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Abstract

Similarities in the form of the Schrodinger equation that governs the be-
haviour of electronic wavefunctions, and Maxwell’s equations which govern the
behaviour of electromagnetic waves, allow ideas that originated in solid state
physics to be easily applied to electromagnetic waves in photonic structures.
While electrons moving through a semiconductor experience a periodic varia-
tion in charge, in a photonic crystal electromagnetic waves experience a periodic
variation in refractive index. This leads to ideas such as bandstructure being
applicable to the one and two dimensional photonic crystals used in this work.

The following work will contain theoretical and experimental studies of the
transmission through, and electric fields within, one dimensional photonic crys-
tals. A slow variation in the structure of these crystals will lead to the band-
structure shifting, with an photonic analogy of electronic Bloch oscillations and
Wannier-Stark ladders being seen in these structures.

The two dimensional photonic crystals will be shown, through Hamiltonian
ray tracing, to support both stable and chaotic ray paths. Examination of the
phase space reveals the existence of ‘Dynamical Barriers’, regions in phase space
supporting stable ray trajectories that divide separate regions in which the ray
trajectories are chaotic. Various manners in which the bandstructure may be
varied will be presented, along with a proposed switch that may be made using
these structures.

While the ray tracing will be carried out in photonic crystals in the limit of
infinitesimally thin dielectric sheets, the model will then be developed to show
the bandstructure of a photonic crystal made from finite width dielectric sheets,
with examples of dispersion surfaces for these structures being presented.
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Chapter 1

Bandstructures

Similarities in the form of the Schrodinger equation that governs the be-
haviour of electronic wavefunctions, and Maxwell’s equations which govern the
behaviour of electromagnetic waves, allow ideas that originated in solid state
physics to be easily applied to electromagnetic waves in photonic structures
[1, 2, 3, 4]. Calculations of the motion of electrons in materials may be carried
out using dispersion relations, the relation between a particle’s energy and its
momentum. The energy of the photon is related to its frequency and its momen-
tum is related to its wavenumber [5], and hence an analogous dispersion relation
may be constructed for electromagnetic waves. We will see later from the form
of the dispersion relation that there exist in materials either forbidden energies,
in the case of electrons, or forbidden frequencies for photons. These forbidden
regions are termed Bandgaps, with the groups of allowed energies/frequencies
termed Bands.

This chapter will show the origins of the Floquet-Bloch theorem, and a
statement of this theorem will then be used to model the bands and bandgaps

in a photonic crystal. It may be noted that the statement of the Bloch theorem



used later in the chapter is not of the form derived on earlier pages, however
the plane wave expansion gives a far fuller understanding of the theorem and

so it is this that is used to illustrate the theory.

1.1 Electronic wavefunctions and Electromag-
netic waves

The Schrodinger equation and Maxwell’s equations are both linear eigenvalue
problems. The Schrodinger equation has a dependence upon V', the potential,
which plays a similar role to % in Maxwell’s equation. While the Schrédinger
equation deals with massive particles such as electrons, fermions, and a complex
scalar field, Maxwell’s equations deal with photons, bosons, and a real vector
field. This leads to differences in the manner in which energy levels are popu-
lated; fermions being subject to Paulis exclusion principle [6, 7, 8] meaning that
only one particle may occupy each state, while bosons are not. Thus the popu-
lation of states for fermions is given by Fermi-Dirac statistics, while for bosons
it is given by Bose-Einstein statistics. Despite these differences, similarities in

the form of the two equations can be seen by writing them in the following form.

Schrédinger’s equation

{3+ V@ o) =Bv @ (L)
Maxwell’s Equations
{ﬁx ! ﬁx}ﬁ(a—“’?ﬁ(m (1.2)
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where ¢ = \/;W is the speed of light in a vacuum, and with the assumption that
the field pattern used in Maxwells equations may be made from an appropriate
combination of plane waves.

Both equation (1.1) and equation (1.2) can be rewritten in the form of a
simple eigenvalue problem OF = aF, where O, if considering an infinite lattice,
is a Hermitian operator acting on the wavefunction/electromagnetic wave. This
operator has real eigenvalues corresponding to eigenvectors that, excluding de-
generate cases, are orthogonal. It should be noted that the operator in (1.3) is
not Hermitian due to the placement of the ﬁ term. Neither is (1.2) Hermitian
if a non-infinite crystal is considered. It is possible to write (1.3) as a generalised
eigenvalue problem of the form O;F = aOyF however solving this is far more
complicated.

As stated above, the role that V' takes in the Schriodinger equation is mir-
rored to some extent by the 6(% term in Maxwell’s equations. Hence a periodic
variation in refractive index should induce the same qualitative effects on elec-
tromagnetic waves as a periodic potential has on electrons, and useful effects
known for electrons in solids should be transferable to light in a periodic dielec-

tric medium.

1.1.1 Dispersion relations

If a wave travelling in free space is considered to have the form E(z,t) =

Eqyexpik#=«1) the dispersion relation [shown in figure 1.1(b)] is

&1
I
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et

(1.4)

Where & is the angular frequency of the electromagnetic wave, c is the speed of
light, and k is its wavevector defined as k=2n /A. The use of the wavevector, a

quantity that is inversely related to the wavelength, becomes more useful when
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Figure 1.1: Dispersion relations for, (a) a particle in free space, (b) a photon in free space

potentials are written in the form of Fourier transforms [9] as these also involve
terms whose units are [length™].

For a particle in zero potential the dispersion relation [figure 1.1(a)] is

E=_-muv (1.5)

Where E is the particle’s kinetic energy, which is equal to its total energy in
zero potential, m is the mass of the particle, and v is its velocity.

The dispersion relation is linear for an electromagnetic wave, but quadratic
for a massive particle as can be seen in figure (1.1). While it can be seen from
equations (1.4) and (1.5) that both dispersion relations are continuous functions
in free space, it is the emergence of gaps in the allowed energies/frequencies in
periodic potentials that is of interest in this thesis. It is this property that is
exploited in materials such as semiconductors to control the behavior of elec-
trons, and in photonic crystals to control the behavior of electromagnetic (E.M.)

waves [10, 11, 12].
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Figure 1.2: One dimensional photonic crystal, comprising dielectric sheets (grey) which are
infinite in extent in the y and z directions

1.2 Defining the crystal

The photonic crystals that are being considered consist of infinite sets of
parallel dielectric sheets, such as those shown in figure (1.2), with the crystal
extending to infinity in every direction. This forms an infinite set of repeating
identical cells each of which consists of a dielectric sheet and adjacent air gap.
From this it may be seen that the structure has discrete translational symmetry,
whereby a translation from any point by an integer number of cell lengths in
the x direction gives a point whose environment is identical to the initial point.

So far the crystals described have been one dimensional crystals, that is,
having variation only in one dimension. These structures may be extended into
two or three dimensions by including a second (figure (1.3)) or third set of sheets
that are perpendicular to the other sets. The structure of the crystal may be
defined using any single complete set of points that exhibit discrete translational
symmetry [14]. This set is known as the Bravais lattice [15]. In N dimensions

(where N = 1,2,3) this lattice is defined by N translation vectors @; (where



Figure 1.3: Two dimensional photonic crystal. Dielectric sheets (grey) are infinite in extent
in the z direction (picture taken from [13])

i =1,2,3). Thus in 3 dimensions the lattice may be defined by

= uidy + usds + usds (1.6)
where u; (i = 1,2,3) are integers. For a crystal with N < 3 dimensions only the
terms a(;< ) are included, with the crystal being invariant in the other 3 — N
dimensions.

Thus for the one dimensional crystal, translation from one lattice point to any
other may be given by

71 = upd; (1.7)

where @y = &L, where & is a unit vector along the x direction, and L is the
width of a single cell, that is the width of a single dielectric sheet and adjacent

air gap.



1.3 Floquet-Bloch theorem

While the problem of the conduction of electrons through crystalline solids
was solved by Felix Bloch, the solution that he arrived at had been independently
arrived at by others when considering different problems. Floquet theory, while
presenting the same results, was arrived at earlier through considerations of the
properties of linear differential equations.

The following section will introduce Floquet-Bloch theory, and will show
that a solution to Maxwell’s equations will consist of the product of a plane
wave and a periodic function. It may be seen from this solution that, in peri-
odic potentials, there are frequencies at which no solution exists, the bandgaps

associated with the crystal.

1.3.1 Application to Electromagnetic waves

A solution of Maxwell’s equations in a periodic potential must exhibit the
same periodicity as the lattice. That is not to say that the exact structure of each
cell must be mimicked, only that the solution must have the same translational
symmetry of the lattice.

Instead of looking for a direct solution to Maxwell’s equations, a set of
translational operators related to the Bravais lattice is considered [1]. These
translational operators are set up to have the same translational symmetry as
the crystal and will commute with the operator in equation (1.2). It may be
shown that these two operators have a common set of eigenfunctions [16]. Care
must be taken however as the eigenvalues of Maxwell’s equations turn out to
be a subset of the solution given by the translation operators. That is, an
eigenfunction of Maxwell’s equations is also an eigenfunction of the translation
operators, but conversely, an eigenfunction of the translation operators in not

necessarily an eigenfunction of Maxwell’s equations. The set of Translation



operators is defined in the following way
TIH) = HE+ Y nid) (1.8)

where n; are integers and H is either the electric or magnetic field vector.

Since H is invariant under translation through any linear combination of
lattice vectors, the translation operators will commute with the operator defined
for Maxwell’s equations by equation (1.2), which means that there may be a
common set of eigenvectors.

An eigenvector u of the translation operator will satisfy
T [d] = pi (1.9)

where the eigenvalue p may take complex values, but must have a modulus of
1 in order to remain bounded at infinity. If it takes some other value the field
will continuously diverge in one direction. This will lead to no locally integrable
electromagnetic energy, and hence an unphysical solution to Maxwell’s equations
[1]. However, if a finite crystal is considered then this restriction no longer holds,
as the increase in the field is restricted by the crystal’s edge. Removing this
restriction allows evanescent fields for waves that are meeting a crystal whose
bandgap forbids propagation at that frequency.

The value of p must lie on a unit circle in complex space, and as such it may
be represented as follows.

p=ce" (1.10)

where 6 is restricted to real values. The value of 6 represents the phase shift after
a translation along a vector 7, an integer multiple of the direct lattice vectors d;,
corresponding to any of the translations given by (1.8). This translation may

be broken down into N separate translations, corresponding to the translations



in the direction of each of the direct lattice vectors d;.

T= Y nT (1.11)

i=1,N

and, in a similar way, the corresponding value of 8 may be broken down into

phase shifts in the direction of each of the direct lattice vectors,

0= > nb; (1.12)

i=1,N

here 6 is the phase shift along the translation corresponding to n;d;, with 6;
being the phase shift corresponding to a translation along the direct lattice
vector @;. The wavevector k may now be defined as kd; =0, allowing (1.10) to

be rewritten in the form,
p=exp | ik. n;d; (1.13)

Looking at the effect of the translation on the eigenvector @ allows a new
function ¥ to be constructed that will remain invariant after a translation given
by T. The function ¥ = dexp (—iE.F) may be shown to be invariant after a

translation, T,
TO=T [ﬁexp (—zl_c'fﬂ =T [d)exp | —ik. [ 7+ Z n,;d;
= piiexp ik. | n;d; | exp (—ik.F) = 1 exp (ZEF) =7 (1.14)
As ¥ is a periodic function, this opens up the possibility of looking at it as a

Fourier series. To this end, the reciprocal lattice will be defined and will consist

of a lattice of points that correspond to the allowed terms in the Fourier series.



The reciprocal lattice is a lattice made from the basis vectors 51, 52 and 53 that

are related to the direct lattice vectors di, do and ds as follows

- C_l'g X (_1:3
by =21 ———-~

a1~(a2 X a3)
- 63 X 61
by = 2T ————~

a1~(a2 X a3>
- 61 X 62
b3 = 27'('_,

a1~(c_ig X 6_7:3)

this leads to the property of the vectors that
gzdl = 271'(5“.

Here, 6;; is a Kronecker delta function, which has the property that §;; = 1 if
i =j and §;; = 0 if ¢ # j. This gives the reciprocal lattice as a set of points

that are mapped by the set of vectors
G = 1)151 + 1)252 + ’1)353 (1.15)
Since ¥ is spatially periodic, it can be represented as a Fourier series
U= Z V(G) exp(ié‘F)
G
which then gives

u = exp(ik.F) Z V(G) exp(iéﬂ (1.16)

leaving @ expressed as a product of a plane wave and a Fourier series with the

periodicity of the crystal.
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Thus # is a superposition of plane waves with wavevectors given by,

ko =k+G (1.17)

for every value of G in the reciprocal lattice. While the phase velocity of each of
the plane waves may differ, the group velocity of the waves is common to them
all. This arises as the group velocity, the velocity of the energy propagation, is
given by

. o] o] o]

Tg=—=—=—= =— (1.18)
dkg) Ook+G) 0

as G is independent of &J. This leads to the dispersion relation of E(J}) being
equivalent to the dispersion relation of the entire Bloch wave.

It has been stated previously that solutions to Maxwell’s equations must
exhibit the same periodicity of the lattice, and it is the interference of multiple
plane waves that allows them to do this [17]. While a single plane wave is
unable to image the static potential of the crystal, the reflections that arise in
the crystal combine to give an interference pattern that will. As the Bloch wave
involves the interference of many plane waves in this manner, its behaviour in
a crystal is often counterintuitive.

The interference pattern may be broken down into a standing wave compo-
nent and a travelling wave component. It is then possible to consider the Bloch
wave, from a Hamiltonian Optics perspective, in a Newtonian manner [18, 19].
The standing wave component is equated with the potential energy, and the
travelling wave the kinetic energy. The greater the amount of the energy stored
in the standing wave, the slower the propagation of the Bloch wave. At the
point at which all of the energy is stored in the standing wave the fringes of the
interference pattern have 100% visibility, and the Bloch wave will be stationary.

This occurs at points in the crystal where the light is Bragg reflected [20, 21].

11



Bragg reflection is most easily explained when considering a plane wave, such
as an X-ray, incident upon a crystal. If the layers are not perfectly reflecting
the wave will be reflected from several different layers of the material. If the
path difference between rays reflected from different sheets differs by a whole
number of wavelengths the rays will interfere constructively, and a reflection of
the plane wave will be seen. Due to the multiple plane waves that create the
Bloch wave their Bragg reflections are slightly more complicated, however the

same premise applies.

The Brillouin zone

The first Brillouin zone is the region in reciprocal space [22] that lies closer
to the reciprocal lattice point at the origin than to any other [23], a region
that may be shown to contain the complete set of modes that are supported
by the crystal [24, 25]. This arises as any point outside of this region may be
translated onto a point inside the region through a translation by a reciprocal
lattice vector.

It has been seen earlier that any particular Bloch mode (labelled by index
1) is of the form,

iy = exp(ik.7) Z V(G) exp(ié'm
G

This gives the mode as the summation of the plane wave exp(ilgf’), and its
reflections which are given by the set of reciprocal lattice points. The set of
reflected waves thus has the form exp(i(k+G).7) where @ is the set of reciprocal

lattice vectors. If a second Bloch mode is considered with the form,

ity = exp(ik'.7) Z V(é)exp(ié"?)
el

where k' = k+ él, and G is an arbitrary reciprocal lattice vector, it may easily

12



be shown that u; and s are equivalent modes. This arises due to the infinite
extent and periodic nature of the reciprocal lattice. For any vector, él, in the
lattice there must also exist a vector, —(?17 and hence a reflected wave with the
form exp(i(k’ — G1).7) = exp(ik.7). This wave will be scattered again, and as
such, any wave that is given by u; will be reproduced. In the same way, the
plane wave exp(ik.7) is reflected to give exp(i(k 4+ G).7), which will be further
scattered from the reciprocal lattice points. Thus any wave in the mode u;
must be present in mode 1> and vice versa. The only difference that will arise
is due to the coefficients V((_f), which give the strength of the scattering from
each lattice point. The values of these coefficients will change the amplitude of
each wave but not the form of the Bloch mode.

Thus for any mode in the crystal with a value of k outside the first Brillouin
zone, an equivalent one will be found in it. Plotting dispersion curves outside
this range only introduces redundant results. For this reason dispersion curves
will be plotted using the Reduced zone scheme, whereby only the values of k in
the first Brillouin zone are plotted. In the case of the one dimensional crystal
that has been considered so far, the first Brillouin zone limits the values of k
to the range —7/a < k< m/a, where a is the cell length. The dispersion curve
plotted in the reduced zone scheme is shown in figure (1.4). The solutions are
periodic in k over a range of 27 /a, hence a solution for a value of k = k; inside
this range is actually a solution for the set of points ‘E‘ = ‘El‘ + 2nm/a, where
n is an integer.

In the case of the two dimensional photonic crystal that has been discussed

so far the first Brillouin zone is square and covers the range
—m/a <k, <m/a, —m/b<k,<m/b (1.19)
where a and b are the cell lengths in the x and y directions respectively.

13
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Figure 1.4: (a) shows the dispersion curves for electrons in a one dimensional semiconductor
superlattice, while (b) shows the dispersion curves for a one dimensional photonic crystal [26]

1.4 Single sheet guided modes

-d/2 0 dI2
X

Figure 1.5: A single dielectric sheet (grey), infinite in extent in the y and z directions

While the photonic crystals that are being considered in this piece of work
consist of infinite sets of parallel dielectric sheets, the behaviour of electromag-
netic waves in a single sheet acts as an aid to the understanding of these larger
sets.

The sheet that is being considered, as shown in figure (1.5), extends from

—g to g in the x direction, and is infinite in extent in the y and z directions.

14
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An electromagnetic wave that is confined to move in the x,y plane will take
the form,

E = E(x) exp’kvy=«1) (1.20)

The component of the electric field in the y direction, being tangential to the
sheet, will be continuous across the boundary and thus will have a constant
value across the three regions. However, the x component of the field must be
considered in each of the three regions separately.

A wave originating in free space on the left hand side of the sheet leads to

fields in the different regions of the form,

Aeikm(zfd/Z) + Befikx(zfd/Q) (I < 7d/2)
Ey(Z) = Ceihast 4 Demikaat (—d/2 <z < d/2) (L.21)
Fethelrtd/2) (z > d/2)

Where A,B,C,D and F' are constants that are found by applying the correct
boundary conditions [27]. There is only one term in the region x > d/2 which
corresponds to a wave travelling to the right. As this wave will not be reflected,
no left-travelling wave exists.

The polarisation of the light, i.e. the orientation of the field with respect to
the sheet, is important when applying boundary conditions and hence finding
values for the constants A,B,C,D, and F. The electromagnetic waves may take
one of two polarisations, S or P, with the orientation of the fields for these two
polarisations being shown in figure (1.6). In both cases, we set the z component
of the wavevector to zero for simplicity. This confines the wave to propagate in
the x,y plane, with the  and y components of the wavevector being related by
k2 = Eﬁ, + IQZ For P polarisation the electric field oscillates in the plane of the
page as shown in fig 1.6(b), while for S polarisation the electric field oscillates

out of the page [fig 1.6(a)]. The solutions to these two different orientations

15



are completely different, and so can be treated separately. As it is the S po-
larisation that will primarily be used in the later work, unless stated explicitly,

from this point on any electromagnetic wave will be considered to be S polarised.

y
(@) l (b)
z X
H v

VVH

Figure 1.6: Schematic of an E.M. wave incident on a dielectric sheet (shaded) showing
electric field (E), magnetic field (H) and the direction of propagation (v) (a) S-polarisation
(b) P-polarisation

Guided waves

A second case that should be considered is that of a wave that is already
present in the sheet. If the wavevector in the y direction is greater than the
free space wavevector, after applying the correct boundary conditions, it may
be seen that in air the z component of the wavevector is imaginary, thus the
field decays exponentially outside of the sheet. This solution confines the ray
inside the sheet, as upon meeting a boundary the ray will be totally internally
reflected. However, if the component of the wavevector in the y direction is less
than the free-space wavevector the wave will not be confined, and the fields will
take the form given in the last section.

For S polarisation, the fields for electromagnetic waves that originate in the

16




sheet and that are confined to the sheet under the condition of total internal

reflection, are given by

At (md/2) (z < —d/2)
E(z) = Bjet® 4 Cre~ih2a®  (—d/2 <z < d/2) (1.22)
Dy et (4d/2) (x> d/2)

Where Aq, By, C1, and Dy are again constants that may be obtained by applying
the boundary conditions at the interfaces between the dielectric sheet and the
air [27]. In equation (1.22), ko, is the 2 component of the wavevector in the
material and g, = ik1, is the z component of the wavevector in the air multiplied
by @ = v/—1. This form is chosen purely as a convenience to distinguish between
the guided and unguided waves. If ¢, is not positive the electromagnetic wave
is no longer guided, and the fields will take the same form as in equation (1.21)
with A = 0 as there will be no wave incident upon the sheet from the left.

The exponential decay of the field in the air means that it decays to virtually
zero within a distance of a few wavelengths from the sheets. However, if a second
sheet is placed sufficiently close to the original sheet, the field will couple to the
second sheet and excite a mode in it.

The two dimensional photonic crystals considered later in this work will
initially be formed from a set of infinitesimally thin sheets. In order to consider
this limit, the sheets are defined by the single parameter m where m = ¢,.d. Here
d is the effective width of the sheet and e, is its effective relative permittivity,
chosen so that ¢, — oo as d — 0. In this limit, guided modes survive for S

polarisation, but not for P polarisation [13].
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1.5 The Kronig-Penney model

The Kronig-Penney model describes the effect that the potential created
by a lattice of atoms has on an electron by considering the potential to be an
array of square potential wells. Although this yields a system that is easy to
solve, and that shows some important effects, the approximation is generally
too great for quantitative calculations of other effects. However, the photonic
crystals already considered create just this ‘potential’ landscape, and hence are
an ideal systems to be modelled in this manner. The boundary conditions for
the electric and magnetic fields at the interface between two materials allow the
reflection and transmission coefficients to be calculated. These may be used to
determine the relation between the amplitude of the left and right travelling
components of the wave on either side of the interface [28]. As it is easy to
relate the left and right travelling components of the wave at any two points in
a homogeneous material, the additional ability to relate the components across
a boundary allows the relationship between components in one cell and the next
to be calculated. This may be combined with a statement of Bloch’s theorem
to find the dispersion relation for these structures.

Initially, an infinite one dimensional photonic crystal is considered. A cross
section of three cells of this crystal is shown in figure (1.7). Each of the cells is
identical, consisting of a single dielectric sheet and an air gap. Once again the

electromagnetic wave takes the form

—

E, = E(z)exp'Fvy—t) (1.23)
with E(z) taking the form

E(z) = A,eiFr® 4 B, emikne (1.24)
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where n represents the cell number, En is the wavevector in the corresponding
medium and A, and B, give the amplitudes (and orientation) of the left and

right travelling components.

«— N-1

n+1

>
A

Figure 1.7: A cross section of three cells of a one-dimensional photonic crystal. Transmission
is calculated across the cell that is shown darker than its neighbors. The width of the air gap
is d4, and the sheet dB.

It is useful to write the electric field distribution E(x) at a point in the

crystal as a column vector of the following form

— —

El, r=a €XP

ikp=ax

Ez:a B:r:a exp Ha=a®

where E+_ and E-

o »—o are the components travelling to the right and left re-

spectively at the point x = a. The total electric field at any point in the crystal
is gained by summing the different components of the wave at that point. If the
wave is travelling through a homogeneous material, the relationship between

the field at * = a and x = 3 is given by,

E’;r,a eiEa (B—a) 0 E+—ﬁ
= - = (1.25)
E;:a 0 e ka(f=e) E;zﬁ

The matrix multiplication just advances the phase of each wave by the correct

19



amount through this translation in space. This is only true for homogeneous
regions of space, that is, where the refractive index is constant. Thus while the
wavevector has been labelled Em it could equally have been labelled Eﬁ, or the
wavevector at any point between.

The second situation of interest is the relation between left an right travelling
waves either side of a boundary between materials with different refractive index.
This is obtained through the application of the correct boundary conditions to
the electric and magnetic fields [27]. As mentioned previously, the solutions
for S and P polarised waves incident on the boundary are different, with the
solutions only being equivalent for a ray that is travelling perpendicular to the
surface. For S polarisation, the relation between the fields of waves on either

side of the interface is given by,

St 1, ky 1 ky St

Ey — (2 + 2’;21) (2 21321) By (1 26)
o i i o '
Bl oL G-3) G+a) |5

where El is the wavevector in material 1, and Eg is the wavevector in material
2. It is at this point that the advantage of writing the fields in the form of
column vectors becomes apparent. If z = 8 was a point on a boundary between
two different materials, then Ef‘ and Ef are equivalent to E‘;"Z 5 and E;=5
respectively. Substituting (1.26) into (1.25) then gives the relation between

waves at the point in material 1, x = «, and the point inside material 2, z = 3,

D) iko (8o 1y k. Lk 7

Po | A 0 (2 * 231) (2 231) B3 s
A —ika(B—o 1 E 1 i a—
Bea ] L0 e [ Grag) Grag) [ P

Multiplying out the first and second matrices on the right hand side leaves a 2x2
matrix that describes the relation between the waves at © = a and those inside

the second material at x = 3. The waves at x = 3 may be related to waves
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at any other point inside the second material in the same manner as shown in
(1.25), and waves inside the material at the boundary may be related to waves
outside the material at the boundary in the same manner as (1.26). By using a
series of steps of the form shown in (1.25) and (1.26) the relation between waves
at any two points in the crystal may be obtained in the form of a single 2x2
matrix.

Figure (1.7) shows the steps needed to calculate the relation between waves
at the beginning of cell n and the beginning of cell n+1. The propagation of the
wave from point 1 to point 2, and from point 3 to point 4 need to be included,
as does the relation of the waves at the boundary between the materials, points
2 to 3 and points 4 to 5. If the wavevector in the air gap is labelled Ea, and in

the dielectric sheet it is Eb, this the relation,

Ef B koA 0 (% + 2%;) (% _ 2’%&) ik B 0
B o e~ kad (% - 212) (% + 21;) 0 e |
| GBra) (i) || B
(=) CGrag) [ 5 ]
| A B || E
|c p||E

(1.27)

This is a far superior method than just considering waves created by reflection
and transmission at each boundary. In such calculations, if the system includes
two or more partially reflecting surfaces, the multiple reflections will need to be
truncated at some point, or dealt with in some other way to sum the infinite
series that will be generated.

Bloch’s theorem relates the field at any point in a single cell to the equivalent
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point in the next cell in the following manner,
Epi1(F+ 2(A+ B)) = exp (AP E (1) (1.28)

where (A + B) is the length of a single cell and fi, is the Bloch wavevector.
The set of solutions are restricted to those where the Bloch wavevector is real.
Writing equation (1.28) as a column vector relating the left and right travelling
components of the field gives,

o -

En+1 = eiilu‘“"(A+B) " (129)

E. E;

Thus we have two statements, (1.27) and (1.29), relating the field at one point
to the equivalent point in the next cell. Identifying En with El, and En+1 with

E5, allows the use of (1.29) to eliminate the E, 1 terms in (1.27),

-1

A B Ef : Ef
B =e Mt (1.30)
¢ D E E;

Thus e~+% may be identified as an eigenvalue of the matrix on the left hand
side. The solution of this for photonic crystals with finite width sheets may be
seen in Appendix A, and is used chapter 6. However reference [13] solves this
in the limit of infinitesimally thin sheets that have been described previously,

giving a rearranged version of (1.30) as,

) - . . 2. o VD _
[1 + Z(%)]elkwa _ ¢ifiza Z(Zlgz )6 i(2n—1)kza 7—1— 0
_i(%)ei@n—l)kza [1 _ Z(Zlgj )]e_ikma _ eiﬁwa E';

Where m = ¢€,d, the width of the sheet, d, multiplied by its relative permittivity,



€r
Writing this as two simultaneous equations, and substituting to eliminate

either £t or E gives,

cos (fiya) = cos (Ema) - mi]& sin (Eza> (1.31)
"

As the relation between w and k, is known equation (1.31) gives the dispersion

relation for the crystal, the relation between [i, and w.
This, however, is not the only solution that may be found in these crystals.
As has been shown earlier, waves may propagate through a sheet under the
conditions of total internal reflection. If a second sheet is placed sufficiently
close to the first, the wave will couple to it through the evanescent fields found
outside the sheet. The dispersion curve for waves guided in this manner is

gained by replacing k, by iq,, and leads to the second dispersion relationship.

2

cos (fiya) = cosh (gra) — mz;i sinh (gya) (1.32)
2¢%qy

Two dimensional crystals

Extending these ideas to two dimensions is trivial as the above method may

be applied in each direction separately, leading to the dispersion relations

cos (fiya) = cos (Eza) - m%lj sin (Eﬂt) (1.33a)
cos (fiya) = cos (Eya> - m%]j sin (l%,a) (1.33b)
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and, for waves with evanescent fields,

2
cos (fipa) = cosh (gya) — 2(:2(}; sin (¢za) (1.34a)
—
cos (fiya) = cosh (gya) — —%— sin (gya) (1.34b)
2¢2q,

Thus a Bloch wave that is made from waves with a locally propagating character
in the z direction, and a locally evanescent character in the y, would be described
using equations (1.33a) and (1.34b).

An example of the dispersion surface for a two dimensional photonic crystal
is shown in figure (1.8). Although the first Brillouin zone covers the region
- < figly < m—m < fiyl, <, it is symmetric about ji,l, = 0 and fi,l, = 0.
Thus every solution lies in the range shown, which is known as the reduced

Brillowin Zone.

®,, (10" rad s™)

Figure 1.8: An example of a dispersion surface of a two dimensional photonic crystal

The solutions for P polarisation may be obtained in a similar manner, leading
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to the dispersion relations for locally propagating waves,

cos (fiya) = cos (Exa) - m%k2 sin (Eza> (1.35a)
cos (fiya) = cos (Eya) - n;%]jz sin (Eya) (1.35b)

while for locally evanescent waves they are changed to,

2

cos (fiya) = cosh (gpa) — 20:;; sinh (gya) (1.36a)
2

cos (fiya) = cosh (gya) — ;ncy;;, sinh (gya) (1.36b)
y

1.6 Variation in cell size

The photonic crystals that have been considered so far have been defined
as having a constant cell size. Although this makes the dispersion relation far
easier to determine, the crystals that it creates are quite limited. It is, however,
possible to slowly vary the cell size in the crystal and, provided the variation
is sufficiently slow, consider the bandstructure at any point to be equivalent
to that of an infinite crystal with a cell length equivalent to the local cell size.
The bandstructure will then slowly vary throughout the crystal, scaling up or
down depending upon the local cell size [26]. This leads to the possibility of
a Bloch wave propagating through the crystal encountering the top or bottom
of the band that it is in, and hence meeting a region for which there is no
solution at that frequency. Upon meeting the edge of the band, the light is
Bragg reflected. If, in a one dimensional photonic crystal, the cell size constantly
increases/decreases, the Bloch wave, upon meeting a point where it is reflected
from the top/bottom of the band, travels through the crystal until it meets the

bottom/top of the band and is reflected once again. Thus the Bloch wave is
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confined to a region of the crystal for which the range of local cell sizes allow
the propagation of a Bloch wave of that frequency, which is separated by two
adjacent spatial regions for which there are no propagating solutions. In this
manner, a situation analogous to an electronic Bloch Oscillation may be set up
[26]. It should be noted that there are several variations on this method that
introduce photonic Bloch oscillations that are analogous to electronic Bloch
Oscillations, which reveal different aspects of the electronic Bloch Oscillations

29, 30, 31].

1.7 Non-infinite lattices

As has been mentioned previously, there exists a solution to Maxwells equa-
tions for electromagnetic waves that are incident upon a crystal even if their
frequency falls within a bandgap. This occurs as, in order for a wave to be in-
cident upon the surface, the crystal may not infinite. Thus the restriction that
p must have a value that lies on a unit circle in complex space no longer holds,
and a solution for an exponentially decaying wave may be found. If the crystal
is sufficiently thin, or if a region of the crystal where the wave may propagate
is sufficiently close to the surface, the wave will still have an appreciable magni-
tude having passed through the forbidden region. Thus the wave incident upon
the surface will couple to the allowed region, and will excite a wave with appre-
ciable magnitude in it. Thus, in a similar manner to the tunneling of particles
through a barrier where motion is classically forbidden, E.M. waves may tunnel

through analogous ‘forbidden’ regions.

26



Chapter 2

Hamiltonian ray tracing

Hamiltonian mechanics is a branch of classical mechanics that arose out
of Lagrangian mechanics in the 1830’s [32]. It is built upon the principle of
least action, that is, for any problem to be solved a function may be found
whose integral is minimized along the path the system takes. In the case of
concern here, that of light, the quantity to be minimized is the optical path
length [33, 34, 35]. This is a quantity obtained by multiplying the distance
travelled by the refractive index of the material the light is travelling through.

While arising out of Lagrangian mechanics, Hamiltonian mechanics may be
formulated without reference to it, and offers a different perspective on problems
to Newtonian mechanics. Although conditions such as the absence of work
against friction are generally needed, when a solution is obtainable it may prove
easier to find, and may yield an answer that gives more insight into the problem,
than a solution obtained using Newtonian mechanics.

This chapter will start with a brief introduction of several ideas such as
generalised coordinates and phase space. These will subsequently be used in a

derivation of the Lagrangian which will lead on to Hamilton’s equations, a set
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of first order equations that will describe the evolution of the system. Finally
the chapter will use these ideas, combined with those from the previous chapter,

to describe the ray tracing process that has been used in the later work.

Phase space

The evolution of a system depends upon not only the current positions of
the elements that make it up, but other variables such as the momenta of these
elements [36, 37, 32].

If the positions and momenta are each defined in N dimensions then the sys-
tem is said to have IV degrees of freedom. The Phase space is a 2N dimensional
space with an axis for each dimension in which the position and momentum
defined. The state of the system may then be completly specified by a point in
this 2N dimensional space [38].

While the extra dimensions make the path difficult to visualise, plots of
slices of the phase space help give insight to the behaviour of system that is not
apparent from the paths in real space. These slices, known as Poincaré sections,
will be explained more fully in the next chapter.

The systems considered here are said to have a degree of freedom for each
pair of position and momentum coordinates. Thus the particle moving in the

six dimensional phase space is said to have three degrees of freedom.

Holonomic constraints

In virtually all systems of interest there will be some constraints that need
to be taken into account; a surface the particle is moving on, an impassible wall
etc. These may be classified in two ways, holonomic and non-holonomic. A

holonomic constraint is one that may be written in the form,

f(?"l,Tg,Tg...Tn,t) =0 (21)
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where 7; (i = 1,2,...n) are the coordinates that define the system and ¢t is time.

An example of a holonomic constraint is that of an object whose position
is restricted to lie on a ring of radius R in the z,y plane. This constraint may
be written in the form z? + y? — R? = 0. The consequence of this constraint is
that, as this condition restricts the solution to a one dimensional curve in this
two dimensional plane, the number coordinates needed to specify the state of
the system is reduced by one. Any holonomic constraint that is specified with
« dimensions explicitly restricts the solution to a a — 1 dimensional surface.
Thus in the case of the particle being restricted to move on the surface of a
sphere, the holonomic constraint will have the form 22 4+ y? + 22 — R? = 0, a
two dimensional solution for a holonomic constraint involving three dimensions
explicitly. As such, if a system with N degrees of freedom has A holonomic
constraints applied to it the state of the system is completely specified in phase
space by n = 2N — A coordinates.

By contrast, a non-holonomic constraint is one that restricts the accessible
volume of phase space, while leaving the number of dimensions needed to define
the system unchanged. An example of this is an impassable wall on the x axis
at z = 10. While an object constrained to move in the region x — 10 > 0, that
is z is restricted to values greater than 10, is forbidden from moving in a region
of phase space, within that region it is allowed to move in the same number of

dimensions as it would without the constraint.

Generalised co-ordinates

The state of the system may be totally specified by a number of coordinates
equal to twice the number of degrees of freedom that the system has. Up to this
point the systems have been considered using Cartesian coordinates, however
this is rarely the most useful set of coordinates, and the holonomic constraints

that are applied to the system may mean that the coordinates are no longer
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independent. This is demonstrated by returning to the example of a particle
confined to lie on a ring of radius R in the z,y plane. Any displacement in
the = or y direction must be associated with a translation in the other in order
to satisfy 22 4+ y2 — R? = 0. In this case, a transformation of the coordinate
system from Cartesian coordinates to polar coordinates simplifies the problem
greatly. Figure (2.1) illustrates the problem with both coordinate sets; The
particle’s position being specified by x and y in the Cartesian system, and by R

and @ in polar coordinates. While both systems use two coordinates to specify

y

Figure 2.1: A particle confined to lie on a ring radius R in the z, y plane

the position of the particle, as R is always constant, a value of 6 is enough to
specify the state of the system. Thus R defines the one dimensional surface that
the solution must lie on and 6 the position on this surface. The coordinates are
independent as § may change independently of R, and should we wish to consider
a second ring with a radius R, the change in R may be made independently of
0.

In the same manner, the position of the system on the n dimensional surface
in the 2V dimensional phase space may be specified completely by n coordinates,
if a system of independent coordinates is found. It should be noted that the
set of coordinates may not be related to the Cartesian coordinates in a simple
manner. The holonomic constraints may, for instance, give a relation between a

momentum coordinate and a spatial coordinate, or a non-linear relation between
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several variables. Thus the system of independent coordinates, the generalised

coordinates, may also need to be specified in terms of unobvious quantities.

2.1 Lagrangian Mechanics

The n generalised coordinates define a surface in phase space that contains all
possible states of the system, and each coordinate may take any value that is not
forbidden by non-holonomic constraints. As these n coordinates specify points
on this surface and no other, that is only solutions that satisfy the constraints, it
becomes possible to consider the evolution of a system without explicit reference
to forces that arise due to the constraints applied to the system.

To solve a problem with Newtonian mechanics, all the forces on a system
must be specified at all times, including those that arise from the constraints.
For problems such as a bead that is constrained to move on a curved wire,
the forces of constraint become very difficult to specify. As such, problems
may become very difficult or impossible to solve. For such problems, a La-
grangian/Hamiltonian mechanics approach may prove more successful; Having
found the set of generalised coordinates, and the kinetic and potential energy
in terms of them, a solution to Lagrange’s equations of motion may be found.

The following section will introduce the Lagrangian, L, a quantity that in-
volves V| the potential energy, and T, the kinetic energy of the system. Having
found the Lagrangian, which may also be related to the Hamiltonian, the dy-
namics of the system may be determined from Lagranges equations of motion.

It should be noted that while, previously, systems consisting of only a single
particle have been considered, systems of numerous particles will be considered

from this point on, with constraints relating the dynamics of the particles.
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D’Alembert’s principle

D’Alembert used a device thought up by James Bernoulli to examine the
system under a virtual displacement, an infinitesimal displacement that complies
with the forces and constraints on to system at a fixed time ¢ [32]. The equation

of motion,

may be rearranged to give,

Fi—pi=0

which shows that the system will be in equilibrium if the force applied to it is
equivalent to the actual force on it combined with a force equal to —ﬁ’. Thus, if,
instead of making an infinitesimal displacement to the system under the force
F , the force is replaced by F— ]5’, the work done on a system of ¢ particles may

be written as,

where F; is the total force on the system, both the force applied to the system
and the force of constraint. These two contributions to the total force may be

considered separately and hence the above equation may be written as,

Z (ﬁ(applied,i) - ]3;) 57?1 + Z (ﬁ(constraint,i)> 67_‘; =0

i

If the second term may be set to zero, then the only forces that are considered
are those that are applied to the system; No consideration of the forces that are
needed to satisfy the conditions of constraint need be made.

In order to set the second term to zero, systems that involve friction must

be excluded. If a particle is moving on a surface in the absence of friction, the
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force that constrains the particle is perpendicular to the surface. This allows a
virtual displacement to be made tangential to the surface without introducing
any virtual work. However, in the same situation in the presence of friction,
any displacement will involve virtual work being done.

The elimination of the second term leaves D’Alembert’s principle (2.2),

Z (ﬁ(applied,i) —171> 075 =0 (2.2)
i

While the sum in equation (2.2) may be set to zero, the independent (Fapplied,i_
;5;) terms in general may not. This arises as the dr; have not been specified as
independent, and, as such, constraints on the system may couple the 67;.

A simple example of this coupling of coordinates involves considering an
object rolling down hill where friction is present. As mentioned previously,
Hamiltonian mechanics is not easily applicable to systems where work is being
done against friction, however as the object is rolling the point of contact does
not slide across the surface and hence no work is done. If an arbitrary dis-
placement of §7 down the slope is made to the object, both the change in the
position of the object and the corresponding rotation must be made. This may
be considered as two separate changes, corresponding to two different coordi-
nates. Alternatively, as is the case for independent coordinates, both of these
changes may be related to a single coordinate. In the first case, where this shift
is defined by changes in two coordinates, a change in one coordinate determines
the change in the other. In the second case both changes are accounted for
by one coordinate, so a change in this coordinate may be considered without

affecting the systems state with respect to any of the other coordinates.

The relation of the displacement in the generalised coordinates g; to the
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coordinate 7; is given by,
or;

0= o
8%‘

5qj

The work due to ﬁ(applied’i) in terms of the generalised coordinates is then,

Z F(apphed %) 6Tz Z F (applied,i) arl Z Qj 6q] (23)
,J

where @; is the generalised force. As has been mentioned previously, the gen-
eralised coordinates may be unobvious quantities that relate to the system, and
may not have the dimensions of length. In the same manner, the generalised
force does not necessarily have the dimensions of force, but @;dg; must have
the dimensions of work.

In a similar way, the p; term in equation (2.2) may be related to the gener-

alised coordinates by,
B -, O 5 O
i iy 00 i 2

If the term Z T g is expanded in the following manner,

OR N~ [d (OB d (0R
zl:min.a—qj = zz: {dt (mzrl.an) mlrl.dt <8qj>} (2.5)

and the following relationship is found [32],

av; o7
an aq]'

(2.6)

these two equations (2.5) and (2.6) may be substituted into equation (2.4), and,

after it is rearranged, the following is obtained,
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2.7)

D’Alembert’s principle can then be rewritten as.

= |t (5 (£am7)) - (£ imt) -0

Zl 5M;V; 2 is identified as the kinetic energy of the system, T.. The evolution of

6(]j =0 (28)

the system is thus dependent upon the differential of the kinetic energy with re-
spect to the generalised coordinates, time, the time differential of the generalised

coordinates, and the generalised force. Substituting in T gives,

Z [{;ﬁ (SZ) SZ;} Qa] dg; =0 (2.9)

As ¢; has been specified as the set of generalised coordinates, the displacement
in each of these directions is independent of displacements in the others. In
order for equation (2.2) to hold, each element of the sum, the equation for each
value of j, must be equal to zero. Thus the equations of motion for the system
separate out into j equations of the form,

d (0T oT
a (ot _ob _ 4 2.1
t (5%') 0q; @ (2.10)

If the forces are derivable from a scalar potential energy function, V', where
the force is equal to the negative gradient of this function, ﬁi = —V,V, then

equation (2.3) gives the generalised force for each value of j as,

arz - or, _ v
ZF = Zvv 50 = " oq; (2.11)
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substituting this into equation (2.10) and rearranging gives,

d (oT\ AT-V)
i (o)~ =

As V is not dependent upon ¢;, to simplify the maths it is possible to include

V in the first term,

d (0(T -V or-Vv
A (AT =V)) o ) o (2.13)
dt aqj aqj
Rewriting the equation of motion like this, while not changing the result of
the equation, allows the Lagrangian to be defined as T"— V, and Lagrange’s
equations may be written as,
d (0L oL
—([=)-===0 (2.14)
dt 8qj é)qj
The dynamics of the system are now given by a set of j equations that depend
only upon derivatives of the kinetic energy and the potential energy. While
T — V will always give a suitable Lagrangian for the system, it is possible to
find other solutions for the Lagrangian.
If L does not depend upon t explicitly, the derivative of L with respect to ¢
is as follows,
dL oL de oL dq]
aL oL dagq; oL ag; 2.15
Replacing the term g—; by using Lagrange’s equation, (2.14), gives,

dL . d (0L oL . _ d . oL
i~ (v (o) ran) = Salo(5) e

J
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rearranging this leads to,

d . (0L
o zj:qj(aq_j) ~L| =0 (2.17)

By integrating this with respect to ¢t it may be seen that the quantity in the
square bracket is a constant which is equal to the total energy of the system,

and is defined as the system’s Hamiltonian.
qupj — L = constant = H (g;, p;,t) (2.18)
J

where p; defined as the generalised momentum associated with the generalised

oL

coordinate, p; = i
J

2.1.1 Hamilton’s equations

The differential of H (g;,p;,t) may be obtained using the chain rule to give,

OH  OH OH
dH =33 S dg; + S dp, b + St 2.1
;{6%‘ v o, pj}+ ot (219

However, the differential of H may also be obtained using equation (2.18),

. . oL
dH =" (4;dp; — p;dq;) — TR (2.20)

J

Comparing the coefficients of the dg;,dp; & dt terms in these two definitions of

dH gives Hamilton’s equations of motion,

)

oOH
q; = -5

= p = 2.21
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Thus, the dynamics of the system are defined by 2n first order differential equa-
tions. If the Lagrangian of the system can be identified, a Hamiltonian can
be obtained, and once the generalised coordinates and momentum have been
identified, the evolution of the system can be given.

This is just one formalism of Hamilton’s equations. An alternative method
involves a variational principle. Here, the time integral of a quantity, known as
the action, is minimised over the time interval. The action of the system needed
to determine the path that a ray of light will take is given by Fermat’s principle,
the principle of least time. This states that the path that the light will take will
minimise the optical path length, the refractive index of the material multiplied
by the distance the the light travels through it [39, 34]. Thus the condition for

the path that the light will take is,

to .
5/ n (r)rdt =0 (2.22)
t1
This is the weak formulation of Fermat’s principle. Lagranges equations may

also be obtained in a variational form,

ta
/ L (r,7,t)dt = extremum (2.23)

t1

A comparison of equations (2.22) and (2.23) identifies the Lagrangian as [40, 41],
L(r,rt)y=n(r)r (2.24)

This may then be used in equation (2.18) to gain the Hamiltonian for this
system,

H=> gpj—L=rp—n(r)i (2.25)
j
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As the generalised momentum p; = g—;, and identifying ¢; as 7, then
J

oL : i
p=—==n(rr= n@T (2.26)
or 7
rearranging this, and substituting in for v = ‘7" ‘, gives
. (2.27)

n(?)

This may than be substituted into equation (2.25), and after rearranging,

H=c <T£'(’;) - 1> (2.28)

In an inhomogeneous medium p = ni = ck /w, and so,
H =2k /n(r)? — w? = Wipe —w (2.29)

Where wj,. corresponds to the local dispersion relation.
Now that H has been determined, if a point that lies in a band is chosen as
the starting point for a ray, then its subsequent path may be found using the

pair of Hamilton’s equations corresponding to this system [42, 26]

df OH  di _ 0H

oa_ gt = _— 2.
dt  oi’ dt or (2.30)

The numerical process used in calculating the ray path will be explained

more fully in the next section.
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2.2 Runge-Kutta methods

Many functions may be represented by a Taylor [43] series expansion, an
infinite series with terms that involve the derivatives of the function at a point

& = a. The Taylor series expansion of a function f(z) is given by,

fla) =322 g L —a)n = fla) + L (2 —a) + Ll (2 — a)2+

n=0 n!

Where

As this involves an infinite sum it is rarely possible to obtain an exact analytical
expression for f(z). However, an approximate solution may be found by trun-
cating the series. The accuracy of the approximation is given in terms of the
point that the series it truncated at. A first order solution involves terms up to
those involving a, a second order solution involves terms up to a? and so on. It
should be noted that while a second order solution is normally more accurate
than a first order solution, this is not always the case.

The Runge-Kutta methods that will be introduced later use combinations of
low accuracy steps in order to match a Taylor series up to the desired number
of terms. A fourth order Runge-Kutta method will be introduced, and it is this
that has been used to numerically calculate the ray paths in the photonic crys-
tals. As with any numerical calculation that is carried out, a balance between
accuracy and the time in which a solution is gained must be made, with fourth

order being a common choice for Runge-Kutta methods.
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Euler method

If the value of a function f(x,y) is known at a point = z,,y = y,, one
of the simplest ways of making an approximation of the function at the point
x = x, +h is through the use of the Fuler method [44]. This involves calculating
the first order derivative of the function with respect to x at the point x = x,,
and assuming this is the constant rate of change of y across the interval. Hence
the value of y,,11, the value of y at the point = x,,4; is related to the original
point z,,, y, by,

_ of (z,y)
Ynt+1 = Yn + h Oz (232)

TrYn
While this is a very simple method for advancing a function from =z = z, to
x = x, + h, it only provides first order accuracy. That is, if the function f(x,y)
was expanded as a Taylor series, the series will only match up to the terms
containing a, and any change in the value of y that is due to higher order terms

is ignored.

The midpoint method

The midpoint method, a second order Runge-Kutta method, uses a series of
Euler style steps in order to create a second order solution. Instead of calculating
a value for y after a single step of length A in the = direction, its value after a step
of length h/2 is calculated. From this new point a second order calculation of
the derivative across the entire step may be obtained. The increased accuracy
arises from the fact that the new derivative is symmetrical, that is, it uses
information about the derivative from both a forward and backwards step. The
fact that this changes the method to second order may be shown using Taylor

expansions. Initially, the value of the function at = + h/2 may be related to its
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value and derivatives at « by a Taylor series, shown here omitting terms > h?,
h ! h2 " 3
fx+h/2) = f(2)+ 5 f (@) + 5 " (2) + O (1) (2.33)

where O (h?) is the error introduced by ignoring the terms involving h=3.
A similar expansion may then be found relating the value of the function at

x — h/2 to the value and derivatives at z,
h ! h2 " 3
b2 = @) o @)+ " @) 40 () (230

The term %2 " (z) is common to both expansions and may be eliminated by

subtracting (2.34) from (2.33) to leave,
f(x+nh/2)— f(z—h/2) =hf (z)+ O (h?) (2.35)
If f(x+h/2) =yp+1 and f (z — h/2) = y,, then (2.35) may be written,

Ynt1 = Yn + hf' (2)] +0 (h?) (2.36)

Tn4+1/2:Yn41/2

This is of the same form as equation (2.32), however, as the second order terms
have been eliminated instead of ignored, the first term that is missing is of order
h3. Tt should, however, be noted that while equation (2.36) is second order, the
derivative needs to be taken at the midpoint, &, 1,2, ¥n+1/2, the value of which
is still obtained from a first order step. While this step is half the length of the
second order steps, it is possible that it will introduce a significant source of
error if the function varies quickly, or is not nicely behaved. However, if these
are significant factors then it is likely that this entire process would fail, with

second order accuracy not being sufficient to capture the rapid fluctuations.
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2.2.1 Higher order Runge-Kutta methods

The previous section has shown how the Taylor expansions of two evaluations
of the derivative may be combined in a manner that eliminates the second order
terms. In a similar manner, numerous evaluations of the derivative at different
points may lead to a set of Taylor series that may be combined in such a way to
eliminate higher order terms. As such, a fourth order solution may be obtained

through the use of the following evaluations [45],

kl = hf/(mnayn)
h k1
_ / _ L
k2 - hf($n+27yn+ 2)
h ko
_ / _ 4
kS - hf(mn+27yn+ 2)
ky = hf/(xn+h7yn+k3)
k k k k
Ynil = Ynt o+ 2t 24 21O (2.37)

6 3 3 6

While this gives a higher order solution, the number of calculations that are
needed are increased, and hence it will take longer to evaluate.

It is useful when running numerical calculations to be able to make an es-
timate of the error in the solution. If the error is then too large, as each of
the terms depend on h, the accuracy of the calculation may be increased by
repeating it using a smaller step size. As such, if a fourth order solution is de-
sired, it is useful to make an additional calculation of a fifth order solution and
use the difference between these two solutions as an estimate of the error. This
process is made far faster to evaluate if the points at which the differentials are
evaluated are common to both solutions, that is to say the same set of k; are
used in each calculation, with different combinations of them resulting in either

a fourth or fifth order solution.
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2.2.2 The adaptive step size Runge-Kutta method using

Cash-Karp parameters

There are numerous ways in which to obtain an estimate of the error when
using Runge-Kutta methods, one of the simplest being a comparison with a rep-
etition of the calculation using a step size of half the length. The disadvantage
of this method is that many more calculations are needed to carry out both of
these evaluations than are needed for the initial calculation itself.

The ’Cash-Karp’ parameters [45] are a set of constants that may be used
to multiply a set of derivatives calculated at a common set of points across the
step in such a manner as to obtain both a fourth and a fifth order solution. The
difference in these solutions gives an estimate of error, and may be related to
the step size h in such a way as to allow an estimate of the error for a step size,
h1, to be made.

As these two calculations should give a common solution up to fourth order
accuracy, the main source of error should arise from the fifth order term, and,
as such, scale as h°. Thus if the error for a step of length A is too large, the step

size that should restrict the error to the required amount may be estimated as,

TOL|*?

hi=h A

(2.38)

where h; is the estimated step length and TOL is the maximum allowed value
of the estimated error.

If the values of y need to be calculated between two points x = a and
x = b, where b — a > h, then the calculation will need to progress in a series of
steps, with the solution of one step being the point from which the next step is
calculated. While each step will need to be repeated if the estimated error is too

large, if the step size is too small the calculation will take longer than necessary.
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As such, if the estimated error is far smaller than TOL, equation (2.38) may
be used in order to calculate the maximum step size that may be used. In this
case, however, the step that has been taken does not need to be repeated, as
its solution already lies within the required tolerance. It should be noted that
in practice a program written to carry out this calculation should actually use
a value of hy that is slightly smaller than that given by equation (2.38). This
is because the value of hy is only an estimate and, as such, may be slightly too
large. If this happens, the program may never adjust to a step size that satisfies
the tolerance, or, if it does, it may have carried out sufficient calculations that
the use of a slightly smaller step would have allowed the program to have run
faster.

Thus, a program should be written in a manner that allows it to adjust to
a small step size in regions where the function is varying rapidly, and to save
time by doing fewer calculations in regions where the function is only varying

slowly. [45, 44]

2.2.3 Ray tracing

The bandstructure of a two dimensional photonic crystal of the form defined

in the last chapter was given by pairs of equations of the form,

cos (fiza) = cos (Exa> - m%kQ sin (Eﬂl) (2.39a)
cos (fiya) = cos (l@a) — m%p sin (%a) (2.39b)
y

Hamilton’s equations, which determine the trajectory of a ray passing through

the system, have been shown to be,

dF 0H  di  0H

a _ gt - 2.4
dt  of’ dt or (240)
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With the Hamiltonian of the system being,
H(Fa i, w) = wloc(ﬁ7 l(x), l(y)) —w (241)

where [ is the bloch wavevector and I(z) and [(y) are the local cell length in
the z and y directions respectively. As wj,. is the local bandstructure of the
system, these equations are all that are needed in order to calculate a ray’s path
through the crystal.

Initially, the value of w for the ray needs to be set (labelled as w;), and a
starting point found in such a way that allows equations (2.39a) and (2.39b) to
be satisfied, alongside the condition that k2 + k7 = e’w?/c*. To do this, equa-
tions (2.39a) and (2.39b) are solved numerically, using the minpack subroutine
hybrd1 to find values for k, and Ey

Having found a starting position for the ray, the path it takes may be found
from a numerical solution of the equations (2.40). These are solved through the
use of the fourth order Runge-Kutta method described earlier. As the value of
w1 is constant, the variation of H with respect to i and 7 is determined by the

change in the bandstructure. As such,

87H o aWloc and aiH o aWloc
of  of oF ~ oF

(2.42)

The first order derivatives that are used in the solution of the Runge-Kutta
method are obtained by calculating the change in wj,. using a midpoint method.
The value of wy,. is calculated at the points 7+ di and 7 — d7, or ji + dji and

ii — dji, and the first order derivatives are then given as

Owioc(Ty 1) Wioe(T+ 07, [1) + wioe(F — 0T, i)
~~ 2.43
or 207 ( )
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and

&uloc(ﬁ ﬁ) ~ Wloc(F> /_1: + 6[1:) + wloc(F7 /_1: - 6[1:) (2 44)
ofi 2 '

where dr’ and dji take preset values for a uniform crystal, and preset values that

are scaled by the local cell length in the slowly varying crystals.

47



Chapter 3

Chaos

Even in apparently simple deterministic systems, whose future state may
be completely specified by a set of equations, highly complex and apparently
random behaviour may be found. In these cases it is possible that the systems
are exhibiting Chaotic behavior, which makes predictions of the long term future
state of the system impossible to make. This arises not from a failure in the
equations to describe the evolution of the system, but instead from the extremely
high sensitivity of the system to the initial conditions [46]. As such, to know
the state of the system at some point in the distant future the initial conditions
would need to be known to an unattainable level of accuracy.

Chaos is a phenomena that has only been considered in any depth in recent
times, aided greatly by the use of modern computers to carry out numerical so-
lutions to equations that previously may have been deemed too laborious, or too
unimportant. This was compounded by the belief that the maths that describes
the universe would have a simple and beautiful solution. Mathematicians and
Physicists tended to focus on problems they could solve, and these would be

those for which the solutions often are periodic. This led experimentalists who
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observed complex motion to ascribe it to ‘noise’ created by the effect of outside
influences on the system. The assumption was that removing the effects would
cause the system to revert to simple behaviour with an elegant mathematical

solution.

3.1 Phase space

The previous chapter showed that the evolution of paths in a Hamiltonian
system are completely defined by pairs of equations involving generalised po-
sition and momentum. Thus the state of a particle in N dimensional space is
completely defined by 2V values, and the evolution of the state of the particle
as time passes may be viewed as a path being traced through phase space. It is
consideration of these paths in phase space that will give the definition of chaos
that is used in this work. Along with this a slightly more general consideration
of systems, including those for which which work is done against friction, will

be made.

3.1.1 Integrable and non-Integrable systems

It has been mentioned in the previous chapter that, if there are a independent
constants for the system, the state of the system is restricted to lie on a 2N —a
dimensional surface in the 2N dimensional phase space. In the special case for
which the number of independent constants is equal to the number of degrees
of freedom of the system, the system may be said to be integrable [47]. In this
case all paths in the system must be either periodic or quasi-periodic, but not
chaotic. It is not the case, however, that if one region of phase space is integrable
then the entire system is. Many systems have phase spaces containing a mix of
both integrable and non-integrable regions.

In Hamiltonian systems, for which the Hamiltonian is independent of time,
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the Hamiltonian will be a constant of motion and is often identified as the
system’s total energy. Other constants of motion will depend on p(t) and ¢(t)
but must remain constant as p(t) and ¢(t) change with time.

The variation of a function of p and ¢, f(p, q), with respect to time may be
expanded as follows,

df dp 0f dq Of

- = .+ —.— 3.1
it~ diop T dt g 3:1)
Using Hamilton’s equations, as given in the previous chapter, the following

relation may be gained,

@ _oH o5 _oH of o)
dt  9p dq 0Oq Op '

Following this, if the Poisson bracket, {a1,as}, of two functions a; and ag is

defined as,

{al,ag}:—.—f—.— (33)

Then the right hand side of equation (3.2) may be identified as the Poisson
bracket of H and f. As such, the function f(p,q) is a constant with respect to
time if {H, f} = 0.

It should be noted that simply finding a function that is a constant of the
motion is not sufficient to reduce the number of dimensions that a solution
for the system may move in, these constants must also be independent. A new
function that is a constant of motion is only independent if it may not be created

out of combinations of the existing set of constants of motion.

3.1.2 Dissipative and Non-Dissipative systems

When considering the time evolution of systems, the distinction between dis-

sipative and non-dissipative systems becomes important. In dissipative systems,
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for example where friction plays a role, energy is not a constant and the paths
that occur in the system converge toward a set of solutions known as an attrac-
tor [48, 47]. It is possible that more than one attractor will exist for a system.
In such a case the region of phase space that converges upon an attractor is
known as its basin of attraction. There may exist points between two basins of
attraction that are drawn to neither. This, however, will be a saddle point, and
as such the points that correspond to it will be both uncommon and unstable.
The system will exhibit transient behaviour whilst a path dissipates its energy
and closes onto the attractor. Thereafter the path will behave in a manner
similar to other paths starting on that basin of attraction. Consequently the
initial behaviour of the system may be quite different from the system’s long
term behaviour. The behaviour that is seen before the system settles into a
steady state is known as transient behavior.

Hamiltonian systems generally do not exhibit this type of transient be-
haviour. These two different cases, dissipative and non-dissipative, will also
have signatures in the nature of the paths in phase space; volumes in phase
space being preserved for non-dissipative systems, but changing in dissipative

systems.

3.1.3 Volumes in phase space

In Hamiltonian, non-dissipative, systems, Liouville’s theory may be used
in order to show that volumes of phase space are incompressible [32, 36]. As a
consequence, as the system evolves the shape of the phase-space region occupied
by a set of trajectories may change but its volume is conserved.

If the paths that lie on the surface of a volume in phase space are considered
at time ¢, then at some later time, it may be seen that all the points that were

initially inside the surface remain there. If this were not the case, the path of
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a point that was inside the volume must have crossed a path that was on the
surface. This is something that cannot happen, as, if the paths cross, then they
simultaneously occupy the same point in phase space. As the evolution of each
point in phase space is uniquely defined, then these two paths must evolve in
the same manner. That is to say they must be the same path. By the same
reasoning, no point that started outside of the volume that is being considered
here may enter it. The shape of the region may distort as the system evolves
but the volume occupied by that region may not change. As the volume remains
constant, and the region contains a constant number of trajectories, then the

density of states in the phase space must be constant.

3.2 Lyapunov exponents

The rate at which two paths, starting a distance dr apart in phase space,
separate may be quantified through the use of Lyapunov exponents. The direc-
tion in which the displacement is made will affect the rate at which the two
paths separate. As such, if an IV dimensional system is considered then there
will be 2N Lyapunov exponents, one associated with a displacement in each
dimension of the phase space.

If the separation of two paths at a time ¢ is given as d; ;(X), i =1,2,3..2N
corresponding to the 2N dimensions in phase space, and X is the separation of
the paths in dimension i, then the set of 2N Lyapunov exponents \; may be
defined as [37],

1

A; = lim —In
t—oo t

(3.4)

dy i (X) ‘
do,i(X)

In Hamiltonian systems, the fact that volumes are preserved in phase space

has the consequence that the Lyapunov exponents must sum to zero. The

largest Lyapunov exponent is termed the ‘maximal Lyapunov exponent’. If the
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value of this is both positive and real then the separation of the paths will be
exponential, corresponding to chaotic behaviour [49, 50]. While there are many
ways in which Chaos may be defined, in this work we will consider a path to be
in a chaotic area of phase space if one of its associated Lyapunov exponents is

real and positive. The separation of the paths may be rewritten as,

|dei(X)] =~ expit

do,i(X)] (3.5)

This exponential separation of paths is what makes the long term behaviour
of chaotic paths so impossible to predict. There will always be a limit to the
accuracy that the starting point may be measured to and any slight error will
result in a completely different path. It should be noted that it is these individual
paths that need to be considered if chaos is to be found; considerations of
volumes of phase space will not show this behaviour.

The paths in the system will not all suddenly change from being periodic to
being chaotic, however. As the perturbation on the system increases, different

regions will become chaotic.

3.3 Poincaré sections

For a system with 2 or more degrees of freedom, the phase space in which
the state of the system is defined has too many dimensions to visualise simply.
To visualise the dynamics, a representation of the system in a reduced number
of dimensions is needed. A Poincaré section is such a representation. Poincaré
sections may be taken in one of two manners, the first of which involves consid-
ering how a path crosses a two dimensional plane in phase space. Every time the
path in phase space crosses this plane, the point at which it crosses is marked.

This is shown in figure (3.1) for both an aperiodic [3.1(a)], and periodic path
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[3.1(b)]. The spread of the points plotted on the section may indicate whether
a path is stable or unstable, or be indicative of other properties of the system,
such as dissipation.

If the path is periodic with a period ¢, then at a time ¢ after crossing the
plane in phase space it will cross it again at the same point. The path may not
have crossed the plane at any other points during this interval, or it may have
crossed the plane again once, or many times. If the path is aperiodic then it

will never return to a point at which it has crossed the plane previously.

(b)

Figure 3.1: (a) an aperiodic path crossing a Poincaré section at numerous points, the path
will never return to a point at which it has previously crossed the section. (b) a periodic path
crossing and recrossing a Poincaré section at the same points.

If the system is dissipative, transient behaviour will be seen, with the points
collapsing onto the attractor associated with a particular basin of attraction. In
non-dissipative systems there will be no transient behaviour.

The second manner in which a Poincaré section may be constructed involves

plotting a point on the section at equally spaced time intervals, this is termed a

stroboscopic Poincaré section. The parameters on each axis of the two dimen-
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sional section may correspond to any of the position or momentum coordinates,
or combinations of these parameters.

In both cases, the choice of the plane in phase space/time interval and pa-
rameters on each axis, should be considered carefully. If the wrong Poincaré
section is chosen then interesting behavior in phase space may be missed. The
Poincaré section should be chosen in such a manner as to ensure that the path
crosses the section at least once. This can be achieved by choosing the initial
conditions for a path to lie on the Poincaré section itself.

In the systems being analysed in this work a point will be plotted on the
section every time a ray turns from travelling from the left to the right. That
is, a point is plotted each time the ray crosses the p, = 0 plane if, and only if,
Pz is increasing. The rays will also cross the p, = 0 plane when the rays turn
from travelling to the right to travelling the left, however, these points will be
considered separately.

In chapter 2 it was mentioned that A holonomic constraints applied to the
system will lead to the solution being confined to an n = 2N — A dimensional
surface in the 2N dimensional phase space, with A = N for integrable systems.
If the path is chaotic, instead of moving on a surface surface it will be confined
to a volume of phase space. This will be shown by a spread of points on the
Poincaré section and, given enough time, the ray should wander through the
entire region of phase space that it is restricted to. The spread of points will
then show the limit of the region in which the ray moves. If the ray is confined
to a surface, the points plotted on the Poincaré section should follow a line

corresponding to where the surface crosses the section.

Dynamic barriers

The areas of phase space that are of particular interest are those where two

distinct chaotic regions are separated by a region in which the paths are stable.
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The regions in which the paths become stable are termed dynamic barriers,
stopping rays in one chaotic region from entering the other. The rays that
follow stable paths in the dynamic barrier will be confined to move on a surface
in phase space. This will result in the points on the Poincaré section lying on
a curve given by the cross section of the surface the rays moves at the point
that it crosses the two dimensional surface in phase space corresponding to the

Poincaré section. This situation is show in figure (3.2). The curved surface

Figure 3.2: The curved surface is the surface a ray may move on. The second surface, the
surface with points marked on it, is the Poincaré section. Each different colour represents
points associated with a single path. The orange points correspond to a ray confined to the
curved surface

represents the surface a ray is confined to, while the second surface, the surface
with points marked on it, is the Poincaré section. The spread of green and
blue points on either side of points following a curved line correspond to chaotic

paths, while the points following the curves correspond to stable paths. It is

96



this feature that will be looked for in later chapters to help identify dynamic
barriers in the system. It should be noted that great care must be taken when
looking at Poincaré sections as, due to the greatly reduced number of dimensions
shown, the points that are plotted on a surface may easily be misinterpreted as
indicating behaviour that is not really there. They should be used as indicators

of behaviour, rather than as a definitive test.
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Chapter 4

One dimensional Photonic

crystals

It has been shown in previous chapters that the bandstructure in a slowly
varying photonic crystal of the type defined in chapter 1 is, locally, equivalent
to that of an infinite crystal with a constant cell size equal to the local cell
size. The variation of the bandstructure may mean that a Bloch wave travelling
through the structure may encounter the top or bottom of the band that it is
in. Upon doing so it will be Bragg reflected.

The following chapter will initially introduce the phenomenon of Bloch oscil-
lations of electrons in semiconductors, whereby a uniform electric field applied
to an electron in a periodic potential causes it to oscillate instead of accelerate
uniformly [51]. An analogous situation involving Bloch waves in photonic crys-
tals will then be considered, and calculations of the transmission profiles of, and
electric fields that are inside, these structures will be made. These calculations
will be compared to results gained from experiments carried out by the author

in the microwave regime. Finally, some consideration of the relation between
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structures with infinitesimally thin sheets, defined by m = €,d in chapter 1, and
structures with finite width sheets will be made. This comparison will be of use
in later work that involves the two dimensional photonic crystals considered in

the later chapters.

4.1 Bloch oscillations

An electron in a periodic potential that has a constant electric field applied
to it will undergo periodic oscillations unless scattering occurs. This rather
counterintuitive fact occurs due to two processes, acceleration due to the field
and Bragg reflection.

The de Broglie hypothesis states that any particle also has a wave like nature,
with the wavelength associated with the particle being inversely proportional
to its momentum [52]. As such, the de Broglie wavelength associated with
an electron that is accelerated from rest by an electric field will decrease from
an initially large value. Thus, while the periodicity of the potential remains
constant, the wavelength associated with the particle will change. At some point
the de Broglie wavelength will have shrunk to such an extent that the Bragg
condition will be satisfied, scattering the electron back in the other direction.
Having been reflected, the electron will then be decelerated by the field until it
returns to its starting point and whereafter the process will repeat [53]. Thus,
unless it scatters, the electron is confined between the point at which it is Bragg
reflected and the point at which it is turned by the electric field, oscillating back
and forth. The average time between scatterings for electrons in natural crystals
is, however, sufficiently small that oscillations are rarely completed, and hence
experimental observation of these oscillations has so far proved impossible.

Analogous Bloch oscillations may, however, be observed in photonic struc-

tures, with a variety of systems being used to model different aspects of the
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electronic Bloch oscillations. Many of these use two dimensional structures,
confining the photons by Bragg reflections, total internal reflection, or by vari-
ation in the lateral width of the crystal.

The structures used in this work will be of the form of the one dimensional
photonic crystals that have been described in chapter 1. The cell length will
vary slowly, shifting the bandstructure, and in doing so mimic the effect of the
electric field on the electronic Bloch oscillations. As described above, the electric
field causes a change in the de Broglie wavelength of an electron. However, the
frequency of the electromagnetic wave is fixed. Thus, instead of the de Broglie
wavelength of the electron changing in a fixed periodic potential, the frequency
of the electromagnetic wave is held constant and the period of the potential is
modulated spatially.

In this case, the electromagnetic wave is confined at both ends of the oscil-
lation by a Bragg reflection, and it should be noted that this means that there
are no Bloch oscillations in the lowest band. While the bandstructure will scale
with changes of the local cell length, the lowest band always extends down to
w = 0. This means that, while a Bloch wave in the lowest band may meet a
point in the crystal where it is reflected off the top of the band, at no point will

it be reflected off the bottom of the band.

4.2 Arrangement of the dielectric sheets

The lattice constant, 1, at position z, along the photonic crystal is defined

using an exponential chirp [26] that is

l(zq) = lgexp[n(zqs — z0)], (4.1)
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where [ is a predefined constant, the unit cell length, and 7 is a constant whose
value will determine the rate of change of the cell length.
If x¢ is defined to be the left hand side of cell n = 0, then the left hand side

of cell n =1, x = 1, is given by solving,

/ T exp(—(w — 30))d = lo (4.2)

n

In the same way, once the position x; is known, equation (4.2) may be used to
find the position of the left hand side of cell n = 2. As the start of cell n =1 is
also the end of cell n = 0 the length of each cell may be obtained. Repeating
this process, with values of n from 0 to the desired value, a crystal with any
number of cells may be obtained.

Alternatively, equation (4.2) may be used [26] to gain the approximate re-

cursive relationship,

L,
L, ~ !

~ 4.3
[ (4.3)

where n is the cell number, and L,, is the length of cell number n.

4.3 Transmission through, and electric fields in-
side, short photonic crystals

It was shown in chapter one that the left and right travelling components of
electromagnetic waves may be related at any two points in, or either side of, a
photonic crystal with the use of transmission matrices. The following will use
this technique to examine the transmission of electromagnetic waves through
photonic crystals made up of a small number of cells. Initially the cells will all
have the same length, allowing the bandstructure to be seen. Following this,

crystals whose cell length varies spatially, so that the frequency bandstructure
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also varies, will be considered. These crystals will be constructed in such a way
that a complete photonic Bloch oscillation will be possible in the structure. At
one side of the crystal the frequency of the incident wave for which the Bloch
oscillation will be seen will lie below the bottom of an allowed band while,
due to the shift in bandstructure, at the far side it will lie above the top of the
band. Consequently, the region of the crystal for which the frequency lies within
the band is enclosed, with forbidden regions at either end. As these forbidden
regions are narrow, the incident electromagnetic waves will tunnel [39] into the
band with a relatively small loss of amplitude.

The exponential chirp used to determine the cell lengths in these crystals
has the effect that, for each band, the top and the bottom of the bands are a
constant spatial distance apart regardless of frequency. This leads to all Bloch
oscillations in a single band to have the same spatial length, however, the spatial
length of Bloch oscillations in other bands may be different.

The constant distance between the top and bottom of each band makes
this situation analogous to a square potential well, with resonances being seen
whenever the angular frequency of the electromagnetic wave allow the waves to
interfere constructively. Due to the constant distance between the top and the
bottom of the band, in the limit that the barriers Bragg reflect the waves per-
fectly at the band edge, these resonances will occur at equally spaced intervals
in frequency. The ability of the waves to tunnel through the forbidden regions in
these short crystals will mean that in the crystals considered here the resonances
will not be perfectly equally spaced, though it should be possible to achieve a
good approximation to this effect. This effect is analogous to a Wannier-Stark
ladder that will be seen in semiconductors in the absence of scattering when
an electric field is applied [54, 55, 56]. The discrete nature of the lattice that

makes up the semiconductor will lead to Bragg reflections occurring at points
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separated by one spatial period of the lattice. With this change in position
comes a change in the potential due to the applied field, and hence a change in
the energy associated with the Bloch oscillation. As the potential will change
by a constant amount between each of the points at which Bragg reflections
will occur, this will lead to a set of Bloch oscillations that are equally spaced in
terms of energy, a Wannier-Stark ladder [57].

For these one dimensional photonic crystals, the electromagnetic waves will
propagate perpendicular to the sheets and hence the polarisation of the electro-
magnetic waves will play no role, with the S and P polarisations being equiva-

lent.

4.3.1 Constant cell length

It is useful to consider transmission through a short photonic crystal, which
has a constant cell length, with the width of the dielectric sheet being a fixed
fraction of the cell length. If the left hand side of the first cell is at = = 0,
and the right hand side of the last cell is at x = «, the left and right travelling
components of the wave may be related by the use of a 2x2 transmission matrix

as described in chapter 1 [see equation (1.27)],

Ef, _ Tray Trag El_, (4.4)
E_, Tri1y Tres Eia

Where EJ“:O and E__, are the right and left travelling components of the elec-

x

tromagnetic wave at * = 0, Ef_, and E,_, are the right and left travelling

=« r=x
components of the electromagnetic wave at x = o and T'r(; 51 2) are the four
elements of the transmission matrix.

If E_, =0, as is the case if the only electromagnetic wave incident upon

the crystal is from the left hand side, then the relation between E_, and E,_,

xT
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is given by,

E+

=0 —

Tr(l,l)E;_:a

(4.5)

Thus the field at the right hand side of the crystal is 1/7r(; 1) of that incident

on the left, and the intensity is 1/77, ;).
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Figure 4.1: Transmission through a set of 20 sheets

1.4e+16

Figure (4.1) shows the transmission through a set of 20 equally spaced dielec-

tric sheets. The transmission is defined here as 1/ Trf1 1 and, unless explicitly

mentioned, this is the definition that will be used throughout the rest of this

work. The cell length, the width of one dielectric sheet and one air gap, is

constant with a value of 0.25um, and the sheet width is one third of the cell

length. The refractive index of the dielectric sheets is n; = 3.5, while the air

gaps have a refractive index of ng = 1.

As can be seen, the lowest band, which produces high transmissions, stretches
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down to w = 0. The lack of a lower band edge is the reason for the absence
of Bloch oscillations in the lowest band, as with no band edge there will be no
Bragg reflection. It may also be seen that within each band there are a number
of transmission peaks, both the nature of these, and the positioning of the bands
will be discussed later in this chapter.

The bandstructure is clear, even for a relatively low number of sheets, due to
the high refractive index that is used. This may be seen if the reflectance from a
single interface between materials with different refractive indices is considered.
The Fresnel equations show that the reflected amplitude from an interface is

related to the difference between the refractive index of the two materials [58].

R= <”1_”2)2 (4.6)
ny + no

where R is the reflected intensity, n; is the refractive index of the material the
wave is in and ns it the refractive index of the material it is incident on. If
this crystal is considered from the perspective of Bloch’s theorem, as given in
chapter 1, then the low number of sheets means that there are a low number of
reciprocal lattice points from which reflections may be obtained. If there is only
a small difference between the refractive index of each sheet then the reflectance
from each sheet will be low, and hence the coefficient in each term of the fourier
series, V(G), in equation (4.7) [equation (1.16) from chapter 1] will be small,

limiting the effect of each reflection.

ity = exp(ik.F) Z V(é)emp(ida (4.7
é
A large difference in refractive index allows the contribution of each reflected

wave to be greater, and thus fewer reflections are needed to image the potential

of the crystal strongly. If each of the reflections is very weak, then in order to
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mimic the periodicity of the crystal strongly and accurately, many more terms
are needed in the summation in equation (4.7). That is, if the reflection from
each reciprocal lattice point is low, then more reciprocal lattice points are needed

to image the periodicity of the crystal strongly.

4.3.2 Varying cell length

The Bloch oscillation is created by introducing a slow variation in the length
of the cell size, which will cause a shift in the positions of the band. As Maxwell’s
equations scale with length, the bands in a photonic crystal scale up or down, as
opposed to shifting up or down as is the case with electrons in periodic potentials
[26].

The exponential chirp that has been applied to the crystal causes the top
and bottom of each band to shift in such a way that, in each band, the points at
which a Bragg reflection occurs remain an equal distance apart. Thus all Bloch
oscillations that occur in the second, or higher, band will have the same spatial
amplitude regardless of the frequency they occur at. While all oscillations in
a single band are of the same length, oscillations in different bands will have
different lengths.

This situation may be seen in figure (4.2) which shows the positions of the
bands in a photonic crystal w.r.t frequency as the local cell length changes. The
grey regions are those for which there is no solution for a propagating Bloch
wave at that frequency. The black regions mark the range of frequencies for
which both limits of a band are within the crystal, the range of frequencies for
which a complete Bloch oscillation may be found.

This is in some ways analogous to a potential well with resonances, the
eigenmodes of the system, being seen when the frequency allows the Bloch wave

to add constructively over the oscillation. If an infinite crystal is considered [26]
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Figure 4.2: The varying band structure for a crystals whose cell length varies according to
an exponential chirp. The grey regions are regions for which no real propagating Bloch waves
may be found. The black regions show the range of frequencies for which both the top and
bottom of the band may be found in the crystal.

the points at which these resonances occur are equally spaced in frequency and,
due to the manner in which the band shifts, the oscillations take the same time
to complete. The points of reflection become less perfect for crystals of a finite
length, thus for a short crystal there is some spreading of the end positions.

Figure (4.3) shows the transmission calculated for a set of 45 sheets that,
considering just the second band, encloses a single Bloch oscillation. The first
cell, Ly, has a length of 0.235um, and the length of subsequent cells being given
by equation (4.3) with n = 3.333x10%. In each case the width of the dielectric
sheet is 1/3 of the length of the cell and has a refractive index of n=3.5, the air
gap has a refractive index of 1.

The central transmission peak is at the frequency that corresponds to this
eigenmode of the system, with the short forbidden regions at either end of
the crystal causing only a small decay in the field. The peaks on either side
correspond to Bloch oscillations that are shifted slightly spatially to the left and

right of the central oscillation. Due to the fact that there is a greater distance
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Figure 4.3: The transmission through a photonic crystal consisting of 45 dielectric sheets

of forbidden region that the field must pass in order to reach the eigenmode
there is a greater decay of the field. As mentioned previously the spacing of the

peaks is roughly equal.

Construction of the photonic crystal

If an infinite crystal was being considered, the bandstructure at any point
would be equivalent to that of the local cell size. This becomes slightly more
approximate for the use of non-infinite crystals, however it still has some validity.
As such, the use of bandstructures for photonic crystals with a constant cell size
may still be of use when constructing and analysing non-infinite crystals.

To find a structure that may contain a complete Bloch oscillation, a cell size,
l1, is selected, and the bandstructure for a crystal with this as its constant cell
size is made. A frequency, fi, is then selected that lies below the bottom of
the band of interest, and the cell size is then changed until it reaches a value [,

for which this frequency lies above the top of the band. As the bandstructure
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should be roughly equivalent to that of the local cell size, if the range of cell sizes
in the crystal spans both [; and ls, both the top and the bottom of the band
should be found in the crystal at the frequency selected. This is true regardless
of chirp rate, with a crystal with a slower chirp merely containing more cells
and a longer Bloch oscillation. While there will be a frequency for which the
top and the bottom of the band are contained in the crystal, if this frequency
does not correspond to an eigenstate, there will be no complete Bloch oscillation
contained.

To increase the chance that an eigenstate is contained within a photonic
crystal, and that the length of the forbidden region at either end of the crystal
is sufficiently long to lead to a strong reflection of the Bloch wave from the
top or bottom of the band, the cells corresponding to the lengths /; and ls will
not be the first and last cells in the crystal. Instead if more cells are included
at both ends of the crystal, leading to a larger forbidden region in the crystal,
the top and the bottom of the band will be within the crystal for a range of
frequencies, not just for the frequency fi.

It should be noted that regardless of whether a Bloch oscillation is completely
contained or not, the transmission graph will take the same form. This is
because even if only one end of the Bloch oscillation is present in the system, a

transmission peak will still be seen.

The electric fields inside the crystals

The transmission matrix method may be used to gain more information
about the system than just the transmission through, and reflectance from, the
entire structure. If z = « is a point at the right hand edge of the photonic
crystal and E,_, = 0, equation (4.8) may once again be used to calculate the

relation between E)_,, E._,, and the incident wave E;"ZO. Having set the

=’

values of E]_, and E,_, by the calculation involving the entire crystal, a new
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transmission matrix may then be constructed between x = 0 and x = «, where

« is now any point in the crystal.

o _ | Ao—a Bo-a Bia (4.8)
Ez_:o Co—a Do—a Eag:a

Where Ag_.o,Bo—a,Co—a and Dy_,, are the four elements of the transmis-
sion matrix relating the electric fields at = 0 and = «. This equation may
then be solved for E_, and E,__, the sum of which is the electric field at

T = Q.
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Figure 4.4: Transmission through a photonic crystal consisting of 41 dielectric sheets

Figure (4.4) shows the transmission through a photonic crystal that is made
of 41 dielectric sheets, refractive index 3.5, separated by air gaps, refractive
index 1. The first cell has a length of 375nm, with subsequent cells again being
given by equation (4.3) with 7 =3.333x10%. In each cell the dielectric sheet is
2/9 of the cell length.

Selecting the frequency at which the largest transmission peak occurs, and
calculating the value of the field at many points through the crystal, gives a

field of the form shown in figure (4.5).
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Figure 4.5: The electric field of an allowed eigenmode superimposed onto the photonic
crystal, the grey bars are the dielectric sheets.
While it might by expected that the field profile would be symmetrical,
with maxima at the turning points of the corresponding Bloch oscillation, the

variation in the spacing and widths of the sheets introduces the asymmetry seen.

4.4 The form of the Bandstructure

Due to the multiple reflections that occur in photonic crystals, the band-
structure may become highly complex and dif