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ABSTRACT

Bifurcations from spherically symmetric states can occur in many physical and biological sys-

tems. These include the development of a spherical ball of cells into an asymmetrical state and

the buckling of a sphere under pressure. They also occur in the evolution of reaction–diffusion

systems on a spherical surface and in Rayleigh–Bénard convection in a spherical shell. Many

of the behaviours of these systems can be explained by their underlying spherical symmetry

alone. Using results from the area of mathematics known as equivariant bifurcation theory we

can use group theoretical methods both to predict the symmetries of the solutions which are

expected to result from bifurcations with symmetry and compute their stability. In this thesis

both stationary and Hopf bifurcation with spherical symmetry are discussed.

Firstly, using group theoretical techniques, the symmetries of the periodic solutions which can

be found at a Hopf bifurcation with spherical symmetry are computed. This computation has

been carried out previously but contains some errors which are corrected here. For one partic-

ular representation of the group of symmetries of the sphere, O(3), the stability properties of

the bifurcating branches of periodic solutions resulting from the Hopf bifurcation are analysed

and a survey is carried out of other periodic and quasiperiodic solutions which can exist.

Secondly, symmetry considerations are used to investigate the existence and stability proper-

ties of symmetric spiral patterns on the surface of a sphere which result from stationary bifur-

cations. It is found that in the case of the Swift–Hohenberg equation spiral patterns with one

or more arms can exist and be stable on spheres of certain radii. Although one-armed spirals in

the Swift–Hohenberg equation are stationary solutions, it is shown that generically one-armed

spirals on spheres must drift.
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CHAPTER 1

INTRODUCTION

Bifurcations from spherical symmetry can be observed in many physical systems including

the buckling of a sphere under pressure and Rayleigh–Bénard convection to name just two

of the numerous examples. The bifurcation behaviour of such specific models can be studied

directly, ignoring the symmetries, however some aspects of the analysis will be common to all

models with the same underlying symmetry. This phenomenon that distinct but symmetrically

related systems can exhibit remarkably similar behaviour is often called model independence

[45]. Using the area of mathematics known as equivariant bifurcation theory one can study the

model–independent behaviours of symmetric dynamical systems (those which depend on the

symmetries alone) without any reference to the details of a particular model.

Equivariant bifurcation theory uses group theory to analyse bifurcations in dynamical systems

with symmetry. Unlike other methods, equivariant bifurcation theory allows us to distinguish

aspects of a problem which are a consequence of the underlying symmetries from those which

are specific to the particular model. The advantage of equivariant bifurcation theory over other

methods of bifurcation analysis in systems with symmetry is that we are able to study the be-

haviours of entire classes of systems with the same underlying symmetries in a more generic

framework by using the symmetries alone. A great deal of information can be deduced in

this way and explicit use of symmetry-based principles often simplifies the analysis. The sym-

metries determine the range of behaviours which it is possible for all symmetrically related

systems to exhibit but the details of the particular model decides which of these behaviours the

system chooses.

This thesis uses equivariant bifurcation theory to study the range of behaviours associated with

a bifurcation from a spherically symmetric state. The wide range of physical systems where

such a bifurcation can occur is explored in Section 1.2.1. The two main themes of this thesis are

(a) the time-periodic solutions which can be created as a result of a Hopf bifurcation from a

spherically symmetric state and
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1.1. INTRODUCTION TO DYNAMICAL SYSTEMS WITH SYMMETRY

(b) the symmetric spiral patterns which can exist on spheres as a result of a stationary bifur-

cation from spherical symmetry and subsequent secondary bifurcations.

The second topic is particularly interesting as it represents the first analytical study of symmet-

ric spiral patterns on spheres. Such patterns have been found numerically and experimentally

in a range of physical systems which is discussed in Section 1.2.2. Further details on the struc-

ture and results of this thesis are given in Section 1.3.

1.1 Introduction to dynamical systems with symmetry

Over the past thirty years equivariant bifurcation theory has developed into a powerful mathe-

matical tool with applications including pattern formation, animal locomotion, speciation, fluid

dynamics and magnetohydro dynamics. To allow us to describe current research in this area

of mathematics, in particular to explain the results obtained in this thesis, we must first give

brief definitions of some of the technical language which is used throughout the literature, and

in this introduction. A more thorough introduction to the general theory of bifurcations with

symmetry can be found in Chapter 2 of this thesis.

When we study bifurcations of dynamical systems with symmetry we consider systems of or-

dinary differential equations
dx
dt

= f (x, λ), (1.1.1)

where x ∈ V for some finite dimensional vector space V, λ ∈ R is a bifurcation parameter and

f is a smooth nonlinear mapping. We specify the symmetries of (1.1.1) in terms of a group Γ

where

γ f (x, λ) = f (γx, λ) for all x ∈ V, λ ∈ R and γ ∈ Γ. (1.1.2)

We say that the vector field f is equivariant with respect to the action (or representation) of Γ on

V. A consequence of γ ∈ Γ being a symmetry of (1.1.1) is that if x(t) is a solution then so is γx(t).

An element σ ∈ Γ is a symmetry of a stationary solution, x, of (1.1.1) if σx = x. The set of such

symmetries form a subgroup Σx ⊂ Γ called the isotropy subgroup of x. Similarly the isotropy

subgroup of a periodic solution x(t) of (1.1.1) is the subgroup of elements (γ, θ) ∈ Γ× S1 for

which γx(t + θ) = x(t) for all t.

We assume that (1.1.1) has a trivial solution x = 0 with isotropy subgroup Γ which undergoes

a bifurcation at λ = 0. We call this a bifurcation with Γ symmetry. If this is a stationary

bifurcation then (under certain hypotheses) a result called the equivariant branching lemma

[25] guarantees that branches of stationary solutions with certain isotropy subgroups bifurcate.

These isotropy subgroups fix a one-dimensional subspace of V and are called axial isotropy

subgroups. If the bifurcation at λ = 0 is a Hopf bifurcation then any bifurcating branches

of solutions are periodic and have the symmetries of isotropy subgroups of Γ × S1. There is

an analogue of the equivariant branching lemma called the equivariant Hopf theorem which

(again, under certain hypotheses) guarantees the existence of periodic solution branches with

isotropy subgroups which fix a two-dimensional subspace of V ⊕V. Such isotropy subgroups

are called C-axial.

2



1.1. INTRODUCTION TO DYNAMICAL SYSTEMS WITH SYMMETRY

Which subgroups of Γ (Γ × S1) are axial (C-axial) isotropy subgroups depends on the action

(or representation) of Γ on the vector space V. Thus the representation is as important as the

symmetry group Γ in determining the symmetries of the solutions of (1.1.1) which can exist.

This will be reflected throughout this thesis where we consider the symmetries of solutions

which can occur in different representations of certain groups.

For a given representation of Γ, the general form of the equivariant vector field f (x, λ) can be

computed using the fact that it must satisfy (1.1.2). This vector field can be used to determine

whether solutions branch supercritically or subcritically and their stability. In addition, the

vector field can be used to determine when it is possible for solutions with non-axial symmetry

to exist.

The general theory of bifurcations with symmetry, which has been very briefly outlined above,

has been used in a wide range of applications. Here we give just a few of the large number of

examples of situations where equivariant bifurcation theory has been used to deduce informa-

tion about systems with certain symmetries.

• Stationary bifurcations with SN symmetry (where SN is the symmetric group on N sym-

bols) can be used to describe speciation models [26, 36].

• Stationary bifurcations leading to the spontaneous formation of regular patterns with

symmetries determined by geometry can be studied for many different examples includ-

ing the elementary example of a bifurcation in a box considered by Hoyle [52].

• Spatially periodic patterns on planar lattices result from stationary bifurcations with HLu
T2 symmetry where HL is the group of rotations and reflections of the lattice L. The

equivariant branching lemma leads to a series of planforms which are guaranteed to exist

bifurcating from a trivial homogeneous state [33]. These bifurcations can be used to ex-

plain patterns seen in certain kinds of reaction–diffusion systems, convection, geometric

hallucination patterns in the visual cortex [12, 37], stripes and spots on animal skins and

nematic liquid crystals [21].

• Hopf bifurcations can also occur on lattices leading to patterns which are periodic in space

and time. Examples studied include the case of a square lattice by Silber and Knobloch

[77] and cubic lattices by Callahan [17].

• Hopf bifurcation has been used to describe four identical nonlinear oscillators coupled

with the symmetry of a square. In addition to the periodic solutions with maximal sym-

metry, Swift [79] found that there can be a branch of quasiperiodic solutions with two

frequencies bifurcating from the origin.

• For small Reynolds numbers, an ABC flow is a stable solution of the Navier–Stokes equa-

tions with a particular forcing. Hopf bifurcation with the rotational symmetries of a cube

can be used to study the instability of ABC flow for increasing Reynolds numbers in the

case A = B = C = 1 [6].

• Hopf bifurcation with SN symmetry can be used to describe the behaviour of N all-to-all

coupled nonlinear oscillators [32].
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1.2. PREVIOUS STUDIES OF PATTERN FORMATION ON A SPHERE

• Abreu and Dias [1] have studied Hopf bifurcation in reaction–diffusion equations defined

on the hemisphere with Neumann boundary conditions on the equator. They obtain pe-

riodic solutions for the hemisphere problem by extending to the sphere and finding solu-

tions with spherical spatial symmetries containing reflection across the equator.

In addition to these examples, there has been much research concerning bifurcations with

spherical symmetry where the group of symmetries, Γ, contains the orthogonal group O(3).

Recall that in this thesis we will be considering the Hopf bifurcation with spherical symmetry

and the existence of symmetric spiral patterns on spheres resulting from stationary bifurca-

tions. Research concerning particular systems which undergo bifurcations from spherically

symmetric states provides the motivation for the work in this thesis, while previous studies

of such bifurcations using equivariant bifurcation theory form the basis on which the current

work builds. In Section 1.2 we review the research which is of particular relevance for the work

presented in this thesis.

1.2 Previous studies of pattern formation on a sphere

In this section we give an overview of the previous research concerning pattern formation on a

sphere which is relevant for the work presented in this thesis. This includes motivating exam-

ples of systems which can undergo a bifurcation from a spherically symmetric state, and also

systems which have been found to exhibit spiral wave behaviours, particularly in spherical

domains. We also review results which have been obtained by studying stationary and Hopf

bifurcations with O(3) symmetry using the techniques of equivariant bifurcation theory.

1.2.1 Bifurcations with O(3) symmetry

There are many physical and biological examples of systems where a spherically symmetric

state undergoes a bifurcation to a state with less symmetry. For instance, bifurcations to sta-

tionary patterns occur in Rayleigh–Bénard convection in a spherical shell [13, 14, 76]. If the

fluid within the spherical shell is subjected to a magnetic field (and is electrically conducting)

or concentration gradient in addition to the temperature gradient then it is possible for a Hopf

bifurcation to oscillating solutions to occur. Examples of such oscillating solutions in convec-

tion have been found by Cross and Hohenberg [29], Knobloch [56] and Knobloch and Proctor

[58]. Convection within a spherical shell has applications including continental drift driven by

convection currents in the Earth’s mantle and also convection within the Sun where the strong

magnetic field has an influence on the convective motion.

Another physical example of a bifurcation from a spherically symmetric state is the buckling

of a sphere or spherical shell under uniform external pressure. This has applications including

the evolution of a gas bubble in a liquid [55, 70].

Both stationary and Hopf bifurcations can occur in reaction–diffusion systems on a sphere,

as discussed by Turing [80]. Stationary patterns resulting from reaction–diffusion systems on

4



1.2. PREVIOUS STUDIES OF PATTERN FORMATION ON A SPHERE

a sphere are considered by Varea et al. [82] and Callahan [18] while a specific example of a

reaction–diffusion system which undergoes a Hopf bifurcation is discussed in [34, 35, 89]. Hopf

bifurcations can also occur in excitable reaction–diffusion systems which will be discussed in

the context of spiral waves later in this introductory chapter.

Biological examples of bifurcations from states with spherical symmetry include a spherical

ball of cells developing into an asymmetric shape. Such a ball of cells could be an embryo as in

[80] or a solid tumour as in [15].

Stationary bifurcations with spherical symmetry have been widely studied using the meth-

ods of equivariant bifurcation theory. Recall that the main result in the study of symmetric

stationary bifurcations is the equivariant branching lemma which guarantees the existence of

branches of stationary solutions to (1.1.1) with the symmetries of the axial isotropy subgroups

of the group Γ in the representation of interest. There may also be solutions with the symmetries

of the other isotropy subgroups in this representation but there is no result which guarantees

their existence. In the case where the group Γ is O(3) the irreducible representations are on the

spaces V` of spherical harmonics of degree `. The representations and subgroups of O(3) will

be introduced in Chapter 3.

The problem of computing all isotropy subgroups of O(3) in every irreducible representation

has been tackled by a number of people. Michel [68] first listed the isotropy subgroups for the

representations on the spaces V` for even values of ` using a result called the chain criterion

(see Theorem 2.4.2). Ihrig and Golubitsky [53] noticed that this criterion was incorrect for com-

puting isotropy subgroups of O(3) due to its continuous symmetries and suggested a more

appropriate version. They used this new criterion to compute all isotropy subgroups of O(3)

for the representations on V` for every value of `. However, Linehan and Stedman [63] noticed

that this improved chain criterion still gave incorrect solutions in some cases. They gave a result

which they called the ‘massive chain criterion’ which allowed them to correctly list the isotropy

subgroups of O(3) in every irreducible representation on V`. We will make use of the massive

chain criterion (Theorem 3.4.1) in Chapter 6.

Having used the equivariant branching lemma to prove the existence of branches of solutions

to (1.1.1) with certain symmetries, it is possible compute conditions for these solutions to be

stable. Chossat et al. [23] considered the stability of the solution branches with axial symmetry

in the representations of O(3) on V` for ` = 3, 4 and 5. In addition they discussed the existence

of other solutions with submaximal isotropy (i.e. symmetry Σ ( O(3) where Σ fixes a subspace

of V` of dimension larger than one and Σ ⊂ ∆ where ∆ is a larger isotropy subgroup of O(3)).

Other studies of stationary bifurcations with O(3) symmetry include that of Matthews [66] who

discusses the transcritical bifurcations from spherical symmetry that occur when the represen-

tation of O(3) is on V` for ` even. Results on the existence and stability of solution branches are

given for the even values of ` up to ` = 18 including all solutions in subspaces of dimension 3

or lower. A criterion for the existence of solutions with dihedral symmetry in two-dimensional

spaces is given and it is shown that when ` is large, although none of the bifurcating branches

of stationary solutions are stable, there is a preferred solution with only one positive eigenvalue

and this is never the axisymmetric solution.
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1.2. PREVIOUS STUDIES OF PATTERN FORMATION ON A SPHERE

In applications it is not always the case that the spherical symmetry is perfect. For example,

although the Earth can be modelled as a sphere with O(3) symmetry, the rotation of the Earth

and the fact that it is not a perfect sphere break the O(3) symmetry. This can be reflected in

models by adding small inhomogeneities to the equivariant vector field as in [19] or by adding

small terms which are equivariant with respect only to a subgroup ∆ ⊂ O(3) to weakly break

the O(3) symmetry to ∆ symmetry as in [61]. In the latter case it is found that equilibrium

solutions which exist when the system has perfect spherical symmetry can persist when the

symmetry is broken and in addition heteroclinic cycles can occur.

The dynamics in a system which contains a heteroclinic cycle are complex. Equilibria are con-

nected by trajectories and a state on such a trajectory will appear to cycle among the fixed-points

in turn. Heteroclinic cycles can be structurally stable in systems with symmetry [39]. Another

situation in which it has been found that heteroclinic cycles can exist in systems with O(3)

symmetry is when there is a mode interaction where the representation of O(3) is on the direct

sum of vector spaces V` ⊕ V`+1. Armbruster and Chossat [5] found heteroclinic cycles in the

interaction between the ` = 1 and ` = 2 spherical harmonics. In an extension of this work by

Chossat and Guyard [22] it was found that in most cases heteroclinic cycles can be found in

(`, ` + 1) mode interactions. Additionally, heteroclinic cycles have been found when the O(3)

symmetry is broken to SO(2)×Zc
2 symmetry in the representation of O(3) on V1 ⊕V2 [24].

Hopf bifurcations with spherical symmetry have also been studied previously. In the origi-

nal work of Golubitsky and Stewart [43] on Hopf bifurcations with symmetry the example of

the Hopf bifurcation with spherical symmetry was considered. The authors listed the C-axial

isotropy subgroups of O(3)× S1 in the representations on V` ⊕ V`. (Recall that periodic solu-

tions of (1.1.1) with these symmetries are guaranteed to exist by the equivariant Hopf theorem.)

One small error in this list was corrected by Golubitsky et al. [46]; however, a small number of

errors remain. It may be possible for solutions of (1.1.1) other than those guaranteed by the

equivariant Hopf theorem to exist under certain conditions. These solutions would have the

symmetries of isotropy subgroups of O(3)× S1 with fixed-point subspaces of dimension larger

than two. These isotropy subgroups are yet to be computed for each representation.

By computing the general form of the equivariant vector field f , it is possible to compute the

stability of the periodic solution branches predicted by the equivariant Hopf theorem. For the

specific example of the Hopf bifurcation with O(3) symmetry where O(3) acts naturally on

V2 ⊕ V2, Iooss and Rossi [54] use analytical methods to find five different types of bifurcating

periodic solutions. They compute the stability of these solution branches and show that a fam-

ily of quasiperiodic solutions can bifurcate directly from the trivial solution together with the

periodic solutions.

Subsequently, Haaf et al. [51] showed that these results could be found more efficiently by

realising V2 as the set of traceless symmetric 3 × 3 matrices. They too describe the stability

of the five periodic solution branches and discuss the restriction of the dynamics to higher

dimensional invariant subspaces of V2 ⊕ V2 and the various possible degeneracies which can

occur in the stability conditions. Both Iooss and Rossi [54] and Haaf et al. [51] found that

the stability of two of the five axial solution branches in this representation depends on the
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coefficients of quintic order terms in the equivariant vector field. There have been no studies of

the dynamics which can occur near Hopf bifurcations with O(3) symmetry for representations

on V` ⊕V` for values of ` larger than two.

1.2.2 Spiral Waves

In addition to the periodic patterns which can occur as a result of Hopf bifurcations with spher-

ical symmetry we will also study in this thesis another type of pattern which can occur in

spherical geometry— spiral patterns.

Spiral patterns or spiral waves arise in various chemical and biological systems as well as in

numerical simulations of reaction–diffusion systems. For instance, spiral waves have been

observed in the Belousov–Zhabotinsky chemical reaction [88] and in the oxidation of carbon

monoxide on the surface of a platinum catalyst [71] as well as in Rayleigh–Bénard convection

and excitable systems such as those described by the FitzHugh–Nagumo model. It is thought

that spiral waves and their three-dimensional analogues, scroll waves, appear in heart muscle

during cardiac arrhythmias (see for example [10, 49, 72, 85]). In addition, there is speculation

that spiral waves may be involved in epileptic seizures where a spiral wave manifests as the

local synchronization of large groups of neurons [69].

Spiral waves in planar domains have been widely studied and observed in numerical simu-

lations and experiments (see [7–9, 30] for example). In planar domains, spiral waves rotate

rigidly about a centre where the front of the wave has a tip. Far from the rotation centre the

spiral wave is well approximated by an Archimedean spiral. This rigid rotation is a relative

equilibrium since in a frame rotating at the same speed as the spiral the tip position is fixed. In

addition, spiral waves can meander (the tip traces out a flower pattern with either inward or

outward petals depending on parameter values) or drift (the tip drifts off along a line drawing

little loops as it goes). These motions are two-frequency quasiperiodic. Barkley [8] realised that

these spiral wave dynamics could be explained by the Euclidean symmetry SE(2) of the plane.

His ideas were extended by Sandstede et al. [73, 74] and Wulff [86]. In particular, the Euclidean

symmetry can be used to study the transition (via Hopf bifurcation) from rigidly rotating to

meandering planar spirals [74]. Multiarmed spirals can also occur in planar domains [83] and

have been observed in the Belousov–Zhabotinsky reaction [41]. For an overview of results on

spiral waves in the plane see Boily [11] or Hoyle [52].

Spiral waves can also occur in spherical geometry. In contrast to the large volume of work

on planar spirals, there has been relatively little research concerning spiral patterns on spheres.

Spiral waves on the surface of a sphere must have two tips and so the dynamics of such patterns

are expected to be qualitatively different from the planar case. In this thesis we will investigate

another difference between planar and spherical spirals; while one-armed planar spirals have

trivial isotropy (i.e. no symmetries) we will show that one-armed spherical spirals which have

symmetry in the equator can exist generically.

Various spiral patterns on spheres have been found to exist. Grindrod and Gomatam [50]

showed that a rotating spiral wave on a sphere which is symmetric in the equator can exist
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and be stable [48] under the condition that the tips are fixed at the north and south poles.

Indeed such solutions have been found experimentally [64] and in numerical simulations of

excitable reaction–diffusion systems on a sphere [3, 16, 47, 87, 91]; however, spiral waves which

are asymmetric with respect to the equator have also been observed [67].

Meandering spiral waves have been found in simulations of systems with inhomogeneous ex-

citability [31, 87] on the sphere. The transition from rotating spiral waves to meandering spiral

waves on a sphere has been studied using the group of rotations of a sphere, SO(3), by Chan

[20] and Comanici [27, 28]. They independently studied the Hopf bifurcation of a rotating spiral

relative equilibrium with trivial isotropy which leads to the meandering of the spiral wave.

In addition to rotating spirals, stationary spiral patterns have also been observed in spherical

geometries. For example, numerical simulations of Rayleigh–Bénard convection in a thin spher-

ical shell have been found to give a stable stationary spiral roll covering the whole surface of

the sphere without any defects [62, 90]. A similar stable stationary spiral pattern has also been

found in numerical simulations of a variation of the Swift–Hohenberg equation by Matthews

[65]. With certain parameter values the single armed spiral was found but in addition double

spirals and ‘tennis ball’ patterns were observed. As yet there has been no analytical study of

the existence properties of spiral patterns with symmetries on the sphere.

1.3 Structure of this thesis

There are two main themes to the work in this thesis – the study of the Hopf bifurcation with

O(3) symmetry and also the investigation into the existence of symmetric spiral patterns on

spheres resulting from stationary bifurcations. Throughout this thesis we will use definitions

and results from the general theory of bifurcations with symmetry, an overview of which is

given in Chapter 2. We will also require the results concerning the representations and sub-

groups of the group O(3) which are reviewed in Chapter 3.

We begin the work on the Hopf bifurcation with spherical symmetry in Chapter 4. We repeat

the computations of Golubitsky et al. [46] regarding the enumeration of the C-axial isotropy

subgroups of O(3) × S1 in order to correct the errors which remain in the list given in [46].

As a result of these computations we are able to present a corrected list of the C-axial isotropy

subgroups of O(3)× S1 and in addition we compute the isotropy subgroups Σ ⊂ O(3) × S1

which fix a four-dimensional subspace of V` ⊕ V`. If these subgroups are maximal (i.e. there

is no isotropy subgroup ∆ satisfying Σ ( ∆ ( O(3)) then a result of Fiedler [38] (see Theorem

2.5.3) guarantees the existence of periodic solutions with these isotropy subgroups bifurcating

from the Hopf bifurcation with O(3) symmetry in addition to the periodic solutions with C-

axial symmetry. If Σ ⊂ O(3)× S1 is a submaximal isotropy subgroup which fixes a subspace

of dimension greater than two then it is possible, depending on the values of coefficients in

the equivariant vector field f , for solutions with Σ symmetry to exist. A result of van Gils and

Golubitsky [40] says that when the vector field f in the restriction to the fixed-point subspace

of Σ decomposes into phase and amplitude equations then we expect the submaximal solution
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with Σ symmetry to be quasiperiodic when it exists. In this thesis we use these results to

consider the submaximal solutions which can exist in the representation on V3 ⊕V3.

In Chapter 5 of this thesis we consider the Hopf bifurcation with O(3) symmetry where O(3)

acts naturally on V3 ⊕ V3. Here we find that there are six C-axial subgroups. We use the gen-

eral form of the equivariant vector field to compute the stability conditions for each of the six

bifurcating periodic solution branches with C-axial symmetry. In this representation we find

that the cubic order truncation of the general equivariant vector field is sufficient to determine

the stability of all six solution branches. In this chapter we also investigate solutions in the

equivariant vector field for the representation on V3 ⊕ V3 which have symmetry Σ, where Σ is

an isotropy subgroup which fixes a four-dimensional subspace of V3 ⊕ V3. These subgroups

are all submaximal. We find that it is possible for both periodic and quasiperiodic submaximal

solutions to exist.

We then move on to consider symmetric spiral patterns on spheres. The most symmetric spiral

patterns on the sphere have symmetries which are a subgroup of O(3)×Z2. Systems which

have this symmetry have an x → −x symmetry in addition to the spherical symmetry. In Chap-

ter 6 we consider the solutions which can exist as a result of a stationary bifurcation with this

symmetry for both irreducible and reducible representations of O(3). Many of these solutions

exist only for certain values of the coefficients in the equivariant vector field. We show how

these coefficients can be computed for the example of the Swift–Hohenberg equation [78]. We

consider reducible representations of O(3) in this chapter due to the fact that the spiral solu-

tions, for which we are interested in deducing the existence properties, can only result from

mode interactions where the representation of O(3) is a reducible representation on V` ⊕V`+1

for some value of `.

In Chapter 7 we begin by investigating the existence properties of spirals which have sym-

metries which are a subgroup of O(3)×Z2. In the reducible representations on V2 ⊕ V3 and

V3 ⊕ V4 we show that such spiral patterns can exist as stationary solution branches resulting

from a stationary bifurcation with O(3) × Z2 symmetry and subsequent secondary bifurca-

tions.

For the example of the Swift–Hohenberg equation with no quadratic terms we consider when

the stationary spirals can exist and be stable and how they bifurcate from other solutions in the

representations of O(3) on V2⊕V3 and V3⊕V4. Finally we show that if the symmetry is broken

from O(3) ×Z2 to O(3) then generically multiarmed spiral patterns persist as stationary so-

lutions with slightly broken symmetry. One-armed spirals (when they persist) are generically

forced by symmetry to drift.
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CHAPTER 2

BACKGROUND

GENERAL THEORY OF BIFURCATION WITH

SYMMETRY

2.1 Introduction

In this chapter we provide, without proofs, background results required for this thesis. This

constitutes an overview of the area of mathematics known as equivariant bifurcation theory. A

much more detailed account, including proofs, can be found in [46, Chapters XII, XIII and XVI].

Equivariant bifurcation theory can be thought of as the study of systems of ordinary differential

equations with symmetry where the symmetries of a system of ODEs are specified in terms of

a group Γ. Let V be a finite dimensional vector space and let

dx
dt

= f (x, λ) (2.1.1)

be a system of ODEs where x ∈ V, λ ∈ R is a bifurcation parameter and f : V ×R → V is a

smooth, nonlinear map. We say that a transformation γ is a symmetry of (2.1.1) if

f (γ · x, λ) = γ · f (x, λ) ∀x ∈ V. (2.1.2)

Here, · represents some ‘action’ of γ on the vector space V, which must be defined. A conse-

quence of (2.1.2) is that if x(t) is a solution to (2.1.1) then so is γ · x(t). We assume that the set

of transformations γ that are symmetries of (2.1.1) form a group Γ. Throughout this thesis the

type of groups, Γ, we will be dealing with are compact Lie groups. These groups and the way

they act on vector spaces are defined in Section 2.2.

Using the symmetry group, Γ, of the system (2.1.1) alone we are able to compute the generic

form of the nonlinear map f . Such a mapping which commutes with the action of Γ on V is
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said to be Γ equivariant. In Section 2.3 we present the required results for the computation of

this mapping.

The system (2.1.1) is said to describe a steady-state bifurcation problem with Γ symmetry if it has a

fixed-point x0 = 0 such that f (0, λ) = 0 for all values of λ and the Jacobian (d f )|(0,λ) has a real

eigenvalue passing through zero at a bifurcation point λ = λc. At this bifurcation a number

of branches of steady-state solutions are created which have less symmetry than Γ. In Section

2.4 we will introduce the equivariant branching lemma which proves the existence of branches of

steady-state solutions with the symmetries of certain subgroups of Γ.

If x0 is a fixed-point solution of (2.1.1) such that (d f )|(x0,λ) has purely imaginary eigenvalues

at a bifurcation point λ = λc then the solution undergoes a Hopf bifurcation with Γ symmetry.

Under certain hypotheses the equivariant Hopf theorem, which we shall introduce in Section 2.5,

proves the existence of branches of periodic solutions emanating from the bifurcation point

with the symmetries of certain subgroups of Γ× S1.

In this chapter we also consider how symmetries can be used to compute the stability properties

of the solution branches created at bifurcations with symmetry.

2.2 Group Theory

Throughout this thesis we will be using results which apply for certain actions of Lie groups.

We now review the properties of these groups and their representations which we will require

for this thesis. Further details on all ideas introduced in this section can be found in [46, Chapter

XII].

2.2.1 Lie groups and their representations

Definition 2.2.1. A Lie group is a differentiable manifold, where the group operation is an an-

alytic map and the inversion operation which gives the inverse of a group element is also an-

alytic. A Lie group is a way of describing a continuous symmetry since group elements can

be varied continuously. A Lie group is compact if its manifold is compact. This is equivalent

to the parameters of the Lie group varying over a closed interval. Every compact Lie group is

isomorphic to a closed subgroup of GL(n), the group of all invertible n× n matrices over R.

The compact Lie groups which we will encounter in this thesis are the orthogonal group O(3),

consisting of all 3× 3 matrices A satisfying

AAT = I3,

and its subgroups. Here, I3 is the 3× 3 identity matrix. The group O(3) will be studied in some

detail in Chapter 3.

Let Γ be a compact Lie group and V a finite dimensional vector space. We say that Γ acts linearly

on V if there is a continuous mapping (called the action) Γ×V → V sending (γ, v) → γ · v such

that
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(a) For each γ ∈ Γ the mapping ργ : V → V defined by ργ(v) = γ · v is linear.

(b) If γ1, γ2 ∈ Γ then γ1 · (γ2 · v) = (γ1γ2) · v for all v ∈ V.

Definition 2.2.2. The mapping ρ : Γ → GL(V) which sends γ to ργ is a representation of Γ on V.

Here GL(V) is the group of all invertible linear transformations V → V.

If V is n dimensional, then the representation ρ is n dimensional and consists of invertible n× n

matrices ργ for γ ∈ Γ. A group can have many different representations of various dimensions.

Every representation has ρI = In, where In is the n× n identity element.

Within the collection of all representations of a group Γ there are two types which we are inter-

ested in for the purposes of studying systems of ODEs with symmetry. These are the irreducible

and absolutely irreducible representations.

Definition 2.2.3. A subspace W ⊂ V is Γ-invariant under the representation ρ of the group Γ if

ρ(γ)w ∈ W, ∀γ ∈ Γ, ∀w ∈ W.

A representation of Γ is said to be irreducible if the only Γ-invariant subspaces are {0} and V.

Let Γ be a compact Lie group acting linearly on V. We say that a map f : V → V is Γ-equivariant

or commutes with Γ if

f (γ · v) = γ · f (v) ∀γ ∈ Γ, ∀v ∈ V. (2.2.1)

Definition 2.2.4. A representation of Γ is said to be absolutely irreducible if the only linear map-

pings that commute with the action of Γ on V are scalar multiples of the identity.

It can be shown that every absolutely irreducible representation is irreducible.

Remark 2.2.5. For representations over C, there is no distinction between irreducibility and

absolute irreducibility, but real representations can be irreducible without being absolutely ir-

reducible.

2.2.2 Isotypic decomposition and linear commuting maps

The study of a representation of a compact Lie group is often simplified by observing that it

decomposes into a direct sum of simpler, irreducible representations.

Definition 2.2.6. A subspace W ⊂ V is said to be Γ-irreducible if W is Γ-invariant and the action

of Γ on W is irreducible.

Under the action of a compact Lie group Γ a vector space V can be decomposed into the sum

of a finite number, m, of Γ-irreducible subspaces Vi, giving

V = V1 ⊕ · · · ⊕Vm.

See [46, Chapter XII, Corollary 2.2]. This decomposition is not in general unique. Some of the

Vi may be isomorphic to each other. Subspaces Vi and Vj are Γ-isomorphic to each other if there

is a linear isomorphism θ : Vi → Vj which commutes with the action of Γ. To get a unique

decomposition we use the following theorem.
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Theorem 2.2.7. Let Γ be a compact Lie group acting on V.

(a) Up to isomorphism there are a finite number of distinct Γ-irreducible subspaces of V. Call these

U1, . . . , Uk.

(b) Define Wk to be the sum of all Γ-irreducible subspaces W of V such that W is isomorphic to Uj.

Then

V = W1 ⊕ · · · ⊕Wk (2.2.2)

is the unique isotypic decomposition of V for the action of Γ.

Proof. See [46, Chapter XII, Theorem 2.5].

The subspaces Wj are called the isotypic components of V for the action of Γ.

The following results about linear maps which commute with nonirreducible (or reducible)

representations will be useful in Section 2.4.

Lemma 2.2.8. Let Γ be a compact Lie group acting on V, let A : V → V ba a linear mapping that

commutes with Γ and let W ⊂ V be a Γ-irreducible subspace. Then A(W) is Γ-invariant and either

A(W) = {0} or the representations of Γ on W and A(W) are isomorphic.

Proof. See [46, Chapter XII, Lemma 3.4].

This lemma together with Theorem 2.2.7 implies the following result.

Theorem 2.2.9. Let Γ be a compact Lie group acting on V. Decompose V into isotypic components

V = W1 ⊕ · · · ⊕Wk.

Let A : V → V be a linear mapping commuting with Γ. Then A(Wj) ⊂ Wj for j = 1, . . . , k.

Proof. See [46, Chapter XII, Theorem 3.5].

2.3 Classification of equivariant mappings

Suppose that the mapping f : V → V commutes with the action of a Lie group Γ on V, as in

(2.2.1). Such a mapping is said to be Γ–equivariant. The action of Γ on V imposes restrictions

on the possible form of f enabling us to compute its general form. In this section we present

all results required to show that when we compute the generic form of the nonlinear mapping

f we need only consider polynomial maps. These results are technical and we do not give any

proofs here.

In Section 2.3.1 we give results which describe the smooth nonlinear mappings which are equiv-

ariant with respect to Γ. In Section 2.3.2 we show how to compute the number of Γ–equivariant

mappings of a chosen degree using character methods.
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2.3.1 Technical results

Invariant functions

Let Γ be a Lie group acting on a vector space V. A real-valued function g : V → R is Γ-invariant

if

g(γx) = g(x) ∀x ∈ V, ∀γ ∈ Γ. (2.3.1)

An invariant polynomial is a real-valued polynomial satisfying (2.3.1). Let PΓ denote the ring of

Γ-invariant polynomials and EΓ, the ring of Γ-invariant functions.

Definition 2.3.1. Let U = {u1, . . . , us} be a collection of Γ-invariant polynomials. Then U forms

a Hilbert basis for PΓ is for every g ∈ PΓ there exists a polynomial p : Rs → R such that

g(x) = p(u1(x), . . . , us(x)).

The Hilbert-Weyl Theorem states that when Γ is a compact Lie group, there is always a finite

Hilbert basis, U , for PΓ (see [46, Chapter XII, Theorem 4.2]). This result can be extended to any

Γ-invariant function in EΓ by the following result:

Theorem 2.3.2 (Schwarz). Let Γ be a compact Lie group acting on a vector space V. Let u1, . . . , us be

a Hilbert basis for PΓ and let g ∈ EΓ. Then there exists a smooth function h : Rs → R such that

g(x) = h(u1(x), . . . , us(x)).

Proof. See [46, Chapter XII, Theorem 4.3].

This result reduces the study of Γ-invariant functions to the study of Γ-invariant polynomials.

In particular, we need only find a Hilbert basis for PΓ to have characterised the Γ-invariant

functions.

Equivariant mappings

The results in this section use the following lemma.

Lemma 2.3.3. Let g : V → R be a Γ-invariant function and let f : V → V be a Γ-equivariant mapping.

Then the product g f : V → V is Γ-equivariant.

Proof. See [46, Chapter XII, Lemma 5.1].

Let
−→P Γ and

−→E Γ denote the set of Γ-equivariant polynomials and smooth functions respectively.

We say that the equivariant polynomials f1, . . . , fr generate
−→P Γ over PΓ if every Γ-equivariant

polynomial f may be written f = g1 f1 + · · · + gr fr for invariant polynomials g1, . . . , gr. The

definition for generating equivariants of
−→E Γ over EΓ is analogous.

The Hilbert-Weyl Theorem generalises to equivariant polynomial mappings: When Γ is a com-

pact Lie group there exists a finite set of Γ-equivariant polynomials f1, . . . , fr that generate
−→P Γ.

See [46, Chapter XII, Theorem 5.2]. We can now give the equivariant version of Theorem 2.3.2:
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Theorem 2.3.4 (Poénaru). Let Γ be a compact Lie group acting on a vector space V and let f1, . . . , fr

generate
−→P Γ over PΓ, then f1, . . . , fr generate

−→E Γ over EΓ.

Proof. See [46, Chapter XII, Theorem 5.3].

This theorem reduces a search for generating equivariants to a search for generating polynomial

equivariants.

The results of this section allow us to determine the general form of a Γ-equivariant map. We

wish to use the form of this general Γ-equivariant map to compute the stability of solutions to

(2.1.1). To do this we will need to use the Taylor expansion of this map.

It is possible (although less elegant) to compute this Taylor expansion directly. To compute the

Taylor expansion to order k we consider a map V → V containing all possible homogeneous

polynomial terms of degree i for every i ≤ k. We then use the fact that the map f must satisfy

(2.1.2) for all γ ∈ Γ for the action of Γ on V to discover that some terms are not permitted

and others occur in certain ratios in the Taylor expansion. Note that it is sufficient to impose

that (2.1.2) hold for the actions of a set of generators of the group Γ. We must bear in mind

that choice of representation of Γ will affect the outcome of this computation. We will use this

method throughout this thesis to compute Taylor expansions of general forms of Γ-equivariant

mappings near bifurcation points.

At any order k the Taylor expansion of f is linear combination of a number, E(k), of linearly

independent Γ-equivariant maps of order k. When computing the kth order terms in the Taylor

expansion of f it is useful to know this number E(k) so that we know that all possible equiv-

ariants have been found. In Section 2.3.2 we will show how to compute E(k) using character

methods.

2.3.2 Character formula for the number of Γ-equivariant maps

In this section we state results required to compute the number of Γ-equivariant maps of degree

k for a given representation of Γ on a finite dimensional vector space V.

Let P k
Γ denote the vector space of all homogeneous polynomials of degree k which are invariant

under the action of Γ on V and let
−→P k

Γ denote the vector space of all homogeneous polynomial

maps of degree k which are equivariant under the action of Γ on V. Then

dimP k
Γ = # linearly independent polynomial Γ-invariants of degree k = I(k)

dim
−→P k

Γ = # linearly independent polynomial Γ-equivariant maps of degree k = E(k).

Suppose that V = Cn and ργ is the n × n matrix which describes the action of γ ∈ Γ on V.

Then we define the character of the element γ ∈ Γ for the representation ρ of Γ on V to be the

function χ : Γ → C given by

χ(γ) = trace(ργ) =
n

∑
i=1

(ργ)ii, ∀γ ∈ Γ.
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The action of Γ on V induces a natural action on P k
Γ and the corresponding character is denoted

by χ(k). The following theorem of Sattinger [75] tells us how to compute I(k) and E(k) using

characters.

Theorem 2.3.5. Let Γ be a compact Lie group acting linearly on a vector space V with corresponding

character χ. Then

I(k) = dimP k
Γ =

∫

Γ
χ(k)(γ) dµΓ(γ) (2.3.2)

E(k) = dim
−→P k

Γ =
∫

Γ
χ(k)(γ) χ(γ) dµΓ(γ) (2.3.3)

where dµΓ(γ) is the normalised invariant (Haar) measure of Γ.

The calculations of I(k) and E(k) can be simplified by noting the fact that elements which are

conjugate in Γ have the same character for a given representation.

In order to use Theorem 2.3.5 we need to calculate the character χ(k). We use the recursive

formula

kχ(k)(γ) =
k−1

∑
i=0

χ(γk−i)χ(i)(γ) (2.3.4)

with χ(0)(γ) = 1. A proof of this formula can be found in Antoneli et al. [4]. Using this formula

one can compute

χ(1)(γ) = χ(γ) (2.3.5)

2χ(2)(γ) = χ(γ2) + (χ(γ))2 (2.3.6)

6χ(3)(γ) = 2χ(γ3) + 3χ(γ)χ(γ2) + (χ(γ))3 . (2.3.7)

We will use these formulae and Theorem 2.3.5 to compute E(3) for reducible representations of

the group O(3) in Chapter 6.

2.4 Steady-state bifurcation with symmetry

Throughout this section let V be a finite dimensional vector space. Consider the system of

ODEs
dx
dt

= f (x, λ), (2.4.1)

where x ∈ V, λ ∈ R is a bifurcation parameter and f : V ×R → V is a smooth, nonlinear map

which satisfies

f (γx, λ) = γ f (x, λ) ∀x ∈ V, ∀γ ∈ Γ, (2.4.2)

for a compact Lie group Γ. In other words f commutes with the action of Γ on V.

In this section we introduce a result known as the equivariant branching lemma. This lemma

makes predictions about the symmetry of solutions at steady-state bifurcations, based on the

symmetry of the bifurcation problem. It was proved by Vanderbauwhede [81] and Cicogna

[25].
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In Section 2.4.1 we give the required definitions before stating the equivariant branching lemma

in Section 2.4.2. Results related to computing the stability of the bifurcating solution branches

are given in Section 2.4.4.

2.4.1 Group orbits, isotropy subgroups and fixed-point subspaces

Further details on the results in this section can be found in [46, Chapter XIII].

Group orbits and isotropy subgroups

Let x0 ∈ V be a steady-state solution of (2.4.1) for some value of λ so that

f (x0, λ) = 0.

Since f commutes with the action of Γ, γx0 is also a steady-state solution for all γ ∈ Γ. Thus

steady-state solutions of (2.4.1) occur in group orbits where the group orbit of x0 is defined to be

the set

Γx0 = {γx0 : γ ∈ Γ}.

The symmetry of a fixed-point x0 ∈ V is the set of all γ ∈ Γ that leaves x0 invariant. This set is

a subgroup of Γ called the isotropy subgroup of x0 and is denoted

Σx0 = {γ ∈ Γ : γx0 = x0}.

It can be shown that points on the same group orbit have conjugate isotropy subgroups (see [46,

Chapter XIII, Lemma 1.1]). We consider conjugate steady-states to represent the same steady-

state and solutions are classified in terms of their isotropy subgroup.

We say that Σ ⊂ Γ is an isotropy subgroup if it fixes some vector x ∈ V and contains all the

group elements that fix x. Whether a given subgroup of Γ is an isotropy subgroup will depend

upon the action of Γ on V. In other words different subgroups of Γ will be isotropy subgroups

in different representations of Γ.

Given a representation of Γ on a vector space V it is possible to compute all conjugacy classes

of isotropy subgroups of Γ. Let Σ and ∆ be two conjugacy classes of isotropy subgroups of Γ.

Then we can define a partial order, ≤, by Σ ≤ ∆ if and only if there are subgroups Σj ∈ Σ and

∆k ∈ ∆ such that Σj ⊂ ∆k. This partial ordering allows us to construct the lattice of isotropy

subgroups for this representation of Γ.

Group orbits and isotropy subgroups satisfy the following proposition.

Proposition 2.4.1. Let Γ be a compact Lie group acting on V. Then for any x ∈ V

(a) If Γ is finite, then |Γ| = |Σx||Γx|

(b) dim Γ = dim Σx + dim Γx.

Proof. See [46, Chapter XIII, Proposition 1.2].
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Fixed-point subspaces

The fixed-point subspace of a subgroup Σ ⊂ Γ is defined as

Fix(Σ) = {x ∈ V : σx = x, ∀ σ ∈ Σ}.

Fixed-point subspaces are flow invariant under Γ-equivariant mappings since if σ ∈ Σ,

f (x, λ) = f (σx, λ) = σ f (x, λ), ∀ x ∈ Fix(Σ).

Hence we have that f (Fix(Σ), λ) ⊂ Fix(Σ) i.e. a trajectory which starts in Fix(Σ) remains in

Fix(Σ) for all time. This means that if we are looking for a solution to (2.4.1) with a certain

isotropy subgroup Σx0 we can restrict f to Fix(Σx0) and solve the equations there.

If Σx0 is the isotropy subgroup of the point x0 then the largest group to leave Fix(Σx0) invariant

is the normaliser of Σx0 in Γ defined by

N(Σx0) = {γ ∈ Γ : γ−1Σx0 γ = Σx0}.

The group that we expect to govern the bifurcation in Fix(Σx0) is N(Σx0)/Σx0 , where we factor

out Σx0 because it acts trivially on Fix(Σx0). Thus the restriction of (2.4.1) to Fix(Σx0) results

in equations which have N(Σx0)/Σx0 symmetry. Moreover, the size of the quotient group,

|N(Σx0)/Σx0 |, gives the number of solutions within Fix(Σx0) which are equivalent i.e. have the

same isotropy.

Suppose that Γ acts absolutely irreducibly on V. Then by definition Fix(Γ) = {0} or V. If Γ

acts non-trivially then Fix(Γ) = {0} and due to the flow-invariance of Fix(Γ) there is a solution

f (0, λ) = 0 of (2.4.1) for all λ.

An isotropy subgroup Σ ⊂ Γ is said to be maximal if there does not exist an isotropy subgroup

∆ ⊂ Γ satisfying Σ ( ∆ ( Γ. If an isotropy subgroup Σ ⊂ Γ has dim Fix(Σ) = 1 then we say

that Σ is an axial isotropy subgroup. It can be shown that axial isotropy subgroups must be

maximal.

Determining isotropy subgroups of Γ

To decide which subgroups of a finite group Γ are isotropy subgroups for a given representation

we can use the following result.

Lemma 2.4.2 (Chain criterion). Suppose that Γ is group of finite order. A subgroup Σ ⊂ Γ is an

isotropy subgroup if and only if dim Fix(Σ) > 0 and dim Fix(∆) < dim Fix(Σ) for all ∆ ⊃ Σ.

Proof. See, for example, [68].

Remark 2.4.3. When Γ contains continuous symmetries Lemma 2.4.2 provides only a necessary

condition for a subgroup Σ ⊂ Γ to be an isotropy subgroup. To compute isotropy subgroups in

the case where Γ = O(3) we use an different version of Lemma 2.4.2 called the ‘massive chain

criterion’ [63]. This is discussed in Section 3.4.
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To compute the isotropy subgroups of a group Γ for a given representation using Lemma 2.4.2

we first need to find the dimension of the fixed-point subspaces of the subgroups Σ ⊂ Γ. To

compute the dimension of a fixed-point subspace we use the following theorem.

Theorem 2.4.4 (Trace formula). Let Γ be a compact Lie group acting on V and let Σ ⊂ Γ be a Lie

subgroup. Then

dim Fix(Σ) =
∫

Σ
χ(σ)

where the integral is with respect to the normalised Haar measure on Σ and χ(σ) = trace(ρσ) is the

character of σ ∈ Σ and ρσ is the matrix of the element σ ∈ Σ in the representation ρ on V. If the group

Γ is finite then we have

dim Fix(Σ) =
1
|Σ| ∑

σ∈Σ
χ(σ).

Proof. See [46, Chapter XIII, Theorem 2.3].

2.4.2 The equivariant branching lemma

Suppose that x0 is a fixed-point of (2.4.1) and at some parameter value λ = λc there is a steady-

state bifurcation. This means that the Jacobian at this point, (d f )|(x0,λc), has one or more zero

eigenvalues. From now on we will assume that the system has been reduced to the centre

manifold so that the Jacobian vanishes at the bifurcation point. That is (d f )|(x0,λc) = 0. We also

assume that the origins of x and λ have been chosen such that the fixed-point is at x0 = 0 and

the bifurcation point is at λ = 0. Then the existence of the fixed-point at the bifurcation point

requires that f (0, λ) = 0. Note that this is automatically satisfied if Γ acts absolutely irreducibly

on V.

We now make the following definition.

Definition 2.4.5. Let Γ be a compact Lie group acting on a vector space V. A steady-state bifur-

cation problem with Γ symmetry is a Γ-equivariant mapping f : V ×R → V satisfying f (0, 0) = 0

and (d f )|(0,0) = 0.

Recall that the Γ-equivariant mapping, f , satisfies (2.4.2). By differentiating the equivariance

condition (2.4.2) using the chain rule we have

γ(d f )|(x,λ) = (d f )|(γx,λ)γ, ∀x ∈ V, ∀γ ∈ Γ. (2.4.3)

Applying this at the fixed point x = 0 we see that (d f )|(0,λ) commutes with the action of Γ. If Γ

acts absolutely irreducibly on V then the only linear mappings which commute with the action

of Γ are scalar multiples of the identity so

(d f )|(0,λ) = c(λ)I

with c(0) = 0 since by definition (d f )|(0,0) = 0. This excludes the possibility of a Hopf bifur-

cation, where we would have a pair of purely imaginary eigenvalues at the bifurcation point.
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(Hopf bifurcations will be considered in Section 2.5 and are associated with nonabsolutely irre-

ducible complex representations.) We can assume generically that

c′(0) 6= 0. (2.4.4)

We are now able to state one version of the equivariant branching lemma.

Theorem 2.4.6 (Equivariant branching lemma). Let Γ be a Lie group acting absolutely irreducibly

on V and let f be a Γ-equivariant bifurcation problem satisfying (2.4.4). Let Σ be an axial isotropy

subgroup of Γ. Then there exists a unique smooth solution branch to f = 0 such that the isotropy

subgroup of each solution is Σ.

It is possible to prove a more general version of this theorem.

Theorem 2.4.7 (Generalised equivariant branching lemma). Let Γ be a Lie group acting on V.

Assume

(a) Fix(Γ) = {0}

(b) Σ ⊂ Γ is an axial isotropy subgroup

(c) f : V ×R → V is a Γ-equivariant bifurcation problem satisfying

(d fλ)|(0,0)v 6= 0 (2.4.5)

for some nonzero v ∈ Fix(Σ).

Then there exists a unique branch of solutions to f (x, λ) = 0 emanating from (0, 0) where the symmetry

of the solution is Σ.

Here (d fλ) is defined by

(d fλ)ij =
∂(d f )ij

∂λ
.

Proof. See [46, Chapter XIII, Theorem 3.5]

Theorem 2.4.6 follows from Theorem 2.4.7 since nontrivial absolutely irreducible actions satisfy

Fix(Γ) = {0} and when Γ acts absolutely irreducibly (d fλ)|(0,0)v = c′(0)v. So conditions

(2.4.4) and (2.4.5) are equivalent. There are certain advantages to each version of the equivariant

branching lemma. The generalised version does not require the action of Γ to be absolutely

irreducible – it holds even for reducible actions as long as Fix(Γ) = {0}. However, Theorem

2.4.7 has condition (2.4.5) which must be checked for each axial isotropy subgroup whereas

condition (2.4.4) holds simultaneously for all subgroups Σ ⊂ Γ.

The equivariant branching lemma guarantees that if (2.4.1) satisfies the relevant conditions then

at a steady-state bifurcation there will be a branch of solutions with Σ symmetry if Σ is an axial

isotropy subgroup of Γ. There may also be solution branches that bifurcate from the origin

with isotropy subgroup Σ such that dim Fix(Σ) > 1 but the equivariant branching lemma says

nothing about them. In general they will have to be found directly from (2.4.1). All branches

which bifurcate at the origin are known as primary branches.
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Remark 2.4.8. In the conditions of the equivariant branching lemma it is assumed that c′(0) 6=
0. This means that the trivial equilibrium x = 0 undergoes an exchange of stability (for λ near

0). We say that a primary bifurcating branch of solutions is subcritical if the branch occurs for

values of λ where the trivial solution is stable and supercritical otherwise.

2.4.3 Bifurcations from group orbits of equilibria

It is possible for primary branches of group orbits of equilibria to undergo a secondary symme-

try breaking bifurcation for example in a mode interaction problem where the representation

of the group Γ is reducible. We now consider the solutions which can result from a secondary

bifurcation from a group orbit of fixed-points. All results in this section can be found in Golubit-

sky and Stewart [45]. We consider bifurcations from equilibria with less than full Γ symmetry.

Let f : V ×R → V be a Γ equivariant vector field where Γ is a compact Lie group. Let x0 be

a fixed-point of f and Γx0 the group orbit through x0. Assume that dim Γx0 ≥ 1 and denote

by Σx0 the isotropy subgroup of x0. By Proposition 2.4.1 the group orbit Γx0 ⊂ V is a smooth

manifold of dimension dim Γ− dim Σx0 . This means that it is possible for a group orbit to be

flow invariant rather than just consisting of equilibria. In that case the group orbit is called a

relative equilibrium.

The following theorem shows that flows on relative equilibria generically fill out k-dimensional

tori where the number k is uniquely determined by the isotropy subgroup Σx0 . In other words,

solutions that are relative equilibria are quasiperiodic with k frequencies.

Theorem 2.4.9. Let Γx0 be a relative equilibrium and let Σx0 be the isotropy subgroup of x0. Then

relative equilibria are quasiperiodic motions with k frequencies where generically

k = rank(N(Σx0)/Σx0).

Here N(Σx0) is the normaliser of Σx0 in Γ and the rank of a Lie group is the maximal dimension

of any Torus group

Tm =

m︷ ︸︸ ︷
S1 × · · · × S1

contained in that group.

This means that it is possible for steady-state bifurcations from group orbits of equilibria to lead

to relative equilibria rather than just new equilibria.

2.4.4 Stability of solution branches

In this section we consider the stability of branches of fixed-point solutions of (2.4.1).

We say that a fixed-point, x0, of a system of ODEs is asymptotically stable if every trajectory x(t)

which begins near x0 stays near x0 for all t > 0 and also limt→∞ x(t) = x0. The fixed-point is

neutrally stable if the trajectory stays near x0 for all t > 0.
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Linear stability is a condition for asymptotic stability which says that if all the eigenvalues of

the Jacobian evaluated at the fixed-point x0 have negative real part then x0 is linearly stable. If

it has no eigenvalues with the real part equal to zero then x0 is a hyperbolic fixed-point. The

Hartman–Grobman Theorem says that for hyperbolic fixed-points x0, if x0 is linearly stable then

x0 is asymptotically stable.

When, as in (2.4.1), the system of ODEs commutes with the action of a Lie group Γ the following

issues arise:

(a) If the isotropy subgroup Σx0 of a fixed-point x0 has dim Σx0 < dim Γ then neither linear

stability nor asymptotic stability is possible. The Jacobian, (d f )|(x0,λ), is forced to have

zero eigenvalues. We must introduce the concepts of linear orbital stability and orbital

stability.

(b) The explicit computation of the Jacobian, (d f )|(x0,λ) is aided by knowledge of the repre-

sentation of the isotropy subgroup Σx0 .

Orbital stability

Let Γ be a Lie group acting on V and let f be a Γ-equivariant map as in (2.4.1). Let x0 be

a fixed-point of (2.4.1) with isotropy subgroup Σ. Using Proposition 2.4.1 we can see that if

dim Σ < dim Γ then dim Γx0 > 0. This means that there are steady states of (2.4.1) arbitrarily

close to x0. Trajectories which start at these fixed-points remain there for all time and so do not

tend to x0. This means that x0 cannot be asymptotically stable. We must define a new type of

stability.

We say that the fixed-point x0 is orbitally stable if x0 is neutrally stable and if whenever x(t) is a

trajectory beginning near x0, then limt→∞ x(t) exists and lies in Γx0.

We can also show that if dim Σ < dim Γ then the fixed-point cannot be linearly stable: Since

dim Γx0 > 0 the orbit Γx0 contains a smooth curve y(s) = γ(s)x0 with γ(s) a smooth curve in

Γ and γ(0) = 1. Since x0 is a stationary point of (2.4.1) then γ(s)x0 is also for all s so we have

f (y(s), λ) = 0. Differentiating this with respect to s and evaluating at s = 0 gives

d
ds

f (y(s), λ)
∣∣∣∣
s=0

= (d f )|(x0,λ)

(
dγ

ds

∣∣∣∣
s=0

x0

)
= 0, (2.4.6)

and so (d f )|(x0,λ) has a zero eigenvalue with eigenvector dγ
ds

∣∣∣
s=0

x0, which is tangent to the

group orbit Γx0. This means that the fixed point x0 has a zero growth rate eigenvalue corre-

sponding to perturbations along the group orbit. We can note that (2.4.6) provides a method

for computing the zero eigenvectors of (d f )|(x0,λ).

There is a linear criterion for orbital stability: Let x0 be an equilibrium of (2.4.1) where f com-

mutes with the action of Γ. The fixed-point x0 is linearly orbitally stable if the eigenvalues of

(d f )|(x0,λ), other than those forced to be zero by symmetry, have negative real part.

It can be shown that if a fixed-point x0 is linearly orbitally stable then it is orbitally stable.
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Symmetry restrictions on the Jacobian

Let x0 be a fixed-point of (2.4.1). It is possible to use the action of the isotropy subgroup Σ of x0

on V to block diagonalise the Jacobian (d f )|(x0,λ) and thereby simplify the explicit computation

of the eigenvalues. By computing the eigenvalues of (d f )|(x0,λ) we can determine whether or

not the fixed-point x0 is orbitally stable.

We have already seen in (2.4.3) that the Jacobian satisfies the commutativity condition

γ(d f )|(x,λ) = (d f )|(γx,λ)γ.

Since Σ ⊂ Γ is the isotropy subgroup of x0, by definition, σx0 = x0 for every σ ∈ Σ and so

σ(d f )|(x0,λ) = (d f )|(σx0,λ)σ = (d f )|(x0,λ)σ.

Thus (d f )|(x0,λ) is a linear map which commutes with the isotropy subgroup Σ. We can decom-

pose V into isotypic components for the action of Σ:

V = W1 ⊕ · · · ⊕Wk

as in Theorem 2.2.7. Then by Theorem 2.2.9

(d f )|(x0,λ)(Wj) ⊂ Wj.

If Σ acts absolutely irreducibly on an isotypic component Wj then the restriction of (d f )|(x0,λ)

to Wj is a scalar multiple of the identity. The subspace Fix(Σ) is always an isotypic component

since it is the sum of all subspaces of V on which Σ acts trivially.

2.5 Hopf bifurcation with symmetry

In this section we consider the case where a system of ODEs with Γ symmetry undergoes a

Hopf bifurcation. There is an analogue of the equivariant branching lemma which tells us that

periodic branches of solutions with certain symmetries will be created at a Hopf bifurcation

with Γ symmetry.

2.5.1 Existence of periodic solutions

Consider the system of ODEs given by

dx
dt

= f (x, λ). (2.5.1)

Assume that there is an equilibrium solution x = 0 for all values of λ. This system undergoes

a standard Hopf bifurcation (i.e. without symmetry) at λ = 0 if (d f )|(0,0) has a single pair of

complex conjugate eigenvalues which cross the imaginary axis (with non-zero speed) at λ = 0.

The standard Hopf theorem implies that a branch of periodic solutions is created but it uses

the hypothesis that the imaginary eigenvalues are simple. When system (2.5.1) has Γ symme-

try we cannot use the standard Hopf theorem directly since there are expected to be multiple
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pairs of complex conjugate eigenvalues crossing the imaginary axis at a Hopf bifurcation with

symmetry.

Assume now that in (2.5.1), x ∈ Rn, λ ∈ R is a bifurcation parameter and f : Rn ×R → Rn is a

smooth mapping which commutes with the action of a compact Lie group Γ on Rn as in (2.1.2).

Further assume that f (0, λ) = 0 so there is a trivial Γ-invariant equilibrium solution, x = 0.

For Hopf bifurcation of this solution to occur at λ = 0 we require that (d f )|(0,0) have purely

imaginary eigenvalues. We assume that (2.5.1) is already reduced to the imaginary eigenspace.

Note that since eigenvalues occur in complex conjugate pairs the number of purely imaginary

eigenvalues at the bifurcation point must be even, so we must have x ∈ R2p where n = 2p.

Sometimes it is useful to make the identification R2p ∼= Cp.

It turns out that if (d f )|(0,0) is to have purely imaginary eigenvalues then the imaginary eigenspace,

Rn, must be Γ-simple. This means that either Rn = V ⊕V where V is an absolutely irreducible

representation of Γ, or Γ acts irreducibly but not absolutely irreducibly on Rn. In either case,

in suitable coordinates and rescaling time if necessary, at the bifurcation point the Jacobian

generically takes the form

(d f )|(0,0) = J ≡
(

0 Ip

−Ip 0

)
(2.5.2)

and the eigenvalues of (d f )|(0,λ) are

µ± = σ(λ)± iω(λ) (2.5.3)

each of multiplicity p, where σ and ω are smooth functions of λ satisfying σ(0) = 0 and ω(0) =

1. This implies that the eigenvalues at the bifurcation point are±i. See [46, Chapter XVI, Section

1].

Near a Hopf bifurcation we expect to see branches of periodic solutions. Let x(t) be a periodic

solution of (2.5.1) with period 2π. A symmetry of x(t) is an element (γ, θ) ∈ Γ× S1 such that

(γ, θ) · x(t) ≡ γx(t + θ) = x(t), ∀t.

Here S1 is the circle group of phase shifts acting on the space of 2π periodic functions. We say

that (γ, θ) is a spatiotemporal symmetry. Notice that if θ = 0 then the symmetry is purely spatial.

We can write the isotropy subgroup of x(t) as

Σx(t) = {(γ, θ) ∈ Γ× S1 : γx(t + θ) = x(t)} ⊂ Γ× S1.

Remark 2.5.1. In Chapters 4 and 5 of this thesis we will consider representations of O(3) on

a space of the type V ⊕ V where O(3) acts absolutely irreducibly on V. In this case, by [46,

Chapter XVI, Remark 3.3(d)], we can take a basis for V as a real vector space and consider

V ⊕V to be the vector space over C with this basis. Elements of Γ = O(3) act on V ⊕V by the

same matrices as for V and θ ∈ S1 acts as scalar multiplication by eiθ .

We now state the equivariant Hopf theorem which is the analogue of the equivariant branching

lemma.
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Theorem 2.5.2 (Equivariant Hopf theorem). Consider the system of ODEs given by (2.5.1) where

x ∈ Rn, λ ∈ R and f : Rn ×R → Rn is a smooth mapping which commutes with the action of a

compact Lie group Γ on Rn. Suppose that Γ acts Γ-simply on Rn so that we can assume that (2.5.2) and

(2.5.3) hold. Assume also that
dσ

dλ

∣∣∣∣
λ=0

6= 0. (2.5.4)

Then if Σ ⊂ Γ× S1 is an isotropy subgroup satisfying

dim Fix(Σ) = 2, (2.5.5)

there exists a unique branch of periodic solutions to (2.5.1) with period near 2π bifurcating from the

origin having Σ as their group of symmetries.

Proof. See [46, Chapter XVI, Theorem 4.1].

Condition (2.5.4) is the hypothesis from the standard Hopf theorem that the eigenvalues of

(d f )|(0,λ) cross the imaginary axis with non-zero speed. We say that an isotropy subgroup

Σ ⊂ Γ× S1 is C-axial if is satisfies condition (2.5.5). The equivariant Hopf theorem guarantees

that if system (2.5.1) satisfies the relevant conditions then at a Hopf bifurcation with Γ symmetry

a branch of periodic solutions with Σ symmetry is created if Σ is an isotropy subgroup of Γ× S1

with dim Fix(Σ) = 2.

It is possible for condition (2.5.5) in the equivariant Hopf theorem to be weakened to the sub-

group Σ being a maximal isotropy subgroup of Γ× S1:

Theorem 2.5.3 (Fiedler [38]). Assume that system (2.5.1) satisfies the conditions (2.5.2) and (2.5.4)

stated above and suppose that Σ is a maximal isotropy subgroup of Γ × S1. Then there exist small

amplitude periodic solutions to (2.5.1) with period near 2π, having Σ as their group of symmetries.

In addition to the branches of solutions to (2.5.1) guaranteed to exist by the equivariant Hopf

theorem, Theorem 2.5.3 guarantees the existence of branches of solutions with symmetry Σ

where Σ has dim Fix(Σ) > 2 but Σ is maximal.

In Section 2.5.3 we will discuss how to compute the isotropy subgroups of Γ× S1. Before that,

we will consider the stability of periodic solutions to (2.5.1).

2.5.2 Stability of periodic solutions

In this section we will consider how to compute the stability of periodic solutions to (2.5.1).

Suppose that x(t) is a periodic solution of (2.5.1) with period 2π
1+τ for a period-scaling parameter

τ near 0. A Liapunov-Schmidt reduction of (2.5.1) gives a reduced equation g(x, λ, τ), the zeros

of which are in one-to-one correspondence with the periodic solutions x(t) of (2.5.1).

To compute the stability of these periodic solutions we first assume that the map f is in (exact)

Birkhoff normal form. That is f commutes with Γ× S1 at all orders. It is only possible to find

a suitable change of coordinates to put f in Birkhoff normal form up to a given order k. There

is no change of coordinates that puts f into Birkhoff normal form to all orders but we will deal

with this issue later.
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Stability in Birkhoff normal form

The following theorem gives us the form of the reduced equation g when f is in Birkhoff normal

form.

Theorem 2.5.4. Suppose that the vector field f in (2.5.1) is in Birkhoff normal form. Then it is possible

to perform a Liapunov-Schmidt reduction on (2.5.1) such that the reduced equation g has the form

g(x, λ, τ) = f (x, λ)− (1 + τ)Jx (2.5.6)

where τ is the period-scaling parameter.

Proof. See [46, Chapter XVI, Theorem 10.1].

Remark 2.5.5. When the representation of Γ is as in Remark 2.5.1 we identify J with i and so

the reduced equation is

g(x, λ, τ) = f (x, λ)− (1 + τ)ix (2.5.7)

Let x(t) be a periodic solution of (2.5.1) with isotropy subgroup Σ ⊂ Γ× S1 which corresponds

to a solution, (x0, λ0, τ0), to g = 0. There is a one-to-one correspondence between the Floquet

multipliers of the periodic solution x(t) and the eigenvalues of (dg)|(x0,λ0,τ0). A multiplier lies

inside the unit circle if and only if the corresponding eigenvalue of (dg)|(x0,λ0,τ0) has negative

real part (see [46, Chapter XVI, Proposition 6.4]). This is reflected in the following result.

Corollary 2.5.6. Suppose that the vector field f in (2.5.1) is in Birkhoff normal form and that g is the

mapping obtained by using the Liapunov-Schmidt procedure. Let (x0, λ0, τ0) be a solution to g = 0 and

let x(t) be the corresponding periodic solution of (2.5.1). Then x(t) is orbitally asymptotically stable if

the n− dΣ eigenvalues of (dg)|(x0,λ0,τ0) which are not forced to be zero by the group action have negative

real parts. Here we define

dΣ = dim Γ + 1− dim Σ.

Proof. See [46, Chapter XVI, Corollary 10.2].

Remark 2.5.7. When dim Fix(Σ) = 2, the assumption that f is in Birkhoff normal form implies

that we can apply the standard Hopf theorem to (2.5.1) restricted to Fix(Σ) ×R. In this case

exchange of stability occurs at the bifurcation point so that if the steady-state solution x = 0 is

stable subcritically, then a subcritical branch of periodic solutions with isotropy subgroup Σ is

unstable. Supercritical branches may be either stable or unstable depending on the signs of the

real parts of the eigenvalues on the complement of Fix(Σ).

Stability in truncated Birkhoff normal form

It is possible to use Corollary 2.5.6 to determine the asymptotic stability of some periodic solu-

tions of (2.5.1) even when f is not in Birkhoff normal form.

By a suitable change of coordinates, up to any given order k the Γ-equivariant vector field f can

be made to commute with S1 also. Thus to order k the Taylor expansion of f can be assumed to
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commute with Γ× S1. We call this the kth order truncated Birkhoff normal form of (2.5.1). The

dynamics of the truncated Birkhoff normal form are related to, but not identical with the local

dynamics of the system (2.5.1) around the equilibrium point x = 0. In truncating the Taylor

series, we are ignoring terms of higher order which do not commute necessarily with S1 and

that can change the dynamics and also possibly the stability of those periodic solutions which,

by the equivariant Hopf theorem, exist even for the nontruncated system.

Assume that

f (x, λ) = f̃ (x, λ) + o(‖x‖k)

where f̃ commutes with Γ× S1 but the perturbation o(‖x‖k) commutes only with Γ. Here, as

usual, h(x) = o(‖x‖k) means that h(x)/‖x‖k → 0 as ‖x‖ → 0. It is possible to show that, pro-

vided k is large enough, Corollary 2.5.6 remains true for the reduced function g̃ corresponding

to the truncation f̃ .

Definition 2.5.8. Suppose that dim Fix(Σ) = 2. Then Σ has p-determined stability if all eigenval-

ues of

(dg̃)|(x0,λ0,τ0) = (d f̃ )|(x0,λ0) − (1 + τ0)J,

other than those forced to be zero by Σ, have the form

µj = αja
mj + o(amj),

where x(t) is a branch of periodic solutions to ẋ = f̃ (x, λ) with symmetry Σ, a = ‖x(t)‖ and αj

is a C-valued function of the Taylor coefficients of terms of degree ≤ p in f̃ .

We say that f̃ is nondegenerate for Σ if all αj have non-zero real parts. This allows us to state the

following theorem.

Theorem 2.5.9. Suppose that the hypotheses of Theorem 2.5.2 hold, and that the isotropy subgroup

Σ ⊂ Γ× S1 has p-determined stability. Let k ≥ p and assume that f̃ is nondegenerate for Σ. Then for

λ sufficiently near 0, the stabilities of a periodic solution of (2.5.1) with isotropy subgroup Σ are given

by the same expressions in the coefficients of f as those that determine the stability of a solution of the

truncated Birkhoff normal form
dx
dt

= f̃ (x, λ),

with isotropy subgroup Σ.

Proof. See [46, Chapter XVI, Theorem 11.2].

Remark 2.5.10. By Theorem 2.5.9, the result given in Remark 2.5.7 holds even when f is not in

Birkhoff normal form.

This means that we can use the kth order Taylor series of f which commutes with Γ× S1 to com-

pute the stability of a periodic solution with isotropy subgroup Σ whose existence is guaranteed

by the equivariant Hopf theorem, as long as k ≥ p when Σ has p-determined stability. Theorem

2.5.9 completes the results required for a stability analysis of the C-axial periodic solutions of

(2.5.1).
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2.5.3 Isotropy subgroups of Γ× S1

In order to apply the equivariant Hopf theorem we need to consider which subgroups Σ ⊂
Γ × S1 can be isotropy subgroups and which of these subgroups have two-dimensional fixed

point subspaces. We begin by discussing how to compute the isotropy subgroups of Γ× S1.

Computing isotropy subgroups of Γ× S1

In this section we outline the method of Golubitsky and Stewart [43] and Golubitsky et al. [46,

Chapter XVI, Section 7] for computing the isotropy subgroups of Γ× S1. An alternative method

for computing the isotropy subgroups Σ ⊂ Γ× S1 with dim Fix(Σ) = 2 is given by Golubitsky

and Stewart in [44]. Although this alternative method requires less computation, the reasons

for some of the steps in the procedure are less intuitive then the method of [46, Chapter XVI,

Section 7] summarised in this section. In this thesis we will use the method outlined below.

Definition 2.5.11. Suppose that H ⊂ Γ is a subgroup and θ : H → S1 is a group homomor-

phism. We call

Hθ = {(h, θ(h)) ∈ Γ× S1 : h ∈ H}
a twisted subgroup of Γ× S1. We call the homomorphism θ : H → S1 the twist of H.

All isotropy subgroups of Γ× S1 are twisted subgroups, see [46, Chapter XVI, Proposition 7.2].

We intuitively think of elements of Γ as spatial symmetries and elements of S1 as temporal

symmetries, acting on periodic solutions by a phase shift. Thus an element (h, θ(h)) ∈ Γ× S1

is a spatial symmetry if θ(h) = 0 and a combined spatiotemporal symmetry if θ(h) 6= 0.

For a given twisted subgroup Hθ ⊂ Γ× S1, the spatial symmetries form a subgroup K = ker θ.

Since K is the kernel of a homomorphism θ it is a normal subgroup of H. Furthermore the

quotient group H/K is isomorphic to a closed subgroup of S1, namely Im(θ). The only closed

subgroups of S1 are 1, Zn (n ≥ 2) and S1.

We wish to compute the conjugacy classes of isotropy subgroups of Γ× S1. To do this we need

to know when two twisted subgroups are conjugate in Γ× S1. The following lemma provides

two sufficient conditions.

Lemma 2.5.12.

(a) Let Hθ and Lφ be conjugate twisted subgroups in Γ× S1. Then H and L are conjugate subgroups

of Γ.

(b) Let Hθ and Hφ be conjugate twisted subgroups in Γ × S1. Then there exists γ ∈ NΓ(H) such

that ker φ = γ ker θγ−1. Here NΓ(H) = {γ ∈ Γ : γHγ−1 = H} is the normaliser of H in Γ.

Proof. See [46, Chapter XVI, Lemma 7.3].

This lemma allows us to determine the conjugacy class of the pair (H, K) in Γ× S1 but this does

not determine Hθ uniquely since (H, K) does not uniquely determine θ. If θ is a homomorphism
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H → S1 with ker θ = K then all other such homomorphisms are of the form α ◦ θ where α is an

automorphism of Im(θ). The twisted groups Hθ and Hα◦θ are conjugate in Γ× S1 if α is induced

by conjugation by elements in NΓ(H).

In summary, the conjugacy classes of twisted subgroups of Γ× S1 can be found as follows:

1. Find the conjugacy classes of closed subgroups of Γ. For each conjugacy class choose a

representative H.

2. Find all closed normal subgroups K ⊂ H such that H/K is isomorphic to 1, Zn or S1.

3. Choose one representative of each conjugacy class of K’s under the action of NΓ(H)/H.

This gives a list of all pairs (H, K).

4. Find the possible homomorphisms θ for each pair by listing the automorphisms of H/K,

not including those that are induced by conjugation by elements γ ∈ NΓ(H).

This procedure gives a complete list of the conjugacy classes of twisted subgroups of Γ × S1.

Two simplifications are often useful:

(i) For twist types 1 and Z2, there are no such automorphisms.

(ii) If there exists an element κ which acts by conjugation to invert each element of H, then

for twist types Z3 and S1 the only non-trivial automorphism of H/K is inversion, but this

is induced by conjugation by κ and hence can be eliminated.

Dimensions of fixed-point subspaces

To determine which of the twisted subgroups Hθ , computed by the method above, are isotropy

subgroups for a particular action of the group Γ× S1 we use the chain criterion, Lemma 2.4.2.

To use this we need to know how to compute dim Fix(Hθ).

Using the trace formula, Theorem 2.4.4, an argument given in Golubitsky et al. [46, Chapter

XVI, Section 8] shows that for twisted subgroups Hθ ,

dim Fix(Hθ) =
∫

Hθ
trace(h, θ(h)) =

∫

H
2 cos(θ(h))trace(h). (2.5.8)

This can be used to prove the following proposition.

Proposition 2.5.13.

(a) If θ(H) = 1 then dim Fix(Hθ) = 2 dim Fix(H).

(b) If θ(H) = Z2 then dim Fix(Hθ) = 2(dim Fix(K)− dim Fix(H)).

(c) If θ(H) = Z3 then dim Fix(Hθ) = dim Fix(K)− dim Fix(H).

(d) If θ(H) = Z4 then dim Fix(Hθ) = dim Fix(K)− dim Fix(L) where L is the unique subgroup

such that K ⊂ L ⊂ H and |H : L| = 2.
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(e) If θ(H) = Z6 then dim Fix(Hθ) = dim Fix(H) + dim Fix(K)− dim Fix(L)− dim Fix(M)

where L, M are the unique subgroups between K and H such that |H : L| = 3 and |H : M| = 2.

Proof. See [46, Chapter XVI, Section 8].

The method of proof of Proposition 2.5.13 works only for twist types Zk when k = 1, 2, 3, 4 or

6. For other values of k and twist type S1 we have to use (2.5.8) directly. Provided we know

how to compute dim Fix(H) for subgroups H ⊂ Γ (which will depend on the representation of

Γ), we are now able to compute the C-axial isotropy subgroups of Γ× S1 with two-dimensional

fixed-point subspaces. This enables us to use the equivariant Hopf theorem, Theorem 2.5.2.

We can also use this method and the chain criterion (Lemma 2.4.2) to compute the isotropy

subgroups of Γ× S1 with higher dimensional fixed-point subspaces.

This concludes the background results on the general theory of bifurcations with symmetry

which will be required for this thesis.
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CHAPTER 3

BACKGROUND

THE GROUP O(3)

3.1 Introduction

In this thesis we will be studying bifurcations from states with spherical symmetry. The sym-

metry group of the sphere is O(3). In this chapter we will give information about this group

which will be required throughout this thesis. In Section 3.2 we define the group O(3) and in-

troduce its representations. In Section 3.3 we consider the subgroups of O(3), their containment

relations and the dimension of the fixed-point subspace of each subgroup in each representa-

tion of O(3). Further details on the results in Sections 3.2 and 3.3 of this chapter can be found

in [46, Chapter XIII]. In Section 3.4 we will outline the method used for determining, in each

representation, which subgroups of O(3) are isotropy subgroups.

3.2 The group O(3) and its representations

The orthogonal group O(3) consists of all 3× 3 matrices A satisfying A−1 = AT . These matrices

have det(A) = ±1 and represent the rotations and reflections of a sphere. Algebraically

O(3) = SO(3)×Zc
2,

where SO(3) is the group of all rotations of the sphere, i.e. A ∈ O(3) with det(A) = 1, and

Zc
2 = {I,−I}, where I is the identity element and −I is inversion in the centre of the sphere.

If a point on the surface of the sphere is given in spherical polar coordinates by (θ, φ) then the

action of the element −I on this point is

(θ, φ) → (π − θ, π + φ) where 0 ≤ θ ≤ π and 0 ≤ φ < 2π.
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For each irreducible representation of SO(3) there are two irreducible representations of O(3),

where the element −I either acts as plus or minus the identity, giving rise to the plus and

minus representations of O(3) respectively. The group SO(3) has precisely one irreducible

representation in each odd dimension 2` + 1 for ` ≥ 0, denoted by V`, where V` is the space of

spherical harmonics of degree `.

The natural representation of O(3) on V` is defined to be the plus representation, where−I acts

as the identity, if ` is even and the minus representation, where −I acts as minus the identity, if

` is odd.

3.2.1 Spherical harmonics

Let (θ, φ) denote a point on the surface of a sphere of constant radius R where θ ∈ [0, π] is

the angle measuring the distance to the north pole (the z-axis) and φ ∈ [0, 2π] is the azimuthal

angle.

The spherical harmonics of degree `, Ym
` (θ, φ), are the eigenfunctions of the angular part of the

spherical Laplacian operator:

∇2U(R, θ, φ) =
1

R2

[
∂

∂R
R2 ∂

∂R
+

1
sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2

]
U,

with eigenvalue − `(`+1)
R2 . The functions are given by

Ym
` (θ, φ) = (−1)m

(
(2` + 1)

4π

(`−m)!
(` + m)!

)1/2
Pm

` (cos θ)eimφ (3.2.1)

for −` ≤ m ≤ `, where

Pm
` (x) =

(1− x2)m/2

2` `!
d`+m

dx`+m (x2 − 1)`

is the associated Legendre function. The spherical harmonics satisfy

Y−m
` (θ, φ) = (−1)mYm

` (θ, φ), (3.2.2)

where the bar denotes complex conjugate. They also satisfy the orthogonality condition
∫ 2π

0

∫ π

0
Ym

` (θ, φ) Ym′
`′ (θ, φ) sin θ dθ dφ = δ`,`′ δm,m′ . (3.2.3)

In some sections of this thesis we will explicitly use the spherical harmonics of degrees ` = 2,

3, and 4. These are given in appendix A. We now consider the matrices for the action of O(3)

on the spherical harmonics of degree `.

3.2.2 Matrices for the natural action of O(3) on V`

In this section we consider how the elements of the group O(3) act on the functions Ym
` (θ, φ) ∈

V` for the natural action on V`. We show how to compute the (2` + 1)× (2` + 1) matrices which

generate the natural action of O(3) on V`. These will be used in later chapters of this thesis to

compute the general form of equivariant vector fields.
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Let (θ, φ) denote a point on the surface of the sphere as in Section 3.2.1. We will consider the

actions of the following set of generators of O(3) on the spherical harmonics of degree `:

• An infinitesimal rotation, φ′, in the φ direction taking (θ, φ) → (θ, φ + φ′).

• An infinitesimal rotation, θ′, in the θ direction taking (θ, φ) → (θ + θ′, φ).

• The inversion element −I which takes (θ, φ) → (π − θ, π + φ).

Using (3.2.1) we can compute that

Ym
` (π − θ, π + φ) = (−1)`Ym

` (θ, φ)

so when ` is even the element −I acts as the identity on all spherical harmonics of degree ` and

when ` is odd −I acts as multiplication by −1.

Similarly we can use (3.2.1) to show that

Ym
` (θ, φ + φ′) = eimφ′Ym

` (θ, φ) (3.2.4)

and that in the limit θ′ → 0,

Ym
` (θ + θ′, 0) = −1

2

√
(` + m)(`−m + 1) θ′ Ym−1

` (θ, 0) + Ym
` (θ, 0)

+
1
2

√
(`−m)(` + m + 1) θ′ Ym+1

` (θ, 0). (3.2.5)

Since it is not obvious that (3.2.5) holds, a proof is given in appendix B.

Suppose that w is the physical variable in a pattern-forming system and that it can be written

as

w(θ, φ) =
`

∑
m=−`

AmYm
` (θ, φ) = (A−`, A−`+1, · · · , A`)




Y−`
` (θ, φ)

Y−`+1
` (θ, φ)

...

Y`
` (θ, φ)




= A Y`(θ, φ)T.

i.e. as a linear combination of the spherical harmonics of degree ` where ‘·T’ indicates the

transpose.

We want to find the (2` + 1)× (2` + 1) matrices Mφ′ and Mθ′ for the actions of the infinitesimal

rotations φ′ and θ′ on the vector of amplitudes A = (A−`, A−`+1, · · · , A`).

For the infinitesimal rotation φ′ ∈ O(3),

φ′ · w(θ, φ) = w(θ, φ + φ′) =
`

∑
m=−`

AmYm
` (θ, φ + φ′) =

`

∑
m=−`

Ameimφ′ Ym
` (θ, φ).

Hence φ′ : Am → eimφ′Am and therefore the matrix which multiplies the column vector of

amplitudes AT on the left to execute the transformation φ → φ + φ′ is

Mφ′ = diag
(

e−i`φ′ , ei(−`+1)φ′ , . . . , ei(`−1)φ′ , ei`φ′
)

. (3.2.6)
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For the infinitesimal rotation θ′, by (3.2.5) we have

θ′ · w(θ, 0) = w(θ + θ′, 0) =
`

∑
m=−`

AmYm
` (θ + θ′, 0)

= A M Y`(θ, 0)T

= Y`(θ, 0) MT AT

where M is the (2` + 1)× (2` + 1) matrix with mth row

vm =
(

0, . . . , 0,−1
2

√
(` + m)(`−m + 1)θ′, 1,

1
2

√
(`−m)(` + m + 1) θ′, 0, . . . , 0

)

for m = −`, . . . , ` where the entry 1 lies in the mth column. Therefore the matrix which multi-

plies the column vector of amplitudes AT on the left to execute the transformation θ → θ + θ′

is

Mθ′ = MT =
[
vT
−` | vT

−`+1 | · · · | vT
`

]
, (3.2.7)

i.e. the matrix with columns vT
m.

Finally, since

−I · w(θ, φ) = w(π − θ, π + φ) =
`

∑
m=−`

AmYm
` (π − θ, π + φ) =

`

∑
m=−`

Am(−1)` Ym
` (θ, φ)

the element −I acts on the column vector AT by scalar multiplication by (−1)` or equivalently

by multiplication by the matrix M−I = (−1)` I2`+1 where I2`+1 is the (2`+ 1)× (2`+ 1) identity

matrix.

Remark 3.2.1. Suppose that w(θ, φ, t) is a solution to some pattern forming system and it can

be written as a time-dependent linear combination of spherical harmonics of degree `:

w(θ, φ, t) =
`

∑
m=−`

Am(t)Ym
` (θ, φ)

where Am(t) ∈ C. Since w is real the amplitudes Am(t) must satisfy

A−m(t) = (−1)m Am(t) ∀t.

Hence A0(t) ∈ R and in general the dimension of the vector of amplitudes A = (A−`, A−`+1, . . . , A`)

(and hence the representation) is 2` + 1.

3.3 Subgroups of O(3)

In this section we consider the subgroups of O(3) and their containment relations. This infor-

mation will be required when computing isotropy subgroups of groups containing O(3) which

we will do in Chapters 4 and 6 of this thesis. In Section 3.3.2 we state without proof the theo-

rems of Golubitsky et al. [46] which tell us the dimension of the fixed-point subspace of each

subgroup in the representations of O(3) on V`, the space of spherical harmonics of degree `.

The subgroups of O(3) fall into three classes:
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I Subgroups of SO(3),

II Subgroups containing the inversion element −I,

III Subgroups not in SO(3) and not containing −I.

In this section we will consider each of these classes of subgroups in turn.

Class I subgroups

The group SO(3) is the group of rotations of a sphere. It can be generated by rotations in the

x-, y- and z-axes. The subgroup consisting of rotations in the z-axis and a rotation through π in

the x-axis is isomorphic to the group of symmetries of the circle, O(2), where the reflection in

O(2) is realised by the rotation in the x-axis. Removing this rotation we are left with only the

rotations in the z-axis and the subgroup SO(2).

The subgroup generated by rotation through 2π/n in the z-axis and rotation through π in the

x-axis is isomorphic to Dn. By removing the rotation in the x-axis we are left with Zn.

In addition there are the exceptional subgroups, T, O and I, the groups of rotations of a tetra-

hedron, octahedron and icosahedron respectively. They are finite and of orders 12, 24 and 60

respectively. Finally there is the trivial subgroup 1.

Class II subgroups

The subgroups of O(3) of class II all have the form Σ×Zc
2 where Σ is a subgroup of SO(3).

Class III subgroups

Each class III subgroup, H ⊂ O(3), is isomorphic to a subgroup, π(H), of SO(3), though Σ

is never conjugate to that subgroup. Every class III subgroup is uniquely determined by the

subgroups π(H) and H ∩ SO(3) of SO(3). In [46, Chapter XIII, Section 9] it is shown that the

subgroup H ∩ SO(3) has index 2 in π(H) and that all class III subgroups of O(3) are conjugate

to one of the subgroups H given in Table 3.1.

H π(H) H ∩ SO(3)

O(2)− O(2) SO(2)
O− O T

Dd
2m D2m Dm

Dz
m Dm Zm

Z−
2m Z2m Zm

Table 3.1: The class III subgroups of O(3)

The subgroup O(2)− can be generated by rotations in the z-axis and reflection in the xz-plane.

The group generated by a rotation through 2π/m in the z-axis and reflection in the xz-plane is

isomorphic to Dz
m. The subgroup O− is the group of rotations and reflections of a tetrahedron.
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The subgroup Dd
2m can be generated by an element−Rz

π/m, which is a rotation through π/m in

the z-axis combined with inversion in the origin, and a rotation through π in the x-axis. Finally,

by removing the rotation in the x-axis from Dd
2m we are left with Z−

2m.

3.3.1 Containment relations

In this section we describe the containment relations between the conjugacy classes of sub-

groups of O(3).

Class I subgroups

It is clear that

(a) Zn < Dn < O(2),

(b) Zn < Zm and Dn < Dm if n divides m,

(c) Z2 < Dn (n ≥ 2) due to the rotation through π symmetry of Dn,

(d) Zn < SO(2) < O(2) (n ≥ 2).

The containment relations for the exceptional subgroups of SO(3) are shown in Figure 3.1.

Figure 3.1: The containment relations for the exceptional subgroups of SO(3). Arrows indicate

the direction of containment.

Class II subgroups

The subgroups of a class II subgroup Σ×Zc
2 where Σ is a subgroup of SO(3) are:

(a) Subgroups of Σ,

(b) Subgroups of the form K×Zc
2 where K is a subgroup of Σ,

(c) The class III subgroups of O(3) which are isomorphic to a subgroup of Σ.
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Class III subgroups

Proposition 3.3.1. The containments between conjugacy classes of subgroups of class III groups are as

follows:

(a) O− contains Dd
4, Z−

4 , Dz
3, Dz

2, Z−
2 and all subgroups of T.

(b) O(2)− contains Dz
m (m ≥ 2), Z−

2 and subgroups of SO(2).

(c) Z−
2m contains Z−

2k where k divides m and 2k does not divide m, and subgroups of Zm.

(d) Dd
2m contains Dd

2k and Z−
2k when k divides m and 2k does not divide m, Dz

k when k divides m,

Dz
2, Z−

2 and all subgroups of Dm.

(e) Dz
m contains Dz

k where k divides m, Z−
2 , and subgroups of Zm.

Proof. See [46, Chapter XIII, Section 9].

Remark 3.3.2. Note that if H is a class III subgroup of O(3) then subgroups of H ∩ SO(3) are

contained in H and all other subgroups of H are of class III.

3.3.2 Dimensions of fixed-point subspaces

In order to determine the isotropy subgroups of any group containing O(3) we will need to

know the dimensions of the fixed-point subspaces of the subgroups of O(3) in the representa-

tions on the spherical harmonics of degree ` for both the plus and minus representations. These

are given by the following two theorems.

Remark 3.3.3. For the plus representation of O(3),−I acts trivially and therefore Fix(Σ×Zc
2) =

Fix(Σ) for subgroups Σ ⊂ SO(3). In the minus representation where −I acts as minus the

identity, −I fixes only the origin and hence Fix(Σ ×Zc
2) = 0 for all subgroups Σ ⊂ SO(3).

Hence we only need formulae for the dimensions of the fixed-point subspaces of the class I and

class III subgroups of O(3).

Theorem 3.3.4. Let SO(3) act irreducibly on the space V` of spherical harmonics of degree `. The

dimensions of the fixed-point subspaces of closed subgroups are:

(a) d(Zm) = 2 [`/m] + 1 (m ≥ 1)

(b) d(Dm) =

{
[`/m] (` odd)

[`/m] + 1 (` even)

(c) d(T) = 2 [`/3] + [`/2]− ` + 1

(d) d(O) = [`/4] + [`/3] + [`/2]− ` + 1

(e) d(I) = [`/5] + [`/3] + [`/2]− ` + 1

(f) d(O(2)) =

{
0 (` odd)

1 (` even)
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(g) d(SO(2)) = 1,

where d(Σ) = dim Fix(Σ) and [x] is the greatest integer less than or equal to x.

Proof. See [46, Chapter XIII, Section 8].

From parts (c), (d) and (e) of Theorem 3.3.4 we can observe that we have the results in Table 3.2.

It can also be seen that

d(T)(` + 6) = d(T)(`) + 1

d(O)(` + 12) = d(O)(`) + 1

d(I)(` + 30) = d(I)(`) + 1.

` 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d(I) 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1

d(O) 0 0 0 1 0 1 0 1 1 1 0 2

d(T) 0 0 1 1 0 2 1 1 2 2 1 3

` 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

d(I) 1 0 1 0 1 1 1 0 1 1 1 1 1 0 2

Table 3.2: Dimensions of the fixed-point subspaces of I, O and T for ` = 1, . . . 30.

Theorem 3.3.5. Let O(3) act irreducibly on V` with −I acting as minus the identity. Then the dimen-

sions of the fixed-point subspaces for class III subgroups are

(a) d(Z−
2m) = 2 [(` + m)/2m]

(b) d(Dz
m) =

{
[`/m] (` even)

[`/m] + 1 (` odd)

(c) d(Dd
2m) = [(` + m)/2m]

(d) d(O−) = [`/3]− [`/4]

(e) d(O(2)−) =

{
0 (` even)

1 (` odd),

where d(Σ) = dim Fix(Σ) and [x] is the greatest integer less than or equal to x.

Proof. See [46, Chapter XIII, Section 9].

Using part (d) of Theorem 3.3.5 we can observe that we have the results in Table 3.3. It can also

be seen that

d(O−)(` + 12) = d(O−)(`) + 1.

Remark 3.3.6. Theorems 3.3.4 and 3.3.5 can be proved using the trace formula, Theorem 2.4.4.
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` 1 2 3 4 5 6 7 8 9 10 11 12

d(O−)(`) 0 0 1 0 0 1 1 0 1 1 1 1

Table 3.3: Dimensions of Fixed-Point subspaces for O−

3.4 Determining isotropy subgroups of O(3)

Recall from Section 2.4.1 that for finite groups Γ, Lemma 2.4.2, the standard chain criterion,

provides a necessary and sufficient condition for a subgroup Σ ⊂ Γ to be an isotropy subgroup.

However, when Γ contains continuous symmetries, as for Γ = O(3), Lemma 2.4.2 provides

only a necessary condition for Σ to be an isotropy subgroup. When Γ = O(3), a necessary and

sufficient condition for a subgroup Σ ⊂ O(3) to be an isotropy subgroup in the representation

on V` is provided by a result of Linehan and Stedman [63] called the ‘massive chain criterion’.

In this section we state the massive chain criterion and also illustrate why it is required by con-

sidering an example where the standard chain criterion fails to correctly identify the isotropy

subgroups of O(3). Throughout this thesis we will use different notation from Linehan and

Stedman [63] since the authors use notation which makes analogies with areas of physics. This

is also the reason for the seemingly strange name of the criterion.

Theorem 3.4.1 (Massive chain criterion). The subgroup Σ ⊂ O(3) is an isotropy subgroup in the

representation on V` if and only if for each strictly larger and adjacent group ∆ (so that Σ ⊂ ∆ ⊂ · · · ⊂
O(3))

dim Fix(∆)− r(∆) < dim Fix(Σ)− r(Σ)

where

r(Σ) = min{dim V` − 1, q(Σ)} (3.4.1)

and

q(Σ) = dim NO(3)(Σ)− dim Σ.

Proof. See Linehan and Stedman [63].

This differs from the standard chain criterion, Lemma 2.4.2, by the quantity r(Σ). The subspace

of V` which is invariant under Σ is Fix(Σ). We can partition Fix(Σ) into two sets. In the first set,

Vm
` (Σ), we place one copy of each basis pattern. We then place any duplicates into the second

set of basis functions, V0
` (Σ). Functions in V0

` (Σ) can be transformed by an element in O(3) to

a function in Vm
` (Σ). Then r(Σ) = dim V0

` (Σ), so r(Σ) is a measure of the extent to which the

members of the subset Fix(Σ) are equivalent under transformations in O(3). If dim V` > 3 then

r(Σ) = 0, 1 or 3.

An example

Example 3.4.2. Suppose that O(3) acts on V3 with the natural representation. In this case the

subgroup Z2 ⊂ O(3) has dim Fix(Z2) = 3 and Dz
2 is a larger and adjacent subgroup – it lies

immediately above Z2 in the lattice of subgroups of O(3). Since dim Fix(Dz
2) = 2, using the
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standard chain criterion (Lemma 2.4.2) there is no reason to rule out Z2 from being an isotropy

subgroup of O(3) for this representation. Indeed, by checking all other subgroups larger and

adjacent to Z2 we conclude, using the standard chain criterion, that Z2 is an isotropy subgroup.

This conclusion is however incorrect and we now show that any solution in Fix(Z2) in fact has

Dz
2 symmetry, with respect to a particular choice of symmetry axes.

One copy of Z2 is generated by a rotation through π in the z-axis. For the natural action of

O(3) on V3 this gives

Fix(Z2) = {Y−2
3 (θ, φ), Y0

3 (θ, φ), Y2
3 (θ, φ)}

or equivalently

Fix(Z2) = {Y0
3 (θ, φ), Re(Y2

3 (θ, φ)), Im(Y2
3 (θ, φ))}.

Hence, any solution w(θ, φ) with Z2 symmetry can be written as a linear combination

w(θ, φ) = a Y0
3 (θ, φ) + b Re(Y2

3 (θ, φ)) + c Im(Y2
3 (θ, φ)),

where a, b, c ∈ R. If this solution is rotated through any angle in the z-axis then it still lies

in the same subspace Fix(Z2) but the values of the coefficients a, b and c will change. Hence

there are infinitely many solutions with Z2 symmetry in Fix(Z2). This is due to the fact that the

normaliser NO(3)(Z2) = O(2)×Zc
2 is infinite. Without loss of generality, there is some choice

of rotation which makes c = 0. This is equivalent to noticing that Im(Y2
3 ) is just a rotation of

Re(Y2
3 ) through π/4 in the z-axis and hence that

Vm
3 (Z2) = {Y0

3 , Re(Y2
3 )} V0

3 (Z2) = {Im(Y2
3 )}.

This means that r(Z2) = 1 and since we can compute r(Dz
2) = 0 we find that Z2 is not an

isotropy subgroup in this representation by the massive chain criterion. For the choice of sym-

metry axes which make c = 0 the solution w(θ, φ) lies in Fix(Dz
2) and thus has Dz

2 symmetry.

Note that we have explicitly shown that r(Z2) = 1 by considering the basis functions. Using

the formula (3.4.1) we can simply compute that

r(Z2) = min{dim V` − 1, dim NO(3)(Z2)− dim Z2}
= min{6, dim(O(2)×Zc

2)− dim Z2} = 1.

We have now summarised all the information about the group O(3) which will be required

throughout this thesis in order to compute isotropy subgroups of groups containing O(3). To-

gether with the results in Chapter 2 we have now given all background results for this thesis.
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CHAPTER 4

HOPF BIFURCATION ON A SPHERE

ISOTROPY SUBGROUPS AND EQUIVARIANT

MAPPINGS

4.1 Introduction

In this chapter we investigate the symmetries of branches of periodic solutions which are cre-

ated at a Hopf bifurcation with O(3) symmetry. At such a bifurcation, pairs of complex conju-

gate eigenvalues of the trivial solution with spherical symmetry cross the imaginary axis. We

require that at this point the Jacobian has purely imaginary eigenvalues. In Chapter 2 we saw

that this is the case when the representation of O(3) is on V` ⊕ V`, where O(3) acts absolutely

irreducibly on V`, the space of spherical harmonics of degree `. A vector x ∈ V` ⊕ V` can be

written as

x =
`

∑
m=−`

zmYm
` (θ, φ) + zmYm

` (θ, φ).

The action of O(3) on x ∈ V` ⊕V` is determined by its action on

z =
(

z−`, z−(`−1), . . . , z`

)T ∈ C2`+1.

Elements in O(3) act on z via the same matrices as for the action of O(3) on V` i.e. those given

in Section 3.2.2. In addition, an element ψ ∈ S1 acts on z as scalar multiplication by eiψ.

We consider the system of ODEs
dz
dt

= f (z, λ), (4.1.1)

where z ∈ C2`+1, λ ∈ R is a bifurcation parameter and f : C2`+1 ×R → C2`+1 is a smooth

mapping which commutes with the action of the compact Lie group O(3) on V` ⊕ V`. By the
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notion of Birkhoff normal form, f can also be assumed to commute with the action of S1 to

some order k. This equivariant vector field is a function of the complex amplitudes zm and zm

for−` ≤ m ≤ `. In Section 4.4 we consider how to compute the general form of such mappings.

Since the action of O(3) on V` ⊕ V` is O(3)-simple we can assume that (4.1.1) satisfies all con-

ditions of the equivariant Hopf theorem (Theorem 2.5.2). Thus if Σ ⊂ O(3)× S1 is a C-axial

isotropy subgroup (i.e. it fixes a two dimensional subspace of V`⊕V`) then there exists a branch

of periodic solutions to (4.1.1) with period near 2π bifurcating from the origin with Σ as their

group of symmetries. Furthermore, by Theorem 2.5.3, branches of solutions with the symme-

tries of other maximal isotropy subgroups of O(3)× S1 are also guaranteed.

To determine the symmetries of the branches of periodic solutions of (4.1.1) which are guaran-

teed to exist, it remains to compute the maximal isotropy subgroups of O(3)× S1. The C-axial

isotropy subgroups were first listed by Golubitsky and Stewart [43]. One error in this list was

corrected by Golubitsky et al. [46, Chapter XVIII, Section 5], however a small number of other

errors remain. In this chapter we repeat the computations of Golubitsky and Stewart [43] in

order to correct these errors.

Recall from Section 2.5.3 that all isotropy subgroups of Γ× S1 are twisted subgroups. In Section

4.2 we compute the conjugacy classes of twisted subgroups Hθ of O(3) × S1 for which it is

possible that Hθ could be an isotropy subgroup of O(3)× S1 for some representation on V`⊕V`.

In Section 4.3.2 we decide which of these twisted subgroups are C-axial isotropy subgroups in

the representation on V` ⊕ V` for every value of `. We correct the errors in Table 5.1 of [46,

Chapter XVIII, Section 5] and present an amended list of the C-axial subgroups, giving reasons

why the changes are required.

In Section 4.3.3 we consider the isotropy subgroups, Σ ⊂ O(3)×S1 which have four-dimensional

fixed-point subspaces. If Σ is maximal then by Theorem 2.5.3 a branch of periodic solutions

with symmetry Σ is guaranteed to bifurcate from the origin. If Σ is submaximal (i.e. contained

in a C-axial subgroup) then it is possible that solutions to (4.1.1) with Σ symmetry may exist

depending on the values of the coefficients in the Taylor expansion of the equivariant vector

field f .

4.2 Twisted subgroups of O(3)× S1

In this section we follow the method of Golubitsky et al. [46, Chapter XVI, Section 7] (which

we summarised in Section 2.5.3 of this thesis) to compute the conjugacy classes of twisted sub-

groups Hθ of Γ× S1 in the case where Γ is the orthogonal group O(3).

Step 1 of this method is to find the conjugacy classes of subgroups of O(3) and to choose a

representative H. These subgroups were given in Section 3.3 of this thesis.

For step 2 we must find all closed normal subgroups K ⊂ H such that H/K is isomorphic to 1,

Zn or S1 for each subgroup H ⊂ O(3). Then step 3 says that we must choose one representative

of each conjugacy class of K’s under the action of NΓ(H)/H. This gives a list of conjugacy

classes of all pairs (H, K). The point of these computations is to produce a list of pairs (H, K)
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which, together with a homomorphism θ : H → S1, give the conjugacy classes of twisted

subgroups of O(3) × S1 which can be isotropy subgroups for the representation on V` ⊕ V`

where V` is the space of spherical harmonics of degree `. The computation of this list can

be greatly simplified by noticing that certain pairs (H, K) cannot give a twisted subgroup Hθ

which is an isotropy subgroup of O(3)× S1 for any homomorphism θ.

Remark 4.2.1. Recall from Remark 2.5.1 that the element ψ ∈ S1 acts as multiplication by eiψ.

For any value of `, in the plus representation of O(3)× S1 on V` ⊕ V`, the element −I ∈ O(3)

acts as the identity and therefore the element (−I, 0) ∈ O(3) × S1 must lie in every isotropy

subgroup. This means that H and K must both be class II subgroups of O(3) since −I ∈ H and

−I ∈ ker θ = K.

In the minus representation, −I acts as minus the identity the time shift by ψ = π acts as

multiplication by −1. Hence (−I, π) ∈ O(3) × S1 acts as the identity and must therefore be

contained in every isotropy subgroup. This means that H must be a class II subgroup and K

must be either a class I or class III subgroup of O(3) since −I ∈ H and −I /∈ ker θ = K.

We now compute the conjugacy classes of pairs (H, K) for which H is a class II subgroup of

O(3) and K is normal in H with quotient group H/K isomorphic to 1, Zn or S1. Note that any

such K must contain the commutator subgroup

H′ = 〈 h−1k−1hk : h, k ∈ H 〉

since this is the smallest normal subgroup of H such that the quotient H/H′ is abelian. Here

〈·〉 indicates ‘group generated by’. We will call pairs (H, K) which satisfy the conditions above

permitted pairs.

Before we list the conjugacy classes of permitted pairs (H, K) we recall some facts about normal

subgroups. A subgroup K is normal in H if hKh−1 = K for all h ∈ H. This is equivalent to

hkh−1 ∈ K for all h ∈ H and k ∈ K. We write this as K / H. We can note that

(a) the subgroups H and 1 are always normal in H (so (H, H) is always a permitted pair)

(b) any subgroup of an abelian group is normal.

Lemma 4.2.2. If H is any group and K is a subgroup with |H : K| = 2 then K is a normal subgroup of

H and H/K ∼= Z2.

Proof. See, for example, [2].

A consequence of this lemma is that if H = J × Zc
2 for some J ⊂ SO(3) then J / H with

H/J ∼= Z2 and so (J ×Zc
2, J) is always a permitted pair.

Proposition 4.2.3. The conjugacy classes of pairs (H, K) which can give a twisted subgroup of O(3)×
S1 which is an isotropy subgroup are as given in Table 4.1.

Proof. By Remark 4.2.1 H must be a class II subgroup of O(3) in order for the twisted subgroup,

Hθ , given by the pair (H, K) and homomorphism θ, to be an isotropy subgroup of O(3)× S1 in

any representation. We will consider each class II subgroup, J ×Zc
2, in turn.
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J K H/K J K H/K

SO(3) O(3) 1 D2m Dm ×Zc
2 Z2

SO(3) Z2 Dd
2m Z2

O(2) O(2)×Zc
2 1 Zmd Zm ×Zc

2 Zd

O(2) Z2 Z(2d−1)m Zm Z2(2d−1)

SO(2)×Zc
2 Z2 Z2md Z−

2m Z2d

O(2)− Z2 T T×Zc
2 1

SO(2) SO(2)×Zc
2 1 T Z2

SO(2) Z2 D2 ×Zc
2 Z3

Zn ×Zc
2 S1 D2 Z6

Z−
2n S1 O O×Zc

2 1
Dn Dn ×Zc

2 1 O Z2

Dn Z2 T×Zc
2 Z2

Zn ×Zc
2 Z2 O− Z2

Dz
n Z2 I I×Zc

2 1
I Z2

Table 4.1: The normal subgroups of class II subgroups of O(3) which have quotient subgroups

isomorphic to a subgroup of S1. Here H = J×Zc
2. These pairs (H, K) can give twisted

subgroups of O(3)× S1 which could be isotropy subgroups.

J = SO(3): By computing the commutator subgroup we find that when H = O(3) we have

H′ = SO(3) and H/H′ ∼= Z2. Thus for (H, K) to be a permitted pair K must contain

SO(3). This leaves only the pairs (O(3), O(3)) and (O(3), SO(3)).

J = O(2): When H = O(2)×Zc
2 we have H′ = SO(2) and H/H′ ∼= Z2 ×Z2. Thus for (H, K)

to be a permitted pair K must contain SO(2). Notice that since Z2 ×Z2 is abelian but

not cyclic K = SO(2) does not give a permitted pair. This leaves only the pairs (O(2)×
Zc

2, O(2) ×Zc
2) and (O(3) ×Zc

2, O(2)), (O(3) ×Zc
2, O(2)−) and (O(3) ×Zc

2, SO(2) ×
Zc

2) which are permitted by Lemma 4.2.2.

J = SO(2): Since SO(2) × Zc
2 is abelian all of its subgroups are normal. The subgroups K

which give a permitted pair (H, K) are SO(2)×Zc
2, SO(2), Z−

2n and Zn ×Zc
2. The pairs

with K = Zn are not permitted since in this case H/K ∼= S1 ×Z2.

J = Dn for n odd: When H = Dn ×Zc
2 and n is odd we have H′ = Zn and H/H′ ∼= Z2 ×Z2.

Thus for (H, K) to be a permitted pair K must contain Zn. Notice that since Z2 × Z2

is abelian but not cyclic K = Zn does not give a permitted pair. This leaves only the

pairs with K = Dn ×Zc
2, Dz

n, Dn and Zn ×Zc
2. All of these subgroups K are normal in

H = Dn ×Zc
2 and give permitted pairs (H, K).

J = Dn for n even: Let n = 2m. When H = D2m ×Zc
2 we have H′ = Zm and H/H′ ∼= Z2 ×

Z2 ×Z2. Thus for (H, K) to be a permitted pair K must contain Zm. Notice that since

Z2 ×Z2 ×Z2 is abelian but not cyclic K = Zm does not give a permitted pair. All of the

subgroup types K which give permitted pairs when n is odd also give permitted pairs

when n is even. In addition to these pairs we have that K = Dd
2m and Dm × Zc

2 give

permitted pairs by Lemma 4.2.2. The remaining normal subgroups of H = D2m ×Zc
2

which contain Zm are K = Dz
m, Dm, Zm ×Zc

2 and Z−
2m. However, all of these subgroups
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give H/K ∼= Z2 ×Z2 and as such, do not give permitted pairs.

J = Zn: Since Zn × Zc
2 is abelian all of its subgroups are normal. Suppose that m divides

n so that n = md for some d ∈ N. Then K = Zm is a subgroup of H = Zn × Zc
2

with H/K ∼= Zd × Z2. This is a subgroup of S1 only when d is odd. The subgroup

K = Zm ×Zc
2 has quotient group H/K ∼= Zd and hence the pair (H, K) is permitted for

all values of d. Suppose now that 2m divides n so that n = 2md. Then K = Z−
2m has

H/K ∼= Z2d and so the pair (H, K) is permitted for all values of d.

J = T: When H = T×Zc
2 we have H′ = D2 and H/H′ ∼= Z3 ×Z2 ∼= Z6. Thus, for (H, K)

to be a permitted pair, K must contain D2. The subgroups containing D2 are T×Zc
2, T,

D2 ×Zc
2 and D2. All of these subgroups are normal in H and give permitted pairs (H, K).

J = O: When H = O×Zc
2 we have H′ = T and H/H′ ∼= Z2. Thus, for (H, K) to be a permitted

pair, K must contain T. The subgroups containing T are O×Zc
2, O, T×Zc

2 and T. All of

these subgroups are normal in H and give permitted pairs (H, K).

J = I: When H = I×Zc
2 we have H′ = I and H/H′ ∼= Z2. The only subgroups K which give

a permitted pair are then I×Zc
2 and I.

These arguments justify all entries in Table 4.1.

In order to give a list of conjugacy classes of twisted subgroups of O(3)× S1 it remains only

to carry out the fourth and final step in the procedure given in Section 2.5.3. This says that for

every pair (H, K) in Table 4.1 we must determine the possible homomorphisms θ : H → H/K.

To do this we must find all automorphisms of H/K which are not induced by conjugation by

elements in the normaliser of H.

Homomorphisms

For each pair (H, K) in Table 4.1 we must find all of the homomorphisms θ : H → H/K to

determine the conjugacy classes of twisted subgroups of O(3)× S1. Recall that if θ is a homo-

morphism H → S1 with ker θ = K then all other such homomorphisms are of the form α ◦ θ

where α is an automorphism of Im(θ) = H/K. The twisted groups Hθ and Hα◦θ are conjugate

in O(3)× S1 if α is induced by conjugation by elements in NO(3)(H). Thus for each pair (H, K)

in Table 4.1 we must find all automorphisms of H/K which are not induced by conjugation by

elements in the normaliser of H.

When H/K is 1 there are no such automorphisms and the only homomorphism θ : H → H/K

is given by

θ(h) = 0 ∀ h ∈ H.

When H/K is Z2 there are again no such automorphisms and the homomorphism θ is given by

θ(h) =

{
0, h ∈ K

π, h ∈ H − K

We now consider the remaining pairs (H, K) in turn.
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Pairs (SO(2)×Zc
2, K): Consider the pairs (SO(2)×Zc

2, K) in Table 4.1 where SO(2)×Zc
2/K =

S1. There are no non-trivial automorphisms α : S1 → S1 which are not induced by an element

in NO(3)(SO(2)×Zc
2) = O(2)×Zc

2. Hence, up to conjugacy, there is only one possible homo-

morphism θ : SO(2)×Zc
2 → S1 for each pair (SO(2)×Zc

2, K) which is as follows:

• When K = Zn ×Zc
2 the pair (SO(2)×Zc

2, K) can only give an isotropy subgroup in the

plus representation of O(3) by Remark 4.2.1. In this representation−I acts as the identity

and −I ∈ K = ker θ. Thus the homomorphism θ is given by

θ(ψ) = θ(−ψ) = nψ ∀ψ ∈ SO(2). (4.2.1)

• When K = Z−
2n the pair (SO(2)×Zc

2, K) can only give an isotropy subgroup in the minus

representation of O(3) by Remark 4.2.1. The homomorphism θ is given by

θ(ψ) =

{
nψ, ψ ∈ SO(2)

nψ + π, ψ ∈ SO(2)×Zc
2 − SO(2).

(4.2.2)

Pairs (T×Zc
2, K) : Consider the pairs (T×Zc

2, K) in Table 4.1 where K = D2 ×Zc
2 or D2

and T×Zc
2/K = Z3 or Z6 respectively. In both cases there are no non-trivial automorphisms

which are not induced by an element in NO(3)(T×Zc
2) = O×Zc

2. In each case there is (up to

conjugacy) just one homomorphism, θ, which is as follows:

• When K = D2 ×Zc
2 the homomorphism, θ, is given by

θ(h) =
2πk

3
∀ h ∈ rkD2 for k = 0, 1, 2

where r = R2π/3 is a rotation through 2π/3 and so is a generator of Z3. By Remark 4.2.1

the pair (H, K) can only give an isotropy subgroup in the plus representation of O(3) so

θ(−h) = θ(h) in this case.

• When K = D2 the homomorphism, θ, is given by

θ(h) =
2πk

6
∀ h ∈ rkD2 for k = 0, . . . , 5

where r = −R2π/3 is a rotation through 2π/3 combined with inversion in the origin and

so is a generator of Z6.

Pairs (Zn ×Zc
2, K): For the pairs (Zn ×Zc

2, K) in Table 4.1 the number of non-trivial auto-

morphisms α : H/K → H/K which are not induced by conjugation by elements in NO(3)(Zn ×
Zc

2) = O(2)×Zc
2 depends on the size of H/K. We will consider each case in turn.

• Consider the pair (Zmd ×Zc
2, Zm ×Zc

2) where H/K = Zd. One possible homomorphism

θ : Zmd ×Zc
2 → Zd is given by

θ(rk) = θ(−rk) = 2πk/d for k = 0, . . . , md− 1 (4.2.3)
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where r = R2π/md is a rotation through 2π/md and is the generator of Zmd. All other

homomorphisms are given by α ◦ θ where α : Zd → Zd is an automorphism. Suppose

that Zd = 〈ω〉where ω = 2π/d. When d = 1 or 2 there are no non-trivial automorphisms.

When d ≥ 3 the automorphisms αj of Zd are given by

αj(ω) = jω for j = 1, . . . , d− 1.

Notice that if j = 1 then we have the trivial automorphism.

Let κ ∈ O(2) be the order two element such that

κRφκ−1 = R2φ for rotations Rφ ∈ SO(2).

Then for elements rk ∈ Zmd where r = R2π/md,

θ(κrkκ−1) = θ(r2k) = 4πk/d for k = 0, . . . , md− 1

and

(αj ◦ θ)(rk) = αj(2πk/d) = αj(kω) = jkω = 2π jk/d.

Hence, when j = 2 the homomorphism ψj given by αj ◦ θ is induced by conjugatation by

κ ∈ O(2).

This means that the homomorphisms from Zmd ×Zc
2 to Zd are given by θ and ψj = αj ◦ θ

for j = 3, . . . , d− 1 where

ψj(rk) = ψj(−rk) = αj(θ(rk)) = αj(2πk/d) = 2πkj/d. (4.2.4)

• Consider the pair (Zmb ×Zc
2, Zm) where H/K = Z2b and b = 2d− 1 is odd. One possible

homomorphism θ : Zmb ×Zc
2 → Z2b is given by

θ(rk) = 2πk/b for k = 0, . . . , mb− 1

θ(−rk) = 2πk/b + π for k = 0, . . . , mb− 1. (4.2.5)

where r = R2π/mb is the generator of Zmb. All other homomorphisms are given by α ◦ θ

where α : Z2b → Z2b is a non-trivial automorphism. When b = 1 there are no such auto-

morphisms. Notice that since (−I, π) ∈ H(α◦θ) for all α, the automorphisms must satisfy

α(π) = π. Suppose that Z2b = 〈ω〉 where ω = π/b. When b ≥ 3 the automorphisms αj

of Z2b are given by

αj(ω) = jω for j = 1, . . . , 2b− 1 and j odd.

We can only have j odd since we need αj(π) = π. Notice that if j = 1 then we have the

trivial automorphism and if j = b then αb is not an automorphism (it is not bijective).

For κ ∈ O(2) and rk ∈ Zmb where r = R2π/mb,

θ(κrkκ−1) = θ(r2k) = 4πk/b for k = 0, . . . , mb− 1

θ(κ(−rk)κ−1) = θ(−r2k) = 4πk/b + π for k = 0, . . . , mb− 1 (4.2.6)
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and

(αj ◦ θ)(rk) = αj(2πk/b) = 2π jk/b

(αj ◦ θ)(−rk) = αj(2πk/b + π) = 2π jk/b + jπ = 2π jk/b + π (4.2.7)

since j is odd. Hence, when j = 2 + b the homomorphism ψj given by αj ◦ θ is induced by

conjugatation by κ ∈ O(2).

This means that the homomorphisms from Zmb ×Zc
2 to Z2b are given by θ and ψj = αj ◦ θ

for j = 3, 5, . . . , b− 2, b + 4, . . . 2b− 1 where

ψj(rk) = αj(θ(rk)) = αj(2πk/b) = 2πkj/b

ψj(−rk) = αj(θ(−rk)) = αj(2πk/b + π) = 2πkj/b + π. (4.2.8)

Notice that the homomorphism given by j = b + s is the same as a homomorphism given

by j = s so we can take j = 3, 4, . . . , b− 1 in (4.2.8).

• Finally, consider the pair (Z2md ×Zc
2, Z−

2m) where H/K = Z2d. One possible homomor-

phism θ : Z2md ×Zc
2 → Z2d is given by

θ(rk) = πk/d for k = 0, . . . , 2md− 1

θ(−rk) = πk/d + π for k = 0, . . . , 2md− 1. (4.2.9)

where r = Rπ/md is the generator of Z2md. All other homomorphisms are given by α ◦ θ

where α : Z2d → Z2d is a non-trivial automorphism. When d = 1 there are no such auto-

morphisms. Notice that since (−I, π) ∈ H(α◦θ) for all α, the automorphisms must satisfy

α(π) = π. Suppose that Z2d = 〈ω〉 where ω = π/d. When d ≥ 2 the automorphisms αj

of Zd are given by

αj(ω) = jω for j = 1, . . . , 2d− 1 and j odd.

We can only have j odd since we need αj(π) = π. Notice that if j = 1 then we have the

trivial automorphism and if j = d where d is odd then αd is not an automorphism (it is

not bijective).

For κ ∈ O(2) and rk ∈ Z2md where r = Rπ/md,

θ(κrkκ−1) = θ(r2k) = 2πk/d for k = 0, . . . , 2md− 1

θ(κ(−rk)κ−1) = θ(−r2k) = 2πk/d + π for k = 0, . . . , md− 1 (4.2.10)

and

(αj ◦ θ)(rk) = αj(πk/d) = π jk/d

(αj ◦ θ)(−rk) = αj(πk/d + π) = π jk/d + jπ = π jk/d + π (4.2.11)

since j is odd. Hence there is no homomorphism ψj = αj ◦ θ induced by conjugatation by

κ ∈ O(2). The homomorphisms from Z2md ×Zc
2 to Z2d are given by θ and ψj = αj ◦ θ for

j = 3, 5, . . . , 2d− 1 where

ψj(rk) = αj(θ(rk)) = αj(πk/d) = πkj/d

ψj(−rk) = αj(θ(−rk)) = αj(πk/d + π) = πkj/d + π. (4.2.12)
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Table 4.1 together with the homomorphisms given above completes the list of conjugacy classes

of twisted subgroups of O(3)× S1. The next step is to identify those twisted subgroups which

are isotropy subgroups for some representation on V` ⊕ V`. This is the subject of the next sec-

tion.

4.3 Isotropy subgroups of O(3)× S1

In Section 4.2 we computed the conjugacy classes of twisted subgroups, Hθ , of O(3)× S1. We

found that the pairs of subgroups (H, K) given in Table 4.1, with the exception of the pairs with

H = Zn ×Zc
2, uniquely identify these conjugacy classes. For each pair where H 6= Zn ×Zc

2

there is only one possible homomorphism θ : H → H/K.

In this section we will identify which of these twisted subgroups are isotropy subgroups with

two or four-dimensional fixed-point subspace in each representation of O(3)× S1 on V` ⊕ V`.

To do this we will use the chain criterion (Lemma 2.4.2) and the formulae for computing dimen-

sions of fixed point subspaces of twisted subgroups given in Section 2.5.3. We first compute the

dimensions of the fixed-point subspaces of each of the twisted subgroups, Hθ , of O(3)× S1 for

each representation on V` ⊕V`.

4.3.1 Dimensions of fixed-point subspaces of twisted subgroups

In this section we compute the dimension of the fixed-point subspace of each conjugacy class of

twisted subgroups, Hθ , of O(3)× S1. The dimension of the fixed-point subspace of Hθ for the

representation on V` ⊕V` is a formula in terms of `. We only give formulae for dim Fix(Hθ) in

the representations where it is possible for Hθ to be an isotropy subgroup of O(3)× S1. Recall

from Remark 4.2.1 that twisted subgroups Hθ ⊂ O(3)× S1 given by pairs (H, K) can only be

isotropy subgroups in the plus representation if K is a class II subgroup of O(3) and in the

minus representation K must be either class I or class III.

Proposition 4.3.1. The dimension of the fixed-point subspace of each conjugacy class of twisted sub-

groups Hθ , is as given in Table 4.2 for the representation in which it is possible for Hθ to be an isotropy

subgroup of O(3)× S1. In the cases where H = Zn ×Zc
2 the dimension of the fixed-point subspace of

Hψj depends on the value of j where the homomorphisms ψj are as given in (4.2.4), (4.2.8) or (4.2.12)

depending on the subgroup K.

Proof. We will use Proposition 2.5.13, as well as Theorems 3.3.4 and 3.3.5. Note that in the plus

representation −I acts as the identity and so for subgroups J ⊂ SO(3), dim Fix(J × Zc
2) =

dim Fix(J). In the minus representation −I acts as minus the identity and so fixes only the

origin and hence dim Fix(J ×Zc
2) = 0.

For the pairs (H, K) in Table 4.1 with H/K = 1, by Proposition 2.5.13(a), since these pairs can

only give isotropy subgroups in the plus representation,

dim Fix(Hθ) = 2 dim Fix(H) = 2 dim Fix(J)
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J K dim Fix(Hθ) dim Fix(Hθ)

plus representation minus representation

SO(3) O(3) 0 –

SO(3) SO(3) – 0

O(2) O(2)×Zc
2

{
2, ` even

0, ` odd
–

O(2) O(2) –

{
2, ` even

0, ` odd

O(2) SO(2)×Zc
2

{
0, ` even

2, ` odd
–

O(2) O(2)− –

{
0, ` even

2, ` odd

SO(2) SO(2)×Zc
2 2 –

SO(2) SO(2) – 2

SO(2) Zn ×Zc
2

{
2 when n = 1, 2, . . . , `

0 otherwise
–

SO(2) Z−
2n –

{
2 when n = 1, 2, . . . , `

0 otherwise

Dn Dn ×Zc
2

{
2 [`/n] + 2, ` even

2 [`/n] , ` odd
–

Dn Dn –

{
2 [`/n] + 2, ` even

2 [`/n] , ` odd

Dn Zn ×Zc
2

{
2 [`/n] , ` even

2 [`/n] + 2, ` odd
–

Dn Dz
n –

{
2 [`/n] , ` even

2 [`/n] + 2, ` odd

D2m Dm ×Zc
2 2 [(` + m)/2m] –

D2m Dd
2m – 2 [(` + m)/2m]

Zmd Zm ×Zc
2 2|Pd,j,m(`)| –

Z(2d−1)m Zm – 2|P(2d−1),j,m(`)|
Z2md Z−

2m – 2|P2d,j,m(`)|
T T×Zc

2 4 [`/3] + 2 [`/2]− 2` + 2 –

T T – 4 [`/3] + 2 [`/2]− 2` + 2

T D2 ×Zc
2

{
`− 2 [`/3] , ` even

`− 2 [`/3]− 1, ` odd
–

T D2 –

{
`− 2 [`/3] , ` even

`− 2 [`/3]− 1, ` odd

O O×Zc
2 2 ([`/4] + [`/3] + [`/2]− ` + 1) –

O O – 2 ([`/4] + [`/3] + [`/2]− ` + 1)
O T×Zc

2 2 ([`/3]− [`/4]) –

O O− – 2 ([`/3]− [`/4])
I I×Zc

2 2 ([`/5] + [`/3] + [`/2]− ` + 1) –

I I – 2 ([`/5] + [`/3] + [`/2]− ` + 1)

Table 4.2: The dimensions of the fixed-point subspaces of the twisted subgroups Hθ of O(3)×
S1 in the representation on V` ⊕ V` where Hθ can be an isotropy subgroup. Here

the set Pd,j,m(`) is defined by Pd,j,m(`) =
{

p : −` ≤ p ≤ ` and mj+p
md ∈ Z

}
and

the value of j determines the homomorphism ψj which is given by (4.2.4), (4.2.8) or

(4.2.12) for the different subgroups K.
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where H = J ×Zc
2. The formula in terms of ` for dim Fix(J) is given by Theorem 3.3.4.

Consider next the pairs (H, K) in Table 4.1 with H/K = Z2, where K = Σ × Zc
2 is a class

II subgroup of O(3). By Proposition 2.5.13(b), and since these pairs can only give isotropy

subgroups in the plus representation,

dim Fix(Hθ) = 2 (dim Fix(K)− dim Fix(H)) = 2 (dim Fix(Σ)− dim Fix(J))

where H = J ×Zc
2. The formulae in terms of ` for dim Fix(Σ) and dim Fix(J) are given by The-

orem 3.3.4. In many cases it is possible to simplify the expression for dim Fix(Σ)− dim Fix(J)

to find the formula given in Table 4.2.

Now consider the pairs (H, K) in Table 4.1 with H/K = Z2, where K is a class I or III subgroup

of O(3). By Proposition 2.5.13(b), and since these pairs can only give isotropy subgroups in the

minus representation,

dim Fix(Hθ) = 2 (dim Fix(K)− dim Fix(H)) = 2 dim Fix(K)

where H = J ×Zc
2. The formula in terms of ` for dim Fix(K) is given by Theorem 3.3.4 (for

class I K) or Theorem 3.3.5 (for class III K).

We consider the remaining pairs (H, K) in turn.

(SO(2)×Zc
2, Zn ×Zc

2): Recall from Section 4.2 that for this twisted subgroup the twist homo-

morphism, θ : SO(2)×Zc
2 → S1, is given by

θ(ψ) = θ(−ψ) = nψ for ψ ∈ SO(2)

where −ψ = −I · ψ. For each ψ ∈ SO(2) in the representation on V`, the trace of ψ is

given by

Trace(ψ) = χ(ψ) =
`

∑
m=−`

eimψ.

In our representation on V` ⊕ V`, by Remark 2.5.1, θ(ψ) acts as scalar multiplication by

eiθ(ψ) and hence

Trace(ψ, θ(ψ)) = einψ
`

∑
m=−`

eimψ.

Then by the trace formula we have

dim Fix(Hθ) =
∫

SO(2)×Zc
2

Trace(h, θ(h)) = 2
∫

SO(2)
Trace(ψ, nψ)

=
1
π

∫ 2π

0
einψ

`

∑
m=−`

eimψdψ

=

{
2 if n = 1, 2, . . . , `

0 otherwise.

(SO(2)×Zc
2, Z−

2n): Recall from Section 4.2 that for this twisted subgroup the twist homomor-

phism, θ : SO(2)×Zc
2 → S1, is given by

θ(ψ) = nψ θ(−ψ) = nψ + π
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where ψ ∈ SO(2) and −ψ = −I · ψ. For each element ±ψ ∈ SO(2)×Zc
2 we then have

Trace(ψ, nψ) = einψ
`

∑
m=−`

eimψ and Trace(−ψ, nψ + π) = −ei(nψ+π)
`

∑
m=−`

eimψ.

Then by the trace formula we have

dim Fix(Hθ) =
∫

SO(2)×Zc
2

Trace(h, θ(h))

=
∫

SO(2)
Trace(ψ, nψ) +

∫

SO(2)
Trace(−ψ, nψ + π)

= 2
∫

SO(2)
Trace(ψ, nψ)

=

{
2 if n = 1, 2, . . . , `

0 otherwise.

(Zmd ×Zc
2, Zm ×Zc

2): For these pairs the twisted subgroups are given by Hψj where the ho-

momorphisms ψj : Zmd ×Zc
2 → Zd are given by (4.2.4) for j = 1 and j = 3, 4, . . . , d− 1.

Thus for each element rk ∈ Zmd, where r = R2π/md is a rotation through 2π/md,

Trace(rk, ψj(rk)) = e2πijk/d
`

∑
p=−`

e2πipk/md,

and hence

dim Fix(Hψj) =
∫

Zmd×Zc
2

Trace(h, ψj(h)) = 2
∫

Zmd

Trace(h, ψj(h))

=
2

md

md−1

∑
k=0

Trace(rk, ψj(rk))

=
2

md

`

∑
p=−`

md−1

∑
k=0

[
e2πi(mj+p)/md

]k
.

Since
md−1

∑
k=0

[
e2πi(mj+p)/md

]k
=

{
md when mj+p

md ∈ Z

0 otherwise,

we find that if we define the set

Pd,j,m(`) =
{

p ∈ Z : −` ≤ p ≤ ` and
mj + p

md
∈ Z

}
(4.3.1)

then

dim Fix(Hθ) = 2|Pd,j,m(`)|.
Notice that for p ∈ Pd,j,m(`),

p = m(dq− j) for some q ∈ Z

This means that

Pd,j,m(`) = {q ∈ Z : −` ≤ m(dq− j) ≤ `}

=
{

q ∈ Z :
mj− `

md
≤ q ≤ mj + `

md

}
. (4.3.2)
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(Z(2d−1)m ×Zc
2, Zm): Let b = 2d− 1. For these pairs the twisted subgroups are given by Hψj

where the homomorphisms ψj : Zmb × Zc
2 → Z2b are given by (4.2.8) for j = 1 and

j = 3, 4, . . . , b− 1 and b = 2d− 1. Thus for each element rk ∈ Zmb, where r = R2π/mb is a

rotation through 2π/mb,

Trace(rk, ψj(rk)) = Trace(−rk, ψj(−rk)) = e2πijk/b
`

∑
p=−`

e2πipk/mb

and hence, as in the case above,

dim Fix(Hψj) = 2
∫

Zmb

Trace(h, ψj(h))

= 2|Pb,j,m(`)| = 2|P(2d−1),j,m(`)|,

where the set Pb,j,m(`) is as in (4.3.1) and (4.3.2).

(Z2md ×Zc
2, Z−

2m): For these pairs the twisted subgroups are given by Hψj where the homo-

morphisms ψj : Z2md×Zc
2 → Z2d are given by (4.2.12) for the odd values j = 1, 3, 5, . . . , 2d−

1. Thus for each element rk ∈ Z2md, where r = Rπ/md is a rotation through π/md,

Trace(rk, ψj(rk)) = Trace(−rk, ψj(−rk)) = eπijk/d
`

∑
p=−`

eπipk/md

and hence

dim Fix(Hψj) =
∫

Z2md×Zc
2

Trace(h, ψj(h)) = 2
∫

Z2md

Trace(h, ψj(h))

=
2

2md

2md−1

∑
k=0

Trace(rk, ψj(rk))

=
1

md

`

∑
p=−`

2md−1

∑
k=0

[
eπi(mj+p)/md

]k
.

Since
2md−1

∑
k=0

[
eπi(mj+p)/md

]k
=

{
2md when mj+p

md ∈ 2Z

0 otherwise,

we find that

dim Fix(Hθ) = 2
∣∣∣∣
{

p : −` ≤ p ≤ ` and
mj + p

md
is an even integer

}∣∣∣∣
= 2|P2d,j,m(`)|,

where the set Pd,j,m(`) is as in (4.3.1) and (4.3.2).

(T×Zc
2, D2 ×Zc

2): By Proposition 2.5.13(c) and Theorem 3.3.4(b) and (c),

dim Fix(Hθ) = dim Fix(D2)− dim Fix(T)

=

{
`− 2 [`/3] , ` even

`− 2 [`/3]− 1, ` odd

in the plus representation.
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(T×Zc
2, D2): By Proposition 2.5.13(e) and Theorem 3.3.4(b) and (c),

dim Fix(Hθ) = dim Fix(T×Zc
2) + dim Fix(D2)− dim Fix(D2 ×Zc

2)− dim Fix(T)

= dim Fix(D2)− dim Fix(T)

=

{
`− 2 [`/3] , ` even

`− 2 [`/3]− 1, ` odd

in the minus representation.

4.3.2 C-axial isotropy subgroups

In Section 4.3.1 we computed formulae for the dimensions of the fixed-point subspaces of the

twisted subgroups, Hθ , which may be isotropy subgroups for a representation of O(3) × S1

on V` ⊕ V`. We now wish to determine for which values of ` each twisted subgroup, Hθ , is a

C-axial subgroup of O(3)× S1. That is, the values of ` for which Hθ is an isotropy subgroup

with dim Fix(Hθ) = 2. We first list in Table 4.3 the values of ` where each twisted subgroup

has dim Fix(Hθ) = 2 before determining, using the chain criterion (Lemma 2.4.2), when each

of these twisted subgroups are C-axial isotropy subgroups.

Proposition 4.3.2. The values of ` for which the twisted subgroups Hθ ⊂ O(3) × S1 have two-

dimensional fixed-point subspaces in the representation on V` ⊕V` are as given in Table 4.3.

Proof. For the twisted subgroups, Hθ , with H = J×Zc
2 where J = O(2) or SO(2), the entries in

Table 4.3 follow directly from Table 4.2. Similarly, when J and K are both exceptional subgroups

of O(3) then the entries in Table 4.3 follow directly from Table 4.2 when combined with Tables

3.2 and 3.3.

For the pairs (T×Zc
2, D2 ×Zc

2) and (T×Zc
2, D2) we can see that

`− 2 [`/3] = 2 when ` is even ⇒ [`/3] = `/2− 1 when ` is even

⇒ 0 < ` ≤ 6 and ` is even

`− 2 [`/3]− 1 = 2 when ` is odd ⇒ [`/3] = (`− 3)/2 when ` is odd

⇒ 3 < ` ≤ 9 and ` is odd.

Hence, for the twisted subgroups Hθ given by these pairs, the values of ` for which dim Fix(Hθ) =

2 are 2, 4, 5, 6, 7 and 9.

The entries in Table 4.3 for the twisted subgroups, Hθ , where H is a dihedral subgroup of O(3)

follow from the fact that

[`/n] = 1 when n ≤ ` < 2n

[`/n] = 0 when 0 ≤ ` < n

[(` + m)/2m] = 1 when m ≤ ` < 3m

Finally we consider the range of values of ` for which |Pd,j,m(`)| = 1 where Pd,j,m(`) is the set

defined by (4.3.1). By (4.3.2), |Pd,j,m(`)| = 1 when there is only one integer q which satisfies

j
d
− `

md
≤ q ≤ j

d
+

`

md
. (4.3.3)
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J K Values of ` Values of `

plus representation minus representation

O(2) O(2)×Zc
2 Even ` –

O(2) O(2) – Even `

O(2) SO(2)×Zc
2 Odd ` –

O(2) O(2)− – Odd `

SO(2) SO(2)×Zc
2 All ` –

SO(2) SO(2) – All `

SO(2) Zn ×Zc
2 All ` for n = 1, 2, . . . , ` –

SO(2) Z−
2n – All ` for n = 1, 2, . . . , `

Dn Dn ×Zc
2

{
0 ≤ ` < n, ` even

n ≤ ` < 2n, ` odd
–

Dn Dn –

{
0 ≤ ` < n, ` even

n ≤ ` < 2n, ` odd

Dn Zn ×Zc
2

{
n ≤ ` < 2n, ` even

0 ≤ ` < n, ` odd
–

Dn Dz
n –

{
n ≤ ` < 2n, ` even

0 ≤ ` < n, ` odd

D2m Dm ×Zc
2 m ≤ ` < 3m –

D2m Dd
2m – m ≤ ` < 3m

Zmd
[∗] Zm ×Zc

2





0 ≤ ` < m, d = 1

m ≤ ` < m(d− 1), d ≥ 3, j = 1

m(d− j) ≤ ` < mj, d > 3, j ≥ 3

–

Z(2d−1)m
[∗] Zm –





0 ≤ ` < m, d = 1, j = 1

m ≤ ` < 2m, d = 2, j = 1

m ≤ ` < m(2d− 2), d ≥ 3, j = 1

m(2d− 1− j) ≤ ` < mj, d ≥ 3, j ≥ 3

Z2md
[∗] Z−

2m –

{
m ≤ ` < m(2d− 1), d ≥ 2, j = 1

m(2d− j) ≤ ` < mj, d ≥ 2, j ≥ 3

T T×Zc
2 3, 4, 7, 8, 11 –

T T – 3, 4, 7, 8, 11

T D2 ×Zc
2 2, 4, 5, 6, 7, 9 –

T D2 – 2, 4, 5, 6, 7, 9

O O×Zc
2 4, 6, 8, 9, 10, 13, 14, 15, 17, 19, 23 –

O O – 4, 6, 8, 9, 10, 13, 14, 15, 17, 19, 23

O T×Zc
2 3, 6, 7, 9–14, 16, 17, 20 –

O O− – 3, 6, 7, 9–14, 16, 17, 20

I I×Zc
2 6, 10, 12, 15, 16, 18, 20, 21, 22, 24–28 –

31–35, 37–39, 41, 43, 44, 47, 49, 53, 59

I I – 6, 10, 12, 15, 16, 18, 20, 21, 22, 24–28

31–35, 37–39, 41, 43, 44, 47, 49, 53, 59

Table 4.3: The values of ` for which the twisted subgroups Hθ ⊂ O(3)× S1 given by the pairs

(H, K) have two-dimensional fixed-point subspaces in the representation on V` ⊕V`

where Hθ can be an isotropy subgroup. Here H = J ×Zc
2. [*] The homomorphism is

ψj : H → H/K which is given by (4.2.4), (4.2.8) or (4.2.12) depending on K.
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When d = 1 we must have j = 1 and this integer, q must be 1 so

0 <
m− `

m
≤ 1 ≤ m + `

m
< 2 ⇒ 0 ≤ ` < m.

When d = 2 we must also have j = 1. The nearest integers to 1/d = 1/2 are 0 and 1 which are

equal distances away and hence we cannot have |P2,1,m(`)| = 1 for any values of `.

When d ≥ 3 and j = 1 the nearest integer to j/d is q = 0 and so

−1 <
m− `

md
≤ 0 ≤ m + `

md
< 1 ⇒ m ≤ ` < m(d− 1).

Finally, when d > 3 and j ≥ 3 the nearest integer to j/d is q = 1 and so

0 <
mj− `

md
≤ 1 ≤ mj + `

md
< 2 ⇒ m(d− j) ≤ ` < mj.

Theorem 4.3.3. The C-axial subgroups of O(3)× S1 in the representations on V` ⊕V` are as given in

Table 4.4.

J K θ(H) Plus representation Minus representation

O(2) O(2)×Zc
2 1 Even `

O(2) O(2) Z2 Even `

O(2) SO(2)×Zc
2 Z2 Odd `

O(2) O(2)− Z2 Odd `

SO(2) Zn ×Zc
2 S1 All ` for n = 1, 2, . . . , `

SO(2) Z−
2n S1 All ` for n = 1, 2, . . . , `

I I×Zc
2 1 6, 10, 12, 15, 16, 18, 20, 21, 22, 24,

25, 26, 27, 28, 31, 32, 33, 34, 35, 37,

38, 39, 41, 43, 44, 47, 49, 53, 59

I I Z2 6, 10, 12, 15, 16, 18, 20, 21, 22, 24,

25, 26, 27, 28, 31, 32, 33, 34, 35, 37,

38, 39, 41, 43, 44, 47, 49, 53, 59

O O×Zc
2 1 4, 6, 8, 9, 10, 13, 14, 15, 17, 19, 23

O O Z2 4, 6, 8, 9, 10, 13, 14, 15, 17, 19, 23

O T×Zc
2 Z2 3, 6, 7, 9, 10, 11, 12, 13, 14, 16, 17, 20

O O− Z2 3, 6, 7, 9, 10,11, 12, 13, 14, 16, 17, 20

T D2 ×Zc
2 Z3 2, 4, 5, 6, 7, 9

T D2 Z6 2, 4, 5, 6, 7, 9

D2m Dm ×Zc
2 Z2 m ≤ ` < 3m, (m ≥ 3)

D2m Dd
2m Z2 m ≤ ` < 3m, (m ≥ 3)

D4 D2 ×Zc
2 Z2 2, 4, 5

D4 Dd
4 Z2 2, 4, 5

Table 4.4: The C-axial subgroups of O(3) × S1 for the representations V` ⊕ V`. The last two

columns give the values of ` for which the subgroups are isotropy subgroups. Here

H = J ×Zc
2.

Proof. We consider each row in Table 4.3 and determine for which values of ` the twisted sub-

group Hθ given by the pair (H, K) is an isotropy subgroup by using the chain criterion (Lemma

2.4.2).
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If a twisted subgroup, Hθ is maximal (i.e. not contained in any other twisted subgroup Gθ in

Table 4.3) then it is a C-axial isotropy subgroup for all values of ` where dim Fix(Hθ) = 2 as

given in Table 4.3.

Remark 4.3.4. Notice that a pair (H, K) gives a twisted subgroup, Hθ that contains the twisted

subgroup, Lψ, given by the pair (L, M) only if L ⊂ H, M ⊂ K and the quotient groups satisfy

L/M ⊂ H/K. Also note that this is a necessary but not sufficient condition for Lψ ⊂ Hθ . We

will sometimes use the notation (L, M) ⊂ (H, K) to mean that Lψ ⊂ Hθ .

Since the pairs (H, K) =

(O(2)×Zc
2, O(2)×Zc

2), (O(2)×Zc
2, O(2)), (O(2)×Zc

2, SO(2)×Zc
2),

(O(2)×Zc
2, O(2)−), (SO(2)×Zc

2, Zn ×Zc
2), (SO(2)×Zc

2, Z−
2n),

(I×Zc
2, I×Zc

2), (I×Zc
2, I), (O×Zc

2, O×Zc
2),

(O×Zc
2, O), (O×Zc

2, T×Zc
2), (O×Zc

2, O−),

(T×Zc
2, D2 ×Zc

2), and (T×Zc
2, D2)

define maximal twisted subgroups, Hθ , they give C-axial isotropy subgroups for all values of `

given in Table 4.3.

The twisted subgroup given by the pair (D2m ×Zc
2, Dm ×Zc

2) is contained in that given by the

pair (D2md ×Zc
2, Dmd ×Zc

2) for any odd value of d. However, for any odd value of d the values

of ` for which each of these twisted subgroups have two-dimensional fixed-point subspaces do

not overlap. Hence by the chain criterion, when m ≥ 3, (D2m ×Zc
2, Dm ×Zc

2) gives a C-axial

subgroup when m ≤ ` < 3m. Similarly when m ≥ 3 the pair (D2m ×Zc
2, Dd

2m) also defines a

C-axial subgroup when m ≤ ` < 3m. When m = 2, from Table 4.3 we can see that both of the

pairs (D4 ×Zc
2, D2 ×Zc

2) and (D4 ×Zc
2, Dd

4) define twisted subgroups with two-dimensional

fixed-point subspaces when ` = 2, 3, 4 and 5. However

(D4 ×Zc
2, D2 ×Zc

2) ⊂ (O×Zc
2, T×Zc

2) and (D4 ×Zc
2, Dd

4) ⊂ (O×Zc
2, O−).

Hence, by the chain rule, neither pair defines a C-axial isotropy subgroup when ` = 3.

This accounts for all of the entries in Table 4.4. It remains to explain why the rest of the pairs

(H, K) in Table 4.3 do not define C-axial isotropy subgroups.

By the chain criterion the twisted subgroup, Hθ , defined by (SO(2)×Zc
2, SO(2)×Zc

2) cannot

be an isotropy subgroup since it is contained in the twisted subgroup, Lψ defined by (O(2)×
Zc

2, O(2)×Zc
2) and for all values of ` where dim Fix(Hθ) = 2, dim Fix(Lψ) = 2 also. Similarly

Hθ defined by (SO(2)×Zc
2, SO(2)) cannot be an isotropy subgroup because it does not satisfy

the chain criterion with Lψ defined by (O(2)×Zc
2, O(2)) for any value of `.

Since (T×Zc
2, T×Zc

2) ⊂ (O×Zc
2, O×Zc

2), by the chain criterion the twisted subgroup Hθ

defined by (T × Zc
2, T × Zc

2) cannot be a C-axial isotropy subgroup when ` = 4 or 8 even

though dim Fix(Hθ) = 2 for these values. Also (T×Zc
2, T×Zc

2) ⊂ (O×Zc
2, T×Zc

2), and

so by the chain criterion Hθ cannot be a C-axial isotropy subgroup when ` = 3, 7 or 11 either.

This leaves no values of ` for which dim Fix(Hθ) = 2 so we conclude that Hθ is never a C-axial
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isotropy subgroup. We come to the same conclusion for the twisted subgroup Lψ defined by

(T×Zc
2, T) since

(T×Zc
2, T) ⊂ (O×Zc

2, O) and (T×Zc
2, T) ⊂ (O×Zc

2, O−).

The pairs (Zmd ×Zc
2, Zm ×Zc

2), (Z(2d−1)m ×Zc
2, Zm) and (Z2md ×Zc

2, Z−
2m) cannot define C-

axial isotropy subgroups for any value of ` for any homomorphism ψj : H → H/K. For all `,

the twisted subgroups defined by these pairs do not satisfy the chain criterion when compared

with the twisted subgroup defined by the pairs (SO(2) ×Zc
2, Zm ×Zc

2), (SO(2) ×Zc
2, Z−

2m)

and (SO(2)×Zc
2, Z−

2m) respectively.

Notice that

(Dn ×Zc
2, Dn ×Zc

2) ⊂ (O(2)×Zc
2, O(2)×Zc

2) (4.3.4)

(Dn ×Zc
2, Dn ×Zc

2) ⊂ (D2n ×Zc
2, Dn ×Zc

2). (4.3.5)

By (4.3.4) and the chain criterion the twisted subgroup, Hθ , defined by the pair (Dn ×Zc
2, Dn ×

Zc
2) cannot be a C-axial isotropy subgroup for any even values of `. By (4.3.5) and the chain

criterion, Hθ , is also not a C-axial isotropy subgroup for the remaining odd values of `. Similarly

(Dn ×Zc
2, Dn) does not give a C-axial isotropy subgroup for any value of ` due to the fact that

the pair is contained in both (O(2)×Zc
2, O(2)) and (D2n ×Zc

2, Dd
2n).

In addition

(Dn ×Zc
2, Zn ×Zc

2) ⊂ (O(2)×Zc
2, SO(2)×Zc

2) (4.3.6)

(Dn ×Zc
2, Zn ×Zc

2) ⊂ (D2n ×Zc
2, Dn ×Zc

2). (4.3.7)

By (4.3.6) and the chain criterion the twisted subgroup, Hθ , defined by the pair (Dn ×Zc
2, Zn ×

Zc
2) cannot be a C-axial isotropy subgroup for odd values of `. By (4.3.7) and the chain criterion,

Hθ , is also not a C-axial isotropy subgroup for the remaining even values of `. Similarly (Dn ×
Zc

2, Dz
n) does not give a C-axial isotropy subgroup for any value of ` due to the fact that the

pair is contained in both (O(2)×Zc
2, O(2)−) and (D2n ×Zc

2, Dd
2n).

Having now considered all rows in Table 4.3, this completes the proof.

Differences from previously published results

As mentioned in Section 4.1, the C-axial isotropy subgroups of O(3)× S1 were first listed by

Golubitsky and Stewart [43]. One error in this list was corrected in Golubitsky et al. [46, Chapter

XVIII, Section 5], however a small number of other errors remained. In this Chapter so far,

we have repeated the computations of Golubitsky and Stewart [43] and Golubitsky et al. [46,

Chapter XVIII, Section 5] in order to correct these errors. Table 4.4 represents our corrected list

of the C-axial isotropy subgroups of O(3) × S1. In this section we outline how and why our

results differ from those of [43] and [46].

The differences between our results in Table 4.4 and the results of Golubitsky et al. given in

Table 5.1 of [46, Chapter XVIII] are as follows:
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1. We have found it necessary to include the value ` = 15 in the lists of values where the

pairs (H, K) = (I×Zc
2, I×Zc

2) and (I×Zc
2, I) give twisted subgroups which are C-axial

subgroups in the plus and minus representations respectively. This is because the twisted

subgroups given by both of these pairs are maximal and in the given representations the

fixed-point subspace of the twisted subgroups is two-dimensional.

2. In Table 5.1 of [46, Chapter XVIII] the final row states that in the plus representation

the pair (H, K) = (D2n × Zc
2, Dn × Zc

2) defines a twisted subgroup which is a C-axial

subgroup when `/2 < n ≤ `. 1 We have found in our computations that the range of

values for which this twisted subgroup is a C-axial isotropy subgroup is `/3 < n ≤ `

when n ≥ 3 and ` = 2, 4 and 5 when n = 2.

In all previous enumerations of the C-axial subgroups of O(3) × S1, [43, 44, 46], it is

assumed that the twisted subgroup, Lψ given by (D2n × Zc
2, Dn × Zc

2) is contained in

Hθ given by (D4n ×Zc
2, D2n ×Zc

2). This results in the reduction in the range of values

for which Lψ is a C-axial subgroup which is reported in [43, 44, 46]. However, the con-

tainment relation Lψ ⊂ Hθ does not hold. For example, the element (Rπ/n, π), where

Rπ/n ∈ O(3) is a rotation through an angle π/n and π ∈ S1 is the non-identity element

in Z2, is contained in the smaller group, Lψ, but not in any copy of the larger group,

Hθ . When we choose a copy of the group L = D2n ×Zc
2 to make the twisted subgroup

Lψ we choose the two axes of rotation required. There is only one copy of the group

H = D4n ×Zc
2 which contains L but in this case L = ker θ and hence Lψ * Hθ . This is

an example of the insufficiency of the condition given in Remark 4.3.4 to determine all

containment relations between twisted subgroups of O(3)× S1.

3. In Table 5.1 of [46, Chapter XVIII] the penultimate row states that in the minus represen-

tation the pair (H, K) = (Dn ×Zc
2, Dn) gives a twisted subgroup, Hθ which is a C-axial

subgroup when `/2 < n ≤ `. However, as we noted in the proof of Theorem 4.3.3, Hθ is

not a C-axial subgroup by the chain criterion since it is contained in the twisted subgroup,

Lψ given by the pair (D2n ×Zc
2, Dd

2n).

We have shown that Lψ is a C-axial subgroup for the values given in Table 4.4. This

twisted subgroup does not appear in the list of C-axial subgroups given in [43] nor Table

5.1 of [46, Chapter XVIII] since it is assumed that Lψ is contained in the twisted subgroup

given by (O(2)×Zc
2, O(2)−) for all values of n. This assumption is false due to the fact

that Dd
2n is not contained in O(2)− by Proposition 3.3.1.

C-axial subgroups in the natural representation

Using Table 4.4 we can find the C-axial isotropy subgroups for the natural representations of

O(3)× S1 on V` ⊕V`. Recall that the natural representation is the plus representation for even

values of ` and the minus representation for odd values of `. Table 4.5 gives the C-axial isotropy

1By comparing Table 14.1 of [43] and Table 5.1 of [46, Chapter XVIII] and the subsequent remarks it is clear that there

is a misprint in footnote [2] to Table 5.1 [46, Chapter XVIII] and it should say that the class II subgroup is Dn/2 ×Zc
2

and n is even.
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subgroups in the natural representation for ` = 1, . . . , 6. This table is the equivalent to Table 5.2

of [46, Chapter XVIII], taking into consideration the errors in Table 5.1 of [46, Chapter XVIII]

which we have corrected. We find that when ` = 3, there are fewer branches of periodic

solutions guaranteed to exist by the equivariant Hopf theorem than previously thought and

when ` = 4, 5 and 6 there are more solution branches. In Chapter 5 we will study the C-axial

periodic solutions in the natural representation on V3 ⊕V3 in detail.

Number of branches given by

` J K θ(H) equivariant Hopf theorem

1 O(2) O(2)− Z2 2

SO(2) Z−
2n S1 [n = 1]

2 O(2) O(2)×Zc
2 1 5

SO(2) Zn ×Zc
2 S1 [n = 1, 2]

T D2 ×Zc
2 Z3

D4 D2 ×Zc
2 Z2

3 O(2) O(2)− Z2 6

SO(2) Z−
2n S1 [1 ≤ n ≤ 3]

O O− Z2

D6 Dd
6 Z2

4 O(2) O(2)×Zc
2 1 10

SO(2) Zn ×Zc
2 S1 [1 ≤ n ≤ 4]

O O×Zc
2 1

T D2 ×Zc
2 Z3

D2n Dn ×Zc
2 Z2 [2 ≤ n ≤ 4]

5 O(2) O(2)− Z2 11

SO(2) Z−
2n S1 [1 ≤ n ≤ 5]

T D2 Z6

D2n Dn ×Zc
2 Z2 [2 ≤ n ≤ 5]

6 O(2) O(2)×Zc
2 1 15

SO(2) Zn ×Zc
2 S1 [1 ≤ n ≤ 6]

I I×Zc
2 1

O O×Zc
2 1

O T×Zc
2 Z2

T D2 ×Zc
2 Z3

D2n Dn ×Zc
2 Z2 [3 ≤ n ≤ 6]

Table 4.5: The C-axial subgroups of O(3) × S1 for the natural representations on V` ⊕ V` for

` = 1, . . . , 6. Here H = J ×Zc
2.

4.3.3 Isotropy subgroups with four-dimensional fixed-point subspaces

In this section we compute the isotropy subgroups, Σ ⊂ O(3)×S1, which have four-dimensional

fixed-point subspaces for all representations on V` ⊕V`. If Σ is maximal then by Theorem 2.5.3

a branch of periodic solutions with Σ symmetry is guaranteed to bifurcate from the origin. If Σ

is submaximal (i.e. contained in a C-axial subgroup) then it is possible that solutions to (4.1.1)

with Σ symmetry may exist depending on the values of the coefficients in the Taylor expansion

of the equivariant vector field f . We call such a solution (if it exists) a submaximal solution.

60



4.3. ISOTROPY SUBGROUPS OF O(3)× S1

In this section we compute in which representations, V` ⊕ V`, the twisted subgroups in Table

4.2 are isotropy subgroups of O(3) × S1 with four-dimensional fixed-point subspaces. To do

this we first list in Table 4.6 the values of ` where each twisted subgroup has dim Fix(Hθ) = 4.

We then determine, using the chain criterion (Lemma 2.4.2), when the twisted subgroups are

isotropy subgroups with four-dimensional fixed-point subspaces.

Proposition 4.3.5. The values of ` for which the twisted subgroups Hθ ⊂ O(3)× S1 in Table 4.2 have

four-dimensional fixed-point subspaces in the representation on V` ⊕V` are as given in Table 4.6.

Proof. The twisted subgroups, Hθ , with H = J ×Zc
2 where J = O(2) or SO(2) do not appear

in Table 4.6 since they never have a four-dimensional fixed-point subspace. When J and K are

both exceptional subgroups of O(3) then the entries in Table 4.6 follow directly from Table 4.2

when combined with Tables 3.2 and 3.3.

For the pairs (T×Zc
2, D2 ×Zc

2) and (T×Zc
2, D2) we can see that

`− 2 [`/3] = 4 when ` is even ⇒ [`/3] = `/2− 2 when ` is even

⇒ 6 < ` ≤ 12 and ` is even

`− 2 [`/3]− 1 = 2 when ` is odd ⇒ [`/3] = (`− 5)/2 when ` is odd

⇒ 9 < ` ≤ 15 and ` is odd.

Hence the values of ` for which dim Fix(Hθ) = 2 are 8, 10, 11, 12, 13 and 15.

The entries in Table 4.3 for the twisted subgroups, Hθ , where H is a dihedral subgroup of O(3)

follow from the fact that

[`/n] = 1 when n ≤ ` < 2n

[`/n] = 2 when 2n ≤ ` < 3n

[(` + m)/2m] = 2 when 3m ≤ ` < 5m

Finally we consider the range of values of ` for which |Pd,j,m(`)| = 2 where Pd,j,m(`) is the set

defined by (4.3.1). By (4.3.2), |Pd,j,m(`)| = 2 when there are two integers q which satisfy (4.3.3).

When d = 1 we must have j = 1. This means that one of the integers must be 1 but the next

nearest integers to 1 are 0 and 2 which are equal distances away and hence |P1,1,m(`)| 6= 2 for

any values of `.

When d = 2 we must also have j = 1. The nearest integers to 1/d are 0 and 1 and so we have

−1 <
m− `

2m
≤ 0 < 1 ≤ m + `

2m
< 2 ⇒ m ≤ ` < 3m.

When d ≥ 3, |Pd,j,m(`)| = 2 when

−1 <
mj− `

md
≤ 0 < 1 ≤ mj + `

md
< 2

which implies that

max{mj, m(d− j)} ≤ ` < min{m(d + j), m(2d− j)}.

The results in Table 4.6 follow directly from these computations.

61



4.3. ISOTROPY SUBGROUPS OF O(3)× S1

J K Values of ` Values of `

plus representation minus representation

Dn Dn ×Zc
2

{
n ≤ ` < 2n, ` even

2n ≤ ` < 3n, ` odd
–

Dn Dn –

{
n ≤ ` < 2n, ` even

2n ≤ ` < 3n, ` odd

Dn Zn ×Zc
2

{
2n ≤ ` < 3n, ` even

n ≤ ` < 2n, ` odd
–

Dn Dz
n –

{
2n ≤ ` < 3n, ` even

n ≤ ` < 2n, ` odd

D2m Dm ×Zc
2 3m ≤ ` < 5m –

D2m Dd
2m – 3m ≤ ` < 5m

Zmd
[∗] Zm ×Zc

2

{
m ≤ ` < 3m d = 2, j = 1

[A] d ≥ 3
–

Z(2d−1)m
[∗] Zm –

{
2m ≤ ` < 4m d = 2, j = 1

[B] d ≥ 3

Z2md
[∗] Z−

2m –

{
m ≤ ` < 3m d = 1, j = 1

[C] d ≥ 2

T T×Zc
2 6, 9, 10, 13, 14, 17 –

T T – 6, 9, 10, 13, 14, 17

T D2 ×Zc
2 8, 10, 11, 12, 13, 15 –

T D2 – 8, 10, 11, 12, 13, 15

O O×Zc
2 12, 16, 18, 20–22, 25–27, 29, 31, 35 –

O O – 12, 16, 18, 20–22, 25–27, 29, 31, 35

O T×Zc
2 15, 18, 19, 21–26, 28, 29, 32 –

O O− – 15, 18, 19, 21–26, 28, 29, 32

I I×Zc
2 30, 36, 40, 42, 45, 46, 48, 50, 51, 52, 54–58 –

61–65, 67–69, 71, 73, 74, 77, 79, 83, 89

I I – 30, 36, 40, 42, 45, 46, 48, 50, 51, 52, 54–58

61–65, 67–69, 71, 73, 74, 77, 79, 83, 89

Table 4.6: The values of ` for which the twisted subgroups Hθ ⊂ O(3)× S1 given by the pairs

(H, K) have four-dimensional fixed-point subspaces in the representation on V` ⊕V`

where Hθ can be an isotropy subgroup. Here H = J ×Zc
2.

[*] The homomorphism is ψj : H → H/K which is given by (4.2.4), (4.2.8) or (4.2.12)

depending on K.

[A]: max{mj, m(d− j)} ≤ ` < min{m(d + j), m(2d− j)}
[B]: max{mj, m(2d− 1− j)} ≤ ` < min{m(2d− 1 + j), m(4d− 2− j)}
[C]: max{mj, m(2d− j)} ≤ ` < min{m(2d + j), m(4d− j)}.
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Theorem 4.3.6. If Hθ ⊂ O(3)× S1 is a twisted subgroup with four-dimensional fixed-point subspace

in the representation on V` ⊕V` then it is an isotropy subgroup in that representation. In other words,

Table 4.6 is a list of the isotropy subgroups of O(3)× S1 with four-dimensional fixed-point subspaces in

the representation on V` ⊕V`.

Proof. We consider each twisted subgroup Hθ in Table 4.6 and show that for all values of `

where dim Fix(Hθ) = 4, the twisted subgroup is an isotropy subgroup. We do this using the

chain criterion (Lemma 2.4.2).

If a twisted subgroup, Hθ is maximal (not contained in any other subgroup of O(3)× S1) then

it is an isotropy subgroup with four-dimensional fixed point subspace for all values of ` where

dim Fix(Hθ) = 4. The pairs (H, K) =

(I×Zc
2, I×Zc

2), (I×Zc
2, I), (O×Zc

2, O×Zc
2),

(O×Zc
2, O), (O×Zc

2, T×Zc
2), (O×Zc

2, O−),

(T×Zc
2, D2 ×Zc

2), and (T×Zc
2, D2)

give maximal twisted subgroups and are therefore maximal isotropy subgroups with four-

dimensional fixed point subspace for all values of ` given in Table 4.6. Hence, by Theorem

2.5.3, a branch of periodic solutions of (4.1.1) with these symmetries is guaranteed to exist for

the representation on V` ⊕V` for the values of ` in Table 4.6.

The twisted subgroup given by the pair (D2m ×Zc
2, Dm ×Zc

2) is contained in that given by the

pair (D2md ×Zc
2, Dmd ×Zc

2) for any odd value of d. However, for any odd value of d the values

of ` for which each of these twisted subgroups have four-dimensional fixed-point subspaces do

not overlap. Hence by the chain criterion, when m ≥ 3, (D2m ×Zc
2, Dm ×Zc

2) gives an isotropy

subgroup with four-dimensional fixed-point subspace for all values of ` in Table 4.6. We can

also observe that (D2m ×Zc
2, Dm ×Zc

2) never gives a maximal isotropy subgroup since for all

values of ` for which it has a four-dimensional fixed-point subspace, (D6m ×Zc
2, D3m ×Zc

2) is

a C-axial subgroup which contains (D2m ×Zc
2, Dm ×Zc

2).

Similarly when m ≥ 3 the pair (D2m ×Zc
2, Dd

2m) also defines a submaximal isotropy subgroup

with four-dimensional fixed-point subspace in the minus representation when 3m ≤ ` < 5m.

When m = 2, from Table 4.3 we can see that both of the pairs (D4 ×Zc
2, D2 ×Zc

2) and (D4 ×
Zc

2, Dd
4) define twisted subgroups with four-dimensional fixed-point subspaces when ` = 6, 7, 8

and 9. Although

(D4 ×Zc
2, D2 ×Zc

2) ⊂ (O×Zc
2, T×Zc

2) and (D4 ×Zc
2, Dd

4) ⊂ (O×Zc
2, O−),

the larger groups have fixed-point subspaces of dimension less than four when ` = 6, 7, 8 and

9. Hence, by the chain criterion, both pairs define a submaximal isotropy subgroup when ` =

6, 7, 8 and 9.

Now consider the twisted subgroup, Hθ given by the pair (T×Zc
2, T×Zc

2). Although it is

contained in the twisted subgroups given by the pairs (I×Zc
2, I×Zc

2), (O×Zc
2, O×Zc

2) and

(O×Zc
2, T×Zc

2); for the values of ` for which dim Fix(Hθ) = 4, these subgroups have a smaller

fixed-point subspace and so Hθ is a submaximal isotropy subgroup by the chain criterion. Sim-
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ilarly the pair (T×Zc
2, T) gives a submaximal isotropy subgroup with four-dimensional fixed-

point subspace for all values of ` given in Table 4.6.

For general n the twisted subgroup Hθ given by the pair (Dn × Zc
2, Dn × Zc

2) is contained

in the twisted subgroups given by the pairs (D2n ×Zc
2, Dn ×Zc

2) and (D2n ×Zc
2, D2n ×Zc

2).

However for the values of ` where dim Fix(Hθ) = 4, these pairs always have a fixed-point

subspace of dimension less than 4 and so by the chain criterion Hθ is an isotropy subgroup

with four-dimensional fixed-point subspace for the values of ` given in Table 4.6. It can never

be a maximal isotropy subgroup since it is contained in the C-axial subgroup given by the

pair (O(2)×Zc
2, O(2)×Zc

2). We now consider the fact that for n = 2, 3, 4 and 5, Hθ may be

contained in a twisted subgroup Lψ where L = M×Zc
2 and M is an exceptional subgroup of

O(3):

(a) (D5 × Zc
2, D5 × Zc

2) ⊂ (I × Zc
2, I × Zc

2) but when dim Fix(D5 × Zc
2, D5 × Zc

2) = 4,

dim Fix(I×Zc
2, I×Zc

2) < 4.

(b) (D4 × Zc
2, D4 × Zc

2) ⊂ (O × Zc
2, O × Zc

2) but when dim Fix(D4 × Zc
2, D4 × Zc

2) = 4,

dim Fix(O×Zc
2, O×Zc

2) < 4.

(c) (D3 ×Zc
2, D3 ×Zc

2) ⊂ (I×Zc
2, I×Zc

2) and(O ×Zc
2, O×Zc

2) but when dim Fix(D3 ×
Zc

2, D3 ×Zc
2) = 4, dim Fix(I×Zc

2, I×Zc
2) < 4 and dim Fix(O×Zc

2, O×Zc
2) < 4.

(d) (D2 ×Zc
2, D2 ×Zc

2) ⊂ (I×Zc
2, I×Zc

2), (O×Zc
2, O×Zc

2), (T×Zc
2, T×Zc

2) and (T×
Zc

2, D2 ×Zc
2) but when dim Fix(D2 ×Zc

2, D2 ×Zc
2) = 4, these larger groups have fixed-

point subspaces of dimension less than 4.

Hence for all values of n, by the chain criterion, (Dn × Zc
2, Dn × Zc

2) gives a submaximal

isotropy subgroup with four-dimensional fixed-point subspace for the values of ` in Table 4.6.

Similar arguments show that the twisted subgroups given by the pairs

(Dn ×Zc
2, Dn) (Dn ×Zc

2, Zn ×Zc
2) and (Dn ×Zc

2, Dz
n)

are also submaximal isotropy subgroups with four-dimensional fixed-point subspace for the

values of ` given in Table 4.6.

Finally we consider the twisted subgroups, Hψj , where H is a cyclic subgroup of O(3).

(a) Let Hψj be the twisted subgroup given by the pair (Zmd × Zc
2, Zm × Zc

2) with homo-

morphism ψj defined by (4.2.4). When d > 3 this subgroup is not contained in any

other twisted subgroup with four-dimensional fixed-point subspace. It is contained in

the C-axial subgroup given by the pair (SO(2)×Z, Zm ×Zc
2) and hence is a submaxi-

mal isotropy subgroup with dim Fix(Hψj) = 4 for all values of ` given in Table 4.6 and all

homomorphisms ψj. When d = 3 and m = 1, j must be equal to 1 and dim Fix(Hψ1) = 4

when ` = 2 or 3. So even though (Z3 ×Zc
2, Zc

2) ⊂ (T×Zc
2, D2 ×Zc

2), by the chain cri-

terion, Hψ1 is still a submaximal isotropy subgroup when ` = 2 and 3 since dim Fix(T×
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Zc
2, D2 ×Zc

2) ≤ 2 for these values of `. Similarly when d = 2, j = 1 and

(Z2m ×Zc
2, Zm ×Zc

2) ⊂ (D2m ×Zc
2, Dm ×Zc

2)

(Z4 ×Zc
2, Z2 ×Zc

2) ⊂ (O×Zc
2, T×Zc

2)

but the larger group always has a fixed-point subspace of dimension less than four for

all values of ` where the smaller group has a fixed-point subspace of dimension four and

hence by the chain criterion, Hψ1 is a submaximal isotropy subgroup for all values of `

given in Table 4.6.

(b) Let Hψj be the twisted subgroup given by the pair (Z(2d−1)m ×Zc
2, Zm) with homomor-

phism ψj defined by (4.2.8). This never has four-dimensional fixed-point subspace when

d = 1. For all other values of d

(Z(2d−1)m ×Zc
2, Zm) ⊂ (Z2(2d−1)m ×Zc

2, Z−
2m)

for any odd value of j = 1, 3, . . . , 2d− 3. However, the larger group always has a fixed-

point subspace of dimension less than four for all values of ` where the smaller group has

a fixed-point subspace of dimension four. Also when d = 2 and m = 1, j = 1 and

(Z3 ×Zc
2,1) ⊂ (T×Zc

2, D2)

however again the larger group always has a fixed-point subspace of dimension less than

four for all values of ` where the smaller group has a fixed-point subspace of dimension

four and hence by the chain criterion, Hψj is a submaximal isotropy subgroup for all

values of ` given in Table 4.6.

(c) Let Hψj be the twisted subgroup given by the pair (Z2md×Zc
2, Z−

2m) with homomorphism

ψj defined by (4.2.12). When d = 1

(Z2m ×Zc
2, Z−

2m) ⊂ (Z6m ×Zc
2, Z−

6m)

(Z2m ×Zc
2, Z−

2m) ⊂ (D2m ×Zc
2, Dd

2m)

(Z4 ×Zc
2, Z−

4 ) ⊂ (O×Zc
2, O−)

(Z2 ×Zc
2, Z−

2 ) ⊂ (D2 ×Zc
2, Dz

2) and other larger groups

but the larger group always has a fixed-point subspace of dimension less than four for

all values of ` where the smaller group has a fixed-point subspace of dimension four and

hence by the chain criterion, Hθ is a submaximal isotropy subgroup for all values of `

given in Table 4.6.

This completes the proof.

Conclusions

We have now computed the isotropy subgroups of O(3)× S1 with two and four dimensional

fixed-point subspaces in the representations on V`⊕V` for all values of `. The equivariant Hopf
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theorem guarantees the existence of branches of periodic solutions to (4.1.1) with the symme-

tries of the C-axial subgroups at a Hopf bifurcation with O(3) × S1 symmetry. To determine

whether these solution branches bifurcate supercritically or subcritically and whether the solu-

tions can be stable we must compute, to high enough order, the Taylor expansion of the general

form of the O(3)× S1 vector field for a specific value of `. We also need this Taylor expansion

to determine if it is possible for solutions with Σ symmetry to exist where Σ is a submaximal

isotropy subgroup of O(3)× S1 with four-dimensional fixed-point subspace. One method of

computing this Taylor expansion is discussed in the next section.

4.4 O(3)× S1 equivariant mappings

In this section we discuss in general how to compute the Taylor expansion of a O(3) equivariant

mapping f (z) where z ∈ C2`+1 is the vector which describes the amplitudes of the spherical

harmonics of degree ` in the space V` ⊕ V` as in Section 4.1. Recall from Chapter 2 that by

the notion of Birkhoff normal form the Taylor expansion of f to order k can be assumed to

commute with O(3)× S1. Thus to compute the kth order truncated Birkhoff normal form of f

for the natural representation of O(3) on V`⊕V` it is equivalent to compute the kth order Taylor

expansion of a mapping which is equivariant with respect to O(3)× S1.

Throughout this section we will assume that O(3) acts on z ∈ C2`+1 by the natural action of

O(3) on V`. This means that elements of O(3) act on z by the same matrices as for V` i.e. those

given in Section 3.2.2, and the phase shifts ψ ∈ S1 act as scalar multiplication by eiψ.

Given a specific value of ` it is possible to compute the Taylor expansion of a O(3)× S1 equiv-

ariant mapping f (z) for the representation on V` ⊕ V` to any given order. However, it is not

possible to carry out this computation for general `. In this section we will discuss the method

of computation for the representation of O(3)× S1 on V` ⊕V` for a given value of ` and prove

that two certain cubic maps are O(3)× S1 equivariant for all values of `. In Chapter 5 we will

carry out the computation of the Taylor expansion of the O(3)× S1 equivariant mapping, f , to

cubic order for the action of O(3)× S1 on V3 ⊕V3.

4.4.1 Equivariant mappings on C2`+1

In this section we describe a method for computing the Taylor expansion of a O(3)× S1 equiv-

ariant mapping f (z) for the natural representation on V` ⊕V` to any given order.

Recall that the mapping f : C2`+1 → C2`+1 is O(3)× S1 equivariant if

f (γ · z) = γ · f (z) ∀γ ∈ O(3)× S1. (4.4.1)

This mapping is in exact Birkhoff normal form. Here ‘·’ represents an action of O(3)× S1 on

the vector

z = (z−`, z−`+1, . . . , z`)
T ∈ C2`+1,

where ‘T’ denotes the transpose. The action, ‘·’, of γ ∈ O(3)× S1 on z is given by multiplication
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on the left by a (2` + 1)× (2` + 1) matrix, Mγ. Hence the mapping f must satisfy

f (Mγz) = Mγ f (z) ∀γ ∈ O(3)× S1. (4.4.2)

Let Fk denote the Taylor expansion of f to order k. In order to compute Fk we impose that (4.4.2)

hold for the mapping Fk = (Fk,−`, Fk,−`+1, . . . , Fk,`)
T where each component Fk,r, r = −`, . . . , `

is a linear combination of all possible terms in z−`, . . . , z` and their complex conjugates of

order less than or equal to k. This will force the coefficients of some terms to be zero and

others to occur in certain ratios. Thus Fk is a linear combination of a number of basis O(3)× S1

equivariant mappings of order less than or equal to k.

We can note that it is sufficient to impose that Fk satisfies (4.4.2) for a set of generators of O(3)×
S1. In Section 3.2.2 we computed the matrices, Mφ′ and Mθ′ , for the action of the generators φ′

and θ′ which are infinitesimal rotations in the z- and y- axes respectively. Recall that

Mφ′ = diag
(

e−i`φ′ , e−i(`−1)φ′ , . . . , ei(`−1)φ′ , ei`φ′
)

(4.4.3)

Mθ′ =
[
vT
−` | vT

−`+1 | · · · | vT
`

]
(4.4.4)

i.e. the matrix with columns vT
m where

vm =
(

0, . . . , 0,−1
2

√
(` + m)(`−m + 1)θ′, 1,

1
2

√
(`−m)(` + m + 1) θ′, 0, . . . , 0

)

for m = −`, . . . , ` with the entry 1 lying in the mth column.

In the natural representation on V`, the element−I acts as the identity when ` is even and minus

the identity when ` is odd. This means that −I acts on z ∈ C2`+1 by scalar multiplication by

(−1)` or equivalently by multiplication by the matrix M−I = (−1)` I2`+1 where I2`+1 is the

(2` + 1)× (2` + 1) identity matrix. Recall that in our representation the phase shifts ψ ∈ S1 act

as scalar multiplication by eiψ or equivalently by multiplication by the matrix Mψ = eiψ I2`+1.

Hence the O(3)× S1 equivariant vector field f satisfies

f (eiψz) = eiψ f (z) ∀ψ ∈ S1.

This means that in the Taylor expansion Fk, each component Fk,r contains only terms of odd

order which are of the form

zj1 zj2 · · · zjp zj(p+1)
zj(p+2)

· · · zj(2p−1)
jq ∈ −`, . . . , ` for q = 1, . . . , 2p− 1. (4.4.5)

Moreover, equivariance with respect to rotations φ′ implies that the only terms in Fk,r are those

of the form (4.4.5) where j1 + j2 + · · ·+ jp − j(p+1) − · · · − j(2p−1) = r.

We have seen that for any value of `, the Taylor expansion to order k, Fk, of the O(3) × S1

equivariant vector field, f , for the representation of O(3) on V` is a linear combination of a

number of basis O(3) × S1 equivariant mappings of order less than or equal to k. The basis

mappings must be of odd order and contain only terms of the form given above.

We now show that two particular mappings are cubic O(3)× S1 equivariant mappings for all

values of `.
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4.4.2 Two cubic O(3)× S1 equivariant mappings

Proposition 4.4.1. Let z = (z−`, z−`+1, . . . , z`)
T ∈ C2`+1 be the vector which describes the ampli-

tudes of the spherical harmonics of degree `. The mappings

P1(z) = z|z|2 and P2(z) = ẑ

(
z2

0 + 2
`

∑
m=1

(−1)mzmz−m

)

where

|z|2 =
`

∑
m=−`

|zm|2 and ẑ =
(
(−1)` z̄`, (−1)`−1z̄`−1, . . . , (−1)−` z̄−`

)T

are cubic equivariant maps for all natural representations of O(3)× S1.

Proof. We must show that for j = 1 and 2,

Pj(γ · z) = γ · Pj(z) ∀γ ∈ O(3)× S1.

It is sufficient to show that this condition holds for the set of generators of O(3)× S1 discussed

in Section 3.2.2. Since these mappings are both cubic and each component contains only terms

of the form given in (4.4.5) they are both equivariant with respect to the actions of the inversion

element −I and the phase shifts ψ ∈ S1. It remains to show the equivariance of P1 and P2 with

respect to the infinitesimal rotations φ′ and θ′. The matrices Mφ′ and Mθ′ for the actions of these

two infinitesimal rotations are given by (4.4.3) and (4.4.4). These matrices act by multiplication

of z on the left.

Let vk denote the entry in the kth row of the column vector v where k = −`, . . . , `. Then

[
P1(Mφ′z)

]
k
= eikφ′zk

`

∑
m=−`

|eimφ′zm|2 = eikφ′ [P1(z)]k =
[

Mφ′P1(z)
]

k
∀k

[
P2(Mφ′z)

]
k

= (−1)−keikφ′z−k

(
z2

0 + 2
`

∑
m=1

(−1)meimφ′zme−imφ′z−m

)

= eikφ′ [P2(z)]k =
[

Mφ′P2(z)
]

k
∀k.

We also have that

[Mθ′z]k =
1
2

√
(`− k + 1)(` + k)θ′zk−1 + zk −

1
2

√
(` + k + 1)(`− k)θ′zk+1

and subsequently in the limit θ′ → 0

[P1(Mθ′z)]k = [Mθ′z]k

{
`

∑
m=−`

∣∣∣∣
1
2

√
(`−m + 1)(` + m)θ′zm−1 + zm−

1
2

√
(` + m + 1)(`−m)θ′zm+1

∣∣∣∣
2
}

= [Mθ′ · z]k

{
`

∑
m=−`

zm z̄m +
1
2

√
(`−m + 1)(` + m)θ′(zm−1z̄m + z̄m−1zm)

−1
2

√
(` + m + 1)(`−m)θ′(zm+1z̄m + z̄m+1zm)

}

= [Mθ′ · z]k
`

∑
m=−`

|zm|2 (4.4.6)
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since the other terms in the sum cancel out by telescoping. We also compute that

[Mθ′P1(z)]k = [Mθ′z]k
`

∑
m=−`

|zm|2 = [P1(Mθ′z)]k ∀k.

and hence the map P1 is equivariant with respect to the action of the infinitesimal rotation θ′.

Similarly

[P2(Mθ′z)]k = (−1)k [
Mθ′z

]
−k

{
1
2

([Mθ′z]0)
2 +

`

∑
m=1

(−1)m [Mθ′z]m [Mθ′z]−m

}

and

[Mθ′P2(z)]k = (−1)k [
Mθ′z

]
−k

{
1
2

z2
0 +

`

∑
m=1

(−1)mzmz−m

}
.

But since θ′ is infinitesimal in the limit θ′ → 0

1
2

([Mθ′ · z]0)
2 +

`

∑
m=1

(−1)m [Mθ′z]m [Mθ′z]−m =
1
2

(
z2

0 +
√

`(` + 1)θ′(z−1z0 − z1z0)
)

+
`

∑
m=1

(−1)m
{

zmz−m +
1
2

√
(`−m + 1)(` + m)θ′(zm−1z−m − z−m+1zm)

+
1
2

√
(` + m + 1)(`−m)θ′(z−m−1zm − zm+1z−m)

}
.

Telescoping this sum leaves us with

1
2

([Mθ′z]0)
2 +

`

∑
m=1

(−1)m [Mθ′z]m [Mθ′z]−m =
1
2

z2
0 +

`

∑
m=1

(−1)mzmz−m

and hence

[P2(Mθ′z)]k = [Mθ′P2(z)]k ∀k.

The map P2 is equivariant with respect to the action of the infinitesimal rotation θ′.

We have shown that P1 and P2 are both equivariant with respect to a set of generators of O(3)×
S1 for the representation on V` for any value of ` and hence they are O(3) × S1 equivariant

mappings for all representations.
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CHAPTER 5

HOPF BIFURCATION ON A SPHERE

THE NATURAL REPRESENTATION ON V3 ⊕V3

5.1 Introduction

In this chapter we investigate the dynamics which can occur near a Hopf bifurcation with spher-

ical symmetry for a specific representation of the group O(3). Throughout this chapter we

assume that O(3) × S1 acts on the O(3)-simple space V3 ⊕ V3 where O(3) acts absolutely ir-

reducibly on the spherical harmonics of degree three, V3, by the natural representation. The

natural representation on V3 is the minus representation where −I ∈ O(3) acts as minus the

identity. Recall that the action of O(3) on V3 ⊕V3 is given by the action of O(3) on a vector

z(t) = (z−3, z−2, z−1, z0, z1, z2, z3)T ∈ C7,

which describes the amplitudes of the spherical harmonics of degree three as in Section 4.1.

Consider the system of ODEs given by

dz
dt

= f (z, λ), (5.1.1)

where λ ∈ R is a bifurcation parameter, z ∈ C7 and f : C7 ×R → C7 is a smooth mapping

which commutes with the action of O(3) on V3 ⊕V3. Using the notion of Birkhoff normal form,

we can assume that for any positive integer, k, the Taylor expansion of f to order k, which we

denote by Fk, is equivariant with respect to the action of O(3)× S1 on V3⊕V3. In Section 5.2 we

use the method given in Section 4.4 to compute F3, the Taylor expansion of f to order 3 which

commutes with the action of O(3)× S1 on V3 ⊕V3.

Recall that under certain hypotheses, the equivariant Hopf theorem, Theorem 2.5.2, guarantees

that if Σ ⊂ O(3)× S1 is an isotropy subgroup satisfying dim Fix(Σ) = 2 in the representation
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on V3 ⊕ V3 then there is a unique branch of periodic solutions to (5.1.1) with period near 2π

bifurcating from the Hopf bifurcation point at the origin with Σ as their group of symmetries.

In Chapter 4 we computed the C-axial isotropy subgroups of O(3)×S1 for all representations of

O(3)× S1 on V` ⊕V` as well as the isotropy subgroups which fix a four-dimensional subspace.

In Section 5.3 we will consider all of the isotropy subgroups of O(3)× S1 for the representation

on V3⊕V3 and give images of the periodic solution branches with the symmetries of the C-axial

subgroups, whose existence is guaranteed by the equivariant Hopf theorem. In Section 5.4 we

investigate the stability of these solution branches using the vector field computed in Section

5.2.

Depending on the values of coefficients in the O(3) × S1 equivariant vector field f it is pos-

sible for (5.1.1) to admit solutions with symmetry Σ where Σ is an isotropy subgroup with

dim Fix(Σ) > 2. In Section 5.5 we will investigate the conditions under which solutions to

(5.1.1) with symmetry Σ where dim Fix(Σ) = 4 can exist. It turns out that in this case all

isotropy subgroups, Σ, with four-dimensional fixed-point subspaces are submaximal isotropy

subgroups – that is, they are contained within a C-axial subgroup. We refer to a solution with

submaximal symmetry as a submaximal solution and solutions with C-axial symmetry are ref-

ered to as maximal solutions (since all the maximal isotropy subgroups are C-axial in this rep-

resentation).

5.2 The O(3)× S1 equivariant vector field

In this section we compute the Taylor expansion of the general O(3) equivariant vector field,

f , for the action of O(3) on V3 ⊕V3. Due to the notion of Birkhoff normal form we can assume

that the Taylor expansion also commutes with the action of S1 to any given order k. Here we

compute the Taylor expansion of f to cubic order. We denote this Taylor expansion by F3. It

must satisfy

F3(Mγz) = MγF3(z) ∀γ ∈ O(3)× S1 (5.2.1)

where

z(t) = (z−3, z−2, z−1, z0, z1, z2, z3)T ∈ C7,

is the vector which describes the amplitudes of the spherical harmonics of degree 3 and the

group of 7× 7 matrices Mγ which give the action of O(3) on z is generated by the matrices

Mφ′ , Mθ′ , M−I and Mψ which are defined for general values of ` in Section 3.2.2. We find that

the generating matrices for the action of O(3) on z ∈ C7 are

Mφ′ = diag
(

e−3iφ′ , e−2iφ′ , e−iφ′ , 1, eiφ′ , e2iφ′ , e3iφ′
)

(5.2.2)

M−I = −I7 (5.2.3)

Mψ = eiψ I7 (5.2.4)
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Mθ′ =




1 −
√

3
2 θ′ 0 0 0 0 0√

3
2 θ′ 1 −

√
5
2 θ′ 0 0 0 0

0
√

5
2 θ′ 1 −√3θ′ 0 0 0

0 0
√

3θ′ 1 −√3θ′ 0 0

0 0 0
√

3θ′ 1 −
√

5
2 θ′ 0

0 0 0 0
√

5
2 θ′ 1 −

√
3
2 θ′

0 0 0 0 0
√

3
2 θ′ 1




(5.2.5)

where diag (. . .) indicates a diagonal matrix with elements as listed. By imposing that F3 satisfy

(5.2.1) for this set of generating matrices, we find that the general form of a cubic vector field

which commutes with the action of O(3)× S1 as above is

F3(z, λ) = µz + A z|z|2 + B P(z)ẑ + C Q(z) + D R(z) (5.2.6)

where µ, A, B, C, D are smooth complex-valued functions of λ and

|z|2 = |z−3|2 + |z−2|2 + |z−1|2 + |z0|2 + |z1|2 + |z2|2 + |z3|2

P(z) = z2
0 − 2z−1z1 + 2z−2z2 − 2z−3z3

ẑ = (−z̄3, z̄2,−z̄1, z̄0,−z̄−1, z̄−2,−z̄−3)
T

Q(z) = (Q−3, Q−2, Q−1, Q0, Q1, Q2, Q3)
T

R(z) = (R−3, R−2, R−1, R0, R1, R2, R3)
T ,

where Qm(z̃) = Q−m(z), Rm(z̃) = R−m(z), with z̃ = (z3, z2, z1, z0, z−1, z−2, z−3)
T and

Q−3(z) = 5z−3( 5|z−3|2 + 5|z−2|2 − |z−1|2 − 4|z0|2 − 5|z1|2 − 5|z2|2 − 8|z3|2)
+ 5z̄3

(
2z2

0 − 3z1z−1 + 3z2z−2

)
+
√

15
(

2z2
−1z̄1 + 5z2

−2z̄−1

)

+ 5
√

2 (z0z−1z̄2 + z0z−2z̄1 + 3z−2z−1z̄0)

Q−2(z) = 5z−2( 5|z−3|2 + 3|z−1|2 − 3|z1|2 − 8|z2|2 − 5|z3|2) + 4
√

30z−1z0z̄1

+ 5z̄2 (5z1z−1 + 3z3z−3) + 10
√

15z−1z−3z̄−2 + 3
√

30z2
−1z̄0

+ 5
√

2 (z1z−3z̄0 + z0z1z̄3 + 3z0z−3z̄−1)

Q−1(z) = z−1

(
−5|z−3|2 + 15|z−2|2 − 3|z−1|2 + 12|z0|2 − 16|z1|2 − 15|z2|2 − 25|z3|2

)

+ z̄1

(
24z2

0 + 25z2z−2 − 15z3z−3

)
+
√

15
(

4z1z−3z̄−1 + 2z2
1z̄3 + 5z2

−2z̄−3

)

+ 5
√

2 (z2z−3z̄0 + z0z2z̄3 + 3z0z−3z̄−2)

+ 2
√

30 (3z−2z0z̄−1 + 2z−2z1z̄0 + 2z1z0z̄2)

Q0(z) = z0

(
−20|z−3|2 + 12|z−1|2 − 12|z0|2 + 12|z1|2 − 20|z3|2

)

+ 4z̄0 (12z1z−1 + 5z3z−3) + 15
√

2 (z1z2z̄3 + z−2z−1z̄−3)

+ 5
√

2 (z1z−3z̄−2 + z2z−3z̄−1 + z3z−2z̄1 + z3z−1z̄2)

+
√

30
(

4z−2z1z̄−1 + 4z2z−1z̄1 + 3z2
1z̄2 + 3z2

−1z̄−2

)
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R−3(z) = 3z−3( 3|z−3|2 + 3|z−2|2 + |z−1|2 − |z1|2 − 2|z2|2 − 3|z3|2) + 3z−2z2z̄3

+ 3
√

2 (z0z−2z̄1 + z−2z−1z̄0) +
√

15
(

z2
−2z̄−1 + z1z−2z̄2

)

R−2(z) = z−2

(
9|z−3|2 + 4|z−2|2 + 7|z−1|2 − 2|z1|2 − 4|z2|2 − 6|z3|2

)
+ 3z−3z3z̄2

+ 3
√

2 (z0z−3z̄1 + z1z−3z̄0) + 5z−1z1z̄2 +
√

30
(

z2
−1z̄0 + z−1z0z̄1

)

+
√

15 (z−3z2z̄1 + z2z−1z̄3 + 2z−1z−3z̄−2)

R−1(z) = z−1

(
3|z−3|2 + 7|z−2|2 + |z−1|2 + 6|z0|2 − |z1|2 − 2|z2|2 − 3|z3|2

)
+ 6z2

0z̄1

+ 3
√

2 (z0z−3z̄−2 + z0z2z̄3) +
√

30 (2z−2z0z̄−1 + z−2z1z̄0 + z0z1z̄2)

+
√

15
(

z2
−2z̄−3 + z−2z3z̄2

)
+ 5z−2z2z̄1

R0(z) = 6z0

(
|z−1|2 + |z1|2

)
+ 3

√
2 (z−3z1z̄−2 + z1z2z̄3 + z−2z−1z̄−3 + z−1z3z̄2)

+ 12z1z−1z̄0 +
√

30
(

z−2z1z̄−1 + z2
1z̄2 + z2

−1z̄−2 + z−1z2z̄1

)

Remark 5.2.1. We have found four cubic O(3)× S1 equivariant maps for this representation.

This is in agreement with the results of the computations of the number of equivariants by

Antoneli et al. [4].

In Section 5.3 we will use the Taylor expansion, F3, to determine conditions on the coefficients

A, B, C and D for the maximal solutions to (5.1.1) to be stable. It will also be used in Section 5.5

to discover when branches of submaximal solutions can exist.

5.3 Isotropy subgroups and maximal solution branches

From Table 4.5 we can see that in the natural representation on V3 ⊕ V3, O(3)× S1 has six C-

axial isotropy subgroups. Thus, by the equivariant Hopf theorem, (5.1.1) is guaranteed to have

a branch of periodic solutions with each of these symmetry groups. In this section we compute

one possible form of the fixed-point subspace of each of the six C-axial isotropy subgroups and

use this information to discover what the solutions with these symmetries look like. We also

find the isotropy subgroups, Σ with fixed-point subspaces of dimension larger than two by

using Theorem 4.3.6 when dim Fix(Σ) = 4 and the chain criterion when dim Fix(Σ) > 4.

5.3.1 Isotropy subgroups and their fixed-point subspaces

We now compute all isotropy subgroups of O(3)× S1 in the representation on V3 ⊕V3 and one

possible form of their fixed-point subspaces.

Proposition 5.3.1. The isotropy subgroups of O(3) × S1 for the representation on V3 ⊕ V3 and one

possible form of their fixed-point subspaces are as given in Table 5.1. Also listed is N(Σ)/Σ for each

isotropy subgroup Σ where

N(Σ) = {γ ∈ O(3)× S1 : γΣγ−1 = Σ}
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is the normaliser of Σ in O(3)× S1.

Σ J K θ(H) Fix(Σ) dim Fix(Σ) N(Σ)/Σ

Õ(2) O(2) O(2)− Z2 {(0, 0, 0, w1, 0, 0, 0)} 2 S1

S̃O(2)1 SO(2) Z−
2 S1 {(0, 0, w1, 0, 0, 0, 0)} 2 S1

S̃O(2)2 SO(2) Z−
4 S1 {(0, w1, 0, 0, 0, 0, 0)} 2 S1

S̃O(2)3 SO(2) Z−
6 S1 {(w1, 0, 0, 0, 0, 0, 0)} 2 S1

Õ O O− Z2 {(0, w1, 0, 0, 0,−w1, 0)} 2 S1

D̃6 D6 Dd
6 Z2 {(w1, 0, 0, 0, 0, 0,−w1)} 2 S1

Z̃6 Z6 Z−
6 Z2 {(w1, 0, 0, 0, 0, 0, w2)} 4 O(2)× S1

Z̃4 Z4 Z−
4 Z2 {(0, w1, 0, 0, 0, w2, 0)} 4 O(2)× S1

D̃3 D3 Dz
3 Z2 {(w1, 0, 0, w2, 0, 0,−w1)} 4 D2 × S1

D̃2 D2 Dz
2 Z2 {(0, w1, 0, w2, 0, w1, 0)} 4 D2 × S1

Z̃1
3 Z3 1 Z6 {(0, 0, w1, 0, 0, w2, 0)} 4 SO(2)× S1

Z̃5 Z5 1 Z10
[∗] {(w1, 0, 0, 0, 0, w2, 0)} 4 SO(2)× S1

Z̃2
3 Z3 Z3 Z2 {(w1, 0, 0, w2, 0, 0, w3)} 6 O(2)× S1

Z̃1
2 Z2 Z2 Z2 {(0, w1, 0, w2, 0, w3, 0)} 6 O(2)× S1

Z̃2
2 Z2 Z−

2 Z2 {(w1, 0, w2, 0, w3, 0, w4)} 8 O(2)× S1

1̃ 1 1 Z2 C7 14 O(3)× S1

Table 5.1: The isotropy subgroups Σ of O(3)× S1 for the representation on V3 ⊕V3. Here H =

J ×Zc
2 and all vectors a column vectors. [*] The homomorphism θ : H → H/K is

given by (4.2.8) with b = 5 and j = 3.

Figure 5.1 shows the partial ordering of the conjugacy classes of isotropy subgroups for this

representation.

Remark 5.3.2. We use the notation of Golubitsky et al. [46], whereby Σ = J̃ is an isotropy

subgroup with H = J ×Zc
2 and θ(H) a nontrivial subgroup of S1. A subscript or superscript is

added in cases of ambiguity. Notice also that since H is a class II subgroup of O(3) and K is a

class I or III subgroup for all isotropy subgroups in this representation, θ(H) 6= 1.

Remark 5.3.3. The final column in Table 5.1 lists the group N(Σ)/Σ for each isotropy subgroup

Σ, where N(Σ) is the normaliser of Σ in O(3)× S1 which leaves Fix(Σ) invariant. Recall from

Section 2.4.1 that since the vector field f in (5.1.1) is equivariant with respect to the action of

O(3)× S1 to any order k, in the restriction to Fix(Σ), f restricts to a N(Σ)/Σ equivariant system

to order k. Considering the restriction of f to Fix(Σ) enables us to deduce information about the

possible existence and bifurcations of periodic and quasiperiodic solutions with submaximal

symmetry, i.e. the symmetries of isotropy subgroups with dim Fix(Σ) > 2. In Section 5.5 we

investigate possible submaximal solutions in Fix(Σ) for the isotropy subgroups Σ in Table 5.1

with dim Fix(Σ) = 4.

Proof of Proposition 5.3.1 The isotropy subgroups of O(3)× S1 with fixed-point subspaces

of dimensions 2 and 4 in the natural representation on V3 ⊕ V3 are given by Theorems 4.3.3

and 4.3.6 respectively. Using Table 4.2 we find that when ` = 3 the only twisted subgroups,

Hθ ⊂ O(3) × S1, with fixed-point subspaces of dimension greater than 4 are those listed in
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Figure 5.1: The partial ordering of conjugacy classes of isotropy subgroups of O(3)× S1 in the

representation on V3 ⊕V3.

Table 5.1. Using the chain criterion it can be seen that each of these twisted subgroups is an

isotropy subgroup.

It remains to show that the form of the fixed-point subspace for each isotropy subgroup in Table

5.1 is correct for one set of generators of the subgroup. In Table 5.2 we list the set of generators

for each isotropy subgroup which give the fixed-point subspaces in Table 5.1.

The action of each of the generators, σ ∈ Σ on z is given by multiplication by the matrix Mσ

where

• (Rz
α, 0) is a rotation through an angle α in the z-axis with

M(Rz
α ,0) = diag

(
e−3αi, e−2αi, e−αi, 1, eαi, e2αi, e3αi

)

where diag (. . .) indicates a diagonal matrix with elements as listed.

• (0, α) is a phase shift by α with M(0,α) = eαi I7.

• (κxz, 0) is reflection in the xz-plane which sends y → −y. The matrix for its action on
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Σ Generators Fix(Σ)

Õ(2) (Rz
α, 0), (κxz, 0), (−I, π) {(0, 0, 0, w1, 0, 0, 0)}

S̃O(2)1 (Rz
α, α), (−I, π) {(0, 0, w1, 0, 0, 0, 0)}

S̃O(2)2 (Rz
α, 2α), (−I, π) {(0, w1, 0, 0, 0, 0, 0)}

S̃O(2)3 (Rz
α, 3α), (−I, π) {(w1, 0, 0, 0, 0, 0, 0)}

Õ (−Rz
π/2, 0), (R2π/3, 0), (κx=y, 0), (−I, π) {(0, w1, 0, 0, 0,−w1, 0)}

D̃6 (−Rz
π/3, 0), (Rx

π , 0), (−I, π) {(w1, 0, 0, 0, 0, 0,−w1)}
Z̃6 (−Rz

π/3, 0), (−I, π) {(w1, 0, 0, 0, 0, 0, w2)}
Z̃4 (−Rz

π/2, 0), (−I, π) {(0, w1, 0, 0, 0, w2, 0)}
D̃3 (Rz

2π/3, 0), (κxz, 0), (−I, π) {(w1, 0, 0, w2, 0, 0,−w1)}
D̃2 (Rz

π , 0), (κxz, 0), (−I, π) {(0, w1, 0, w2, 0, w1, 0)}
Z̃1

3 (Rz
2π/3, 2π/3), (−I, π) {(0, 0, w1, 0, 0, w2, 0)}

Z̃5 (Rz
2π/5, 6π/5), (−I, π) {(w1, 0, 0, 0, 0, w2, 0)}

Z̃2
3 (Rz

2π/3, 0), (−I, π) {(w1, 0, 0, w2, 0, 0, w3)}
Z̃1

2 (Rz
π , 0), (−I, π) {(0, w1, 0, w2, 0, w3, 0)}

Z̃2
2 (−Rz

π , 0), (−I, π) {(w1, 0, w2, 0, w3, 0, w4)}
1̃ (−I, π) C7

Table 5.2: One set of generators for each isotropy subgroup of O(3)× S1 in the representation

on V3 ⊕V3 and the corresponding fixed-point subspace.

z ∈ C7 is

M(κxz ,0) =




0 0 0 0 0 0 −1

0 0 0 0 0 1 0

0 0 0 0 −1 0 0

0 0 0 1 0 0 0

0 0 −1 0 0 0 0

0 1 0 0 0 0 0

−1 0 0 0 0 0 0




• (Rx
π , 0) is rotation through π in the x-axis which sends y → −y and z → −z. The matrix

for its action on z ∈ C7 is

M(Rx
π ,0) =




0 0 0 0 0 0 −1

0 0 0 0 0 −1 0

0 0 0 0 −1 0 0

0 0 0 −1 0 0 0

0 0 −1 0 0 0 0

0 −1 0 0 0 0 0

−1 0 0 0 0 0 0




• (κx=y, 0) is a reflection in the plane where x = y which sends x ↔ y. The matrix for its
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action on z ∈ C7 is

M(κx=y ,0) =




0 0 0 0 0 0 −i

0 0 0 0 0 −1 0

0 0 0 0 i 0 0

0 0 0 1 0 0 0

0 0 i 0 0 0 0

0 −1 0 0 0 0 0

−i 0 0 0 0 0 0




• (R2π/3, 0) is a rotation through 2π/3 in the line x = y = z which sends x → y → z → x.

We do not require the matrix for the action of this transformation on z ∈ C7 since the

other generators of Õ are sufficient to compute the form of Fix(Õ) in this representation.

To see that these generators give the fixed-point subspaces shown, observe that for the action

of each generator, σ ∈ Σ, on w ∈ Fix(Σ) we have Mσw = w.

5.3.2 Maximal solution branches

For each of the C-axial isotropy subgroups, Σ, in Table 5.1 it is possible to give images of the

branch of periodic solutions to (5.1.1) with symmetry Σ. Solution branches with these symme-

tries are guaranteed to exist by the equivariant Hopf theorem.

Suppose that w(θ, φ, t) is a time-dependent function on a sphere which can be written as a linear

combination of the spherical harmonics of degree 3. Then

w(θ, φ, t) =
3

∑
m=−3

zm(t)Ym
3 (θ, φ) + c.c.

=
3

∑
m=−3

(zm(t) + (−1)mz−m(t)) Ym
3 (θ, φ)

by (3.2.2). Notice that w(θ, φ, t) is real. If w(θ, φ, t) has symmetry Σ then

σz = z, ∀σ ∈ Σ ⇒ z ∈ Fix(Σ)

where

z(t) = (z−3, z−2, z−1, z0, z1, z2, z3)T ∈ C7.

Assume that z(t) is a periodic solution of (5.1.1) which has C-axial symmetry. Using the forms

of the fixed-point subspaces of each of the C-axial isotropy subgroups given in Table 5.1 we

can compute the form of the periodic solution pattern w(θ, φ, t) corresponding to each C-axial

isotropy subgroup. In each case the vector z(t) ∈ Fix(Σ) depends only on w1(t) ∈ C. We can

assume that w1(t) = Reiωt where R ∈ R is constant and ω = 2π/T, so w(θ, φ, t) has period T.

(a) If z(t) ∈ Fix(Õ(2)) then

w(θ, φ, t) = (w1(t) + w1(t)) Y0
3 (θ, φ) = 2 Re(w1(t)) Y0

3 (θ, φ)

=
R
2

√
7
π

(
5 cos3 θ − 3 cos θ

)
cos(ωt).
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Figure 5.2: The six periodic solution branches with C-axial symmetry. (a), (e) and (f) illustrate

the evolution of the three standing waves over one period and (b), (c) and (d) illus-

trate the travelling wave solutions showing the axis and direction of rotation. Red

areas show where the solution is positive and blue areas where the solution is nega-

tive.

This is a standing wave solution and it is drawn in Figure 5.2(a) for values of t over one

period.

(b) If z(t) ∈ Fix(S̃O(2)1) then

w(θ, φ, t) = w1(t)Y−1
3 (θ, φ)− w1(t)Y1

3 (θ, φ) = 2 Re
(

w1(t)Y−1
3 (θ, φ)

)

=
R
4

√
21
π

sin θ
(

5 cos2 θ − 1
)

cos(ωt− φ).

This is a travelling wave solution and it is drawn in Figure 5.2(b) where the direction the

pattern travels around the sphere is shown.

(c) If z(t) ∈ Fix(S̃O(2)2) then

w(θ, φ, t) = w1(t)Y−2
3 (θ, φ) + w1(t)Y2

3 (θ, φ) = 2 Re
(

w1(t)Y−2
3 (θ, φ)

)

=
R
2

√
105
π

sin2 θ cos θ cos(ωt− 2φ).

This is a travelling wave solution and it is drawn in Figure 5.2(c) where the direction the

pattern travels around the sphere is shown.
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(d) If z(t) ∈ Fix(S̃O(2)3) then

w(θ, φ, t) = w1(t)Y−3
3 (θ, φ)− w1(t)Y3

3 (θ, φ) = 2 Re
(

w1(t)Y−3
3 (θ, φ)

)

=
R
4

√
35
π

sin3 θ cos(ωt− 3φ).

This is a travelling wave solution and it is drawn in Figure 5.2(d) where the direction the

pattern travels around the sphere is shown.

(e) If z(t) ∈ Fix(Õ) then

w(θ, φ, t) = (w1(t)− w1(t)) Y−2
3 (θ, φ) + (−w1(t) + w1(t)) Y2

3 (θ, φ)

= 2i Im (w1(t))
(

Y−2
3 (θ, φ)−Y2

3 (θ, φ)
)

= R

√
105
2π

sin2 θ cos θ sin(2φ) sin(ωt).

This is a standing wave solution and it is drawn in Figure 5.2(e) for values of t over one

period.

(f) If z(t) ∈ Fix(D̃6) then

w(θ, φ, t) = (w1(t) + w1(t)) Y−3
3 (θ, φ)− (w1(t) + w1(t)) Y3

3 (θ, φ)

= 2 Re(w1(t))
(

Y−3
3 (θ, φ)−Y3

3 (θ, φ)
)

=
R
2

√
35
π

sin3 θ cos(3φ) cos(ωt).

This is a standing wave solution and it is drawn in Figure 5.2(f) for values of t over one

period.

In the next section we will compute when these solution branches can be stable.

5.4 Stability of maximal solution branches

Recall that in Chapter 4 we found that the equivariant Hopf theorem guarantees that (5.1.1)

has six branches of periodic solutions with the symmetries of the C-axial subgroups of O(3)×
S1 given in Table 5.1. Images of these solutions were given in Section 5.3. In Section 5.2 we

computed F3, the Taylor expansion to cubic order of a vector field which is equivariant with

respect to the action of O(3) × S1 on V3 ⊕ V3. This Taylor expansion is given by (5.2.6). In

this section we will use F3 and the isotypic decomposition of V3 for the action of each of the

C-axial subgroups to determine the branching direction and stability of each of the six periodic

solutions.

Stability of periodic solutions with C-axial symmetry

In order to meet the conditions of the equivariant Hopf theorem we assume that µ(λ) ∈ C in

(5.2.6) satisfies µ(0) = i and Re(µ′(0)) 6= 0. We will assume that

Re(µ(λ)) = λ + higher order terms in λ,
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so the trivial solution z = 0 is stable for λ < 0 and unstable for λ > 0. This means that for a

branch of solutions bifurcating from the trivial solution at λ = 0 to be stable it must bifurcate

supercritically. To determine the dependence of the direction of branching on the coefficients

A, B, C and D in (5.2.6), for each periodic solution we compute the branching equation by

restricting (5.2.6) to Fix(Σ) for each of the corresponding C-axial subgroups Σ. We do this in

Section 5.4.1.

Suppose that z(t) is a periodic solution of (5.1.1) with C-axial symmetry group Σ which has

p-determined stability. By Theorem 2.5.9, the stability of the this periodic solution near 0 can

be determined by the expressions for the stability of the periodic solution of

dz
dt

= Fk(z, λ) (5.4.1)

with the same symmetry Σ, where the kth order Taylor expansion, Fk, commutes with O(3)× S1

and k ≥ p. We will see that each of the C-axial subgroups in Table 5.1 has 3-determined stability

so we can use F3 to determine the stability of all of the maximal periodic solution branches.

The equivariant Hopf theorem states that the bifurcating branches of periodic solutions, z(t),

of (5.1.1) have period near 2π. Suppose then that they have period 2π
1+τ so that τ is the period

perturbing parameter. Then by Theorem 2.5.4, and the fact that the symmetry group, Σ, of z(t)

has 3-determined stability, the periodic solutions of

dz
dt

= F3(z, λ) (5.4.2)

with period 2π
1+τ are in one–to–one correspondence with the zeroes of

g(z, λ, τ) = F3(z, λ)− (1 + τ)iz. (5.4.3)

Moreover, the expressions in terms of the coefficients A, B, C, and D in F3 which determine the

stability of the periodic solutions of (5.4.2) determine also the stability of the periodic solution

of (5.1.1) with the same symmetry. If z(t) is a periodic solution of (5.4.2) with λ = λ0 and

τ = τ0 then the corresponding solution to (5.4.3) is (z0, λ0, τ0). By Corollary 2.5.6, since the

Floquet multipliers of z(t) correspond to the eigenvalues of (dg)|(z0,λ0,τ0), the periodic solution

z(t) is stable if the eigenvalues of (dg)|(z0,λ0,τ0) which are not forced to be zero by symmetry

have negative real part.

Computing eigenvalues of (dg)|(z0,λ0,τ0)

The eigenvalues of (dg)|(z0,λ0,τ0) are expressions in terms of the coefficients A, B, C, and D in

F3. Our task is to compute these eigenvalues for each of the periodic solutions with C-axial

symmetry. Throughout this section we will use the subscripts r and i on the coefficients A, B,

C, and D to denote the real and imaginary parts respectively.

For our representation of O(3) × S1 on V3 ⊕ V3, the Jacobian (dg)|(z0,λ0,τ0) for each periodic

solution is a 14× 14 matrix. It is most convenient for us to choose as basis functions for C7 the

coordinate functions

z−3, z̄−3, z−2, z̄−2, z−1, z̄−1, z0, z̄0, z1, z̄1, z2, z̄2, z3, z̄3. (5.4.4)
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With this basis the Jacobian is given by

(dg)|(z0,λ0,τ0) =




M(−3,−3) M(−3,−2) M(−3,−1) M(−3,0) M(−3,1) M(−3,2) M(−3,3)

M(−2,−3) M(−2,−2) M(−2,−1) M(−2,0) M(−2,1) M(−2,2) M(−2,3)

M(−1,−3) M(−1,−2) M(−1,−1) M(−1,0) M(−1,1) M(−1,2) M(−1,3)

M(0,−3) M(0,−2) M(0,−1) M(0,0) M(0,1) M(0,2) M(0,3)

M(1,−3) M(1,−2) M(1,−1) M(1,0) M(1,1) M(1,2) M(1,3)

M(2,−3) M(2,−2) M(2,−1) M(2,0) M(2,1) M(2,2) M(2,3)

M(3,−3) M(3,−2) M(3,−1) M(3,0) M(3,1) M(3,2) M(3,3)




(5.4.5)

where

M(i,j) =


 m(i,j) m′

(i,j)

m′
(i,j) m(i,j)




and

m(i,j) =
∂gi
∂zj

m′
(i,j) =

∂gi
∂z̄j

where the derivatives are evaluated at (z0, λ0, τ0). Suppose that

a = (a−3, a−2, a−1, a0, a1, a2, a3)
T ∈ C7

is an eigenvector of (dg)|(z0,λ0,τ0). With respect to the basis (5.4.4) this vector is

(a−3, ā−3, a−2, ā−2, a−1, ā−1, a0, ā0, a1, ā1, a2, ā2, a3 ā3, ) .

We can simplify the computation of the eigenvalues of (dg)|(z0,λ0,τ0) in two ways.

1. We can use the isotypic decomposition of V3 for the action of the corresponding C-axial

subgroup Σ. This allows us to block diagonalise the matrix.

2. We can compute the zero eigenvectors of (dg)|(z0,λ0,τ0). Knowing which isotypic compo-

nents the zero eigenvalues lie in will help us to compute the other eigenvalues in those

components.

Zero eigenvectors of (dg)|(z0,λ0,τ0)

For a solution (z0, λ0, τ0) with symmetry Σ, the number of distinct zero eigenvectors of (dg)|(z0,λ0,τ0)

is given by

dΣ = dim(O(3)) + 1− dim(Σ) = 4− dim(Σ).

Since dim(O(3)× S1) = 4, as discussed in Section 2.4.4, there are four smooth curves

yj(s) = γj(s)z0, j = 1, 2, 3, 4

in the group orbit (O(3)× S1)z0 where γj(s) is a smooth curve in O(3)× S1 with γ(0) = 1. For

each of these curves,
dγj

ds

∣∣∣∣
s=0

z0

81



5.4. STABILITY OF MAXIMAL SOLUTION BRANCHES

is an eigenvector of (dg)|(z0,λ0,τ0) with zero eigenvalue. Of these vectors, only dΣ = 4− dim(Σ)

are distinct.

We now discuss the four smooth curves in O(3)× S1 which give rise to these zero eigenvectors.

The three smooth curves in O(3) can be thought of rotations in the z-,y- and x-axes respectively.

Infinitesimal rotations in the z-axis are the given by the matrix Mφ′ as in (3.2.6). Let the curve

given by rotating a point about the z-axis be y1(s) then

γ1(s) = diag
(

e−3si, e−2si, e−si, 1, esi, e2si, e3si
)

and so
dγ1

ds

∣∣∣∣
s=0

= diag (−3i, −2i, −i, 0, i, 2i, 3i) . (5.4.6)

Similarly, infinitesimal rotations in the y-axis are the given by the matrix Mθ′ as in (3.2.7). Let

the curve given by rotating a point (θ, 0) an infinitesimal amount about the y-axis be y2(s) then

γ2(s) =




1 −
√

3
2 s 0 0 0 0 0√

3
2 s 1 −

√
5
2 s 0 0 0 0

0
√

5
2 s 1 −√3s 0 0 0

0 0
√

3s 1 −√3s 0 0

0 0 0
√

3s 1 −
√

5
2 s 0

0 0 0 0
√

5
2 s 1 −

√
3
2 s

0 0 0 0 0
√

3
2 s 1




and so

dγ2

ds

∣∣∣∣
s=0

=




0 −
√

3
2 0 0 0 0 0√

3
2 0 −

√
5
2 0 0 0 0

0
√

5
2 0 −√3 0 0 0

0 0
√

3 0 −√3 0 0

0 0 0
√

3 0 −
√

5
2 0

0 0 0 0
√

5
2 0 −

√
3
2

0 0 0 0 0
√

3
2 0




(5.4.7)

Finally, the curve given by rotating a point (θ, π/2) about the x-axis, y3(s) can be found by

rotating the curve y2(s) through an angle π/2 in the z-axis. We find that

γ3(s) =




1
√

3
2 s 0 0 0 0 0√

3
2 s 1

√
5
2 s 0 0 0 0

0
√

5
2 s 1

√
3s 0 0 0

0 0
√

3s 1
√

3s 0 0

0 0 0
√

3s 1
√

5
2 s 0

0 0 0 0
√

5
2 s 1

√
3
2 s

0 0 0 0 0
√

3
2 s 1
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and so

dγ3

ds

∣∣∣∣
s=0

=




0
√

3
2 0 0 0 0 0√

3
2 0

√
5
2 0 0 0 0

0
√

5
2 0

√
3 0 0 0

0 0
√

3 0
√

3 0 0

0 0 0
√

3 0
√

5
2 0

0 0 0 0
√

5
2 0

√
3
2

0 0 0 0 0
√

3
2 0




(5.4.8)

The smooth curve in S1 is given by γ4(s) = eis I7 where I7 is the 7× 7 identity matrix. Hence

dγ4

ds

∣∣∣∣
s=0

= iI7. (5.4.9)

Zero eigenvectors of (dg)|(z0,λ0,τ0) can then be found for the solution (z0, λ0, τ0) with Σ symme-

try by multiplying (5.4.6)–(5.4.9) by a vector z0 ∈ Fix(Σ).

5.4.1 Branching equations

For each of the branches of periodic solutions z(t) of (5.4.2) we now compute the equation

which determines whether the branch bifurcates subcritically or supercritically.

Suppose that (z0, λ, τ) satisfies g(z0, λ, τ) = 0 and z0 ∈ Fix(Σ) for some C-axial subgroup Σ.

Then in the restriction of (5.4.3) to Fix(Σ),

0 = F3(z0, λ)− (1 + τ)iz0.

Since w1 is the only non-zero entry in the vector z0 ∈ Fix(Σ), this implies that

0 = µ(λ)w1 + hΣ(A, B, C, D)w1|w1|2 − (1 + τ)iw1 (5.4.10)

where hΣ(A, B, C, D) is a (real) linear combination of the coefficients in (5.2.6) which is different

for each C-axial group Σ. If we define ν(λ) = µ(λ)− (1 + τ)i then dividing (5.4.10) by w1 we

have the branching equation for the solution with Σ symmetry:

0 = ν(λ) + hΣ(A, B, C, D)|w1|2. (5.4.11)

We can compute that the branching equations for each the solutions with C-axial symmetry are

as given in Table 5.3.

Notice that since Re(µ(λ)) = λ to linear order in λ, we have Re(ν(λ)) = λ to linear order also.

Taking the real part of the branching equation (5.4.11) we have

λ = −Re (hΣ(A, B, C, D))|w1|2. (5.4.12)

Recall that in order for the branch of solutions to be stable the branch must bifurcate supercriti-

cally. The branch of periodic solutions with symmetry Σ bifurcates supercritically when λ > 0.

This occurs when Re (hΣ(A, B, C, D)) < 0.
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Σ Branching equation Real part of branching equation

Õ(2) 0 = ν(λ) + (A + B− 12C)|w1|2 λ = −(Ar + Br − 12Cr)|w1|2

S̃O(2)1 0 = ν(λ) + (A− 3C + D)|w1|2 λ = −(Ar − 3Cr + Dr)|w1|2

S̃O(2)2 0 = ν(λ) + (A + 4D)|w1|2 λ = −(Ar + 4Dr)|w1|2

S̃O(2)3 0 = ν(λ) + (A + 25C + 9D)|w1|2 λ = −(Ar + 25Cr + 9Dr)|w1|2

Õ 0 = ν(λ) + (2A + 2B− 40C)|w1|2 λ = −(2Ar + 2Br − 40Cr)|w1|2

D̃6 0 = ν(λ) + (2A + 2B− 15C)|w1|2 λ = −(2Ar + 2Br − 15Cr)|w1|2

Table 5.3: Branching equations for each of the six bifurcating branches of periodic solutions. For

the branch to bifurcate supercritically we require that λ > 0.

5.4.2 Eigenvalues of the solution branches

We now compute the eigenvalues of (dg)|(z0,λ0,τ0) for each of the branches of periodic solutions

with C-axial symmetry group, Σ, in turn using the isotypic decomposition of V3 for the action

of Σ and the cubic order truncation of the O(3)× S1 equivariant vector field given by (5.2.6).

The Õ(2) symmetric branch

We will compute the eigenvalues of (dg)|(z0,λ0,τ0) for the periodic solution with Õ(2) symmetry.

Since

d
Õ(2)

= dim(O(3)) + 1− dim(Õ(2)) = 3

we expect to find that (dg)|(z0,λ0,τ0) has three zero eigenvalues.

The isotypic decomposition of V3 for the action of Õ(2): The subspace

W0 = {(0, 0, 0, u1, 0, 0, 0)} = Fix(Õ(2))

is an isotypic component since it is the subspace on which Õ(2) acts trivially. This corresponds

to the trivial representation of Õ(2). The action of Õ(2) for the other irreducible representations

is given by

φ · (z−j, zj) =
(

e−ijφz−j, eijφzj

)
φ ∈ SO(2)

κxz · (z−j, zj) = (−1)j (zj, z−j
)

for j ≥ 1. The representation on V3 is a sum of the trivial representation on W0 and the repre-

sentations above for j = 1, 2 and 3 on the subspaces W1, W2 and W3 respectively where

W1 = {(0, 0, u1, 0, u2, 0, 0)}
W2 = {(0, u1, 0, 0, 0, u2, 0)}
W3 = {(u1, 0, 0, 0, 0, 0, u2)}.

Thus the isotypic decomposition of V3 for the action of Õ(2) is

V3 = W0 ⊕W1 ⊕W2 ⊕W3.
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Zero eigenvectors of (dg)|(z0,λ0,τ0): The three zero eigenvectors of (dg)|(z0,λ0,τ0) are found by

multiplying (5.4.7)–(5.4.9) by a vector (0, 0, 0, w1, 0, 0, 0) ∈ Fix(Õ(2)). This gives

a2(w1) = (0, 0,−w1, 0, w1, 0, 0)T ∈ W1

a3(w1) = (0, 0, w1, 0, w1, 0, 0)T ∈ W1

a4(w1) = (0, 0, 0, iw1, 0, 0, 0)T ∈ W0

for the curves γ2, γ3 and γ4 respectively.

Block diagonalised form of (dg)|(z0,λ0,τ0): Using the isotypic decomposition of V3 above we

can block diagonalise (dg)|(z0,λ0,τ0) by reordering the basis functions of V3 and thus the basis

coordinate functions as

z0, z̄0, z−1, z̄−1, z1, z̄1, z−2, z̄−2, z2, z̄2, z−3, z̄−3, z3 z̄3. (5.4.13)

This gives the block diagonal form of (dg)|(z0,λ0,τ0) as

(dg)|(z0,λ0,τ0) =




M(0,0) 0 0 0 0 0 0

0 M(−1,−1) M(−1,1) 0 0 0 0

0 M(1,−1) M(1,1) 0 0 0 0

0 0 0 M(−2,−2) M(−2,2) 0 0

0 0 0 M(2,−2) M(2,2) 0 0

0 0 0 0 0 M(−3,−3) M(−3,3)

0 0 0 0 0 M(3,−3) M(3,3)




.

Eigenvalues in W0: The eigenvalues of (dg)|(z0,λ0,τ0) in W0 are given by the eigenvalues of

M(0,0) =


 m(0,0) m′

(0,0)

m′
(0,0) m(0,0)


 .

Since W0 contains the zero eigenvector a4, M(0,0) has a zero eigenvalue and the other eigenvalue

is given by 2Re(m(0,0)) where

m(0,0) =
∂g0

∂z0

∣∣∣∣
(z0,λ0,τ0)

= ν(λ) + (2A + 2B− 24C) |w1|2 = (A + B− 12C) |w1|2

using the branching equation. Thus the eigenvalues in W0 are

ξ+
0 = (2Ar + 2Br − 24Cr) |w1|2 = −2λ and ξ−0 = 0.

Eigenvalues in Wj, j = 1, 2, 3 : The eigenvalues of (dg)|(z0,λ0,τ0) in Wj are given by the eigen-

values of

Mj =

(
M(−j,−j) M(−j,j)

M(j,−j) M(j,j)

)
.
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Since gj(z) = g−j(z̃) where z̃ = (z3, z2, z1, z0, z−1, z−2, z−3) it follows that for this solution

M(−j,−j) = M(j,j) and M(−j,j) = M(j,−j). Also, since g−j cannot contain any terms in z̄−jz2
0 or

zj|z0|2, we must have that

m′
(−j,−j) =

∂g−j

∂z̄−j

∣∣∣∣∣
(z0,λ0,τ0)

= 0 and m(−j,j) =
∂g−j

∂zj

∣∣∣∣∣
(z0,λ0,τ0)

= 0

and hence

Mj =




m(−j,−j) 0 0 m′
(−j,j)

0 m(−j,−j) m′
(−j,j) 0

0 m′
(−j,j) m(−j,−j) 0

m′
(−j,j) 0 0 m(−j,−j)




.

We can see that the eigenvalues of Mj are double and given by the eigenvalues of

Ej =


 m(−j,−j) m′

(−j,j)

m′
(−j,j) m(−j,−j)


 .

When j = 1, since W1 contains the zero eigenvectors a2 and a3, we know that one pair of double

eigenvalues of M1 are zero and the other is given by 2Re(m(−1,−1)) where

m(−1,−1) =
∂g−1

∂z−1

∣∣∣∣
(z0,λ0,τ0)

= ν(λ) + (A + 12C + 6D) |w1|2 = (−B + 24C + 6 D) |w1|2.

Hence the eigenvalues in W1 are

ξ+
1 = (−2Br + 48Cr + 12Dr) |w1|2 and ξ−1 = 0.

When j = 2 or 3 the eigenvalues are the roots of

ξ2 − 2 Re(m(−j,−j))ξ + |m(−j,−j)|2 − |m′
(−j,j)|2 = 0

where

m(−2,−2) =
∂g−2

∂z−2

∣∣∣∣
(z0,λ0,τ0)

= ν(λ) + A|w1|2 = (−B + 12C) |w1|2

m′
(−2,2) =

∂g−2

∂z̄2

∣∣∣∣
(z0,λ0,τ0)

= Bw2
1

m(−3,−3) =
∂g−3

∂z−3

∣∣∣∣
(z0,λ0,τ0)

= ν(λ) + (A− 20C) |w1|2 = (−B− 8C) |w1|2

m′
(−3,3) =

∂g−3

∂z̄3

∣∣∣∣
(z0,λ0,τ0)

= (−B + 10C) w2
1.

Thus the eigenvalues of (dg)|(z0,λ0,τ0) in W2 are

ξ±2 =
[
−Br + 12Cr ±

√
B2

r + 24BiCi − 144C2
i

]
|w1|2,

and the eigenvalues in W3 are

ξ±3 =
[
−Br − 8Cr ±

√
B2

r − 20BrCr + 100C2
r − 36BiCi + 36C2

i

]
|w1|2.

Note that we have found three zero eigenvalues as expected and hence if the values of A, B, C

and D are such that the other eigenvalues are non-zero then Õ(2) has 3-determined stability.
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The S̃O(2)1 symmetric branch

We will next compute the eigenvalues of (dg)|(z0,λ0,τ0) for the periodic solution with S̃O(2)1

symmetry. Since

d
S̃O(2)1

= dim(O(3)) + 1− dim(S̃O(2)1) = 3

we expect to find that (dg)|(z0,λ0,τ0) has three zero eigenvalues.

The isotypic decomposition of V3 for the action of S̃O(2)1: The subspace

W0 = {(0, 0, u1, 0, 0, 0, 0)} = Fix(S̃O(2)1)

is an isotypic component since it is the subspace on which S̃O(2)1 acts trivially. This corre-

sponds to the trivial representation of S̃O(2)1. The action of S̃O(2)1 for the other irreducible

representations is given by

(Rα, α) · (zj) =
(

ei(j+1)αzj

)
, (Rα, α) ∈ S̃O(2)1

for j 6= −1. The representation on V3 is a sum of the trivial representation on W0 and the

representations above for j = −3, −2, 0, 1, 2 and 3. However the representations for j = −3

and j = 1 are S̃O(2)1-isomorphic, as are the pair of representations given by j = −2 and j = 0.

Hence the isotypic decomposition for the action of S̃O(2)1 on V3 is

V3 = W0 ⊕W1 ⊕W2 ⊕W3 ⊕W4,

where

W1 = {(0, 0, 0, 0, 0, u1, 0)}
W2 = {(0, 0, 0, 0, 0, 0, u1)}
W3 = {(0, u1, 0, u2, 0, 0, 0)}
W4 = {(u1, 0, 0, 0, u2, 0, 0)}.

Zero eigenvectors of (dg)|(z0,λ0,τ0): The three zero eigenvectors of (dg)|(z0,λ0,τ0) are found by

multiplying (5.4.7)–(5.4.9) by the vector (0, 0, w1, 0, 0, 0, 0) ∈ Fix(S̃O(2)1). They are

a2(w1) =
(

0,−
√

5w1, 0,
√

6w1, 0, 0, 0
)T ∈ W3

a3(w1) =
(

0,
√

5w1, 0,
√

6w1, 0, 0, 0
)T ∈ W3

a4(w1) = (0, 0, iw1, 0, 0, 0, 0)T ∈ W0

for the curves γ2, γ3 and γ4 respectively.

Block diagonalised form of (dg)|(z0,λ0,τ0): Using the isotypic decomposition of V3 above we

can block diagonalise (dg)|(z0,λ0,τ0) by reordering the basis functions of V3 and thus the basis

coordinate functions as

z−1, z̄−1, z2, z̄2, z3 z̄3, z−2, z̄−2, z0, z̄0, z−3, z̄−3, z1, z̄1. (5.4.14)
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This gives the block diagonal form of (dg)|(z0,λ0,τ0) as

(dg)|(z0,λ0,τ0) =




M(−1,−1) 0 0 0 0 0 0

0 M(2,2) 0 0 0 0 0

0 0 M(3,3) 0 0 0 0

0 0 0 M(−2,−2) M(−2,0) 0 0

0 0 0 M(0,−2) M(0,0) 0 0

0 0 0 0 0 M(−3,−3) M(−3,1)

0 0 0 0 0 M(1,−3) M(1,1)




.

Eigenvalues in W0: The eigenvalues of (dg)|(z0,λ0,τ0) in W0 are given by the eigenvalues of

M(−1,−1). Since W0 contains the zero eigenvector a4, M(−1,−1) has a zero eigenvalue and the

other eigenvalue is given by 2Re(m(−1,−1)) where

m(−1,−1) =
∂g−1

∂z−1

∣∣∣∣
(z0,λ0,τ0)

= ν(λ) + (2A− 6C + 2D) |w1|2 = (A− 3C + D) |w1|2

using the branching equation. Thus the eigenvalues in W0 are

ξ+
0 = (2Ar − 6Cr + 2Dr) |w1|2 = −2λ and ξ−0 = 0.

Eigenvalues in W1 and W2: The eigenvalues of (dg)|(z0,λ0,τ0) in W1 and W2 are given by the

eigenvalues of M(2,2) and M(3,3) respectively. Notice that since gj cannot contain any terms in

z̄jz2
−1 for j = 2 or 3,

m′
(2,2) =

∂g2

∂z̄2

∣∣∣∣
(z0,λ0,τ0)

= 0 and m′
(3,3) =

∂g3

∂z̄3

∣∣∣∣
(z0,λ0,τ0)

= 0

and hence the eigenvalues are given by m(j,j) and m(j,j) for j = 2 or 3. We compute that

m(2,2) =
∂g2

∂z2

∣∣∣∣
(z0,λ0,τ0)

= ν(λ) + (A− 15C− 2D) |w1|2 = (−12C− 3D) |w1|2

m(3,3) =
∂g3

∂z3

∣∣∣∣
(z0,λ0,τ0)

= ν(λ) + (A− 25C− 3D) |w1|2 = (−22C− 4D) |w1|2

and hence the eigenvalues of (dg)|(z0,λ0,τ0) in W1 are

ξ1 = (−12C− 3D) |w1|2 and ξ̄1 =
(−12C− 3D

) |w1|2

and in W2 the eigenvalues are

ξ2 = (−22C− 4D) |w1|2 and ξ̄2 =
(−22C− 4D

) |w1|2.

Eigenvalues in W3 The eigenvalues of (dg)|(z0,λ0,τ0) in W3 are given by the eigenvalues of

(dg)|(z0,λ0,τ0)|W3 =

(
M(−2,−2) M(−2,0)

M(0,−2) M(0,0)

)
.
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Notice that since g−2 cannot contain any terms in z2
−1z̄−2 or z0|z−1|2, and g0 cannot contain any

terms in z2
−1z̄0 or z−2|z−1|2,

m′
(−2,−2) =

∂g−2

∂z̄−2

∣∣∣∣
(z0,λ0,τ0)

= 0, m(−2,0) =
∂g−2

∂z0

∣∣∣∣
(z0,λ0,τ0)

= 0,

m(0,−2) =
∂g0

∂z−2

∣∣∣∣
(z0,λ0,τ0)

= 0 and m′
(0,0) =

∂g0

∂z̄0

∣∣∣∣
(z0,λ0,τ0)

= 0.

We are then left with

(dg)|(z0,λ0,τ0)|W3 =




m(−2,−2) 0 0 m′
(−2,0)

0 m(−2,−2) m′
(−2,0) 0

0 m′
(0,−2) m(0,0) 0

m′
(0,−2) 0 0 m(0,0)




.

Thus the eigenvalues of (dg)|(z0,λ0,τ0) in W3 are given by the eigenvalues of

E3 =


 m(−2,−2) m′

(−2,0)

m′
(0,−2) m(0,0)




and their complex conjugates. Since W3 contains the zero eigenvectors a2 and a3, the eigenval-

ues of E3 are zero and Trace(E3) = m(−2,−2) + m(0,0) where

m(−2,−2) =
∂g−2

∂z−2

∣∣∣∣
(z0,λ0,τ0)

= ν(λ) + (A + 15C + 7D) |w1|2 = (18C + 6D) |w1|2

m(0,0) =
∂g0

∂z0

∣∣∣∣
(z0,λ0,τ0)

= ν(λ) + (A + 12C + 6D) |w1|2 = (15C + 5D) |w1|2.

Hence the eigenvalues of (dg)|(z0,λ0,τ0) in W3 are ξ−3 = 0 twice,

ξ+
3 = (33Cr + 11Dr + 3iCi + iDi) |w1|2, and ξ̄+

3 = (33Cr + 11Dr − 3iCi − iDi) |w1|2.

Eigenvalues in W4: The eigenvalues of (dg)|(z0,λ0,τ0) in W4 are given by the eigenvalues of

(dg)|(z0,λ0,τ0)|W4 =

(
M(−3,−3) M(−3,1)

M(1,−3) M(1,1)

)
.

Similar arguments to those above show that these eigenvalues are the eigenvalues of

E4 =


 m(−3,−3) m′

(−3,1)

m′
(1,−3) m(1,1)




and their complex conjugates. We compute that

m(−3,−3) =
∂g−3

∂z−3

∣∣∣∣
(z0,λ0,τ0)

= ν(λ) + (A− 5C + 3D) |w1|2 = (−2C + 2D) |w1|2

m′
(−3,1) =

∂g−3

∂z̄1

∣∣∣∣
(z0,λ0,τ0)

= 2
√

15C w2
1

m′
(1,−3) =

∂g1

∂z̄−3

∣∣∣∣
(z0,λ0,τ0)

= 2
√

15C w2
1

m(1,1) =
∂g1

∂z1

∣∣∣∣
(z0,λ0,τ0)

= ν(λ) + (A + 2B− 16C− D) |w1|2 = (2B− 13C− 2D) |w1|2.
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Hence the eigenvalues of (dg)|(z0,λ0,τ0) in W4 are the roots of

ξ2 −
(

m(−3,−3) + m(1,1)

)
ξ + m(−3,−3)m(1,1) −m′

(−3,1)m′
(1,−3) = 0

and their complex conjugates. They are

ξ±4 =
(
−C + D + B− 13

2
C− D±

√
δ

)
|w1|2 and ξ̄±4

where

δ =
(
−C + D + B− 13

2
C− D

)2
+ (2C− 2D)

(
2B− 13C− 2D

)
+ 60|C|2.

Since we have found three zero eigenvalues as expected, if the values of A, B, C and D are such

that the other eigenvalues are non-zero then S̃O(2)1 has 3-determined stability.

The S̃O(2)2 symmetric branch

We now compute the eigenvalues of (dg)|(z0,λ0,τ0) for the periodic solution with S̃O(2)2 sym-

metry. Again, since

d
S̃O(2)2

= dim(O(3)) + 1− dim(S̃O(2)2) = 3

we expect to find that (dg)|(z0,λ0,τ0) has three zero eigenvalues.

The isotypic decomposition of V3 for the action of S̃O(2)2: The subspace

W0 = {(0, u1, 0, 0, 0, 0, 0)} = Fix(S̃O(2)2)

is an isotypic component since it is the subspace on which S̃O(2)2 acts trivially. This corre-

sponds to the trivial representation of S̃O(2)2. The action of S̃O(2)2 for the other irreducible

representations is given by

(Rα, 2α) · (zj) =
(

ei(j+2)αzj

)
, (Rα, 2α) ∈ S̃O(2)2

for j 6= −2. The representation on V3 is a sum of the trivial representation on W0 and the

representations above for j = −3, −1, 0, 1, 2 and 3. However the representations for j = −3

and j = −1 are S̃O(2)2-isomorphic. Hence the isotypic decomposition for the action of S̃O(2)2

on V3 is

V3 = W0 ⊕W1 ⊕W2 ⊕W3 ⊕W4 ⊕W5,

where

W1 = {(0, 0, 0, u1, 0, 0, 0)}
W2 = {(0, 0, 0, 0, u1, 0, 0)}
W3 = {(0, 0, 0, 0, 0, u1, 0)}
W4 = {(0, 0, 0, 0, 0, 0, u1)}
W5 = {(u1, 0, u2, 0, 0, 0, 0)}.
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Zero eigenvectors of (dg)|(z0,λ0,τ0): The three zero eigenvectors of (dg)|(z0,λ0,τ0) are found by

multiplying (5.4.7)–(5.4.9) by the vector (0, w1, 0, 0, 0, 0, 0) ∈ Fix(S̃O(2)2). They are

a2(w1) =
(
−
√

3w1, 0,
√

5w1, 0, 0, 0, 0
)T ∈ W5

a3(w1) =
(√

3w1, 0,
√

5w1, 0, 0, 0, 0
)T ∈ W3

a4(w1) = (0, iw1, 0, 0, 0, 0, 0)T ∈ W0

for the curves γ2, γ3 and γ4 respectively.

Block diagonalised form of (dg)|(z0,λ0,τ0): Using the isotypic decomposition of V3 above we

can block diagonalise (dg)|(z0,λ0,τ0) by reordering the basis functions of V3 and thus the basis

coordinate functions as

z−2, z̄−2, z0, z̄0, z1 z̄1, z2, z̄2, z3, z̄3, z−3, z̄−3, z−1, z̄−1. (5.4.15)

This gives the block diagonal form of (dg)|(z0,λ0,τ0) as

(dg)|(z0,λ0,τ0) =




M(−2,−2) 0 0 0 0 0 0

0 M(0,0) 0 0 0 0 0

0 0 M(1,1) 0 0 0 0

0 0 0 M(2,2) 0 0 0

0 0 0 0 M(3,3) 0 0

0 0 0 0 0 M(−3,−3) M(−3,−1)

0 0 0 0 0 M(−1,−3) M(−1,−1)




.

Eigenvalues in W0: The eigenvalues of (dg)|(z0,λ0,τ0) in W0 are given by the eigenvalues of

M(−2,−2). Since W0 contains the zero eigenvector a4, M(−2,−2) has a zero eigenvalue and the

other eigenvalue is given by 2Re(m(−2,−2)) where

m(−2,−2) =
∂g−2

∂z−2

∣∣∣∣
(z0,λ0,τ0)

= ν(λ) + (2A + 8D) |w1|2 = (A + 4D) |w1|2

using the branching equation. Thus the eigenvalues in W0 are

ξ+
0 = (2Ar + 8Dr) |w1|2 = −2λ and ξ−0 = 0.

Eigenvalues in Wj for j = 1, 2, 3 and 4: The eigenvalues of (dg)|(z0,λ0,τ0) in Wj for j = 1, 2, 3

and 4 are given by the eigenvalues of M(j−1,j−1). Notice that since gj−1 cannot contain any

terms in z̄j−1z2
−2 for j = 1, 2, 3 or 4,

m′
(j−1,j−1) =

∂gj−1

∂z̄j−1

∣∣∣∣∣
(z0,λ0,τ0)

= 0
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and hence the eigenvalues are given by m(j−1,j−1) and m(j−1,j−1) for j = 1, 2, 3 and 4. We

compute that

m(0,0) =
∂g0

∂z0

∣∣∣∣
(z0,λ0,τ0)

= ν(λ) + A|w1|2 = −4D|w1|2

m(1,1) =
∂g1

∂z1

∣∣∣∣
(z0,λ0,τ0)

= ν(λ) + (A− 15C− 2D) |w1|2 = (−15C− 6D) |w1|2

m(2,2) =
∂g2

∂z2

∣∣∣∣
(z0,λ0,τ0)

= ν(λ) + (A + 2B− 40C− 4D) |w1|2 = (2B− 40C− 8D) |w1|2

m(3,3) =
∂g3

∂z3

∣∣∣∣
(z0,λ0,τ0)

= ν(λ) + (A− 25C− 6D) |w1|2 = (−25C− 10D) |w1|2

and hence the eigenvalues of (dg)|(z0,λ0,τ0) in W1 are

ξ1 = −4D|w1|2 and ξ̄1 = −4D|w1|2,

in W2,

ξ2 = (−15C− 6D) |w1|2 and ξ̄2 =
(−15C− 6D

) |w1|2,

in W3,

ξ3 = (2B− 40C− 8D) |w1|2 and ξ̄3 =
(
2B− 40C− 8D

) |w1|2

and in W4 the eigenvalues are

ξ4 = (−25C− 10D) |w1|2 and ξ̄4 =
(−25C− 10D

) |w1|2.

Eigenvalues in W5: The eigenvalues of (dg)|(z0,λ0,τ0) in W5 are given by the eigenvalues of

(dg)|(z0,λ0,τ0)|W5 =

(
M(−3,−3) M(−3,−1)

M(−1,−3) M(−1,−1)

)
.

It can be shown that these eigenvalues are the eigenvalues of

E5 =


 m(−3,−3) m′

(−3,−1)

m′
(−1,−3) m(−1,−1)




and their complex conjugates. Since W5 contains the zero eigenvectors a2 and a3 the eigenvalues

of E5 are zero and Trace(E5) = m(−3,−3) + m(−1,−1) where

m(−3,−3) =
∂g−3

∂z−3

∣∣∣∣
(z0,λ0,τ0)

= ν(λ) + (A + 25C + 9D) |w1|2 = (25C + 5D) |w1|2

m(−1,−1) =
∂g−1

∂z−1

∣∣∣∣
(z0,λ0,τ0)

= ν(λ) + (A + 15C + 7D) |w1|2 = (15C + 3D) |w1|2.

Hence the eigenvalues of (dg)|(z0,λ0,τ0) in W5 are ξ−5 = 0 twice,

ξ+
5 = (40Cr + 8Dr + 10iCi + 2iDi) |w1|2, and ξ̄+

5 = (40Cr + 8Dr − 10iCi − 2iDi) |w1|2.

Since we have found three zero eigenvalues as expected, if the values of A, B, C and D are such

that the other eigenvalues are non-zero then S̃O(2)2 has 3-determined stability.
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The S̃O(2)3 symmetric branch

In this section we compute the eigenvalues of (dg)|(z0,λ0,τ0) for the periodic solution with

S̃O(2)3 symmetry. As in all previous cases, since

d
S̃O(2)3

= dim(O(3)) + 1− dim(S̃O(2)3) = 3

we expect to find that (dg)|(z0,λ0,τ0) has three zero eigenvalues.

The isotypic decomposition of V3 for the action of S̃O(2)3: The subspace

W0 = {(u1, 0, 0, 0, 0, 0, 0)} = Fix(S̃O(2)3)

is an isotypic component since it is the subspace on which S̃O(2)3 acts trivially. This corre-

sponds to the trivial representation of S̃O(2)3. The action of S̃O(2)3 for the other irreducible

representations is given by

(Rα, 3α) · (zj) =
(

ei(j+3)αzj

)
, (Rα, 3α) ∈ S̃O(2)3

for j 6= −3. The representation on V3 is a sum of the trivial representation on W0 and the

representations above for j = −2, −1, 0, 1, 2 and 3. Since none of these representations are

S̃O(2)3-isomorphic, the isotypic decomposition for the action of S̃O(2)3 on V3 is

V3 = W0 ⊕W1 ⊕W2 ⊕W3 ⊕W4 ⊕W5 ⊕W6,

where

W1 = {(0, u1, 0, 0, 0, 0, 0)}
W2 = {(0, 0, u1, 0, 0, 0, 0)}
W3 = {(0, 0, 0, u1, 0, 0, 0)}
W4 = {(0, 0, 0, 0, u1, 0, 0)}
W5 = {(0, 0, 0, 0, 0, u1, 0)}
W6 = {(0, 0, 0, 0, 0, 0, u1)}.

Zero eigenvectors of (dg)|(z0,λ0,τ0): The three zero eigenvectors of (dg)|(z0,λ0,τ0) are found by

multiplying (5.4.7)–(5.4.9) by the vector (w1, 0, 0, 0, 0, 0, 0) ∈ Fix(S̃O(2)3). They are

a2(w1) = (0, w1, 0, 0, 0, 0, 0)T ∈ W1

a3(w1) = (0, w1, 0, 0, 0, 0, 0)T ∈ W1

a4(w1) = (iw1, 0, 0, 0, 0, 0, 0)T ∈ W0

for the curves γ2, γ3 and γ4 respectively.
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Block diagonalised form of (dg)|(z0,λ0,τ0): Using the isotypic decomposition of V3 above we

can see that (dg)|(z0,λ0,τ0) must already be diagonal in the basis given by (5.4.4). Thus the block

diagonal form of (dg)|(z0,λ0,τ0) is

(dg)|(z0,λ0,τ0) =




M(−3,−3) 0 0 0 0 0 0

0 M(−2,−2) 0 0 0 0 0

0 0 M(−1,−1) 0 0 0 0

0 0 0 M(0,0) 0 0 0

0 0 0 0 M(1,1) 0 0

0 0 0 0 0 M(2,2) 0

0 0 0 0 0 0 M(3,3)




.

Eigenvalues in W0: The eigenvalues of (dg)|(z0,λ0,τ0) in W0 are given by the eigenvalues of

M(−3,−3). Since W0 contains the zero eigenvector a4, M(−3,−3) has a zero eigenvalue and the

other eigenvalue is given by 2Re(m(−3,−3)) where

m(−3,−3) =
∂g−3

∂z−3

∣∣∣∣
(z0,λ0,τ0)

= ν(λ) + (2A + 50C + 18D) |w1|2 = (A + 25C + 9D) |w1|2

using the branching equation. Thus the eigenvalues in W0 are

ξ+
0 = (2Ar + 50Cr + 18Dr) |w1|2 = −2λ and ξ−0 = 0.

Eigenvalues in Wj for j = 1, . . . , 6: The eigenvalues of (dg)|(z0,λ0,τ0) in Wj for j = 1, . . . , 6 are

given by the eigenvalues of M(k,k) for k = −2, . . . , 3. Notice that since gk cannot contain any

terms in z̄kz2
−3 for k = −2, . . . , 3,

m′
(k,k) =

∂gk
∂z̄k

∣∣∣∣
(z0,λ0,τ0)

= 0

and hence the eigenvalues are given by m(k,k) and m(k,k) for k = −2, . . . , 3. Since the zero

eigenvectors a2 and a3 lie in W1 we must have m(−2,−2) = 0 and ξ1 = 0. We compute that

m(−1,−1) =
∂g−1

∂z−1

∣∣∣∣
(z0,λ0,τ0)

= ν(λ) + (A− 5C + 3D) |w1|2 = (−30C− 6D) |w1|2

m(0,0) =
∂g0

∂z0

∣∣∣∣
(z0,λ0,τ0)

= ν(λ) + (A− 20C) |w1|2 = (−45C− 9D) |w1|2

m(1,1) =
∂g1

∂z1

∣∣∣∣
(z0,λ0,τ0)

= ν(λ) + (A− 25C− 3D) |w1|2 = (−50C− 12D) |w1|2

m(2,2) =
∂g2

∂z2

∣∣∣∣
(z0,λ0,τ0)

= ν(λ) + (A− 25C− 6D) |w1|2 = (−50C− 15D) |w1|2

m(3,3) =
∂g3

∂z3

∣∣∣∣
(z0,λ0,τ0)

= ν(λ) + (A + 2B− 40C− 9D) |w1|2 = (2B− 65C− 18D) |w1|2

and hence the eigenvalues of (dg)|(z0,λ0,τ0) in W2 are

ξ2 = (−30C− 6D) |w1|2 and ξ̄2 =
(−30C− 6D

) |w1|2,
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in W3,

ξ3 = (−45C− 9D) |w1|2 and ξ̄3 =
(−45C− 9D

) |w1|2,

in W4,

ξ4 = (−50C− 12D) |w1|2 and ξ̄4 =
(−50C− 12D

) |w1|2,

in W5,

ξ5 = (−50C− 15D) |w1|2 and ξ̄5 =
(−50C− 15D

) |w1|2

and in W6 the eigenvalues are

ξ6 = (2B− 65C− 18D) |w1|2 and ξ̄6 =
(
2B− 65C− 18D

) |w1|2.

Since we have found three zero eigenvalues as expected, if the values of A, B, C and D are such

that the other eigenvalues are non-zero then S̃O(2)3 has 3-determined stability.

The Õ symmetric branch

We now compute the eigenvalues of (dg)|(z0,λ0,τ0) for the periodic solution with Õ symmetry.

Since

d
Õ

= dim(O(3)) + 1− dim(Õ) = 4

we expect to find that (dg)|(z0,λ0,τ0) has four zero eigenvalues.

The isotypic decomposition of V3 for the action of Õ: The subspace

W0 = {(0, u1, 0, 0, 0,−u1, 0)} = Fix(Õ)

is an isotypic component since it is the subspace on which Õ acts trivially. This corresponds

to the trivial representation of Õ. Our representation of Õ on V3 is a sum of irreducible repre-

sentations of Õ. The irreducible representations of Õ are given by the character table, Table 5.4

where

[I]
[
(κx=y)

]
[(R2π/3)] [(Rz

π)]
[
(−Rz

π/2)
]

are the five conjugacy classes of elements in Õ.

Representation [I]
[
(κx=y)

]
[(R2π/3)] [(Rz

π)]
[
(−Rz

π/2)
]

χ1 1 1 1 1 1

χ2 1 -1 1 1 -1

χ3 2 0 -1 2 0

χ4 3 -1 0 -1 1

χ5 3 1 0 -1 -1

Table 5.4: Character table for the group Õ

In our representation on V3

χ [I] = 7 χ
[
(κx=y)

]
= 1 χ [(R2π/3)] = 1 χ [(Rz

π)] = −1 χ
[
(−Rz

π/2)
]

= 1

so we can see that

χ = χ1 + χ4 + χ5.
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Since none of these representations are Õ-isomorphic, the subspaces which are invariant under

each of the representations are the isotypic components. The computation of the form of these

subspaces is greatly simplified if, instead of using the spherical harmonics of degree 3 as our

basis functions, we use the set of basis functions given by

B0 = xyz = i

√
2π

105

(
Y−2

3 −Y2
3

)

B1 = x(z2 − y2) =
√

π

21

(
Y−1

3 −Y1
3

)
+

√
π

35

(
Y−3

3 −Y3
3

)

B2 = y(x2 − z2) = −i
√

π

21

(
Y−1

3 + Y1
3

)
+ i

√
π

35

(
Y−3

3 + Y3
3

)

B3 = z(y2 − x2) = −2

√
2π

105

(
Y−2

3 + Y2
3

)

B4 = x
(

x2 − 3
2
(y2 + z2)

)
=

5
2

√
π

35

(
Y−3

3 −Y3
3

)
− 3

2

√
π

21

(
Y−1

3 −Y1
3

)

B5 = y
(

y2 − 3
2
(z2 + x2)

)
= −5i

2

√
π

35

(
Y−3

3 + Y3
3

)
− 3i

2

√
π

21

(
Y−1

3 + Y1
3

)

B6 = z
(

z2 − 3
2
(x2 + y2)

)
= 2

√
π

7
Y0

3

Let us denote the vector of amplitudes for this basis by b = (b0, b1, b2, b3, b4, b5, b6). Since all

elements of Õ act trivially on B0 the space which is invariant under the representation χ1 is

W0 = {(b, 0, 0, 0, 0, 0, 0)} = {(0, u1, 0, 0, 0,−u1, 0)} = Fix(Õ).

Using the actions of the generating elements of Õ on the point (x, y, z) on the surface of the

sphere as given in Table 5.2 we can see that

I · (B1, B2, B3) = (B1, B2, B3) ⇒ χ(I) = 3

(κx=y) · (B1, B2, B3) = (−B2,−B1,−B3) ⇒ χ(κx=y) = −1

(R2π/3) · (B1, B2, B3) = (B2, B3, B1) ⇒ χ(R2π/3) = 0

(Rz
π) · (B1, B2, B3) = (−B1,−B2, B3) ⇒ χ(Rz

π) = −1

(−Rz
π/2) · (B1, B2, B3) = (−B2, B1, B3) ⇒ χ(−Rz

π/2) = 1

This means that the three-dimensional subspace

W1 = {(0, b1, b2, b3, 0, 0, 0)} = {(
√

3u1, u3,
√

5u2, 0,−
√

5u1, u3,−
√

3u2)}

is invariant under the action of the representation χ4. Similarly

I · (B4, B5, B6) = (B4, B5, B6) ⇒ χ(I) = 3

(κx=y) · (B4, B5, B6) = (B5, B4, B6) ⇒ χ(κx=y) = 1

(R2π/3) · (B4, B5, B6) = (B4, B6, B4) ⇒ χ(R2π/3) = 0

(Rz
π) · (B4, B5, B6) = (−B4,−B5, B6) ⇒ χ(Rz

π) = −1

(−Rz
π/2) · (B4, B5, B6) = (B5,−B4,−B6) ⇒ χ(−Rz

π/2) = −1

so the three-dimensional subspace

W2 = {(0, 0, 0, 0, b4, b5, b6)} = {(
√

5u1, 0,
√

3u2, u3,
√

3u1, 0,
√

5u2)}
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is invariant under the action of the representation χ5. Therefore the isotypic decomposition of

V3 with respect to the action of Õ is

V3 = W0 ⊕W1 ⊕W2.

Zero eigenvectors of (dg)|(z0,λ0,τ0): The four zero eigenvectors of (dg)|(z0,λ0,τ0) are found by

multiplying (5.4.6)–(5.4.9) by the vector (0, w1, 0, 0, 0,−w1, 0) ∈ Fix(Õ). They are

a1(w1) = (0, iw1, 0, 0, 0, iw1, 0)T ∈ W1

a2(w1) =
(
−
√

3w1, 0,
√

5w1, 0,
√

5w1, 0,−
√

3w1

)T ∈ W1

a3(w1) =
(√

3w1, 0,
√

5w1, 0,−
√

5w1, 0,−
√

3w1

)T ∈ W1

a4(w1) = (0, iw1, 0, 0, 0,−iw1, 0)T ∈ W0

for the curves γ1, γ2, γ3 and γ4 respectively.

Block diagonalised form of (dg)|(z0,λ0,τ0): Using the isotypic decomposition of V3 above we

can see that to diagonalise (dg)|(z0,λ0,τ0) we must use the basis functions

v1 = z−2 − z2, v2 =
√

3z−3 −
√

5z1, v3 =
√

5z1 −
√

3z3, v4 = z−2 + z2

v5 =
√

5z−3 +
√

3z1, v6 =
√

3z−1 +
√

5z3, v7 = z0

and their complex conjugates. Under this change of basis g(z, λ, τ) becomes h(v, λ, τ) where

v = (v1, v2, v3, v4, v5, v6, v7) and

(dh)|(z0,λ0,τ0) =




N(1,1) 0 0 0 0 0 0

0 N(2,2) N(2,3) N(2,4) 0 0 0

0 N(3,2) N(3,3) N(3,4) 0 0 0

0 N(4,2) N(4,3) N(4,4) 0 0 0

0 0 0 0 N(5,5) N(5,6) N(5,7)

0 0 0 0 N(6,5) N(6,6) N(6,7)

0 0 0 0 N(7,5) N(7,6) N(7,7)




where

N(i,j) =


 n(i,j) n′(i,j)

n′(i,j) n(i,j)


 and n(i,j) =

∂hi
∂vj

∣∣∣∣∣
(z0,λ0,τ0)

, n′(i,j) =
∂hi
∂v̄j

∣∣∣∣∣
(z0,λ0,τ0)

.

Eigenvalues in W0: The eigenvalues of (dg)|(z0,λ0,τ0) in W0 are given by the eigenvalues

of N(1,1). Since W0 contains the zero eigenvector a4, one eigenvalue is zero and the other is

2Re(n(1,1)) where

n(1,1) =
∂h1

∂v1
=

∂g−2

∂v1
− ∂g2

∂v1
=

∂g−2

∂z−2

∂z−2

∂v1
+

∂g−2

∂z2

∂z2

∂v1
− ∂g2

∂z−2

∂z−2

∂v1
− ∂g2

∂z2

∂z2

∂v1
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where all derivatives are evaluated at (z0, λ0, τ0). Since

z−2 = 1
2 (v1 + v4)

z2 = 1
2 (−v1 + v4)

and
∂g−2

∂z−2
=

∂g2

∂z2
,

∂g−2

∂z2
=

∂g2

∂z−2
,

when the derivatives are evaluated at (z0, λ0, τ0), we find that

n(1,1) =
∂g−2

∂z−2

∣∣∣∣
(z0,λ0,τ0)

− ∂g−2

∂z2

∣∣∣∣
(z0,λ0,τ0)

= ν(λ) + (3A + 2B− 40C + 4D) |w1|2 − (−A− 2B + 40C + 4D) |w1|2

= (2A + 2B− 40C) |w1|2.

Hence the eigenvalues of (dg)|(z0,λ0,τ0) in W0 are

ξ+
0 = (4Ar + 4Br − 80Cr) |w1|2 and ξ−0 = 0.

Eigenvalues in W1: The two distinct eigenvalues of (dg)|(z0,λ0,τ0) in W1 have multiplicity

three. Since W1 contains the three zero eigenvectors a1, a2 and a3, one of the two distinct

eigenvalues is zero. Since all of the entries in N(2,4), N(3,4), N(4,2) and N(4,3) are zero, due to

the fact that they vanish upon evaluation at (z0, λ0, τ0) the two distinct eigenvalues in W1 are

given by the eigenvalues of N(4,4). Since one of these eigenvalues is zero, the other is 2Re(n(4,4))

where

n(4,4) =
∂h4

∂v4
=

∂g−2

∂v4
+

∂g2

∂v4
=

∂g−2

∂z−2

∂z−2

∂v4
+

∂g−2

∂z2

∂z2

∂v4
− ∂g2

∂z−2

∂z−2

∂v4
− ∂g2

∂z2

∂z2

∂v4

=
∂g−2

∂z−2

∣∣∣∣
(z0,λ0,τ0)

+
∂g−2

∂z2

∣∣∣∣
(z0,λ0,τ0)

= ν(λ) + (3A + 2B− 40C + 4D) |w1|2 + (−A− 2B + 40C + 4D) |w1|2

= (−2B + 40C + 8D) |w1|2.

Hence the eigenvalues of (dg)|(z0,λ0,τ0) in W1 are

ξ+
1 = (−4Br + 80Cr + 16Dr) |w1|2 and ξ−1 = 0,

each of multiplicity 3.

Eigenvalues in W2: The two distinct eigenvalues of (dg)|(z0,λ0,τ0) in W2 also have multiplicity

three. Since all of the entries in N(5,7), N(6,7), N(7,5) and N(7,6) are zero, due to the fact that

they vanish upon evaluation at (z0, λ0, τ0) the two distinct eigenvalues in W2 are given by the

eigenvalues of N(7,7) = M(0,0) since v7 = z0. Since

m(0,0) =
∂g0

∂z0

∣∣∣∣
(z0,λ0,τ0)

= ν(λ) + 2A|w1|2 = (−2B + 40C) |w1|2

m′
(0,0) =

∂g0

∂z̄0

∣∣∣∣
(z0,λ0,τ0)

= −2Bw2
1,

the eigenvalues are the roots of

ξ2 − (−4Br + 80Cr) |w1|2ξ +
(
|2B− 40C|2 − |2B|2

)
|w1|4 = 0.
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Thus the eigenvalues of (dg)|(z0,λ0,τ0) in W2 are

ξ±2 =
[
−2Br + 40Cr ± 2

√
B2

r + 40BiCi − 400C2
i

]
|w1|2

each of multiplicity 3. Since we have found four zero eigenvalues as expected, if the values

of A, B, C and D are such that the other eigenvalues are non-zero then Õ has 3-determined

stability.

The D̃6 symmetric branch

Finally, we will compute the eigenvalues of (dg)|(z0,λ0,τ0) for the periodic solution with D̃6

symmetry. Since

dD̃6
= dim(O(3)) + 1− dim(D̃6) = 4

we expect to find that (dg)|(z0,λ0,τ0) has four zero eigenvalues.

The isotypic decomposition of V3 for the action of D̃6: The subspace

W0 = {(u1, 0, 0, 0, 0, 0,−u1)} = Fix(D̃6)

is an isotypic component since it is the subspace on which D̃6 acts trivially. This corresponds

to the trivial representation of D̃6. Our representation of D̃6 on V3 is a sum of irreducible

representations of D̃6. The irreducible representations of D̃6 are given by the character table,

Table 5.5 where

[I] [(−Rπ/3)] [(R2π/3)] [(−Rπ)] [(κ)] [(−Rπ/3κ)]

are the six conjugacy classes of elements in D̃6. Here Rα is a rotation through an angle α in some

axis and κ is a rotation through π in an orthogonal axis. The element (−I, π) ∈ D̃6 acts as the

identity and is a member of [I].

Representation [I] [(−Rπ/3)] [(R2π/3)] [(−Rπ)] [(κ)] [(−Rπ/3κ)]

χ1 1 1 1 1 1 1

χ2 1 1 1 1 -1 -1

χ3 1 -1 1 -1 1 -1

χ4 1 -1 1 -1 -1 1

χ5 2 1 -1 -2 0 0

χ6 2 -1 -1 2 0 0

Table 5.5: Character table for the group D̃6.

In our representation on V3,

χ [I] = 7 χ [(−Rπ/3)] = 1 χ [(R2π/3)] = 1 χ [(−Rπ)] = 1 χ [(κ)] = −1 χ [(−Rπ/3κ)] = 1

so we can see that

χ = χ1 + χ2 + χ4 + χ5 + χ6.
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Since none of these representations are D̃6-isomorphic, the subspaces which are invariant under

each of the representations are the isotypic components. The subspaces which are invariant

under χ1, χ2, χ4, χ5 and χ6 are respectively

W0 = {(u1, 0, 0, 0, 0, 0,−u1)} = Fix(D̃6)

W1 = {(u1, 0, 0, 0, 0, 0, u1)}
W2 = {(0, 0, 0, u1, 0, 0, 0)}
W3 = {(0, u1, 0, 0, 0, u2, 0)}
W4 = {(0, 0, u1, 0, u2, 0, 0)}.

Hence the isotypic decomposition of V3 with respect to the action of D̃6 is given by

V3 = W0 ⊕W1 ⊕W2 ⊕W3 ⊕W4.

Zero eigenvectors of (dg)|(z0,λ0,τ0): The four zero eigenvectors of (dg)|(z0,λ0,τ0) are found by

multiplying (5.4.6)–(5.4.9) by the vector (w1, 0, 0, 0, 0, 0,−w1) ∈ Fix(D̃6). They are

a1(w1) = (iw1, 0, 0, 0, 0, 0, iw1)
T ∈ W1

a2(w1) =
(

0,
√

3w1, 0, 0, 0,
√

3w1, 0
)T ∈ W3

a3(w1) =
(

0,
√

3w1, 0, 0, 0,−
√

3w1, 0
)T ∈ W3

a4(w1) = (−iw1, 0, 0, 0, 0, 0, iw1)
T ∈ W0

for the curves γ1, γ2, γ3 and γ4 respectively.

Block diagonalised form of (dg)|(z0,λ0,τ0): Using the isotypic decomposition of V3 above we

can see that to diagonalise (dg)|(z0,λ0,τ0) we must use the basis functions

v1 = z−3 − z3, v2 = z−3 + z3, z0, z−2, z2, z−1, z1

and their complex conjugates.

Due to the fact that gj(z) = g−j(z̃) where z̃ = (z3, z2, z1, z0, z−1, z−2, z−3), it follows that for this
solution, M(−j,−j) = M(j,j) and M(−j,j) = M(j,−j). This results in the following block diagonal
form of (dg)|(z0,λ0,τ0):

(dg)|(z0 ,λ0 ,τ0) =




M(−3,−3) − M(−3,3) 0 0 0 0 0 0

0 M(−3,−3) + M(−3,3) 0 0 0 0 0

0 0 M(0,0) 0 0 0 0

0 0 0 M(−2,−2) M(−2,2) 0 0

0 0 0 M(−2,2) M(−2,−2) 0 0

0 0 0 0 0 M(−1,−1) M(−1,1)

0 0 0 0 0 M(−1,1) M(−1,−1)




.

Eigenvalues in W0: The eigenvalues of (dg)|(z0,λ0,τ0) in W0 are given by the eigenvalues of

M(−3,−3) − M(−3,3). Since W0 contains the zero eigenvector a4, M(−3,−3) − M(−3,3) has a zero
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eigenvalue and the other eigenvalue is given by 2Re(m(−3,−3) −m(−3,3)) where

m(−3,−3) =
∂g−3

∂z−3

∣∣∣∣
(z0,λ0,τ0)

= ν(λ) + (3A + 2B + 10C + 9D) |w1|2 = (A + 25C + 9D) |w1|2

m(−3,3) =
∂g−3

∂z3

∣∣∣∣
(z0,λ0,τ0)

= (−A− 2B + 40C + 9D) |w1|2

using the branching equation. Thus the eigenvalues in W0 are

ξ+
0 = (4Ar + 4Br − 30Cr) |w1|2 = −2λ and ξ−0 = 0.

Eigenvalues in W1: The eigenvalues of (dg)|(z0,λ0,τ0) in W1 are given by the eigenvalues of

M(−3,−3) + M(−3,3). Since W1 contains the zero eigenvector a1, M(−3,−3) + M(−3,3) has a zero

eigenvalue and the other eigenvalue is given by 2Re(m(−3,−3) + m(−3,3)). Thus the eigenvalues

in W1 are

ξ+
1 = (−4Br + 130Cr + 36Dr) |w1|2 and ξ−1 = 0.

Eigenvalues in W2: The eigenvalues of (dg)|(z0,λ0,τ0) in W2 are given by the eigenvalues of

M(0,0). Since

m(0,0) =
∂g0

∂z0

∣∣∣∣
(z0,λ0,τ0)

= ν(λ) + (2A− 40C) |w1|2 = (−2B− 25C) |w1|2

m′
(0,0) =

∂g0

∂z̄0

∣∣∣∣
(z0,λ0,τ0)

= (2B− 20C) w2
1

the eigenvalues are the roots of

ξ2 − (−4Br − 50Cr) |w1|2ξ +
(
|2B + 25C|2 − |2B− 20C|2

)
|w1|4 = 0.

Thus the eigenvalues of (dg)|(z0,λ0,τ0) in W2 are

ξ±2 =
[
−2Br − 25Cr ±

√
4(Br − 10Cr)2 − 45Ci(4Bi + 5Ci)

]
|w1|2.

Eigenvalues in W3: The eigenvalues of (dg)|(z0,λ0,τ0) in W3 are given by the eigenvalues of

(
M(−2,−2) M(−2,2)

M(−2,2) M(−2,−2)

)
=




m(−2,−2) 0 0 m′
(−2,2)

0 m(−2,−2) m′
(−2,2) 0

0 m′
(−2,2) m(−2,−2) 0

m′
(−2,2) 0 0 m(−2,−2)




due to the fact that g−2 cannot contain any terms which do not disappear upon differentiating

with respect to z̄−2 or z2 and evaluating at z0 and as such

m′
(−2,−2) =

∂g−2

∂z̄−2

∣∣∣∣
(z0,λ0,τ0)

= 0 and m(−2,2) =
∂g−2

∂z2

∣∣∣∣
(z0,λ0,τ0)

= 0.

Hence the eigenvalues are double and given by the eigenvalues of

E3 =


 m(−2,−2) m′

(−2,2)

m′
(−2,2) m(−2,−2)


 .
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Since the zero eigenvectors a2 and a3 are contained in W3 the eigenvalues of E3 are zero and

2Re(m(−2,−2)) where

m(−2,−2) =
∂g−2

∂z−2

∣∣∣∣
(z0,λ0,τ0)

= ν(λ) + (2A + 3D) |w1|2 = (−2B + 15C + 3D) |w1|2.

Hence the double eigenvalues of (dg)|(z0,λ0,τ0) in W3 are

ξ+
2 = (−4Br + 30Cr + 6Dr) |w1|2 and ξ−2 = 0.

Eigenvalues in W4: By an argument similar to that above, the eigenvalues of (dg)|(z0,λ0,τ0) in

W4 are double and equal to the eigenvalues of

E4 =


 m(−1,−1) m′

(−1,1)

m′
(−1,1) m(−1,−1)


 .

These are given by the roots of

ξ2 − 2Re
(

m(−1,−1)

)
ξ + |m(−1,−1)|2 − |m′

(−1,1)|2 = 0

where

m(−1,−1) =
∂g−1

∂z−1

∣∣∣∣
(z0,λ0,τ0)

= ν(λ) + (2A− 30C) |w1|2 = (−2B− 15C) |w1|2

m′
(−1,1) =

∂g−1

∂z̄1

∣∣∣∣
(z0,λ0,τ0)

= (−2B + 15C) w2
1.

Thus the double eigenvalues of (dg)|(z0,λ0,τ0) in W4 are

ξ±4 =
[
−2Br − 15Cr ±

√
(2Br − 15Cr)2 − 120BiCi

]
|w1|2.

Since we have found four zero eigenvalues as expected, if the values of A, B, C and D are such

that the other eigenvalues are non-zero then D̃6 has 3-determined stability.

Summary

The eigenvalues of each of the C-axial periodic solutions in each of the isotypic components

for that solution are listed in Table 5.6. The isotypic components for the actions of each of the

C-axial subgroups are summarised in Table 5.7.
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Table 5.6: The eigenvalues of (dg)|(z0,λ0,τ0) for each C-axial branch of periodic solutions by iso-

typic component.
Isotropy Isotypic Eigenvalues Multiplicity

subgroup component

Õ(2) W0 (2Ar + 2Br − 24Cr)|w1|2 = −2λ 1

0 1

W1 (−2Br + 48Cr + 12Dr)|w1|2 2

0 2

W2

[
−Br + 12Cr +

√
B2

r + 24BiCi − 144C2
i

]
|w1|2 2

[
−Br + 12Cr −

√
B2

r + 24BiCi − 144C2
i

]
|w1|2 2

W3

[
−Br − 8Cr +

√
B2

r − 20BrCr + 100C2
r − 36BiCi + 36C2

i

]
|w1|2 2

[
−Br − 8Cr −

√
B2

r − 20BrCr + 100C2
r − 36BiCi + 36C2

i

]
|w1|2 2

S̃O(2)1 W0 (2Ar − 6Cr + 2Dr)|w1|2 = −2λ 1

0 1

W1 ξ = (−12C− 3D)|w1|2 and ξ 1 of each

W2 ξ = (−22C− 4D)|w1|2 and ξ 1 of each

W3 ξ = (33Cr + 11Dr + 3iCi + iDi)|w1|2 and ξ 1 of each

0 2

W4 ξ± =
(
−C + D + B− 13

2 C− D±√δ
)
|w1|2 and ξ± 1 of each

where δ =
(
−C + D + B− 13

2 C− D
)2

+ (2C− 2D)
(
2B− 13C− 2D

)
+ 60|C|2

S̃O(2)2 W0 (2Ar + 8Dr)|w1|2 = −2λ 1

0 1

W1 ξ = −4D|w1|2 and ξ 1 of each

W2 ξ = (−15C− 6D)|w1|2 and ξ 1 of each

W3 ξ = (2B− 40C− 8D)|w1|2 and ξ 1 of each

W4 ξ = (−25C− 10D)|w1|2 and ξ 1 of each

W5 ξ = (40Cr + 8Dr + 10iCi + 2iDi)|w1|2 and ξ 1 of each

0 2

S̃O(2)3 W0 (2Ar + 50Cr + 18Dr)|w1|2 = −2λ 1

0 1

W1 0 2

W2 ξ = (−30C− 6D)|w1|2 and ξ 1 of each

W3 ξ = (−45C− 9D)|w1|2 and ξ 1 of each

W4 ξ = (−50C− 12D)|w1|2 and ξ 1 of each

W5 ξ = (−50C− 15D)|w1|2 and ξ 1 of each

W6 ξ = (2B− 65C− 18D)|w1|2 and ξ 1 of each

Õ W0 (4Ar + 4Br − 80Cr)|w1|2 = −2λ 1

0 1

W1 (−4Br + 80Cr + 16Dr)|w1|2 3

0 3

W2

[
−2Br + 40Cr + 2

√
B2

r + 40BiCi − 400C2
i

]
|w1|2 3

[
−2Br + 40Cr − 2

√
B2

r + 40BiCi − 400C2
i

]
|w1|2 3

Continued on next page

103



5.4. STABILITY OF MAXIMAL SOLUTION BRANCHES

Table 5.6 : – continued from previous page
Isotropy Isotypic Eigenvalues Multiplicity

subgroup component

D̃6 W0 (4Ar + 4Br − 30Cr)|w1|2 = −2λ 1

0 1

W1 (−4Br + 130Cr + 36Dr)|w1|2 1

0 1

W2

[
−2Br − 25Cr +

√
4(Br − 10Cr)2 − 45Ci(4Bi + 5Ci)

]
|w1|2 1

[
−2Br − 25Cr −

√
4(Br − 10Cr)2 − 45Ci(4Bi + 5Ci)

]
|w1|2 1

W3 (−4Br + 30Cr + 6Dr)|w1|2 2

0 2

W4

[
−2Br − 15Cr +

√
(2Br − 15Cr)2 − 120BiCi

]
|w1|2 2

[
−2Br − 15Cr −

√
(2Br − 15Cr)2 − 120BiCi

]
|w1|2 2

Σ Isotypic components

Õ(2) W0 = {(0, 0, 0, u1, 0, 0, 0)} = Fix(Õ(2))
W1 = {(0, 0, u1, 0, u2, 0, 0)}
W2 = {(0, u1, 0, 0, 0, u2, 0)}
W3 = {(u1, 0, 0, 0, 0, 0, u2)}

S̃O(2)1 W0 = {(0, 0, u1, 0, 0, 0, 0)} = Fix(S̃O(2)1)
W1 = {(0, 0, 0, 0, 0, u1, 0)}
W2 = {(0, 0, 0, 0, 0, 0, u1)}
W3 = {(0, u1, 0, u2, 0, 0, 0)}
W4 = {(u1, 0, 0, 0, u2, 0, 0)}

S̃O(2)2 W0 = {(0, u1, 0, 0, 0, 0, 0)} = Fix(S̃O(2)2)
W1 = {(0, 0, 0, u1, 0, 0, 0)}
W2 = {(0, 0, 0, 0, u1, 0, 0)}
W3 = {(0, 0, 0, 0, 0, u1, 0)}
W4 = {(0, 0, 0, 0, 0, 0, u1)}
W5 = {(u1, 0, u2, 0, 0, 0, 0)}

S̃O(2)3 W0 = {(u1, 0, 0, 0, 0, 0, 0)} = Fix(S̃O(2)3)
W1 = {(0, u1, 0, 0, 0, 0, 0)}
W2 = {(0, 0, u1, 0, 0, 0, 0)}
W3 = {(0, 0, 0, u1, 0, 0, 0)}
W4 = {(0, 0, 0, 0, u1, 0, 0)}
W5 = {(0, 0, 0, 0, 0, u1, 0)}
W6 = {(0, 0, 0, 0, 0, 0, u1)}

Õ W0 = {(0, u1, 0, 0, 0,−u1, 0)} = Fix(Õ)
W1 = {(√3u1, u3,

√
5u2, 0,−√5u1, u3,−√3u2)}

W2 = {(√5u1, 0,
√

3u2, u3,
√

3u1, 0,
√

5u2)}

D̃6 W0 = {(u1, 0, 0, 0, 0, 0,−u1)} = Fix(D̃6)
W1 = {(u1, 0, 0, 0, 0, 0, u1)}
W2 = {(0, 0, 0, u1, 0, 0, 0)}
W3 = {(0, u1, 0, 0, 0, u2, 0)}
W4 = {(0, 0, u1, 0, u2, 0, 0)}

Table 5.7: Isotypic components for the actions of the C-axial subgroups Σ on V3.
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5.4.3 Conditions for stability of the solution branches

We now state a theorem which lists conditions in terms of the coefficients A, B, C and D for

each of the individual solution branches to be stable.

Theorem 5.4.1. For each C-axial subgroup, Σ, listed in Table 5.1 let ∆0, . . . , ∆k be the functions of the

coefficients A, B, C and D given in Table 5.8. Then

(i) For each Σ, the corresponding branch of periodic solutions to (5.1.1) is supercritical if ∆0 < 0 and

subcritical if ∆0 > 0.

(ii) For each Σ, the corresponding branch of periodic solutions to (5.1.1) is stable near λ = 0 if ∆j < 0

for all j. If ∆j > 0 for some j = 0, . . . , k then the branch of periodic solutions is unstable.

Proof. The conditions in Table 5.8 are those which must be satisfied for each of the branches of

solutions to have eigenvalues with negative real part. These eigenvalues were found using F3,

the cubic order truncation of the Taylor expansion of the general O(3)× S1 equivariant vector

field. Since each of the six C-axial isotropy subgroups Σ have 3-determined stability, these

conditions are sufficient to determine the stability of the periodic solutions of (5.1.1) with axial

symmetry by Theorem 2.5.9.

5.4.4 Remarks and Examples

From our analysis of the stability of the six branches of periodic solutions to (5.1.1) with maxi-

mal symmetry we make the following observations.

1. We have found that for each of the six C-axial isotropy subgroups of O(3)× S1 in the nat-

ural representation on V3⊕V3, the periodic solution with this symmetry (whose existence

is guaranteed by the equivariant Hopf theorem) has 3-determined stability. That is, the

cubic order truncation of the Taylor series of the general O(3)× S1 equivariant mapping

is sufficient to determine the stability of each of the six solution branches. The number of

zero eigenvalues for each solution branch is the number forced to be zero by symmetry.

This is in contrast with the representation on V2 ⊕V2 where Iooss and Rossi [54] and Haaf

et al. [51] found that some C-axial isotropy subgroups had 5-determined stability, so the

conditions for stability of the corresponding branches of periodic solutions included co-

efficients of order 5 terms in the Taylor expansion of the general equivariant mapping on

V2 ⊕V2.

2. For each of the six solution branches it is possible to find a set of values for A, B, C and D

such that the solution is stable:

Example 5.4.2. Suppose that

Ar = −20 Br =
5
2

Bi = 5 Cr = −1
6

Ci =
3
2

Dr =
3
5
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Σ ∆0 ∆1, . . . , ∆k

Õ(2) Ar + Br − 12Cr −Br + 24Cr + 6Dr

− Br + 12Cr

Re(BC)− 6|C|2
− Br − 8Cr

|C|2 − Re(BC)

S̃O(2)1 Ar − 3Cr + Dr 2Br − 15Cr

− 4Cr − Dr

− 11Cr − 2Dr

3Cr + Dr∣∣∣Re(
√

δ)
∣∣∣−

∣∣∣Br − 15
2 Cr

∣∣∣
(∗)

S̃O(2)2 Ar + 4Dr −Dr

− 5Cr − 2Dr

Br − 20Cr − 4Dr

5Cr + Dr

S̃O(2)3 Ar + 25Cr + 9Dr −5Cr − Dr

− 25Cr − 6Dr

2Br − 65Cr − 18Dr

− 10Cr − 3Dr

Õ Ar + Br − 20Cr −Br + 20Cr + 4Dr

− Br + 20Cr

Re(BC)− 10|C|2

D̃6 2Ar + 2Br − 15Cr −2Br − 25Cr

− 5|C|2 − 4Re(BC)
− 2Br − 15Cr

− Re(BC)
− 2Br + 15Cr + 3Dr

− 2Br + 65Cr + 18Dr

Table 5.8: Stability conditions for the six branches of periodic solutions. If ∆j < 0 for all j then

the branch of periodic solutions is stable near λ = 0.

(*): δ =
(
−C + D + B− 13

2 C− D
)2

+ (2C− 2D)
(
2B− 13C− 2D

)
+ 60|C|2.

and Ai and Di take any values. Then we can see that the three standing wave solutions

(with symmetries Õ(2), Õ and D̃6) are all stable and the travelling wave solutions (with

symmetries S̃O(2)k, k = 1, 2, 3) are all unstable. The bifurcation diagram near the bifur-

cation point λ = 0 is then as in Figure 5.3.

Example 5.4.3. Suppose that

Ar = 10 Br = 1 Bi = −20 Cr = 3 Ci = 3 Dr = −10 Di = −5

and Ai takes any value. Then we find that the solution with S̃O(2)1 symmetry is stable.

The bifurcation diagram near the bifurcation point λ = 0 is then as in Figure 5.4. The

stability of the branch of solutions with S̃O(2)3 symmetry is not determined since, with

these parameter values, this solution has zero eigenvalues in addition to those forced to
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Figure 5.3: Bifurcation diagram for the values of the parameters A, B, C and D as in Example

5.4.2. Stable solutions are denoted by solid lines and unstable solutions by dashed

lines.

Figure 5.4: Bifurcation diagram for the values of the parameters A, B, C and D as in Example

5.4.3. Stable solutions are denoted by solid lines and unstable solutions by dashed

lines. The dot-dashed line indicates that the stability of the solution with S̃O(2)3

symmetry is not determined at cubic order for these parameter values.

be zero by symmetry.

Example 5.4.4. Suppose that

Ar = −2 Br = −1 Cr = − 1
10

Dr =
1
3

and Ai, Bi, Ci and Di take any values. Then we find that the solution with S̃O(2)2 sym-

metry is stable. The bifurcation diagram near the bifurcation point λ = 0 is then as in

Figure 5.5.

Example 5.4.5. Suppose that

Ar = −40 Br = 10 Cr = 3 Dr = −5

and Ai, Bi, Ci and Di take any values. Then we find that the solution with S̃O(2)3 sym-

metry is stable. The bifurcation diagram near the bifurcation point λ = 0 is then as in

Figure 5.6.
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Figure 5.5: Bifurcation diagram for the values of the parameters A, B, C and D as in Example

5.4.4. Stable solutions are denoted by solid lines and unstable solutions by dashed

lines.

Figure 5.6: Bifurcation diagram for the values of the parameters A, B, C and D as in Example

5.4.5. Stable solutions are denoted by solid lines and unstable solutions by dashed

lines.

3. It is possible for all six branches of periodic solutions to bifurcate supercritically and be

unstable for some values of the parameters A, B, C and D. This could mean that a sub-

maximal solution is stable, there is a heteroclinic orbit or the behaviour of the system with

these parameter values is chaotic.

Example 5.4.6. Suppose that

Ar = −30 Br = 50 Bi = 50 Cr = 3 Ci = −150 Dr = −13

and Ai and Di take any values. Then we find that all six maximal branches of periodic

solutions bifurcate supercritically yet are unstable. The bifurcation diagram near the bi-

furcation point λ = 0 is then as in Figure 5.7.

4. There are a number of pairs of solution branches which are never simultaneously stable.

Using Table 5.8 these can be seen to be

(a) S̃O(2)1 and S̃O(2)2
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Figure 5.7: Bifurcation diagram for the values of the parameters A, B, C and D as in Example

5.4.6. Stable solutions are denoted by solid lines and unstable solutions by dashed

lines.

(b) S̃O(2)2 and S̃O(2)3

(c) S̃O(2)2 and Õ

(d) S̃O(2)3 and D̃6.

This concludes our analysis of the stability of the solutions to (5.1.1) with maximal C-axial

symmetry. We now move on to consider the existence and stability of solutions with submaxi-

mal symmetry, in particular solutions with symmetry Σ where Σ is an isotropy subgroup with

dim Fix(Σ) = 4.

5.5 Submaximal solution branches

In Section 5.4 we considered only the solutions of (5.1.1) which have C-axial symmetry. These

solutions are guaranteed to exist for all values of the coefficients A, B, C and D in the cubic order

truncation of the Taylor series of f , the general O(3)× S1 equivariant vector field. However,

these are not the only solutions of (5.1.1). In this section we will find conditions on the values

of the coefficients A, B, C and D which allow the existence of solutions with symmetry groups

Σ where Σ is an isotropy subgroup of O(3)× S1 in the representation on V3 ⊕ V3 with a four-

dimensional fixed-point subspace. These subgroups are listed in Table 5.1.

Remark 5.5.1. In the natural representation of O(3) × S1 on V3 ⊕ V3 all of the isotropy sub-

groups, Σ, with four-dimensional fixed-point subspaces lie inside C-axial subgroups. Hence

the subgroups Σ are submaximal and we refer to solutions with symmetry Σ as submaximal

solutions.

Suppose that
dz
dt

= f (z, λ),

where f : C7 ×R → C7 is equivariant with respect to O(3)× S1 to all orders i.e. f is the exact

Birkhoff normal form, not just a truncated Taylor series. Then recall from Remark 5.3.3 that
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f restricts to a N(Σ)/Σ equivariant system on Fix(Σ) for some action of N(Σ)/Σ. For each

isotropy subgroup Σ the group N(Σ)/Σ is given in Table 5.1. For the isotropy subgroups with

dim Fix(Σ) = 4 the action of N(Σ)/Σ on Fix(Σ) is given in Table 5.9.

Σ N(Σ)/Σ Action

Z̃6 O(2)× S1 φ(w1, w2) =
(
e−3iφw1, e3iφw2

)
φ ∈ SO(2)

κ(w1, w2) = (−w2,−w1) κ ∈ O(2)

Z̃4 O(2)× S1 φ(w1, w2) =
(
e−2iφw1, e2iφw2

)
φ ∈ SO(2)

κ(w1, w2) = (−w2,−w1) κ ∈ O(2)

D̃3 D2 × S1 Rz
π(w1, w2) = (−w1, w2) Rz

π ∈ D2

Ry
π(w1, w2) = (w1, w2) Ry

π ∈ D2

D̃2 D2 × S1 Rz
π(w1, w2) = (w1, w2) Rz

π ∈ D2

Ry
π(w1, w2) = (−w1, w2) Ry

π ∈ D2

Z̃1
3 SO(2)× S1 φ(w1, w2) =

(
e−iφw1, e2iφw2

)
φ ∈ SO(2)

Z̃5 SO(2)× S1 φ(w1, w2) =
(
e−3iφw1, e2iφw2

)
φ ∈ SO(2)

Table 5.9: The action of N(Σ)/Σ on Fix(Σ) for isotropy subgroups Σ with dim Fix(Σ) = 4. For

each Σ, ψ ∈ S1 acts as ψ(w1, w2) = eiψ(w1, w2).

We now consider the restriction of f to Fix(Σ) for each isotropy subgroup Σ given in Table 5.9.

To cubic order the restriction of f to Fix(Σ) is equal to the restriction of F3 to Fix(Σ) where F3

is as in (5.2.6). We will look for changes in stability of the maximal solution branches within

Fix(Σ) and identify additional periodic and quasiperiodic solutions to (5.1.1) which lie in these

subspaces.

5.5.1 Solutions in Fix(Z̃6) and Fix(Z̃4)

We first look for submaximal solutions with symmetry Σ = Z̃6 or Z̃4. For both of these isotropy

subgroups N(Σ)/Σ = O(2)× S1. Using the actions of O(2)× S1 given in Table 5.9 for these

two isotropy subgroups we compute that to cubic order the Taylor expansion of the general

mapping which commutes with these actions is in both cases of the form

ẇ1 = µw1 + αw1|w1|2 + βw1|w2|2

ẇ2 = µw2 + αw2|w2|2 + βw2|w1|2. (5.5.1)

In the restriction of F3 to Fix(Z̃6),

α = A + 25C + 9D and β = A + 2B− 40C− 9D

and in the restriction to Fix(Z̃4),

α = A + 4D and β = A + 2B− 40C− 4D.

The system of equations (5.5.1) has previously been studied in the context of a Hopf bifurcation

with O(2) symmetry. Provided that none of the coefficients of the cubic terms in the Birkhoff

normal form of this bifurcation vanish (i.e. there are no degeneracies, so there are two cubic
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equivariant mappings) then there are only two types of solutions which bifurcate from a Hopf

bifurcation with O(2) symmetry: standing waves and rotating or travelling waves.

In Fix(Z̃6) the standing waves are solutions with D̃6 symmetry and the rotating waves are

solutions with S̃O(2)3 symmetry. In Fix(Z̃4) the standing waves are solutions with Õ sym-

metry and the rotating waves are solutions with S̃O(2)2 symmetry. Since generically these are

the only solutions which bifurcate, in the Hopf bifurcation with O(3) symmetry there are no

solutions with Z̃6 or Z̃4 symmetry.

Only if we allow degeneracies is it possible for solutions with Z̃6 or Z̃4 symmetry to exist. For

example if αr = βr then a solution with submaximal symmetry can exist: The standing wave

solution in Fix(Σ) is given by w1 = w2 and the eigenvalues of this solution are

2Re(α + β)|w1|2, 2Re(α− β)|w1|2, and 0 twice.

The travelling wave solution in Fix(Σ) is given by w2 = 0 and the eigenvalues of this solution

are

2Re(α)|w1|2, (β− α)|w1|2, (β̄− ᾱ)|w1|2, and 0.

Suppose that αr < 0 and αr + βr < 0 so that both solutions bifurcate supercritically. If αr −
βr < 0 then the standing wave is stable in Fix(Σ) and if αr − βr > 0 the travelling wave

solution is stable. When αr = βr the stability of neither solution is determined by the cubic

order truncation and a solution with submaximal symmetry exists.

For a classification of the possible degeneracies in the O(2) Hopf bifurcation see [42].

5.5.2 Solutions in Fix(D̃3) and Fix(D̃2)

Next, we look for submaximal solutions with symmetry groups Σ = D̃3 and D̃2 where N(Σ)/Σ =

D2 × S1. If we compute to cubic order the equations which are equivariant with respect to the

actions of D2 × S1 on Fix(D̃3) and Fix(D̃2) described in Table 5.9 then we find

ẇ1 = µ1w1 + α1w1|w1|2 + β1w1|w2|2 + γ1w2
2w1

ẇ2 = µ2w2 + α2w2|w2|2 + β2w2|w1|2 + γ2w2
1w2. (5.5.2)

In the case where µ1 = µ2, these equations also occur in the context of a Hopf bifurcation

on a rotating rhombic lattice in the restriction to certain four-dimensional subspaces. See, for

example, [57, 59]. In the restriction of (5.2.6) to Fix(D̃3) or Fix(D̃2) we have µ1 = µ2 = µ,

β2 = 2β1 = 2β, γ2 = 2γ1 = 2γ and in Fix(D̃3),

α1 = 2A + 2B− 15C

α2 = A + B− 12C =
1
5
(2α1 + β + γ)

β = A− 20C (5.5.3)

γ = B− 10C
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and in Fix(D̃2),

α1 = 2A + 2B− 40C

α2 = A + B− 12C =
1

10
(3α1 + 4β + 4γ)

β = A (5.5.4)

γ = B.

In either case there are three branches of standing wave solutions, with symmetries Õ(2), Õ

and D̃6, which bifurcate from the Hopf bifurcation with O(3) symmetry. Depending on the

values of the coefficients α1, β and γ in Fix(Σ) for Σ = D̃3 or D̃2 it is possible to find solutions

to (5.5.2) with Σ symmetry.

Here we will consider the equations in Fix(D̃2), where the values of the coefficients are given

by (5.5.4). Since the equations in Fix(D̃3) have the same form, a similar analysis yields similar

results.

In Fix(D̃2) the three standing wave solutions are w1 = 0, with Õ(2) symmetry, w2 = 0, with Õ

symmetry and w1 =
√

3
10 w2, with D̃6 symmetry. This is because alternative forms of Fix(D̃6)

and Fix(Õ) to those given in Table 5.1 which lie inside Fix(D̃2) are

Fix(D̃6) =

{(
0,

√
3
10

w2, 0, w2, 0,

√
3

10
w2, 0

)}
Fix(Õ) = {(0, w1, 0, 0, 0, w1, 0)} . (5.5.5)

This alternative form of Fix(Õ) is found using the set of generators (−Rz
π/2, 0), (R2π/3, 0),

(κxz, 0), (−I, π) with the actions as given in Section 5.3. To see that (5.5.5) gives a form of

Fix(D̃6) we show that it just a rotation of the form of the fixed-point subspace given in Table

5.1. In this subspace

w(θ, φ, t) = 2 Re(w1(t))
(

Y−3
3 (θ, φ)−Y3

3 (θ, φ)
)

=
R cos(ωt)

2

√
35
π

(
x3 − 3xy2

)
.

Suppose that we apply the transformation Ry
π which rotates this combination through π in the

y-axis sending x → z and z → −x. Then

Ry
π · w(θ, φ, t) =

R cos(ωt)
2

√
35
π

(
z3 − 3zy2

)

= 2

√
3
8

R cos(ωt)
(

Y−2
3 (θ, φ) + Y2

3 (θ, φ)
)

+ 2

√
5
4

R cos(ωt)Y0
3 (θ, φ)

= 2

√
5
4

R cos(ωt)

[√
3
10

(
Y−2

3 (θ, φ) + Y2
3 (θ, φ)

)
+ Y0

3 (θ, φ)

]
.

Hence the form of Fix(D̃6) given in (5.5.5) is just a rotated version of the form given in Table

5.1.

We now consider the points where the stability of these standing wave solution branches within

Fix(D̃2) change. For the periodic solution with Õ(2) symmetry, Fix(D̃2) is contained in the

direct sum of the isotypic components W0 and W2. Thus the eigenvalues of this solution within

Fix(D̃2) are

ξ−0 = 0, ξ+
1 = (2Ar + 2Br − 24Cr) |w2|2,
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ξ±2 =
[
−Br + 12Cr ±

√
B2

r + 24BiCi − 144C2
i

]
|w2|2.

We see that this branch of solutions undergoes a stationary bifurcation if Re(BC) = 6|C|2. It

is also possible for this solution branch to undergo a Hopf bifurcation at −Br + 12Cr = 0 if

6|C|2 − Re(BC) > 0 there.

The eigenvalues of the Õ symmetric branch in Fix(D̃2) are

ξ−0 = 0, ξ+
1 = (4Ar + 4Br − 80Cr) |w1|2,

ξ±2 =
[
−2Br + 40Cr ± 2

√
B2

r + 40BiCi − 400C2
i

]
|w1|2.

Hence this branch of solutions undergoes a stationary bifurcation if Re(BC) = 10|C|2. It can

also undergo a Hopf bifurcation at −Br + 20Cr = 0 if 10|C|2 − Re(BC) > 0 there.

Finally, the periodic solution with D̃6 symmetry has eigenvalues

ξ−0 = 0, ξ+
1 = (4Ar + 4Br − 30Cr) |w|2,

ξ±4 =
[
−2Br − 15Cr ±

√
(2Br − 15Cr)2 − 120BiCi

]
|w|2

in Fix(D̃2) where w is some combination of w1 and w2. This solution undergoes a stationary bi-

furcation when Re(BC) = 0. It also has a zero eigenvalue at −2Br − 15Cr = 0 which represents

a Hopf bifurcation if Re(BC) > 0 there.

The bifurcations of these solution branches allow for the possibility of the existence of periodic

and quasiperiodic solutions with D̃2 symmetry. Using the numerical continuation package

AUTO, it is possible to demonstrate the existence of these branches of periodic and quasiperi-

odic solutions with D̃2 symmetry for some particular values of the coefficients A, B and C.

Remark 5.5.2. The numerical branch continuation package AUTO requires that the input equa-

tions are real. This means that instead of finding periodic solutions to (5.5.2) with coefficients

given by (5.5.4), we set w1 = Reiφ and w2 = Seiψ where R, S, φ and ψ are real functions of time

and find fixed points of the resulting set of real differential equations. Separating the real and

imaginary parts and letting α = α1 and θ = 2φ− 2ψ, (5.5.2) with coefficients given by (5.5.4)

becomes

Ṙ = λR + αrR3 + βrRS2 + RS2 (γr cos(θ) + γi sin(θ)) (5.5.6)

Ṡ = λS +
1

10
(3αr + 4βr + 4γr) S3 + 2βrSR2 + 2SR2 (γr cos(θ)− γi sin(θ)) (5.5.7)

θ̇ = 2R2 (αi − 2βi − 2γi cos(θ)− 2γr sin(θ))

+2S2
(

γi cos(θ)− γr sin(θ)− 3
10

αi +
3
5

βi − 2
5

γi

)
. (5.5.8)

The solution of these equations with R = 0 has Õ(2) symmetry, the solution with S = 0 has Õ

symmetry and the solution with R =
√

3
10 S and θ = 0 has D̃6 symmetry. Making this change

of coordinates to a system of 3 real differential equations introduces complications. If R = 0 or

S = 0 then the phase difference θ is not defined. This is due to the fact that the values of the

frequencies φ and ψ depend on a parameter Im(µ) = ω which does not appear in the system
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(5.5.6) – (5.5.8). A consequence of this is that for certain values of the coefficients α, β and γ,

when R = 0 or S = 0 it may be that there is no value of θ for which θ̇ = 0 and hence AUTO

will not find a branch of stationary solutions to (5.5.6) – (5.5.8). The phase difference θ keeps

changing as one of the periodic solutions with Õ(2) or Õ symmetry is approached. This occurs

when the eigenvalues ξ±2 for the solutions with Õ(2) or Õ symmetry are complex. In this case

trajectories spiral towards (away from) a stable (unstable) periodic orbit as shown in Figure 5.8.

In the case where a value of θ which gives θ̇ = 0 can be found the eigenvalues are real and the

direction in which trajectories approach (move away from) a stable (unstable) periodic orbit is

defined as in Figure 5.9.

Figure 5.8: When θ̇ 6= 0 for any value of θ ∈ R trajectories spiral towards a stable periodic orbit

where R = 0 or S = 0.

Figure 5.9: When θ̇ = 0 trajectories approach the stable periodic orbit where R = 0 or S = 0 in

a defined direction given by the eigenvector corresponding to the eigenvalue ξ2.

Despite this complication, we wish to study the dynamics of the system near the points where

R = 0 or S = 0. We do this using AUTO for a particular set of values of the coefficients A, B

and C.

Example 5.5.3. Suppose that when λ = 1

A = −3 + i, B = 1 + 3i, C = Cr +
3

40
i

and we vary the value of Cr. Then

α = α1 = 2A + 2B− 40C = αr + 5i, β = A = −3 + i, γ = B = 1 + 3i, (5.5.9)

where αr = −4− 40Cr. For these values
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1. The Õ(2) symmetric branch of solutions bifurcates supercritically when αr < 8
3 and un-

dergoes a stationary bifurcation at αr = 1
3

(√
559− 22

)
.

2. The Õ symmetric branch of solutions bifurcates supercritically when αr < 0 and under-

goes a stationary bifurcation at αr =
√

31− 6.

3. The D̃6 symmetric branch of solutions bifurcates supercritically when αr < 20
3 and under-

goes a stationary bifurcation at αr = 5 and a Hopf bifurcation at αr = 4
3 .

Using AUTO we find that there is a branch of periodic solutions connecting the Õ(2) and D̃6

symmetric branches and a branch of periodic solutions connecting the Õ and D̃6 symmetric

branches. These bifurcate at the stationary bifurcations and have D̃2 symmetry. Neither of

these solutions is stable. In addition there is a branch of stable quasiperiodic solutions which

bifurcates from the solution with D̃6 symmetry at the Hopf bifurcation. This solution branch

also has D̃2 symmetry. These branches of solutions can be seen in Figure 5.10.

As αr → αc ≈ 2.17806 the quasiperiodic solution spends an increasing amount of time near the

unstable branch of solutions connecting the Õ(2) and D̃6 symmetric branches. This can be seen

in Figure 5.11. At αr = αc the system undergoes a global bifurcation to a homoclinic orbit.

Types of stationary bifurcations in Example 5.5.3

With the values of the coefficients as in (5.5.9), the system of real three differential equations for

which AUTO finds the branches of fixed-points becomes

Ṙ = R + αrR3 − 3RS2 + RS2 (cos(θ) + 3 sin(θ)) (5.5.10)

Ṡ = S +
1

10
(3αr − 8) S3 − 6SR2 + 2SR2 (cos(θ)− 3 sin(θ)) (5.5.11)

θ̇ = 2R2 (3− 6 cos(θ)− 2 sin(θ)) + 2S2
(

3 cos(θ)− sin(θ)− 21
10

)
. (5.5.12)

We can use these equations to determine the nature of the stationary bifurcations of the solution

branches.

Bifurcation of Õ(2) symmetric solution This branch of solutions has a stationary bifurcation

at

αr = α0 =
√

559− 22
3

≈ 0.5477269 . . .

At this value of αr we have the stationary solution

R0 = 0, S0 =

√
10

30−√559
, θ0 = 2 arctan

(
−10 +

√
559

51

)
.

Suppose we expand

αr = α0 + εα1 + ε2α2 + . . .

R = R0 + εR1 + ε2R2 + . . .

S = S0 + εS1 + ε2S2 + . . .

θ = θ0 + εθ1 + ε2θ2 + . . .
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Figure 5.10: AUTO generated diagram of the three standing wave solutions with Õ(2), Õ and

D̃6 symmetry in Fix(D̃2). The diagram shows the bifurcations of these solution

branches and the bifurcating branches of solutions with D̃2 symmetry. P denotes a

pitchfork bifurcation, T a transcritical bifurcation and H a Hopf bifurcation. Stable

solutions are denoted by solid lines and unstable solutions by dashed lines. The

unstable solutions with D̃2 symmetry are periodic and the stable solution with D̃2

symmetry is quasiperiodic.

Figure 5.11: AUTO generated diagram of the periodic solution branch in the RS plane for dif-

ferent values of αr. As αr approaches 2.17806 the periodic solution approaches the

saddle point on the branch connecting the R = 0 solution branch to the θ = 0

branch which is marked.
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Then

sin(θ) = sin(θ0) + εθ1 cos(θ0) + ε2
(

θ2 cos(θ0)− 1
2

θ2
1 sin(θ0)

)
+ . . .

cos(θ) = cos(θ0)− εθ1 sin(θ0)− ε2
(

θ2 sin(θ0) +
1
2

θ2
1 cos(θ0)

)
+ . . .

Substituting into the right hand sides of equations (5.5.10) – (5.5.12) and setting equal to zero

we find that at O(ε1)

M · R1 =




0 0 0

0 −2 0

0 0 a







R1

S1

θ1


 = α1




0

b

0




where a ≈ −7.43868 . . . and b ≈ −0.59191 . . .. This has solutions



R1

S1

θ1


 = K




1

0

0


 + α1




0

−b/2

0




where K ∈ R. At O(ε2) we find



0 0 0

0 −2 0

0 0 a







R2

S2

θ2


 = α2




0

b

0


 +




cKα1

dα2
1 + eK2

f K2




where c, d, e and f ∈ R. Multiplying on the left by l =
(

1 0 0
)

, the left zero eigenvector of

M, we find that we must have cKα1 = 0. If K = 0 then we find that R1 = R2 = . . . = Rn = 0 for

any n so we never switch onto a different branch of solutions. Hence we must choose α1 = 0

and so we have



R2

S2

θ2


 = K′




1

0

0


 + α2




0

−b/2

0


 +




0

− e
2 K2

f
a K2




where K′ ∈ R. At O(ε3) we find



0 0 0

0 −2 0

0 0 a







R3

S3

θ3


 = α3




0

b

0


 +




cKα2 − gK3

hKK′

jKK′




where g, h and j ∈ R. Again multiplying on the left by the left zero eigenvector l we find that

K must satisfy

cKα2 − gK3 = 0

so K = 0 or K = ±
√

cα2
g . Since we find that c, and g are both positive this means that the

bifurcation at αr =
√

559−22
3 is a subcritical pitchfork. If K = 0 in the expansion above then we

remain on the solution branch with Õ(2) symmetry and if K = ±
√

cα2
g then we switch onto

one of the bifurcating branches. These bifurcating branches are submaximal solutions with D̃2

symmetry.
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Bifurcation of Õ symmetric solution A similar analysis to that above shows that the bifurca-

tion of this branch of solutions at

αr =
√

31− 6 ≈ −0.4322356 . . .

is also a subcritical pitchfork.

Stationary bifurcation of D̃6 symmetric solution This branch of solutions undergoes a sta-

tionary bifurcation at αr = α0 = 5. At this value of αr we have the stationary solution

R0 =
√

3
5

, S0 =
√

2, θ0 = 0.

Expanding as for the Õ(2) symmetric case and substituting into the right hand sides of equa-

tions (5.5.10) – (5.5.12) and setting equal to zero we find that at O(ε1)

M · R1 =




6 − 4
5

√
30 6

5

√
15

− 8
5

√
30 14

5 − 18
5

√
2

− 12
5

√
15 18

5

√
2 − 32

5







R1

S1

θ1


 = α1



− 3

25

√
15

− 3
5

√
2

0


 (5.5.13)

The matrix M above has eigenvalues −2, 0 and 22
5 . The right and left zero eigenvectors of M

are

r =




1

− 1
5

√
30

− 3
5

√
15


 and l =

(
1 − 1

10

√
30 3

10

√
15

)

respectively. Hence equation (5.5.13) has solutions



R1

S1

θ1


 = K




1

− 1
5

√
30

− 3
5

√
15


 + α1




0
12
25

√
2

27
50




where K ∈ R. At O(ε2) we find



6 − 4
5

√
30 6

5

√
15

− 8
5

√
30 14

5 − 18
5

√
2

− 12
5

√
15 18

5

√
2 − 32

5







R2

S2

θ2


 = α2



− 3

25

√
15

− 3
5

√
2

0


 (5.5.14)

+




− 94
25

√
15K2 − 4743

12500

√
15α2

1 + 1101
125 Kα1

− 76
5

√
2K2 − 1809

2500

√
2α2

1 + 177
125

√
30Kα1

84
5 K2 + 243

125 α2
1 − 396

125

√
15Kα1




Multiplying on the left by the left zero eigenvector l we find that K must satisfy

108
25

√
15K2 − 1212

125
Kα1 +

1089
3125

√
15α2

1 = 0

Hence the two possible values of K are

K0 =
3
50

√
15α1 and K1 =

121
1350

√
15α1
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With K = K0 we have to O(ε1)



R

S

θ


 =




√
3
5√
2

0


 + εα1




3
50

√
15

3
10

√
2

0




so we stay on the original branch of solutions and with K = K1 we have



R

S

θ


 =




√
3
5√
2

0


 + εα1




121
1350

√
15

19
90

√
2

− 4
15




so we switch to a different branch of solutions where the value of θ is not always zero. Hence

the bifurcation at αr = 5 is transcritical.

Example 5.5.4. Suppose that when λ = 1

A = −1 + 2i, B = −1 + 2i, C = Cr +
1
4

i

and we vary the value of Cr. Then

α = α1 = 2A + 2B− 40C = αr − 2i, β = A = −1 + 2i, γ = B = −1 + 2i, (5.5.15)

where αr = −4− 40Cr. For these values

1. The Õ(2) symmetric branch of solutions bifurcates supercritically when αr < 8
3 and un-

dergoes a stationary bifurcation at αr = − 22
3 . This bifurcation can be found to be a sub-

critical pitchfork.

2. The Õ symmetric branch of solutions bifurcates supercritically when αr < 0 and under-

goes no bifurcations. For these parameter values the eigenvalues ξ±2 are complex and so

by Remark 5.5.2 AUTO will not find this branch of solutions as there is not a correspond-

ing branch of stationary solutions to (5.5.6)–(5.5.8).

3. The D̃6 symmetric branch of solutions bifurcates supercritically when αr < 20
3 and under-

goes a stationary bifurcation at αr = −24, which can be found to be transcritical, and a

Hopf bifurcation at αr = − 28
3 .

Using AUTO we find that there is a branch of unstable periodic solutions with D̃2 symmetry

connecting the branches of solutions with Õ(2) and D̃6 symmetry. At the transcritical bifur-

cation on the D̃6 symmetric branch, a branch of stable periodic solutions with D̃2 is created.

This solution goes through two saddle node bifurcations but remains stable for large negative

values of αr. In addition there is an unstable branch of quasiperiodic solutions bifurcating from

the Hopf bifurcation point on the D̃6 symmetric branch. As αr → αc ≈ −10.1 the quasiperiodic

solution spends an increasing amount of time near the unstable branch of solutions connecting

the Õ(2) and D̃6 symmetric branches. This can be seen in Figure 5.12. At αr = αc the system

undergoes a global bifurcation to a homoclinic orbit.

All of these solution branches can be seen in Figure 5.13.
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Figure 5.12: AUTO generated diagram of the periodic solution branch in the Rθ plane for dif-

ferent values of αr. As αr approaches -10.1 the periodic solution approaches the

saddle point on the branch connecting the Õ(2) symmetric solution branch to the

D̃6 symmetric branch which is marked.

Figure 5.13: AUTO generated diagram of the maximal solution branches with Õ(2) and D̃6

symmetry showing the connector branches, the periodic solution and also another

branch of submaximal solutions with D̃2 symmetry. H denotes a Hopf bifurca-

tion, T a transcritical bifurcation and P a pitchfork bifurcation. Stable solutions are

denoted by solid lines and unstable solutions by dashed lines.
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5.5.3 Solutions in Fix(Z̃1
3) and Fix(Z̃5)

Finally, we look for submaximal solutions with symmetry groups Σ = Z̃1
3 and Z̃5 where

N(Σ)/Σ = SO(2) × S1. Computing to cubic order the SO(2) × S1 equivariant vector field

for the actions of SO(2)× S1 described in Table 5.9 we find that in both cases the mapping is of

the form

ẇ1 = µ1w1 + aw1|w1|2 + bw1|w2|2

ẇ2 = µ2w2 + cw2|w2|2 + dw2|w1|2.

By rescaling w1 →
√

d
b w1 these equations are of the form

ẇ1 = µ1w1 + α1w1|w1|2 + βw1|w2|2

ẇ2 = µ2w2 + α2w2|w2|2 + βw2|w1|2. (5.5.16)

These equations describe the interaction of two Hopf bifurcations with SO(2) symmetry at

1 : 1 resonance, but with different SO(2) actions. In the case where µ1 = µ2, similarly to (5.5.2),

these equations also occur in the context of a Hopf bifurcation on a rotating rhombic lattice in

the restriction to certain four-dimensional subspaces [57, 59].

In the restriction of (5.2.6) to Fix(Z̃1
3) or Fix(Z̃5) we have µ1 = µ2 = µ and in Fix(Z̃1

3),

α1 = A + 4D

α2 = A− 3C + D (5.5.17)

β = A− 15C− 2D

and in Fix(Z̃5),

α1 = A + 25C + 9D

α2 = A + 4D (5.5.18)

β = A− 25C− 6D.

In either case there are two ‘pure mode’ travelling wave solutions (the maximal solution branches)

and branches of ‘mixed mode’ solutions (submaximal solutions) which exist for some values of

the coefficients α1, α2 and β. The pure mode solutions correspond to w1 = 0 with eigenvalues

0, 2(α2)r|w2|2(?), (β− α2) |w2|2,
(

β− α2
) |w2|2

and w2 = 0 with eigenvalues

0, 2(α1)r|w1|2(?), (β− α1) |w1|2,
(

β− α1
) |w1|2.

Subscript r denotes the real part. The starred eigenvalues (?) are required to be negative for the

branch to bifurcate supercritically from the Hopf bifurcation with O(3) symmetry. The maximal

solution branches undergo Hopf bifurcations when βr = (α2)r and βr = (α1)r respectively.

At these bifurcations it is possible for a quasiperiodic branch of mixed mode solutions with

submaximal symmetry to be created.
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Remark 5.5.5. In Fix(Z̃1
3) the travelling wave solution with w1 = 0 has S̃O(2)1 symmetry and

when w2 = 0 the corresponding solution has S̃O(2)2 symmetry. The branch of mixed mode

solutions (where it exists) has Z̃1
3 symmetry.

Similarly in Fix(Z̃5) the travelling wave solution with w1 = 0 has S̃O(2)2 symmetry and when

w2 = 0 the corresponding solution has S̃O(2)3 symmetry. The quasiperiodic branch of mixed

mode solutions (where it exists) has Z̃5 symmetry.

It is possible for the quasiperiodic submaximal solutions to be stable within Fix(Σ) for Σ = Z̃1
3

or Z̃5. For example, suppose that the pure mode solutions bifurcate supercritically at the Hopf

bifurcation with O(3) symmetry. Then (α1)r < 0 and (α2)r < 0. Suppose further that (α2)r <

(α1)r. By letting w1 = Reiφ and w2 = Seiψ and separating the phase and amplitude equations

we find that the ‘mixed mode’ solution is given by

R2 =
λ((α2)r − βr)

β2
r − (α1)r(α2)r

S2 =
λ((α1)r − βr)

β2
r − (α1)r(α2)r

and exists when R2 > 0 and S2 > 0. This occurs if

1. (α1)r < βr and β2
r < (α1)r(α2)r or

2. βr < (α2)r and β2
r > (α1)r(α2)r.

The real parts of the eigenvalues of the mixed mode solutions are the roots of

ξ2 − 2R2
(

(α1)r ((α2)r − βr) + (α2)r ((α1)r − βr)
(α2)r − βr

)
ξ + 4R2S2

(
(α1)r(α2)r − β2

r

)
= 0.

Thus when

(α1)r < βr and β2
r < (α1)r(α2)r

the quasiperiodic mixed mode solution exists and is stable within Fix(Σ). A bifurcation dia-

gram varying the value of βr is given in Figure 5.14.

5.5.4 Conclusions

By studying the restriction of F3 given by (5.2.6) to four-dimensional invariant subspaces we

have been able to find periodic and quasiperiodic solutions to (5.1.1) with submaximal symme-

try. Although there are no such solutions in the four dimensional spaces Fix(Z̃4) and Fix(Z̃6),

we found that periodic and quasiperiodic solutions with the symmetries of each of the other

isotropy subgroups Σ ⊂ O(3)× S1 with four dimensional fixed-point subspaces can exist for

some values of the coefficients A, B, C and D in F3. Moreover, it is possible for these solutions

to be stable within Fix(Σ).
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Figure 5.14: Bifurcation diagram showing a situation where quasiperiodic submaximal solution

branches with symmetry Σ = Z̃1
3 or Z̃5 exist and one such branch is stable. The

pure mode solutions are periodic maximal solutions with C-axial symmetry. Here

H indicates a Hopf bifurcation. Stable solutions are denoted by solid lines and

unstable solutions by dashed lines. The stability is computed in the restricted space

Fix(Σ).
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CHAPTER 6

STATIONARY BIFURCATION WITH O(3)×Z2 SYMMETRY

6.1 Introduction

Some dynamical systems, including pattern forming systems such as Boussinesq Rayleigh–

Bénard convection, are invariant under a change in sign of the physical variable w. For example

the Swift–Hohenberg equation [78]

∂w
∂t

= µw− (1 +∇2)2w− w3 (6.1.1)

is invariant under the transformation w → −w. Hence if w is a solution then −w is also a

solution. Suppose we study the dynamics of such a system on a sphere. Then the geometry

forces the solutions to be invariant under the group O(3) and the w → −w symmetry forces

the solutions to be invariant under the group

Z2 = {1,−1}.

Hence the overall symmetry of the system is O(3)×Z2. Suppose that the trivial solution w = 0

undergoes a stationary bifurcation as the parameter µ is varied. After reducing equation (6.1.1)

to the centre manifold we have the following system of ODEs

dx
dt

= f (x, λ), (6.1.2)

where x ∈ V is the position in phase space and λ is a bifurcation parameter. The vector field, f ,

is equivariant with respect to some action of O(3)×Z2 on V where −1 ∈ Z2 acts on the vector

x by −1 · x = −x. Equivariance with respect to this symmetry implies that

f (−x, λ) = − f (x, λ)

i.e. the vector field f is odd in x so a Taylor expansion of this vector field will not contain any

terms of even order. Since f is odd,

f (0, λ) = − f (0, λ) ⇒ f (0, λ) = 0,
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and hence (6.1.2) has a trivial solution x = 0 for all values of λ. We assume that this solu-

tion undergoes a stationary bifurcation when λ = 0 where stationary solutions with certain

symmetries are created. The symmetries of the fixed-point solutions of equation (6.1.2) will

be isotropy subgroups of O(3) ×Z2 for some representation of the group. In the case of the

Swift–Hohenberg equation (6.1.1) the radius, R, of the sphere dictates the relevant representa-

tion of O(3)×Z2. For some values of R this representation will be an irreducible representation

of O(3) ×Z2 on V`, the space of spherical harmonics of degree `, for a particular value of `,

but for other values of R the solutions will have symmetries that are isotropy subgroups of

O(3)×Z2 for a reducible representation on V` ⊕ V`+1 for some value of `. That is, they result

from an interaction between the ` and ` + 1 modes. In Chapter 7 we will study some particular

solution patterns which can only result from mode interactions.

In this chapter we study the isotropy subgroups of O(3)×Z2 for several natural representa-

tions of the group O(3). In Section 6.2.1 we will consider the isotropy subgroups for the irre-

ducible representations on V`. These isotropy subgroups are related to the isotropy subgroups

of O(3)× S1 which we considered in Chapter 4. In Section 6.2.2 we will investigate the isotropy

subgroups for reducible representations on V` ⊕V`+1 where there is an interaction between the

` and `+ 1 modes. We refer to such a representation as the (`, `+ 1) mode interaction. Although

all isotropy subgroup of O(3) in the representations on V1 ⊕ V2 and V2 ⊕ V3 have previously

been computed (see [5, 22, 24]), there has been no study of the isotropy subgroups of O(3)×Z2

for mode interaction problems. In Section 6.2.2 we will consider the specific example of the (2,3)

mode interaction.

In Section 6.3 we discuss the relationship between O(3) and O(3)×Z2 equivariant vector fields

for irreducible representations of the groups. We also consider O(3)×Z2 equivariant vector

fields for reducible representations and compute explicitly to cubic order the Taylor expansion

of a general O(3)×Z2 equivariant vector field for the representations on V2 ⊕V3 and V3 ⊕V4.

These vector fields will be used in Chapter 7 for the investigation of spiral patterns on spheres.

Finally in Section 6.4 we show how to compute the values of the coefficients in the equivariant

vector fields for the specific example of the Swift–Hohenberg equation (6.1.1).

6.2 Isotropy subgroups of O(3)×Z2

In this section we first discuss how to compute the isotropy subgroups of O(3) × Z2 in the

irreducible representations of O(3) on V`, the space of spherical harmonics of degree `. We

then consider the subgroups which can be isotropy subgroups in reducible representations on

V` ⊕V`+1, the space of spherical harmonics of degrees ` and ` + 1.

Recall that all solutions of (6.1.2) have as their group of symmetries an isotropy subgroup

of O(3) × Z2 for a given representation. The equivariant branching lemma, Theorem 2.4.6,

guarantees the existence of solutions with the symmetries of the axial isotropy subgroups of

O(3) × Z2 at the stationary bifurcation of the trivial solution x = 0. It may be possible for

(6.1.2) to have solutions with the symmetries of other isotropy subgroups depending on values
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of the coefficients in the Taylor expansion of f .

For any representation of O(3)×Z2, the isotropy subgroups are twisted subgroups Hθ where

H is a subgroup of O(3) and θ : H → Z2 is a group homomorphism. These twisted subgroups

are a subset of the twisted subgroups of O(3) × S1 containing only the subgroups, Hθ with

twist types Z2 or 1. These twisted subgroups are uniquely determined by pairs of subgroups

(H, K) where H is a subgroup of O(3) and K is a normal subgroup of H such that H/K ∼= Z2

or 1. Since there are no automorphisms of H/K in either case, the group homomorphism

θ : H → H/K is always given by

θ(h) =

{
1 if h ∈ K

−1 if h ∈ H − K.
(6.2.1)

A complete list of the twisted subgroups of O(3) ×Z2 contains the pairs (H, H) for all sub-

groups H ⊂ O(3) and all pairs (H, K) where |H : K| = 2 (by Lemma 4.2.2, K is then normal in

H). All such pairs can be found in Table 6.7.

For different representations of the group O(3), different twisted subgroups will be isotropy

subgroups of O(3) ×Z2. To determine which twisted subgroups are isotropy subgroups for

a particular representation on the space V (where V = V` or V` ⊕ V`+1 for any value of `) we

use the massive chain criterion (Theorem 3.4.1). This says that the twisted subgroup Hθ ⊂
O(3) ×Z2 is an isotropy subgroup in the representation on V if and only if for each strictly

larger and adjacent group ∆ (so that Hθ ⊂ ∆ ⊂ · · · ⊂ O(3)×Z2)

dim Fix(∆)− r(∆) < dim Fix(Hθ)− r(Hθ)

where

r(Hθ) = min{dim V − 1, q(Hθ)} and q(Hθ) = dim NO(3)×Z2
(Hθ)− dim Hθ .

Remark 6.2.1. Although the statement of Theorem 3.4.1 relates to subgroups Σ ⊂ O(3) in

irreducible representations, the theorem remains valid for twisted subgroups Hθ ⊂ O(3)×Z2

and reducible representations.

To use Theorem 3.4.1 we must compute the values of dim Fix(Hθ) and r(Hθ) for each twisted

subgroup Hθ . For pairs (H, H) the twisted subgroup is not really twisted at all and

dim Fix(H, H) = dim Fix(H).

For the pairs twisted subgroups given by pairs (H, K) where |H : K| = 2 we use the trace for-

mula (Theorem 2.4.4) to compute dim Fix(Hθ). Let
∫

dµH denote the normalised Haar integral

on H. Then since the index |H : K| = 2 we have that
∫

dµH = 1
2

∫
dµK. This means that

dim Fix(K) =
∫

K
χ(h)dµK = 2

∫

K
χ(h)dµH

We also have that

dim Fix(H, K) =
∫

K
χ(h)dµH −

∫

H−K
χ(h)dµH ,
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since χ((σ,−1)) = −χ(σ), and

dim Fix(H) =
∫

K
χ(h)dµH +

∫

H−K
χ(h)dµH .

Hence we have

dim Fix(H, K) = dim Fix(K)− dim Fix(H).

We can use this to compute the twisted subgroups which can be isotropy subgroups in irre-

ducible and reducible representations of O(3)×Z2.

Remarks on notation

From now on in this thesis if the subgroup Hθ = (H, H) is an isotropy subgroup in a particular

representation of O(3)×Z2 then we will denote Hθ simply by H.

If the twisted subgroup Hθ = (H, K) is an isotropy subgroup then usually we will denote Hθ

by (̃H)K where the tilde over the symbol denotes that the isotropy subgroup has twist type

Z2. We use this notation because in some representations there may be two or more isotropy

subgroups with the same subgroup H but different subgroups K.

Notice that a pair (H, K) will only be given a label (̃H)K if it is an isotropy subgroup in the

representation being discussed.

For example, if in a particular representation the twisted subgroups given by pairs (D4 ×
Zc

2, D4 ×Zc
2), (D4 ×Zc

2, D2 ×Zc
2) and (D4 ×Zc

2, Dd
4) are isotropy subgroups then we de-

note

(D4 ×Zc
2, D4 ×Zc

2) by D4 ×Zc
2,

(D4 ×Zc
2, D2 ×Zc

2) by ˜(D4 ×Zc
2)D2×Zc

2

and (D4 ×Zc
2, Dd

4) by ˜(D4 ×Zc
2)Dd

4
.

When there is only one isotropy subgroup with twist type Z2 for the subgroup H then we

will drop the subscript K since there will be no confusion as to which isotropy subgroup we

mean. For example, if in another representation only the twisted subgroups given by pairs

(D4 ×Zc
2, D4 ×Zc

2) and (D4 ×Zc
2, D2 ×Zc

2) are isotropy subgroups then we denote

(D4 ×Zc
2, D4 ×Zc

2) by D4 ×Zc
2

and (D4 ×Zc
2, D2 ×Zc

2) by D̃4 ×Zc
2.

6.2.1 Isotropy subgroups in irreducible representations

In this section we compute the twisted subgroups of O(3) ×Z2 which can be isotropy sub-

groups in an irreducible representation on V`. For any value of `, in the plus representation of

O(3) the element−I ∈ O(3) acts as the identity and therefore the element (−I, 1) ∈ O(3)×Z2

must lie in every isotropy subgroup. This means that H and K must both be class II subgroups

of O(3) since −I ∈ H and −I ∈ ker θ = K.

127



6.2. ISOTROPY SUBGROUPS OF O(3)×Z2

In the minus representation, −I acts as minus the identity and hence (−I,−1) ∈ O(3) ×Z2

acts as the identity and must therefore be contained in every isotropy subgroup. This means

that H must be a class II subgroup and K must be either a class I or class III subgroup of O(3)

since −I ∈ H and −I /∈ ker θ = K.

Thus the twisted subgroups of O(3)×Z2 which can be isotropy subgroups in an irreducible

representation on V` are those listed in Table 6.1. Also given is the formula in terms of ` for the

dimension of their fixed-point subspaces for the representation on V` and the value of q(Hθ)

(which is required in order to use the massive chain criterion, Theorem 3.4.1).

Remark 6.2.2. Notice that Table 6.1 is a restriction of the list of twisted subgroups of O(3)× S1

given in Table 4.2 to those with twist types Z2 or 1. Notice also that in Table 4.2 the formu-

lae for dim Fix(Hθ) are twice those in Table 6.1. This is due to the fact that in Table 4.2 the

representation of O(3) is the O(3)-simple representation on the direct sum of two copies of V`.

The axial isotropy subgroups of O(3)×Z2 which fix a one-dimensional subspace in the rep-

resentation on V` are then as in Table 6.2. This is a restriction of Table 4.4 to those entries with

twist types Z2 or 1.

Similarly the isotropy subgroups of O(3)×Z2 which fix a two-dimensional subspace in the rep-

resentation on V` are as in Table 6.3 which is almost a restriction of Table 4.6 to those entries with

twist types Z2 or 1. In addition to making this restriction we must also remove the twisted sub-

groups Hθ given by the pairs (Z2m×Zc
2, Zm×Zc

2) and (Z2m×Zc
2, Z−

2m). These pairs both give

twisted subgroups with q(Hθ) = 1. For every value of ` where they have a two-dimensional

fixed-point subspace, the twisted subgroups given by the pairs (D2m × Zc
2, Dm × Zc

2) and

(D2m ×Zc
2, Dd

2m) have one-dimensional fixed-point subspaces. Hence (Z2m ×Zc
2, Zm ×Zc

2)

and (Z2m ×Zc
2, Z−

2m) do not satisfy the massive chain criterion when compared with (D2m ×
Zc

2, Dm ×Zc
2) and (D2m ×Zc

2, Dd
2m) respectively.

Remark 6.2.3. In the natural representation when ` is odd all isotropy subgroups have twist

type Z2. Also, since H is a class II subgroup of O(3), −I ∈ H. This means that all isotropy

subgroups in these representations have dim Fix(Hθ) = dim Fix(K). Hence, if K is an isotropy

subgroup of O(3) for some odd value of ` then the twisted subgroup, Hθ , given by (H, K) where

H = K∪ (−I,−1)K is an isotropy subgroup of O(3)×Z2 for the same value of `. Consequently

the work of [23, 53, 63] in finding the isotropy subgroups of O(3) has already determined the

isotropy subgroups of O(3)×Z2 for natural representations on V` where ` is odd.

Remark 6.2.4. In the natural representation on V` for even values of ` the isotropy subgroups

of O(3)×Z2 with twist type 1 are precisely the isotropy subgroups of O(3) for the same value

of ` and as such have already been determined in [23, 53, 63]. However, in addition, O(3)×Z2

has isotropy subgroups with twist type Z2.

Using the massive chain criterion, Theorem 3.4.1, it is possible to determine all isotropy sub-

groups of O(3)×Z2 in the representation on V` for a given value of `. We will consider here

the examples of the natural representations on V` for ` = 2, 3 and 4.
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J K dim Fix(Hθ) dim Fix(Hθ) q(Hθ)

plus representation minus representation

SO(3) O(3) 0 – 0

SO(3) SO(3) – 0 0

O(2) O(2)×Zc
2

{
1, ` even

0, ` odd
– 0

O(2) O(2) –

{
1, ` even

0, ` odd
0

O(2) SO(2)×Zc
2

{
0, ` even

1, ` odd
– 0

O(2) O(2)− –

{
0, ` even

1, ` odd
0

SO(2) SO(2)×Zc
2 1 – 1

SO(2) SO(2) – 1 1

Dn Dn ×Zc
2

{
[`/n] + 1, ` even

[`/n] , ` odd
– 0

Dn Dn –

{
[`/n] + 1, ` even

[`/n] , ` odd
0

Dn Zn ×Zc
2

{
[`/n] , ` even

[`/n] + 1, ` odd
– 0

Dn Dz
n –

{
[`/n] , ` even

[`/n] + 1, ` odd
0

D2m Dm ×Zc
2 [(` + m)/2m] – 0

D2m Dd
2m – [(` + m)/2m] 0

Zm Zm ×Zc
2 2 [`/m] + 1 –

{
3, m = 1

1, m ≥ 2

Z2m Zm ×Zc
2 2 [(` + m)/2m] – 1

Zm Zm – 2 [`/m] + 1

{
3, m = 1

1, m ≥ 2

Z2m Z−
2m – 2 [(` + m)/2m] 1

T T×Zc
2 2 [`/3] + [`/2]− ` + 1 – 0

T T – 2 [`/3] + [`/2]− ` + 1 0

O O×Zc
2 [`/4] + [`/3] + [`/2]− ` + 1 – 0

O O – [`/4] + [`/3] + [`/2]− ` + 1 0

O T×Zc
2 [`/3]− [`/4] – 0

O O− – [`/3]− [`/4] 0

I I×Zc
2 [`/5] + [`/3] + [`/2]− ` + 1 – 0

I I – [`/5] + [`/3] + [`/2]− ` + 1 0

Table 6.1: The twisted subgroups Hθ of O(3)×Z2 and the dimensions of their fixed-point sub-

spaces in the representations on V` where Hθ can be an isotropy subgroup. Here

H = J ×Zc
2
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J K θ(H) Plus representation Minus representation

O(2) O(2)×Zc
2 1 Even `

O(2) O(2) Z2 Even `

O(2) SO(2)×Zc
2 Z2 Odd `

O(2) O(2)− Z2 Odd `

I I×Zc
2 1 6, 10, 12, 15, 16, 18, 20, 21, 22, 24,

25, 26, 27, 28, 31, 32, 33, 34, 35, 37,

38, 39, 41, 43, 44, 47, 49, 53, 59

I I Z2 6, 10, 12, 15, 16, 18, 20, 21, 22, 24,

25, 26, 27, 28, 31, 32, 33, 34, 35, 37,

38, 39, 41, 43, 44, 47, 49, 53, 59

O O×Zc
2 1 4, 6, 8, 9, 10, 13, 14, 15, 17, 19, 23

O O Z2 4, 6, 8, 9, 10, 13, 14, 15, 17, 19, 23

O T×Zc
2 Z2 3, 6, 7, 9, 10, 11, 12, 13, 14, 16, 17, 20

O O− Z2 3, 6, 7, 9, 10,11, 12, 13, 14, 16, 17, 20

D2m Dm ×Zc
2 Z2 m ≤ ` < 3m, (m ≥ 3)

D2m Dd
2m Z2 m ≤ ` < 3m, (m ≥ 3)

D4 D2 ×Zc
2 Z2 2, 4, 5

D4 Dd
4 Z2 2, 4, 5

Table 6.2: The axial isotropy subgroups of O(3)×Z2 for the representations V`. The last two

columns give the values of ` for which the subgroups are isotropy subgroups. Here

H = J ×Zc
2.

J K θ(H) plus representation minus representation

Dn Dn ×Zc
2 1

{
n ≤ ` < 2n, ` even

2n ≤ ` < 3n, ` odd
–

Dn Dn Z2 –

{
n ≤ ` < 2n, ` even

2n ≤ ` < 3n, ` odd

Dn Zn ×Zc
2 Z2

{
2n ≤ ` < 3n, ` even

n ≤ ` < 2n, ` odd
–

Dn Dz
n Z2 –

{
2n ≤ ` < 3n, ` even

n ≤ ` < 2n, ` odd

D2m Dm ×Zc
2 Z2 3m ≤ ` < 5m –

D2m Dd
2m Z2 – 3m ≤ ` < 5m

T T×Zc
2 1 6, 9, 10, 13, 14, 17 –

T T Z2 – 6, 9, 10, 13, 14, 17

O O×Zc
2 1 12, 16, 18, 20–22, 25–27, 29, 31, 35 –

O O Z2 – 12, 16, 18, 20–22, 25–27, 29, 31, 35

O T×Zc
2 Z2 15, 18, 19, 21–26, 28, 29, 32 –

O O− Z2 – 15, 18, 19, 21–26, 28, 29, 32

I I×Zc
2 1 30, 36, 40, 42, 45, 46, 48, 50, 51, 52, 54–58 –

61–65, 67–69, 71, 73, 74, 77, 79, 83, 89

I I Z2 – 30, 36, 40, 42, 45, 46, 48, 50, 51, 52, 54–58

61–65, 67–69, 71, 73, 74, 77, 79, 83, 89

Table 6.3: The isotropy subgroups of O(3) ×Z2 with two-dimensional fixed-point subspaces

for the representations V`. The last two columns give the values of ` for which the

subgroups are isotropy subgroups. Here H = J ×Zc
2.
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Example 6.2.5 ( The natural representation on V2). Using Table 6.2 we can see that in the

natural representation on V2 the axial isotropy subgroups are

O(2)×Zc
2 = (O(2)×Zc

2, O(2)×Zc
2) and D̃4 ×Zc

2 = (D4 ×Zc
2, D2 ×Zc

2).

Similarly, using Table 6.3 the only isotropy subgroup with two-dimensional fixed-point sub-

space is

D2 ×Zc
2 = (D2 ×Zc

2, D2 ×Zc
2)

and this subgroup has r(D2 ×Zc
2) = 0. Using Table 6.1 we find that the twisted subgroups of

O(3)×Z2 which fix a subspace of dimension greater than two in the natural representation on

V2 are the two given in Table 6.4. Neither of these twisted subgroups are isotropy subgroups by

the massive chain criterion. This means that any combination of spherical harmonics of degree

` = 2 has D2 ×Zc
2 symmetry about some axes.

H K H/K dim Fix(Hθ) r(Hθ)

Z2 ×Zc
2 Z2 ×Zc

2 1 3 1

Zc
2 Zc

2 1 5 3

Table 6.4: The twisted subgroups of O(3)×Z2 which have a fixed-point subspace of dimension

greater than 2 when ` = 2.

The lattice of isotropy subgroups is as in Figure 6.1.

Figure 6.1: Lattice of isotropy subgroups of O(3)×Z2 for the natural representation on V2.

Example 6.2.6 ( The natural representation on V3). Using Table 6.2 we can see that when ` = 3

there are three axial isotropy subgroups

˜O(2)×Zc
2 = (O(2)×Zc

2, O(2)−)

Õ×Zc
2 = (O×Zc

2, O−)

D̃6 ×Zc
2 = (D6 ×Zc

2, Dd
6)

and using Table 6.3 there are two isotropy subgroups with two-dimensional fixed-point sub-

spaces:

D̃3 ×Zc
2 = (D3 ×Zc

2, Dz
3) and D̃2 ×Zc

2 = (D2 ×Zc
2, Dz

2).

Using Table 6.1 we find that the twisted subgroups of O(3) ×Z2 which fix a subspace of di-

mension greater than two in the natural representation on V3 are the four given in Table 6.5. We

use the massive chain criterion (Theorem 3.4.1) to determine which of these twisted subgroups

are isotropy subgroups.

The lattice of isotropy subgroups when ` = 3 is then as in Figure 6.2.
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H K H/K dim Fix(Hθ) r(Hθ) Isotropy subgroup?

Z3 ×Zc
2 Z3 Z2 3 1 No

Z2 ×Zc
2 Z2 Z2 3 1 No

Z2 ×Zc
2 Z−

2 Z2 4 1 Yes, Z̃2 ×Zc
2

Zc
2 1 Z2 7 3 Yes, Z̃c

2

Table 6.5: The twisted subgroups of O(3)×Z2 which have a fixed-point subspace of dimension

greater than 2 when ` = 3. The dimension of the fixed-point subspace is shown. The

right-hand column indicates whether or not each twisted subgroup is an isotropy

subgroup. If it is an isotropy subgroup then its label is given.

Figure 6.2: Lattice of isotropy subgroups of O(3)×Z2 for the natural representation on V3.

Example 6.2.7 ( The natural representation on V4). Using Table 6.2 we can see that when ` = 4

there are five axial isotropy subgroups

O(2)×Zc
2 = (O(2)×Zc

2, O(2)×Zc
2)

O×Zc
2 = (O×Zc

2, O×Zc
2)

D̃8 ×Zc
2 = (D8 ×Zc

2, D4 ×Zc
2)

D̃6 ×Zc
2 = (D6 ×Zc

2, D3 ×Zc
2)

D̃4 ×Zc
2 = (D4 ×Zc

2, D2 ×Zc
2)

and using Table 6.3 there are three isotropy subgroups with two-dimensional fixed-point sub-

spaces:

D4 ×Zc
2 = (D4 ×Zc

2, D4 ×Zc
2)

D3 ×Zc
2 = (D3 ×Zc

2, D3 ×Zc
2)

D̃2 ×Zc
2 = (D2 ×Zc

2, Z2 ×Zc
2).

Using Table 6.1 we find that the twisted subgroups of O(3) ×Z2 which fix a subspace of di-

mension greater than two in the natural representation on V4 are the six given in Table 6.6. We

use the massive chain criterion (Theorem 3.4.1) to determine which of these twisted subgroups

are isotropy subgroups.

The lattice of isotropy subgroups is as in Figure 6.3.
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H K H/K dim Fix(Hθ) r(Hθ) Isotropy subgroup?

D2 ×Zc
2 D2 ×Zc

2 1 3 0 Yes, D2 ×Zc
2

Z4 ×Zc
2 Z4 ×Zc

2 1 3 1 No

Z3 ×Zc
2 Z3 ×Zc

2 1 3 1 No

Z2 ×Zc
2 Zc

2 Z2 4 1 Yes, Z̃2 ×Zc
2

Z2 ×Zc
2 Z2 ×Zc

2 1 5 1 Yes, Z2 ×Zc
2

Zc
2 Zc

2 1 9 3 Yes, Zc
2

Table 6.6: The twisted subgroups of O(3)×Z2 which have a fixed-point subspace of dimension

greater than 2 when ` = 4. The dimension of the fixed-point subspace is shown. The

right-hand column indicates whether or not each twisted subgroup is an isotropy

subgroup. If it is an isotropy subgroup then its label is given.

Figure 6.3: Lattice of isotropy subgroups of O(3)×Z2 for the natural representation on V4.
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6.2.2 Isotropy subgroups in reducible representations

We now compute the twisted subgroups of O(3)×Z2 which can be isotropy subgroups in the

reducible representations on V` ⊕ V`+1. This will be useful in Chapter 7 where we will study

specific patterns on spheres which can only occur in mode interactions.

Here we assume that O(3) acts on the V` and V`+1 components via the natural actions on these

spaces. Let

z = (x; y) =
(

x−`, x−(`−1), . . . , x` ; y−(`+1), y−`, . . . , y`+1

)

be the vector of amplitudes of the spherical harmonics of degrees ` and ` + 1 where

x−m = (−1)mxm and y−m = (−1)mym.

The isotropy subgroups of O(3)×Z2 for the natural reducible representation on V` ⊕V`+1 fall

into three categories

1. Isotropy subgroups which contain the element (−I, (−1)`) ∈ O(3) ×Z2. This element

acts as the identity on V` but fixes only the origin in V`+1. These isotropy subgroups are

the isotropy subgroups of O(3)×Z2 in the irreducible representation on V` and have a

fixed-point subspace containing only amplitudes xm.

2. Isotropy subgroups which contain the element (−I, (−1)`+1) ∈ O(3)×Z2. This element

acts as the identity on V`+1 but fixes only the origin in V`. These isotropy subgroups are

the isotropy subgroups of O(3)×Z2 in the irreducible representation on V`+1 and have

a fixed-point subspace containing only amplitudes ym.

3. Isotropy subgroups containing neither (−I, 1) nor (−I,−1). These isotropy subgroups

are twisted subgroups Hθ where H is a class I or III subgroup of O(3). Subgroups of this

type are never isotropy subgroups in irreducible representations. They have fixed-point

subspaces containing amplitudes xm and ym. Since the action of O(3)×Z2 is irreducible

on V` and V`+1, every symmetry maps V` → V` and V`+1 → V`+1. This means that

there cannot be a one-dimensional fixed-point subspace containing elements in V` and

V`+1. Hence, although these subgroups can be isotropy subgroups, they cannot be axial

isotropy subgroups because they always fix a subspace of dimension two or larger.

This means that it is possible for twisted subgroups Hθ with H any class of subgroup of O(3) to

be isotropy subgroups of O(3)×Z2 in reducible representations. There are many more isotropy

subgroups in reducible representations on V` ⊕ V`+1 than in irreducible representations since

all of the isotropy subgroups in the representations on V` and V`+1 are isotropy subgroups in

the representation on V` ⊕V`+1 and there are additional isotropy subgroups Hθ with H a class

I or III subgroup of O(3).

All twisted subgroups of O(3) × Z2 are listed in Table 6.7 along with formulae for the di-

mension of their fixed-point subspaces in the representation on V` ⊕ V`+1 and the value of

q(Hθ) = dim NO(3)(Hθ) − dim(Hθ). We wish to determine which of these subgroups are

isotropy subgroups in a given reducible representation.
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Remark 6.2.8. The formulae for the dimensions of the fixed-point subspaces in Table 6.7 are

computed as follows. The dimension of the fixed-point subspace of a twisted subgroup Hθ in

the representation on V` ⊕V`+1 is just the sum of the dimensions of its fixed-point subspaces in

the representations on V` and V`+1. In other words

dim FixV`⊕V`+1(Hθ) = dim FixV`
(Hθ) + dim FixV`+1(Hθ). (6.2.2)

However, the values of dim FixV`
(Hθ) depend on the classes of the subgroups H and K which

define the twisted subgroup Hθ and whether ` is even or odd. Recall that

dim FixV`
(Hθ) =

{
dim FixV`

(H) when H/K = 1
dim FixV`

(K)− dim FixV`
(H) when H/K = Z2.

(6.2.3)

1. When H is a class I subgroup of O(3) then K must also be a class I subgroup. Since H and

K are both subgroups of SO(3), formulae for dim FixV`
(H) and dim FixV`

(K) are given by

Theorem 3.3.4.

2. If H and K are both class II subgroups of O(3) then Hθ contains the element (−I, 1) and

hence dim FixV`
(Hθ) = 0 when ` is odd. Therefore

dim FixV`⊕V`+1(Hθ) =

{
dim FixV`

(Hθ) when ` even

dim FixV`+1(Hθ) when ` odd.

The formulae for dim FixV`
(Hθ) can then be computed using (6.2.3) and Theorem 3.3.4.

3. If H is a class II subgroup and K is a class I or III subgroup of O(3) then Hθ contains the

element (−I,−1) and hence dim FixV`
(Hθ) = 0 when ` is even. Therefore

dim FixV`⊕V`+1(Hθ) =

{
dim FixV`+1(Hθ) when ` even

dim FixV`
(Hθ) when ` odd.

The formulae for dim FixV`
(Hθ) can then be computed using (6.2.3) and Theorems 3.3.4

and 3.3.5.

4. If H is a class III subgroup of O(3) then for odd values of ` where −I acts as the identity,

dim FixV`
(H) is as given by Theorem 3.3.5. However, for even values of ` where −I

acts as the identity the group H acts on V` in exactly the same way as the group π(H)

which is the subgroup of SO(3) which is isomorphic to H. Thus for even values of `,

dim FixV`
(H) = dim FixV`

(π(H)). Using (6.2.2) and (6.2.3) we then find that when K = H

dim FixV`⊕V`+1(Hθ) =

{
dim FixV`

(H) + dim FixV`+1(π(H)) when ` odd

dim FixV`
(π(H)) + dim FixV`+1(H) when ` even.

When H/K = Z2,

dim FixV`⊕V`+1(Hθ) = dim FixV`⊕V`+1(K)− dim FixV`⊕V`+1(H)

where dim FixV`⊕V`+1(H) is as above and dim FixV`⊕V`+1(K) depends on the class of K.
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The axial isotropy subgroups for the representation of O(3) ×Z2 on V` ⊕ V`+1 are the axial

isotropy subgroups of O(3)×Z2 for the representations on V` and V`+1 which can be found

from Table 6.2.

There are two ways to determine all of the isotropy subgroups for a given reducible repre-

sentation of a group Γ. One way is to use the massive chain criterion just as we have for the

irreducible representations of O(3)×Z2 in examples 6.2.5–6.2.7 above for the representations

on V2, V3 and V4. The second way is to use the following proposition of Chossat and Guyard

[22].

Proposition 6.2.9. Let ρ1 and ρ2 be two irreducible representation of Γ acting respectively on the vector

spaces W1 and W2 and let W = W1 ⊕W2. Then Σ is an isotropy subgroup for the action ρ = ρ1 + ρ2

of Γ on W, if and only if there exist isotropy subgroups Σ1 and Σ2 for the representations ρ1 and ρ2

respectively such that

Σ = Σ1 ∩ Σ2.

Proof. Let (w1, w2) be any element of W1 ⊕W2 and let Σ be its isotropy subgroup. Clearly Σ

must fix both elements w1 and w2 so Σ ⊂ Σw1 ∩ Σw2 with Σw1 and Σw2 the isotropy subgroups

of w1 and w2 respectively. Conversely, any element in Σw1 ∩ Σw2 fixes w1 as well as w2 and

hence is in Σ.

To use Proposition 6.2.9 we must consider all isotropy subgroups of Γ not just the conjugacy

classes. All possible orientations of the isotropy subgroups of O(3)×Z2 on V` and V`+1 must

be considered. Since this complicates this method of computation we will use the massive chain

criterion method to determine the isotropy subgroups of O(3)×Z2 for representations on V`⊕
V`+1 for the examples in this thesis. We now consider the example where the representation is

on V2 ⊕V3.

Example 6.2.10 (The natural representation on V2 ⊕ V3). For the reducible representation of

O(3) × Z2 on V2 ⊕ V3 the axial isotropy subgroups are the axial isotropy subgroups for the

irreducible representations of O(3)×Z2 on V2 and V3. These isotropy subgroups were found

in Examples 6.2.5 and 6.2.6 and are given in Table 6.8 along with one possible form of the fixed-

point subspace of each group. These fixed-point subspaces are given in the form

{(x−2, x−1, x0, x1, x2 ; y−3, y−2, y−1, y0, y1, y2, y3)}

where xj is the amplitude of Y j
2(θ, φ) and yj is the amplitude of Y j

3(θ, φ). Recall that these

amplitudes satisfy x−j = (−1)jxj and y−j = (−1)jyj.

Using Table 6.7 we find that the twisted subgroups of O(3)×Z2 with a fixed-point subspace

of dimension greater than 1 when ` = 2 are as listed in Table 6.9. Using the massive chain

criterion we can determine which of these twisted subgroups are isotropy subgroups. The

penultimate column in Table 6.9 shows whether or not each twisted subgroup is an isotropy

subgroup. If it is an isotropy subgroup, a label for the subgroup is also given in this column.

The final column gives one possible form of the fixed-point subspace if the twisted subgroup is

an isotropy subgroup. If the twisted subgroup Hθ is not an isotropy subgroup then this column
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6.2. ISOTROPY SUBGROUPS OF O(3)×Z2

Isotropy subgroup H K H/K Fixed-point subspace

O(2)×Zc
2 O(2)×Zc

2 O(2)×Zc
2 1 {(0, 0, a, 0, 0; 0, 0, 0, 0, 0, 0, 0)}

D̃4 ×Zc
2 D4 ×Zc

2 D2 ×Zc
2 Z2 {(a, 0, 0, 0, a; 0, 0, 0, 0, 0, 0, 0)}

˜O(2)×Zc
2 O(2)×Zc

2 O(2)− Z2 {(0, 0, 0, 0, 0; 0, 0, 0, a, 0, 0, 0)}
D̃6 ×Zc

2 D6 ×Zc
2 Dd

6 Z2 {(0, 0, 0, 0, 0; ia, 0, 0, 0, 0, 0, ia)}
Õ×Zc

2 O×Zc
2 O− Z2 {(0, 0, 0, 0, 0; 0, a, 0, 0, 0, a, 0)}

Table 6.8: Axial isotropy subgroups of O(3)×Z2 for the (2, 3) mode interaction and one possi-

ble form of their fixed-point subspaces. In all fixed-point subspaces, a ∈ R.

gives an example of a twisted subgroup Gθ for which the massive chain criterion (Theorem

3.4.1) fails.

Figure 6.4 shows images of patterns with the symmetries of some of the isotropy subgroups.

Patterns with symmetry groups containing the isotropy subgroup D̃2 can be seen in Figure 7.4.

We can construct the lattice of isotropy subgroups for the (2, 3) mode interaction as in Figure

6.5 by using the dimensions of the fixed-point subspaces of the isotropy subgroups given in

Table 6.9. We also must consider the containment relations between the twisted subgroups. In

some cases it may be clear from the form of the fixed-point subspace given in Table 6.9 that one

twisted subgroup lies inside another, however in other cases the fixed-point subspaces may

need to be rotated in order to see the containment.

Figure 6.4: Images of patterns with symmetries of some isotropy subgroups of O(3) ×Z2 in

the representation on V2 ⊕ V3 as given in Table 6.9. Images (a) and (b) have D̃z
4

symmetry, (c) and (d) have D̃d
4 symmetry and (e) and (f) have Dd

4 symmetry all

viewed from the top and side respectively. See Table 6.9 for definitions of these

symmetry groups.
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H K dim Fix(Hθ) r(Hθ) Isotropy Fixed-point subspace/

subgroup? Example of larger group Gθ

SO(2) SO(2) 2 0 No (O(2)− , O(2)−)

D3 D3 2 0 No (Dd
6 , Dd

6)

D4 D2 2 0 Yes, D̃4 {(a, 0, 0, 0, a; 0, ib, 0, 0, 0,−ib, 0)}
D3 Z3 2 0 No (D3 ×Zc

2, Dz
3)

Zn Zn 2 when n ≥ 4 1 No (O(2)− , O(2)−)

Z6 Z3 2 1 No (D6 ×Zc
2, Dd

6)

D2 D2 3 0 Yes, D2 {(a, 0, b, 0, a; 0, ic, 0, 0, 0,−ic, 0)}
D2 Z2 3 0 Yes, D̃2 {(ia, 0, 0, 0,−ia; 0, b, 0, c, 0, b, 0)}
Z3 Z3 4 1 No (Dz

3, Dz
3)

Z4 Z2 4 1 Yes, Z̃4 {(A, 0, 0, 0, A; 0, B, 0, 0, 0, B, 0)}
Z2 Z2 6 1 Yes, Z2 {(A, 0, c, 0, A; 0, B, 0, d, 0, B, 0)}
Z2 1 6 1 Yes, Z̃2 {(0, A, 0,−A, 0; B, 0, C, 0,−C, 0,−B)}
1 1 12 3 Yes, 1 V2 ⊕V3

D2 ×Zc
2 D2 ×Zc

2 2 0 Yes, D2 ×Zc
2 {(a, 0, b, 0, a; 0, 0, 0, 0, 0, 0, 0)}

Z4 ×Zc
2 Z2 ×Zc

2 2 1 No (D4 ×Zc
2, D2 ×Zc

2)

Z2 ×Zc
2 Zc

2 2 1 No (D4 ×Zc
2, D2 ×Zc

2)

Z2 ×Zc
2 Z2 ×Zc

2 3 1 No (D2 ×Zc
2, D2 ×Zc

2)

Zc
2 Zc

2 5 3 No (D2 ×Zc
2, D2 ×Zc

2)

D3 ×Zc
2 Dz

3 2 0 Yes, D̃3 ×Zc
2 {(0, 0, 0, 0, 0; a, 0, 0, b, 0, 0,−a)}

D2 ×Zc
2 Dz

2 2 0 Yes, D̃2 ×Zc
2 {(0, 0, 0, 0, 0; 0, a, 0, b, 0, a, 0)}

Z6 ×Zc
2 Z−

6 2 1 No (D6 ×Zc
2, Dd

6)

Z4 ×Zc
2 Z−

4 2 1 No (O×Zc
2, O−)

Z3 ×Zc
2 Z3 3 1 No (D3 ×Zc

2, Dz
3)

Z2 ×Zc
2 Z2 3 1 No (D2 ×Zc

2, Dz
2)

Z2 ×Zc
2 Z−

2 4 1 Yes, Z̃2 ×Zc
2 {(0, 0, 0, 0, 0; a, b, c, d,−c, b,−a)}

Zc
2 1 7 3 Yes, Z̃c

2 V3

O(2)− O(2)− 2 0 Yes, O(2)− {(0, 0, a, 0, 0; 0, 0, 0, b, 0, 0, 0)}
Dd

6 Dd
6 2 0 Yes, Dd

6 {(0, 0, a, 0, 0; ib, 0, 0, 0, 0, 0, ib)}
Dd

4 Dd
4 2 0 Yes, Dd

4 {(0, 0, a, 0, 0; 0, ib, 0, 0, 0,−ib, 0)}
Dd

4 Dz
2 2 0 Yes, D̃d

4 {(a, 0, 0, 0, a; 0, 0, 0, b, 0, 0, 0)}
Dz

4 Dz
4 2 0 No (O(2)− , O(2)−)

Dz
2 Z2 2 0 No (Dz

4, Dz
2)

Dz
4 Dz

2 2 0 Yes, D̃z
4 {(a, 0, 0, 0, a; 0, b, 0, 0, 0, b, 0)}

Z−
6 Z−

6 3 1 No (Dd
6 , Dd

6)

Z−
4 Z−

4 3 1 No (Dd
4 , Dd

4)

Z−
4 Z2 3 1 No (Dd

4 , Dz
2)

Dz
3 Dz

3 3 0 Yes, Dz
3 {(0, 0, a, 0, 0; b, 0, 0, c, 0, 0,−b)}

Dz
2 Z−

2 3 0 Yes, D̃z
2 {(ia, 0, 0, 0,−ia; b, 0, c, 0,−c, 0,−b)}

Dz
2 Dz

2 4 0 Yes, Dz
2 {(a, 0, b, 0, a; 0, c, 0, d, 0, c, 0)}

Z−
2 1 5 1 Yes, Z̃−

2 {(0, A, 0,−A, 0; 0, B, 0, c, 0, B, 0)}
Z−

2 Z−
2 7 1 Yes, Z−

2 {(a, b, c,−b, a; d, e, f , g,− f , e,−d)}

Table 6.9: The twisted subgroups of O(3) × Z2 with a fixed-point subspace of dimension

greater than 1 in the representation on V2 ⊕ V3. In the fixed-point subspaces, lower-

case letters represent real values and upper-case, complex values.
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6.3. O(3)×Z2 EQUIVARIANT VECTOR FIELDS

6.3 O(3)×Z2 equivariant vector fields

In this section we first consider the relationship between O(3)×Z2 and O(3) equivariant vec-

tor fields for natural irreducible representations on V`. Differences between these vector fields

(and hence different dynamics) occur for even values of `. We consider the example where

` = 2 in some detail. We then move on to discuss the mappings which are equivariant with

respect to reducible actions of O(3)×Z2 on V` ⊕V`+1. For general ` we compute the number

of cubic O(3)×Z2 equivariant mappings using character methods. Finally we will compute to

cubic order the Taylor expansion of the general O(3)×Z2 equivariant vector field for the nat-

ural representations on V2 ⊕V3 and V3 ⊕V4. Throughout this section we will consider only the

natural representation of O(3)×Z2 where−I ∈ O(3) acts as (−1)` on the spherical harmonics

of degree ` and −1 ∈ Z2 acts as −1 on all spherical harmonics.

6.3.1 Irreducible representations

Consider the system of ODEs
dx
dt

= f (x, λ), (6.3.1)

where λ ∈ R is a bifurcation parameter, x is the vector of amplitudes of the spherical har-

monics Ym
` (θ, φ) and f is a smooth mapping which is equivariant with respect to the natural

representation of O(3)×Z2 on V`.

Hence f satisfies

f (Mγ · x, λ) = Mγ · f (x, λ)

for the matrices Mγ which generate the action of O(3) on V`. These matrices are given in Section

3.2.2. Recall in particular that M−I = (−1)` I2`+1 where I2`+1 is the (2` + 1)× (2` + 1) identity

matrix. In addition, f is equivariant with respect to the action of −1 ∈ Z2 on V`. The matrix for

this action is M−1 = −I2`+1.

If ` is odd then M−I = M−1 and hence an O(3) equivariant mapping on V` when ` is odd is

equivariant with respect to O(3)×Z2. The O(3) equivariant vector fields for ` = 3 and 5 have

been computed to cubic order by Chossat et al. [23].

If ` is even then imposing that an O(3) equivariant vector field also commutes with −1 ∈ Z2

removes all of the terms of even order from the O(3) equivariant vector field. Hence in the

representation on V` for ` even the O(3)×Z2 equivariant vector field is the same as the O(3)

equivariant vector field with the even order terms removed. The cubic order terms in such a

vector field for ` = 4 and 6 have been computed by Callahan [18].

When ` is even the dynamics in an O(3) ×Z2 equivariant vector field will be different from

those in an O(3) equivariant vector field and have not previously been studied. We consider

now the example where the representation is the natural representation on V2.
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6.3.2 Example: The representation on V2

In this section we consider the solutions which can occur in the O(3)×Z2 equivariant vector

field for the representation on V2. We compute the stability of the axial solution branches and

look for submaximal solutions.

We can compute using the method in Section 6.3.1 that to cubic order for the representation of

O(3)×Z2 on V2 the equivariant vector field f is given by

ẋ = f (x, λ) = µx + αx|x|2, (6.3.2)

where

x = (x−2, x−1, x0, x1, x2)
T

is the vector of amplitudes of the spherical harmonics of degree two. Here x−m = (−1)mxm

and

|x|2 =
2

∑
m=−2

|xm|2.

The coefficients α and µ are smooth, real functions of λ. We will assume that µ = λ+ higher

order terms in λ so that a stationary bifurcation occurs at λ = 0 and the trivial solution is stable

for λ < 0.

Recall from Example 6.2.5 that in this representation there are two axial isotropy subgroups,

O(2)×Zc
2 and D̃4 ×Zc

2. The only other isotropy subgroup in this representation is D2 ×Zc
2

and every combination of spherical harmonics of degree two has D2 × Zc
2 symmetry about

some axes. (Any combination of spherical harmonics Ym
2 (θ, φ) automatically has Zc

2 symme-

try. Since Re(Y j
2(θ, φ)) and Im(Y j

2(θ, φ)) are equivalent patterns under a rotation for j = 1, 2,

r(Zc
2) = 3 and we have three degrees of freedom with the choice of our rotation axes. We can

choose these in such a way that the combination has D2 ×Zc
2 symmetry about these axes.) The

group of symmetries of any solution to ẋ = f (x, λ) must contain D2 ×Zc
2 and all solutions lie

in Fix(D2 ×Zc
2). The fixed-point subspaces of the isotropy subgroups are

Fix(O(2)×Zc
2) = {(0, 0, a, 0, 0)}

Fix(D̃4 ×Zc
2) = {(b, 0, 0, 0, b)}

Fix(D2 ×Zc
2) = {(b, 0, a, 0, b)}

where a, b ∈ R. By the equivariant branching lemma (Theorem 2.4.6) stationary solutions with

O(2) ×Zc
2 and D̃4 ×Zc

2 symmetries are guaranteed to exist. By (2.4.6) these solutions must

have 2 and 3 zero eigenvectors respectively, none of which lie in Fix(D2 ×Zc
2). However, using

the cubic order truncation (6.3.2) of the equivariant vector field, f , we find that both solution

branches have four zero eigenvalues. This means that there are degeneracies at cubic order and

we must include the quintic order terms in f to determine the stability of the axial solution

branches. Recall that a O(3)×Z2 equivariant vector field contains no quartic terms. To quintic

order the O(3)×Z2 equivariant vector field is

ẋ = f (x, λ) = λx + αx|x|2 + βx

(
2

∑
m=−2

|xm|2
)2

+ γ S(x) (6.3.3)
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where

S−2(x) = x−2

(
10x4

0 − 36x−1x2
0x1 + 24x2

−2x2
2 − 48x2x1x−1x−2 + 15x2

−1x2
1

)
− 9x2x4

−1

+
√

6x0

(
3x1x3

−1 + 12x2x2
−1x−2 − x2

0x2
−1

)

S−1(x) = x−1

(
4x4

0 − 18x−1x1x2
0 + 36x2x−2x2

0 + 24x2
−2x2

2 + 24x2
−1x2

1 − 30x2x1x−1x−2

)

+18x3
1x2
−2 +

√
6x0

(
2x2

0x1x−2 − 12x2x1x2
−1 − 3x2x3

−1 − 9x2
1x−1x−2

)

S0(x) = x0

(
4x4

0 − 16x−1x1x2
0 + 40x2x−2x2

0 + 18x2
−1x2

1 − 72x2x1x−1x−2

)

+3
√

6
(

2x2x−2 + x1x−1 − x2
0

) (
x2

1x−2 + x2
−1x2

)

and S−m = (−1)mSm. We wish to determine conditions on α, β, γ ∈ R for the axial solution

branches to be stable and also whether it is possible for solutions with D2 ×Zc
2 symmetry to

exist. All eigenvalues of each axial solution which lie in the complement of Fix(D2 ×Zc
2) are

either zero or equal to an eigenvalue in Fix(D2×Zc
2). This means that we can use the restriction

of (6.3.3) to determine the stability of the axial solution branches in addition to looking for

submaximal solutions in this subspace. The restriction of (6.3.3) to Fix(D2 ×Zc
2) is

ȧ = λa + αa(2b2 + a2) + (β + 4γ) a5 + 4 (β + 10γ) a3b2 + 4βab4 (6.3.4)

ḃ = λb + αb(2b2 + a2) + 4 (β + 6γ) b5 + (β + 10γ) a4b + 4βa2b3. (6.3.5)

These equations have residual symmetries N(D2 ×Zc
2)/D2 ×Zc

2 = D6. The stationary points

of these equations are

1. The trivial solution where a = b = 0.

2. The solution where b = 0 and a satisfies λ + αa2 + (β + 4γ)a4 = 0. These solutions are of

the form (a0,±, 0) where

a2
0,± =

−α±√
α2 − 4λ(β + 4γ)

2(β + 4γ)
.

These solutions have O(2)×Zc
2 symmetry and exist only when a2

0,± is real and positive.

See Figure 6.6 for a picture of this solution.

3. The solution where a = 0 and b satisfies λ + 2αb2 + 4(β + 6γ)b4 = 0. These solutions are

of the form (0, b0,±) where

b2
0,± =

−α±√
α2 − 4λ(β + 6γ)

4(β + 6γ)
.

These solutions have D̃4 ×Zc
2 symmetry and exist only when b2

0,± is real and positive.

See Figure 6.6 for a picture of this solution.

4. Solutions where both a 6= 0 and b 6= 0. Then a and b satisfy

λ + α(2b2 + a2) + (β + 4γ) a4 + 4 (β + 10γ) a2b2 + 4βb4 = 0 (6.3.6)

λ + α(2b2 + a2) + 4 (β + 6γ) b4 + (β + 10γ) a4 + 4βa2b2 = 0. (6.3.7)
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By subtracting (6.3.6) from (6.3.7) we see that

3a4 − 20a2b2 + 12b4 = (3a2 − 2b2)(a2 − 6b2) = 0

and hence there are solutions where

(a) a2 = 6b2. Using (6.3.6) we see that b must satisfy λ + 8αb2 + 64(β + 6γ)b4 = 0 and

hence b2 = 1
4 b2

0,±. This solution has the same existence properties as solution 3 above

and hence it has D̃4 ×Zc
2 symmetry. This solution is a rotation of solution 3 as can

be seen in Figure 6.6.

(b) 3a2 = 2b2. Using (6.3.6) we see that b must satisfy 9λ + 24αb2 + 64(β4γ)b4 = 0 and

hence b2 = 3
8 a2

0,±. This solution has the same existence properties as solution 2 above

and hence it has O(2)×Zc
2 symmetry as can be seen in Figure 6.6.

Solution 2 with Solution 3 with Solution 4a with Solution 4b with

O(2)×Zc
2 symmetry D̃4 ×Zc

2 symmetry D̃4 ×Zc
2 symmetry O(2)×Zc

2 symmetry

Figure 6.6: Images of solutions to (6.3.4)–(6.3.5). All solutions have axial symmetry i.e. O(2)×
Zc

2 or D̃4 ×Zc
2 symmetry.

There are no further solutions and hence there are no submaximal solutions with D2 × Zc
2

symmetry. We now investigate the stability of the maximal solution branches, solutions 2 and

3. Solutions 4(a) and 4(b) have the same existence and stability properties as solutions 3 and 2

respectively. We will assume that λ > 0 so that the trivial solution is unstable and we will find

the branches of solutions which bifurcate supercritically at λ = 0.

Solutions with O(2) ×Zc
2 symmetry exist when a0,± ∈ R. For this to occur we require that

α2 − 4λ(β + 4γ) > 0 and a2
0,± > 0.

• When β + 4γ < 0, a2
0,− > 0 for all values of α but a2

0,+ < 0.

• When 0 < 4λ(β + 4γ) < α2, a2
0,± > 0 when α < 0.

These solutions have eigenvalues

ξ1 = 6γa4
0,± and ξ2 = −2λ + 2(β + 4γ)a4

0,± (double in V2)

and hence the solutions with O(2)×Zc
2 symmetry are stable when γ < 0 and λ > (β + 4γ)a4

0,±.

Solutions with D̃4 ×Zc
2 symmetry exist when b0,± ∈ R. For this to occur we require that

α2 − 4λ(β + 6γ) > 0 and a2
0,± > 0.

• When β + 6γ < 0, b2
0,− > 0 for all values of α but b2

0,+ < 0.
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• When 0 < 4λ(β + 6γ) < α2, b2
0,± > 0 when α < 0.

These solutions have eigenvalues

ξ1 = −2λ + 8(β + 6γ)b4
0,± and ξ2 = −24γb4

0,±

and hence the solutions with O(2) × Zc
2 symmetry are stable when γ > 0 and λ > 4(β +

6γ)b4
0,±.

Hence we can see that the two axial solutions can never be simultaneously stable. There are

many different possible phase portraits depending on the values of λ, α, β and γ. The maximum

number of solutions occurs when α2 − 4λ(β + 4γ) > 0, α2 − 4λ(β + 6γ) > 0 with (β + 4γ) > 0,

(β + 6γ) > 0 and α < 0. Then solutions

(0, 0), (±a0,±, 0) , (0,±b0,±) ,

(
±

√
3
2

b0±,±
√

1
4

b0±

)
,

(
±

√
1
4

a0±,±
√

3
8

a0±

)

exist–a total of 24 non-trivial solutions to (6.3.6)–(6.3.7) but only two distinct symmetry types.

For the example coefficient values λ = 1, α = −5, β = −2 and γ = 1 the phase portrait is as in

Figure 6.7.

Figure 6.7: Phase portrait showing the solutions to (6.3.6)–(6.3.7) when λ = 1, α = −5, β = −2

and γ = 1 and their stability. Solutions with O(2)×Z2 are represented by dots and

solutions with D̃4 ×Z2 by squares. This phase portrait has hexagonal symmetry

due to the residual D6 symmetry of the equations in Fix(D2 ×Zc
2).
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6.3.3 Example: The representation on V3

We now consider the stability of solutions with axial symmetry which occur in the O(3)×Z2

equivariant vector field for the representation on V3. Recall that in the representation on V3 the

O(3) equivariant vector field contains no cubic terms so is already equivariant with respect to

O(3)×Z2. Hence the results in this section are the same as those found by Chossat et al. [23].

We can compute using the method of Section 6.3.1 that to cubic order for the representation of

O(3)×Z2 on V3 the equivariant vector field f is given by

dx
dt

= f (x, λ) = µx + αx|x|2 + βR(x) (6.3.8)

where µ, α, β ∈ R are smooth functions of λ,

|x|2 =
3

∑
m=−3

|xm|2 = x2
0 − 2x−1x1 + 2x−2x2 − 2x−3x3

and R(x) = (R−3, R−2, R−1, R0, R1, R2, R3) where R−k = (−1)kRk and

R−3(x) = 15x−3

(
4x−1x1 − 3x2

0

)
− 10

√
15x2

−2x1 − 4
√

15x3
−1 + 30

√
2x−2x−1x0

R−2(x) = 5x−2

(
3x2

0 + 4x−1x1 − 10x−2x2

)
− 20

√
15x−3x−1x2 − 30

√
2x−3x0x1

−2
√

30x2
−1x0

R−1(x) = x−1

(
60x−3x3 − 20x−2x2 + 8x−1x1 − 9x2

0

)
+ 30

√
2x−3x0x2

−12
√

15x2
1x−3 − 10

√
15x2

−2x3 + 4
√

30x−2x0x1

R0(x) = 3x0

(
30x−3x3 + 10x−2x2 + 6x−1x1 − 3x2

0

)
− 2

√
30

(
x−2x2

1 + x2
−1x2

)

−30
√

2 (x−3x1x2 + x3x−2x−1) .

As in Section 6.3.2, we will assume that µ = λ+ higher order terms in λ so that a stationary

bifurcation occurs at λ = 0 and the trivial solution is stable for λ < 0. By the equivariant

branching lemma (Theorem 2.4.6), (6.3.8) has branches of stationary solutions with the symme-

tries of the axial isotropy subgroups of O(3)×Z2 in this representation.

Recall from Example 6.2.6 that in this representation there are three axial isotropy subgroups,
˜O(2)×Zc

2, Õ×Zc
2 and D̃6 ×Zc

2. The fixed-point subspaces of these axial isotropy subgroups

are

Fix( ˜O(2)×Zc
2) = {(0, 0, 0, a, 0, 0, 0)}

Fix(Õ×Zc
2) = {(0, a, 0, 0, 0, a, 0)}

Fix(D̃6 ×Zc
2) = {(a, 0, 0, 0, 0, 0,−a)}

where a, b ∈ R. By restricting (6.3.8) to each of these subspaces we find that the branching

equations for each of these isotropy subgroups are

˜O(2)×Zc
2 : 0 = λ + (α− 9β) a2 (6.3.9)

Õ×Zc
2 : 0 = λ + (2α− 50β) a2 (6.3.10)

D̃6 ×Zc
2 : 0 = λ + 2αa2. (6.3.11)
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By (2.4.6) these three solution branches must have 2, 3 and 3 zero eigenvectors respectively. We

compute that the branch of solutions with ˜O(2)×Zc
2 symmetry has eigenvalues

−36βa2 (2) 24βa2 (2) 0 (2) − 2λ = 2(α− 9β)a2 (1)

where the number in brackets indicates the multiplicity of each eigenvalue. This solution

branch can never be stable.

The branch of solutions with Õ×Zc
2 symmetry has eigenvalues

80βa2 (3) 0 (3) − 2λ = 2(2α− 50β)a2 (1)

and hence is stable when it bifurcates supercritically (when 2α− 50β < 0) and β < 0. Finally

the branch of solutions with D̃6 ×Zc
2 symmetry has eigenvalues

−60βa2 (2) − 90βa2 (1) 0 (3) − 2λ = 4αa2 (1)

and hence this solution branch is stable when α < 0 and β > 0. The solution branches with

symmetries Õ×Zc
2 and D̃6 ×Zc

2 cannot be simultaneously stable.

Notice that for this representation on V3, the stability of each of the axial solution branches is

determined by the cubic order truncation of the O(3)×Z2 equivariant vector field in contrast

to the representation on V2 studied in Section 6.3.2 where the quintic order expansion was

required to determine the stability of the axial solution branches.

In Section 6.4 we will compute the values of α and β in (6.3.8) for the specific example of the

Swift–Hohenberg equation (6.1.1) in order to determine which of the axial solution branches

are stable for this example.

6.3.4 Reducible representations

Consider the system of ODEs
dz
dt

= f (z, λ), (6.3.12)

where λ ∈ R is a bifurcation parameter,

z = (x ; y)T =
(

x−`, x−(`−1), . . . , x` ; y−(`+1), y−`, . . . , y(`+1)

)T

is the vector of amplitudes of the spherical harmonics Ym
` (θ, φ) and Yn

`+1(θ, φ) where

x−m = (−1)mxm and y−n = (−1)nyn

and f is a smooth mapping which is equivariant with respect to the natural representation of

O(3)×Z2 on V` ⊕V`+1. Hence f satisfies

f (M(`,`+1)
γ · z, λ) = M(`,`+1)

γ · f (z, λ)

for the matrices M(`,`+1)
γ which generate the action of O(3) on V` ⊕V`+1. The matrices M(`,`+1)

γ

are given by

M(`,`+1)
γ =

[
M`

γ 0`,`+1

0`+1,` M`+1
γ

]
(6.3.13)
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where M`
γ is the matrix for the action of γ on V` and 0j,k is the (2j + 1)× (2k + 1) zero matrix.

The set of generating matrices M`
γ are given in Section 3.2.2.

We make the following observations about mappings which are equivariant with respect to the

action of O(3)×Z2 on V` ⊕V`+1:

1. Equivariance with respect to the element −1 ∈ Z2 implies that

f (−z, λ) = − f (z, λ),

i.e. f is odd in z and hence contains only terms of odd order.

2. Suppose that

f (z) = (g(z); h(z))T =
(

g−`, g−(`−1), . . . , g` ; h−(`+1), h−`, . . . , h(`+1)

)T
. (6.3.14)

Since the actions of O(3)×Z2 on V` and V`+1 are absolutely irreducible, there are two lin-

ear equivariant maps µx(λ)(x; 0) and µy(λ)(0; y). This means that the solution branches

which are guaranteed to exist by the equivariant branching lemma with the symmetries

of an axial isotropy subgroup for the irreducible representation on V` need not bifurcate

at the same value of λ as those for the irreducible representation on V`+1. Moreover, all

of the linearly independent equivariant mappings comprising f are of the form (P(z); 0)

or (0; Q(z)).

3. Imposing that f is equivariant with respect to the action of −I ∈ O(3) on V` ⊕ V`+1 we

find that all cubic order terms in g(z) are of the form

xixjxk for i, j, k ∈ −`, . . . , `

or

yiyjxk for i, j,∈ −(` + 1), . . . , (` + 1) and k ∈ −`, . . . , `.

Similarly all cubic order terms in h(z) are of the form

yiyjyk for i, j, k ∈ −(` + 1), . . . , (` + 1)

or

xixjyk for i, j,∈ −`, . . . , ` and k ∈ −(` + 1), . . . , (` + 1).

4. Imposing that f is also equivariant with respect to the action of the infinitesimal rotation

φ′ ∈ O(3) on V` ⊕V`+1 we find that all cubic order terms in gm(z) are of the form

xixjxk where i + j + k = m for i, j, k ∈ −`, . . . , `

or

yiyjxk where i + j + k = m for i, j ∈ −(` + 1), . . . , (` + 1) and k ∈ −`, . . . , `.

Similarly all cubic order terms in hm(z) are of the form

yiyjyk where i + j + k = m for i, j, k ∈ −(` + 1), . . . , (` + 1)

or

xixjyk where i + j + k = m for i, j ∈ −`, . . . , ` and k ∈ −(` + 1), . . . , (` + 1).
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Given a small value of ` it is possible to compute the form of the equivariant vector field f (z, λ)

to cubic order. We find that the cubic equivariant maps containing terms in xixjxk are the cubic

equivariants for the representation of O(3) on V` and the cubic equivariant maps containing

terms in yiyjyk are the cubic equivariants for the representation of O(3) on V`+1.

In order to know when we have found all cubic O(3)×Z2 equivariant maps it is possible to

compute the number of such maps using character methods.

The number of cubic O(3)×Z2 equivariant maps in the representation on V` ⊕V`+1

In this section we will follow the method of Antoneli et al. [4] using characters to compute the

number of cubic O(3)×Z2 equivariant maps in reducible representations on V` ⊕ V`+1. This

method is outlined in Section 2.3.2.

We can note that equivariance with respect to the action of the element −1 ∈ Z2 does not

place any restrictions on cubic maps so we need only consider equivariance with respect to the

rotations and inversion symmetries of O(3). Since all rotations through an angle θ in SO(3) are

conjugate we have that in the representation on V` ⊕V`+1 the character of such a rotation Rθ is

given by

χ(Rθ) =
`

∑
m=−`

eimθ +
`+1

∑
m=−`−1

eimθ

= 2
`

∑
m=−`

eimθ + e−iθ(`+1) + eiθ(`+1)

= 2
(

cos(`θ)− cos((` + 1)θ)
1− cos(θ)

+ cos((` + 1)θ)
)

= 2
(

cos(`θ)− cos(θ) cos((` + 1)θ)
1− cos(θ)

)
.

The Haar integral of a class function f on SO(3) is

1
π

∫ π

0
f (Rθ)(1− cos(θ))dθ.

(See Wigner [84].) The conjugacy classes of elements of O(3) are also parameterised by θ,

however there are two classes for each θ. One class is represented by the rotation Rθ and the

other is represented by −Rθ . In this case the Haar integral of a class function on O(3) is

1
2π

∫ π

0
[ f (Rθ) + f (−Rθ)] (1− cos(θ))dθ.

Thus we also need to compute χ(−Rθ). Using the action of −I on V` ⊕V`+1 we find that

χ(−Rθ) = (−1)`
`

∑
m=−`

eimθ + (−1)`+1
`+1

∑
m=−`−1

eimθ

= (−1)`+1 (e−iθ(`+1) + eiθ(`+1))

= (−1)`+1 2 cos((` + 1)θ)
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Using (2.3.3) we see that the number of cubic O(3)×Z2 equivariants for the representation on

V` ⊕V`+1 is given by

E(3) =
1

12π

∫ π

0
(1− cos(θ))

[
χ(Rθ)4 + 3χ(Rθ)2χ(R2θ) + 2χ(R3θ)χ(Rθ)

+χ(−Rθ)4 + 3χ(−Rθ)2χ(R2θ) + 2χ(−R3θ)χ(−Rθ)
]

dθ

=
1

12π
(I1 + I2 + 3I3 + 3I4 + 2I5 + 2I6) ,

where

I1 =
∫ π

0
(1− cos(θ))χ(Rθ)4dθ = 2π(16` + 7) (6.3.15)

I2 =
∫ π

0
(1− cos(θ))χ(−Rθ)4dθ = 6π (6.3.16)

I3 =
∫ π

0
(1− cos(θ))χ(Rθ)2χ(R2θ)dθ = 2π (6.3.17)

I4 =
∫ π

0
(1− cos(θ))χ(−Rθ)2χ(R2θ)dθ = 6π (6.3.18)

I5 =
∫ π

0
(1− cos(θ))χ(Rθ)χ(R3θ)dθ =





2π if ` = 0 mod 3

−2π if ` = 1 mod 3

0 if ` = 2 mod 3.

(6.3.19)

I6 =
∫ π

0
(1− cos(θ))χ(−Rθ)χ(−R3θ)dθ = 0. (6.3.20)

The details of the computations of these integrals can be found in Appendix B. Thus

E(3) =
1

12π


2π(16` + 7) + 6π + 6π + 18π +





4π if ` = 0 mod 3

−4π if ` = 1 mod 3

0 if ` = 2 mod 3




=





(8` + 12)/3 if ` = 0 mod 3

(8` + 10)/3 if ` = 1 mod 3

(8` + 11)/3 if ` = 2 mod 3.

(6.3.21)

6.3.5 Example: The representation on V2 ⊕V3

We now compute to cubic order the general form of a mapping which is equivariant with re-

spect to the action of O(3)×Z2 on V2 ⊕ V3. This vector field will be required in Section 7.2.1.

Using (6.3.21) we see that in the Taylor expansion of the O(3) ×Z2 equivariant vector field

for the representation on V2 ⊕ V3 there are 9 cubic equivariant maps. Using equivariance with

respect to the matrices M(2,3)
γ defined by (6.3.13) for γ = φ′, θ′, −I and −1 we find that

f (z, λ) = (g(z, λ); h(z, λ))

where

g(z, λ) = µxx + α1x|x|2 + β1x|y|2 + γ1P(x, y) + γ2Q(x, y) (6.3.22)

h(z, λ) = µyy + α2y|x|2 + β2y|y|2 + δ1R(y) + δ2S(x, y) + δ3T(x, y). (6.3.23)
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Here µ1, µ2, α1, α2, β1, β2, γ1, γ2, δ1, δ2 and δ3 ∈ R are smooth functions of λ,

|x|2 = |x−2|2 + |x−1|2 + |x0|2 + |x1|2 + |x2|2

= x2
0 − 2x1x−1 + 2x2x−2

|y|2 = |y−3|2 + |y−2|2 + |y−1|2 + |y0|2 + |y1|2 + |y2|2 + |y3|2

= y2
0 − 2y1y−1 + 2y2y−2 − 2y3y−3

and

• P(x, y) = (P−2, P−1, P0, P1, P2) where P−k = (−1)kPk and

P−2(x, y) = 18y−3y3x−2 − 2y−2y2x−2 − 10y2
−2x2 + 4

√
15y−3y−1x2 − 5

√
6y−3y2x−1

+
√

10 (y−2y1x−1 + 4y−3y1x0 + 2y−2y−1x1)− 2
√

5y0 (y−2x0 + 3y−3x1)

P−1(x, y) = 10y2
−1x1 + 5y−3y2x0 − 3y−3y3x−1 − 18y−2y2x−1 + 5y−1y1x−1

−2
√

30y−2y0x1 − 5
√

2y−1y0x0 + 6
√

5y−3y0x2 + 5
√

6y3y−2x−2

−
√

10y−1 (y2x−2 + 2y−2x2) +
√

15y1 (3y−2x0 − 2y−3x1)

P0(x, y) = 4
√

10 (y−1y3x−2 + y−3y1x2)− 3
√

15 (y−2y1x1 + y−1y2x−1)

−2
√

5y0 (y−2x2 + y2x−2) + 5
√

2y0 (y1x−1 + y−1x1)

−5 (y−3y2x1 + y−2y3x−1) + 2x0

(
y−3y3 + 4y−2y2 + 5y−1y1 − 5y2

0

)

• Q(x, y) = (Q−2, Q−1, Q0, Q1, Q2) where Q−k = (−1)kQk and

Q−2(x, y) = x−2

(
y2

0 − 6y−2y2 + 16y−3y3

)
+ 3

√
10y−2y1x−1 + 2

√
10y−3y1x0

−4
√

5y−2y0x0 − 2
√

3y−1y0x−1 + 2
√

6y2
−1x0 − 5

√
6y−3y2x−1

Q−1(x, y) = x−1

(
y−3y3 − 6y−2y2 + 9y−1y1 − 5y2

0

)
+ 6y2

−1 − 5y−3y2x0

−3
√

10y−1y2x−2 + 2
√

3y1y0x−2 − 2
√

30y−2y0x1 −
√

2y0y−1x0

+ 5
√

6y3y−2x−2 +
√

15y1 (y−2x0 + 2y−3x1)

Q0(x, y) = x0

(
−7y2

0 + 12y−1y1 − 6y−2y2 − 4y−3y3

)
+ 5y−3y2x1 + 5y−2y3x−1

−
√

15 (y1y−2x1 + y−1y2x−1) + 2
√

10 (y−3y1x2 + y−1y3x−2)

− 4
√

5y0 (y−2x2 + y2x−2) +
√

2y0 (y1x−1 + y−1x1)

+ 2
√

6
(

y2
1x−2 + y2

−1x2

)

• R(y) = (R−3, R−2, R−1, R0, R1, R2, R3) where R−k = (−1)kRk and

R−3(y) = 15y−3

(
4y−1y1 − 3y2

0

)
− 10

√
15y2

−2y1 − 4
√

15y3
−1 + 30

√
2y−2y−1y0

R−2(y) = 5y−2

(
3y2

0 + 4y−1y1 − 10y−2y2

)
− 20

√
15y−3y−1y2 − 30

√
2y−3y0y1

−2
√

30y2
−1y0

R−1(y) = y−1

(
60y−3y3 − 20y−2y2 + 8y−1y1 − 9y2

0

)
+ 30

√
2y−3y0y2

−12
√

15y2
1y−3 − 10

√
15y2

−2y3 + 4
√

30y−2y0y1

R0(y) = 3y0

(
30y−3y3 + 10y−2y2 + 6y−1y1 − 3y2

0

)
− 2

√
30

(
y−2y2

1 + y2
−1y2

)

−30
√

2 (y−3y1y2 + y3y−2y−1)
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• S(x, y) = (S−3, S−2, S−1, S0, S1, S2, S3) where S−k = (−1)kSk and

S−3(x, y) = 15y−3

(
2x−1x1 − x2

0

)
− 10

√
6x−2x1y−2 + 2

√
15x2

−2y1 − 6
√

5x−2x−1y0

+ 6
√

10x0x−2y−1

S−2(x, y) = −5y−2

(
3x2

0 − 2x−1x1 + 4x−2x2

)
− 2

√
10x−2 (2x1y−1 + x−1y1)

+ 4
√

15x−1x0y−1 − 2
√

30x2
−1y0 + 10x2

−2y2 + 10
√

6x−1x2y−3

+ 6
√

5x−2x0y0

S−1(x, y) = −y−1

(
3x2

0 − 14x−1x1 + 28x−2x2

)
+ 2

√
10x−1 (2x2y−2 + x−2y2)

+ 6
√

10x0x2y−3 + 2
√

15x2
−2y3 − 4

√
15x0x1y−2 − 2

√
3x−2x1y0

+ 4
√

6x−2x0y1 − 16x2
−1y1 + 6

√
2x0x−1y0

S0(x, y) = 3y0

(
x2

0 + 6x−1x1 − 10x−2x2

)
+ 2

√
3 (x−2x1y1 + x2x−1y−1)

−6
√

2x0 (x1y−1 + x−1y1)− 2
√

30
(

x2
−1y2 + x2

1y−2

)

+ 6
√

5x0 (x2y−2 + x−2y2) + 6
√

5 (x1x2y−3 + x−1x−2y3)

• T(x, y) = (T−3, T−2, T−1, T0, T1, T2, T3) where T−k = (−1)kTk and

T−3(x, y) = 5y−3

(
2x2

0 − 3x−1x1

)
+ 5

√
6x−2x1y−2 − 5x−1x0y−2 − 2

√
10x0x−2y−1

+
√

15x2
−1y−1

T−2(x, y) = 5y−2

(
x2

0 − 2x−1x1 + 2x−2x2

)
− 5

√
6x−1x2y−3 + 5x0x1y−3

−
√

15x1x−2y−1 +
√

30x2
−1y0 − 4

√
5x−2x0y0 + 3

√
10x−2x1y−1

T−1(x, y) = y−1

(
2x2

0 − 7x−1x1 + 16x−2x2

)
− 2

√
10x0x2y−3 +

√
15x2

1y−3

+ 6x2
−1y1 + 2

√
3x−2x1y0 − 4

√
6x−2x0y1 +

√
15x0x1y−2

−
√

2x0x−1y0 − 3
√

10x−1x2y−2

T0(x, y) = y0

(
x2

0 − 6x1x−1 + 18x2x−2

)
− 4

√
5x0 (x2y−2 + x−2y2)

+
√

30
(

x2
1y−2 + x2

−1y2

)
− 2

√
3 (x−2x1y1 + x−1x2y−1)

+
√

2x0 (x1y−1 + x−1y1)

Remark 6.3.1. The mapping x|x|2 is the cubic equivariant for the representation of O(3) on V2

and y|y|2 and R(y) are the cubic equivariants for the representation of O(3) on V3 as found in

[23] and Section 6.3.3.

We could now use this equivariant vector field to determine the direction of branching and

the stability of the axial solution branches i.e. those with symmetries as in Table 6.8, for given

values of the coefficients µ1, µ2, α1, α2, β1, β2, γ1, γ2, δ1, δ2 and δ3 ∈ R. We will use this

equivariant vector field in Chapter 7 when studying spiral patterns on spheres.

6.3.6 Example: The representation on V3 ⊕V4

We can also compute to cubic order the general form of a mapping which is equivariant with

respect to the action of O(3) × Z2 on V3 ⊕ V4. This vector field will be required in Section
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7.2.2. Using (6.3.21) we see that in the Taylor expansion of the O(3) ×Z2 equivariant vector

field for the representation on V3 ⊕V4 there are 12 cubic equivariant maps. Using equivariance

with respect to the matrices M(3,4)
γ defined by (6.3.13) for γ = φ′, θ′, −I and −1 we find that

f (z, λ) = (g(z, λ); h(z, λ)) where

g(z, λ) = µxx + α1x|x|2 + β1x|y|2 + γ1P(x) + γ2Q(x, y) + γ3R(x, y) + γ4S(x, y) (6.3.24)

h(z, λ) = µyy + α2y|x|2 + β2y|y|2 + δ1T(y) + δ2U(x, y) + δ3V(x, y) + δ4W(x, y) (6.3.25)

Here µ1, µ2, α1, α2, β1, β2, γ1, γ2, γ3, γ4 δ1, δ2, δ3 and δ4 ∈ R are smooth functions of λ.

Instead of writing explicitly the cubic equivariant maps P, Q, R, S, T, U, V and W, Tables 6.10–

6.18 give the coefficients of each term in each component of the equivariant vector field. For

example, Table 6.10 lists all of the terms which occur in the component g−3 of f and their coef-

ficients in terms of α1, β1, γ1, γ2, γ3 and γ4. Using Table 6.10 we can see that the coefficient of

x1y−3y−1 in g−3 is −20
√

105γ2 + 3
√

105γ3 which means that the term x1y−3y−1 does not occur

in x|x|2, x|y|2, P(x) or S(x, y) and has coefficient −20
√

105 in Q(x, y) and 3
√

105 in R(x, y).

Since x−m = (−1)mxm and y−m = (−1)mym we must have g−m = (−1)mgm and h−m =

(−1)mhm so we only give the form of the components g−3, g−2, g−1, g0, h−4, h−3, h−2, h−1 and

h0.

Remark 6.3.2. The mappings x|x|2 and P(x) are the cubic equivariants for the representation

of O(3) on V3 as found in [23] and Section 6.3.3 and y|y|2 and T(y) are the cubic equivariants

for the representation of O(3) on V4 as found in [18].
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Term α2 β2 δ1 δ2 δ3 δ4

y−4y0y4 2 0 -448 0 0 0

y−4y1y3 0 0 14
√

10 0 0 0

y−4y2
2 0 0 12

√
70 0 0 0

y−3y−1y4 0 0 14
√

10 0 0 0

y−3y0y3 -2 0 308 0 0 0

y−3y1y2 0 0 −23
√

70 0 0 0

y2−2y4 0 0 12
√

70 0 0 0

y−2y−1y3 0 0 −23
√

70 0 0 0

y−2y0y2 2 0 152 0 0 0

y−2y2
1 0 0 −21

√
10 0 0 0

y2
−1y2 0 0 −21

√
10 0 0 0

y−1y0y1 -2 0 128 0 0 0

y3
0 1 0 −64 0 0 0

y−4x1x3 0 0 0 −6
√

42 4
√

42 −2
√

42

y−4x2
2 0 0 0 3

√
70 3

√
70

√
70

y−3x0x3 0 0 0 −27
√

7 −7
√

7 −9
√

7

y−3x1x2 0 0 0 9
√

14 −6
√

14 3
√

14

y−2x−1x3 0 0 0 −3
√

6 2
√

6 9
√

6

y−2x0x2 0 0 0 39
√

3 −√3 −7
√

3

y−2x2
1 0 0 0 −15

√
10 0

√
10

y−1x−2x3 0 0 0
√

30
√

30 2
√

30

y−1x−1x2 0 0 0 24
√

2 9
√

2 3
√

2

y−1x0x1 0 0 0 −5
√

15 5
√

15 −√15

y0x−3x3 0 -2 0 −8 −8 36

y0x−2x2 0 2 0 −12 −12 −4

y0x−1x1 0 -2 0 −84 −24 −8

y0x2
0 0 1 0 67 −13 9

y1x−3x−2 0 0 0
√

30
√

30 2
√

30

y1x−2x−1 0 0 0 24
√

2 9
√

2 3
√

2

y1x−1x0 0 0 0 −5
√

15 5
√

15 −√15

y2x−3x1 0 0 0 −3
√

6 2
√

6 9
√

6

y2x−2x0 0 0 0 39
√

3 −√3 −7
√

3

y2x2
−1 0 0 0 −15

√
10 0

√
10

y3x−3x0 0 0 0 −27
√

7 −7
√

7 −9
√

7

y3x−2x−1 0 0 0 9
√

14 −6
√

14 3
√

14

y4x−3x−1 0 0 0 −6
√

42 4
√

42 −2
√

42

y4x2−2 0 0 0 3
√

70 3
√

70
√

70

Table 6.18: The form of the component h0 of the O(3) × Z2 equivariant mapping f in the

representation on V3 ⊕ V4. For example, the coefficient of y1x−3x−2 in h0 is√
30δ2 +

√
30δ3 + 2

√
30δ4.

6.4 Coefficients for the Swift–Hohenberg equation

The motivation for the work in this chapter on bifurcations with O(3) × Z2 symmetry was

the fact that dynamical systems on a sphere which are invariant under a change in sign of the

physical variable have O(3)×Z2 as their group of symmetries. One such system is the Swift–

Hohenberg equation [78],
∂w
∂t

= µw− (1 +∇2)2w− w3. (6.4.1)

In this section we will discuss how to compute the values of coefficients in O(3)×Z2 equiv-

ariant vector fields for this specific example system. We will compute the values explicitly in

some of the representations for which we computed the general form of the equivariant vector

field in Section 6.3. This will allow us to determine which solutions of (6.4.1) are stable in these

cases.

Since we are considering the Swift–Hohenberg equation on a spherical domain, we assume that
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6.4. COEFFICIENTS FOR THE SWIFT–HOHENBERG EQUATION

the solutions can be written as a linear combination of spherical harmonics i.e.

w(θ, φ, t) = ∑
`≥0

`

∑
m=−`

x`,m(t)Ym
` (θ, φ)

where x`,m = (−1)mx`,m since w(θ, φ, t) ∈ R. Recall that spherical harmonics are eigenfunc-

tions of the angular part of the spherical Laplacian operator

∇2U(R, θ, φ) =
1

R2

[
∂

∂R
R2 ∂

∂R
+

1
sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2

]
U

with

∇2Ym
` (θ, φ) = − `(` + 1)

R2 Ym
` (θ, φ)

where R is the radius of the sphere which we assume is constant.

Equation (6.4.1) has an equilibrium solution w = 0. Linearising about this solution by letting

w = εw1 we find that
∂w1

∂t
= µw1 − (1 +∇2)2w1. (6.4.2)

In Section 6.4.1 we will consider the case where the representation of O(3)×Z2 is irreducible

so that the solution of the linear problem (6.4.2) can be written as a sum of spherical harmonics

of a single degree `. We then carry out the computation of the coefficients in the equivariant

vector field for the specific case where ` = 3. In Section 6.4.2 we consider the case where the

representation of O(3)×Z2 is the reducible representation on V` ⊕V`+1 where w1 is assumed

to be a linear combination of spherical harmonics of degrees ` and ` + 1. We carry out the

computations of the coefficients of the cubic terms in the equivariant vector field for the specific

examples where ` = 2 and ` = 3.

6.4.1 Irreducible representations of O(3)×Z2

In this section we consider how to compute coefficients in an O(3) × Z2 equivariant vector

field for the specific example of the Swift–Hohenberg equation (6.4.1) when the representation

of O(3)×Z2 is irreducible. In this case the solution of the linearised Swift–Hohenberg equation

(6.4.2) can be written as a sum of spherical harmonics of a single degree `.

If we assume that

w1 =
`

∑
m=−`

xm(t)Ym
` (θ, φ) (6.4.3)

for some value of ` then substituting into (6.4.2) we find that

∂w1

∂t
= µw1 − (1− `(` + 1)/R2)2w1,

which has general solution

w1(t) = exp
[
(µ− (1− `(` + 1)/R2)2)t

]
w1(0).

Hence the critical value of µ where the modes of degree ` have zero growth rate occurs at

µc = (1− `(` + 1)/R2)2
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µ c(R
)

l=2
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Figure 6.8: A plot of the function µc(R) = (1− `(` + 1)/R2)2 for ` = 2, 3 and 4. The minimum

value of µc = 0 for ` = 2 occurs at R =
√

6, for ` = 3 the minimum occurs at

R =
√

12 and for ` = 4 the minimum occurs at R =
√

20.

and the value of R which minimises µc for a given value of ` is

Rc =
√

`(` + 1).

Figure 6.8 show plots of µc as a function of R for some specific values of `.

We now consider the full equation (6.4.1) with the nonlinear term w3. Let

µ = µc + ε2µ2 = ε2µ2 (6.4.4)

T = ε2t (6.4.5)

w = εw1 + ε2w2 + ε3w3. (6.4.6)

Substituting (6.4.4) – (6.4.6) into (6.4.1) we find that to cubic order in epsilon

ε3 ∂w1

∂T
= ε3µ2w1 − (1 +∇2)2(εw1 + ε2w2 + ε3w3)− ε3w3

1.

At order ε we recover the linearised stability problem as before which is satisfied for w1 as in

(6.4.3). If we let w2 = 0 then the equation at order ε2 is also satisfied. At order ε3 we then have

∂w1

∂T
= µ2w1 − (1 +∇2)2w3 − w3

1 (6.4.7)
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If we multiply (6.4.7) by Ym
` and integrate over the sphere we find

∫ 2π

0

∫ π

0

∂w1

∂T
Ym

` sin θ dθdφ =
∫ 2π

0

∫ π

0
µ2w1Ym

` sin θ dθdφ

−
∫ 2π

0

∫ π

0
(1 +∇2)2w3Ym

` sin θ dθdφ

−
∫ 2π

0

∫ π

0
w3

1Ym
` sin θ dθdφ

= I1 − I2 − I3. (6.4.8)

We can then see that by using the form of w1 as in equation (6.4.3) and the orthogonality of the

spherical harmonics (3.2.3) the left hand side becomes ẋm where the dot denotes d
dT and the

first integral on the right hand side, I1, becomes µ2xm. By integrating by parts we find that

I2 =
∫ 2π

0

∫ π

0
(1 +∇2)2w3Ym

` sin θ dθdφ = −
∫ 2π

0

∫ π

0
w3(1 +∇2)2Ym

` sin θ dθdφ = 0

since (1 +∇2)2Ym
` = (−1)m(1 +∇2)2Ym

` = 0 for any m. This means that (6.4.8) becomes

ẋm = µ2xm −
∫ 2π

0

∫ π

0

(
`

∑
n=−`

xnYn
`

)3

Ym
` sin θ dθdφ. (6.4.9)

By evaluating all terms in this integral we can find the exact form of the component ẋm in the

O(3)×Z2 equivariant vector field for the Swift–Hohenberg equation for the representation on

V`. Using the orthogonality of the spherical harmonics we can see that

∫ 2π

0

∫ π

0
Ym

` Yn
` Yp

` Yq
` sin θ dθdφ = 0 unless m + n + p = q. (6.4.10)

This reduces the number of integrals we need to evaluate. Alternatively, if we already have the

general form of the equivariant vector field found using symmetries we need only compute as

many integrals as there are coefficients in the vector field.

We will now consider the case where the representation is on V3.

Example: The representation on V3

In Section 6.3.3 we computed that the general form of the O(3)×Z2 equivariant vector field

for the representation on V3 is given by (6.3.8). We now compute the values of α and β for the

specific example of the Swift–Hohenberg equation. This will allow us to determine which of

the three axial solution branches guaranteed to exist by the equivariant branching lemma is

stable for the Swift–Hohenberg equation on a sphere of radius near Rc =
√

12.

When ` = 3 we can see from equation (6.4.9) that for −3 ≤ m ≤ 3 we have

ẋm = µ2xm −
∫ 2π

0

∫ π

0

(
3

∑
n=−3

xnYn
3

)3

Ym
3 sin θ dθdφ. (6.4.11)

Comparing this and the form of the equivariant vector field (6.3.8) we can see immediately that

µ2 = λ. Since the coefficient of x−3x1x2 in the ẋ0 component of (6.3.8) is −30
√

2β and the term
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x−3x1x2 occurs 6 times in the expression
(

∑3
n=−3 xn

)3
in (6.4.11) with m = 0 we can see that

−30
√

2β = −6
∫ 2π

0

∫ π

0
Y−3

3 Y1
3 Y2

3 Y0
3 sin θ dθdφ

=
2205

√
2

512π

∫ π

0

(
−25 cos12 θ + 95 cos10 θ − 138 cos8 θ + 94 cos6 θ

−29 cos4 θ + 3 cos2 θ
)

sin θdθ

=
21
√

2
286π

Similarly we see that the coefficient of x3
0 in the ẋ0 component of (6.3.8) is α− 9β and the term

x3
0 appears only once in the expression

(
∑3

n=−3 xn

)3
in (6.4.11) with m = 0 so

α− 9β = −
∫ 2π

0

∫ π

0
(Y0

3 )4 sin θ dθdφ

= − 49
128π

∫ π

0

(
625 cos12 θ − 1500 cos10 θ + 1350 cos8 θ

−540 cos6 θ + 81 cos4 θ
)

sin θdθ

= − 1687
2860π

Hence we find that

β = − 7
2860π

and α = − 175
286π

(6.4.12)

are the values of the coefficients in the equivariant vector field (6.3.8) for the Swift–Hohenberg

equation. Using the results of Section 6.3.3, since

β = − 7
2860π

< 0 and 2α− 50β = − 315
286π

< 0

we can see that the solution branch with Õ×Zc
2 symmetry is stable for the Swift–Hohenberg

equation on a sphere of radius near Rc =
√

12.

6.4.2 Reducible representations of O(3)×Z2

In this section we consider how to compute coefficients in an O(3) × Z2 equivariant vector

field for the specific example of the Swift–Hohenberg equation (6.4.1) when the representation

of O(3)×Z2 is reducible. In this case the solution of the linearised Swift–Hohenberg equation

(6.4.2) can be written as a sum of spherical harmonics of degrees ` and ` + 1.

If we assume that w1 = w(1)
1 + w(2)

1 where

w(1)
1 =

`

∑
m=−`

xm(t)Ym
` (θ, φ) and w(2)

1 =
`+1

∑
n=−`−1

yn(t)Yn
`+1(θ, φ)

for some value of `, then substituting into the linearised Swift–Hohenberg equation (6.4.2) we

find that

∂w1

∂t
= µw1 − (1− `(` + 1)/R2)2w(1)

1 − (1− (` + 1)(` + 2)/R2)2w(2)
1 . (6.4.13)
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Notice that

(1− `(` + 1)/R2)2 = (1− (` + 1)(` + 2)/R2)2 =
1

(` + 1)2 when R = ` + 1

and hence substituting R = ` + 1 into (6.4.13) we have

∂w1

∂t
= µw1 − 1

(` + 1)2 w1

which has general solution

w1(t) = exp
[(

µ− 1
(` + 1)2

)
t
]

w1(0).

Hence Rc = ` + 1 and the critical value of µ where the ` and ` + 1 modes both have zero growth

rate occurs at µc = 1/(` + 1)2. Notice that this is the point in Figure 6.8 where the ` and ` + 1

lines cross.

We now consider the full equation (6.4.1) with the nonlinear term w3. Let

µ = µc + ε2µ2 (6.4.14)

R = Rc + ε2R2 (6.4.15)

T = ε2t (6.4.16)

w = εw1 + ε2w2 + ε3w3 (6.4.17)

where Rc = ` + 1 and µc = 1/(` + 1)2. We find that the linear differential operator L =

µ− (1 +∇2)2 acts as

L = µ−
(

1− `(` + 1)
R2

)2

∼ µc + ε2µ2 −
(

1− `(` + 1)
R2

c
+

2`(` + 1)
R3

c
R2ε2

)2

∼ µc −
(

1− `(` + 1)
R2

c

)2

+ ε2
[

µ2 − 2
(

1− `(` + 1)
R2

c

) (
2`(` + 1)

R3
c

R2

)]

= L0 + ε2L2 (6.4.18)

on the spherical harmonics of degree `. On the spherical harmonics of degree ` we find that

L0Ym
` = 0 and L2Ym

` =
(

µ2 − 4`

(` + 1)3 R2

)
Ym

`

and on the spherical harmonics of degree ` + 1 we find that

L0Ym
`+1 = 0 and L2Ym

`+1 =
(

µ2 +
4(` + 2)
(` + 1)3 R2

)
Ym

`+1.

Substituting (6.4.14) – (6.4.17) into (6.4.1) we find that to cubic order in ε

ε3 ∂w1

∂T
= εL0w1 + ε2L0w2 + ε3(L0w3 + L2w1 − w3

1).

At order ε we recover the linearised stability problem which is satisfied since

w1 =
`

∑
m=−`

xm(t)Ym
` (θ, φ) +

`+1

∑
n=−`−1

yn(t)Yn
`+1(θ, φ). (6.4.19)
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At order ε2 we have 0 = L0w2. Let w2 = 0, then we find that at order ε3 we have

∂w1

∂T
= L0w3 + L2w1 − w3

1 (6.4.20)

If we multiply equation (6.4.20) by Yp
` and integrate over the sphere we find

∫ 2π

0

∫ π

0

∂w1

∂T
Yp

` sin θ dθdφ =
∫ 2π

0

∫ π

0
L2w1Yp

` sin θ dθdφ

−
∫ 2π

0

∫ π

0
L0w3Yp

` sin θ dθdφ

−
∫ 2π

0

∫ π

0
w3

1Yp
` sin θ dθdφ

= I1 − I2 − I3. (6.4.21)

We can then see that by using the form of w1 as in equation (6.4.19) and orthogonality of the

spherical harmonics (3.2.3) the left hand side becomes ẋp where the dot denotes d
dT and the first

integral on the right hand side, I1, becomes
(

µ2 − 4`

(` + 1)3 R2

)
xp.

By integrating by parts we find that

I2 =
∫ 2π

0

∫ π

0
L0w3Yp

` sin θ dθdφ = −
∫ 2π

0

∫ π

0
w3L0Yp

` sin θ dθdφ = 0.

This means that equation (6.4.21) becomes

ẋp =
(

µ2 − 4`

(` + 1)3 R2

)
xp −

∫ 2π

0

∫ π

0

(
`

∑
m=−`

xmYm
` +

`+1

∑
n=−`−1

ynYn
`+1

)3

Yp
` sin θ dθdφ.

(6.4.22)

Similarly if we multiply equation (6.4.20) by Yp
`+1 and integrate over the sphere we find

ẏp =
(

µ2 +
4(` + 2)
(` + 1)3 R2

)
yp −

∫ 2π

0

∫ π

0

(
`

∑
m=−`

xmYm
` +

`+1

∑
n=−`−1

ynYn
`+1

)3

Yp
`+1 sin θ dθdφ.

(6.4.23)

By evaluating all terms in these integrals we can find the exact form of the components ẋp

and ẏp in the O(3) × Z2 equivariant vector field for the Swift–Hohenberg equation for the

representation on V` ⊕V`+1. Using orthogonality of the spherical harmonics we can see that

∫ 2π

0

∫ π

0
Ym

`1
Yn

`2
Yp

`3
Yq

`4
sin θ dθdφ = 0 unless m + n + p = q. (6.4.24)

This reduces the number of integrals we need to evaluate. Alternatively, if we already have the

general form of the equivariant vector field found using symmetries we need only compute as

many integrals as there are coefficients in the vector field.

We will now evaluate the coefficients in the O(3)×Z2 equivariant vector field for the Swift–

Hohenberg equation when the representation is on V2 ⊕V3 or V3 ⊕V4.
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Example: The coefficients for the representation on V2 ⊕V3

In Section 6.3.5 we computed that the general form of the O(3)×Z2 equivariant vector field

for the representation on V2 ⊕ V3 is given by (6.3.22)–(6.3.23). We now compute the values of

the coefficients in this vector field for the specific example of the Swift–Hohenberg equation.

When ` = 2 we can see from equations (6.4.22) and (6.4.23) that

ẋp =
(

µ2 − 8
27

R2

)
xp −

∫ 2π

0

∫ π

0

(
2

∑
m=−2

xmYm
2 +

3

∑
n=−3

ynYn
3

)3

Yp
2 sin θ dθdφ (6.4.25)

ẏp =
(

µ2 +
16
27

R2

)
yp −

∫ 2π

0

∫ π

0

(
2

∑
m=−2

xmYm
2 +

3

∑
n=−3

ynYn
3

)3

Yp
3 sin θ dθdφ. (6.4.26)

Comparing these equations and the general form of the equivariant vector field for this repre-

sentation (6.3.22)–(6.3.23) we can see immediately that µx = µ2 − 8
27 R2 and µy = µ2 + 16

27 R2. By

comparing the cubic terms in the general form of the equivariant vector field with equations

(6.4.25) and (6.4.26) we can compute the values of the coefficients α1, α2, β1, β2, γ1, γ2, δ1, δ2

and δ3 as follows:

• The coefficient of x3
0 in ẋ0 of the general equivariant vector field is α1. The term x3

0 occurs

only once in the cubed sum of equation (6.4.25) so we have

α1 = −
∫ 2π

0

∫ π

0
(Y0

2 )4 sin θ dθdφ = − 15
28π

.

• The coefficient of x1y−2y−1 in ẋ−2 of the general equivariant vector field is 2
√

10γ1. The

term x1y−2y−1 occurs 6 times in the cubed sum of equation (6.4.25) so we have

γ1 = −3
√

10
10

∫ 2π

0

∫ π

0
Y1

2 Y−2
3 Y−1

3 Y−2
2 sin θ dθdφ =

3
44π

.

• The coefficient of x−1y−1y0 in ẋ−2 of the general equivariant vector field is −2
√

3γ2. The

term x−1y−1y0 occurs 6 times in the cubed sum of equation (6.4.25) so we have

γ2 =
√

3
∫ 2π

0

∫ π

0
Y−1

2 Y−1
3 Y0

3 Y−2
2 sin θ dθdφ =

1
44π

.

• The coefficient of x−2y2
0 in ẋ−2 of the general equivariant vector field is β1 + γ2. The term

x−2y2
0 occurs 3 times in the cubed sum of equation (6.4.25) so we have

β1 = −3
∫ 2π

0

∫ π

0
Y−2

2 (Y0
3 )2Y−2

2 sin θ dθdφ− γ2 = − 23
44π

− 1
44π

= − 6
11π

.

• The coefficient of y−3y1y2 in ẏ0 of the general equivariant vector field is −30
√

2δ1. The

term y−3y1y2 occurs 6 times in the cubed sum of equation (6.4.26) so we have

δ1 =
√

2
10

∫ 2π

0

∫ π

0
Y−3

3 Y1
3 Y2

3 Y0
3 sin θ dθdφ = − 7

2860π
.

• The coefficient of y3
0 in ẏ0 of the general equivariant vector field is β2 − 9δ1. The term y3

0

occurs only once in the cubed sum of equation (6.4.26) so we have

β2 = −
∫ 2π

0

∫ π

0
(Y0

3 )4 sin θ dθdφ + 9δ1 = − 1687
2860π

− 63
2860π

= − 175
286π

.
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• The coefficient of y−3x−2x2 in ẏ−3 of the general equivariant vector field is 2α2. The term

y−3x−2x2 occurs 6 times in the cubed sum of equation (6.4.26) so we have

α2 = −3
∫ 2π

0

∫ π

0
Y−3

3 Y−2
2 Y2

2 Y−3
3 sin θ dθdφ = − 25

22π
.

• The coefficient of y1x2
−2 in ẏ−3 of the general equivariant vector field is 2

√
15δ2. The term

y1x2
−2 occurs 3 times in the cubed sum of equation (6.4.26) so we have

δ2 = −
√

15
10

∫ 2π

0

∫ π

0
Y1

3 (Y−2
2 )2Y−3

3 sin θ dθdφ = − 3
44π

.

• The coefficient of y−2x−1x0 in ẏ−3 of the general equivariant vector field is −5δ3. The

term y−2x−1x0 occurs 6 times in the cubed sum of equation (6.4.26) so we have

δ3 =
6
5

∫ 2π

0

∫ π

0
Y−2

3 Y−1
2 Y0

2 Y−3
3 sin θ dθdφ = − 1

22π
.

It is now possible to use these values of the coefficients in the general form of the equivariant

vector field (6.3.22)–(6.3.23) to study the stability and bifurcations of the various branches of

solutions of the Swift–Hohenberg equation. We will do this in Chapter 7.

Example: The coefficients for the representation on V3 ⊕V4

In Section 6.3.6 we computed that the general form of the O(3)×Z2 equivariant vector field

for the representation on V3 ⊕ V4 is given by (6.3.24)–(6.3.25). We now compute the values of

the coefficients in this vector field for the specific example of the Swift–Hohenberg equation.

When ` = 3 we can see from (6.4.22) and (6.4.23) that

ẋp =
(

µ2 − 3
16

R2

)
xp −

∫ 2π

0

∫ π

0

(
3

∑
m=−3

xmYm
3 +

4

∑
n=−4

ynYn
4

)3

Yp
3 sin θ dθdφ (6.4.27)

ẏp =
(

µ2 +
5

16
R2

)
yp −

∫ 2π

0

∫ π

0

(
3

∑
m=−3

xmYm
3 +

4

∑
n=−4

ynYn
4

)3

Yp
4 sin θ dθdφ. (6.4.28)

Comparing these equations and the equivariant vector field for this representation (6.3.24)–

(6.3.25) we can see immediately that µx = µ2 − 3
16 R2 and µy = µ2 + 5

16 R2. By comparing

the cubic terms in the general form of the equivariant vector field with equations (6.4.27) and

(6.4.28) we can compute the values of the coefficients α1, α2, β1, β2, γ1, γ2, γ3, γ4, δ1, δ2, δ3 and

δ4 as follows:

• The coefficient of x−3x−2x2 in ẋ−3 of the general equivariant vector field is 2α1. The term

x−3x−2x2 occurs 6 times in the cubed sum of equation (6.4.27) so we have

α1 = −3
∫ 2π

0

∫ π

0
Y−3

3 Y−2
3 Y2

3 Y−3
3 sin θ dθdφ = − 175

286π
.

• The coefficient of x−2x−1x0 in ẋ−3 of the general equivariant vector field is 30
√

2γ1. The

term x−2x−1x0 occurs 6 times in the cubed sum of equation (6.4.27) so we have

γ1 = − 6
30
√

2

∫ 2π

0

∫ π

0
Y−2

3 Y−1
3 Y0

3 Y−3
3 sin θ dθdφ = − 7

2860π
.
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• The coefficient of x−3y−4y4 in Ȧx−3 of the general equivariant vector field is 2β1. The

term x−3y−4y4 occurs 6 times in the cubed sum of equation (6.4.27) so we have

β1 = −3
∫ 2π

0

∫ π

0
Y−3

3 Y−4
4 Y4

4 Y−3
3 sin θ dθdφ = − 735

572π
.

• The coefficient of x1y−4y0 in ẋ−3 of the general equivariant vector field is 20
√

42γ2. The

term x1y−4y0 occurs 6 times in the cubed sum of equation (6.4.27) so we have

γ2 = − 6
20
√

42

∫ 2π

0

∫ π

0
Y1

3 Y−4
4 Y0

4 Y−3
3 sin θ dθdφ = − 21

2860π
.

• The coefficient of x2y−3y−2 in ẋ−3 of the general equivariant vector field is 3
√

21γ3. The

term x2y−3y−2 occurs 6 times in the cubed sum of equation (6.4.27) so we have

γ3 = − 6
3
√

21

∫ 2π

0

∫ π

0
Y3

3 Y−3
4 Y−2

4 Y−3
3 sin θ dθdφ = − 5

143π
.

• The coefficient of x−1y−2y0 in ẋ−3 of the general equivariant vector field is 30
√

6γ4. The

term x−1y−2y0 occurs 6 times in the cubed sum of equation (6.4.27) so we have

γ4 = − 6
30
√

6

∫ 2π

0

∫ π

0
Y−1

3 Y−2
4 Y0

4 Y−3
3 sin θ dθdφ = − 7

2860π
.

• The coefficient of y2
−4y4 in ẏ−4 of the general equivariant vector field is 2α2. The term

y2
−4y4 occurs 3 times in the cubed sum of equation (6.4.28) so we have

α2 = −3
2

∫ 2π

0

∫ π

0
(Y−4

4 )2Y4
4 Y−4

4 sin θ dθdφ = − 6615
9724π

.

• The coefficient of y2
−3y2 in ẏ−4 of the general equivariant vector field is 70

√
7δ1. The term

y2
−3y2 occurs 3 times in the cubed sum of equation (6.4.28) so we have

δ1 = − 3
70
√

7

∫ 2π

0

∫ π

0
(Y−3

4 )2Y2
4 Y−4

4 sin θ dθdφ = − 27
34034π

.

• The coefficient of y−4x−2x2 in ẏ−4 of the general equivariant vector field is 2β2. The term

y−4x−2x2 occurs 6 times in the cubed sum of equation (6.4.28) so we have

β2 = −3
∫ 2π

0

∫ π

0
Y−4

4 Y−2
3 Y2

3 Y−4
4 sin θ dθdφ = − 315

572π
.

• The coefficient of y−3x−3x2 in ẏ−4 of the general equivariant vector field is 70
√

3δ2. The

term y−3x−3x2 occurs 6 times in the cubed sum of equation (6.4.28) so we have

δ2 = − 6
70
√

3

∫ 2π

0

∫ π

0
Y−3

4 Y−3
3 Y2

3 Y−4
4 sin θ dθdφ = − 3

286π
.

• The coefficient of y2x2
−3 in ẏ−4 of the general equivariant vector field is 10

√
7δ3. The term

y2x2
−3 occurs 3 times in the cubed sum of equation (6.4.28) so we have

δ3 = − 3
10
√

7

∫ 2π

0

∫ π

0
Y2

4 (Y−3
3 )2Y−4

4 sin θ dθdφ =
3

143π
.
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• The coefficient of y−3x−2x1 in ẏ−4 of the general equivariant vector field is 14
√

5δ4. The

term y−3x−2x1 occurs 6 times in the cubed sum of equation (6.4.28) so we have

δ4 = − 6
14
√

5

∫ 2π

0

∫ π

0
Y−3

4 Y−2
3 Y1

3 Y−4
4 sin θ dθdφ = 0.

It is now possible to use these values of the coefficients in the general form of the equivariant

vector field (6.3.24)–(6.3.25) to study the stability and bifurcations of the various branches of

solutions of the Swift–Hohenberg equation. We will do this in Chapter 7.
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CHAPTER 7

SYMMETRIC SPIRAL PATTERNS ON SPHERES

7.1 Introduction

In Section 1.2.2 we discussed the fact that spiral patterns (both rotating spiral waves and station-

ary spirals) have been found in numerical simulations of reaction–diffusion systems, Rayleigh–

Bénard convection and other pattern forming systems on the sphere. In addition to spiral waves

with trivial isotropy (no symmetry), spirals with certain symmetries can exist on the sphere.

The fact that the one-armed spiral patterns found by Calhoun et al. [16], Li et al. [62], Matthews

[65] and Zhang et al. [90] all have a rotation-through-π symmetry in some axis in the equatorial

plane has, until now, not been noted or utilised. The spiral pattern found by Calhoun et al. [16]

is given in Figure 7.1.

In this chapter we will study the generic existence of spiral patterns with symmetry on spheres

using equivariant bifurcation theory methods. We will investigate the spiral patterns which can

occur as a result of stationary bifurcations on a sphere and subsequent secondary bifurcations.

We also consider the stability of these spiral patterns.

7.1.1 Stationary spiral patterns on spheres

In this chapter we will be considering stationary spiral patterns on spheres which have the form

of those given in Figure 7.2. These spiral patterns are functions on the sphere, w(θ, φ, t), where

the areas on which w > 0 and w < 0 form intertwined spirals. The contours along which w = 0

are Archimedean spherical spirals which originate at a single point on the surface of the sphere

and terminate at the antipodal point.

We say that the spiral is m-armed if at the tips, or point of origin, there are m areas where w > 0.

This means that for an m-armed spiral pattern there are 2m zero contour Archimedean spirals.

The top row of images in Figure 7.2 shows one, two and three armed spirals, looking directly

at the point of origin, and the bottom row shows the same patterns from the side. The red areas
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Figure 7.1: The one-armed spiral pattern found in numerical simulations of a reaction-diffusion

system by Calhoun et al. [16].

show where w > 0 and blue areas show where w < 0. We make no distinction between patterns

which spiral clockwise or anticlockwise from the north pole since the symmetries of the pattern

are the same in either case.

Symmetries of spiral patterns on spheres

Consider the spiral patterns with one, two and three arms as in Figure 7.2. We can describe the

symmetries of these patterns and also those with larger numbers of arms in terms of rotations

and reflections of the sphere. Each of the spirals has a rotation-through-π symmetry, Re
π , in

an axis in the plane of the equator as viewed in the images in the top row of Figure 7.2. In

addition, the m-armed spiral has rotation-through-2π/m symmetry, Rt
2π/m in the axis through

the spiral tips. Thus the symmetry group of a one-armed spiral pattern is Z2 and an m-armed

spiral for m ≥ 2 has symmetry group Dm as a subgroup of O(3). Furthermore, for any choice

of generators, the group of symmetries of a one-armed spiral is contained in a copy of the

symmetry group of an m-armed spiral for any value of m.

Notice that inversion in the origin, −I ∈ O(3) does not act as the identity or minus the identity

on any spiral pattern. If a pattern, w(θ, φ, t), can be made with a linear combination of spherical

harmonics of even degree then, since −I acts as the identity on all spherical harmonics of even

degree,−I must act as the identity on w(θ, φ, t). Similarly if w(θ, φ, t) can be made with a linear

combination of spherical harmonics of odd degree then, since −I acts as minus the identity on

all spherical harmonic of odd degree, −I must act as minus the identity on w(θ, φ, t). However,

−I acts as neither plus nor minus the identity on spiral patterns so we conclude that spiral

patterns can only be made through linear combinations of spherical harmonics of odd and

even degrees.

Indeed, we find that spiral patterns such as those in Figure 7.2 can be made with linear combi-
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one-armed spiral two-armed spiral three-armed spiral

Figure 7.2: Images of one-, two- and three-armed spirals. The top row shows the pattern looking

directly at the tips and the bottom row of images shows the patterns viewed from

the side. The red areas show where the functions are positive and blue areas show

where they are negative.

nations of spherical harmonics of degrees ` and ` + 1 and hence are patterns of the form

w(θ, φ, t) =
`

∑
m=−`

xm(t)Ym
` (θ, φ) +

`+1

∑
n=−`−1

yn(t)Yn
`+1(θ, φ)

where x−m = (−1)mxm and y−n = (−1)nyn since w(θ, φ, t) must be real. Hence, for it to be

possible for spiral patterns to exist as a result of a stationary bifurcation with O(3) symmetry,

the representation of O(3) must be a reducible representation on V` ⊕V`+1.

One of the conditions which must be satisfied in order for the m-armed spirals described above

to exist as a result of a stationary bifurcation with O(3) symmetry in a reducible representation

on V` ⊕ V`+1 is that its symmetry group (Z2 in the case of a one-armed spiral and Dm for an

m-armed spiral where m ≥ 2) must be an isotropy subgroup of O(3) in this reducible represen-

tation. Recall that in Section 6.2.2 we saw that any pattern which is a combination of spherical

harmonics of degrees ` and ` + 1 cannot have an isotropy subgroup which is axial. Thus Z2

and Dm are never axial isotropy subgroups. However, they may be isotropy subgroups which

fix a subspace of V` ⊕V`+1 of dimension greater than one.

This means that the existence of spiral patterns at a stationary bifurcation with O(3) symmetry

is never guaranteed by the equivariant branching lemma. To determine whether spiral patterns

can exist at such a bifurcation in the representation on V` ⊕ V`+1 for a particular value of ` we

must compute the O(3) equivariant vector field for this representation (which is 4` + 4 dimen-

sional) and find solutions with the relevant symmetries directly. Since Z2 ⊂ Dm for all values of

m, if any spiral solutions with symmetry Z2 or Dm exist then they can be found in the restriction

of the O(3) equivariant vector field to the 2` + 2 dimensional subspace FixV`⊕V`+1(Z2). Even

for low values of ` this vector space is large, so to find one-armed spirals with Z2 symmetry in

this space is not a simple task.

172



7.1. INTRODUCTION

We should also note that since

rank(N(Z2)/Z2) = rank(O(2)×Zc
2/Z2) = 1 (7.1.1)

rank(N(Dm)/Dm) = rank(D2m/Dm) = 0, (7.1.2)

by Theorem 2.4.9, generically solutions with Dm which exist in O(3) equivariant vector fields

are stationary, whereas solutions with Z2 symmetry are generically relative equilibria with one

period i.e. they rotate. This only makes it more difficult to establish the existence of one-armed

spiral patterns with such symmetry.

The most symmetric spiral patterns on spheres

Since finding one-armed spirals with Z2 symmetry requires us to solve a large number of equa-

tions we make the following simplification which forms the basis for most of the work in this

chapter. Rather than look for the spiral patterns with symmetries contained in O(3), we con-

sider the most symmetric spiral patterns on spheres, which, in addition to the symmetries con-

tained in O(3), have the symmetry,

(
Rt

π/m,−1
) ∈ O(3)×Z2. (7.1.3)

Here, Rt
π/m is a rotation through π/m in the axis through the spiral tips and −1 is the non-

identity element in Z2 which acts (in all representations) as multiplication by −1 thus sending

red areas to blue and vice versa in the images given in Figure 7.2. This means that the spiral

pattern is such that the areas where w(θ, φ, t) > 0 and w(θ, φ, t) < 0 are of identical size and

shape. Such spiral patterns have symmetry groups which are subgroups of the larger group

O(3)×Z2.

Recall that in Chapter 6 we studied the twisted subgroups of O(3)×Z2. With the additional

symmetry (7.1.3) the symmetries of a one-armed spiral form the twisted subgroup

D̃2 = (D2, Z2) =
〈
(Re

π , 1), (Rt
π ,−1)

〉
, (7.1.4)

and the symmetries of an m-armed spiral for m ≥ 2 form the twisted subgroup

D̃2m = (D2m, Dm) =
〈
(Re

π , 1), (Rt
π/m,−1)

〉
. (7.1.5)

Using the methods given in Chapter 6 (the information in Table 6.7 and the ‘massive chain crite-

rion’, Theorem 3.4.1) we can determine when these twisted subgroups are isotropy subgroups

of O(3)×Z2.

Proposition 7.1.1. The subgroup D̃2m is an isotropy subgroup of O(3)×Z2 in the representation on

V` ⊕V`+1 when ` ≥ m for m ≥ 1.

Proof. By the massive chain criterion, Theorem 3.4.1, D̃2m is an isotropy subgroup iff for each

strictly larger and adjacent group ∆,

dim FixV`⊕V`+1(∆)− r(∆) < dim FixV`⊕V`+1(D̃2m)− r(D̃2m). (7.1.6)
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Notice that in reducible representations on V` ⊕V`+1, r(Σ) = q(Σ) for all twisted subgroups of

O(3)×Z2. For each twisted subgroup Σ, the values of dim Fix(Σ) and q(Σ) are given in Table

6.7. We must show that (7.1.6) holds for all strictly larger and adjacent groups ∆ when ` ≥ m.

Case 1: m = 1. The twisted subgroup D̃2 given by the pair (H, K) = (D2, Z2) has

dim FixV`⊕V`+1(D̃2) = ` + 1 and q(D̃2) = 0.

It is contained in strictly larger groups given by pairs of types

(H, K) =
(D2m, Dm) (D2m, Z2m) (D2m ×Zc

2, Z2m ×Zc
2) (D2m ×Zc

2, Dz
2m)

(Dd
4m, Dz

2m) (Dd
4m, Z−

4m) (Dd
4m, D2m).

All of the twisted subgroups, Hθ , given by these pairs have q(Hθ) = 0, so we need only

show that for the pairs which give twisted subgroups adjacent to D̃2, dim Fix(Hθ) < ` + 1

when ` ≥ 1 to demonstrate that D̃2 is an isotropy subgroup. From Table 6.7, we see that

for each of the pairs listed above, dim Fix(Hθ) is an decreasing function of m. In other

words, the larger the group Hθ , the smaller the value of dim Fix(Hθ). Thus, for each pair

above, we need only consider the smallest value of m which gives a twisted subgroup

which is strictly larger and adjacent to D̃2. Then we are left with the pairs

(H, K) =
(D4, D2) (D4, Z4) (D2 ×Zc

2, Z2 ×Zc
2) (D2 ×Zc

2, Dz
2)

(Dd
4, Dz

2) (Dd
4, Z−

4 ) (Dd
4, D2).

Each of these pairs has dim Fix(Hθ) < ` + 1 when ` ≥ 1. Hence D̃2 is an isotropy sub-

group when ` ≥ 1.

Case 2: m ≥ 2. The twisted subgroup D̃2m where m ≥ 2 is given by the pair (H, K) = (D2m, Dm).

It has

dim FixV`⊕V`+1(D̃2m) = [(` + m)/2m] + [(` + m + 1)/2m] and q(D̃2) = 0.

It is contained in the strictly larger and adjacent groups given by the pairs

(H, K) =





(D2pm, Dpm) for p ≥ 3 and prime

(D2m ×Zc
2, Dm ×Zc

2)

(D2m ×Zc
2, Dd

2m)

Using Table 6.7 we see that all of the twisted subgroups, Hθ , given by these pairs have

q(Hθ) = 0 and dim Fix(Hθ) < dim Fix(D̃2m) when ` ≥ m. Hence D̃2m is an isotropy

subgroup when ` ≥ m.

Having considered all possible cases, this concludes the proof.

We have shown that the twisted subgroups D̃2m can be isotropy subgroups of O(3) ×Z2 in

some representations on V` ⊕V`+1. Recall from Section 6.2.2 that these isotropy subgroups are

never axial so solutions with these symmetries are never guaranteed to exist at a stationary

174



7.2. SPIRAL PATTERNS WITH SYMMETRIES CONTAINED IN O(3)×Z2

bifurcation with O(3)×Z2 symmetry by the equivariant branching lemma. We must look for

these solutions in the O(3)×Z2 equivariant vector field.

Notice that the symmetry group of a one-armed spiral, D̃2, is still contained in that of an m-

armed spiral, D̃2m, for any value of m ≥ 2 when the additional symmetry (7.1.3) is included.

When m is odd this containment is obvious, however when m is even it is less so. Suppose

that we have an m-armed spiral, for m even, with tips at the poles. This has a symmetry group

which contains the symmetries of a one-armed spiral with tips on the equator. Since D̃2 ⊂ D̃2m

for all values of m, all m-armed spiral patterns which exist for any given value of ` can be found

in the restriction of the O(3)×Z2 equivariant vector field to the subspace Fix(D̃2). This space

is ` + 1 dimensional. By looking for spiral solutions with the additional symmetry (7.1.3) we

have halved the number of equations which we must solve in order to find such solutions.

Another benefit of considering spiral patterns with additional symmetry (7.1.3) is that since

rank(NO(3)×Z2
(D̃2m)/D̃2m) = 0, (7.1.7)

for all values of m, by Theorem 2.4.9, all spiral patterns with D̃2m symmetry are (generically)

stationary patterns and are therefore easier to find as equilibria of the `+ 1 equations in Fix(D̃2).

In Section 7.2 we look for spiral patterns with D̃2m symmetry in the restriction to Fix(D̃2) of the

O(3)×Z2 equivariant vector field on V` ⊕V`+1 when ` = 2 and ` = 3. For the representation

on V2 ⊕ V3, where D̃2m is an isotropy subgroup for m = 1 and m = 2, we find conditions on

the values of the coefficients in the O(3)×Z2 equivariant vector field for one- and two-armed

spiral patterns to exist and consider the specific case of the set of coefficients which occur for

the Swift–Hohenberg equation which were computed in Section 6.4. We also consider the one-,

two- and three-armed spiral patterns which can exist in the Swift–Hohenberg equation for the

representation on V3 ⊕V4.

In Section 7.3 we consider the effect of breaking the symmetry from O(3)×Z2 to O(3) on the

spiral pattern solutions with D̃2m symmetry i.e. breaking the symmetry (7.1.3). We investi-

gate whether the spiral patterns found in Section 7.2 can persist under this forced symmetry

breaking.

7.2 Spiral patterns with symmetries contained in O(3)×Z2

In this section we look for solutions with symmetry D̃2m in O(3)×Z2 equivariant vector fields

for representations on V` ⊕ V`+1 for small values of `. Recall that D̃2m is the symmetry group

of the most symmetric m-armed spiral pattern on a sphere. We show that it is possible for such

patterns to exist and demonstrate how they bifurcate from other solutions.

Consider the system of ODEs
dz
dt

= f (z, λ), (7.2.1)

where λ ∈ R is a bifurcation parameter and the mapping f : V` ⊕ V`+1 × R → V` ⊕ V`+1

commutes with the action of O(3)×Z2 on V` ⊕ V`+1. Suppose that z = (x; y) where x ∈ V`
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and y ∈ V`+1. We saw in Section 6.3.4 that the mapping f (z, λ) is of the form

f (z, λ) = (g(z, λ); h(z, λ))T

and the two linear equivariant mappings are µx(λ)(x; 0) and µy(λ)(0; y) where µx(λ) and

µy(λ) are real valued functions of λ.

As in Chapter 6, since f is equivariant with respect to −1 ∈ Z2, f is odd in z and hence (7.2.1)

has a trivial equilibrium f (0, λ) = 0 for all values of λ. This undergoes stationary bifurcations

when µx(λ) = 0 and µy(λ) = 0. At these stationary bifurcations, branches of equilibrium

solutions with certain symmetries are guaranteed to be created. These solution branches have

the symmetries of the axial isotropy subgroups of O(3)×Z2 in the representation on V`⊕V`+1

by the equivariant branching lemma. These isotropy subgroups were computed in Section 6.2

for all values of `. Subsequent bifurcations of these solution branches can lead to solution

branches with the symmetries of an isotropy subgroup of O(3)×Z2 which fixes a subspace of

V` ⊕V`+1 of dimension larger than one. We are particularly interested in the existence of such

submaximal solutions with D̃2m symmetry and how they can bifurcate from other solution

branches.

Remark 7.2.1. Recall from Section 2.4.3 that it is possible for secondary steady-state bifurcations

from group orbits or equilibria to lead to relative equilibria as well as new equilibria. By The-

orem 2.4.9, the number of frequencies of a relative equilibrium (O(3)×Z2) z0 with isotropy

subgroup D̃2m, (the symmetries of an m-armed spiral) is

k = rank
(

NO(3)×Z2
(D̃2m)/D̃2m

)
= rank

(
D4m ×Zc

2 ×Zc
2/D̃2m

)
= 0 for all m ≥ 1,

and hence all spiral solutions resulting from secondary stationary bifurcations after a station-

ary bifurcation with O(3)×Z2 symmetry are equilibria with zero frequencies (i.e. stationary

patterns).

We now look for stationary solutions with D̃2m symmetry in the restriction to Fix(D̃2) of the

O(3)×Z2 equivariant vector fields on V2 ⊕ V3 and V3 ⊕ V4. We also consider the stability of

such patterns when the coefficients in the vector field are those we computed in Section 6.4 for

the Swift–Hohenberg equation.

7.2.1 Spiral patterns in the representation on V2 ⊕V3

Recall that in Example 6.2.10 we computed all isotropy subgroups of O(3)×Z2 in the repre-

sentation on V2 ⊕V3. Among these isotropy subgroups were D̃2 and D̃4, the symmetry groups

of one- and two-armed spiral respectively, which fix three- and two- dimensional subspaces of

V2 ⊕ V3 respectively. By Proposition 7.1.1 these are the only isotropy subgroups of the form

D̃2m in this representation. We now show that it is possible for stationary solutions with these

symmetries to exist in the O(3)×Z2 equivariant vector field on V2 ⊕V3.

Since D̃2 ⊂ D̃4 we must have that Fix(D̃4) ⊂ Fix(D̃2), i.e. for every choice of generators of D̃2,

Fix(D̃2) contains a copy of Fix(D̃4).
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Suppose that we choose the copy of D̃2 which is given by

D̃2 = 〈 (Ry
π ,−1), (Rz

π , 1) 〉. (7.2.2)

The one-armed spiral with this symmetry spirals between the two points on the surface of the

sphere on the y-axis. This copy of D̃2 is contained within the copy of D̃4 which is given by

D̃4 = 〈 (Rz
π/2,−1), (Rx=−y

π , 1) 〉

where Rx=−y
π is the rotation through π in the line x = −y, z = 0 which sends x → −y, y → −x

and z → −z. The two-armed spiral with this symmetry group is oriented as in the top row of

Figure 7.2, spiralling from the north to south poles.

For these choices of generators the fixed-point subspaces are

Fix(D̃2) = {(ia, 0, 0, 0,−ia ; 0, b, 0, c, 0, b, 0)} (7.2.3)

Fix(D̃4) = {(ia, 0, 0, 0,−ia ; 0, b, 0, 0, 0, b, 0)} (7.2.4)

where a, b, c ∈ R. Notice that Fix(D̃4) ⊂ Fix(D̃2). Hence both one- and two-armed spirals (if

they exist) can be found in the restriction of the O(3)×Z2 equivariant vector field to Fix(D̃2)

as above. We computed this vector field to cubic order in Section 6.3.5 where we found that it

is as in (6.3.22)–(6.3.23). The restriction to Fix(D̃2) is given by

ȧ = µxa + 2α1a3 + (2β1 + 8γ1 − 6γ2) ab2 + (β1 + γ2) ac2 (7.2.5)

ḃ = µyb + (2β2 − 50δ1) b3 + (2α2 − 30δ2 + 10δ3) ba2 + (β2 + 15δ1) bc2 (7.2.6)

ċ = µyc + (β2 − 9δ1) c3 + (2α2 − 30δ2 + 18δ3) ca2 + (2β2 + 30δ1) cb2 (7.2.7)

where µx, µy, α1, β1, γ1, γ2, α2, β2, δ1, δ2 and δ3 are real functions of λ. These equations have

residual symmetry

N(D̃2)/D̃2 = D4 ×Zc
2 ×Z2/D̃2 = Z2 ×Z2 ×Z2,

so if solutions with D̃2 symmetry exist then there are |N(D̃2)/D̃2| = 8 equivalent solutions

within Fix(D̃2).

The trivial solution z = 0 undergoes stationary bifurcations when µx = 0 and µy = 0. To

investigate the interactions between the ` = 2 and ` = 3 modes, we assume that µx = λ and

µy = λ + ρ. Then the trivial solution is stable when λ < min(0,−ρ). At λ = 0 the ` = 2

modes become unstable and the equivariant branching lemma guarantees that the unrestricted

system (6.3.22)–(6.3.23) has stationary solution branches with the symmetries of axial isotropy

subgroups of O(3)×Z2 in the representation on V2 which bifurcate at λ = 0. Similarly, at λ =

−ρ the ` = 3 modes become unstable and give rise to solution branches with the symmetries

of axial isotropy subgroups of O(3)×Z2 in the representation on V3.

Branches of solutions with the symmetries of the axial isotropy subgroups of O(3)×Z2 in the

representation on V2 ⊕V3 which contain D̃2 are guaranteed to exist in (7.2.5)–(7.2.7). The other

equilibrium solutions which it may be possible to find in these equations have the symmetries

of the isotropy subgroups which contain D̃2 and fix a subspace of dimension greater than one.
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All isotropy subgroups containing D̃2 are listed in Table 7.1 along with the generators of a copy

of the group which contains the copy of D̃2 given by (7.2.2). The fixed-point subspace which

lies inside Fix(D̃2) given by (7.2.3) is also listed for each isotropy subgroup. These isotropy

subgroups were computed in Example 6.2.10.

Isotropy Generators Fixed-point subspace

subgroup

D̃4 ×Zc
2 (Rz

π/2,−1), (Rx=−y
π , 1), (−I, 1) {(ia, 0, 0, 0,−ia ; 0, 0, 0, 0, 0, 0, 0)}

˜O(2)×Zc
2 (Rz

θ , 1), (κxz, 1), (−I,−1) {(0, 0, 0, 0, 0 ; 0, 0, 0, c, 0, 0, 0)}
D̃6 ×Zc

2 (−Ry
π/3, 1), (Rz

π , 1), (−I,−1)
{(

0, 0, 0, 0, 0 ; 0,
√

3
10 c, 0, c, 0,

√
3
10 c, 0

)}

Õ×Zc
2 (−Rz

π/2, 1), (R2π/3, 1), (κxz, 1), (−I,−1) {(0, 0, 0, 0, 0 ; 0, b, 0, 0, 0, b, 0)}
D̃4 (Rz

π/2,−1), (Rx=−y
π , 1) {(ia, 0, 0, 0,−ia ; 0, b, 0, 0, 0, b, 0)}

D̃d
4 (−Rz

π/2,−1), (Rx=−y
π , 1) {(ia, 0, 0, 0,−ia ; 0, 0, 0, c, 0, 0, 0)}

D̃2 ×Zc
2 (Rz

π , 1), (κxz, 1), (−I,−1) {(0, 0, 0, 0, 0 ; 0, b, 0, c, 0, b, 0)}
D̃2 (Ry

π ,−1), (Rz
π , 1) {(ia, 0, 0, 0,−ia ; 0, b, 0, c, 0, b, 0)}

Table 7.1: Isotropy subgroups for the representation of O(3) × Z2 on V2 ⊕ V3 which contain

D̃2. Also shown is the form of the fixed-point subspace which lies inside Fix(D̃2).

The generators which give this subspace are also listed. Here κxz is a reflection in the

xz plane sending y → −y, R2π/3 is a rotation through 2π/3 in the line x = y = z

sending x → y → z and Rx=−y
π is rotation through π in the line x = −y, z = 0

sending x → −y, y → −x and z → −z.

The subsection of the lattice of isotropy subgroups (Figure 6.5) which shows only the isotropy

subgroups containing D̃2 is given in Figure 7.3.

Figure 7.3: Subsection of lattice of isotropy subgroups of O(3) ×Z2 in the representation on

V2 ⊕V3 including only those isotropy subgroups which contain D̃2.

We now investigate whether it is possible for solutions of (7.2.5)–(7.2.7) with non-axial symme-

try to exist and, if so, the conditions on the coefficients α1, β1, γ1, γ2, α2, β2, δ1, δ2 and δ3 which

must be satisfied for the solutions to exist and be stable. We are most interested in the existence

of solutions with D̃2 and D̃4 symmetry since these are the stationary spiral solutions.
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Existence of equilibria in Fix(D̃2)

The non-trivial equilibrium solutions of (7.2.5)–(7.2.7) are as follows.

1. If b = c = 0 then ȧ = 0 when

a = ±
√
− λ

2α1
.

This solution branch has D̃4 ×Zc
2 symmetry and bifurcates from the trivial solution at

λ = 0. It is an ` = 2 axial solution.

2. If a = b = 0 then ċ = 0 when

c = ±
√
−λ− ρ

β2 − 9δ1
.

This solution branch has ˜O(2)×Z2 symmetry and bifurcates from the trivial solution at

λ = −ρ. It is an ` = 3 axial solution.

3. If a = c = 0 then ḃ = 0 when

b = ±
√

−λ− ρ

2β2 − 50δ1
.

This solution branch has Õ×Z2 symmetry and bifurcates from the trivial solution at

λ = −ρ. It is an ` = 3 axial solution.

4. If a = 0 but b 6= 0 and c 6= 0 then ḃ = ċ = 0 when

b = ±
√
−3(λ + ρ)

16β2
and c = ±

√
−5(λ + ρ)

8β2
so c2 =

10
3

b2.

These solutions have D̃6 ×Z2 symmetry and bifurcate from the trivial solution at λ = −ρ.

They are ` = 3 axial solutions.

Remark 7.2.2. There is no solution with D̃2 ×Z2 symmetry since any solution in Fix(D̃2 ×Z2)

with b 6= 0 and c 6= 0 satisfies
{

λ + ρ + (2β2 − 50δ1) b2 + (β2 + 15δ1) c2 = 0

λ + ρ + (β2 − 9δ1) c2 + (2β2 + 30δ1) b2 = 0.

The only solution is c2 = 10
3 b2 and so the fixed-point solution has D̃6 ×Z2 symmetry.

5. If b = 0 but c 6= 0 and a 6= 0 then ȧ = ċ = 0 when
{

λ + 2α1a2 + (β1 + γ2) c2 = 0

λ + ρ + (β2 − 9δ1) c2 + (2α2 − 30δ2 + 18δ3) a2 = 0.

Generically these equations have one solution for (a2, c2) which is given by

a2 =
−λ (β2 − 9δ1) + (λ + ρ) (β1 + γ2)

2α1 (β2 − 9δ1)− (2α2 − 80δ2 + 18δ3) (β1 + γ2)

c2 =
−2α1(λ + ρ) + λ (2α2 − 30δ2 + 18δ3)

2α1 (β2 − 9δ1)− (2α2 − 30δ2 + 18δ3) (β1 + γ2)
.
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Hence solutions for (a, c) with a 6= 0 and c 6= 0 exist when a2 > 0 and c2 > 0. These so-

lutions have D̃d
4 symmetry and result from secondary bifurcations from O(3)×Z2 sym-

metry. They bifurcate from the solution branch with ˜O(2)×Zc
2 symmetry when a = 0,

i.e.

λ =
(β1 + γ2)ρ

β2 − 9δ1 − β1 − γ2
,

and from the solution with D̃4 ×Zc
2 symmetry when c = 0, i.e.

λ =
2α1ρ

2α2 − 30δ2 + 18δ3 − 2α1
.

6. If c = 0 and a 6= 0, b 6= 0 then ȧ = ḃ = 0 when
{

λ + 2α1a2 + (2β1 + 8γ1 − 6γ2) b2 = 0

λ + ρ + (2β2 − 50δ1) b2 + (2α2 − 30δ2 + 10δ3) a2 = 0.

Generically these equations have one solution for (a2, b2) which is given by

a2 =
−λ (2β2 − 50δ1) + (λ + ρ) (2β1 + 8γ1 − 6γ2)

2α1 (2β2 − 50δ1)− (2α2 − 30δ2 + 10δ3) (2β1 + 8γ1 − 6γ2)

b2 =
−2α1(λ + ρ) + λ (2α2 − 30δ2 + 10δ3)

2α1 (2β2 − 50δ1)− (2α2 − 30δ2 + 10δ3) (2β1 + 8γ1 − 6γ2)
.

Hence solutions for (a, b) with a 6= 0 and b 6= 0 exist when a2 > 0 and b2 > 0. These

solutions have D̃4 symmetry which is the symmetry group of a two-armed spiral. They

result from secondary bifurcations from O(3) ×Z2 symmetry. They bifurcate from the

solution branch with Õ×Zc
2 symmetry when a = 0, i.e.

λ =
(2β1 + 8γ1 − 6γ2)ρ

2β2 − 50δ1 − 2β1 − 8γ1 + 6γ2
,

and from the solution with D̃4 ×Zc
2 symmetry when b = 0, i.e.

λ =
2α1ρ

2α2 − 30δ2 + 10δ3 − 2α1
.

7. If a 6= 0, b 6= 0 and c 6= 0 then ȧ = ḃ = ċ = 0 when




λ + 2α1a2 + (2β1 + 8γ1 − 6γ2) b2 + (β1 + γ2) c2 = 0

λ + ρ + (2β2 − 50δ1) b2 + (2α2 − 30δ2 + 10δ3) a2 + (β2 + 15δ1) c2 = 0

λ + ρ + (β2 − 9δ1) c2 + (2α2 − 30δ2 + 18δ3) a2 + (2β2 + 30δ1) b2 = 0.

Generically these equations have one solution for (a2, b2, c2) which is given by

a2 =
M
N

b2 =
P
N

c2 =
Q
N

,

where

M = −128λβ2δ1 + 64(λ + ρ)δ1 [2β1 + 3γ1 − γ2]

P = 8λ [δ3β2 + 6α2δ1 − 90δ1δ2 + 45δ1δ3]− 8(λ + ρ) [β1δ3 + γ2δ3 + 6α1δ1]

Q = 16λ [10α2δ1 − 150δ1δ2 − β2δ3 + 75δ1δ3] + 16(λ + ρ) [δ3β1 + 4γ1δ3 − 3γ2δ3 − 10α1δ1]

N = −64 [(2β1 + 3γ1 − γ2) (2α2δ1 − 30δ1δ2 + 15δ1δ3) + δ3β2 (γ1 − γ2)− 4α1β2δ1] .
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Solutions for (a, b, c) with a 6= 0, b 6= 0 and c 6= 0 exist when a2 > 0, b2 > 0 and c2 > 0.

This occurs when

MN > 0, PN > 0 and QN > 0.

Any such solution would have D̃2 symmetry which is the group of symmetries of a one-

armed spiral on a sphere. They bifurcate from the solution branch with D̃6 ×Zc
2 symme-

try when a = 0, i.e.

λ =
(2β1 + 3γ1 − γ2)ρ

2β2 − 2β1 − 3γ1 + γ2

from the solution with D̃d
4 symmetry when b = 0, i.e. when P = 0 and from the solution

with D̃4 symmetry when c = 0, i.e. when Q = 0.

Images of solutions with each of these symmetry types are shown in Figure 7.4.

Expressions for the eigenvalues corresponding to a linearisation of each of these solutions can

be found. However, due to the large number of coefficients involved, the exact form of the

eigenvalues of all but the axial solutions (solutions 1–4) is algebraically very messy. Rather

than computing the stability of the solution branches and the bifurcation structure for general

values of the coefficients α1, β1, γ1, γ2, α2, β2, δ1, δ2 and δ3 we consider instead specific values

of these coefficients, where solutions with D̃2 (one-armed spiral) symmetry exist.

D̃4 ×Zc
2

˜O(2)×Zc
2 Õ×Zc

2 D̃6 ×Zc
2

D̃d
4 (i) D̃d

4 (ii) D̃4 (i) D̃4 (ii)

D̃2 (i) D̃2 (ii)

Figure 7.4: Images of solutions to (7.2.5)–(7.2.7). These solutions all have symmetry groups con-

taining D̃2. In some cases two views of the solutions are given to fully describe the

symmetries.
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Example 7.2.3 (Solutions with D̃2 symmetry exist but are unstable). Suppose that

α1 = −1, α2 = −1, β1 = −1, β2 = −1, (7.2.8)

γ1 = −1
2

, γ2 = −1
2

, δ1 = − 1
60

, δ2 = −1
2

, δ3 = −1
5

.

In the restriction of the equivariant vector field to Fix(D̃2) we have

ȧ = λa− 2a3 − 3ab2 − 3
2

ac2 (7.2.9)

ḃ = (λ + ρ)b− 7
6

b3 + 11ba2 − 5
4

bc2 (7.2.10)

ċ = (λ + ρ)c− 17
20

c3 +
47
5

ca2 − 5
2

cb2. (7.2.11)

The branch of solutions with ` = 2 axial isotropy (with symmetry D̃4 ×Zc
2) bifurcate at λ = 0

and those with ` = 3 axial isotropy (those with symmetries ˜O(2)×Z2, Õ×Z2 and D̃6 ×Z2)

bifurcate at λ = −ρ. We use the results of Section 7.2.1 to see where the solutions with submaxi-

mal symmetry can exist and we investigate the stability within Fix(D̃2) of all solution branches.

1. (The solution branch with D̃4 ×Zc
2 symmetry) Since D̃4 ×Zc

2 is an axial isotropy sub-

group there is always a branch of solutions with this symmetry bifurcating from λ = 0.

With the values of the coefficients (7.2.8) the solution branch bifurcates supercritically so

exists when λ > 0. Within Fix(D̃2) it has eigenvalues

ξ1 = −2λ ξ2 =
13
2

λ + ρ ξ3 =
57
10

λ + ρ.

Thus the solution branch is stable when λ < − 10
57 ρ and undergoes stationary bifurcations

at λ = − 10
57 ρ and λ = − 2

13 ρ.

2. (The solution branch with ˜O(2)×Zc
2 symmetry) With the values of the coefficients

(7.2.8), this solution branch bifurcates supercritically from λ = −ρ so exists when λ > −ρ.

Within Fix(D̃2) it has eigenvalues

ξ1 = −2(λ + ρ) ξ2 = − 1
17

(13λ + 30ρ) ξ3 = − 8
17

(λ + ρ) .

It undergoes a stationary bifurcation at λ = − 30
13 ρ and is stable when λ > − 30

13 ρ.

3. (The solution branch with Õ×Zc
2 symmetry) With the values of the coefficients (7.2.8),

this solution branch bifurcates supercritically from λ = −ρ. Within Fix(D̃2) it has eigen-

values

ξ1 = −2(λ + ρ) ξ2 = −1
7

(11λ + 18ρ) ξ3 = −8
7

(λ + ρ) .

It undergoes a stationary bifurcation at λ = − 18
11 ρ and is stable when λ > − 18

11 ρ.

4. (The solution branch with D̃6 ×Zc
2 symmetry) With the values of the coefficients (7.2.8),

this solution branch bifurcates supercritically from λ = −ρ. Within Fix(D̃2) it has eigen-

values

ξ1 = −2(λ + ρ) ξ2 = −1
2

(λ + 3ρ) ξ3 =
1
2

(λ + ρ) .

This branch of solutions always has at least one positive eigenvalue so it is always unsta-

ble. It undergoes a stationary bifurcation at λ = −3ρ where ξ2 = 0.
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5. (The solution branch with D̃d
4 symmetry) With the values of the coefficients (7.2.8) this

solution branch bifurcates from the solution with D̃4 ×Zc
2 symmetry at λ = − 10

57 ρ and

joins the branch with ˜O(2)×Z2 symmetry at λ = − 30
13 ρ. Thus it exists only when ρ < 0.

Within Fix(D̃2) it has eigenvalues

ξ1 = − 4
79

(7λ + 4ρ)

and ξ2 and ξ3 are the roots of

ξ2 +
1

790
(839λ− 130ρ) ξ − 1

395
(13λ + 30ρ) (57λ + 10ρ) = 0.

They have negative real part for all values of λ and ρ where the solution exists and hence

the solution branch is stable when λ > − 4
7 ρ.

6. (The solution branch with D̃4 symmetry) With the values of the coefficients (7.2.8) this

solution branch with two-armed spiral symmetry bifurcates from the solution with D̃4 ×Zc
2

symmetry at λ = − 2
13 ρ and joins the branch with Õ×Z2 symmetry at λ = − 18

11 ρ. Thus it

exists only when ρ < 0. Within Fix(D̃2) it has eigenvalues

ξ1 = − 4
265

(27λ− 4ρ)

and ξ2 and ξ3 are the roots of

ξ2 +
1

106
(69λ− 22ρ) ξ − 1

53
(11λ + 18ρ) (13λ + 2ρ) = 0.

They have negative real part for all values of λ and ρ where the solution exists and hence

the solution branch is stable when λ > 4
27 ρ. Since the solution only exists when λ > − 2

13 ρ

and ρ > 0 the solution branch is always stable.

7. (The solution branch with D̃2 symmetry) With the values of the coefficients (7.2.8) the

solution branch with one-armed spiral symmetry bifurcates from the solution branch with

D̃d
4 symmetry when λ = − 4

7 ρ and joins the branch with D̃6 ×Zc
2 symmetry at λ = −3ρ.

It can be found that this solution branch is always unstable in Fix(D̃2) with one positive

and two negative eigenvalues for all values of λ and ρ where it exists.

The bifurcation diagram for ρ < 0 is as in Figure 7.5. There are no bifurcations when ρ > 0 and

the only solution branches that exist for these values of ρ are the axial solution branches. This

can be seen from the gyratory bifurcation diagram in Figure 7.6. In these bifurcation diagrams,

and all subsequent bifurcation diagrams in this thesis, a solid line indicates a solution which is

stable within Fix(D̃2) and a dashed line indicates an unstable solution branch. The signs (e.g.

+ +−) next to the branch indicate the signs of the real parts of the eigenvalues on this branch.

In addition, in all bifurcation diagrams in this chapter only one copy of each branch of solutions

occurs. This is because all branches with the same symmetry have the same L2 norm.

Example 7.2.4 (Solutions with D̃2 symmetry exist and are stable). Suppose that

α1 = −1, α2 = −1, β1 = −1
3

, β2 = −1, (7.2.12)
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Figure 7.5: Bifurcation diagram for the system (7.2.9)–(7.2.11) when ρ < 0. The branch of so-

lutions with D̃2 (one-armed spiral) symmetry is always unstable and the solution

with D̃4 (two-armed spiral) symmetry is always stable. All bifurcations are pitch-

fork bifurcations. Note that the L2 norm of the solution x = (a, b, c) is given by

‖x‖2 = a2 + b2 + c2. The diagram is not to scale but the relative sizes of the L2

norms are shown.

γ1 =
1
2

, γ2 =
1
2

, δ1 =
1
60

, δ2 =
1
2

, δ3 = −1
5

.

In the restriction of the equivariant vector field to Fix(D̃2) we have

ȧ = λa− 2a3 +
1
3

ab2 +
1
6

ac2 (7.2.13)

ḃ = (λ + ρ)b− 17
6

b3 − 19ba2 − 3
4

bc2 (7.2.14)

ċ = (λ + ρ)c− 23
20

c3 − 103
5

ca2 − 3
2

cb2. (7.2.15)

As for the previous example, we use the results of Section 7.2.1 to see where the solutions

with submaximal symmetry can exist in (7.2.13)–(7.2.15) and we investigate the stability within

Fix(D̃2) of all solution branches.

1. (The solution branch with D̃4 ×Zc
2 symmetry) Since D̃4 ×Zc

2 is an axial isotropy sub-

group there is always a branch of solutions with this symmetry bifurcating from λ = 0.

With the values of the coefficients (7.2.12) the solution branch bifurcates supercritically so

exists when λ > 0. Within Fix(D̃2) it has eigenvalues

ξ1 = −2λ ξ2 = −17
2

λ + ρ ξ3 = −93
10

λ + ρ.

Thus the solution branch is stable when λ > 10
93 ρ and undergoes stationary bifurcations

at λ = 10
93 ρ and λ = 2

17 ρ.
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Figure 7.6: The top diagram is an unfolding diagram showing the lines on which bifurcations of

the solution branches occur in Example 7.2.3 as the circle around the codimension 2

point, λ = ρ = 0, is traversed. The gyratory bifurcation diagram at the bottom of this

figure shows the solution branches and their stability in Fix(D̃2). All bifurcations are

pitchfork bifurcations.
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2. (The solution branch with ˜O(2)×Zc
2 symmetry) With the values of the coefficients

(7.2.12), this solution branch bifurcates supercritically from λ = −ρ so exists when λ >

−ρ. Within Fix(D̃2) it has eigenvalues

ξ1 = −2(λ + ρ) ξ2 =
1

69
(79λ + 10ρ) ξ3 =

8
23

(λ + ρ) .

It undergoes a stationary bifurcation at λ = − 10
79 ρ but always has at least one positive

eigenvalues and so is always unstable.

3. (The solution branch with Õ×Zc
2 symmetry) With the values of the coefficients (7.2.12),

this solution branch bifurcates supercritically from λ = −ρ. Within Fix(D̃2) it has eigen-

values

ξ1 = −2(λ + ρ) ξ2 =
1

17
(19λ + 2ρ) ξ3 =

8
17

(λ + ρ) .

It undergoes a stationary bifurcation at λ = − 2
19 ρ but always has at least one positive

eigenvalues and so is always unstable.

4. (The solution branch with D̃6 ×Zc
2 symmetry) With the values of the coefficients (7.2.12),

this solution branch bifurcates supercritically from λ = −ρ. Within Fix(D̃2) it has eigen-

values

ξ1 = −2(λ + ρ) ξ2 =
1
6

(7λ + ρ) ξ3 = −1
2

(λ + ρ) .

Thus the solution branch is stable when λ < − 1
7 ρ.

5. (The solution branch with D̃d
4 symmetry) With the values of the coefficients (7.2.12), this

solution branch bifurcates from the solution with ˜O(2)×Z2 symmetry at λ = − 10
79 ρ and

joins the branch with D̃4 ×Zc
2 symmetry at λ = 10

93 ρ. Thus it exists only when ρ > 0.

Within Fix(D̃2) it has eigenvalues

ξ1 = − 8
43

(5λ− ρ) = 0

and ξ2 and ξ3 are the roots of

ξ2 − 1
860

(5627λ− 790ρ) ξ − 17
36980

(79λ + 10ρ) (93λ− 10ρ) .

They have negative real part for all values of λ and ρ where the solution exists and hence

the solution branch has three eigenvalues with negative real part when λ > 1
5 ρ. However

the branch only exists when λ < 10
93 ρ so the solution branch is always unstable.

6. (The solution branch with D̃4 symmetry) With the values of the coefficients (7.2.12),

this solution branch with two-armed spiral symmetry bifurcates from the solution with

Õ×Z2 symmetry at λ = − 2
19 ρ and joins the branch with D̃4 ×Zc

2 symmetry at λ = 2
17 ρ.

Thus it exists only when ρ > 0. Within Fix(D̃2) it has eigenvalues

ξ1 = − 8
45

(13λ− ρ)

and ξ2 and ξ3 are the roots of

ξ2 − 1
36

(251λ− 38ρ) ξ − 1
18

(19λ + 2ρ) (17λ− 2ρ) = 0.
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They have negative real part for all values of λ and ρ where the solution exists and hence

the solution branch is stable when λ > 1
13 ρ.

7. (The solution branch with D̃2 symmetry) With the values of the coefficients (7.2.12), the

solution branch with one-armed spiral symmetry bifurcates from the solution branch with

D̃6 ×Zc
2 symmetry when λ = − 1

7 ρ and joins the branch with D̃4 symmetry at λ = 1
13 ρ.

It can be found that this solution branch has one real negative eigenvalue and a complex

conjugate pair with negative real part in Fix(D̃2) for all values of λ and ρ where it exists.

Hence the solution is stable in Fix(D̃2).

The bifurcation diagram for ρ > 0 is as in Figure 7.7. There are no bifurcations when ρ < 0 and

the only solution branches that exist for these values of ρ are the axial solution branches. This

can be seen from the gyratory bifurcation diagram in Figure 7.8.

Figure 7.7: Bifurcation diagram for the system (7.2.13)–(7.2.15) when ρ > 0. The branch of

solutions with D̃2 (one-armed spiral) symmetry is always stable and the solution

with D̃4 (two-armed spiral) symmetry is stable for some values of λ and ρ. All

bifurcations are pitchfork bifurcations. Note that the L2 norm of the solution x =

(a, b, c) is given by ‖x‖2 = a2 + b2 + c2. The diagram is not to scale but the relative

sizes of the L2 norms are shown.
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Figure 7.8: The top diagram is an unfolding diagram showing the lines on which bifurcations of

the solution branches occur in Example 7.2.4 as the circle around the codimension 2

point, λ = ρ = 0, is traversed. The gyratory bifurcation diagram at the bottom of this

figure shows the solution branches and their stability in Fix(D̃2). All bifurcations are

pitchfork bifurcations.
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Example 7.2.5 (Solutions with spiral symmetry in the Swift–Hohenberg equation on a sphere

of radius near 3). Recall that in Section 6.4.2 we found that for the Swift–Hohenberg equation

(6.4.1) on a sphere of radius R = 3 + ε2R2 the relevant representation of O(3) is the represen-

tation on V2 ⊕V3 and the critical value of the parameter µ is 1
9 . We computed that the values of

the coefficients in the equivariant vector field are

µx = µ2 − 8
27

R2, α1 = − 15
28π

, β1 = − 6
11π

, γ1 =
3

44π
, γ2 =

1
44π

, (7.2.16)

µy = µ2 +
16
27

R2, α2 = − 25
22π

, β2 = − 175
286π

, δ1 = − 7
2860π

, δ2 = − 3
44π

and δ3 = − 1
22π

where µ = 1
9 + ε2µ2. Let µx = λ then µy = λ + ρ where ρ = 8

9 R2. Substituting these values into

equations (7.2.5)–(7.2.7) we have

ȧ = λa− 15
14π

a3 − 15
22π

ab2 − 23
44π

ac2 (7.2.17)

ḃ = (λ + ρ) b− 315
286π

b3 − 15
22π

ba2 − 371
572π

bc2 (7.2.18)

ċ = (λ + ρ) c− 1687
2860π

c3 − 23
22π

ca2 − 371
286π

cb2. (7.2.19)

As for the previous examples, we use the results of Section 7.2.1 to see where the solutions with

submaximal symmetry can exist and we investigate the stability within Fix(D̃2) of all solution

branches.

1. (The solution branch with D̃4 ×Zc
2 symmetry) Since D̃4 ×Zc

2 is an axial isotropy sub-

group there is always a branch of solutions with this symmetry bifurcating from λ = 0.

With the values of the coefficients (7.2.16) the solution branch bifurcates supercritically so

exists when λ > 0. Within Fix(D̃2) it has eigenvalues

ξ1 = −2λ ξ2 =
4
11

λ + ρ ξ3 =
4

165
λ + ρ.

When ρ > 0 the branch is unstable but when ρ < 0 it is stable when λ < − 11
4 ρ. There are

stationary bifurcations when λ = − 11
4 ρ and λ = − 165

4 ρ.

2. (The solution branch with ˜O(2)×Zc
2 symmetry) With the values of the coefficients

(7.2.16) this solution branch bifurcates supercritically from λ = −ρ so exists when λ >

−ρ. Within Fix(D̃2) it has eigenvalues

ξ1 = −2(λ + ρ) ξ2 =
1

1687
(192λ− 1495ρ) ξ3 = − 24

241
(λ + ρ) .

The eigenvalues ξ1 and ξ3 are always negative. There is a stationary bifurcation at λ =
1495
192 ρ when ρ > 0 and this solution is stable when λ < 1495

192 ρ.

3. (The solution branch with Õ×Zc
2 symmetry) With the values of the coefficients (7.2.16)

this solution branch bifurcates supercritically from λ = −ρ. Within Fix(D̃2) it has eigen-

values

ξ1 = −2(λ + ρ) ξ2 =
1

21
(8λ− 13ρ) ξ3 = − 8

45
(λ + ρ) .

The eigenvalues ξ1 and ξ3 are always negative. There is a stationary bifurcation at λ = 13
8 ρ

when ρ > 0 and this solution is stable when λ < 13
8 ρ.
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4. (The solution branch with D̃6 ×Zc
2 symmetry) With the values of the coefficients (7.2.16)

this solution branch bifurcates supercritically from λ = −ρ. Within Fix(D̃2) it has eigen-

values

ξ1 = −2(λ + ρ) ξ2 =
1

35
(9λ− 26ρ) ξ3 =

3
25

(λ + ρ) .

This branch of solutions always has at least one positive eigenvalue so it is always unsta-

ble. It undergoes a stationary bifurcation at λ = 26
9 ρ where ξ2 = 0.

5. (The solution branch with D̃d
4 symmetry) With the values of the coefficients (7.2.16) this

solution branch bifurcates from the solution with ˜O(2)×Z2 symmetry at λ = 1495
192 ρ when

ρ > 0 and the branch with D̃4 ×Zc
2 symmetry at λ = − 165

4 ρ when ρ < 0. Within Fix(D̃2)

it has eigenvalues

ξ1 =
4

269
(18λ− 199ρ)

and ξ2 and ξ3 are the roots of

ξ2 +
2

9415
(9607λ + 7040ρ) ξ +

1
9415

(192λ− 1495ρ) (4λ + 165ρ) = 0.

They have negative real part for all values of λ and ρ where the solution exists and hence

the solution branch is stable when λ < 199
18 ρ.

6. (The solution branch with D̃4 symmetry) With the values of the coefficients (7.2.16)

this solution branch with two-armed spiral symmetry bifurcates from the solution with

Õ×Z2 symmetry at λ = 13
8 ρ when ρ > 0 and the branch with D̃4 ×Zc

2 symmetry at

λ = − 11
4 ρ when ρ < 0. Within Fix(D̃2) it has eigenvalues

ξ1 = − 4
75

(6λ− ρ)

and ξ2 and ξ3 are the roots of

ξ2 +
2
35

(43λ + 22ρ) ξ +
1
35

(4λ + 11ρ) (8λ− 13ρ) = 0.

They have negative real part for all values of λ and ρ where the solution exists and hence

the solution branch is stable when λ > 1
6 ρ. Since the branch only exists when λ > 13

8 ρ it

is always stable.

7. (The solution branch with D̃2 symmetry) With the values of the coefficients (7.2.16) the

solution branch with one-armed spiral symmetry bifurcates from the solution branch with

D̃6 ×Zc
2 symmetry when λ = 26

9 ρ and the branch with D̃d
4 symmetry at λ = 199

18 ρ when

ρ > 0. The branch only exists for positive values of ρ. It can be found that this solution

branch has one positive and two negative eigenvalues in Fix(D̃2) for all values of λ and

ρ where it exists. Hence the solution is unstable.

The bifurcation diagram when ρ > 0 is as in Figure 7.9 and the bifurcation diagram when ρ < 0

is as in Figure 7.10. We can combine these bifurcation diagrams into a gyratory bifurcation

diagram as in Figure 7.11. Note that these bifurcation diagrams are qualitatively the same as

those for Example 7.2.3.
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Figure 7.9: Bifurcation diagram for the Swift–Hohenberg equation in Fix(D̃2) for the represen-

tation on V2 ⊕ V3 when ρ > 0. We find that the solution with the symmetry group

of a one-armed spiral, D̃2, is unstable where it exists. The solution with the sym-

metry group of a two-armed spiral, D̃4, is always stable. All bifurcations are pitch-

fork bifurcations. Note that the L2 norm of the solution x = (a, b, c) is given by

‖x‖2 = a2 + b2 + c2. The diagram is not to scale but the relative sizes of the L2

norms are shown.

Figure 7.10: Bifurcation diagram for the Swift–Hohenberg equation in Fix(D̃2) for the represen-

tation on V2 ⊕V3 when ρ < 0. We find that the solution with the symmetry group

of a one-armed spiral, D̃2, does not exist but a stable solution with D̃4 does exist

when λ > − 11
4 ρ and is always stable. All bifurcations are pitchfork bifurcations.

Note that the L2 norm of the solution x = (a, b, c) is given by ‖x‖2 = a2 + b2 + c2.

The diagram is not to scale but the relative sizes of the L2 norms are shown.
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Figure 7.11: The top diagram is an unfolding diagram showing the lines on which bifurca-

tions of the solution branches occur for the Swift–Hohenberg equation as the circle

around the codimension 2 point, λ = ρ = 0, is traversed. The gyratory bifurcation

diagram at the bottom of this figure shows the solution branches and their stability

in Fix(D̃2). All bifurcations are pitchfork bifurcations.
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Remark 7.2.6. We have found that for the Swift–Hohenberg equation on a sphere of radius

near 3, and with the parameter µ near 1
9 , solutions with the symmetries of one- and two-armed

spirals can exist for some values of λ and ρ = 8
9 R2. Recall that the relationships between the

parameters λ and ρ and the radius of the sphere R and the parameter µ in the Swift–Hohenberg

equation (6.4.1) are given by

R = 3 + ε2R2 and µ =
1
9

+ ε2µ2 =
1
9

+ ε2
(

λ +
8
27

R2

)
=

1
9

+ ε2
(

λ +
1
3

ρ

)
.

By restricting the O(3)×Z2 equivariant vector field for the representation of O(3)×Z2 on V2⊕
V3 to the invariant subspace Fix(D̃2) we have been able to find explicit expressions for the seven

branches of solutions which exist within this subspace and determine their stability within this

subspace. We have found that although a one-armed spiral pattern with D̃2 symmetry can exist

for some values of the parameters λ and ρ, the solution is not stable in this subspace. We have

also found that two-armed spiral patterns with D̃4 symmetry can exist for some values of the

parameters λ and ρ and moreover these solutions are stable within the subspace Fix(D̃2).

Sufficiently close to the codimension 2 point λ = ρ = 0, numerical simulations of the Swift–

Hohenberg equation (6.4.1) in the subspace Fix(D̃2) on a sphere of radius near 3 agree with the

analytical results above. With initial conditions within the invariant subspace Fix(D̃2) we can

find the stable solution branches and bifurcation points as in Figures 7.9 – 7.11 by varying the

values of ρ and λ.

However, if the initial conditions are random in the whole 12-dimensional space V2 ⊕ V3 then

the simulations lead us to believe that a solution with symmetry group Dd
4 (see Table 6.9) may

be stable in the whole space. These solutions have the symmetries of the ‘tennis ball’ pattern

as discovered in the numerical simulations of Matthews [65]. We now investigate the stability

of this solution analytically in the whole space, V2 ⊕V3 and also compute all of the eigenvalues

of the solution with D̃4 symmetry to determine if two-armed spirals can be stable in the whole

space for the Swift–Hohenberg equation.

Stability of two-armed spirals in V2 ⊕V3 for the Swift–Hohenberg equation

In Example 7.2.5 we found that in Fix(D̃2) the solution with the symmetries of a two-armed

spiral on a sphere, D̃4, is stable in the Swift–Hohenberg equation for all values of the bifurcation

parameters λ and ρ where it exists. We now investigate whether this solution is stable in the

whole space V2 ⊕V3 for any values of λ and ρ.

To do this we must compute the values of the nine eigenvalues in the complement of Fix(D̃2).

We find that four of these eigenvalues are the roots of

[
425250ξ2 + 405 (2124λ + 451ρ) ξ + 126 (λ− ρ) (2376λ + 4329ρ)

]2
= 0

so the eigenvalues are double and for all values of λ and ρ where the solution exists 2124λ +

451ρ > 0 and 126 (λ− ρ) (2376λ + 4329ρ) > 0 so the eigenvalues always have negative real

part.
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Another of the eigenvalues is

ξ = − 2
35

(27λ + 13ρ)

which is negative for all values of λ and ρ where the solution exists. The four other eigenvalues

are zero. Of these only three are forced to be zero by symmetry so one of them would be found

to be nonzero if we were to consider a higher order truncation of the equivariant vector field.

Hence it may be possible for this solution to be stable in the Swift–Hohenberg equation on a

sphere with radius near 3, depending on the values of coefficients of fifth order terms in the

equivariant vector field. However, numerical simulations suggest that the solution is in fact

unstable. Small perturbations from this solution lead the system to prefer a solution with Dd
4

symmetry. We now consider the stability of this ‘tennis ball solution’ with symmetry group Dd
4.

Stability of tennis ball pattern in V2 ⊕V3 for the Swift–Hohenberg equation

Numerical simulations of the Swift–Hohenberg on a sphere of radius approximately 3 with

random initial conditions i.e. starting at any point in V2⊕V3, lead us to believe that the solution

with Dd
4 symmetry is stable when it exists. This solution has the symmetries of a tennis ball as

found in the numerical simulations of Matthews [65]. Such a pattern is shown in Figure 7.12.

Figure 7.12: Images of a pattern with Dd
4 symmetry viewed (a) from the top and (b) from the

side.

The subgroup Dd
4 ⊂ O(3) × Z2 is certainly an isotropy subgroup in this representation (see

Table 6.9). We now confirm analytically, up to a degeneracy in one eigenvalue, that this solution

is indeed stable in V2 ⊕V3 at cubic order.

Recall from Table 6.9 that

Fix(Dd
4) = {(0, 0, a, 0, 0 ; 0, ib, 0, 0, 0,−ib, 0)} (7.2.20)

where a, b ∈ R. We find that in the subspace Fix(Dd
4) the equivariant vector field on V2 ⊕ V3

with the Swift–Hohenberg coefficients (7.2.16) reduces to

ȧ = λa− 15
28π

a3 − 15
22π

ab2 (7.2.21)

ḃ = (λ + ρ) b− 315
286π

b3 − 15
44π

a2b. (7.2.22)

These equations have a fixed-point solution with Dd
4 symmetry given by

a2 =
11
75

π (8λ− 13ρ) b2 =
286
525

π (4λ + 11ρ)
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which exists when ρ > 0 and λ > 13
8 ρ or ρ < 0 and λ > − 11

4 ρ.

The nonzero eigenvalues of this solution in V2 ⊕V3 are the roots of quadratic equations

ξ2 + Bξ + C = 0

and so have negative real part when B > 0 and C > 0. The quadratic equations are as follows.

• Two eigenvalues are the roots of

1575ξ2 + 30 (109λ + 18ρ) ξ + 26 (4λ + 11ρ) (10λ− 11ρ) = 0.

Since when the solution with Dd
4 symmetry exists

λ > − 18
109

ρ and (4λ + 11ρ) (10λ− 11ρ) > 0,

the roots always have negative real parts.

• Another two eigenvalues are the roots of

35ξ2 + 2 (43λ + 22ρ) ξ + (4λ + 11ρ) (8λ− 13ρ) = 0.

Since when the solution exists

λ > −22
43

ρ and (4λ + 11ρ) (8λ− 13ρ) > 0,

the roots always have negative real parts.

• There are double eigenvalues which are the roots of

15750ξ2 + 15 (2012λ + 633ρ) ξ + 2 (376λ + 299ρ) (13λ− 8ρ) = 0.

Since when the solution exists

λ > −299
376

ρ and (376λ + 299ρ) (13λ− 8ρ) > 0,

the roots always have negative real parts.

Hence all of the non-zero eigenvalues have negative real part for all values of λ and ρ where the

solution exists. We find that there are four zero eigenvalues using the cubic order truncation

of the equivariant vector field on V2 ⊕ V3. However only three of the four zero eigenvalues

are forced to be zero by symmetry. The other eigenvalue would be found to be non-zero if

we were to consider a higher order truncation of the equivariant vector field. Hence, as for

the solution with D̃4 symmetry, it may be that this solution is stable in the Swift–Hohenberg

equation on a sphere with radius near 3, depending on the values of coefficients of fifth order

terms in the equivariant vector field. Numerical simulations indicate that this solution is stable

to any perturbation in V2 ⊕ V3. This suggests that the final eigenvalue which depends on the

fifth order coefficients has negative real part when the solution exists.
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7.2.2 Spiral patterns in the representation on V3 ⊕V4

We next consider spiral patterns which can exist in the O(3)×Z2 equivariant vector field for

the representation on V3 ⊕V4 as computed in Section 6.3.6. The existence of solutions with the

symmetries of the axial isotropy subgroups in this representation is guaranteed by the equivari-

ant branching lemma (Theorem 2.4.6) and solutions with the symmetries of the other isotropy

subgroups may exist depending on the values of the coefficients in the equivariant vector field.

By Proposition 7.1.1 the twisted subgroups D̃2, D̃4 and D̃6 are isotropy subgroups in this rep-

resentation. These are the symmetry groups of the most symmetric one-, two- and three-armed

spiral patterns on the sphere respectively. We will determine if patterns with these symmetries

can exist for any values of the coefficients in the O(3)×Z2 equivariant vector field and if so,

we compute how these solutions bifurcate from other solutions. To do this we will study the

equilibria in the restriction of the vector field to Fix(D̃2). These solutions have the symmetries

of the isotropy subgroups which contain D̃2. We begin by computing these isotropy subgroups.

Isotropy subgroups of O(3)×Z2 in the representation on V3 ⊕V4 which contain D̃2

As discussed in Section 6.2.2, for the reducible representation of O(3)×Z2 on V3 ⊕V4 the axial

isotropy subgroups are precisely the axial isotropy subgroups for the irreducible representa-

tions of O(3) ×Z2 on V3 and V4 as found in Examples 6.2.6 and 6.2.7. Using Table 6.7 and

the massive chain criterion (Theorem 3.4.1) we can compute that the isotropy subgroups of

O(3)×Z2 in the representation on V3 ⊕V4 which contain D̃2 are as in Table 7.2. Note that D̃2

itself is an isotropy subgroup with

Fix(D̃2) = {(0, a, 0, b, 0, a, 0 ; ic, 0, id, 0, 0, 0,−id, 0,−ic)} (7.2.23)

for the copy of D̃2 which is given by

D̃2 = 〈 (Ry
π ,−1), (Rz

π , 1) 〉.

The one-armed spiral with this symmetry spirals between the two points on the surface of the

sphere which lie on the y-axis. In Table 7.2, for each isotropy subgroup Hθ , we give the form

of the invariant subspace Fix(Hθ) which is contained in Fix(D̃2) as above. The copy of Fix(D̃4)

given in Table 7.2 is that of a two-armed spiral with tips at the poles whereas the copy of Fix(D̃6)

contained in Fix(D̃2) as in (7.2.23) defines a three-armed spiral which, like the one-armed spiral,

has its tips on the y-axis.

The section of the lattice of isotropy subgroups of O(3)×Z2 in this representation including

only those isotropy subgroups with contain D̃2 is as in Figure 7.13.

The restriction of the equivariant vector field to Fix(D̃2)

To discover whether it is possible for solutions with the symmetries of one-, two- and three-

armed spirals (D̃2, D̃4 and D̃6 respectively) to exist in the equivariant vector field (6.3.24)–
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Isotropy H K Fixed-point subspace

subgroup Hθ

Õ×Zc
2 O×Zc

2 O− {(0, a, 0, 0, 0, a, 0 ; 0, 0, 0, 0, 0, 0, 0, 0, 0)}
˜O(2)×Zc

2 O(2)×Zc
2 O(2)− {(0, 0, 0, b, 0, 0, 0 ; 0, 0, 0, 0, 0, 0, 0, 0, 0)}

(D̃6 ×Zc
2)Dd

6
D6 ×Zc

2 Dd
6

{(
0,

√
3

10 b, 0, b, 0,
√

3
10 b, 0 ; 0, 0, 0, 0, 0, 0, 0, 0, 0

)}

D̃4 ×Zc
2 D4 ×Zc

2 D2 ×Zc
2 {(0, 0, 0, 0, 0, 0, 0 ; 0, 0, id, 0, 0, 0,−id, 0, 0)}

(D̃6 ×Zc
2)D3×Zc

2
D6 ×Zc

2 D3 ×Zc
2

{(
0, 0, 0, 0, 0, 0, 0 ; ic, 0,

√
7ic, 0, 0, 0,−√7ic, 0,−ic

)}

D̃8 ×Zc
2 D8 ×Zc

2 D4 ×Zc
2 {(0, 0, 0, 0, 0, 0, 0 ; ic, 0, 0, 0, 0, 0, 0, 0,−ic)}

(D̃2 ×Zc
2)Dz

2
D2 ×Zc

2 Dz
2 {(0, a, 0, b, 0, a, 0 ; 0, 0, 0, 0, 0, 0, 0, 0, 0)}

(D̃2 ×Zc
2)Z2×Zc

2
D2 ×Zc

2 Z2 ×Zc
2 {(0, 0, 0, 0, 0, 0, 0 ; ic, 0, id, 0, 0, 0,−id, 0,−ic)}

D̃6 D6 D3

{(
0,

√
3
10 b, 0, b, 0,

√
3

10 b, 0 ; ic, 0,
√

7ic, 0, 0, 0,−√7ic, 0,−ic
)}

D̃4 D4 D2 {(0, a, 0, 0, 0, a, 0 ; 0, 0, id, 0, 0, 0, id, 0, 0)}
D̃d

8 Dd
8 Dz

4 {(0, 0, 0, b, 0, 0, 0 ; ic, 0, 0, 0, 0, 0, 0, 0,−ic)}
(D̃d

4)Dz
2

Dd
4 Dz

2 {(0, 0, 0, b, 0, 0, 0 ; 0, 0, id, 0, 0, 0,−id, 0, 0)}
(D̃d

4)Z−
4

Dd
4 Z−

4 {(0, a, 0, 0, 0, a, 0 ; ic, 0, 0, 0, 0, 0, 0, 0,−ic)}
D̃2 D2 Z2 {(0, a, 0, b, 0, a, 0 ; ic, 0, id, 0, 0, 0,−id, 0,−ic)}

Table 7.2: Isotropy subgroups of O(3)×Z2 in the representation on V3 ⊕V4 which contain D̃2.

(6.3.25) we consider the restriction to the subspace Fix(D̃2) given by (7.2.23) where

ȧ = µxa + (2α1 − 50γ1)a3 + (α1 + 15γ1)ab2 + (2β1 − 420γ2 + 56γ3 − 140γ4)ac2

+(2β1 − 320γ2 + 26γ3 − 140γ4)ad2 + (2γ2 − γ3 + 4γ4)
√

210bcd (7.2.24)

ḃ = µxb + (2α1 + 30γ1)ba2 + (α1 − 9γ1)b3 + (2β1 − 336γ2 + 42γ3 − 252γ4)bc2

+(2β1 − 324γ2 + 24γ3 − 108γ4)bd2 + 2(2γ2 − γ3 + 4γ4)
√

210acd (7.2.25)

ċ = µyc + 2β2ca2 + (β2 + 7δ2 + 7δ3 + 21δ4)cb2 + 2α2c3 + (2α2 − 280δ1)cd2

+(δ2 + δ3 − δ4)
√

210abd (7.2.26)

ḋ = µyd + (2β2 + 60δ2 + 30δ3 + 10δ4)da2 + (β2 + 16δ2 + 16δ3)db2 + (2α2 − 280δ1)dc2

+(2α2 − 240δ1)d3 + (δ2 + δ3 − δ4)
√

210abc (7.2.27)

As for the representation on V2 ⊕V3, these equations have residual symmetry

N(D̃2)/D̃2 = D4 ×Zc
2 ×Z2/D̃2 = Z2 ×Z2 ×Z2,

so if solutions with D̃2 symmetry exist then there are |N(D̃2)/D̃2| = 8 equivalent solutions

within Fix(D̃2).

As in the case for the representation on V2 ⊕V3, we assume that µx = λ and µy = λ + ρ. Then

the trivial solution is stable when λ < min(0,−ρ). At λ = 0 the ` = 3 modes become unstable

and the equivariant branching lemma guarantees that the unrestricted system (6.3.24)–(6.3.25)

has solution branches with the symmetries of axial isotropy subgroups of O(3) × Z2 in the

representation on V3 which bifurcate at λ = 0. Similarly at λ = −ρ the ` = 4 modes become

unstable and solution branches with the symmetries of axial isotropy subgroups of O(3)×Z2

in the representation on V4 bifurcate.
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Figure 7.13: The lattice of isotropy subgroups of O(3)×Z2 which contain D̃2 for the represen-

tation on V3 ⊕V4.

It is possible to find analytic expressions for solutions to (7.2.24)–(7.2.27) with the symmetries

of all isotropy subgroups in Table 7.2 with the exceptions of (D̃2 ×Zc
2)Z2×Zc

2
, (D̃2 ×Zc

2)Dz
2

and

D̃2. Solutions with (D̃2 ×Zc
2)Z2×Zc

2
or (D̃2 ×Zc

2)Dz
2

symmetry do not exist; every solution in

Fix((D̃2 ×Zc
2)Z2×Zc

2
) has (D̃6 ×Zc

2)D3×Zc
2

symmetry and every solution in Fix((D̃2 ×Zc
2)Dz

2
)

has (D̃6 ×Zc
2)Dd

6
symmetry. Solutions with D̃2 symmetry do exist but unfortunately, unlike the

case for the representation on V2 ⊕V3, we are not able to find an expression for the equilibrium

solutions to (7.2.24)–(7.2.27) with D̃2 symmetry. To find solutions with D̃2 symmetry and their

stability within Fix(D̃2) it is necessary to use a numerical branch continuation package such as

AUTO. This requires us to give values for the coefficients α1, α2, β1, β2, γ1, γ2, γ3, γ4, δ1, δ2, δ3

and δ4.

In Example 7.2.7 we will consider the system (7.2.24)–(7.2.27) with the values of the coefficients

which we computed in Section 6.4 for the Swift–Hohenberg equation on a sphere of radius

approximately 4.

Example 7.2.7 (Solutions with spiral symmetry in the Swift–Hohenberg equation on a sphere

of radius near 4). Recall that in Section 6.4.2 we found that for the Swift–Hohenberg equation

(6.4.1) on a sphere of radius R = 4 + ε2R2 the relevant representation of O(3) is the representa-

tion on V3 ⊕V4 and the critical value of the parameter µ is 1
16 . We computed that the values of

the coefficients in the equivariant vector field are

µx = µ2 − 3
16

R2, α1 = − 175
286π

, β1 = − 735
572π

, γ1 = − 7
2860π

, (7.2.28)

γ2 = − 21
2860π

, γ3 = − 5
143π

, γ4 = − 7
2860π

, µy = µ2 +
5
16

R2, α2 = − 6615
9724π

,
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β2 = − 315
572π

, δ1 = − 27
34034π

, δ2 = − 3
286π

δ3 =
3

143π
and δ4 = 0.

Let µx = λ then µy = λ + ρ where ρ = 1
2 R2. Substituting these values into equations (7.2.24)–

(7.2.27) we have

ȧ = λa− 315
286π

a3 − 371
572π

ab2 − 315
286π

ac2 − 225
286π

ad2 +
3
√

210
286π

bcd (7.2.29)

ḃ = λb− 1687
2860π

b3 − 371
286π

ba2 − 21
22π

bc2 − 219
286π

bd2 +
3
√

210
143π

acd (7.2.30)

ċ = (λ + ρ) c− 6615
4862π

c3 − 315
286π

ca2 − 21
44π

cb2 − 5535
4862π

cd2 +
3
√

210
286π

abd (7.2.31)

ḋ = (λ + ρ) d− 39825
34034π

d3 − 225
286π

da2 − 219
572π

db2 − 5535
4862π

dc2 +
3
√

210
286π

abc. (7.2.32)

We now find the solutions of (7.2.29)–(7.2.32) for which there are explicit expressions. We com-

pute their stability in Fix(D̃2) and expect to find bifurcations where it is possible that a solution

with D̃2 symmetry may be created.

1. (The solution branch with Õ×Zc
2 symmetry) Since Õ×Zc

2 is an axial isotropy sub-

group, a branch of solutions with this symmetry bifurcating from λ = 0 is guaranteed to

exist by the equivariant branching lemma. It is given by b = c = d = 0 and

a2 =
286
315

πλ.

The solution branch bifurcates supercritically so exists when λ > 0. Within Fix(D̃2) it has

eigenvalues

ξ1 = −2λ ξ2 = − 8
45

λ ξ3 = ρ ξ4 =
(2λ + 7ρ)

7
.

When ρ > 0 the branch is unstable but when ρ < 0 it is stable when λ < − 7
2 ρ. There are

stationary bifurcations when ρ = 0 and also when λ = − 7
2 ρ for ρ < 0.

2. (The solution branch with ˜O(2)×Zc
2 symmetry) Since ˜O(2)×Zc

2 is also an axial isotropy

subgroup a branch of solutions with this symmetry bifurcating from λ = 0 is guaranteed

to exist. It is given by a = c = d = 0 and

b2 =
2860
1687

πλ.

The solution branch bifurcates supercritically so exists when λ > 0. Within Fix(D̃2) it has

eigenvalues

ξ1 = −2λ ξ2 = − 24
241

λ ξ3 =
(46λ + 241ρ)

241
ξ4 =

(592λ + 1687ρ)
1687

.

When ρ > 0 the branch is unstable but when ρ < 0 it is stable when λ < − 1687
592 ρ. There

are stationary bifurcations when λ = − 241
46 ρ and λ = − 1687

592 ρ for ρ < 0.

3. (The solution branch with (D̃6 ×Zc
2)Dd

6
symmetry) A branch of solutions with this sym-

metry is guaranteed to bifurcate from λ = 0 since (D̃6 ×Zc
2)Dd

6
is an axial isotropy sub-

group. It is given by c = d = 0, a =
√

3
10 b and

b2 =
143
140

πλ.
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The solution branch bifurcates supercritically so exists when λ > 0. Within Fix(D̃2) it has

eigenvalues

ξ1 = −2λ ξ2 =
3
25

λ ξ3 =
(2λ + 5ρ)

5
ξ4 =

(λ + 7ρ)
7

.

Since ξ1 and ξ2 have opposite signs this solution can never be stable. When ρ < 0 there

are stationary bifurcations when λ = − 5
2 ρ and λ = −7ρ.

4. (The solution branch with D̃4 ×Zc
2 symmetry) A branch of solutions with this symmetry

is guaranteed to bifurcate from λ = −ρ since D̃4 ×Zc
2 is an axial isotropy subgroup. It is

given by a = b = c = 0 and

d2 =
34034
39825

π (λ + ρ) .

The solution branch bifurcates supercritically so exists when λ > −ρ. Within Fix(D̃2) it

has eigenvalues

ξ1 = −2 (λ + ρ) ξ2 =
8

295
(λ + ρ) ξ3 =

(58λ− 119ρ)
177

ξ4 =
(4588λ− 8687ρ)

13275
.

Since ξ1 and ξ2 have opposite signs this solution can never be stable. When ρ > 0 there

are stationary bifurcations of this solution when λ = 119
58 ρ and λ = 8687

4588 ρ.

5. (The solution branch with (D̃6 ×Zc
2)D3×Zc

2
symmetry) Since (D̃6 ×Zc

2)D3×Zc
2

is an axial

isotropy subgroup, a branch of solutions with this symmetry bifurcating from λ = −ρ is

guaranteed to exist. It is given by a = b = 0, d =
√

7c and

c2 =
2431
22680

π (λ + ρ) .

The solution branch bifurcates supercritically so exists when λ > −ρ. Within Fix(D̃2) it

has eigenvalues

ξ1 = −2 (λ + ρ) ξ2 = − 1
21

(λ + ρ) ξ3 =
(11λ− 34ρ)

45
ξ4 =

(10λ− 17ρ)
27

.

When ρ < 0 the branch is unstable but when ρ > 0 it is stable when λ < 17
10 ρ. There are

stationary bifurcations of this solution when λ = 17
10 ρ and λ = 34

11 ρ for ρ < 0.

6. (The solution branch with D̃8 ×Zc
2 symmetry) Since D̃8 ×Zc

2 is an axial isotropy sub-

group, a branch of solutions with this symmetry which bifurcates from λ = −ρ is guar-

anteed to exist. It is given by a = b = d = 0 and

c2 =
4862
6615

π (λ + ρ) .

The solution branch bifurcates supercritically so exists when λ > −ρ. Within Fix(D̃2) it

has eigenvalues

ξ1 = −2 (λ + ρ) ξ2 =
8

49
(λ + ρ) ξ3 =

(4λ− 17ρ)
21

ξ4 =
(94λ− 221ρ)

315
.

Since ξ1 and ξ2 have opposite signs this solution can never be stable. When ρ > 0 there

are stationary bifurcations of this solution when λ = 17
4 ρ and λ = 221

94 ρ.
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7. (The solution branch with D̃6 symmetry) This solution with the symmetries of a three-

armed spiral is given by a =
√

3
10 b and d =

√
7c where

b2 =
143π (10λ− 17ρ)

2352
and c2 =

2431π (2λ + 5ρ)
70560

and so it exists when ρ > 0 and λ > 17
10 ρ and also when ρ < 0 and λ > − 5

2 ρ. It bifurcates

from the solution with ˜(D6 ×Zc
2)D3×Zc

2
symmetry at λ = 17

10 ρ when ρ > 0 and from the

solution with ˜(D6 ×Zc
2)Dd

6
symmetry at λ = − 5

2 ρ when ρ < 0.

Within Fix(D̃2) it has eigenvalues

ξ1 = − 9
49

(λ− ρ) ξ2 = − 1
105

(λ + 34ρ)

and ξ3 and ξ4 are the roots of

21ξ2 + 4 (13λ + 2ρ) ξ + 4 (10λ− 17ρ) (2λ + 5ρ) = 0.

Since 13λ + 2ρ > 0 and (10λ− 17ρ) (2λ + 5ρ) > 0 for all values of λ and ρ where the

solution exists, these eigenvalues always have negative real parts. We can see that ξ1 < 0

when the solution exists and when ρ < 0 there is a stationary bifurcation at λ = −34ρ

where it may be possible that a branch of solutions with D̃2 symmetry bifurcates. This

solution branch is always stable when ρ > 0 and also when ρ < 0 and λ > −34ρ.

8. (The solution branch with D̃4 symmetry) This solution with the symmetries of a two-

armed spiral is given by b = c = 0,

a2 =
143π (58λ− 119ρ)

14490
and d2 =

2431π (2λ + 7ρ)
10350

and so it exists when ρ > 0 and λ > 119
58 ρ and also when ρ < 0 and λ > − 7

2 ρ. It bifurcates

from the solution with D̃4 ×Zc
2 symmetry at λ = 119

58 ρ when ρ > 0 and from the solution

with Õ×Zc
2 symmetry at λ = − 7

2 ρ when ρ < 0.

Within Fix(D̃2) it has eigenvalues which are the roots of the two quadratic equations

161ξ2 + (380λ + 203ρ) ξ + (58λ− 119ρ) (2λ + 7ρ) = 0 (7.2.33)

595125ξ2 + 115 (1384λ− 3551ρ) ξ +
(

2656λ2 − 62368λρ + 119476ρ2
)

= 0. .(7.2.34)

The roots of (7.2.33) always have negative real part for the values of ρ and λ where the

solution exists. The eigenvalues resulting from (7.2.34) are zero when

λ =
(

1949
166

± 345
332

√
86

)
ρ.

Hence when ρ > 0 there are stationary bifurcations at these points where it is possible

for solutions with D̃2 symmetry to bifurcate. This solution branch is always stable where

exists for ρ < 0 and when ρ > 0 it is stable when λ >
(

1949
166 + 345

332

√
86

)
ρ.

9. (The solution branch with D̃d
8 symmetry) This solution is given by a = d = 0,

b2 =
143π (94λ− 221ρ)

11487
and c2 =

2431π (46λ + 241ρ)
344610
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and so it exists when ρ > 0 and λ > 221
94 ρ and also when ρ < 0 and λ > − 241

46 ρ. It

bifurcates from the solution with D̃8 ×Zc
2 symmetry at λ = 221

94 ρ when ρ > 0 and from

the solution with ˜O(2)×Zc
2 symmetry at λ = − 241

46 ρ when ρ < 0.

Within Fix(D̃2) it has eigenvalues which are the roots of the two quadratic equations

8205ξ2 + (18572λ + 11327ρ) ξ + (94λ− 221ρ) (46λ + 241ρ) = 0 (7.2.35)

6283389ξ2 − (415720λ− 187621ρ) ξ −
(

188640λ2 + 346464λρ− 613836ρ2
)

= 0. (7.2.36)

The roots of (7.2.35) always have negative real part for the values of ρ and λ where the

solution exists. Equation (7.2.36) gives one positive and one negative eigenvalue for all

values of λ and ρ where the solution exists and hence this solution branch is never stable

and undergoes no bifurcations.

10. (The solution branch with (D̃d
4)Dz

2
symmetry) This solution is given by a = c = 0,

b2 =
143π (4588λ− 8687ρ)

644133
and d2 =

2431π (592λ + 1687ρ)
2760570

and so it exists when ρ > 0 and λ > 8687
4588 ρ and also when ρ < 0 and λ > − 1687

592 ρ. It

bifurcates from the solution with D̃4 ×Zc
2 symmetry at λ = 8687

4588 ρ when ρ > 0 and from

the solution with ˜O(2)×Zc
2 symmetry at λ = − 1687

592 ρ when ρ < 0.

Within Fix(D̃2) it has eigenvalues which are the roots of the two quadratic equations

3220665ξ2 + (7799378λ + 3869978ρ) ξ + (592λ + 1687ρ) (4588λ− 8687ρ) = 0 (7.2.37)

2822498787ξ2 − 61346 (6919λ− 14324ρ) ξ

−
(

18727920λ2 + 97350552λρ− 239976828ρ2
)

= 0 .(7.2.38)

The roots of (7.2.37) always have negative real part for the values of ρ and λ where the

solution exists. The eigenvalues resulting from (7.2.38) are zero when

λ =
(
−36543

14060
± 1

14060

√
3868479589

)
ρ = λ∗±ρ.

Of these two points, the solution only exists at λ = λ∗−ρ when ρ < 0. There is a stationary

bifurcation at this point where it is possible for solutions with D̃2 symmetry to bifurcate.

This solution branch is stable when ρ < 0 and λ < λ∗−ρ.

11. (The solution branch with (D̃d
4)Z−

4
symmetry) This solution is given by b = d = 0,

a2 =
143π (4λ− 17ρ)

630
and c2 =

2431πρ

2520

and so it exists when ρ > 0 and λ > 17
4 ρ. It bifurcates from the solution with D̃8 ×Zc

2

symmetry at λ = 17
4 ρ when ρ > 0 and from the solution with Õ×Zc

2 symmetry at ρ = 0.

Within Fix(D̃2) it has eigenvalues which are the roots of the two quadratic equations

ξ2 + 2 (λ + ρ) ξ + ρ (4λ− 17ρ) = 0 (7.2.39)
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315ξ2 − 2 (17λ + 152ρ) ξ −
(

16λ2 − 88λρ− 68ρ2
)

= 0. (7.2.40)

The roots of (7.2.39) always have negative real part for the values of ρ and λ where the

solution exists. The eigenvalues resulting from (7.2.40) are zero when

λ =
(

11
4
± 3

4

√
21

)
ρ.

Of these two points, the solution only exists at λ =
(

11
4 ± 3

4

√
21

)
ρ when ρ > 0. There is

a stationary bifurcation at this point where it is possible for solutions with D̃2 symmetry

to bifurcate. This solution branch is never stable.

Images of solutions with each of these symmetry types and also a solution with D̃2 symmetry

are shown in Figure 7.14.

We have found seven stationary bifurcations from which it may be possible for a solution with

D̃2 symmetry to bifurcate. Four of these bifurcations occur for ρ > 0 and the other three occur

when ρ < 0. We can now use AUTO to locate these branches of solutions and compute their

stability within Fix(D̃2). We find that the bifurcation diagram for ρ > 0 is as in Figure 7.15

and the bifurcation diagram for ρ < 0 is as in Figure 7.16. We can combine these bifurcation

diagrams into a gyratory bifurcation diagram as in Figures 7.17 and 7.18.

Remark 7.2.8. We have found that for the Swift–Hohenberg equation on a sphere of radius

near 4 and with the parameter µ near 1
16 , solutions with the symmetries of one-, two- and

three-armed spirals can exist for some values of λ and ρ = 1
2 R2. Recall that the relationships

between the parameters λ and ρ and the radius of the sphere R and the parameter µ in the

Swift–Hohenberg equation (6.1.1) are given by

R = 4 + ε2R2 and µ =
1
16

+ ε2µ2 =
1
16

+ ε2
(

λ +
3
16

R2

)
=

1
16

+ ε2
(

λ +
3
8

ρ

)
.

By restricting the O(3) ×Z2 equivariant vector field for the representation of O(3) ×Z2 on

V3 ⊕ V4 to the invariant subspace Fix(D̃2) we have been able to find explicit expressions for

eleven types of solution branches which exist within this subspace and determine their stability

within this subspace. Solutions with D̃2 symmetry and their stability were found using the

numerical branch continuation package AUTO.

We have found that it is possible for solutions with the symmetries of one, two and three-

armed spiral patterns to exist and that each of these solution types can be stable within Fix(D̃2)

for some values of the parameters λ and ρ.
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Õ×Zc
2

˜O(2)×Zc
2 (D̃6 ×Zc

2)Dd
6

D̃4 ×Zc
2

(D̃6 ×Zc
2)3×Zc

2
D̃8 ×Zc

2 D̃6 (i) D̃6 (ii)

D̃4 (i) D̃4 (ii) D̃d
8 (i) D̃d

8 (ii)

(D̃d
4)Dz

2
(i) (D̃d

4)Dz
2

(ii) (D̃d
4)Z−

4
(i) (D̃d

4)Z−
4

(ii)

D̃2 (i) D̃2 (ii)

Figure 7.14: Images of solutions to (7.2.24)–(7.2.27). These solutions all have symmetry groups

containing D̃2. In some cases two views of the solution are given to fully describe

the symmetries.
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Figure 7.17: Unfolding diagram for the Swift–Hohenberg equation in Fix(D̃2) for the represen-

tation on V3 ⊕ V4. This diagram shows the lines on which bifurcations of the so-

lution branches occur as the circle around the codimension 2 point, λ = ρ = 0, is

traversed.
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Sufficiently close to the codimension 2 point λ = ρ = 0, numerical simulations of the Swift–

Hohenberg equation (6.1.1) in the subspace Fix(D̃2) on a sphere of radius near 4 agree with the

analytical results above. With initial conditions within the invariant subspace Fix(D̃2) we can

find the stable solution branches and bifurcation points as in Figures 7.15 – 7.18 by varying the

values of ρ and λ.

7.2.3 Conclusions on stationary spirals in the Swift–Hohenberg equation

In Examples 7.2.5 and 7.2.7 we have seen that it is possible for spiral patterns with symmetries

D̃2m contained in the group O(3)×Z2 to exist in the Swift–Hohenberg equation on spheres of

radius near 3 and 4 where the relevant representations of O(3)×Z2 are on V2 ⊕V3 and V3 ⊕V4

respectively.

We have found that in the representation on V2 ⊕V3, two-armed spirals can exist and are stable

to perturbations within the subspace Fix(D̃2) for all values of λ and ρ where the solution exists.

We have also seen that it may be possible for these solutions to be stable in the whole space

V2 ⊕V3 depending on the values of coefficients of order 5 terms in the equivariant vector field.

In addition we found that one-armed spirals can exist, although they are never stable.

In the representation on V3 ⊕V4 we found that it is possible for solutions with the symmetries

of one, two and three-armed spiral patterns to exist. We have found that each of these solution

types can be stable within Fix(D̃2) for some values of the parameters λ and ρ.

Numerical simulations in MATLAB of the Swift–Hohenberg equation (6.1.1) on spheres of radii

near 3 and 4 agree with these analytical results sufficiently close to the codimension 2 point

λ = ρ = 0. Furthermore, simulations on spheres of larger radii suggest that one-armed spirals

in particular exist and may be stable to any small perturbations. For example, the pattern

shown in Figure 7.19 results from a simulation with random initial conditions on a sphere of

radius R = 6.01 and µ = 0.25.

Figure 7.19: One-armed spiral solution resulting from numerical simulation of Swift–

Hohenberg equation (6.1.1) with R = 6.01 and µ = 0.25.

We now wish to discover whether the spiral patterns with symmetry groups D̃2m contained in

O(3)×Z2 which we have found in the representations on V2 ⊕ V3 and V3 ⊕ V4 can persist as

solutions with less symmetry when the symmetry is weakly broken from O(3)×Z2 to O(3).
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7.3 Persistence of symmetric spiral patterns under forced sym-

metry breaking

In Section 7.2 we found several spiral patterns with symmetries D̃2m ⊂ O(3)×Z2 which can

exist on the sphere, both generically and in specific examples including the Swift–Hohenberg

equation. These patterns all have the symmetry (7.1.3) which means that the areas on the sur-

face of the sphere where the pattern function, w(θ, φ, t), is positive and negative are of identical

size and shape. We now consider what happens to spiral patterns with D̃2m symmetry when

the overall symmetry of the system is slightly broken from O(3) × Z2 to O(3). Can spiral

patterns with D̃2m symmetry persist as spiral patterns without the symmetry (7.1.3)?

If a system has overall symmetry O(3)×Z2, this can be weakly broken to O(3) by introducing

small terms which are only equivariant with respect to O(3). This means adding small even

order terms to vector fields which are equivariant with respect to O(3) ×Z2 or equivalently

adding small quadratic terms to PDEs such as the Swift–Hohenberg equation (6.1.1) which

break the w → −w symmetry.

Suppose that z0 is an equilibrium solution of a O(3)×Z2 equivariant vector field for some rep-

resentation on V` ⊕V`+1 which has isotropy subgroup Hθ . The isotropy subgroup is uniquely

determined by the pair of subgroups of O(3), (H, K) where H/K = Z2 or 1. Suppose now that

small even order terms which commute only with O(3) are added to the vector field. Solutions

in this vector field have the symmetries of isotropy subgroups of O(3) in the representation

on V` ⊕V`+1. Should the solution z0 with Hθ symmetry persist, it would have only symmetry

K. This means that if z0 is a one-armed spiral solution with D̃2 symmetry then, if it persists

after symmetry breaking terms are added, it would have only Z2 symmetry. Similarly an m-

armed spiral with D̃2m symmetry, if it persists, would have Dm symmetry. We now investigate

whether it is possible for these solutions to persist.

Remark 7.3.1. Recall from Section 2.4.3 that it is possible for secondary steady-state bifurca-

tions from group orbits of equilibria to lead to relative equilibria as well as new equilibria.

By Theorem 2.4.9, the number of frequencies of a relative equilibrium (O(3)) z0 with isotropy

subgroup Dm, (the symmetries of an m-armed spiral without symmetry (7.1.3)) when m ≥ 2 is

k = rank
(

NO(3)(Dm)/Dm

)
= 0 for all m ≥ 2

and hence when breaking symmetry from O(3)×Z2 to O(3) m-armed spiral patterns for m ≥ 2

(if they persist) remain stationary. In contrast, since

k = rank
(

NO(3)(Z2)/Z2

)
= 1,

in general, one-armed spiral patterns with Z2 symmetry (if they exist) are singly periodic i.e.

they are forced to rotate.
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7.3.1 Persistence of m-armed spirals for m ≥ 2

Throughout this section the representation of O(3) is assumed to be the reducible representa-

tion on V` ⊕V`+1.

In order to show that m-armed spirals for m ≥ 2 with D̃2m symmetry persist as m-armed spirals

with Dm symmetry when O(3)×Z2 symmetry is broken to O(3) we use the Implicit Function

Theorem:

Theorem 7.3.2 (Implicit Function Theorem). Suppose that F : Rp ×Rn → Rp is differentiable

with F(a, b) = 0 and det(dF)|(a,b) 6= 0 then for (c, d) in a neighbourhood of (a, b) the system

F(c, d) = 0 has the unique solution c = g(d) and g is differentiable.

Suppose that F : R4(`+1) ×Rn → R4(`+1) is the O(3) equivariant vector field for the represen-

tation on V` ⊕ V`+1 to cubic order where the vector of amplitudes of the spherical harmonics

is z ∈ R4(`+1). Suppose further that (α, β) ∈ Rn is a vector containing all of the coefficient

values of each of the terms in the vector field where α ∈ Rm is the vector of coefficients of the

quadratic terms in z and β ∈ Rn−m is the vector of coefficients of the cubic terms. When α = 0,

F is equivariant with respect to O(3)×Z2 since there are no quadratic terms.

Suppose that F(z0, 0, β0) = 0 where z0 is a solution with symmetry Hθ = (H, K) ⊂ O(3)×Z2

and det(dF)|(z0,0,β0) 6= 0 then by the Implicit Function Theorem the system F(z, α, β) = 0 has

a unique solution z1 = g(α, β) in a neighbourhood of (z0, 0, β0) (i.e. α near 0, β near β0 and z1

near z0) and this solution has symmetry K.

For a stationary solution z0 in the O(3) × Z2 equivariant vector field with symmetry Hθ to

persist as a stationary solution with K symmetry in the O(3) equivariant vector field by the Im-

plicit Function Theorem we require that (dF)(z0,0,β) have no zero eigenvalues. In other words,

the solution with symmetry Hθ has no zero eigenvalues in Fix(K).

Theorem 7.3.3. Stationary solutions z0 with symmetry D̃2m (m ≥ 2) which exist within O(3) ×
Z2 equivariant vector fields persist as stationary solutions with Dm symmetry when the O(3) ×Z2

symmetry is broken to O(3) by adding small even order terms to the vector field.

Proof. We must show that the solution z0 with D̃2m symmetry has no zero eigenvalues within

Fix(Dm) in order to use the Implicit Function Theorem to show the persistence of the solution.

Recall that generically the solution with D̃2m symmetry has

dim(O(3)×Z2)− dim(D̃2m) = 3

zero eigenvalues in V` ⊕V`+1. In the restriction of the O(3) equivariant vector field to Fix(Dm)

the equations are equivariant with respect to NO(3)(Dm)/Dm. Since

dim(NO(3)(Dm)/Dm) = 0 ∀m ≥ 2

the group orbit of any solution in Fix(Dm) is zero dimensional and hence generically no solution

which exists in Fix(D̃2m) has a zero eigenvalue in Fix(Dm). The three eigenvalues of the solu-

tion with D̃2m symmetry which are forced to be zero by symmetry must lie in the complement

of Fix(Dm).
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Furthermore, in a small enough neighbourhood of the solution with D̃2m symmetry, solutions

with Dm symmetry will have the same stability properties.

7.3.2 Persistence of one-armed spiral solutions

Since dim(NO(3)(Z2)/Z2) = 1 every solution in Fix(D̃2) has a zero eigenvalue in Fix(Z2)

and hence the Implicit Function Theorem cannot be used to show the persistence of one-armed

spiral solutions with D̃2 symmetry. These one-armed spiral patterns cannot be shown to persist

generically. We must consider each one-armed spiral on a case by case basis.

Recall that in Example 7.2.5 we found an (unstable) one-armed spiral pattern with D̃2 symmetry

in the O(3)×Z2 equivariant vector field for the representation on V2 ⊕V3 with the coefficient

values for the Swift–Hohenberg equation. We now demonstrate that this solution can persist as

a solution with Z2 symmetry when small quadratic terms are added to the Swift–Hohenberg

equation.

Persistence of one-armed spiral solutions in the Swift–Hohenberg equation

Breaking the symmetry from O(3)×Z2 to O(3) in the case of the Swift–Hohenberg equation

(6.1.1) on the sphere is equivalent to adding a small even order term to the equation which

breaks the w → −w symmetry. The most obvious term to add is a quadratic nonlinearity

giving
∂w
∂t

= µw− (1 +∇2)2w + sw2 − w3, (7.3.1)

where s is small. The aim is to discover whether spiral solutions with D̃2 symmetry which

exist when s = 0, and are stationary, can persist as solutions with Z2 symmetry when s is

nonzero. Recall that, in general, spiral patterns with Z2 symmetry, if they exist, are periodic.

However, (7.3.1) is variational and as such cannot have periodic solutions. Thus one-armed

spiral solutions of (7.3.1) will remain stationary when s 6= 0.

Example 7.3.4 (Persistence of one-armed spirals in the Swift–Hohenberg equation on a sphere

of radius near 3). Recall from Section 6.4.2 that for a sphere of radius near 3 the relevant rep-

resentation of O(3) is the reducible representation on V2 ⊕V3. To cubic order the general O(3)

equivariant vector field for this representation is

f (z, λ) = (g(z, λ); h(z, λ))

where

g(z, λ) = µxx + ηU(x) + νV(y) + α1x|x|2 + β1x|y|2 + γ1P(x, y) + γ2Q(x, y) (7.3.2)

h(z, λ) = µyy + ζW(x, y) + α2y|x|2 + β2y|y|2 + δ1R(y) + δ2S(x, y) + δ3T(x, y) (7.3.3)

in which the cubic equivariant mappings P, Q, R, S and T are as in Section 6.3.5 and the

quadratic equivariant mappings are
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• U(x) = (U−2, U−1, U0, U1, U2) where U−k = (−1)kUk and

U−2(x) = 4x−2x0 −
√

6x2
−1

U−1(x) = 2
√

6x−2x1 − 2x−1x0

U0(x) = 4x−2x2 + 2x−1x1 − 2x2
0

• V(y) = (V−2, V−1, V0, V1, V2) where V−k = (−1)kVk and

V−2(y) = −
√

10y−3y1 + 2
√

5y−2y0 −
√

6y2
−1

V−1(y) = −5y−3y2 +
√

15y−2y1 −
√

2y−1y0

V0(y) = −5y−3y3 + 3y−1y1 − 2y2
0

• W(x, y) = (W−3, W−2, W−1, W0, W1, W2, W3) where W−k = (−1)kWk and

W−3(x, y) = 5y−3x1 − 5y−2x−1 +
√

10y−1x−2

W−2(x, y) = 2
√

5y0x−2 −
√

15y−1x−1 + 5y−3x1

W−1(x, y) = 2
√

6y1x−2 −
√

2y0x−1 +
√

10y−3x2 +
√

15y−2x1 − 3y−1x0

W0(x, y) = 2
√

5 (y−2x−2 + y2x−2) +
√

2 (y−1x1 + y1x−1)− 4y0x0.

For the Swift–Hohenberg equation we computed in Section 6.4.2 that the values of the coeffi-

cients of the odd order terms in (7.3.2)–(7.3.3) are

µx = µ2 − 8
27

R2, α1 = − 15
28π

, β1 = − 6
11π

, γ1 =
3

44π
, γ2 =

1
44π

, (7.3.4)

µy = µ2 +
16
27

R2, α2 = − 25
22π

, β2 = − 175
286π

, δ1 = − 7
2860π

, δ2 = − 3
44π

and δ3 = − 1
22π

where µ = 1
9 + ε2µ2. By assuming that the Z2 symmetry is weakly broken so that s = εs1 we can

compute, using the same method as Section 6.4.2, that the values of the quadratic coefficients

are

η = − 1
14

√
5
π

s1 ν = − 1
15

√
5
π

s1 ζ = − 1
15

√
5
π

s1. (7.3.5)

Recall from Example 7.2.5 that when s1 = 0, (7.3.2)–(7.3.3) with the coefficients above have a

stationary solution with D̃2 symmetry. Using the restriction to

Fix(D̃2) = {(ia, 0, 0, 0,−ia ; 0, b, 0, c, 0, b, 0)}

we found that this solution exists when ρ = 8
9 R2 > 0 and λ = µx is such that 26

9 ρ < λ < 199
18 ρ.

Moreover, this solution is always unstable.

When the symmetry is broken from O(3)×Z2 to O(3) (when s1 6= 0), Fix(D̃2) is no longer an

invariant subspace. The solution with D̃2 symmetry which exists when s1 = 0 is no longer a

solution to (7.3.2)–(7.3.3) but may become a (stationary) solution with Z2 symmetry which is

contained in the invariant subspace

Fix(Z2) = {(d + ia, 0, e, 0, d− ia ; 0, b + i f , 0, c, 0, b− i f , 0)}. (7.3.6)

213



7.3. PERSISTENCE OF SYMMETRIC SPIRAL PATTERNS UNDER FORCED SYMMETRY BREAKING

To discover whether a solution with Z2 symmetry can bifurcate at s1 = 0 from the solution with

D̃2 symmetry we can expand in powers of s1 for small s1 about the D̃2 symmetric solution.

In the restriction of (7.3.2)–(7.3.3) to Fix(Z2) we let

a = a0 + s1a1 + s2
1a2 + . . .

b = b0 + s1b1 + s2
1b2 + . . .

...
...

f = f0 + s1 f1 + s2
1 f2 + . . .

where d0 = e0 = f0 = 0 and (a0, b0, c0) is the solution with D̃2 symmetry which exists when

s1 = 0. At order s0
1 we have the solution with D̃2 symmetry. At order s1

1 we find that

a1 = b1 = c1 = 0 d1 = d1(λ, ρ, f1), e1 = e1(λ, ρ)

and f1 is arbitrary. If we choose a value for f1 then at order s2
1 we find that

a2 = a2(λ, ρ) b2 = b2(λ, ρ) c2 = c2(λ, ρ) d2 = d2(λ, ρ, f2), e1 = 0

and f2 arbitrary. Hence we can see that a whole family of solutions (depending on f ) exist

as stationary solutions with Z2 symmetry. This is to be expected since (7.1.1) implies that any

rotation in the z-axis of a solution in Fix(Z2) given by (7.3.6) is also a solution with Z2 symmetry

which lies in Fix(Z2) but has a different value of f . These individual solutions are stationary

since (7.3.1) is variational.

In conclusion, the one-armed spiral pattern with D̃2 symmetry which we found in Section 7.2.5

persists as one of a family of one-armed spiral patterns with Z2 symmetry when a quadratic

term is included in the Swift–Hohenberg equation which breaks the symmetry from O(3)×Z2

to O(3).

Persistence of one-armed spiral solutions in a non-variational Swift–Hohenberg equation

Suppose that instead of adding the term sw2 to (6.4.1) we instead add a nonlinear quadratic

term which renders the equation non-variational. Then generically we expect any solution

with Z2 symmetry to drift. To make (6.4.1) non-variational and break the w → −w symmetry

we can add terms such as |∇w|2 and w∇2w so that we have

∂w
∂t

= µw− (1 +∇2)2w− w3 + p|∇w|2 + qw∇2w. (7.3.7)

which is non-variational so long as q 6= 2p (see [60]). The coefficients of the even order terms in

the amplitude equations will now depend on the values of p and q. We consider the case of the

representation of O(3) on V2 ⊕V3 where the amplitude equations are given by (7.3.2)–(7.3.3).

Example 7.3.5 (Coefficient values for a non-variational Swift–Hohenberg equation on a sphere

of radius near 3). Suppose that in (7.3.7) p = 0 and q = εq1. Then the equation is non-

variational and we expect the values of the coefficients η, ν and ζ in the O(3) equivariant vector

field on V2 ⊕V3, (7.3.2)–(7.3.3), to depend on the value of q1.
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7.3. PERSISTENCE OF SYMMETRIC SPIRAL PATTERNS UNDER FORCED SYMMETRY BREAKING

Recall that in this representation, µc = 1
9 and Rc = 3. By letting

µ =
1
9

+ ε2µ2, R = 3 + ε2R2, T = ε2t, w = εw1 + ε2w2 + ε3w3,

we see that the linear differential operator L = µ− (1 +∇2)2 acts on the spherical harmonics

of degree ` as in (6.4.18). The operator M = ∇2 acts as

M = ∇2 = − `(` + 1)
R2

c
+

2`(` + 1)
R3

c
R2ε2 = M0 + ε2M2

on the spherical harmonics of degree `.

At orders ε1 and ε2 in (7.3.7) we find that

w1 =
2

∑
m=−2

xm(T)Ym
2 (θ, φ) +

3

∑
n=−3

yn(T)Yn
3 (θ, φ) and w2 = 0

respectively so that at order ε3,

∂w1

∂T
= L0w3 + L2w1 − w3

1 + q1w1M0w1. (7.3.8)

Multiplying (7.3.8) by Yp
2 and integrating over the sphere we find that

ẋp =
(

µ2 − 8
27

R2

)
xp −

∫ 2π

0

∫ π

0
w3

1Yp
2 sin θ dθ dφ

−2q1

3

∫ 2π

0

∫ π

0
w1

(
2

∑
m=−2

xmYm
2

)
Yp

2 sin θ dθ dφ

−4q1

3

∫ 2π

0

∫ π

0
w1

(
3

∑
n=−3

ynYn
3

)
Yp

2 sin θ dθ dφ (7.3.9)

and by multiplying (7.3.8) by Yp
3 and integrating over the sphere we find that

ẏp =
(

µ2 +
16
27

R2

)
yp −

∫ 2π

0

∫ π

0
w3

1Yp
3 sin θ dθ dφ

−2q1

3

∫ 2π

0

∫ π

0
w1

(
2

∑
m=−2

xmYm
2

)
Yp

3 sin θ dθ dφ

−4q1

3

∫ 2π

0

∫ π

0
w1

(
3

∑
n=−3

ynYn
3

)
Yp

3 sin θ dθ dφ. (7.3.10)

Using the same method as Section 6.4.2, we compute that the values of the quadratic coefficients

in the O(3) equivariant vector field, (7.3.2)–(7.3.3), in the non-variational case are

η =
1
21

√
5
π

q1 ν =
4
45

√
5
π

q1 ζ =
1
15

√
5
π

q1. (7.3.11)

We now demonstrate that with these values of the quadratic coefficients, and the values of the

coefficients of the odd order terms given by (7.3.4), the stationary one-armed spiral solution

with D̃2 symmetry which exists in (7.3.2)–(7.3.3) when q1 = 0 persists as a solution with Z2

symmetry and that this solution drifts.

Recall that

Fix(Z2) = {(d + ia, 0, e, 0, d− ia ; 0, b + i f , 0, c, 0, b− i f , 0)}.
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If we try to expand these variables in powers of q1 as in Example 7.3.4 we cannot find solutions

at order q1. We must change coordinates and let

d + ia = ReiΦ, b + i f = SeiΨ and Θ = Φ−Ψ,

then the equations in the restriction of (7.3.2)–(7.3.3) to Fix(Z2) can be reduced to five equations

for Ṙ, Ṡ, Θ̇, ċ and ė. We then expand

R(t) = r0 + q1r1 + q2
1r2 + . . .

S(t) = s0 + q1s1 + q2
1s2 + . . .

Θ(t) = Θ0 + q1Θ1 + q2
1Θ2 + . . .

c(t) = c0 + q1c1 + q2
1c2 + . . .

e(t) = e0 + q1e1 + q2
1e2 + . . . .

In these coordinates the stationary solution with D̃2 symmetry which exists when q1 = 0 is

given by (r0, s0, Θ0, c0, 0) where Θ0 = π/2. When q1 6= 0, stationary solutions in the coordinates

(R, S, Θ, c, e) correspond to periodic solutions of (7.3.2)–(7.3.3). We find that there is a stationary

solution with Z2 symmetry given by

R = r0(λ, ρ) + q2
1r2(λ, ρ) + . . .

S = s0(λ, ρ) + q2
1s2(λ, ρ) + . . .

Θ = π/2 + q1Θ1(λ, ρ) + . . .

c = c0(λ, ρ) + q2
1c2(λ, ρ) + . . .

e = q1e1(λ, ρ) + . . . .

This corresponds to a periodic solution in the original coordinates a, . . . , f , which is a one-

armed spiral with Z2 symmetry that drifts with speed

Φ̇ = Ψ̇ = v1q1 + v3q3
1 + . . . ,

where v1 = v1(r0, s0, Θ1, c0, e1), about the z-axis. Hence we can see that for p = 0 and small q,

solutions of (7.3.7) with Z2 symmetry rotate at speed proportional to q.

The rotating spiral solution on a sphere of radius near 3 for the non-variational Swift-Hohenberg

equation, found analytically in Example 7.3.5 cannot be found in numerical simulations since

it is unstable. However, numerical simulations of (7.3.7), with p = 0 and q small and positive,

on a sphere of radius R ≈ 4 starting from the stable single armed spiral found in Example 7.2.7

result in a single armed spiral pattern with Z2 symmetry which rotates at a rate proportional

to q in the direction indicated in Figure 7.20.

We have been able to demonstrate analytically the persistence of one single armed spiral pattern

in the Swift–Hohenberg equation in the representation on V2 ⊕ V3. Numerically we find that

other single armed spiral patterns in representations on V`⊕V`+1 for larger values of ` can also

persist.
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7.3. PERSISTENCE OF SYMMETRIC SPIRAL PATTERNS UNDER FORCED SYMMETRY BREAKING

Figure 7.20: The rotating single armed spiral which results from numerical simulations of

(7.3.7), with p = 0 and q small and positive, on a sphere of radius near 4. The

initial condition is a stationary single armed spiral with D̃2 symmetry. The arrow

indicates the direction and axis of rotation. The speed of rotation is proportional to

q. Note that this is not the rotating spiral found in Example 7.3.5.
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CHAPTER 8

CONCLUSIONS

In this thesis we have used the techniques of equivariant bifurcation theory to describe various

patterns which can exist on spheres as a result of a bifurcation from a spherically symmet-

ric state. The group theoretical methods of equivariant bifurcation theory have allowed us to

describe the symmetries of the solutions which are created at a bifurcation with spherical sym-

metry using the only action of the group O(3), of rotations and reflections of the sphere, on the

spaces V`, of spherical harmonics of degree `. Not only have we used symmetries to describe

the existence properties of certain patterns on spheres, we have also used symmetries to com-

pute the stability of these patterns. All of this can be done without reference to any particular

governing partial differential equation and hence the solution types we have found are generic,

i.e. we can expect to find solutions with these symmetries in any system which undergoes a

bifurcation from a spherically symmetric state.

In this thesis we have considered two different types of patterns which can exist on the sphere.

These were the time periodic solutions which can exist as a result of a Hopf bifurcation from

spherical symmetry and the spiral patterns with symmetry which can exist on a sphere as a

result of a stationary bifurcation with spherical symmetry.

In Chapters 4 and 5 we investigated the time-periodic solutions which can exist as a result

of a Hopf bifurcation from a spherically symmetric steady state. The main result relating to

Hopf bifurcations with symmetry, the equivariant Hopf theorem, guarantees that at a Hopf

bifurcation with O(3) symmetry, branches of periodic solutions with the symmetries of the

C-axial isotropy subgroups of O(3)× S1 are created.

In Chapter 4 we computed these C-axial isotropy subgroups for every representation of O(3)×
S1 on V` ⊕ V` for every value of `. This involved first enumerating the conjugacy classes of

twisted subgroups of O(3) × S1. Then, using a group theoretical result known as the chain

criterion, we determined which of these twisted subgroups are C-axial for the representations

on V` ⊕V`. Although these computations had been carried out before (see [43, 44, 46]) all pre-

viously published lists of the C-axial isotropy subgroups of O(3)× S1 contained some errors.
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Many of these errors stemmed from incorrect assumptions about the containment relations be-

tween the twisted subgroups of O(3)× S1 of dihedral type. We have now corrected these errors

and presented a revised list of the C-axial isotropy subgroups in Section 4.3.2. From this list one

can identify for any representation on V` ⊕ V`, for any value of `, the symmetry groups of the

time-periodic solutions which are guaranteed by the equivariant Hopf theorem to exist at a

Hopf bifurcation with O(3) symmetry for this representation of O(3).

The corrections which we made to the list of C-axial isotropy subgroups of O(3)× S1 did not

affect the much studied example of the Hopf bifurcation with O(3) symmetry for the represen-

tation on V2 ⊕ V2 [51, 54]. However, our revised list allowed us to see that in the previously

unstudied case of the natural representation on V3 ⊕V3 there are six branches of periodic solu-

tions guaranteed to exist by the equivariant Hopf theorem; one less branch than had previously

been predicted [46]. Three of these solutions are travelling waves and the other three are stand-

ing waves. By computing to cubic order the general form of a vector field which commutes with

the action of O(3)× S1 on V3 ⊕ V3, we were able in Chapter 5 to find conditions on the coeffi-

cients in this vector field for each of these solution branches to bifurcate supercritically and be

stable. Using these conditions, we found that for each of the six C-axial solution branches it is

possible to give a set of coefficient values such that the periodic solution is stable. We also saw

that it is possible for all six solution branches to simultaneously bifurcate supercritically and

be unstable. This could indicate that it is possible for heteroclinic cycles or chaotic behaviour

to be present within the system of equivariant differential equations. The time-dependent be-

haviour of the system under these circumstances would be an interesting avenue for future

investigation.

The branches of periodic solutions guaranteed by the equivariant Hopf theorem to exist at a

Hopf bifurcation with O(3) symmetry are not the only solutions which can exist. A slightly

stronger result than the equivariant Hopf theorem guarantees the existence of periodic solu-

tion branches with the symmetries of all maximal isotropy subgroups of O(3)× S1. These are

isotropy subgroups which are not contained in any larger isotropy subgroups except O(3)× S1.

Note that C-axial isotropy subgroups are automatically maximal. It is also possible, depending

on the values of coefficients in the O(3) × S1 equivariant vector field, for solutions with the

symmetries of other (submaximal) isotropy subgroups of O(3)× S1 to exist. There is no result

in equivariant bifurcation theory regarding such solutions. They must be found directly in the

equivariant vector field.

By computing the isotropy subgroups of O(3)×S1 which fix a subspace of V`⊕V` of dimension

greater than 2 it is possible to determine the symmetry groups of solutions which may exist in

the O(3) × S1 equivariant vector field. In Section 4.3.3 we used the same method as for the

C-axial isotropy subgroups to compute the isotropy subgroups of O(3)× S1 which fix a four-

dimensional subspace of V` ⊕ V` for all values of `. For those which are maximal, a solution

branch with this symmetry is guaranteed to exist.

Establishing the existence properties of solutions with submaximal isotropy involves much

more computation, although we have been able to find several such solutions for one par-

ticular representation. In the natural representation of O(3)× S1 on V3 ⊕ V3 we found that all
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six isotropy subgroups which fix a subspace of dimension four are submaximal. In Section 5.5

we investigated whether solutions with these symmetries can exist in the O(3)× S1 equivari-

ant vector field. We found, both analytically and by using the numerical branch continuation

package AUTO, that for four out of the six isotropy subgroups, Σ, submaximal periodic or

quasiperiodic solutions can exist for some values of the coefficients in the O(3) × S1 equiv-

ariant vector field. Some of these solutions can even be stable within the four-dimensional

subspace Fix(Σ).

The second topic considered by this thesis was the existence of symmetric spiral patterns on

spheres. In contrast to the single armed spiral patterns which can be found in the plane, one-

armed spiral patterns on the sphere can have symmetries. The spiral pattern must have two

tips. If these lie at antipodal points on the sphere (say the north and south poles) then it is pos-

sible for the spiral pattern to have a rotation symmetry about an axis in the plane of the equator.

Patterns with such symmetries have been found in numerous experiments [64] as well as nu-

merical simulations of Rayleigh–Bénard convection [62, 90] and other pattern forming systems

such as the Swift–Hohenberg model [65] and reaction–diffusion systems [16]. Until this thesis,

no analytical study of the generic existence and stability properties of single or multi-armed

symmetric spiral patterns on spheres had been undertaken. Using techniques from equivari-

ant bifurcation theory we investigated whether symmetric spiral patterns on spheres can result

from a stationary bifurcation with spherical symmetry and subsequent secondary bifurcations.

To simplify the problem, we began by studying the most symmetric spiral patterns on spheres.

In addition to symmetries contained in the group O(3), these spirals have a symmetry corre-

sponding to a change in sign of the solution function, w, combined with a rotation in O(3). For

these patterns, the areas where w > 0 and w < 0 are of identical size and shape. The symme-

tries of such spiral patterns are subgroups of O(3)×Z2. Group theoretical results tell us that

spiral solutions with these symmetries (if they exist) are generically stationary. Our aim was

to demonstrate that stationary single and multi-armed spirals with these symmetries can result

from an initial stationary bifurcation with O(3)×Z2 symmetry.

Since the problem of a stationary bifurcation with O(3) × Z2 symmetry had not previously

been studied, Chapter 6 of this thesis was devoted to this subject. Bifurcations with O(3) ×
Z2 symmetry can occur in the numerous systems on a sphere which are invariant under a

change in sign of the physical variable. One such example is the Swift–Hohenberg model. At

a stationary bifurcation with O(3)×Z2 symmetry, where O(3) acts on the vector space V, the

equivariant branching lemma guarantees that branches of equilibria with the symmetries of

the axial isotropy subgroups of O(3) ×Z2 bifurcate. The axial isotropy subgroups fix a one-

dimensional subspace of V. Here V is either V`, the space of spherical harmonics of degree `

or V` ⊕ V`+1 when there is a mode interaction between the spherical harmonics of degrees `

and ` + 1. In Section 6.2 we computed the axial isotropy subgroups in both cases and all of the

isotropy subgroups for several examples. We noted that in representations on V` ⊕ V`+1 there

are many more isotropy subgroups. This means that mode interactions can result in a much

wider range of possible solution patterns than can be found with a single mode.

In Chapter 7 we observed that spiral patterns can only result from mode interactions – such
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patterns can only be made with a combination of spherical harmonics of odd and even degrees.

Indeed, we found that they can exist in an interaction between the spherical harmonics of de-

grees ` and ` + 1. We also observed that the symmetry groups of symmetric spiral patterns

are never axial isotropy subgroups so spiral patterns are never guaranteed by the equivariant

branching lemma to exist at a stationary bifurcation from spherical symmetry. Thus, to deter-

mine when symmetric spiral patterns can exist we had to find them directly in the equivariant

vector field.

Through the study of the stationary bifurcation with O(3) × Z2 symmetry we found that

the symmetry group of the most symmetric m-armed spiral (where m ≥ 1) is a submaximal

isotropy subgroup of O(3)×Z2 in the representation on V`⊕V`+1 for ` ≥ m. Hence stationary

spiral solutions with these symmetries may exist depending on the values of coefficients in the

O(3)×Z2 equivariant vector field. In Section 7.2.1 we determined the conditions which must

be satisfied for one- and two-armed spirals to exist in the O(3)×Z2 equivariant vector field for

the representation on V2⊕V3. We demonstrated that it is possible to find a set of coefficient val-

ues which allows a single armed spiral pattern to exist and be stable in its fixed-point subspace.

By computing the values of the coefficients for the specific example of the Swift–Hohenberg

equation we were able to show that both the one- and two- armed solutions can exist, but that

the one-armed spiral pattern is never stable.

A similar treatment of the representation on V3 ⊕ V4 using the values of the vector field co-

efficients arising from the Swift–Hohenberg equation showed that the most symmetric spiral

patterns with one, two and three arms can exist as a result of a stationary bifurcation with

O(3) × Z2 symmetry and subsequent bifurcations. Furthermore, in this case the stationary

one-armed spiral pattern can be stable for some values of the bifurcation parameters.

Finally, in Section 7.3 we considered the effect of weakly breaking the overall symmetry of the

system from O(3) ×Z2 to O(3) on the spirals found in previous sections. We saw that any

m-armed spiral pattern for m ≥ 2 will always persist as a stationary spiral pattern without

the ‘red to blue’ symmetries of the most symmetric spiral patterns. The case of the one-armed

spiral is not so simple. If a stationary one-armed spiral solution does persist under this weak

symmetry breaking then generically it is forced to rotate. This can be demonstrated directly for

the most symmetric unstable one-armed spiral which exists in the representation on V2 ⊕V3 in

the Swift–Hohenberg equation. This spiral solution loses symmetry and begins to rotate when

non-variational terms which break the O(3)×Z2 symmetry to O(3) are added.

Thus we have shown that stationary spiral patterns on spheres can exist generically as a result

of a stationary bifurcation with O(3)×Z2 symmetry (and subsequent secondary bifurcations)

in the case of a mode interaction. Indeed, they do exist in the Swift–Hohenberg equation. These

spiral patterns can be stable (in some subspaces) and we have seen how they bifurcate from

other solution branches. Furthermore, these spiral patterns can persist when the O(3) ×Z2

symmetry is broken to O(3).

The two types of patterns on spheres which we have considered in this thesis, although quite

different, have both been studied using the generic framework of equivariant bifurcation the-

ory. This powerful tool has enabled us to discover new and interesting possible behaviours of
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whole classes of systems with underlying spherical symmetry. In the case of the Hopf bifurca-

tion with O(3) we have corrected errors in previous results and added to the range of known

solutions which can exist at such a bifurcation. We have also shown the possibility for the dy-

namics, at certain coefficient values, to contain heteroclinic cycles or even for chaotic behaviour

to occur. By studying stationary bifurcations with O(3) × Z2 symmetry we have been able

to show both generically, and in specific case of the Swift–Hohenberg model, that symmetric

spiral patterns on spheres can exist. These patterns, previously only found in experiments and

numerical simulations, have been shown to be potential solutions of many dynamical systems

with underlying spherical symmetry.

222



APPENDIX A

SPHERICAL HARMONICS

A.1 Spherical harmonics of degrees ` = 2, 3 and 4

Here we list the spherical harmonics of degrees ` = 2, 3 and 4 in both spherical polar coor-

dinates, (θ, φ) and Cartesian coordinates (x, y, z) where the spherical-to-Cartesian coordinate

transformation is given by

x = sin θ cos φ

y = sin θ sin φ

z = cos θ.

Recall that the spherical harmonics satisfy

Y−m
` (θ, φ) = (−1)mYm

` (θ, φ),

where the bar denotes complex conjugate. They also satisfy the orthogonality condition
∫ 2π

0

∫ π

0
Ym

` (θ, φ) Ym′
`′ (θ, φ) sin θ dθ dφ = δ`,`′ δm,m′ .

Here we list the functions for negative values of m only.

Spherical harmonics of degree ` = 2

Y−2
2 (θ, φ) =

1
4

√
15
2π

sin2 θ e−2iφ =
1
4

√
15
2π

(x− iy)2

Y−1
2 (θ, φ) =

1
2

√
15
2π

sin θ cos θ e−iφ =
1
4

√
15
2π

(x− iy)z

Y0
2 (θ, φ) =

1
4

√
5
π

(3 cos2 θ − 1) =
1
4

√
5
π

(2z2 − x2 − y2).
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A.1. SPHERICAL HARMONICS OF DEGREES ` = 2, 3 AND 4

Spherical harmonics of degree ` = 3

Y−3
3 (θ, φ) =

1
8

√
35
π

sin3 θ e−3iφ =
1
8

√
35
π

(x− iy)3

Y−2
3 (θ, φ) =

1
4

√
105
2π

sin2 θ cos θ e−2iφ =
1
4

√
105
2π

(x− iy)2z

Y−1
3 (θ, φ) =

1
8

√
21
π

sin θ (5 cos2 θ − 1) e−iφ =
1
8

√
21
π

(x− iy)(4z2 − x2 − y2)

Y0
3 (θ, φ) =

1
4

√
7
π

(5 cos3 θ − 3 cos θ) =
1
4

√
7
π

z(2z2 − 3x2 − 3y2).

Spherical harmonics of degree ` = 4

Y−4
4 (θ, φ) =

3
16

√
35
2π

sin4 θ e−4iφ =
3
16

√
35
2π

(x− iy)4

Y−3
4 (θ, φ) =

3
8

√
35
π

sin3 θ cos θ e−3iφ =
3
8

√
35
π

(x− iy)3z

Y−2
4 (θ, φ) =

3
8

√
5

2π
sin2 θ (7 cos2 θ − 1) e−2iφ

=
3
8

√
5

2π
(x− iy)2(6z2 − x2 − y2)

Y−1
4 (θ, φ) =

3
8

√
5
π

sin θ (7 cos3 θ − 3 cos θ) e−iφ

=
3
8

√
5
π

(x− iy)z(4z2 − 3x2 − 3y2)

Y0
4 (θ, φ) =

3
16

√
1
π

(35 cos4 θ − 30 cos2 θ + 3)

=
3
16

√
1
π

(3(x2 + y2)2 + 8z2(z2 − 3x2 − 3y2)).
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APPENDIX B

DETAILS OF COMPUTATIONS

B.1 Proof that (3.2.5) holds

Equation (3.2.5) asserts that in the limit θ′ → 0

Ym
` (θ + θ′, 0) = −1

2

√
(` + m)(`−m + 1) θ′ Ym−1

` (θ, 0) + Ym
` (θ, 0)

+
1
2

√
(`−m)(` + m + 1) θ′ Ym+1

` (θ, 0).

Since this is not immediately obvious from the definition of the spherical harmonics (3.2.1) we

show here that this equality holds.

From (3.2.1) we have that

Ym
` (θ + θ′, 0) = (−1)m

(
(2` + 1)

4π

(`−m)!
(` + m)!

)1/2

Pm
` (cos(θ + θ′)).

We can expand the associated Legendre functionPm
` (cos(θ + θ′)) as follows, discarding powers

of θ′ greater than one since θ′ is infinitesimal:

Pm
` (cos(θ + θ′)) =

(1− cos2(θ + θ′))m/2

2` `!

[
d`+m

dx`+m (x2 − 1)`

]

x=cos(θ+θ′)

=
sinm(θ + θ′)

2` `!

[
d`+m

dx`+m (x2 − 1)`

]

x=cos(θ+θ′)

=
(sin θ + θ′ cos θ)m

2` `!

[
d`+m

dx`+m (x2 − 1)`

]

x=cos θ−θ′ sin θ

=
sinm θ + mθ′ cos θ sinm−1 θ

2` `!

[
d`+m

dx`+m (x2 − 1)`

]

x=cos θ−θ′ sin θ
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Here d`+m

dx`+m (x2 − 1)` is a polynomial in x of degree less than or equal to `−m. Define

d`+m

dx`+m (x2 − 1)` =
`−m

∑
k=0

akxk = p(x)

Then

p(cos θ − θ′ sin θ) =
`−m

∑
k=0

ak(cos θ − θ′ sin θ)k

=
`−m

∑
k=0

ak(cosk θ − kθ′ sin θ cosk−1 θ)

=
`−m

∑
k=0

ak cosk θ − θ′ sin θ
`−m

∑
k=0

kak cosk−1 θ

= p(cos θ)− θ′ sin θ p′(cos θ)

and so

Pm
` (cos(θ + θ′)) =

sinm θ + mθ′ cos θ sinm−1 θ

2` `!
p(cos θ − θ′ sin θ)

=
sinm θ + mθ′ cos θ sinm−1 θ

2` `!

(
p(cos θ)− θ′ sin θ p′(cos θ)

)

=
sinm θ

2` `!
p(cos θ) + θ′

(
m cos θ sinm−1 θ

2` `!
p(cos θ)− sinm θ

2` `!
sin θ p′(cos θ)

)

= Pm
` (cos θ)− θ′Pm+1

` (cos θ) + θ′
m cos θ

sin θ
Pm

` (cos θ)

Thus we have

Ym
` (θ + θ′, 0) = Ym

` (θ, 0) +
√

(`−m)(` + m + 1) θ′ Ym+1
` (θ, 0) + θ′

m cos θ

sin θ
Ym

` (θ, 0). (B.1.1)

Similarly

Y−m
` (θ + θ′, 0) = Y−m

` (θ, 0) +
√

(` + m)(`−m + 1) θ′ Y−m+1
` (θ, 0)− θ′

m cos θ

sin θ
Y−m

` (θ, 0).

(B.1.2)

By (3.2.2) the spherical harmonics satisfy

Y−m
` (θ, 0) = (−1)mYm

` (θ, 0)

and so (B.1.2) becomes

Ym
` (θ + θ′, 0) = Ym

` (θ, 0)−
√

(` + m)(`−m + 1) θ′ Ym−1
` (θ, 0)− θ′

m cos θ

sin θ
Ym

` (θ, 0). (B.1.3)

Adding together (B.1.1) and (B.1.3) and dividing by 2 we arrive at (3.2.5) as required.
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B.2 Details of computations required to find (6.3.21)

Here we give the details of the computations of the integrals I1 to I6 given by (6.3.15)–(6.3.20)

which are required to compute the number of cubic O(3)×Z2 equivariants in the representa-

tion on V` ⊕V`+1.

The integral I1 given by (6.3.15)

I1 =
∫ π

0
(1− cos(θ))χ(Rθ)4dθ

=
∫ π

0
2(1− cos(θ))

(
`

∑
m=−`

eimθ +
`+1

∑
m=−`−1

eimθ

)3 (
cos(`θ)− cos(θ) cos((` + 1)θ)

1− cos(θ)

)
dθ

=
∫ π

0
(cos(`θ)− cos((` + 2)θ))

(
`

∑
m=−`

eimθ +
`+1

∑
m=−`−1

eimθ

)3

dθ

=
∫ π

0
(cos(`θ)− cos((` + 2)θ))

(
2

`

∑
m=−`

eimθ + e−iθ(`+1) + eiθ(`+1)

)3

dθ

=
∫ π

0
(cos(`θ)− cos((` + 2)θ))


8

(
`

∑
m=−`

eimθ

)3

+ 12

(
`

∑
m=−`

eimθ

)2 (
e−iθ(`+1) + eiθ(`+1)

)

+ 6

(
`

∑
m=−`

eimθ

) (
e−iθ(`+1) + eiθ(`+1)

)2
+

(
e−iθ(`+1) + eiθ(`+1)

)3
]

dθ

=
∫ π

0
(cos(`θ)− cos((` + 2)θ)) [8S1 + 12S2 + 6S3 + S4] dθ

where the only terms in S1, S2, S3 and S4 which contribute to the integral are those in cos(`θ)

and cos((` + 2)θ) since

∫ π

0
cos(mθ) cos(nθ)dθ =

{
π/2 if m = n

0 if m 6= n
(B.2.1)

We now compute the coefficients of cos(`θ) and cos((` + 2)θ) for S1, S2, S3 and S4 in turn.

S1: Let the coefficient of cos(`θ) in S1 be given by β1
`. Then β1

` is twice the number of triples

(m, n, p) such that m + n + p = ` where m, n, p ∈ −`, . . . , `. Thus

β1
` = 2

2`+1

∑
j=1

j = (2` + 1)(2` + 2).

Similarly, if the coefficient of cos((` + 2)θ) in S1 is β1
(`+2) then β1

(`+2) twice the number of

triples (m, n, p) such that m + n + p = ` + 2 where m, n, p ∈ −`, . . . , ` and thus

β1
(`+2) = 2

2`−1

∑
j=1

j = 2`(2`− 1).
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S2: Notice that

S2 = 2β0 cos((` + 1)θ) + 2
2`

∑
m=1

βm (cos((` + 1 + m)θ) + cos((` + 1−m)θ))

where βm is the number of pairs (p, q) such that p + q = m where p, q ∈ −`, . . . , `. The

coefficients of cos(`θ) and cos((` + 2)θ) in S2 are both given by 2β1 where β1 = 2`.

S3: Notice that

S3 = 4 + 4
`

∑
m=1

cos(mθ) + 2
2`

∑
m=1

(cos((2` + 2 + m)θ) + cos((2` + 2−m)θ)) .

From this we see that the coefficient of cos(`θ) in S3 is 4 and the coefficient of cos((` + 2)θ)

is 2.

S4: There are no terms in cos(`θ) or cos((` + 2)θ) in S4.

Hence

I1 =
∫ π

0
(cos(`θ)− cos((` + 2)θ)) [(8(2` + 1)(2` + 2) + 48` + 24) cos(`θ)

+ (16`(2`− 1) + 48` + 12) cos((` + 2)θ)] dθ

=
π

2
[(8(2` + 1)(2` + 2) + 48` + 24)− (16`(2`− 1) + 48` + 12)]

= 2π(16` + 7)

The integral I2 given by (6.3.16)

I2 =
∫ π

0
(1− cos(θ))χ(−Rθ)4dθ =

∫ π

0
16(1− cos(θ)) cos4((` + 1)θ)dθ

Now

8 cos4((` + 1)θ) = cos(4(` + 1)θ) + 4 cos(2(` + 1)θ) + 3

so

I2 =
∫ π

0
2(1− cos(θ)) (cos(4(` + 1)θ) + 4 cos(2(` + 1)θ) + 3) dθ

= 6π.

The integral I3 given by (6.3.17)

I3 =
∫ π

0
(1− cos(θ))χ(Rθ)2χ(R2θ)dθ

=
∫ π

0
(cos(`θ)− cos((` + 2)θ))

(
`

∑
m=−`

eimθ +
`+1

∑
m=−`−1

eimθ

) (
`

∑
m=−`

e2imθ +
`+1

∑
m=−`−1

e2imθ

)
dθ

=
∫ π

0
(cos(`θ)− cos((` + 2)θ))P(θ)dθ
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where

P(θ) =

(
`

∑
m=−`

eimθ +
`+1

∑
m=−`−1

eimθ

) (
`

∑
m=−`

e2imθ +
`+1

∑
m=−`−1

e2imθ

)

=

(
2

`

∑
m=−`

eimθ + e−iθ(`+1) + eiθ(`+1)

) (
2

`

∑
m=−`

e2imθ + e−2iθ(`+1) + e2iθ(`+1)

)

= 4

(
`

∑
m=−`

eimθ

) (
`

∑
m=−`

e2imθ

)
+ 2

`

∑
m=−`

eimθ
(

e−2iθ(`+1) + e2iθ(`+1)
)

+2
`

∑
m=−`

e2imθ
(

e−iθ(`+1) + eiθ(`+1)
)

+ 2 (cos(3(` + 1)θ) + cos((` + 1)θ))

= 4S1 + 2S2 + 2S3 + 2S4.

We want to compute the coefficients of cos(`θ) and cos((` + 2)θ) in P(θ). There are no such

terms in S3 or S4. We consider the other terms Sj for j = 1, 2 in turn.

S1: The coefficient of cos(`θ) in S1 is twice the number of pairs (m, p) such that m + 2p = `

where m, p ∈ −`, . . . , `. There are ` + 1 such pairs. The coefficient of cos((` + 2)θ) in S1 is

twice the number of pairs (m, p) such that m + 2p = ` + 2 where m, p ∈ −`, . . . , `. There

are ` such pairs.

S2: Notice that

S2 =
`

∑
m=−`

eimθ
(

e−2iθ(`+1) + e2iθ(`+1)
)

=
`

∑
m=−`

eiθ(m−2`−2) +
`

∑
p=−`

eiθ(p+2`+2)

= 2 + 2
`

∑
m=1

(cos((m− 2`− 2)θ) + cos((m + 2` + 2)θ)) .

The coefficient of cos(`θ) in S2 is zero and the coefficient of cos((` + 2)θ) is 2.

Hence

I3 =
∫ π

0
(cos(`θ)− cos((` + 2)θ)) [8(` + 1) cos(`θ) + (8` + 4) cos((` + 2)θ)] dθ = 2π.

The integral I4 given by (6.3.18)

I4 =
∫ π

0
(1− cos(θ))χ(−Rθ)2χ(R2θ)dθ

=
∫ π

0
4(1− cos(θ)) cos2((` + 1)θ)

(
4

`

∑
m=1

cos(2mθ) + 2 + 2 cos(2(` + 1)θ)

)
dθ

=
∫ π

0
(2 cos(2(` + 1)θ) + 2− cos((2` + 3)θ)− cos((2` + 1)θ)− 2 cos(θ))

(
4

`

∑
m=1

cos(2mθ) + 2 + 2 cos(2(` + 1)θ)

)
dθ

=
∫ π

0
4(cos2(2(` + 1)θ) + 1)dθ = 6π.
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The integral I5 given by (6.3.19)

I5 =
∫ π

0
(1− cos(θ))χ(Rθ)χ(R3θ)dθ

=
∫ π

0
(cos(`θ)− cos((` + 2)θ))

(
`

∑
m=−`

e3imθ +
`+1

∑
m=−`−1

e3imθ

)
dθ

=
∫ π

0
(cos(`θ)− cos((` + 2)θ))

(
4

`

∑
m=−`

cos(3mθ) + 2 + 2 cos(3(` + 1)θ)

)
dθ

=
∫ π

0
4(cos(`θ)− cos((` + 2)θ))

(
`

∑
m=−`

cos(3mθ)

)
dθ

=





2π if ` = 0 mod 3

−2π if ` = 1 mod 3

0 if ` = 2 mod 3.

The integral I6 given by (6.3.20)

I6 =
∫ π

0
(1− cos(θ))χ(−Rθ)χ(−R3θ)dθ

=
∫ π

0
4(1− cos(θ)) cos(3(` + 1)θ) cos((` + 1)θ)dθ = 0.
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