classical mirrors. Hence the thresholds and damping that gave the best 

convergence for the conventional time-reversal design process of the filter, 

will not give the best convergence when internal-time-reversal-mirrors are 

used. With internal-time-reversal-mirrors, 34.01 T , 6.02 T  and 

93.0 . It is seen, in comparison with the values from the classical time-

reversal using only external time-reversal-mirrors of Chapter five where 

15.01 T , 62.02 T  and 93.0 , the thresholds for both septa have 

changed considerably. Observation of Figure  8-4 verifies this, since the 

resolution around the septa has improved.  

 

The extent to which the increase in modal information affects the 

convergence rate of the time-reversal design process is shown in Figure  8-5. 

For comparison, results using just the classical time-reversal-mirrors at the 

ends of the filter are also shown. In this case, it is apparent that both curves 

converge, but that the use of internal-time-reversal-mirrors require one less 
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iteration. This small gain is not without value given that even one pair of 

forward-reverse time domain simulations may actually involve a significant 

calculation effort for large problems. Therefore for this example, the loss of 

evanescent mode data reaching the external time-reversal-mirrors does not 

seriously hamper the design process.  

 

8.2.2 3rd Order Filter 

This case study will increase the complexity of the filter, by the inclusion of 

additional metal septa, see Figure  8-6. Higher order filters are desirable 

since the bandwidth selected is narrower, and the return loss ( 11S ) decreases 

further in the pass band. The increased order of the filter makes the design 

unsolvable using the conventional time-reversal process, since the middle 
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Figure  8-5 - Convergence of time-reversal design process of 2nd order band 

pass septa filter with and without internal mirrors (I-TRM), Δl = 0.297mm, Δt 

= 7e-13s, X = 67, Y = 77, L = 19.89mm, W = 22.86mm, N = 16384, optimised 

septa widths were WS1 = 1.96mm and WS2 = 2.55mm, in TLM nodes WS1 = 7Δl 

= 2.08mm and WS2 = 9Δl = 2.67mm from initial configuration of WS1 = WS2 = 

0.89mm.  
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septum is now too far from the external bounding time-reversal-mirrors to 

be recovered with acceptable spatial resolution.  

 

 

The extrapolation of the desired ABCD matrix from the second order to a 

third order design following the procedure in Chapter five is [8.5]  

 






































































)cos(/)sin(

)sin()cos(

1)/(1

01

)4/cos(/)4/sin(

)4/sin()4/cos(

1)/(1

01

)4/cos(/)4/sin(

)4/sin()4/cos(

1)/(1

01

)cos(/)sin(

)sin()cos(

)()(

)()(

3

2

1

lZlj

ljZl

LjZj

jZ

LjZj

jZ

LjlZlj

ljZl

DC

BA

g

g

ggg

ggg

ggg

ggg

g

g
















 (8.11) 

 

where 2/))4/(2( gLl  , and g , gZ  and   are as previously defined. 
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Figure  8-6 - 3rd order X-band microwave band pass filter formed from three 

inductive septa in WR90 waveguide. Internal-time-reversal-mirrors (I-TRM) 

are placed around each septum to capture evanescent modes. 
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dS11  and dS21  are calculated using the ABCD to S matrix transform given in 

Chapter five. Six internal-time-reversal-mirrors were spaced 5.11 ML mm 

from the septa, as shown in Figure  8-6. The bounding time-reversal-mirrors 

successfully store the lower 4  odd symmetric order modes, known to 

propagate the distance 2/L  with 7  significant digits of accuracy, while the 

internal-time-reversal-mirrors store the remaining higher order modes. 

 

The values for the desired inductances in Eqn.8.11 were set at 95.1 nH, 

55.1 nH and 7.1 nH respectively. These values were chosen to give the 

desired pass band shown in Figure  8-7. For a practical application, many 

more septa, typically five or more are required, to achieve a return loss of 

around 5040  dB in the pass band. This is not done here since the time-

reversal simulation will be heavily time and memory intensive, and the 

analysis of the internal mirrors is the primary interest of this chapter. 

 

The symmetric spatial sinusoid of period two times the waveguide width 

excites the filter at the input port. The filter is optimised within the 

frequency bandwidth 1410  GHz. The TLM parameters are 

297.0l mm, 137  et s, 101X , 77Y , 99.29L mm, 

86.22W mm and 16384N . The threshold and damping values for 

classical time-reversal with internal-time-reversal-mirrors are 06.01 T , 

31.02 T , 28.03 T  and 97.0 . The threshold and damping values for 

classical time-reversal with only the external mirrors are 02.01 T , 

2.02 T , 28.03 T  and 97.0 . The initial S parameters of the model, 

for septa widths of 89.031  lWS mm, 83.6232  lWS mm, and 

83.6233  lWS mm are also shown in Figure  8-7. 
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In Figure  8-8 the convergence rate of the time-reversal design process is 

shown. It is seen that with the standard time-reversal approach the algorithm 

begins to converge, but since evanescent modes are lost, the time-reversal 

subsequently diverges. The time-reversal with internal mirrors is seen to 

converge after 24 iterations. The final optimised septa widths were, 

82.41 SW mm, 96.32 SW mm and 75.43 SW mm. 

 

In Figure  8-9 four iterations of the time-reversal design process of the third 

order filter are shown after 6, 10, 15 and 24 iterations. An exact match to the 

desired S parameters is not expected, due to the fluctuation of inductance 

with frequency in the microwave model that is not accounted for in the 

transmission-line equivalence [8.6].  
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Figure  8-7 - S parameters in dB of 3rd order microwave band pass septa filter, 

desired with respect to initial. Δl = 0.297mm, Δt = 7e-13s, X = 101, Y = 77, L = 

29.99mm, W = 22.86mm and N = 16384, WS1 = 0.89mm, WS2 = 6.83mm, and 

WS3 = 6.83mm. 
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Figure  8-8 - Convergence of time-reversal design process of 3rd order band 

pass filter with and without internal mirrors, Δl = 0.297mm, Δt = 7e-13s, X = 

101, Y = 77, L = 29.99mm, W = 22.86mm and N = 16384. Optimised septa 

widths for the internal-mirror (I-TRM) time-reversal were WS1 = 4.82mm, 

WS2 = 3.96mm and WS3 = 4.75mm, from initial configuration of WS1 = 

0.89mm, WS2 = 6.83mm, and WS3 = 6.83mm. 
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Figure  8-10 shows the convergence rate of all three acceleration methods 

when applied to the perturbation of the external time-reversal-mirrors of the 

third order filter. The minimum of the FoM  was the stopping criteria. The 

threshold and damping values for SOR were 06.01 T , 31.02 T , 

28.03 T , 97.0 , with 2.0 , for CG, 05.01 T , 8.02 T , 11.03 T , 

96.0  and for GMRES, 05.01 T , 27.02 T , 29.03 T  and 95.0 . 

It is seen the CG and GMRES achieve the best result, obtaining acceptable 

convergence within 14-15 iterations. For SOR the optimised septa widths in 

odd TLM nodes were lWS  1776.41 mm, lWS  1562.42 mm, 

lWS  1575.43 mm, for CG, lWS  178.41 mm, 

lWS  1329.42 mm, lWS  1566.43 mm and for GMRES, 

lWS  1545.41 mm, lWS  1393.42 mm, lWS  1309.43 mm. The 
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Figure  8-9 - S parameters of 3rd order microwave band pass septa filter 

optimised using time-reversal, a) κ = 6, b) κ = 10, c) κ = 15, d) final 

configuration at κ = 24. Δl = 0.297mm, Δt = 7e-13s, X = 101, Y = 77, L = 

29.99mm, W = 22.86mm and N = 16384, optimised septa widths were WS1 = 

4.82mm, WS2 = 3.96mm and WS3 = 4.75mm. 
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GMRES solution is the best, finding an optimal solution in 14  time-reversal 

iterations or 42 % of the full runtime. For this model computed using an 

AMD Athlon 2 GHz processor, the reduction in runtime is approximately 

5.5 hours. 

 

8.2.3 2nd Order Iris Filter with Known Solution 

The example case studies for time-reversal design have been optimising 

using best case solutions. This subsection will introduce a new model, 

where known achievable S parameters are set as the desired solution.  

 

The second order iris filter first used in Chapter five is known to be 

equivalent to the transmission-line representation of the septa filter, used to 

generate the desired S parameters. An alternative formation to generate a set 
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Figure  8-10 - Convergence of time-reversal design process of 3rd order band 

pass septa filter using internal mirrors (I-TRM), SOR, CG and GMRES are 

compared with the classical time-reversal. Δl = 0.297mm, Δt = 7e-13s, X = 101, 

Y = 77, L = 29.99mm, W = 22.86mm and N = 16384. 



 8. Internal Time-Reversal-Mirrors 

- 209 - 

of desired S parameters, is achieved through measuring 11S  and 21S  from 

a desired configuration of iris widths. The iris widths are then set to their 

initial values, and the time-reversal optimisation applied to find the optimal 

widths. This approach, while not very practical for true component design, 

provides a known ‘zero error’ perfect solution for the time-reversal design 

process to be evaluated with. 

 

In Figure  8-11 the schematic for the iris filter is shown, where the lightly 

shaded irises show the optimal widths of 34.9471  lW d
S mm and 

74.9492  lW d
S mm (not to scale). The TLM parameters are 

199.0l mm, 1369.4  et s, 100X , 115Y , 88.19L mm, 

86.22W mm and 16384N . The initial widths were 

13.126121  lWW SS mm (shown as the dark irises) and generate the S 

parameters shown in Figure  8-12, where the desired S parameters are shown 

for comparison. A symmetric spatial sinusoid with period two times the 

waveguide width excites the filter at the input port. The optimisation 

bandwidth is 1410  GHz. The internal-time-reversal-mirrors are placed 

identically as for the second order septa filter, where 5.11 ML mm, and the 

external bounding time-reversal-mirrors store the 12  lower order modes (or 

the 6  odd modes known to have been excited), while the internal-time-

reversal-mirrors store the remaining higher order odd modes. The threshold 

and damping values for the classical time-reversal are 85.01 T , 83.02 T , 

93.0  for SOR, 85.01 T , 83.02 T , 8.0 , with 6.058.0    for 

CG, 27.01 T , 23.02 T , 98.0  and for GMRES, 51.01 T , 72.02 T  

and 89.0 . 
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Figure  8-11 - 2nd order X-band microwave band pass filter formed from two 

inductive irises in WR90 waveguide. WS1 = WS2 = 61Δl at start, optimised 

widths are WS1
d = 47Δl and WS2

d = 49Δl allowing a perfect solution to be 

found. 
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Figure  8-12 - S parameters of 2nd order microwave band pass iris filter, Δl = 

0.199mm, Δt = 4.69e-13s, X = 100, Y = 115, L = 19.88mm, W = 22.86mm and N 

= 16384. 
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The convergence rate of Figure  8-13 is observed, where the SOR, GMRES 

and CG solutions are also shown. The potential of the Krylov subspace 

solvers (CG and GMRES) with time-reversal is now seen, where a reduction 

of over 30 % of the runtime is observed, or around 3 hours on the 2 GHz 

processor. 

 

8.3 Conclusion 

The inherent mode filtering caused by finite machine precision seriously 

undermines the fidelity of the time-reversal design. This chapter has 

introduced internal-time-reversal-mirrors as a novel solution to this problem 

to ensure that all physically significant modes are captured correctly. This 

introduces a valuable degree of robustness into the design process. A third 

order filter was then designed, which was previously not possible using only 
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Figure  8-13 - Convergence of time-reversal design process of 2nd order band 

pass iris filter with known ‘perfect’ solution using internal mirrors (I-TRM), 

SOR, CG and GMRES are compared. Δl = 0.199mm, Δt = 4.69e-13s, X = 100, 

Y = 115, L = 19.88mm, W = 22.86mm and N = 16384.  
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external time-reversal-mirrors. Finally, a filter with a known reachable 

‘zero-error’ optimal solution was designed, and it was shown, the linear 

acceleration methods of the previous chapter improve performance further 

when a perfect design configuration exists. It was shown that the internal-

time-reversal-mirrors not only offer improvements to the convergence rate 

but are imperative for achieving convergence for the more complex 

structure. 
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9. 3D Time-Reversal 

 

 

 

 

 

 

 

For a number of physical components, modelling in 2D only is not suitable. 

This chapter demonstrates the expansion of the 2D time-reversal algorithm 

to 3D. The transmission-line modelling (TLM) symmetrical condensed node 

(SCN), as covered in Chapter three, is used. A 3D microwave filter 

analogous to the 2D band pass filter is demonstrated. A dipole antenna is 

then introduced, and the development of the time-reversal algorithm is 

shown.  

9.1 Introduction to 3D Time-Reversal 

In Chapter three, the derivation of the symmetrical condensed node (SCN) 

for the numerical simulation of an electromagnetic field was given. In 

comparison to the 2D shunt node, there is now the additional field 

components xE , yE , and zH . To simulate the additional components, each 

propagation direction in the node contains two voltages. The SCN is 

repeated in Figure  9-1 for ease. In addition a time-reversal-mirror has been 

placed upon ports 1 and 5. In Figure  9-1 it is seen, for full 3D time-reversal, 

12 time-reversal-mirrors are required. 

 

Throughout the chapter, the time-reversal-mirrors will use the same 

numbering as the SCN, for example 
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)0,,(),,( 11 yxVkyxV r
k

F
TRM  , (9.1a) 

),1,(),,( 22 zYxVkzxV r
k

F
TRM  , (9.1b) 

),,0(),,( 33 zyVkzyV r
k

F
TRM  , (9.1c) 

etc. 

 

 

In reverse, the time-reversal-mirrors become line sources as in the 2D case, 

and hence the incident voltages upon the transmission-line modelling 

(TLM) nodes bounding with the time-reversal-mirrors are 

 

V8

V9

V4

V2

V3V6 V10

V11

V
V5

V12

V7

x

z

y

 

Figure  9-1 - 3D transmission-line model symmetrical condensed node, with the 

addition of a time-reversal-mirror upon ports 1 and 5. 



 9. 3D Time-Reversal 

- 215 - 

),,()0,,( 11 kyxVyxV F
TRM

i
k  , (9.2a) 

),,(),1,( 22 kzxVzYxV F
TRM

i
k  , (9.2b) 

),,(),,0( 33 kzyVzyV F
TRM

i
k  , (9.2c) 

etc. 

 

The general time-reversal algorithm for 2D component design is formed 

identically for 3D, with the exception that the time-reversal-mirrors 

perturbation, homogenous removal, and reverse equations are now 3D 

matrices. For the example of port 1 of the SCN, the time-reversal-mirror 

perturbation is 

 

 

  ,|)(|),(),,(1

),,()',,(

11

11






 



kGyxkyxV

kyxVkyxV

F

PTRM

F

PTRM
F

PTRM




 (9.3) 

 

and the reverse time-reversal-mirror is constructed as 

 

),,()',,(),,( 111 kyxVkyxVkyxV F

HTRM
F

PTRM
R

TRM  . (9.4) 

 

The next section introduces the thin wire formulation for the TLM SCN, 

which will be used to model the dipole antenna.  

9.2 Thin Wire in the SCN 

The accurate modelling of a thin wire using TLM is possible in three ways. 

The first is to define a short circuit boundary between two nodes. While 

simple, this is of limited use at high frequencies, due to the need for 

extremely fine meshing. The two remaining methods either place the wire 

between the nodes [9.1], or within the node [9.2], using a combination of 

empirical values and numerical analysis. For simplicity and accuracy, the 
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wire between nodes is the simplest to implement upon the SCN already 

shown and will now be demonstrated. 

 

In Figure  9-2 the thin wire is placed vertically between nodes ),,1( zyx   

and ),,( zyx  using the form described in [9.1] [9.3] [9.4]. It is seen the wire 

will couple to port 11 of node ),,1( zyx   and port 3 of node ),,( zyx  of the 

neighbouring SCN. This form allows coupling of the wire with the 

orthogonal electric field component. 

 

 

 

 

To simulate propagation with the wire, the connection between ports 3 and 

11 of the neighbouring SCN is modified to allow the connected voltages to 

x
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Figure  9-2 - Two 3D TLM SCN with thin wire formulation between nodes.

The wire has impedance Zw and stub impedance Zwst. 
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scatter and connect to the wire. The scatter/connect process for the wire 

embeds a 2D scattering within the 3D TLM connection routine. Using the 

notation of Figure  9-2, the nodal scattering is defined as 
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 (9.5) 

 

where )(2,1 zu  and )(2,1 zv  are the SCN incident and reflected voltages upon 

ports 11 and 3 of nodes ),,1( zyx   and ),,( zyx  respectively, 

 

),,1()( 111 zyxVzu i  , (9.6a) 

),,()( 32 zyxVzu i , (9.6b) 

)(),,1( 111 zvzyxV r  ,  (9.6c) 

)(),,( 23 zvzyxV r  . (9.6d) 

 

The scattering matrix is defined similarly to the 5-port TLM node, and can 

be shown to be [9.3] 
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 (9.7) 

 

where wwstad ZZZZ 420  . 
C

t
Z w


  and 






 





C

t

t

L
Zwst 2  and are 

the wire impedance, and wire stub impedance respectively. 
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It is seen from Eqn.9.7, the scattering matrix satisfies the property 1 SS  

required for time-reversal. This may prove useful for designs with wires that 

remain in place during reversal.  

 

The values for the capacitance, C  and the inductance, L  per unit length of 

the wire are defined as [9.2] 

 

l

r

l
C 







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
4.0

ln
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 (9.8a) 

l
r

l
L 






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
15.0

ln
2


 (9.8b) 

 

where 0.4 and 0.15 are empirical values based upon numerical 

experimentation [9.2] and r  is the radius of the wire. 

 

The connection procedure for the wire is defined as 

 

)1()( 43  zvzu  (9.9a) 

)1()( 34  zvzu  (9.9b) 

)()( 55 zvzu   (9.9c) 

 

where 2,1u  and 2,1v  are connected through the SCN connection process. 

 

This completes the coverage of the thin wire formulation between the SCN, 

more details can be found in [9.2] and [9.4].  

9.3 Case Studies 

In this section, two components are demonstrated and designed using the 3D 

time-reversal algorithm. The band pass waveguide filter of Chapter five  and 
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a linear dipole are designed using time-reversal in 3D. The dipole antenna 

illustrates the time-reversal design process with free space radiating 

components. 

9.3.1 WR90 Waveguide Band Pass Filter 

In Figure  9-3 the band pass filter formed through two inductive septa is 

shown. The infinitely thin septa act as shunt inductances, just as in the 2D 

version, and so the passive circuit equivalence of Chapter five  is used.  

 

 

The waveguide boundaries are short circuit, where the input and output 

ports are defined as time-reversal-mirrors. The lowest order mode is the 

TM10 mode ( 0xE ), giving a cut-off at 
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The input port is excited for the dominant TM10 mode via a symmetric 

spatial sinusoid of period W2 , 
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Figure  9-3 - 2nd order WR90 waveguide band pass filter in 3D. 
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where it is seen from the corresponding scattering matrix of the SCN in 

Chapter three, only the field components for the TM10 mode are excited, 

zE , xH  and yH . 

 

Since only the TM10 mode is excited, port 6 and 10 remain zero throughout 

the simulation, hence only two 3D time-reversal-mirrors are required to 

store the reflected voltages at ports 3 and 11. 

 

The scattering parameters are now measured from the ports of the 3D 

waveguide. The electric field can be expressed as the summation of modes 
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where nN  and mN  take the values 2Y  and 2Z  respectively (assuming 

odd symmetric modes).  

 

Expressing ),,0( zyEz  as ),( zyEz  for simplicity, multiplying both sides of 

Eqn.9.12 by 
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 and summing over 

the spatial and modal domains gives  
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Setting 1n , 0m  and expressing Eqn.9.13 for the single TM10 mode 

gives  
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Rearranging and noting the summation of the square of the Sine over one 

half period for the odd symmetric order modes is 2/Y , yields 
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It is seen from Eqn.9.15, the S parameters for the dominant mode can be 

calculated from the TLM simulation as 
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The values for the passive circuit equivalence were taken as 8.21 L nH and 

95.22 L nH, which are known to be achievable in the TLM model [9.5]. 

The transmission-line formulation given in Chapter five for the 2D case is 

used to compute the desired S parameters which are then compared with the 

TLM S parameters and the difference vector is derived. From Eqn.9.3, the 

perturbed time-reversal-mirrors for the particular solution for ports 3 and 11 

are 
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where the modal distribution of the dominant mode is  
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Since the field is uniform in z , the Poynting vector can be measured on any 

plane ),( yx  in z , in which case 0z  was chosen for simplicity. The reverse 

time-reversal-mirror from Eqn.9.4 now reads 

 

),,()',,(),,( 11,311,311,3 kzyVkzyVkzyV F
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F

PTRM
R

TRM  . (9.19) 

 

The waveguide parameters are 86.22W mm, 05.20L mm and 

16.10H mm. The TLM parameters are 57Y  giving 4.0l mm, 

1369.6  et s. 50X , 25Z  and 16384N . The threshold and 

damping values were 87.01 T , 7.02 T  and 4.0 . The filter is 

optimised within the bandwidth 1410  GHz.  
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The time-reversal design begins with initial septa widths of 

4.021  lWW SS mm each, the convergence of the time-reversal 

process using the scalar figure of merit is shown in Figure  9-4. In this case it 

is seen that the convergence is found after 5 time-reversal iterations, and 

results in septa widths of 4.21 SW mm and 79.22 SW mm. This design 

takes 9.5 hours to optimise using a 2 GHz AMD processor. The S 

parameters from iterations 1, 4 and 5 of the time-reversal design process are 

shown in Figure  9-5.  
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Figure  9-4 - Convergence of time-reversal design process of 3D 2nd order band 

pass filter, Δl = 0.4mm, Δt = 6.69e-13s, X = 50, Y = 57, Z = 25, L = 20.05mm, W 

= 22.86mm, H = 10.16mm and N = 16384. Optimised septa widths are WS1 = 

2.4mm and WS2 = 2.79mm from initial configuration of WS1 = WS2 = 0.4mm.  
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9.3.2 Linear Dipole Antenna 

This example serves to illustrate the application of the time-reversal design 

process to a radiating component in free-space, as apposed to the guided 

components designed so far.  

 

A finite length linear dipole antenna is one of the simplest radiating 

structures in common use [9.6]. The radiating properties and design 

characteristics are already widely documented [9.6] [9.7] [9.8] and for these 

reasons, is an ideal candidate to investigate the use of the time-reversal 

design process with a radiating free space component.  
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Figure  9-5 - S parameters of 3D 2nd order microwave band pass filter 

optimised using time-reversal, a) initial configuration, b) iteration 4, c) final 

configuration found at iteration 5. Δl = 0.4mm, Δt = 6.69e-13s, X = 50, Y = 57, 

Z = 25, L = 20.05mm, W = 22.86mm, H = 10.16mm and N = 16384. Optimised 

septa widths are WS1 = 2.4mm and WS2 = 2.79mm. 
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A wire of length l , between nodes ),2/,12/( zYX   and ),2/,2/( zYX  is 

illustrated in Figure  9-6. The dipole will be optimised in the near field 

region, 

 

10 rk  (9.20) 

 

where  /20 k  and r  is the distance to the vertical time-reversal-

mirrors. 

 

In practical scenarios antenna systems are usually designed for use in the far 

field, however due to the need for eight time-reversal-mirrors in this case, it 

is not practical to increase the problem dimensions to the size necessary to 

reach the far field. 
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Figure  9-6 - Linear dipole antenna in free space, surrounded by eight time-

reversal-mirrors, dark shading shows where two mirrors are needed. A 

current, Iy excites the dipole from nodes (X/2-1, Y/2, Z/2) and (X/2, Y/2, Z/2). 
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To excite a current in the wire, it is necessary to excite the relevant ports of 

the SCN bounding with the wire as, 
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where the magnetic field in y  between the nodes is given as [9.3] 
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Similarly to the 2D shunt node described in Chapter three 

 

lHI yy  , (9.23) 

 

and hence a current of amplitude l  is excited in the wire. Since only the 

zE  field component is excited, only eight time-reversal-mirrors are required 

as shown in Figure  9-6, and are defined as 
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For simplicity and since the time-reversal-mirrors are within the near field, 

the beam pattern of the dipole is measured from F

PTRMV3  as 
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where the desired frequency the dipole is to be optimised at is 95.1 GHz, 

and 10 Z  in the normalised TLM. 

 

In this case, the time-reversal design process is of primary interest, and so 

the desired beam pattern is first measured from a forward simulation with 

l , using Eqn.9.25. In a practical scenario the desired beam pattern 

would be based upon some initial given criteria. The perturbation difference 

vector is 
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Time-reversal at a single frequency does not always converge particularly 

well [9.9], for this reason the dipole is optimised within the bandwidth 

101 GHz. This is a fairly large bandwidth, in comparison to the guided 

components designed so far. The time-reversal-mirrors upon walls 3, 4, 8 

and 11 of the bounding computation space are perturbed as in Eqns.9.27a,b 

where G  is determined from the inverse Fourier transform of Eqn.9.26.  
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The homogenous solution is simulated with the wire removed and the time-

reversal-mirror perturbation of Eqn.9.27 is applied with the corresponding 

Eqn.9.4 to determine the reverse mirrors. 

 

The time-reversal-mirrors at the base and top of the simulation space remain 

unperturbed. The reverse simulation proceeds, identically to the guided 2D 

and 3D models, with the wire treated as the metal scatterer. 

 

In the preceding chapters, the optimised scatterer enclosed one or more 

TLM nodes. In the case of the wire, the scatterer is placed between nodes. 

For this reason it is more accurate to measure the Poynting vector between 

nodes. The field components zE  and yH   between nodes are [9.3] 
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The length of the dipole after time-reversal is measured from the absolute of 

the Poynting vector at ),2/,12/( zYX  . 200H mm and 

13.68  lWL mm. The TLM parameters are 261Z , giving 

77.0l mm and 1228.1  et s. 8X , 8Y , and 16384N . The 

dipole is excited as in Eqn.9.21, with the z  coordinate at 2/)1( Z . The 

threshold and damping values are 025.01 T , and 1.0 . The wire radius 

is 05.0 mm. In Figure  9-7a, the convergence of the time-reversal design 

process from an initial dipole length of 71.115151  ll mm to a desired 

length of 154 mm is shown, where the 3 dB beam width is measured using 

Eqn.9.25 at 95.1 GHz. Theoretical analysis states the optimum 3 dB beam 

width for a full wavelength dipole is approximately 48 ° [9.6], which 

verifies the time-reversal design result. In Figure  9-7b the initial beam 

pattern, and desired beam pattern are shown. Figure  9-7c shows the time-

reversal convergence in terms of the wire length. This design takes 

approximately 7 hours to optimise using a 2 GHz AMD processor. 
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Figure  9-7 - Convergence of 3D time-reversal design of linear dipole antenna 

optimisation. a) 3dB beam width with respect to time-reversal iteration, b) 

initial and desired beam patterns, c) wire length with respect to time-reversal 

iteration. Δl = 0.77mm, Δt = 1.28e-12s, X = 8, Y = 8, Z = 261, L = 6.13mm, W = 

6.13mm, H = 200mm and N = 16384. The wire radius was 0.05mm. 



 9. 3D Time-Reversal 

- 232 - 

 

The example has served to illustrate time-reversal for microwave 

component design is also applicable to radiating free space components.  

9.4 Conclusion 

This chapter has extended the time-reversal method to the optimisation of 

both guided and radiating 3D components. In both cases the time-reversal 

optimisation converges to the optimal solution. It is observed that fewer 

iterations were needed for the guided component (filter) in comparison to 

the dipole antenna design. 3D time-reversal may also benefit from internal-

mirrors and the acceleration algorithms; however, this was not implemented 

due to time constraints. The following chapter concludes the thesis. 
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10. Conclusions 

 

 

 

 

 

 

 

Research of electromagnetic component design methods that rely upon 

numerical simulation is of high importance due to the ever increasing need 

for automated design of complex components. This thesis began with a 

review of the time-reversal-cavity for time-reversal component design, and 

investigated problems inherent in the numerical implementation of the time-

reversal algorithm. It was shown, using both analytical analysis and 

numerical computation, that a perfect numerical time-reversal model is not 

possible, due to the loss of evanescent information required for accurate 

reversal and the finite machine precision in the numerical scheme. 

Transmission-line modelling (TLM) was used, because of its inherent 

stability and electrical circuit equivalence which allowed for a simple 

derivation of the time-reversal-cavity, although it is expected that the same 

finite limitations will occur in all numerical schemes. The primary objective 

of this investigation was to prove the assumptions made for forward time 

models, for instance ‘computation until steady state gives reasonable 

accuracy’, do not necessarily hold for time-reversal due to the 

aforementioned limitations and as such it is necessary to understand the 

properties of time-reversal to successfully use the method.  

 

The thesis demonstrated that it is necessary to ensure the field has been 

sufficiently sampled at the time-reversal-mirror before the forward phase is 

truncated. It was seen that, when the forward phase was heavily truncated, 
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the resolution of the time-reversal algorithm is impacted, hindering the 

characterisation of sources or scatterers. 

 

Further, the effect of evanescent modal loss combined with the finite 

machine precision in lossless materials was shown to significantly impact 

the spatial resolution of the time-reversed source/scatterer. The successful 

development of internal-time-reversal-mirrors was shown to greatly 

improve the application of the time-reversal-cavity when used for 

component design and optimisation. As a result of this work, a higher order 

microwave band-pass filter, that was previously not possible to design using 

the traditional time-reversal-cavity, was successfully optimised with the 

addition of the internal-time-reversal-mirrors. The problem of conductive 

loss was briefly examined and it was shown that the performance of lossy 

materials with time-reversal is predictable. 

 

The time-reversal-cavity approach to component design is heavily resource 

and time intensive. The memory requirement of the method was also seen as 

a limiting factor in the early work of Forest and Hoefer [10.1]. The thesis 

proposed to limit the memory of the time-reversal-cavity, through a 

selection of novel techniques. Linear interpolation, both spatial and 

temporal, was shown to be suitable for low interpolation values, typically 

saving around 10 % of the memory, although the method is applicable to 

any component structure. If the modal content of the component is known, 

the memory requirements of the time-reversal-cavity can be reduced by only 

storing those modes known to exist, and resulted in memory reductions of 

3715  %.  

 

The derivation of linear acceleration methods for use with time-reversal to 

accelerate the convergence of the design procedure was demonstrated in 

Chapter seven. Stationary point successive over relaxation was shown as the 

simplest implementation, requiring only a single additional variable for 

application to time-reversal. The method resulted in considerable 



 10. Conclusions 

- 236 - 

computational reduction for all test cases of around 2518  %. Further, non-

stationary or Krylov subspace linear solvers, in particular conjugate 

gradients (CG) and generalised minimal residual (GMRES) were shown to 

be suitable for time-reversal, and their application to the example case 

studies resulted in convergence acceleration of around 5527  %. Overall it 

was seen the CG method gave the most improved acceleration for the 

simple 2D sample demonstrations, although with more complex 

components, for example the third order filter, the GMRES solver performs 

better as expected and achieves convergence with a reduction of 42 %, or 

5.5 hours on the 2 GHz processor. 

 

The research focused mainly upon the 2D time-reversal-cavity. The bend 

was the easiest to design using time-reversal, since only a single variable, 

the post displacement, was optimised. This also allowed the analysis of the 

effect the starting position has on the convergence of the time-reversal 

design process.  

 

In Chapter five, the spatial sampling of the numerical scheme used for the 

time-reversal implementation was shown to impact the design convergence. 

For the example of the directional coupler, a coarser spatial sampling was 

seen to cause oscillation at convergence. The oscillation was removed by 

increasing the spatial sampling. 

 

In Chapter nine the 3D form of the time-reversal-cavity for use with the 

TLM method was derived, and its application to a waveguide filter, and 

dipole antenna optimisation was shown. In particular, the application of the 

time-reversal-cavity to the dipole antenna was shown to demonstrate the 

design of a radiating component in free space using the time-reversal-cavity. 

10.1 Future Research 

The primary investigation of the thesis was the accurate analysis of time-

reversal methods when used at electromagnetic frequencies, and in 
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particular, development of the method for use as a component design and 

optimisation algorithm. In the process of achieving these goals, the case 

studies selected used lossless, linear, isotropic materials, to minimise the 

complexity and focus upon the properties of the time-reversal process. 

However, many microwave applications incorporate dielectric materials. In 

[10.2] imaging using time-reversal and dielectric materials was 

demonstrated. 

 

The design of components with dielectric scatterers is more complex. The 

process of Chapter five is equally applied to determine the dimensions of a 

scatterer, however further investigation should be completed as to accurately 

calculate the dielectric permittivity of the material using time-reversal. 

Similarly further investigation of lossy materials is needed to determine 

their practicality for numerical time-reversal due to the instability created. 

 

Scalability of the method from 2D to 3D was successfully demonstrated in 

Chapter nine. The acceleration and internal mirrors for 2D components 

should perform equally for 3D. A parallel implementation of the time-

reversal algorithm would greatly accelerate the runtime. This could be done 

simply by parallelising the TLM nodes. 

 

The time-reversal component design procedure is a valuable development 

tool, often leading to non-intuitive component configurations. With the 

improvements developed in the thesis, the method is more suited for use as 

an automated design procedure for complex electromagnetic components. 
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